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ABSTRACT:  We present the case for a preliminary organizational model of participation. We review a simulation of 
the Battle of Medenine with respect to its ability to approximate the historic record.  We find that individuals in the 
actual battle performed with greater variance than the simulation predicted, suggesting that individual differences are 
important.  Using a light-weight simulation, we implement one means of representing these differences based in part 
upon Grossman’s (1995) participation formula. We demonstrate that our preliminary version of the formula can 
generate individual differences, which in turn have a meaningful impact on group performance. Work remains to 
improve the formula and its application.  

1.   Introduction 

In this report, we examine what influence individual 
variation and psychological distance have on group 
performance.  Over the past decade, interest in individual 
differences has grown.  On the other hand, theories of 
participation have remained largely descriptive. By 
participation, we refer to the incidence of a particular and 
recognizable act by an agent.  By a model of participation, 
we refer to a predictive account describing the reciprocal 
relationship between individual behavior and group 
performance, and how that relationship in turn moderates 
human behavior in a variety of contexts.        

To develop these points, we start with a discussion of a 
validated simulation called Ironside (Harrison, Winters, & 
Anthistle, 1999).  During the course of the validation 
study (Poncelin de Raucourt, 1997), discrepancies 
between the simulated and historical outcomes under-
scored the need to include more accurate human models 
of individual differences.  We next briefly review how 
agent-based approaches have historically accounted for 
individual differences in synthetic environments.  From 
there, we discuss in detail the need for a preliminary 
predictive model describing how organizations influence 
their members to achieve group goals (we call this an 
organizational model of participation), and outline its 
components and an initial implementation.  Finally, we 
conclude by summarizing the model’s current 
development path and implications.   

2.  Lessons from Ironside 

Ironside was an interactive, two sided, closed, stochastic, 
ground combat simulation developed at the Royal Mili-
tary College of Science in the UK (Harrison, Winters, & 
Anthistle, 1999). Ironside’s designers sought to produce a 
battle group simulator that accurately reflected opera-
tional doctrine and behavior.  To realize this goal, Iron-
side integrated a representative command and reporting 
structure with realistic platform engagements.  Users 
could construct command hierarchies for platoon to 
division-sized elements with corresponding entity level 
weapon platforms.  This feature enabled entities to inde-
pendently identify and engage targets within a rich 
simulation environment.  

We begin with Ironside for three reasons.  First, while 
Ironside was developed in the 90’s, its emphasis on inde-
pendent entity level activity remains relevant and instruc-
tive.  Second, the validation and verification study for 
Ironside is unusually detailed, well documented, and 
persuasive.  Finally, it provides a compelling and early 
case for not only accounting for low-level group 
interaction but also individual differences.   

Ironside did not determine outcomes by computing rela-
tive strengths.  Rather, each entity was modeled sepa-
rately and acted independently. The entities were data 
driven, dynamic, and constrained by terrain and equip-
ment.  Thus, this approach was agent-based, though it 
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lacked either a strong separation between the agent and 
the simulation or a representation of the constraints 
imposed by memory or processing limitations.  

The validation and verification study of Ironside is unique 
in that it is available and reflects the combined expertise 
of an artillery officer and systems designer.  Because most 
military simulations are developed for training or analy-
sis, their emphasis on present or future scenarios and tran-
sient effects often obligates their designers to use face and 
event validation, as well as sensitivity and trace analysis 
for substantiation.  One liability of depending primarily 
upon these forms of validation is that the influence of 
individual differences or group interactions on unit 
performance can remain undefined and thus unaccounted 
for, leading to unrealistic outcomes.  In the past, develop-
ers often relied upon Lanchester square and linear models 
for evaluating attrition rates and performance (Hartely & 
Helmbold, 1995).  Historical data validations, when 
conducted, indicated that simulations using these methods 
were unable to replicate historical outcomes, in part 
because these models failed to account for individual 
difference or low-level interactions (Hartley & Helmbold, 
1995; Gillis, 2000; Sargent, 1999).   

