
 1 9 April 2005

ABSTRACT

This paper introduces Herbal, a high-level behavior repre-
sentation language for creating AI agents and cognitive
models. It describes the lessons from other high-level
modeling languages that informed the design of Herbal,
and that will inform other high-level behavior representa-
tion languages. We describe a model built in Herbal to il-
lustrate its use and application. The paper concludes that
languages like Herbal can help explain the design intent of
intelligent agents and cognitive models, and make them
easier to create, modify, and understand. These results ap-
pear to be particularly true where the model reuses a lot of
its own structures.

1 INTRODUCTION

Despite apparent benefits, user models created in cognitive
architectures are rarely found outside of research labs.
These benefits are applicable to many commercial sectors,
including interface testing and analysis, simulations, and
the design of game opponents. Because of steep learning
curves, cognitive models are considered too difficult and
too expensive for practical use in most commercial en-
deavors. Expert system solutions are used in many of
these areas as a lighter-weight alternative.

Newell (1990) envisioned a culture of model re-use,
where models were passed between different research
groups and continually evolved over time to study new
phenomena. This has proven impractical, because cogni-
tive models currently seem domain-limited and extremely
complex. Without access to the original developer, it is
often easier to re-write a model to perform the same task
than it is to understand borrowed code.

The lack of re-use for cognitive models also contrib-
utes to an unfortunate cost-benefit outcome from an ob-
server’s stand-point. It seems that costs of collaboration
(Brooks 1995) between developers in this area are so high

as to be currently effectively insurmountable for most
models.

To address these problems, various groups have pro-
posed and developed alternative model development tools
that are supposed to make the task easier. Very few of
these attempts have been adopted by a large community, or
shown significant increase in the utility of cognitive archi-
tectures as useful tools. Each of these alternative solutions,
however, provides valuable lessons on the road to a useful
higher-level language for cognition.

Herbal (originally HRBL: High-level Representation
of Behavior Language) is an attempt to make the creation
of cognitive models a lighter-weight, easier to initiate so-
lution. By supporting the user and facilitating model re-
use, Herbal hopes to make cognitive modeling a more use-
able modeling technique. Herbal is based on the study of
what users ask of a cognitive model (Councill, Haynes, and
Ritter, 2003) and is thus intended to be a practical ap-
proach to the problem.

Herbal tries to address problems with previous ap-
proaches while providing significant utility and a generalist
approach to the goal at hand. Herbal, although it only sup-
ports Soar at present (see Section 2.1), is designed to
eventually support multiple architectures.

This report begins by discussing the theory behind
Herbal. It continues by offering a partial review of the lit-
erature that influenced Herbal, and presents criteria for a
successful HRBL based on this review. Herbal’s imple-
mentation is then discussed in brief, and finally, we evalu-
ate Herbal in terms of the criteria garnered in the literature
review.

2 THE THEORY OF HERBAL

Herbal tries to answer common user questions, including
the intent of specific methods, the design rationale, and the
known constraints. Herbal is not intended to replace al-
ready extant cognitive architectures, instead it compiles

`

INCREASING EFFICIENCY OF THE DEVELOPMENT OF USER MODELS

Geoffrey P. Morgan
Steven R. Haynes

Frank E. Ritter

School of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802 U.S.A.

Mark A. Cohen

Business Administration, Computer Science, and
Information Technology
Lock Haven University

Lock Haven, PA 17745 U.S.A.

Unknown
Morgan, G. P., Haynes, S., Ritter, F. E., & Cohen, M. (2005). Increasing efficiency of the development of user models. In Proceedings of the 2005 Systems and Information Engineering Design Symposium. Ellen J. Bass, (ed). IEEE and Department of Systems and Information Engineering, University of Virginia: Charlottesville, VA.

Morgan, Cohen, Haynes and Ritter

 2 9 April 2005

into Soar models. Soar has successfully modeled many
psychological and social phenomena and is the only archi-
tecture used so far in extremely large-scale simulation of
human agents (Ritter et al 2004).

Herbal must be rich enough to represent all of the
structures in Soar while hiding that complexity from the
user. To do this, Herbal instantiates a set of objects that
the user fills in through an IDE (Integrated Development
Environment).

When these Herbal objects are mapped into Soar ob-
jects through the compiling process, Herbal packages re-
quired documentation fields into useful “plain English”
explanations with each Soar object based on the latest in-
formation provided by the Herbal model developer.

