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Abstract

This work describes the design and implementation of a Domain-Specific Language Compiler, which permits evolu-
tionary mechanisms to be quantified in terms of the measured behavior of the compiled ACT-R production rules
and models that the compiler produces. The method permits the modeling of learning and algorithmic behaviors of
arbitrary nesting and complexity. The primary aim of this work is not to solely to learn more about the example
application being modeled for this work (i.e. The Block Sorting Task), but instead to prove that the mechanisms
can be combined and function together. Ultimately, the goal of this is a long-term research agenda, which applies
evolution to modeling real users’ algorithmic and strategic behaviors using quantitative models within cognitive
architectures. To this end, a nonlinear general regression technique for matching human data with cognitive architec-
tures is introduced. As well as a means of representing both individual behaviors and aggregate behaviors, as well as
functions, which operate over these representations. Sequential problem-solving data generated by humans is used
to construct programs in ACT-R, which approximate how that data was generated by the original humans. These
programs will be constructed with Genetic Programming variants designed to evolve programs in ACT-R that solve
the same task as the original human. These heuristically guide accurate matching of the observed data of a single
human by maximizing their match percentage over the greatest subset of the human data. The resulting programs
can be viewed as approximations of the algorithm used by the human to generate the original data. Further, the
results from multiple humans can be aggregated in Program Space, and clustered to produce groups of programs
which solve problems in similar ways. These clusters are defined as fuzzy clusters, and referred to as Strategy Groups,
because they are groups that approximate some heuristic, which humans use when solving the original problem.
Strategy Groups designed to be used to perform several key operations which the original unaggregated data cannot,
including sampling, composition, reverse prediction, and verification. Together, this research agenda forms the context
in which Domain-Specific Language Compilers are required for efficiency as well as being able to read and interpret
the algorithms that they represent for humans they are used to model.
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Chapter 1

Introduction

1.1 Summary
This work1 aims to enable the creation of novel sequences of behavioral primitives. Normal ACT-R learning capabilities
are able to model improving the speed, utility, or reliability of existing hand-written production rules, but it is outside
of the current scope of ACT-R to significantly recombine or rethread those rules beyond the original hand-written
ones. In this work, a layer above and prior to ACT-R is used to evolve novel combinations of primitives, which are
turned into executable ACT-R models. When run, these models produce feedback to guide the evolutionary process
via fitness metrics. In this case, the highest fitness most closely resembles the behaviors that a specific person being
modeled did for the same algorithmic problem-solving task. For the purposes of this work, a novel task has been
created. Though not itself the focus of this body of research, but it is instead intended as a representative task, which
is sufficiently complex without being overcomplicated, while also being reasonably similar to real tasks. The intention
of this work is that a real task could be modeled using the approach and techniques introduced herein. For example,
by making automatic models of experts, those models act as stand-ins for those experts. Imagine a scenario where
an expert driver or pilot could be replaced with an automated stand-in for testing or validation purposes. This could
also be used to find out what Strategy or Strategy Groups the expert is demonstrating when observed, even if they
could not fully articulate their thoughts. Such a model would be of interest to anyone in the same field as the expert,
for the ability to use a model to stand-in for the limited time of experts. Those interested in the modeling of human
cognition would have similar but divergent applications for these models, as a way of providing executable predictive
models of the internals of human problem solving.

The diagrams within Figures 1.1 and 1.2 represent these layers, and will be shown in several places in this document
for clarity. Essential to this work is the notion that there is something to be gained by having these different layers
connected in such as way–namely establishing feedback loops that would otherwise being either difficult or impossible
without such a system.

Following Figure 1.1, the interpretation for one of the smallest feedback loops is to look at the nodes labeled
“Evolution” and “GEVA”2, where the arrow labeled “Populations” goes from “Evolution” to “GEVA”. This means that
the Evolutionary Algorithm runtime gives GEVA a “Population” in the form of a list of integer vectors representing
one or more individuals in the population which are each “Integer Chromosome Genotype(s)” from Figure 1.2. While
“GEVA” from 1.1 participates in further feedback loops to eventually give “Evolution” back a list of “Fitness Values”
which give one “Fitness” value for each individual of the population, usually in the form of non-negative reals, R≥0
(e.g. [0.1, 1000000.0, 2.0, 0.0]). For our purposes, the highest fitness is 0 where there is no observable difference between
our model and the human being modeled.

Moving from left to right in Figure 1.1. The next feedback loop is to the right of “GEVA” towards “Block Sorting
DSL Compiler”, with the two arrows, “DSL Source Code” and “Fitness Metrics”. Fitness Metrics are collections of
model traces similar to “Traces From Running Model” from Figure 1.2 as well as the necessary metadata for “GEVA”
to calculate a “Fitness” value, as mentioned earlier, generally timing information as well other calculated or measured
metrics. “DSL Source Code” in this case is “Block Sorting DSL Source Code Phenotype” from Figure 1.2, where the
two arrows going into that box represent the deterministic method by which the Grammatical Evolution algorithm
maps integer genotypes to character string phenotypes by way of a the Block Sorting BNF Grammar. It is explained

1This work has been prepared in LATEXspecifically for viewing as PDF document. When viewed as a PDF, all citations and references
in this document are clickable hyperlinks, and will permit you to jump to the page of the link’s target. The Bibliography contains back
references to all citations of each bibliographic item. Other links are one-way. This should help facilitate reader navigation.

2GEVA is the name of a Grammatical Evolution library used in this work.
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in greater detail elsewhere, but the key is that it makes only grammatically legal programs for our Block Sorting DSL,
and it makes them as character strings, just like a hand-written program would be. The program string is fed as input
data to the “Block Sorting DSL Compiler” where it parses it into “Parsed Block Sorting DSL Tree” before compiling
it into “Block Sorting DSL Operators In ACT-R” in Figure 1.2. As the implementation of the Block Sorting DSL
Grammar, the compiler is where most of the experimental theory is held. In this particular feedback loop (i.e. Figure
1.1), it acts to take an input individual from the “Evolution” node, expanded into a program to test by “GEVA”, and
then after the model is run it passes that information back up to “GEVA”.

Directly following on from that step, Figure 1.1 next feedback loop from left to right is between “Block Sorting
DSL Compiler” and “ACT-R”, where that “Block Sorting DSL Operators In ACT-R” in Figure 1.2 is passed in
the “Productions” arrow in Figure 1.1. This is no different than having “ACT-R” run a normal hand-written model,
save that the models are instrumented with hooks for timers and loggers in a way that does not change the runtime
behavior of the models, but which just handles when models start and stop. The reverse arrow, “Problem Traces” has
been mentioned in passing as part of the “Fitness Metrics”, but they are simple keyboard keystroke logs, recording
when specific number row keys were pressed in milliseconds, as seen in Figure 1.2 as “Traces From Running Model”.
It is the case that “ACT-R” is run within an experimental harness, which sets up a fresh “ACT-R” instance (as well
as a fresh Common Lisp instance) for each model that is being evaluated, thus ensuring that there is no chance for
models to interfere with one another.

The final, and most grounded feedback loop on this axis of Figure 1.1 is the one between “ACT-R” and “Virtual
UI/Screen + Keyboard”. The two arrows, “I/O Requests” and “I/O Results” logically represent the “ACT-R” Motor
Module attempting to strike keys that the “Evolution” individual requested it to hit, while the “ACT-R” Visual and
Aural systems receive feedback from the “Virtual UI”. This Virtual UI is almost identical to the normal experimental
UI in “Block Sorting Problem GUI”, save that it is implemented in Tcl/Tk and may be user-visible or not, while
remaining visible to the ACT-R runtime and the model it is running3. The key here is that models may attempt to
do all kinds of keystrokes, but not all of them will cause changes in the state of the UI. The “ACT-R” experimental
harness manages this “Virtual UI”, as well as instruments it in order to produce keystroke logs which are cleaned
up to make “Problem Traces” from Figure 1.2. These are created fresh for each “ACT-R” instance, as part of that
experimental harness.

Reorienting from the left-to-right axis of Figure 1.1 to the vertical one, the logical starting point is the feedback
loop between the “Experimenter” and “Block Sorting DSL Compiler”. Here, the “Experimenter” gives “Setup / Human
Data” to the DSL Compiler, and they get back “Readable DSL Strings” back from it. These “Readable DSL Strings”
are “Block Sorting DSL Source Code Phenotype” as seen in Figure 1.2 while the representation of the “Human Data”
is the same as “Traces From Running Model” from Figure 1.2. This should be understood such that humans are
measured in as identical ways as models, so as to keep the experimental differences between them isolated to what
mental logic was guiding the human or model while it was acting to solve the problems. As well, the “Experimenter”
determines many details of the experimental harness as they perform the “Setup”; most of these are either ACT-R
parameters, or timers, or fitness coefficients. The “Experimenter” is assumed to be specifically interested in the DSL
program strings as they are the primary output of this entire modeling process. Each program string represents for the
experimenter, an executable theory of mind. This executable theory models a specific person’s mental behavior while
solving problems in the domain of interest. These can be read like normal source code, but the really unique use is to
use Tree Difference techniques to extract common subsets of the individual programs, which are therefore common
algorithmic templates that the problem causes people and models to use to solve it, per Figure 1.2 “Strategies as
Partial Trees”. For example, if every person in the study employs behaviors which visually check the location of the
letter A at the start of each new problem, that common behavior can be detected and represented in this way.

Moving down the vertical axis of Figure 1.1 the next feedback loop is between “Block Sorting DSL Compiler” and
“Block Sorting Problem GUI”. Here the “Human Traces” are in the same format as the “Human Data” previously
mentioned, and the DSL runtime is being used to administer the experiment that the “Block Sorting Problem GUI”
is presenting to a human test subject, almost identically as how “ACT-R” and the DSL runtime did for models on
the left-to-right axis earlier. As well, the source of the “Human Data” that the “Experimenter” gives to the DSL
Compiler is almost always (unless they provide their own) from earlier recordings from this feedback loop. Whereas
the other parts have at least some prior mention, the “Problem Exposure Schedule” has nothing earlier, aside from
being part of the “Setup” implicitly. What it actually does is take instructions from the “Experimenter” about how
many problems there should be, how long they should be, how many repeaters there should be, and how often a
repeater problem should be repeated. While most of these are pretty obvious, the repeaters are randomly generated
like everything else but are inserted in the testing schedule for the express purpose of measuring expertise over the
course of the experimental schedule. The premise behind them is that among all the random problems, they are the

3The host systems may change things like absolute line widths and font sizes, but the overall UI designs are otherwise identical, and
the differences were not noticeable to most pilot subjects, when asked.
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same problem with the same order and complexity shown and solved many times over the course of the experiment.
Without them, modeling expertise would be harder.

The final feedback loop in this axis of Figure 1.1 (and in an absolute sense) is between “Block Sorting Problem GUI”
and the “Human Subject”. It is almost identical to the one between “ACT-R” and “Virtual UI/Screen + Keyboard”,
save for the fact that the GUI is a real visible UI on a real screen, and the keyboard is a real physical keyboard. The
measurement systems are in Java, as is the UI, but that changes little besides the font. All of the same feedback is
provided and recorded between the human and the UI as would happen between the model and its own UI.

Most of these feedback loops and their representational products can be used for a variety of analytical tasks, as
detailed in Figure 3.1. They are divided between Bootstrapping Tasks (above the dashed line)–which create seed
populations, human data, and model data–and Post-Process Tasks (below the dashed line), which use those products
to guide further inquiry or as outputs themselves.

1.2 Premise
There is a desire to create computational models of people solving tasks. Current methods utilize computational
models that generate simulations of human data, as if a human was doing the same task. These methods work well
enough for some tasks, but the process is a highly manual one. There are no guarantees that the resulting models
represent the range of possible algorithms, which people use for that task. More likely, the experimenter would need
to make many separate models for the same task, each one a separate executable theory of how the person solves the
problem. Such work is not often done, for practical reasons.

It is the desire to automate this process of theory generation (in the form of a model of behavior), testing (in the
form of behavioral data from humans and models), and revision that motivates this work. With the end goal being
the creation of a research methodology not only performs these operations, but is backed by a theory that links the
methodology with the exploration of clusters in Program Space4.

The impetus driving this method is that–in cases where there is no single canonical algorithm to solve a problem
(which are many)– there are plenty of viable behaviors that we would have no sensible way of talking about or
representing computationally because we lack a theory to describe them. Furthermore, attempts to do this kind of
modeling without the methodology this work describes would run into problems that would necessitate the creation
of a system similar to the one described in this work.

To demarcate the bounds of this work, this dissertation describes the foundations for what is expected to be
more than a decade worth of follow-on work, and thus is part of an extended research agenda. Building on specific
experimental attempts, this work addresses all of the previous concerns while still leaving the open question of what
ultimate results may be discovered when running the system for detailed experimental work (perhaps for weeks on
conventional hardware, or days on HPC systems). This work draws a line at this point, and its scope encompasses
the fundamental designs necessary for that final time and resource-intensive exploration to happen.

There is no clear measure of the size of the space to be explored by the evolutionary processes. There are no
hard guarantees that interesting results could be produced in a timely fashion, only the strength of our heuristics.
In contrast to that point of view, this work is worthy of being reported independently, as it contains both insights
and novel contributions all its own. Instead, this agenda is presented here to contextualize this work and the unique
requirements that informed its design; the novel work here stands on its own, but it is more easily understood with
added information.

Within this scope, human pilot experiments were used to collect real data for an example algorithmic task, The
Block Sorting Task, and a real Domain-Specific Language (DSL) was designed and implemented using a custom
DSL Compiler which targets the ACT-R Cognitive Architecture. As well, a Evolutionary Algorithm was designed to
target this DSL and evaluate the fitness for purpose of randomly generated programs in this DSL, which would be
turned into quantitatively predictive real executable ACT-R models. For this to work, a comprehensive generic model
of arbitrarily nested complex behavior was designed, implementing a Von Neumann Architecture within ACT-R;
any weaker model would be insufficiently powerful to handle representing the multifarious range of viable human
algorithmic behaviors for The Block Sorting Task.

1.3 Component Introduction
Given this high-level view, it is appropriate to drill down and examine the impetus behind each part and provide
forward-references to sections of this dissertation. As a whole, the work is complex and multifaceted, but the individual

4See Section 2.3.3 for more details on Program Space.
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parts can be understood in relative isolation.
Beginning with the core task of this research, the Block Sorting Task, it is important to understand that the

focus of this research is on quantitative modeling of individual algorithmic behavior in humans. For this end, there
needed to be some exemplar task to use to demonstrate the basic premise of the work. Though other illustrative tasks
are possible, The Block Sorting Task was selected because that there are both psychological descriptions of human
seriation behavior as well as algorithmic sorting from computer science.

Instead of directly copying another task, a simplified version was used5 which reduced the complexity of seriation
tasks by removing the hidden weight component of Gascon (1976), while also modifying the version from Young
(1976) to work better with a computer interface. The Block Sorting Task was devised in place of those, which is
intrinsically computer-moderated and replaces balanced-beams with pairwise swapping only. Basically, a person is
presented with a user interface screen which represents alphabet blocks, like children might use for a normal seriation
task. Here, however, they are always out of order at the beginning and the experimental subject must strike the
number-row keys representing the pair of numbered slots they wish the interface to swap in place. When the blocks
are finally sorted, a tone plays and the next problem is presented in the problem set for that experiment, unless the
problem set is done. See Section 3.1 for more details.

Moving on, the next logical place to focus on, is the Domain-Specific Language part of this work. Given the Block
Sorting Task, experimentation eventually lead the author to conclude that it was reasonable to try to represent the
range of possible behaviors for the Block Sorting Task. Instead of directly grounding discussion in some cognitive
architecture, this work approaches it from the angle of trying to capture the domain of sorting blocks–explicitly
within the task environment and UI. Within the programming language research community, there is a category of
programming languages called a Domain-Specific Language (abbreviated DSL), that is specifically designed to model
specific domains rather than general programming tasks.

To represent the knowledge and structure of the domain of sorting blocks, this work created the Block Sorting
Grammar, which is an Embedded DSL. For this purpose, a Backus-Naur Form6 grammar (Backus, 1959; Naur, 1963)
was created to reify the Block Sorting Grammar. This is discussed extensively in Section 3.2. The main take-away of
which is that there are logical behavioral options available to a experimental subject, which are codified in Operators
within the DSL. Operators following their BNF grammar have rules about how they can be composed and combined,
and by design are capable of arbitrarily complex nestings, so long as they are grammatically valid.

As an Embedded DSL, the actual implementation of the Block Sorting DSL Compiler is grounded within the
ACT-R Cognitive Architecture (Anderson, 1990; Anderson et al., 2004; Anderson, 2009) and its underlying Common
Lisp runtime. The details of this compiler form the largest component of this dissertation, which is discussed at length
beginning in Section 3.1. Without going into the details yet, at this point, the key detail is that the final use of the
compiler is this: a researcher doing cognitive modeling for an algorithmic task could write down a program in a DSL
for that task, and only need to concern themselves with the high-level details of describing the behavior. Meanwhile,
the DSL Compiler creates executable quantitative models from whatever behavior that researcher’s DSL program
describes. It not only permits a high-level view of modeling, but it also automatically creates executable testable
quantitative predictions about how plausible that model might be.

Finally, the portion of research which informs all of this design, and which ultimately sets the stage for follow-on
work, this whole system was designed to be automated. Building upon the idea that any grammatically legal program
in the Block Sorting DSL would be an executable testable quantitative theory about how an individual might attempt
to solve the Block Sorting Task, the automation of this is done through the use of Evolution. Specifically, the kind
that evolves grammatically constrained populations of programs, using Grammatical Evolution from O’Neill and
Ryan (2001).

In this formulation, which forms the context for future work, now that the DSL Compiler is completed, the
Evolutionary Algorithm randomly generates Block Sorting DSL programs. These are then evaluated against human
data for the same problems, causing the fitness to favor behaviors which produce similar keystroke logs as the
individual being modeled produced. After breeding these programs for a user-determined period, increasingly fit
models of that individual’s behaviors are produced. These models are rather unique, in that they are simultaneously
readable by the experimenter without any statistical knowledge, as well as being mutually comparable using Tree
Difference algorithms to find how similar two programs are structurally.

5Suggested by the committee members.
6Abbreviated BNF.
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1.4 Experimental Evaluation
This work takes human data from problem solving tasks, and uses Evolutionary Algorithms to generate a population
of programs designed to mimic the process which created the human data. Special constraints are used to make this
task feasible, beginning with the programs being grounded in a cognitive architecture, ACT-R7, which itself is used
to generate data which predicts human data. Since the ACT-R theory says that it attempts to mimic the architecture
of a human mind, then these programs or models are executable theories of how people do tasks. Furthermore, the
programs generated are represented in a Domain-Specific Language which captures the range of possible operations
and datum of the problem task being solved, and ultimately translates them into ACT-R production rules.

Finally, the Genetic Programming variant system utilizes a special fitness heuristic in order to match the data. A
particular person is used to generate several sequential behaviors which end with the solution of a particular problem.
The sequential data consists of time-stamps, the problem state, a person’s choice, and the result of that choice are
all collected into a log called a Trace. This person generates several traces, the heuristic then tries to maximize the
percentage match of all of the Traces. This match is based off of a comparison with to simulated Traces generated by
programs from the Genetic Programming population which are run on the same problems (usually in the same order
as the person). A single program will generate one simulated Trace for each real Trace, and its fitness will be the sum
of the percentage matches of each Trace pair. While a single pair of traces will be compared using a weighted sum
of longest common sub-sequence, and temporal distance between the human Trace and the program Trace for the
common parts (the sub-sequences and select reference points of the problem, e.g. start or end). The Genetic Program
runs either until sufficiently many good matches are found or until some number of generations have passed. The
results of this process will be a set of programs which approximate the behaviors seen in a particular person.

When the results of applying the Genetic Programming process to several individuals are collected, the result will
be a set of program populations which all mimic particular people8. The experimenter could stop here and simply
examine the programs to gain insight into what script the human was using to produce their data. However, the real
use of these populations is to use them to explore the Program Space, and then see where high fitness clusters of
programs occur in it. By applying a suitable clustering method, programs will be grouped by physical similarity, which
can allow analysis methods to extract the similar structures from the clusters that represent the shared component
of the programs in the cluster as a heuristic. These clusters this work refers to as Strategy Groups.

The expected contribution of this research agenda is a methodology for working with Strategy Groups. Both at
the individual level, where the variability of individuals is captured and described, as well as at the aggregate level,
where individuals are clustered by the programs that represent them to form Strategy Groups. These groups function
analogously to probability distributions, and permit statistic analysis and sampling. When this methodology is fully
developed, it is expected to open up entire new vistas for exploration via computational cognitive modeling.

For more details see Section 3.1, which includes how to create more programs, preseeding guidelines, clustering
details, and other potentially interesting information about this process.

1.5 Example Applications
In this section are included three high-level example applications of the regression method which this research aims
to support, at both the level of individual modeling as well as the level of aggregate modeling. Each of these examples
has been chosen based on a connection to prior work in the field of Cognitive Modeling. To make these examples
both solid and easy to understand, the details of the techniques will be elided (though they can be found in Sections
3.1 and 5.1).

1.5.1 Intelligent Tutoring Systems
Computer-controlled tutoring systems have existed for decades. Intelligent Tutoring Systems (ITS) one of the more
interesting types of these to this work. They tend to include theories about learning and memory as those things
apply to a student learning a specific subject (Sleeman, Brown, et al., 1982; Corbett, Koedinger, & Anderson, 1997).
A difficulty that an ITS system designer will face is that it is difficult to figure out what a student has learned based
on what they are doing. As well, the range of behaviors that they need to anticipate in the students is also not
normally known.

If a ITS designer were to apply this work’s regression method to their problem, they would have two different
levels of benefits. First, if they apply the individual-level operations, they will be able to automatically create models

7This work uses ACT-R 6, but should apply equally to later versions.
8While this work aims to support this kind of future work, the scope of this dissertation is strictly about how to characterize an

individual computationally, such that this future work can be pursued.
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which accurately approximate specific students. Such models would be based on the data traces collected from a
particular student solving several related problems. The researcher could then either use the models as a predictor
for that student’s future attempts at solving problems. Additionally they could inspect the models themselves to see
what rules the student is probably using that make them act in the ways observed, perhaps to get feedback to shape
future corrective training.

When several students are available for testing, the researcher is able to utilize the aggregate-level operations
from my regression method, by combining the results of the applying the individual-level operators to each individual
student. By doing this, my regression method would form Strategy Groups which allow the researcher to classify the
behavior of multiple individuals as being generated by similar thoughts. For example, common errors in understanding
could be represented in this way. Also, the Strategy Groups themselves help to demonstrate the range of possible
behaviors that students might show when using the ITS system. This information would include both the kind of
behaviors, and the relative frequency of them that might be expected from the population (i.e. the classroom, not
necessarily the general populace).

1.5.2 HCI Interface Design
Human-Computer Interfaces (HCI) considers the design and testing of interfaces as one of its main foci. While there
are many methods of representing interactions with interfaces such as GOMS (Card, Moran, & Newell, 1986), the
designer is still left with the task of figuring out how a end user will utilize that interface. Based on these assumptions,
the designer may change their interface to make it more productive. Some studies show that such changes can save large
amounts of money such as (Panel on Modeling Human Behavior and Command Decision Making: Representations
for Military Simulations and National Research Council, 1998).

When a HCI designer needs to test an interface, it is helpful to have an automated model of a user to test the
interface with (Ritter, 1993a, 1993b; Ritter & Larkin, 1994; Wallach, Fackert, & Albach, 2019). Making such models is
normally nontrivial. If this work’s regression method is used, the designer would be able to create models of individual
users, including people with behavior representative of key groups of interest (such as novice elderly users, or expert
female users in their thirties). Besides simply being able to test the interfaces using the models of these users, the
HCI designer can inspect the models themselves to discern what rules are being used by the people being modeled.
This may shine light on behaviors that could otherwise be opaque, and thus ultimately inform design of interfaces.
For example, an HCI designer could read model rules, and then use those rules to inform which parts of an UI receive
hints or interface clues to help direct attention to where the models predict the person is likely to need to attend
to next. Experts are notoriously bad at explaining themselves, but this method creates iteratively refined models of
those experts using the interface in question, which can be read clearly by a researcher or reused. Following the prior
example, the model of the expert could guide non-experts as well, by hinting at what the expert is likely to do next.

A greater benefit can be found in the aggregate level regression operations. With many user models being utilized,
the designer can interpret the Strategy Groups as representing interface-usage heuristics that are common to both
the wider population, as well as their specific interface. Even relative frequency of strategy occurrences can be used
to predict how users will utilize an interface. As a result, the designer can optimize for their preferred strategies
by making it more efficient to use, and by giving cues to encourage most end users to use the designer’s preferred
strategy.

1.5.3 Navigational Tank Control
Drawing on the example of a Subject Matter Expert (SME) labeling sections of a map correctly (Best & Gerhart,
2011) for a tank to drive on, the key issues that need to be modeled are correct labeling given circumstances, correct
intermediate steps (like eye-tracking attendance to features), and accurate timing. In this task, the expert drives a
tank in the dTank simulator and competes against an opponent tank commander in a 2D environment which features
obstacles. The SME labels certain areas of the map as being high to low risk areas, while the visual focus and other
timings are recorded.

Should an experimenter wish to analyze their subjects using this work’s regression method, they will need to input
the parallel timings of both the interface usage by the SME as well as the eye-tracker timings and placements9. The
system will output a set of programs which model the specific behaviors shown by that SME, which could either be
used to explain how the expert acts, or to act as a stand-in opponent for other SME’s.

With programs modeling multiple SME’s, the aggregate level of the regression method allows them to be categorized
and classified. Thus, general heuristics used by the SME’s can be represented, and extracted for later use. Further,

9This application would need to wait for the generalized parallel factor version of my regression method to be ready. It is described
alongside the normal version in this paper, but testing isn’t planned until the proof of concept serial only version has been tested.
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the regression method is capable of predicting new behavior outside of the range of the sampled experts. If it were
used for a real military training application, its predictions of strategies unused by current experts may either be
helpful for training against unmet novel opponents, or for suggesting new heuristics that the experts themselves may
be able to utilize.

1.6 Research Timeline
Based on committee feedback during the initial proposal, it was estimated that the scope of the fully explored research
space, including the Strategy Groups, would consist of a decade or more of research. In order to have a reportable
milestone, this work presents the first working DSL Compiler rather than the eventual problem application and result
reporting.

Later work in this research agenda is intended to be published on its own. This will include reporting actual
results of evolving high-significance models of individuals, as well as future refinements of the DSL Designs to permit
models of other tasks besides the exemplar Block Sorting Task.

However, the current status of the research is detailed below. Almost all parts of the work have been completed
and used extensively. Except as detailed at the end of this section, all of Figure 1.1 are all tested and working. Of
these parts, the DSL Compiler has been used to generate thousands of test programs successfully. As well, all of the
experimental apparatus that interacted with human subjects are all fully working and have been used on real humans
without issue. Most portions have been not only unit tested in isolation, but also integration tested as whole working
parts of Figure 1.1.

The following parts have only been unit tested, meaning that their basic functionality has been validated against
test problems. They are the portions of Figure 1.1 on the right-to-left arrows from “Block Sorting DSL Compiler”
to “GEVA” to “Evolution”. Each portion has been unit tested in isolation, but not necessarily with real human
experimental data. For example, a test implementation with a modified version of the Bubble Sort algorithm (Friend,
1956; Knuth, 1997). With several of the earlier BNF grammars, hand-encoding was performed, resulting in manual
selection of integer genes in the genotype which the Grammatical Evolution process expanded into early Block Sorting
DSL programs which performed a manual version of the essential pairwise comparison and bubbling behavior from
the Bubble Sort algorithm, but which largely ignored the added visual knowledge that the normal algorithm does
not normally have access to but which a human does; these manual genotypes are tied entirely to the details of
the specific BNF used, as each BNF fully determines a different DSL Language. Another example can be seen in
unit testing each individual Operator and the arbitrary depth limits for their nesting using extensive coverage with
ASSERT-N, ASSERT-C, and ASSERT-B as detailed in Section 3.4.33.

The functionality involving Strategy Groups (the lower left of Figure 1.2) and the analysis that they support is
strictly theoretical at this point. Lacking real large populations of DSL programs that already mimic actual humans,
to do analysis with, the processes involved merely serve to inform the design of this work to support some kind of
experimental design. If that was not a design consideration, it would free some design constraints from this work.

1.7 Layout
This work is divided into three parts. The first part, in chapter one delineate the background information, and
literature review. The second part consists of chapter two, and contains the current state of the methodology of this
work. Finally chapter three and onward are research results various kinds, including the bulk of the novel work. There
are also appendices after the bibliography.

1.8 Contributions Summary
This section provides a concise summary of the novel contributions of this work. A expanded version can be found in
Section 4.2 at the end of this dissertation. The description here is sufficient for browsing without a detailed reading of
the remainder of the dissertation, whereas the later presentation makes use of terminology and conceptual references
that are explained throughout this document.

1. Grammatical Evolution of Cognitive Models: This is the first work which applies any form of Genetic Program-
ming to the generations of programs representing cognitive models of algorithmic behaviors.
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2. Computer-Moderated Adult Block Sorting Task: This work builds upon modeling of tasks for young children
with physical objects, and turns it into a reusable computer-moderated task for adults. This work created and
implemented this task.

3. Block Sorting Grammar DSL10: This work introduces the concept of not only organizing behaviors in terms
of task-specific operators, but it also introduces a novel BNF Grammar to formally represent the full range of
behaviors possible. This DSL representation is integrated into quantitative and executable models in this work.

4. DSL Compiler: The DSL Compiler and its method of action introduced in this work are new, representing the
first of a class of special-purpose tools to reify DSL programs into cognitive architecture programs. In this work,
the exemplar is the Block Sorting Grammar DSL, and the target cognitive architecture is ACT-R.

5. Von Neumann Architecture in ACT-R: This work creates the first detailed representation of a Von Neumann
Architecture grounded in ACT-R. While this was not the original aim of the work, the author realized that
nothing less powerful than a stored program computational architecture would be sufficiently powerful enough
to implement the whole range of possible behaviors. As those behaviors not only needed to represent the Block
Sorting Grammar DSL, as well as the threading of control needed to execute these experiments, but they also
needed to be realizable in ACT-R.

6. Representation of Arbitrarily Complex Nested Behavior: This is the first time that arbitrarily complex nested
behavior is permitted in ACT-R without requiring explicit hand-coding of the complete range of programs. It
was this design goal that drove the adoption of the DSL, not the other way around. Indeed, it is absolutely
required for the used of Evolutionary Algorithms to fit these models.

7. Automatic Individual Modeling: This is the first time that cognitive models of individuals can be automatically
generated. While other automated modeling methods have existed, none have been able to create and explore
the whole space of possible programs to represent an individual, only in narrower senses of fitting preexisting
models. By inference, the stored program would be logically indistinguishable from a hand-coded one, but which
is likely to be more complex to implement by hand (e.g. in ACT-R) as well as being potentially more error
prone (Ritter et al., 2006).

8. Nuanced Chunking: This work has revealed that the current chunking behavior in ACT-R is not transparent
enough to handle a Von Neumann Architecture, and that more nuanced representation may be required. If an
amended chunking algorithm were used, the parts of the algorithmic behavior which are constant would be able
to benefit from chunking, where the current chunking algorithm does not.

10Domain-Specific Language



Chapter 2

Background Review

2.1 General Information
The information in this section serves to contextualize the foundation upon which this research is built. Additional
commentary is provided as well, to link the ideas here to this work.

2.2 Cognitive Architectures
For the purposes of this paper, Cognitive Architectures are defined as unified computational theories of human
behavior (Newell, 1972, 1990). The impetus behind them is simple, to quote Allen Newell1:

The question for me is, how can the human mind occur in the physical universe? We now know that
the world is governed by physics. We now understand the way biology nestles comfortably within that.
The issue is, how will the mind do that as well? The answer must have the details. I have got to know
how the gears clank and how the pistons go and all the rest of that detail. My question leads me down to
worry about the architecture.

Cognitive Architectures then, are the theories about those details. Generally, they are theories embodied in a set of
principles and equations which are then developed into some form of executable software2. The unification in this
case attempts to limit the range of valid architectures to those which can support many different human behaviors
simultaneously, rather than having one purpose built architecture for each and every individual human behavior. For
example, instead of individual architectures for playing poker and another for playing blackjack, there should be one
that can handle examining cards, reading rules, and making game-play decisions which could be run on either poker
or blackjack, as well as any other representable card game. Ideally, this would represent the whole range of human
behaviors in a single unified architecture, but the best way to do this is very much an open question of the field. Some
architectures dig deeper than others into the physical concrete implementation connecting thoughts and behaviors
down into neurons and chemistry, but all are theoretically grounded in the real world, see Section 2.7 for more details.

As was stated earlier, all Cognitive Architectures are unified theories of mind. As one of the founders of Cognitive
Architecture research, Allen Newell had long argued that only a unified theory of mind could be tenable, from his early
paper (Newell, 1972) famously claiming “You can’t play 20-questions with Nature and win.”, to his ultimate attempt
at implementing a unified theory of cognition. This attempt was embodied in the titular book (Newell, 1990) and
the related Soar Architecture (Laird, Newell, & Rosenbloom, 1987). His ideas have spread, as all modern Cognitive
Architectures that this author is aware of each represent some kind of unified theory—though not necessarily all the
same unified theory. Even if it has gaps in coverage, the concept that it should be unified serves only to drive research
to fill them.

How “the gears clank” differs from system to system. Each cognitive architecture seems to reflect the individual
research and preferences of their authors, packaging together their own set of theoretical commitments and functionality
together. These differences can be significant, for example the EPIC Cognitive Architecture claims (Kieras & Meyer,

1His “Desires and Diversions” farewell speech before dying from cancer in 1992, video published in 1993. The “question” he is referring
to in this quote is explained in context as one of the “ultimate scientific questions” which some people are lucky enough to find themselves
captivated with. The “question” in question is thus the motive for his life’s work.

2Though the theory itself is normally referred to as the architecture because it describes a system by analogy with how normal
architecture describes a building.
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1997) that humans are innately parallel, and capable of performing multiple simultaneous tasks. While the ACT-R
Cognitive Architecture claims (Anderson, 1990) that there exists a cognitive bottleneck, which forces all tasks to run
serially. Unless particular care is taken when choosing an architecture for some application, these differing theories
may result in different predictions. It is advisable to choose one based on the backing theory in addition to any
practical considerations.

There are a number of architectures to choose from, developed by many different researchers and under many
different theories. For example, current candidates for this author’s future research include: ACT-R (Anderson, 1990;
Anderson et al., 2004; Anderson, 2009), Soar (Newell, 1990; Laird et al., 1987), and CLARION (Sun, 2001). For this
work, ACT-R was chosen as the exemplar for this research agenda, for reasons discussed in Section 2.2.1. Other
architectures are options as well, but targeting one is an extensive effort, even with this work to build upon.

Regardless of the architecture chosen, when utilizing an architecture, a model of some task must be made in the
framework it provides. Then, the architecture will make predictions about the way humans would behave as they do
the same task. Typically, the model is made in the form of a program in a Domain-Specific Language describing the
mental processes involved, and each of these models is then an executable theory of human problem solving from
some particular task.

The kinds of tasks that are reasonable for inclusion in this eventual line of research are discussed in Section 5.1.5.
Architectures have been used for a long time for process models3, which are the kind of tasks I am considering, having
grown out of research involving them. Logically, much of this work begins with the theories of Information Processing
from A., Shaw, and Simon (1958); Newell and Simon (1972), as a basis for what parts a model of a human solving a
problem must have, an enumeration of variables. From there, certain parts are held as constants, and the architectures
arose as formalizations of the machinery.

Of particular interest to this work is the ability to apply automation to modeling tasks. While there is a long
history of attempts to use computers to handle parts of the modeling process outside of simply running the model,
the results of these attempts have seen limited success or adoption. Some examples include:

• Automating testing for protocol analysis (Ritter, 1992).

• Modeling individual differences using shared rules (Miwa & Simon, 1993).

• User modeling (Rauterberg, 1993).

• Human error modeling (Rauterberg, 1995).

2.2.1 ACT-R
Of the Cognitive Architectures examined in preparation for this work, ACT-R is the one most promising for this
purpose. It can be taken as representative of what Cognitive Architectures look like up close.

ACT-R is the theory of the Adaptive Control of Thought-Rational. It is a modern architecture with a long history
of good work behind it by Anderson (1990; 2004; 2009). It particularly has good support for predictions about human
memory and attention. For instance, a group at the Penn State Applied Cognitive Science Laboratory, including
myself, have used it to test the effects of memory as a constraint on social network models (Zhao et al., 2015). This
research uses ACT-R to model real human constraints on social networks. For example, on sites like Facebook or
MySpace, people may have lists of thousands of friends. However, we understand that there is only a select number of
people that a person really knows well, while the rest are not easily recalled. By analogy, when social network models
are being designed, they may be permitting a node to maintain too many social links to be cognitively plausible.

The theory put forth by ACT-R can be summarized thus: the human mind is modular, and communications
between modules happen only through a central process using shared memory buffers, which is analogous to passing
messages through mailboxes. Looking a Figure 2.1, you can see the orange central area labeled “Production System” as
the central process, and the white-colored buffer areas linking to it as the buffers described above. All communication
is done through this central system adding or removing things from buffers. Each buffer is specific to a specialized
module (the pink or blue areas), which handle any and all functionality of a particular type. The Manual Module, for
instance, handles the perception of where and how a person’s hands type on the keyboard, but it also handles manual
output in the form of performing keystrokes. Another example is the Declarative Module, which stores Long Term
Memory elements; commands to its buffer tend to either add new facts about the world, or interrogate the available
memories to find if some fact is currently known. Of special interest is the Goal Module, which contains the current
information about the goal directing the person’s current behavior.

3Terminology due to Ritter (1992), where they are defined as “these models predict the sequence of steps a human executes while
performing the task.”, making them related to the Traces discussed in Section 3.1.
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Figure 2.1: Modular Layout of ACT-R 6 (courtesy of Paik and Ritter)

In this work, the orange “Production System” from Figure 2.1 is of great importance. When making a model in
ACT-R, a set of if-then rules called productions are put in there (and other content is added to Declarative Memory
and anywhere else it needs to be, like visual or aural inputs). When apply Genetic Programming techniques to this
system, the fact that a simple set of if-then rules is ACT-R’s core method of generating behavior means that this
system can easily target these if-then rules using GP techniques. While this work does not directly breed productions,
it does produce them from domain-specific operators, and then runs those programs to make behavior traces that
are then compared to human behavior traces in the fitness evaluation.

Another interesting property of ACT-R models is that they produce very neat and detailed behavioral traces,
which closely mimic human data. Any ACT-R program automatically runs through its operations, printing out the
sequence of steps and timing that went into them. Such timing data produces a series of timestamped actions which
constitute a solid behavior trace similar to a human. Additionally, ACT-R predicts activation levels for particular
regions of the brain associated with particular modules, and so its predictions can be tested against human subject’s
Functional Magnetic Resonance Imaging (fMRI) data. Taken together, these two connections to human data allow
for the search space of an GP system trying to match them to be more highly constrained, and thus reduce the total
search space being evaluated.

A practical property of ACT-R4 is that its run-time is highly extensible. Thus, it is relatively easy to install testing
apparatus and monitoring functionality into the system for experimentation. Other systems offer their own facilities,
but being able to inspect the system from the experimental harness during run-time has proven useful to this work.

Additionally, prior work applying Evolutionary Algorithms to ACT-R exists (Ritter, Kase, Klein, Bennet, &
Schoelles, 2017). While the application involved techniques and goals not directly related to this research, it is still
the only publication that has done anything like this to date. Instead of applying GP to modify rules, Kase’s Doctoral
Dissertation (Kase, 2008) (the latest publications of which are (Ritter et al., 2017) and (Ritter, Tehranchi, Dancy, &
Kase, in press)) applied a Parallel GA to ACT-R instances to create overlays that matched the behavior of human
subjects on a stressful Serial Subtraction task both with and without caffeine. Her overlays are qualitatively different
from the rule-sets used in this research, being combinations of system control parameter values (e.g. the base-level
constant and the latency-factor). Each overlay is a set of numbers that are used by the equations throughout a run in
place of the normal defaults, however they do not change the rules in the production system. Changes to rules-sets is
the focus of my research. Both are complementary modifications, but my technique can be used to generate overlays as

4As of ACT-R 6.0 written in Common Lisp.
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well, even though that is not its focus5. Interestingly, this combination of parameter overlays and rule-set modifications
are suggested by Miwa and Simon (1993), but they never fully explored or implemented their ideas, making this the
first work that could actively explore it.

Finally, ACT-R has some direct ties back to the Theory of Mind described in Section 2.7. Anderson (2009)
even cites one of the specific versions of the Computational Theory of Mind, called the Multiple Drafts Model from
Dennett (1992), as being supported by ACT-R. While Anderson was not attempting to implement any particular
philosophical model, in the course of designing an architecture to meet certain diverse cognitive criteria6 he came
upon has historically been a successful design—which in retrospect closely matches Dennett’s.

2.2.2 Modeling Individual Differences
The idea behind the modeling of individual differences is a natural specialization of wanting to model humans at
all. Where much of the research going on now produce models that attempt to approximate mean human behavior
in their outputs, modelers of individuals do not. Instead of aiming for the middle, models of individuals attempt to
approximate arbitrary7 specific individuals.

To illustrate this, consider the task of driving a car. Most modelers would model the average driver behaviors,
which—presumably—are by and large fairly safe, and in keeping with prevailing laws. Such models would drive close
to the speed limit, and would be rather predictable in its driving behaviors. These models would be unlikely to match
anything but the statistically most common behaviors.

In the case of a model of an individual driver, that model would not only ignore average behavior in favor of
whatever the original individual driver prefers, but it would also capture their variability. Such models could express
realistic behaviors like speeding or driving aggressively. If the variability was correctly captured, the model may even
shift its preferences in a way that is statistically similar to the original driver (e.g. being able to capture how their
driving habits change after becoming exhausted or stressed). Given many models of different individuals, their average
behavior should again even out towards the human norms.

While driving is an easy thought-experiment, it presents enough of a challenge that simpler tasks are more common.
Simple problem solving and game play are more likely to be used as test problems in cognition research. With a
properly designed experiment, it should be possible to use very simple tasks and still see individual differences in
performance, choices, or other measurable behaviors. In the case of this work, a simple block sorting task is being
used. Individuals there are expected to vary widely in what specific actions they take in order to sort blocks, but
should be less variable in what method they personally use to sort blocks. So, even if the number or order of blocks
changes, they are likely to sort them using the same rules of thumb8.

Some historical research has been done on modeling individual differences. One of particular interest is the work
by Miwa and Simon (1993), where the sample task is cryptarithmetic, a kind of math word-puzzle. In their work,
they posit that the way to model an individual (as opposed to the human average) is to have some common core
rule-set, a set of parameters specific to that individual, and a set of auxiliary rules specific to that individual. While
they do not fully explore this idea in their paper, it does have a strong bearing on this research, where the idea of
shared core behaviors being combined with an individual delta is key. The very idea of Strategy Groups is based on
the idea that the shared core of the programs in the cluster represents a human problem-solving strategy.

2.2.3 Algorithmic Model Fitting
There have been a number of works related to this vein of research. The ones discussed below have an implicit common
theme among them. They are all research that either examines how to fit models, or actually fits models to tasks
related to the kinds of tasks that this research agenda aims to work with. Although none of them actually perform
the same kind of fitting that this work proposes, they do provide context.

5Using a GP representation, the overlay parameters can be evolved as a separate set of genes from the production rules, within the
same chromosome. Such work is beyond the immediate experiments I have planned, since Kase has already shown it possible with a less
sophisticated approach.

6Interestingly, the founders of our field, Newell and Simon, had long advocated integrative modeling of cognitive processes (Newell,
1972, 1990) as being vitally important in any theory of cognition. Since the same mind must match all of the criteria necessary to solve
all of the problems its known to solve, it is necessary that models minds must be constrained in their design by the need to solve all of
these different kinds of problems.

7Arbitrary here means that the aim of such models is not specifically to copy a particular person, but rather to show that for any given
person, it is possible to make a specialized model to represent them.

8There is support within this work for switching algorithms based on some internal criteria. Although there is no special mechanism
to support this, the presence of conditional behaviors and self-perception in addition to the perception of the problems permit a uniform
approach to representing this range of behavioral control–perhaps using normal conditional operators.
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Among the example works that do fit models, the kinds of models include Paigetian block-tasks (Jones & Ritter,
1998; Jones, Ritter, & Wood, 2000), and debugging tasks (Langley, Ohlsson, & Sage, 1984). Both kinds of fittings
attempt to match strategic problem-solving behaviors for their tasks, but they all only look at a very narrow range of
behaviors and do not provide any general fitting methods. The block tasks cited here are actually more complicated
than those this work intends to use, and involve special visual block-stacking behaviors. Since their focus is on
developmental psychology, they use manual fitting of ACT-R control parameters to turn an existing model of an adult
into one that matches child behaviors instead—with only manual edits to the production rules (involving breaking
up rules or narrowing them).

As this research is in the modification of the production rules in a general way, there are some changes that are
important. First, this work does not intend to use the visual system as extensively as they do, and will only use
it to get accurate timings for GUI interface usage9. Secondly, though this work does not have an a priori model
to modify at the outset, there will be an entire seed population of models after the bootstrapping phase. Third,
this task is a simplified sorting task specifically because sorting algorithms are a known quantity, and they have
been used before in cognitive psychology by Gascon (1976), Young (1976) and others. Finally, their changes are
primarily to the ACT-R control parameters rather than focusing on the model edits. While the GP method fully
supports parameter co-evolution with the models, enabling both should only be included in future work at the end
of a successful completion of a normal model-only evolutionary run (e.g. solving The Block Sorting Task). That kind
of co-evolution is planned as follow-up work.

As a matter of fact, there is a simple projection of models that could take the population results of the previous
model-only runs and project them onto model and parameter ones, without loss of information. Conversely, there is
a projection that can take a normal model edit only population and turn it into a parameter edit only population as
well. Given this flexibility, its an easy enough thought-experiment to see how these prior works could be subsumed
by this approach.

In addition to these works, there are several papers that provide a strong drive to do large-scale model fitting
including Best and Gerhart (2011); Best (2012); Best, Fincham, Gluck, Gunzelmann, and Krusmark (2008); Best et
al. (2009), as well as being hinted at in both Jones and Ritter (1998) and Jones et al. (2000). While these papers
don’t anticipate this work, they at least indicate that such things would be useful for practical as well as theoretical
reasons.

Some of the more interesting work in this area are the papers by Best et al. (2008, 2009), which not only talk
about why this kind of research is necessary, but also puts forward a method for doing certain kinds of model fitting
and exploration. They introduce the idea of applying Adaptive Mesh Refinement (AMR) to the parameters of ACT-R
as a way of sampling the space of possible parameter settings. They propose this because they identify (as mentioned
several times in this work) that a combinatorial explosion occurs when exhaustive search is attempted—even in their
much smaller task of only changing parameters instead of rules and parameters. AMR permits an efficient sampling
of parameter space to find regions of interest to their work, by only looking at a representative subset of parameter
space.

Where the other papers involving searching parameter space have been primarily manual in their sampling method,
the only other one this author is aware of is the work by Kase (Ritter et al., 2017). The difference in their methods
is in the underlying sampling algorithms and goals. Best’s work with AMR is focuses on exploring parameter space
because that space is interesting on its own, while Kase’s Parallel GA work searched parameter space for special
regions matching some optimality heuristic. Further, GA is a universal weak method, and as such can be adapted to
any heuristic, while AMR only utilizes a landscape gradient heuristic to guide sampling (effectively ignoring all flat
areas as boring). They are different but potentially complementary methods. In this work, which proposes a general
method for handling search among both rules and parameters, it is possible to subsume AMR as a specialized hybrid
operator for heuristically guiding parameter search which is complementary to the more general GP operators (e.g.
mutation). Such an operator would use AMR’s dynamic grid search to guide the search into interesting regions of
parameter space.

2.3 Evolutionary Algorithms
One of the most important pieces of background information in this method is the idea behind Evolutionary Algorithms.
Namely, the use of heuristically guided evolution as an universal weak method (a problems independent heuristic)
for optimizing some function. There are a variety of Evolutionary Algorithms, ranging from the familiar Genetic

9This work is designed to work with potentially both motor actions, visual actions, and fMRI actions, but only motor actions are
actually used in trace matching. The others are planned for later work.
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Figure 2.2: An Abstract Syntax Tree representing a Program (from Poli et al. (2008))

Algorithm, to more exotic methods. One of these more exotic Evolutionary Algorithms, of which there are a number
that breed populations of programs to some end. These algorithms are applied in this work.

2.3.1 Genetic Programming
An Evolutionary Algorithm which evolves programs to optimize some fitness function, Genetic Programming is a very
general mechanism for solving problems. Koza first described it as a generalization of Genetic Algorithms to evolve
programs instead of fixed length chromosomes (Koza, 1989, 1992, 1995). Since its inception, dozens of variations have
been developed (Poli, Langdon, & McPhee, 2008), including Grammatical Evolution from Ryan, Collins, and Neill
(1998) and O’Neill (2001); O’Neill and Ryan (2001) which includes features of interest in this work, such as adherence
to a BNF Grammar10.

In Koza’s original formulation, the GP process operated over Abstract Syntax Trees (AST) encoding computational
expressions, like the one illustrated in Figure 2.2. These AST’s were initially encoded in Common Lisp, and operated
upon by Lisp Macros which modified the source code. Later versions support other languages and encodings. Regardless,
the system would evaluate a AST and return a value, and then some Fitness Function would evaluate the result and
assign it a Fitness Value.

Genetic Programming explores the Program Space of the problem, doing a heuristically guided walk through the
space of all possible programs in the target language. The Fitness Function then assigns an additional dimension
to Program Space, giving each possible program a Fitness Value. As the GP system explores more and more of the
space, a Fitness Landscape will emerge, making a kind of topological map, where the mountains are all regions of
high fitness, and the valley are all of low fitness11.

This Fitness Landscape that lies inside of Program Space is a key part of my planned research, because it possesses
a number of important properties:

1. Each point in Program Space is a fully realized program in the target language.

2. Areas of high fitness have the property that points adjacent to a point with high Fitness are more likely to also
have high Fitness.

3. Adjacent points in Program Space are structurally similar, typically only a small edit-difference (e.g. one edit
such as changing a number or flipping a bit).

4. If there are multiple kinds of programs which can solve a particular problem, the Fitness Landscape will be
multi-modal, reflecting multiple solutions with multiple mountains (regardless of the optimal solution).

5. High Fitness regions in Program Space may feature lacunae, which are small regions of discontinuity in the
fitness landscape. Thus, a point in Program Space with High Fitness may have several Low Fitness neighbors

10Grammatical correctness is a big help when generating AST’s that will be evaluated by an outside system, like ACT-R, where the
normal high-tolerance techniques Koza used don’t naturally occur.

