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Abstract 

 

Can we help people forget less by knowing how they learn? Can we decrease 

forgetting by modifying what they learn? These have been long-standing questions in 

applied cognitive science and engineering. My dissertation study addresses the decay of 

procedural skills. A study paradigm was created to investigate learning and forgetting of 

procedural skills in a laboratory setting. Human participants learned and performed a set 

of novel spreadsheet tasks that are declarative or procedural, and perceptual-motor or 

cognitive. To examine procedural skills on learning and forgetting, one group of 

participants used key-based commands and the other group used a novel mouse and 

menus to complete the task. Participants were able to learn the task well in four learning 

sessions, confirming the Power Law of learning. Mouse users did not learn or perform 

better than keyboard users. Retention intervals (6-day, 12-day, or 18-day) showed clear 

effects on the amount of forgetting. Two modalities (mouse or keyboard), however, did 

not provide any statistically different rates of forgetting on the first return. When it comes 

to relearning (2nd and 3rd returns), mouse users showed significantly decreased mean task 

completion time, indicating relearning occurred in mouse users more effectively than 

keyboard users. The ACT-R theory, which is used as the main theoretical background, 

was tested against human data with regard to learning and forgetting. The skill retention 

model in ACT-R was developed to predict a mouse user’s learning and forgetting 

performance in one subtask. The model predicted the learning performance with 

! 

r
2  = 0.8 

and RMSSD = 1.8, when compared with human data. The skill retention model proved 

that an ACT-R model is able to predict learning performance. Human performance 

modeling using ACT-R can be used to evaluate efficacy of a training regimen by 

predicting learning performance, making contributions to workforce engineering both in 

industry and in military. 
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Chapter 1  

Introduction 

 

Preparedness and readiness play an important role in coping with unexpected 

incidents. In 2005, Hurricane Katrina seriously devastated lives and homes in Louisiana 

and Mississippi. Under this emergency situation, the mission of the emergency 

responders is to provide rapid and accurate responses against a trail of devastation. 

Training plays a key role to provide the necessary responses against an incident. 

Training is of importance not only in industry but also in the military domain. In 

particular, lots of research has been conducted to provide effective training paradigms to 

prepare military personnel in the United States. However, most research has been solely 

given consideration from the perspective of learning instead of forgetting, even though 

forgetting is an inevitable human feature  

This study demonstrates how multi-disciplinary aspects of industrial engineering, 

cognitive science, and computer science can be utilized to better shape workforce training 

and how the phenomenon of forgetting can be incorporated toward a novel improved 

training paradigm. 

1.1 The Role of Workforce Training 

The growing concerns about the unexpected and unwanted terrorist attacks 

inevitably necessitate counter-terrorism training drills in major cities of the United States. 

The first responders including firefighters, bomb squad personnel, military personnel, or 

even doctors and nurses, would get trained to guarantee expeditious and effective 

responses under chaotic terrorist attacks.  

The Washington Post reported the results of a five-day counter-terrorism training 

exercise (Johnson, 2003). The drill, which was the first large-scale training in the United 

States, was aimed at testing the readiness of the first responders under the simulated 

explosions of dirty bombs in Seattle and the simulated release of biological agents in 

Chicago. According to the report, the training exercises cost $16 million and included 

more than 8,500 people from federal, state, and local agencies. We might need to budget 
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for this type of training, but the cost of training brings up an important research question 

that how to optimize training programs. Thus, while reducing frequency of training, can 

we train first responders to acquire more robust skills that are resistant against forgetting 

and performance decrements?   

First responders mainly acquire knowledge and skills from hands-on training or 

education. By the way, it is crucial to note that the acquired knowledge and skills would 

be elicited in a relatively infrequent manner under certain situations, such as a setting of 

terrorism response tasks, or emergent cardiopulmonary resuscitation (CPR) tasks.  

For example, non-medical trainees on a space flight need to rapidly perform an 

advanced cardiac life support task during space flight missions (Ramos & Chen, 1994). 

This infrequent and unexpected situation requires precise and expeditious responses with 

assured quality of performance. To guarantee high human performance with non-failures 

and maximized readiness while minimizing the resources required to maintain this state, 

the phenomenon of learning and forgetting mechanisms should be taken into 

consideration. 

Similarly, workers in advanced manufacturing enterprises, who need to acquire a 

wide variety of knowledge and skills, can exhibit critical performance degradation under 

overloaded and cognitively demanding tasks. Because a wide array of acquired 

knowledge and skills would be elicited in an infrequent manner, the disuse or infrequent 

use of knowledge can lead to human performance decrements resulting from knowledge 

degradation. 

The global market challenges workers to be multifunctional by learning the 

greater variety of skills. The multifunctional workforce requires acquisition of various 

skills. To address the challenges, it is necessary to understand attributes skills for training 

and training regimens that can manipulate workers’ knowledge structures to increase 

knowledge and skills retention. 

A report sponsored by National Science Foundation (Division of Design, 

Manufacture, and Industrial Innovation) ranked research needs associated with 

integrating humans in advanced manufacturing systems for the U.S. manufacturing 

industries, to maintain competitiveness under the global economy (Mital, 1995). 

Especially, human issues of training (e.g., cross-training or retraining) were identified as 
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a key research need for preparing the U.S. workforce to be viable and competitive in the 

global competition.  

Nevins and Whitney (1989) acknowledge that trends in automation have led to 

automation of simple and monotonously repetitive tasks, while leaving complex unique 

tasks for humans. In particular, the introduction of automation has placed greater 

cognitive loads (e.g., analysis, decision-making, problem-solving, and judgment) on 

workers while reducing physical loads. Thus, Mital (1997) insists that humans still 

remain as a considerable and increasingly important element in advanced manufacturing 

systems.  

Radical changes in manufacturing environments necessitate that workers should 

acquire a wide array of knowledge and skills at various levels to produce marketable 

products (Mital et al., 1999). However, task complexity has significant effects on the 

variance of individual learning and forgetting rates (Nembhard & Osothsilp, 2002). 

Nembhard and Osothsilp (Nembhard & Osothsilp, 2002) investigated learning 

and forgetting effects on a manufacturing task that is related to sewing tasks with a 

worker-paced machinery at a textile manufacturing plant. The task requires a high level 

of hand-eye coordination and manual dexterity. Their findings indicate that workers, at 

higher task complexities, are more variable in their learning rates, forgetting rates, and 

productivity rates than they are at lower task complexities. 

In technological manufacturing systems, high error rates (e.g., human 

performance discrepancy, accidents, malfunction of machines, inferior quality, lessened 

productivity, etc.) can be dramatically reduced to a minimum level when workers 

effectively utilize accumulated experience (Duffey & Saull, 2003). This highlights the 

importance of training to assure that knowledge and skills are resistant to decay. 

Disuse or infrequent use of knowledge and skills can aggravate degradation of 

knowledge and skills, and is likely to produce poorer human performance. The acquired 

knowledge and trained skills for responding to unexpected terrorist attacks would be 

susceptible to this forgetting phenomenon. “What has been learned gets forgotten” is a 

general human characteristic. 

“Engineered” learning can reduce loss of acquired knowledge and skills, thereby 

decreasing unwanted and unexpected errors. One can only speculate the overall loss in 
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U.S. productivity due to the degradation and erosion of critical, infrequently used skills 

by the workforce. As such, “readiness and preparedness” for overall productivity through 

a novel paradigm of training is essential to enable workers to efficiently respond to 

unexpected situations in advanced manufacturing systems.  

Understanding and, ultimately, ameliorating productivity loss due to skill decay 

requires a valid fundamental model of the mechanisms responsible for this decay, and 

methods for counteracting these mechanisms. Training programs for industry workforce 

and military warfighters in the United States based on the “engineered knowledge” 

paradigm will advance strategies for preparedness and readiness. 

1.2 Objectives 

The objectives of the thesis are to provide a novel training paradigm to better 

shape the workforce, and to quantitatively measure training performance and proficiency. 

There are three goals to achieve the objectives. 

First, acquisition and degradation phenomena will be modeled with the ACT-R 

architecture. The cognitive model will be expected to provide a quantitative measure of 

training performance. Second, attributes of knowledge and skills with respect to 

degradation will be investigated. Finally, based on the identified knowledge attributes, 

possible mitigating factors that can inoculate knowledge and skills against decay will be 

explored and utilized to instantiate decay-resistant knowledge principles. Figure 1.1 

shows the research goal and approaches.  

 

 

Figure 1.1.  A schematic representation of the research goal and approaches. 
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1.3 Research Contributions 

The scope of the thesis project encompasses both theoretical and practical 

contributions including measuring training efficiency, optimizing training programs, and 

understanding knowledge and skills attributes that can be resistant to decay. This thesis 

produces contributions to support a paradigm shift of designing a training program in 

industry and military and human performance modeling of a complex task using the 

ACT-R architecture. 

It is of interest to delve into the leading-edge technology of modeling human 

performance. New quantitative methods such as Soar and ACT-R, known as cognitive 

architectures, are of interest. These tools are viewed as an emerging technology from 

cognitive science that can be applied to broader engineering issues (Byrne & Gray, 2003; 

Pew & Mavor, 1998). 

For example, Mertz (1997) studied how the simulated agent built in the Soar 

cognitive architecture can be used to design instructional lessons for training circuit board 

assemblers. He stated that operator control knowledge in Soar is well defined by using a 

context, an operator, and a preference. The context indicates the working memory state 

where knowledge expressed in production rules is to fire. The operator represents a 

primary unit of cognition. The preference represents the desirability to apply an operator 

and provides a selection rule to choose what operator will be fired to create the next state. 

Thus, Soar’s learning mechanism provides a backward benefit to determine what the 

content of instruction would be if we assume that operator control knowledge gives us 

what assemblers need to learn. Based on the emerging techniques of modeling and 

simulating human performance, ultimately, scientific management of training programs 

could be provided to shape and steer vital workforce members in military and industry 

contexts. 

1.3.1 Contributions to Training 

In manufacturing enterprises, it is necessary to shorten the time to market for a 

new product with the best quality. Based on the accumulated knowledge base, a company 

would utilize know-how to manufacture a product. Engineering the product knowledge 

base is critical factor to successful competition in the market.  
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Similarly, a human will acquire and accumulate knowledge in memory. To 

effectively retrieve and use knowledge, it is critical to engineer the acquired knowledge. 

The “engineered” knowledge examined here is anticipated to enhance human 

performance in high-stakes industry or military situations involving infrequent use of 

acquired knowledge and intermittent training. In addition, a learning and forgetting 

model using a cognitive architecture will provide a theoretic and scientific understanding 

of knowledge and skill processes.  

The greater the forgetting of knowledge and skills, the more drills would be 

essential to retrain a large number of first responders repetitively. Due to the real-world 

constraints of resource availability, it is impossible to train every personnel on every task 

to the degree that is necessary to minimize knowledge degradation (Hagman & Rose, 

1983). Even though sufficient training would be necessary, it may not be economically 

acceptable to perform $16 million training drills weekly or biweekly across the whole 

nation. This would result in enormous waste of fiscal assets. Insufficient and 

inappropriate training that can induce knowledge degradation will be a crucial factor to 

increase performance discrepancy and latency of response. Therefore, implementation of 

strategic training programs is necessary to inoculate knowledge against decay.  

As a broader impact, the emergency responders will get tangible and practical 

benefits from research efforts to develop a theoretical model of learning/decay 

mechanisms of knowledge. Particularly, a cognitive model will be dedicated to 

establishing training principles to inoculate knowledge against decay. Instantiation of 

decay-resistant knowledge principles has a captivating intellectual merit. The principles 

can be applied to implement a novel training paradigm and train the workers to be viable 

(e.g., strategic retraining training to reduce knowledge and skills degradation). 

Furthermore, a new paradigm of engineered knowledge training will advance strategic 

and cost-effective training plans for the U.S. industry and military. 

1.3.2 Contributions to Human Performance Modeling 

First, the ACT-R model is implemented to emulate a set of complex spreadsheet 

tasks. In particular, a model of skills retention that is of primal interest in this thesis study 

produces applied implications to model human performance. Second, steps are taken to 
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provide the skills retention model is embodied to directly interact with the task 

environment, providing a more realistic analysis of the model behavior. This will enable 

more advanced comparison with human performance.  

1.4 The Dissertation Outline 

Figure 1.2 shows the overview of the dissertation. Chapter 1 contains a brief 

introduction to the research topic, problem statements, and brief summary of research 

contributions. Chapter 2 contains theoretical synopsis of relevant findings about skill 

acquisition and degradation. Based on the findings, I will describe how I pursue and 

investigate modeling and simulation of skills degradation. Chapter 3 contains detailed 

information on the cognitive architecture, ACT-R 6, and the model developed to explain 

the theory developed in Chapter 2. The skill retention model and its performance are 

explained in this chapter. Chapter 4 contains a study with human subjects to explore the 

details of knowledge and skills degradation. Overall task performance and subtask 

performance are both analyzed. Chapter 5 contains comparisons of the model and human 

performance. Chapter 6 contains a discussion and the conclusions of the thesis.  
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Figure 1.2. Overview of the dissertation study. 
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Chapter 2  

Review: Knowledge and Skills Acquisition, and 

Degradation 

In this chapter, I am exploring fundamental and theoretical foundations of how 

people learn and retain knowledge and skills in memory. In particular, relevant findings 

in cognitive science and engineering are reviewed to pursue scientifically reliable 

investigations on skills degradation. Based on the extensive review, I will describe my 

thesis research design to explore and to test skills degradation.  

2.1 Knowledge and Skills in Human Memory 

I learned the Miller’s magical number seven plus or minus two in an 

undergraduate level course about human factors. At that time, the instructor emphasized a 

human’s working memory capacity, giving an example of the seven digits phone 

numbers everyday we use such as 237-7381. The seven digits help people to store the 

phone number in human’s memory.  

The term of working memory appears to have been first proposed by Miller and 

his colleagues (Miller, 1956; Miller, Galanter, & Pribram, 1960), and has been used to 

describe a system representing temporary maintenance and manipulation of information 

(Baddeley, 2001). Also, we can encounter the term of working memory in computational 

modeling domains (Lovett, Reder, & Lebiere, 1999; Newell & Simon, 1972; Young & 

Lewis, 1999). 

Atkinson and Shiffrin (1968) proposed that the human memory system can be 

represented by a sensory register, a short-term store, and a long-term store. The sensory 

register receives external inputs from the outside world. Registered external inputs are 

transferred to the short-term store that is viewed as a working memory system. It is 

assumed that the information entered into the short-term store is subject to decay. Then, 

the information can flow to the response generator or be transferred to the long-term 

memory. In this context, the working memory is thought of as a simple storage of 

information. 
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Baddeley and his colleagues have elaborated the simple storage of working 

memory and proposed a concept of the multi-component system that has been used over 

three decades (Baddeley, 2001; Baddeley & Hitch, 1974). In this working memory 

system, the “central executive”, an attentional controller with a limited capacity, is 

interacted with two other components of the phonological (articulatory) loop and the 

visuospatial sketchpad.  

The first component of the phonological (articulatory) loop is concerned with 

acoustic and verbal information. The phonological loop system is assumed to retain 

verbal information over a short period of time, consisting of a phonological store that 

holds phonological information, and an articulatory rehearsal system that serves to 

maintain decaying representations in that phonological store (Baddeley, Gathercole, & 

Papagno, 1998). The second component of the visuospatial sketchpad is assumed to 

maintain visual and spatial information.  

Finally, the component of the central executive was initially the vaguest system, 

serving as a ragbag filled with awkward questions such as what determines when the 

phonological loop and visuospatial sketchpad are used and how they interact with each 

other in complex strategy selection, planning, or retrieval (Baddeley, 1996, 2001).  

After the mid 1980s, Baddeley and colleagues begun their attempt to describe the 

central executive in detail, relying on Norman and Shallice’s Supervisory Attentional 

System (SAS) that explains attentional control of action (Norman & Shallice, 1986). The 

potential subprocesses of the central executive are focusing attention, dividing attention, 

and switching attention. It is important to note that the memory is subject to alteration, 

and that the originally acquired memory can be lost (Loftus & Loftus, 1980). 

2.2 Knowledge and Skills in a Realistic Task 

Koubek, Benysh, and Tang (1997) explored the various types of knowledge and 

skills in the workplace and the changes of their acquisition with expertise. They discussed 

three major types of knowledge including declarative, conceptual, and procedural 

knowledge. These are noted in Table 2.1.  

Declarative knowledge indicates factual information. For instance, when a user is 

doing a summation task in a spreadsheet, he/she needs to know the command. In the 
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Dismal spreadsheet, a user needs to use the “dis-sum” command to sum numbers. The 

knowledge of “dis-sum” is considered to be declarative knowledge. 

 

Table 2.1. Types of tasks with respect to different knowledge and skills. 

Task Types Task Characteristics Types of Knowledge Examples 

Procedural 

Knowledge retrieval 
(information recall), 
Several decision-making 
points 

“Procedural knowledge” 
and “declarative 
knowledge” (Anderson et 
al., 1998) 
“how-to-do-it 
knowledge” (Kieras, 
1997) 

Air traffic control 
task 

Cognitive 

Combining and evaluating 
incoming or acquired 
information, Making 
decisions 

Cognitive-procedural 
knowledge (generally 
known as problem 
solving skills) 

Programming 
Solving problems  

Perceptual-
motor 

Perception and motor 
execution 

Motor-procedural 
knowledge 

Riding a bicycle 
Moving a mouse 

 

 

Conceptual knowledge (relational knowledge) represents the core concept of a 

specific domain and the interrelations between the concepts (Koubek, Benysh, & Tang, 

1997). For example, the statement of “the summation command in Dismal spreadsheet is 

dis-sum” indicates the relation of “summation command” and “dis-sum”. The conceptual 

knowledge consists of two or more items of declarative knowledge. 

Procedural knowledge indicates knowledge representing human behavior. 

Another term for this knowledge classification is described as “how-to-do-it” knowledge 

(Kieras, 1997). This can be typically modeled using production rules. Production rules 

consist of the pairs of “condition” and “action” represented by IF/THEN rules. 

Now, let us consider knowledge and skills in a task. Table 2.1 describes several 

types of task consisting of different knowledge and skills. Sabol and Wisher (2001) 

categorized a task into three components: knowledge, decision, and execution. 

Characteristics of a task can vary with regard to which components dominate in the task. 

For example, to accomplish a military task, a soldier should be able to: (a) retrieve 
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knowledge and skills from memory; (b) evaluate a situation, combine incoming 

information, and decide alternative courses of action, and (c) execute the chosen 

procedural steps in a sufficiently skilled manner. In terms of the three components, a task 

can include procedural, cognitive, or perceptual-motor subtasks. 

Surveys showed that personnel in technical jobs perform mostly procedural tasks 

(Tarr, 1986). For example, in an emergency situation, the most important knowledge and 

skills would be procedural, such as cardiopulmonary resuscitation (CPR) or a 

decontamination task of biological/chemical agents. Konoske and Ellis (1991) stated that 

procedural tasks consist of an ordered sequence of steps or operations performed on a 

single object or in a specific situation to accomplish a goal. During the accomplishment 

of a goal, a procedural task would involve several decision points. With regard to 

perceptual-motor task, “riding a bicycle” can be a simple example. 

Hagman and Rose (1983) mentioned that the best predictor of forgetting is the 

number of steps required in the procedural tasks. There is a supporting study of skill 

retention conducted by the US Army Research Institute (ARI) during the mobilization of 

the individual ready reserve (Sabol & Wisher, 2001; Wisher, Sabol, Sukenik, & Kern, 

1991). This investigation showed that procedural (discrete) skills might be forgotten 

much more rapidly than perceptual-motor (continuous) skills. However, it seems that we 

rarely forget how to ride a bicycle or how to swim after learning these skills. These are 

perceptual-motor control skills. This aphorism and their investigations suggest that 

procedural (discrete) skills might be forgotten much more rapidly than perceptual-motor 

(continuous) skills or that these skills are so overlearned. 

It is presumed that knowledge types will affect acquisition and retention of 

knowledge and skills. With respect to the types of skills in a task, different acquisition 

and retention performance would be expected. Thus, investigating knowledge types will 

provide a scientific account for the necessity of different training regimens with respect 

to knowledge types. Realistic tasks in this section have a large procedural component 

and an interface. In this study, focus needs to be given to procedural tasks comprised of 

cognitive and perceptual-motor skills. 
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2.3 Knowledge and Skills Acquisition 

Proctor and Dutta (1995) provided a good review of skills acquisition such as 

theories proposed by Fitts (1954, 1964), Anderson (1982), and Rasmussen’s research 

(1986). Fitts distinguished three phases of learning: cognitive, associative, and 

autonomous. Based on this classification, John Anderson developed a theory of cognitive 

skill acquisition. As links of Fitts’ phases, Rasmussen also proposed a framework 

pertaining to skilled performance that is differentiated by knowledge-based, rule-based, 

and skill-based. In this section, I explore these learning theories and their implications.  

2.3.1 How Are Skills Acquired? 

As humans learn how to perform a task, the time for completing that task would 

get faster and faster with practice. Learning behavior of humans follows a regularity 

known as a Power law of learning (Ritter & Schooler, 2001). The learning curve provides 

fundamentals both in cognitive psychology and in cognitive science. In cognitive 

psychology, the curve provides a mathematical account of the learning rate. Also in 

cognitive science, mechanisms representing the curve are used to build cognitive models 

that produce human behavior (Ritter & Schooler, 2001).  

ACT-R’s history can be found in a recent book, How can the human mind occur 

in the physical universe? (Anderson, 2007). The origins of ACT-R can be started from 

the book, Human Associative Memory (Anderson & Bower, 1973). Anderson and Bower 

proposed a symbolic representation of declarative memory. Anderson combined HAM’s 

declarative system and Newell’s symbolic procedural system into the first version of the 

ACT theory (Anderson, 1976). Also, he proposed subsymbolic systems: an activation 

quantity for declarative memory and a strength quantity for the procedural system. In 

1983, he published a book pertaining to the ACT* system (Anderson, 1983). In this book, 

he proposed a goal-directed processing that is the root of the current ACT-R’s goal 

module, and a concept of production learning (e.g., composition and proceduralization), 

which is the root of the current ACT-R’s production compilation mechanism. With the 

influence of rational analysis, ACT* evolved into ACT-R (R denotes rational) and the 

first implementation of the comprehensive theory, built in Lisp, was available to the 

public (Anderson, 1993). Meyer and Kieras’s (1997) EPIC system gave an influence of 
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the perceptual-motor system to the ACT-R system (Byrne & Anderson, 1998). These 

days, ACT-R is evolving by the study of brain imaging with fMRI, such as mapping 

brain regions to ACT-R’s modules (Anderson, 2007; Anderson et al., 2004; Qin et al., 

2004). 

For the framework of skill acquisition, Anderson (1982) proposed a clear 

distinction of two stages: a declarative stage and a procedural stage based on his earlier 

work of the ACT production system (Anderson, 1976). Koubek et al. (1999) reinforced 

that learning mechanisms in terms of human memory and cognition can be described by 

the theory of the Adaptive Control of Thought (ACT) proposed by Anderson in 1976.  

ACT-R assumes that humans have various knowledge structures with a set of 

parameters (Anderson & Lebiere, 1998). There are two dimensions of learning 

mechanisms of ACT-R. One dimension is concerned with the acquisition of declarative 

and procedural knowledge. The other dimension addresses symbolic and subsymbolic 

learning. Symbolic learning is associated with the acquisition of the chunks and 

productions, whereas subsymbolic learning includes the acquisition of the parameters 

directing the knowledge elements. The ACT-R’s learning mechanisms can also be used 

to understand the aspects of certain task types usually found in the problem-solving 

domain of advanced manufacturing settings (Koubek, Salvendy, Tang, & Brannon, 

1999). 

In the declarative stage, humans learn knowledge and skills from instructions. 

Acquiring information is considered as initial encoding of facts about the skill. Then, 

acquired information is interpreted to produce behavior. Through a mechanism called 

knowledge compilation, the acquired knowledge is converted to a procedural form with 

appropriate practice. After the knowledge compilation, further tuning of the knowledge 

occurs, producing speedup of the knowledge application process. This is referred to as a 

procedural stage of knowledge.  

The relationships between the declarative and procedural stages are explained 

through the framework of the ACT production system where declarative knowledge is 

represented as a propositional network of facts and procedural knowledge is represented 

as productions. Each production has a condition/action rule and specifies when a 

cognitive act should take place (Anderson, 1982). Anderson stated that a set of 
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productions is sequentially applied in a task in an attempt to represent the cognitive steps 

taken in performing the task. Thus, each production is viewed as a step of cognition in 

our mind.  

Anderson (1982) asserted that the production system has important features to 

represent human learning theory. First, a condition of a production rule must be matched 

in terms of information in working memory that is a part of the ACT system’s declarative 

component. Second, productions are hierarchically organized by a goal structure with 

subroutines associated with the goal to be achieved. This goal structure is fundamental to 

human cognition. 

The mechanisms of knowledge compilation are broadly represented in ACT-R by 

composition and proceduralization. The proceduralization mechanism is further divided 

into the generalization, discrimination, and strengthening mechanisms. The composition 

mechanism is that sequences of productions that produce behavior can be collapsed into a 

single production that produces the same behavior, producing a speedup of performance. 

The composition process reduces the number of productions to be administered in 

performing a task. While the composition process creates productions that are domain-

general, the proceduralization mechanism, then, constructs productions that no longer 

need domain-specific information to be retrieved from working memory. The 

composition and proceduralization processes together convert declaratively encoded 

knowledge into production form. 

The composition mechanism itself is not sufficient to explain further speedup of 

performance by practice after learning of skills. The further tuning of skill acquisition can 

be explained by the aforementioned proceduralization mechanism comprised of a set of 

generalization, discrimination, and strengthening processes. The generalization broadens 

the applicability of production rules. In the meanwhile, a discrimination process lets 

productions become narrower. The strengthening process serves to have better rules 

strengthened and poorer rules weakened. 

Based on the mechanism of knowledge compilation, the production compilation 

mechanism was later proposed to model complex skill acquisition within the ACT-R 

architecture (Taatgen & Anderson, 2002; Taatgen & Lee, 2003). Production compilation 

combines both proceduralization and composition mechanisms into a single mechanism. 
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By eliminating a condition, two rule productions are combined into a single rule. That is, 

a compiled rule is generated by eliminating the retrieval request in the first rule and the 

retrieval condition in the second rule (see Taatgen & Lee, 2003). Taatgen and Lee (2003) 

explained that the process is slow to retrieve a chunk from declarative memory because 

only one memory can be retrieved at a time. Production compilation allows a speed-up 

process by generating task-specific procedural knowledge.  

2.3.2 Structuring Knowledge and Skills 

As mentioned before, practice leads to skilled and fluent performance, producing 

a speedup of task completion time. The learning theory of the production compilation 

mechanism addresses the question of how practice increases the speed of performance. 

That is, restructuring of knowledge and skills is attributable to improving task 

performance. 

Carlson and Lundy (1992) empirically studied learning of cognitive procedural 

sequences in terms of consistency in sequence operations and input data for those 

operations. One of their findings is that consistent practice with consistent sequence 

operations and data produced greater speedup in solving mathematical equations than 

varied practice.  Also, they mentioned that learning by restructuring, that is, sequential 

calculations were replaced by memory retrieval, appeared to occur only with consistent 

data. Restructuring did not depend on consistency of sequence operations, but practice 

with consistent sequence allowed participants to take advantage of consistent data. 

2.3.3 Skills Acquisition in Industrial Tasks 

Nembhard and Prichanont (2007) stated the importance of creating 

multifunctional workforce in industry because the shortened life cycle of products 

requires industrial production systems to cope with the greater variety of products in less 

time. To meet these market challenges, workers need to acquire variety of skills from 

cross training. Furthermore, understanding of forgetting skills can help us to provide 

possible solutions to cope with the challenge. 

Koubek et al. (1999) investigated a theoretical model of human skill acquisition in 

the domain of advanced manufacturing technologies. This study compared a variety of 

existing theoretical approaches such as learning theories, dual-processing code theory 
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(automatization), cognitive resources theories, and knowledge structures. Based on these 

theoretical approaches, a hybrid model was proposed. This hybrid model describes the 

interactions of existing knowledge acquisition models. In the proposed model, learning 

hierarchy, automatization, and cognitive resources are all interrelated in skill acquisition 

processes. More cognitive resources are required for moving up the learning hierarchy to 

learn a new skill. On the other hand, repetition of consistent tasks gradually releases 

cognitive resources through automatization. Because learning requires cognitive 

resources, a lack of these resources inhibits movement up the hierarchy of learning. 

Koubek and Salvendy (1991) proposed three levels of knowledge structures, 

which account for the determinants of performance in skilled cognitive tasks. The 

knowledge structures hierarchically include behavioral outcome of knowledge, 

processing of knowledge, and structure of knowledge. These knowledge structures can be 

manipulated through different types of training as a factor influencing skill acquisition 

(Koubek, Clarkston, & Calvez, 1994). The results of this study suggest that there is a 

significant effect caused from the sequence of training material, contrasting a top-down 

versus bottom-up approach. Fundamental motivations were generated from the study to 

further delve into the subsequent mapping of task characteristics to knowledge structure 

types, task requirements, and knowledge structure dimensions. 

2.3.4 Spacing Effects of Knowledge Acquisition 

A learning process can take place in a massed or distributed way. A massed 

practice approach (MPA) indicates a training set occurring closely spaced in time. A 

distributed practice approach (DPA) indicates a set of learning processes that is 

distributed in time. Variety of intervention intervals affects performance of massed or 

distributed practice. The intervention interval can be represented by a frequency of 

learning and practice activities. If the frequency is high at the beginning of a learning 

session, it is thought of as a massed practice. If the frequency of learning sessions is low 

and uniformly distributed, the learning and practice can be considered as a distributed 

practice.  

Typically, it is said that a distributed practice approach would require less 

learning time and provide longer knowledge retention periods. Research has shown that a 
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group with MPA took 51% longer than another group with distributed practice to 

complete the task and committed 40% more errors, even though the overall error rate was 

low for both groups (Hagman & Rose, 1983). 

As an extension of the distributed fashion of learning, the spacing effect of 

learning is a general phenomenon of the memory research domain. Table 2.2 shows a 

brief review of literature with respect to several spacing effects. The majority of 

published studies of spacing effects have examined memory for declarative knowledge 

rather than procedural knowledge.  

In particular, Pavlik and Anderson (2003, 2004, 2005) studied the spacing effects 

and optimization of learning. The spacing effect is considered as the memory benefit that 

controlling the time duration between practices can enhance human performance. Pavlik 

and Anderson investigated the evidence of spacing effects to learn Japanese-English pairs 

in declarative memory. From the paired-associates experiment, an activation-based model 

was proposed. This model proposes that an item receives an increment of strength when 

it is practiced, but that these increments decay as a power function of time. 

To sum up, knowledge and skills are acquired from instructions in the declarative 

stage. This encoding of information produces knowledge structure and is interpreted to 

produce behavior. Practice of acquired knowledge and skills can produce speedup of 

performance by restructuring. In addition, spacing of learning can affect performance. 

Important factors for learning include instruction, knowledge structure, practice, and 

spacing of learning. Thus, these factors are given consideration to understand and control 

acquisition of knowledge and skills. 
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Table 2.2. Summary of spacing effects literature. 

Domain Knowledge Type Findings Reference 

English-Spanish 

word pairs learning 

Word The study investigated the effects of 

the time interval separating 
reacquisition sessions (1, 7, and 30 

days).  