Herbal objects created are based on Soar ontology and
theory, and thus an overview of Soar’s approach to cogni-
tion is discussed in the section that follows.

2.1 Soar’s Problem Space Computational Model
(PSCM)

Soar is a proposed Unified Theory of Cognition (Newell,
1990) realized as a production system (Laird, Newell, &
Rosenbloom, 1987). It uses the problem space computa-
tion model (Newell, et al 1991) to organize its declarative
(facts) and procedural (actions) knowledge. Soar and the
PSCM assume that human cognition is goal-oriented. Soar
defines all activity that relates to one goal as belonging to
the same problem-space. A problem-space is composed of
one or more states and operators, and is resolved when the
current state matches a set of criterion established by the
developer.

The Soar agent evaluates the current state, proposes
possible actions, chooses an action, and then implements
that action, creating a new state. Possible action proposals
as well as action-implementations are established by the
developer.

In choosing an action (an operator to apply), Soar must
choose one and only one action. Each proposed operator
can be encoded with different preferences. A preference is,
in effect, the amount of consideration that action should
receive. Possible preferences include best, worst, indiffer-
ent, acceptable, and unacceptable. Proposals are also
based on the state, and only apply when they are suitable to
apply. However, if Soar cannot choose an operator, it de-
clares an impasse and will create a problem-space to re-
solve the impasse. Previously inapplicable productions,
meant to resolve impasses, can now fire and resolve to a
single action. There are other forms of impasses, but they
are resolved similarly.

When interacting with outside systems, Soar must use
an interpreter to implement actions and gather state
changes. Otherwise, Soar makes changes to its own
working memory structure and re-evaluates the state based
on that structure.

Soar repeats this cycle until an acceptable end-state is
achieved. Then, either a new goal is proposed (continuing
the cycle) or the system halts.

2.2 Mapping Herbal Objects to the PSCM

Herbal (Cohen & Ritter, 2004) implements an ontol-
ogy of thirteen classes, nine of which are instantiated as
objects. These nine object classes, in descending order of
granularity are: Model, State, Elaboration, Operator, Im-
passe, Action, Condition, TopState, and WMObject
(Working Memory Object). Each Herbal object carries
with it unique explanation responsibilities (Haynes, Coun-
cill, and Ritter, 2004; Haynes, Ritter, Councill, and Cohen
Submitted) and is used to compile into working Soar code.

The Model class carries the model’s meta-information,
including its author, its last revision date, its rationale, con-
straints, and purpose. This high-level information is useful
to understand what the designer intended and what prob-
lems the designer is already aware of with the model. This
object is used to create a documentation header at the be-
ginning of the compiled Soar file which carries this infor-
mation.

The Herbal developer uses the State class to explicitly
resolve foreseen impasses. The State object, in essence,
defines the sub-goal of a particular Soar problem-space.
Multiple elaborations and operators can fire during the
resolution of these sub-states. In Herbal, States must claim
particular elaborations and operators for them to be able to
fire within that state.

The Elaboration class is used to define ‘special’ in-
stances that cannot be resolved through the proposal and
application of operators. A common example is using an
elaboration to halt the Soar system once the desired goal-
state has been reached. They are composed of Herbal
Condition and Action objects.

Operators are also composed of Condition and Action
objects. Both operators and elaborations can have multiple
conditions and are allowed to have multiple actions as
well. Since many operators have very similar sets of con-
ditions, this reuse of condition objects becomes very use-
ful.

The Impasse class is used to handle foreseen impasse
events. It requires that the impasse type be chosen, and a
state chosen to handle that impasse.

The Action class defines the application side of Soar
apply rules. Documentation slots allow the developer to
define what the operator does in plain-English, which is
included with each operator and elaboration that includes
that action.

The Condition Object defines the conditional side of
Soar proposal and application rules. As with Action,
documentation slots allows the developer to define the
condition simply, and that is packaged with each operator
and elaboration that includes the action. Together, Action

Morgan, Cohen, Haynes and Ritter

 3 9 April 2005

and Condition create most of the explanation utility of
Herbal.

It should be noted that Soar rules often come in pairs.
A proposal rule is used to suggest an action. If that pro-
posal rule is accepted, an apply rule fires, assuming that all
the conditions initially true for the proposal phase still
hold. Rules are withdrawn as soon as they are no longer
applicable.