11There is nothing special about this arrangement, and its up to you whether you seek to maximize or minimize fitness. Mountains
being good would be the maximized fitness case.



CHAPTER 2. BACKGROUND REVIEW 25

as well as several High Fitness neighbors. To use the mountain analogy, the mountain’s surface is not smooth,
and while this does not effect the average topography, it does mean you need to look out for crevasses while
walking.

These properties are important in this research because the first three points are the basis for the ideas about
Sampling, while the fourth predicts that multiple peaks imply multiple Strategy Groups, and the last point predicts
one of the potential shortfalls Sampling may hit. Expanding upon this, without the important properties of Fitness
Landscapes in Program Space, this line of research would not work out. Much prior work has been done on Fitness
Landscapes giving reasonable certainty in their behavior.

In this work, the important thing to remember is that the proximity of two programs within Program Space
implied structural similarity. Conversely, being a great distance away implies a structural dissimilarity of programs.
Since similar programs are likely to behave similarly (though not guaranteed, see the point about lacunae above),
there are likely to be clusters of similar programs with similar fitness and performance characteristics at solving the
task. If there are clusters that are far apart, then the programs involved likely have found different ways of solving
the same problem. These clusters are the Strategy Groups discussed in Section 3.1.

Further, the process of Sampling would be locating one of these Strategy Group regions in Program Space, and
to randomly sample a point within the region. Since point five above warns of lacunae, the sample point can be
fed into a local search algorithm to find a nearby higher Fitness point. Thus, we could reliably find high Fitness
Programs that are structurally similar to the members of the Strategy Group. Evaluating it to produce a behavioral
trace should produce something that can be tested to verify that it would be Clustered with the originally sampled
Strategy Group. This would turn Sampling of Strategy Groups into a way of reliably making new members of the
Strategy Group.

Additionally, should the Genetic Program locate Strategy Groups in the Fitness Landscape whose predicted
behavior does not match the observed behavior of humans in the testing data, then it would predict that adding
additional human data will eventually show the predicted Strategy Grouping in some subject’s trace data. This
makes the Fitness Landscape a strongly predictive feature in my work, and it is the quantification of the relationship
between the problem being solved and the programs that can solve them, as mentioned in the introduction.

To better understand why GP is being applied in this problem, it is informative to look at an excerpt from Poli
et al. (2008):

The interrelationships among the relevant variables is unknown or poorly understood (or where it is
suspected that the current understanding may possibly be wrong). One of the particular values of GP (and
other evolutionary algorithms) is in exploring poorly understood domains. If the problem domain is well
understood, there may well be analytical tools that will provide quality solutions without the uncertainty
inherent in a stochastic search process such as GP. GP, on the other hand, has proved successful where the
application is new or otherwise not well understood. It can help discover which variables and operations
are important; provide novel solutions to individual problems; unveil unexpected relationships among
variables; and, sometimes GP can discover new concepts that can then be applied in a wide variety of
circumstances.

Finding the size and shape of the ultimate solution is a major part of the problem. If the form of
the solution is known, then alternative search mechanisms that work on fixed size representations (e.g.,
genetic algorithms) may be more efficient because they won’t have to discover the size and shape of the
solution.

Significant amounts of test data are available in computer-readable form. GP (and most other machine
learning and search techniques) benefit from having significant pools of test data. At a minimum there
needs to be enough data to allow the system to learn the salient features, while leaving enough at the end
to use for validation and over-fitting tests. It is also useful if the test data are as clean and accurate as
possible. GP is capable of dealing gracefully with certain amounts of noise in the data (especially if steps
are taken to reduce over-fitting), but cleaner data make the learning process easier for any system, GP
included.

There are good simulators to test the performance of tentative solutions to a problem, but poor
methods to directly obtain good solutions. In many domains of science and engineering, simulators and
analysis tools have been constructed that allow one to evaluate the behavior and performance of complex
artifacts such as aircraft, antennas, electronic circuits, control systems, optical systems, games, etc. These
simulators contain enormous amounts of knowledge of the domain and have often required several years to
create. These tools solve the so-called direct problem of working out the behavior of a solution or tentative
solution to a problem, given the solution itself. However, the knowledge stored in such systems cannot be
easily used to solve the inverse problem of designing an artifact from a set of functional or performance
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requirements. A great advantage of GP is that it is able to connect to simulators and analysis tools and to
"data-mine" the simulator to solve the inverse problem automatically. That is, the user need not specify
(or know) much about the form of the eventual solution before starting.

Conventional mathematical analysis does not, or cannot, provide analytic solutions. If there is a good
exact analytic solution, one probably wants to use it rather than spend the energy to evolve what is likely
to be an approximate solution. That said, GP might still be a valuable option if the analytic solutions
have undesirable properties (e.g., unacceptable run times for large instances), or are based on assumptions
that don’t apply in one’s circumstances (e.g., noise-free data).

An approximate solution is acceptable (or is the only result that is ever likely to be obtained). Evolution
in general, and GP in particular, is typically about being "good enough" rather than "the best". (A rabbit
doesn’t have to be the fastest animal in the world: it just has to be fast enough to escape that particular
fox.) As a result, evolutionary algorithms tend to work best in domains where close approximations are
both possible and acceptable.

Small improvements in performance are routinely measured (or easily measurable) and highly prized.
Technological efforts tend to concentrate in areas of high economic importance. In these domains, the state
of the art tends to be fairly advanced, and, so, it is difficult to improve over existing solutions. However,
in these same domains small improvements can be extremely valuable. GP can sometimes discover small,
but valuable, relationships.

The problem of figuring out what algorithm a person uses to solve a particular task fits well in these criteria.

• The interrelationships among the relevant variables is unknown or poorly understood (or where
it is suspected that the current understanding may possibly be wrong).
In a nutshell, this is the problem addressed by almost all models of human cognition. We have some rough
ideas, and have been refining them for decades, but there is no simple analytic solution to model human minds.

• Finding the size and shape of the ultimate solution is a major part of the problem.
While it is of interest to Cognitive Science, to know the range of ways that people can solve problems, this work
is the first one to really provide tools to accomplish this, as well as a theory about how to interpret the results.

• Significant amounts of test data are available in computer-readable form.
While it is not trivial to gather human data, it is commonly done, and there exist protocols to accomplish this.

• There are good simulators to test the performance of tentative solutions to a problem, but poor
methods to directly obtain good solutions.
Cognitive Architectures like ACT-R and Soar are exactly this, and while they may provide different kinds of
simulation data (ACT-R for instance provides precise timings, while Soar does not). Direct analytic solutions
do not exist, and many simulationists would claim that they could not for many problems.

• Conventional mathematical analysis does not, or cannot, provide analytic solutions.
If direct analytic solutions existed, we would undoubtedly be using them instead. In the case of the specific
problem domain of figuring out what algorithms people are using to accomplish their tasks, then there are two
ways that it has been done. First, the experimenter themselves can develop a method for solution for whatever
narrow range of behaviors they can model. Second, the experimenter can take verbal self-reports from test
subjects, and make models that represent them that way. Both options assume some prior knowledge of the
solution, which this work does not.

• Small improvements in performance are routinely measured (or easily measurable) and highly
prized.
Commonly, there are many attempts made to capture human behaviors algorithmically. While the resulting
algorithms tend to work reasonably well in some circumstances, there is inevitably some cases where there could
be improvement. Such improvements have provided for entire industries to spring up to capitalize on them. For
example, the simple act of answering a phone has spawned an entire industry dedicated to automated phone
systems.
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2.3.2 Grammar Constrained GP Variants
There are special considerations needed when trying to generate programs for my purposes. Since the general GP
method can generate trees of arbitrary shape and content, it is possible that it could generate trees which would not
qualify as Abstract Syntax Trees. If a tree would encode a program which would be disallowed under some grammar,
then it is not an AST in the language which that grammar represents. Invalid programs cannot be run or evaluated,
and tend to crash the system which generated them.

To prevent this, a number of attempts have been made to limit the generation of trees such that they can only
produce grammatically correct trees. The range of options available is beyond the scope of this work, but two select
methods have been selected for consideration in my method. These methods are Grammatical Evolution and Gene
Expression Programming, and they are described in greater detail below.

Grammatical Evolution
This is defined as a linearly encoded version of Genetic Programming, that uses a special algorithm to transform
a vector of numbers into a tree according to some specific grammar. This technique grew out of the work by
Ryan et al. (1998) and O’Neill (2001); O’Neill and Ryan (2001) which includes proofs of grammar adhesion,
increased neutrality of mutations, separation of genotype and phenotype, and other features of interest in this
work. The key to their work is the utilization of a formal BNF Grammar12, which is annotated to create a
series of decision steps while exploring the grammar that result in a numeric vector expanding into a AST. This
technique is mainly of interest as a exemplary method for constraining GP tree generation grammatically, with
a minimal of added overhead.

Gene Expression Programming
This is defined as a competing method of generating grammatically correct program trees. GEP utilizes a very
different set of principles from biology than most of GP systems. GEP also uses a numeric vector to generate
ASTs, but its method for doing so is based on its own internal mechanisms that mirror biological machinery
found inside cell nuclei. Similar useful properties like grammar adhesion, mutation neutrality, separation of
genotype and phenotype, and others mark it as a viable alternative to Grammatical Evolution. It was developed
by Ferreira (2001, 2006) in isolation, but has strong similarities with Grammatical Evolution. However, its
specialized biological analog machinery permits it to strongly separate different genes during the operations of
reproduction, such that they evolve without interfering structurally with one another13, though they can (and
typically do) interfere semantically with one another. Zhou, Xiao, Tirpak, and Nelson (2003) used this property
to evolve rule-sets. Given that many of the programs I will be evolving will be IF-THEN rule sets, this prior
work indicates that Gene Expression Programming may be a better candidate for my work than Grammatical
Evolution, despite its increased overhead. The only reason not to use this method is the polymorphic type
requirements for all operators.

2.3.3 Program Space
While Program Space has been discussed implicitly previously in this work, this section is intended to collect the key
points in one place.

To reiterate, Program Space is defined as a a mathematical Space. Spaces in this sense include things like Euclidean
n-Space, which is the Space of all n-tuples of Real numbers. By analogy, Program Space is the Space of all Programs
in some formal language, as represented in Abstract Syntax Trees (AST). Since most languages allow the construction
of statements of any finite length, the AST’s in Program Space can be of any depth or dimension as permitted by
the grammar of the language.

Within the context of Program Space, the fitness functions of Evolutionary Algorithms project an additional
dimension onto Program Space called Fitness. This dimension consists of Real values between zero and infinity, plus
the special value ⊥ (Bottom) for non-terminating programs. The fitnesses of all elements from Program Space form
a topology similar to an elevation map or a heat map.

One of the more unusual parts of Program Space is that it lacks any kind of absolute coordinate system, and so
Programs can be compared spatially only through subjective measures, like Edit Distance between trees (Gustafson,
Burke, & Krasnogor, 2005; Ekárt & Németh, 2000). Similarly, Program Space is intransitive, so that if tree A is 5
from B, and C is 3 from B, A is not necessarily 8 from C—as would happen if A, B, and C were on a number line.

12Grammatical correctness is a big help when generating AST’s that will be evaluated by an outside system, like ACT-R, where the
normal high-tolerance techniques Koza used can’t be added.

13Grammatical Evolution for instance can cause cascading changes, such that a single mutation can result in a drastically different tree.
To contrast, in Gene Expression Programming, a properly constructed chromosome will limit the structural effects from a mutation to
the single gene it occurred in.
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In addition to the most general version of Program Space defined above over trees, there are mappings of Program
Space into Euclidean n-Space. The specific algorithm used in the EA may represent the AST in terms of a numeric
vector. If Grammatical Evolution is used as an example, then the trees are represented as a vector of integers of finite
length, which places a parametric bound of the depth of any tree. There are practical guidelines for selecting the
length of that vector so that the programs will be sufficiently deep to represent whatever computation needs done.

2.3.4 GP Evolution of Expert Systems
For the purposes of this work, the differentiation between GP applications to Expert System Rule-sets and the
application of GP techniques to similar rule-based systems is a matter of complexity. In general, the rule-bases
utilized by Expert Systems are orders of magnitude more complex than those of simpler classifier systems. Indeed,
classifier systems may even be subsumed into the Expert System rule-sets (e.g. as complex precondition testing). For
contrast, it is not uncommon to find that a typical classifier system may contain a single expression tree, with less
than 100 nodes, while a Rule-set for an Expert System would include at least ten to 100 times that many expression
trees. This is to address a much wider range of behaviors than simply classifying an input (which might constitute
a single rule in the rule-set). This difference in complexity is a key difference between the two kinds of systems,
and techniques suitable for the multitude of rule-generation tasks may be computationally intractable in the case
of Expert Systems14. Similarly, it is possible that Expert Systems may yield different heuristics than smaller kinds
of problems, because of the domain knowledge that they may be able access during fitness evaluation, or similar
resources that would not be available for narrower methods.

When examining the literature for full complexity rule-set evolution, this author has only been able to find two
papers of note. They are discussed below, but that there are only these two papers published in this research area
does not imply that there is no work worth doing in that area, only that the domain is still being explored. Based
on what this author has read, it appears that computational techniques and resources have only recently become
sufficiently powerful to be applied to large rule-set evolution15.

It is best to discuss these papers as a complementary pair, with the work of Tsakonas et al. (2004) serving as the
building blocks for the first publish full application to Expert Systems by Sickel and Hornegger (2010). Both are from
Medical application areas16 , and both are published using the creation of complex rule-sets for making decisions.
The key difference between the two papers being that while Tsakonas uses the evolution of fuzzy rule-sets to solve
classification problems for medical diagnostics, Sickel applies the technique more generally for the generation and
modification of the rule-set for an Expert System which designs prosthetic hearing aids.

To generalize the work of Tsakonas for full sized Expert Systems use, Sickel introduced a number of new operators
specialized for his domain. This includes gathering a number of existing selection techniques together, and creating
a new selection technique they called best-half selection, which (although conceptually simple) filled a gap left by
the other more sophisticated techniques they were combining. Additionally, they defined a domain specific form
of fitness evaluation they called dynamic fitness which incorporates the Expert System in the fitness evaluation of
their generated rule-sets. They also carefully selected from among their many available options for operators by
running trials within their Expert System to determine which operators were most effective on their test cases. Their
methods and analysis of results are natural extensions of the work on shorter rule bases in Tsakonas. Both papers
saw measurable improvements in the systems they worked on, with Sickel’s Expert System performance.

Another GP application related to this work is the work of Duffy and Engle-Warnick (1999), where Game Theoretic
mixed strategy detection is accomplished using GP for Symbolic Regression—generation of complex algorithmic
expressions, which are less complex than rule-sets. To differentiate his work from my own, he works with the
Ultimatum Game, where the strategies are much simpler than the kind this work addresses. They are specifically
expressible as a probabilistic choice between two specific options. This minimal complexity, as well as a lack of relation
to human data differentiate his work from my own.

This line of research is the only published work to date directly applying GP to Expert Systems. As this work is in
a vastly different domain, operates on a specialized Expert System (in the form of the ACT-R cognitive architecture),
and explicitly works to mimic human data, it is safe to say that this proposed research is novel.

14It is well known that GP applications tend to be NP-Complete.
15Indeed, the current popularity of Deep Learning indicates that sufficient resources are only just recently becoming viable.
16Even though the Expert Systems discussed here are medically oriented, the domains that Expert Systems operate on may vary, but

the underlying mechanisms are often very similar. Thus research on Expert Systems themselves is portable across domains.
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Figure 2.3: Demonstration of Fuzzy Clustering from (Fu & Medico, 2007).

2.4 Fuzzy Mathematics
Fuzzy Sets originate in the work of Zadeh (1965), where he describes them as sets for which there is no bivalent
condition17, and membership in a Fuzzy Set is defined by a Membership Function that maps items which may be
in the set onto some scale, typically in [0, 1]. Built on top of this generalization of a set, Zadeh formulated Fuzzy
Logic (2008) for which there is no Excluded Middle18, algorithms for operating upon them (L. Zadeh, 1968), and
mappings to linguistic variables (L. A. Zadeh, 1972), which are fuzzy concepts which are defined well enough to
perform computations over them.

Others have since taken up Zadeh’s Fuzzy mathematics and formulated interesting applications of them (Zimmermann,
2001; Siler & Buckley, 2004), including Fuzzy Clustering Methods (Yang, 1993; Fu & Medico, 2007; Baraldi & Blonda,
1999a, 1999b; Siler & Buckley, 2004; Xie & Beni, 1991). In Fuzzy Clustering Methods, the clusters are generated
which may include fuzzy inputs as well as producing fuzzy sets to represent the groups. An example of what Fuzzy
Clustering methods look like can be seen in Figure 2.3.

Anecdotally, Zadeh19 identified Psychology and the study of the Mind as one of the domains of research that
had the least uptake from Fuzzy Mathematics, as of his writing, and had expressed hope that this frontier would
show itself a rich source of new knowledge in time. Now, Ross (2010) identified the same area as still being largely
unexplored, about forty years later.

In the general sense, it is the kind of grouping that is normally accomplished by Unsupervised Learning methods
like K-means (Lloyd., 1982) Clustering, or K-Nearest Neighbor (Cover & Hart, 1967; Beyer, Goldstein, Ramakrishnan,
& Shaft, 1999).

Typically, Clustering algorithms make some kind of groupings out of unlabeled data within a reasonable computa-
tional time frame. Though such groupings are often unstable, where another run of the same algorithm on the same
data-set may produce different clusters, it is known that there will be at least some vague kind of consistency when
obvious groups exist.

There are two major kinds of clustering techniques for the sake of this discussion: crisp clustering methods, which
utilize crisp sets to represent groups; and soft or fuzzy clustering methods, which utilize fuzzy sets to represent groups.
Given the nature of the domain and the details of its application, fuzzy clustering methods are conceptually closer to
the actual nature of the domain of Strategy Groups, which do not have conceptual exclusion, but only a degree of
membership.

17The Bivalent Condition for sets is: an item is either a member of some set, or it is not.
18The Law of the Excluded Middle from formal logic states that any preposition is either true, or its negation is.
19Citation welcome, I cannot find his comment, but it was from either the late 60’s or the 70’s.
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Fuzzy mathematics are all based around models of uncertainty, and have been reasonably successful in providing
computational methods for dealing with it20. In this work, are identified a number of sources of uncertainty:

1. Uncertainty inherit in the human data, where people may (non-randomly) change their strategy while solving
a problem, or where they may choose an admixture of multiple strategies. Additionally, nonstrategic behavior
may occur (e.g. repeated no-op swapping in a sorting task) thereby introducing noise.

2. Uncertainty in distance or proximity measurement within Program Space, due to lacunae generating implicit
discontinuities.

3. Uncertainty in the membership of a point within Program Space in a Strategy Group, since it may be members
of multiple groups, or it could represent either a mixture of groups, or entirely new Strategies. For example, the
Strategy of Comparison Sorts overlaps somewhat with Stable Sorts, but not with Radix Sorts, but Radix Sorts
can be Stable Sorts.

4. Strategy Groups may be inherently fuzzy concepts similar to linguistic variables, like “cold water” and “hot
water” or “old person” and “young person”. These kinds of concepts are typically too ill-defined for non-fuzzy
methods to perform meaningful computations using them, while fuzzy methods can perform useful computations
despite this fact (L. A. Zadeh, 1975)..

This work anticipates using Fuzzy methods for dealing with these sources of uncertainty. There will be two kinds
of clustering used in this work. First, the clustering of behavioral traces will be done on both real human data, as
well as those traces generated by evolved programs. Trace clustering consists of taking a canonical representation
of a sequence of states paired with the choices made at each state, and grouping them by some similarity criteria
relevant to the task. A sorting task may group based on comparisons performed, or on swaps performed, and may
collapse certain parts of the task into a single canonical form, like taking the fact that a particular set of things were
compared to the current object, but ignoring the exact sequence of those comparisons.

The second kind of clustering is relatively task-independent, where this author would cluster the Abstract Syntax
Trees of the Genetic Programming system based on structural similarity. Since many clustering methods work to
minimize some kind of distance metric between the members of the data-set—such as edit-distance. The original
edit-distance algorithm (Levenshtein, 1966) is still used in some spell-checkers as the basis of the Levenshtein Distance
between strings, which measures the difference between strings based on how many edits it would take to turn one
string into another. This edit-distance has been formulated in multiple ways for Trees (Philip, 2005) as well. Thus,
this author anticipates the clustering to be done based on the minimization of the Tree-Edit Distance between two
programs by the clustering algorithm.

2.5 Fuzzy Clusters
There are a number of clustering methods already out there, and some of the most popular fuzzy clustering methods
are based on the same ideas behind their crisp counterparts. Typically these methods generalize the method that was
originally defined over crisp sets to operate over fuzzy ones. Methods of interest here are:

• Fuzzy c-Means (Bezdek, 1980; Bezdek, Hathaway, Sabin, & Tucker, 1987; Bezdek, Ehrlich, et al., 1984; N. R. Pal
& Bezdek, 1995), which is a fuzzy version of c-Means clustering.

• Possibilistic Fuzzy c-Means (N. Pal, Pal, Keller, & Bezdek, 2005), which is a Possibilistic21 generalization of
FCM.

• Fuzzy k-Nearest Neighbor (Keller, Gray, & Givens, 1985), which is a generalization of k-Nearest Neighbor
clustering which groups items into fuzzy sets.

The diversity of clustering methods highlighted here is due to the special considerations of the method proposed.
The Fuzzy Clustering is required because this work represents inherently fuzzy concepts, which may additionally
contain (human or human-like) errors. This diversity is also because these methods do not work on the same kinds of
problems; the c-Means derivatives are defined to operate over feature vectors, while the k-Nearest Neighbors derivative
is defined over any data type that includes a distance measure between elements. Some of the data involved in this
process is likely to be represented as a feature vector, but the really interesting things in Program Space lack such a

20Note that randomness is a particular kind of uncertainty, as so statistical methods are not always natural for modeling other varieties.
Fuzzy maths should be seen as a general complement to Statistical methods, utilized when appropriate.

21Possibility theory is similar to Probability theory, but is based on different axioms, and is interpreted differently.
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representation (see Section 2.3.3 for more details). Instead, there are alternative means of measuring the similarity
of Programs (Baraldi & Blonda, 1999a, 1999b; Philip, 2005), though there is no obvious canonical method, but the
best are derived from edit-distance measures. Many of the measures do provide some means of calculating the kind
of distance information needed for k-Nearest Neighbors methods to operate.

2.6 Curse of Dimensionality
As the dimension of the data increases, the volume of the hypercube containing all data increases exponentially: rd,
where r is the range of the largest dimension, and d is the number of dimensions.

As a rule of thumb, most operations that analyze data become exponentially more computationally expensive as the
dimension increases linearly (Bellman, 1961; Scott, 1992). This means that certain kinds of analysis becomes infeasible
for certain kinds of high dimensional data. The techniques that experience this tend to require uniform sampling of
the space, which increases quickly. An illustrative example: if each unit interval needed sampling, a regular cube of
length 10 would require 103 = 1000 samples, while a 10-dimensional hypercube would require 1010 = 10000000000
samples22.

While this certainly is a problem for techniques that perform uniform sampling, it is less of an issue for evolutionary
algorithms exploring Program Space. Evolutionary algorithms explore the space randomly, to be sure, but will tend
to explore only certain areas of interest preferentially. Thus, though they will be exploring larger spaces with larger
dimensions, it is not normally the case that the size of the high-fitness areas is the same as the size of the total volume.
It is problem dependent, but due to special considerations for this technique, such as not requiring the finding of a
global optima or even finishing the entire problem run at once, merely getting things to explore reasonably interesting
areas of the problem space, the Curse of Dimensionality does not appear to render this work infeasible.

2.7 Philosophy of Mind
In Philosophy of Mind, philosophers have put forth many theories and positions about the nature of the Human
Mind23. Apropos philosophical background works include the Physical Symbol System Hypothesis (PSSH) of Newell
and Simon (1976) and the Computational Theory of Mind (CTM) (Horst & Zalta, 2009).

The Physical Symbol System Hypothesis’s main statement from Newell and Simon in their work from (1976):

A physical symbol system has the necessary and sufficient means for general intelligent action.

In this context, a Physical Symbol System is a technical definition described earlier in the same work. It is
basically any physical medium upon which a formal symbol system could be implemented. Example formal symbol
systems include Boolean Algebra, Arithmetic, Chess, and the myriad of applications found implemented on computers.
Physical media in this case could be a digital computer, or it could be rocks and sticks on a sandy beach. Taken
together, it implies that a physical symbol system is any physical system capable of computation. Then, the necessary
and sufficient clause implies that any generally intelligent system must implement it through computation, and that
nothing other than the right kind of computation is required.

A related philosophic position is the Computational Theory of Mind (CTM). It was developed over many years by
multiple philosophers, and there are many small variations of it. Their common core is defined here by the Stanford
Encyclopedia of Philosophy (Horst & Zalta, 2009):

Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay
is concerned with a particular philosophical view that holds that the mind literally is a digital computer
(in a specific sense of “computer” to be developed), and that thought literally is a kind of computation.

While it may sound similar (and indeed it is similar) to the PSSH, it developed out of a separate body of work and
many of the differences lie in the definitions and explanations for varying parts of Mind. For instance, the Multiple
Drafts Model (Dennett, 1992) puts forth an additional set of assertions about the nature of Consciousness assuming
that the Mind is a computer in the sense of the more general CTM. His view is that what we call consciousness is
not a privileged source of true knowledge, but that it is a subjective self-reflection. In other words, we perceive the

22When performing initial analysis, some back of the envelope calculations put the number of dimensions being explored by my technique
between 20 and 200. For reference, there are only estimated to be 1080 atoms in the universe.

23Most of the literature is technical, and inaccessible to laymen. Fortunately, the definitions below summarize much larger bodies of
work with only minimal jargon. Just do not mistake succinctness for lack of theoretical development.
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current state of the various computational elements (e.g. storage buffers) at certain points in time, and stitch together
a “stream of consciousness” to explain it to ourselves, even though it really isn’t continuous24.

The reason for including them here is because these theories are key to the interpretation of this planned work
(see Section 5.3.3). If held to be true, the implications of this work should have a much broader appeal than the
relatively narrow realm of Theoretical Cognitive Science. Since, if PSSH and CTM are true, then the programs it
would be breeding would be automated approximations of the thoughts of real people, both in the sense of trying
to solve the problems the same way as people, as well as in the sense of being approximations of the test subjects
thoughts while solving the problems25. Psychologists, Anthropologists, Linguists, HCI Researchers, and anyone else
looking to use test subjects that behave roughly like a human in some context would suddenly have an interest in
this work.

It is not assumed that every reader will necessarily agree with PSSH and CTM, but if the relationships being
explored in this work turn out to be strongly predictive, this work will provide some evidence towards empirical
verification of both theories of Mind.

24Not unlike how an old film reel is just a series of still images that give the illusion of continuous motion.
25This sounds like some kind of a posteriori mind reading, and in a way it would be, if you trained it against a particular person’s data

exclusively.



Chapter 3

Methodology

3.1 Method
This section contains a detailed description that circumscribes the research agenda for this work, including information
down to the individual algorithms. The main processes of the method are illustrated in Figure 3.1 on Page 34. Many
of the representations and broad contextualization can be seen in Section 1.1 with the visualization of the values,
types, and their interrelationships is in Figure 1.2. This chapter builds on the prior two, and readers may benefit
from referring back to Figures 1.1 and 1.2 for the summary interrelationships between components, as well as Figures
2.1 and 2.2 for what ACT-R looks like, as well as what Abstract Syntax Trees (AST) look like, respectively.

3.1.1 Graphical Representation of Method
To understand Figure 3.1, it is important to understand the division between the Bootstrapping Tasks at the top
of the diagram and the Post-Process Tasks at the bottom. In the method’s processes the Bootstrapping Tasks need
to be done initially, before any of the Post-Process Tasks can be utilized. However, some of the algorithms in the
Bootstrapping Tasks section such as those involved in making clusters and producing new Programs via GP, can and
will be run again after the initial bootstrap is completed. This sequence allows for these algorithms to be used to add
to the dataset, and adjust the location and membership of clusters.

In Figure 3.1, the cloud labeled “Humans” represents the human test subjects who produce the Trace data.
Regarding the symbology in Figure 3.1, all parallelograms are Data, all rectangles are algorithmic operators, all
diamonds are IF-THEN-ELSE choice points, ovals are post-process applications, and the lone trapezoid is a multi-way
choice. The Trace Matching EA is a GP running the Trace Matching Heuristics in Algorithm 2. Its output is an
initial population of programs, which is checked for Strategy Groups in the diamond labeled Detect Strategy Groups.
If the clusters fail a density check, they receive additional programs to add to the population via the Problem Solving
EA which represents a GP running the Best Match Heuristic in Algorithm 3.

Should the Strategy Groups pass the density check, the population of programs and the Strategy Groups defined
over them are ready. If no computational Post-Process tasks are to be done, the Strategy Groups themselves are
an output for research use. They can be used as as described in Section 3.1.10, to describe and explain the range
of heuristics used by humans to solve the original task (e.g. block sorting, in this work). Similarly, the Populations
themselves can be selected from as stand-ins for human test subjects for cognitive testing involving that task (e.g. a
model of a specific person driving a car could be used instead of that person when actually driving a car, perhaps
allowing experiments that would otherwise be dangerous or stressful like simulating reactions during an accident).

When desired, the Post-Process Tasks can also be used to for further computational analysis, which generally
results in a larger population and a revised set of Strategy Groups. The arrows pointing back to the Bootstrapping
Tasks section represent that these operations can be repeated until either sufficient size or strength are recorded.
Finally, Sampling can be used to create a new member of a Strategy Group, following the behavior distribution of
the Group.

3.1.2 Bootstrapping Tasks
In order for this method to operate, a number of preliminary steps must be taken to generate an initial population
of programs, as well as an initial set of Strategy Groups defined over that population. This part of the process is
called Bootstrapping, and is intended to be done at least once. It can be repeated to increase the population size, or
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Figure 3.1: The Proposed Method. Bootstrap tasks are described in Section 3.1, and Post-Process Tasks are described
in Section 3.1.5. Composition is described in Section 3.1.8.
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to ensure the population is sufficiently diverse. If Strategy Groups are being used, their population can be likewise
increased to increase their density. This includes Population Generation and Strategy Group Detection below, and is
the upper half of the diagram in Figure 3.1.

3.1.3 Population Generation

Data: A set of Traces from a single individual, τ
Result: A set of Programs ψ, and a set of Strategies derived from those programs, ς
// Use an EA to Maximize EditDistance (defined in Appendix)
// Some EA parameters omitted here for brevity (e.g. Population size)
population ← EAMaximize(EditDistance, τ , maxIterations);
// N is a parameter
elitePopulation ← TakeBest(population, N);
s ← FuzzyCluster(elitePopulation);
while density of s too low do

// Switch heurstic to best problem solutions rather than human matching
syntheticPop ← EAMaximizeSeeded(BestMatch, maxIterations);
eliteSynth ← TakeBest(syntheticPop);
elitePopulation ← eliteSynth ∪ elitePopulation;
s ← FuzzyCluster(elitePopulation)

end
ψ ← elitePopulation;
ς ← s;

Algorithm 1: Bootstrapping

Take an individual and use them to generate several Traces, which are temporal logs of their activities. This
data is then fed into an EA (currently GEVA, though future work may use other EAs as well) which then attempts
to generate programs in a high-level domain specific language. The fitness criterion for these programs match the
greatest subset of Trace data, as calculated by the longest correct prediction for each Trace, and the total number of
Traces it matches. For some parameter that controls the number of iterations of the EA, the EA will run the full time
only if there are less than some small elite size of programs with optimal matching such that they match all data.

A Trace is defined as follows, a list of 4-tuples (referenced in 3.1):

(initialstate, timestamp, operator, resultstate) (3.1)

Trace :: [(initialstate, timestamp, operator, resultstate)] (3.2)

Strategy :: fuzzyset{Programs} (3.3)

Population :: {Strategy} (3.4)

Once the EA halts, some number of the top (i.e. highest fitness) programs from the population will be extracted.
At this point these programs represent the individuals observations as best modeled by the first round. They will then
be combined with similar results from other individuals for the same test, and the resulting population of programs
will represent a first approximation of the range of algorithms that the test subjects evidenced for the task.

3.1.4 Strategy Group Detection
This data will be run through an initial round of Unsupervised Learning1 that results in Fuzzy Clusters. If no programs
are sufficiently close together that they are Very Close, according to some standard Linguistic Hedge (L. A. Zadeh,
1975) measure which is judged to be meaningful (Beyer et al., 1999), then the initial population is judged to be too
sparse to be informative.

So long as the clustering method fails to find sufficiently close programs, the population of programs is used to
preseed the same kind of EA as previously. With the crucial difference between the EA’s being the change of the

1Likely Fuzzy c-Means, with the AST edit distance being the distance measure for the algorithm.
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fitness criteria from matching the Trace data (as described above) to correctly resolving the problem; this is because
the seeded population already matches the human, and this step is to introduce some diversity. Reapplying the
original fitness criteria is also an option, but mutation rates would need to be managed separately. This will terminate
after some number of iterations, or when a sufficiently large number of programs achieve optimality. After this run,
the resulting population is combined with previous program data to make an expanded population of programs. The
Unsupervised Learning method will again be applied to check for closeness, and the iterations will continue until the
hedge criteria is met. Conceptually, this is similar to making sure that there is enough data for a statistical hypothesis
test to be significant. In this work that concept is just defined over Strategy Groups.

At this point, the Program Space has been explored to enough of an extent that at least some clusters exist within
it. These clusters will be in terms of fuzzy membership functions, such that a particular program may belong to
multiple clusters. This is intentional, and a feature designed to accommodate some form of modeling in the light of
the fact that a test subject may exhibit both random noise as well as systematic variability. Furthermore, a subject
may be using a number of methods interchangeably, with the result appearing as a mixture of them. Thus, these
fuzzy clusters are the best way to admit all of this uncertainty within the model. Each cluster is an approximation of
a single real algorithm, or a mixture of multiple algorithms, and it is referred to hereafter as a Strategy to distinguish
it from any crisp form of algorithm. These Strategies are one of the main object of interest for this work, and are
likely to be a concrete reification of automatically finding problem solving strategies per (Friedrich, 2008; Friedrich
& Ritter, 2020), though that connection is a matter of future work.

3.1.5 Postprocess Tasks
All of these tasks are subtasks that require the initial generation of Strategies to be completed. Given their speculative
nature, they are posed here as questions, and as well as an attempt to interpret the possible results.

3.1.6 Postprocess Verification
Does a member of a Strategy recluster with that Strategy as opposed to any other?

If a program is taken out of a Strategy Group and used to generate several behavioral traces similar to those that
the original humans generated, do the programs that result from the reapplication of our process to these seed Traces
wind up clustered with the same Strategy Group as the originating program?

Should the result of this test be positive, it will confirm the power of the method and indicate that it can reliably
detect clusters in Program Space. However, if the result is negative, then the process would be too unreliable and
would not have much power in the detection of Program Space clusters. If the positive version occurs, then the
research would have met its first great challenge of power and reliability. If not, then it will need to be amended.

3.1.7 Postprocess Sampling
Does the EA process, if seeded only with members of a particular Strategy, and using either the best-heuristic or
closest-heuristic or trace-heuristic, generate new members of that Strategy?

Similarly to the Verification process mentioned above, Sampling would generate new members of a Strategy Group.
Using a similar process as mentioned, the main difference would be that the EA used to create them need not limit
itself to trace fitting, but that it could use the other heuristics available2. After being generated, the new items should
recluster with the original Strategy for this task to pass muster.

If this part fails, and the generated programs do not recluster, it may be the case that the program space has
unusual or multimodal topology. So, it may be the case that Sampling may just not work, given some set of EA
parameters (like maximum iterations or mutation rates). However, that kind of fault should be correctable using
amended parameters or additional time. If multiple heuristics were being tested, this kind of fault is most likely to
occur in those that do not feature any similarity criterion to the Strategy Group centroid.

If it succeeds, this process will allow us to treat the Strategy Groups as real objects of inquiry. Possibly, it would
allow us to make new members of the group, but mainly it would give us the mechanisms to explore the nature and
bounds of the group in a way that is not unlike exploring an unknown probability distribution.

3.1.8 Postprocess Durability Testing
Does the entire process work reliably over multiple runs, with the program space being explored being invariant?
While the rest of this work treats it as axiomatic, there is still a need to confirm it. If it is, then this research will

2Such as fitness based on best behavior in the test, or based on proximity to the centroid of the Strategy Group.
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have touched something fundamental.
If the topology of Program Space is static, then multiple runs across time and across distance should all be

exploring the same mathematical structure. This means that researchers across the world would be able to run their
own tests and compile the results into a combined monolithic data-set, and the results would be the same as if a
single experiment had produced the data.

Program Space would be sensitive to only a small number of factors, in the ideal case. These factors are:

1. Cognitive Architecture: here it would be a stand in for mental factors that shape a person’s behaviors, such as
attention and memory.

2. High-level Representation Language: the most likely part to be a source of faults. The need to reduce the
number of invalid programs generated during the EA phases of the process makes this necessary. However, the
need to design the Domain-Specific Language and its compilation into the raw programs used by the Cognitive
Architecture adds another layer of complexity that can introduce errors. The Language must be sufficient to
represent the domain being addressed, but “sufficiency” can be difficult to determine. Furthermore, it is likely
that there is no unique Language, so alternate encodings of the task would produce different Program Spaces.

3. The Task Itself: the nature of the problem determines what algorithms are sufficient to solve it. If the problem
does not change, why should the algorithms used to solve it change?

These factors are the only ones that should determine the Program Space in the ideal case. If these are held
constant by the experimenter, then the results should be exploring a single Program Space, regardless of the Random
Seed used or the human data used to seed the process. This would be of interest to practical problems, such as how
to drive a car, where the resulting exploration of Program Space would yield all of the possible ways to drive cars,
given infinite time and space. More likely, it would permit researchers to use sufficient resources to determine the
most reasonable ways that people drive cars, which could then be translated into control algorithms for automated
cars.

3.1.9 Postprocess Reverse Prediction
When unseeded EA’s generate populations using best-heuristic fitness function, rather than Trace-matching, do they
predict human data? If they do not, then what makes the human-seeded populations special?

If the Program Space is static3, and humans do explore it when solving the problem themselves, should then the
EA not be able to operate without pre-seeding with human data? The process should be able to evolve programs
to solve the task using a best-solution fitness measure instead of a greatest-trace measure. When not preseeding,
the system will be unbiased and free to explore at random the Program Space. When the resulting population is
compared to the greater body of results derived from seeding with human data, the non-seeded programs should do
one of two things: either they will be similar to existing human seeded data, or they will not, and should predict that
humans are capable of producing some previously unseen behaviors.

If this should be true, then the process could be run without human data at all4. Furthermore, it would be able to
predict human data that has not yet been recorded. More than just being another proof of the power of the method,
it would enable researchers to predict certain behaviors ahead of time, and test to see why they do or do not appear
empirically. If it is false, however, this is even more interesting. Why should the human seeded data be privileged like
this? It would open a whole new line of inquiry.

3.1.10 Postprocess Explication
Would Programs help explain how a person accomplishes a task? Would the Strategy Group (fuzzy membership)
centroid reveal heuristics shared by members of that Strategy?

Each program from our population is a working algorithm that approximately solves the task. Since they are
programs in a DSL or a Cognitive Architecture, the programs can be read like any other as plain text. At its basis
, the text describes the steps taken to solve the problem, and thus provides some explanatory power automatically.
However, the more interesting question is, does the population in Program Space in general, or the Strategy Groups
in specific, provide more insight than a single program? The answer is almost certainly yes (i.e. using individuals
to discover common algorithmic behaviors adds more potential insight than a single individual’s results might), but
requires empirical verification.

3The factors required for it to be dynamic require inconstant definition of the human architecture involved, or redefinition of the
Problem, or changes to the Cognitive Architecture, or changes to the DSL.

4A large savings in time and funds, as well as a great way to reduce error.
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It might be the case that the Strategy Groups have some structural properties5 that represent a core heuristic
explicitly used by the members of that Strategy Group. If so, then the heuristics could be extracted from the Strategy
Groups and used directly. If not, then this can still provide some explanatory power in the descriptive properties
mentioned earlier.

3.2 Grammar
Backus-Naur Form is from Backus (Backus, 1959) and Naur (Naur, 1963). It is a notation for Context-Free Grammars,
and it is used here to express the grammar of a Domain-Specific Language for representing the mental and physical
actions taken by human interacting with an instance of the Block Sorting Task, which this dissertation uses as an
example problem (see Listing 1). In the general case, any specific problem that would be modeled in this method
would require a similarly defined language.

3.2.1 Literal Representation
Note that this work is limited to strictly using BNF in this system by the semantics of the Grammatical Evolution
algorithm (O’Neill & Ryan, 2001). It requires strictly the presence of a BNF grammar, and not something more
powerful like Extended BNF (Wirth, 1977; ISO/IEC 14977:1996, 1996). This theoretical restriction results in grammars
which must necessarily limit the range of possible literal inputs to those expressible through total enumeration, and
not through more sophisticated methods. While it is possible to express unbounded numeric or string literals as the
result of a recursive expansion of numerals or characters, the real performance results for doing so can cause unusually
deep tree expansions, while also potentially raising the total complexity of the problem by orders of magnitude (e.g.
by introducing an additional degree of freedom in the selection of each digit or character during the generation of a
literal value).

For this reason, the BNF grammar presented here limits the number of available numeric or character literals to
the smallest set required to express the range of our desired operations. Numeric literals include one to ten, so that
the full range of slots/keystrokes can be represented, and zero and ten are included as outer bounds on those slots.

Similarly, the range of character literals was choosen to include only those characters which the Blocks-Sorting
Problem strictly needed, and no more. While the declarative memory elements and the compiler both had support
for the whole alphabet, this restriction was applied only to the range of valid input literals, not the internal mental
processing that occurred afterwards6. Once a literal is input, all letters are reachable using iteration operators; numbers
behave similarly, save that iteration is not total, and is restricted to the listed literals as well as zero. The syntax here
is for string literals of length 1, rather than character literals. This type distinction between characters and strings of
length one is the made because the underlying language treats them differently, and unifying all matching on string
literals rather than mixed char/string literals is important for consistent behavior.

Boolean literals are total, with true and false being represented unsurprisingly7. Since booleans do not natively
have any concept of ordering, they are not artificially made well-ordered just to behave consistently with the other
data types. This is important in our formulation of the problem, because it means that the types being treated in ways
that are unique to their natural properties is a key part of our grammatical design. While Grammatical Evolution is
designed to handle this, other approaches (e.g. Gene-Expression Programming) require that all operators of equal arity
accept any literal value, regardless of type, without error (i.e. they are polymorphic and total functions). Inducing
such a total relationship undoubtedly changes the fundamental semantics of the problem being modeled. Furthermore,
it requires a polymorphic formulation8 of all operators which makes no distinction between operations which return
useful values, and ones which do not (e.g. motor operations, control operators, error handlers). Polymorphic operators
can similarly create an exponentially larger search space by removing the specificity of the grammar itself, as well
as introducing a much wider potential for non-useful behaviors to arise by removing heuristic knowledge about the
specificity of operators that a monomorphic system encodes via its type-system.

5Similarity in terms of edit-distance.
6To avoid confusion when looking at literals that are representable in this BNF grammar, please note that there are a number of

non-grammatical literals that are used internally by the compiler and the programs it generates, which may be discussed along side these
grammatical literals. They are not available as inputs, and are not legally representable according to this grammar. These include the
literals: :no-value, :empty, and :reload. Internal operator symbols are treated similarly, and are distinct from input operators.

7In this case, the underlying system does not have literals for true and false, instead using nil or '() for false, and any other non-nil
values as true. The true and false literals are actually just symbols without special meaning outside of the DSL.

8See 3.2.2 for a discussion of morphisms.
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3.2.2 Morphism
Throughout this work, the concept of morphisms, such a monomorphism or polymorphism, refers the the terminology
from Type Theory and Programming Languages Theory. While there are a number of other definitions available for
other branches of mathematics and philosophy, this work uses them narrowly as technical terms. As such, they both
refer to the properties of type signatures of functions.

Written in mathematical notation, a function is monomorphic if all types in its signature are bound and concrete,
while a function with any unbound and parametric types is polymorphic. For example, the following are two examples
of addition operators:

addmono :: Z→ Z→ Z Is monomorphic over integers (3.5)

addpoly :: a→ a→ a Is polymorphic over type a (3.6)

In this notation, Z is the set of integers, and the type variable a could take on any value, such as integers (Z),
real numbers (R), or complex numbers (C). Each function takes two arguments (the first two symbols separated by a
→) and return some type of result (the last symbol after the last →). Thus, the monomorphic addition, addmono is
strictly integer addition, and is not defined over any other kind of number. While the polymorphic addition, addpoly,
can accept any kind of number, so long as both inputs are the same kind of number.

As mentioned in Section 3.2.1, this system is designed to be monomorphic. In addition to the performance reasons
mentioned earlier, the choice of being monomorphic is further supported by the design decision to keep separate
code-paths for ACT-R to learn, so that learned productions will only apply to a single type of argument. In doing so,
this work arranges the order of operations in the calls to handle arguments to always be the same, thus not requiring
extra steps to interpret types whose nature should already be fixed. This aspect is discussed further in later chapters.

All operations in this grammar are monomorphic, and there are only four base types: numbers, characters,
booleans, and IO. The first three types have been discussed extensively in Section 3.2.1, but the last one bears further
examination. First, the basic version of IO is unique in that it has only the single value of Unit. Unlike all other types
in this grammar, there is no legal way to write a literal value of this type, because they can’t be used for anything
besides side-effects of their computation. A number of operators will return values of this type, but according to
the grammar, those values cannot be used for anything. Thus, any operators which return the IO type will only be
allowed to be legally called in places where their return values are discarded, such as in the prefix or suffix of the
program.

In addition to that version of IO, there are several operators defined to be IO-NUM or IO-CHAR. These operators
are more complex than a pure operator of the same kind, in that in addition to returning a normal number or character
value, as they are also expected to do some kind of IO with the environment that the model is running in, such as
looking at the screen, or pressing a button. They are also labeled as such when they are expected to interact with
declarative memory more than a normal pure operator would. This grammatical distinction does not change the real
type of the operators, and can be used monomorphically.

It should be noted that the symbol :no-value is included in code paths that are monomorphic over various types
that don’t include symbols within them, such as integers or booleans9. This is not actually so much a real value as a
way to denote that no legal value of the real type was available, but that some kind of computation was completed.

From a type theoretical point of view, all of our types—integers Z, strings10 Σ?, booleans B, and IO—are actually
monomorphic over Z⊥, Σ?⊥, B⊥, and IO⊥ respectively. This can be interpreted such that ⊥11 is represented by the
keyword symbol12 :no-value, and all code-processing paths are designed to process it in addition their normal values.
IO⊥ is the simplest, since it has no literal representation, ⊥ is its only legal return value in all cases. The other types
all treat ⊥ as an error in return values for functions, and this causes the monomorphic functions to be total.

3.2.3 BNF Definition
Now, referring to Listing 1, this section will explain how to read and interpret the actual grammar definition. Knowledge
of BNF grammars is helpful but not necessary.

9Technically, it was chosen because ACT-R cannot match nil values, and so an alternative keyword symbol was chosen in the form
of :no-value

10The Kleene closure of any length strings.
11This symbol is normally called “Bottom”, and is the “Bottom Type” from “Type Theory”. It’s use here is as an explicit out-of-band

value to indicate errors.
12Keyword symbols are a technical term from Common Lisp, which ACT-R and the DSL Compiler are both written in, where symbols

need to be interred into a specific package. It is recommended practice to use symbols in the keyword package, so that :no-value is
really syntactic sugar for keyword:no-value, so there is no magic happening, it is just a normal symbol in the keyword package.
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<prog> ::= (swap <num-expr> <num-expr>)
<expr> ::= <io> | <num-expr> | <char-expr> | <bool-expr>
<base-expr> ::= <io> | <io-num> | <io-char> |
<io> ::= (swap <num-expr> <num-expr>) | (recenter-hands)
| (shift-hand <num-expr>) | (look-off-screen <num-expr>)
| (read-whole) | (once-only <expr>)
<num-expr> ::= <control-num-expr> | <io-num> | <var-num>
<control-num-expr> ::= (if-n <bool-expr> <num-expr> <num-expr>)
| (then-n <num-expr> <num-expr>)
| (once-per-problem-n <num-expr>)
<io-num> ::= (most-recent-index) | (noted-index)
| (index-of-letter <char-expr>) | (next-number <num-expr>)
| (prev-number <num-expr>) | (scan-for-char-lr <char-expr>)
| (scan-for-char-rl <char-expr>) | (note-index <num-expr>)
| (look-at-char <char-expr>)
<var-num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| (first-index) | (last-index) | (current-problem-length)
<char-expr> ::= <control-char-expr> | <io-char> | <var-char>
<control-char-expr> ::= (if-c <bool-expr> <char-expr> <char-expr>)
| (then-c <char-expr> <char-expr>) | (once-per-problem-c <char-expr>)
<io-char> ::= (most-recent-letter) | (noted-letter)
| (letter-of-index <num-expr>) | (next-letter <char-expr>)
| (prev-letter <char-expr>) | (scan-for-num-lr <num-expr>)
| (scan-for-num-rl <num-expr>) | (note-letter <char-expr>)
| (look-at-num <num-expr>) | (next-letter-in-song <char-expr>)
| (prev-letter-in-song <char-expr>)
<var-char> ::= "\"a\"" | "\"b\"" | "\"c\"" | "\"d\"" | "\"e\""
| "\"f\"" | "\"g\"" | "\"h\"" | "\"i\"" | "\"j\""
| (first-letter) | (last-letter)
<bool-expr> ::= true | false | (and <bool-expr> <bool-expr>)
| (or <bool-expr> <bool-expr>) | (not <bool-expr>)
| (xor <bool-expr> <bool-expr>) | (num\< <num-expr> <num-expr>)
| (char\< <char-expr> <char-expr>) | (num\> <num-expr> <num-expr>)
| (char\> <char-expr> <char-expr>) | (num= <num-expr> <num-expr>)
| (char= <char-expr> <char-expr>)

Listing 1: Block Sorting BNF Grammar
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Beginning with the <prog> rule13, which is our entry-point for the grammar, it can be read as follows: a <prog>
value is defined (the “::=”) as the sequence of expressions beginning with the symbols “(swap” then two <num-expr>
value14, followed by a “)” symbol. Each value with the pair of angle-brackets around them is a reference to another
rule in the grammar. Symbols, numbers, booleans, and quoted characters are all literal values15. While all of the
expressions which are contained in parenthesis are based on the S-Expression notation from Lisp (McCarthy, 1960).
The elements in the parenthesis form a list, with the first element in the list (from left to right) is the operator, and
the subsequent elements are its operands or arguments.