One finding is that the cumulative 

effect of the intersession interval is 

relatively small. 

If knowledge retrieval interval is much 

longer than the intervals of 

reacquisition sessions, much of the 

acquired knowledge is not well 

accessible.  

Bahrick (1979) 

Paired-associate 

learning 

Word Less learning occurs when repetitions 

of an item are massed than when they 

are distributed 

Greeno (1964) 

Verbal recall test Monosyllabic nouns A certain degree of overlearning is 

economical to retention performance 
for intervals of 2 to 28 days. 

Kruger (1929) 

Picture recall test Pictures of objects 

(e.g., airplane, arrow) 

As long as the number of prior tests is 

held constant, there is no evidence that 

recall increases as the retention interval 

is increased. 

If the retention interval is held constant 

in the meanwhile the number of prior 

tests increases, recall increases. 

Roediger & 

Payne (1982) 

Paired-associate 

learning 

Paired-associate and 

recognition memory 

Response recall is functionally related 

to the spacing of repetitions as a 

function of the retention interval. At a 
short retention interval, the spacing 

function is nonmonotonic. The spacing 

function increases monotonically at 

longer retention intervals—a short 

retention interval: 2 and 8 intervening 

events, a longer retention interval: 32 

and 64 intervening events, each event 

was visible for 3 sec. 

Glenberg (1976) 

Paired-associate 

learning 

English-foreign 

language word pairs 

Extended retrieval practice of foreign 

language vocabulary learning produces 

significant retention benefits over a 5-
year retention period after the 

termination of training. These benefits 

are maximized under the 2-month 

interval between retrieval sessions—

relearning sessions were conducted at 

intervals of 2, 4, or 8 weeks. Retention 

was tested for 1, 2, 3, or 5 years after 

training terminated. 

Bahrick et al. 

(1993) 
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2.4 Knowledge and Skills Degradation 

This section provides a brief synopsis of knowledge and skills degradation both in 

psychology and operations research. From the perspective of psychology, forgetting is 

explained by theories and mechanisms that can address varying types of knowledge and 

skills. From the perspective of operations research, one attempts to predict productivity 

based on workforce performance of learning and forgetting. Both perspectives can help 

us to understand the issues of interest in this dissertation study.  

2.4.1 Synopsis of Skills Degradation in Psychology 

Knowledge and skills acquired through certain types of education or training can 

be forgotten with the passage of time. Forgetting, or knowledge decay, can induce 

discrepancies in trainee performance. Sabol and Wisher (2001) presented the reasons for 

the discrepancies by stating three types of decreased abilities: (a) inability to retrieve 

knowledge from memory, (b) inability to perform cognitive processing (e.g., making a 

decision, or selecting tactics, etc.), and (c) inability to execute an action or procedure in a 

skilled manner. 

The first ability is important to perform procedural tasks because these tasks rely 

largely on acquired knowledge retrieval (Sabol & Wisher, 2001). However, procedural 

memory tends to undergo decay over time. The memory of cognitive processing also 

suffers from a moderate rate of knowledge decay (Cooke, Durso, & Schvaneveldt, 1994). 

Sabol and Wisher (2001) classified execution of skills into continuous and discrete skills. 

For example, continuous skill can involve riding a bicycle, and the discrete skill can be 

executed to disassemble a carburetor. Evidently, discrete skills are more susceptible to 

degradation.  This coincides with a study by McKenna and Glendon (1985) that found 

that less than a quarter of all trained personnel were skillful at performing the first aid 

task of cardiopulmonary resuscitation (CPR), six months after training.  

Anderson and Neely (1996) define interference as the impaired ability to 

remember an event when it is similar to other events that are stored in memory. Thus, 

interference can occur when stored episodes or knowledge are blocked and are not 

recalled due to the intrusion of similar episodes or knowledge. The basic attribute of 

interference theory is retrieval cues. A retrieval cue is an associative link among stored 
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items in memory. Interference can be attributable to skill decay, indicating a retrieval cue 

that is available at the time of recall fails to access the target memory.  

Interference can be classified into proactive and retroactive interference, given 

that there are two tasks (Task I, Task II) to be learned through training. Proactive 

interference indicates that the previously learned knowledge (Task I) inhibits the retrieval 

of the learned knowledge of Task II. Conversely, the retroactive interference indicates 

that the source of interference is Task II that is learned later.  

There is a difference between proactive interference and negative transfer. 

Negative transfer occurs when the acquired knowledge of Task I retards the successive 

learning process of Task II. In the mean time, the proactive interference occurs after both 

Task I and Task II are to be learned (Anderson, 1995). It is reasonable to conclude that 

negative transfer can be directly related to the rate of learning. 

Efforts have been put forth to computationally model and simulate procedural 

knowledge degradation. The aforementioned variables including interference and 

negative transfer are fundamental factors to understand decay mechanisms. Brannon and 

Koubek (2001) speculate that variables including interference can diminish the ability to 

retrieve procedural knowledge for tasks in the domain of product assembly or supervisory 

control. 

Cognitive psychologists and scientists have been trying to propose mechanisms of 

forgetting (e.g., interference) and to model some forgetting behaviors (e.g., forgetting 

paired-associate vocabulary, see Section 2.6.3).  These efforts helped to acknowledge 

issues of skills decay by different types that can be continuous or discrete, or perceptual-

motor or cognitive, etc. Besides the domain of cognitive psychology and science, there 

also has been on-going research on forgetting from the perspective of operations 

research. This will be discussed in the next section. 

2.4.2 Synopsis of Skills Degradation in Operations Research 

Engineers in operations research have studied workers’ learning and forgetting to 

predict productivity and performance (see Dar-El, 2000; Nembhard & Prichanont, 2007). 

The industrial learning and forgetting curves are used to estimate labor cost or cost of 

strikes. Break length is one of the factors causing a lack of skill retention. Once there is a 
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sufficient break length, forgetting processes are triggered. Worker sickness, vacation, or 

strikes leads to dormancy of activity, and the latency eventually results in the phenomena 

of forgetting. Consequently, the forgetting curtails productivity and leads to inferior 

quality of products. Therefore, forgetting necessitates continuous learning of knowledge 

and skills for workers to maintain productivity. 

In psychology, the Power function is generally accepted to well describe simple 

human learning, assuming replacing incorrect response tendencies with correct ones. 

Unlikely, Mazur and Hastie (1978) argued that a hyperbolic function well describes the 

learning process because it is a process of accumulation where incorrect response 

tendencies remain constant and correct response tendencies increase with practice. The 

hyperbolic function is shown in Equation 2.1. The amount of learning is represented by

! 

y , 

the amount of time (or training) by 

! 

t , and the asymptote for learning by 

! 

k . 

! 

R determines 

the rate of approach to the asymptote of 

! 

k .  

 

! 

y = k(
t

t + R
)        Equation 2.1 

 

Nembhard and Uzumeri (2000a) investigated the fitness of several published 

learning curves such as log-linear, hyperbolic, and exponential curves, by using multi-

criteria comparison. The comparison criteria include the variance of the fit, the number of 

parameters, and the ability to capture episodes of negative learning behavior. The best 

model is a hyperbolic function with three parameters shown in Equation 2.2. 

! 

y  is a 

measure of work performance, 

! 

x  is the amount of cumulative work in units of time (or 

trials), and 

! 

p  is the individual’s accumulated prior experience for that task with the same 

unit as 

! 

x . The parameter, 

! 

k , indicates an estimate of asymptotic limit. That is, the 

parameter represents the expected maximum performance level after learning. The 

parameter, 

! 

r , indicates the cumulative production to achieve an output of 

! 

k /2, indicating 

small values of 

! 

r  means learning occurs rapidly.  

 

! 

y = k(
x + p

x + p + r
),         Equation 2.2 
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subject to, 

! 

y , 

! 

k , 

! 

p , 

! 

x  

! 

"  0 and 

! 

p + r > 0  

 

This hyperbolic function model consisting of three parameters produces the best 

performance (Nembhard & Uzumeri, 2000a). That is, the model has the lowest average of 

the mean-squared error (MSE) statistics, 
  

! 

) 
µ 
MSE

 = 0.00577, indicating flexibility to capture 

the various learning shapes from the different individuals. The variability of the 

goodness-of-fit, 
  

! 

) 
" 
MSE

, from the hyperbolic model has the lowest value, indicating the 

model fits across individuals more consistently. Also, the number of parameters, which is 

three for the hyperbolic model, provides parsimonious representation of the learning 

curve (Nembhard & Uzumeri, 2000a).  

In general, using a forgetting model with a decay function (e.g., an exponential 

function) requires a known value of the time of the break. The hyperbolic function can 

represent negative learning when 

! 

r  is less than 0. Based on this property, Nembhard and 

Uzumeri (2000b) proposed a model of learning and forgetting. They state that a practical 

forgetting model should be able to capture multiple breaks at irregular intervals. They 

modified the hyperbolic function of the learning curve by incorporating experiential 

learning (

! 

R), called recency, as shown in Equation 2.3. 

! 

x  in the denominator indicates 

each unit of cumulative production, and 

! 

t
x
" t

0
 indicates the elapsed time for the unit 

! 

x  

that is the difference between the time stamps of the completion of the current unit and 

the start of the first unit (

! 

t
0
). Thus, Equation 2.3 represents the recency measure, the ratio 

of the average elapsed time to the elapsed time of the most recent unit produced.  

! 

R
x

=

(t " t
0
)

i=1

x

#

x(t
x
" t

0
)

      Equation 2.3. 

In this model, 

! 

R
x
 was bounded below by 0 and above by 1. A value approaching 

1 indicates all experience obtained immediately preceding the current unit, and a value 

approaching 0 indicates experience obtained infinitely long ago. For a constant 

production rate, the recency of 

! 

R
x
 tends to a nominal value of 0.5. To decide the recency 

effect, the aforementioned cumulative production of 

! 

x  is discounted by the factor, 

! 

R
x

" , 

shown in Equation 2.4, where 

! 

"  is an individual forgetting rates. 
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! 

yx = k(
xRx

"
+ p

xRx
"

+ p + r
) + #x      Equation 2.4 

 

Equation 2.4 includes both the learning rate of 

! 

r  and the forgetting rate of 

! 

" . 

When we let 

! 

">0, small values of 

! 

"  produces little discounting of cumulative work. If 

the forgetting rate (

! 

" ) increases, the term 

! 

xR
x

"  becomes smaller, indicating a greater 

discounting of the cumulative work (Nembhard & Uzumeri, 2000b). The investigation by 

Nembhard and Uzumari focused on examining the model performance to predict the 

amount of forgetting in intermittent learning/forgetting situations. According to this 

study, Nembhard and Uzumari (2000b) stated that the recency model provided efficiency 

of forgetting prediction by the low mean absolute deviation (MAD) and consistently 

stable performance by the low standard deviation of absolute deviations (STDAD).  

Understanding human learning and forgetting has an intellectual merit. Those 

brief synopses about forgetting help us to comprehend the interesting questions: (a) how 

forgetting occurs? and (b) how forgetting can be predicted? Now, I am discussing what 

factors can affect and reduce forgetting. 

2.5 Factors Supporting Retention 

From human memory perspectives, there are several processes addressing 

forgetting phenomena such as decay, interference, and degradation. Decay is a forgetting 

process indexed by time and interference is a process indexed by the amount of 

distracting information (Altmann & Schunn, 2002). Historically, decay has been 

associated with forgetting in short term memory (Brown, 1958; Peterson & Peterson, 

1959).  

The term, “engineered knowledge”, is to represent “engineering” of knowledge 

degradation with time passage. We expect that training based on engineered knowledge 

and skills can augment human performance in spite of disuse of skills over time. 

Engineered knowledge and skills can be accomplished through identifying attributes of 

knowledge that are resistant to decay. That is, we might presume that decay rates of skills 
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might be different by varying types of knowledge and skills. Also, spacing of training 

might have different forgetting rates.  

Figure 2.1 shows theoretical constructs for the engineered knowledge training. 

The constructs consist of external and internal domains. For the external domain, 

industrial workers will be trained through knowledge acquisition tools such as original 

training, retraining, task-oriented training, or refresher training.  

 

 

Figure 2.1. Constructs for the engineered knowledge and skills training. 

 

Knowledge attributes (e.g., level of automatization, or robust knowledge 

structures) can be determined by both knowledge acquisition tools (e.g., training 

methods). Finally, performance in the external world will be exhibited by the retrieval 

and execution of internally stored knowledge through an ecological filter. The ecological 

filter incorporates task characteristics, psychological stress, rapid response (time-critical 

situations), and infrequent use of knowledge. 

2.5.1 Training Factors for Retention 

Original Training: Farr (1987) described factors influencing long-term retention 

of knowledge and skills. One important factor for long-term retention is the amount or 

degree of original (initial) learning. Overlearning (high-acquisition) can reduce the rate of 

decay because the amount of overlearning can increase the amount of knowledge 

acquisition.  
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Training and Retraining: Knowledge and skill retention that is resistant to 

decay can be described as the phenomenon of learning-forgetting-relearning (LFR) 

processes. Carlson and Rowe (1976) simplified the learning and forgetting curves by 

considering a log-linear pattern of time per unit. This approach allows the convenience of 

converting performance versus duration of experience (performance = standard 

time/actual time). 

 

 

Figure 2.2. Learning-forgetting-relearning graphs. 

 

The classical LFR model is shown in Figure 2.2 (a). From the LFR model, it is 

possible to know how much learning is lost if an asymptotic value of the maximum 

performance (representing fully learned or trained) is added (Dar-El, 2000). This 

asymptotic value can have important implications that help to understand the 

relationships between learning and forgetting. In the context of this proposal, the 

maximum performance level can be viewed as the desired readiness and preparedness of 

the workers for superior quality and productivity without performance decrements. 

Unlike the Carlson and Rowe’s graph, Ramos and Chen (1994), shown in Figure 

2.2 (b), tried to integrate learning and forgetting in an attempt to provide a more realistic 

picture of what is actually occurring in those processes. The purpose of this integrated 

model is to establish training and retraining parameters such as amount of training and 
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timing of retraining. In addition, they considered knowledge/skill acquisition and 

retention. 

Figure 2.2 (b) shows the integrated learning and forgetting with intermittent 

periods between them. The expected performance varies in terms of time with a cyclic 

trend and does damp down towards a lower bound. In the Figure 2.2 (b), the upward 

cycles indicate forgetting, and the downward cycles reflect learning.  

Task-Oriented Training: Training can be classified into task-oriented and topic-

oriented. Task-oriented training implies the use of context-based tasks to teach the factual 

knowledge and cognitive skills. On the other hand, topic-oriented training demands the 

information is taught more abstractly. The task-oriented trainees showed longer retention 

of knowledge and skills than did the topic-oriented trainees (Sabol & Wisher, 2001; 

Wisher, Sabol, & Ellis, 1999). High original learning for decay-resistant knowledge may 

be attained by conducting task-oriented training rather than topic-oriented training (Sabol 

& Wisher, 2001).   

Training with Appropriate Retention Interval: Knowledge decay can be 

mitigated by appropriate retention intervals. Bahrick (1979) investigated how the 

maintenance of knowledge is related to the successive relearning sessions with varying 

time intervals. In this investigation, English-Spanish vocabulary pairs were tested with 

relearning sessions. Bahrick concluded that time between practice-sessions should be 

spaced at intervals not much shorter than the interval separating a practice from a test for 

optimum maintenance of knowledge. Retention performance can be increased by using 

appropriately “spaced” or “distributed” repetitions during practice sessions (Sabol & 

Wisher, 2001). 

Training with Feedback: Farr (1987) mentioned that instructional strategies can 

play a significant role in mitigating knowledge decay. Training with feedback, which 

gives the trainee sufficient information to comprehend performance errors, is necessary to 

assure effective learning and enhanced knowledge retention. 

Refresher Training: Retention of military knowledge and skills has been studied 

extensively (Sabol & Wisher, 2001; Wisher, Sabol, & Ellis, 1999). It was proposed that 

optimizing the schedule of “refresher training” can increase skill retention. The U.S. 

Army Research Institute for the Behavioral and Social Sciences (ARI) developed a 
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Trainer’s Guide for Refresher Training with rankings of tasks in terms of the 

vulnerability to decay (see Wisher, Sabol, & Ellis, 1999, p.20). I report their findings here 

as an example of the refresher training guide for trainers.  

 

Table 2.3. Ranking of task retention. 

Rank Task % Go Able to remember 

#1 Extraction from minefield 0 % 

#2 React to civilian on battlefield 8 % 

#3 React to sniper 9 % 

#4 Prevent shock 18 % 

#5 Carbon monoxide inhalation 28 % 

#6 Apply tourniquet 29 % 

#7.5 React to indirect fire 30 % 

#7.5 Winter driving 30 % 

#9 Vehicle search 34 % 

#10 Negotiation 36 % 

#11 Rules of engagement 42 % (27 %) 

#12 React to media 54 % 

#13 V corps convoy mine strike drill 56 % 

#14 Living in the cold 62 % (48 %) 

#15 Identify/detect trip wires 68 % 

#17 Driving postcheck 71 % (44 %) 

#17 Working in the cold 71 % 

#17 Identify/detect booby traps 71 % 

#19 Sleeping in the cold 73 % 

#20 Recognize/react to UXO 75 % 

#21.5 Mine detection 76 % 

#21.5 Locate a mine by probing 76 % 

#23 Driving precheck 89 % (62 %) 

#24 Personal search  90 % (62 %) 

#25 React to mines 96 % (68 %) 

#26 Field dressing/pressure dressing 98 % 

#27 Indications of mines/ booby traps 99 % (84 %) 

 

Note: % Go indicates percent of soldiers predicted to perform the task at “Go” level after 
two months of skill disuse. Percentages in parentheses apply when job aids are 
unavailable.  
 

2.5.2 Ecological Factors for Retention 

Task Characteristics: Sabol and Wisher (2001) stated that knowledge decay 

from procedural memory is affected by the characteristics of tasks such as task 

Hardest 

Easiest 
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complexity, task demands, and environment where a task to be performed. A complex 

task can contain a number of procedural steps to be done. Thus, as the number of task 

steps increases, the decrements of performance become more severe (Sabol & Wisher, 

2001). 

Psychological Stress: Berkun (1964) investigated human performance 

decrements under psychological stress. In this investigation, the term “psychological 

stress” was meant to imply the apparently existing threat to the survival of someone for 

whom she/he is responsible. One experiment represented an emergency crash landing of 

an aircraft where army trainees were passengers. The subjects were all young men 

engaged in their basic combat training. For retention of knowledge, the subjects under 

stress correctly recalled an average of 4.9 out of 12 answers while the subjects in the 

control group recalled an average of 7.6 answers. Stokes (1995) studied stress-resistant 

performance in aeronautical decision-making. Novices and experts performed cognitive 

tasks under stressed and unstressed conditions. Stress conditions included task loading, 

dual-task loading, time pressure, noise, and financial risk. The results showed that experts 

who have high preexisting anxiety or experience showed no performance decrements 

under stress. In contrast, the novice group was affected by the stress conditions while 

performing aeronautical decision making tasks. 

2.5.3 Robust Skills with Enhanced Retention 

Previous sections addressed learning and forgetting corresponding to internal 

factors for robust engineered knowledge. Knowledge acquisition tools and ecological 

constraints were presented in previous sections with respect to external factors. As 

discussed before, performance will be exhibited by filtering through ecological 

constraints via internal attributes of knowledge that is obtained by training tools. 

Figure 2.3 summarizes the internal attributes of knowledge in the learning and 

forgetting. These attributes of knowledge can be manipulated by controlling knowledge 

acquisition methods and by understanding the fundamentals of learning and forgetting 

mechanisms. 
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Figure 2.3. Knowledge attributes of learning and forgetting. 

 

Investigating attributes of knowledge and skills by different retention intervals can 

produce useful findings to optimize long-term retention of knowledge and skills. Koubek, 

Salvendy, and Noland (1994) stated that knowledge structures can affect cognitive-

oriented tasks and can be controlled to become more robust by manipulating knowledge 

acquisition methods. Therefore, engineered knowledge can be achieved by identifying 

knowledge attributes. The need for this optimization forced me to investigate knowledge 

and skill attributes in the context of learning and forgetting. If we know what nature of 

knowledge and skills causes decay, then we can engineer those factors to make skills 

more robust. 

2.6 Models of Memory  

This section reviews existing models of memory. Anderson and Schooler (1991) 

examined a number of environmental resources to determine whether human memory 

would be behaving optimally in terms of the pattern of past information presentation. 

Major patterns of past use of information can include how often information has been 

practiced (frequency) and how long it has been after the last practice (recency). In 

addition, successive repetitions of an item affect how well that item is retrieved from 

memory, which is called the spacing effect. Based on these environmental resources (e.g., 

the frequency, recency, and spacing effect), I am delving into models of memory to build 

a cognitive model that is able to learn and forget knowledge and skills.  



 31 

2.6.1 Learning Models of Declarative Memory 

Latency generally refers to the time delay between an input and an output in 

communications, operations, or simulations. An input can be an initiation of a request to 

a system. Then, the system is expected to provide an output with respect to that request.  

Latency is a useful factor to measure learning effects of memory because it 

decreases as a power function of the number of practice trials. For example, Grant and 

Logan (1993) found that repetition priming increased as a power function of practice 

while it decreased as a power function of retention interval or delay. The power function 

has been representing the effects of practice or learning (see Anderson, 1982; Anderson, 

Fincham, & Douglass, 1999; Newell & Rosenbloom, 1981), but there have been 

discussions of other functions  (see Anderson & Tweney, 1997; Myung, Kim, & Pitt, 

2000). 

Anderson, Fincham, and Douglas (1999) conducted a set of experiments to 

investigate practice and retention. Participants memorized eight different facts such as 

“Skydiving was practiced on Saturday at 5 p.m. and Monday at 4 p.m.” The task includes 

an underlying rules about the time relationship between the two events for that sports. For 

example, the second skydiving event always occurred 2 days later and 1 hour earlier. 

After memorizing the facts, participants were tested with rule application problems. The 

task requires participants to retrieve the learned facts and to apply rules to achieve the 

goal.  

In one experiment, participants performed the task for four days with different 

retention intervals (e.g., 7 day – 1 day – 1 day, 1 day – 1 day – 7 day, or 1 day – 1 day – 7 

day). Anderson, Fincham, and Douglas (1999) applied the strength accumulation 

equation to predicting latency results. The strength accumulation equation is as follows.  

 

! 

Strength = t j
"d

j=1

n

#       Equation 2.5 

! 

t j : the time that has passed since the jth occurrence of the item 

! 

d : decay rate 
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The strength accumulation equation is a base for the ACT-R mechanism to 

represent latency. When a participant performs a task, latency is an inverse function of 

the strength equation. This latency function serves for both power law of learning and 

power law of forgetting at the same time. The latency function provided a good fit of the 

theory to the empirical data. 

! 

Latency = A + B / t j
"d

j=1

n

#       Equation 2.6 

! 

A : the asymptotic latency 

! 

B: the amount of the latency that can be reduced by practice.  

 

2.6.2 Learning Models of Procedural Memory 

Previous experience can affect the current behavior. There are models supporting 

the learning of previous experience.  ACT-R 5 (Anderson & Lebiere, 1998) selects one 

production to fire among competing productions, to achieve the model’s goal. The 

mechanism allows a model to learn problem-solving strategies from experience based on 

the probability of success and the relative cost of different strategies in a production. 

Each production rule is associated with a utility value indicating how much the 

production is able to achieve the model’s current goal (

! 

U
i
= P

i
G "C

i
+ #). 

! 

P
i
 is the 

expected probability to successfully achieve the model’s current goal. The probability is 

decomposed to 

! 

q and 

! 

r  (

! 

P = qr, where 

! 

q is the probability that a production will achieve 

its intended next state, and 

! 

r  is the probability that the production achieves its goal when 

it arrives at the intended next state). 

! 

C
i
 is the expected cost to achieve the model’s 

objective. 

! 

G is the value of the goal. 

! 

" is noise. 

The probability of success is calculated by the number of successes divided by the 

number of successes and failures, as shown in Equation 2.4. 

! 

q is assumed to be 1.  

! 

P  = 

! 

r(t) = 

! 

Successes(t)

Successes(t) + Failures(t)
, 

! 

q = 1   Equation 2.7 

 

This is the probability learning equation in ACT-R 5. Lovett (1998 p. 265) 

proposed time-based decay in ACT-R’s production parameter learning. This mechanism 
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discounts past experience and adjusts the timing of successes and failures. Similar to the 

ACT-R’s base level activation, each success and failure experience in a production is 

decayed in terms of a power function.  

 

! 

Successes(t) = 

! 

t
"d#       Equation 2.8 

! 

Failures(t)  = 

! 

t
"d#       Equation 2.9 

 

Lovett’s model has successfully explained behavior representation of adaptive 

choice. However, the mechanism is restricted to learning to the binary feedback of 

success or failure, leading to whether a reward is received or not. Thus, it could be 

impossible to represent choice behavior that is sensitive to the probabilities and 

magnitudes of reward separately (Fu & Anderson, 2004, 2006). 

To address this problem, Fu and Anderson (2006) tested the reinforcement 

learning mechanism to explain complex behavioral data of recurrent choice and skill 

learning in the ACT-R’s production system to provide more flexible continuous values of 

reward. Reinforcement learning is where humans or other creatures learn from interaction 

with the environment in an attempt to maximize rewards while achieving a goal.  

Fu and Anderson’s reinforcement learning mechanism is based on a temporal 

difference algorithm (Sutton & Barto, 1998) that is a generalization of the Rescorla-

Wagner learning rule (Rescorla & Wagner, 1972).  

 

! 

V
i
(n) =V

i
(n "1) + a[R

i
(n) "V

i
(n "1)]    Equation 2.10 

! 

V
i
(n) : the value of an item 

! 

i  after its nth occurrence 

! 

R
i
(n) : the reinforcement of a reward or a penalty received on the nth 

occurrence 

! 

a : the rate of learning, 

! 

0 < a <1 

 

Equation 2.10 is known as the difference learning equation. One notable feature 

of the difference learning equation is that the model can represent the learning process in 

a continuous range instead of the “success” or “fail” information on the action (Fu & 

Anderson, 2006).  



 34 

The difference learning equation is elaborated in the temporal difference 

algorithm by defining the immediate reward, 

! 

r
i
(n), and the value of the next item 

! 

i +1, 

! 

V
i+1(n "1) , as follows. 

 

! 

Ri(n) = ri(n) + g(ti)Vi+1(n "1)       Equation 2.11 

 

In Equation 2.11, the term of 

! 

g(ti) indicates the discount function representing 

monotonic decrease in values with time, 

! 

t
i
. There are some arguments that what the 

discount function would be (e.g., exponential function). Fu and Anderson provided a 

good summary of this question and showed the useful incorporation of the discounting 

function in the ACT-R’s learning mechanism.  

Fu and Anderson designed a general skill learning task of the maze-searching that 

how humans learn with delayed feedback to test how well the reinforcement learning 

mechanism can scale up to account for skill learning. Participants (N = 20) were asked to 

make recurrent choices to progress through simulated rooms to reach a goal. In this task, 

the main component of the skill is to acknowledge when to apply the right choice under a 

given context of cues in the task environment. Fu and Anderson asserted that the learning 

of making right choices could be considered as a core component in skill acquisition.  

They concluded that the reinforcement learning mechanism propagates discounted 

credit back to previous productions, leading to learning of rewards with psychological 

validity. That is, the credit assignment mechanism allows the model to learn the task and 

improve performance as correct production rules are chosen to fire. 

This investigation provides a couple of benefits to modeling skill acquisition. 

First, this recurrent choice model can represent how a value is discounted with delay. 

Second, the model can represent how the reward value links back to the previous action 

over time. Also, the model with the conflict resolution equation can provide a stochastic-

dynamic description of the recurrent choice of learning and performance. 

2.6.3 Forgetting Models of Declarative Memory 

In this section, I will review forgetting models of declarative memory rather than 

procedural memory. The models are based on activation and spreading mechanisms.  
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Anderson’s Fan Effect 

As humans acquire more facts, their time to retrieve a fact from memory 

increases. This phenomenon is called the fan effect (see Anderson, 1974; Anderson & 

Reder, 1999). The fan effect provides an understanding of retrieval processes that are 

interacting with human memory representations and a framework to explain associative 

strengths among acquired facts. Importantly, the study of the fan effect describes a theory 

of retrieval mechanisms that is a base of building a computational model in ACT-R. 

Anderson (1974) conducted a set of experiments where participants learned 26 

facts about people and locations, such as A hippie is in the park. After the learning 

sessions, participants were asked to determine whether sentences presented to them were 

true or false. The term of “fan” refers to the number facts associated with a particular 

concept. The study deals with how latency increases when the number of facts associated 

with a person or a location increases. 

In the ACT-R theory, an activation value of a fact determines the latency to 

retrieve any fact from memory (Anderson & Reder, 1999). A fact would be comprised of 

chunks in declarative memory. The chunks spread activation based on their relation to 

other chunks, called their strength of association.  

Knowledge and skills retention often adversely affect performance speed, such as 

response time. The functional relationship between spreading activation and retrieval 

latency can provide a clue to model skill decay. Chong (2004) also mentioned that the 

spreading activation through associative links between declarative elements can be 

applied to rules that generate decay. 

 

Pavlik’s Forgetting Model 

Pavlik and Anderson (2005) studied the spacing effects and optimization of 

learning based on the ACT-R framework. The spacing effect is considered as the memory 

benefit that controlling the time duration between practices can enhance human 

performance.  

They investigated the evidence of spacing effects through examining Japanese-

English paired associates of declarative knowledge. From this vocabulary paired-
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associates experiment, an activation-based model was proposed. This model proposes 

that an item receives an increment of strength when it is practiced, but that these 

increments decay as a power function of time.  

Pavlik’s activation model purely focuses on declarative knowledge. Thus, it is 

necessary to prove that the activation mechanism can be applied to dealing with the 

aspects of procedural knowledge and its degradation. Also, the spreading activation 

mechanism is needed to be proved in the context of procedural knowledge degradation. 

The spreading activation mechanism indicates that a repeatedly used chunk spreads 

activation through its associative links between chunks in declarative memory.  

 

The basic activation mechanism is as follows:  

(a) Creation of memory element 

(b) Initial activation 

(c) The activation begins to decay as a function of time. 

(d) If the activation falls below a retrieval threshold, the memory element cannot be 

retrieved. 

(e) The memory is not available to satisfy the condition of a rule. 

(f) Activation of a memory element is boosted by using or rehearsing the element. 

(g) The decay process immediately resumes. 

2.6.4 Forgetting Models of Procedural Memory 

I have run across mostly models on declarative memory degradation (see 

Anderson & Reder, 1999; Pavlik Jr. & Anderson, 2005). Chong (2004) investigated a 

modeling consideration of procedural skill decay in the ACT-R architecture. Chong 

mentioned that the existing set of mechanisms from several architectures (e.g., refer to 

the below Table 2.4) could not afford modeling procedural skill decay.  
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Table 2.4. Modeling capabilities of skill decay in cognitive architectures. 

Architecture Capability 

EPIC 
It does not provide a rule learning mechanism. This indicates that the 
architecture is not able to model procedural skill learning. 

ACT-R 
Usually, the architecture’s performance is limited to declarative 
knowledge learning and forgetting.  

Soar 
As a rule learning mechanism, chunking is used to model learning 
phenomena but not the decay of skill. 

EASE 
This is integrated hybrid architecture (Elements for ACT-R, Soar, 
EPIC). Modeling of skill decay was tried but it does not have stronger 
capability than its three original architectures. 