The TopState class creates the initial state and defines
the original problem-space (and usually domain) of the
model. In typical Herbal practice, most elaborations and
operators are tied to the TopState object, as are WMOb-
jects.

WMObject defines domain-specific memory structures
for a particular Soar model. These structures typically de-
fine the state of the world for the purpose of the Condition
and Action objects. If a model interacts with an outside
system, it can rely on input from that system and carry no
working memory structure, or it can build working mem-
ory and make decisions without relying on the outside
system.

3 OTHER WORK THAT INFLUENCED HERBAL

Although driven by the need for explanations to cut costs
of collaboration and make models easier to understand,
previous and concurrent work influenced the design, goals,
and development of Herbal. Each of these approached the
problem of making high-fidelity user models easier to
build from a different perspective, and each offers lessons.

3.1 Taql

Gregg Yost (1993) developed Taql to harness the power of
method-based tools for use in the development of Soar
models. His approach centered on unifying the devel-
oper’s understanding of the PSCM with the language used
to define it. He contended that standard Soar merely im-
plemented the PSCM, which led to confusion when devel-
oper expectations and actual execution results did not
align.

Taql is, in essence, an alternative language for Soar. It
is proven to create Soar models in less time than does un-
augmented Soar (Yost, 1993). It is also more efficient than
other method-based expert systems of its time. Yet, Taql
was never widely adopted by the Soar community.

Taql proved to have been even harder for most devel-
opers to parse than native Soar. It has a larger and more
complex grammar than native Soar or even C (Ritter,
1992), which corresponds to a steep learning curve..

Similar to Taql, Herbal also re-conceptualizes the
PSCM for the ease of the developer. Unlike Taql, it does
not propose a complex language to replace native Soar.
Instead, it integrates Soar code into smaller understandable
chunks for the developer through an IDE.

3.2 G2A

G2A (St. Amant, Freed, & Ritter, 2005) is current work
and uses an already existing language, GOMSL (Kieras,
1996), to create ACT-R productions. GOMSL is a tool de-
signed to create paper models of the usability of interfaces.
It is similar to, but more complex than the Keystroke Level
Model (Card, Moran, & Newell, 1980) or GOMS (Kieras,
1988). ACT-R (Anderson & Lebiere, 1998) is a cognitive
architecture like Soar, although it has been used primarily
to define and understand psychological phenomena.

G2A is effective at creating high fidelity simulations
of user-interface tasks. The G2A compiler automates the
creation of ACT-R models using GOMS specification with
similar accuracy to hand-built ACT-R models. Although
not tested fully, the simple comparison of two program-
mers showed enormous gains in productivity (from weeks
of development to hours). This is because GOMSL is not
as complex as ACT-R, and thus has a correspondingly
simpler grammar.

At this time, it is uncertain if G2A’s application ex-
tends beyond tasks heavily reliant on user-interfaces. Also,
work with G2A has raised significant questions over the
roles of compilers. Because GOMSL is so much simpler
than ACT-R, G2A’s compiler makes choices on how to
interpret GOMSL actions to create ACT-R productions.
Herbal avoids this issue by retaining a grammar that should
provide all of Soar’s functionality.

3.3 Other systems

Apex (Freed, Matessa, Remington, & Vera, 2003),
COGNET (Zachary, Jones, & Taylor, 2002), and
COGENT (Cooper & Fox, 1998) all compile into another,
more complex, system. All of these approaches seem both
easy to use, and easy to learn <?>. However, none has
demonstrated the range and breadth of human performance
that Soar and ACT-R have developed.

Because Herbal compiles into Soar, it retains the va-
lidity of the Soar approach. These other systems imply
that the appearance and aesthetics of a development envi-
ronment matter, as does consideration of the usability and
learnability of the chosen model development environ-
ment.

3.4 Summary of lessons learned

From the lessons offered in these alternative approaches,
the investigators believe that an effective solution to sup-
port modeling will probably compile into a lower-level
language of a parent system. The lower-level language
should be an already established and validated cognitive
architecture. The solution should remain as powerful as
the parent, while aligning the mental models of developers
with the actual practice of creating models. The solution

Morgan, Cohen, Haynes and Ritter

 4 9 April 2005

should not demand even more of developers than the par-
ent. Finally, the solution system should seem easy to use
and learn.