With that background, this first rule can be interpreted thus: a legal program starts with a swap of two numbers.
Each of these number expressions could be simple or complex and nested. Because of how swapping must work, it
cannot be defined over any other types besides <num-expr>, since it is tied to the design of the domain and represents
striking numeric keys on the keyboard (that is, it cannot take letters as arguments and stay true to the experimental
design). This BNF Grammar is used to maintain this type-safety by forbidding all illegal possible programs that
could be randomly generated that would put something other than a number there.

While the first rule is mandatory in a BNF, the others are only relevant insofar as they are reachable from the
initial entry point of the first rule. Thus, the second two rules are unreachable in the current incarnation of the
grammar, but are kept in case the experimenter decided to permit actions to happen before or after the mandatory
swap operation, in either a prefix (hypothetically occurring before the swap) or a suffix (likewise occurring after
the swap). <expr> and <base-expr> will only get used whenever they somehow get reached from <prog>. The only
directly reachable rule is <num-expr>, but it will be discussed later.

This rule, <base-expr>, is read similarly to the first one, but is contains the BNF-symbol | which means alternation,
in this case, the rule may be read as a <base-expr> is exactly one of these options: <io>, <io-num>, <io-char>, or
"". Each of those is a reference to another rule, save for the "" which is the empty string, which does nothing but
terminate the grammar without adding text. Semantically, <base-expr> represents only operations which may occur
in the prefix or suffix of the programs (if the base <prog> is amended to include a prefix and/or suffix), which never
have a useful return value. They are allowed to be either some kind of IO operation, some other operation whose
return value is ignored, or they can be empty to represent having no prefix or suffix, as the grammar currently shows.

The first alternation choice from <base-expr> is the rule <io>. It also features alternation, though its range of
operations is wider, and includes both nullary operators, as well as operators of arity one or two. Most important
among these is the swap operator, which takes a pair of <num-expr> arguments, which is consistent with its first
appearance in <prog>. Its definition in this way allows multiple independent uses of swap operators per program,
without permitting the useless case of nested swap operators. Adding a prefix or suffix is how this is accomplished.

Other operations which are available choices in <io> include nullary operators, such as recenter-hands and
read-whole, which take no arguments, and will be evaluated during runtime to produce side-effects (e.g. recenter-hands
includes a motor action without a useful return value). Please note, however, that they are not necessarily constant
values, and they are strictly not literals. All other operators in <io> take either one or two arguments. Notable among
these is the once-only operator, which is the only way to reach the <expr> rule mentioned earlier. It alone has this
type because it has no return value, nor does it care about the type of its argument. All others require a stricter
range of inputs.

Now that a basis for reading rules has been established, there are three categories of rules besides those already
mentioned. Each of these categories has its own rules which are monomorphic on a single return type. These categories
are: expr rules, control rules, io rules, and var rules. These labels are chosen because they are part of the BNF labels
(e.g. <io-num> is an io rule, while <var-char> is a var rule).

The way that <expr> rules16 work is fairly straightforward. Each argument is evaluated from left to right, and
then the result is computed and returned. Control rules work slightly differently, since they may have unique changes
to the control flow of the programs. For example, the if-c and if-n operators evaluate their first argument to
figure out which of their two arguments need to be evaluated, and do not evaluate the other one at all, whereas the
once-per-problem-c and once-per-problem-n operators will evaluate their argument once per problem and then
just keep returning that cached result if reevaluated later on. These two operators also demonstrate the monomorphic
design of the grammar, so that the operator for conditional numeric results is entirely distinct from the one for

13Note that some operators (e.g. <io>) are wrapped over multiple lines because they are little longer than other operators. Other
operators with alternations may wrap as well, it has no bearing on the semantics to adjust the layout in this way.

14It is important to note for clarity that this system does not make any major distinction between a literal value of a given type, and
a value of the same type arrived at as the result of some computation. Both are treated equivalently by the system in all cases, except
in the internal details of the Compiler, which needs to issue code paths which either load a raw literal of a particular type or dispatch a
jump to a subexpression known to return a value of that type.

15The exception being the one empty string "" (here represented as an empty alternation), which stands for the empty expansion,
normally written ε in BNF notation. It means that when chosen, it terminates the selection process without adding anything.

16As well as var rules and io rules besides <io>.
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characters.
Finally, whenever the BNF is being expanded, and it hits a terminal, such as a literal, a nullary operator, or the

empty string, it halts expansion. When all rules have been expanded so that there are no unexpanded rules, then the
BNF has generated a legal program in this language represented by the grammar.

3.2.4 Full Program Wrapper
Once a program has been generated using the BNF, there are a number of layers of wrappers that are added on top
to make a complete executable program which gets compiled and run through ACT-R.

The first layer on top of the BNF is the addition of the following prefix:
(once-per-problem-c (read-whole))

The purpose of this layer is to add a mandatory behavior to every generated program without needing to directly
interact with the generation of programs from the BNF grammar. Essentially, it adds one behavior that every person
must minimally have in order to solve the problems: once per problem, read the current problem. It is minimal as it
only occurs the first time a new problem is presented17 and that it is the minimal number of visual actions in order
to actually know what the current problem is. If anything, it probably overestimates the efficiency that a person
presented with a problem would have, since the read-whole operator does not allow breaks.

The next layer is a wrapper at the Common Lisp level, where a macro named with-dsl-wrapper is wrapped
around the whole input program. By doing so, the instance of Common Lisp is told that, when evaluated, the input
text from the BNF and the modification mentioned above must all be handed the the Compiler for the Blocks-Sorting
Grammar DSL. The details of its operations are detailed in Section 3.3, but it is mentioned here to ground the
discussion. This layer is also responsible for placing the program from the BNF generation into a behavioral loop,
thus allowing iterative problem solving behaviors without permitting generative loops in the grammar.

A final layer is added on top of the wrapper for the Compiler. This layer consists of several pieces of Common
Lisp code which act as an instrumentation harness for the system. They permit values to be captured, measurements
to be taken, inputs and outputs to be arranged, and configuration to be passed around the system. It is mainly there
to act as glue to the GEVA library and the Clojure runtimes.

Most important to actual experimentation are the various cutoffs which heuristically guess that a non-productive
run has occurred. Some of these are based on a maximum number of iterations, like so:
(defparameter *max-iterations* (let* ((n (length (car *problem-list*)))

(n3 (* n n n))
(k 3))
(max n3 k)
))

which provides a iteration18 cutoff of the higher of n3 and 3. Other related timers are set to cutoff the run if a
parametric amount of time has passed without any progress (n.b. time without progress is not the same as taking
too many iterations, and catches hangs rather than thrashing).

These additional layers are described here for grounding and clarity, and (aside from the first layer mentioned
that reads the problems) they do not change the semantics of the programs generated according to the grammar for
the Blocks-Sorting Problem.

3.2.5 Operators Summary List
The operators described throughout Section 3.2.6 and detailed at length in Section 3.4 are numerous enough to benefit
from a summary table. In Table 3.1, the information from Section 3.2.3 and Section 3.2.1 is condensed down into one
place.

In addition to using Table 3.1 to separate out the operators by type and arity, there are a few functional groups
that they can be gathered under:

Constants These operators and literals are either literal constants or nullary constant look ups that functionally act
as terminals. These nullary operators may be universal constants or per-problem constants, which are constant
for the lifetime of a single problem only.

1. “a” to “j”
17If a problem recurs, it still counts as new for our purposes.
18Again, the BNF body is evaluated within what is essentially a while loop, so there is no named iterator variable to draw on, just as

person might not actively keep track of how many times they’ve stepped through their internal algorithm while solving a problem.
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2. 0 to 10
3. true
4. false
5. first-index
6. last-index
7. current-problem-length
8. first-letter
9. last-letter

Ordinal Operators These provide successor and predecessor access.

1. next-number
2. prev-number
3. next-letter
4. prev-letter
5. next-letter-in-song
6. prev-letter-in-song

Logic Operators These are generally side-effect free comparison and Boolean logic operators.

1. not
2. and
3. or
4. xor
5. num=
6. char=
7. num<
8. char<
9. num>
10. char>

Notional Operators These operators are problem-duration note/recall pairs. The memoization operators function
almost identically and are included here too.

1. note-index
2. noted-index
3. note-letter
4. noted-letter
5. once-per-problem-n
6. once-per-problem-c

Free Recall Operators These operators permit free recall based on ACT-R’s memory equations biases and random
recall.

1. most-recent-index
2. most-recent-letter

Visual Operators These operators mainly perform side-effecting visual and memory modifications.

1. scan-for-char-lr
2. scan-for-char-rl
3. look-at-char
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4. scan-for-num-lr
5. scan-for-num-rl
6. look-at-num

Type Conversion Operators These operators are the primary way to convert via lookup what letter is in what
slot and what slot is under each letter.

1. index-of-letter
2. letter-of-index

Control Flow Operators These operators are the only way to control program flow, and are integral to imple-
menting algorithmic behaviors which work for multiple inputs instead of only a fixed constant input.

1. if-n
2. if-c
3. then-n
4. then-c

Manual-Only Operators These operators are available within the BNF and implemented in the Block Sorting DSL
Compiler, but are excluded from automatic generation via the Grammatical Evolutionary (GE) processes. This
is done purposefully, to reduce the degrees of freedom for genotype generation. These operators are manually
added to the runtime by modifying the wrapper behavior, if desired. Swap is a special case, because it is not
generatable, but is the root of all generated genotypes within the GE. Read-Whole could appear in the Visual
Operators section if it were reachable via genotype expansion.

1. swap
2. read-whole
3. once-only
4. shift-hand
5. recenter-hands

3.2.6 Operator Selection
With the interpretation of the BNF grammar explained, the only part of the design which has not been mentioned
is why these specific operators have been selected for inclusion. Generally, there is a trade-off between being able
to model the full range of possible behaviors19, versus presenting too many degrees of freedom and unnecessarily
increasing the computational complexity of our evolutionary algorithm’s search space. What has been included is
what is presumed to be a minimal set of operators based on the range of potential behaviors that was observed
experimentally, had been reported by subjects, supposed the potential existence of, or obtained from literature. This
work makes no claims that this specific arrangement of operators is unique or optimal, and other formulations are
undoubtedly possible. However, a BNF had to be chosen for this work to be done, and this is the one that was the
result of that educated design20.

For consistency with the previous discussion of this work will present this explanation of operator selection in
the order they appear in the BNF grammar in Listing 1. Starting with <prog> and ending with <bool-expr>, the
operators will be addressed in order, unless otherwise specifically mentioned. Operators which appear more than
once, or which are type-specific instances of an already mentioned operator will likewise be skipped. All discussion of
numeric, character, or boolean literals is in Section 3.2.1.

Beginning with <prog>, the first operator is swap. The inclusion of this operator was driven by the basic design of
the Blocks-Sorting Problem, where the fundamental motor task is the pairwise swapping of blocks via keypresses. In
order to be congruent with the actual experimental design, the activity of keypresses were constrained to the number

19More specifically, being able to model behaviors which may cause measurable changes to timings or motor actions. On-task operators
will obviously create motor actions and memory activations. Off-task or behaviors that resemble a user fidgeting also needed representation
since they were broadly observed over all subjects, and can cause quantitative changes to motor actions as well as potentially modifying
the user’s mental state while solving the problems.

20It is vitally important to report exactly which BNF grammar was used when reporting results derived from this method, due to the
close coupling of the results with that choice. A seemingly small change may have cascading changes on the quantitative results.
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Table 3.1: Table of Operators and their Types and Arities

Types Literals 0-Arity 1-Arity 2-Arity 3-Arity

Z⊥

0
1
2
3
4
5
6
7
8
9
10

most-recent-index
noted-index
first-index
last-index
current-problem-length

once-per-problem-n
index-of-letter
next-number
prev-number
scan-for-char-lr
scan-for-char-rl
note-index
look-at-char

then-n if-n

Σ?⊥

"a"
"b"
"c"
"d"
"e"
"f"
"g"
"h"
"i"
"j"

most-recent-letter
noted-letter
first-letter
last-letter

once-per-problem-c
letter-of-index
next-letter
prev-letter
scan-for-num-lr
scan-for-num-rl
note-letter
look-at-num
next-letter-in-song
prev-letter-in-song

then-c if-c

B⊥
true
false not

and
or
xor
num<
char<
num>
char>
num=
char=

IO⊥
recenter-hands
read-whole

shift-hand
look-off-screen
once-only

swap
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keys on the top row of the QWERTY keyboard (i.e. 1, 2, . . . , 9, 0, but not the number pad). Because of this, the
swap operator must take number values to perform its computation. Characters might have seemed convenient, but
it simply was not the nature of the task being performed.

The next rule that has actual operators—as opposed to a BNF rule that is only alternation—is <io>, which
includes swap again, in addition to all of the specialized IO only operators. The next operator in this rule is the
nullary operator, recenter-hands. It is one of the few non-productive or fidgeting operators in the grammar. Unlike
the other non-productive operators, this one is at least occasionally useful, since it more or less resets the position
of the hands on the number keys. When not being used productively, that position reset can cause a person to have
a noticeable delay on motor actions. In actual test subjects, this was one of the most commonly displayed motor
actions, often taking place both after losing their place with their hands, as well as when fidgeting while staring at a
problem.

The complementary operator to recenter-hands is the shift-hand operator. Following the logic from swap, it
takes only numeric arguments, but unlike swap, shift-hand only ever moves one hand at a time. It will accept the
number of a key, and then move the appropriate hand to dwell above the key without pressing it. It will not permit
the incorrect hand to press the opposite hand’s keys. Neither will it allow the hands to cross, or otherwise act oddly.
This is all by design, because observation of subjects showed that they would often anticipate where they should be
placing their hands, and would often just leave their hand over the most often used key, “1”. Also, these observations
did not show any evidence that they moved their hands in any particularly unexpected ways, nor did they cross.

The other fidgeting operator is look-off-screen, which takes a numeric argument of a number of seconds to
look off screen. After it does this, it looks at a random location on the screen. This operator serves no productive
purpose in this grammar, due to the unsophisticated proprioceptive assumptions that ACT-R makes about how a
person knows what key their finger is on21. With real subjects, they sometimes display a form of fidgeting, but many
times it accompanied motor actions such as recentering their hands, or shifting their hands to a new key. Thus, it is
inferred that they lacked a perfect knowledge of where their hands and fingers were with relation to the keys. It has
been included here mainly as a way to model the quantitative consequences of their visual movement. However, it
specifically does not include mental processing for looking at keyboard key labels, nor at other features not specifically
on the screen. This is at least consistent with the protocol instructions telling subjects to try not to look away from
the screen (which they did often).

The visual operator read-whole is rather unique among operators, in that it does not strictly need to exist, since
its behavior of reading the blocks from left to right could be accomplished in other ways using other visual operators.
It is included for reasons of computational efficiency, since it is known that such an operation is strictly required to
occur at some point in order to read a new problem. Rather than forcing the system to evolve the correct behaviors
through trial and error, they are condensed into a single reusable operator.

The last of the operators in the <io> rule, once-only is also unique, in that it can process any kind of value in
the grammar, including other members of <io>. All other operators are more restricted. This operator will act as a
cache for a computation, by evaluating it normally when first called, and then never again—instead returning the
cached result from the original computation. It is mainly there in order to capture the conceptual range of preparatory
side-effects which happen just once.

After the operators of <io>, the next rule with operators is <control-num-expr>, which are all numeric control
operators. All of these operators also have character counterparts22, so what is said about these also applies to those.
The first operator is if-n, the “if” operator that works with numbers. Its first argument is evaluated normally, and
must produce a boolean value, but its second and third arguments are treated specially. If and only if the result of
the first argument is true, then it will evaluate its second argument, and return that value. If and only if the result
of the first argument is false, then it will evaluate and return its third argument. This special behavior prevents
unconditional evaluation of arguments which the operator does not want to evaluate. As this operator is the basis of
all conditional behavior in the grammar, its inclusion is obvious given the presence of the boolean type.

The then-n operator23 is inspired by the progn operator24 from Common Lisp. It provides a basic sequence
operation, where the first argument is evaluated, then its value is thrown away, followed by the second argument
being evaluated and returning normally. Its main reason for inclusion was to prevent our grammar from being unable

21To explain this statement, ACT-R models are just automatically aware of where their hands and fingers are with relation to the
keyboard. This knowledge is encapsulated within the Motor Module, and is not automatically available via reflection to other Modules.
The information may be requested via the Motor Buffer. However, the Motor Module itself may respond to motor requests without needing
to refer to outside information about the state of the hands or fingers, such as by looking at them.

22Generally any operator with a “-c” or a “-n” deals with character or numbers, respectively. Thus, if you are looking for the character
version of if-n, you should look at if-c.

23Note that this operator is not part of an “if-then” pair, its name should mean “and then”.
24The Common Lisp progn operator is defined(Common Lisp HyperSpec, 2005) as the following: “progn evaluates forms, in the order

in which they are given. The values of each form but the last are discarded.”
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to express complex multipart algorithms. While the first step is only done for the side-effects that its evaluation
produces, that doesn’t mean that it can’t be used for preparatory steps. Additionally, they may be arbitrarily nested,
permitting the full behavior of progn to be realized via stepwise nesting. Subjects also often described their actions
as steps occurring sequentially, which this operator supports.

The last operator in the <control-num-expr> rule is once-per-problem-n, which is conceptually similar to the
once-only operator, save that it only takes numeric arguments, and that it is “reset” whenever a problem is started.
This can be used to store basic information relevant to the computation of the method of solving the problem. For
example, the modeled person might be aware of the length of the problem, but also realize that the length of the
problem does not change for the duration of a problem. The “reset” does not remove elements from declarative
memory25.

The next BNF rule is <io-num>, contains a number of operators which have character-based counterparts in the
rule <io-char>. These character counterparts can be distinguished by their use of “letter” or “char” instead of “index”
or “number”. As well, several of these operators will take a character argument, and return a number, allowing for some
measure of transferring and translating data between types. First in this rule is the operator most-recent-index.
Like many other operators that follow, this one relies upon the memory activation in ACT-R to accomplish its task
to remembering the most recently accessed memory of a number. ACT-R’s activation gives an odds of recall biased
towards recency, but which also has other factors involved. As a result, this operator, and others that rely upon
ACT-R’s memory recall mechanism are capable of returning erroneous results. Rather than being a limitation, this
is actually a feature of ACT-R, permitting it to model human error rates. This operator, and others preserve this
behavior with a nuanced model of error handling which distinguishes between different kinds of errors based on their
similarity to humans.

There are a pair of rules noted-index and note-index, which try to recall a noted number, and commit a noted
number to memory, respectively. The main item of note about these noted values is that they are not tied to a
specific problem, and so it can be used to model some kind of persistent knowledge that can be carried across problem
instances. After that pair, the index-of-letter operator interacts with what a person has seen, to recall the slot
number of a input letter (e.g. “find out which slot I last saw “a” in”). All of these operators represent basic memory
actions, based on the tasks at hand.

The next pair of operators, next-number and prev-number, may behave unintuitively compared to other memory-
heavy operators, in that they model basic natural-number successors and predecessors using procedural knowledge
instead of declarative. This design is justified by the assumption that, for the extremely narrow range of N0 ≤ 10
(i.e. {0, 1, 2, . . . , 10}), a person is arguably an expert at knowing what the next or previous number is for any given
number26. These operators do not handle other numbers not explicitly listed on the <var-num> rule. This is justified
as any broader accounting of numeric skills would be larger than the minimum functionality required to solve Block
Sorting problems, and the assumption of expertise may not hold as solidly. In such a case, any more general of an
implementation of numbers would require a whole theory of natural numbers, such as Peano Arithmetic(Peano, 1889)
or von Neumann Ordinals(Von Neumann, 1923).

Our last set of paired operators for the<io-num> are scan-for-char-lr and scan-for-char-rl. These both
perform an iterative visual scan from the edge of the letters, either from left-to-right (from the left edge) with the
first operator, or the reverse with the second (from the right edge). The scan will halt either when it finds the letter
which was given as its argument, or when it runs out of letters to check. If successful, the slot number for that letter
is returned. Otherwise, the error handling is set up by the compiler so that the model can otherwise continue27. Very
similarly, the look-at-char operator does a similar visual check for a letter from memory, looks at where it thought
that letter was last at, and then returns the slot number of that letter. It does not scan, but it does handle failures
similarly to the other two operators.

Now that <io-num> is finally complete, the next rule is <var-num>. As mentioned elsewhere, the literals have
already been taken care of, and all that remain are the operators which represent simple value look-ups.

Following this reasoning, first-index and last-index both use information about the length of the problem,
stored in the goal buffer. They return the lowest or highest slot numbers, respectively. This length information is also
directly returned by current-problem-length.

While most of these operators are simply ways of getting parts of the sequence that the problem is represented
by, the addition of perception of problem length and time add extra nuances that can potentially change a subjects
behaviors. Problem length, for example, may be a reasonable estimator of problem complexity; a subject may choose to

25A code listing is available later in this chapter, but the short version of its behavior is that the “current” memory elements are used
to match against, and so old problem’s declarative memory elements are simply not recalled for the current code path, even though they
had previously been current. Although it is not used here, it is possible to recall them manually.

26Based on a restriction on Peano Arithmetic to only include addition.
27The details of fault handling and error propagation are explained along with the compiler in Section 3.3.
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switch strategies based on perceived difficulty, saving methods of least mental effort for simpler problems. They might
also strategy switch based on a self-perception of thrashing behavior, where their current strategy is not resulting
in useful changes to the current problem in a self-determined reasonable period of time. Finally, user complexity
perception can be a way to measure non-productive cues, which represent boredom, stress, or frustration.

Moving on to the next rule that has not already been explained by analogy with the numeric operators, we come
to the <io-char>. While almost all of operators these have been covered, there are four in particular which are
notably different: next-letter, prev-letter, next-letter-in-song, and prev-letter-in-song. The first pair of
these differs from their numeric analogs by using declarative lookups in order to find the ordering of letters by looking
them up in a data structure called a Doubly-Linked List, which predicts uniformly linear lookup times. Contrast this
against the operators, next-letter-in-song and prev-letter-in-song, which use the Tree28 structure from Klahr
(Klahr, Chase, & Lovelace, 1983). In this later case, lookups are non-uniform and non-linear in their lookup times.
The details of comparing these representational operators will be discussed later, but the important part for this
section is that they are based on different ways of learning the alphabet. For the first pair of operators, the alphabet
is simply memorized as a sequence of twenty-six individual elements. For the second pair, the alphabet is learned
via The Alphabet Song, wherein the learner learns the letters in groups, according to the structure of the song. Klahr
(ibid.) treats the song at length, but the important thing about it is that it is commonly used to teach children the
alphabet. Further, nearly all test subject mentioned using it during their sessions29.

The last rule which bears discussion is the <bool-expr> rule. Boolean operators are the among the most restricted
in where they are allowed to occur in the grammar, being legal only in the “if-” operators first argument. It may be
surprising then, that these operators are relatively thorough and complete compared to those of other types. This
is a design that resulted from the fact that the range of legal values in a boolean are both small and closed, so that
operators are easily complete and total for booleans. None of these operators require additional memory access, and
all operations are implemented via productions only. All of the basic operators, and, or, not, and xor are implemented
by hand. All of the comparison operator, like num<, num>, and num= all delegate to ACT-R their actual comparison
operation. These boolean operators and comparisons are vital to any kind of sorting problem to be solved, and so
their inclusion is a necessity.

3.3 Compiler Contextualization
This section details the design and implementation details of the compiler which implements the Block Sorting
Grammar and transforms it into programs for ACT-R to run. While this work attempts to balance between sharing
too many details and too few, real working source code will be shown here as much as is possible, as opposed to
abstract algorithms or formulae. The full source code will be made available upon request30. While much of this
section’s content requires a familiarity with compilers and ACT-R in particular, the more esoteric topics will receive
at least explanatory footnotes. Finally, this section is vital to understanding the real implications for the design of
general and reusable cognitive models which this compiler embodies.

While this work makes no claim that this specific compiler design is in any way special or uniquely optimal, it is
the product of several rounds of revision. Indeed, the original design–an embedded compiler31–was completed years
before this one, and worked reasonably well, save that it had two properties which were unacceptable for real use.
First, since it placed most of the important computations outside of ACT-R, via delegation to the general computing
infrastructure available through escaping to Common Lisp, the resulting productions were completely ineligible for
ACT-R’s production compilation mechanisms. This meant that no learning could occur, no proceduralization at all.
In addition to making the system less realistic, such a restriction would also mean changes to the protocols for any
experiments done with the technique, since any period where learning was thought to be occurring would need to
be avoided. Second, the actual management of program flow, and for the most part, the majority of program state,
would be handled via non-cognitive mechanisms and delegation to Common Lisp computations. For the accuracy and
realism of timings and other quantitative parts of the model, this needed to be avoided.

28Though it is a tree, it is very similar to a specialized form of Skip List.
29Anecdotally, there were a couple instances of the song being sung aloud during the experiment.
30It is not included as a distinct appendix, due to the limitations of print space; when last printed, the source code was well over 700

pages long, comprising more than 27000 lines of code in the compiler alone, and well over 100000 in the project total, which includes
modified FOSS.

31The word embedded here means that it was implemented by relying very strongly on runtime delegation to a host language, in this
case Common Lisp. More technically, the Block-Storing Grammar was being run by an embedded interpreter where the only compilation
was done by Common Lisp. Contrast this against the current compiler, where the compilation is largely done by my code, which doesn’t
directly interact at all with Common Lisp during model runtime, except in a very limited number of operators, where math or timing
needs to be done.
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(def binding-problem-list
(let [result

(clojure.string/join ""
(list
"(defparameter *problem-list* '("
(clojure.string/join "" (doall (map #(str " \"" % "\" ") problem-sets)))
"))"))]

result))

Listing 2: Binding Problem-list

The present design of the compiler is specifically designed to avoid either of these issues, and so it uses ACT-R’s
cognitive mechanisms as much as possible, and flow control and state are all represented within ACT-R. For the most
part, the compiler can be said to transform arbitrarily complex sequences of operators into a set of production rules
and declarative memory elements that embody those operations. Since the Block Sorting Grammar was designed to
utilize the same S-Expression notation as the Common Lisp language that it was written in, the parsing of the inputs is
delegated to the Lisp Reader. Once read, the Lisp runtime evaluates the input according to a number of Lisp macro’s32,
which transform the input structures into a list containing the instructions which will eventually be evaluated directly
by ACT-R. At no point does the final model escape out to Common Lisp, outside of a small handful of uses of the
!bind! operator to do arithmetic33 or timings34. When these occur is limited to the infrastructure to load the next
problem, as well as these specific operators: note-problem, count-since-noted-problem, and look-off-screen.

3.3.1 Inputs
As was mentioned in Section 3.2.4, the input to the compiler is slightly more complex than simply reading through
the BNF Grammar would indicate. When an individual program is generated according to the grammar, it is rather
bare, and is little more than a series of statements in the Block Sorting Grammar, and is not yet a legal Common
Lisp program. It needs to be wrapped in a number of ways in order to legally compile.

The following string is a legal expression within the Block Sorting Grammar BNF: "(swap 0 1)". Given this
string encodes a legal Block Sorting DSL expression, then the way that it would be passed to the compiler is as
follows: (wrap-dsl-string "(swap 0 1)"). Where this syntax calls the wrap-dsl-string function with the string
that encodes "(swap 0 1)" as its argument.

First, the method of injecting data into the runtime is by binding that data to a dynamically35 scoped variable,
via the Common Lisp defparameter form. Since dynamic variables are a common way to provide default values
in Common Lisp, they are used in the DSL Compiler for that purpose as well. Without having anything passed in
externally by the Evolution context, the system is designed to perform self-tests.

To demonstrate this kind of binding, here is the one used for passing in the list of problems via binding the variable
*problem-list*36, in Listing 2. In this block of Clojure code (the application uses Java, Clojure, and Common Lisp
code), the Clojure constant variable binding-problem-list is bound to the result of joining a list of strings consisting
of the "(defparameter *problem-list* '(" string that encodes the prefix of the Common Lisp wrapper, and the
ending with the "))" string which encodes the terminals for the prefix. In the middle, the list of all problem sets is
transformed from its datastructure representation into the string encoding of an escaped Common Lisp list of strings
(e.g. " \"DCAB\" \"ABCDFE\" ").

In keeping with this method for injecting values into the eventual program code, the wrap-dsl-string in Listing
3 defines a function that takes the input string, str-input, and concatenates the string to form a wrapper, as above,
which will be bound to the Common Lisp variable *input-ast*. After wrapping, the string it concatenated with
binding-problem-list from Listing 2 and a normally empty diagnostic monitor.

The most important part is the Common Lisp code37:
32These are compile-time functions, which take an AST as input, and return an AST as output.
33As mentioned earlier, avoiding this and replacing it with a cognitive model of arithmetic would require a complete an general model

of arithmetic, which is outside of the scope of this work.
34This is due to needing access to a real clock, instead of the ACT-R metaprocess time, but a full ACT-R only replacement would

require being able to task-switch the single temporal buffer among several task-specific timers. This is possible, but arguably outside of
the scope of this work.

35Dynamic scoping is not the same as either global scoping, nor is is just lexical scoping. It is uncommon outside of Lisp or Perl, but
the a typical example of its use would be temporarily globally rebinding the standard output stream, and the allowing it to revert to its
prior values, down the call stack, until all dynamic bindings are removed, and it returned to its original value automatically.

36This is a legal variable in Common Lisp, and is a typographic convention commonly used to denote dynamically bound variables.
37Note the missing right parentheses, this is missing here, but matched in the string concatenation where the missing parenthesis is
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(defn wrap-dsl-string [str-input]
;;; bind *input-ast* to the actual AST we got from the chromosome:
;; (defparameter *input-ast* "(with-dsl-wrapper (once-per-problem-c (read-whole)) ... ))"
(let [bound-input

(str " (defparameter *input-ast* '(with-dsl-wrapper (once-per-problem-c (read-whole)) "
str-input
" ) ) ")

result
(str bind-runtime-fitness-monitor

binding-problem-list
bound-input)]

result
))

Listing 3: Wrap DSL String

'(with-dsl-wrapper (once-per-problem-c (read-whole))

This is the macro that denotes the boundary between Common Lisp code and the DSL language that the Block
Sorting Grammar specifies. Everything within the body of the with-dsl-wrapper block encodes DSL expressions
rather than Common Lisp ones. While the DSL is based on–and embedded within–Common Lisp, its implementation
and compilation is entirely within the DSL Compiler instead of the Common Lisp compiler38. At the end of these
steps, the resulting string is a legal Common Lisp program, and may be fed to the compiler. For example, if str-input
was "(swap 0 1)", then the resulting string would be39:
"(with-dsl-wrapper (once-per-problem-c (read-whole)) (swap 0 1))"

The with-dsl-wrapper part of the code instructs the Common Lisp compiler that the content of its argument
list is to be processed by the with-dsl-wrapper macro provided by the DSL compiler to prevent Common Lisp from
evaluating the DSL code as–likely illegal–Lisp code.

The expression within once-per-problem-c is the read-whole operator. Both of these have been passingly
described in Section 3.2.6, but it is worth explaining the syntax in brief. As stated in Section 3.2.3, the syntax is
called S-Expression notation which is used in Lisp (McCarthy, 1960). A legal expression in the syntax is either a
plain constant, a naked variable, or a Form containing one or more expressions. While this can sound complex, the
first two cases evaluate to themselves, and the last one is more or less Łukasiewicz’s Polish Notation (1951) (n.b. not
Reverse Polish Notation, which he made as well, but the operator-first version), just with parentheses to keep variadic
operators unambiguous.

Unfortunately, this is only the beginning of the process needed to get usable results out of the programs of the DSL.
For the purposes of integrating with the fitness evaluation aspect of the Evolutionary Algorithm which is actually
generating the programs in the DSL, and then using the compiler to run them and return statistical performance
information necessary for fitness evaluation. The following steps in Listing 4 are taken after arriving at around the
use of Listing 3 from earlier:

1. The ACT-R (clear-all) command is added.

2. Several variables are passed in by binding global dynamic variables.

3. The human data is bound and passed in.

4. The problem-list is bound and passed in.

5. Break-times for the current subject are bound.

6. An error-handler wrapper is put in place in case of crashes.

7. The injection-ast is bound as a global dynamic variable.

appended later.
38As an embedded DSL, the host language is tightly coupled with the DSL’s semantics, which is very beneficial. This means that the

DSL need not reinvent the wheel about compilation semantics, it need only represent the semantics of its own DSL language in terms of
the host language–Common Lisp.

39Now the missing right parenthesis is added, and this is legal code again.
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(defn eval-dsl-string [& {:keys [interpreter dsl-input-string subject
wrap-fn pre-fn post-fn
load-prefix load-suffix
injection
per-problem-cutoff-millis
total-time-cutoff-secs
single-index-run?
single-index
random-wrap-fn
]

:or {wrap-fn wrap-dsl-string
pre-fn identity
post-fn identity
load-prefix ""
load-suffix ""
subject ""
injection false
per-problem-cutoff-millis default-per-problem-cutoff-millis
total-time-cutoff-secs default-total-time-cutoff-secs
single-index-run? false
single-index 0
random-wrap-fn wrap-dsl-string-random-access
}} ]

(let [random-access-pair (when single-index-run?
(random-access-lbsp-data
single-index
(get human-data-map subject)))

lisp-interpreter-input-string
(str
"(progn "

(when testing-mode "(defparameter *testing-mode-only* t)")
(if debug-mode

"(defparameter *debug-mode* t)"
"(defparameter *debug-mode* nil)")

" (clear-all) "
(str " (defparameter *per-problem-timer-cutoff* " per-problem-cutoff-millis " ) " )
(str " (defparameter *run-time-seconds* " total-time-cutoff-secs " ) " )
(if single-index-run?

(trace-list-for-random random-access-pair)
(trace-list subject))

(when (contains? break-times-map subject) (break-times-list subject))
(when catch-errors "(handler-case (progn " )
((comp post-fn

(if single-index-run?
#(random-wrap-fn % random-access-pair)
wrap-fn)

pre-fn)
dsl-input-string)

;;; bind *input-ast* to the actual AST we got from the chromosome:
;; (defparameter *input-ast* "(with-dsl-wrapper (once-per-problem-c (read-whole)) ... ))"
load-prefix ;; for example "#-"
(when injection (str " (defparameter *injection-ast* (quote " injection " ) ) "))
(if force-compile-compiler

(str " (load (compile-file \"" dsl-loader "\")) ")
(str " (load \"" dsl-loader "\") ")
)

load-suffix
(when catch-errors " ) ") ; close handler-case progn block
(when catch-errors

(str
"(error (some-error) (progn (format t \"ERROR: Handler caught:~a.~%\" some-error) "
default-error-return-value
" ) " ; close progn in error block
" ) " ; close error block

" ) " ; close handler-case
))

")" ; close outer progn block
)
interp (if force-abcl-hard-reset-per-evaluation (new-abcl-instance! true) interpreter) ]
(when (or debug-mode print-diagnostics)
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(println "DSL DEBUG; input=" dsl-input-string)
(println "DSL DEBUG: lisp-interpreter-input-string=" lisp-interpreter-input-string)
)

(common-lisp-eval
lisp-interpreter-input-string
interp
))

)

Listing 4: Eval DSL String
Each of these steps bears elaboration. First, the use of the (clear-all) is there to make sure that we aren’t

retaining anything from previous models40. Passing in data using global dynamic variables is needed because all
ACT-R code is evaluated in the null lexical environment, so there is only the global scope to rely on. To ground this
in Common Lisp terms, we defined and used this macro in Listing 5.

(defmacro supply-default (name value)
`(unless (boundp ',name) (defparameter ,name ,value)))

Listing 5: Supply Default
Thus, when the Clojure code implementing a fitness evaluator would add code like:

(defparameter *run-time-seconds* 120)

It would not be overridden by the variable defined in the compiler using:
(supply-default *run-time-seconds* 121)

Nor would the variable be unbound if the fitness evaluator did not provide a value, thus permitting a separation of
concerns and more direct testing. The kinds of data passed in include information about time limits, the human trace
data, the list of problems, the list of break-times, a raw and unadorned input program from the grammar (i.e. the
output of wrap-dsl-string) , and finally the optional special string *injection-ast* which is evaled (if supplied)
before the model is run via the ACT-R run command. This last one permits the injection of additional diagnostics
into the runtime, though by default it is disabled, it is very useful for debugging, but it can be used for other modeling
needs as well.

3.3.2 Outputs
The outputs of the compiler are one of two distinct values. First when the error-handler detects an error, the error code
returned is the boxed integer value java.lang.Integer.MAX_VALUE. This will only happen when no useful evaluation
occurs, due to any number of reasons (relevant here because randomly generating programs must be treated very
defensively). If there is no error, then the returned value from the compiler is the Common Lisp list containing the
following values, in this order:

1. Success: a boolean which is true if and only if, the system succeeded in solving all problems.

2. Sdiff : a real valued Levenstein Distance, as per Bard (2007). It treats the sequence of keypresses as a string,
and compares the input human keypress sequence to that generated by our model.

3. Ediff : a real valued Euclidean Distance, with dimensionality promotion41. It compares the input human keypress
timings sequence to that generated by our model.

4. InAST : the input AST as a list.

5. Output-AST : the output ACT-R model code, as a list.

6. Total-Time: wall-clock time, in N0 milliseconds.

7. Correct-Problems-Before-Halt: how many problems were successful before our time ran out, in N0.
40Technically, it should be redundant with the other isolation technique being used, where a fresh ABCL Interpreter instance is used per

fitness evaluation, but it doesn’t hurt to be safe, and it avoid the possibility of contamination via pre-compiled Lisp code being retained
between Interpreter instances.

41Unequal dimensional inputs are given equal dimension.
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8. Problem-Count: how many problems were input, in N0.

9. Human-Trace-Length: how many keystrokes were in the human trace, in N0.

10. Trace-Length: how many keystrokes were in the generated trace, in N0.

11. Time-Portion: additional metadata for debugging, in R ∈ [0, 1]. The portion of the real human trace’s runtime
that was actually run.

12. Bad-Swap-Count: additional metadata for debugging, in N0. A tally of how many times the swap operator was
given invalid inputs.

13. Accumulated-Edit-Distance: additional metadata for debugging, in N0. A tally that is reset to zero for each new
problem. During a problem, it is a running accumulator summing the total edit distances for each time a swap
occurs during that problem.

When looking at these outputs, most of them are fairly straightforward in their reason for inclusion as outputs,
but a few bear explanation. Sdiff and Ediff are both fitness measures (see Section 3.5) that are easier to compute here
than to force all of the work onto the fitness evaluator (no need to pass around large traces, just summary values).
The return of the InAST and Output-AST are for inspection by researchers; they are not enabled by default because
they can be large, and may not be directly useful. Most of the others are either used for diagnostic purposes or are
optionally incorporated into the Fitness evaluation, as will be detailed in that section.

3.3.3 Memory Representation
When modeling memory cognition in ACT-R, one of the major points of contention is exactly how to represent things
in declarative memory. The basic issue is how many different kinds of chunk (the named type of a memory element42)
to use, as well as how many slots (named but typeless fields) each chunk should have. Choosing too many or two
few could result in diminished functionality of the model, or incorrect quantitative predictions. As a rule of thumb,
the number of slots should be limited to 7± 2 per Miller (1956); this is used only as a design heuristic, but memory
design strongly influences algorithm design based on that memory layout.

When reading the code defining an ACT-R chunk, its important to understand that its based on the Lisp S-
Expression syntax, where the first element of the list is the operator chunk-type, followed by a symbol43 to be used
as a label, and then one or more symbols used to label one slot each. For example, looking at Figure 6, the chunk
type label is letters, while the slots are: letter, slot-number, row-number, and done.

(chunk-type letters
letter
slot-number
row-number
done )

Listing 6: Letter Chunk

To understand this chunk, its important to understand the nuance of how this representation connects to what it
actually represents. Rather than being a general representation of character data, it is a more specific representation
of seeing a letter in a slot in the experimental GUI interface. It notes the specific letter seen, as well as what slot it
was seen in. Additional visual-processing specific data is included in the encoding of what row it occurred in, as well
as if the visual processing was completed. Nothing outside of the visual processing code makes use of either of the
two last slots. An important point to note about this chunk type is that it does not represent any kind of ordering
outside of the implicit visual ordering implied by the slot number.

The representation of ordinality for letters is represented in two competing ways, with either the alpha-order
chunk type from Figure 7, or the alpha-song-chunk from Figure 8. As introduced in Section 3.2.6, this experiment
permits two different representations because there are two major ways to learn the alphabet: a memorized sequence
of items as alpha-order does, or the Alphabet Song with a tree structure from Klahr et al. (1983). These two options

42Used here as the type that the ACT-R function chunk-chunk-type would return rather than that of the Common Lisp function
type-of.

43A Common Lisp symbol is a unique value which supports only the equality operator. They look similar to strings, but don’t normally
include spaces or quotes.
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have different performance characteristics, with the first having linear time lookup on most things, while the latter is
non-linear (and typically smaller).

When looking at the alpha-order chunk, the first slot letter is an actual character stored as a string of length
one. The next two slots, next and prev, are also characters like letter, but they are the actual next or previous
letter44. If there is no legal value for either slot, they are filled with the symbol literal :no-value. This symbol is
used internally by the compiler to annotate the absence of a value, because ACT-R productions will fail to match
on slots with the value nil just as if those slots did not exist. Testing for out-of-band flag values is a common
programming idiom. Finally, the ordinal slot is an integer starting at 1 denoting what ordinality that entry is. This
slot is exclusively used for character equality and order testing, and is not used to cheat memory access.

(chunk-type alpha-order
letter
next
prev
ordinal )

Listing 7: Alpha-Order Chunk

Contrast this against the alpha-song-chunk chunk, where it models a linked tree structure. For clarity, the
important slot is the type slot, which may have either of the symbols as :top or :pointer its values. All elements
with :top represent entry-points into a subsequence of the Alphabet Song, while all elements with the value :pointer
represent individual letters within a subsequence of the song. Thus, Klahr et al. (1983)’s song chunk γ45 would have
the type slot value of :top, but it would have no letter content itself, only a pointer to the beginning of the γ song
subsequence (i.e. “l”, “m”, “n”, “o”, “p”), beginning with a element with a type of :pointer and a value of “l” and
a pointer to “m”.

Most of the other slots have values whose interpretation depends on whether they are a :top or :pointer element,
the following ones don’t: key-letter is a character string, and indicates the first letter in the song subsequence;
next-song-chunk-key is as well, but it points to the next :top element; min and max are likewise the highest and
lowest ordinality of the letters in the subsequence, and are only used when locating the nearest song subsequence for
a given letter. All of the others are different depending on their type value. The start and end slots are booleans46

indicating whether this is the first or last :top element (i.e. α, β, γ, δ, ε, ζ). When the element is instead a :pointer
then the slots indicate the they are the first or last element in just that subsequence. Finally, target is a character
string, and when the type is :top interpreted as a pointer to a :pointer element, otherwise it is a character literal.

As well, given the increased number of slots, it is acceptable given that the song-chunk-sequence is not used
outside of assisting the clarity of a researcher reading the model. There are also three slots that could be removed by
changing them into additional chunk types. They are included here to reduce the complexity of trying to interpret
the memory of the models.

There is a detailed code excerpt in Listing 53, which contains all of the hard-coded implementation details of
these memory elements. In the listing, they are used to represent the actual structures of the two different alphabet
representations. Additionally that section also includes the staring metaproc (detailed below) that is used to bootstrap
the system, as well as ,@dm-list which is where the insertion point is for the Compilers declarative memory elements
list, which is dynamically generated from the input DSL program code by the Compiler.

(chunk-type alpha-song-chunk
start
end
key-letter
song-chunk-sequence
next-song-chunk-key
type
min
max
target )

Listing 8: Alpha-Song Chunk
44These values are used similarly to pointers, and are not directly used to perform the prev or next operation bypassing memory access.
45I refer you to the diagrams within Klahr et al. (1983), since no permission is made by the publisher to reproduce them.
46Technically, due to the interaction of Common Lisp’s boolean literals, “t” and “nil”, with ACT-R, the boolean symbols being used are

“true” and “false” instead of real booleans. This mainly matters in Production matching, where “false” may be matched, but “nil” cannot.
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All of the chunk types seen up till now have been for the representation and storage of domain-specific information.
The op-sequence and metaproc chunk types (see Figures 9 and 10) are markedly different, in that they represent
and store information about the algorithmic behavior that the person is carrying out in order to solve the problem.
In this way, a person modeled in this way is self-aware of the steps they are taking, and need to use declarative
activity to remember what step they are on. Many ACT-R models do not work this way, as their flow of control in the
program is hand-encoded by the modeler. Doing so restricts the model itself in a number of ways. They cannot reflect
on their algorithmic behavior47. They cannot be adapted to follow arbitrary flows of control for the same domain,
without explicitly writing them all manually. Finally, they do not need to access declarative memory for both the
storage of domain data as well as processing data. The most accurate way to conceive of this change is that ACT-R
models are often written as though reifying an optimal algorithm into hardware, while the methodology used by this
compiler is analogous to a Stored-Program von Neumann Architecture (Von Neumann & Godfrey, 1993), with the
role of the stored-program being played by these two chunk types.

Of these two types, op-sequence is the storage tape48, while the metaproc is strictly working memory (i.e.
registers in a von Neumann architecture). This storage tape is designed as a sequence of op-sequence elements that
all kind of point forward toward the next step in their process. While its not literally the case (since their are many
branching operations as well as internal loops), it is sufficiently similar to a stored program that the compiler may
issue production rules which are generic with regards to their composition. They are composed entirely by the stored
program, and modifying it will cause the flow of control to change as well.

Looking now at Figure 9, there a more slots than the heuristics guiding the design of memory elements would
recommend. This is a little misleading, since the fields arg3 to arg6 are not used by any current operators (which
all have arity at max three49). Besides that several of the slots are really one value broken down into multiple
slots for technical convenience: branch-name, branch-order, and op-name form the first such value; return-branch,
return-state, and return-operator form the second. The most important field is op-name, which is a symbol
naming the operator being run. After that, branch-order is a N0, and is used to track what step is being done in
the operator. Then the branch-name slot is another symbol which uniquely identifies a branch of the program. For
clarity sake, when reading the output, branch-order values are created by appending the call-stack together, along
with some additional uniqueness insuring operations involving Common Lisp gensyms. As a result, the values are
often exceedingly long, but purposefully so. Together, these three values uniquely determine where in the program the
system should be. While they are separated, they can be affixed together into a single very-long symbol if the working
memory size heuristic is pressing. The other three slots, return-branch, return-state, and return-operator are
identical to the other three, save that they denote a desired location to jump to, once computation is complete. Other
slots in this chunk type include done, which is either of the symbols t or :empty, indicate whether or not certain
internal processing steps are complete. Finally this chunk has seven slots with the names arg0 to arg6. These are
used to hold arguments to the operators. Depending on the context they are being used in, they can store literals,
return values of previous child calls, or the symbol literals :empty or :no-value. Of these last two values, :empty
indicates an unprocessed argument, while :no-value indicates a processed argument which had no useful return
value, such as an IO operation or an error.

A final set of fields, timestamp, last-argument, problem, and loop-iteration are used to store the state of the
program when new op-sequence elements are written to memory. Doing so allows otherwise identical parts of the
code path to distinguish old data from new data based on whether or not the slots match the current state.

Now, looking at Figure 10, and go from looking at the stored program tape to looking at working memory directly.
In this compiler, there is only ever one instance of this chunk type, though for other problems which require more
extensive task switching, multiple could be used (as could multiple ’tapes’). A given instance is placed in the ACT-
R Goal Buffer, and mutated in place without being garbage collected. All of the slots that it shares in common
with op-sequence are more or less the same (save for these renamings: branch-name to current-branch, op-name
to operator, return-branch to next-branch, return-state to next-branch-number, and return-operator to
next-operator). The first four slots in metaproc are all metadata about the current problem or last problem. Slots
current-problem, starting-order, and last-problem are all filled with Common Lisp strings, which encode the
current problem’s current order, the the current problem’s original order, and the last problem’s original order,
respectively. The length slot is the N>0 length of the current problem. The next important slot is subgoal which,

47While it was not necessary for the solution of the Blocks-Sorting Problem, this reflection actually permits full modification of a model’s
algorithmic behavior during run time. All that needs to be done is the addition of extra op-sequence elements into memory. It can
also be made to work with Reinforcement Learning by assigning utility ratings to different competing algorithm paths made in this way.

48Here, the term comes from Turing Machines (Turing, 1937), which are computationally equivalent to von Neumann Architectures,
but the term is more suitable given the memory being allocated in something resembling a long chain or tape, rather than a contiguous
memory block as in von Neumann.

49As a technical quibble, arg3 and arg4 are used in one or two places during the middle of a scan operation, but that is not a technical
necessity, but rather to keep the implementation logic visible and organized.
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along with dm-reload, is a symbol used to indicate positions within operators between memory accesses. These can
take on a variety of values, mostly being :empty or :reload. The slot return-value is used to pass return values
between operators, it is normally :empty, but after evaluations it must have some literal value or :no-value.

Finally, metaproc has a number of slots for keeping track of what are essentially different kinds of cutoff timers.
Not all of these timers necessarily needed to be part of the chunk type, but they have been place there for technical
reasons related to isolating use of the ACT-R !bind! operator to update timers. Of these, loop-iteration is the
simplest, and is a simple counter which is reset when the a problem is solved. Its is associated with a cutoff timer
which terminates non-productive behavior. The timestamp slot is a timestamp of the start of the current problem,
and is primarily used when using “note-” operators. The last three are all all related to computing break times:
time-since-process-start, time-since-last-break, and time-current.

The working memory size for metaproc is larger than op-sequence, but the justification remains largely the same.
The only difference is inclusion of timer support, break support, and problem tracking. Most of these are included
to avoid calling out to ACT-R !bind! operators (which precludes learning), and are not really used much outside
of a couple operators. Of the slots not already discussed earlier in terms of op-sequence only three slots that are
consistently used are subgoal, dm-reload, and return-value. These are absolutely vital to include in this chunk
type.

(chunk-type op-sequence
branch-name
branch-order
done
return-branch
return-state
return-operator
op-name
arg0
arg1
arg2
arg3
arg4
arg5
arg6
timestamp
last-argument
problem
loop-iteration)

Listing 9: Op-Sequence Chunk

With these covered, the only remaining ones are the Instance Chunks (see Figures 11, 12, and 13), which are
generally very simple. As they have a lot in common semantically, they represent the memory operation of noting a
specific problem, number, or letter. Each of them includes a label slot which is unique identifier used to differentiate
one instance from another. They all have a value slot for storing the noted value (though the equivalent slot on a
problem-instance is called starting-order). As well, they all have a meta slot for storing metadata about that
specific instance (the slot for this in problem-instance is cached-value). The problem-instance chunk type also
has a slot for storing a time-stamp called instance. Finally, the three last slots, problem, iteration, and ticks,
are designed to work with the similar slots in op-sequence, and permit differentiation of instances.

