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We introduce an integrated theory of learning and forgetting that has implica-
tions for training theory and practice. We begin with a review of skill acquisition
research that argues that individuals employ different cognitive mechanisms
when learning, which can be reliably associated with three stages of learning.
This review leads to our proposed skill retention theory, which recommends a
method to increase skill retention when designing systems, covering a range of
system design issues, from interface design to training. We conclude with a
discussion of how we might optimise skill retention based upon this approach.
Specifically, we discuss how we might improve training by better spacing the
iterations between training sessions to support proceduralisaion to improve skill
retention.
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1. Introduction

Training and education are designed to improve learning and produce qualified
performance through retention of knowledge. However, individuals often forget important
skills, which leads to decreased performance. Infrequent use of learned skills can cause skill
decay. In this article, we discuss how facilitating the proceduralisation of these skill sets
may strengthen skill retention.

Skill retention is especially significant in professions where individuals must success-
fully perform important skills that they rarely practice. For instance, non-medical trainees
on a space flight who may have to rapidly perform advanced cardiac life support during
the course of a flight, as well as their specific mission roles (Ramos and Chen 1994).
This happens on earth as well. McKenna and Glendon (1985) found that only a quarter of
120 occupational first responders were still proficient 6 months after receiving cardiopul-
monary resuscitation training.

The knowledge necessary for performing a task may be declarative, procedural or a
mixture of declarative and procedural knowledge. Declarative knowledge represents
factual information. Procedural knowledge indicates task knowledge, such as typing or
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riding a bicycle. Management of both knowledge types is generally required for successful
performance.

Cognitive architectures such as ACT-R (Anderson and Lebiere 1998, Anderson et al.
2004, Anderson 2007), Soar (Laird et al. 1987, Newell 1990) and EPIC (Kieras and Meyer
1997) represent each knowledge type and associated mechanisms. We chose to use ACT-R
to describe our theory because it provides cognitive mechanisms representing procedural
and declarative knowledge learning (Anderson 1982) and declarative forgetting (Pavlik
and Anderson 2005). Other architectures are more restricted than ACT-R (Chong 2004,
Kim et al. 2007). Soar provides a rule learning mechanism, chunking, but not forgetting.
EPIC does not even provide a rule learning mechanism. ACT-R represents declarative
knowledge as a propositional network of facts, called chunks, while representing
procedural memory using production rules. Each production rule consists of a
condition/action pair that is used in sequence with other productions to perform a task.
The theory ascribes each rule to a cognitive step taken during the performance of a task
(Anderson 1982).

In this article, we review the current understanding of learning and retention in terms
of a unified theory of cognition – a theory like Newell’s (1973, 1990) that proposes a theory
of cognition for the complete processing of human performance models. Based on this
understanding, we introduce a new theory of skill retention that integrates learning with
forgetting into a broader view of improved skill retention. We then describe how we might
implement this perspective as a cognitive model that is able to predict the learner’s
knowledge in relation to each learning stage, and to predict performance, specifically
learning and forgetting rates.

2. Learning and forgetting

To better address the issues related to learning and long-term retention, it is necessary to
predict the learner’s future cognitive states. Cognitive modelling and simulation provide a
way to do this. A cognitive architecture with a unified theory of cognition provides a
platform where a cognitive model can be built and to provide accurate prediction of
cognitive, perceptual and motor interactions of human performance (Kieras and Meyer
1997, Gray and Boehm-Davis 2000). This modelling and simulation thrust can reduce the
cost of running experiments with participants to acquire forgetting data that might be
expensive because it requires a study characterised by both training and forgetting
intervals (obtained separately and sequentially) followed by a test. That is, once a cognitive
model based on a cognitive architecture is validated with experimental data, the validated
model can provide predictions of human performance, reducing the cost to evaluate
systems and interfaces (Booher and Minninger 2003, Pew 2007, Pew and Mavor 2007,
St. Amant et al. 2007, Bolton and Bass 2009, to note just a few who have argued for this
approach and documented its potential savings).

