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Abstract

It would extend the world that cognitive models can see if models could interact based on an inter-
face language.  We introduce a system designed to allow cognitive models to interact with any
display written in Tcl/Tk, a common interface creation language.  This approach can be viewed as
extending cognitive architectures to include eyes and hands that exist in the world of Tcl/Tk.  This
system is most naturally used by Soar because Soar includes Tcl/Tk, but the eye/hand could be used
by other architectures.  We demonstrate an initial model that uses independently created on-screen
phones.  This model does the task itself and more accurately predicts a task time than GOMS.
Findings from the implementation of Soar/Tcl-PM are used to explore current limitations of
GOMS-type task analysis methodologies, possibilities for enhancing the communication between
Soar and Tcl/Tk, and data gathering requirements for future cognitive modelling in this area.

1 Introduction
Cognitive models can be used to predict performance and thus usability on systems that have not
yet been developed. Tools such as the Model Human Processor, the Keystroke Level Model,
and the GOMS (Goals, Operators, Methods, and Selections) family of techniques (Card, Moran,
& Newell, 1983; John & Kieras, 1996) have all been put to effective use. When they are
applied, they can literally save millions of dollars (Gray, John, & Atwood, 1993).

It would be useful to have process models interact with interfaces directly to obtain these
results.  Having process models interact with interfaces directly would also be good psychology,
for it would lead to a wider and richer cognitive architecture.  Moving the performance of a task
into the task domain itself rather than relying on problem solving in pre-defined problem spaces
engenders the consideration of a realistic context in modelling performance of such tasks.  The
need for contextually-influenced interaction with the environment is acknowledged by cognitive
modelling architectures.  Newell (1990) lists perceptual and motor processes as a prime consid-
eration for any unified theory of cognition such as Soar. Similarly, Anderson, Matessa, and
Lebiere (1998) acknowledge that previous work with cognitive architectures, typically assuming
black-box models of perception and action, are inadequate for the modelling of more complex
and interactive tasks.

1 . 1 Models as Users: Interactive Cognitive Models
Models substituting directly for the users of systems must be able to perform tasks of a dynamic
and interactive nature.  The use of interfaces can be likened to problem solving, but unlike the
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task of searching a problem space for a series of operators that achieve the goal, interactions with
software are likely to require a model that responds to changes in the state of the world.
Implementing models in this way is still an emerging field.  Most cognitive models simulate only
the cognitive aspects of single tasks and as such they are not as easily generalisable or reusable.

Interactive models, which use perceptual processes to form internal representations of an
external task environment, provide the opportunity to study and model the ways that real users
perform these low-level perceptual processes.  To study human-computer interaction as the
communication of states and intents, we need some way of investigating how user intents are
expressed and, perhaps more importantly, how the user then perceives the system state.
Theories of higher-level cognition have typically ignored lower-level processes such as visual
attention and perception (Anderson, Matessa, & Lebiere, 1998).  The ability to view a model’s
performance through an interface that displays the elements being perceived and the actions of the
perceptual and motor mechanisms (such as a virtual eye and hand) renders combined theories of
cognition, perception, and action more readily observable and testable.

1 . 2 Existing Interactive Models
The creation of interactive models with psychological claims show that this approach is now
tractable enough to be performed and provide several lessons.  Ritter, Baxter, Jones, and Young
(in press) review several examples (i.e. Bass, Baxter, & Ritter, 1995; Byrne & Anderson, 1998;
Jones, Ritter, & Wood, 2000).  The review notes that including interaction allows more complex
models to be created that interact with more complex worlds, and that these models provide a
better approximation to human behaviour.

The models are easiest to develop when the task is simulated in the computer language that
is used to implement the model's cognitive architecture.  Reuse of the models and tasks is possi-
ble and highly desirable, but requires some thought in implementation.  It is possible (but not
always done) to design the interaction component so that it is possible to interact with most inter-
faces written in a interface creation tool or language.