3.3.4 Algorithmic Task Control
In the design of the compiler, a balance had to be struck between expressiveness and control. If this work were to
claim that the Block Sorting Grammar is capable of producing any reasonable algorithm for solving the problem,
then it must not unnecessarily restrict the range of legal programs—potentially excluding the representation of entire
categories of reasonable algorithms. On the other hand, all of the best practices for Evolutionary Algorithms indicate
that restricting the search space and excluding unrestricted iteration is worthwhile. Unrestricted here denoting the EA
being permitted to generate loops on its own. While the DSL could easily include looping operators, in addition to the
iterative scanning operators it currently has, trying to determine if the iterations would even terminate is equivalent
to solving the Halting Problem (Turing, 1937), and therefore formally undecidable, and thus only addressable using
heuristic guidance. This is addressed below via a simpler, but occasionally incorrect deterministic heuristic.

While it has been explained previously in Section 2.3.3, the latter is newly introduced. Simply put, if a EA
generates programs which may include unrestricted iteration, then those programs will never terminate for their



CHAPTER 3. METHODOLOGY 57

(chunk-type metaproc
current-problem
starting-order
last-problem
length
current-branch
branch-order
subgoal
next-branch
next-branch-number
next-operator
return-value
loop-iteration
operator
arg0
arg1
arg2
arg3
arg4
arg5
arg6
dm-reload
timestamp
time-since-process-start
time-since-last-break
time-current )

Listing 10: Metaproc Chunk

(chunk-type problem-instance
starting-order
length
instance
label
cached-value )

Listing 11: Problem-Instance Chunk

(chunk-type letter-instance
value
label
meta
problem
iteration
ticks )

Listing 12: Letter-Instance Chunk

(chunk-type number-instance
value
label
meta
problem
iteration
ticks )

Listing 13: Number-Instance Chunk
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fitness evaluation to complete. Randomly generated programs are rarely useful, and it is trivially easy to cause
infinite loops. How then can inherently iterative algorithms be represented? Utilizing restricted iteration is a reasoned
compromise.

The methods of restriction used by the compiler are threefold. First, no operators feature arbitrary iteration, so
no input from a randomly generated program can result in direct iteration; some operators feature guarded bounded
internal iteration (e.g. read-whole, scan-for-char-lr, etc.). Secondly, the ACT-R runtime is instrumented to
automatically halt after a set amount of time has passed; both total time and per problem timers are used. Lastly, a
loop-counting iteration metaprocess is the main control structure of the compiler. It implements a wrapper around
all of the instructions that need to be run, and runs them at most max(n3, 3) times50, where n is the length of that
problem. It may end early and load the next problem whenever the GUI plays a tone to indicate a successful problem
completion. Break times are also handled by this mechanism. This mechanism is referred to hereafter as main-loop.

This main-loop is an excellent place to start examining the actual control mechanisms of the compiler51 to see
how ACT-R is made to implement a Stored Program computer. The first concept of importance is the idea of a Call
Frame from computing, where they are a generic term for a variety of OS-specific form of Executable ABI. In our use,
a Call Frame is a structure containing the following fields: a identifier for this Call Frame, normally a memory address
in a computer; a list of our arguments, either literals or pointers (a memory address of another Call Frame); slots
for storing return values from argument evaluations; local data and maybe our processing code (or a pointer to that
code, depending on the OS); and finally a pointer to where we want to jump to when our evaluation is complete. For
example, a computer implementation of the division operation may include two arguments for its operands, two slots
for the actual numbers that get returned when those arguments are evaluated, a body of math code that performs
that division, and a slot for a pointer to return to either its caller or (in the event of division by zero) the pointer to
its error handler.

For this compiler, the op-sequence chunk type (Figure 9) is the basic representation of a Call Frame. On an actual
OS like Linux or Windows, there are specific pieces of software that take Call Frames from long-term storage (e.g.
RAM or Disk), and load it into specific parts of the CPU called registers.The CPU–by design–knows how to perform
basic operations, move around memory elements, and perform jumps. When taken together, these operations are used
to form a structure called the Call Stack, which is the progression of each Call Frame evaluating its arguments in
order, recursing, loading another Call Frame, recursing, loading another Call Frame, and so on until the final terminal
Call Frames are done. Each Frame returns its value to its parent Frame. Each Frame (usually) waits for all of its
arguments to be evaluated and return their values before it evaluates itself and passes its return value to its parent
too.

While there is not a one-to-one mapping, these roles are played by the compiler using the metaproc (Figure 10)
and op-sequence. As was mentioned earlier, the memory model of ACT-R is different from a von Neumann machine,
in that it lacks a concept of locality of data storage, and is also not capable of mutating data in place (besides in the
Goal Buffer). Real Call Stacks exist in a very specific location in RAM, while the one created by the Compiler exists
only implicitly–not quite heap allocation, because there is never any Garbage Collection, only statistical forgetting
without actual erasure. While actually compiling, a real call stack is constructed to track all possible evaluation
branches. It is used to construct both the Call Frame values stored as op-sequence declarative memory elements, as
well as in the creation of the unique identifier for branch-name slots (and its kin).

This Call Frame data is represented in the declarative memory using op-sequence chunks as follows:
• Each operator gets one op-sequence chunk automatically, which also stores the data for the first argument, if

there is one.

• For each argument beyond the first, there is one additional chunk with that arguments data.

• Each argument evaluation except the last argument for that operator adds one additional chunk with the stored
result of its return value52.

• Each operator gets one chunk with the information needed to return to its parent via a jump operation.
These separate items in declarative memory are loaded and unloaded via specialized handler routines in the

main-loop and in the generic handler code the compiler provides for all operators. This code (i.e. argument-p- c

sequence-for) will, in a type-sensitive way, take the value in the return slot of metaproc and and separately load from
50This cutoff is chosen because most sorting algorithms are more efficient than O(n3), so it is a bound which is usually larger than the

runtime of a real sorting algorithm, but not so large as to waste time. The max part is to prevent immediate termination with unexpected
input problems.

51Talking about the compiler in this way, I am referring to the general class of ACT-R programs which the compiler generates, not the
actual source code that the compiler is written in.

52This “except the last” case is due to the fact that all others would get their return values overwritten when the next argument was
evaluated. The last arguments return value is kept intact until the actual processing takes place.
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declarative memory any letters chunk that has that kind of value in it (not booleans though, as there is no relevant
value to recall). This behavior is a kind of priming or rehearsal of the activation for these related letters chunks.
Once that is complete, the slots containing the information about where the original caller wanted the operation to
return to is placed into metaproc, and the control again returns to the operator which had called for the evaluation
in the first place.

Using this system, the complex behaviors permitted by a real Call Stack are translated into declarative memory
retrievals, imaginal writes, and rehearsals of related values. It permits flexibility and arbitrary composition, without
ignoring all of the good and proper memory operations which can have compounding quantitative effects on the
results. Undoubtedly, this kind of behavior could be written more minimally by hand, and more optimal quantitative
prediction could be possible, but many models like that are neither generic or flexible enough for any kind of reuse or
composition. For a more nuanced comparison, it might be more apt to consider models of multitasking or threaded
behaviors. The burden of context switching is then less obviously out of place compared to these models. Similarly,
few models have the capacity to reflect on their operations, and potentially change them. This design accomplishes
both by taking core ideas from computers and translating them into something cognitively plausible, if complex.
However, most problems need a certain minimum amount of complexity in order to solve them. The implications of
this design on the learning process of ACT-R is discussed elsewhere in Section 3.3.6.

3.3.5 Compiler Internal Representation
The entry point for a technical discussion of operator implementation is to understand roughly what the compiler is
actually doing to define an operator, and then look at the implementation details of a few operator specimens53. The
whole compiler uses just three kinds of records to operate: dsl-compiler-state, dsl-op-sequence, and dsl-operator.

As the first of these record types, as shown in Listing 14, a dsl-compiler-state stores a symbol table, a set of used
identifiers, a stack representing the current identifier, and two lists which contain the input AST and the output AST.
While these last two are used mainly for input and output to the compiler, the other fields are used to track the
current call stack, as well as maintain the information needed to generate new unique identifiers as well as to test if
an identifier already exists.

(defclass dsl-compiler-state ()
((symbol-table

:initform (make-hash-table :test 'equal)
:type hash-table
:accessor symbol-table)

(input-ast
:initform nil
:type list
:accessor input-ast)

(output-ast
:initform nil
:type list
:accessor output-ast)

(current-ident
:initform nil
:type list
:accessor current-ident)

(used-idents
:initform (make-hash-table :test 'equal)
:type hash-table
:accessor used-idents)

(branch-stack
:initform nil
:type list
:accessor branch-stack)

(dm-items
:initform nil
:type list
:accessor dm-items)

))

Listing 14: Class Definition for DSL Compiler State

53I fully intend to avoid repeating details mentioned elsewhere, as well as not to inundate the reader with low-level technical details.
Those details shared are chosen because they are sufficiently high-level to be useful in conveying broad designs.
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(defclass dsl-op-sequence ()
((branch-name

:initform :empty
:initarg :branch-name
:accessor branch-name)

(branch-order
:initform :empty
:initarg :branch-order
:accessor branch-order)

(done?
:initform :no
:initarg :done?
:accessor done?)

(name
:initform :empty
:initarg :name
:accessor name)

(arity
:initform 0
:initarg :arity
:accessor arity)

(args
:initform nil
:initarg :args
:accessor args)

(args-literal-value
:initform nil
:accessor args-literal-value
:initarg :args-literal-value)

(return-branch
:initform :empty
:initarg :return-branch
:accessor return-branch)

(return-state
:initform 0
:initarg :return-state
:accessor return-state)

(return-operator
:initform :empty
:initarg :return-operator
:accessor return-operator)

(parent
:initform nil
:initarg :parent
:accessor parent)

(parent-arg-number
:initform 0
:initarg :parent-argument-number
:accessor parent-argument-number)

(dm-identity-override
:initform nil
:initarg :dm-identity-override
:accessor dm-identity-override)))

Listing 15: Class Definition for DSL Op-Sequence
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Meanwhile, the dsl-op-sequence, in Listing 15 is a very straightforward mapping of the op-sequence chunk type
from Listing 9. In addition to the fields there, the record also keeps track of the arity of the parent operator, as well
as a flag noting whether the value is a literal value, or would be compiled as a jump to a subexpression. There is also
an additional field allowing for explicit handling of some edge-cases in naming identifiers.

(defclass dsl-operator ()
((name

:initform nil
:initarg :name
:accessor name)

(arity
:initform 0
:initarg :arity
:accessor arity)

(dm-fn
;;This is a function:
;;(operator, operator-branch-name,
;; operator-branch-state,
;; , args) -> LIST OF DM-OP-SEQUENCE objects
:initform #'identity
:initarg :compiler-for
:accessor compiler-for
)

(productions
:initform nil
:initarg :productions
:accessor productions
)

(jump-locations
:initform (make-hash-table :test 'equal) ;; type is symbol -> int
:initarg :jump-location
:accessor jump-locations
)

)
)

Listing 16: Class Definition for DSL-Operator

Lastly, the dsl-operator, in Listing 16, record has a very limited number of fields: an operator name, the arity, a list
of production rules, a table of jump locations, and a generator function for making dsl-op-sequence records specific
to this operator called dm-fn; its type is as follows:

dm-fn :: compiler-state→ args→ parent-sym→ (3.7)
my-sym→ return-sym→ return-state→ (3.8)

return-op→ parent→ parent-arg-number (3.9)
→ [dsl-op-sequence] (3.10)

To explain that, dm-fn is the function that ultimately creates the Stored Program part of the von Neumann
Architecture we are implementing, and so it requires complete knowledge of the Call Stack to work. In order:

• A dsl-compiler-state record representing the current state of the compiler.

• A list of arguments as strings.

• A unique identifier for this operator’s parent.

• A unique identifier for this operator.

• A unique identifier for this operator’s return site.

• A identifier for a return-state.

• A identifier for a return operator.

• A identifier for the parent’s operator name.
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• A number denoting which argument of the parents this operator is.

It uses this information to fully walk all possible code paths, without actually executing any operators. While doing
so, it maintains the Call Stack, and uses it to generate unique ids for all elements being generated. The actual
individual possible code paths are encoded in dsl-operator chunk type elements, but the runtime behavior of the
executed productions determines the execution path by determining during run time which elements will be recalled
from memory. Not all elements are always used during runtime as a result.

(defmacro define-operator (&key
(name "UNKNOWN-OPERATOR")
(arity 0)
(prod-jumps nil)
(dm-jumps nil)
(compiler-for nil)
(productions nil))

"This is a utility macro to automate the commit order of modifications to the operator defs. Don't try to do it
manually."↪→

(alexandria:with-gensyms (op-object)
`(let ((,op-object

(setf (gethash ,name *dsl-operators*)
(make-instance 'dsl-operator

:name ,name
:arity ,arity)

)))
(when (or,prod-jumps ,dm-jumps)

(register-jump-locations ,name
,prod-jumps
,dm-jumps))

(setf (compiler-for ,op-object)
,compiler-for
)

(setf (productions ,op-object)
,productions
))))

Listing 17: Define Operator Macro

Moving away from declarative memory generation to production generation, the actual process of generating
productions for an operator is handled by the define-operator macro in Listing 17. It is a light wrapper for the normal
object constructor for dsl-operator which performs a modified version of De Brujin Indexing (De Bruijn, 1972) on
the jump location tables to transform the named operator-specific jump locations into anonymous integer values in
N0, which are unique jump identifiers within the scope of that operator. This is done to avoid name collisions among
operators, since great care is needed to do that with the declarative memory elements in a global way, but a restricted
scope is needed here. As a result, no global uniqueness management needs to be done at this step (which reduces
overhead significantly). Aside from managing jump location identifiers, the macro also provides a location to write
the code for productions by hand.

While hand-written code is fine for some uses (e.g. recenter-hands), it is not good practice to repeat code
unnecessarily. As a result, the actual productions are written as Common Lisp “backquote” template forms, where
parts of the template are computed at compile-time, and interpolated or spliced into the template body. This allows for
many design idioms to be expressed without needing to be manually written out, as well as allowing for standardized
handlers to be developed.

Two notable examples of these mechanisms are the I/O interaction generators, and the argument-p-sequence-for54

function. Both of these functions take information about the desired operation, and spit out code specialized to
handling that portion of the code’s behavior. By adhering to a common calling convention, both the code which
would lead to running the generated productions, as well as the code which would be the recipient of any return
values from the generated productions can be treated generically—increasing resusability and composability.

When an I/O interaction generator is called, such as motor-keystroke-literal-generator which has the type:

(Z→ Z→ [production])→ vert?→ zero?→ [production] (3.11)

Where the first argument is function which takes a pair of integers, and returns a list of productions, the second
argument is a boolean to indicate whether the vertical values are fixed or parametric, and the last argument is a

54Its code is available upon request.
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boolean to indicate if the numbering when generated should start at 0 or 1. When called, it effectively uses the
passed argument as a templating system, and will run the template for each possible position the mechanical action
should take. These generated values also include pre-generated information about where on the screen or keyboard a
particular element is located, thus bypassing the need to compute that during runtime by calling out to a !bind! ; both
this and !eval! are standard parts of ACT-R, and allow for the embedding of Common Lisp code into the ACT-R
production rules, with some nuances covered in the ACT-R manual. Some uses of these idioms can generate hundreds
of productions, parameterized by both the row, column, and problem size. With all three, the function uniquely
determines the location of a particular item on the screen55. Writing these kinds of productions by hand would be
prohibitively time consuming, and in order to avoid doing so may lead to a change in experimental design. Instead,
there is no change needed to make the real GUI for humans the same as the one for the ACT-R models.

Unlike the parametric templating system used in in motor-keystroke-literal-generator, argument-p-sequence-for
represents a different approach to producing code. It does not take a template and make many instances of it, instead
it takes the details for an operator and creates an entire set of behavior handlers which would otherwise be repeated
ad nauseam for each and every operator. Its type is:

opsym→ opstr → argcount→ argnum→ littype?→ control?→ [production] (3.12)

Here it takes an operator symbol and string label, along with how many args are there and which argument it is, and
the literal type as well as a boolean to indicate a control operator, and returns a list of productions. The code returned
by argument-p-sequence-for is especially interesting, as it includes both generic operator loading handlers used by
most operators to perform jumps and loads, as well as type-specific call handlers. These later ones automatically
perform a rehearsal of an appropriate value when handling either a literal or the return value of a subexpression
evaluation. As well, it also handles storing the results of the correct argument in the right place in the memory
elements representing the operator, generating additional op-sequence chunks as needed. By having a function to call
when this behavior was needed, it became possible to coordinate common behaviors across all relevant operators, but
while also maintaining uniqueness of code paths among the ACT-R productions.

The compiler entry point is when ast-compile! is called upon the set up but not compiled *compiler-instance*
variable. This is where the actual compiler object resides in the system, and it is mutated by several preparatory
steps to accurately contain the inputs and other control metadata in one place.

(defun ast-compile! (compiler-state)
(let* ((raw-input (input-ast compiler-state))

(unwrapped-input (cdr (if (listp raw-input)
raw-input
nil)))

(_ignorethis (progn
(set-main-loop-cutoff-length! unwrapped-input)

))
(root-name "root")
(root-operator (gethash root-name *dsl-operators*))
(root-compiler (compiler-for root-operator))
(compiler-dm-output

(funcall
root-compiler
compiler-state ;state
unwrapped-input ;args
nil ;parent-symbol
'root ;my-symbol
nil ;return-symbol
nil ;return-state
nil ;return-op
nil ;parent
nil ;parent-arg-number
))

(actr-formatted-dm-output
(mapcar
#'(lambda (dmop)

(let*
((dmop-args (args dmop))
(arglen (length dmop-args)))

`(,(if (dm-identity-override dmop) (dm-identity-override dmop) (branch-name dmop))

55These three values are needed due to the face that the position of a particular row or column is partly determined by the length of
the problem. The length of the problem matters because the columns are center-aligned rather than fixed left.
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ISA op-sequence
branch-name ,(branch-name dmop)
branch-order ,(branch-order dmop)
done ,(or (done? dmop) :empty)
return-branch ,(return-branch dmop)
return-state ,(return-state dmop)
return-operator ,(return-operator dmop)
op-name ,(if (stringp (name dmop)) (intern (string-upcase (name dmop))) (name dmop))
arg0 ,(if (< 0 arglen) (aux-normalize-strings (elt dmop-args 0)) :empty)
arg1 ,(if (< 1 arglen) (aux-normalize-strings (elt dmop-args 1)) :empty)
arg2 ,(if (< 2 arglen) (aux-normalize-strings (elt dmop-args 2)) :empty)
arg3 ,(if (< 3 arglen) (aux-normalize-strings (elt dmop-args 3)) :empty)
arg4 ,(if (< 4 arglen) (aux-normalize-strings (elt dmop-args 4)) :empty)
arg5 ,(if (< 5 arglen) (aux-normalize-strings (elt dmop-args 5)) :empty)
arg6 ,(if (< 6 arglen) (aux-normalize-strings (elt dmop-args 6)) :empty)
timestamp :no-value ; :empty
problem :no-value ; :empty
last-argument :no-value
loop-iteration :no-value

))
)
compiler-dm-output))

(compiler-productions-output
(loop for k being the hash-keys of *dsl-operators*

unless (equalp k root-name)
appending (productions (gethash k *dsl-operators*))))

(input-sgp-arguments *SGP-ARGS-ALIST*)
(problems *problem-list*)
(final-ast (compile-wrapper actr-formatted-dm-output compiler-productions-output input-sgp-arguments

problems))↪→

)
(setf (output-ast compiler-state) final-ast)
compiler-state))

Listing 18: Ast-Compile! Listing
The final crucial portion of the compiler lives within the compiler-sequence-for function in Listing 30. While

its detailed behavior can be gleaned from its source, it is the key to actually generating memory elements which
represent the Stored Program part of the Von Neumann Architecture. It also makes certain that there are not name
collisions and that each and every possible execution branch is represented in memory.

It divides up the processing based on operator arity cases. Zero arity is the simplest case, where the flags are set
to indicate the return branch, state, and operator, as well as parent links. Higher arities work similarly, save that
they also include DM elements to represent each of its arguments return values and processing steps.

3.3.6 Procedural Learning
One of the biggest hurdles facing the original embedded DSL design for this compiler was that its heavy use of
!bind! and !eval! ACT-R operators precluded any productions which used them from being fair game for ACT-R’s
procedural learning mechanism, called Production Compilation or chunking. Essentially, it finds pairs of productions
which fire sequentially, and generates a new production which does the work of both, but only has the overhead of a
single production being fired.

According to the ACT-R reference manual (Bothell, n.d.), a production is disqualified for Production Compilation
for any of the following reasons in addition to the usual compatibility considerations:

• is the time between the productions greater than the threshold time?
• does either production have a !eval! condition or action?
• does either production have a !bind! or !safe-bind! condition?
• does either production have a !bind! action?
• does either production use !mv-bind! in either the conditions or actions?
• does either production test the same buffer more than once in its conditions?
• does either production have a buffer overwrite action?
• does either production use a direct chunk request?
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• does either production use slot modifiers other than = in its conditions?
• does the first production make multiple requests using the same buffer?
• does the first production have a RHS !stop! action?

As the embedded DSL design relied heavily on both !bind! and !eval!, there were multiple rules saying it could
not model this kind of learning. In order to avoid that shortfall, the new compiler design relies upon !bind! and
!eval! as little as possible, doing as much work as practical using pure production rules generated by the compiler.

Preliminary testing of the new design showed that Production Compilation occurred very readily, and the expected
kinds of learning could be detected. Unfortunately, the fine details of the implementation of Production Compilation
caused it to be more aggressive than expected when compiling productions. It would not only combine them in
a straightforward way, but it would also aggressively assume that the Retrieval Buffer could be pruned from the
combined production. Since the Retrieval Buffer is normally internal to the model, and cannot be changed externally,
the chunking algorithm treats it specially. For most modeling needs, this is probably fine, but for the models produced
by the compiler, it is occasionally too aggressive an optimization. When run, there are occasions when the compilation
window width (ACT-R’s control variable for this is :tt, which defaults to 2 seconds) and the productions usage of
the retrieval buffer resulted in errors occurring where the buffer was cleared when it shouldn’t have been, or it would
drop a retrieval buffer modification request from the RHS that should have been left alone.

All of this effort begs the question of why should this compiler care about Production Compilation. The answer,
besides the obvious desire to be compatible with both the ACT-R theory and implementation, is that this mechanism
of learning can be used to account for quantitative differences between the models generated by this compiler and
those written by hand. As was explained earlier, implementing a Turing-complete computer based on Stored-Program
von Neumann Architecture introduces seemingly unaccountable amounts of overhead in the form of production calls
and memory accesses tied to managing a Call Stack. Surely, any models made in this way would be slower and use
more memory than their optimized hand-written equivalents? Perhaps, and is it not also the case that many of the
published models and quantitative calibration of the ACT-R architecture are all based on these optimized models?
Both are true. However, that does not mean that the Call Stack system that this compiler uses can be rejected
outright on the grounds of quantitative differences.

The reasoning for this is nuanced: if Production Compilation reduces both the number of productions evaluated as
well as the number of redundant memory accesses, and thereby increases the speed and reduces the memory overhead
of the model, then it is possible that the same mechanism might apply to the overhead of the Call Stack as well.
If such were the case, then these models of a much more powerful computer would be able to potentially converge
towards the performance of the optimized hand-tuned models. This is not a philosophical question, but rather one
that is purely practical and testable. If such was the case, the performance curve predicted by the ACT-R theory
of learning would suggest that the learning curves of both kinds of model should be of the same kind, but with the
optimized hand-tuned models quantitatively showing more “expertise”56 or “training time” when initially run; for
the same amount of run-time the general model should always lag behind in its “expertise”.

Should this be proven true, then Call Stack models may be a method for generalizing much of the modeling work
that has been done in the past. If it works as described, models would be more composable, could be reused for
other models, and the kinds of problems which are considered fair game for being modeled would widely broaden.
Compilation systems like the one used for this compiler could likewise allow a new level of analysis, focusing on the
high-level behaviors of humans in the description of their behavior, but without loosing quantitative predictiveness.
Thus, this issue is one which is very much of relevance.

Because both the undesirable behavior of the Production Compilation Module when interacting with the pro-
ductions generated by this compiler, and the very important role that learning via this mechanism plays in this
modeling effort, steps have been taken to fix this behavior. At present the solution is to make use of what I dub
“safety annotations” which are the inclusion of harmless no-op checks on all operators, where most ACT-R productions
are modified as so: This change causes the Production Compilation Module to interpret the production as being in
one of the categories that it is not allowed to compile, without changing any other semantics (careful analysis of this
was made for each edit). Doing so does not generally disable all learning, and it does not prevent other non-modified
productions from being compiled. Instead it is a very carefully considered and conservative compromise between
allowing errors versus disallowing learning entirely, or changing the semantics of the models.

Other options that present themselves for addressing these issues include a number of changes that are quite
outside of the scope of this work. Modification of the Production Compilation candidate detection algorithm could
allow for a clearer way of avoiding problematic production rules in the first place. Similarly, the compilation modules
could also be modified to perform a less aggressive pruning optimization, which does not lead to dropped operations

56In this usage, “expertise” is a problem-specific performance metric that exhibits the classic ACT-R learning behavior in humans.
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(p
;; ... actual LHS...
?retrieval>
state free
- state error
==>
;; ... actual RHS...

)

Listing 19: ACT-R Buffer Ready Test Template Example

without at least correcting the corresponding detection code. There are other options as well, which would require
this work to already be implemented, and then used to test for post hoc applicability. For example, all operators
could be completely rewritten in such a way as to avoid potentially problematic (but otherwise licit) buffer utilization.
A similar effort which includes buffer drop correction may also work. Finally, parametric analysis of the ACT-R
Production Compilation window width (i.e. :tt) may yield results.

One of the interesting conclusion of this work is based on these observations, namely that ACT-R’s theory does
not forbid learning which would treat interacting with safe memory elements, but its implementation lacks the means
to do so without pruning out those very memory elements. The implication with this is explored in greater depth
elsewhere in the Results and Future Work sections, but its worth mentioning at this point, to provide context. Should
a mechanism be improved, it is possible the marked overhead that the generic computational model has could be
compiled into something closer in performance to a real human or a hand-optimized model.

This work suggests that it should be possible, though the production compilation may need to be able to apply
a safety check before compilation can proceed, verifying that elements are all held constant or loaded in the same
order each time via a limited kind of branch execution tracing, as many JIT compilers do. Rather uniquely, this work
already provides a static version of branch labeling through its branch analysis and automatic symbol generation used
in generating productions for operators. Adjusting the Production Compilation Module to include this information
for scanning purposes could be a starting point for any future implementation of this mechanism that interacts with a
DSL like this one. Even if not used for DSL design, there might be a semi-manual method of annotating or decorating
productions or memory elements with this kind of metadata.

3.4 Operator Modeling
With the preliminary definition of terms and basic operator design goals complete, this section focuses instead on the
design decisions that lie behind the actual modeling of these operators using ACT-R. Such reporting is commonplace
in other works utilizing cognitive architectures, so it is included here to provide the other half of the domain standard
of reporting model and model-products (e.g. trace data) together. While the compiler used in this work is surely
larger than most models, it and the actual ACT-R models it produces can both be similar analyzed structurally. If
nothing else, it grounds discussions of the implementation without requiring a recourse to the roughly 27000 lines of
raw source code.

This section contains the actual implementation and source code for all of the DSL’s operators, as well as a handful
of special operators used for certain niche purposes, but not otherwise generatable by the GE Phenotype expansion,
and thus unreachable. These operators are vital to understanding and grounding the DSL’s choice of behaviors to
model in terms of actual ACT-R production rules. Thus, by the theoretical foundation behind ACT-R, each operator
is an executable theory about how a person does that activity.

While there are blocks of source code here, they are excerpts from the larger body of the compiler, and are
relatively self-contained. Where Operators are structurally similar outside of type, they will be presented together
with only one of the types code listing being presented fully. Any special behavior based solely on the type difference
will be presented in terms of the few changes to the code that may be relevant, so long as it is clear. Those operators
which are massively different from each other based on type will not be presented in this way.

It should be noted that the first few Operators in this section are undoubtedly the most important. At least,
they are the most important insofar as they are the first Operators which present universal features common to all
(non-Special) Operators, and so they contain detailed explanations for these universal features, which are not repeated
elsewhere. Specific Operators to look at include Literals in Section 3.4.1 for information about the type system,
MAIN in Section 3.4.2 for information about the looping wrapper, ROOT in Section 3.4.3 for information about the
generation and labeling of branches as well as the memory elements that represent them, RECENTER-HANDS in
Section 3.4.4 for information about normal (non-Special) Operators and motor actions, READ-WHOLE in Section
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3.4.5 for information about visual and memory actions, and the vital SHIFT-HAND in Section 3.4.6 which introduces
the real details of how (non-zero arity) Operators are applied to their arguments and return values. The final important
ones are SWAP in Section 3.4.9 for the details of how actual UI interaction work as well as the information about
processing more than one argument without losing intermediate return values, and in IF-N is Section 3.4.10 in which
Flow Control Operators are introduced.

3.4.1 Literals
While the numeric, character, and boolean literals are not technically Operators, they are included here to clarify their
role in the implementation of Operators. Simply put, some values in Common Lisp evaluate to themselves, that is
they are constant literal values. The DSL Compiler keeps this practice for consistency sake, and performs case-based
analysis when performing evaluations of AST expressions, to correctly identify one of the small handful of pre-known
literals.

They are treated specially by argument-p-sequence-for, for example. Instead of needing to recurse upon them
like a normal Operator, they are detected and loaded into the correct slots, as though they had actually run a nameless
Operator which stuck that literal value into the return-value slot of the METAPROC within the goal buffer. The
calling Operator is ignorant of the internal implementation of those children/arguments it calls, and so it does not
know that it can skip certain memory loading behaviors that it might otherwise not need to do if a child was not
fully called.

It is perhaps relevant to say here that the string inputs of a value Block Sorting DSL program cannot legally
contain embedded Common Lisp expressions by design–it supplies no eval. Thus, while these literals may ultimately
be grounded in Common Lisp, they are not strictly speaking the same types. For example, the DSL Compiler’s
:type-number is fully enumerated in the Block Sorting BNF grammar, and is not actually Common Lisp type NUMBER
which is the superclass of the numeric tower within Common Lisp57.

The same treatment is given to :type-letter, which is not actually Common Lisp type CHARACTER, even though
they look like they could. As well, although they are encoded as strings of length exactly one, they are not Common
Lisp type STRING. They are a different type because they are values within a language built on top of Common Lisp
and ACT-R, but which has its own semantics, despite using the same syntax (at least to the extent defined in the
grammar).

Finally, boolean literals are of type :type-boolean, and are not the standard Common Lisp values of T, NIL, '(),
nor any form of Common Lisp generalized boolean values. Instead, they are just the symbols 'true and 'false,
and no other Common Lisp symbols are permitted in that type class. Other Block Sorting DSL values are not
truthy/falsey58 like they are in Common Lisp.

This consistent differentiation from the host language’s types is purposeful. This language is Nominally Typed,
not Structurally Typed, or Duck Typed. That is, just because the implementation details of a type share common
data-structures or behavioral properties, does not mean that they are the same type. As well, there is no casting of any
sort in this language, so numbers are numbers and characters are characters, and there is no recourse to char-code
or code-char to convert freely between them. As well, this is a Statically typed language, and the compiler explicitly
knows the types of all parts of the program ahead of time.

While there may be some Operators which are implemented in terms of looking up a (relatively) constant value,
those values are not Literals, and are evaluated like any other Operator.

3.4.2 MAIN Special Operator
Before any Stored Program can be run at all, there needs to be a initial loading system. Modern Computers have a
boot loader that jumps to the OS. Programs from the C family of programming languages have a named entry point
that the OS targets for loading, called main which is usually wired up to the OS-dependent executable format (e.g.
ELF binaries on Linux, or PE binaries on Windows).

By analogy with those, the DSL Compiler prepares its own special target for bootstrapping a running Block
Sorting DSL program. This one is called main but its name is neither actually special, like in C, nor is it accessible
via BNF expansion, neither is it a named Operator within the system. Instead, the DSL Compiler implements it by
injecting the code in Listing 31 after the expanded declarative memory elements in ,@dm-list but before the actual
expanded production rules from the inputs Block Sorting DSL program string, in ,@p-list.

57This includes: Complex, Real, Float, Rational, Integer, Ratio, Fixnum, Bignum, and several kinds of specific precision floating point
types, per the Hyperspec.

58A term used in the C-family of languages as well as many others for types which can be rather trivially converted to a boolean value
automatically by the compiler or runtime.
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It begins with main-start-timer, which initializes the internal time perception for the model, as well as ACT-R
level timer. The execution will then loop between checking for being done, loading the next part of the stored program,
and seeing if we are ever ready to react to completion or iteration or break times. Actual completion of a single
correct sorting problem solution will cause a tone to be played, and the model uses this for notification as well, lacking
any special knowledge of the GUI’s internal state. The looping behavior here is the implementation of the iterative
portion of the with-dsl-wrapper behavior. It is also one of the very few places where actual direct Common Lisp
code is called, mostly for math.

This code is initialized through the combination of the starting-state METAPROC instance in Listing 53, and
the command (goal-focus starting-state) being run before the system is told to start the experiment.

3.4.3 ROOT Special Operator
In order for there to be a sole Abstract Syntax Tree representing a valid DSL program, there needs to be one and
only one rooted Tree. As a matter of course, having the DSL able to generate several sequential steps from the base
BNF grammar, as well as having the wrapper stick in the utility step of initially reading the current problem, would
result in fact a Forest of unattached Trees, each with their own roots. Those that design data structures have long
corrected this by reducing Forests into a single rooted Tree by introducing an artificial extra node that all otherwise
unrelated Trees are made children of. In our case, this is done so as to preserve the same evaluation order that the
DSL normally uses–keeping sequential steps in lock-step.

This ROOT special operator does not even have an actual name or representation in the grammar, rather it is
only an artifact of the DSL Compiler, under the name root. Since it is special, there is a limit of exactly one root. It
is also unique in that it is the only operator of arity :varargs. All other operators have a fixed predetermined artiy.
It may be viewed as being the implementation of the with-dsl-wrapper macro.

(define-operator
:name "root"
:arity :varargs
:compiler-for
#'(lambda (compiler-state

args
parent-sym my-sym
return-sym return-state return-op
parent parent-arg-number
)

(let* ((root-ident
(car
(register-idents
'(root)
compiler-state)))

(arg0-literal? (not (listp (car args))))
(root-dm-object nil)
(argcount (length args))
(argcount-1 (1- argcount))

(root-dm-objects (make-array (1+ argcount) :initial-element nil))
(res nil)
)

(setf *first-branch-id* root-ident)
(setf root-dm-object

(make-instance
'dsl-op-sequence
:name "root"
:branch-name root-ident
:branch-order 0
:arity :varargs
:args nil ;args
:done? (< argcount 2)
:return-branch :empty
:return-state :empty
:return-operator :empty
:parent :empty
:parent-argument-number :empty
:dm-identity-override 'root0
)

)
(setf (elt root-dm-objects 0) root-dm-object) ;root is special

(loop for i from 1 upto argcount
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do
(progn

(setf (elt root-dm-objects i) ;make extra branch-orders
(make-instance
'dsl-op-sequence
:name "root"
:branch-name root-ident
:branch-order i
:arity :varargs
:args nil ;args
:done? (= i argcount);(= i (1- argcount))
:return-branch :empty
:return-state :empty
:return-operator :empty
:parent :empty
:parent-argument-number :empty
:dm-identity-override (intern (format nil "ROOT~d" i))
))) )

(loop
for subexpr in args
with current-arg-num = 0
do

(progn
(if (not (listp subexpr))

;;literal detected, skip the rest of this
(setf (args-literal-value (elt root-dm-objects current-arg-num)) subexpr)
;;else, non-literal, perhaps with 0-args?
(let* (

(op-sym (car subexpr))
(op-sym-normalized-string (dsl-symbol-to-string op-sym))
(op-args (cdr subexpr))
(op-args-len (length op-args))
(zero-arity-operator? (zerop op-args-len))
(op-def-obj (gethash op-sym-normalized-string *dsl-operators* ))
(op-compiler-fn (compiler-for op-def-obj))
(arg-ident
(car
(register-idents
(list op-sym)
compiler-state)))

(dm-items
(if zero-arity-operator?

(funcall ; 0-arity still needs evaluation
op-compiler-fn
compiler-state
op-args
root-ident arg-ident
root-ident
(1+ current-arg-num)
'root
root-ident current-arg-num)

(funcall
op-compiler-fn
compiler-state
op-args
root-ident arg-ident
root-ident
(1+ current-arg-num)
'root
root-ident current-arg-num)))

)

;; then store them
(setf res (append res dm-items))
(pop-ident compiler-state)
(let* ((entry-point-for-subexpr (first dm-items))

(op (dsl-string-to-symbol (name entry-point-for-subexpr)))
(branchop (branch-name entry-point-for-subexpr))
(branchorder (branch-order entry-point-for-subexpr))
(current (elt root-dm-objects current-arg-num))
)

(setf (return-operator current) op)
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(setf (return-branch current) branchop)
(setf (return-state current) branchorder)
)

))
(incf current-arg-num)
)

)
;;append there at the front to keep readability
(setf res (append (map 'list #'identity root-dm-objects) res))
;;return a list of dsl-op-sequences as follows: let
;;MYLIST be the parts just for this element, in the order
;;that they appear here, and ARGLISTS
;;be the lists returned by the CHILDARGS then return the
;;following list: (append MYLIST ,@ARGLISTS )
res)))

Listing 20: ROOT Special Operator Listing
Through this code block, the all important execution graph is traced out and each branch is labeled. Once these

are set up, they are stitched together within the other operators, so that the flow of control is aware of the parent-child
relationship between an operator and its arguments.

3.4.4 RECENTER-HANDS
Perhaps the simplest operator in the DSL, recenter-hands contains nothing superfluous or external, and is a great
introduction to how the flow of control works.

Each operator has a entry point, which its parents will load for it by setting the current branch, branch order,
and operator to match it. Once that is done, the retrieval buffer is used to request an op-sequence which represents
it’s part of the Stored Program from long term memory.

Once that is done, most operators–including this one–will start to do some of their actual work. Those with
arguments will generally evaluate them at this point. As a zero arity operator, there is nothing to be done of that
sort, and so the operator uses the manual buffer to request the relevant hand movement.

It uses the branch order slot in the goal buffer’s METAPROC instance to sequence its individual steps. Each LHS
carefully makes sure to uniquely follow the RHS of its immediate predecessor production.

When it is finally done, the return value is usually passed back to its caller/parent via the return-value slot of the
goal buffer. Since this operator never returns any values, it does not touch the return value. Control is passed back to
its caller/parent by setting the current branch, branch order, and operator to that which compiler-sequence-for
added into the DM elements when compiling the Stored Program out of the input Block Sorting DSL program string.

(define-operator
:name "recenter-hands"
:arity 0
:compiler-for (compiler-sequence-for 'recenter-hands "recenter-hands" 0)
:productions

(list
'(p recenter-hands

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator recenter-hands
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
op-name recenter-hands
=goal>
branch-order 1
)

'(p recenter-left
=goal>
ISA metaproc
current-branch =branch
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branch-order 1
operator recenter-hands
return-value =return-value
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name recenter-hands
?manual>
state free
?retrieval>
state free
- state error
==>
+manual>
ISA point-hand-at-key
hand left
to-key 4
=retrieval>
=goal>
next-branch =return-branch
next-branch-number =return-state
return-value :no-value
branch-order 2
)

'(p recenter-right
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator recenter-hands
next-branch =return-branch
next-branch-number =return-state
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name recenter-hands
?manual>
state free
- state error
==>
=retrieval>
+manual>
ISA point-hand-at-key
hand right
to-key 7
=goal>
branch-order 3
)

`(p recenter-done
=goal>
ISA metaproc
current-branch =branch
branch-order 3
operator recenter-hands
next-branch =return-branch
next-branch-number =return-state
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
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return-state =return-state
return-operator =return-op
op-name recenter-hands
?manual>
state free
- state error
==>
,@(log-return-value "recenter-hands" :no-value)
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 21: 0-Arity Recenter Hands Listing

3.4.5 READ-WHOLE
This is the only operator which is not strictly speaking necessary. Its raison d’être has been touched upon a few times
already, but to paraphrase them: it was the most clearly observed experimental behavior, and would be unreasonably
complex to evolve through random heuristic chance, so it was included.

It is arguably the most complex zero arity operator, combining looping, visual behaviors, and memory behaviors.
The most important parts of this break down into a simple set of rules. It can be found in Listing 32.

First, for whatever size the current problem is, the screen-pos-literal-generator maps the correct combination
of length, row, and column to a unique production which matches it, and then sets the visual system to acquire visual
data from that place.

Second, after looking at that place, the visual information is encoded into declarative memory elements of type
letters in the production read-whole-lookat-encode.

Third, after years of experimentation and testing, a rehearsal is added to cause statistical preference to the most
recent transient location information. This is a single rehearsal, but it is possible to repeat the Operator to rehearse
it again. This rehearsal is located in the production, read-whole-lookat-rehersal.

Fourth, should the current slot not be the last one, the production will return to the screen-pos-literal- c

generator productions, due to read-whole-lookat-rehersal-cleanup setting dm-reload to :empty without modi-
fying anything else. Due to the initial screen-pos-literal-generator setting their next iteration when they initially
execute, with only that slot value not being :empty to trigger their firing back to their next slot.

Finally, once the iterations have read all there is to see, the system returns :no-value in the end of the read- c

whole-return production rule. It uses the same techniques as already shown in recenter-hands to determine its
caller/parent, and return its value to them. This value is essentially ⊥ (the symbol for the value Bottom in most type
systems), and is not very useful on its own, being little more than an official out-of-band value to flag error states.
This production, and most other ones that have side effects—which are motor, visual, or memory actions—are not
pure functions, and are not guaranteed to be idempotent.

3.4.6 SHIFT-HAND
Building on the motor and memory actions of recenter-hands, shift-hand is the first Operator that actually
includes the processes for handling a non-zero arity. It has exactly one argument of :type-number, which semantically
represents which of the number keys on the keyboard (not the number-pad keys, the top row of number keys on a
standard QWERTY layout) to strike or press; in this case dwell above, ready to strike the key beneath the hanging
finger.

Referring to argument-p-sequence-for function in Listing 54, the code generator is designed to return a list of
production rules which are customized to fit within the gap between the productions shift-hand and shift-hand- c

arg0-done within Listing 33, where they are stuck in place of the generator call.
In these productions the number of the arguments are 0-indexed, just like in Common Lisp or C, so the zeroth

argument is the first subexpression (e.g. (+ 0 1 2), 0 is the zeroth argument index, which is the first argument) of
the S-Exp encoding for the Operator. This is important for keeping track of sequential behaviors within operators
with multiple arguments, and is used for all Operators with more than zero arguments.
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Passing control to the type-agnostic all-prepare production from argument-p-sequence-for is the start of
passing control to the uniform argument/subexpression handling code in the DSL Compiler. Here in the RHS of the
shift-hand production, it can be seen using the retrieval buffer to request an op-sequence element specific to this
combination of operator, branch, and branch-order value (as defined in the :dm-jumps as 'dm-recall-arg0), as well
as setting the goal buffer’s METAPROC’s subgoal to :empty and its branch-order to the one unique to recalling arg0
(as defined in the :prod-jumps as 'recall-arg0).

This will be matched by the generated all-prepare method for this code path, uniquely. From there it will either
jump to all-recall-subexpr or all-recall-literal, depending on whether the input was determined by the DSL
Compiler to contain a literal expression or a subexpression. If it was a literal value, then that argument’s value in the
loaded op-sequence would be a value besides :empty, specifically that literal constant. Otherwise, the empty value
there indicates that there is a subexpression that needs to be loaded and jumped to.

There are two paths the code might take here. For a literal, all-recall-literal is followed by all-recall- c

literal-save-literal then all-recall-literal-commit. All uses of the imaginal buffer are followed by a -commit
production rule, and these are no different. Thus, the creation of a new op-sequence element specific to this
combination of operator, branch, and branch-order value, and combinations of arg-N slots, as well as a comprehensive
timestamp/last-argument/loop-iteration/problem uniqueness marker. The arg-N slots are filled with :empty when
they have not been processed, and either :no-value or the actual stored return values of subexpressions that have
already been computed.

That might sound like overkill, but the combination of all of those permits the most op-sequence elements
to be uniquely identified with a particular point in the program’s execution—which is important during dynamic
looping—causes potentially unpredictable activation of some storedop-sequence elements. In this case, they are being
computed in the RHS of all-recall-literal-save-literal. This will be expanded upon in SWAP, in Section
3.4.9, which needs to store the results of evaluating arg0 while it evaluates arg1, or else it would never be able to
perform its behaviors.

Once all-recall-literal-commit has cleared the imaginal buffer, it passes control back to the original Operator
again, by requesting the retrieval buffer to recall an op-sequence with the unique combination of your branch-name,
branch-order (per ,(prod-jump-fn 'dm-recall)), and the current operator; as well as setting the goal buffer’s
subgoal to :empty, dm-reload to :reload, and branch order (per ,(prod-jump-fn 'return)). These values are
uniquely matched by shift-hand-arg0-done, where the Operator continues its own execution.

Now, the other code path is that of a non-literal argument, back in all-recall-subexpr. Its main behavior is to
copy the op-sequence the return-branch, return-state , and return-operator slots loaded for that particular argument
of that operator for that point the in the execution of the program. From the LHS they are copied into the RHS into
the goal buffer, into current-branch, branch-order, and operator, respectively. The old value in the retrieval buffer is
purged automatically by ACT-R since there is no request to retain it (i.e. no =retrieval> or +retrieval> in the
RHS).

By doing this, the Operator passes control to another Operator, determined by the branch-order of 0, and a
matching operator name. Once called, the Operator’s execution only knows which parts of the Stored Program to load
and run by the passed in current-branch, which is attached to the declarative memory elements called op-sequence
by the DSL Compiler when it generates them at compile time. Dynamically created op-sequence are used too,
but contain only the passing transient information about the return values of subexpressions, so that they can be
computed in the correct order, and then used by the Operator. Similarly, every Operator passes control back to their
caller/parent by looking up who their parent was within the op-sequence elements that the DSL Compiler generates
for them all.

These operations can be seen in shift-hand and shift-hand-really-return productions, respectively. While
simple cases allow the direct processing of a return-value in parent, it is the case that higher arity Operators naturally
overwrite the METAPROC return-value slot in the goal buffer, since all Operators return their result (at least :no- c

value) using that same slot. This is analogous behavior for CPUs to store their results in a common register; in order
to retain that value, it needs to be stored either in working memory (i.e. METAPROC slots) or in long term memory,
via memory elements standing in for a storage tape or disk.

The actual work that is done with this evaluated subexpression’s return-value is pretty minimal at this point,
with special case handling for which hand will need to be moved, based on the value held in the return-value slot of
the METAPROC in the goal buffer. The keys on the number-row go from one to nine, and then zero. So unless the
slot contains zero, the keyboard is divided in half, with [1, 5] being pressed by the left hand, and [6, 9] being pressed
by the right hand. The special case of the key “0” is handled as representing the value 10, and so it is handled by the
right hand too.

Once a target key is identified, and one of the hands is selected to press that key, the keypress is requested.
Provided it completes, the Operator has no special value to report, but the semantics of the language require that it
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return :no-value if that is the case, so it is placed into the return-value slot of the METAPROC in the goal buffer,
before the Operator returns to its caller/parents.

3.4.7 LOOK-OFF-SCREEN
This is the only one of several possible fidgeting Operators, chosen because it was one of the few that was easily
verified visually during experiments with live subjects, as well as one of the few which has a reasonable theoretically
and quantitatively grounded implementation available within ACT-R.

The operations within the Operator shown in Listing 34 are not that new. It takes one number argument which is
the range of columns to randomly choose among, and then it randomly chooses a row and column to look at. After a
short random delay based on the internal temporal buffer, the randomly selected coordinates on screen (only legal
locations, not arbitrary screen coordinates) are looked at.

The temporal buffer and the !bind! clauses in the RHS of several production rules, are the only new things of
note. The temporal buffer is a nuanced internal perception of time for an ACT-R model, and it functions like a clock,
not a timer. So, implementing a timer in terms of the clock requires some light math which ACT-R is not easily able
to do. For this purpose, some of that math is done within Common Lisp, and the resulting values are bound to an
ACT-R variable with !bind! clauses. The use of extra-theoretical calls to the Common Lisp host for ACT-R (i.e.
!eval! and !bind!) is minimized in the DSL Compiler, because they preclude procedural learning via production
compilation.

3.4.8 ONCE-ONLY
This is one of the rarely used Operators–as seen in Listing 35–which is only used for its side-effects, which is to memoize
the evaluation of a :type-letter expression. This memoization persists for the duration of the ACT-R model, after
which the elements in declarative memory are purged, resetting the mechanism by which this memoization works.
The Operator itself is more or less a Thunk which wraps its argument, before evaluating it once when called, and
then only ever returning the value :no-value (not the original return value, since this is meant for side-effects only).

There are two code branches within this Operator, which are predicated upon either a successful retrieval or a
unsuccessful one, in the once-only production rule’s RHS. Successful recall lands in once-only-recall-past- c

succcess, while failure winds up in once-only-recall-past-failure.
The failure pathway is fairly normal for a 1-arity Operator, save for the added use of the imaginal buffer in once- c

only-return-encode. In that rule, the result gets saved off as a declarative memory element of type op-sequence
with a :no-value in arg0, and whatever the original return-value of the subexpression was is discarded while it
returns :no-value.

Where the failure pathway has already been run once, the success pathway will only ever run with all subsequent in-
vocations. This causes an alternate return pathway to run, which starts with once-only-recall-past-succcess, and
then once-only-recall-past-succcess-lookup-parent returns to the caller/parent without evaluating anything
further. It again returns :no-value.

3.4.9 SWAP
While the SWAP Operator in Listing 36 may be vital for the function of any sorting activity that would happen, and
it is in fact uniquely required within the Block Sorting BNF Grammar, it is not actually a Special Operator. Rather,
it is a normal 2-arity Operator, which is very important for the functions the system is designed to model. Centrality
makes this Operator a convenient place to handle motor actions along with their rehearsal, as well a suitable location
to place moderate error handling for experimental user inputs. The first important thing to examine here, is how the
1-arity handling of storing intermediate return values is built upon to handle 2-arity (or higher, though we don’t have
too many of those) Operators.