To be considered successful, as with previous attempts
performance increases should be demonstrated. In addition
to these goals, the system should be easy to pick up and
use and should also appear this way.

4 HERBAL’S IMPLEMENATION

Herbal is implemented as an extension of Protégé. Protégé
is a graphical ontology editor created and maintained by
Stanford Medical Informatics (“Protégé”, 2004). Herbal is
thus “programmed” by defining the model in Protégé. The
tool is available for free under the Mozilla Public License
(Mozilla, 2004), and can be downloaded from
protege.stanford.edu.

A screenshot of the Herbal user interface is displayed
in Figure 1.

Figure 1. Herbal Screenshot on the Classes Tab

Classes are listed on the right side of the screen, as
shown in Figure 2, while specific information about classes
can be obtained through the use of several tab panels.

Figure 2. Class region of the Herbal Interface

The class tab provides further information about the
class, including variable slots in the class, see Figure 3.
The Forms tab describes how Protégé lays out the form for
instance definition, allowing the developer to modify for-
mats on the fly. The Instances tab lists all the instantia-
tions of that object in the Herbal model.

Figure 3. Slot region of the Herbal Interface

Herbal adds two plug-in specific tabs to Protégé. The
first, the Herbal Compiler Tab, allows the developer to in-
clude outside source-code explicitly in their project. This
is particularly useful for models that interact with outside
environments, such as dTank, a competitive environment
for holistic model comparison (Morgan, Cohen, & Ritter,
Accepted). These models often require interface files and
with this addition, Herbal can explicitly include them in the
final Soar model. This tab lets you compile the Herbal
model into Soar code. The second tab, Model Attributes,
provides space for developer definition of the model meta-
information included in the Model object. Many of these
fields are required before Herbal will compile the code, to
reinforce the request for useful information.

Morgan, Cohen, Haynes and Ritter

 5 9 April 2005

More information is available about the architecture of
Herbal, the Herbal compiler, and the links with Protégé in
Cohen, Ritter, and Haynes (Accepted).

5 HERBAL’S EFFECTIVENESS

Herbal is designed to create effective explanations of Soar,
and thus should be judged on its ability to explain behavior
and intent as well as the criteria summarized in Section 3.4.
The investigators examine several aspects of Herbal’s ef-
fectiveness.

5.1 Can Herbal explain design intent?

To answer this question, the investigators examined Soar
operators with and without Herbal’s explanation annota-
tions, which encapsulate our best approximation of design
intent.

The following snippets are from a model of the Hun-
gry-Thirsty problem, used as an initial problem in the Soar
tutorial. The first snippet has had Herbal documentation
removed.

sp {propose*Drink
 (state <s>
 ^herbal:Name |HungryThirstyWorld|
 ^herbal:WorkingMemory <Person>
 ^flag |drink|)
 -->
 (<s> ^operator <o> + >)
 (<o> ^name |Drink|
 ^Person <Person>)}

This second code snippet retains the Herbal docu-
mentation.

#--
Production that proposes operator: Drink
Operator Definition:
Causes a person to drink
Proposal Conditions:
If the drink flag is set
#--
sp {propose*Drink
 (state <s>
 ^herbal:Name |HungryThirstyWorld|
 ^herbal:WorkingMemory <Person>
 ^flag |drink|)
 -->
 (<s> ^operator <o> + >)
 (<o> ^name |Drink|
 ^Person <Person>)}

This represents the best knowledge of design intent
available, and does not technically describe all the condi-
tions of this production, because they are assumed or taken
care of by the GUI. The actual conditions assumed in this
proposal condition are three:

1. There is a state named HungryThirstyWorld
2. In this state, there is a Person object.
3. In this state, an attribute called flag is set to drink.

However, the documentation available, even if inaccu-
rate, presents the reader with the ability to understand the
designer’s intent when writing the production. This should
also enhance a designer’s debugging ability, as he can
compare what he intended with what he achieved when
problems develop.

5.2 Can Herbal explain a running model?

Herbal, itself, cannot explain a running model. However, a
tool designed to facilitate the debugging of Herbal models,
the Herbal Viewer (Cohen and Ritter, 2003), is capable of
providing information on the status of a running Soar
model. The Herbal Viewer is a Java-program which re-
quires the developer to import a set of additional methods.
These methods send messages to the Herbal Viewer across
a socket connection. A file containing all the methods is
part of the Herbal Viewer distribution, and importing the
file is extremely easy. Please see Figure 4 for a screenshot
of Herbal Viewer monitoring a running model.