In his independent validation study of Ironside, Poncelin 
de Raucourt (1997) modeled the battle of Medenine.  One 
of the last battles of the North African campaign, 
Medenine (March 6, 1943) offers the analyst one great 
advantage—the battle is well documented (Rowland, 
1993). Internal memorandums from both sides offer an 
amazingly consistent step-by-step account of the action.  
This account coupled with access to original battle maps, 
equipment, and ammunition allowed Poncelin de 
Raucourt to implement the battle in Ironside’s system 
with confidence.  This study assessed Ironside’s ability to 
model the engagement between the 131st Queens Brigade 
and the 8th Panzer Regiment lasting from 07:20 to 10:00 
hrs, the most significant engagement of the battle.  Figure 
1 is a map of the Battle of Medenine.  

Poncelin de Raucourt’s study yielded mixed results.  
After analyzing ten runs, he found that Ironside’s 
software and engineering supported its designers’ intent.  
On the other hand, Ironside generated outcomes that were 
reliably different from the historical record when 
examined on an individual battery level.   

Poncelin de Raucourt used the following questions to 
assess the simulation’s validity:  (a) Does the duration and 
distribution of losses in the simulation reflect the histori-
cal record? (b) Are the number of casualties, the ratio of 
shots per kill, the engagement range, and the characteris-
tics of each weapon system consistent with the data? 

 
Figure 1:  A map of Medenine (Poncelin de Raucourt, 

1997). 

Though the simulation’s number and average distribution 
of losses, ammunition consumption, and ratio of shots per 
kill all roughly approximated reality, the simulation’s 
duration, the entities’ engagement range, and the individ-
ual distribution of casualties per battery did not.   

To generate these results, Poncelin de Raucourt first 
determined which datasets could be characterized as 
having a normal distribution using the Kolmogorov-
Smimov test.  He found that the size of the kill zone, the 
amount of ammunition consumed, and the number of 
casualties could all be described as having a normal 
distribution, and thus be analyzed using the student t-test 
to see if the mean values from the simulation approxi-
mated those reported by Rowland (1993).   

Table 1 compares the simulated and actual values, as well 
as showing the results for these tests. For the 14 units 
involved in the engagement, the actual number of tanks 
destroyed was not evenly distributed.  When we compare 
the number of tanks on average destroyed across the 10 
runs to the actual outcome (25.8 vs. 25 respectively), the 
simulation closely mirrors Medenine.  This consistency 
most likely reflects the topographical constraints present 
in the system, particularly the influence of the Wadi 
Zeuss, Matmata Hills, and Tebaga Gap.  On the other 
hand, the average predicted values across all batteries are 
different from the simulated values (p<0.01) using a Chi-
squared test.  When the differences are examined 
individually using tests based on the standard deviations 
(row 3), the results indicate that several of the batteries 
performed as expected (within 95% confidence intervals) 
but several did not.  Batteries 6/2, 7/5, and 7/7 are three 
notable examples.  While battery 6/2 in reality 
immobilized fewer tanks than Ironside’s prediction, 
batteries 7/5 and 7/7 each exceeded the predicted outcome 
by 1.5 to 2 standard deviations.   

 



Table 1:  Consolidated kills report and statistical tests per gun (Poncelin de Raucourt, 1997, Table 7.3).  

Gun 6/1 6/2 6/3 6/4 7/5 7/7 7/8 N/1 N/2 R/1 R/2 R/3 R/4 J/2 
Tanks Destroyed at 

Medenine 1 1 0 0 10 10 2 0 0 1 0 0 0 0 

Tanks Destroyed by 
Ironside 2.8 3.2 0.5 1.9 5.4 3.2 4.2 0.9 0.5 0.4 0.6 0.6 1.4 0.2 

(STD) of Ironside’s 
Destroyed Tanks 2.86 1.32 0.53 1.37 3.41 2.57 1.81 0.88 0.53 0.52 0.7 0.84 1.96 0.42 

Kolmogorov-
Smirnov Test 0.24 0.25 0.33 0.14 0.15 0.20 0.17 0.25 0.33 0.38 0.30 0.36 0.26 0.48 

Pass/Fail Pass Pass Fail Pass Pass Pass Pass Pass Fail Fail Fail Fail Pass Fail 
Student t-Test 1.89 5.01 - 4.16 4.05 7.93 3.64 3.08 - - - - 2.15 - 

Pass/Fail Pass Fail - Fail Fail Fail Fail Fail - - - - Pass - 

Poncelin de Racourt’s analysis (1997) suggests that 
Ironside’s terrain modeling, its lack of a decision-making 
task model, and its inability to predict the effect of either 
individual differences or low-level group interactions all 
significantly impaired its performance. We will discuss 
each in turn.   