2.1. Earlier theories of learning

Proctor and Dutta (1995) provide a good review of skill acquisition – including theories
proposed by Fitts (1964), Anderson (1982) and Rasmussen (1986). Fitts posited three
learning phases: cognitive, associative and autonomous. Drawing from Fitts, Anderson’s
(1982) theory of cognitive skill acquisition developed three corresponding stages entitled:
declarative, transitional and procedural. Rasmussen, also influenced by Fitts, proposed a
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framework pertaining to performance that differentiates task execution as knowledge-
based, rule-based and skill-based. Finally, VanLehn (1996) also described three phases of
cognitive skill acquisition: early, intermediate and late. These theories provide a consensus
understanding of learning – all propose a three-stage process of learning, as shown
in Figure 1, that includes: (1) acquiring declarative and procedural knowledge, (2) consol-
idating the acquired knowledge and (3) tuning the knowledge towards overlearning.

To represent this process, ACT-R encodes facts to support the acquisition of task
knowledge; interprets the acquired information to produce behaviour; and, with sufficient
practice, converts the acquired knowledge into procedural form using a mechanism called
knowledge compilation (Neves and Anderson 1981, Anderson 1982, Anderson and
Lebiere 1998, Jones et al. 2000), which correspond to chunking in Soar (Newell 1990) and
proceduralisation elsewhere (Anderson 1982). After knowledge compilation, further
tuning of the knowledge occurs in the third stage, producing speedup of the knowledge
application process, which is referred to as the procedural stage.

Learning behaviour generally follows a regularity known as a power law of practice
(Seibel 1963, Card et al. 1978, Newell and Rosenbloom 1981, Delaney et al. 1998, Ritter
and Schooler 2001). The law describes the relationship between practice and skill
proficiency. As practice trials increase, task completion times decrease but at a diminishing
rate, resulting in a power law: Time ¼ Trials"!, where ! represents the rate at which
performance time changes. This learning curve describes an important aspect of
behaviour, providing a mathematical account of the general learning rate (Rosenbloom
and Newell 1987), and supports building models of learning complex tasks that can be
decomposed into smaller components (Lee and Anderson 2001).

2.2. An example of learning

To illustrate this theory, we present a simple Ergonomics example of learning typing skills
(Anderson 1993). While common, typing has the same structure as many similar skills
where declarative knowledge leads to procedural knowledge. This example can help us to
better understand the distinction of memory between declarative/procedural knowledge
and to illustrate the three stages of learning.

Figure 1. A theory of learning in the three stages, which is based on the theory of Fitts (1964),
Anderson (1982), Rasmussen (1986) and VanLehn (1996).
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When learning to type, the learner generally first memorises the layout of the keyboard
declaratively and learns to use the keyboard procedurally through practice. There are
other strategies, of course, but this is commonly taught. Practicing typing enables the
learner to memorise the keyboard layout and to type faster with practice. Over time
(several months or more), the learner generally loses their declarative knowledge of the
keyboard’s layout but retains their procedural typing skills. Thus, once fully learned, few
participants determine any key position declaratively (i.e. can retrieve directly where ‘r’ is),
but rather rely exclusively on their proceduralised knowledge of the task (i.e. imagining
typing a letter and seeing where their finger goes).

This example illustrates how individuals can and do maintain both declarative and
procedural knowledge in memory, and how the kinds of memory utilised can be both
dependent and independent at different stages. In addition, it suggests that procedural
knowledge can be more robust than declarative knowledge. In the first phase, the learner
depends almost exclusively on declarative memory elements to perform the task – this
initial stage is both cognitively intensive and slow. In the second phase, the learner begins
to rely more heavily upon procedural memory elements, but for some ‘problematic keys’
still rely on their declarative knowledge of the keyboard (q is above a, for instance).
Finally, as the learner becomes more expert, they shift entirely or almost entirely to
utilising their procedural memory. In addition, the transition from a primarily declarative
to a procedural representation of the keyboard is associated with a reduced need for
knowledge maintenance – lack of practice may result in slower typing speeds but not the
entire loss of the skill.