Figure 4. Screenshot of Herbal Viewer of a running model

With this set of views available to the debugging de-
signer, a model can start to explain its behavior, at least to
the satisfaction of its designer, which is most useful for de-
bugging purposes. Combined with the static information
encapsulated by Herbal, strong inferences can be made
about the actions of an agent based on the views provided
by Herbal Viewer.

5.3 Is Herbal as powerful as Soar?

Herbal is almost as powerful as Soar, in that it supports
nearly all of the mechanisms that Soar provides. The only
exception is the weighting of indifference preferences.

Morgan, Cohen, Haynes and Ritter

 6 9 April 2005

This feature is relatively simple, and will be added in the
near-future.

Herbal is not, however, as flexible as Soar. Soar pro-
vides enough flexibility that different coding traditions
have developed over time. Herbal writes Soar productions
in a common coding tradition. Theoretically, Herbal could
be used to create models that mimic these alternative tradi-
tions, but it is does not currently facilitate that process.

5.4 Is Herbal easier to learn than Soar?

Because Herbal is a graphical solution, it does not require
the developer to learn a complex grammar as Taql does.
This contributes to its ease-of-use. Several classes of un-
dergraduates previously unfamiliar with artificial intelli-
gence have created working Soar models using Herbal.
More information on Herbal’s use in the classroom is
available in Cohen, Ritter, and Haynes (Accepted).

Traditionally, Soar is taught to graduate students or
learned independently. The ability of groups of under-
graduates to use Herbal speaks highly for its potential.
Undergraduates often came to prefer Herbal to Soar as fa-
miliarity increased with both systems, even though Herbal
requires you to use Soar syntax in areas. This argues that
Herbal more closely matches the way that the PSCM is
taught to students than Soar’s implementation. Therefore,
it seems that Herbal is easier to learn than Soar.

5.5 Is Herbal more efficient as a development
environment than Soar?

Herbal may prove more efficient as a development envi-
ronment than un-augmented Soar. At this point, a com-
plete claim cannot be made. It is expected, due to reuse of
condition and action statements and the building blocks
approach that Herbal offers a developer, that less time will
be spent creating and debugging a complex model.

To examine this hypothesis, one of the authors created
a model with 29 operators (a rule-pair). The model was
created for use in dTank (Councill, Morgan, & Ritter,
2004). dTank is a competitive simulation environment for
agents with broad capabilities, allowing for inter-agent
communication as well as standard tank behaviors. The
model takes advantage of a pre-existing interface between
dTank and Soar that ships with the dTank distribution.

 The author recorded the time course of the model
creation, and computed the marginal cost of producing
each rule-pair. The investigators expected that the first
rule would be the most expensive, with marginal costs of
rule-pairs decreasing as more rules were added. Please see
Figure 5.

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28

Production Pair (Propose + Apply)

T
im

e
 (

m
in

u
te

s)

Figure 5. Marginal cost of production-pairs as a function
of the number of already existing production pairs. The
solid line is the marginal cost. The dashed line is the cu-
mulative average of the marginal costs to that point.

The marginal costs shown in Figure 5 appear to follow
the general trend of the investigator’s hypothesis; the cu-
mulative average tends to fall as more production-pairs are
created. Spikes in time requirements occurred when a new
production-pair required more infrastructure, in (mostly)
action and condition statements, than what previously ex-
ists. After the initial proposal-rule was created, the next
most expensive rule was the first rotate-Turret rule, which
required a broad set of conditions related to the exact posi-
tioning of the turret.

The average of all marginal costs for the model ex-
amined was three minutes. This is less than the model de-
velopment times of graduate students using Taql (Yost
1992). Unlike the effects seen in Taql, the speed-up effects
shown above cannot be primarily explained by learning,
because the user was familiar with Herbal. Instead, the
speed-up appears to relate, as expected, to the increasing
reuse of syntactic condition and action statements.

In the near future, the investigators hope to duplicate
these results in much larger models. Particularly, the in-
vestigators are interested in tasks publicly available as ac-
credited expert systems testbeds, such as the Sisyphus Task
documented by Yost and Rothenfluh (1996). However, the
current results seem to indicate that Herbal may be as effi-
cient as Taql, a very promising finding.