Looking at swap-arg1-done it is possible to see a few key traits that let SWAP know that it is recalling the
op-sequence memory element that correctly has the results of its two arguments evaluated. First, swap-arg1-done
is not entered on the LHS with any op-sequence besides the same one it would always be called with. Instead, it
the RHS retrieval request for not only the multipart timestamp, but also both arguments being - :empty, as well as
the last-argument 1 which means that the last completed argument was the second of two arguments, indicating
completion.

Once this request has been made, the request either winds up matching swap-prep-coords, or one of the rules
that matches inputs of “0”. Rules like swap-prep-coords-bad-* match error cases instead. Any illegal request is
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turned into either a noop, or is bounded by the nearest upper/lower boundary value that key can be pressed for that
length of problem.

The motor actions are actually very close to how SHIFT-HAND was implemented, and won’t be repeated. Similarly,
the rehearsals from READ-WHOLE is similar to the behavior that the SWAP rehearsals use, save that each of the new
positions is rehearsed three times each. Experimental results showed that this provided a reasonable recall likelihood,
compared to older positional information.

After the rehearsals are done, the Operator returns :no-value.

3.4.10 IF-N and IF-C
This is the first section in which two Operators are being discussed jointly, and may be seen in Listing 37. IF-N and
IF-C differ only in their typing, with the first handling :type-number branches, while IF-C handles :type-letter
instead. The sole reason for them to be separated is because the grammar requires monomorphic functions only,
elsewise a more conventional polymorphic macro like Common Lisp’s if might work.

Building on SHIFT-HAND and SWAP, dealing with 3-arity Operators is straightforward, just with each step
being handled in sequence. Or rather, it would be handled completely sequentially, save that IF-N is a Flow Control
Operator, so that the calls to argument-p-sequence-for are as follows:

0. ,@(argument-p-sequence-for 'if-n "if-n" 3 0 :type-boolean)

1. ,@(argument-p-sequence-for 'if-n "if-n" 3 1 :type-number nil t)

2. ,@(argument-p-sequence-for 'if-n "if-n" 3 2 :type-number nil t)

This can be interpreted as follows, the first argument handler is a normal :type-boolean which is always evaluated.
However, both of the other paths pass in the two extra optional arguments to argument-p-sequence-for, nil and
t. The first is still the default value of nil for the control-op optional parameter of that function, which is actual an
override value to place instead of normal evaluation (with the default of nil causing it to be ignored). The second,
t, enables the normally disabled path-control-operator, which replaces the normal subexpression results saving
behavior with one that is able to fill in :no-value for unevaluated arguments, as though they had been evaluated
and produced no useful value. This is required in order to permit uniform argument handling among all non-zero
arity Operators, including Flow Control Operators.

Given that, the IF-N Operator behaves identically to Common Lisp’s if Special Operator59, save that it always
has a mandatory else-form rather than optionally having one. Based on the return value of the first argument’s
boolean test, it will either call the subexpression of the second argument (if true) or the third argument (if false).
Whichever completes, all of the results are noted (including fake noop results for the unevaluated path) and the final
return value of the IF-N is take from the result of the real evaluated path, and passed back to IF-N’s parent/caller
via the return-value slot of the METAPROC in the goal buffer.

3.4.11 THEN-N and THEN-C
The simplest of the BNF <control-num-expr> expressions, THEN-N (and THEN-C, which again differs only in type)
is not part of an IF-THEN pair, but rather it is a fixed arity two version of the Common Lisp progn operator60. The
normal progn is of variable arity, but evaluates all of its enclosed forms, and then returns the value of the last one;
THEN-N does this for a fixed pair of two :type-number expressions. The name was chosen to sound like “...and then
do this...” at a glance.

While it is only called for the purpose of side-effect for its first argument, it can be used to bind sequential behaviors,
and can in fact be self-nested, creating something not dissimilar to progn in its application. The implementation of
this is unsurprising for a two-arity Operator, and it merely discards the first return value while returning the second.

(define-operator
:name "then-n"

:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0

59n.b. This is the Common Lisp Hyperspec’s Special Operator, not the DSL Compiler’s Special Operator, the DSL Compiler’s use of
the term is in reference to its host language’s usage. Common Lisp’s usage is more broadly called Special Forms, which includes Special
Operators as a subset.

60Again, this is a Common Lisp Special Operator, like if discussed above.
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return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'then-n "then-n" 2)
:productions

`(
(p then-n

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator then-n
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "then-n" 'dm-recall 0)
op-name then-n
=goal>
branch-order ,(jump-state-lookup "then-n" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'then-n "then-n" 2 0 :type-number)

(p then-n-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "then-n" 'done 0)
operator then-n
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "then-n" 'dm-recall-parent)
op-name then-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "then-n" 'dm-recall 1)
op-name then-n
=goal>
branch-order ,(jump-state-lookup "then-n" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'then-n "then-n" 2 1 :type-number)

(p then-n-arg1-done
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "then-n" 'done 1)
operator then-n
return-value =return-value
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "then-n" 'dm-recall-parent)
op-name then-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "then-n" 'dm-recall-parent)
op-name then-n
done t
- arg0 :empty
- arg1 :empty
arg2 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1
problem =starting-order
=goal>
branch-order ,(jump-state-lookup "then-n" 'return-from)
return-value =return-value
)

(p then-n-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "then-n" 'return-from)
operator then-n
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "then-n" 'dm-recall-parent)
op-name then-n
done t
- arg0 :empty
- arg1 :empty
arg1 =arg1
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =arg1
arg0 :empty
arg1 :empty
dm-reload :reload
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next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 22: THEN-N Operator Listing

3.4.12 ONCE-PER-PROBLEM-N and ONCE-PER-PROBLEM-C
The final BNF <control-num-expr> expression, seen in Listing 38, ONCE-PER-PROBLEM-N (and ONCE-PER-
PROBLEM-C, which again differs only in type) is nearly identical to the behavior of ONCE-ONLY, save that the
reset policy is tied to each new problem, rather than the duration of the ACT-R Model.

Resetting in this way is handled simply within the production rule once-per-problem-n which requests not just
any saved result, but the saved result for the current problem’s original ordering, as stored in the starting-order slot
of the METAPROC in the goal buffer. This slot is automatically updated when loading a new problem, and so makes
old saved values unreachable,

3.4.13 MOST-RECENT-INDEX and MOST-RECENT-LETTER
This pair of operators don’t just differ by type, but they also have most of their internals in common as well. Both use
the normal ACT-R activation bias to recall any number or letter (respectively). Other than that free recall criteria,
there is no other methods used to narrow the selection, so it is the least constrained recall of all of the similar recall
operators.

Its purpose is to provide a way to just get a familiar number or letter for algorithmic purposes, perhaps for
activation-biased semi-random selection.

(define-operator
:name "most-recent-index"
:arity 0
:compiler-for (compiler-sequence-for 'most-recent-index "most-recent-index" 0)
:productions
(list
'(p most-recent-index

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator most-recent-index
subgoal :empty
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
op-name most-recent-index
=goal>
branch-order 1
subgoal :recall
)

'(p most-recent-index-prepare
=goal>
ISA metaproc
current-branch =branch
branch-order 1
operator most-recent-index
return-value =return-value
starting-order =startorder
length =len
timestamp =timestamp
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subgoal :recall
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name most-recent-index
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
=goal>
branch-order 2
)

'(p most-recent-index-match-good
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator most-recent-index
return-value =return-value
starting-order =startorder
length =len
subgoal :recall
=retrieval>
ISA letters
letter =letter
slot-number =slot
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name most-recent-index
=goal>
branch-order 3
subgoal :return
return-value =slot
)

'(p most-recent-index-match-bad
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator most-recent-index
return-value =return-value
starting-order =startorder
length =len
subgoal :recall
=retrieval>
ISA problem-instance
starting-order =startorder
length =len
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name most-recent-index
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=goal>
branch-order 3
subgoal :return
return-value :no-value
)

`(p most-recent-index-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order 3
operator most-recent-index
subgoal :return
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name most-recent-index
?retrieval>
state free
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 23: MOST-RECENT-INDEX Operator Listing

3.4.14 NOTED-INDEX and NOTED-LETTER
This pair of Operators differ only in return types. They each require that NOTE-INDEX or NOTE-LETTER have
been called, or else they will fail to recall. Unlike the other memory lookup Operators, these look at the special chunk
type(s): number-instance (or letter-instance).

These types are more or less the normal letters type, save that they have a label of :noted and the problem and
ticks fields that connect to the problem and current time perception (which is not the same as the real timestamp,
but is a consciously updated timer that is copied periodically).

Unlike most other Operators, these try to specify more closely which noted index or letter by both activation
level, and a high-water search for the highest number of ticks for that problem. This means that its not a fool-proof
recall method, but an approximate one. This intentionally tries to balance the utility of being able to reliably recall
something that the experimental subject committed to memory, but which could have interference from other prior
runs and recalls. This is separate from other visual/motor rehearsal behaviors, and does no explicit rehearsal.

(define-operator
:name "noted-index"
:arity 0
:compiler-for (compiler-sequence-for 'noted-index "noted-index" 0)
:productions
(list

'(p noted-index
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator noted-index
subgoal :empty
?retrieval>
state free
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==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
op-name noted-index
=goal>
branch-order :first-lookup
subgoal :recall
)

'(p noted-index-prepare
=goal>
ISA metaproc
current-branch =branch
branch-order :first-lookup
operator noted-index
return-value =return-value
starting-order =startorder
length =len
timestamp =timestamp
subgoal :recall
=retrieval>

ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name noted-index
?retrieval>
state free
- state error
==>
+retrieval>
ISA number-instance
label :noted
problem =startorder
=goal>
branch-order :iter-match
arg0 =timestamp
)

'(p noted-index-iter-match-bad
=goal>
ISA metaproc
current-branch =branch
branch-order :iter-match
operator noted-index
return-value =return-value
starting-order =startorder
length =len
subgoal :recall
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name noted-index
=goal>
branch-order :clean-up
subgoal :return
return-value :no-value
)

'(p noted-index-iter-match-start
=goal>
ISA metaproc
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current-branch =branch
branch-order :iter-match
operator noted-index
return-value =return-value
starting-order =startorder
length =len
timestamp =timestamp
loop-iteration =loop-iteration
subgoal :recall
- arg0 :empty

arg0 =highwater
=retrieval>
ISA number-instance
value =value
label :noted
problem =startorder
ticks =ticks
?retrieval>
state free
- state error
==>
+retrieval>
ISA number-instance
label :noted
problem =startorder
> ticks =ticks
=goal>
branch-order :iter-match
arg0 =ticks
subgoal :iterate
return-value =value
)

'(p noted-index-iter-match-check
=goal>
ISA metaproc
current-branch =branch
branch-order :iter-match
operator noted-index
return-value =return-value
starting-order =startorder
length =len
subgoal :iterate
- arg0 :empty

arg0 =highwater
=retrieval>
ISA number-instance
value =value
label :noted
problem =startorder
ticks =ticks
?retrieval>
state free
- state error
==>
+retrieval>
ISA number-instance
label :noted
problem =startorder
> ticks =ticks
=goal>
branch-order :iter-match
arg0 =ticks
subgoal :iterate
return-value =value
)

'(p noted-index-iter-match-exhausted
=goal>
ISA metaproc
current-branch =branch
branch-order :iter-match
operator noted-index
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return-value =return-value
starting-order =startorder
length =len
subgoal :iterate
- arg0 :empty

arg0 =highwater
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name noted-index
=goal>
branch-order :clean-up
subgoal :return
)

`(p noted-index-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order :clean-up
operator noted-index
subgoal :return
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name noted-index
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
arg0 :empty
dm-reload :reload
subgoal :empty
;subgoal :reload
)

)
)

Listing 24: NOTED-INDEX Operator Listing

3.4.15 INDEX-OF-LETTER and LETTER-OF-INDEX
This pair of operators are paired not because they are the same save for return value, but instead because they are
inverse operators. Applying them to each other cancels their results out (similarly to (2X)/2).

The basic use of these operators is to recall from memory the corresponding slot that the model recalls for a
particular letter (for INDEX-OF-LETTER), or the reverse of that (for LETTER-OF-INDEX). This is not to say that
the results are always representative of the truth in the UI, but this operator gains reliability only in the presence of
rehearsals (like in SWAP).

Unlike so many of the letters chunk type recall operators, which are specially designed to ignore declarative
memory elements which represent obsolete states which not only do not need recalled, but which would be actively
misleading if they were considered for normal activation-based recalls. These use the composite timestamp that has
been mentioned elsewhere.
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Instead, these are the only way to perform a letters lookup without any kind of additional restrictions, other
than the single parameter being matched (i.e. slot or letter).

(define-operator
:name "index-of-letter"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'index-of-letter "index-of-letter" 1)
:productions
`(

(p index-of-letter
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator index-of-letter
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "index-of-letter" 'dm-recall 0)
op-name index-of-letter
=goal>
branch-order ,(jump-state-lookup "index-of-letter" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'index-of-letter "index-of-letter" 1 0 :type-letter)

(p index-of-letter-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
subgoal :empty
return-value =return-value
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "index-of-letter" 'dm-recall-parent)
op-name index-of-letter
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
subgoal :lookup
dm-reload :empty
)

(p index-of-letter-lookup
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
return-value =return-value
subgoal :lookup
dm-reload :empty
?retrieval>
state free
==>
+retrieval>
ISA letters
letter =return-value
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
subgoal :match
dm-reload :empty
)

(p index-of-letter-match-good
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
return-value =return-value
subgoal :match
dm-reload :empty
?retrieval>
state free
- state error
=retrieval>
ISA letters
slot-number =slot-num
letter =return-value
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "index-of-letter" 'dm-recall-parent)
op-name index-of-letter
done t
arg0 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
return-value =slot-num
subgoal :load-done
dm-reload :empty
)

(p index-of-letter-match-bad
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
return-value =return-value
subgoal :match
dm-reload :empty
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "index-of-letter" 'dm-recall-parent)
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op-name index-of-letter
done t
arg0 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
return-value :no-value
subgoal :load-done
dm-reload :empty
)

(p index-of-letter-load-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'done 0)
operator index-of-letter
subgoal :load-done
dm-reload :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "index-of-letter" 'dm-recall-parent)
op-name index-of-letter
done t
arg0 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
-imaginal>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'return-from)
operator index-of-letter
subgoal :empty
dm-reload :reload
)

(p index-of-letter-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "index-of-letter" 'return-from)
operator index-of-letter
return-value =return-value
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "index-of-letter" 'dm-recall-parent)
op-name index-of-letter
done t
arg0 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
current-branch =return-branch
branch-order =return-state
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operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 25: INDEX-OF-LETTER Operator Listing

3.4.16 NEXT-NUMBER and PREV-NUMBER
This is another pair of operators that are inverses of each other, seen in Listing 39. They otherwise have the same
argument and return types.

Unlike some of the others letter or number operators which deal with actual letters declarative memory elements,
these perform a precompiled direct lookup. There is the capacity for error handling to be performed, detecting out-
of-bounds requests and returning ⊥ for :type-number, :no-value.

Within the production rules, all of the pre-compiled matchers match legal keyboard number row keys, and produce
their return-value by manually coded mapping. In this system, the “0” key represents the value 10, so ord(9) < ord(0),
letting ord(x) be the ordinal value of x. The only difference between these two operators is which direction the manual
mapping points the successor value.

3.4.17 NEXT-LETTER and PREV-LETTER
This is another pair of operators that are inverses of each other. They otherwise have the same argument and return
types, and can be seen in Listing 40.

Unlike some of the others letter or number operators that deal with actual letters declarative memory elements,
these perform a structural traversal of the chunk type alpha-order, which encode the alphabet for our purposes. This
encoding and design of alpha-order can be seen in Listing 7. What is relevant here is that this chunk type encodes
the alphabet as a doubly-linked list, permitting bidirectional traversal. This predicts linear-time, O(n), lookups. There
is also an ordinal value encoded therein, but it is not used to cheat with random-access in this application.

Beginning with next-letter-find-start which looks up the first alpha-order chunk by ordinal index (this and
the opposite lookup from PREV-LETTER are the only times it is used). This is the head of the doubly-linked list,
and it is traversed one cell at a time (n.b. these cell are not Common Lisp cons cells, but rather an DSL Compiler-level
type, reified as an ACT-R chunk type of our own).

Traversal proceeds linkwise, walking the linkage that represents the list until either the newly loaded cell contains
the letter to match as its letter slot, or we run out of cells and return :no-value to signal an error. In order to reverse
this operation, the tail of the list is looked up, and then walked in the reverse order. They are otherwise identical.

3.4.18 SCAN-FOR-CHAR-LR and SCAN-FOR-CHAR-RL
While all of the SCAN-FOR-* Operators share their internals with each other, they are all designed such that they
actually do not look up values from memory, but instead cause visual buffer actions to occur. That is they perform
an actual scan of the UI for either the number or letter being requested. The LR or RL suffix indicates the direction
of traversal, either left-to-right or right-to-left, respectively.

These two are paired in Listing 41 because their type signatures are identical, and other than the direction of
traversal, they are quite similar. Functionally, they are meant to look up the current location of a input letter, without
needing to refer to memory activation biased chunks, which can be misleading.

3.4.19 SCAN-FOR-NUM-LR and SCAN-FOR-NUM-RL
Everything that has been said for SCAN-FOR-CHAR-LR (and -RL) apply here, aside from the reversed type signature–
and can be seen in Listing 42. The function of this Operator is to return the letter that is found in a particular slot
value. As well, it does not permit random-access lookup of a location, only linear lookup again61.

61See LOOK-AT-CHAR in Listing 43, if you want random access, at the expense of potentially being out of date with the current UI
due to memory actions or motor actions
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3.4.20 NOTE-INDEX and NOTE-LETTER
These operators are paired because they differ only in two parts: return type, and their internal chunk type for
representing their NOTE-* behavior. To begin with, these must be run before either of the NOTED-* Operators can
be used without returning :no-value.

Once these Operators have been passed their argument, they store its evaluated return from the arg0 slot in
the stored op-sequence produced by their argument0 evaluation. It is then copied into the return-value slot of the
METAPROC in the goal buffer.

After storing it, the imaginal buffer is used to store either a number-instance (for NOTE-INDEX) or letter- c

instance (for NOTE-LETTER). This happens in note-index-note-start where the value slot stores the return-
value. The label slot is also assigned :noted value for reference, and the composite timestamp is used by other
Operators which care about recency and obsolescence.

(define-operator
:name "note-index"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from
do-note
really-return
)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'note-index "note-index" 1)
:productions
`(

(p note-index
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator note-index
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall 0)
op-name note-index
=goal>
branch-order ,(jump-state-lookup "note-index" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'note-index "note-index" 1 0 :type-number)

(p note-index-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'done 0)
operator note-index
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
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return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'return-from)
operator note-index
dm-reload :reload
)

(p note-index-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'return-from)
operator note-index
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'do-note)
operator note-index
return-value =arg0
subgoal :empty
)

(p note-index-find-start-fail
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'do-note)
operator note-index
return-value :no-value
subgoal :empty
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
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- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'really-return)
operator note-index
return-value =arg0
)

(p note-index-note-start
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'do-note)
operator note-index
- return-value :no-value
return-value =matchthis ; get ordinal from lookup -> pick toplevel -> walk pointers linearly -> load pointer

target TODO↪→

subgoal :empty
starting-order =originalorder
timestamp =timestamp
loop-iteration =iteration
time-since-process-start =ticks
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
=temporal>
ISA time
ticks =realticks
?temporal>
state free
==>
=temporal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
done t
arg0 :empty
arg1 :empty
arg2 :empty
+imaginal>
ISA number-instance
value =arg0
label :noted
problem =originalorder
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iteration =iteration
ticks =realticks

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'really-return)
operator note-index
)

(p note-index-really-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "note-index" 'really-return)
operator note-index
- return-value :empty
return-value =return-value
starting-order =originalorder
time-since-process-start =ticks
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "note-index" 'dm-recall-parent)
op-name note-index
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 26: NOTE-INDEX Operator Listing

3.4.21 LOOK-AT-CHAR and LOOK-AT-NUM
These Operators are paired in Listing 43 because they differ only in their types being reversed. Both of them use a
memory recall operation to try to recall a letters instance, and then perform visual buffer requests to look at the
previously saved position.

As has already been hinted at in Listing 42, these Operators are the only actual random access Operators which
interact with the UI. They are included because it is not at all unreasonable for a real person to look at a particular
place or letter from memory, but in practice and experimentally, their utility is marginal.

Because there is no special knowledge of the UI’s state without visual buffer requests, the only way to have
random access is to store locations in memory chunks and perform retrieval buffer requests for them. Activation can
be effected strongly by other Operators, and so whether or not the value being requested is recent enough to still
accurately reflect the UI’s state is strongly dependent on the sequence of operations which have already happened
when these Operators are called.

As a result of the UI’s design, the slots indexes are invariant, and so LOOK-AT-NUM is consistent, other than the
returned letter value may be more recent than any entry current in memory. LOOK-AT-CHAR however suffers from
the fact that the SWAP Operator mutates the UI state whenever it runs, perhaps causing inaccurate information by
virtue of the fact that the old memory elements are not removed from memory.
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3.4.22 FIRST-INDEX and FIRST-LETTER
This pair of Operators share everything other than their actual return type. Both of them require that the READ-
WHOLE Operator has run at least once for the current problem.

So long as there are memory elements that encode the first slot, they will work normally. While both load up any
valid letters chunks in memory, the major difference between them is that FIRST-INDEX reads that chunk and
then always returns 1. While, the other returns whatever letter the recalled chunk encoded.

Thus, FIRST-LETTER can be inaccurate, just like other memory lookups of letters chunks that don’t worry
about timestamps or similar things.
(define-operator
:name "first-index"
:arity 0
:compiler-for (compiler-sequence-for 'first-index "first-index" 0)
:productions
(list
'(p first-index

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator first-index
subgoal :empty
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
op-name first-index
=goal>
branch-order 1
subgoal :recall
)

'(p first-index-prepare
=goal>
ISA metaproc
current-branch =branch
branch-order 1
operator first-index
return-value =return-value
starting-order =startorder
length =len
timestamp =timestamp
subgoal :recall
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name first-index
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
slot-number 1
=goal>
branch-order 2
)

'(p first-index-match-good
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator first-index
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return-value =return-value
starting-order =startorder
length =len
subgoal :recall
=retrieval>
ISA letters
letter =letter
slot-number 1
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name first-index
=goal>
branch-order 3
subgoal :return
return-value 1
)

'(p first-index-match-bad
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator first-index
return-value =return-value
starting-order =startorder
length =len
subgoal :recall
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name first-index
=goal>
branch-order 3
subgoal :return
return-value :no-value
)

`(p first-index-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order 3
operator first-index
subgoal :return
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name first-index
?retrieval>
state free
==>
=goal>
current-branch =return-branch
branch-order =return-state
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operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 27: FIRST-INDEX Operator Listing

3.4.23 LAST-INDEX and LAST-LETTER
These Operators are fundamentally identical to FIRST-INDEX and FIRST-LETTER, save for being reversed. As
a consequence of this, the return values are not consistent for LAST-INDEX, which is potentially going to recall
the different actual numbers, which are based on the current problem length. This is tied into the length slot in the
METAPROC within the goal buffer in last-index-prepare.

(define-operator
:name "last-index"
:arity 0
:compiler-for (compiler-sequence-for 'last-index "last-index" 0)
:productions
(list
'(p last-index

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator last-index
subgoal :empty
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
op-name last-index
=goal>
branch-order 1
subgoal :recall
)

'(p last-index-prepare
=goal>
ISA metaproc
current-branch =branch
branch-order 1
operator last-index
return-value =return-value
starting-order =startorder
length =len
timestamp =timestamp
subgoal :recall
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name last-index
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =len
=goal>
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branch-order 2
)

'(p last-index-match-good
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator last-index
return-value =return-value
starting-order =startorder
length =len
subgoal :recall
=retrieval>
ISA letters
letter =letter
slot-number =len
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name last-index
=goal>
branch-order 3
subgoal :return
return-value =len
)

'(p last-index-match-bad
=goal>
ISA metaproc
current-branch =branch
branch-order 2
operator last-index
return-value =return-value
starting-order =startorder
length =len
subgoal :recall
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done t
op-name last-index
=goal>
branch-order 3
subgoal :return
return-value :no-value
)

`(p last-index-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order 3
operator last-index
subgoal :return
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
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return-operator =return-op
op-name last-index
?retrieval>
state free
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 28: LAST-INDEX Operator Listing

3.4.24 CURRENT-PROBLEM-LENGTH
This is quite possibly the simplest actual Operator, taking no arguments, performing no memory or io actions besides
loading its own return op-sequence. Instead, it merely copies the length slot value from the METAPROC instance
within the goal buffer to the return-value slot of the same. This slot is automatically updated by the DSL Compiler’s
mechanisms outside of this Operator, so it doesn’t need to worry about very much.

(define-operator
:name "current-problem-length"
:arity 0
:compiler-for (compiler-sequence-for 'current-problem-length "current-problem-length" 0)
:productions
(list
'(p current-problem-length

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator current-problem-length
subgoal :empty
length =len
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
=goal>
branch-order 1
return-value =len
subgoal :return
)

`(p current-problem-length-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order 1
operator current-problem-length
subgoal :return
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order 0
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name current-problem-length
?retrieval>
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state free
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 29: CURRENT-PROBLEM-LENGTH Operator Listing

3.4.25 NEXT-LETTER-IN-SONG and PREV-LETTER-IN-SONG
These Operators are almost identical to NEXT-LETTER and PREV-LETTER, aside from how they are implemented.
In the best case, they are supposed to have a better performance on lookup times than the non-song-based Operators
(which are linear-time lookups); see Listing 44.

This is accomplished by using the alpha-song-chunk type for its traversal, after performing a single ordinal
lookup using an alpha-order to check which part of the tree structure should be retrieved first, and then performing
a linear traversal within that portion of the song. The entry point into this is the production rule next-letter- c

in-song-find-lookup-ord.
What these Operators wind up doing is cleanly representing the fact that singing portions of the Alphabet Song

(Klahr et al., 1983). The intuitive explanation is that a person who learned the alphabet with the song, as many
children in the US do, are expected to recall portions of the melody and lyrics in segments. While the segments are
random access, they only provide a way to bypass earlier segments of the song, and they are internally linear, using
a similar list structure to NEXT-LETTER.

This results in first looking up the alpha-song-chunk being used to find which portion of the song needs to be
recalled, and then within that portion, the letters are walked in the same way as the song does. Effectively, this allows
for portions of the song to be skipped, and only the relevant portion traversed linearly.

3.4.26 AND
This is the first of the :type-boolean Operators, in Listing 45. As a group, they follow the same kind of general flow
as most other Operators, despite the different type pathways. The only major difference is that there is no special
chunk type in memory for this category of Operators to work on, nor are there any special NOTE-* type Operators
either.

Within this Operator, the logic of the Boolean conjunction, ∧, is implemented by division by cases. The relevant
rules effectively implement a Truth Table for Boolean conjunction, save for the handling for :no-value. This is
implemented beginning with and-prep-args rule. It loads only legal values, so as to simplify the Truth Table down
to a conventional Boolean conjunction.

3.4.27 OR
This Operator as well AND and XOR are more or less identical aside from the Truth Table they implement, seen in
Listing 46. See AND above for the introduction. This one implements Boolean disjunction, ∨.

3.4.28 NOT
This Operator is the only unary :type-boolean Operator; see Listing 47. It also implements a Truth Table, but it is
a simple one, given that it has only one argument. It represents the Boolean negation, ¬.

3.4.29 XOR
This Operator is technically not needed, as XOR can be implemented through nested applications of the other
Boolean operations; it is in Listing 48. It is included to reduce the complexity required to represent it, much like
READ-WHOLE.

Again, this Operator is nearly identical to AND and OR, other than the details of the Truth Table implementation.
This one is the Boolean exclusive disjunction, ⊕.
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3.4.30 NUM< and CHAR<

These Operators are the second class of :type-boolean Operators, ordinal comparators; see Listing 49. Unlike the
other :type-boolean Operators, these actual perform their function without a Truth Table. Instead, they make use
of ACT-R’s built in ordinal comparison feature in LHS matchers within production rules.

In the production rule num<-prep-args, the arguments are loaded for matching by case. The rules that follow
take its output and match each of the possible cases, returning the correct output depending on the actual case that
rule represented. Since ACT-R treats letters as ordinal types, the comparison logic for CHAR< is almost identical to
NUM<

3.4.31 NUM> and CHAR>

These Operators are almost identical NUM< and CHAR<, save that their original matching logic is reversed; see
Listing 50.

3.4.32 NUM= and CHAR=
These Operators are also nearly identical to the other ordinal comparison Operators, in Listing 51. The control flow
is kept uniform with the other Operators, even though they could be reduced in complexity down to a simple ACT-R
match. Part of this rationale is to keep the category as mutually consistent as possible, so that their impact on the
generation of models would not vary wildly.

3.4.33 ASSERT-N and ASSERT-C and ASSERT-B Special Operators
These Special Operators–in Listing 52–are only used for diagnostic purposes, to implement Unit Testing for the
system. Per the when form below, they are not even defined for the DSL Compiler unless both *debug-mode* and
*run-testing-harness* are true. The only difference between these and the normal equality Operators is that
this one halts immediately if the comparison fails. In that sense it works nearly identically to assertions in normal
programming languages. Note, that Common Lisp’s assert is distinct from Java or C’s assertions, in that it is a
correctable error, and can be continued. This version is not, and it halts after printing diagnostic information. When
called in this way, all normal input ASTs are replaced with the testing input instead.

3.5 Grammatical Evolution
The control parameters and fitness functions used by the GP processes are described in this section. Parameters
may not make much sense in isolation, but they can be provided upon request. There are no single set of them
that make all problems equally solvable in the same time frame. It is sufficient to understand that the nature of
the sampling process assumes that an experimenter will vary everything from random seeds to mutation rates and
crossover methods. The only things that are fixed are the architectures themselves, and the BNF grammars, as well
as the DSL Compiler.

3.5.1 Human-Matching Fitness Function
This is the fitness function for matching against human data.

x a chromosome trace

xH a reference human trace

p is a penalty value, of 1000

S(x) a function indicating success by returning 0 otherwise p

β a bias value in [0, 1]

Ct total number of problems

Cc(x) number of correct problems; 0 ≤ Cc(x) ≤ Ct

∆s(x, xH) the string difference, per Bard (2007)
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∆e(x, xH) the non-uniform Euclidean Distance (see the code listing below)

ks string difference scalar in R0

ke euclidean distance scalar in R0

ce a maximum euclidean distance penalty R0

nH the keystoke length of the human trace in R0

nG the keystoke length of the generated trace in R0

kk keystroke length difference scalar in R0

ck keystroke length difference penalty R0

r adjusted proportion of time in [0, 1]

fH(x) = S(x) + βks∆s(x, xH) + (1− β)ketanh(2∆e(x, xH)/ce) + kktanh(2|rnH − ng|/ck) + p(rCt − Cc(x)) (3.13)

As all fitness functions should be approximately linear in their scaling, as well as possess the ability to emphasize
or deemphasize certain criteria, this fitness function is a simple weighted sum of factors. All fields have been re-scaled
to be of commensurate scale62 to the penalty value, p, as will be explained term by term. The first term S(x) is on
the order of p by definition, and so needs no special weighting. The second term, experimentally determined to be on
the order of 100 gains a scaling factor which is normally set as ks = p. The third term, ∆e(x, xH) returns unbounded
R0 values, and so it is converted to the same scale of p via ketanh(2∆e(x, xH)/ce) where a calibration factor is used
to re-scale a sigmoid function; tanh is the base sigmoid used here for three reasons: it has only one degree of freedom
(as opposed to five for the natural logarithm sigmoid), it naturally has an output range of [0, 1] for all inputs, and it
is part of the standard math libraries for most systems. The fourth and final term Ct − Cc(x) is also experimentally
on the order of 100, and so it also receives a p scalar. Finally, to support the shift of emphasis among terms, a bias
term is introduced for the two non-error based components.

(defun non-uniform-euclidean-distance (a-raw b-raw &optional
(window-width 1) (inputs-already-sorted nil))

;;Euclidean distance for non-uniform-dimensional vector.
;;The inputs must be lists of sorted numbers.
;;If not, destructive sorting will be done on the inputs.
(let* ((a (if inputs-already-sorted a-raw (sort a-raw #'<)))

(b (if inputs-already-sorted b-raw (sort b-raw #'<)))
(diffs nil)) ;;stick the pairs' diffs here

(do* ((as a) ;;we make these into stacks
(bs b))

((not (and as bs)) ;;continue iterating until either runs out
(if as ;;then stick the rest on...

(dolist (extra-a as) (push extra-a diffs))
(dolist (extra-b bs) (push extra-b diffs))
)

) ;;and keep going until they're all empty,
;;returning nil because side-effects are all we need

(let* ((ahead (or (car as) 0))
(bhead (or (car bs) 0))
(diff (- ahead bhead))
(absdiff (abs diff))
)

(if (<= absdiff window-width)
;;good we can do something normal and real
(progn

(push diff diffs) ;store the diff
(pop as) ;;remove the used values
(pop bs)
)
;;bad, we need to promote one into a 0 and
;;the leave the larger one for later.
(progn

62That is within plus or minus one order of magnitude to p.
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(if (>= ahead bhead)
(progn ;;work with b, save a for later

(push bhead diffs) ;;this doesn't need another subtraction
(pop bs) ;;because (- b 0) = b
)

(progn ;;work with a,
;;save b for later, see above for math

(push ahead diffs)
(pop as)
)

)
)

)
)

)
;; take the sqrt(sum(square(diff(pairs)))), diffs is already diffs(pairs)
(sqrt ;;and we're done!
(reduce #'+ ;;sum them

(mapcar #'(lambda (x) (expt x 2)) diffs))) ;;square the diffs
)

)

3.5.2 Time-Optimizing Fitness Function
This is the fitness function for specifically optimizing total time to solve, and it does not use any information about
human behavior, other than only choosing Operators from the DSL.

x a chromosome trace

p is a penalty value, of 1000

S(x) a function indicating success by returning 0 otherwise p

Ct total number of problems

Cc(x) number of correct problems; 0 ≤ Cc(x) ≤ Ct

Tt(x) the total time to complete the run, in milliseconds

r adjusted proportion of time in [0, 1]

fT (x) = S(x) + Tt(x) + p(rCt − Cc(x)) (3.14)

To contrast the fitness function which performs trace matching, this one is much simpler and quite different in
design. The only new term, Tt(x) is experimentally on the order of 100000 for most runs, and so it is already on a
similar scale of p. This design prefers correctness of problems to time, but does not rely on human data in any way.



Chapter 4

Results and Contributions

This chapter contains both the current state of the experimental designs that this research agenda has produced as
well as a guideline for where immediate follow-on work would fit. Please refer to Figure 3.1 for the division between
different applications or stages of the work. As well, Section 1.1 may be helpful as a contextual reference.

4.1 Human Experimentation
The modeling of individual experimental subjects as opposed to population average behavioral models, introduces
certain design constraints upon the experiments that can be conducted.

While it is not strictly necessary, from a practical point of view, modeling individuals shifts the focus from the
population average behavior to the extended behavior of each of several subjects. Resources being finite, this leads
to the selection of a much smaller number of subjects, while each subject is used to produce many more data points
per subject compared to most other kinds of similar experimental designs.

For statistical testing, the value of n is then no longer the number of individual humans in the experimental pool,
but instead the number of problems or tasks they solve. Each trial is one datapoint on a time axis over the course of
that individual’s progress through the period of the experimental tasking. Thus, a single subject can provide hundreds
or thousands of datapoints, depending on the nature of what is being measured. Having a secondary dataset from
another individual (or a tertiary, etc.), is useful insofar as the experimenter is typically concerned with being able to
model individuals, rather than just one specific individual.

Statistical power testing then compares against the null hypothesis of non-humans, which don’t attempt to model
humans in any quantitative way, against the actual humans and models that try to fit those individuals. This way,
a poorly predictive quantitative model of an individual would be indistinguishable in its closeness of fit to those
individuals’ behaviors from a model, which does not model that person at all. Alternatively, models of other individuals
could be used as the null hypothesis instead. The power testing in all these cases comes from the idea that models
of specific individuals should more closely resemble those specific individuals, as compared to anything not directly
modeling those individuals (e.g. a model of Alice should more closely match Alice than models of the population
average, Bob, or Carol).

For individuals, especially in novel settings or with new tasks, there is a learning process. Indeed, data from early
in an individual’s experimental run may be erratic or they may not have learned or decided on an approach. That
means that individual experiments with time course data require longer periods of exposure to hopefully capture the
behaviors of the individual performing reliably in some quantitative way. This incentivizes further the use of longer
experimental courses for a single individual.

It is almost automatic to assume that any kind of statistical analysis will require taking statistical averages from
a population of interest. In fact, in modeling individuals, it is quite counter to that experience. Averaging over the
population may in fact weaken the modeling process, insofar as an individual can be assumed to have some relatively
self-consistent approach to problem-solving, as variable as it may be compared to other individuals. While there are
indeed kinds of analyses that can be done once several individuals have been modeled, those analyses do not look
for statistically average behavior, but instead looks at common tree structures instead of statistical elements. This
inversion is due to the fact that models are generative and can be used to perform quantitative comparisons without
reference to average behaviors.

Expanding on the premise that individual people generally have their own individual self-consistent approaches
to problem solving, it then becomes the case the experimenter and the modelers have their own implicit methods.
Whether or not these implicit methods are incorporated into the model, is a kind of bias, which can make it hard
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for a modeler to consider more than a few options for their models, even though other humans may come up with
a broader range. It is the problem of teleologic generation of models versus teleonomic generation of models. It at
the very least implies that making the models directly by hand may not accurately capture or represent the range of
possible behaviors to be modeled.

In order to permit modeling of individuals, it is advisable to take some care to select tasks that are broad enough
to be interesting, but not so widely varied in the possible solutions as to make the modeling and representation
process intractable. In this kind of work, algorithmic behaviors are the best when there are a range of options, and a
sequence of datapoints to be generated by the individual. While it may be simpler to jump directly to solving the
problems, it does make it harder to infer what happened in their heads while they were solving those problems.

Finally, it is the case that modeling average behaviors affords the protection of larger numbers against the variance
of the individual. Here it is the intrinsically the opposite. Subjects get bored in long repetitive tasking. They can and
do perform nonproductive thrashing behaviors. They can and do need to take breaks. Modeling needs to include this
in their quantitative models in a sensible way. This work for example uses ACT-R’s memory decay mechanisms to
reflect the passage of time during a bathroom break or models looking off screen (say at their own fingers, to center
or locate their positions), despite explicit instructions to the contrary.

4.1.1 Experimental Design
Applying the information discussed in the last section, this work is structured to take advantage of the longer
experimental period and smaller number of test subjects. This begins with the selection of the exemplar task for
grounding this research in a real task instead of only speaking abstractly.

As has been explained at length through this work, the exemplar task, the Block Sorting Task has been grounded
in both human seriation work dating back over fifty years as well as in a similar history of research into sorting
algorithms. What is highlighted in this section of the work, is how those issues explained above are addressed in its
design.

Taking the basic design of early seriation experiments, the Block Sorting Task, is designed to make several
recordable actions per problem solution so as to provide a behavioral Trace that includes not only the terminal
actions, but also the intermediate states and timings exposed. For the purpose of evolving programs, it is best to
have partial data to work with. It keeps the fitness landscape from being too flat and allows for a fitness gradient to
be represented instead of locally flat stepwise landscapes.

As well, the limited number of options that the carefully minimized GUI presented also meant that the number
of motor and visual actions that a real human would be able to make were likewise minimized. This permits the
modeling efforts to focus on how the thoughts of the human user translated into those few keypresses or saccades,
given the fact that whatever they were doing in their head took recordable amounts of time. This translates into
models of the process, which can be expressed in the Block Sorting Grammar DSL program statements.

Those program statements are primarily about stringing together combined visual and memory actions, while
ultimately pressing two keys. Those DSL programs can be arbitrarily complex within those boundaries, but the
evolution will tend to higher fitnesses, which more closely resemble the sequence and timings of the actual individual
being modeled.

In order to quantify the learning effects on the timings of the human Traces, this experimental design is made
to include two categories of problems when it generates a test dataset. First, it makes random problems, of length
four to ten, which are always out of alphabetical order (that is, it cannot legally generate an already solved problem
instance), all of which contain the beginning of the alphabet in sequence, up till their problem length (so there are
no missing letters, or repeated letters). The other category are identical, save for the fact that, once M of them are
generated, they are repeated every C problems, so that the same problems are exposed repeatedly, in the same order.

This makes two learning curves to observe in the human’s Trace data. For the repeater category, it can be said
they occur multiple times in the same order each time, and they should have the upper-bound in learning. No other
problems are likely to have as much of a time reduction as those M repeaters. The other category can only be judged
based on a combination of that problems length, as well as its Levenshtein edit distance from the alphabet, as a kind
of neutral complexity metric. This is needed to account for the fact that not all problems are of similar complexity,
even if they are of similar length. For example “ABDC” is only one swap away from solved, while “DCBA” requires
at least two.

Using both of these together, the limitations imposed on matching static (i.e. non-learning phase, in the long tail
of the learning process, causing the experiment to discard the beginning data as unmodelable) human Trace data can
be reduced or bypassed. As well, when combined with the minimization of anything which disrupts ACT-R production
compilation, this makes it possible to model the learning in sequence with the whole human Traces. Similar mental
operations will see similar learning curves for both categories, between the human and the model.
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Figure 4.1: Experimental Seriation Apparatus GUI: a screen capture of the starting state of a problem, randomly
chosen mid experimental run. The bottom row are slot numbers and the top row in squares are the seriation letter
blocks. The Block Sorting DSL Compiler inserts an invisible Tcl/Tk version of the same interface for model testing.

To support and implement all of this, the generation of test datasets and the administration of the testing is
handled by both the command line interface of the GUI, as well as the human-subject facing part of it as well.

4.1.2 Experimental Apparatus
The experiment was moderated by the use of a custom GUI, which presented a visual analog of the original seriation
tasks, modified to fit the requirements of the Block Sorting Task. As can be seen in Figure 4.1, the user interface
presents two rows of text on the screen. The top row are the letters of the letter blocks to be sorted, presented with
black outlines around them to resemble blocks more closely. The bottom row are the slot numbers for the blocks, and
corresponded with the keys on the number-row (not the numberpad) of the keyboard in their integer sequence [1, 10]
with 10 being mapped to the 0-key.

The two buttons in the bottom left are only used to either take a break with “Toggle Wait” or end the experiment
with “Save and Quit”. Subjects were instructed to not hit either of them unless instructed to do so and to hit the
“Toggle Wait” button whenever they needed to take a real break or when they needed to ask a question of the
administrator of the experiment. Wait times were recorded and included in the model fitting process. The exiting
actually terminates the experiment and no further recording occurs (though it does include the total time including
breaks from the start of the GUI until this button is struck).

While the GUI was designed to be amenable to the use of eye-tracking (by containing no extraneous visual
elements), this initial work did not include recording or modeling of eye-tracking trace data. This was due in part
by a desire to provide more focus on key-stroke data for the initial modeling efforts while also being influenced by
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technical limitations for the eye-tracking apparatus available for use1.
For parity, the ACT-R models are presented with a nearly identical GUI (mainly lacking only the bottom two

buttons, and a change of font). The secondary GUI was integrated with ACT-R’s AGI system, permitting it to be
run and interacted with via the visual modules of ACT-R. This second GUI is invisible (i.e. a virtual window) by
default and is only rendered on the real screen when the experimenter desires. When it does, it also can be toggled
to show a circle projecting the visual attention of the ACT-R model onto the screen, like an eye-tracker.

For all intents and purposes, the models were presented with the same stimuli as the human by the experimental
apparatus. The key differene is that the human needs to use the mouse to “Toggle Wait” or “Save and Exit”, while
the model has no mouse, and that function is handled automatically by the runtime harness, superimposing break
times whenever the human being modeled took a real break, based on timers.

For all GUIs, the apparatus administers a single unsorted problem at a time, of length 4-10. While it might be
possible to use longer problems with a more specialized apparatus, this limitation is based on the number rows of
standard QWERTY keyboards in the US. In order to keep the focus more on algorithmic behavior rather than motor
action planning, the simple arrangement was chosen.

Once a valid key is struck, the GUI will do nothing until a valid pair of numbers has been entered. Should they
be a legal swap, the bottom row does not change, but the top row is instantly rearranged to show the sequence
with those two positions’ values moved between them. Should this swap result in a solved seriation problem, a tone
would play to indicate success, and then the next problem would be displayed anew. After everything is done, and
all problems are solved, another tone plays, and the apparatus automatically halts itself, just as though the “Save
and Quit” button had been pressed.

4.1.3 Gathered Human Data
There were several rounds of pilot testing during which equipment was tested, and cardboard covers were added
to the keyboard over the keys that the subjects were not to touch on the number pad. After some testing, it was
determined that adding a similar covering over the keys besides the number row caused users to be unable to recenter
their hands on the home row for touch-typists. In the end, cardboard and labeled masking tape were used to keep the
subjects away from the number pad, the mouse (which were both on the desktop where they placed their hands), and
the other objects nearby them in the lab (which were on shelves above and behind them). An additional cardboard
partition was used to keep the subjects from looking at the recording equipment for the vision tracking system after
it was determined via piloting to be very distracting.

The minimum goal for collecting data was to get roughly 90 minutes of recording time for at least 3 individual
subjects. After three months, a total of 6 subjects were run through the experiment, with 4 of them providing usable
data. Each subject was paid for their time, regardless of whether or not their data was used. Not all of them took the
full expected 90 minutes, and not all of them took the same amount of break time either, all of which was recorded
by the GUI apparatus.

Given that all of the pilot studies had determined that the attempts to salvage the eye tracker were not working,
the eye tracker data was not used in any way, and no recordings were kept. However, per the IRB write-up, the
appearance of calibrating and utilizing the eye tracker device was maintained for all subjects, for consistency sake.

For the subjects, one of the only qualifications for their data to be usable was whether or not they were a native
English speaker (or close enough for it to be indistinguishable)–if only so that they were already familiar with the
idea of the English alphabet having a clear ordering. Per the IRB, it was not permitted to ask personally identifying
information such as their country of origin, but screening questions based on being able to understand some basic
verbal and written instructions were permitted.

One subject failed the screening questions. Since they could not be treated differently from other subjects or ask
questions outside of the IRB’s approved apparatus, they were permitted to attempt the task anyway. After a few
minutes of failing to grasp the instructions for the experimental activity, the subject gave up and was paid for their
participation.

The other unusable subject was unable to complete the activity and had to leave after about 20 minutes of running
the experiment. As their data was incomplete, they were not exposed to the full course of problems and thus would
not have comparable and consistent experimental conditions to the other subjects. Their data set was discarded, after
they were paid for their participation.

The full test dataset is available upon request, as are the human subject’s anonymized trace datasets. All records
mapping anonymized subject data to individual participants has been systematically destroyed after payments were

1The more than twenty year old eye-tracking equipment had already failed for an unrelated experimenter in the time between ISRB
review and the administration of the experiment. For consistency, the eye-tracker was treated as though it was actually working, and
subjects were kept unaware that their visual movements were not being recorded.
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completed, per regulations. Anonymized paper records are retained in a locked storage area to which no one else
has access. These records were written by this author, transcribing the subjects responses to entrance and exit
questionnaires, so hand writing samples were not retained. The formatting is described in the Methodology chapter.

Keeping to a minimal verbal protocol, subjects were prompted with a select number of questions carefully worded
to avoid introducing biases or suggesting sorting methods. Most of them were basic things about how long they
thought the task took and to gauge whether or not the task was overwhelmingly tedious. The results could be
summarized as it was indeed a boring thing to do, but not so much as to cause them discomfort or make them want
to stop before completion. No one had an accurate estimate of how long the task had taken nor how many problems
they had solved.

The only interesting feedback was that no one had noticed any of the repeaters and that most of them had directly
cited using “The Alphabet Song” while solving problems. This was confirmation of what was overheard during the
actual experiment, as they would mutter or sing the song while working. As well, they reported much less perceived
time off-task or looking at the keyboard than was observed during the experimental process.

Taking this feedback, non-productive Operators and Alphabet Song-based Operators were added to the design of
the Block Sorting DSL. As well, non-song-based Operators were retained as well, to include the possibility of some of
the subjects not using the song at all, or only in part.

4.2 Detailed Contributions
This section provides a detailed summary of the novel contributions of this work.

4.2.1 Grammatical Evolution of Cognitive Models
This is the first work, which applies any form of Genetic Programming to the generation of Programs representing
Cognitive Models of algorithmic behaviors. As were cited in the introduction an background section of this work,
prior works have applied GP in a limited way to the generation of Expert System rulesets, as well as GA to the
tuning of ACT-R control parameters (the global variables that control things like the math behind calculating recall
rates, for example), but not used to generate ACT-R rule sets. These are on an entirely different level of evolutionary
modeling in terms of goals, methods, as well as complexity.

The first pilot testing was done before this research agenda had fully been realized and was simply an attempt to
apply GP to the automatic generation of ACT-R production rules nearly a decade ago. Several attempts all ended
in failures of one kind or another, but the failures revealed that ACT-R production rules have a few properties that
make them very difficult to directly evolve.

First, ACT-R models have a very strict grammar to them, and illegal programs are rejected without normally
throwing an exception. Instead, designed ACT-R is generally meant for interactive or programmatic use by a modeler,
who has written their code by hand, and can test it using the tooling built into ACT-R. This could include printing
out detailed human-readable (but not exactly machine-parsable) diagnostic messages. These messages are ACT-R’s
equivalent of compiler errors, like GCC or JAVAC might produce. In addition, the grammar is embedded within
Common Lisp, so it is possible to generate illegal Lisp forms as well when using a GP that is unaware of grammatical
rules for its target language. Indeed, Koza’s targeting of Common Lisp required all possible functions to be total and
type-insensitive (as described in the Methodology section).

The second revelation was that ACT-R productions are tightly logically coupled, and almost any and every possible
rule set that does not respect that will cause the exact same behavior: running briefly and producing the same noop2

fitness behavior for the GP. From the point of view of cultivating a proper fitness landscape, this is a geometry
without noticeable local curvature, where all of the landscape looks identically flat and of equally bad fitness. For
such a landscape, there must be a few islands of logical coupling, where there is higher and gradiated fitness geometry.
However, without some way to find these islands beside random chance, there is no feedback to help the evolutionary
process escape the stepwise flatness.