1 . 3 Requirements for Interactive User Models
There are several ways of providing task simulations for cognitive models.  The first is to have
the task simulation implemented in the cognitive modelling language itself.  This approach is best
for (and probably limited to) simple tasks where the focus is on strictly cognitive aspects of
performance.  The second way is to have the model interact with simple function calls to an
existing application.  The third way is to have a real interface that can be operated by a model and
a real user (e.g. Bass et al., 1995).  This last approach is complex, involving the need for exten-
sive processing of the interface itself either through manipulating the data structures (Ritter et al.,
in press) or through visual pattern recognition algorithms (e.g. Zettlemoyer & St. Amant, 1999).

Unless the research requires the modelling of a highly complex task, which cannot be
implemented using an interface simulation tool, the third approach described above is probably
the best one for generalised implementation and study of interactive user models.  Using real
interfaces introduces complex issues of giving models the means to perceive and act on the inter-
face; confining the simulation to the model reduces the opportunity of studying the actual interac-
tions taking place between model and interface.

Ritter et al (in press) identify a set of requirements for the development of interactive cogni-
tive models using this approach that includes (a) tool to create interfaces, (b) a run-time mecha-
nism that determines how the model will interact with the task simulation, and (c) a linkage
mechanism that provides the means for communication between the task simulation and the
model.  These three requirements are supported by user interface management systems (UIMS).
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Soar and ACT-R currently have access to UIMS.  In the case of Soar, it is Tcl/Tk
(Ousterhout, 1994).  Models written in Soar have the potential to interact with a task domain
using interfaces, control mechanisms, and linkage mechanisms all implemented in Tcl/Tk.  We
introduce and test such a system here.  Some of the implications of this work are considered
along with possible future lines of research.

2 The Soar/Tcl-PM System
Soar/Tcl-PM is an extension of the PracTCL application (Harris, 1999), which allows cognitive
models implemented under Soar to be routinely linked to interfaces generated by Tcl/Tk using a
sim-eye and sim-hand created in Tcl/Tk.

The simulated eye and hand are in the form of windows bounding what the sim-eye can see
and another window indicating the position of the sim-mouse’.  Tcl code allowed the passing of
information to Soar’s working memory about what objects were currently visible under the eye,
and Tcl procedures were provided that allowed Soar to move the eye and mouse around the
screen.  Mouse-clicking is simulated by having Tcl send a mouse press event to the object direct-
ly under the window representing the virtual mouse.  Harris provided a relatively simple Soar
model that generated default scanning behaviour for the eye allowing it to search for a button
labelled with the digit 1 and then to press it.  We note here the improvements we have recently
made to the Soar/Tcl-PM system, particularly its Tcl/Tk interface, and an initial Soar cognitive
model to use it.

2 . 1 Improving the Soar/Tcl-PM Interface
We have continued to extend the usability, functionality, and abilities of Harris’s system, now
renamed as Soar/Tcl-PM, to further the development of reusable, generalised, and interactive
user models.  '/Tcl' indicates that it is an extension of Soar to use Tcl.  'PM' represents
Perceptual Motor.  This is intentionally similar to ACT-R/PM.  We believe it will become more
similar with further development.  Soar/Tcl-PM is designed to support including all the mecha-
nisms and regularities of previous models developed using this approach (Ritter et al., in press),
such as a fovea and parafovea.  Not all of the regularities have been included and tested.

The improved graphical interface for Soar/Tcl-PM is shown in Figure 1.  This interface
provides a manual method of operating the eye and hand and a graphic display of its state for
debugging and demonstrations.  All of the functions and information that a cognitive model can
access can be invoked by using the graphical display.

In the top centre is an example phone interface.  The sim-eye as defined by four Tcl/Tk
windows is centered on the '0' button.  The objects it can see when it looks (fixates) are shown
in the window on the far top left.  The mouse pointer is centered on the '0' button as well, and
has just clicked there as noted by the '0' in the display of the telephone.

Control panels on the left side allow the analyst to move (saccade) the eye around the
screen, cause the eye to ‘look’ at whatever is beneath it, and to move and click the mouse.  The
model performs these task by passing commands to the sim-eye and sim-hand.