Ironside’s terrain model was too coarse, resulting in 
unrealistic firing rates for batteries 6/2, 6/3, 7/5, 7/7, 7/8, 
and N/1.  While Ironside was able to predict the influence 
of major terrain features (as evidenced by the overall 
averages), it was unable to predict the influence of minor 
ones because the elevation matrix’s resolution was limited 
to 100 m.    The absence of a decision-making task model 
had two major consequences.  For one, Ironside was 
unable to predict the delays associated with organizational 
decision-making or the effects of cognitive constraints.  
Free of the vagaries of the communication process or the 
effects of imperfect information, Ironside’s agents were, 
on average, able to prosecute the battle in 31.2 min. vs. 
the 160 min. it took in reality.  In addition, the kill zone 
was larger in the simulation than at Medenine, 693 m vs. 
521 m.  This discrepancy is primarily due to the absence 
of a decision-making task model, but is also a result of 
faulty assumptions in the agent models.  Where the 
simulation fired at the first opportunity, allied forces 
chose to hold their fire to deny the enemy maneuvering 
room once the battle had commenced (weighing the risk 
to their own troops against a higher probability of 
success). Finally, in part because it had no means of 
predicting what influence individual variation or intra-
group interactions might have upon group performance, 
Ironside was unable to replicate the actual distribution of 
fire (See Table 1).  

Like the battles of Decauville (October, 1918) and the 
liberation of Holtzwihr (January, 1945), the outcome at 
Medenine appears to have been disproportionately 
influenced by the actions of a few soldiers, Sergeants 
Andrew and Vincent (Faulkner, 2008; Rowland, 1993; St. 
John, 1994).  Though the distribution of causalities per 
gun was normal if the battery fired, weapons fire was not 
consistent across positions.  There are several reasons for 
this.  As noted above, the terrain did favor eight of the 

fourteen positions.  Nevertheless, the concentration of the 
distribution (where the historic record shows more 
success than the simulation predicted as in Table 1) 
suggests that more than terrain effects influenced the 
outcome.  In the final summary of his validation study, 
Poncelin de Raucourt argued that individual differences 
and variability across units (heroic or degraded behavior) 
explained this discrepancy. This hypothesis is strongly 
supported by both autobiographical accounts (journal 
entries from the officers of the 6/2 noting the unit’s low 
moral after fierce fighting days earlier), as well as the 
discrepancies between the historic and simulated 
outcomes for batteries 6/2, 7/5, and 7/7 (Rowland, 1993). 

We believe that theories of individual differences, 
particularly in respect to participation, if properly imple-
mented would begin to explain and predict the causes for 
this variation in behavior. In the next section, we will 
discuss why a theory of participation is necessary by 
reviewing briefly how agent-based approaches have 
historically modeled decision-making. 

3.  Agent-Based Approaches 

For our next example, we use agents that operate on the 
basis of knowledge to take actions in the world.  Agents 
can be seen to run continuously through a cycle of three 
steps:  Perceive -> Decide -> Act, and then perceive again 
(Newell, 1990).  Agents are differentiated from each other 
on the basis of their capabilities in each of these areas, 
and intended to describe average or ideal members of a 
certain class of individual (e.g., fighter pilots).  

Modelers have generally accounted for important 
contextual differences by using agent perception and 
making rule knowledge highly situational.  Such agent-
based approaches have become widely recognized and are 
now finding some success in studying social phenomena 
(e.g., Norling & Ritter, 2004; Silverman et al., 2002; 
Taylor et al, 2006).  This is particularly appropriate in 
settings where it is reasonable to consider individuals as 
essentially similar, and when decisions being made are 
frequent enough and routine enough that any variations in 
individuals can be described as statistically similar. 