 
 

For example, EPIC does not provide a rule learning mechanism. In Soar, as a rule 

learning mechanism, chunking is used to model learning but not skill degradation. ACT-

R is limited to learning and forgetting of declarative knowledge. Thus, it is worth 

exploring and extending the existing architectural mechanisms to model procedural skill 

degradation. 

Brannon (2001) attempted to provide a computational model of procedural 

knowledge degradation within the ACT-R 5 architecture. It has symbolic and 

subsymbolic levels supporting performance and knowledge dynamics. The symbolic 

level consists of the primary equation for expected gain. The equation to compute the 

expected gain is denoted by E = CPG ! ( E : Expected gain; P : Probability of 

successful goal achievement;G : Value of current goal; C : Cost of achieving goal).  

This equation provides calculation of the expected gain of each production and 

the production with the highest expected gain is to be fired. The subsymbolic level 

records event data associated with production firing and supports parameters in the 

expected gain equation. In this cognitive architecture, the aspects of procedural 

knowledge are represented by frequency with which the production cycle is executed.  

Anderson and Lebiere (1998) mentioned that the more often productions are fired, 

the more efficiently knowledge will be retrieved because of accrual of production 

strength. This indicates the relationships between training and retrieval processes. It was 



 38 

positively concluded that the number of production cycle iterations affected the retrieval 

efficiency.  

As mentioned before, forgetting can be explained by a psychological theory of 

“interference”. Also, “cue unavailability” can play a role to address the phenomena in the 

architecture using the production system. Chong (2004) stated that forgetting may be 

attributable to the inability to retrieve (match) a rule that has insufficient declarative cues. 

Chong proposed ACT-R’s base level learning (BLL) mechanisms to address recency and 

frequency effects of acquired procedural knowledge rules.  

In ACT-R, BLL is to determine the activation of working memory elements. 

Thus, the activation plays a functional role of knowledge availability and its retrieval 

time. According to the study, Chong used four parameters to explain skill decay 

including base level constant (

! 

" ), declarative decay rate (

! 

d), noise (

! 

"), and retrieval 

threshold (:rt). Particularly, the base level activation (

! 

B
i
) explains the frequency and 

recency of a chunk, but the spreading activation of ACT-R was not considered for 

simplification purpose in the study.  

The activation decays logarithmically as a function of time and frequency of a 

chunk’s use. The activation is augmented whenever the chunk is retrieved. After that, 

decay processes occur. In addition, the retrieval threshold parameter determines that if the 

activation of a chunk becomes below the threshold, a chunk will not be retrieved.  

To contemplate on the modeling capability of ACT-R, it is needed to consider 

other parameters. The parameters, in ACT-R, are the instantaneous activation noise (:ans) 

and the latency factor (:lf). The instantaneous activation noise parameter determines how 

fast retrieval probability changes. The latency factor determines the magnitude of the 

activation effects on latency.  

Chong concluded that the BLL mechanism can produce the desired skill decay 

effects with some open issues. For instance, ACT-R provides the spreading activation 

equation shown in Equation 2.12. 

 

! 

Ai = Bi + WkjS ji + "
j

#
k

#       Equation 2.12 
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! 

A
i
: the activation of a chunk 

! 

i  

! 

B
i
: the base-level activation 

! 

Wkj : the amount of activation from source 

! 

j  in buffer 

! 

k  

! 

S ji : the strength of association between source 

! 

j  and a chunk 

! 

i  

! 

": the noise value that consists of a permanent noise associated with each 

chunk and an instantaneous noise computed at the time of a retrieval 

request 

 

Using the spreading activation mechanism can make it possible that a relearned 

chunk spreads its activation to its associated chunks, resulting in an activation increase 

during a retention interval. This activation mechanism can have an implication on 

refresher training. That is, a strategic relearning can produce increases in a chunk 

activation leading to a better performance on retrieval.  

Apparently, it is true that the activation mechanism in ACT-R is designed to 

explain declarative memory elements rather than procedural memory elements 

(production rules). One thing I emphasize here is that each production rule can refer to 

declarative memory elements. The activation of those declarative elements interacts with 

procedural knowledge. This suggests that procedural knowledge can be primed. 

Conversely, the primed declarative memory elements necessarily for procedural 

knowledge can be deactivated, leading to unpriming the procedural knowledge as well.  

2.7 Cognitive Architecture for Training and Education 

The contemporary sciences and technology of modeling human behavior are 

considerably indebted to Allen Newell’s scientific desires and pursuits. In 1987, Allen 

Newell delivered the William James Lecture Series at Harvard University. The record of 

the lecture was published as a book entitled Unified Theories of Cognition (Newell, 

1990). In that book, Newell strived for a unified theory of cognition through the Soar 

architecture and brought pivotal research motivations and questions to model human 

behavior. Also, in Newell’s last lecture recorded back in 1991, he raised an ultimate 

scientific question, How can the human mind occur in the physical universe? Here is the 

excerpt of his question (Newell, 1993).  
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The question for me is, how can the human mind occur in the physical universe? 

We now know that the world is governed by physics. We now understand the way 

biology nestles comfortably within that. The issue is, how will the mind do that as 

well? 

 

As a candidate of a unified theory of cognition, John Anderson and his colleagues 

have proposed the ACT-R architecture. ACT-R has been validated as a cognitive 

architecture to address human behavior and learning in various tasks (Pew & Mavor, 

1998). While Soar is more oriented for Artificial Intelligence, ACT-R has been actively 

used to model human cognition and performance. Recently, Anderson (2007) gives his 

answers responding to the Newell’s scientific inquiry with description of brain image 

maps to the architectural functions.  

The purpose of the cognitive architectures (e.g., Soar and ACT-R) is to provide a 

framework to build a model that can represent human behavior. Ideally, the architectures 

not only support but also confine modeling capabilities to allow models that are 

cognitively plausible or to reject models that do not match possible human behavior 

(Taatgen, Lebiere, & Anderson, 2006). 

I chose, in this dissertation study, the ACT-R architecture to explore and model 

skill retention of human behavior, because ACT-R provides a unified theory of cognition 

that can explain human behavior of learning. In particular, specific mechanisms of ACT-

R are close to phenomena of learning and forgetting.  

2.7.1 Overview of the ACT-R Architecture 

This project uses ACT-R 6. The ACT-R 6 architecture is evolving. If you want 

the most recent one, you should check out ACT-R’s official website1, visit the annual 

ACT-R workshop, or attend conferences (e.g., the Cognitive Science Society conference 

or the International Conference on Cognitive Modeling) where the ACT-R tutorial 

session might be provided periodically. Also, you could attend the annual ACT-R 

summer school.  

                                                
1 act-r.psy.cmu.edu 
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Figure 2.4 shows a schematic of the ACT-R architecture. As an extension of the 

binary classification of memory (declarative memory and procedural memory), ACT-R 6 

has several other modules that are all associated with the production system as a center. 

The modules include the Intentional Module (Goal Module), Declarative Module, Aural 

Module, Speech Module, Motor Module, Vision Module, and Imaginal Module. The 

production system communicates with each module via each corresponding buffer. That 

is, the central production system plays a role of generation and coordination of behavior 

in accordance with the functions of modules. 

 

 

 

Figure 2.4. A schematic view of the ACT-R architecture, adapted from Anderson 

(2007) and Byrne (2001).  

 
The buffers’ roles (e.g., manual buffer, retrieval buffer, or goal buffer) are mainly 

two folded: (a) making a request from a production to a module, and (b) holding a chunk 

as a result of that request. Also, the buffers serve as the source of chunks for declarative 

memory. Here are the details of each module’s roles:  
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The procedural module plays a central role in coordinating productions that 

interact with other modules. This module specifies productions and matches a production 

to fire with the utility module. The utility module provides quantitative values of the 

productions’ subsymbolic utility used in the conflict resolution process. The other module 

is the production compilation module responsible for learning new productions. These 

three modules constitute the ACT-R’s procedural system. 

The goal module keeps track of current goals or intentions of the model. The goal 

buffer in this module tracks the current state of a model and holds relevant information 

for the current task. The only action of the goal module is to create new chunks and they 

are placed into the goal buffer.  

The declarative module retrieves a chunk from memory. Declarative memory in 

this module stores chunks generated by the model. The retrieval of chunks reflects a 

theory of human memory performance. 

The visual module identifies objects in the visual screen. ACT-R’s vision module, 

consisting of the visual-location and visual buffer, provides the model with information 

about what it is and where it is on the screen. The module determines what the ACT-R 

model sees (Anderson et al., 2004; Byrne, 2001; Byrne & Anderson, 1998). Those 

“what” and “where” are the two subsystems in the vision module. If an object is on a 

visual display, it is represented by one or more features (e.g., location, color, or size, etc.) 

in the vision module’s icon. Then, the module creates chunks based on the features 

providing declarative memory representations of the visual display. Chunks can then be 

matched by the condition side of productions and be placed in declarative memory after a 

successful match-up.  

For the subsystem of “where”, a request to identify what is at is sent to the vision 

module through the visual-location buffer. A modeler can specify x and y coordinates of 

the visual location (i.e., screen-x is greater than 120). If there is an object that meets the 

visual location specification, a chunk representing that object is placed into the visual-

location buffer. If not, the buffer will remain empty.  

For the subsystem of “what”, a request on what is it is sent to the vision module 

through the visual buffer. The where system finds a specific location of an object, then 

the what system attends to that location by shifting visual attention and places a chunk 
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representing that object in the visual buffer. One notable property of the where system is 

whether an object has been previously attended or has not been previously attended by 

the vision module. The ACT-R’s vision module keeps track of a small number of 

locations that have been attended. Markers, called a finst (instantiation of finger), are 

used to track and are limited in both number and duration. The number of finsts are 

controlled by the command of :VISUAL-NUM-FINST, which defaults to 4. The 

duration, indicating how long a finst marker will remain in a location, is controlled by the 

command of :VISUAL-FINST-SPAN that defaults to 3.0 s. As another property, the 

ACT-R’s vision module supports visual tracking. As a visual object is attended to, the 

vision module is able to track that object by a START-TRACKING operator (Byrne, 

2001). 

The motor module produces the hand movements such as a key press, mouse 

move, or mouse click. ACT-R assumes that the model’s hand operates a virtual keyboard 

with a layout of keys in two dimensions and a virtual mouse. The virtual keyboard is 

shown in Figure 2.5.  

For example, the key of “j” is represented by (7 4) in ACT-R. It is assumed that 

the virtual mouse is located in (28 2). The mouse has only one button. The model’s 

right hand controls the mouse. At default, the model’s index fingers of the left and right 

hand are placed over the F and J keys on the keyboard respectively, which is at (4 4) 

for the left index finger and (7 4) for the right index finger. 

 

 

 

Figure 2.5. The virtual keyboard in ACT-R. 
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The imaginal module has a buffer called imaginal. This buffer creates new chunks 

that are the model’s internal representation of information. The imaginal buffer maintains 

context relevant to the current task. There is a different mechanism between the goal and 

imaginal buffer. In the goal buffer, chunks are created and placed before the start of the 

model. On the other hand, in the imaginal buffer, the imaginal module creates a chunk in 

the imaginal buffer by a production’s request.  

 

For example, 

 
(p read-cell 
   =goal> 
      isa                read-cell 
      state              attend 
   =visual> 
       isa              cell 
       value            =number 
==> 
    =goal> 
       state             respond 
    +imaginal> 
       isa               array 
       cell-value        =number) 

 

This production requests the imaginal module to create a chunk. It automatically 

clears the imaginal buffer, and then the new chunk is placed into the imaginal buffer. At 

default, it takes 0.2 seconds for that chunk to be available. ACT-R takes time to build a 

chunk representation and creates one new chunk at a time. The default value can be 

changed by a parameter. To sum up, after firing the production rule, the model reads from 

the spreadsheet screen, the information (e.g., a cell value) is placed into the imaginal 

buffer.  

2.7.2 ACT-R Model: Lessons Learned For Training and Education 

The engineering model by Card, Moran, and Newell (1983) made a significant 

contribution to research on cognitive modeling, particularly to human-computer 

interaction. Ritter et al. (2000) summarizes contributions to human computer interaction 

(HCI) in three main ways: (a) examine efficacy of different HCI designs by predicting 
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task performance, (b) provide embedded intelligent assistants in education, and (c) create 

models of users that reside in synthetic environments for an advanced simulation (e.g., 

fighter pilot performance). The laborious work of cognitive modeling has produced those 

deliverables and contributions to HCI. 

With the perspective of those, the work of cognitive modeling can be theoretically 

applied to training and education and practically provide implications to those, because 

cognitive modeling is grounded in theories of human cognition (see Gray & Altmann, 

2001), providing meaningful implications for practical problems. When it comes to 

training and education, cognitive modeling can (a) examine efficacy of different training 

regimens, (b) provide cognitive tutors in training and education, and (c) create models of 

users in a synthetic environment.  

First and foremost, modeling of human performance requires knowledge that 

represents human’s goal directed behavior. Newell (1990) established important 

foundations to cognitive systems in his book, Unified Theories of Cognition. In that book, 

Newell mentioned mind and response functions to describe a system’s behavior. Mind 

can be considered as a control system that directs behavior of the system complexly 

interacting with the dynamic world. The mind provides actions as a function of the 

external environment called response functions. Thus, behavior of the cognitive system 

changes by response functions to provide physical and biological nature of human beings.  

Newell (1990) describes the cognitive system as a full range of behavior by 

claiming that humans can be represented at the knowledge level. The reason is that if we 

describe a system at the knowledge level, it is not always necessary to know the system’s 

detailed internal processing. If we know the system’s goal and what the system knows 

about its environment, behavior of the system can be calculated (Newell, 1990). This 

implicates that there should be a way of formulating humans as agents that have 

knowledge and goals. Based on foundational structures by Newell, Soar and ACT-R are 

two of the most commonly used cognitive architectures (Ritter et al., 2003). Both Soar 

and ACT-R use a production system to represent knowledge in memory.  

It is necessary to consider whether the production system can afford theoretically 

meaningful and psychologically plausible human behavior. Generally, memory structures 

are comprised of binary distinction of declarative memory and procedural memory. In 
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Soar, the production system consists of production memory that is permanent, and 

working memory that is a collection of data elements (Newell, 1990). Learning in Soar 

occurs only for production memory—that is, new rules are created by the Soar 

architecture whenever a sub-goal is resolved by a chunking mechanism, and, unlikely, 

learning in ACT-R involves both declarative and procedural memory (Ritter et al., 2003). 

I put more focus on the ACT-R architecture across this dissertation study than Soar 

because ACT-R has more psychologically plausible memory constructs with binary 

distinction. This can be a crucial factor to understand human memory and learning 

performance. 

The ACT-R architecture has three features for knowledge representation. First, 

ACT-R has two long-term repositories of knowledge, that is declarative and procedural 

memory, representing different memory processes. Second, a chunk represents 

knowledge in declarative memory, representing factual information. Third, a production 

represents the basic unit of the knowledge in procedural memory, representing a goal-

directed behavior.  

Anderson (1993) expounds the binary distinction of declarative and procedural 

memory within a production system framework where productions function by reading 

information from working memory and writing information to working memory. The 

information in working memory is declarative knowledge and the information in the 

productions is procedural knowledge. ACT-R supports active and inactive properties of 

information, whereas Soar loses information when that information leaves working 

memory. Thus, ACT-R allows long-term status of knowledge in memory. In ACT-R 

theory, declarative knowledge comes from encoding of the environment, and procedural 

knowledge must be compiled from declarative knowledge through practice. Also, the 

spreading activation implements declarative priming in ACT-R. Furthermore, declarative 

knowledge structure loses associative strength with time.  

Anderson (1993) gave a good example of learning typing skills that helps us to 

understand ACT-R’s binary distinction between declarative knowledge and procedural 

knowledge. One can memorize the layout of the keyboard declaratively, and one can 

know the keyboard as part of our typing skill. Learning typing skills enables one to 

memorize the keyboard layout and to type faster and faster. A typist declaratively 
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memorizes the keyboard layout and procedurally knows the keyboard as part of the 

typing skill. Over time, several months or more, a typist can lose declarative knowledge 

of the keyboard layout but can retain typing skills. The way the typist can determine 

where a key is on the keyboard is to imagine typing a letter and seeing where his/her 

finger goes. This example indicates that one can and do maintain both declarative and 

procedural representations of the same knowledge. 

Knowledge representation of using chunks has three major features in ACT-R. 

First, a size of chunk can be considered for modeling of recall performance. However, in 

general, model performance of skill acquisition is not sensitive to the size limitation of 

chunk (Anderson, 1993). Second, chunks can be encoded with respect to their semantic 

relationships. Thus, it is possible to represent specific relational roles in knowledge using 

elements of chunks. Third, in representational notation of knowledge, chunks can be 

hierarchically organized.  

Cognitive skills are realized by production rules because production rules are the 

right grain size for understanding skill acquisition (Anderson, 1993). Knowledge 

representation of using productions that are the units of procedural knowledge has four 

major features in ACT-R as follows: 

 

(a) Production Modularity: All productions are independent with each other, so that 

one can delete and add productions like a separate element. Each production rule 

ideally should represent the basic unit of skills based on the task analysis. Thus, it 

is said that skills are acquired in production-sized units, and any transformations 

of skills exist when each production unit changes (Anderson, 1993).  

(b) Abstraction: Production abstraction refers to the generality of production rules. 

That is, production rules can be administered in terms of the pattern specification 

of the condition.  

(c) Goal-structuring: The internal goal in the cognitive system can determine firing of 

different productions rules in response to the same external situation. This goal-

structuring in ACT-R supports adaptiveness of the cognitive system. 
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(d) Condition-action asymmetry: The flow of control goes from the condition side to 

the action side. The reverse flow from action to condition is not possible in 

production rules. 

2.8 Summary 

In Chapter 2, I have discussed several important topics, including knowledge and 

skills, acquisition, degradation, and retention. Procedural knowledge and skills are 

ubiquitous in our daily tasks. An understanding of learning and forgetting procedural 

skills helps to devise design of experiments to measure learning and forgetting in a 

laboratory setting.  

Thus, we need procedural task that should be relatively large to represent the real 

world task, instructions to have human participants learn the task, and multi-days of 

retention that can help to forget skills. These are the basic foundation to design 

experiments. 

Also, I reviewed existing models that address learning and forgetting. The ACT-R 

cognitive architecture is chosen to develop a cognitive model because the architecture is 

close to explain phenomena of learning and forgetting. Based on the review, I will 

describe areas for exploration and the detailed research design in the next chapter. 
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Chapter 3  

Areas for Exploration and the Research Design 

This chapter describes the detailed research design and methods to explore 

learning and forgetting procedural skills. Enhancing skill retention (or reducing skill 

decay) has gained great interest in industry and military sectors, as I discussed in the 

previous chapter, but little research has been conducted to model skill degradation 

phenomena (Chong, 2004). It is worth developing a cognitive model producing human 

behavior of skill degradation and finding out how skills are acquired and retained. 

As mentioned in Chapter 1, the objective of this study is to develop a cognitive 

model of skills decay to better summarize the training issues of knowledge retention and 

forgetting. My hypothesis of this study is that the ACT-R theory of the subsymbolic 

computation mechanisms (activation and production compilation) cannot capture skill 

decay performance. 

To achieve the objective, the dissertation study is two folded. First, a 

computational model in a cognitive architecture (Chapter 4) is to be explored and 

implemented. Second, I create a study paradigm to explore and gather human data of 

skills degradation (Chapter 6). Finally, I will validate the model performance by 

comparing it with human data (Chapter 7).  

3.1 The Environment to Explore Skills Degradation 

Figure 3.1 shows a schematic view of dissertation research study. The left side of 

the figure is called the ESEGMAN world. This is where a cognitive model resides. The 

model is built within the ACT-R architecture that is written in Common Lisp. The model 

interacts with the target task environment. The target task is a set of spreadsheet tasks. 

The spreadsheet application, called Dismal, was written in Emacs Lisp (Ritter & Wood, 

2005). Both the model and the spreadsheet application reside in the Emacs text editor.  

To achieve the interaction between the model and the target task, it is necessary to 

implement a substrate between them. This is called ESEGMAN (Emacs Substrate: Gates 

toward MAN-made world), represented in an eye and a hand in the ESEGMAN World. 
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The ESEGMAN world is a simulated environment consisting of the cognitive model, 

ESEGMAN (a substrate), and the target tasks.  

In the right side of the figure, human participants perform the same target task in 

the same Dismal spreadsheet application through the Emacs user interface. To analyze 

human behavior, RUI (Recording User Input) is used to record subjects’ keystrokes and 

mouse movements (Kukreja, Stevenson, & Ritter, 2006). 

 

 

Figure 3.1. A Schematic representation of the study environment. 

 

The Model 

Pavlik and Anderson (2005) implemented a forgetting model but this model only 

addresses vocabulary memory of declarative knowledge. Chong (2004) studied an 

architectural way to model skill decay. He proposed the application of the activation 

mechanism to rules of procedural knowledge but could not provide the real task 

interactions with a cognitive architecture. In this study, a cognitive model in ACT-R is 

attempted to produce human behavior of learning and forgetting.  

 

ESEGMAN 

There are restrictions of the cognitive models with regard to accessing to the 

external man-made environment. ACT-R supports the perceptual and motor capability 

but it is not complete to interact with the environment. 

ESEGMAN (Emacs Substrate: Gates toward MAN-made world) is implemented 

to overcome the technical challenges. ESEGMAN is a substrate to interface an ACT-R 



 51 

model with a man-made task environment. In the ESEGMAN world, Emacs acts as an 

operating system in which the ESSEGMAN embodies a cognitive model to interact with 

the actual task. This study opens a possibility of a new cognitive modeling paradigm and 

empowers ACT-R’s vision and motor capabilities. 

 

The Task 

Card, Moran, and Newell (1983) studied how a user’s skill would interact with 

computer-based systems with a focus on the text editing task domain. This research of 

text editing skills has provided important findings on human performance and 

information processing. Singley and Anderson (1989) investigated the transfer of 

cognitive skills in the text editing tasks by providing in-depth theory of learning through 

the ACT* architecture.  

In this study, as an extension of text editing task, a set of spreadsheet tasks is used 

to measure procedural knowledge and skills degradation. The spreadsheet task is 

expected to provide knowledge and skills from perceptual-motor to the cognition-

demanding task characteristics. Thus, the Dismal spreadsheet task, unlike previous 

research on text editing tasks, can give a balanced set of knowledge and skills including 

procedural cognitive, declarative, and perceptual-motor knowledge. 

A spreadsheet called Dismal was implemented to gather and analyze behavioral 

data. Dismal extends the GNU Emacs editor using GNU Emacs’ extension language, 

Emacs Lisp (Ritter & Wood, 2005). Dismal has three features of particular interest to 

those studying behavior: (a) the ability to manipulate and align sequential data, (b) an 

open architecture that allows users to expand it to meet their particular needs, and (c) an 

instrumented and accessible interface for studies of human-computer interaction (HCI). 

Figure 3.2 shows the Dismal spreadsheet in Emacs. 

 

The Real World 

In the real world, humans directly perform Dismal spreadsheet tasks. Human 

performance can be recorded by using RUI (Recording User Input) in the simulation 

environment (Kukreja, Stevenson, & Ritter, 2006). RUI records key presses, mouse 

moves (trace of locations in pixels), and mouse clicks of users in milliseconds. The RUI 
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output of a text file can be incorporated to other statistical analysis package (e.g., the R 

language for computational statistics language) for analyses. Details on running 

experiments with human participants are described in Chapter 6. 

 

 

 

Figure 3.2. The Dismal spreadsheet task window. 

 

3.2 Task Analysis 

I analyzed the Dismal spreadsheet task. The task analysis provides an 

understanding of decomposed components of the spreadsheet task. The components 

include attention shifts, encoding of information, attending to information, key presses, 

and mouse moves/clicks. The task analysis is a theoretical base to develop and test a 

computational model against complex and dynamic Dismal spreadsheet tasks. 

3.2.1 Why Decompose the Task?  

Lee and Anderson (2001) tested the reducibility hypothesis—complex tasks 

consist of lots of small components in an air traffic controller task. The learning of this 

complex task is decomposed into the learning of the small components. Lee and 

Anderson’s decomposition of the task supported that the learning at the low level 

(smaller components) is consistent with the learning at the higher levels. This proves the 

reducibility hypothesis. At this point, it is necessary for us to consider the reducibility 

hypothesis is also applied to the forgetting process of humans.  
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Taatgen and Lee (2003) studied how to bridge a gap between learning simple 

tasks and performing complex tasks by investigating a skill acquisition mechanism called 

production compilation with which a computational model of a complex task was 

implemented.  

This task analysis of hierarchical decomposition is based on Card, Moran, and 

Newell’s (1983) task analysis—a task is decomposed into four levels (e.g., the unit-task 

level, the functional level, the argument level, and the keystroke level). Lee and 

Anderson (2001) left out decomposition at the argument level in their study because it 

consists of instantiations of the functional level goals. I will follow Lee and Anderson’s 

method to analyze the Dismal spreadsheet task because they successfully extended Card 

et al.’s task analysis on expert performance to the analysis of learning at the following 

three levels:  

 

• Unit task level: The goal at the unit task level is repeatedly executed to achieve 

the main task goal.  

• Functional level: At this level, the unit task goals are further decomposed into 

smaller and functional level goals. 

• Keystroke level: This is the most detailed level consisting of elementary motor 

and cognitive goals. The goals at this level include goals of key-press, encoding 

of the information in the environment, and information retrieval from long term 

memory.  

 

3.2.2 The Dismal Spreadsheet Task 

Two input modalities were used for the task. Some participants use a keyboard 

with key-based commands. Other participants use a vertical mouse with menu-based 

commands. A vertical mouse is chosen, shown in Figure 3.3, because it provides new 

motor skills to learn and forget. This vertical mouse requires different hand and forearm 

postures, instead of a palm-down position of a regular mouse. It is ergonomically 

designed to reduce stress on a user’s wrist. None of the participants had prior experience 
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of using this vertical mouse so we could minimize participants’ previous knowledge and 

skills. 

 

Figure 3.3. A vertical mouse (Evoluent
™

 VerticalMouse). 

 
Participants performed a set of novel spreadsheet tasks. The spreadsheet task had 

14 steps as follows:  

 

(1) Open a file, named normalization.dis under the “experiment” folder 
(2) Save as the file with your initials 
(3) Calculate and fill in the frequency column (B6 to B10)  
(4) Calculate the total frequency in B13  
(5) Calculate and fill in the normalization column (C1 to C5) 
(6) Calculate the total normalization in C13 
(7) Calculate the length column (D1 to D10) 
(8) Calculate the total of the “Length” column in D13 
(9) Calculate the Typed Characters column (E1 to E10) 
(10) Calculate the total of the “Typed Characters” column in E13 
(11) Insert two rows at A0 cell 
(12) Type in your name in A0 
(13) Fill in the current date in A1 using the command 
(14) Save your work as a printable format 

 

The A column (“Command Name”)—as shown in Figure 3.2, has ten different 

names of computer commands (A1 to A10). The B column (“Frequency”) has 

frequencies of each command listed in the A column. There are default values of each 

frequency (B1 to B5). Participants calculate frequencies of each command from B6 to 

B10 using Equation 3.1. Normalized frequencies are listed in the C column 

(“Normalization”). While the cells (C6 to C10) are of default values of normalized 

frequencies, participants need to calculate the blank cells of C1 to C5, using Equation 3.2. 

In the D column (“Length”), participants need to calculate the length of each command 

by using a Lisp function of length. The typed characters in the E column are calculated 

by multiplying a command name’s frequency by its length. The totals of each column 
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(B13, C13, D13, and E13) are to be calculated. Then, participants need to insert two rows 

at the first row and type a participant’s name and the current date by using a Dismal 

command, (dis-current-date). Finally, the last step is to save the work as a 

printable format.  

 

! 

Normalization =  
Frequency"100.0( )
Total frequency

   Equation 3.1 

! 

Frequency =  
Normalization" Total freqeuency( )

100.0
  Equation 3.2 

 

The Dismal spreadsheet task offers two different input modalities: keyboard and 

mouse. Each modality characterizes the task by different types of knowledge and skills. 

 

Keyboard Users 

Keyboard users are only allowed to use key-based commands. They are trained 

not to use the menu bar with a mouse. For example, when they open a file they have to 

use a key-based command of C-x C-f. Also, when moving around the cells in the 

spreadsheet, they are only allowed to use corresponding key-based commands (C-f for 

moving to right, C-b for moving to left, C-p for moving up, and C-n for moving down).  

 

Mouse Users 

Participants using a vertical mouse are only allowed to use menu-based 

commands when they open a file or save the file as another name. When moving around 

the cells, they are only allowed to use the mouse. Table 3.1 and Table 3.2 show the task 

analysis with all subtasks for keyboard and mouse users.  
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Table 3.1. Subtasks of the Dismal spreadsheet task for keyboard users.  

Subtasks Keystrokes Mouse actions 

(1) OPEN FILE Press C-x C-f 

Type in normalization.dis ! 
N/A 

(2) SAVE AS Press C-x C-w 
Type in JWK.dis ! 

N/A 

(3) CALCULATE FREQUENCY 
(B6 to B10) 

Move the point to B6 by using C-p, 
C-n, C-f, or C-b 
Press e 

Type in the frequency equation of (/ 
(* c6 b12) 100.0) ! 

Repeat for B7 to B10 

N/A 

(4) CALCULATE TOTAL 
FREQUENCY 

(B13) 

Move to the point to B13 
Press e 

Type in the formula of (dis-sum 
b1:b10) ! 

N/A 

(5) CALCULATE 
NORMALIZATION 

(C1 to C5) 

Move the point to C1 
Press e 

Type in the normalization equation of 
(/ (* 100.0 b1) b12) ! 

Repeat for C2 to C5 

N/A 

(6) CALCULATE TOTAL 

NORMALIZATION  
(C13) 

Move the point to B13 

Press e 

Type in the formula of (dis-sum 
c1:c10) ! 

N/A 

(7) CALCULATE LENGTH  

(D1 to D10) 

Move to the point D1 

Press e 

Type in the formula of (length 

a1) ! Repeat for D2 to D10 

N/A 

(8) CALCULATE TOTAL LENGTH  
(D13) 

Move the point to D13 
Press e 

Type in the formula of (dis-sum 
d1:d10) ! 

N/A 

(9) CALCULATE TYPED 

CHARACTERS  
(E1 to E10) 

Move the point to E1 

Press e 

Type in the formula of (* b1 d1) 

! Repeat for E2 to E10 

N/A 

(10) CALCULATE TOTAL TYPED 
CHARACTERS  

(E13) 

Move the point to E13 
Press e 

Type in the formula of (dis-sum 
e1:e10) ! 

N/A 

(11) INSERT TWO ROWS 
 

Move the point to A0 
Press C-u 2 i r ! 

N/A 

(12) TYPE IN NAME 
(A0) 

Press e 

Type in Name ! 
N/A 

(13) INSERT CURRENT DATE  
(A1) 

Move the point to A1 
Press e 

Type in the formula of (dis-
current-date) ! 

N/A 

(14) SAVE AS … Press C-x C-w 

Type in normalization-initials.dp ! 
N/A 

Note: Information on subtasks including what keystrokes and mouse actions occur.  The symbol of ! 

indicates pressing the carriage return key. 
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Table 3.2. Subtasks of the Dismal spreadsheet task for mouse users. 