This process is consistent with many experimental results. Early experimental work by
Posner (1973) showed that procedural memory is more robust. In Posner’s experiment,
skilled typists were asked to label a diagram of a standard keyboard. He reported that the
skilled typists had difficulty in recalling a visual location of a letter from the standard
keyboard (declarative memory), whereas the typists could type the letters in a few seconds
without errors. This example supports the claim that declarative knowledge of visual
location can be degraded while procedural knowledge can remain robust against decay.
It also suggests that long-term retention would be improved by turning declarative
knowledge into procedural knowledge.

2.3. A new look: an integrated understanding of learning and forgetting

Elaborating on our earlier discussion of the stages of learning, we discuss each stage in
more detail. We then examine how forgetting might vary reliably across the different
stages of learning. We use Figure 2 as an overview of this discussion; the figure depicts a
learning curve and a corresponding hypothetical forgetting curve across the three stages of
learning. The main continuous line indicates continuous practice. Dashed lines indicate
periods of inactivity (lack of practice), with solid lines showing later training. At each
stage, the learning and forgetting rates are different. The colour-coding for each stage,
shown as darker to lighter grey, indicates the level of performance – i.e. the third stage is a
lighter grey, indicating that the performance is faster.

2.3.1. The first stage: declarative

In the first stage of learning, skill acquisition occurs and simple training focused on skill
acquisition may be adequate. In this stage, learning and forgetting are accounted for by the
activation mechanism for declarative knowledge in ACT-R. For this first stage, knowledge
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in declarative memory degrades with lack of use, perhaps catastrophically as indicated by
X’s in Figure 2, leading to the inability to perform the task. A catastrophic memory failure
is a state where declarative memory items needed to perform the task cannot be retrieved
from memory due to lack of practice (decay). That is, the activation value drops below a
threshold, leading to retrieval failure in ACT-R.

With time the strength of declarative memory items declines. Lack of use leads to
decreased memory strength, which leads to increased response times, decreased retention
and decreased accuracy. In addition, the ACT-R theory suggests that increases in working
memory load in this stage of learning lead to decrements of retrieval performance because
the memory load introduces interference in the memory activation mechanism (Anderson
et al. 1996). Thus, overall performance at this level of knowledge decreases with increases
in working memory load. Referring back to our example of learning typing skills, this
stage corresponds to the individuals knowing how to hit the keys based on retrieving their
spatial location in reference to other keys.

2.3.2. The second stage: mixed

In the second stage of learning, task knowledge is represented using a mix of declarative
and procedural memory. With lack of use, the declarative knowledge is forgotten, leading
to mistakes and missed steps. Procedural memory, on the other hand, is basically immune
to decay. This is also predicted by Soar and EPIC. The slope of the forgetting curve in this
stage could vary by subtask because the subtasks would vary in their knowledge mix,
and different mixes would decay at different rates. In the first and second stages,
catastrophic memory failure can occur because the declarative knowledge is not fully
activated. This result suggests that, in this mixed stage, training is necessary to keep the
declarative knowledge active. Training of declarative memories is also necessary to
support proceduralisation because declarative memories have to be active enough for new
procedural rules to be generated – procedures can only be created when the declarative
memories can be retrieved quickly enough that the architecture can solve the problem in
the environment and that the architecture can create procedures.

In this stage, training should occur to avoid catastrophic memory failures in task
performance resulting from the learner’s inability to retrieve declarative knowledge for

Figure 2. A graph describing a theory of skill retention, showing the three stages of learning and the
effects of forgetting.
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steps still requiring declarative knowledge elements, either because the task is incompletely
proceduralised or because declarative inputs vary for the task, such as the radio
frequencies or flight numbers used by pilots as they enter or exit controlled airspace.
The higher decay rates associated with declarative memories also suggest that achieving
more complete expertise entails training not only common but also uncommon tasks
to the procedural level (e.g. emergency procedures for pilots). Furthermore, while the
time between retraining sessions can increase with practice, catastrophic memory failures
can still occur if completing the task requires declarative memory elements (i.e.
changing inputs like frequencies, coordinates or names) for actions or to move to the
next subtask.