6 DISCUSSION OF THE HERBAL APPROACH

Herbal has benefited greatly from the examples of previous
attempts to simplify the task of making high-fidelity mod-
els of users. As an explanation-oriented approach, Herbal
will facilitate and thrive in a culture of re-use.

Studies of interfaces often point out that although
graphical interfaces appear friendlier, they are often less
efficient for expert users than text-based interfaces. This is

Morgan, Cohen, Haynes and Ritter

 7 9 April 2005

because mouse-movements are relatively expensive opera-
tions compared to key-typing (Card, Moran and Newell
1980). It is possible that Herbal’s performance gains will
not be readily apparent or even suffer when expert users
are compared. However, frequent re-use of condition and
action statements should moderate those effects, which re-
quires expert text manipulation in Soar and then hand-
tailoring for each new production.

Although Herbal relies on Soar as the target cognitive
architectures, in the future it should be able to compile into
any symbolic approach to cognition. This would allow one
Herbal model to create multiple architectural models, all of
which perform the same task. This would provide a nearly
painless method for comparing task performance across
architectures, which will help the field move towards
eventual architectural unification.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research,
contract N00014-03-1-0248. William Stevenson and Jo-
seph Vacchiano provided helpful comments on an earlier
drafts.

REFERENCES

Anderson, J. R., and C. Lebiere. 1998. The atomic compo-
nents of thought. Mahwah, NJ: Erlbaum.

Brooks, Frederick P. 1995. The mythical man-month: Es-
says on software engineering. 2nd ed: Addison-
Wesley.

Card, S.K., T.P. Moran, and A. Newell. 1980. The key-
stroke-level model for user performance time with in-
teractive systems. Communications of the ACM 23
(7):396-410.

Card, Stuart K., Thomas Moran, and A. Newell. 1980.
Keystroke-Level Model for user performance time
with interactive systems. Communications of the ACM
23 (7):396-410.

Cohen, M. A., and F. E. Ritter. 2004. Herbal tutorial. Uni-
versity Park, PA: Applied Cognitive Science Lab.

Cohen, M. A., F. E. Ritter, and S. R. Haynes. Accepted.
Herbal: A high-level language and development envi-
ronment for developing cognitive models in Soar. In
the 14th Conference for Behavioral Representation in
Modeling Simulations (BRIMS).

Cooper, R., and J. Fox. 1998. COGENT: A visual design
environment for cognitive modeling. Behavior Re-
search Methods, Instruments, and Computers 30:553-
564.

Councill, I.G., S. R. Haynes, and F.E. Ritter. 2003. Ex-
plaining Soar: Analysis of existing tools and user in-
formation requirements. In Proceedings of the Fifth
International Conference on Cognitive Modeling., ed-

ited by F. Detje, D. Doerner and H. Schaub. Bamberg,
Germany: Universitats-Verlag Bamberg.

Councill, I.G., G.P. Morgan, and F.E. Ritter. 2004. dTank:
A competitive environment for distributed agents: Ap-
plied Cognitive Science Lab, School of Information
Sciences and Technology, Penn State.

Freed, M., M. Matessa, R. Remington, and A. Vera. 2003.
How Apex automates CPM-GOMS. In Proceedings of
the Fifth International Conference on Cognitive Mod-
eling, edited by F. Detje, D. Dörner and H. Schaub.
Bamberg, Germany: Universitäts-Verlag Bamberg.

Haynes, S. R., I.G. Councill, and F.E. Ritter. 2004. Re-
sponsibility-driven explanation engineering for cogni-
tive models. In AAAI Workshop on Intelligent Agent
Architectures: Combining the Strengths of Software
Engineering and Cognitive Systems. Menlo Park, CA:
AAAI Press.

Haynes, S. R., F.E. Ritter, I.G. Councill, and M. A. Cohen.
Submitted. Explaining intelligent agents. Journal of
Autonomous Agents and Multi-Agent Systems.

Keiras, David. 1996. A Guide to GOMS Model Usability
Evaluation using NGOMSL. Ann Arbor, Michigan:
University of Michigan.

Kieras, D. E. 1988. Towards a practical GOMS model
methodology for user interface design. In Handbook of
Human-Computer Interaction, edited by M. Helander.
Amsterdam: North-Holland Elsevier.