Subtasks Keystrokes Mouse actions 

(1) OPEN FILE 
N/A 

Go to File>Open File> 

experiment>normalization.dis! 

(2) SAVE AS  
 
Type  file-name with initials! 

Go to dFile 

Select Save buffer as... 

 
 

(3) CALCULATE FREQUENCY 
(B6 to B10) 

 
 

Type in (/ (* C6 B12) 

100.0)![Repeat for B7 to B10] 

Move to and select B6 
Go to dEdit 

Select Edit cell (E) 

(4) CALCULATE TOTAL 
FREQUENCY 
(B13) 

 
 
 

Type in (dis-sum B1:B10)! 

Move to and select B13 
Go to dEdit 

Select Edit cell 

(5) CALCULATE 
NORMALIZATION 
(C1 to C5) 

 
 
 
Type in (/ (* 100.0 b1) 

b12)!      [Repeat for C2 to C5] 

Move to and select C1 
Go to dEdit 

Select Edit cell (E) 

(6) CALCULATE TOTAL 
NORMALIZATION  
(C13) 

 
 
 
Type in (dis-sum C1:C10)! 

Move to and select C13 
Go to dEdit 

Select Edit cell (E) 

(7) CALCULATE LENGTH  

(D1 to D10) 

 

 
 
Type in (length A1)![Repeat] 

Move to and select D1 

Go to dEdit 

Select Edit cell (E) 

(8) CALCULATE TOTAL 
LENGTH  
(D13) 

 
 
 
Type in (dis-sum D1:D10)! 

Move to and select D13 
Go to dEdit 

Select Edit cell (E) 

(9) CALCULATE TYPED 
CHARACTERS  
(E1 to E10) 

 
 
 
Type in (* B1 B1)! [Repeat] 

Move to and select E1 
Go to dEdit 

Select Edit cell (E) 

(10) CALCULATE TOTAL TYPED 
CHAR. 

(E13) 

 
 

 
Type in (dis-sum E1:E10)! 

Move to and select E13 
Go to dEdit 

Select Edit cell (E) 

(11) INSERT TWO ROWS 
 

N/A 

Move to and select A0 
Select dEdit 

Go to Insert 

Select row [Repeat one more time] 

(12) TYPE IN NAME 
(A0) 

 
 
 
Type in Name ! 

Move to and select A0 
Go to dEdit 

Select Edit cell (E) 

(13) INSERT CURRENT DATE  
(A1) 

 
 
 
Type (dis-current-date)! 

Move to and select A1 
Go to dEdit 

Select Edit cell (E) 

(14) SAVE AS …  
 

Type in normalization-initials.dp ! 

Go to dFile 

Select Save buffer as...  

Note: Information on subtask including what keystrokes and mouse actions occur. The symbol of ! 

indicates pressing the carriage return key. 
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3.2.3 Decomposing the Dismal Spreadsheet Task 

The Dismal spreadsheet task can be composed into the following subtasks with 

the task goal of completing the Dismal spreadsheet task. 

 

• Unit Task Level 

File Handling: (a), (b), and (n)  

Frequency Calculation: (c) and (d) 

Normalization Calculation: (e) and (f) 

Length Calculation: (g) and (h) 

Typed Characters Calculation: (i) and (j) 

Editing the Spreadsheet: (k), (l), and (m) 

 

• Functional Level (This level includes the fourteen steps of procedures) 

Open a file, named normalization.dis under the “experiment” folder 

Save as the file with your initials 

Calculate and fill in the frequency column (B6 to B10)  

Calculate the total frequency in B13  

Calculate and fill in the normalization column (C1 to C5) 

Calculate the total normalization in C13 

Calculate the length column (D1 to D10) 

Calculate the total of the “Length” column in D13 

Calculate the Typed Characters column (E1 to E10) 

Calculate the total of the “Typed Characters” column in E13 

Insert two rows at A0 cell 

Type in your name in A0 

Fill in the current date in A1 using the command 

Save your work as a printable format 

 

• Keystroke Level  

Attend the spreadsheet 

Move attention (up, down, right, and left) 
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Press a key (use both hands) 

Press a mouse button 

Move a mouse 

 

Keystroke-Level Model for the Dismal Spreadsheet tasks 

Table 3.3 describes quantitative comparisons of the Dismal tasks for the two 

modalities (menu-based commands using a vertical mouse and key-based commands 

using a keyboard). Like the assumption of the Keystroke-Level Model (Card et al. 1983), 

I assumed error-free expert behavior of the spreadsheet task in this comparison, such as 

pressing keys or positioning a cursor, etc.  

Keyboard users use only a keyboard. They need to learn key-based commands 

(e.g., how to open a file, how to save, how to edit a cell, and how to move around cells). 

Mouse users use the vertical mouse and the same keyboard as the keyboard users. Mouse 

users do not learn the aforementioned key-based commands, and they use only the menu-

based commands. Both keyboard and mouse users must learn commands for calculating 

frequency, normalization, length, and operands for the spreadsheet manipulation.  

As a simple way to compare the execution time of the two modalities, we used the 

Keystroke-Level Model (KLM, Card et al., 1983). The model includes primitive 

physical-motor operators (K – keystroke, P – pointing, H – homing, and D – drawing), a 

mental operator (M), and a system response operator (R), as shown in Equation 3.3. 

Using the equation, the execution time is calculated, as shown in Table 3.3. 

 

! 

T
execute

= T
K

+ T
P

+ T
H

+ T
D

+ T
M

+ T
R

    Equation 3.3 

 

In the interest of simplicity, we ignored the timing term of 

! 

T
D
 (drawing lines) and 

! 

T
R
(system response). It is assumed that the mouse positioning time (

! 

T
P
) is the average 

time of 1.1 s. The homing time (

! 

T
H

), which is about hand movement between different 

physical devices, is the average of 0.4 s. 

Users spend time on mental preparation while performing the task. For example, 

users mentally prepare what to press, what to retrieve from memory, or what to do for the 

next step. For each mental operator, the preparation time (

! 

T
M

) is assumed to be 1.35 s.  



 60 

In counting the number of keystrokes, shift or control keys are counted as a 

separated keystroke operation. The keystroke time for “an average non-secretary typist” 

(40 wpm) is 0.28 s, the keystroke time for “typing complex codes” is 0.75 s, and the 

keystroke time for “typing random letters” is 0.50 s (see Card, Moran, & Newell, 1983 

p.264). Here, I calculated the average typing speed from 11 participants. The average 

typing speed was 0.60 s. As compared to Card, Moran, and Newell’s data, the 

participants’ typing speed was faster than the speed from typing complex codes. The 

typing speed of participants in this study is between the typing speed of “typing random 

letters” and “typing complex codes” by Card, Moran, and Newell.  

 

Table 3.3. Task comparison of mouse and keyboard users. 

 
 

 

For mental preparation, I considered a rule that each subtask should include one 

mental preparation. Furthermore, if a subtask contains a number of repetitions, I counted 

the number as the one for mental preparation. For example, the subtask for mouse users, 

OPEN FILE, can be denoted by M K K K K K P P P P P, indicating a mental preparation 

for the subtask, 5 times of keystrokes (pressing a button), and 5 times of positioning. I 

assumed that a mouse user’s hand location is initially on the mouse. Thus, I counted it as 

0. As another example, the subtask for keyboard users, CALCULATE FREQUENCY, 

consists of 5 times of mental preparation and 162 keystrokes. It is assumed that a 

keyboard user’s hand is initially located on the keyboard.  More detailed information on 

how I calculated the task execution time can be found in Table 3.4. 

 Mouse users Keyboard users 

Keystrokes 730 1,030 
Mouse move 125 N/A 
     Menu Selection 87 N/A 
     Others 38 N/A 
Mouse clicks 125 N/A 
     Menu selection 87 N/A 
     Others 38 N/A 
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Table 3.4. Task execution time for the Dismal spreadsheet task (mouse and 

keyboard users), based on the Keystroke Level Model analysis. 

 

Mouse Users 
 M K P H 

Parameter 1.35 0.6 1.1 0.4 

SUB1 1 5 5 0 
SUB2 1 23 5 1 
SUB3 5 150 15 9 
SUB4 1 25 3 2 
SUB5 5 164 16 10 
SUB6 1 27 3 2 
SUB7 10 223 30 20 
SUB8 1 23 3 2 
SUB9 10 165 30 20 

SUB10 1 27 3 2 
SUB11 1 5 5 1 
SUB12 1 10 2 1 
SUB13 1 30 3 2 
SUB14 1 27 3 3 

SUM 40 904 126 75 
TIME 54.0 542.4 138.6 30.0 

   TOTAL TIME 765.0 

Keyboard Users 
 M K P H 

Parameter 1.35 0.6 1.1 0.4 

SUB1 1 33 N/A N/A 
SUB2 1 26 N/A N/A 
SUB3 5 162 N/A N/A 
SUB4 1 27 N/A N/A 
SUB5 5 173 N/A N/A 
SUB6 1 40 N/A N/A 
SUB7 10 215 N/A N/A 
SUB8 1 27 N/A N/A 
SUB9 10 194 N/A N/A 

SUB10 1 29 N/A N/A 
SUB11 1 39 N/A N/A 
SUB12 1 12 N/A N/A 
SUB13 1 28 N/A N/A 
SUB14 1 25 N/A N/A 

SUM 40 1030   
TIME 54.0 618.0   

   TOTAL TIME 672.0 

Note: The parameters are used to calculate the execution time of the Keystroke-Level 
Model. The unit of time is in seconds. 
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As shown in Table 3.4, the task execution time for mouse users is 765.0 s and the 

execution time for keyboard users is 672.0 s. Mouse users take 95 s more time than 

keyboard users based on the Keystroke-Level Model. This analysis provides us with a 

quantitative comparison of two tasks. If the design preference is seeking faster 

performance, using a keyboard with key-based commands can be appropriate, 

challenging the arguments of the GUI efficacy. However, there is a limitation of this 

KLM analysis. That is, we do not predict any user performance on learning and 

forgetting, which is critical information in designing and planning training regimens.  

3.3 A Study with Model Subjects: Implementing an ACT-R Model 

As mentioned before, the purpose of the cognitive model is to predict procedural 

skill decay. There are some identified technical challenges. First, there are no such 

models of skill decay. Based on the activation mechanisms of ACT-R, it is challenged to 

apply the activation mechanism of chunks in declarative memory to controlling rules in 

production systems. Second, ACT-R uses a virtual keyboard that assumes the keyboard to 

be a two-dimensional array of keys. The problem is that ACT-R currently can only 

perform one-key press down. ACT-R cannot perform two-key press down at the same 

time.  

For example, using a Dismal spreadsheet task, the model attempts to open a file, it 

needs to press “C-x C-f” (C stands for the control key). Pressing the control key and “x” 

key at once is not supported. This technical problem needs to be resolved. There are 

several tasks to achieve the first goal of implementing a cognitive model: 

 

• Task 1: Build the ACT-R model. 

• Task 2: Apply ACT-R’s learning mechanisms to model skills decay. 

• Task 3: Complete ESEGMAN. 

• Task 4: Evaluate the model against human performance data. 

3.4 A Study with Human Subjects: Exploring Skills Degradation 

The study with human subjects measures participants’ learning and forgetting of 

spreadsheet tasks. The purpose of this study is to investigate how procedural skills are 
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learned in human memory. The findings will help us to understand how skills are learned 

and how to train them. 

For clarification, terms used in this study are specified here. 

• Study session: An experimenter will train participants using the Study Booklet 

(Users Guide for the Dismal Spreadsheet). Each study session is limited to a 

maximum of 30 minutes. 

• Test session: Human participants will perform the given tasks. The task 

completion time will be measured. Keystrokes and mouse actions (clicks or 

movements) will be recorded by RUI, Recording User Input (Kukreja, Stevenson, 

& Ritter, 2006). This is denoted by 

! 

O
i
 (observation).  

• Retention interval: This indicates time period of skill disuse. After the last study 

and test session, a six-day, twelve-day, or eighteen-day retention interval will be 

randomly assigned to participants. Then, retained skills will be measured through 

a test session. This is denoted by 

! 

X
i
.  

 

Development of Hypothesis 

The research hypotheses are to test the validity of the activation and production 

compilation mechanisms in the ACT-R architecture. Testing hypotheses will provide a 

better understanding and validity of the ACT-R modeling approach.  

 

• Hypothesis 1: The production compilation mechanism in ACT-R cannot support 

learning and forgetting of procedural skills. 

• Hypothesis 2: The activation mechanism in ACT-R cannot afford learning and 

forgetting of procedural skills.  

 

This study, based on the hypotheses, will explore the activation mechanism in the 

ACT-R architecture in an attempt to prove the validity of a model for procedural 

knowledge decay. This will provide the base for creating an understanding of mitigating 

factors against knowledge and skills decay. 
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Design of Experiment 

To investigate learning and forgetting by different knowledge and skill attributes, 

the experiment is basically 2

! 

"3 design with 6 conditions. Two factors of skill types 

(learning modalities) are tripled by the variable of three different retention intervals. For 

the factors of skill types, the two levels include procedural cognitive tasks using a 

keyboard and procedural cognitive tasks using a vertical mouse.  

The experimental design consists of two parts: (a) measure of learning; and 

(b) measure of forgetting in a time-series manner. There are study and test sessions for 

four consecutive days for learning. In a study session, participants are trained to complete 

the given task and they are tested to measure learning performance. Then, after three 

different retention intervals ranging from 6 to 18 days, forgetting will be measured 

through a test session.  

 

Measure of Learning: Based on the pilot study, the study session will be less 

than 30-min and the test session will be less than 20-min. For the study session, 

participants will study a Study Booklet (Users Guide for the Dismal Spreadsheet) for a 

given time. 

 

Measure of Forgetting: Participants will be asked to come back to the second, 

third, and fourth week to measure their forgetting on acquired spreadsheet skills. 

Basically, a participant’s forgetting will be measured three times with a six-day retention 

interval. I have run a pilot study with one subject. Figure 3.4 shows the learning and 

forgetting curve on the Dismal spreadsheet task that is procedural and cognitive skills. 

The subject used a keyboard during the performance.  
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Figure 3.4. Learning and forgetting curve on the Dismal spreadsheet tasks (N = 1). 

 

Table 3.5. Design of three different retention intervals for forgetting measures. 
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I will move on toward describing detailed investigations based on the research 

design. I will start from exploration of the ACT-R theory and the skill retention model. 

Also, in a later chapter, I will report the analysis of the human data. 
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Chapter 4  

The ACT-R Model and Mechanisms 

This chapter addresses concise features of the ACT-R architecture where the Skill 

Retention Model is to implement. Architectural mechanisms are discussed to model skill 

learning and forgetting.   

4.1 ACT-R’s Symbolic Constructs 

ACT-R is a hybrid cognitive architecture—it has symbolic and subsymbolic 

constructs. The symbolic construct is represented by ACT-R’s production system. The 

subsymbolic construct is represented by a set of parallel processes in terms of a number 

of ACT-R equations that control symbolic processes.  

4.1.1 The Production System in ACT-R 

Cognitive psychologists or scientists have actively embraced the production 

system for computational modeling of human cognition and problem-solving (i.e., 

Anderson, 1976, 1982; Newell & Simon, 1972). Production systems support rules to 

represent behavioristic stimulus-response models and information processing—rules in 

the left-hand side can represent a stimulus or allow symbol processing of memories, goal, 

or plans, and rules in the right-hand side represent a response sequence, and then rules 

serve as units of behavior in terms of reaction time (Brownston, Farrell, Kant, & Martin, 

1985). 

In general, the basic structure of the production system consists of data memory 

(or working memory), production memory, and an inference engine (Brownston, Farrell, 

Kant, & Martin, 1985). Data memory functions as a global database of symbolic data 

items to represent facts related to the application domain or goals for a problem-solving 

strategy. Rules consisting of the condition and action part are stored in production 

memory. The condition part in productions describes configurations of elements in 

working memory and the action part details modifications to the working memory 

contents (Neches, Langley, & Klahr, 1987). An inference engine controls execution (or 

firing) of rules. The inference engine determines what to choose among rules based on 
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data memory configuration. This selection process is called conflict resolution. Figure 4.1 

shows a schematic view of a production system. 

 

 

Figure 4.1. A general architecture of a production system. 

 

Two interacting data structures including data (or working) memory and 

production memory are connected through a processing cycle called “recognize-act” 

cycle (Neches, Langley, & Klahr, 1987). The recognize-act process has three distinct 

stages: the match process, the conflict resolution process, and the act process. The 

recognize-act process operates in cyclic manner. From the basic idea of production 

systems, it can be said that the cyclic operations continue until no rules are matched or a 

stop command is encountered. 

The behavioral repertoire of production systems can be changed by affecting the 

outcome from three distinct phases of the aforementioned “recognize-act” cycles 

including the process of matching productions, the process of conflict resolution, and the 

process of applying productions (Neches, Langley, & Klahr, 1987). In the process of 

matching productions, it is possible to consider two mechanisms such as generalization 

and discrimination. After finding a set of matching rule instantiations, the production 

system is, then, to make decisions on which instantiation in the set will be executed. 
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Thus, the conflict resolution process is to afford the selections of one or more of the 

instantiated productions.  

There have been various theoretical research endeavors about the production 

system. Newell and Simon (1972) have proposed a formalism of a production system to 

build a model for problem solving. Anderson (1982) has used production systems in 

understanding skill learning processes. Also, Kieras and Polson (1985) stated that the 

production system formalism is directly related to the GOMS model, which was first 

proposed by Card, Moran, and Newell in 1983. For instance, “goals” in GOMS model 

appear in the condition statement in production rules and the action statement is to 

manipulate them. NGOMSL, an extension of GOMS reflects what humans do during 

their performance of procedural knowledge. NGOMSL which stands for “Natural GOMS 

Language” predicts learning and execution time on the basis of program-like 

representation of the procedures (Kieras, 1997). An important property of NGOMSL is 

based on production rule models. NGOMSL is a structured natural language to represent 

the user’s methods and selection rules. If methods are assumed to be of sequential and 

hierarchical form, NGOMSL can afford an explicit representation of the user’s methods. 

As seen in Figure 4.1, the production system in ACT-R consists of production 

rules that can operate on facts in the declarative data memory. As mentioned in Chapter 

2, this property allows ACT-R to have a distinctive specification of binary memory (i.e., 

declarative and procedural memory). Each production addresses the cognitive steps that 

are taken in performing a task (Anderson, 1982). ACT-R sequentially administers 

production rules corresponding to those cognitive steps to represent human cognition. 

When firing rules, the clauses in a production’s condition part must be matched against 

information that is active in data (or working) memory.  

4.1.2 Flow of Control in Production Systems 

One might wonder how production rules can be constructed to control sequences 

of behavior. In general, coding of production rules differ from other coding of 

conventional programming languages such as Java, C, or Fortran. Those programming 

languages provide commands for conditionals, loops, or recursions. Unlike them, the 

production system behaves differently and its flow of control does not depend on any 
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explicitly programmed sequence but on recognition of ever-changing patterns in working 

memory (Brownston, Farrell, Kant, & Martin, 1985). 

The inference engine in a production system performs a cyclic repetition with 

three states: (a) match, (b) select, and (c) execute, as shown in Figure 4.1. In the match 

state, the production system looks for all of the rules that are satisfied by the current 

contents in working memory. A collection of all of the candidate rules is referred to as 

the conflict set. In the select state, the system determines a rule in terms of a selection 

strategy. Then, the selected rule is executed, and the production system cycles back to the 

first state. A cycle of a rule-firing changes working memory. This cyclic control 

mechanism is called recognize-act cycle. Iteration of rules can be easy to program in the 

production system, because the recognize-act cycle is fundamentally similar to do-while 

loop (Brownston, Farrell, Kant, & Martin, 1985). 

In ACT-R, productions are selected to fire via a process of conflict resolution. 

The conflict resolution decides one production to fire that matches the current goal. The 

ACT-R’s symbolic structure supports interactions between chunks and productions in 

discrete cycles. In the meantime, the ACT-R’s subsymbolic constructs with equations 

(e.g., activation-based computations) quantitatively determine qualitative properties of 

symbolic cognitive elements (Anderson & Lebiere, 1998).  

4.1.3 Basic Production Patterns in ACT-R 

In this section, I describe general patterns of production rules in terms of various 

ACT-R buffers. Example patterns are collected from existing models (i.e., models in the 

ACT-R tutorial and other models available). The total number of models I refereed to is 

fifteen models, and the number of total production rules is 132. Understanding the 

patterns can be helpful for modelers to build their own psychologically plausible models. 

Table 4.1 shows a set of brief summary of patterns in the ACT-R production system that I 

have frequently encountered2. 

 

                                                
2 This summary of pattern is included in the ACT-R FAQ website, 
http://ritter.ist.psu.edu/act-r-faq/act-r-faq.html. If you find any frequent patterns and want 
to add to the FAQ, please email me, jongkim@psu.edu. 
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Table 4.1. A summary of production rule patterns in ACT-R. 

Condition Action 

g r vl v i m g r vl v i m 

=g =r     =g +r     
=g      =g +r     
=g      -g      
=g =r     =g      
=g ?r     =g      
=g   =v   =g    +i  
=g   =v ?i  =g    +i  
=g   =v =i  =g    =i  
=g      =g  +vl    
=g  =vl ?v   =g   +v   
=g    =i ?m =g     +m 

  ?vl      +vl  +i  
  =vl 

?vl 
?v      +v   

Note: g indicates goal buffer, r indicates retrieval buffer, vl indicates visual location 
buffer, v indicates visual buffer, i indicates imaginal buffer, and m indicates manual 
buffer. 
 

Pattern 1 =g  =r   !  =g  +r    
 

If the slot values in the goal buffer and the retrieval buffer are matched, then the 

production rule changes the goal and requests a retrieval from declarative memory. For 

example,  

 

(P counting-example 

   =goal> 

      isa  count 

      state  incrementing 

      number =num1 

   =retrieval> 

      isa  count-order  

      first  =num1 

      second =num2 

==> 

   =goal> 

      number =num2 

   +retrieval> 

      isa  count-order 

      first  =num2) 
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Pattern 2 =g     !  =g  +r    
 

The condition part of the production tests the goal buffer, and then the action part 

changes the slot value in the goal buffer and requests a retrieval of a chunk from 

declarative memory. For example,  

 

(P start 

   =goal> 

      isa  count-from 

      start  =num1 

      count  nil 

==> 

   =goal> 

      count  =num1 

   +retrieval> 

      isa  count-order 

      first  =num1) 
 

Pattern 3 =g     !  –g      
 

If the slot values in the goal buffer are matched, then the right hand-side of the 

production rule clears the goal by using the “-” operator.  

For example,  

 

(P stop 

   =goal> 

      isa  count-from 

      count  =num 

      end  =num 

==> 

   -goal> ; clear the chunk from the goal buffer 

   !output!  (=num) ; print out the current number) 
 

Pattern 4 =g  =r   !  =g      
 

The left side of the production specifies values in the slots. In this condition part, 

if the goal is matched and a chunk is retrieved, then, the right side of the production 

modifies the goal. For example,   

 

(P direct-verify 
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   =goal>                        

      ISA         is-member 

      object      =obj 

      category    =cat 

      judgment    pending 

   =retrieval>                    

      ISA         property 

      object      =obj 

      attribute   category 

      value       =cat 

==> 

   =goal> ; modify 

      judgment    yes) 

 

Pattern 5 =g  ?r   !  =g      
 

The left side of the production specifies slot values in the goal buffer that will be 

matched. The retrieval buffer in the left side is queried by using “?”, asking whether a 

chunk to retrieve is found or not. Then, the right side of the production changes the slot 

value in the goal buffer. 

 

(P fail 

   =goal> 

      ISA         is-member 

      object      =obj1 

      category    =cat   

      judgment    pending 

     

    ?retrieval> ; no chunk could be found, retrieval has failed 

      state       error 

==> 

   =goal> 

      judgment    no; change the judgment slot to be no) 

 

Pattern 6 =g =v    !  =g    +i  
 

This pattern of the production reads information from the screen, and the 

information is placed into the imaginal buffer. In the left side of the production rule 

below, the goal is to read a letter and the visual buffer specifies a letter in a slot. Then, the 

right side of the production changes the goal to respond and put the visual information 

into the imaginal buffer.  
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(P encode-letter 

   =goal> 

      ISA         read-letters 

      state       attend 

   =visual> 

      ISA         text ;a letter encoded from the screen 

      value       =letter 

==> 

   =goal> 

      state       respond 

   +imaginal> 

      isa         array 

      letter      =letter) 
 

 

Pattern 7 =g =v  ?i  !  =g    +i  
 

This production harvests the visual object that was placed into the visual buffer.  

It makes a request to the imaginal buffer to create a new chunk holding a representation 

of the letter.  

 

(P encode-first-letter 

    =goal> 

       ISA         read-letters 

       state       attend 

    =visual> 

       ISA         text 

       value       =letter 

    ?imaginal> 

       buffer      empty 

       state       free 

==> 

    =goal> 

       state       start 

    +imaginal> 

       isa         array 

       letter1     =letter) 

 

 

 

Pattern 8 =g =v  =i  !  =g    =i  
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This production sets the letter2 slot of the array chunk that is in the 

imaginal buffer to the letter that was read from the screen. 

 

(P encode-second-letter 

    =goal> 

       isa  read-letters 

       state attend 

    =visual> 

       isa  text 

       value =letter 

    =imaginal> 

       isa  array 

       letter2 nil 

==> 

    =goal> 

       state start 

    =imaginal> 

       letter2 =letter) 

 

 

Pattern 9 =g     !  =g +vl     
 

If the goal is to read a letter, then the production is making a request to the visual-

location buffer and changes the goal state to find out the location. 

 

(P find-unattended-letter 

   =goal> 

      isa  read-letters 

      state  start  

 ==> 

   +visual-location> 

      ISA  visual-location 

      :attended nil 

   =goal> 

      state  find-location) 

 

 

 

 

Pattern 10 =g 
=vl 
?v 

   !  =g +v     
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If the goal is to read a letter, the location of the visual object is identified, and the 

visual buffer is ready to move attention, then this production moves attention to attend 

the visual objects. 

 

(P attend-letter 

   =goal> 

      ISA         read-letters 

      state       find-location 

   =visual-location> 

      ISA         visual-location 

   ?visual> 

      state        free 

==> 

   +visual> 

      ISA         move-attention 

      screen-pos  =visual-location 

   =goal> 

      state       attend) 

 

 

Pattern 11 =g   =i ?m !  =g     +m 
 

This pattern can be used when the production needs to make a motor action based 

on encoded visual information.  

 

(P respond 

   =goal> 

      ISA         read-letters 

      state       respond 

   =imaginal> 

      isa         array 

      letter      =letter 

   ?manual>    

      state       free 

==> 

   =goal> 

      state       done 

   +manual> 

      ISA         press-key 

      key         =letter) 

 

Pattern 12  ?vl    !   +vl   +i  
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This pattern can be used whenever the screen has recently changed, this pattern of 

the production is fired. In the condition part, using the buffer, like ?visual-location>, is a 

way to test whether a new display has been presented.  

 

(P find-person 

     ?visual-location>  

       buffer      unrequested 

   ==> 

    +imaginal> 

       ISA         comprehend-sentence 

   +visual-location> 

       ISA         visual-location 

       > screen-x    105  

       < screen-x    135) 

 

 

Pattern 13  
=vl 
?vl 
?v 

   !   +v     

 

This pattern of the production makes a shift of visual attention after harvesting the 

requested visual location.  

 

(P attend-visual-location 

   =visual-location> 

       ISA         visual-location 

   ?visual-location> 

       buffer      requested 

   ?visual> 

       state       free 

   ==> 

   +visual> 

       ISA         move-attention 

       screen-pos  =visual-location) 

 

4.2 ACT-R’s Subsymbolic Equations 

This section summarizes equations used in the ACT-R subsymbolic construct that 

quantitatively controls many of the symbolic representations of the production system. 
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4.2.1 Activation and Base-level Learning Equations 

The ability to retrieve a chunk is associated with the activation equation, also 

called memory strength function. The activation of a chunk 

! 

i  is represented as 

! 

A
i
. The 

activation equation consists of the base level activation and a noise component.  

 

! 

A
i
= B

i
+ "        Equation 4.1. 

 

The base level activation is represented as: 

! 

Bi = " + ln( t j
#d
)

j=1

n

$       Equation 4.2. 

! 

" : a constant that is determined by the :blc parameter 

! 

n : the number of presentations for a chunk i 

! 

t j : the time since the jth presentation 

! 

d : the decay parameter that is set using the :bll parameter 
 

In ACT-R, the base-level activation is dependent on how often (frequency) and 

how recently (recency) a chunk is used. The base-level learning (BLL) supports two 

psychological laws of human memory: one is the Power Law of Learning and the other is 

the Power Law of Forgetting.  

4.2.2 Recall Probability Equation 

In ACT-R, a chunk will be retrieved if its activation is above the retrieval 

activation threshold, 

! 

" . The probability of a chunk’s retrievability is represented by the 

expected activation, 

! 

A .  

 

! 

P(A) =
1

1+ e

"#A
i

s

      Equation 4.3 

As the activation of a chunk, 

! 

A
i
, becomes higher, the recall probability 

approaches 1. The noise parameter, 

! 

s, controls the sensitivity of recall in activation. 



 78 

4.2.3 Retrieval Latency Equation 

The activation determines a time how quickly a chunk can be retrieved. 

! 

F  is the 

latency factor parameter. 

! 

A  is the activation of the chunk to be retrieved. 

 

! 

T = Fe
"A

       Equation 4.4 

4.2.4 Spreading Activation Equation 

The latency of a chunk in memory is determined by its level of activation 

(Anderson & Reder, 1999). Chunks in declarative memory spread activation to their 

associative links. The activation equation of a chunk 

! 

i  with the spreading activation is 

represented as: 

! 

Ai = Bi + WkjS ji + "
j

#
k

#       Equation 4.5 

! 

Wkj : the amount of activation from source 

! 

j  in buffer 

! 

k  

! 

S ji : the strength of association between source 

! 

j  and chunk 

! 

i . 

! 

B
i
: the base-level activation 

! 

": the noise value 
 

4.3 ACT-R’s Mechanisms for Learning and Forgetting 

The review of ACT-R’s mechanisms is presented in this section. Based on the 

basic equations, ACT-R is able to learn and forget with some limitations. 

4.3.1 Declarative Learning 

The activation equation explains the learning of declarative chunks. Based on this 

equation, the base level learning and spreading activation are elaborated.  
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Base Level Learning with Activation 

The base-level learning equation (Equation 4.2) and the activation equation 

(Equation 4.1) can describe a learning behavior representing whenever a chunk is 

presented, the base-level activation increases, and then decreases as a power function of 

the time.  

 

Spreading Activation 

I have briefly explained the fan effect in Chapter 2. In this section, let us look at 

computational mechanisms of the spreading activation. In the context of the fan effect, 

the basic activation equation (Equation 4.1.) can be expanded to incorporate the strength 

of association and the amount of attention given to a source. The activation, 

! 

A
i
, is as 

follows:  

! 

A
i
 = 

! 

B
i
 + 

! 

W jS ji

j

"       Equation 4.6 

The base-level activation (

! 

B
i
) of a chunk 

! 

i  reflects its past recency and frequency. 

The summation provides the sources of activation. In the fan effect experiment, the 

sources include people (e.g., a hippie, a doctor, etc), locations (e.g., park, church etc), and 

a preposition (e.g., in). 

! 

W j  indicates the amount of activation from a source 

! 

j , and 

! 