In terms of our example of learning typing skills, this stage would correspond with the
learner possessing a strong declarative representation of the key locations while also
possessing some procedural rules regarding the task as retrievals increasingly get combined
with key presses (in other words, the greater association of conditions with actions).

2.3.3. The third stage: procedural

In the third stage of learning, task knowledge is available in both declarative and
procedural forms, but procedural knowledge predominantly drives performance. Practice
will compile declarative knowledge about tasks into procedural knowledge. We describe
this type of task knowledge as a proceduralised skill. With lack of use, declarative
knowledge may degrade. Nevertheless, the learner can still perform the task – if (1) all the
knowledge is proceduralised or is available in the environment and thus not forgotten with
time and (2) performing the task does not require new declarative inputs.

Conversely, less practiced or infrequently used skills, such as responding to unusual
errors, may still exhibit the mixed curve described in the previous section. This effect is
shown in Figure 3, where different subskills (Task skills A, B and C) are learned and
forgotten at different rates. Consequently, these skills require concerted and structured
practice to proceduralise. Unlike the common ASCII keys in the typing task, there is no
assurance that routine task execution will compile and proceduralise the declarative

Figure 3. Subskills may be practiced, learned and forgotten at different rates.
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memory elements associated with the task, meaning that training is most likely necessary
to achieve proceduralisation (noted in Figure 2 as crossing the dashed grids representing
the stages’ thresholds).

With respect to the example of learning typing skills, in the fully proceduralised
knowledge stage the knowledge about how to type would all be in production rules, and
the declarative knowledge would not be used to type and would decay with time (Ericsson
et al. 1993, and related work on expertise documents this effect as well, where experts have
difficulty explaining how and why they behave). Infrequently typed characters (e.g. ‘#’
or ‘]’), however, might still require declarative retrievals if these characters are
insufficiently practiced.

3. The three stages of learning and forgetting in ACT-R

In this section, we describe how ACT-R supports this integrated understanding of learning
and forgetting. More specifically, we explore to what degree the learning mechanisms in
ACT-R are able to reproduce the patterns of skill learning and forgetting that we have
discussed. We found that this analysis helped us to not only better understand the
architecture’s capabilities but also suggest steps for improving the modelling and
prediction of learning and retention within a cognitive architecture.

3.1. Learning mechanisms for declarative and procedural memory

In ACT-R, the base-level activation of a declarative memory item (a chunk) is dependent
on how often (frequency) and how recently (recency) the item is used. Whenever, an item
in memory is used, the base-level activation increases and then decreases in accordance
with a power function of the time since use. When the sum of the activations is above the
retrieval threshold, the memory can be retrieved. When it is below, it cannot. Higher
activations lead to faster and more accurate retrievals. Thus, the base-level learning mech-
anism supports the Power law of learning and the Power law of forgetting. Equation (1)
shows that the base-level activation B, for a chunk i, where " is a constant, n the number of
presentations for a chunk i, tj the time since the jth presentation and d the decay parameter.

Bi ¼ "þ ln
Xn

j¼1

t"d
j

 !

ð1Þ

Production compilation, previously named knowledge compilation, is the current
mechanism of production rule learning in ACT-R (Taatgen and Lee 2003). ACT-R uses
this mechanism to learn new production rules by collapsing two productions into a single
production. Production compilation combines both proceduralisation and composition
mechanisms into a single mechanism. ACT-R generates a compiled rule by eliminating the
declarative knowledge retrieval request in the first rule and the retrieval condition in the
second rule.