2 . 2 Extending the Cognitive Model: Dialling a Series of Digits
Lonsdale (1999) provided several extensions to the cognitive model controlling Soar/Tcl-PM’s
eye and hand so that the model could dial a full phone number.  The original model was able to
search for '1' and click on its button, but there was no facility for then having it search for a
subsequent digit to dial or for any general text.  Additionally, the default scanning strategy of the
eye is to sweep the entire screen in a left to right, top to bottom movement.  This strategy is
extremely inefficient.
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Figure 1.  Combined control panel for eye and mouse.

A search strategy has been added that makes use of existing operators to first locate a
button with any text string using the default scanning strategy.  Once the target button has been
found, default scanning productions no longer fire.  Instead, another set of operators are applied
to produce a sweeping movement across the digit buttons.  The eye sweeps the display in the
horizontal plane until there are no buttons visible.  The eye then steps up or down (depending on
the vertical direction in which it last moved) and sweeps in the reverse horizontal direction.  If
vertical movement results in no buttons being visible, the eye reverses its vertical scanning direc-
tion, and resumes scanning horizontally.

Many assumptions were made about the processes involved in human visual perception.
These assumptions are not intended to form the proposal or endorsement of any particular theory
of human visual perception per se.  The extensions given to the cognitive model were derived
solely from the intention of making the model succeed in performing the desired task of dialling a
series of digits.  They do, however instantiate an unusual type of visual theory.  This theory does
not describe what processing occurs, but actually processes visual information.  This processing
is a natural first step in building any cognitive model.  Comparison to actual human data is the
next.  The issues surrounding comparison to human data and the relation of the Soar/Tcl-PM’s
cognitive model to current theories of visual perception are reprised in the conclusion, along with
possible methods of gathering actual user data in this area.

Memory is also important.  Preliminary runs of the model illustrated that the simple
sweeping scan wasted a lot of time searching for digits it had already dialled, such as the second
1 in 1471.  It seemed apparent that a real user would not duplicate efforts in this way, and would
at least recall the approximate position of the 1 button from having dialled it previously.  The
model should remember previously spotted items, at least under certain circumstances.  For ex-
ample, the model should remember for a short period of time at least the position of items which
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it has fixated.  The fixate productions were modified to add elements to the working memory
storing the position of any digit button upon which the eye fixated, and additional spotting opera-
tors were implemented that could act upon this stored information in preference to scanning the
screen for a second time. These results are similar to those of Altmann and John (1999).

As a matter of expedience, Tcl code was used to model retrieval of digits from memory.
When a digit has been dialled, a Tcl procedure is called that removes the working memory ele-
ment holding the value of the digit currently being sought and replaces it with the next digit in a
string held as a global variable in Tcl.  A model of serial recall needs to replace this mechanism.

3 Evaluation of Soar/Tcl-PM
To start to test this model we compared the model's output with the predictions of a similar
theory and some informal data.  The task we examined was dialing a 11 digit number corre-
sponding to a long distance number in the UK (e.g. 0115 951-5292).

NGOMSL (Kieras, 1998) was used to create two models of dialling a series of digits.  The
first used a hierarchical decomposition of the task down the lowest level provided for by existing
KLM operators -- the operator "move mouse to target" is not decomposed into any sub-methods.
This model predicts a time of 23.1 s for dialling a series of 11 digits.

The second similar NGOMS model decomposed the move mouse operator into further sub-
goals matching the operation of the Soar cognitive model.  This extended model gives a predicted
timing of 28.6s for dialling a series of 11 digits.  For each digit, 13 NGOMSL statements are
executed at 0.1 s, and there is 1.3 s of operator time (mouse move 1.1 s + 0.2 s mouse click).
This gives 2.6 s per digit, thus 28.6 s for 11 digits.

The different times given by the two NGOMSL models suggest that including perceptual
and motor operators at a great level of task decomposition leads to higher predicted timings.
However, no data is widely available to support such a level of granularity.  Both NGOMS
models give predicted timings far in excess of informal times we measured for a real user to dial
an 11 digit number, which is approximately 4 to 5 s.