The third revelation was that the sheer size of ACT-R productions was daunting from the point of view of using
GP to produce them without already forcing a strict reduction in the overall complexity being generated. As a
Embedded DSL within Common Lisp, ACT-R can accept any legal expression in the right place. This means that,
even if one didn’t need to worry about the grammatical correctness, nor the logical coupling that is required to even
get ACT-R production rules to pass control through themselves in some ordering, there is still the fact that you are

2Noop is sometimes hyphenated No-op, NO-OP, or NOOP. It is an operation which does nothing productive, and just wastes time and
computing cycles. They are sometimes done on purpose, usually to delay things while waiting on timers. Here they indicate actions which
do not modify the keys being pressed, aside from perhaps causing added delays.
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unconstrained in what to put in the details of the production rules. There is just too high of a dimensionality there
to randomly generate.

Together, these properties and the failures leading up to them resulted in the design of using a DSL Compiler
to produce only grammatically legal programs, where the GP would have a reduced Program Space complexity to
explore, and where the nature of the task the DSL represented would constrain the nature of the logical flow between
legal DSL Operators. For there to be an alternative to this kind of design, there would need to be some hard and
computable response to the issues raised earlier. While its not impossible that such a technique might exist besides
creating a DSL per task to be explored via evolution, it is highly likely that such an approach would still wind up
implementing most of the same things the DSL Compiler would need to do anyway.

Now, the final system uses the Grammatical Evolution library, GEVA, to generate integer chromosomes genotypes,
which are then converted using the Block Sorting Grammar BNF into Block Sorting DSL Program string phenotypes.
The process by which this occurs involves each choice-point in the BNF expansion process consuming exactly one
integer gene, which is |x mod n| where x is the current integer gene, and n is the number of possible expansions of the
current rule (i.e. at least 2 or else it would not be a choice point, where it is either a terminal, or a single expansion
step that consumes no genes but does recurse deeper into the BNF tree). This maps all integer genes to only one
of the possible expansion paths, without directly constraining the range of legal integers that gene might take on
artificially. All possible genotypes are legal to produce and all should produce some kind of measurable quantitative
fitness value.

The DSL handles the logical program flow, via the DSL Operators implementation of a Von Neumann Architecture
(described below), and it can legally produce arbitrary complexity for the DSL programs. This is not unconstrained
complexity, however, and the grammar for the DSL ensures that irrelevant computations do not intrude upon the
Block Sorting Task being modeled.

This is the first work, to my knowledge that has produced something of this magnitude and comprehensively
implemented it completely for an example task like the Block Sorting Task.

4.2.2 Computer-Moderated Adult Block Sorting Task
This work builds upon modeling of tasks for young children with physical objects, and turns it into a reusable
computer-moderated task for adults. This novel task was created and implemented to act as an exemplar for this
research agenda, to keep it from being entirely abstract. The focus is not of course on the actual results of the Block
Sorting Task, but others may find it interesting in and of itself, as it is certainly based on Paigettian tasks which are
of actual interest to developmental researchers.

This task is explained at some length elsewhere in this work, including in this chapter as well as the chapter on
methodology. What was said there will not be repeated here. Instead, the long term prospects of the task will be
outlined.

While this work does not directly model vision tracking, or fMRI BOLD Activation data traces, the Task is
designed so that all three kinds of Traces can be gathered simultaneously, in theory. In fact, if such data traces
were had, it should serve to very firmly provide additional feedback for fitness landscapes including during otherwise
unobservable steps (e.g. keystroke traces don’t inform the model about visual actions). It is perhaps ironic that
adding additional Trace dimensions does not actual increase the degrees of freedom of the genotypes, and in fact
only restricts the Program Space further, perhaps allowing faster elimination of low viability strategies that might
otherwise be indistinguishable without the other trace data, but which would clearly be different for humans. This is
because the visual actions and BOLD activations are already in the models (i.e. ACT-R produces them by default),
but they are not included in the fitness calculation of Trace similarity.

Unfortunately, the degree to visual and hand movements that the task requires rules out Traces which are strongly
interfered with by extraneous movements, like EEG traces. However, ACT-R does have native support for fMRI
BOLD generation for it models, so it may be compared against similar human traces without significant extension.

In total, this exemplar Block Sorting Task is carefully demarked and modified from other similar seriation Tasks,
and constitutes a novel and reusable portion of this work.

4.2.3 Block Sorting Grammar DSL
This work introduces the concept of not only organizing behaviors in terms of task-specific operators, but it also
introduces a novel BNF Grammar to formally represent the full range of behaviors possible. This DSL representation
is integrated into quantitative and executable models in this work.

Other than a select few meta-compilers like Herbal(Cohen, Ritter, & Haynes, 2010) there are very few approaches
to writing models in cognitive architectures that does not just write them directly for the task being modeled. In
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fact, none of them have taken the approach of restructuring the modeling process into domain-specific grammatically-
constrained recombinable components, like the Operators of the Block Sorting Grammar DSL.

The technical details of this are extensively described in the methodology chapter, so they won’t be repeated
here. However, the design of this DSL is directly influenced by the prior novel contributions, and is unique insofar
as it not only simultaneously serves as a target for evolution and automatic modeling of individuals, but also as a
user-readable representation language.

With many machine learning techniques, the representation is opaque to the modeler. Whatever it is doing is all
the information that the modeler can access directly. In order to avoid the opacity, this DSL approach is completely
human readable DSL program code, as textual strings, and is just as readable as a Lisp program. Contrast this with
the readability of Machine Learning models based on Artificial Neural Networks, where the end results are large
matrices of real values weights, whose interpretation is opaque even to experts.

In fact, there is a special property in this representation that uniquely permits structural similarity metrics to
compare programs automatically, to find common code snippets among them. This serves as the basis for the extended
research agenda involving Strategy Groups, and being able to characterize and extract code snippets which represent
real human problem solving strategies directly and quantitatively.

While the other meta-compilers like Herbal may be usable options to do some parts of this process, it is certainly
not its intended use. Insofar as this is the case, this use of DSLs and reusable domain-specific Operators is unique
and novel.

4.2.4 DSL Compiler
The DSL Compiler introduced in this work is new, and its method of action is likewise, representing the first of a
class of special-purpose tools to reify DSL programs into cognitive architecture programs. In this work, the exemplar
is the Block Sorting Grammar DSL, and the target cognitive architecture is ACT-R.

As much of the page-count of this work is spent describing this Compiler in detail, the novel place it holds is
what will be examined here. While other meta-compilers may be able to represent abstract Operators, they are not
presently used in that way. Instead, this Compiler is unique in that it is designed under the assertion that any good
and interesting Task should have its own kinds of Operators, and its own Task-specific DSL, and DSL Compiler.

While such an assertion is perhaps controversial, it is clear that the creation of a DSL like this permits all of the
same benefits for automatically modeling that Task as this exemplar Block Sorting Task has. Even without necessarily
needing to evolve programs, the DSL is still a remarkably powerful modeling tool. Even non-programmers can write
statements in the DSL and have them translate into working quantitative models.

This DSL Compiler is novel in its design, and in the approach to modeling that it represents, as the technical core
of this work.

4.2.5 Von Neumann Architecture in ACT-R
This work creates the first detailed representation of a Von Neumann Architecture grounded in ACT-R. While this
was not the original aim of the work, it was realized that nothing less powerful than a stored program computational
architecture would be powerful enough to implement the whole range of possible behaviors required to represent the
Block Sorting Grammar DSL, as well as the threading of control needed to execute these experiments, while also
being realizable in ACT-R.

As this work represents in part the first concerted and intentional effort to make an automated way to generate
all possible legal behaviors within a DSL representing a particular Task, this required using a general model of
computation to string together statements of arbitrary complexity and depth. Other similar modeling efforts seem to
have restricted their range of behaviors artificially, or evolved control parameters which did not actually change the
complexity or depth of the behaviors, only their timings (and perhaps biases in recall or utility derived from control
parameters).

This work builds upon the Von Neumann Architecture because it rather closely resembles actual cognitive behaviors
involving long term memory and working memory, more closely than other potential models, like the Lambda Calculus,
for example.

This is undoubtedly novel.

4.2.6 Representation of Arbitrarily Complex Nested Behavior
This is the first time that Arbitrarily Complex nested behavior is permitted in ACT-R without requiring explicit
hand-coding of the complete range of programs. It was this design goal that drove the adoption of the DSL, and not
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the other way around; indeed it is absolutely required for the used of Evolutionary Algorithms to fit these models.
Building upon the prior two novel contributions, this is novel.

4.2.7 Automatic Individual Modeling
This is the first time that Cognitive Models of Individuals can be automatically generated. While other automated
modeling methods have existed, none have been able to create and explore the whole space of possible programs to
represent an individual, only in narrower senses of fitting preexisting models. By inference, the stored program would
be logically indistinguishable from a hand-coded one, as learning mechanisms would theoretically approach the same
sequence of behaviors as a hand-coded one with sufficient expertise.

This contribution has been discussed indirectly earlier, but the most important point that is not included therein is
that no prior attempts at Individual Modeling had an automated method for modeling individuals, merely algorithms
and procedures for helping a modeler to model individuals by hand.

4.2.8 Nuanced Chunking
This work has revealed that the current Chunking behavior is not transparent enough to handle a Von Neumann
Architecture, and a more nuanced representation may be required. If an amended chunking algorithm were used,
the parts of the algorithmic behavior which are constant would be able to benefit from chunking, where the current
chunking algorithm does not.

In practice, the ACT-R chunking algorithm discards buffer contents without consideration for also amending the
rules that may have been using that buffers content, to account for it in some other way. If chunking wants to just
remove it, it potentially breaks the logical flow of control. It would be better if it either found some way to leave
those contents alone, or to rewrite the productions to keep them from needing those buffers when chunked, without
also breaking the rules that follow the rewritten chunk. This could be thought of as an optimization to permit logical
control thread tracing and production rewriting by the compiler, where certain buffers contents would be logically
reducible to a series of constants in memory.

If this were working, it is possible that vast portions of a single person’s behaviors which do not significantly vary
during task execution to be chunked into large-scale operations. Should this work as expected, it would asymptotically
approach the performance of models which were hand written to not include the overhead of the Von Neumann
Architecture. This supports the similar notions from Section 4.2.7.

To my understanding, no other work has arrived at such a conclusion, in part because this is the first work
implementing such a general model if computation within ACT-R.



Chapter 5

Conclusions and Future Work

5.1 Post-Compiler Research Agenda
The content of this section is tied closely to that of the Methodology Section, and it may help to refer back to it when
reading the content here. An important aspect of this work is that it describes a new methodology for research into
human cognitive behaviors. As such, many parts of this section discuss how to interpret the results of its application
to the particular problem of sorting blocks. While understanding how people sort things is interesting, it is only an
example application. Indeed the focus of this work is not specifically the mechanics of block sorting research, but
on this method and how it can be applied and interpreted. Per original committee feedback, this extended agenda
should was estimated as about a decade worth of work, and is discussed here to contextualize the dissertation work,
and show how it leads to novel fields.

Reflecting this focus, the content here explores in abstract the process of experimenting with the method described
in Section 3.1.

5.1.1 Simultaneous Evolution of Control Parameters and Coevolution of Training Sets
As has been mentioned already in earlier chapters, the immediate successor to Kase (Ritter et al., 2017) should be
simultaneous evolution of ACT-R SGP control parameters alongside the evolution of ACT-R production rules. Doing
so is not even hard to do, other than to amend the Block Sorting Grammar BNF to include mandatory fields that map
one-to-one and onto the SGP parameters of interest. The only difficulty for such evolution is that SGP parameters
may be either very sensitive or very insensitive in practice, and their ultimate effects on the fitness landscape are not
entirely linear or predictable a priori. It may also make the search space large enough to be unwieldy as well, depending
on the scope of the problem being modeled. The prerequisite for this extension is having working models which use
the fixed SGP control parameters and successfully evolve normal models of humans. Only after that narrower work
is proofed can the following on work be done.

Another potential avenue would be the use of Coevolution to simultaneously evolved training sets with the models
that they are tested against. This is nontrivial to do in practice, given how the test subjects were not necessarily
exposed to the exact same training sets in the same order. However, the real trial here would be to initially match
well a particular person’s behaviors, and then to use Coevolution to prove that the algorithmic behavior was not
just overfitting. The Coevolutionary testing set would be evolved so as to maximize the difficulty of the model being
applied against it, both of which would go through their generations simultaneously, in lockstep.

These are just some of the many possible approaches that could be taken, which are directly based on prior
research, and which can be clearly grounded in current working code.

5.1.2 Experimental Tests
In this section and those that follow, a variety of testing procedures are presented for the purpose of verifying that
certain properties hold for the results of this method. Since the goal of this research is to develop this as a research
methodology, these tests should serve as reference points for future users of this method so that they can verify
that their work also has the same properties as described here. These power testing procedures are based on normal
statistical power tests, just applied to the novel case of trying to model individual behaviors instead of more typical
population average behaviors.
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In general, there are two levels of analysis that can be done using this method: the level that describes a single
individual, and the level of the population of individuals. At each level different criteria are examined, so this work
has developed distinct experiments that will verify the important criteria at each level of analysis.

While they are discussed in more detail below, the experiments generally take the form of power tests where the
null hypothesis is that H0 : pI < pR and the alternative is HA : pI ≥ pR, where pI is the probability that a population
of interest passes some test and pR is the probability that a reference population passes some test. The populations
differ among the various tests, but they tend to be general, such as if the population of programs bred to match a
particular person, or a reference population of programs bred according to some other criteria. They all have the
format that the experiment requires some population of programs to be bred, and then the resulting programs are
used to generate fitness values, which are compared against other fitness values resulting from members of the other
population being evaluated by the same fitness function. More detailed information about this can be found in earlier
sections.

Statistically speaking, the fitness values themselves are completely deterministic, but the program whose evaluation
resulted in them is generated by the semi-random (heuristically guided) GP process. Since each program is a randomly
chosen sample of Program Space, and the fitness measures are deterministically generated by them, then the Central
Limit Theorem says that the fitnesses should follow a Normal distribution. This is helpful for analytical purposes,
because few other metrics that can be gathered from Program Space follow a known statistical distribution and have
such meaningful interpretations.

5.1.3 Individual-Level Tests
At the individual level, the tests compare populations bred to match specific individuals against reference populations
which solve the same task as the individual, but not necessarily the same way. This begins with defining some variables
of interest.

SOLVER is a population of reference solvers bred only to accomplish the task, without reference to human
behaviors. Such a population may be defined Singly, consisting of a population resulting from a single GP run (which
should have low diversity (Burke, Gustafson, & Kendall, 2002)), or from multiple samples of GP runs (high diversity).
SOLVER may be precomputed, and a single reference population may be used instead of a new one being generated
each time a comparison needs to be made.

INDX is a population of programs bred to accomplish the task most like person X, with reference to timing and
sequences. Such a population may be defined Singly, consisting of a population resulting from a single GP run (which
should have low diversity), or from multiple samples of GP runs (high diversity). INDX may be precomputed, and a
single reference population may be used instead of a new one being generated each time a comparison needs to be
made, but fewer comparisons are made for INDX than SOLVER.

At this level, there are a number of forms of analysis that can be considered. Below they have been organized
into three main forms of analysis, based on what is being compared, rather than the details of the comparison. Each
supports hypothesis testing to show that the techniques developed here produce results with certain properties.

INDX vs. SOLVER
To show that the process of breeding programs to match human behaviors actually contributes something
noticeable to the behavior of the programs so bred, a test can be performed which compares INDX and
SOLVER. In this test, both populations are evaluated with the fitness function which assigns higher fitness to
programs which generate traces that most closely match the traces of individual X. As such, the hypothesis is
H0 : pX < pSOLVER and the alternative is HA : pX ≥ pSOLVER, where pX is the composite percentage match
of INDX over all presented test cases, and pSOLVER is the same for SOLVER. In order to do this, the top N
items from each population would need to be used for the evaluation, where 1 ≤ N ≤ |P | (here P is either
population). Interpreting this test is simple: if programs bred to match person X do a better job matching
them that reference solutions not specifically meant to match X, then the bred programs replicate the behavior
of X in a statistically significant way.

INDX vs. INDY

Similar to testing against the SOLVER reference population, it is possible to compare populations derived from
two different people, person X being represented by INDX , and person Y by INDY . This test would consist
of both populations being evaluated against the fitness function which rewards programs that match against
a specific person’s data (e.g. both populations would be matched against just X or Y ). Here, the hypothesis
would be: H0 : pX < pY and the alternative is HA : pX ≥ pY , where pX is the composite percentage match of
INDX over all presented test cases, and pY is the same for INDY . Additionally, the converse of this test would
also need to be run: H0 : pX > pY and the alternative is HA : pX ≤ pY . Interpreting this pair of tests requires
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them to be seen as a way to test if those programs bred for a specific person do well only for that person, and
not for someone else. Both tests should support this, or else there is difficulty statistically distinguishing X
from Y using this method (indicating a need for either larger populations, or more subject data requirements).⋃n

i=1 INDXi vs. SOLVER
In this test, finite unions of populations are compared to a single reference population. These finite unions are
composed of n populations bred to match person X, such that a particular population INDXi is made with a
different random seed than INDXj when i 6= j. By varying the random seed, but keeping everything else the
same, we will generally get a different population with the property that it also approximates the behavior of X
(specifically it should pass the first test mentioned above). When multiple populations of this sort are compared
against SOLVER, their aggregate should also have the same statistical strength. Stated as a hypothesis test:
H0 : pX < pSOLVER and the alternative is HA : pX ≥ pSOLVER, where pX is the composite percentage match
of
⋃n
i=1 INDi over all presented test cases, and pSOLVER is the same for SOLVER. To interpret this test, it

is to show that there are multiple ways to model a single person, and that the aggregate of these separate
ways still models that person. This is semantically meaningful when the Aggregate-level tests are considered,
because this is the tie-in between the levels. Failure here indicates that some unexpected behavior happens
when populations are combined via union (a result which would be interesting all on its own), and that the
Aggregate-level analysis may not be feasible.

This battery of Individual-level tests can be applied to the problem of block sorting, to show that the tests work
much as expected. However, the real importance of these tests is that they form a consistent testing methodology
such that future users of this research can apply to their own experiments to determine if they are using large enough
populations, if they need more human data, or if their domain has unusual properties. This experimental methodology
is much more important than the results of its application to block sorting, but it needs to be demonstrated before
use.

5.1.4 Aggregated-Level Tests
After the Individual-level tests have shown that statistically significant results can be drawn from models of individual
data and populations, the next step in the analysis is to show that the populations of programs do indeed form
Strategy Groups1 in Program Space. While the details of forming Strategy Groups via fuzzy clustering is detailed in
Section 3.1, these tests explain whether or not these Strategy Groups are currently statistically significant on their
own, or if more populations need to be added to Program Space. Unlike the Individual-level tests, these tests all
assume that the Strategy Groups have already been identified by the process in Section 3.1.

There are three main forms of testing that need to be done on Strategy Groups:

Cluster Cohesion Testing
In this test, Samples drawn from a single Strategy Group are compared to each other. They are evaluated by
one or more fitness functions, where their behavior should be consistently similar. These fitness functions could
be ones meant to match individuals, or to simply solve the problem—it is not their absolute performance on
these evaluations that matter, it is their similarity. The hypothesis test here would be H0 : pXi 6= pXj and
the alternative is HA : pXi = pXj , where all p terms are aggregate percentage match against test traces. The
interpretation of this test is that Strategy Group members should behave similarly, regardless of how they were
originated. This also ties in with the third Individual-level test described in the previous section, being another
way to test the same idea. Failure here indicates that the Strategy Group is not strongly self-similar yet, and
that additional populations need to be added.

Cluster Differentiation Testing
Reversing the Cluster Cohesion test above, this test compares across Strategy Groups to show that they
demonstrate statistically differentiable behavior. Following the same protocol as the Cohesion test, the hypothesis
becomes H0 : pX = pY and the alternative is HA : pX 6= pY , where X and Y are Strategy Groups with little
overlap (this can be formally stated in terms of membership levels and linguistic hedges). What this test means
for an experimenter is that the Strategy Groups that are strongly different also produce statistically different
behavior. Failure here does not have a clear meaning, unless both Strategy Groups have passed the Cohesion
test—at which point it indicates something unusual about the problem being solved (e.g. topological properties
of Program Space).

1Again, these are fuzzy clusters of common subsequences of Block Sorting DSL program’s ASTs based on common code snippets
representing common behavioral segments from multiple possible real DSL programs.
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Cluster Power Testing
Of these tests, this is the only one that makes additional assumptions about people. If it is assumed that people
can reliably find solution strategies which are heuristically superior to non-heuristic solutions, then Strategy
Groups should show higher average fitnesses than programs not in Strategy Groups. This assumption is not
necessarily true, but should hold statistically in many cases (it is also the least supported Power Test on this
list). If this is to be tested, then members drawn randomly from Strategy Groups would be put through the
same kind of test as in the first Individual-level test above, but with a fitness function which simply maximizes
objective solutions. To state the hypothesis: H0 : pX < pSOLVER and the alternative is HA : pX ≥ pSOLVER,
where pX is the composite percentage match of INDX over all presented test cases, and pSOLVER is the same for
SOLVER, and the matching is done objectively, without the individual matching. Should this test be conducted,
its results could be interpreted to show support for the assumption stated above, at least for that problem.
Furthermore, it could be used as a simple basis to show why individuals are a productive source for heuristics.
Failure here would indicate that no strong heuristic exists, and that the humans had no real insight into solving
the problem.

This Aggregate-level battery of tests complements the Individual-level, and gives insight into the properties of the
problem being solved by the humans.

5.1.5 Human Data Sources
Traces are defined formally in Section 3.1.3, but they are best understood as human behavioral traces. A Trace in
this context is a log of sequential actions, made while a person does some specific task. Sequential data is desirable
for Genetic Programming training, and it is relatively common in several kinds of classical Psychology experiments.
These kinds of experiments have typically been developed painstakingly by Psychologists to produce experimental
protocols that reduce or eliminate many sources of noise and error in the resulting human data.

As an added benefit, some preexisting experimental data sources may be usable for research purposes (Friedrich,
2008; Friedrich & Ritter, 2020). The criteria for being usable is a fairly stringent one: each human subject must
generate a series of data points which contain information about their decision made at a particular point in time,
as well as the current state of the task-system. Additionally, prior experimentation conducted under Dr. Reed has
established that only tasks where some kind of feedback about the efficacy of a decision is available on a per-decision
basis will be usable. Other kinds of trace data lacks sufficient feedback for the EA’s to use as heuristics, and results
in topologies with almost perverse characteristics like severe plateauing2. When the wrong kind of tasks are used,
the EA’s run without sufficient heuristic guidance, and collapse into a Random Walk where the time to complete the
process would be larger than the time before the heat-death of the universe (Page, 1976), or roughly 10100 years.

There are a wealth of potential tasks already available. Three types that are under investigation are:

1. Sorting Tasks (also called Seriation Tasks): these tasks consist of different kinds of sorting problems, like giving
subjects variably weighted cubes and asking them to sort them in order from lightest to heaviest (Gascon, 1976).
This is also the task that this research agenda is using as its exemplar task.

2. Process Control Tasks: exemplified by the Sugar Factory Task (Berry & Broadbent, 1984) in which a person is
tasked with controlling a simulated Factory that makes sugar, where they need to decide each day how many
workers they need the next day to meet quotas given the surpluses or shortfalls of today.

3. Temporal Sequential Decision Problems: the general term for other kinds of tasks which generate behavioral
traces. Tasks that might fit here include game-play tasks, gambling tasks, and problem solving tasks (Friedrich,
2008; Friedrich & Ritter, 2020; Newell & Simon, 1972).

Regardless of which post-process tasks follow on researchers could choose, they will need to ensure that there is
more than one way to solve it. Since this work is specifically interested in Strategy clustering, the kinds of tasks will
need to respond to multiple Strategies. Additionally, it is desirable that the sequence of actions should be able to
produce feedback about performance while you are doing them, like a sorting task should show how out-of-order it is
while in the process of being sorted.

Once an experimenter has the data, they will need to do some kinds of initial clustering in order to confirm that
Strategy Groups exist within the human data. Since it is not expected that the Strategies are necessarily mutually
exclusive, it is intended to use Fuzzy Clustering methods. For instance, Mixed Strategies in Nash Equilibria would
not be Crisp Strategies (see Section 5.3.2).

2These are regions in Program Space where the fitness curvature is nearly zero, giving no information to guide the heuristic.
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5.1.6 Verification
There are two phases of verification that need to take place, the initial phase mentioned above, where the presence of
Strategy Groups within the human data is checked, and the second phase where Strategy Group members are verified
to recluster with the same groups to a strong degree.

Initial checking for Strategy Groups in the human data is planned to take place after the process has already been
run once. Since all of the tasks are designed to have multiple solutions, the test for Strategy Groups is straightforward:
count the number of Strategy Groups that show in the data. If that number is greater than one, then the interpretation
is easy, since some variety of Strategies has shown itself in the human data. The number need not be the actual
number of solutions—if there is indeed a finite set of optimal ones3. Rather, it should approach that number if more
human data is added, or it should grow unbounded if there is no finite set of solutions for that Task.

However, if the number of clusters after process application is exactly one, then there are multiple potential causes
that must be distinguished statistically. Either the humans only used a single Strategy, and the process is correctly
representing that, or they used multiple Strategies which the process failed to disambiguate. The first case is easy
enough to confirm by adding additional human data, which should eventually contain data representative of other
Strategies, if the task is designed properly to avoid strongly biasing one or another. A failed disambiguation, however,
will fail to change when more data is added. It may shift its centroid, but will only resolve to multiple Strategies if
the cause of the failed disambiguation was related to insufficient data.

Secondary verification asks a different question entirely. If the Strategy Groups are actually meaningful instead of
arbitrary, then program drawn from them should consistently be reclustered with the original Strategy Groups. This
is more of a test of the properties of the clustering algorithms than the Strategy Groups per se, but this property is
important for Strategy Groups to have. The method by which this can be tested is similar to normal statistical power
testing, save that the categorization being tested is represented by multiple fuzzy sets, to which a particular data
point may belong to all sets with varying degrees. Failure here would indicate a need to change clustering algorithms
to something which had more stability.

5.1.7 Sampling
In order to test the Sampling part of the process described in Section 3.1.5, the Strategy Groups would be used to
generate programs that should be representative of that Strategy Group, but that did not exist prior to the sample
being drawn. Similarly to sampling a probability distribution, the likelihood of having a particular membership degree
for a particular Strategy Group should match the statistical distribution of the extant members of that group.

To check for this, the EA process would be seeded with members of the Strategy Group in question, drawn randomly4

from the members. The EA would run for a period of time, and some proportion of the resulting population would be
taken for consideration. These programs would be checked for behavioral similarity to the members of the Strategy
Group as a sanity check, and would be assigned membership degrees as if they were already members of the original
Strategy Groups. When these membership values are statistically analyzed, they should be representative of the
original distribution of membership values in the pre-sampling Strategy Group. If this fails, then some part of the
sampling process needs to be examined more closely.

5.2 Open Issues
A number of issues remain to be resolved. Some of them are open because they depend on decisions that have not
yet been made (like the choice of future tasks for other non Blocks Sorting Task human data), while others are
fundamental unknowns that will not have answers until the research is done. Of the issues listed below the first two
are open because future work will not have necessarily settled on the exact tasks to be done, while the rest of the
subsections are all fundamental unknowns that will be resolved empirically in the course of the research. There are a
few significant Open Issues that need to be addressed in the process of this research agenda, as listed below.

First, and perhaps most significantly, it will need to be verified that the basis of this later work (that human
data shows clusters) is essentially sound. If it is not, none of the later work would have any hope of working, or
being meaningful if it did. Once human data is available, the groups existence can be verified or not. It should be a
relatively easy process, given that this work has sought out tasks which should be solvable by significantly different
strategies. The human data will need to be changed into some kind of canonical format, which will then need to be
clustered using some kind of Unsupervised Learning method. As has been said elsewhere, it is expected to utilize

3It is possible to have a non-finite number of solutions.
4I have yet to determine if this should be a Uniform random selection, or a fitness proportionate selection, or a membership proportionate

selection, or an inverse distance from centroid proportionate selection. Empirical testing will likely show which is best.
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Fuzzy Clustering Methods. If there are Clusters, they should evidence themselves by forming multiple Clusters in the
data.

Secondly, it is not known if there is a strong relationship or not between the human trace data and the AST
encoded structures of ACT-R programs. If the relationship is strong (which is desirable for later work), then programs
which are structurally similar will create behavioral trace data that are also similar. Although this work strongly
suggests that the structural similarity will have gaps in its similarity regions, it also suspects that the human trace
data may not provide sufficient density for forming strategy clusters within the structure space. The first of these can
be dealt with through localized search methods, to try to move the sample from one of these low fitness lacunae to a
higher fitness adjacent region. The second of these is much harder to deal with, and may necessitate modification of
the kinds of human data that be can utilized. Should the strong relationship prove false, and only a weak relationship
evidenced by the data, then this work would need to be amended to account for this. Likely it would need to abandon
the idea of Sampling altogether, and simply focus on how to overcome the weakness of the relation in the fitting
process.

Third, there are several small issues related to the process of generating ACT-R programs through Genetic
Programming to minimize the differences between their observed behavioral traces, and those of the human data
they are to be matched against. Should it breed towards the full set of human trace data? What about to members
of a strategy group? Should some kind of abstract centroid be used, or should raw human data? Similarly, past
experiments have shown that there are real obstacles to getting a running program at all in ACT-R, due to its
nature as a Declarative Programming Language, rather than an Imperative one. Quite simply, the behavior of the
systems exhibits strong interdependencies between rules, that make them hard to develop separately and prone to
thrashing. While there are ways to mitigate these and other related problems, no one to date has ever successfully
applied Genetic Programming directly to ACT-R. If these issues become too much to handle, an alternative Cognitive
Architecture will need to be chosen.

Finally, it is possible that any of the post-process tasks may fail. In such a case, then the researcher would have
the option to either scale back, and focus on the parts that did succeed, or to focus on the negative result, and find
out why it happened. The decision will be one of feasibility, since finding out why something doesn’t work may not
be possible, depending on the mathematical nature of the subject of study. If a proof of impossibility is possible, then
it could be interesting to researchers.

5.2.1 Design of Experiments
Until a researcher has an exact task chosen and the source of the human data is determined, no detailed statistical
or algorithmic analysis can be decided upon. Till that point, only rough outlines of the design are possible. This is
why the Block Sorting Task was designed as an exemplar.

If a researcher is fortunate enough to find human data that has been gathered by other researchers that can be
used for their use of this methodology’s purposes, the design of experiments becomes easier. Depending on the details,
it may be possible to reuse their experimental design, and simply apply it to the predictions made by this process,
such as the Strategy Groups. If this is the case, any additional experimentation becomes limited to matching the
human data with the generated data from the process.

Should it turn out that existing data sources are insufficient for this method’s purposes, then actual human
experimentation would be required. Of all of the tasks that have been mentioned as being possible tasks of interest,
all of them have a few experimental features in common. First, none of them are legally complicated, nor would
they expose a subject to any kind of harm, and they would not gather sensitive data from subjects. This means that
the experiments are all safe, and relatively free of ethical encumbrances. Second, they can all be administered by a
computer system under the monitoring of an experimenter. This means that none require specialized equipment in
order to run the experiment (unless they choose to add addition trace types like eye tracking data or fMRI recordings).
Third, all of the tasks would be used only as inputs for the process, so no special conclusions need to be drawn from
the results of the experimental tasks themselves. This puts the experiments in an unusual place, where there is little
analysis done upon the raw data, save that some generated data will be compared to it.

The only important thing about administering the tasks is that there needs to be stringent controls to eliminate
errors not derived from the experimental subject’s own decision-making process. Either a task-specific process for
detecting bad data would need to be constructed, or a certain amount of noise would need to be assumed when the
process is applied.

When judging the strength of the results of this body of work, there will be a need to use both statistical and
algorithmic measures of the method’s power. While it has been discussed elsewhere in this paper, many of the key
measures are the post-process tasks discussed in Section 3.1.5. Each of these tasks includes a particular kind of
verification step. Most of them amount to testing that the results of applying a particular algorithm to the input
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data is statistically significant. Fortunately, the amount of data produced should be relatively large, on the order of
hundreds5. Additionally, the majority of these category matching results collapse large number of exotic data types
(tree structures, Strategy Groups, etc.) into simple category matching. Further, since the categories being matched
will have fuzzy membership functions, there is the option to either use measures that work over fuzzy sets, or the
researcher can defuzzify6 the data and use more conventional statistical measures.

5.2.2 Empirical Verification of Unobservable Steps
If tasks outside of the ones that this work currently considers are to be viable, there is a need to be able to observe
some kind of data regarding what the person is doing at each decision cycle of the process. Some tasks are more
difficult to measure, but may be interesting for the purposes of this research. Since the DSL Compiler utilizes the
ACT-R cognitive architecture, there are a few additional options that might otherwise not be obvious.

Each of these options requires expensive specialized hardware, but will produce data in parallel with the normal
task recording methods. ACT-R supports theoretical models of vision as well as theoretical predictions of BOLD
response levels for specific areas of the brain, based on internal activity. This means that we can utilize eye tracking
systems as well as fMRI data as ways of getting insight into the internal activity of the human.

Mathematically speaking, the behavioral Trace data that has been discussed are simple time-series data. In order
to accommodate these parallel sources of Trace data, the data structures that represent a Trace would need to be
generalized to hold several time-series of data. Similarly the algorithms that operate on the Trace would need to be
able to either pick a single Trace to examine, or be able to consider all of them at once. Not terribly complicated,
though it would change the Trace-matching heuristics mentioned earlier to handle this generalization.

Given the expense and time it would take to properly utilize this kind of extra data, it would be practical to aim
at not using it until absolutely necessary.

5.2.3 Sparseness of Program Space
As explained in Section 2.6, the Curse of Dimensionality is a major problem when trying to explore a high-dimensional
space like Program Space. Some of the issues with it are offset by the fact that EA’s do not explore all of Program
Space, only the higher fitness regions are particularly well sampled. Additionally, some indications in clustering
research show that having more dimensions can actually make clustering algorithms like K-Means work better.

On the other hand, the size of Program Space can cause sparseness, a condition where the shape of the fitness
landscape has great distances between high fitness areas. This can exaggerate topological issues like multimodality and
deceptive curvatures to cause the algorithms to take more time to find high fitness regions. More problematically this
method seeks to explore the range of solutions available. If these issues all compound together, it makes exploration
potentially very expensive. While some modifications to the EA’s can help7, there’s no way to know if they are needed
or helpful without empirical testing.

5.2.4 Durability
The idea that the problem being solved determines the landscape of Program Space was already addressed in Section
3.1.8. It is taken as an axiom by most of the other parts of this work. However, there is no data right now to support
or dispute this choice of axiom.

While there might not be any evidence yet, it may become available during the course of this research agenda.
Should that happen, it is possible that a test could be devised to determine if the data indicates that the landscape is
not the same topology at two different points in time. A simple method would be to recalculate the fitness of several
reference programs in light of new human data. If the fitnesses stay the same when more human data is added, then
the Program Space would seem to be durable. Statistically significant changes would indicate otherwise, and the
greater portion of this work would need revision.

5.2.5 Sampling
In addition to the simple question of whether or not a Strategy Group can be used to generate new programs that
are recategorized in the same Strategy, there is another issue that requires more data to properly examine. That

5The size of the data produced for a single run is related to the size of the population of the EA being run, which is typically in on
the order of hundreds of individuals. Not all of them need be used, but the order of hundreds is a fair approximation.

6Defuzzification of fuzzy data means using one of many different methods to convert the fuzzy data to crisp data.
7Such as island models, random seed analysis, and multiple runs, if the Program Space is durable.
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issue this work refers to as Lacunae8, which represent the potential topological problem that the space occupied by a
Strategy group may be discontinuous or contain within it much lower fitness islands.

Because of Program Space being defined over Abstract Syntax Trees, with distance between two points being
based on the Edit Distance of the Trees, that means that for any high-fitness program there are a number of low fitness
neighbor programs. These programs can either be syntactically invalid or valid, and if valid, there is no guarantee that
they will also have high fitness. This is an expected side-effect of the use of AST’s to represent programs. This is the
primary reason for defining Strategy Groups in terms of Fuzzy Sets rather than normal Crisp Sets. If the uncertainty
about the presence or absence of Lacunae are represented in a fuzzy measure, we can still do meaningful calculations.

5.2.6 Strategic Dynamism
While there is limited support for representing Strategy changes over time by including conditional operators, it may
be that actual humans have less deterministic decision processes when choosing Strategies. While the current models
support awareness of problem length, there is no meta-level awareness of the prior problems that have been solved
within the range of the DSL Operators.

It is an open question as to what criteria are apropos to consider, as well as how random this might process might
be. If there is normal human-level randomness driving Strategy selection and transition problem-to-problem, then
it may be appropriate to include additional Operators within the Block Sorting DSL. For example, a hypothetical
self-awareness of inattention, stress, or intuitive complexity estimation could be the source for new Operators. As well,
it is possible for the same operational principles behind the existing Von Neumann Architecture approach to stored
programs could permit the creation of a secondary working memory of past problems that were solved, and if they
are recalled correctly, they could be reused instead of applying the normal process for solving the problems. These
Operators could be combined with the conditional operators to permit a wider range of behaviors to be represented
including more self-aware Strategy changes.

5.3 Implications
Though this work would result mainly in new theoretical results and the novel modeling method (see Section 3.1),
there would be a number of side benefits. The most immediate of which is the benefits for modeling Individual
Differences, as detailed below. Other benefits are definitely possible, but the need for additional work in order for
them to come to fruition points towards interesting directions for future research.

5.3.1 Individual Differences
Although there has been work off and on for nearly forty years on automatic modeling of individual differences, this
process will be one of the first ones to bring modern techniques to bear upon it. EA’s have the wonderful property
of being able to find answers that its creator is unaware of, being teleonomic and evolutionary they just randomly
explore solutions without forethought.

Rather uniquely for this kind of modeling, the models are explicitly partial approximations of an individual
person’s behaviors, and are utilized by the processes of this work without needing to be terribly accurate. While this
is fine for the limited uses that they are put to in this work, it is an open question whether or not they can be used
for other purposes.

If a program generated from trace data is considered as a model of the individuals thoughts, then it has a number of
properties that bear consideration. First, the program is source code, and is automatically inspectable9, so a researcher
can just read the rules that the program represents. Furthermore, they could show the same to the individual, and
see if any kind of feedback from the person and the rules that they are evidently using could be used to reduce error,
or explain biases. Secondly, any pair of programs can be trivially compared to find where they differ, permitting
people to be differentiated from one another as individuals. Third, since the programs themselves are partitioned
into Strategy Groups, the Strategy of the program in question can be used to roughly categorize people into different
groups. Finally, the programs can be used to improve the approximation of the individual, by using them to seed the
processes from this paper in light of new data, or more time available.

Interestingly, Miwa and Simon (1993) divide the modeling of individual differences into common parts and
individual parts, which map semantically onto items in my method. The common part consisting of the structurally
similar items within the Strategy Group, and the individual parts being those parts which are dissimilar. Furthermore,
the heuristic at the heart of each Strategy Group is mathematically the most common part of the programs involved.

8Named for the Latin term for holes.
9A trait that many Deep Learning Neural Network models cannot claim.
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5.3.2 Game Theoretic Mixed Strategies
How does the Strategy Group relate to the Mixed Strategy from Game Theory? Are they equivalent or related?

Whether it is a simple analogy, or a deeper connection, there is some measure of similarity between the idea of
a Mixed Strategy from Game Theory, and the Strategy Group that represents a behavioral mixture of algorithms.
This similarity will become more evident when explained below.

In Game Theory, a Pure Strategy is a single choice in how to play a game, and a Mixed Strategy is an admixture
of multiple Pure Strategies by behaving according to each Pure Strategy for a certain percentage of the time while
playing the game. While it is outside the scope of this work to summarize decades of Game Theory research here, it
is known that many games can only be played optimally or rationally by utilizing a Mixed Strategy10.

By analogy, the Strategy Groups represent a mixture of several unobservable algorithms, making them conceptually
similar to a Game Theoretic Mixed Strategy. Where a Game Theoretic Strategy is a special case of an algorithm11,
there is sufficient similarity that it might be possible to show that the Game Theoretic Mixed Strategy is a special
case of a Strategy Group; a thing which often happens when comparing fuzzy algorithms with crisp ones.

What would such a relationship mean? Its not yet obvious, but it is interesting that this body of research should
be able to tie into an otherwise unrelated branch of mathematics.

5.3.3 Philosophy of Mind
Given the fact that the Computational Theory of Mind (CTM) is not proven to be true, it is appropriate to consider
this work as it bears upon Philosophy of Mind in general. Certainly, if CTM were held to be false, this process could
be viewed as an interesting way to make approximations of human behaviors. Under this assumption, the programs
found by the process hold no deeper connection than a statistical correlation with real minds. Further, the Strategy
Groups would reflect only that the problems being addressed only have a certain number of solutions because of their
nature, not the nature of the mind generating the behavior.

If CTM is assumed true, real interesting implications begin to emerge. First and foremost, the programs being
generated in the process are approximating a particular program or program set that humans actually use. Under
this assumption, it may be possible to eventually find the actual program that generated the Trace behaviors. This
means that the Program Space actually has a few special members that are used by actual humans, such that the
evolutionary process may be used to find them as optimal solutions to minimize the differences between the source
observations and those that are generated by the process itself.

Secondly, if CTM is held to be true, then this is the first automated method for approximating or discovering the
programs that are human minds. This would open entirely new horizons for researchers, and mean that the results of
the process should be meaningful for psychologists and others looking for insight into specifically human minds. The
limitations of this method may seem insurmountable, but with the application of new methods or mathematics, it
may be possible to overcome those limits to arrive at a truly general method for approximating human minds.

Third, if CTM is held to be true, then the programs generated by this method would qualify as test subjects for
further experimentation. While the accuracy of their approximation may be a parameter, the simple fact that they
are representative of human minds for certain purposes is enough that they could substitute for real humans, up to a
point. This could lead to cost savings as well as new forms of testing.

Finally, if CTM is held to be true, then this method is the first shot at digitizing part of a human mind. True, it
only looks at a narrow slice, but if those slices could be combined with sufficiently high accuracy, CTM would say
that the result would be a human. While this may sound far fetched, it is only an implication that such a thing may
be possible.

If nothing else, the fact that this method strongly relates programs to mental processes may be construed as
evidence towards CTM. Not that it is definitive, just that it is indicative in that direction.

5.3.4 Solicitation of Expertise
This method provides a new range of options in Expert System development. Not only can it automatically capture
the experts’ behavior, but it can repair, refine, and expand upon it. Additionally, the results of this process could be
extracted from Program Space as heuristics derived from experts, even though the experts themselves were unable
to articulate their methods.

In the initial phase of the process, Traces are used to generate a population of programs that match the greatest
proportion of the Traces. This population is an initial approximation of the algorithms used by the person used to

10In fact, Pure Strategies are typically considered a special case of Mixed Strategies.
11A Decision Algorithm about how to play the game.
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generate the Trace. Be it a test subject, or an Expert, the generation of the Trace captures the person solving a series
of reference problems that have been specifically designed to show part of the work during the solution. Depending
on the design of the reference problems, the expert’s behavior of interest may be more or less represented.

While the information about a single expert is helpful, it may be incomplete, it may have failed to capture the
desired behavior, or it may have captured misleading information. Normally, this would be a debilitating issue in the
development of an Expert System, but this method is not only tolerant of such an error, but may even be able to
correct it.

In this process, this initial population of algorithms is used to seed later stages of evolution, where the population
based on the Trace of a single person is combined with the populations based on the Traces of other people. Since they
are all exploring the same Program Space, the results are composable, and in being composed, tell more about where
the desirable regions of Program Space are. The next round of evolution will select against poor fitness programs,
regardless of which person was originally used to create them. Then, once the process is finished, and some Strategy
Group has been identified, that region can be sampled to produce high fitness programs that can be used in place of
the original approximations based on a single person’s Trace data.

Additionally, it is possible that the evolutionary process will improve on the behavior shown by any single expert.
Again using the Strategy Group, it is possible that the generated programs will be as good, or better than the ones
that represented the original experts.

5.4 Conclusions
While there have been attempts to create automatic models of humans in the past, this is the first to leverage
techniques from Artificial Intelligence, Machine Learning, Cognitive Science, Programming Language Theory, and
Evolution all at once. Projected orthagonally to most prior works, this dissertation simultaneously explored the major
ideas required to do this kind of work, while also building some concrete foundations. The biggest contribution in this
author’s consideration are the questions it raised; they are more fundamental than any of the tooling developed here.

Why should people care about abstract mathematical properties of the Program Space of particular tasks? Because
this abstract space has deep connections to the way that people think and act, and by learning the properties of this
space, we can predict and interpret human behaviors.

Hopefully, the truth of that statement should be evident by now. Given the time and resources, it is likely that
this plan of research will result in insights into the inner workings of the human mind. Insights that current methods
haven’t even begun to approach, or even consider trying to examine. This area of research may look like a tabula
rasa, a blank slate, but it is asking very old and fundamental questions with a new vocabulary. How do people think?
Using the process described here, we can begin to mathematically scratch the surface of the answer.

Practical results of this work include a new formal structure for describing the range of algorithms used by human
in real tasks, as well as tools permitting those structures to be usefully employed. Applications include artificial test
subjects, experimental testing methods, and the automatic generation of fully descriptive models of human behavior
for that task.

The most complete part of this research agenda, the exemplar Block Sorting Task and its accompanying DSL
Compiler and GE infrastructure form the basic toolset for the agenda to be explored in depth in future work. This
DSL Compiler proved that arbitrarily complex nestings of human behaviors require at least the computational power
of a Von Neumann Architecture to be completely modeled. Tools based around evolving DSL programs to match
human individuals were built around this DSL, and serve as the concrete foundations for future work.
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Appendix A

Algorithm Appendix

A.1 Fitness Heuristics
There are a number of heuristics that been passingly mentioned:

• Trace Matching: maximize the percentage of Traces from a single human which have the highest Trace Match
between the reference Traces and the Traces generated by running the programs in the EA population.

• Best-Solution: maximize some problem specific optimality criteria defined over the Traces generated by programs
in the EA population.

• Strategy Centroid Distance: after taking a sample of programs near the Centroid of a Strategy Group, use them
to generate Traces, which are then matched against as if the Trace Matching mentioned above used these Traces
in the place of those from a human.

A.2 Trace Matching Heuristic

Data: A set of Test Condtions, C, and a set of synthetic Trace Data, S, also a set of Trace data from a
specific Human for the same Conditions, H

Result: A Fitness measure, f ∈ [0, 1], where the maximum value is preferred
matchSum ← 0;
count ← 0;
foreach c ∈ C do

synthTrace ← TraceForCondition(c, S);
humanTrace ← TraceForCondition(c, H);
// LongestMatch gives the maximum percentage of overlap
matchSum ← matchSum + LongestMatch(synthTrace, humanTrace);
count ← count + 1;

end
f ← matchSum / count;

Algorithm 2: Trace Matching Heursitic

A.3 Best Match Heuristic

A.4 Strategy Centroid Distance Heuristic

A.5 Trace Matching
The similarity of two Traces is relatively easy to calculate. Simply, find longest matching subsequence(Ritter, 1992),
and edit distance. These two numbers are complementary, and can be used separately or aggregated as a weighted
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Data: A set of Test Condtions, C, and a set of synthetic Trace Data, S also, a problem-specific optimality
measure K :: Trace→ [0,∞)

Result: A Fitness measure, f ∈ [0,∞), where the maximum value is preferred
matchSum ← 0;
foreach c ∈ C do

synthTrace ← TraceForCondition(c, S);
traceOptimality ← Apply(K, synthTrace);
matchSum ← matchSum + traceOptimality;

end
f ← matchSum;

Algorithm 3: Best Match Heursitic

Data: A null-root AST encoding of a Chromosome, X, and C a set of target Centroids.
Result: A Fitness measure, f ∈ [0,∞), where the minimum value is preferred
matchSum ← 0;
foreach c ∈ C do

// EditDistance is the Rotationally Invariant algorithm below
dist ← EditDistance(X, c);
matchSum ← matchSum + dist;

end
f ← matchSum;

Algorithm 4: Strategy Centroid Distance Heursitic

sum. Further, for problems with semi-numeric traces, the matching portions of the Traces can be compared using
Euclidean distance measures to check for geometric similarity. Similar specialized matching criteria can be developed
for most kinds of Trace data, but the details are problem specific. Instead, presented here are generic (unspecialized)
Trace matching metrics. They have several important qualities: they are linear in behavior, they are normalizable,
they operate on arbitrary length unmatched inputs, they are fully defined functions, and they permit biasing the
importance of inputs.

In this set of equations, I describe the mathematics of Trace Matching, as a way to determine the similarity
of a pair of Traces. LCS is the Longest Common Subsequence using simple equality, LCSε is Longest Common
Subsequence using an equality operator permitting a tolerance of ±ε milliseconds, the α function projects a Trace
into a sequence of events only without timings, the tau function projects a Trace into a sequence of timings only
without events, the A function is the Event Similarity metric, the χ function is the Timing Similarity metric, ‖t‖ is
the length of a Trace t, and max is the Maximum operator, β is bias weighting (in [0, 1]) to increase the importance
of timings or event similarities (where β = 0.5 is the unbiased weighting), and S is the composite Trace Similarity
function in [0, 1]. Thus, the Similarity between Traces is the weighted sum of the Similarities of the Event Similarity
and the Time Similarity. Both of these later metrics are the LCS divided by the longest length of the traces.

A(T1, T2) = LCS(α(T1), α(T2))
max(‖T1‖, ‖T2‖)

(A.1)

χ(T1, T2) = LCSε(τ(T1), τ(T2))
max(‖T1‖, ‖T2‖)

(A.2)

S(T1, T2, β) = βA(T1, T2) + (1− β)χ(T1, T2) (A.3)
In order to generalize this definition of similarity to multidimensional Traces—those which feature multiple

independent input channels, such as driving a car while navigating—a slight redefinition needs to occur. First, each let
us define a c-Trace as one with c independent input channels, where each channel is a normal Trace. Each individual
channel is numbered from 0 to c − 1, with their ordering being arbitrary but consistent, so Trace n channel i is
written Tni. Further, each channel i has its own bias operator βi (which follows the rules for the bias operator above).
Finally, each channel is given a generalize contribution weighting ωi such that ωi ∈ [0, 1] and

∑c−1
i=o ωi = 1. A unbiased

weighting is ωi = 1
c . Then the Generalized Similarity for c-Traces of higher dimensions than c = 1 is:

Sc(T1, T2, β̄, ω̄) =
c−1∑
i=0

ωi (βiA(T1i, T2i) + (1− βi)χ(T1i, T2i)) (A.4)
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With unbiased weightings, this becomes1:

Sc(T1, T2) = 1
2c

(
c−1∑
i=0

A(T1i, T2i) +
c−1∑
i=0

χ(T1i, T2i)
)

(A.5)

The reader may confirm that these functions fulfill the criteria described above as being good candidate Trace
Matching metrics. They are linear, normalized, variably biased, total functions that operate over arbitrary length
inputs. As such, they can be used as the basis for the Trace Matching Fitness Function defined in Appendix A.1
above.

