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ABSTRACT: We introduce dTank, a competitive environment, as useful for architectural comparisons of
competitive agents and comparisons of human and agent behavior. dTank, a Java-based simulation, was designed
to facilitate these forms of holistic comparison of emergent behavior. We present several models built using several
cognitive and agent architectures (Java, Jess, and Soar), and compare them against a novice participant. We find
that our novice participant used two strategies while playing: wandering and attacking. All three agents accurately
modeled the novice’s wandering behavior, while the Soar agent more accurately modeled the novice’s attack
behavior. These results demonstrate the usefulness of dTank as a teaching and modeling tool, and as a lightweight

environment for testing cognitive models and architectures.

1. Introduction

Often, modelers develop agents and build agent-
environments to facilitate the development and
isolation of particular cognitive phenomena. Modelers
have rarely examined the emergent patterns of behavior
of different models in the same environment. To our
knowledge, very few modelers have examined models
and agents built in different architectures as well as
humans in the same environment, although the AMBR
project is the definitive example of this form of
analysis (Gluck & Pew, 2001) and the Sisyphus
project, which used tasks such as the one documented
by Yost and Rothefluh (1996), was similar in direction
for expert system shells. We offer an environment,
dTank, that facilitates this type of analysis for
competitive environments.

We present dTank as a useful tool for inter-
architectural comparison of models and agents against
human measures as well in comparison with one
another. dTank has been designed to present uniform

capabilities to models, agents, and humans. dTank is a
Java-based tool and runs well in both PC and Mac
environments. It uses socket communication methods
to provide uniform connections to all models.

First, we present the system design of dTank and
discuss how this design facilitates parallel comparison
of models, agents, and humans. Second, we introduce
several dTank models and agents built using different
cognitive and agent architectures. Third, we present a
model-to-model and model-to-human comparison.
Fourth, and finally, we conclude with a discussion of
these comparisons, their implications, and future work
with dTank.

2. dTank’s Design

dTank was designed with two main criteria, that (a) all
software models/agents should be able to use a
universal interface for connection, and that (b) the
human and software players had parallel capabilities
available to them. There were several other criteria as
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well, including that the system be interesting and easy
to use, and that it logged the agents’ behavior for later
analysis and playback. Finally, the driving force was
that we have been working on an approach to creating
models that can explain themselves (Haynes, Ritter,
Councill, & Cohen, Submitted). Such models need
something to explain. While models within ModSAF
would be appropriate, this simulation is far too large
and unwieldy for most exploratory work, particularly
in most students and by students.

The original design of dTank was inspired by Tank-
Soar, and was intended to provide very similar
functionality. Its implementation has drifted somewhat
from Tank-Soar, the tank game developed by Mazin
As-Sanie and included with Soar distributions, but not
in spirit. It was also designed to provide a lightweight
alternative to ModSAF.

2.1 dTank’s Architecture and Interface

We chose a client-server architecture and a socket-
based interface. A server is started up as a Java
program. The server displays everything, and runs the
simulation. A human user can choose to enter the
environment from the server menu, and then the Ul
displays only the limited view parallel to agent vision.
Agents, models, or humans that connect to the server
are all given a tank on the board, and can then send
commands to move the tank. The clients are given
updates every 2 s of what is visible to them on the
board. This update rate was chosen because this is an
estimated scan rate of Navy pilots found in another
study (Councill, Haynes, & Ritter, 2003). More details
are provided in the manual, including how to create
and use up to 100x100 square boards (Councill,
Morgan, & Ritter, 2004).

Models receive information and pass commands in the
form of text-strings that are converted into state
representations conforming to the needs of the
architecture. Converter files must be created on a per-
architecture basis. Currently Lisp, Java, and Tcl/Tk
files are available.

Figure 2.1 shows a detailed view of two tanks in the
server window. Figure 2.2 shows the interface that a
human user sees when his dTank has connected to a
server, and a more limited view is provided.

Figure 2.1. A detailed view of dTank from the server
interface.

Models can use this state-representation differently,
either acting directly on information as it is made
available, or building internal state-representations.
Models use this state information, and then decide
upon an action that affects the environment. This
action is sent to dTank in a formatted string and held in
a buffer for time-synchronization purposes.

Aside from state information, which is sent at regular
intervals, software agents are also informed of
important events, such as being hit, ‘dying’, and
‘health-low’. This is to allow modelers some
flexibility in the behaviors of models in difficult
situations.
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Figure 2.2. View of the dTank client being played by a
human.