The model was run using four different eye sizes with the memory feature on and with it
off.  The average times it generated over 10 trials are shown in Table 1.  For each trial the eye's
initial location was set to be within one saccade right of the '1' button.  The model always begins
by saccading to the right so this strategy ensured that the '1' button always came into view at the
same point in the model's operation.  These times are calculated by summing the number of Soar
decision cycles executed with the external operator time required.  Each Soar decision cycle is
assumed to require 0.1 s (Newell, 1990), and the operator time is 1.3 s as in the NGOMSL
model.  So, for example, a predicted time of 15.4 s is derived from the model requiring 21 deci-
sion cycles (2.1 s) in addition to 14.3 s (1.3 s x 11 digits) of external operator time.

Table 1 shows that the memory feature has a marked effect on the model's performance.
When the model is able to remember the positions of buttons previously fixated upon, its
performance is much more consistent.  The size of the eye's perceptual area has relatively little
effect on completion of the task.  The timings generated in the memory condition are somewhat
lower than the timings predicted by either NGOMSL model.

A better match to the NGOMS times is found in the no memory condition, with the model
taking between 24 and 30 seconds to complete the task.  Perhaps surprisingly, the model's
performance does not steadily improve with larger eye sizes.  This is most likely due to the way
in which the search algorithm is implemented.  The eye only reverses its scanning direction once
no buttons are visible.  In reality, users probably recognise the edge of the keypad much sooner.
For larger eye sizes, this results in many unnecessary saccades.  This effect is probably negated
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Table 1: Results of model trials.
Time to complete dialling (s)

Eye Size Memory on Memory off
20 x 20 15.4 30.2
50 x 50 15.4 31.5

100 x 100 16.2 32.3
150 x 150 16.2 22.3
200 x 200 16.2 24.3

by the advantages of the larger scanning area of the eye until the eye reaches a size of around 150
x 150, and then the excessive movements required exceed the advantage of the larger view.

4 Discussion and Conclusions
The Soar/Tcl-PM system has become more usable and functional.  The interface has been
enhanced, many bugs have been eliminated, and the cognitive model has been extended to
perform the task of dialling a series of digits with several interfaces not created for use with
Soar/Tcl-PM.  The original modular structure of the system has been preserved to allow the easy
addition of later enhancements to Soar/Tcl-PM’s operation and extensions to its cognitive model.

The process of implementing a cognitive model to perform the task of dialling a series of
digits in a simulated task domain raises numerous issues about the salience of perception and
action in simple goal-oriented tasks.  As has been previously noted (Ritter, et al., in press), creat-
ing models that can routinely interact with their task environment is difficult enough that the
results should be reused.  Soar/Tcl-PM is no exception.

4 . 1 Motor & Perceptual Activity is a Task not an Action
Current tools for the description of task performance, even at low levels of complexity, do not
reflect the true nature of the processes and mechanisms necessary for more realistic performance
of these tasks.  This is due to a lack of data about how people perform at this level, and to the
traditional assumption of black-box perceptual and motor processes in cognitive architectures.

Whilst researchers working with cognitive architectures are starting to see that modelling
realistic task performance will have to include more detailed perceptual and motor mechanisms,
task analysis methods are still limited in the level of task resolution they offer.  Motor and
perceptual operations are commonly referred to as actions, where an action is a task requiring no
control functions.  Anyone accepting this definition of motor and perceptual processes has never
built a model capable of such activities.

Despite a plethora of different methodologies, techniques, and tools intended to achieve the
aims outlined above, the actual notion of task itself is becoming increasingly difficult to pin
down.  The continuing trend for a shift in HCI towards more social contexts and perspectives
has led to the importance of task being played down.  However, it is hoped that this project alone
should demonstrate that the role of task analysis is ever more important in system design, when it
is realised that ‘task’ itself refers to a wider variety of cognitive and perceptual activities than
might previously have been thought.