S ji  

indicates the association strength between a source 

! 

j  and a fact (or chunk) 

! 

i .  

In the ACT-R theory, the strength of association (

! 

S ji ) decreases as a logarithmic 

function of the fan as below:  

! 

S ji  = 

! 

S  - 

! 

ln( f j )      Equation 4.7 

! 

S  is a constant and can be set with the maximum associative strength (:mas) parameter 

and 

! 

f j  is the number of chunks where 

! 

j  is the value of a slot plus one for chunk 

! 

j  being 

associated with itself.  

4.3.2 Declarative Forgetting 

Pavlik and Anderson (2005) captured three major effects of memory in ACT-R. 

The effects are recency, frequency, and spacing effects in learning of Japanese-English 

vocabulary paired associates. The recency effect indicates performance is better the more 
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recently an item in memory is practiced. The frequency effect indicates performance is 

better the more frequently an item in memory is practiced. The spacing effect is relatively 

related with practice and retention intervals.  

Particularly, Pavlik and Anderson’s modeling efforts deal with the different rate 

of forgetting depending on the spacing of practice over time. Basically, Pavlik and 

Anderson used an activation-based memory model, that is, each time a memory item is 

practiced, it receives an increment of strength but that these increments decay as a power 

function of time. In Equation 4.8, 

! 

m
n
 indicates the memory strength of an item 

! 

n  as a 

function of times (

! 

t
i
s) after n prior presentations. The decay parameter of 

! 

d  is a constant 

value. This equation produces the power law of practice and forgetting. Figure 4.2 shows 

the activation curve.  

 

! 

m
n
(t1...n ) = ln t

i

"d

i=1

n

#
$ 
% & 

' 
( ) 
      Equation 4.8 

 

 

Figure 4.2. The activation curve, when the decay parameter is 0.2. 

 

Pavlik and Anderson pointed out that this equation (Equation 4.8) of memory 

strength has three features:  

 

(a) Define initial learning given prior practice  
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(b) Explain the evolution of forgetting over time with the constant decay parameter 

(c) Explain integrating effects by summing each discrete practice 

 

In terms of the activation value, 

! 

m , as given by Equation 4.8, Pavlik and 

Anderson considered the probability of recall (

! 

P
r
) as shown in Equation 4.9. 

 

! 

P
r
(m) =

1

1+ e
"#m

s

      Equation 4.9 

 

In this equation, 

! 

"  is the threshold parameter and 

! 

s is the noise parameter. If the 

activation value increases, the recall probability approaches to 1, whereas, when the 

threshold value (

! 

" ) increases, the recall probability decreases, as shown in Figure 4.3. 

When the threshold value is equal to the activation value (i.e., 

! 

" = m ), the recall 

probability is 0.5.  

 

 

 

Figure 4.3. Recall probability vs. activation, 

and recall probability vs. trial numbers by varying values of 

! 

" . 
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4.3.3 Procedural Learning 

There are two types of learning mechanisms in ACT-R. The mechanisms 

including production compilation and utility learning cope with learning of production 

rules.   

Production Compilation 

Production compilation in ACT-R is a mechanism to learn new production rules 

by collapsing two productions into a single production. Basically, forming a new 

production is to combine the tests in the IF part of production rules to a single set of tests 

and to combine the actions in the THEN part of productions to a single set of actions. 

This production compilation mechanism can be classified into two types of buffers: 

(a) internal buffer and (b) external buffer as shown in Figure 4.4. 

 

Figure 4.4. Internal and external buffer classification. 

 

Internal buffers are not subject to change by the outside world, while external 

buffers are subject to change by the outside world. External buffers make requests for 

generating actions. Thus, if two productions make those actions at the same time, the 

ACT-R system produces jamming of those requests. Motor style buffers differ from the 

ones of perceptual style in that the motor style buffer will never hold a chunk but the 
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perceptual style buffer will hold chunks that are based on information in the external 

world. 

Production compilation in the retrieval buffer occurs when the first production’s 

action is to request a retrieval and the second production’s condition tests whether that 

retrieval is successful or not. These two productions are compiled by replacing variables 

in the retrieval request with constant values that are retrieved, forming a new production. 

However, if there is a retrieval error, compilation of productions are not allowed because 

it is not safe to predict a retrieval error. Here is an example of retrieval buffer style 

production compilation. The two productions are to fire successively and to finally 

retrieve a paired associate, as shown in Figure 4.5. 

In Figure 4.5, the production compilation produces a single production by 

combining the read-probe and recall productions. In the newly compiled production, the 

retrieval request in the action part of the read-probe production is omitted but the 

imaginal request is not omitted. 
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Figure 4.5. An example of production compilation of the retrieval buffer style
3
. 

 

Utility Learning 

Production compilation creates a new production by collapsing old productions. 

To select the new production rather than an old one, ACT-R determines the selection by 

utilities. Like the activation mechanism, productions have their own utility values. Based 

on these utility values, one production can be preferred and be selected over another. 

                                                
3 This example is excerpted from the ACT-R tutorial, unit 7.  
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Also, the utilities can be learned from experience. If we let the expected utility as 

! 

U j , the 

probability of choosing a production 

! 

i  is: 

 

! 

Probability(i) =
e
Ui

2s

e

U j

2s

j

"

     Equation 4.10 

 

In the denominator of Equation 4.10, the summation indicates the sum of all 

productions that can currently be fired. That is, their conditions are satisfied during the 

match. 

The utility values can be set by the modeler using :u parameter in the ACT-R 

model. The utilities of productions can be dynamically adjusted in terms of the reward 

they receive. This is called the utility learning. Let 

! 

U
i
(n "1)  is the utility of a production 

! 

i  after its 

! 

n "1
st application and 

! 

R
i
(n)  is the reward the production receives for its nth 

application. The utility, 

! 

U
i
(n) , after its nth is:  

 

! 

U
i
(n) =U

i
(n "1) +#[R

i
(n) "U

i
(n "1)]    Equation 4.11 

 

In Equation 4.11, the value of 

! 

"  indicates the learning rate, which is typically set to 0.2 

using :alpha parameter with sgp command in the ACT-R architecture.  

 

4.3.4 Procedural Forgetting 

As we reviewed previously, learning and forgetting in declarative memory can 

explained by the activation mechanism. Production rules are compiled to show speedup 

effects of practice. The question is how compiled production rules fall back to decreased 

task completion time due to a period of skill disuse. 
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I am exploring the ACT-R’s learning mechanism. D. Bothell at Carnegie Mellon 

University (personal communication, April 4, 2008) mentioned that some negative or 

lower values of reward could lead to the compiled productions having a lower utility than 

the originals.  

 

4.4 The Skill Retention Cognitive Model: Evolutionary 

Development Process 

I describe the model development process in this section. I originally took an 

approach to develop a complete model in one step. However, it turned out that the model-

building approach that I was taking was not successful very well. I scraped the previous 

approach and took a cyclic nature of the spiral development process. Boehm and Hansen 

(2001) stated that the spiral development process has been successfully used in various 

projects of military defense and commerce. Boehm and Hansen defined the spiral 

development model as:  

 

The spiral development model is a risk-driven process model generator that is 
used to guide multi-stakeholder concurrent engineering of software-intensive 
systems. It has two main distinguishing features. One is cyclic approach for 
incrementally growing a system’s degree of definition and implementation while 
decreasing its degree of risk. The other is a set of anchor point milestones for 
ensuring stakeholder commitment to feasible and mutually satisfactory system 
solutions.  
 

Basically, the spiral model expands a software system from its earlier versions of 

development process in an iterative manner. This process has been reinforced by the 

Department of Defense that included evolutionary acquisition process in its regulations, 

because the process of evolutionary acquisition with the spiral development can identify 

avoidable hazardous factors. 

4.4.1 The Spiral Model Development Process 

Risk factors can cause development process to be digressive from the system 

objective and its development process (Boehm & Hansen, 2001). The cognitive model 
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that I am striving for developing has several risk factors resulting in from trivial to fatal 

failure. I frankly specify the entire risks factors here in Table 4.2. 

Table 4.2 shows identified risk factors in developing a cognitive model of the skill 

retention. The envisioned goal in my dissertation is to model procedural skill retention 

but there is an enormous technology gap between the goal and the current status. It can 

possibly bridge the technology gap via the spiral process of development. 

 

Table 4.2. Risk factors in the development process of the skill retention model. 

Risk Factors Likelihood Impact Mitigation Strategy 

Modeling task knowledge 
and skills 

Medium Medium Practice more for advanced 
techniques of using production 
systems 

Representation of motor 
performance 

Medium Medium Use the current capability with 
limitation but consider some 
extension of keystrokes (e.g., 
while holding a key down and 
pressing another down) 

Representation of visual 
performance 

Low Low N/A 

Modeling and controlling 
long repeated task  

High High Use meta-process of the ACT-R 
software that runs models 
asynchronously 

Simulating timing 
characteristics of 
performance  

High High Extend the ACT-R architecture 

Modeling learning effects Medium High Extend the ACT-R architecture 
Modeling forgetting effects High High Extend the ACT-R architecture 

  

Figure 4.6 shows the spiral development process. Boehm and Hansen (2001) 

originally consider time and cost in two-dimensional axes. Based on this, I added the 

third axis of technology gap that we need to be aware of because identification of the 

technology gap helps developers to deeply comprehend concrete risk factors. In Figure 

4.6 (b), each quadrant indicates a stepwise process of the spiral development. In Quadrant 

II, one can determine an objective of the system and consider alternatives and their 

constraints for that system. In Quadrant I, based on the risk analysis, one can provide a 

prototype in terms of the goal. Then, in Quadrant III, one can identify requirements and 

validation of those requirements while pursuing a goal to implement the system. In 
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Quadrant IV, one can plan for the next phase of the spiral development process by 

specifying goals, risks, requirements, validation, design validation, and implementation. 

Based on the concept of the spiral model, I specify strategic processes to develop 

the skill retention model. For the first cyclic spiral stage, I implement an ACT-R model 

doing the first subtask of OPEN FILE out of 14 subtasks because modeling all of 14 

subtasks would produce some risks, requiring much more production rules to create, and 

making the model be harder to debug and validate. Using the model of the first subtask, I 

explore the ACT-R’s learning and forgetting mechanisms to test the ACT-R theory 

against human data. This first cyclic spiral stage will provide some useful insights and 

understandings to get ahead toward the ultimate goal of developing the skill retention 

model and implementing the final model with 14 subtasks.  

 

 

Figure 4.6. The spiral development process of the skill retention model. 

 

4.4.2 Knowledge Representations in the Model 

As I described in the section 2.7, there are 14 subtasks in the task. Each subtask 

has a subgoal. For example, the first subgoal is to open a Dismal spreadsheet file. The 

English rendition of this subgoal production would look like:  

 

If         the goal is open a Dismal spreadsheet file 
Then   move the mouse to the menu and click the appropriate file to open 
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Application of a production is viewed as a step of cognition (Anderson, 1982). 

Thus, I need to break down the fist subgoal into several cognitive contingencies that can 

represent the cognitive steps taken by users. I tried to decompose a subgoal into smaller 

steps of cognition. For the subgoal of opening a file, humans would do like this: think 

about how to open a file, attend to a menu item, move attention, and make some 

corresponding actions (e.g., mouse click, mouse move, or keypress). Table 4.3 provides 

English-like descriptions of productions in the left column and corresponding productions 

rules of ACT-R in the right column. 
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Table 4.3. Example productions for the Dismal spreadsheet task. 

English-like Descriptions ACT-R Productions 

 

If the goal is to do the subtask1 

the step slot is getting-ready  

and the chunk in the retrieval buffer is of type 

operator 

the pre slot has a value called =state 

the action slot has get-ready 

the post slot has a value of =post 

 

then, 

 
 

request a retrieval of a chunk in the operator 

chunk type to find the value of =post in the pre 

slot, 

and change the value of the step slot in the goal 

buffer 

 

 

 

 

 
 

If the goal is to do the subtask1 

the step slot is attending 

and the chunk in the retrieval buffer is type 

operator 

the pre slot has =post 

the action slot has attend 

the post slot has move-to-file 

there is a chunk type of visual-location in the 

visual location buffer, 

check the visual performance is available 

then, 
request attention movement to =visual-location 

in the visual buffer 

request a retrieval of a chunk type operator to 

find the slot value of move-to-file 

and, change the value of the step slot in the 

goal buffer 

(P getting-ready 
     =goal> 
        isa    task 
        step   getting-ready 
     =retrieval> 
        isa    operator 
        pre    =state 
        action get-ready 
        post   =post 
     ;=visual-location>  
        isa visual-location 
     ;?visual> state free 
  ==> 
     ;+visual>  
        isa    move-attention  
        screen-pos  =visual-location 
     +retrieval> 
        isa operator 
        pre =post 
     =goal> 
        step attending) 
 
(P attend-to-file 
     =goal> 
        isa    task 
        step   attending 
     =retrieval> 
        isa    operator 
        pre    =post 
        action attend 
        post   move-to-file 
     =visual-location> 
        isa    visual-location 
     ?visual> 
        state free 
  ==> 
     +visual> 
        isa    move-attention 
        screen-pos =visual-location 
     +retrieval> 
        isa    operator 
        pre    move-to-file 
     =goal> 
        step   moving) 

 

4.4.3 Visual Perception and Motor Performance in the Model 

This section describes visual perception and motor performance of the model 

from the perspective of the ACT-R architecture. Gray and Altman (2001) provided a 

useful framework of understanding interactive behavior by illustrating a triad, that is, 
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Cognition, Artifact, and Task. There are several reasons why we need to consider the 

triad. One might conduct experiments by using simple tasks and only focus on cognition 

and task, disregarding the role of artifact. Also, one might only focus on the artifact, 

disregarding interaction with users. Also, one might focus on development of the 

artifacts, in response to tasks, but generally not in response to cognitive concerns. Gray 

and Altman (2001) argued that the price of ignoring any one of cognition, artifact, and 

task cause interactive human behavior to be more taxing with effort and be more error-

prone.  

Byrne (2001) also reinforced that interactive behavior of a user interacting with an 

interface is a function of the properties of three things: the cognitive, perceptual, and 

motor capabilities of the user, termed Embodied Cognition, the Task the user is engaged 

in, and the Artifact the user is employing to do the task. Gray and Altman simply referred 

to Embodied Cognition as Cognition, indicating a broad meaning of cognition, that is, 

indicating not only cognitive capabilities and limitations of human but also the 

perceptual-motor capabilities. In this dissertation, I prefer to use embodied cognition to 

indicate cognitive and perceptual-motor capability of a cognitive model. 

Back in 1998, there has been a successful effort to extend the ACT-R architecture 

to describe and predict human behavior in primarily cognitive domains with a 

perceptual/motor system (Byrne, 2001; Byrne & Anderson, 1998). ACT-R provides the 

capability of the embodied cognition that is mostly affected by the Kieras and Meyer 

(1997) EPIC architecture. As shown in Figure 2.4, the production system in the 

procedural module is the central to four perceptual-motor modules such as, visual, 

manual, vocal, aural modules. In this dissertation, I only consider visual and manual 

modules in ACT-R because human subjects performed given tasks without using any 

vocal and aural activities.  

Basically, all modules can be queried to find out each module’s current internal 

state, such as state free or state busy. Furthermore, the perceptual motor modules have 

more complicated internal systems including preparation, processor, and execution. 

These internal systems can be individually queried where their states are free or busy.  
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Visual Perception Performance in the Model 

The visual module equips the model to see objects in the external world that the 

model interacts with. Particularly, the visual module consists of two subsystems of 

“where” and “what”.  

Visual objects in the external world can have one or more features, such as 

location, size, or color. The features are stored in a place called the visual icon. Based on 

these features, the visual module creates chunks, providing declarative memory 

representations of the visual scene. Then, those chunks can be matched by production 

rules. A production rule can specify location, size, or color of the visual object in its IF 

condition part to constrain the acceptability of rule match. After the chunk matching with 

a production rule, that chunk became completely developed and is added to declarative 

memory.  Here is example visual information that the model sees in the external world of 

the Dismal spreadsheet window in Figure 4.7. 

 

 

Figure 4.7. Visual objects in the real task environment that the model sees.  

 

As shown in Figure 4.7, a visual object’s location is represented by a x-y 

coordinate in pixels. Shifting attention from one location to another occurs 

asynchronously with respect to the production system (Byrne, 2001) and takes 185 ms 

based on previous theoretical research (see Anderson, Matessa, & Lebiere, 1997). Thus, 

all information in the Dismal buffer in Emacs window should be converted to a pixel 
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location and be delivered to the model. ESEGMAN is to take the role of transfer and 

delivery of the visual information to the model. More details are provided in Section 5.5.  

 

Motor Performance in the Model 

Modeling human performance requires a computational model to perform a given 

task like a human does the same task. In this section, I describe how the ACT-R model 

supports plausible and reasonable human motor performance. 

The ACT-R motor module can only prepare one movement at a time. The manual 

buffer interacts with the motor module. The manual buffer never holds a chunk. It issues 

commands to query the motor module state. 

The Dismal spreadsheet task contains multiple actions of key presses, mouse 

clicks, and mouse movements by users. In an ACT-R model, it is possible to specify 

where the model’s hand should be located (i.e. at mouse or at keyboard). For the ACT-R 

model of mouse users, the model’s hand is located at a mouse by using a command, 

(start-hand-at-mouse). When the model needs to generates key presses, it is necessary for 

the model to issue a command of moving the model’s right hand to the home position, (7 

4), on the virtual keyboard. Conversely, for the ACT-R model of keyboard users, it is not 

necessary to request the command of the model’s hand at mouse. However, it is 

necessary to request a command that the model’s right hand moves to the virtual mouse 

location, (28 2), before requesting mouse actions.  

The Dismal task environment offers fixed-order menus. That is, the position of a 

target menu is known. In this case, the critical latency component can be attributable to 

Fitts’ Law (Fitts, 1954) description of the motion (see Anderson & Lebiere, 1998). The 

execution time of motor movement based on Fitts’ Law can be predicted as a function of 

the distance to the target (amplitude) and the width of the target (tolerance). ACT-R 

predicts movement time using Equation 4.12. The parameter of b coefficient (:MOUSE-

FITTS-COEFF) in Fitts’ equation is used when the model moves the mouse cursor for 

aimed movements. Its default value is 0.1 and can be set to any positive value. 

 

! 

T = b* log2(
D
W

+ 0.5)      Equation 4.12 
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! 

T  = the time of the movement (seconds) 

! 

b = a parameter dependent on the type of motor action, called index of 

difficulty in sec/bit 

! 

D = the distance to the target 

! 

W = the width of the target 

 

Figure 4.8 shows a list of trace of the ACT-R performance to press a key. The 

ACT-R model presses a v-lettered key that is located (4 5) at the ACT-R virtual keyboard 

(see Figure 4.2). This event took place at 0.485 s by firing a production, requesting a 

press-key. Then, it takes 250 ms to complete preparation of press-key at 0.735 s and 

50 ms to initiate the action (initiation-complete) at 0.785 s, another 100 ms to strike the 

key (OUTPUT-KEY # (4 5)) at 0.885 s, and finally 150 ms for one finger to return to the 

home row (finish-movement) at 1.035 s. 

 

 

Figure 4.8. An example of ACT-R’s motor performance pressing a key. 

 

In the Dismal task, users press a key and hold that key while pressing the other 

key. For example, a user presses C-x (press and hold the control key and press x). For this 
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task, that I call an Emacs-type key press, the timing characteristics are not supported by 

the current ACT-R architecture. As a future work, it is necessary to extend the ACT-R’s 

motor module performance to include such Emacs-type “control” key presses. In this 

dissertation study, I will double the time that ACT-R uses to represent those key presses 

for a short-term plan, but, I will plan to gather data of Emacs-type key press to extend the 

ACT-R’s motor performance for a long-term plan. 

 

4.4.4 Can ACT-R Constructs Support a Loop of Repeated Tasks? 

The Dismal spreadsheet task is procedural skill requiring a set of sequential 

procedures. Also, the spreadsheet task requires a user to perform a repeated task. For 

example, the subtask3, that is calculating frequency, requires a user to repeat the 

calculation five times. To achieve these procedural and repetitive characteristics of the 

task, I used a special chunk type and chunks in the model.  

In the model, I created a chunk type named operator. Each operator tells the 

model what to do in various states while the model is performing the given task. The 

operator chunk type consists of 6 slots and the model is comprised of 11 operators. The 

pre slot indicates what state the model is in and the post slot indicates what state will 

occur after the action. The action slot indicates what action to be taken. The object1, 

object2, and object3 slots indicate possible objects that are needed for the model’s 

performance. Table 4.4 shows the operator chunk type and chunks.  
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Table 4.4. The model’s chunk-type and chunks  

that guide the flow of the sequential task. 

 
Chunk-type 
(chunk-type operator pre action object1 object2 object3 post) 
 

chunks for operator chunk-type 
(op1-sub1 isa operator pre start action get-ready post attend-to-file) 
 
(op2-sub1 isa operator pre attend-to-file action attend object1 file 
post move-to-file) 
 
(op3-sub1 isa operator pre move-to-file action move object1 file post 
click-on-file) 
 
(op4-sub1 isa operator pre click-on-file action click object1 file post 
attend-to-openFile) 
 
(op5-sub1 isa operator pre attend-to-openFile action attend object1 
openFile post move-to-openFile) 
 
(op6-sub1 isa operator pre move-to-openFile action move object1 
openFile post click-on-openfile) 
 
(op7-sub1 isa operator pre click-on-openfile action click object1 
openFile post attend-to-dismalFile) 
 
(op8-sub1 isa operator pre attend-to-dismalFile action attend object1 
normalization-dis post move-to-dismalFile) 
 
(op9-sub1 isa operator pre move-to-dismalFile action move object1 
normalization-dis post click-on-dismalFile) 
 
(op10-sub1 isa operator pre click-on-dismalFile action click object1 
dismalFile post click-to-choose) 
 
(op11-sub1 isa operator pre click-to-choose action click post retrieve-
subgoal-2) 

 

 

In addition to the chunk type of operator and chunks, I specified a slot named step 

in the goal buffer representing various subordinate states of each procedure. This step slot 

maintains information about what the model is doing, indicating explicitly which 

productions are appropriate each time. Here are example production rules. 

 

(P start-task 
     =goal> 
     isa task 
        subtask-previous nil 
        subtask-current sub1 
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        state =state 
        step ready 
  ==> 
     +retrieval> 
      isa operator 
        pre =state 
     =goal> 

        step getting-ready) 

 
(P getting-ready 
     =goal> 
      isa task 

        step getting-ready 
     =retrieval> 
      isa operator 
        pre =state 
        action get-ready 
        post =post 
  ==> 
     +retrieval> 
      isa operator 
        pre =post 
     =goal> 

        step attending) 

 

Similarly, it is possible to represent a loop of repeated task by the use of the step 

slot in the goal buffer. The step slot can indicate that which production rule is appropriate 

for the repetitive task cycle.  

4.4.5 Learning and Forgetting in the Model 

The first subtask of “Open file” was modeled within the ACT-R architecture. This 

model was attempted to represent a mouse user’s behavior. The model has 11 production 

rules to perform the given task. Each production was written to represent a cognitive unit 

of human behavior.  

 

Learning 

I attempted to represent learning of the Dismal spreadsheet task by running the 

model multiple times based on the ACT-R’s activation mechanism and the production 

compilation mechanism. The model is able to run multiple times without resetting the 

model’s states and conditions. That is, the current trial is affected by the previous state of 

the model to produce learning effects by each run. Each simulation trial indicates a 

training and test session of the task. However, when we interpret the model’s 
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performance, it is necessary to consider whether a simulated trial can be a supplant for a 

real training session, like the description of psychological time vs. real time in simulation 

in the next section 3.5.6. 

 

Forgetting 

My goal is to have decreased performance of task completion time after some 

retention interval that is a period of skill disuse. Currently, ACT-R does not completely 

support this slowdown performance. The production compilation mechanism can create a 

new production rule representing speedup. However, the learned rules are not reversed to 

the original or even worse performance (i.e., increased task completion time). 

To resolve this question, I had several discussions through emails with the ACT-R 

implementer, Dan Bothell, at Carnegie Mellon University (personnel communications, 

April 4, 2008). Based on his suggestions, I will explore skill retention and forgetting in a 

couple of ways. The time prediction must meet psychological plausibility and sensitivity 

of decay performance in terms of task types. 

 

• Using lower reward value 

It is possible set a reward value to each production. Lower reward value could 

lead to the compiled productions having a lower utility value than the originals. 

This may be able to slow the task completion time.  

 

• Using a command, (run-full-time time) based on the activation mechanism 

If a slowdown performance comes after a delay, then it might come out naturally 

from the declarative retrieval times. The activation of the chunks needed for the 

task would decay during the delay and thus the time would be longer until they've 

been used enough to boost their activation back up. To put a delay, I can simply 

add this command, (run-full-time 20)4, to the model. 

 

                                                
4 This command will run the current process until either 20 s passes or a break event is 
executed. 
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4.4.6 Psychological Time vs. Real Time in Simulations 

Anderson, Fincham, and Douglass (1999) investigated the strength of a memory 

trace in terms of various practices at time 

! 

t j—that is, strength is equal to 

! 

t j
"d

# , 

representing the power law of practice and the power law of retention. However, 

Anderson et al. (1999) acknowledged that this equation could not fit retention data over 

long intervals of up to 14 months.  

This problem was also pointed out by Pavlik (2005), and Pavlik and Anderson 

(2005). This problem necessitated an assumption, indicating that memory decay in a 

model would occur more slowly than one in the experimental sessions.  

It is possible to slow down decay by using a scaling factor that is multiplied to the 

passage of time outside the experiment. This scaling of time is called “psychological 

time”. In an ACT-R simulation, forgetting also depends on the psychological time 

between presentations rather than the real time (Pavlik Jr. & Anderson, 2005). They 

introduced a scaling parameter, 

! 

h , in using the recall equation. The parameter, 

! 

h , is 

multiplied to the time that occurs between sessions in the recall equation. An example of 

use is found in Pavlik and Anderson (2005). 

 

4.5 The Model Prediction 

The subtask of “Open file” was modeled in the standard ACT-R 6 architecture. 

With the ACT-R model that simulates a mouse user in the Dismal spreadsheet task, I 

explored the ACT-R theory to explain practice and skill retention for given intervals of 

knowledge and skill disuse.  

4.5.1 Learning in the Model 

I gathered a set of learning data by running one model subject for four trials in a 

succession. Particularly, ACT-R’s subsymbolic computations were enabled (i.e. the 

production compilation and the activation mechanism enabled), when the model has run.  

Parameters in the ACT-R modules were configured to predict learning 

performance. First of all, I enabled the subsymbolic computation by turning on the 

parameter, (:esc t). For the declarative module, the activation trace parameter (:act) was 
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set to t and other parameters used the ACT-R’s default settings, such as the activation 

noise parameter (:ans 0.15), the retrieval threshold  parameter (:rt -0.5), the latency factor 

parameter (:lf 0.63), the base level learning parameter5 (:bll 0.5), and the maximum 

associative strength parameter (:mas 1.6). For the production compilation module, the 

production learning parameter (:epl) and its trace (:pct) were enabled. For the utility 

module, all parameters were set to default values, such as the utility threshold parameter 

(:ut nil), the initial production utility value (:iu 10), the default action time, that is the 

amount of time between selecting and firing a production (:dat 0.05), the expected gain 

parameter (:egs 0.0), the utility learning flag parameter (:ul t), and the production learning 

rate parameter (:alpha 0.2). 

The gathered data are reported in Table 4.5 and the plot for the data is seen in 

Figure 4.9. As you see in Figure 4.9, the task completion time increased at the second 

trial, but showed decrease in task time after the second trial.  

 

Table 4.5. The model performance with practice for four serial trials (n = 1). 

Trial Time (s) 

1 4.925 
2 6.108 
3 4.977 
4 4.214 

 

                                                
5 The decay parameter (d) in the equation, 

! 

Bi = ln( t j
"d
) + #i

j=1

n

$ , is set using the base-level 

learning parameter. 
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Figure 4.9. The model prediction of the task completion time by practice  

for four serial trials (n = 1). 

 

I increased the number of serial trials to see more learning effects for more 

extended time duration. The model ran 10 serial trials. Figure 4.10 shows the 

performance of one model subject.  

 

 

(a) Fitted with a power function. 
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 (b) Fitted with an exponential function 

Figure 4.10. A plot of task completion time with practice for ten serial trials and a 

fitted curve, a power curve and an exponential curve, (n = 1). 

 

As the next step, I explored the model performance of multiple runs (i.e. four 

serial trials or ten serial trials) with ten model subjects. Also, I compared the model 

performance while both turning on production compilation by setting the parameter of 

enable production learning6 and production compilation7 to t and turning off production 

compilation by setting them to nil.  

Table 4.7 shows descriptive data of the model’s performance and Figure 4.11 

shows their plots for ten model subjects during four serial trials. Ten model subjects have 

completed the task for four serial trials. 

It was expected that the task completion time would decrease as a power function. 

However, regardless of enabling and disabling the production compilation, the task time 

increased more on the second trial that the one on the first trial in both cases. After the 

second trial, the task completion time decreased on the third and fourth trials. In Figure 

4.11, you can see an increase in task completion time on the second trial. The observation 

of the model performance on the second trial caused the need to further investigate the 

learning mechanism and the model performance.  

 

                                                
6 :epl 
7 :pct 
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Table 4.7. Performance of ACT-R model subjects for four serial trials with 

production compilation on or off. 

 

Production compilation – Off, 11 production rules before combining rules 

 Serial Trials (n = 10) 
 1 2 3 4 

Mean 4.83 5.43 4.49 4.13 
SD 0.50 0.66 0.48 0.54 

Production compilation – On, 8 production rules after combining rules 

 Serial Trials (n = 10) 
 1 2 3 4 

Mean 4.37 4.99 4.62 3.98 
SD 0.35 0.36 0.35 0.29 

 

 

 

Figure 4.11. The mean task completion time over four serial trials  

with production compilation on (n = 10) and off (n = 10). 

 

By enabling and disabling the production compilation mechanism, the number of 

production rules would be different. The model is comprised of 11 production rules in 

procedural memory and chunks in declarative memory. That is, the number of 

productions is 11 when the production compilation mechanism is disabled. The 

compilation process combines parent productions into a newly created production. From 

11 production rules, the production compilation process produces 5 combined 

productions, as shown in Figure 4.12.  
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Figure 4.12. ACT-R model’s production rules and combined rules  

by the production compilation mechanism. 

 

For example, there are two separate productions of START-TASK and 

GETTING-READY. The ACT-R’s production compilation mechanism combined these 

two productions into one production. Figure 4.13 shows the example production rules and 

a combined rule by ACT-R’s learning mechanism. 

 



 105 

 

Figure 4.13. An example of combined rules in the Dismal spreadsheet task by the 

production compilation mechanism. Several lines starting with “;” indicate 

commented-out codes that are to be added with ESEGMAN.  

 

Table 4.8 summarizes gathered data from 10 model subjects for 10 serial trials. 

As shown in Figure 4.14, it produces very similar predictive performance whether the 

model was enabled or disabled by the production compilation. Interestingly, on the 

second trial, the mean task completion time went up and then decreased as time for serial 

trials has passed. This pattern is similar to the pattern with four serial trials shown in 

Figure 4.11.  
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Table 4.8. Performance of ACT-R model subjects for ten serial trials with 

production compilation on or off. 