2.2 Parallelism in dTank

dTank was also designed to keep the capabilities of the
human and software agent parallel. This proved more
difficult than initially expected. In order to keep the
capabilities parallel the vision of both humans and
agents must be limited appropriately. Software agents
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receive state information and event notices for events
that occur within a 100 degree arc centered on their
turret’s current vector. To limit human vision
similarly, a 3D interface was proposed and
implemented, but proved difficult to optimize using the
Java environment. Instead, a ray-casting algorithm is
used to limit human vision to a 100 degree arc on a 2D
(plan-view) display.

The use of the 2D display for humans is also
appropriate because the first person view, while
perhaps more interesting to some users, requires a more
complex reasoning strategy than all models created so
far. Agents view other agents and themselves as being
placed on an overview map. If an agent were created
that evaluated risk by examining distances (i.e.
perception), then a 3D interface would be more
parallel.

Because the plan-view display was originally designed
to serve as the server interface for the dTank system,
sensory filtering occurs at different stages between the
software agents and human players, as shown in Figure
2.3. The human client has all the information, but is
limited by its ray-casting algorithm to displaying only
what the human agent should see. The agent is given
only the information it can currently possess.
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Figure 2.3 Sensory Filtering to create parallelism in
dTank.

Aside from input, models and humans should be able
to do the same things at the same pace. This has also
proven difficult. Concrete actions, such as moving
forward, firing, and turning, are performed similarly by

humans and agents. More complex and abstract
actions such as communicating with other tanks and
scanning specific visible tanks are difficult to
implement in a parallel fashion.

Forcing a theory of perceptual and motor skills upon
software agents through a required time lag is not an
acceptable option, and these capabilities are abstract
and made use of only by highly refined models.
Therefore, we have made the capabilities available to
both software models and human users and currently
rely on the modeler to maintain parallelism of what is
available to models. This could be done by ignoring
the socket-based interface system and playing the game
with the human user interface using a tool like Segman
(Amant & Riedl, 2001).

dTank has been used by two classes on cognitive
modeling at Penn State (Cohen, Ritter, & Haynes, In
Press), a class at Lock Haven and at a university in
Brazil, and by an Army MURI to investigate the effect
of communications upon teamwork (Sun, Councill,
Fan, Ritter, & Yen, 2004).

Work remains with dTank and its analysis tools to
make them more useful to the modeler. Moves into a
wall or missed shots are ineffective. dTank does not
differentiate between effective and ineffective actions
when creating its log file—it does not record whether
actions were successful, or if they were ignored.
Currently, neither do the analysis tools. We believe
that information about the number of effective and
ineffective clicks are both very valuable to the
debugging modeler, but we do not currently distinguish
between them.

Also, because the system does not inform the human
participant of ineffective clicks, the user can become
frustrated by apparent lack of response by dTank. This
could be fixed by providing immediate feedback (as is
provided across the socket interface) of an action’s
effectiveness (such as a beep when an action is
ineffective). Capturing ineffective keystrokes when we
know that the user has been informed of the error will
let us examine a participant’s ability to learn the game
and other valuable aspects of error.

Although the parallelism is still imperfect, dTank
provides input and output to humans and agents in a
manner sufficiently parallel to provide useful
comparisons between humans and models and across
models. We do this next.

3. dTank Models

To understand several architectures better, we have
created dTank models in several different architectures.
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We discuss here a Java, Jess, and Soar model and
compare their behaviors and actions with a human
novice player. We are currently working on models for
ACT-R (Anderson & Lebiere, 1998), JACK (AOS,
2004), and COJACK (Norling & Ritter, 2004). Other
agents have been written in the CAST architecture
(Sun et al., 2004; Yen et al., 2001) but are not
discussed here.

We feel that dTank actions, such as moving forward,
turning, rotating the turret, and firing can be composed
into chains that form strategies such as Wandering,
Hunting, Chasing, and Attacking that are broadly
applicable to both models and humans. Briefly, we
define these strategies but note that Wandering and
Attacking are the two most common strategies across
models.

Wandering consists of moving in a random or semi-
random fashion across the map while moving the
turret. This strategy initiates when no target is visible
and terminates upon acquiring a target. It is composed
of a series of turret rotation, move forward, and turn
commands.

Hunting is a specialized form of wandering. A tank
moves to the border of the map and begins to circle the
board while rotating the turret until a target is acquired.
It is otherwise identical.

Chasing consists moving towards a known tank
location. It is composed of a series of turn and move-
forward commands.