4 . 2 The Need for Lower Levels of Analysis
With human-computer interactions being represented as the exchange of states and intents
(Briggs, 1988), it is not enough to focus on the existence of artefacts.  The processes involved in
how a user actually perceives the states of a system are just as important as ensuring that those
states are there to be perceived.  Computer use has also been likened to problem solving activi-
ties, with external objects and situations being translated into internal representations.  This
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assumption can be traced back as far as 1967 (Craik, 1967) and remains prevalent today.  But
the study of how we actually perform this translation process is equally if not more salient than
studying how we then manipulate our internal representations to arrive at solutions to problems.

4 . 3 Theories of Vision
There is no shortage of theories of low level perception, particularly vision.  However, such
theories and the research surrounding them tend to deal with how it is that low-level representa-
tions are formed and not with how this knowledge is then used in higher-level cognitive
processes.  There is even less work dealing with how these higher-level cognitive processes
might influence low-level perception.  Theories of visual processing tend to deal with static
perception and scene recognition, but what is needed is something more like information pick-up
theories of Gibson.  In a sense, there should be a level of analysis sandwiched between current
low-level research and work on cognitive processes.  The question of how these two processes
interact is an important issue for this field of research.

4 . 4 Desirable Directions for Extending Soar/Tcl-PM
There are numerous problems remaining with this application and with this approach.  Harris
(1999) first noted many of these limitations and some of the possibilities for additional capabili-
ties and operation.  The ones that still seem particularly applicable include: (a) a lack of knowl-
edge about how real users scan computer displays, (b) a lack of knowledge about how real users
co-ordinate mouse movements with such scanning, (c) a lack of comprehensive communication
facilities between Soar and Tcl/Tk, (d) a lack of implementation of realistic perceptual moderators
such as noise, errors, memory, and learning.

The two most interesting extensions to address these problems are to include search strate-
gies and to include a more realistic model of learning and memory.  The search strategy
implemented by this project simply refines the default sweeping scan by restricting it to scanning
the digit buttons rather than the entire screen.  Strategies employing knowledge about button
locations are even more desirable.  There are three possibilities particularly worth considering.

(a) Inference of button position by number.  The number of the digit button currently fix-
ated upon and the number being sought should be compared to given an indication of which
direction the eye should move next.  On a standard telephone keypad numbers have common
positions.  If the eye is fixated on '5', and the number being sought is '1', then this knowledge
could be applied to cause the eye to start searching up instead of down.

(b) Inference of button position by row knowledge.  More specific information about the
location of numbers on the keypad could lead to an even more effective scanning strategy.  Each
row contains only three buttons, so if the digit being sought is outside the range current digit plus
or minus 2 then it is not located on that row.  The strategy in the previous strategy would then
indicate whether to search up or down.

(c) Knowledge of absolute button positions.  The extreme level of knowledge about the
telephone interface would be specific knowledge of the absolute location of every digit button.
At this level no search would be required since acquired knowledge would specify all necessary
information about where to move the eye.  This model allows each of these strategies and their
combinations to be explored, including how search knowledge is encoded and applied.

A more realistic model of learning and memory is also needed.  The processes by which
users come to acquire the knowledge to apply the strategies outlined above are not well under-
stood.  Extending the model to give it the ability to acquire such knowledge through experience
of interfaces would an important development.

As is detailed above, the model remembers the location of each button it fixates upon,
allowing it to quickly move the eye to the location of that button should it be sought again later.
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The working memory elements used to store this information remain until Soar is re-initialised or
quit, and there are no limits on the number of buttons that the model can remember in this way.
A more realistic implementation of the memory feature would include limited capacity, errors of
storage and retrieval, and decay of stored information over time.  Again, data on actual user
behaviour in this area is limited, although more general studies of working memory could be
applied at least in the first instance.

4 . 5 Summary
Soar/Tcl-PM has been extended to perform a task using telephone interfaces.  This application
continues to show the value of being able to tie models to task simulations in this way.  The
theories of visual perception inherent in implementing Soar/Tcl-PM’s search strategy require
more human data to allow more psychologically plausible models to be built.  The building of
these models should then yield increasing support for the relevance of visual search strategies to
HCI research and the importance of having models with lower-level implementations of
perceptual and motor processes.
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