 

Production Compilation – Off  

 Serial Trials (n = 10) 
 1 2 3 4 5 6 7 8 9 10 

Mean 4.63 5.25 4.84 4.24 3.73 3.39 3.32 3.06 2.95 2.85 
SD 0.66 0.62 0.46 0.45 0.36 0.37 0.45 0.34 0.49 0.41 

Production Compilation – On 

 Serial Trials (n = 10) 
 1 2 3 4 5 6 7 8 9 10 

Mean 4.18 5.19 4.59 3.92 3.69 3.50 3.20 2.88 2.79 2.72 
SD 0.35 0.39 0.33 0.30 0.28 0.29 0.16 0.22 0.22 0.22 

 

 

Figure 4.14. Mean task completion time over four serial trials with production 

compilation on (n = 10) and off (n = 10). 

 

Table 4.9 shows the utility value in the production rule learning. Five combined 

productions have the same current utility value for each production (CP0 to CP4). Each 

time combined rules are recreated, the strength of the rules increases in terms of the 

equation, 

! 

U
i
(n) =U

i
(n "1) +#[R

i
(n) "U

i
(n "1)]. 

 

 



 107 

Table 4.9. Utility values during 10 serial trials with 10 subjects. 

 Utility value 
 :utility :u 

Trial CP0 CP1 CP2 CP3 CP4 CP0 CP1 CP2 CP3 CP4 

1 nil nil nil nil nil 0.000 0.000 0.000 0.000 0.000 

2 -0.169 0.004 -0.099 0.144 0.184 2.000 2.000 2.000 2.000 2.000 

3 2.175 2.015 2.017 1.914 1.780 3.600 3.600 3.600 3.600 3.600 

4 3.578 3.774 3.579 4.045 3.516 4.880 4.880 4.880 4.880 4.880 

5 4.830 4.858 4.693 4.313 5.208 5.904 5.904 5.904 5.904 5.904 

6 5.538 5.893 5.870 5.868 5.590 6.723 6.723 6.723 6.723 6.723 

7 6.435 6.588 6.312 6.763 6.734 7.379 7.379 7.379 7.379 7.379 

8 7.339 7.522 7.269 7.311 7.408 7.903 7.903 7.903 7.903 7.903 

9 7.911 7.923 8.045 7.685 8.097 8.322 8.322 8.322 8.322 8.322 

10 8.156 8.246 8.299 8.529 8.390 8.658 8.658 8.658 8.658 8.658 

Note: The parameter of :utility indicates the last computed utility value of the production 
during conflict resolution. The parameter of :u indicates the current 

! 

U(n) value for the 

production. 
 

4.5.2 Learning in the Model Adjusted 

In the previous section, unexpected learning performance was observed, that is, 

the task completion time went up on the second trial. To fix this problem, I adjusted 

parameter values of the Skill Retention Model, such as the decay parameter, the latency 

factor parameter, and the retrieval threshold parameter. The decay parameter was 

adjusted from 0.5 to 0.3, the latency factor parameter was adjusted from 0.63 to 1.9, and 

the retrieval threshold parameter value was adjusted from -0.5 to -1.0, as shown in Table 

4.10. With the adjusted parameters, I collected fifteen model subjects’ data, shown in 

Table 4.11. The plots are shown in  

 

Table 4.10. Adjusted parameter values in the Skill Retention Model. 

 

Parameter Before After 

Decay parameter :bll 0.5 0.3 
Latency factor :lf    0.63 1.9 

Retrieval threshold :rt -0.5 -1.0 
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Table 4.11. Learning performance of the Skill Retention Model with adjusted 

parameter values 

 

 Serial Trials (n = 15) 
 1 2 3 4 

Mean 27.08 23.14 17.75 14.04 
SD 2.31 1.87 1.20 1.05 
SE 0.60 0.48 0.31 0.27 

 
 

 

Figure 4.15. Learning performance of the Skill Retention Model based on adjusted 

parameters with standard error bars (SE). 

 

4.5.3 Forgetting in the Model 

I first considered setting a lower reward value to each production. A lower reward 

value could lead to the learned productions having a lower utility value than the originals. 

This may be able to slow the time to select a production. However, it is questionable that 

setting a reward value by a modeler is too subjective to represent a general performance 

of skill decay. I need to have founding guidelines to assigning a reward value to each 

production rule. 

Thus, I tried to use the natural decay of the ACT-R model, using a command, 

(run-full-time T) based on the activation mechanism. This approach is basically slowing 
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down the activation value of elements in declarative memory. If a slowdown performance 

comes after a delay, then skill decay might come out naturally from the declarative 

retrieval times. The activation of the chunks needed for the task would decay during the 

delay and thus the time would be longer until they've been used enough to boost their 

activation back up. To put a delay, I can simply add this command, (run-full-time T) to 

the model that ages the model by T seconds. 

 

4.5.4 Issues Raised by the Model 

I encountered several pivotal challenges in the modeling of skill retention. The 

ACT-R model produced predicted time to complete the given task, open a file. With 

respect to learning prediction, the model was expected to produce reduced time as a 

learning session occurs. As I noted earlier, among four or ten trials of learning sessions, 

the predicted task time increased on the second trial. I could not find any reasonable 

causes for this model behavior. 

With respect to forgetting, the ACT-R architecture does not fully support the 

modeling capabilities. Particularly, there is no theoretically supporting mechanism to 

model skill decay. The activation values decrease as a power function in declarative 

memory. However, it is unknown how learned production rules can be unlearned to 

produce decreased time.  

For four serial trials of training (

! 

X1 to 

! 

X4 ), the task completion time is getting 

decreased. Time 

! 

r  with skill disuse after the serial training trials, the task completion 

time would increase by 

! 

"t . Thus, skill decay function can be derived as follows:  

 

! 

"t = f (R) # f (X4)  

! 

r + X4 = R  

! 

r > 0

X
i
> 0

i =1,2,3,4
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Figure 4.16. A learning and forgetting curve to represent the amount of forgetting 

after a given retention interval. 

 

If we find out the relationship between 

! 

r  and 

! 

"t , it could be possible to predict 

the amount of skill decay. This mathematical relationship can help to create a new 

module that predicts skills decay. It is possible to have projected curves of forgetting in 

time but might still leave an open question that how production rules are unlearned. To 

answer this “how”, it is necessary to produce mechanisms representing skill decay that 

are psychologically plausible and computationally possible. Instead of finding a 

regression or fitted curve, these mechanisms can produce forgetting behavior of humans. 

4.6 Summary of the Model 

The first subtask, open a Dismal spreadsheet file, was modeled in the ACT-R 6 

architecture. The model represents a mouse user performing the first subtask. In 

declarative memory, chunks were created to represent knowledge that was needed for the 

task. In procedural memory, eleven production rules were written to produce behavior.  

As the number of serial trials increases, the model generally showed a decrease in 

the task completion time, except the second trial. In all simulated trials, it was observed 

that the second trial produced larger task completion time that the first trial. Intuitively, 
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the first trial should have taken the longest time. Some further investigations on the ACT-

R architecture are needed. 

When it comes to forgetting, there was no way to decompile learned rules by the 

production compilation mechanism. The production compilation mechanism combine 

two rules and creates a new rule, producing faster performance.  

Many challenges and problems had been arising during the investigation in this 

dissertation. Various types of cognitive models under the ACT-R 6 architecture including 

knowledge acquisition or degradation on a spreadsheet task need to be developed and 

tested. This will provide a better understanding of user behavior. 
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Chapter 5  

Embodying the Model in an Environment 

This chapter describes why we need to embody cognitive models and how to 

embody them. Embodying the cognitive model can help us to better understand human 

cognition and compare the model performance with human performance.  

5.1 Cognitive Models Fail to Interact with Environments 

Cognitive architectures provide a framework upon which to build models that 

emulate human behavior as discussed before. The model of the user is studied to provide 

a theoretical and practical understanding of user behaviors and usability of interfaces. 

However, there are restrictions placed on the cognitive models regarding access to 

an external environment. Researchers have studied how to embody a computational 

cognitive model to interact with a simulated task environment.  

Cognitive models generally fail to interact with an external task environment 

(Ritter, Baxter, Jones, & Young, 2000) although ACT-R/PM (see Byrne, 2001) has 

helped change this. To enable cognitive models to perform interactive tasks, it is 

necessary for the models to have visual perception and motor action capabilities. These 

capabilities allow a cognitive model to perceive what is on the screen and to make some 

types of mouse movements.  

The model’s visual perception capabilities should have similar mechanisms to 

humans. One difference for interactive tasks is that the model’s perception in two 

dimensions is adequate with respect to the interaction with a spreadsheet application in 

this study. 

The model’s motor action capabilities should also correspond to the human’s 

motor action mechanisms. A cognitive model would use a mouse or a keyboard when the 

model interacts with an interface. Possible motor actions include typing a letter, moving a 

mouse, clicking a mouse button, or moving the eyes, etc.   

For example, the Argus system supports an embodied cognitive model interacting 

with a radar-like target classification task (Gray, 2002; Schoelles & Gray, 2001). In the 

Argus system, the model and the human subjects use the same interface. It is useful for 
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the development of models including human cognition, human performance or AI agents 

to have more general access to man-made tasks, task environments, and interfaces, and to 

have access provided in a cognitively plausible way. 

5.2 Cognitive Models with Hands and Eyes 

In general, there are two fundamental approaches to provide models with access 

to a simulated task environment. One approach is to instrument a graphic language such 

as MCL, Tcl/Tk, Java, or SL-GMS. For example, this approach is taken by ACT-R/PM 

(Byrne & Anderson, 1998) and simulated hands and eyes models (Ritter, Baxter, Jones, 

& Young, 2000). These models know what objects to pass from an interface and how to 

input simulated user commands.  

The other approach is to work with the bitmap taken from the screen and parse the 

screen into objects. This is very robust approach, once done, because all interfaces within 

the instrumented system become available to the model. For example, SegMan (St. 

Amant, Riedl, Ritter, & Reifers, 2005) provides a fairly robust approach in that it allows 

any Windows interface to be seen by models (e.g., ACT-R or occasional Soar models). 

SegMan, however, has some limitations. It can be somewhat difficult to use and extend. 

It does not yet recognize all the objects that people do. 

5.3 Constructs of the ESEGMAN World 

In the dissertation study, the Emacs substrate system, ESEGMAN (Emacs 

SubstratE: Gate toward MAN-made world) is proposed to help simulate user 

performance. User performance studies are easy to run with Emacs (including text only 

web browsing, spreadsheet use, and email use). A model can be connected to the same 

tasks with a high likelihood of the model being able to see and do the tasks that a user can 

see and do. 

The ESEGMAN world consists of a cognitive model, a substrate, and a simulated 

spreadsheet task environment. ESEGMAN instruments the graphic interface system of 

Emacs. 
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Emacs8 is an extendable editor that basically functions as an operating system for 

file editing and related information processing. In the ESEGMAN world, ESSEGMAN 

embodies a cognitive model interacting with a simulated task. This study opens a 

possibility of a new cognitive modeling paradigm and extends ACT-R’s perception and 

motor capabilities. 

As shown in Figure 5.1, the ESEGMAN world provides an environment where a 

cognitive model subject and human subjects perform the Dismal spreadsheet task in a 

laboratory setting as part of a study on learning and forgetting. 

The model is built on the ACT-R 6 cognitive architecture. A model agent interacts 

with the GNU Emacs spreadsheet called Dismal (Ritter & Wood, 2005). For the model to 

directly interact with the task environment (Dismal), a substrate (ESEGMAN) 

represented by the eye and hand needs to be implemented. In the real world, humans can 

directly perform the Dismal spreadsheet tasks. Human performance is recorded by using 

RUI denoted by Recording User Input (Kukreja, Stevenson, & Ritter, 2006). 

 

 

 

Figure 5.1. A schematic representation of the ESEGMAN world and human world. 

 

5.4 ESEGMAN Mechanisms 

ESEGMAN is layered on the operation of Emacs and allows a model to see and to 

touch a task environment. The Dismal spreadsheet was implemented in the Emacs Lisp 

language. ESEGMAN is built on both Common Lisp and Emacs Lisp languages. Thus, 

                                                
8 http://www.gnu.org/software/emacs/ 
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ESEGMAN can provide an ACT-R model with a gate to interact with a man-made world 

of spreadsheet tasks. 

ESEGMAN works in the following way. An Emacs shell process is spawned, and 

a model is loaded within that process. For example, a shell is started in Emacs to invoke 

OpenMCL that is a Lisp implementation. Then, ACT-R 6 is loaded into OpenMCL. An 

ACT-R model can send commands to ESEGMAN, such as to move the mouse, to type a 

letter, or to get the contents of Dismal as fovea. In Emacs, there is a set of functions to 

take outputs from the shell and insert them into the associated buffer. This approach 

allows a natural place for ESEGMAN to inspect what is sent, and if a command is sent, 

execute it.  

If the command is to type a letter or to execute a keystroke command, this can be 

done directly using the extension language of Emacs Lisp. If the command is to move the 

mouse, a model mouse pointer is moved, shown in the mode line of the buffer being used 

by the model. If the command is to execute a mouse action, the corresponding process as 

for keystrokes is executed.  

 

 

 

 

 

 

Figure 5.2. ESEGMAN mode line in the Emacs text editor. 

 

Figure 5.2 shows the mode line of ESEGMAN. In the mode line, you can see 

several items such as ESeg, E[x3:y0], M[x5:y9], and HL[Mouse]. ESeg indicates the 

current mode line is ESEGMAN. E[x3:y0], that is a default value, indicates the eye 

location. The current eye location is (3, 0) in characters. Similarly, the mouse location is 

represented by M[x5:y9]. The current mouse point location is (5, 9) in characters.  

When the model wants to look at the screen, ESEGMAN takes the current fovea 

location and sets up a data structure to be processed and sends this back to the ACT-R 

ESEGMAN mode line 

Emacs minibuffer (Interaction area) 
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model. ACT-R, after sending the fovea look command, has a read that follows the 

incoming information and puts it into the ACT-R's visual iconic memory. ESEGMAN 

can create a file, or it can pass back through the process to an associated buffer. 

5.5 ESEGMAN Development Notes 

I describe the design and development process of ESEGMAN. As noted earlier, 

ESEGMAN has a simulated-eye that looks at what is on the task screen and gets the 

visual location of an object on that screen that a model attends to. Also, the simulated-

hand for ESEGMAN provides functional operations for key press, mouse move, and 

mouse click.  

5.5.1 Read-Evaluate-Print Loop for ESEGMAN 

The command loop in Emacs reads key sequences, executes their definitions, and 

displays the corresponding results. Similar to this command loop process, ESEGMAN’s 

main function, called Erepl (ESEGMAN Read, Evaluate, Print Loop), provides 

functionality of reading commands, evaluating them, and printing the corresponding 

results in a target buffer. 

Erepl processes commands for the simulated eye and hand, and other utility 

functions. The commands include “look” for reading visual information on the screen, 

“emove” for eye movement, “mclick” for mouse click, “mmove” for mouse move, “key” 

for key press, and “stop” for halting the Erepl process. Commands are found in 

Figure 4.3. 
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Figure 5.3. A picture of Erepl in Emacs. In the minibuffer, several commands are 

displayed and in the mode line, information about the current eye location of 

ESEGNAN, the current mouse location, and the current hand location is displayed. 

 

5.5.2 Simulated Eye for ESEGMAN 

The simulated eye for ESEGMAN looks at the task window (e.g., the Dismal 

spreadsheet buffer/window). The function whatis-at takes two arguments of row and 

column in characters and returns corresponding characters.  

Figure 5.4 shows how Erepl can look at an visual object in the target buffer. A 

window on the left shows Erepl running in Emacs and commands in the minibuffer. A 

window on the right is the target window of the Dismal spreadsheet. In Figure 5.4 (a), the 

current eye location of ESEGMAN is (3, 0) in characters. That is, ESEGMAN’s eye is 

looking at row 3 and the first column. Row 3 indicates the first row of the Dismal 

spreadsheet task that is labeled 0 in the first column. The eye location is changed to (10, 

10), that is ESEGMAN’s eye has moved 7 rows down and 10 columns to the right, as 

seen in Figure 5.4 (b). Finally, ESEGMAN returned excise-all at which ESEGMAN was 

looking.  
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(a) Erepl in Emacs on the left and the target task window right. On the left window, the 
commands (i.e. elook, emove, mlook, mmove, mclick, key, hand, or quit) are displayed in 

the minibuffer. The current eye location of ESEGMAN is “E[x3:y0].   
 

 

(b) Erepl looking at the task window. The current eye location is updated to E[x10:y10]. 
The elook command returned “excise-all” from the target window. 

 

Figure 5.4. Erepl in Emacs and the target window of the Dismal spreadsheet. 

 

5.5.3 Simulated Hand for ESEGMAN 

The simulated hand for ESEGMAN recognizes mouse movements, mouse clicks, 

and key presses made by the model subject. The mouse movement mechanism is similar 

to the mechanism of eye movement as described before. The mode line displays the 

current location of the mouse.  

When a user presses a mouse button and releases it at the same location that 

generates a mouse click event.  
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When the model presses a mouse button down and releases it at the same location, 

ESEGMAN recognized that behavior as a mouse click event. It is assumed that the model 

(e.g., the ACT-R model) uses a mouse with one button because the ACT-R architecture 

assumes a virtual mouse with one button. 

Special data structures in Emacs, called keymaps, record input events, specifying 

key bindings for various key sequences. When a user creates an input event (e.g., mouse 

click) that is bound to a keymap, Emacs finds the next input event by looking up that 

keymap. This process is called key lookup. Mouse button events cannot be represented as 

strings, Emacs represents it as a vector.  

5.5.4 Other Utility Functions 

An Emacs window has a mode line at the bottom, displaying display status 

information such as the buffer’s name, associated file, depth of recursive editing, and 

major/minor modes. The mode line format is modified to display the buffer status of 

ESEGMAN. The ESEGMAN mode line displays the eye locations in x and y, the mouse 

locations in x and y, and the hand location (mouse or keyboard).  

5.6 Summary 

The ESEGMAN system was designed to embody an ACT-R model, directly 

interacting with the Emacs text editor and was mostly implemented. Restrictions placed 

on the cognitive models regarding access to an external environment can be resolved by 

the ESEGMAN system. Visual perception and motor action capabilities of ESEGMAN 

can strengthen those capabilities of ACT-R. Currently, the system is not fully working 

and needs to establish a connection to ACT-R. 
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Chapter 6  

Human Data: Procedural Skills Degradation 

In this chapter, I report the study with human participants to explore skills 

degradation. Participants performed a set of spreadsheet tasks in the study environment 

that was created for investigating learning and forgetting.  

6.1 Method 

6.1.1 Participants 

Forty-two undergraduate and graduate students at the Pennsylvania State 

University were recruited to participate in this experiment, including four participants for 

pilot studies. Five participants could not complete the experiment. Three participants’ 

data were not completely recorded (e.g., RUI stopped recording during the experiment 

because a participant inadvertently pressed C-s9) and two participants dropped out to 

attend to personal activities (i.e., job interview). Finally, I analyzed data from thirty 

participants and report all of the results in this section10. Participants were paid between 

$25 and $35 that depended on the number of sessions by different retention intervals. 

6.1.2 Materials 

As mentioned earlier, the Dismal11 spreadsheet was implemented to gather and 

analyze behavioral data (Ritter & Wood, 2005).  Dismal is useful here because it is novel 

to all participants and they do not have any prior experience. A vertical mouse was used 

to measure participants’ motor learning. I assumed that it provides new motor skills to 

learn (and to forget). The vertical mouse is ergonomically designed to reduce stress on a 

user’s wrist. Instead of a palm-down position of a regular mouse, this vertical mouse 

                                                
9 C-s (pressing s while holding a control key) is the key command to stop recording in 
RUI. All participants were informed of not pressing C-s during his/her task.  
10 19 participants’ data were published, see Kim, J. W., Koubek, R. J., & Ritter, F. E. (2007). 

Investigation of procedural skills degradation from different modalities. In R. L. Lewis, 
T. A. Polk & J. E. Laird (Eds.), Proceedings of the 8th International Conference on 

Cognitive Modeling (pp. 255-260). Oxford, UK: Taylor & Francis/Psychology Press. 
11 http://acs.ist.psu.edu/dismal/dismal.html 
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requires different hand and forearm postures. None of the participants had prior 

experience of a vertical mouse and the Dismal spreadsheet, and we could minimize 

participants’ previous knowledge and skills and reduce noise to measure learning effects. 

Keystrokes, mouse clicks, mouse movements, and task completion time were recorded by 

the Recording User Input (RUI) system (Kukreja, Stevenson, & Ritter, 2006).  

Figure 6.1 shows the study environment with RUI and Dismal. RUI is ready to 

record inputs from users in an unobtrusive way. In the Dismal spreadsheet, some default 

values are given in Frequency and Normalization columns. The default values have seven 

different versions that participants use in each session with different version. Thus, 

participants worked on the same spreadsheet problems, but the given data were varied. 

 

 

Figure 6.1. The study environment with RUI and Dismal. 

 

As shown In Figure 6.1, the Dismal spreadsheet task consists of five columns (A 

to E). Column A has ten different names of computer commands. Column B has 

frequencies of each command listed from row 1 to 5. Column C has normalized 

frequencies listed in row 6 to 10.  There are five blank cells that are filled in by 

participants, in B and C columns (e.g., B6 to B10, and C1 to C5). Column D and E had 

ten blank cells that are filled in by participants. The total of the frequency column (row 1 

to 10) and the normalization column (row 1 to 10) are provided to the participants. The 

total of the frequency is used to calculate normalization and frequency.  
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6.1.3 Design 

The experiment is 2 by 3 factorial design with independent variables of modality 

and retention interval. All participants were randomly assigned to the experimental 

conditions: (a) three different retention intervals (6-day, 12-day, and 18-day), and (b) two 

modalities (mouse users and keyboard users). The modality condition consists of two 

levels including menu-based command users with a vertical mouse (M) and key-based 

command users with a keyboard (K), representing two different types of skills in the task. 

The variable of retention interval (R) indicates a period of skills disuse between the last 

learning (or practice) on Day 4 and the first return day for forgetting measure. The 

retention interval consists of three levels including 6-day retention interval (R6), 12-day 

retention interval (R12), and 18-day retention interval (R18). R6 indicates that 

participants made the first return six days after the last learning. R12 indicates that 

participants made the first return twelve days after the last learning. R18 indicates that 

participants made the first return eighteen days after the last learning. During the 

retention period, participants were asked not to do mental rehearsal or practice of the 

task.  

For the key-based command users (K), fifteen participants performed the 

procedural spreadsheet task and were not allowed to use a mouse. They were allowed to 

only use key-based commands with a plain keyboard. For example, to open a file in 

Dismal, participants need to retrieve a declarative chunk of “C-x C-f”12 and make the 

relevant key-press.  

For the menu-based command users (M), fifteen participants performed the same 

task using a vertical mouse and were not allowed to use key-based commands. 

Participants did not get trained to use any skills about the key commands. Participants 

were only allowed to use mouse-driven menu-based commands. For example, to open a 

file, they moved the mouse pointer to File on the menu bar, then clicked Open File.  

6.1.4 Procedure 

Participants were randomly assigned to groups with regard to modality and 

retention interval. A learning session was constructed from a study and a test trial. A 

                                                
12 C indicates holding down the control key while pressing x. 
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forgetting session was constructed only by a test trial. A study trial is when a participant 

uses the study booklet to learn. Each study task was limited to 30 minutes of study. A test 

trial is when participants perform the given tasks with the booklet during learning 

sessions and without the booklet during forgetting sessions.  

In the first week, four consecutive learning sessions were held. On Day 1, 

participants had a maximum of 30 minutes to study the given spreadsheet task and then 

performed the task. On Days 2 to 4, participants were allowed to refresh their acquired 

knowledge and skills from Day 1, using the study booklet, and then performed the tasks. 

After the four learning sessions in the first week, participants returned for 

additional trials as part of one of three types of retention interval.  

Participants had a 6-, 12-, or 18-day retention interval. For the group with 6-day 

retention intervals (R6), participants returned back to be measured every 6-days for three 

times on Day 10, 16, and 22. For the group with a 12-day retention interval (R12), 

participants returned back to be measured 12 days after the learning session that is on 

Day 16 and 6 days after the first return, which is on Day 22. For the group with an 18-day 

retention interval (R18), participants returned back to be measured 18 days after the 

learning session on Day 22. Table 6.1 describes experimental schedules for learning and 

forgetting measures. 

Table 6.1. Schedules for learning and forgetting experiments 

 Sun. Mon. Tue. Wed. Thur. Fri. Sat. 

1st 
Week 

 
Study + 

Test 
Study + 

Test 
Study + 

Test 
Study + 

Test 
  

2nd 
Week 

   Test    

3rd 
Week 

  Test     

4th 
Week 

 Test      

Note: In the 1st week (the learning week), participants conducted both study and test 
sessions. From 2nd to 4th week (the forgetting weeks), participants performed only test 
sessions. 
 

The overall task consisted of 14 steps (refer to Chapter 2.7). First, they opened a 

Dismal spreadsheet, saved the file as another name, and completed the complex 

spreadsheet manipulation by calculating and filling in the blank cells using equations, 



 124 

such as five data normalization calculations, five data frequency calculations, ten 

calculations of length, ten calculations of total typed characters, four summations of each 

column, and an insertion of the current date using a Dismal command, (dis-current-date).  

6.1.5 Dependent Measures and Data Analysis 

The task completion time, as a dependent variable, was recorded in milliseconds 

by RUI (Recording User Input)13. The RUI data provides recording of participants’ 

keystrokes, mouse button clicks (pressed and released), and mouse movements (e.g., xy 

coordinates of mouse locations in pixels). RUI assumed that the mouse has one button, 

like ACT-R’s assumption.  

The RUI output is a text file that can be imported to any spreadsheet or statistics 

applications. I import the RUI data into Excel and SPSS for analysis. The size of the RUI 

data from each trial ranges from 16 to 284 kilobytes.  

                                                
13 available from acs.ist.psu.edu/rui/ 
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6.2 Results and Discussion 

I report all of the data from thirty participants here. In the General Performance 

section, data of participants’ task completion time were analyzed to investigate how well 

participants learned the task and how much they forgot the task in terms of modality and 

retention interval. In the R6 group, ten participants completed the task (5 for mouse users 

and 5 for keyboard users). The group of R12 and R18 is also comprised of 10 participants 

respectively (5 for mouse users and 5 for keyboard users).  

6.2.1 General Performance of Learning 

All of the thirty-participants completed the learning sessions. Figure 6.2 shows 

the average time with respect to the two modalities over the four consecutive days of 

learning. The average task completion time for keyboard users (K) decreased from 1,532 

(

! 

±284) to 631 (

! 

±116) s. The average task completion time for mouse users (M) 

decreased from 1392 (

! 

±356) s to 697 (

! 

±119) s. The learning curves of the mouse and 

keyboard groups follow the Power law of learning: 

 

! 

y =1498.8x
"0.6317 , 

! 

R
2 = 0.99 for the keyboard group 

! 

y =1348.6x
"0.5071, 

! 

R
2 = 0.97 for the mouse group 

 

 

Figure 6.2. The Power curves of learning for the groups of keyboard vs. mouse. 
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Independent samples t-tests were conducted for mouse and keyboard users for 

each study session. I assumed that two samples are independent and are normally 

distributed. Also, it is assumed that populations have equal variance. There were no 

significant differences, for all comparisons, t(28)< 1.55, p >= .13. These results suggest 

that the input/manipulation style factor, keystroke or mouse driven, did not lead to 

significant differences in learning on this task over this time range and for this 

population. Figure 6.3 shows the log-log plot of learning curves of the two-modality 

groups (keyboard vs. mouse). This figure indicates that the groups all learned over the 

four learning sessions. They all performed at pretty much the same level. Similar to the 

famous log-log linear plot of skill acquisition (Newell & Rosenbloom, 1981), the 

investigation of the spreadsheet skill acquisition, here, also confirmed a linear 

relationship between performance and practice.  

 

 

Figure 6.3. The log-log plot of learning curves for keyboard and mouse users. 

 

6.2.2 General Performance of Forgetting 

Overall Performance from Day 1 to Day 22 

The R6 groups (keyboard and mouse users) had a 6-day retention for their first 

return and two additional six-day retention intervals. The R12 groups of keyboard and 

mouse users had 12-day retention for the first return, and an additional 6-day retention. 
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The R18 groups of keyboard and mouse users had one 18-day retention for the first return 

and no additional return.  

Figure 6.4 shows task performance of participants with a 6-day retention interval 

as a first return. The 6-day retention caused an increase in task completion time on Day 

10. The average time on Day 10 is 716 s (±168) for the keyboard group and 929 s (±251) 

for the mouse group. The additional 6-day retention after the 6-day retention produced 

decrease in task completion time, showing that the 6-day retention can serve as a 

distributed learning. The task completion time on Day 16 is 640 s (±177) for the 

keyboard group and 585 s (±90) for the mouse group. The average time on Day 22 is 575 

s (±118) for the keyboard group and 686 s (±242) for the mouse group.  

 

 

Figure 6.4. Learning and forgetting curves with standard error bars of two 

modalities, with a 6-day retention interval as a first return and two additional six-

day retention intervals. 

 

Figure 6.5 shows task performance of participants with a 12-day retention interval 

as a first return. The 12-day retention caused an increase in task completion time on Day 

10. The average time on Day 10 is 883 s (± 344) for the keyboard group and 878 s (±156) 

for the mouse group. The 6-day retention after the 12-day retention produced decrease in 

task completion time, showing that the 6-day retention can serve as a distributed learning. 

The average time on Day 22 is 598 s (±182) for the keyboard group and 654 s (±76) for 
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the mouse group. This task completion time on Day 22 approximately approached to the 

time on Day 4 (589 s for keyboard and 672 s for mouse).  

 

 

Figure 6.5. Learning and forgetting curves with standard error bars of two 

modalities, with 12-day retention interval as a first return. 

 

Figure 6.6 shows task performance of participants with an 18-day retention 

interval as a first return. The task completion time on Day 4 is 625 s (±148) for the 

keyboard group and 768 s (±111) for the mouse group. The keyboard group showed 

faster performance than that of the mouse group by approximate difference of 143 s. 

Then, after the 18-day retention, the task completion time on Day 22 is 1371 s (±328) and 

1222 s (±184). The keyboard group approximately took 149 s more than that of the 

mouse group.  

This result should remain tentative because of the small sample size here. But, it 

gives somewhat interesting notes: (a) learning motor skills, that is participants who have 

not used the vertical mouse before learned to use it for the task, can slow performance of 

users, and (b) once new motor skills are acquired, they can be less susceptible to decay 

than declarative knowledge retrievals (e.g., keyboard users use key-based commands but 

mouse users use menu-driven commands).  
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Figure 6.6. Learning and forgetting curves with standard error bars of two 

modalities, with 18-day retention interval as a first return. 

 

Performance on Day 4 and the First Return Day  

Participants in the keyboard group (n = 15) completed the task in 631 s and ones 

in the mouse group (n = 15) completed the task in 697 s on Day 4, shown in Table 6.2 

There is one minute delay on the task completion time between two groups of mouse and 

keyboard users. It was found that there was no sufficient evidence of the difference in 

task completion time on Day 4, t(28) = -1.55, p > .05. 

An interesting question arises from the data: why does the menu-based 

environment not help users to better learn the task? I presumed that the keyboard that 

participants used in this experiment is not novel. Participants actually started learning to 

use the keyboard before the onset of the experiment. In the meanwhile, the novel vertical 

mouse required participants to learn a new type of motor skills. It can be presumed that 

the motor skill acquisition could nullify the benefits from the learning-friendly 

environment of the menu driven task. 