Laird, J. E., A. Newell, and P. S. Rosenbloom. 1987.
SOAR: an architecture for general intelligence. Artifi-
cial Intelligence 33 (1):1-64.

Morgan, G. P., M. A. Cohen, and F. E. Ritter. Accepted.
dTank: An environment for architectural comparisons
of competitive agents. In the 14th Conference for Be-
havioral Representation in Modeling Simulations
(BRIMS).

Mozilla. 2004. Mozilla Public License 2004. Available
from http://www.mozilla.org/MPL/MPL-1.1.html.

Newell, A. 1990. Unified theories of congition. Cambridge,
MA: Harvard University Press.

Newell, A., G. R. Yost, J. E. Laird, P. S. Rosenbloom, and
E. Altmann. 1991. Formulating the problem space
computational model. In Carnegie Mellon Computer
Science: A 25-Year commemorative, edited by R. F.
Rashid. Reading, MA: ACM-Press (Addison-Wesley).

Protégé 3.0 (Ontology Editor). Stanford Medical Infor-
matics, Stanford, CA.

Ritter, F. E. 1992. TBPA: A methodology and software
environment for testing process models' sequential
predictions with protocols. Pittsburgh, PA: Carnegie-
Mellon University.

Ritter, F.E. 2003. Soar. In Encylcopedia of cognitive sci-
ence, edited by L. Nadel. London: Nature Publishing
Group.

Ritter, F.E., N.R. Shadbolt, D. Elliman, R. Young, F.
Gobet, and G.D. Baxter. 2003. Techniques for model-

Morgan, Cohen, Haynes and Ritter

 8 9 April 2005

ing human and organizational behaviour in synthetic
environments: A supplementary review. Wright-
Patterson Air Force Base, OH: Human Systems In-
formation Analysis Center. Available from
http://iac.dtic.mil/hsiac/SOARS.htm

St. Amant, R., A. R. Freed, and F.E. Ritter. 2005. Speci-
fying ACT-R models of user interaction with a GOMS
language. Cognitive Systems Research 6:71-88.

Yost, G. R. 1993. Acquiring knowledge in Soar. IEEE Ex-
pert 8:26-34.

Yost, G. R., and T. R. Rothenfluh. 1996. Configuring ele-
vator systems. International Journal of Human-
Computer Studies 44:521-568.

Zachary, W., R. M. Jones, and G. Taylor. 2002. How to
communicate to users what is inside a cognitive
model. In Proceedings of the 11th Computer Gener-
ated Forces Conference. Orlando, FL: U. of Central
Florida.

AUTHOR BIOGRAPHIES

GEOFFREY P. MORGAN is an undergraduate in the
School of Information Sciences and Technology at Penn-
sylvania State University. He is also a research assistant in
the Applied Cognitive Science Lab. His current work fo-
cuses on modeling behavioral moderators and studying the
actions of teams within contextual units and as coordinated
individuals. He can be contacted by e-mail at
<gmorgan@psu.edu>

MARK A. COHEN is an instructor in the Business Ad-
ministration, CS and IT Department at Lock Haven Uni-
versity, and a graduate student associated with the Applied
Cognitive Science Lab in the School of IST at Penn State.
His current research efforts include developing software
that simplifies the creation and maintenance of cognitive
models. He received an MS in CS from Drexel University
and a BS EE from Lafayette College. He has over 10 years
of experience developing health care and pharmaceutical
software. He can be contacted by e-mail at
<mcohen@lhup.edu>

STEVEN R. HAYNES is an assistant professor at the
School of IST. He researches system design, modeling, and
development; human-computer interaction; design ration-
ale; system explanation; and the philosophy of technology.
Prior to entering academia he worked at Apple Computer,
Adobe Systems, and several smaller technology companies
in the US and in Europe. His email address is <shay-
nes@ist.psu.edu>

FRANK E. RITTER is one of the founding faculty of the
School of IST, an interdisciplinary academic unit at Penn
State to study how people process information using tech-

nology. He works on the development, application, and
methodology of cognitive models, particularly as applied
to interfaces and emotions. He is an editorial board mem-
ber of Human Factors and AISB Journal. His review (with
others) on applying models in synthetic environments was
published in 2003 as a HSIAC State of the Art Report. His
email address is <frank.ritter@psu.edu>