A.6 Specialized Tree-Edit Distance
Distance measure based on rotationally invariant edit-distance. This is the edit distance of according to the following
rule: the tree has a null root, and each subtree is an IF-THEN rule; for each pair of trees to be compared, take the
sum of the edit distances of the IF-parts and THEN-parts, where each potential pair of IFs and each potential pair of
THENs get compared, and only those parts that are closest count, and if multiple ones are closest, then choose one
at random. This represents the idea that the ordering of the rules doesn’t matter, so only the closest ones matter.

Data: A pair of trees, A and B, describing a null-rooted set of IF-THEN subtrees
Result: An edit distance, δ ∈ Z∗
δ ← 0;
// Walk through all pairs of IF-THENs.
foreach subtree i ∈ A do

condA ← IfPart(i);
exprA ← ThenPart(i);
diffA ←∞;
foreach subtree j ∈ B do

condB ← IfPart(j);
exprB ← ThenPart(j);
// EditDistance always returns a finite value < ∞
diffABCond ← EditDistance(condA, condB);
diffABExpr ← EditDistance(exprA, exprB);
diffA ← Min(diffABCond + diffABExpr, diffA);

end
// Prevents empty trees from causing errors.
if diffA <∞ then

δ ← δ+ diffA;
end

end
Algorithm 5: Rotationally Invariant Tree-Edit Distance

A.7 Mapping Fitness to Virtual Membership
Another interesting phenomenon: fitness values can be transformed into membership values. Given a fitness function
which maximizes optimality as it approaches infinity, its values can be mapped one-to-one onto real values between
zero and one, such as those used for membership functions.

Formally, fitness values can be transformed into membership values by a function f :

f :: [0,∞)→ [0, 1] (A.6)

f(0) = 0 (A.7)
1By breaking the summation into smaller summations, the calculations may be done independently and in parallel. Which is efficient

for HPC usage. This is not to say that the biased equation is inefficient, just that the unbiased one has better theoretical speedup under
Amdahl’s Law.
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lim
x→∞

f(x) = 1 (A.8)

f(x) = 1
1 + ek−x

− 1
1 + ek

where k ∈ [0,∞) (A.9)

Here, Equation (A.9) is an example mapping equation2. Since the mapping is non-unique, any suitable function
can be used. The one here is a variable sigmoidal curve, where k can be used to control the steepness of the curve.

While it’s application may not be readily apparent, the majority of Fuzzy Set and Fuzzy Logic operations require
some membership function to be computed. Since so much of the key components of the method use such operators,
it may at some point be desirable to map the fitness of a program from its native type to the restricted [0, 1] range
that is more common. For example, to compute an analog of the fuzzy set: high fitness members of a particular
Strategy Group; the fitness of the programs would be turned into membership values in [0, 1] and membership in
the Strategy Group would also be in [0, 1], so when the t-norm analog of the Boolean AND operator is applied, the
arguments work normally, and the result is interpretable in light of preexisting fuzzy logic literature. Additionally
the same method could be used to make distances between programs into the same domain of [0, 1].

2Thanks to J. Nicholas Hobbs for this example equation.
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Code Appendix

This Appendix contains code excerpts that were too long1 to fit within the main text of this work.

B.1 Compiler-Sequence-For
(defun compiler-sequence-for (base-symbol base-operator-str-name arity)

(if (zerop arity)
;;handle 0-arity behavior
(progn
#'(lambda
(compiler-state
args
parent-sym my-sym
return-sym return-state return-op
parent parent-arg-number)

(destructuring-bind
(thisid)
(register-idents
(list base-symbol :pop)
compiler-state)

(list
(make-instance
'dsl-op-sequence
:name base-operator-str-name
:branch-name thisid
:branch-order 0
:done? t
:arity 0
:args nil
:return-branch return-sym
:return-state return-state
:return-operator return-op
:parent parent
:parent-argument-number parent-arg-number)))))

;;else handle Arity >= 1
(progn
#'(lambda

(compiler-state
args
parent-sym my-sym
return-sym return-state return-op
parent parent-arg-number)

(let* ((arglen (length args))
(this-dsl-op-obj-str-name (dsl-symbol-to-string base-symbol))
(this-dsl-op-obj (gethash this-dsl-op-obj-str-name

*dsl-operators*))
(this-dsl-op-obj-jump-fn
(lambda (step argnum)
(if argnum
(jump-state-lookup this-dsl-op-obj-str-name step argnum)
(jump-state-lookup this-dsl-op-obj-str-name step))))

1Per committee feedback, any code listing longer than two double-sided printed pages would be too long.
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(thisid-ident1
(car

(register-idents
(list base-symbol)

compiler-state)))
(this-dm-id-override-fn

(lambda (n)
(dsl-string-to-symbol

(string-upcase
(format nil
(if (numberp n)

"~a-dm~d"
"~a-dm-~a")

(dsl-symbol-to-string thisid-ident1)
n)))))

(arg-literals (mapcar #'(lambda (x) (not (listp x))) args))
(non-literal-count (count nil arg-literals))
(all-literals? (zerop non-literal-count))
(dm-args (mapcar #'(lambda (a b) (if a b :empty)) arg-literals args))
(last-dm-args (mapcar #'(lambda (x) :empty) args))
(first-dm (make-instance

'dsl-op-sequence
:name base-operator-str-name
:branch-name thisid-ident1
:branch-order 0
:arity arity
:args dm-args
:done? nil ; all-literals?
:return-branch parent
:return-state return-state
:return-operator return-op
:parent parent
:parent-argument-number parent-arg-number
:dm-identity-override (funcall this-dm-id-override-fn 0)))

(last-dm (make-instance ;;last element all done!
'dsl-op-sequence
:name base-operator-str-name
:branch-name thisid-ident1
:branch-order arglen
:arity arity
:args last-dm-args
:done? t
:return-branch parent
:return-state return-state
:return-operator return-op
:parent parent
:parent-argument-number parent-arg-number
:dm-identity-override (funcall this-dm-id-override-fn 'return)))

(rest-dm (remove nil
(loop for i from 1 below arglen
collecting
(let* ((x (elt args i))

(literal? (not (listp x))))
(let* ((thisargid thisid-ident1)

(literal-args literal?)
(regular-args dm-args))

(make-instance
'dsl-op-sequence
:name base-operator-str-name
:branch-name thisargid
:branch-order i
:arity arity
:args dm-args
:args-literal-value literal-args
:done? :empty
:return-branch parent
:return-state return-state ;here
:return-operator return-op
:parent parent
:parent-argument-number parent-arg-number
:dm-identity-override
(funcall this-dm-id-override-fn i)))))))
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(temp-ordering
(cons first-dm (append rest-dm (list last-dm))))

(temp-ordering-length (length temp-ordering))
(temp-order-len (1- (length temp-ordering)))
;;Notes:
;; 0. The following number of DM elements should be
;; generated:
;; 0-arity: 1
;; N-arity: N+1 , with branch-orders [0,N]
;; 1. a DM element should never have an empty return-*
;; section (literals just have the next step in
;; the current operator to jump to)
;; 2. a DM element without a literal value in it
;; should contain a jump value in return-* under
;; the following cases:
;; a. The last element in the DM contains the
;; address of the parent
;; branch/state/operator pair that the
;; computation should jump to when completed
;; b. If you are not the last element, then the
;; jump info should point to the
;; branch/state/operator pair that the
;; computation should jump to when ready to
;; continue
(res
(loop for i from 0 below temp-ordering-length
appending
(progn
(if (= i (1- temp-ordering-length))
(list (elt temp-ordering i))
(let* ((this-operator (elt temp-ordering i))

(this-dm-jump-state-number (funcall this-dsl-op-obj-jump-fn "return" i))
(this-arg (elt args i))
(am-i-a-literal? (elt arg-literals i))
(my-child-dms
(if (not am-i-a-literal?)

(let*
((subexpression-for-this-arg this-arg)
(subexpr-operator-name (first subexpression-for-this-arg))
(subexpr-operator-name-str (dsl-symbol-to-string subexpr-operator-name))
(subexpr-args (rest subexpression-for-this-arg))
(dsl-operator-for-subexpr (gethash subexpr-operator-name-str *dsl-operators*))
(compiler-fn (compiler-for dsl-operator-for-subexpr))
(child-sym (register-idents (list (dsl-string-to-symbol (name

dsl-operator-for-subexpr)))↪→

compiler-state))
(child-dm-elements
(funcall compiler-fn
compiler-state
subexpr-args
(branch-name this-operator) ;parent-sym
child-sym ;my-sym
(dsl-string-to-symbol (branch-name this-operator)) ;return-sym
this-dm-jump-state-number ;return state
(dsl-string-to-symbol (name this-operator)) ;return-op
(branch-name this-operator) ;parent
i ;parent-arg-number
)))

(pop-ident compiler-state)
child-dm-elements)
nil))

(next-operator
(if am-i-a-literal?
(progn

(elt temp-ordering (1+ i)))
(first my-child-dms))))

(let* ((y this-operator)
(x next-operator))

(setf (return-branch y) (branch-name x))
(setf (return-state y) (branch-order x))
(setf (return-operator y) (dsl-string-to-symbol (name x)))
;;return this list to the
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;;appendding operator in loop
(append (list this-operator) my-child-dms))

))
;;recurse on arg i's
;;subexpression, unless you
;;are a literal

;;literal: set jump to
;;coordinates for next part
;;of operator

;;subexpr: get dm-element for
;;entry to subexpression,
;;jump to it
)

)
;;setf return branch, state, operators for
;;first to point at the last

;; reverse the list from this:
;; (loop for i from 0 up to length of list
;; (reverse (cons first-dm rest-dm))
;; do (setf (... return branch, operator,
;; state) to the info for the next
;; one in the list
)

)
res)))))

Listing 30: Compiler-Sequence-For Listing

B.2 Main Loop Production Rules
(p main-start-timer

=goal>
ISA metaproc
current-branch :empty
branch-order :empty
subgoal :start-timer
?temporal>
state free
==>
!eval! (setf *last-time-we-solved-a-problem* (mp-time-ms)

)
+temporal>
ISA time
=goal>
subgoal :empty
)

(p main-check
=goal>
ISA metaproc
current-branch :empty
branch-order :empty
subgoal :empty
< loop-iteration ,*max-iterations*
loop-iteration =iteration
dm-reload :empty
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name ,*first-branch-id*
branch-order 0
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=goal>
current-branch ,*first-branch-id*
branch-order 0
)

(p main-retrievenext ;;should only be called when returning
;;from a call to a subexpression
=goal>
ISA metaproc
- current-branch :empty
current-branch ,*first-branch-id*
- branch-order :empty ;=border
branch-order =border
- dm-reload :empty
dm-reload =reload
< loop-iteration ,*max-iterations*
loop-iteration =iteration
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name ,*first-branch-id*
branch-order =border
=goal>
current-branch ,*first-branch-id*
branch-order =border
subgoal :empty
dm-reload :empty
)

(p main-root-next-step
=goal>
ISA metaproc
current-branch ,*first-branch-id*
branch-order =border
< branch-order ,*main-loop-cutoff-length*
subgoal :empty
dm-reload :empty
loop-iteration =iteration
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name ,*first-branch-id*
branch-order =step-number
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-op
op-name =op
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg3
arg4 =arg4
arg5 =arg5
arg6 =arg6
==>
=goal>
current-branch =return-branch
branch-order =return-state
return-value :empty
operator =return-op
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg3
arg4 =arg4
arg5 =arg5
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arg6 =arg6

)

(p main-next-loop
=goal>
ISA metaproc
current-branch ,*first-branch-id*
current-problem =current-problem
length =length
;;> branch-order 0
branch-order ,*main-loop-cutoff-length*
branch-order =border
subgoal :empty
dm-reload :empty
loop-iteration =iteration
time-since-process-start =timestart
time-since-last-break =timebreak
time-current =timecurr
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name ,*first-branch-id*
branch-order =step-number
done t
return-branch =return-branch
return-state =return-state
op-name =op
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg3
arg4 =arg4
arg5 =arg5
arg6 =arg6
=temporal>
ISA time
ticks =ticks
?temporal>
state free
==>
=temporal>
!bind! =next-loop-num (1+ =iteration)
!bind! =cummulative =ticks
!bind! =cummulativebrk (- =ticks =timebreak)
!bind! =cummtimecurr (- =ticks =timecurr)
!eval! (setf *accumulated-edit-distance*
(+ *accumulated-edit-distance*

(string-diff =current-problem (alpha-subseq =length t))))
=goal>
loop-iteration =next-loop-num
current-branch :empty
subgoal :empty
branch-order :empty
return-value :empty
operator :empty
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg3
arg4 =arg4
arg5 =arg5
arg6 =arg6
dm-reload :empty
time-since-process-start =cummulative
time-since-last-break =cummulativebrk
time-current =cummtimecurr

)
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;detect correctly done, reset for next problem, signalled by
;tone being played and asynchronously placed in the
;audio-location buffer until attended to,

(p main-next-problem
=goal>
ISA metaproc
current-problem =old-current
starting-order =old-starting

time-since-process-start =timestart
time-since-last-break =timebreak
time-current =timecurr
?aural-location>
state free ; always t
attended nil ; has not been sent to AURAL buffer
finished t ; tone done playing (700ms)
=aural-location>
ISA audio-event
kind =kind
location =location
onset =onset
?aural>
state free
=temporal>
ISA time
ticks =ticks
?temporal>
state free
==>
!bind! =nextbreak

(if *break-times* (car (car *break-times*)) nil)
!bind! =triggerbreak

(if (and =nextbreak (>= =ticks (/ =nextbreak 1000))) t nil)
!bind! =newsubgoal (if =triggerbreak :take-break :empty)
!bind! =newdmreload

(if =triggerbreak (+ =ticks (/ (car (cdr (car *break-times*))) 1000)))
!bind! =new-current *current-problem*
!bind! =new-length (length *current-problem*)
!bind! =new-time (mp-time-ms)
!bind! =new-starting (copy-seq =new-current)
!bind! =cummulative =ticks
!bind! =cummulativebrk (if =triggerbreak 0 (+ =ticks =timebreak))
!eval! (setf *last-time-we-solved-a-problem* (mp-time-ms))
!eval! (setf *accumulated-edit-distance* 0)
;bind the new info for the once-only stuff
+aural>
ISA sound
event =aural-location
=temporal>
=goal>
current-problem =new-current
starting-order =new-starting
last-problem =old-starting
length =new-length
loop-iteration 0
current-branch :empty
subgoal =newsubgoal
branch-order :empty
return-value :empty
operator :empty
arg0 :empty
arg1 :empty
arg2 :empty
arg3 :empty
arg4 :empty
arg5 :empty
arg6 :empty
dm-reload =newdmreload
timestamp =new-time
time-since-process-start =cummulative
time-since-last-break =cummulativebrk
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time-current 0
)

(p main-wait-break
=goal>
ISA metaproc
current-problem =old-current
starting-order =old-starting

time-since-process-start =timestart
time-since-last-break =timebreak
time-current =timecurr
subgoal :take-break
dm-reload =target-time
< dm-reload =ticks
?aural-location>
state free ; always t
attended nil ; has not been sent to AURAL buffer
finished t ; tone done playing (700ms)
=temporal>
ISA time
ticks =ticks
?temporal>
state free
==>
!eval! (setf *is-currently-break-time* t)
=temporal>
=goal>
)

(p main-break-done
=goal>
ISA metaproc
current-problem =old-current
starting-order =old-starting

time-since-process-start =timestart
time-since-last-break =timebreak
time-current =timecurr
subgoal :take-break
dm-reload =target-time
>= dm-reload =ticks
?aural-location>
state free ; always t
attended nil ; has not been sent to AURAL buffer
finished t ; tone done playing (700ms)
=temporal>
ISA time
ticks =ticks
?temporal>
state free
==>
!eval! (when *break-times* (pop *break-times*))
!eval! (setf *is-currently-break-time* nil)
!eval! (setf *last-time-we-solved-a-problem* (mp-time-ms))
=temporal>
=goal>
subgoal :empty
dm-reload :empty
)

(p main-problem-exhausted
=goal>
ISA metaproc
>= loop-iteration ,*max-iterations*
==>
!eval! (experiment-halt nil)
!stop!

)

Listing 31: Main Loop Production Rules
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B.3 READ-WHOLE Operator
(define-operator

:name "read-whole"
:arity 0
:compiler-for (compiler-sequence-for 'read-whole "read-whole" 0)
:prod-jumps '(entry-point

lookat
return-from)

:dm-jumps '(dm-recall-parent)
:productions `(

(p read-whole-seq
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator read-whole
length =len
==>
=goal>
branch-order ,(jump-state-lookup "read-whole" 'lookat)
subgoal 0
dm-reload :empty
length =len
arg0 0
arg1 0
)

,@(screen-pos-literal-generator
#'(lambda (len x y x-index y-index)

(let* ((x-lower (- x +X-LOWER-TOLERANCE+))
(x-upper (+ x +X-UPPER-TOLERANCE+))
(y-lower (- y +Y-LOWER-TOLERANCE+))
(y-upper (+ y +Y-UPPER-TOLERANCE+)))

`(p ,(screen-pos-literal-name-generator
"read-whole" len x-index y-index)

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal ,x-index
dm-reload :empty
length ,len
arg0 ,x-index
arg1 ,y-index
?visual-location>
state free
==>
+visual-location>
ISA visual-location
> screen-x ,x-lower
<= screen-x ,x-upper
> screen-y ,y-lower
<= screen-y ,y-upper
kind text
=goal>
subgoal ,(if (>= (1+ x-index) len) :lookat-done (1+ x-index) )
arg0 ,(1+ x-index)
dm-reload ,(if (> (1+ x-index) len) :empty :attend)
)

)

)
)

(p read-whole-lookat-dolook
=goal>
ISA metaproc
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current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal =x-index
dm-reload :attend
length =len
arg0 =arg0
arg1 =arg1
=visual-location>
ISA visual-location
screen-x =screenx
screen-y =screeny
kind text
?visual-location>
state free
?visual>
state free
==>
+visual>
ISA move-attention
screen-pos =visual-location
=goal>
dm-reload :encode
)

(p read-whole-lookat-encode
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal =x-index
dm-reload :encode
length =len
arg0 =x
arg1 =y
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
==>
+imaginal>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
dm-reload :cleanup
)

(p read-whole-lookat-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal =x-index
dm-reload :cleanup
length =len
arg0 =arg0
arg1 =arg1
?imaginal>
state free
==>
-imaginal>
=goal>
dm-reload :rehersal
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)

(p read-whole-lookat-rehersal
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal =x-index
dm-reload :rehersal
length =len
arg0 =x
arg1 =y
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
dm-reload :rehersal-cleanup
)

(p read-whole-lookat-rehersal-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal =x-index
dm-reload :rehersal-cleanup
length =len
arg0 =arg0
arg1 =arg1
=retrieval>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
;?imaginal>
;state free
?retrieval>
state free
- state error
==>
-retrieval>
=goal>
dm-reload :empty
)

(p read-whole-lookat-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'lookat)
operator read-whole
subgoal :lookat-done
dm-reload :empty
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length =len
arg0 =arg0
arg1 =arg1
?imaginal>
state free
==>
-imaginal>
=goal>
branch-order ,(jump-state-lookup "read-whole" 'return-from)
subgoal :empty
dm-reload :empty
)

(p read-whole-return-load
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'return-from)
operator read-whole
subgoal :empty
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "read-whole" 'dm-recall-parent)
op-name read-whole
=goal>
subgoal :load
)

(p read-whole-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "read-whole" 'return-from)
operator read-whole
subgoal :load
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "read-whole" 'dm-recall-parent)
op-name read-whole
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value :no-value
subgoal :empty
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
)

)
)

Listing 32: READ-WHOLE Operator Listing



APPENDIX B. CODE APPENDIX 140

B.4 SHIFT-HAND Operator
(define-operator

:name "shift-hand"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from
do-operator
really-return
)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'shift-hand "shift-hand" 1)
:productions
`(

(p shift-hand
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator shift-hand
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall 0)
op-name shift-hand
=goal>
branch-order ,(jump-state-lookup "shift-hand" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'shift-hand "shift-hand" 1 0 :type-number)

(p shift-hand-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'done 0)
operator shift-hand
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
return-branch =return-branch
return-state =return-state
return-operator =return-op
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'return-from)
operator shift-hand
dm-reload :reload
)

(p shift-hand-return-right0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'return-from)
operator shift-hand
return-value 0
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
arg0 =arg0
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'do-operator)
operator shift-hand
subgoal :right
dm-reload :empty
)

(p shift-hand-return-right
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'return-from)
operator shift-hand
>= return-value 6
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'do-operator)
operator shift-hand
subgoal :right
dm-reload :empty
)

(p shift-hand-return-left
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'return-from)
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operator shift-hand
> return-value 0
< return-value 6
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
arg0 =arg0
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'do-operator)
operator shift-hand
subgoal :left
dm-reload :empty
)

(p shift-hand-find-start-fail
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'return-from)
operator shift-hand
return-value :no-value
subgoal :empty
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
arg0 =arg0

==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'really-return)
operator shift-hand
)

,@(motor-keystroke-literal-generator
#'(lambda (key-horizontal key-vertical)

;;remember to pick the hand based on the number 1-5 L, 0 + 6-9 R
`(

(p ,(motor-keystroke-literal-name-generator "shift-hand-0-ply" key-horizontal key-vertical "left")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'do-operator)
operator shift-hand
subgoal :left
dm-reload :empty
length =len
return-value =key0
return-value ,key-horizontal
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?retrieval>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?manual>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
done t
arg0 :empty
arg1 :empty
arg2 :empty
+manual>
ISA point-hand-at-key
hand left
to-key =key0
=goal>
branch-order ,(jump-state-lookup "shift-hand" 'really-return)
subgoal :empty
dm-reload :empty
)

(p ,(motor-keystroke-literal-name-generator "shift-hand-1-ply" key-horizontal key-vertical "right")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'do-operator)
operator shift-hand
subgoal :right
dm-reload :empty
length =len
return-value =key0
return-value ,key-horizontal
?retrieval>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?manual>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
done t
arg0 :empty
arg1 :empty
arg2 :empty
+manual>
ISA point-hand-at-key
hand right



APPENDIX B. CODE APPENDIX 144

to-key =key0
=goal>
branch-order ,(jump-state-lookup "shift-hand" 'really-return)
subgoal :empty
dm-reload :empty
)

)
)

)

(p shift-hand-really-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "shift-hand" 'really-return)
operator shift-hand
- return-value :empty
return-value =return-value
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "shift-hand" 'dm-recall-parent)
op-name shift-hand
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?manual>
state free
?retrieval>
state free
- state error
==>
,@(log-return-value "shift-hand" :no-value)
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
arg0 :empty
return-value :no-value
dm-reload :reload
subgoal :empty
)

)
)

Listing 33: SHIFT-HAND Operator Listing

B.5 LOOK-OFF-SCREEN Operator
(define-operator

:name "look-off-screen"
:arity 1
:compiler-for (compiler-sequence-for 'look-off-screen "look-off-screen" 1)
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
lookup-coords
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)
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:productions
`(

(p look-off-screen
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator look-off-screen
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall 0)
op-name look-off-screen
=goal>
branch-order ,(jump-state-lookup "look-off-screen" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'look-off-screen "look-off-screen" 1 0 :type-number)

(p look-off-screen-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'done 0)
operator look-off-screen
length =length
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
!bind! =arg0 (act-r-random =length)
!bind! =arg1 (act-r-random 2)
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
arg0 =arg0
arg1 =arg1
subgoal :prepare
dm-reload :empty

)

(p look-off-screen-prep-coords
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
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operator look-off-screen
subgoal :prepare
dm-reload :empty
- return-value :empty
- return-value :no-value
return-value =x
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
?retrieval>
state free
- state error
?temporal>
state free
=temporal>
ISA time
ticks =ticks
?visual>
state free
==>
!bind! =xint (if (numberp =x) =x (or (parse-integer =x :junk-allowed t) 1))
!bind! =time (+ =ticks =xint)
=temporal>
=retrieval>
+visual>
ISA clear
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :wait
dm-reload :empty
arg2 =time
;next-branch =return-branch
;next-branch-number =return-state
;next-operator =return-op
)

(p look-off-screen-prep-coords-bad-no0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
return-value :no-value
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
?imaginal>
state free
?retrieval>
state free
- state error
?temporal>
state free
=temporal>
ISA time
ticks =ticks
?visual>
state free
==>
!bind! =time (+ =ticks 0)
=temporal>
=retrieval>
+visual>
ISA clear
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=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :wait
dm-reload :empty
arg2 =time
)

(p look-off-screen-prep-coords-wait-notyet
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :wait
dm-reload :empty
length =len
arg0 =x
arg1 =y
arg2 =time
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
return-branch =return-branch
return-state =return-state
return-operator =return-op
?temporal>
state free
=temporal>
ISA time
ticks =ticks
< ticks =time
?visual>
state free
==>
=temporal>
=retrieval>
=goal>
subgoal :wait
)

(p look-off-screen-prep-coords-wait-ready
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :wait
dm-reload :empty
length =len
arg0 =x
arg1 =y
arg2 =time
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
return-branch =return-branch
return-state =return-state
return-operator =return-op
?temporal>
state free
=temporal>
ISA time
ticks =ticks
>= ticks =time
?visual>
state free
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==>
=temporal>
=retrieval>
=goal>
subgoal :match
)

,@(screen-pos-literal-generator
#'(lambda (len x y x-index y-index)

(let* ((x-lower (- x +X-LOWER-TOLERANCE+))
(x-upper (+ x +X-UPPER-TOLERANCE+))
(y-lower (- y +Y-LOWER-TOLERANCE+))
(y-upper (+ y +Y-UPPER-TOLERANCE+)))

`(p ,(screen-pos-literal-name-generator
"look-off-screen" len x-index y-index)

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :match
dm-reload :empty
length ,len
arg0 ,x-index
arg1 ,y-index
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
return-branch =return-branch
return-state =return-state
return-operator =return-op
?visual-location>
state free
==>
=retrieval>
+visual-location>
ISA visual-location
> screen-x ,x-lower
<= screen-x ,x-upper
> screen-y ,y-lower
<= screen-y ,y-upper
kind text
=goal>
subgoal :lookat
)

)
)

)

(p look-off-screen-lookat
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :lookat
dm-reload :empty
length =len
arg0 =x
arg1 =y
=visual-location>
ISA visual-location
screen-x =screenx
screen-y =screeny
kind text
?visual-location>
state free
?visual>
state free
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==>
+visual>
ISA move-attention
screen-pos =visual-location
=goal>
subgoal :encode
)

(p look-off-screen-encode ;;This represents unintentional sightings, so don't apply rehersal to it
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :encode
dm-reload :empty
length =len
arg0 =x
arg1 =y
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
==>
+imaginal>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
subgoal :cleanup
)

(p look-off-screen-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'lookup-coords)
operator look-off-screen
subgoal :cleanup
dm-reload :empty
length =len
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
branch-order ,(jump-state-lookup "look-off-screen" 'return-from)
subgoal :empty
)
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(p look-off-screen-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-off-screen" 'return-from)
operator look-off-screen
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-off-screen" 'dm-recall-parent)
op-name look-off-screen
return-branch =return-branch
return-state =return-state
return-operator =return-op
done t
arg0 :empty
arg1 :empty
arg2 :empty
?retrieval>
state free
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
arg0 :empty
arg1 :empty
arg2 :empty
return-value :no-value
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 34: LOOK-OFF-SCREEN Operator Listing

B.6 ONCE-ONLY Operator
(define-operator

:name "once-only"
:arity 1
:prod-jumps '(entry-point ;;reserve 0, don't use it for

;;anything here
recall-past
;past-decide ;;probably don't need this
recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
dm-recall-past
)

:compiler-for (compiler-sequence-for 'once-only "once-only" 1)
:productions
`(

(p once-only
=goal>
ISA metaproc
current-branch =branch
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branch-order 0
operator once-only
current-problem =problem
timestamp =time
starting-order =starting
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-past)
op-name once-only
arg0 :no-value
=goal>
branch-order ,(jump-state-lookup "once-only" 'recall-past)
return-value :no-value
)

(p once-only-recall-past-success
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'recall-past)
operator once-only
timestamp =time
starting-order =starting
current-problem =problem
return-value =oldreturn
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-past)
op-name once-only
arg0 :no-value
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-past)
op-name once-only
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
return-value :no-value
subgoal :wait
)

(p once-only-recall-past-success-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'recall-past)
operator once-only
timestamp =time
starting-order =starting
current-problem =problem
return-value =value
subgoal :wait
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
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branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-past)
op-name once-only
done t
arg0 :empty
arg1 :empty
arg2 :empty
;arg0 =value
;arg1 =time
;arg2 =starting
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =value
arg0 :empty
dm-reload :reload
subgoal :empty
)

(p once-only-recall-past-failure
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'recall-past)
operator once-only
timestamp =time
return-value =oldreturn
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall 0)
op-name once-only
=goal>
branch-order ,(jump-state-lookup "once-only" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'once-only "once-only" 1 0 :type-letter)

(p once-only-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'done 0)
operator once-only
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-parent)
op-name once-only
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
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+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-parent)
op-name once-only
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'return-from)
operator once-only
subgoal :encode
dm-reload :reload
)

(p once-only-return-encode
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'return-from)
operator once-only
subgoal :encode
current-problem =problem
starting-order =starting
timestamp =time
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-parent)
op-name once-only
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-parent)
op-name once-only
done t
arg0 :empty
arg1 :empty
arg2 :empty
;arg0 =arg0
;arg1 =time
;arg2 =starting
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-past)
op-name once-only
arg0 :no-value
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
=goal>
subgoal :commit
)

(p once-only-return-commit
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-only" 'return-from)
operator once-only
subgoal :commit
current-problem =problem
starting-order =starting
timestamp =time
return-value =value
?imaginal>
state free
=imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-past)
op-name once-only
arg0 :no-value
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-only" 'dm-recall-parent)
op-name once-only
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
-imaginal>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
subgoal :empty
dm-reload :reload
)

)
)

Listing 35: ONCE-ONLY Operator Listing

B.7 SWAP Operator
(define-operator

:name "swap"
:arity 2
:compiler-for (compiler-sequence-for 'swap "swap" 2)
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
lookup-coords
prep0
press0
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prep1
press1
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:productions
`(

(p swap
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator swap
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall 0)
op-name swap
=goal>
branch-order ,(jump-state-lookup "swap" 'recall 0)
subgoal :empty
dm-reload :empty
)

;;load data from arg0 -> X
,@(argument-p-sequence-for 'swap "swap" 2 0 :type-number)

(p swap-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'done 0)
operator swap
subgoal :empty
dm-reload :empty
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall 1)
op-name swap
=goal>
branch-order ,(jump-state-lookup "swap" 'recall 1)
subgoal :empty
dm-reload :empty
)

;;load data from arg1 -> Y

,@(argument-p-sequence-for 'swap "swap" 2 1 :type-number)
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(p swap-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'done 1)
operator swap
subgoal :empty
dm-reload :empty
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
)

;;load data from stored results into RETRIEVAL (match on fields)
(p swap-prep-coords

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
length =length
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
>= arg0 0
<= arg0 =length
arg0 =x
- arg1 :empty
- arg1 :no-value
>= arg1 0
<= arg1 =length
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arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p swap-prep-coords-bad-no0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 :no-value
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (incf *bad-swap-params-count*)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0 )
operator swap
subgoal :empty
dm-reload :empty
arg0 1
arg1 1
)

(p swap-prep-coords-bad-no1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
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arg1 :no-value
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (incf *bad-swap-params-count*)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0 )
operator swap
subgoal :empty
dm-reload :empty
arg0 1
arg1 1
)

(p swap-prep-coords-bad-low0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
< arg0 0
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (incf *bad-swap-params-count*)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
arg0 1
arg1 1
)

(p swap-prep-coords-bad-low1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
< arg1 0
?imaginal>
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state free
?retrieval>
state free
- state error
==>
!eval! (incf *bad-swap-params-count*)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
arg0 1
arg1 1
)

(p swap-prep-coords-bad-high0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
length =length
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
> arg0 =length
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (incf *bad-swap-params-count*)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
arg0 1
arg1 1
)

(p swap-prep-coords-bad-high1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'lookup-coords)
operator swap
subgoal :prepare
dm-reload :empty
length =length
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
> arg1 =length
?imaginal>
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state free
?retrieval>
state free
- state error
==>
!eval! (incf *bad-swap-params-count*)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
arg0 1
arg1 1
)

;;prep 0; do 0; wait 0; prep 1; do 1; wait 1; return
(p swap-press0-prep-zero

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
length =len
arg0 0
arg1 =key1
==>
=goal>
branch-order ,(jump-state-lookup "swap" 'press0)
subgoal :right
)

(p swap-press0-prep-left
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
length =len
> arg0 0
< arg0 6
arg0 =key0
arg1 =key1
==>
=goal>
branch-order ,(jump-state-lookup "swap" 'press0)
subgoal :left
)

(p swap-press0-prep-right
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep0)
operator swap
subgoal :empty
dm-reload :empty
length =len
>= arg0 6
arg0 =key0
arg1 =key1
==>
=goal>
branch-order ,(jump-state-lookup "swap" 'press0)
subgoal :right
)
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,@(motor-keystroke-literal-generator
#'(lambda (key-horizontal key-vertical)

;;remember to pick the hand based on the number 1-5 L, 0 + 6-9 R
;;make one for press0 and another for press1, with correct jumps back for each
`( ;we want to match arg0=x y=2, and then arg1=x y=2

(p ,(motor-keystroke-literal-name-generator "swap0-ply" key-horizontal key-vertical "left")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press0)
operator swap
subgoal :left
dm-reload :empty
length =len
arg0 =key0
arg0 ,key-horizontal
arg1 =key1
;arg1 ,key-vertical
?manual>
state free
==>
+manual>
ISA point-hand-at-key
hand left
to-key =key0
=goal>
branch-order ,(jump-state-lookup "swap" 'press0)
subgoal :left
dm-reload :press
)

(p ,(motor-keystroke-literal-name-generator "swap0-punch" key-horizontal key-vertical "left")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press0)
operator swap
subgoal :left
dm-reload :press
length =len
arg0 =key0
arg0 ,key-horizontal
arg1 =key1
;arg1 ,key-vertical
?manual>
state free
==>
+manual>
ISA punch
hand left
finger index
=goal>
branch-order ,(jump-state-lookup "swap" 'prep1)
subgoal :empty
dm-reload :empty
)

(p ,(motor-keystroke-literal-name-generator "swap0-ply" key-horizontal key-vertical "right")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press0)
operator swap
subgoal :right
dm-reload :empty
length =len
arg0 =key0
arg0 ,key-horizontal
arg1 =key1
?manual>
state free
==>
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+manual>
ISA point-hand-at-key
hand right
to-key =key0
=goal>
branch-order ,(jump-state-lookup "swap" 'press0)
subgoal :right
dm-reload :press
)

(p ,(motor-keystroke-literal-name-generator "swap0-punch" key-horizontal key-vertical "right")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press0)
operator swap
subgoal :right
dm-reload :press
length =len
arg0 =key0
arg0 ,key-horizontal
arg1 =key1
;arg1 ,key-vertical
?manual>
state free
==>
+manual>
ISA punch
hand right
finger index
=goal>
branch-order ,(jump-state-lookup "swap" 'prep1)
subgoal :empty
dm-reload :empty
)

)

)
;; these are the last args to the motor-generator
nil ;arg1-not-actr-vertical (vertical should always be row 2)
nil ;start-at-zero (horizontal, key y=2 x=0 is tilde, skip it 1=1 9=9 10=0-key)
)

(p swap-press1-prep-zero
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep1)
operator swap
subgoal :empty
dm-reload :empty
length =len
arg1 0
arg1 =key1
==>
=goal>
branch-order ,(jump-state-lookup "swap" 'press1)
subgoal :right
)

(p swap-press1-prep-left
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep1)
operator swap
subgoal :empty
dm-reload :empty
length =len
> arg1 0
< arg1 6
arg0 =key0
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arg1 =key1
==>
=goal>
branch-order ,(jump-state-lookup "swap" 'press1)
subgoal :left
)

(p swap-press1-prep-right
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'prep1)
operator swap
subgoal :empty
dm-reload :empty
length =len
>= arg1 6
arg0 =key0
arg1 =key1
==>
=goal>
branch-order ,(jump-state-lookup "swap" 'press1)
subgoal :right
)

,@(motor-keystroke-literal-generator
#'(lambda (key-horizontal key-vertical)

;;remember to pick the hand based on the number 1-5 L, 0 + 6-9 R
;;make one for press0 and another for press1, with correct jumps back for each
`(

(p ,(motor-keystroke-literal-name-generator "swap1-ply" key-horizontal key-vertical "left")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press1)
operator swap
subgoal :left
dm-reload :empty
length =len
arg0 =key0
arg1 =key1
arg1 ,key-horizontal
?manual>
state free
==>
+manual>
ISA point-hand-at-key
hand left
to-key =key1
=goal>
branch-order ,(jump-state-lookup "swap" 'press1)
subgoal :left
dm-reload :press
)

(p ,(motor-keystroke-literal-name-generator "swap1-punch" key-horizontal key-vertical "left")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press1)
operator swap
subgoal :left
dm-reload :press
length =len
arg0 =key0
arg1 =key1
arg1 ,key-horizontal
?manual>
state free
==>
+manual>
ISA punch
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hand left
finger index
=goal>
branch-order ,(jump-state-lookup "swap" 'return-from)
subgoal :empty
dm-reload :empty
)

(p ,(motor-keystroke-literal-name-generator "swap1-ply" key-horizontal key-vertical "right")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press1)
operator swap
subgoal :right
dm-reload :empty
length =len
arg0 =key0
arg1 =key1
arg1 ,key-horizontal
?manual>
state free
==>
+manual>
ISA point-hand-at-key
hand right
to-key =key1
=goal>
branch-order ,(jump-state-lookup "swap" 'press1)
subgoal :right
dm-reload :press
)

(p ,(motor-keystroke-literal-name-generator "swap1-punch" key-horizontal key-vertical "right")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'press1)
operator swap
subgoal :right
dm-reload :press
length =len
arg0 =key0
arg1 =key1
arg1 ,key-horizontal
?manual>
state free
==>
+manual>
ISA punch
hand right
finger index
=goal>
branch-order ,(jump-state-lookup "swap" 'return-from)
subgoal :empty
dm-reload :empty
)

)

)
;; these are the last args to the motor-generator
nil ;arg1-not-actr-vertical (vertical should always be row 2)
nil ;start-at-zero (horizontal, key y=2 x=0 is tilde, skip it 1=1 9=9 10=0-key)
)

(p swap-note-changes
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :empty
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dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg0
row-number 0
=goal>
subgoal :arg0-letters-recall
arg0 =arg0
arg1 =arg1
)

(p swap-arg0-letters-recall
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-letters-recall
arg0 =arg0
arg1 =arg1
=retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =textvalue
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg1
row-number 0
=goal>
subgoal :arg1-letters-recall
arg2 =textvalue
)

(p swap-arg1-letters-recall
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-letters-recall
arg0 =arg0
arg1 =arg1
arg2 =arg0text
=retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =textvalue
?retrieval>
state free
- state error
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?imaginal>
state free
- state error
==>
+imaginal>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
-retrieval>
=goal>
subgoal :arg0-commit-change
arg3 =textvalue
)

(p swap-arg0-commit-change
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-commit-change
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-imaginal>
=goal>
subgoal :arg0-reherse-0

)

(p swap-arg0-reherse-0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-0
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
=goal>
subgoal :arg0-reherse-recall-0

)

(p swap-arg0-reherse-recall-0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
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operator swap
subgoal :arg0-reherse-recall-0
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-cleanup-0

)

(p swap-arg0-reherse-cleanup-0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-cleanup-0
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-1

)

;;do this 3 times here
(p swap-arg0-reherse-1

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-1
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==> ;;positions and text are swapped
+retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
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=goal>
subgoal :arg0-reherse-recall-1
)

(p swap-arg0-reherse-recall-1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-recall-1
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-cleanup-1
)

(p swap-arg0-reherse-cleanup-1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-cleanup-1
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-2
)

(p swap-arg0-reherse-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-2
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
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==>
+retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
=goal>
subgoal :arg0-reherse-recall-2

)

(p swap-arg0-reherse-recall-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-recall-2
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-cleanup-2
)

(p swap-arg0-reherse-cleanup-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-cleanup-2
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-3
)

(p swap-arg0-reherse-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-3
arg0 =arg0
arg1 =arg1
arg2 =arg0text
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arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
=goal>
subgoal :arg0-reherse-recall-3
)

(p swap-arg0-reherse-recall-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-recall-3
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg1
row-number 0
letter =arg0text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg0-reherse-cleanup-3
)

(p swap-arg0-reherse-cleanup-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg0-reherse-cleanup-3
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-letters-store

)

(p swap-arg1-letters-store
=goal>
ISA metaproc
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current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-letters-store
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
+imaginal>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
-retrieval>
=goal>
subgoal :arg1-commit-change
)

(p swap-arg1-commit-change
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-commit-change
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-imaginal>
=goal>
subgoal :arg1-reherse-0
)

(p swap-arg1-reherse-0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-0
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
=goal>
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subgoal :arg1-reherse-recall-0
)

(p swap-arg1-reherse-recall-0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-recall-0
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-cleanup-0
)

(p swap-arg1-reherse-cleanup-0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-cleanup-0
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-1
)

(p swap-arg1-reherse-1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-1
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>



APPENDIX B. CODE APPENDIX 173

+retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
=goal>
subgoal :arg1-reherse-recall-1
)

(p swap-arg1-reherse-recall-1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-recall-1
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-cleanup-1
)

(p swap-arg1-reherse-cleanup-1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-cleanup-1
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-2
)

(p swap-arg1-reherse-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-2
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
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state free
- state error
?imaginal>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
=goal>
subgoal :arg1-reherse-recall-2
)

(p swap-arg1-reherse-recall-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-recall-2
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-cleanup-2
)

(p swap-arg1-reherse-cleanup-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-cleanup-2
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-3
)

(p swap-arg1-reherse-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
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subgoal :arg1-reherse-3
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
+retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
=goal>
subgoal :arg1-reherse-recall-3
)

(p swap-arg1-reherse-recall-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-recall-3
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
=retrieval>
ISA letters
slot-number =arg0
row-number 0
letter =arg1text
?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
-retrieval>
=goal>
subgoal :arg1-reherse-cleanup-3
)

(p swap-arg1-reherse-cleanup-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :arg1-reherse-cleanup-3
arg0 =arg0
arg1 =arg1
arg2 =arg0text
arg3 =arg1text
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp

?retrieval>
state free
- state error
?imaginal>
state free
- state error
==>
+retrieval>
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ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1
problem =starting-order
=goal>
subgoal :lookup-parent
dm-reload :empty
)

(p swap-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :lookup-parent
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg1 :empty
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
done t
arg0 :empty
arg1 :empty
=goal>
subgoal :wait
)

(p swap-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "swap" 'return-from)
operator swap
subgoal :wait
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "swap" 'dm-recall-parent)
op-name swap
return-branch =return-branch
return-state =return-state
return-operator =return-op
done t
arg0 :empty
arg1 :empty
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?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value :no-value
arg0 :empty
arg1 :empty
arg2 :empy
arg3 :empty
subgoal :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
)

)
)

Listing 36: SWAP Operator Listing

B.8 IF-N Operator
(define-operator

:name "if-n"
:arity 3
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
recall-arg2
jump-arg2
return-arg2
save-arg2
done-arg2
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-arg2
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'if-n "if-n" 3)
:productions

`(
(p if-n

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator if-n
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 0)
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op-name if-n
=goal>
branch-order ,(jump-state-lookup "if-n" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'if-n "if-n" 3 0 :type-boolean)

(p if-n-arg0-done-true
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
return-value true
subgoal :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 1)
op-name if-n
=goal>
subgoal :load
NEXT-BRANCH =return-branch
NEXT-BRANCH-NUMBER =return-state
NEXT-OPERATOR =return-op
)

(p if-n-arg0-done-true-load
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
return-value true
subgoal :load
NEXT-BRANCH =main-return-branch
NEXT-BRANCH-NUMBER =main-return-state
NEXT-OPERATOR =main-return-op
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 1)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+imaginal>
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ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent )
done t
op-name if-n
arg0 true
arg1 :empty
arg2 :empty
arg3 :empty
arg4 :empty
arg5 :empty
arg6 :empty
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
timestamp =timestamp
last-argument 0
loop-iteration =loop-iteration
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 1)
op-name if-n
=goal>
subgoal :jump
NEXT-BRANCH :empty
NEXT-BRANCH-NUMBER :empty
NEXT-OPERATOR :empty
)

(p if-n-arg0-done-true-jump
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
return-value true
subgoal :jump
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 1)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 1)
op-name if-n
=goal>
subgoal :empty
branch-order ,(jump-state-lookup "if-n" 'recall 1)
)

(p if-n-arg0-done-false
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
return-value false
subgoal :empty
=retrieval>
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ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 2 )
op-name if-n
=goal>
subgoal :load
NEXT-BRANCH =return-branch
NEXT-BRANCH-NUMBER =return-state
NEXT-OPERATOR =return-op
)

(p if-n-arg0-done-false-load
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
return-value false
subgoal :load
NEXT-BRANCH =main-return-branch
NEXT-BRANCH-NUMBER =main-return-state
NEXT-OPERATOR =main-return-op
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 2)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent )
done t
op-name if-n
arg0 false
arg1 :no-value
arg2 :empty
arg3 :empty
arg4 :empty
arg5 :empty
arg6 :empty
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
timestamp =timestamp
last-argument 0
loop-iteration =loop-iteration
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problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 2)
op-name if-n
=goal>
subgoal :jump
NEXT-BRANCH :empty
NEXT-BRANCH-NUMBER :empty
NEXT-OPERATOR :empty
)

(p if-n-arg0-done-false-jump
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
return-value false
subgoal :jump
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 2)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall 2)
op-name if-n
=goal>
subgoal :empty
branch-order ,(jump-state-lookup "if-n" 'recall 2)
)

(p if-n-arg0-done-other
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 0)
operator if-n
- return-value true
- return-value false
- return-value :empty
return-value =return-value
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
done t
=goal>
branch-order ,(jump-state-lookup "if-n" 'return-from)
return-value =return-value
)

,@(argument-p-sequence-for 'if-n "if-n" 3 1 :type-number nil t)

(p if-n-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 1)
operator if-n
return-value =return-value
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
done t
arg0 true
- arg1 :empty
arg2 :no-value
=goal>
branch-order ,(jump-state-lookup "if-n" 'return-from)
return-value =return-value
)

,@(argument-p-sequence-for 'if-n "if-n" 3 2 :type-number nil t)

(p if-n-arg2-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'done 2)
operator if-n
return-value =return-value
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
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op-name if-n
done t
arg0 false
arg1 :no-value
- arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'return-from)
return-value =return-value
)

(p if-n-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "if-n" 'return-from)
operator if-n
return-value =returnval
starting-order =starting-order
loop-iteration =loop-iteration
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "if-n" 'dm-recall-parent)
op-name if-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)
)

Listing 37: IF-N Operator Listing

B.9 ONCE-PER-PROBLEM-N Operator
(define-operator

:name "once-per-problem-n"
:arity 1
:prod-jumps '(entry-point

recall-past
recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
dm-recall-past
)

:compiler-for (compiler-sequence-for 'once-per-problem-n "once-per-problem-n" 1)
:productions
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`(
(p once-per-problem-n

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator once-per-problem-n
current-problem =problem
timestamp =time
starting-order =starting
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-past)
op-name once-per-problem-n
- arg0 :empty
- arg1 :empty
arg1 =time
- arg2 :empty
arg2 =starting
=goal>
branch-order ,(jump-state-lookup "once-per-problem-n" 'recall-past)
subgoal :check
)

(p once-per-problem-n-recall-past-success
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'recall-past)
operator once-per-problem-n
timestamp =time
starting-order =starting
current-problem =problem
return-value =oldreturn
subgoal :check
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-past)
op-name once-per-problem-n
arg0 =value
arg1 =time
arg2 =starting
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
return-value =value
subgoal :wait
)

(p once-per-problem-n-recall-past-success-lookup-parent
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "once-per-problem-n" 'recall-past)
operator once-per-problem-n
timestamp =time
starting-order =starting
current-problem =problem
return-value =value
subgoal :wait
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =value
arg0 :empty
dm-reload :reload
subgoal :empty
)

(p once-per-problem-n-recall-past-failure
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'recall-past)
operator once-per-problem-n
timestamp =time
return-value =oldreturn
subgoal :check
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall 0)
op-name once-per-problem-n
=goal>
branch-order ,(jump-state-lookup "once-per-problem-n" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'once-per-problem-n "once-per-problem-n" 1 0 :type-number)

(p once-per-problem-n-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'done 0)
operator once-per-problem-n
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
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ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'return-from)
operator once-per-problem-n
subgoal :encode
dm-reload :reload
)

(p once-per-problem-n-return-encode
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'return-from)
operator once-per-problem-n
subgoal :encode
current-problem =problem
starting-order =starting
timestamp =time
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
done t
arg0 :empty
arg1 :empty
arg2 :empty
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-past)
op-name once-per-problem-n
arg0 =arg0
arg1 =time
arg2 =starting
return-branch =return-branch
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return-state =return-state
return-operator =return-op
=goal>
subgoal :commit
)

(p once-per-problem-n-return-commit
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'return-from)
operator once-per-problem-n
subgoal :commit
current-problem =problem
starting-order =starting
timestamp =time
return-value =return-value
?imaginal>
state free
=imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-past)
op-name once-per-problem-n
arg0 =arg0
arg1 =time
arg2 =starting
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "once-per-problem-n" 'dm-recall-parent)
op-name once-per-problem-n
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
-imaginal>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
subgoal :empty
dm-reload :reload
)

)
)

Listing 38: ONCE-PER-PROBLEM-N Operator Listing

B.10 NEXT-NUMBER Operator
(define-operator

:name "next-number"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from
do-operator
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really-return
)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'next-number "next-number" 1)
:productions
`(

(p next-number
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator next-number
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall 0)
op-name next-number
=goal>
branch-order ,(jump-state-lookup "next-number" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'next-number "next-number" 1 0 :type-number)

(p next-number-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'done 0)
operator next-number
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'return-from)
operator next-number

dm-reload :reload
)

(p next-number-return
=goal>
ISA metaproc
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current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'return-from)
operator next-number
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
return-value =arg0
subgoal :empty
)

(p next-number-find-start-fail
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
return-value :no-value
subgoal :empty
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value =arg0
subgoal :load-parent
)

(p next-number-note-match-0
=goal>
ISA metaproc
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current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 0
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value :no-value
)

(p next-number-note-match-1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 1
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 2
)