Table 6.3 shows all participants’ task completion time in term of retention 

intervals and modality. It is observed that the 6K group on the First Return has lower task 

completion time than the one of the 6M group, 716 s for the keyboard and 929 s for the 

mouse group (around 213 s difference). The average task completion time of the 12K 
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group is 883 s and that of the 12M group is 878 s, indicating similar performance, around 

4 s difference. The average task completion time of the 18K group is 1371 s and that of 

the 18M is 1223 s, indicating around 148 s difference.  

More forgetting was observed in the mouse group with the short retention interval 

(6-day). In the intermediate retention interval (12-day), similar forgetting performance 

between the different modality groups was observed. In the long retention interval (18-

day), more forgetting in the keyboard group was observed.  

There is no statistically significant difference in the task completion time on the 

first return day, t(8) = -1.58, p > .05 for the 6-day retention interval, t(8) = 0.03, p > .05 

for the 12-day retention interval, and t(8) = 0.88, p > .05 for the 18-day retention interval.  

 

Table 6.2. Descriptive statistics on Day 4. 

R Modality N Mean SD SE t p 

6 K 5 679.63 124.39 55.63 
 M 5 653.54 127.25 56.91 
 Total 10 666.59 119.43 37.77 

t(8) = 0.33 0.75 

12 K 5 589.34   68.23 30.51 
 M 5 672.09 106.69 47.71 
 Total 10 630.72   95.03 30.05 

t(8) = -1.46 0.18 

18 K 5 625.38 148.83 66.56 
 M 5 768.33 111.92 50.05 
 Total 10 696.86 145.22 45.92 

t(8) = -1.73 0.12 

Total K 15 631.45 116.43 30.06 
 M 15 697.99 119.04 30.74 
 Total 30 664.72 120.54 22.01 

t(28) = -1.55 0.13 

Note: SE indicates Standard Error of Mean. 

 

Table 6.3. Descriptive statistics on the First Return Day. 

 

R Modality N Mean SD SE t p 

6 K 5 716.39 168.60 75.40 

 M 5 929.89 251.66 112.55 
t(8) = -1.58 0.15 

12 K 5 883.11 344.25 153.96 

 M 5 878.22 156.46 69.97 
t(8) = 0.03 0.98 

18 K 5 1371.33 328.80 147.05 

 M 5 1222.66 184.60 82.56 
t(8) = 0.88 0.40 

Note: SE indicates Standard Error of Mean. 
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The Boxplots in Figure 6.7 show task performance on Day 4 and the first return 

day in terms of retention interval and modality. On the x-axis, RM is a combined 

variable, indicating both retention interval and modality. For example, 6K indicates 

participants using a keyboard with 6-day retention interval and 6M indicates participants 

using a vertical mouse with 6-day retention interval. There are individual differences and 

also outliers in the 12M group on Day 4. As mentioned earlier, there is no modality effect 

on learning performance with the sample size (N = 30), leaving a suspicion of modality 

difference.  

 
(a) Day 4 vs. RM                                      (b) First Return vs. RM 

Figure 6.7. Boxplots showing task completion time (in sec.) on Day 4 and the first 

return by retention interval and modality factors.  

 

Modality and Retention Interval on Forgetting 

The task completion time on Day 4 can indicate the degree of learning. That is, 

the time on Day 4 plays a role as an indicator of how well participants have learned the 

given task. Therefore, I included the time on Day 4 as a covariate into the model below 

because the degree of learning can affect forgetting performance. R (three types of 

retention intervals) and modality (keyboard and vertical mouse users) are fixed factors.  

 

First Return = Day4 + R + Modality + R*Modality 

 

Table 6.4 shows the results of ANOVA for the task performance on the first 

return. The main effect of retention interval is significant, F(2, 27) = 9.96, p < .05. The 
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main effect of modality is not significant, F(1, 28) = 0.06, p > .05. There is no significant 

interaction effect between retention interval (R) and modality, F(2, 27) = 1.07, p > .05. 

The covariate effect (Day 4) is not significant, F(1, 28) = 0.02, p > .05.  

 

Table 6.4. ANOVA table for task performance on the first return. The model is task 

time on First Return = Day4 + R + Modality + R*Modality. 

 

Source df Sum of Squares Mean Square F p-value 

Model 6 1,508,069 251,344 3.84 0.008 
Intercept 1 795,225 795,225 12.14 0.002 

D4 1 1,517 1,517 0.02 0.880 
R 2 1,304,141 652,070 9.96 0.001* 

Modality 1 4,087 4,087 0.06 0.805 
R*Modality 2 140,274 70,137 1.07 0.359 

Error 23 1,506,240 65,488   
Total 30 33,030,267    

Corrected Total 29 3,014,309    

 

Now, let us determine which group of the mean task completion time is different 

from each other. I conducted multiple comparisons of the task completion time on the 

first return day with respect to retention interval shown in Table 6.5. 

The 6-day (R6) and 12-day (R12) retention intervals did not have a statistically 

significant difference with each other on the task completion time, t(18) = -0.53, p > .05. 

The 6-day (R6) and 18-day (R18) had significant difference on the task completion time, 

t(18) = -4.28, p < .05. Also, the 12-day (R12) and 18-day (R18) had significant difference 

on the task completion time, t(18) = -3.61, p < .05.  

 

Table 6.5. Pairwise comparisons of the task completion time on the first return day 

with respect to three different retention intervals (R6, R12, and R18).  

 

95% CI for difference 
R Mean Diff. SE n t(18) p 

LB UB 

R6 R12 -101.35 131.79 20 -0.77 0.45 -378.23 175.53 
R6 R18 -517.68 139.64 20 -4.86 0.00* -799.13 -236.23 
R12 R18 -416.33 115.28 20 -3.61 0.00* -658.52 -174.14 

Note: SE indicates Standard Error of Mean Difference. 

 



 133 

I also conducted multiple comparisons of the task completion time on the first 

return day in terms of each combination of both modality and retention interval. The 

comparison tests whether the difference between two combinations of modality and 

retention interval is significant. Table 6.6 shows the mean task completion time on the 

first return day with respect to both modality and retention interval. Table 6.7 shows 

pairwise comparisons of the mean task completion time on the first return day. 

 

Table 6.6. Mean task completion time (s) with standard deviation (SD) and standard 

error of mean (SE) by modality and retention interval on the first return day. 

 

R Modality n First Return Day Mean SD SE 

R6 Keyboard 5 Day 10 716.39 168.60 75.40 
 Mouse 5 Day 10 929.89 251.66 112.55 

R12 Keyboard 5 Day 16 883.11 344.26 153.96 
 Mouse 5 Day 16 878.22 156.46 69.27 

R18 Keyboard 5 Day 22 1,371.33 328.80 147.05 
 Mouse 5 Day 22 1,222.66 184.60 82.56 

Note: SE indicates Standard Error of Mean. 

 

For keyboard users, the 6-day (R6) and 18-day (R18) retention intervals resulted 

in significant differences on the task performance, t(8) = -3.96, p < .05. The 12-day (R12) 

and 18-day (R18) retention intervals had significant differences as well, t(8) = -2.29, 

p = .05. However, the 6-day (R6) and 12-day (R12) retention intervals did not show any 

significant differences of task performance, t(8) = -0.97, p > .05.  

For mouse users, there were no significant differences in the task completion time 

on R6 vs. R12, t(8) = 0.39, p > .05 and R6 vs. R18, t(8) = -2.10, p > .05. The task 

completion time on R12 vs. R18 produced significant differences, t(8) = -3.18, p < .05.  
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Table 6.7. Pairwise comparisons of the mean responses on the first return day. 

R Modality n df Mean Diff. SE t p 

R6 vs. R12 10 8 -166.72 171.43 -0.97   0.36 

R6 vs. R18 10 8 -654.95 165.25 -3.96   0.00* 

R12 vs. R18 

Keyboard 

10 8 -488.22 212.90 -2.29   0.05* 

R6 vs. R12 10 8 51.67 131.52 0.39   0.71 
R6 vs. R18 10 8 -292.77 139.58 -2.10   0.07 

R12 vs. R18 

Mouse 

10 8 -344.40 108.22 -3.18   0.01* 

Note: t(8, 0.05) = 2.31. SE indicates Standard Error of Mean Difference. 

 

What Forgetting Curves Look Like? 

To fit the forgetting curves, I simply approached to use the data on the first return 

day (i.e., Day 10 for the R6 group, Day 16 for the R12 group, and Day 22 for the R18 

group). I also considered the task completion time on the last training day because the 

value on the first return does not have any information on the previous learning, 

indicating how much participants forgot from the learning.  

A column of a variable, Y*, was generated to indicate the difference between the 

task completion time on the first return (First_Return) and the last learning on Day 4. The 

“First_Return” includes the task completion time on Day 10, Day 16, or Day 22. The 

variable, Y*, is a linear transformation to preserve the shape of the fitted forgetting curve. 

That is, the task completion time at Day 4 serves as a baseline from which I am able to 

measure the quantitative amount of forgetting.  

There were a couple of values of Y* being negative (3 out of 15 participants in 

the keyboard group, and 1 out of 15 participant in the mouse group). This indicates that 

some participants continue to learn after the retention interval. It was observed that S9, 

S26, and S34 from the keyboard users continued to learn, producing negative values, 

shown in Table 6.8. It was also observed that S17 from the group of mouse users 

continued to learn, producing negative values, shown in Table 6.9.  

A negative value makes it impossible to fit exponential and power models 

because logarithms must be taken to linearize the models. To address this problem, I 

considered a participant who continues to learn as someone whose forgetting is null. I 

assigned a very small number (i.e., Y* = 0.00001) by replacing the negative, as seen in 

Table 6.8 and Table 6.9. 
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Table 6.8. Task completion time (in second) for keyboard users at three retention 

intervals (R) of 6-, 12-, and 18-days 

 

Participant Modality R Day 4 First Return Y* 

S9 K 6 518.02 438.23 0.00001 
S15 K 6 650.84 696.49 45.65 
S16 K 6 620.74 861.93 241.22 
S26 K 6 790.11 753.18 0.00001 
S31 K 6 818.45 832.11 13.66 

S11 K 12 553.53 1,389.98 836.45 
S27 K 12 665.77 904.04 238.27 
S32 K 12 512.20 631.55 119.35 
S34 K 12 558.21 504.93 0.00001 
S40 K 12 657.01 985.05 328.04 

S12 K 18 552.44 1,079.83 527.39 
S14 K 18 619.89 1,867.81 1,247.93 
S19 K 18 825.27 1,312.73 487.47 
S20 K 18 698.67 1,089.77 391.11 
S23 K 18 430.64 1,506.51 1,075.88 

Note: In the table, Y* indicates the difference between the task completion time at Day 4 
and the one at the first return day or 0.00001, if the difference is negative. 
 

Table 6.9. Task completion time (in second) for mouse users at three retention 

intervals (R) of 6-, 12-, and 18-days. 

 

Participants Modality R Day 4 First Return Y* 

S7 M 6 624.41 635.25 10.85 
S17 M 6 807.67 764.61 0.00001 
S29 M 6 476.24 1,288.86 812.62 
S30 M 6 619.02 1,031.59 412.57 
S33 M 6 740.37 929.12 188.75 

S5 M 12 665.36 1,057.97 392.61 
S8 M 12 638.56 770.44 131.88 

S35 M 12 704.63 975.51 270.88 
S37 M 12 528.85 670.69 141.84 
S38 M 12 823.04 916.50 93.46 

S13 M 18 810.63 1,428.24 617.62 
S18 M 18 638.50 1,325.70 687.20 
S21 M 18 793.25 1,304.88 511.63 
S24 M 18 919.81 1,015.10 95.30 
S39 M 18 679.48 1,039.38 359.90 

Note: In the table, Y* indicates the difference between the task completion time at Day 4 
and the one at the first return day, or 0.00001 if the difference is negative. 
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First, I looked at the performance at Day 4 and First Return with 6-, 12-, or 18-

day retention interval. The reason is that the data on Day 4 provides information on how 

well participants learned the task and the data on the first return provides information on 

how much acquired skills are forgotten. 

As seen in Figure 6.8, it is observed that participants in R18 produces higher 

values of task completion time on the first return, followed by R12, and R6 for those who 

used mouse and for those who used keyboard.  

 

 

Figure 6.8. Scatter plots of task completion time (in sec.) on the first return made by 

both keyboard (K) and mouse (M) users. The numbers on the right side of points 

show retention intervals (6, 12, or 18). 

 

Figure 6.9 and Figure 6.10 show estimated curves based on the observed data. 

Here, I considered power, exponential, linear, and quadratic models to estimate the curve. 

However, the quadratic model has the highest R2, but it is not realistic to compare the 

quadratic model to other models because of the different number of predictors. The 

quadratic model does not necessarily demonstrate a superior model.  

For the curve estimation of keyboard users, the linear model (p = .002) shows 

statistical significance on the fitted curve. Other power and exponential models exhibited 

similar performance and both models are marginally significant (p <= .05), shown in 

Table 6.10.  

For the curve estimation of mouse users, the power model has the smallest p-

value (p = .13), shown in Table 6.11. It is unfortunate that all models are insignificant. 
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There were large individual differences leading to insignificant curve estimation among 

the models. The result here should remain tentative. The forgetting trends across the 

different retention intervals were recognizable within participants. 

 

 

Power: 

! 

Y* = 7E " 08x
7.7843 , 

! 

R
2= 0.26 

Exponential: 

! 

Y* = 0.0014e
0.7274x , 

! 

R
2 = 0.26 

Linear: 

! 

Y* = 57.154x " 315.69 , 

! 

R
2 = 0.52 

Quadratic: 

! 

Y* = 2.739x
2
" 8.584x +13, 

! 

R
2 = 0.53 

 

Figure 6.9. Fitted forgetting curves for keyboard users. 

 
 

Table 6.10. Statistical output of curve estimation (keyboard users). 

 

Model R
2 df F p 

Linear 0.52 13 14.01 0.00 

Quadratic 0.53 12 6.85 0.01 

Power 0.26 13 4.54 0.05 

Exponential 0.26 13 4.65 0.05 

Note: The dependent variable is Y* and the independent variable is Return Day (6, 12, or 
18). 
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Power: 

! 

Y* = 0.0064x
3.914 , 

! 

R
2= 0.17 

Exponential: 

! 

Y* =1.1432e
0.3467x , 

! 

R
2 = 0.15 

Linear: 

! 

Y* =14.114x +145.77 , 

! 

R
2 = 0.08 

Quadratic: 

! 

Y* = 4.542x
2
" 94.893x + 690.8 , 

! 

R
2 = 0.18 

 

Figure 6.10. Fitted forgetting curves for mouse users. 

 

Table 6.11. Statistical output of curve estimation (mouse users). 

Model R
2 

Df F p 

Linear .08 13 1.12 .31 

Quadratic .18 12 1.30 .31 

Power .17 13 2.59 .13 

Exponential .15 13 2.33 .15 

Note: The dependent variable is Y* and the independent variable is Return Day (6, 12, or 
18). 

 

6.2.3 Relearning 

As mentioned before, participants completed serial training sessions for four days, 

and then they were made multiple returns for a test. I presumed that the test on the first 

return day, which is designed to measure forgetting, is able to serve as a relearning of the 

task for the participants as a side effect. Thus, analysis on these additional tests after the 
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first return can provide an understanding of the relearning effect in terms of two 

modalities.  

Participants in the R6 group made the first return on Day 10 after the serial 

training sessions. Six days after this first return, all participants including mouse and 

keyboard users made a return for an additional test on Day 16. Table 5.13 and Table 5.14 

show descriptive statistics and test statistics of Day 10 and Day 16. The task completion 

time of the R6-Keyboard group was reduced by 76 s (from 716 s ± 169 to 640 s ± 178). 

The task completion time of the R6-Mouse group was reduced by 345 s (from 930 s ± 

252 to 585 s ± 90).  

I conducted Paired-Samples Test to compare the mean task completion time on 

Day 10 and Day 16. For mouse users, there is a significant difference of the mean task 

completion time on Day 10 and Day 16, t(4) = 3.39, p = .03. For keyboard users, there is 

no significant evidence of the differential relearning effects, t(4) = 2.03, p > .05.  

 

Table 6.12. The mean task completion time (s) with standard deviation and 

standard error of mean on Day 10 and Day 16. 

 

Modality Day N Mean SD SE 

Keyboard Day 10 5 716.39 168.60 75.40 
 Day 16 5 640.17 177.51 79.38 

Mouse Day 10 5 929.89 251.66 112.55 
 Day 16 5 585.39 90.12 40.30 

 

Table 6.13. Comparison of the mean difference and the paired-samples test statistics 

on Day 10 and Day 16 of keyboard and mouse users. 

 

Modality Day Mean SD SE t(4) p 

Keyboard Day 10 Day16 76.22 84.14 37.63 2.03    0.11 
Mouse Day 10 Day 16 344.50 227.28 101.64 3.39    0.03* 

 

Participants in the R12 group made the first return on Day 16 after the serial 

training sessions. Six days after this first return, all participants including mouse and 

keyboard users made a return for an additional test on Day 22. Table 5.15 and Table 5.16 

show descriptive statistics and test statistics of Day 16 and Day 22. 
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The task completion time of the R12-Keyboard group was reduced by 285 s (from 

883 s ± 344 to 598 s ± 182). The task completion time of the R12-Mouse group was 

reduced by 224 s (from 878 s ±156 to 655 s ± 77).  

I conducted the paired-samples t-test to compare the mean task completion time 

on Day 16 and Day 22, as well. For mouse users, there is statistical significance of 

difference the mean task time on Day 16 and Day 22, t(4) = 3.32, p < .05. For keyboard 

users, I have to embrace there is no statistical difference by the relearning, t(4) = 2.60, 

p > .05. However, the p-value is very close to the reject area, leaving the need for a 

further investigation to find differences. Figure 6.11 shows the plots of the relearning by 

different modalities and retention intervals.  

 

Table 6.14. The mean task completion time (s) with standard deviation and 

standard error of mean on Day 16 and Day 22. 

 

Modality Day N Mean SD SE 

Keyboard Day 16 5 883.11 344.26 153.96 
 Day 22 5 598.63 182.46 81.60 

Mouse Day 16 5 878.22 156.46 69.97 
 Day 22 5 654.63 76.96 34.42 

 

Table 6.15. Comparison of the mean difference and the paired-samples test statistics 

on Day 16 and Day 22 of keyboard and mouse users. 

 

Modality Day Mean SD SE t(4) p 

K Day 16 Day 22 284.48 244.54 109.36 2.60    0.06 
M Day 16 Day 22 223.59 150.46 67.29 3.32    0.03* 
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Figure 6.11. The relearning effects of the four groups 

(R6-Keyboard, R6-Mouse, R12-Keyboard, and R12-Mouse). 

 

6.3 Subtask Analysis 

As mentioned earlier, the Dismal spreadsheet task consists of 14 subtasks. Each 

subtask has different attributes of knowledge. For example, the subtask of filling in the 

normalization column requires more cognitive problem solving capability from 

participants than inserting two rows in the spreadsheet. Thus, analysis of subtasks 

provides deeper understanding of knowledge and skills attributes. Here, I only report the 

analysis of the first subtask to test the model and its theory that were discussed in 

Chapter 3. The subtask analysis can provide important benefits to understanding human 

cognition and learning and to validate accuracy of general performance analysis. That is, 

I can examine whether the general performance analysis was correct or not, by looking 

inside the data. I can find out whether participants’ performance of the Dismal 

spreadsheet task is comprised of 14 subtasks. Also I can find out whether participants’ 

performed what they learned to complete each subtask. For example, I can examine if a 

participant retrieves a correct equation for his/her frequency calculation or normalization 

calculation. The subtask analysis helps me acknowledge that there might be data that I 

must throw away or that I should keep. Furthermore, each subtask was designed to 
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represent different knowledge and skills. By comparing each subtask’s learning and 

forgetting results, it is promising to better understand human cognition. 

Raw data gathered from RUI have two types: (a) data from mouse users and 

(b) data from keyboard users. The RUI data of mouse users consists of activities such as 

keystrokes, mouse moves, and mouse clicks. The RUI data of keyboard users consists of 

keystrokes only. Figure 6.12 shows how RUI data look like.  

 

 

Figure 6.12. Raw data from RUI for a subtask analysis. 

 

To analyze RUI data from mouse users, it is necessary to identify the location of 

visual objects in pixels that users look at. Table 6.16 gives locations in pixels of visual 

objects that participants look at to perform the subtask 1, “OPEN FILE”, and the subtask 

2, “CALCULATE FREQUENCY”. The pixel information of the objects serves as an 

important criterion to divide each subtask among the whole 14 subtasks because the user 

makes a mouse click onto the visual object during the performance. RUI records this 

mouse click. Based on these mouse clicks made by users, I visually examined the RUI 

output to extract each subtask and its timing information but this could be automated. 
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Table 6.16. Locations of visual objects (e.g., menus, a folder, or a file)  

that users look at and make a click on. 

Visual objects X Y 
 Lower  Upper  Lower Upper 

Subtask 1: OPEN FILE     
FILE 108 150 0 24 

OPEN FILE 108 366 48 60 
Experiment 966 1044 564 576 

Normalization.dis 942 1068 468 480 
CHOOSE 1020 1092 732 750 

Subtask 3: CALCULATE FREQUENCY     
Cell B6 678 744 366 378 
Cell B7 678 744 378 396 
Cell B8 678 744 396 414 
Cell B9 678 744 414 426 
Cell B10 678 744 426 438 
dEdit 396 450 0 24 

Edit cell (E) 396 630 102 114 

 Note: The unit of the value is pixel. The screen that participants used in the experiment is 
Apple Cinema HD Display 23" (1680*1050 resolution). 

 

I plotted the learning performance of the subtask 1, OPEN FILE, from the 15 

mouse users. Table 6.17 provides descriptive statistics on the learning performance. As 

seen in Figure 6.13, the learning curve fits to a Power function, 

! 

y = 24.4x
"0.45, R2 = 0.95. 

The blue dotted line indicates the Power function that fits to the plots of the 15 mouse 

users performance. Figure 6.14 shows the log-log scale of the learning curve.  

 

Table 6.17. The mean task completion time of 15 mouse participants, performing 

the subtask 1, for learning sessions. 

 

  Day 1 Day 2 Day 3 Day 4 

Mean 25.42 16.49 14.82 13.78 
SD 13.82 8.62 5.98 3.94 Mouse (M) 

SE 3.57 2.23 1.55 1.02 
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Figure 6.13. The mean task completion time with standard error bars to represent 

learning performance of mouse users performing the subtask 1 (n = 15). 

 

 

 

Figure 6.14. The log-log scale of the learning curve. 

 

Figure 6.15 shows plots of learning and forgetting performance by three types of 

retention intervals (R6, R12, and R18). The performance on the first return day with a 

six-day retention did not produce forgetting but learning by 1 s decrease in task 

completion time, that is, 13.5 s (

! 

±4.8) on Day 4 and 12.5 s (

! 

±2.6) on Day 10. The 

performance on the first return with a 12-day retention increased by 3 s, that is 14.5 s 
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(

! 

±4.8) on Day 4 and 17.9 s (

! 

±8.1) on Day 16. The performance on the first return with a 

18-day retention increased by 5 s, that is 13.3 s (

! 

±2.7) on Day 4 and 18.4 s (

! 

±5.7) on 

Day 22. Paired samples t-test revealed that there is only significant difference in the task 

completion time on Day 4 and Day 22, t(4) = -2.83, p < .05. 

 

 

Figure 6.15. Learning and forgetting performance (the mean task completion time 

with standard error bars) of 15 mouse users, performing the subtask 1. 

 

6.4 Analysis on Speed and Accuracy 

I examined whether there is a speed-accuracy tradeoff. To judge the accuracy of 

the performance, an error-free expert behavior, based on the Keystroke-level model (see 

Chapter 3), was used as a reference. Table 6.18 shows the number of actions (keystrokes, 

mouse move, and mouse clicks) from the task analysis that can be used to compare the 

number of errors.  

 

Mouse Users 

I counted the number of mouse clicks that mouse users made during the task 

performance. Based on the KLM-GOMS analysis, the Dismal spreadsheet task is 

completed by 125 mouse clicks and 125 mouse movements. When it comes to an 

accurate performance, the number of mouse clicks that exceeds 125 can be viewed as 
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mistakes. In addition, I also counted the number of “DELETE” keys during the task 

performance. The number of mouse clicks indicates the accuracy when using the vertical 

mouse, and the number of “DELETE” keys indicates the accuracy of using the keyboard. 

 

Table 6.18. Summary of the error-free expert behavior. 

 
 
 
 
 
 
 
 
 

 
 

Table 6.19 shows the number of mouse clicks that the vertical mouse users made 

during the four days of learning sessions. An expert would make 125 times of mouse 

clicks. The number of mouse clicks is greater than that of the expert user, indicating more 

training would be needed for participants to acquire expert performance.  

 

Table 6.19. The mean number of mouse clicks  

during the four serial learning sessions (n = 15). 

 

 Day 1 Day 2 Day 3 Day 4 

Mean 172.13 154.40 148.13 153.60 
SD 35.86 16.82 20.61 21.65 
SE 9.26 4.34 5.32 5.59 

 

Figure 6.16 shows plots of the mean number of mouse clicks. The number of 

mouse clicks decrease until Day 3, but the number increases on Day 4. As I mentioned in 

the Section 6.2.1, the learning performance followed the Power law, indicating continual 

decrease in the task completion time. The mean task completion time on Day 4 by mouse 

users is 697 s, which is the fastest performance. However, on Day 4, mouse users made 

more errors in using the vertical mouse. 

 Mouse users Keyboard users 

Keystrokes 730 1,030 
Mouse move 125 N/A 
     Menu Selection 87 N/A 
     Others 38 N/A 
Mouse clicks 125 N/A 
     Menu selection 87 N/A 
     Others 38 N/A 
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Figure 6.16. The mean number of mouse clicks by fifteen mouse users during the 

four serial learning sessions with standard error bars. 

 

Table 6.20 and Figure 6.17 show that how many times mouse users made a press 

on the “DELETE” key. Perfect performance would not press the “DELETE” key, but all 

participants made a press on that key. During the learning session, the average number of 

pressing the “DELETE” key decreases except for the number on Day 4. This pattern is 

similar to the average number of mouse clicks, as seen in Figure 6.16 and Figure 6.17. 

The correlation between the number of mouse clicks and delete keys is high, R2 
= 0.98.  

 

Table 6.20. The mean number of pressing the “DELETE” key  

during the four serial learning sessions (n = 15). 

 

 Day 1 Day 2 Day 3 Day 4 

Mean 45.00 33.07 27.73 29.93 
SD 28.34 14.33 15.47 18.68 
SE 7.32 3.70 4.00 4.82 
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Figure 6.17. The mean number of pressing the “DELETE” key by fifteen mouse 

users during the four serial learning sessions with standard error bars. 

 

 

Table 6.21 shows the mean number of mouse clicks made by mouse users for the 

first return day (e.g., Day 10 for the 6-day retention group, Day 16 for the 12-day 

retention group, and Day 22 for the 18-day retention group). All of three retention groups 

showed increase in the number of mouse clicks. Paired-samples t-test revealed that there 

is only significant difference between the number of mouse clicks on Day 4 and Day 10, 

t(4) = -3.1, p < .05. 

 

Table 6.21. The number of mouse clicks on the first return day. 

 

 Retention Day 10 Day 16 Day 22 

Mean 227.80   
SD 71.44   
SE 

6-day 
(n = 5) 

31.95   

Mean  175.60  
SD  31.29  
SE 

12-day 
(n = 5) 

 13.99  

Mean   174.80 
SD   10.52 
SE 

18-day 
(n = 5) 

  4.70 
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Table 6.22 shows the mean number of pressing the “DELETE” key during the 

task performance on the first return day (6-, 12-, and 18-day) after the learning. Paired 

samples t-test revealed that there is only significant difference between the number of 

delete keys between Day 4 and Day 22, t(4) = -3.9, p < .05. 

There is no speed-accuracy tradeoff overall. Both errors and time decrease for 

mouse users and keyboard users with practice. However, the last day maybe have some 

tradeoffs.   

 

Table 6.22. The number of delete keys on the first return day by mouse users. 

 

 Retention Day 10 Day 16 Day 22 

Mean 86.00   
SD 48.29   
SE 

6-day 
(n = 5) 

21.59   

Mean  65.00  
SD  37.76  
SE 

12-day 
(n = 5) 

 16.89  

Mean   93.00 
SD   46.47 
SE 

18-day 
(n = 5) 

  20.78 

 
 

Keyboard Users 

I referred to pressing the “DELETE” key as making a mistake during the task 

performance for the keyboard users. Keyboard users would use the DELETE key when 

they pressed a wrong or unintended key. I counted the number of times that keyboard 

users pressed the DELETE key, and the mean number of keys is shown in Table 6.23.  

 

Table 6.23. The mean number of delete keys made by users during the performance 

for four serial learning sessions (n = 15). 

 

 Day 1 Day 2 Day 3 Day 4 

Mean 39.93 33.27 34.07 35.87 
SD 22.03 16.91 27.33 26.58 
SE 5.69 4.36 7.06 6.86 
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Figure 6.18 shows how many times keyboard users pressed “DELETE” keys 

during the task, for four serial learning sessions. While the task completion time 

continually decreases (see Section 6.2.1), the number of “DELETE” keys (making errors) 

slightly increases rather than decreases after the learning session on Day 2. 

 

Figure 6.18. The mean number of pressing “DELETE” keys by Keyboard users for 

four serial learning sessions (n = 15) with standard error (SE) bars. 

 

Table 6.24 shows the mean number of the “DELETE” key on the first return day. 

Paired samples t-test revealed that there is only significant difference between the number 

of the “DELETE” key between Day 4 and Day 22, t(4) = -4.58, p < .05. 

 

Table 6.24. The mean number of delete keys made by Keyboard users during the 

performance for four serial learning sessions (n = 15). 

 

 Retention Day 10 Day 16 Day 22 

Mean 59.80   
SD 43.96   
SE 

6-day 
(n = 5) 

19.66   

Mean  71.40  
SD  78.59  
SE 

12-day 
(n = 5) 

 35.15  

Mean   94.40 
SD   32.32 
SE 

18-day 
(n = 5) 

  14.46 



 151 

6.5 Understanding the Vertical Mouse 

Input modality by using the keyboard and the vertical mouse did not produce any 

significant differences as seen in the Section 6.2.1 and 6.2.2. This result raises a question 

that how the vertical mouse is different and novel from the normal mouse.  

To address this question, I calculated the index of difficulty (ID) of the first 

subtask for thirteen subjects. In general, the following is offered as the index of difficulty 

for a motor task:  

 

! 

ID = log2(2A /W )       Equation 6.1 

A = the amplitude, which is the distance of the center of the target from the 

starting location 

W = the target width 

 

The index of performance (IP) is calculated by dividing ID by the movement time 

(MT) to complete a motor task. Also, by regressing MT on ID, we can get the regression 

line equation as the following form where a and b are empirically determined constants, 

which are obtained by conducting a regression analysis on the movement time data: 

 

! 

MT = a + blog2(2A /W )       Equation 6.2 

 

The ID part of Equation 6.2 has variants to improve the data fit to the model, as 

shown in Equation 6.3 which was proposed by Welford (1968) and Equation 6.4 which 

was proposed by MacKenzie (1989). In ACT-R, movement time is calculated based on 

Equation 6.3 without the constant of a. MacKenzie (1992) stated that Equation 6.4 

prevents ID from being a negative. 