Nevertheless, participation as a phenomenon highlights 
the limitations of the Perceive -> Decide -> Act cycle.  An 
agent will take the appropriate action as soon as the 
conditions of that action are met.  Humans, however, may 
hesitate or choose not to act when the stakes are high or 
emotions are involved.  Furthermore, the organizational 
and local circumstances can affect the quality and severity 
of that hesitation (which we will illustrate in a 
simulation); and reciprocally, the severity of that individ-
ual hesitation may affect that organization’s ultimate out-
comes.  Drawing from descriptive theories in group 
psychology and sociology, we further argue that the 
causes of this hesitation are generalizable and modelable.  

4.  An Organizational Theory of 
Participation and its Implementation 

Given that variations in individual performance can be 
important, we start to explore a way to represent these 
variations as arising from individual responses to situ-
ational and organizational factors. Our theory is a pre-
liminary one, a rough sketch indebted to several disci-
plines but particularly influenced by the work of Gross-
man (1995).  In this section, we discuss in further detail 
what we mean by a theory of participation and what such 
a theory entails.  After describing the theory generally, we 
describe a specific implementation domain, specifically 
modeling combat environments in a light-weight 
simulation.   

Again, we define participation as the incidence of a 
particular and recognizable act by an agent, generally in 
response to a change in its environment.  We recognize 
that numerous processes and factors influence this 
response, and that theories describing these processes can 
operate at various levels of abstraction.  On the other 
hand, when defined broadly, the concept of participation 
highlights the underlying reciprocal relationship between 
individual behavior and group performance.  Though we 
exist in and are influenced by social networks, 
differentiation between group members can impact group 
performance.  A comprehensive theory of participation 
would explain this relationship in full and its impact on 
cognition.   

Our current theory falls far short of this.  Though it 
incorporates a primitive notion of individual variation, it 
is primarily an organizational theory that predicts the 
effect that group distance and density have upon 
individual behavior and thus group performance.  
Nevertheless, it begins to address the modeling challenges 
Poncelin de Raucourt (1997) identified by offering a 
theory of group effects and a platform from which to 
incorporate other micro-theories of cognition.   

Our theory of participation rests on three general 
premises.  First, human social networks are complex 
systems that moderate individual behavior.  Second, our 
awareness of ourselves and our relationships to others is a 
defining characteristic of the human cognitive architec-
ture.  Third, changes to social networks precipitate 
changes in the agent’s state that manifest themselves in 
divergent outcomes.   

A theory of participation is inherently a theory of action.  
The first premise defines the context of that action, 
specifically of collaborative activity. Consequently, we 
must identify and account for the constraints present in 
social networks.  We attempt to model these constraints 
by using an agent-based approach in a light-weight simu-
lation, dTank (Morgan et al., 2005).   

A theory of participation is also inherently a theory of 
cognition. The second premise posits that modeling the 
mutual awareness of agents in a network, as well as 
modeling perception and memory, is necessary for any 
working theory of participation. This form of awareness is 
an intrinsic and important aspect of human cognition.  
The observer effect and its various manifestations, the 
Hawthorne, Henry, and Pygmalion effects, all attest to 
this fact.  We describe the implementation of this premise 
in Figure 2.    

 
Figure 2:  Implementation diagram of a preliminary 

model of participation. 

In Figure 2, we begin with a simple agent diagram.  The 
environment, in this case dTank, generates state changes 
that the agents respond to, which in turn generates subse-
quent state changes.  The agents’ actions arise out of their 
perception of the environment and reflect human 
processing and sensory limitations.   

Generally, cognitive architectures treat perception and 
decision making as independent of social influences.  
Agents perceive the environment and act in accordance to 
a specified goal hierarchy. In most cases, however, the 
presence of other agents has no impact upon agent 
behavior unless their presence or absence impacts the 
agent’s ability to achieve its goals.    



Human behavior, on the other hand, is always moderated 
by presence or absence of others (Haynes & Zander, 
1953).  Often, our responses to others are unconscious, 
though we can become acutely aware of them when 
confronted with unfamiliar or uncomfortable situations.  
When modeling combat environments, we are able to 
predict these reactions with some confidence because 
human reactions to tension and fear are generalizable 
(Collins, 2008).  Consequently, we chose combat 
situations as an initial test case for modeling how an 
agent’s awareness of hostile and friendly observers can 
complicate its decision- making process, and thus lead to 
divergent group outcomes.  We hope to extend this work 
to other social contexts in time.   