Attacking consists of a rapid series of commands that
aim and fire the turret. Usually this is composed of
alternating series of aim and fire commands until the
enemy can no longer be seen. This strategy initiates
upon sight of an enemy tank and terminates when no
enemy tank is visible.

3.1 JavaTank

Java is a object-oriented programming language
(Arnold, Gosling, & Holmes, 2000). It has no implicit
theory of cognition, perception, or action. However,
our Java agent, JavaTank, takes a small step towards
cognitive plausibility by waiting 50 ms before it will
consider the environment or implement an action
JavaTank is capable of moving forward, turning,
rotating its turret, aiming at a target, and firing. An
expert Java developer created the JavaTank in about
five man-hours. It consists of 13 methods and takes
advantage of two objects created to support further
tanks built in Java.

JavaTank wanders normally for a period of time. After
a period of time in failing to spot the enemy, JavaTank
uses the Hunt strategy. Upon sight of an enemy tank, it
attacks.

3.2 JessTank

Jess (Java Expert Systems Shell) is a Java-based rule
engine derived from the CLIPS expert systems shell
created and distributed by NASA (Friedman-Hill,
2003). The Jess agent, JessTank, also requires 50 ms
before it will consider the environment or implement
an action. Development time of this model was
approximately one man-hour by an expert, but it is
simpler than the other two. It is only capable of
moving forward, turning, rotating its turret in the
cardinal directions, and firing. This model also takes
advantage of Java class objects built to support
development of Java-compatible agents for dTank and
has nine rules; an example rule is included here as
Table 3.1

Table 3.1 Fire command for JessTank

(defrule attack
"if I see a tank and we are in the same x location, fire!"
(visual (x ?tx))
(status (x ?x) (reloading false))
(test (= ?tx 7x))
=>
(fire)
(printout t "attacking..." crlf))

JessTank wanders until it spots an enemy tank. Upon
sight of that tank, it chases that tank until it has reached
the same horizontal row as the tank it has spotted.
Once it has, it begins to attack. This unusual strategy
was chosen by the JessTank developer. Unlike
JavaTank or SoarTank, JessTank does not perform the
required trigonometric equations to aim the turret at
any enemy that can be seen.

3.3 SoarTank

Soar is a cognitive architecture (Newell, 1990). The
SoarTank model included in the dTank distribution was
the first model developed, and it was built by the
original dTank developer in about three hours. It is
capable of moving forward, turning, rotating its turret,
aiming at a target, and firing.

SoarTank relies on a directed form of wandering that
prevents it from merely rotating in place. After it has
spotted an enemy, it begins attacking.

A further half-dozen models have been created in Soar,

Herbal-Soar (a high level compiler for Soar, and Slip-
Soar (a version with errors in its motor output).
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Examples of these are included in the dTank web site
(http://acs.ist.psu.edu/projects/dTank/).

4. Model to Human Comparisons

Model-to-Human comparisons are the major product of
our work with dTank.

4.1 Methodology

We gathered five minutes of keystroke protocols from
a novice player of dTank. The player was familiar with
the concept of dTank, and had played computer games
before. We provided the subject an instruction sheet
that listed how to perform the basic dTank commands:
move, fire, turn clockwise, turn counter-clockwise,
rotate (the turret), and shield. We gave the subject five
minutes to review the instruction information without
access to the environment. We then logged his
keystrokes while he played against the JavaTank agent
for five minutes, producing a text log of more than a
1,000 attempted actions in sequence. For comparison,
a text log was produced for each agent and model
described above in a similar fashion.

After the player had finished, we asked him to explain
his strategy and assisted the participant in constructing
a flowchart of his actions, which the participant
validated.

In order to validate that dTank is showing behavior
similar to people, we used CaDaDis (Tor, Ritter,
Haynes, & Cohen, 2004), a tool that automatically
creates categorical data displays for cognitive models
and intelligent agents. A software tool (available in the
next release of dTank) was used to process the dTank
text logs and create CaDaDis log files for each agent.
The default CaDaDis displays were modified to display
the action sequence. This action sequence focus
allowed us to compare human and model sequences at
the same level of granularity.

4.2 Analysis of Participant Strategy

The participant relied more on turret rotations and less
on moving the tank, but still both rotated the turret and
moved the tank. The participant did not attempt to use
his shields at any point in the five minute log. With
assistance, he then produced a flowchart that
encapsulates his strategy.

Spawn
Search with
Turret
Cannot See Can See
Enemy Enemy
Move Cnemy
) Dies
g;‘ﬁn'; Fire Rapidly
Direction at Enemy

Figure 4.1 Participant strategy flow.