ACT-R represents the cognitive intensive nature of declarative knowledge retrieval by
allowing only one item in memory to be retrieved at a time. Production compilation allows
a speed-up process by generating task-specific procedural knowledge where there
previously was a string of declarative retrievals. Like the activation of declarative
knowledge, productions have their own utility values. Based on these utility values, one
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production can be preferred and be selected over another. Also, the utilities can be learned
from experience.

3.2. Forgetting mechanisms for declarative and procedural memory

If learning stops while the learner is in each of these stages, the degree of forgetting and the
rates of forgetting will differ because the structures that the skill is based on are different
(e.g. declarative, declarativeþ procedural or procedural), which is shown in Figure 2.
Declarative memory elements in ACT-R decay with the passage of time. Procedural
memory elements (i.e. production rules) are not affected by time.

While the ACT-R theory does not directly support the decay of procedural elements,
skill can decay in ACT-R. Production rules in ACT-R can reference or rely on declarative
memory elements. Thus, the application of procedural knowledge can still require
declarative elements to be well learned enough to be retrieved. This suggests that
procedural knowledge, in a sense, can be and in some senses has to be primed by
declarative knowledge, that is, linked by declarative knowledge elements – generally, the
term of prime is used in the context of declarative knowledge but we use the term here in a
little bit extended context in which procedural knowledge is linked by declarative
knowledge. The declarative memory elements necessary for applying procedural knowl-
edge, however, can become inaccessible through disuse, leading to a phenomenon of
forgetting of procedural knowledge – performance decrements of primed knowledge due
to the disuse of that knowledge. Thus, within the theory, we can identify instances where
procedural knowledge to perform a task may be retained but, without declarative
knowledge available in the head or perhaps in the environment of the agent to trigger
sections of procedural knowledge, skills can be catastrophically forgotten in that
declarative knowledge to trigger or apply them is not available.

It has been noted that most cognitive architectures predict that procedural knowledge
does not decay with time (Chong 2004). For example, Soar, ACT-R and EPIC assume that
once procedural knowledge is learned, it does not decay. In Soar (Newell 1990, p. 164) and
in ACT-R (Anderson 1993, p. 18), this is an explicit decision. Other architectures might
not decay procedural knowledge because they are intended not to predict decay but just
learning. Interestingly, we notice that little research has been conducted to study
mechanisms of decay in procedural memory.

It may be worth exploring the production rule utility equation in ACT-R (i.e. change
in the utility value of productions to model procedural memory decay), adding a
parameter to the current architecture, or extending the existing architectural mechanisms.
In addition, it will be necessary to build a model to test this claim and add this limitation if
necessary, as well as to gather data in this area.

4. Training for improved skill retention

In the previous sections, we have introduced the rationale and components of our
integrated approach that we will refer to henceforth as our skill retention theory. In this
section, we explore the theory’s potential implications for training.

4.1. The spacing of training

When it comes to the spacing of training (i.e. massed or distributed practice), the skill
retention theory offers a more nuanced understanding about how to create improved
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learning and retention schedules that are generally found in the literature. During the
progression of the learning (and forgetting) curve, the spacing of training theoretically
affects performance of learning and retention because of the different knowledge
structures used at each stage, which is theoretically straightforward in ACT-R. Thus,
the optimal spacing of training can be determined by the learner’s progression in the three
stages of learning. If the learner’s knowledge is within the first stage (the declarative
learning stage), the learner’s performance might be optimised by distributed practice.
On the other hand, if the learner’s knowledge is about to move into the third stage
(procedural knowledge), the learner’s performance would be optimised by massed practice,
which makes the declarative knowledge strong enough to proceduralise. Also, for strategy
shifts, massed practice may be required to strengthen declarative knowledge necessary to
create and learn new strategies.

Upon review, we found that literature on the spacing of training offers contradicting
findings on the benefits of massed versus distributed practice. We believe that our theory
provides some explanation for these discrepancies, which we now explore through a series
of examples.