In Figure 2, the arrows leading to and away from the 
participation model illustrate the influence that others 
have upon decision-making.  The model itself is a repre-
sentation of inter and intra-group awareness and the 
management of that awareness (Grossman, 1995; Collins, 
2008).  The model’s relationship to the agent in Figure 2 
reflects an interim step rather than a theoretical commit-
ment.  Ultimately, a theory of participation should be 
integrated into the agent’s architecture.  On the other 
hand, this modular approach allows researchers using 
various agent architectures to use and improve upon this 
approach.   

Finally, the third premise of our theory asserts that 
changes in the social network precipitate changes in the 
agent’s state that manifest themselves in divergent 
outcomes. The interconnected nature of the system 
engenders two effects.  First, the importance of individual 
differences is amplified as each node (agent) is connected 
to more and more edges (relationships)—meaning that not 
only must military and paramilitary organizations 
compensate for variation in their daily operations, but also 
that analysts must account for variation when predicting 
unit performance.  Second, the configuration and 
composition of a unit directly impacts its performance 
because these factors influence the ability of leaders and 
groups to structure behavior.  

We account for the first effect by incorporating a score for 
predisposition and training in our model.  Nevertheless, 
we recognize this area remains underdeveloped. We 
account for the second effect by implementing a concept 
of psychological distance that predicts the ability of 
combat units to moderate behavior.   

Human beings react to fear in three general ways:  by 
running, by blustering, and by fighting. Out of the three, 
fighting is generally the alternative of last resort, and for 
most human beings, it requires intra-group support to do 
routinely (Grossman, 1995; Collins, 2008).  Accordingly, 
military and para-military organizations must structure 

their organizational environments to ensure unit lethality, 
or the group’s ability to engage in repetitive killing by 
managing the intra and inter-group awareness of its 
members (Grossman, 1995; Collins, 2008).  

Organizations encourage participation in multiple ways 
including:  compartmentalizing decision making, instill-
ing a high sense of group accountability, and instituting a 
chain of command whose members operate at each orga-
nizational level.  In our model, organizations moderate 
individual behavior in two ways:  first by distorting the 
agents’ sensory data, and second by ensuring close 
contact between group members and leaders.  The organi-
zation’s ability to moderate behavior in this simple model 
is limited by distance and relative size.  We will develop 
these points in reference to Figure 3.  In subsequent 
models, we will also explore the impact that previous out-
comes, training, imagery technologies, and changes in a 
group’s composition have on group performance. 

Figure 3 depicts a simple squad configuration consisting 
of two infantry fire teams.  In this example, the squad 
leader is coordinating an attack with the second team 
leader via radio.  The boxes designate two visual groups 
that in turn represent two organizational environments. 

  
Figure 3:  Sparse network of squad interaction. 

For this and all subsequent examples, the combatants 
have equivalent levels of training, conditioning, and intra-
group support. In both environments, all team members 
are in visual range of one another, meaning the ability to 
engage in deviant behaviors is severely limited.  For this 
example, intentionally misaiming is considered a deviant 
behavior.  In addition to this sense of accountability, team 
members also benefit from a sense of group absolution.  
The responsibility for killing is shared by the group, and 
the group’s intersecting fields of fire creates ambiguity, 
providing group members some sense of plausible deni-
ability (Grossman, 1995).  The arrows indicate that all 
group members share this mutual sense of accountability 
and anonymity. 

Each environment also possesses a definitive leader 
whose presence further limits the range of acceptable 
choices and reinforces the group’s sense of absolution 



(Grossman, 1995; Milgram, 1963).  On the other hand, 
the environments differ in respect to their composition.  
Team 1 includes not only its team leader but also the 
squad leader, while team two only possesses a team 
leader.  Our model does not yet predict either how each 
leader’s personal relationship with his or her team might 
impact their performance, or how they might differ in 
their ability to compensate for the geographical distance.   