This strategy is equivalent to the Wander and Attack
strategies discussed earlier. After being spawned, if he
could not see an enemy, he wandered, with a
preference for turret rotations. If he did see an enemy
tank, he attacked. We think it is interesting that the
participant did not explicate the actions of attacking,
that is, aiming and firing actions in a long series, but
instead focused on the high-level strategy of attacking.

4.3 Models to Subject Strategy Comparisons

This analysis will focus on each of the basic strategy
types and examine the typical action chains that formed
each core strategy in the agents as compared to the
human version. For this reason, only Wander and
Attack behaviors are compared to the subject data,
because those are the behaviors that the subject
engaged in.

A summary of the total attempted actions for the
participant and each model is shown in Table 4.1. Not
all actions proposed by either the subject or software
modelers were accepted by the server (e.g., moving
into a wall), although all actions are still analyzed here.
A tank is able to turn in both a clockwise (Turn-C) and
counter-clockwise (Turn-CC) direction.

Table 4.1 Attempted Actions for all Actors.

Actor Fire Rotate Move Turn-CC Turn-C
Participant 350 569 529 42 8
JavaTank 693 193 310 35 38
JessTank 39 91 202 100 62
SoarTank 316 90 93 62 69

The Wandering strategy varied between human and the
different models. The participant’s wandering strategy
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varied between turret-rotations followed by a series of
move-forward and turn commands, as shown in Figure
4.2

Rotate-Turre

Move-Forwar |~ T

Turn-Counte| ) 7
Turn-Clockwi

Figure 4.2 Participant wandering strategy from
CaDabDis.

The models had different wandering strategies, as
shown in Figure 4.3. JavaTank and JessTank alternates
between rotating its turret and moving, either one or
several actions. JavaTank typically moved only once
before rotating its turret again. SoarTank, which builds
internal memory, rotated its turret less frequently and
continued with more maneuvering commands between
turret rotations. All tanks still receive updated visual
field information every two seconds.
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Figure 4.3 JavaTank (top), JessTank (middle), and
SoarTank (bottom) wandering strategy, from CaDaDis.
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The participant’s attack strategy was very simple, but
effective. Most often, the participant would re-aim the
barrel and immediately fire. We believe that although
it involved two separate actions, pressing the mouse-
button to re-aim and pressing the space-bar to fire, the
time lag between the two actions indicate that the
participant viewed them as one action, with no time for
thought between the two. Rotate Turret, of the 560
attempted actions, was followed by Fire 289 times
(more than half the time), with an average latency
between the two actions of 83 ms. This behavior is
demonstrated in a CaDaDis trace shown in Figure 4.4.
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Figure 4.4 Participant attack strategy.

Most of the agents had attack strategies that were
similar to the participant’s strategy, as is shown in
Figure 4.5. The major exception is JessTank, which
must be on the same horizontal location as its enemy or
it will not fire, which makes movement much more

prominent in the behavior of this agent. SoarTank
alternates turret rotations between attacks. JavaTank,
once locked on to an enemy, fires many shots rapidly at
the enemy.
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Figure 4.5 JavaTank (top), JessTank (middle), and
SoarTank (bottom) attack strategies.

Once the model behavior is captured in CaDaDis, an
audio representation can be synthesized that literally
“plays” the actions of the agent. Such audio files,
particularly compared against those of other models,
can be very useful for analyzing model behavior
differences, including innate differences between
cognitive architectures. Example CaDaDis audio
analyses can be found on the CaDaDis website,
acs.ist.psu.edu/projects/CaDaDis.

5. Discussion and Future Work with dTank

The analysis shown here demonstrates the potential use
of dTank as a platform for comparing agents in
competitive environments. It will also be useful for
examining specific cognitive phenomena such as
learning and the effect of moderators on behavior.

A recent undergraduate class project, for example,
showed that as slips increase, the win/lose ratio against
the Java tank decreases linearly to 0.

Perhaps its greatest use is as a training environment for
cognitive modelers. The environment is simple enough
to work with, yet complex enough to provide some
challenges. More importantly, dTank provides tools to
support the analysis of information gathered in its
environment.

Theories of social processes are testable in dTank,
although we do not provide such an analysis here.
dTank allows communication to pass between all the
agents currently active in the environment. Work with
CAST (Yen et al., 2001) has shown that the appropriate
level of communication for agents varies by task
complexity (Sun et al., 2004).

We believe that dTank has promise and use as a useful
modeling environment for behavior representation,
although we see many opportunities for improvement
in dTank.
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