 

! 

MT = a + blog2(A /W + 0.5) = a + bID1    Equation 6.3 

 

! 

MT = a + blog2(A /W +1) = a + bID2     Equation 6.4 
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Using the gathered RUI data, I calculated the actual movement time to point and 

click FILE from home which is the center of the task screen, that is, around x = 840, y = 

525 pixels. Figure 6.19 shows the shortest path from home to FILE.  

 

 

 

 

 

Figure 6.19. The shortest trajectory from home to FILE  

in the Dismal spreadsheet task. 

 

As seen in Figure 6.19, the amplitude (A) is 877 pixels, which is the distance from 

home to the object (FILE) that a user points using the vertical mouse. The target width 

(W) is 42 pixels.  
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The index of difficulty (ID) is calculated based on the three equations (Equation 

6.2, 6.3, and 6.4). The ID ranges from 4.42 to 5.38. Table 6.25 summarizes different ID 

values. I, in this analysis, chose to use the ID equation of 

! 

log2(A /W +1) , because it 

prevents the ID being negative. 

 

Table 6.25. Index of Difficulty of pointing the “FILE” object. 

Equation Index of Difficulty (ID) 

! 

log2(2A /W )  5.38 

! 

log2(A /W + 0.5)  4.42 

! 

log2(A /W +1)  4.45 

 
 

I found several studies that investigated prediction of the mouse movement time 

using Fitts’ law. In 1978, Card, English, and Burr (1978) evaluated four devices, 

including a mouse, a rate-controlled isometric joystick, step keys, and text keys, to select 

text on a CRT display. The distance (A) to select the target text from starting point is 1, 2, 

4, 8, or 16 cm. The target sizes are 1, 2, 4, or 10 characters14. All targets are a group of 

characters. Card, English, and Burr used a version of Fitts’ law by Welford that is 

Equation 6.3, to find the movement time of different devices. The equation predicting MT 

(in s) for the mouse is 

! 

MT =1.03+ 0.096ID
1
, 

! 

R
2 = 0.83.  

MacKenzie, Sellen, and Buxton (1991) also compared input devices (e.g., 

Macintosh mouse, Wacom tablet and stylus, and Kensington trackball) in pointing and 

dragging tasks. For pointing tasks, twelve human participants who are computer literate 

were asked to point an object with A = 256 pixels and W = 16 pixels. The equation 

predicting MT (in s) for the Macintosh mouse is 

! 

MT = 0.107 + 0.223ID , R2 = 0.98.  

Based on the investigation by Card, English, and Burr, when the ID is 4.45, the 

movement time is predicted to be 1.46 s. I can argue that the movement time to point 

FILE using a normal mouse can be 1.46 s. Based on the investigation by MacKenzie, 

Sellen, and Buxton, when the ID is 4.45, the movement time is predicted to be 0.89 s. To 

compare this movement time with a normal mouse, thirteen participants’ learning 

                                                
14 One character is 0.246 cm. 
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performance using the vertical mouse was obtained from the raw RUI data. Table 6.26 

shows the mean time for the movement. 

 

Table 6.26. The movement time to point FILE using the vertical mouse  

for four serial learning sessions. (n = 13). All units are seconds. 

 

 Day 1 Day 2 Day 3 Day 4 

Mean 8.27 4.48 5.83 5.41 
SD 5.19 2.77 4.28 2.73 
SE 1.44 0.77 1.19 0.76 

 

The movement time of the vertical mouse is larger than that of a normal mouse. 

Users with a normal mouse could take less than 2 s to this movement, but users with the 

vertical mouse could take more than 4 s. Longer time to move can indicate harder to use. 

Thus, it is argued that the vertical mouse that was chosen to use in this dissertation study 

is different from the normal mouse. The vertical mouse is not only harder to use but also 

more novel than the normal mouse.   

 

6.6 Summary of Human Data 

Participants (N = 30) performed a set of spreadsheet tasks. The spreadsheet task 

was novel enough to measure participants learning and forgetting. All of the participants 

completed the learning sessions for four serial trials. Both keyboard and mouse users 

followed and confirmed the Power Law of learning.  

Interestingly, both keyboard and mouse users did not lead to significant 

differences in learning performance over the time range of four days of training and for 

the population in this dissertation. Similar to the famous log-log linear plot of skill 

acquisition (Newell & Rosenbloom, 1981), the investigation of the spreadsheet skill 

acquisition, here, confirmed the Power law of learning.  

When it comes to forgetting, the main purpose was to find difference on 

forgetting performance by two modalities and retention intervals. To investigate the 

forgetting phenomena, I investigated the first return day after serial trials of learning 

session. For keyboard users, the 6-day (R6) and 18-day (R18) retention intervals resulted 
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in significant differences on the task performance, t(8) = -3.96, p < .05. The 12-day (R12) 

and 18-day (R18) retention intervals had significant differences as well, t(8) =  2.29, 

p = 0.051 . For mouse users, the task completion time on R12 vs. R18 produced 

significant differences, t(8) = -3.18, p < .05. 

Multiple returns for a test after the learning session allowed me to investigate the 

relearning effect of the Dismal spreadsheet task. There were no significant differences on 

the learning performance by two modality groups (mouse vs. keyboard users). Unlikely, 

with regard to relearning, I found interesting results that relearning can be differential 

between the participants in the mouse group and the ones in the keyboard group. For 

mouse users, there is a significant difference of the mean task completion time on Day 10 

and Day 16, t(4) = 3.39, p < .05. For keyboard users, there is no significant evidence of 

the differential relearning effects, t(4) = 2.03, p > .05. In addition, for mouse users, there 

is statistical significance of difference the mean task time on Day 16 and Day 22, 

t(4) = 3.32, p < .05. For keyboard users, I have to embrace there is no statistical 

difference by the relearning, t(4) = 2.60, p > .05. It is found that there is statistical 

evidence that relearning effects can be affected by the modality and retention interval. 
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Chapter 7  

Comparison of the Model and Human Performance 

In this section, I test the ACT-R theory and the Skill Retention Model by 

comparing the model performance with the human performance.  

7.1 Why Do a Comparison? 

A model that is based on a sound theory can play a role of a surrogate user in 

simulating and predicting human behavior. Using a model prediction, if we assume the 

model prediction is reliable, can be cost effective in decision-making process that 

involves human operators.  

For example, if I want to schedule training sessions for pilots, I need to analyze 

previous training performance and predict future performance. Because gathering data 

from pilots is not inexpensive, a model can produce cost-effective data for prediction and 

scheduling as long as the model provides an accurate representation of human behavior. 

Thus, validating a cognitive model is very important issue when it comes to 

simulation and modeling. A cognitive model validation can provide a better 

understanding of whether a model has an accurate representation of human behavior.  

7.2 How to Validate? 

Campbell and Bolton (2005) provided a useful description of how to validate 

models in two ways: (a) Qualitative validation and (b) Quantitative validation. As 

qualitative model validation, one can gather validation evidence of the model by asking 

subject matter experts to assess the model. For example, it is possible to gather validation 

evidence from a modeling and simulation community (e.g., the ACT-R annual workshop 

or the ACT-R summer school). This is often referred as face validity.  

In quantitative model validation, the goodness-of-fit measures are used to 

compare two sets of data. The goodness-of-fit measures can be classified into two types 

of measures: (a) the trend relative magnitudes, and (b) deviation from exact data location 

(Schunn & Wallach, 2005). The trend relative magnitude can be described by 

! 

r
2 . Schunn 

and Wallah (2005) stated that the measures of relative trend are appropriate when the 
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dependent variable is an interval or ratio scale (e.g., frequency counts, reaction time, or 

proportions). The common ways to capture this trend include Pearson correlation 

coefficient (

! 

r ) and 

! 

r
2 . The deviation from data point can be described by RMSD (root 

mean squared deviation) and RMSSD (root mean squared scaled deviation). It is 

important to note that a model can fit the trends of a dataset, but cannot completely 

capture the exact locations of the data (Schunn & Wallach, 2005). 

The most frequently used measure of the goodness-of-fit to exact location is the 

Mean Squared Deviation (MSD) or the Root Mean Squared Deviation (RMSD). The 

model mean is represented by 

! 

m
i
 and the data mean is represented by 

! 

d
i
. The number of 

points 

! 

i  to be compared is represented by 

! 

k . Other measures to exact location include the 

Mean Absolute Deviation (MAD), the Mean Scaled Absolute Deviation (MSAD), and the 

Root Mean Scaled Deviation (RMSD). These measures are listed in Table 7.1.  

 

Table 7.1. Quantitative measures of the goodness-of-fit to exact data location. 

Measure Equation 

Mean Squared Deviation (MSD) 

! 

(m
i
" d

i
)
2

i=1

k

#

k
 

Root Mean Squared Deviation (RMSD) 

! 

(m
i
" d

i
)
2

i=1

k

#

k
 

Mean Absolute Deviation (MAD) 

! 

m
i
" d

i
i=1

k

#

k
 

Mean Scaled Absolute Deviation (MSAD) 

! 

m
i
" d

i
n
i

ks
i

i=1

k

#  

Root Mean Squared Scaled Deviation (RMSSD) 

! 

(m
i
" d

i
)
2
n
i

ks
i

2
i=1

k

#  

Note: 

! 

s
i
 indicates the standard deviation for each data mean, and 

! 

n
i
 indicates the number 

of data values contributing to each data mean 

! 

d
i
.  

 

For the comparison of the model to data, I am using two measures of the relative 

trend magnitude (

! 

r
2) and the deviation from the exact data location (MSD, RMSD or 

RMSSD).  
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! 

MSD =
(m
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i
)
2

i=1

k

#

k
      Equation 7.1 

! 

RMSD = MSD =
(m

i
" d

i
)
2

i=1

k

#

k
    Equation 7.2 

  

! 

RMSSD =  

! 

(m
i
" d

i
)
2
n
i

ks
i

2
i=1

k

#      Equation 7.3 

 

7.3 Results and Discussion 

This section presents results by comparing the human data with the model data. 

First, I compared the mean task completion time of 15 mouse users and 15 keyboard 

users performing the Dismal spreadsheet tasks with the learning theory of the Power 

Law. Second, I compared the 15 mouse users data performing the subtask 1, OPEN FILE, 

with the Skill Retention Model performance. 

7.3.1 Power Law of Learning with Data 

I tested the theory of Power law of learning, on which ACT-R is basically 

grounded, against the human data. The data were gathered from mouse users (n = 15) 

performing the Dismal spreadsheet tasks (all subtasks). Figure 7.1 shows plots of data 

and the Power curve.  

 

 

Figure 7.1. Plots to compare the mouse users’ data with the Power curve.  

r
2
 is 0.98, RMSD is 115.1, and RMSSD is 2.2. 
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The Power curve to fit is 

! 

A + BN
"b , with 

! 

A = 0, 

! 

B =1200 , and 

! 

b = 0.5 . N 

indicates the trial numbers in integers. The R2 is 0.98, indicating a good trend between 

data and the theory. The RMSSD is 2.2, indicating a good location between data and the 

theory. It is concluded that the Power law can explain mouse users’ learning performance 

for this Dismal spreadsheet task.  

Figure 7.2 shows plots of keyboard users’ data and the Power curve. The data 

were gathered from keyboard users (n = 15) performing the Dismal spreadsheet tasks (all 

subtasks). The Power curve to fit is 

! 

A + BN
"b , with 

! 

A = 0, 

! 

B =1500 , and 

! 

b = 0.5 . The R2 

is 0.99, showing a good trend between data and the theory. The RMSSD is 2.8, indicating 

a good location between data and the theory. Like mouse users’ performance, keyboard 

users’ learning performance is well fitted to the Power law of learning.  

 

 

Figure 7.2. Comparison of the keyboard users’ data with the Power curve.  

r
2
 is 0.99, RMSD is 107.5, and RMSSD is 2.8. 

 

7.3.2 The ACT-R Skill Retention Model with Data 

I compared the ACT-R Skill Retention Model with human data. The model 

performance was gathered from the 15 model subjects performing the subtask 1, OPEN 

FILE, from the Dismal spreadsheet tasks. Human subjects (n = 15) also performed the 

same task the model did.  

Figure 7.3 shows plots of comparing the model with data, resulted in R2= 0.78, 

and RMSSD = 1.8. The model can predict 78% of the human learning in this specific task. 

Thus, it is concluded that the ACT-R Skill Retention Model acceptably predicted the 
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learning performance of the subtask 1 in the Dismal spreadsheet task. However, this 

result leaves challenges that how we can increase the predictability of models for human 

behavior representations.  

 

 

Figure 7.3. Comparison of the model with data. 

 

7.4 Summary of the Comparison 

The ACT-R model and its theory were tested against the human data that were 

gathered and investigated in Chapter 5. When it comes to the learning theory in ACT-R, 

the Power Law of learning gave a satisfactory comparison (i.e., a good trend and a good 

location) with the human data of a whole set of the Dismal spreadsheet tasks, r2 = 0.98 

and RMSSD = 2.2 for mouse users, and R2 = 0.99 and RMSSD = 2.8 for keyboard users. 

The first subtask of OPEN FILE was modeled in ACT-R and the model 

successfully predicted the learning performance. However, testing forgetting performance 

of the model is not able to be completed in this dissertation study due to the current 

scarcity of forgetting mechanism in ACT-R. In the human data, I found that the mean 

task completion time followed the Power Law as seen in Figure 6.16. The model was 

tested against the data, r2=0.78 and RMSSD = 1.8. I argue that this prediction for learning 

performance by the ACT-R skill retention model is quite successful and satisfactory.  
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Chapter 8  

Conclusions 

This chapter summarizes findings, contributions, implications, and future work 

arising from investigating learning and forgetting of knowledge and skills in this 

dissertation study. As noted earlier in Chapter 1, the motivating problem in my 

dissertation study is procedural knowledge and skills decay. To better understand 

learning and forgetting skills, I took two major approaches: (a) Build a cognitive model, 

and (b) Investigate learning and forgetting skills in a laboratory setting.  

Psychological experiments have been a dominant method to investigate and 

understand human behavior. Also, there has been an active development towards a 

unified theory of cognition to model human behavior. Both experimental psychology and 

cognitive modeling have tradeoffs. Psychological experiments in a field can be high-

priced and time-consuming. Thus, researchers are forced to emulate a field study inside a 

laboratory but even this lab setting experiment itself might not provide reliable results 

because of sample size. To atone for biased experimental data, I used a cognitive 

modeling to test data and theory. 

 

8.1 The Skill Retention Model in the ACT-R Architecture 

In this thesis, I explored the ACT-R architecture and its theories on cognition. The 

strength of the ACT-R architecture is to provide an ability to model and represent 

embodied cognition of humans, using various modules and buffers. 

This dissertation study found several answers to research questions. I modeled the 

first subtask (OPEN FILE) from the Dismal spreadsheet task. The model predicted 

learning performance by human participants, r2 = 0.8 and RMSSD = 1.8, even though 

finer tuning of the model is needed for much closer correspondence with human data. 

The success of modeling the first subtask can guarantee a promising success to represent 

learning behavior of the real procedural task in a cognitively plausible way. 
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The skill retention model also highlights some important issues of the ACT-R 

theory and architecture: (a) limitations of direct connection to the real task environment, 

and (b) limitations of modeling skill decay.  

Modeling of skill decay requires more investigation. When it comes to modeling 

limitations of skill decay, the investigation in this dissertation confirmed the ultimate 

need to create a special module or modifications to existing modules in ACT-R to model 

skill decay. As mentioned in Chapter 3, learned production rules are not able to be 

unlearned in the ACT-R architecture. However, I explained one way to model decay of 

procedural knowledge. The current ACT-R architecture supports decay of declarative 

memory elements by the activation mechanism. Even though the activation mechanism is 

designed to explain declarative memory elements rather than procedural memory 

elements (production rules), it is possible to degrade firing of each production rule 

because procedural memory elements refer to declarative memory elements. That is, the 

activation of those declarative elements interacts with procedural knowledge. Thus, 

procedural knowledge can be primed or unprimed by activating or deactivating 

declarative memory elements. 

As mentioned in Chapter 4, cognitive models fail to interact with an external task 

environment (Ritter, Baxter, Jones, & Young, 2000), although ACT-R/PM (see Byrne, 

2001) has helped cognitive models to be equipped with perceptual/motor performance 

interacting with the environment. To enable cognitive models to perform interactive 

tasks, it is necessary for the models to have visual perception and motor action 

capabilities. These capabilities allow a cognitive model to perceive what is on the screen 

and to make some types of mouse movements.  

I attempted to resolve this problem and opened a possibility to help the ACT-R 

model to interact with a real task environment in the Emacs text editor. The theory of 

simulated eyes and hands was developed to implement ESEGMAN. All components for 

the ESEGMAN system were designed. Full implementation of the ESEGMAN system 

will be done. The ESEGMAN system can provide a continuum of real spreadsheet tasks 

between the human and the model subjects (Kim, Ritter, & Koubek, 2006). Furthermore, 

various types of cognitive models in ACT-R can be more effectively embodied to provide 

a better understanding of user behavior (Kim, Ritter, & Koubek, 2006).  
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Also, when developing the Skill Retention Model, the Spiral model development 

process (see Boehm & Hansen, 2001) was used. I extended it by including the factor of 

technology gaps. Identification of risk factors in three dimensions such as time, cost, and 

technology gaps helps the risk-driven process of the model development become more 

reliable.  

The strengths of the ACT-R architecture can make contributions to training and 

education. As I mentioned before, the ACT-R learning mechanisms (e.g., the activation 

mechanism) help us to better understand prediction of human learning behavior. Based 

on the modeling and simulation of human performance in ACT-R, scientific management 

of training programs can be accomplished to shape and steer vital workforce members in 

military and industry contexts.  

8.2 Human Data to Investigate Learning and Forgetting  

I created a study environment to investigate learning and forgetting procedural 

skills in a laboratory setting. The study environment consists of a task in a novel 

spreadsheet and a tool for measuring human behavior (e.g., mouse clicks, mouse moves, 

and key presses).  

The Dismal spreadsheet task allows us to examine two sets of knowledge and 

skills, that is, procedural or declarative, and cognitive or perceptual-motor skills (Kim, 

Koubek, & Ritter, 2007). Furthermore, the task can be modified to support investigations 

of different types of skills.  

I used RUI (Recording User Input) as a tool to timestamp user behavior in an 

unobtrusive way (Kukreja, Stevenson, & Ritter, 2006). (Kim & Ritter, 2007) reported 

that using RUI in a study in a naturalistic setting raises new issues. The first issue is that 

recording can cause a problem when it is used in a public cluster (e.g., a computer 

classroom). A university policy should and Penn State’s policy does prohibit installing 

any tool for experimentation that obtains a user’s identifying information (e.g., a login id 

or password). Kim and Ritter addressed this problem when RUI is used in public clusters 

by providing a simple shell script. Using RUI on a jump drive and a shell script 

programming cuts provides a way to efficiently use RUI on public cluster machines. 
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The study environment provided reliable testing results of learning and forgetting. 

The Dismal spreadsheet task was novel enough to measure learning effects from human 

participants. Analysis on the index of difficulty (see Section 6.5) revealed that the vertical 

mouse was also novel and different from a normal mouse. The learning performance of 

participants confirmed that the Power Law of learning applies to this relatively large 

cognitive task (cf. Newell & Rosenbloom, 1981). There were also no speed-accuracy 

tradeoffs in learning the first subtask by mouse and keyboard users. 

Interestingly, the learning data produced no significant differences on two 

modalities (mouse and keyboard). During learning the keystroke and mouse driven 

interfaces were equally easy to learn and equally fast.  This is slightly surprising, as many 

interface designers have argued for the superiority of menu driven interfaces over 

keyboard driven interfaces (e.g., Shneiderman, 1983). 

Three types of retention intervals (R6, R12, and R18) also provided a successful 

data set to investigate forgetting phenomena of humans. Clear forgetting effects were 

observed by retention intervals and the forgetting rates are nonlinear.  

In addition, relearning effects were investigated in this study environment. It was 

found that there were significant differences on relearning performance by modalities and 

retention intervals. Mouse users showed significantly decreased mean task completion 

time for relearning. This provides an implication that the graphic user interface (GUI) 

could not provide benefits of easy to learn with less forgetting but provide benefits of 

relearning. 

There was a limitation on the sample size of human participants. I had difficulty 

in recruiting participants and keeping all of them until they completed the assigned tasks 

for four weeks. The reason is that participants were asked to make multiple returns (one, 

two, or three) for measures of forgetting. There remains a need to increase the sample 

size and a need to add more prolonged retention intervals (e.g., one month or longer).  

8.3 Realizing Importance on Training 

A movie, American Fighter Pilot (Scott, Scott, & Negron, 2002) helped me to 

understand importance of training. This movie presents that American fighter pilots 
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participated in 110 days of intensive training drills to become a pilot for F-15 Eagle. The 

training was held at Tyndall Air Force Base in Florida.  

According to the movie, it is evident that training fighter pilots requires enormous 

time, cost, and resources. Fifteen thousand applicants apply to Air Force pilot training 

school per year. Among them, two thousand are admitted to training. Then, eleven 

hundred are completed per year. Fifty out of eleven hundred graduates are accepted to 

Tyndall Air Force Training Base (others go elsewhere). They spend 110 days of F-15 

training program. Finally, only eight pilots are qualified as fighter pilots for F-15 and 

serve the United States. 

During the intensive training, the candidates learn detailed information on the F-

15 system including hydromechanics, avionics, radar theory, fuel systems, hydraulics, 

propulsion, instruments, cockpit management, flight controls, navigation, and electronics. 

The candidates are trained to acquire the systems completely. Acquiring these skills are 

critical to efficiently respond to emergency situations, such as engine fire during taking-

off, under time-critical environments of combat. One little piece of information is 

important to directly handle aircraft malfunction. Also, seconds are often critical in 

warfare. After completing the academics of the F-15 system, the candidates practice skills 

in a simulated cockpit, such as taking-off skills, landing skills, or handling engine fires 

during taking-off.  

The theoretical construct of knowledge and skills degradation can also be applied 

to the training of these fighter pilots. There might be situations where acquired skills are 

dormant and susceptible to decay, leading to warfighter performance decrement. This 

would cause loss of our investment on training.  

In this dissertation study, I investigated procedural skills degradation from a 

theoretical perspective. The power law of learning again confirmed humans’ learning 

behavior. Also, over time, different forgetting rates were observed. Modality difference 

on forgetting skills should remain tentative because of the small number of participants, 

but types of skills are intuitively hypothesized to have different forgetting rates.  

The infrastructure of the training system can be comprised of manpower, 

hardware, or software. Optimizing these elements of the training system can reduce any 

loss on financial investment on manpower, hardware, and software.  
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Now, let us consider financial aspect on the hardware of the F-15 system. 

Suppose that the expense of one F-15 aircraft is $500,000,000 and the lifetime of the 

airframe is 25,000 hours. Thus, with the finite lifetime of the aircraft, the depreciation 

value is $20,000 per hour.  

We can intuitively presume that the cost of training warfighters would be money-

demanding. Also, the cost on hardware of the F-15 is expensive. To optimize the cost-

benefit tradeoffs, it is necessary to approach the problem from the perspective of multi-

disciplines such as cognitive psychology/science and operations research. 

8.4 Future Work 

My dissertation study touches various important theoretical issues in cognitive 

modeling and simulation to investigate learning and forgetting of procedural skills. Also, 

the dissertation study gives us the need for further investigation. Here I specify the list of 

current and future work to be done. 

The skill retention model will be extended to represent all subtasks of the Dismal 

spreadsheet task. The complete skill retention model will help to understand the general 

performance of relatively large procedural task and to address each subtask performance.  

As noted earlier, ACT-R is limited to declarative memory decay through the 

activation mechanism. Modeling of skill decay will be accomplished by creating a 

module or modifying a relevant module based on the ACT-R learning mechanisms (the 

activation mechanism and the utility learning mechanism). It is expected that the new 

module is able to cope with degradation of learned procedural memory elements. 

In addition, the skill retention model will be connected to the task environment of 

the Dismal spreadsheet through the ESEGMAN system. Then, a cognitive model with 

ESEGMAN can have more embodied cognition capabilities and can be a surrogate user 

representing human behavior.  

The sample size of the human data collection (N = 30) resulted in failing to reject 

some hypotheses, providing the need to conduct a larger study to investigate learning and 

forgetting. For example, I failed to reject difference in learning performance by two 

modality groups (keyboard and mouse). Also, there was some statistical insignificance 

observed in forgetting. Thus, increasing the sample size can help to reliably investigate 
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the learning and forgetting. More participants will be recruited to gather more learning 

and forgetting data. 

In this dissertation, I only reported the analysis on the first subtask from mouse 

users. For the future work, I will analyze all subtasks to obtain much deeper 

understandings of skill decay. The subtask analyses can provide us with varying 

attributes of forgetting. It is also necessary to include longer retention intervals (e.g., 30 

days or 90 days) in the human study. This helps us to understand and investigate errors 

that participants will make because of their forgetting. Furthermore, the skill retention 

model can address errors made by humans. 

I will investigate knowledge attributes of various subtasks in the set of tasks here 

to provide implications on forgetting. For example, there could be differences of learning 

and forgetting between the subtask of calculations using a normalization equation and 

opening a file. The former is more a cognition-demanding task than the latter that is 

simple declarative knowledge retrieval. Deeper understandings on attributes of skills by 

each subtask can provide important implications on how to plan and design training 

programs that are relatively resistant to decay. Decay-resistant skills training can augment 

human performance despite skill disuse over time.  

Also, I will need to investigate how the keystroke and mouse move times changed 

with forgetting. Did, for example, the Fitts’ law constant change with forgetting? Did the 

simple keystroke level times that can be derived from an ACT-R model on this task 

increase with the forgetting interval? 

Analysis on the index of difficulty will be extended to include all subtasks with all 

participants. In addition, the learning performance of the vertical mouse will be compared 

to the performance of a normal mouse. There were no speed-accuracy tradeoffs for the 

learning performance by keyboard and mouse users. This finding will be further 

confirmed by examining individual keyboard users’ performance.   
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Appendix A: How to obtain the software used in this 

dissertation study 

 

All of the software, presented here for the learning and forgetting investigation, is 

available without cost. I will briefly provide information on how to obtain the software 

and to set up the experimental environment. The software is useful for cognitive 

scientists, human factors engineers, or psychologists to do research or to design a course 

in academia.  

The Lisp implementation that I have used is OpenMCL. OpenMCL is maintained 

by Clozure Associates (www.clozure.com) and came to have a new name Clozure CL 

(ccl). My OpenMCL starts up with Emacs with SLIME, providing faster startup speed 

than other implementations. 

 

Emacs 

Emacs is more than a text editor. Indeed, Emacs serves as an operating system in 

my study environment. You should get the Carbon Emacs Package. I think this is the 

easiest way to install Emacs in your machine. Please visit here: 

http://www.apple.com/downloads/macosx/unix_open_source/carbonemacspackage.html 

 

 

SLIME 

SLIME (Superior Lisp Interaction Mode for Emacs) is a mode for Emacs to 

develop a system using Common Lisp. Explore more information here: http://common-

lisp.net/project/slime/  

 

OpenMCL (= Clozure CL = ccl) 

I use OpenMCL for my Lisp programming. OpenMCL is an open source 

Common Lisp implementation.  Please visit here: http://trac.clozure.com/openmcl 

You can install OpenMCL via MacPorts. MacPorts is an open-source project to 

provide an easy-to-use system for compiling, installing, and upgrading either command-
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line, X11, or Aqua based open-source software on the Mac OS X operating system (for 

more information, please visit www.macports.org).  

 

ACT-R 6 

ACT-R is my platform to develop a cognitive model and to test a theory of 

embodied cognition. ACT-R is one of cognitive architectures. There is a strong and 

active community to discuss with about ACT-R and its theory. You could check out the 

ACT-R’s official website (http://act-r.psy.cmu.edu). Also, you can download the software 

from its website.  

You may also want to check out the site of the ACT-R FAQ (Frequently Asked 

Questions), http://ritter.ist.psu.edu/act-r-faq/act-r-faq.html. I now maintaining the ACT-R 

FAQ website quarterly with Dr. Frank Ritter. You can get practical answers for your 

questions.  

 

Dismal 

Dismal is a spreadsheet that works with Gnu Emacs. In this dissertation study, I 

used it as a target task containing multiple attributes of knowledge and skills. Dismal are, 

in essence of its creation, used to align and manipulate sequential data. Please visit 

http://acs.ist.psu.edu/dismal/dismal.html  

 

RUI 

RUI (Recording User Input) is a lightweight and reliable to record user behavior. 

Recently, ACS lab members are trying to use RUI in a mobile system (e.g., a palm pilot). 

For more information, please visit, http://acs.ist.psu.edu/projects/RUI/ 
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Appendix B: Glossary 
 
ACT-R It stands for Adaptive Character of Thought—Rational. ACT-R is a 

cognitive architecture that is based on a collection of psychological 
theory for simulating and understanding human cognition. 
 

ACT* 
 

This is a previous version of the ACT-R architecture.  

Common Lisp It is a programming language and was developed to standardize 
variants of Lisp. Common Lisp provides specifications for the Lisp 
language.  
 

Dismal It was named by representing Dis’ Mode Ain’t Lotus (Dismal). This 
is a major mode in Gnu-Emacs that implements a spreadsheet. This 
means you can do spreadsheet works in Emacs. 
 

EASE It stands for Elements of ACT-R, Soar, and EPIC. EASE combines 
strengths of ACT-R, Soar, and EPIC into one hybrid integrated 
architecture.  
 

Emacs Emacs is an extensible and fully programmable text editor. Emacs 
was originally implemented in 1976 by the MIT AI lab. The version 
of Emacs that was used in this dissertation is a part of the GNU 
project and was implemented in 1984. The Emacs project is 
supported by Free Software Foundation. 
 

Emacs Lisp Emacs Lisp is a dialect of the Lisp programming language that is 
used by Gnu Emacs.  
 

EPIC It stands for Executive-Process Interactive Control. EPIC is a 
cognitive architecture to represent human cognition and action. 
 

ESEGMAN It stands for Emacs SubstratE: Gate toward MAN-made world. 
ESEGMAN is the system that is designed to connect an ACT-R 
model to an external environment in Emacs.  
 

HAM It stands for Human Associative Memory. This is a title of a book by 
John Anderson and describes a founding theory of human memory. 
  

OpenMCL OpenMCL is a Lisp implementation. It has a quite long naming 
history. In 1984, Coral software started developing a Common Lisp 
implementation for Macintosh, Coral Common Lisp (CCL). Then, it 
was renamed to Macintosh Allegro Common Lisp (MACL) in 1987. 
Apple computer took over MACL in 1988 and called it Macintosh 
Common Lisp (MCL). Digitool took over it again in 1994. In 1998, 
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Digitool open-sourced MCL and called OpenMCL. Recently, it is 
called CCL (Clozure CL). Clozure Associates develops and 
maintains CCL.  
 

Production 
compilation 

It is an operational mechanism that is used in ACT-R. The 
production compilation mechanism enables production rules to be 
learned by combining two rules and creating a new rule.  
 

RUI It stands for Recording User Input. It was implemented in the 
Applied Cognitive Science lab at Penn State. RUI records users 
behavior (mouse move, mouse click, and keystrokes) in 
milliseconds. 
 

Soar Soar is a cognitive architecture that is used to develop a system 
producing intelligent behavior. 
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