We can, however, model the increased load that the 
geographical distance has placed on the system. This 
distance limits the ability of both group leaders and 
members to ensure group accountability or provide 
absolution.  Thus in the model, there is an inverse 
relationship between intra-group distance and unit 
lethality.   

For example, communications between the two teams can 
cease entirely if the radio is destroyed.  In such an event, 
the probability of deviant behavior increases throughout 
the whole system because neither the squad nor second 
team leader has to respond to the other, meaning one less 
person to regulate behavior. First squad, however, would 
be more likely to participate because the squad leader and 
team leader remain accountable to each other, as well as 
the rest of the squad.  According to the model, we would 
also predict that this would be the case during routine 
operations because the second team leader could simply 
choose to ignore the radio.   

The model assigns an initial predisposition value for both 
moderated and unmoderated agents.  The model treats this 
value as a baseline, and it is the sole representation of 
intrinsic individual variability.  Predisposition is deter-
mined randomly, with a weighting that favors higher 
predispositions.  

Where increasing the distance between group members 
decreases unit lethality by mitigating the group’s ability to 
moderate behavior, increasing the distance between 
opposing forces (within the limits of the technology avail-
able to the unit) raises unit lethality.  Again, knowledge of 
an observer is fundamental to the model.  This time, how-
ever, increased distance facilitates participation by 
anonymizing the enemy.   

We treat all distances as psychological distances in the 
model because an agent’s knowledge of other entities and 
its relation to them depends upon its perceptions and its 
inferences about them.  Our model, at this time, does not 
include notions of cultural or social distance, though we 
acknowledge that a comprehensive model would.  On the 
other hand, Figure 4 illustrates how, even with a simple 
model, one can generate a trace of the participation 
predictions from a system.  At this early stage however, 
this trace is preliminary, in reality the participation score 

of combat units would most likely be higher than those 
shown in the figure. 

The scenario in Figure 4 and the ten trials summarized in 
Tables 3 and 4 were conducted using a modified version 
of dTank 4.5.  Though the model is currently best applied 
to individual soldiers, tanks were used because dTank 
best supported them.  For the purposes of the 
demonstration, each tank was treated as an individual 
combatant rather than as a crew-served platform.  We 
conducted all trials on the same 1 x 1 km map for 2,000 s. 
The map size precluded the possibility of instantaneous 
kills, and allowed agents to potentially isolate themselves.  
The length of the trials allowed for the possibility of 
multiple survivors.  

The model generated a participation value for each tank 
each time the agent moved or shot based upon status 
reports indicating how many friends and enemies were 
visible, their distances, and whether team members saw 
their team leaders.  On average, the model generated a 
participation score every second. If the agent’s 
participation prediction was greater than a linear random 
number, the agent participated.  Otherwise, it hesitated.  
After another movement or shot, the agent would have 
another opportunity to participate.  If the agent’s score 
again fell below a randomly generated number, it would 
continue to hesitate.  This cycle would persist throughout 
the life of the agent.  We used a random value rather than 
a participation threshold to reflect the stochastic nature of 
the system, and to allow for the influence of situational 
factors not currently included in the model.  The model’s 
dependence upon state change poses interesting 
theoretical questions regarding what qualifies as a 
meaningful state change, and what implications this might 
have on behavior.     

Figure 4 shows how the probability of participation varies 
with time as the agents interact in a single sample 
scenario. These values do not reflect the agent’s personal 
state, but rather reflect the organizational environment’s 
capacity to moderate behavior, i.e. support participation.  
For this reason, we differentiate our organization model 
of participation from a comprehensive one.  A compre-
hensive model would also include a representation of the 
agent’s state and how it influences whether agents partici-
pate or not.  In our model, the organization’s capacity to 
support participation is currently affected by four factors, 
all of which can be observed in the example trace in 
Figure 4.  These factors are:  distance to friend, distance 
to enemy, relative group sizes, and initial disposition 
(including training) (Grossman, 1995; Collins, 2008). 



 
Figure 4:  Trace of agents with an implemented model of 

participation. 