Bahrick et al. (1993) investigated acquisition and retention of English-foreign language
word pairs in a 9-year longitudinal study. In this study, Bahrick et al. presented a crossover
interaction between the acquisition and retention performance in a vocabulary-learning
task. Participants received 13 to 26 relearning sessions with three spacing intervals of
14-days, 28-days and 56-days. Then, retention was tested 1, 2, 3 or 5 years after training.
On the last training session, the closest spacing intervals (a 14-day interval) produced the
highest recall performance. On the other hand, after a year since the last training,
the widest spacing of training (i.e. a 56-day) produced the highest recall performance, and
the 14-day spacing produced the lowest recall performance.

This pattern in the order of recall performance in terms of the spacing intervals
persisted throughout the range up to the 5-year retention measure, indicating that the
more widely spaced training provided greater retention on this vocabulary-learning task.
This finding shows that using the distributed spacing of training can degrade immediate
acquisition and performance but can enhance long-term retention. Schmidt and Bjork
(1992) mention that manipulations (e.g. using a spacing between sessions and using a
random sequence of presentations) in retrieval practice can enhance retention in some
tasks – in motor tasks (Shea and Morgan 1979) and in verbal recall tasks (Landauer and
Bjork 1978).

Similarly, Rohrer and Taylor (2006) found distributed practice to be more effective
in their study examining the retention of mathematical knowledge. In this investigation,
216 college students solved mathematics problems. In the first experiment, students were
divided into four groups with regard to the spacing of training (i.e. massed or distributed)
and the retention interval (i.e. 1-week or 4-weeks). The benefit of the distributed practice
was significant for the 4-week retention interval, suggesting long-term retention of
mathematics knowledge is better achieved when practice is distributed rather than massed.

In a subsequent experiment, Rohrer and Taylor examined the effect of overlearning on
retention by varying the number of practice problems within a single session (massed
practice). The finding indicates that there are no significant benefits of overlearning on
mathematics knowledge retention for 1- and 4-week retention intervals. Based on these
results, Rohrer and Taylor argue that long-term retention can be better augmented by
distributed practice and is unaffected by overlearning, stating that most mathematics
textbooks ironically emphasise massed practice. If this is a procedural task, then learning
goes to the third stage, and overlearning cannot take them further.
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Alternatively, Vearrier et al. (2005) found that massed practice was effective for
patients undergoing intensive physical therapy. Vearrier et al. examined patients training
to regain postural control after a stroke using constraint-induced movement therapy.
This intervention is a task-oriented approach that utilises variability of practice with
contextual interference. The intervention consisted of an intensive 6 h/day of one-on-one
training for 10 consecutive weekdays. Testing the patients’ performance, 3 months after
the intervention, Vearrier et al. found that the patients’ follow-up performance was also
significantly improved. While this work does not test distributed practice, it suggests that
there may be situations where massed practice is desirable for creating proceduralised
skills that can be found in the third stage.

How then might we explain the discrepancy between Rohrer and Taylor’s (2006)
findings and those of Vearrier et al. (2005)? We suggest examining the skill types of each
study. The types of task skills are different in those two studies – the former is a cognitive
skill likely to have a large number of declarative components (i.e. mathematics knowledge)
and the latter is a perceptual-motor skill with little declarative knowledge necessary to
perform its final form (i.e. postural control task of walking).

These findings seem to suggest that: (1) different knowledge and skill types possess
different profiles across the three stages of learning and forgetting, and that (2) skills differ
as to which strategy best supports the long-term retention of that knowledge.
Furthermore, we believe that the observed differences between skill types result from
the cognitive mechanisms used to acquire that knowledge, which we can explain using our
skill retention theory and potentially expressed in a cognitive architecture such as ACT-R.

4.2. The amount of training: overlearning

While Rohrer and Taylor (2006) found that overlearning did not noticeably improve
performance, Driskell et al. (1992) identify instances where overlearning seems to have a
positive effect. To clarify, we define overlearning as the immediate continuation of
learning after the learner achieves mastery over a task. In general, it appears that
overlearning is a common method to achieve long-term retention of knowledge. In this
section, we discuss overlearning and its relationship to declarative memory.

Drawing from the meta-analytic investigation about the benefits of overlearning by
Driskell et al. (1992), we discuss instances where overlearning appears to be an effective
way to support long-term retention for both physical and cognitive tasks. In general, it
appears that overlearning has a higher effect on cognitive tasks than physical tasks where
there may be more declarative knowledge and multiple strategies and situations to know.
Farr (1987) also notes that overlearning can reduce the rate of decay because the amount
of overlearning can increase the amount of knowledge acquisition. Furthermore, Bahrick’s
(1984) long-term language study (i.e. over a 50-year period) suggests that the level of
original training can play an important role in the retention performance over the long-
term period.

Nevertheless, as noted earlier, there are some contradicting views when it comes to the
benefits of overlearning. Particularly, Rohrer and Pashler (2007) argue that the benefits of
overlearning can diminish over time and that overlearning can only boost performance for
a short time. In an earlier study, it was found that the benefits of overlearning diminished
after an extended retention interval of 4 weeks by comparing the effects of overlearning
after 1- and 4-week retention intervals in a task of learning word pairs (Rohrer et al. 2005).
Furthermore, the retention performance with overlearning is similar to the performance
without overlearning after a 4-week retention interval.

10 J.W. Kim et al.
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Rohrer and Pashler (2007) claim that overlearning can produce better performance
(e.g. faster task completion time or higher test scores), but that its benefits are primarily
associated with short-term declarative knowledge. Thus, they advise that overlearning is
helpful in instances where an individual (e.g. pilots, soldiers or nurses) must follow
emergency protocols (Rohrer and Pashler 2007). Our theory agrees with this suggestion
because the learners can move their knowledge in the third stage with overlearning.
They also note, in the meanwhile, that such an approach can be supplemented by
distributed training due to the diminishing benefits of overlearning over time, particularly
for skills with a large declarative knowledge component.

Krueger’s (1929) verbal recall study suggests that a certain degree of overlearning can
be economical at a certain interval – 50% overlearning is economical when it comes to
retention intervals of 2–28 days. Overlearning, however, seems an expensive strategy for
most training situations. One important concern is, therefore, how to determine cost-
benefit ratio of overlearning across a wide variety of tasks. Driskell et al. (1992) point out
that the initial cost for overlearning may be offset by the lowered costs for retraining or
refresher training – because participants who overlearned the task required fewer
retraining trials to maintain proficiency (Schendel and Hagman 1982).

We have examined these contradicting views concerning overlearning to illustrate that
at present there is no consensus understanding as to which stage the learner enters after
overlearning – indicating a need for further research. We theorise that the learner can still
suffer catastrophic memory failures if overlearning occurs either for declarative knowledge
task or a mixed knowledge task because the learner must still rely on declarative
knowledge to perform the task. If, however, overlearning helps the learner to move to the
third stage, then it seems likely that learning and overlearning can contribute to
proceduralisation of skills, making the acquired knowledge basically immune to decay,
provided that task performance does not require new declarative inputs. We can then
explain studies showing the benefits of overlearning with the acquisition of procedural
skills in the third stage, and studies showing the lack of benefits to the learner’s heavy
dependence upon declarative knowledge for task completion.

The effectiveness of overlearning is, therefore, consistent with our skill retention theory
that fully proceduralised knowledge (i.e. knowledge and skills in the third stage) exhibits a
low decay rate. The question is then how we achieve moving into the third stage of
proceduralised skill and whether overlearning is an efficient way to achieve this transition.

To achieve the third learning stage, first of all, it is necessary to practice the task skill in
the first and second learning stages. If learning stops in the first or second stage, the learner
can suffer from declarative knowledge retrieval failures. This may help explain when
overlearning helps (when moving all of the task skill set into the third stage), and when
overlearning does not help (when only the skill in the third stage is being practiced or when
the skill is only a declarative retrieval), and when overlearning is inefficient (when only
skills in the third stage are being practiced, and there remain subskills in the first and
second stages, or the knowledge is only declarative). This provides insights for creating
smart refresher training strategies – when trainees should practice and which task subskills
to practice for enhanced retention.