In this implementation, the agents’ knowledge sets are 
identical—there are no rules requiring them to stay 
together.  Consequently, allied agents tend to move apart, 
lowering the team’s ability to moderate behavior over 
time.  Agents also tend to engage the enemy immediately 
once in range.  Thus, it is relatively rare for agents to 
destroy targets at closer ranges.  As targets come closer, 
the willingness to engage the enemy decreases.  If more 
enemies than friends are present, the agent finds it more 
difficult to participate.  Conversely, if the agent’s team 
outnumbers the enemy, the agent is more likely to fire.  
This effect currently leads to the rather abrupt changes in 
the participation equilibrium because the agents must 
rediscover their friends.  Because they treat each scan as a 
new state, the agents cannot infer the presence of their 
friends based upon previous knowledge— this is an 
implementation effect that we will correct in the future by 
using more sophisticated agents.     

Table 2 indicates the effect of using a participation micro-
theory as a moderator of performance.  Runs where the 
model was not used to moderate performance resulted in 
higher casualties and substantially higher lethality rates.  
Also in the un-moderated group, there were more shots 
fired, and less variation in the number of destroyed 
agents. We found the differences in tanks destroyed is 
reliably different (t(8)=-2.36, p<0.05, two-tailed), the 
other differences are not significant at this number of 
triasl, but are in the anticipated direction.  

Table 2:  Averaged (SD) simulation outcomes for agents 
with and without a participation model (n=5). 

Agents Destroyed Damaged Shots Hesitations 

Unmoderated 2.8 (0.45) 0.6 (0.55) 6.2 
(3.27) N/A 

Moderated 1.8 (0.84) 1.2 (0.45) 5.6 
(2.88) 6.2 (5.40) 

Table 3 shows the average participation values for these 
agents.  Values are not calculated for agents that have 
been destroyed.  It also shows the average participation 
value for agents at the time of shooting, and number of 
hesitations. 

Table 3:  Participation values (SD) for agents with and 
without a participation model (n=5 runs). 

Agents 
Average 

Participation 
Value 

Participation 
Value, Shot 

Participation 
Value, 

Hesitation 
Un-moderated .53 (.08) 0.55 (.11) N/A 

Moderated .50 (.05) 0.49 (.08) 0.49 (.08) 
 
5.  Discussion and Conclusion 

We have discussed how the absence of a model of 
individual differences can impair the fidelity of agent-
based approaches by reviewing a validation study of the 
battle of Medenine. This study showed that individual 
performance varied more than would be expected from a 
homogenous group. We presented a simple organizational 
model of participation. This model implemented a version 
of Grossman’s (1995) theory of participation.  When used 
to moderate agent behavior, it led to differences in 
performance on some measures.  These results 
demonstrate that modeling complex environments, 
particularly combat environments, can be improved by 
including both a strong theory of individual differences 
and of teamwork.  

This work suggests a principled way to predict the impact 
of individual variation using agent-based approaches, 
specifically in regards to their likelihood of participating 
in combat environments.  This theory also suggests that 
changes in performance might arise from a type of meta-
cognition (an agent observing itself).  This meta-
cognition, if implemented, could help to predict the 
effects of participation.  This reflection arises from 
theories in social psychology (Lerner, 2003; Morgan, 
2007) and military psychology (Grossman, 1995).  

There remain many loose ends in this participation model. 
There are missing terms, and we believe that the constants 
and relationships are not correct, particularly because the 
participation value does not yet come close to 1.  We have 
not resolved how to incorporate other models of 
individual differences, or how to integrate the model into 
a cognitive architecture.  We still must refine our concept 
of what qualifies as a meaningful change of state to 
evaluate participation, as well as implementing a more 
robust notion of hesitation.  Though moderated agents do 
hesitate now, they do not hesitate for very long, not long 
enough to create the time lags noted by Poncelin de 
Raucourt.  We have yet to incorporate the effects of 
technology upon human perceptions of distance, or model 



crew-served weapons. Attempting to replicate the Battle 
of Medenine will require us to do both.  Nevertheless, we 
now have some encouraging results and useful tools for 
modeling variability and participation.   With these tools, 
we have shown that individual differences matter, and 
that it is possible to model the influence of social 
processes upon the mind. 
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