When implementing these strategies, external aids may prove useful. Often, when the
learners decide what to practice, they may prefer to practice what they already know for a
later test. Automatic training has been shown to work better than self-directed learning for
vocabulary learning (Atkinson 1972, Pavlik and Anderson 2008). Additionally, intelligent
tutoring systems have proven effective for teaching formal tasks such as geometry
proofs or learning a programming language (Anderson et al. 1985, 1989). Consequently,
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an external aid that identifies what to practice based on what the learner has not yet
mastered (i.e. skills not yet known or in the first and second learning stages that can be
moved to the third stage) can help to achieve proceduralised skill.

5. Discussions and conclusion

In this article, we have described a theory of how task knowledge is learned and forgotten
that consists of three stages, as well as the implications of that theory. We believe our skill
retention theory provides a more nuanced understanding of learning and forgetting that
trainers can use to evaluate the efficacy of training systems (whether they support skill
retention). We also believe that our work can provide useful guidance to training system
designers and suggest further studies. Suggestions are noted through the paper, including
to proceduralise skills where possible and to reduce the use of declarative memory items in
procedural skills or that are needed to trigger procedural skills.

The skill retention theory suggests that skill retention is related to the progression
through the three stages of learning. The different learning mechanisms (declarative or
procedural) that characterise each stage exist in ACT-R; though, this is less true for
forgetting. This study suggests that we may need to apply different strategies of knowledge
acquisition (massed or distributed) to a training regimen with regard to both the skill
type of interest and the learning stages. We summarise this theory and its implications in
Table 1. The table notes the role of declarative and procedural knowledge at each stage of
learning.

Unfortunately, we have not been able to find a study comparing different task skill
components by their retention across the three stages. Such a study would be large,
longitudinal, but greatly help develop the skill retention theory. If we can characterise the
nature of decay of task skill components, it is possible to strengthen those component
skills that are vulnerable to decay over an extended time. It will be necessary, therefore, to
better understand the different attributes of skill components with regard to the three
stages of learning and forgetting. This will be useful for better supporting the long-term
retention of complex task skills.

Little has been studied on long-term retention and decay of procedural skills. We have
seen a computational model based on ACT-R that simulates retention of declarative
(vocabulary) memory (Pavlik and Anderson 2005) but not of procedural skill retention
and its operational mechanism. Thus, it remains necessary to empirically study retention
and decay of procedural skills and disambiguate procedural skill decay from declarative
knowledge effects. In addition, decay mechanisms of procedural skills need to be proposed
if they indeed exist. This endeavour will provide an advanced understanding of human
learning and retention that can be applied to improve education and training systems.

Table 1. Suggestion for an optimal training policy in terms of stage and knowledge representation.

Stage Knowledge representation Optimal training

First stage Declarative Distributed, overlearning will
help proceduralise tasks

Second stage Mix of declarative
and procedural

Distributed, but massed to move into Stage 3.
Overlearning will help proceduralise tasks

Third stage Mostly or exclusively
procedural

Distributed to retain declarative components.
Overlearning does not help

12 J.W. Kim et al.
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Finally, we present questions that arise out of the skill retention theory. Can we tell
which stage the learner is in? After a certain amount of predetermined overlearning, can
we ensure that the learner moves into the third stage? The ACT-R theory provides some
examples of the progression of learning through each stage, but no studies on procedural
skill retention have been reported.

Theoretically, these transitions are clear in Figure 2. Practically, there are and will be
difficulties in measuring transitions. We see at least two difficulties. One difficulty is
knowing which stage the learner is in for a particular subtask; the second difficulty is that
the complex tasks will have multiple subtasks, and managing this information and
recognising that the learner may be at different stages in subtasks has been problematic for
human and computer tutors in the past.
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