(p next-number-note-match-2
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 2
subgoal :empty
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?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 3
)

(p next-number-note-match-3
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 3
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 4
)

(p next-number-note-match-4
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 4
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 5
)

(p next-number-note-match-5
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 5
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 6
)

(p next-number-note-match-6
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 6
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
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return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 7
)

(p next-number-note-match-7
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 7
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 8
)

(p next-number-note-match-8
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 8
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
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current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 9
)

(p next-number-note-match-9
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
return-value 9
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value 0
)

(p next-number-note-match-too-high
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
> return-value 9
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value :no-value
)
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(p next-number-note-match-too-low
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'do-operator)
operator next-number
- return-value :no-value
< return-value 0
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
return-value :no-value
)

(p next-number-really-return-load-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
- return-value :empty
return-value =return-value
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :load-parent
)

(p next-number-really-return
=goal>
ISA metaproc
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current-branch =branch
branch-order ,(jump-state-lookup "next-number" 'really-return)
operator next-number
- return-value :empty
return-value =return-value
subgoal :load-parent
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-number" 'dm-recall-parent)
op-name next-number
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 39: NEXT-NUMBER Operator Listing

B.11 NEXT-LETTER Operator
(define-operator

:name "next-letter"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from
find-top
really-return
)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'next-letter "next-letter" 1)
:productions
`(

(p next-letter
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator next-letter
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
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branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall 0)
op-name next-letter
=goal>
branch-order ,(jump-state-lookup "next-letter" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'next-letter "next-letter" 1 0 :type-letter)

(p next-letter-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'done 0)
operator next-letter
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'return-from)
operator next-letter
dm-reload :reload
)

(p next-letter-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'return-from)
operator next-letter
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
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=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
return-value =arg0
subgoal :empty
)

(p next-letter-find-start-fail
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
return-value :no-value
subgoal :empty
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'really-return)
operator next-letter
return-value =arg0
)

(p next-letter-find-start
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
- return-value :no-value
return-value =matchthis
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
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+retrieval>
ISA alpha-order
ordinal 1

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
subgoal :find-pointer
)

(p next-letter-find-pointer-hit
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
- return-value :no-value
return-value =matchthis
subgoal :find-pointer
?retrieval>
state free
- state error
=retrieval>
ISA alpha-order
letter =matchthis
==>
=retrieval>

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
subgoal :load-pointer
)

(p next-letter-find-pointer-miss
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
- return-value :no-value
return-value =matchthis
subgoal :find-pointer
?retrieval>
state free
- state error
=retrieval>
ISA alpha-order
- letter =matchthis
next =next
==>
+retrieval>
ISA alpha-order
letter =next

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
subgoal :find-pointer
)

(p next-letter-load-pointer
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'find-top)
operator next-letter
- return-value :no-value
return-value =matchthis
subgoal :load-pointer
?retrieval>
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state free
- state error
=retrieval>
ISA alpha-order
letter =return-letter
next =return-next
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
done t
arg0 :empty
arg1 :empty
arg2 :empty

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'really-return)
operator next-letter
subgoal :empty
return-value =return-next
arg0 :empty
)

(p next-letter-really-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter" 'really-return)
operator next-letter
- return-value :empty
return-value =return-value
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter" 'dm-recall-parent)
op-name next-letter
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 40: NEXT-LETTER Operator Listing

B.12 SCAN-FOR-CHAR-LR Operator
(define-operator

:name "scan-for-char-lr"
:arity 1
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:prod-jumps '(entry-point
recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
lookat
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'scan-for-char-lr "scan-for-char-lr" 1)
:productions
`(

(p scan-for-char-lr
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator scan-for-char-lr
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'dm-recall 0)
op-name scan-for-char-lr
=goal>
branch-order ,(jump-state-lookup "scan-for-char-lr" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'scan-for-char-lr "scan-for-char-lr" 1 0 :type-letter)

(p scan-for-char-lr-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'done 0)
operator scan-for-char-lr
length =len
return-value =matchthis
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'dm-recall-parent)
op-name scan-for-char-lr
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'dm-recall-parent)
op-name scan-for-char-lr
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
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branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal 1
dm-reload :empty
arg0 1
arg1 0
arg2 =matchthis
;dm-reload :reload
)

,@(screen-pos-literal-generator
#'(lambda (len x y x-index y-index)

(let* ((x-lower (- x +X-LOWER-TOLERANCE+))
(x-upper (+ x +X-UPPER-TOLERANCE+))
(y-lower (- y +Y-LOWER-TOLERANCE+))
(y-upper (+ y +Y-UPPER-TOLERANCE+)))

`(p ,(screen-pos-literal-name-generator
"scan-for-char-lr" len x-index y-index)

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal ,(1+ x-index)
dm-reload :empty
length ,len
arg0 ,(1+ x-index)
arg1 ,y-index
?visual-location>
state free
==>
+visual-location>
ISA visual-location
> screen-x ,x-lower
<= screen-x ,x-upper
> screen-y ,y-lower
<= screen-y ,y-upper
kind text
=goal>
subgoal ,(if (> (1+ x-index) len) :lookat-done (1+ x-index) )
arg0 ,(1+ x-index)
dm-reload ,(if (> (1+ x-index) len) :empty :attend)
)

)
)

)

(p scan-for-char-lr-lookat-dolook
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal =x-index
dm-reload :attend
length =len
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg3
arg4 =arg4
=visual-location>
ISA visual-location
screen-x =screenx
screen-y =screeny
kind text
?visual-location>
state free
?visual>
state free
==>
+visual>
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ISA move-attention
screen-pos =visual-location
=goal>
dm-reload :encode
)

(p scan-for-char-lr-lookat-encode
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal =x-index
dm-reload :encode
length =len
arg0 =x
arg1 =y
arg2 =matchthis
arg3 =old-arg3
arg4 =old-arg4
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
==>
+imaginal>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
arg3 =textvalue
arg4 =x
dm-reload :cleanup
)

(p scan-for-char-lr-lookat-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal =x-index
dm-reload :cleanup
length =len
arg0 =arg0
arg1 =arg1
?imaginal>
state free
==>
-imaginal>
=goal>
dm-reload :check-match
)

(p scan-for-char-lr-lookat-check-matched
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal =x-index
dm-reload :check-match
length =len
arg0 =arg0
arg1 =arg1
arg2 =arg2



APPENDIX B. CODE APPENDIX 204

arg3 =arg2
arg4 =storedval
?imaginal>
state free
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'dm-recall-parent)
op-name scan-for-char-lr
=goal>
branch-order ,(jump-state-lookup "scan-for-char-lr" 'return-from)
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
arg2 :empty
arg3 :empty
return-value =storedval
)

(p scan-for-char-lr-lookat-check-failed-middle
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal =x-index
dm-reload :check-match
length =len
arg0 =arg0
- arg0 =len
arg1 =arg1
arg2 =arg2
arg3 =arg3
- arg3 =arg2
arg4 =storedval
?imaginal>
state free
==>
!safe-bind! =next-step (1+ =x-index)
-imaginal>
=goal>
dm-reload :empty
arg0 =next-step
arg3 :empty
arg4 :empty
subgoal =next-step
return-value :no-value
)

(p scan-for-char-lr-lookat-check-failed-end
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal =x-index
dm-reload :check-match
length =len
arg0 =arg0
arg0 =len
arg1 =arg1
arg2 =arg2
arg3 =arg3
- arg3 =arg2
arg4 =storedval
?imaginal>
state free



APPENDIX B. CODE APPENDIX 205

==>
-imaginal>
=goal>
branch-order ,(jump-state-lookup "scan-for-char-lr" 'return-from)
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
arg2 :empty
arg3 :empty
return-value :no-value
)

(p scan-for-char-lr-lookat-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'lookat)
operator scan-for-char-lr
subgoal :lookat-done
dm-reload :empty
length =len
arg0 =arg0
arg1 =arg1
?imaginal>
state free
==>
-imaginal>
=goal>
branch-order ,(jump-state-lookup "scan-for-char-lr" 'return-from)
subgoal :empty
dm-reload :empty
)

(p scan-for-char-lr-return-load
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'return-from)
operator scan-for-char-lr
subgoal :empty
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'dm-recall-parent)
op-name scan-for-char-lr
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :load
)

(p scan-for-char-lr-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'return-from)
operator scan-for-char-lr
subgoal :load
return-value =matchthis
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-char-lr" 'dm-recall-parent)
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op-name scan-for-char-lr
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 41: SCAN-FOR-CHAR-LR Operator Listing

B.13 SCAN-FOR-NUM-LR Operator
(define-operator

:name "scan-for-num-lr"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
lookat
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'scan-for-num-lr "scan-for-num-lr" 1)
:productions
`(

(p scan-for-num-lr
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator scan-for-num-lr
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'dm-recall 0)
op-name scan-for-num-lr
=goal>
branch-order ,(jump-state-lookup "scan-for-num-lr" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'scan-for-num-lr "scan-for-num-lr" 1 0 :type-number)

(p scan-for-num-lr-arg0-done
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "scan-for-num-lr" 'done 0)
operator scan-for-num-lr
length =len
return-value =matchthis
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'dm-recall-parent)
op-name scan-for-num-lr
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'dm-recall-parent)
op-name scan-for-num-lr
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal 1
dm-reload :empty
arg0 1
arg1 0
arg2 =matchthis
)

,@(screen-pos-literal-generator
#'(lambda (len x y x-index y-index)

(let* ((x-lower (- x +X-LOWER-TOLERANCE+))
(x-upper (+ x +X-UPPER-TOLERANCE+))
(y-lower (- y +Y-LOWER-TOLERANCE+))
(y-upper (+ y +Y-UPPER-TOLERANCE+)))

`(p ,(screen-pos-literal-name-generator
"scan-for-num-lr" len x-index y-index)

=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal ,(1+ x-index)
dm-reload :empty
length ,len
arg0 ,(1+ x-index)
arg1 ,y-index
?visual-location>
state free
==>
+visual-location>
ISA visual-location
> screen-x ,x-lower
<= screen-x ,x-upper
> screen-y ,y-lower
<= screen-y ,y-upper
kind text
=goal>
subgoal ,(if (> (1+ x-index) len) :lookat-done (1+ x-index) )



APPENDIX B. CODE APPENDIX 208

arg0 ,(1+ x-index)
dm-reload ,(if (> (1+ x-index) len) :empty :attend)
)

)
)

)

(p scan-for-num-lr-lookat-dolook
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal =x-index
dm-reload :attend
length =len
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg3
arg4 =arg4
=visual-location>
ISA visual-location
screen-x =screenx
screen-y =screeny
kind text
?visual-location>
state free
?visual>
state free
==>
+visual>
ISA move-attention
screen-pos =visual-location
=goal>
dm-reload :encode
)

(p scan-for-num-lr-lookat-encode
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal =x-index
dm-reload :encode
length =len
arg0 =x
arg1 =y
arg2 =matchthis
arg3 =old-arg3
arg4 =old-arg4
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
==>
+imaginal>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
arg3 =x
arg4 =textvalue
dm-reload :cleanup
)
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(p scan-for-num-lr-lookat-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal =x-index
dm-reload :cleanup
length =len
arg0 =arg0
arg1 =arg1
?imaginal>
state free
==>
-imaginal>
=goal>
dm-reload :check-match
)

(p scan-for-num-lr-lookat-check-matched
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal =x-index
dm-reload :check-match
length =len
arg0 =arg0
arg1 =arg1
arg2 =arg2
arg3 =arg2
arg4 =storedval
?imaginal>
state free
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'dm-recall-parent)
op-name scan-for-num-lr
=goal>
branch-order ,(jump-state-lookup "scan-for-num-lr" 'return-from)
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
arg2 :empty
arg3 :empty
return-value =storedval
)

(p scan-for-num-lr-lookat-check-failed-middle
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal =x-index
dm-reload :check-match
length =len
arg0 =arg0
- arg0 =len
arg1 =arg1
arg2 =arg2
arg3 =arg3
- arg3 =arg2
arg4 =storedval



APPENDIX B. CODE APPENDIX 210

?imaginal>
state free
==>
!safe-bind! =next-step (1+ =x-index)
-imaginal>
=goal>
dm-reload :empty
arg0 =next-step
arg3 :empty
arg4 :empty
subgoal =next-step
return-value :no-value
)

(p scan-for-num-lr-lookat-check-failed-end
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal =x-index
dm-reload :check-match
length =len
arg0 =arg0
arg0 =len
arg1 =arg1
arg2 =arg2
arg3 =arg3
- arg3 =arg2
arg4 =storedval
?imaginal>
state free
==>
-imaginal>
=goal>
branch-order ,(jump-state-lookup "scan-for-num-lr" 'return-from)
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
arg2 :empty
arg3 :empty
return-value :no-value
)

(p scan-for-num-lr-lookat-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'lookat)
operator scan-for-num-lr
subgoal :lookat-done
dm-reload :empty
length =len
arg0 =arg0
arg1 =arg1
?imaginal>
state free
==>
-imaginal>
=goal>
branch-order ,(jump-state-lookup "scan-for-num-lr" 'return-from)
subgoal :empty
dm-reload :empty
)

(p scan-for-num-lr-return-load
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'return-from)
operator scan-for-num-lr
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subgoal :empty
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'dm-recall-parent)
op-name scan-for-num-lr
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :load
)

(p scan-for-num-lr-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'return-from)
operator scan-for-num-lr
subgoal :load
return-value =matchthis
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "scan-for-num-lr" 'dm-recall-parent)
op-name scan-for-num-lr
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 42: SCAN-FOR-NUM-LR Operator Listing

B.14 LOOK-AT-CHAR Operator
(define-operator

:name "look-at-char"
:arity 1
:compiler-for (compiler-sequence-for 'look-at-char "look-at-char" 1)
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
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lookup-coords
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:productions
`(

(p look-at-char
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator look-at-char
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall 0)
op-name look-at-char
=goal>
branch-order ,(jump-state-lookup "look-at-char" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'look-at-char "look-at-char" 1 0 :type-letter)

(p look-at-char-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'done 0)
operator look-at-char
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
=goal>
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
subgoal :prepare

)

(p look-at-char-prep-coords
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :prepare
dm-reload :empty
- return-value :empty
- return-value :no-value
return-value =x
=retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter
dm-reload :empty
return-value :empty
arg0 =x
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p look-at-char-prep-coords-bad-no0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :prepare
dm-reload :empty
return-value :no-value
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'return-from)
operator look-at-char
subgoal :empty
dm-reload :empty
return-value :no-value
)

(p look-at-char-prep-coords-bad-no0-too-low
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
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subgoal :prepare
dm-reload :empty
- arg0 :no-value
< arg0 0
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'return-from)
operator look-at-char
subgoal :empty
dm-reload :empty
return-value :no-value
)

(p look-at-char-prep-coords-bad-no0-too-high
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :prepare
dm-reload :empty
length =length
- arg0 :no-value
> arg0 =length
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'return-from)
operator look-at-char
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subgoal :empty ;:grab-letter
dm-reload :empty
return-value :no-value
)

(p look-at-char-prep-coords-grab-letter
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter
dm-reload :empty
arg0 =arg0
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
letter =arg0
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter-check
dm-reload :empty
arg0 =arg0
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p look-at-char-prep-coords-grab-letter-check
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter-check
dm-reload :empty
arg0 =arg0
=retrieval>
ISA letters
letter =arg0
slot-number =slot
row-number =row
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter-check-valid
dm-reload :empty
arg0 =arg0
)

(p look-at-char-prep-coords-grab-letter-check-fail
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter-check
dm-reload :empty
arg0 =arg0
?retrieval>
state free
state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'return-from)
operator look-at-char
subgoal :empty
dm-reload :empty
arg0 :empty
return-value :no-value
)

(p look-at-char-prep-coords-grab-letter-check-valid
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :grab-letter-check-valid
dm-reload :empty
arg0 =arg0
length =len
=retrieval>
ISA letters
letter =arg0
>= slot-number 0
<= slot-number =len
slot-number =slot
row-number =row
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :match
dm-reload :empty
arg0 =slot
arg1 =row
)

,@(screen-pos-literal-generator
#'(lambda (len x y x-index y-index)

(let* ((x-lower (- x +X-LOWER-TOLERANCE+))
(x-upper (+ x +X-UPPER-TOLERANCE+))
(y-lower (- y +Y-LOWER-TOLERANCE+))
(y-upper (+ y +Y-UPPER-TOLERANCE+)))

`(p ,(screen-pos-literal-name-generator
"look-at-char" len x-index y-index)
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :match
dm-reload :empty
length ,len
arg0 ,x-index
arg1 ,y-index
=retrieval>
ISA letters
letter =arg0
slot-number =slot
row-number =row
?visual-location>
state free
==>
=retrieval>
+visual-location>
ISA visual-location
> screen-x ,x-lower
<= screen-x ,x-upper
> screen-y ,y-lower
<= screen-y ,y-upper
kind text
=goal>
subgoal :lookat
)

)
)

)

(p look-at-char-bad-visual-loc
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :lookat
dm-reload :empty
=retrieval>
ISA letters
letter =arg0
slot-number =slot
row-number =row
?visual-location>
state free
state error
==>
=retrieval>
=goal>
subgoal :cleanup
dm-reload :empty
return-value :no-value
)

(p look-at-char-lookat
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :lookat
dm-reload :empty
length =len
arg0 =x
arg1 =y
=visual-location>
ISA visual-location
screen-x =screenx
screen-y =screeny
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kind text
?visual-location>
state free
?visual>
state free
==>
+visual>
ISA move-attention
screen-pos =visual-location
=goal>
subgoal :encode
)

(p look-at-char-encode
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :encode
dm-reload :empty
length =len
arg0 =x
arg1 =y
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
==>
+imaginal>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
subgoal :cleanup
return-value =x
)

(p look-at-char-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :cleanup
dm-reload :empty
length =len
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
=visual>
ISA text
value =textvalue
?visual>
state free
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
=visual>
=goal>
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branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
subgoal :rehersal
)

(p look-at-char-rehersal
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :rehersal
dm-reload :empty
length =len
arg0 =x
arg1 =y
=visual>
ISA text
value =textvalue
?visual>
state free
?retrieval>
state free
- state error
==>
+retrieval>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
=visual>
=goal>
subgoal :rehersal-cleanup
)

(p look-at-char-rehersal-cleanup
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'lookup-coords)
operator look-at-char
subgoal :rehersal-cleanup
dm-reload :empty
length =len
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
=retrieval>
ISA letters
letter =textvalue
slot-number =x
row-number =y
done :empty
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
return-branch =return-branch
return-state =return-state
return-operator =return-op
done t
arg0 :empty
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arg1 :empty
arg2 :empty
=goal>
branch-order ,(jump-state-lookup "look-at-char" 'return-from)
subgoal :empty
arg0 :empty
arg1 :empty
)

(p look-at-char-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "look-at-char" 'return-from)
operator look-at-char
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "look-at-char" 'dm-recall-parent)
op-name look-at-char
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 43: LOOK-AT-CHAR Operator Listing

B.15 NEXT-LETTER-IN-SONG Operator
(define-operator

:name "next-letter-in-song"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
return-from
find-top
really-return
)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)
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:compiler-for (compiler-sequence-for 'next-letter-in-song "next-letter-in-song" 1)
:productions
`(

(p next-letter-in-song
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator next-letter-in-song
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall 0)
op-name next-letter-in-song
=goal>
branch-order ,(jump-state-lookup "next-letter-in-song" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'next-letter-in-song "next-letter-in-song" 1 0 :type-letter)

(p next-letter-in-song-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'done 0)
operator next-letter-in-song
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'return-from)
operator next-letter-in-song
dm-reload :reload
)

(p next-letter-in-song-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'return-from)
operator next-letter-in-song
?imaginal>
state free
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?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
return-value =arg0
subgoal :empty
)

(p next-letter-in-song-find-start-fail
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
return-value :no-value
subgoal :empty
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'really-return)
operator next-letter-in-song
return-value =arg0
)

(p next-letter-in-song-find-start
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :empty
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?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
- arg0 :empty
arg0 =arg0
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA alpha-order
letter =matchthis

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
subgoal :lookup-ordinal
)

(p next-letter-in-song-find-lookup-ord
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :lookup-ordinal
?retrieval>
state free
- state error
=retrieval>
ISA alpha-order
letter =matchthis
ordinal =ordinal
==>
+retrieval>
ISA alpha-song-chunk
<= min =ordinal
>= max =ordinal
type :top

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
subgoal :find-top
arg0 =ordinal
)

(p next-letter-in-song-find-find-first-pointer
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :find-top
- arg0 :empty
arg0 =arg0
?retrieval>
state free
- state error
=retrieval>
ISA alpha-song-chunk
<= min =arg0
>= max =arg0
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type :top
- key-letter :empty
key-letter =key-letter
==>
+retrieval>
ISA alpha-song-chunk
key-letter =key-letter
type :pointer
target =key-letter

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
subgoal :find-pointer
)

(p next-letter-in-song-find-pointer-hit
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :find-pointer
- arg0 :empty
arg0 =arg0
?retrieval>
state free
- state error
=retrieval>
ISA alpha-song-chunk
<= min =arg0
>= max =arg0
type :pointer
- target :empty
target =matchthis
- next-song-chunk-key :no-value
==>
+retrieval>
ISA alpha-order
prev =matchthis

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
subgoal :load-pointer
)

(p next-letter-in-song-find-pointer-hit-out
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :find-pointer
- arg0 :empty
arg0 =arg0
?retrieval>
state free
- state error
=retrieval>
ISA alpha-song-chunk
<= min =arg0
>= max =arg0
type :pointer
- target :empty
target =matchthis
next-song-chunk-key :no-value
==>
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+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'really-return)
operator next-letter-in-song
return-value :no-value
subgoal :empty
arg0 :empty
)

(p next-letter-in-song-find-pointer-miss
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :find-pointer
- arg0 :empty
arg0 =arg0
?retrieval>
state free
- state error
=retrieval>
ISA alpha-song-chunk
<= min =arg0
>= max =arg0
type :pointer
- target :empty
- target =matchthis
- next-song-chunk-key :no-value
next-song-chunk-key =nextletter
==>
+retrieval>
ISA alpha-song-chunk
target =nextletter
type :pointer

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
subgoal :find-pointer
)

(p next-letter-in-song-find-pointer-miss-out
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :find-pointer
- arg0 :empty
arg0 =arg0
?retrieval>
state free
- state error
=retrieval>
ISA alpha-song-chunk
<= min =arg0
>= max =arg0
type :pointer
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- target :empty
- target =matchthis
next-song-chunk-key :no-value
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
- arg0 :empty

=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'really-return)
operator next-letter-in-song
return-value :no-value
subgoal :empty
arg0 :empty
)

(p next-letter-in-song-load-pointer
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'find-top)
operator next-letter-in-song
- return-value :no-value
return-value =matchthis
subgoal :load-pointer
- arg0 :empty
arg0 =arg0
?retrieval>
state free
- state error
=retrieval>
ISA alpha-order
letter =return-letter
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'really-return)
operator next-letter-in-song
subgoal :empty
return-value =return-letter
arg0 :empty
)

(p next-letter-in-song-really-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "next-letter-in-song" 'really-return)
operator next-letter-in-song
- return-value :empty
return-value =return-value
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(jump-state-lookup "next-letter-in-song" 'dm-recall-parent)
op-name next-letter-in-song
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
dm-reload :reload
subgoal :empty
)

)
)

Listing 44: NEXT-LETTER-IN-SONG Operator Listing

B.16 AND Operator
(define-operator

:name "and"
:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'and "and" 2)

:productions
`(

(p and
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator and
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall 0)
op-name and
=goal>
branch-order ,(jump-state-lookup "and" 'recall 0)
subgoal :empty
)
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,@(argument-p-sequence-for 'and "and" 2 0 :type-boolean)

(p and-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'done 0)
operator and
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall 1)
op-name and
=goal>
branch-order ,(jump-state-lookup "and" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'and "and" 2 1 :type-boolean)

(p and-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'done 1)
operator and
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1 ;;ARG0,1 both done
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
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operator and
subgoal :prepare
dm-reload :empty
)

(p and-prep-args
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p and-match-t-t
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 true
arg1 true
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
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current-branch =branch
branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p and-match-false-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 false
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p and-match-false-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
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arg1 false
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p and-match-bad-bools-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 false
- arg0 true
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p and-match-bad-bools-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'do-operation)
operator and
subgoal :prepare
dm-reload :empty
=retrieval>
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ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =x
- arg1 :empty
- arg1 false
- arg1 true
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p and-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p and-return
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "and" 'return-from)
operator and
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "and" 'dm-recall-parent)
op-name and
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 45: AND Operator Listing

B.17 OR Operator
(define-operator

:name "or"
:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'or "or" 2)

:productions
`(

(p or
=goal>
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ISA metaproc
current-branch =branch
branch-order 0
operator or
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall 0)
op-name or
=goal>
branch-order ,(jump-state-lookup "or" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'or "or" 2 0 :type-boolean)

(p or-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'done 0)
operator or
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall 1)
op-name or
=goal>
branch-order ,(jump-state-lookup "or" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'or "or" 2 1 :type-boolean)

(p or-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'done 1)
operator or
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>



APPENDIX B. CODE APPENDIX 235

state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1 ;;ARG0,1 both done
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :prepare
dm-reload :empty
)

(p or-prep-args
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p or-match-f-f
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :match
dm-reload :empty
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=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 false
arg1 false
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p or-match-t-t
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 true
arg1 true
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p or-match-true-arg0
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 true
arg1 false
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p or-match-true-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 false
arg1 true
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)
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(p or-match-bad-bools-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 false
- arg0 true
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p or-match-bad-bools-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'do-operation)
operator or
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =x
- arg1 :empty
- arg1 false
- arg1 true
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
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branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p or-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p or-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "or" 'return-from)
operator or
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "or" 'dm-recall-parent)
op-name or
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
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current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 46: OR Operator Listing

B.18 NOT Operator
(define-operator

:name "not"
:arity 1
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'not "not" 1)

:productions
`(

(p not
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator not
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall 0)
op-name not
=goal>
branch-order ,(jump-state-lookup "not" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'not "not" 1 0 :type-boolean)

(p not-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "not" 'done 0)
operator not
starting-order =starting-order
loop-iteration =loop-iteration
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timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
- arg0 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 0
problem =starting-order
=goal>
branch-order ,(jump-state-lookup "not" 'do-operation)
subgoal :prepare
)

(p not-prep-args
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "not" 'do-operation)
operator not
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "not" 'do-operation)
operator not
subgoal :match
dm-reload :empty
arg0 =x
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p not-match-f
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "not" 'do-operation)
operator not
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 false
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "not" 'return-from)
operator not
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p not-match-t
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "not" 'do-operation)
operator not
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 true
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "not" 'return-from)
operator not
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p not-match-bad-bools
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "not" 'do-operation)
operator not
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 false
- arg0 true
arg0 =x
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "not" 'return-from)
operator not
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p not-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "not" 'return-from)
operator not
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p not-return
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "not" 'return-from)
operator not
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "not" 'dm-recall-parent)
op-name not
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 47: NOT Operator Listing

B.19 XOR Operator
(define-operator

:name "xor"
:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'xor "xor" 2)
:productions

`(
(p xor

=goal>
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ISA metaproc
current-branch =branch
branch-order 0
operator xor
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall 0)
op-name xor
=goal>
branch-order ,(jump-state-lookup "xor" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'xor "xor" 2 0 :type-boolean)

(p xor-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'done 0)
operator xor
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall 1)
op-name xor
=goal>
branch-order ,(jump-state-lookup "xor" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'xor "xor" 2 1 :type-boolean)

(p xor-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'done 1)
operator xor
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
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state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1 ;;ARG0,1 both done
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :prepare
dm-reload :empty
)

(p xor-prep-args
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p xor-match-f-f
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :match
dm-reload :empty
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=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 false
arg1 false
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p xor-match-t-t
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 true
arg1 true
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p xor-match-true-arg0
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 true
arg1 false
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p xor-match-true-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 false
arg1 true
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)
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(p xor-match-bad-bools-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 false
- arg0 true
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p xor-match-bad-bools-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'do-operation)
operator xor
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =x
- arg1 :empty
- arg1 false
- arg1 true
arg1 =y
?imaginal>
state free
?retrieval>
state free
==>
=retrieval>
=goal>
current-branch =branch
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branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p xor-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p xor-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "xor" 'return-from)
operator xor
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "xor" 'dm-recall-parent)
op-name xor
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>



APPENDIX B. CODE APPENDIX 251

current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 48: XOR Operator Listing

B.20 NUM< Operator
(define-operator

:name "num<"
:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'num< "num<" 2)
:productions

`(
(p num<

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator num<
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall 0)
op-name num<
=goal>
branch-order ,(jump-state-lookup "num<" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'num< "num<" 2 0 :type-number)

(p num<-arg0-done
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "num<" 'done 0)
operator num<
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall 1)
op-name num<
=goal>
branch-order ,(jump-state-lookup "num<" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'num< "num<" 2 1 :type-number)

(p num<-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'done 1)
operator num<
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1 ;;ARG0,1 both done
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
subgoal :prepare
dm-reload :empty
)

(p num<-prep-args
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num<-match-arg0-less
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
arg0 =arg0
arg1 =arg1
< arg0 =arg1
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value true
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subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num<-match-arg1-less
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
arg0 =arg0
arg1 =arg1
< arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num<-match-args-eq
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
arg0 =arg0
arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error



APPENDIX B. CODE APPENDIX 255

==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num<-match-bad-char-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 :no-value
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num<-match-bad-char-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'do-operation)
operator num<
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
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return-operator =return-op
- arg0 :empty
arg0 =x
arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num<-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p num<-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num<" 'return-from)
operator num<
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
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branch-name =branch
branch-order ,(jump-state-lookup "num<" 'dm-recall-parent)
op-name num<
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)
)

Listing 49: NUM< Operator Listing

B.21 NUM> Operator
(define-operator

:name "num>"
:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'num> "num>" 2)
:productions

`(
(p num>

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator num>
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(jump-state-lookup "num>" 'dm-recall 0)
op-name num>
=goal>
branch-order ,(jump-state-lookup "num>" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'num> "num>" 2 0 :type-number)

(p num>-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'done 0)
operator num>
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall 1)
op-name num>
=goal>
branch-order ,(jump-state-lookup "num>" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'num> "num>" 2 1 :type-number)

(p num>-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'done 1)
operator num>
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
done t
- arg0 :empty
- arg1 :empty
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timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1 ;;ARG0,1 both done
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
subgoal :prepare
dm-reload :empty
)

(p num>-prep-args
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num>-match-arg0-more
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
arg0 =arg0
arg1 =arg1
> arg0 =arg1
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
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return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num>-match-arg1-more
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
arg0 =arg0
arg1 =arg1
> arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num>-match-args-eq
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
arg0 =arg0
arg1 =arg0
subgoal :match
dm-reload :empty
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=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num>-match-bad-char-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 :no-value
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num>-match-bad-char-arg1
=goal>
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ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'do-operation)
operator num>
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =x
arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num>-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
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)

(p num>-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num>" 'return-from)
operator num>
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num>" 'dm-recall-parent)
op-name num>
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)

)

Listing 50: NUM> Operator Listing

B.22 NUM= Operator
(define-operator

:name "num="
:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'num= "num=" 2)
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:productions
`(

(p num=
=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator num=
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall 0)
op-name num=
=goal>
branch-order ,(jump-state-lookup "num=" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'num= "num=" 2 0 :type-number)

(p num=-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'done 0)
operator num=
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall 1)
op-name num=
=goal>
branch-order ,(jump-state-lookup "num=" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'num= "num=" 2 1 :type-number)

(p num=-arg1-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'done 1)
operator num=
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
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?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1 ;;ARG0,1 both done
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
subgoal :prepare
dm-reload :empty
)

(p num=-prep-args;;TODO
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num=-match-arg0-less
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
arg0 =arg0
arg1 =arg1
< arg0 =arg1
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num=-match-arg1-less
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
arg0 =arg0
arg1 =arg1
< arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
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next-branch-number =return-state
next-operator =return-op
)

(p num=-match-args-eq
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
arg0 =arg0
arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num=-match-bad-char-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 :no-value
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
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branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num=-match-bad-char-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'do-operation)
operator num=
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =x
arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p num=-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
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?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p num=-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "num=" 'return-from)
operator num=
return-value =returnval
subgoal :wait
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "num=" 'dm-recall-parent)
op-name num=
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)
)

Listing 51: NUM= Operator Listing

B.23 ASSERT-N Operator
(when (and *debug-mode* *run-testing-harness*)

(define-operator
:name "assert-n"

:arity 2
:prod-jumps '(entry-point

recall-arg0
jump-arg0
return-arg0
save-arg0
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done-arg0
recall-arg1
jump-arg1
return-arg1
save-arg1
done-arg1
do-operation
return-from)

:dm-jumps '(dm-recall-arg0
dm-recall-arg1
dm-recall-parent
)

:compiler-for (compiler-sequence-for 'assert-n "assert-n" 2)
:productions

`(
(p assert-n

=goal>
ISA metaproc
current-branch =branch
branch-order 0
operator assert-n
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall 0)
op-name assert-n
=goal>
branch-order ,(jump-state-lookup "assert-n" 'recall 0)
subgoal :empty
)

,@(argument-p-sequence-for 'assert-n "assert-n" 2 0 :type-number)

(p assert-n-arg0-done
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'done 0)
operator assert-n
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall 1)
op-name assert-n
=goal>
branch-order ,(jump-state-lookup "assert-n" 'recall 1)
subgoal :empty
)

,@(argument-p-sequence-for 'assert-n "assert-n" 2 1 :type-number)

(p assert-n-arg1-done
=goal>
ISA metaproc
current-branch =branch
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branch-order ,(jump-state-lookup "assert-n" 'done 1)
operator assert-n
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =reutrn-state
return-operator =return-op
?retrieval>
state free
- state error
?imaginal>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
done t
- arg0 :empty
- arg1 :empty
timestamp =timestamp
loop-iteration =loop-iteration
last-argument 1
problem =starting-order
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
subgoal :prepare
dm-reload :empty
)

(p assert-n-prep-args
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
- arg0 :no-value
arg0 =x
- arg1 :empty
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (format t "DEBUG: ASSERT-N[~S] has args: arg0='~S', and arg1='~S'~%" =branch =x =y)
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
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operator assert-n
subgoal :match
dm-reload :empty
arg0 =x
arg1 =y
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-arg0-less
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
arg0 =arg0
arg1 =arg1
< arg0 =arg1
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (progn (format t "DEBUG: ASSERT-N: arg0<arg1; Halting immediately~%")

(finish-output)
(when *assert-halts-immediately*(experiment-halt nil t)))

=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-arg1-less
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
arg0 =arg0
arg1 =arg1
< arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
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?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (progn (format t "DEBUG: ASSERT-N: arg0>arg1; Halting immediately~%")

(finish-output)
(when *assert-halts-immediately*(experiment-halt nil t)))

=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value false
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-args-eq
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
arg0 =arg0
arg1 =arg0
subgoal :match
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
?imaginal>
state free
?retrieval>
state free
- state error
!eval! (numberp =arg0)
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value true
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-bad-num-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
subgoal :prepare
dm-reload :empty
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=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :no-value
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
!eval! (not (numberp =x))
==>
!eval! (progn (format t "DEBUG: ASSERT-N: arg0[~S] is not a number, has type [~S]; Halting immediately~%" =x

(type-of =x))↪→

(finish-output)
(when *assert-halts-immediately*(experiment-halt nil t)))

=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-bad-num-noval-arg0
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
arg0 :no-value
arg0 =x
- arg1 :empty
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (progn (format t "DEBUG: ASSERT-N: arg0=:no-value; Halting immediately~%")

(finish-output)
(when *assert-halts-immediately*(experiment-halt nil t)))

=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
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return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-bad-num-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =x
- arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
!eval! (not (numberp =y))
==>
!eval! (progn (format t "DEBUG: ASSERT-N: arg1[~S] is not a number, has type [~S]; Halting immediately~%" =y

(type-of =y))↪→

(finish-output)
(when *assert-halts-immediately*(experiment-halt nil t)))

=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-match-bad-num-noval-arg1
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'do-operation)
operator assert-n
subgoal :prepare
dm-reload :empty
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
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- arg0 :empty
arg0 =x
arg1 :no-value
arg1 =y
?imaginal>
state free
?retrieval>
state free
- state error
==>
!eval! (progn (format t "DEBUG: ASSERT-N: arg1=:no-value; Halting immediately~%")

(finish-output)
(when *assert-halts-immediately*(experiment-halt nil t)))

=retrieval>
=goal>
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value :no-value
subgoal :empty
dm-reload :empty
arg0 :empty
arg1 :empty
next-branch =return-branch
next-branch-number =return-state
next-operator =return-op
)

(p assert-n-return-lookup-parent
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value =returnval
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
return-branch =return-branch
return-state =return-state
return-operator =return-op
- arg0 :empty
arg0 =arg0
- arg1 :empty
arg1 =arg1
?retrieval>
state free
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
done t
arg0 :empty
arg1 :empty
arg2 :empty
=goal>
subgoal :wait
)

(p assert-n-return
=goal>
ISA metaproc
current-branch =branch
branch-order ,(jump-state-lookup "assert-n" 'return-from)
operator assert-n
return-value =returnval
subgoal :wait
=retrieval>
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ISA op-sequence
branch-name =branch
branch-order ,(jump-state-lookup "assert-n" 'dm-recall-parent)
op-name assert-n
done t
arg0 :empty
arg1 :empty
arg2 :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
?retrieval>
state free
- state error
==>
,@(log-return-value "assert-n" '=returnval)
!eval! (format t "DEBUG: assert-n:~a~%" =returnval)
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
return-value =returnval
arg0 :empty
arg1 :empty
dm-reload :reload
next-branch :empty
next-branch-number :empty
next-operator :empty
subgoal :empty
)

)
)

)

Listing 52: ASSERT-N Operator Listing

B.24 ACT-R Hard-Coded DM Elements
(add-dm

(letter-a ISA alpha-order letter "a" next "b" prev :no-value ordinal 1)
(letter-b ISA alpha-order letter "b" next "c" prev "a" ordinal 2)
(letter-c ISA alpha-order letter "c" next "d" prev "b" ordinal 3)
(letter-d ISA alpha-order letter "d" next "e" prev "c" ordinal 4)
(letter-e ISA alpha-order letter "e" next "f" prev "d" ordinal 5)
(letter-f ISA alpha-order letter "f" next "g" prev "e" ordinal 6)
(letter-g ISA alpha-order letter "g" next "h" prev "f" ordinal 7)
(letter-h ISA alpha-order letter "h" next "i" prev "g" ordinal 8)
(letter-i ISA alpha-order letter "i" next "j" prev "h" ordinal 9)
(letter-j ISA alpha-order letter "j" next "k" prev "i" ordinal 10)
(letter-k ISA alpha-order letter "k" next "l" prev "j" ordinal 11)
(letter-l ISA alpha-order letter "l" next "m" prev "k" ordinal 12)
(letter-m ISA alpha-order letter "m" next "n" prev "l" ordinal 13)
(letter-n ISA alpha-order letter "n" next "o" prev "m" ordinal 14)
(letter-o ISA alpha-order letter "o" next "p" prev "n" ordinal 15)
(letter-p ISA alpha-order letter "p" next "q" prev "o" ordinal 16)
(letter-q ISA alpha-order letter "q" next "r" prev "p" ordinal 17)
(letter-r ISA alpha-order letter "r" next "s" prev "q" ordinal 18)
(letter-s ISA alpha-order letter "s" next "t" prev "r" ordinal 19)
(letter-t ISA alpha-order letter "t" next "u" prev "s" ordinal 20)
(letter-u ISA alpha-order letter "u" next "v" prev "t" ordinal 21)
(letter-v ISA alpha-order letter "v" next "w" prev "u" ordinal 22)
(letter-w ISA alpha-order letter "w" next "x" prev "v" ordinal 23)
(letter-x ISA alpha-order letter "x" next "y" prev "w" ordinal 24)
(letter-y ISA alpha-order letter "y" next "z" prev "x" ordinal 25)
(letter-z ISA alpha-order letter "z" next :no-value prev "y" ordinal 26)

(song-alpha ISA alpha-song-chunk
start true ;; true/false values
end false ;;
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key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "h"
type :top
min 1
max 7
target "a"
)

(song-beta ISA alpha-song-chunk
start false
end false
key-letter "h"
song-chunk-sequence '("h" "i" "j" "k")
next-song-chunk-key "l"
type :top
min 8
max 11
target "h"
)

(song-gamma ISA alpha-song-chunk
start false
end false
key-letter "l"
song-chunk-sequence '("l" "m" "n" "o" "p")
next-song-chunk-key "q"
type :top
min 12
max 16
target "l"
)

(song-delta ISA alpha-song-chunk
start false
end false
key-letter "q"
song-chunk-sequence '("q" "r" "s" "t")
next-song-chunk-key "u"
type :top
min 17
max 20
target "q"
)

(song-epsilon ISA alpha-song-chunk
start false
end false
key-letter "u"
song-chunk-sequence '("u" "v")
next-song-chunk-key "w"
type :top
min 21
max 22
target "u"
)

(song-zeta ISA alpha-song-chunk
start false
end true
key-letter "w"
song-chunk-sequence '("w" "x" "y" "z")
next-song-chunk-key :no-value
type :top
min 23
max 26
target "w"
)

(song-alpha-a ISA alpha-song-chunk
start true ;; true/false values
end false ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "b"
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type :pointer
min 1
max 7
target "a"
)

(song-alpha-b ISA alpha-song-chunk
start true ;; true/false values
end false ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "c"
type :pointer
min 1
max 7
target "b"
)

(song-alpha-c ISA alpha-song-chunk
start true ;; true/false values
end false ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "d"
type :pointer
min 1
max 7
target "c"
)

(song-alpha-d ISA alpha-song-chunk
start true ;; true/false values
end false ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "e"
type :pointer
min 1
max 7
target "d"
)

(song-alpha-e ISA alpha-song-chunk
start true ;; true/false values
end false ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "f"
type :pointer
min 1
max 7
target "e"
)

(song-alpha-f ISA alpha-song-chunk
start true ;; true/false values
end false ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key "g"
type :pointer
min 1
max 7
target "f"
)

(song-alpha-g ISA alpha-song-chunk
start true ;; true/false values
end true ;;
key-letter "a" ;; the access-point letter
song-chunk-sequence '("a" "b" "c" "d" "e" "f" "g") ;; a list of strings that are the

contents of the chunk↪→

next-song-chunk-key :no-value
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type :pointer
min 1
max 7
target "g"
)

(song-beta-h ISA alpha-song-chunk
start false
end false
key-letter "h"
song-chunk-sequence '("h" "i" "j" "k")
next-song-chunk-key "i"
type :pointer
min 8
max 11
target "h"
)

(song-beta-i ISA alpha-song-chunk
start false
end false
key-letter "h"
song-chunk-sequence '("h" "i" "j" "k")
next-song-chunk-key "j"
type :pointer
min 8
max 11
target "i"
)

(song-beta-j ISA alpha-song-chunk
start false
end false
key-letter "h"
song-chunk-sequence '("h" "i" "j" "k")
next-song-chunk-key "k"
type :pointer
min 8
max 11
target "j"
)

(song-beta-k ISA alpha-song-chunk
start false
end true
key-letter "h"
song-chunk-sequence '("h" "i" "j" "k")
next-song-chunk-key :no-value
type :pointer
min 8
max 11
target "k"
)

(song-gamma-l ISA alpha-song-chunk
start false
end false
key-letter "l"
song-chunk-sequence '("l" "m" "n" "o" "p")
next-song-chunk-key "m"
type :pointer
min 12
max 16
target "l"
)

(song-gamma-m ISA alpha-song-chunk
start false
end false
key-letter "l"
song-chunk-sequence '("l" "m" "n" "o" "p")
next-song-chunk-key "n"
type :pointer
min 12
max 16
target "m"
)

(song-gamma-n ISA alpha-song-chunk
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start false
end false
key-letter "l"
song-chunk-sequence '("l" "m" "n" "o" "p")
next-song-chunk-key "o"
type :pointer
min 12
max 16
target "n"
)

(song-gamma-o ISA alpha-song-chunk
start false
end false
key-letter "l"
song-chunk-sequence '("l" "m" "n" "o" "p")
next-song-chunk-key "p"
type :pointer
min 12
max 16
target "o"
)

(song-gamma-p ISA alpha-song-chunk
start false
end true
key-letter "l"
song-chunk-sequence '("l" "m" "n" "o" "p")
next-song-chunk-key :no-value
type :pointer
min 12
max 16
target "p"
)

(song-delta-q ISA alpha-song-chunk
start false
end false
key-letter "q"
song-chunk-sequence '("q" "r" "s" "t")
next-song-chunk-key "r"
type :pointer
min 17
max 20
target "q"
)

(song-delta-r ISA alpha-song-chunk
start false
end false
key-letter "q"
song-chunk-sequence '("q" "r" "s" "t")
next-song-chunk-key "s"
type :pointer
min 17
max 20
target "r"
)

(song-delta-s ISA alpha-song-chunk
start false
end false
key-letter "q"
song-chunk-sequence '("q" "r" "s" "t")
next-song-chunk-key "t"
type :pointer
min 17
max 20
target "s"
)

(song-delta-t ISA alpha-song-chunk
start false
end true
key-letter "q"
song-chunk-sequence '("q" "r" "s" "t")
next-song-chunk-key :no-value
type :pointer
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min 17
max 20
target "t"
)

(song-epsilon-u ISA alpha-song-chunk
start false
end false
key-letter "u"
song-chunk-sequence '("u" "v")
next-song-chunk-key "v"
type :pointer
min 21
max 22
target "u"
)

(song-epsilon-v ISA alpha-song-chunk
start false
end true
key-letter "u"
song-chunk-sequence '("u" "v")
next-song-chunk-key :no-value
type :pointer
min 21
max 22
target "v"
)

(song-zeta-w ISA alpha-song-chunk
start false
end false
key-letter "w"
song-chunk-sequence '("w" "x" "y" "z")
next-song-chunk-key "x"
type :pointer
min 23
max 26
target "w"
)

(song-zeta-x ISA alpha-song-chunk
start false
end false
key-letter "w"
song-chunk-sequence '("w" "x" "y" "z")
next-song-chunk-key "y"
type :pointer
min 23
max 26
target "x"
)

(song-zeta-y ISA alpha-song-chunk
start false
end false
key-letter "w"
song-chunk-sequence '("w" "x" "y" "z")
next-song-chunk-key "z"
type :pointer
min 23
max 26
target "y"
)

(song-zeta-z ISA alpha-song-chunk
start false
end true
key-letter "w"
song-chunk-sequence '("w" "x" "y" "z")
next-song-chunk-key :no-value
type :pointer
min 23
max 26
target "z"
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)

(starting-state ISA metaproc
current-problem ,*current-problem*
starting-order ,(copy-seq *current-problem*)
last-problem :empty
length ,(length *current-problem*)
current-branch :empty
branch-order :empty
subgoal :start-timer
next-branch :empty
next-branch-number :empty
next-operator :empty
loop-iteration 0
operator :empty
arg0 :empty
arg1 :empty
arg2 :empty
arg3 :empty
arg4 :empty
arg5 :empty
arg6 :empty
dm-reload :empty
timestamp 0 ;this is default time
time-since-process-start 0
time-since-last-break 0
time-current 0
)

,@dm-list

)

Listing 53: ACT-R Declarative Memory Elemets

B.25 ARGUMENT-P-SEQUENCE-FOR Code
(defun argument-p-sequence-for (operator-sym

operator-str
arg-count
arg-num

&optional (literal-type :type-letter)
(control-op nil)
(path-control-operator nil)
)

(let
((debug-result

(flet ((prod-name-fn (step)
(dsl-string-to-symbol (format nil "~a-ARG~d-~a" (string-upcase operator-str) arg-num (string-upcase

step))))↪→

(prod-jump-fn (step &optional (ignore-arg-num nil))
(let ((result

(if ignore-arg-num
(jump-state-lookup operator-str step)
(jump-state-lookup operator-str step arg-num))))

result
)

)
)

(let* ((arg-slot (dsl-string-to-symbol (format nil "arg~d" arg-num)))
(arg-slot-binding (dsl-string-to-symbol (format nil "=~s" arg-slot)))
(prod-slots-before-me (loop for i from 0 below arg-num

appending
(let* ((current-arg-slot (dsl-string-to-symbol (format nil "arg~d" i)))
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)
`(- ,current-arg-slot :empty)
)

)
)

(prod-slots-before-me-binding
(loop for item in

(loop for i from 0 below arg-num
collecting

(let* ((current-arg-slot (dsl-string-to-symbol (format nil "arg~d" i)))
)

`(- ,current-arg-slot :empty)
)

)

appending ; collecting
(let* ((item-slot (car (cdr item)))

(item-binding-name
(dsl-string-to-symbol (format nil "=~a" item-slot)))

(binding-part (list item-slot item-binding-name))
)

(append item binding-part))
)

)
(prod-slots-save-match-now (append prod-slots-before-me

`(,arg-slot :empty)
))

(prod-slots-save-match-now-fn (lambda (x)
(append prod-slots-before-me `(,arg-slot ,x))
))

(prod-slots-after-me (loop for i from (1+ arg-num) below arg-count
appending

(let* ((current-arg-slot (dsl-string-to-symbol (format nil "arg~d" i)))
)

`(,current-arg-slot :empty)
)

))
)

(append
(list
;;productions

`(p ,(prod-name-fn "all-prepare")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'recall)
operator ,operator-sym
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall)
op-name ,operator-sym
,arg-slot ,arg-slot-binding
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
return-value :empty
)

`(p ,(prod-name-fn "all-recall-subexpr")
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=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
return-value :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall)
op-name ,operator-sym
,arg-slot :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
;;allow the dm element to be garbage collected
;;because we're going to jump to elsewhere in
;;a minute anyway. Don't do this in the literal
;;case handler
=goal>
current-branch =return-branch
branch-order =return-state
operator =return-op
)

`(p ,(prod-name-fn "all-recall-literal")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
return-value :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall)
op-name ,operator-sym
- ,arg-slot :empty
,arg-slot =argvalue
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@(per-arg-do arg-num :empty :processed)
=goal>
subgoal :save
return-value =argvalue
)

`(p ,(prod-name-fn "all-recall-literal-save-literal")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
subgoal :save
return-value =return-value
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
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?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@(per-arg-do arg-num :empty :bind)
done =done
return-branch =return-branch
return-state =return-state
return-operator =return-operator
?imaginal>
state free
==>
=retrieval>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done =done
,@(per-arg-do arg-num :fill :bind '=return-value nil)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
timestamp ,(if (zerop arg-num) :no-value '=timestamp)
last-argument ,(if (zerop arg-num) :no-value (1- arg-num))
loop-iteration ,(if (zerop arg-num) :no-value '=loop-iteration)
problem =starting-order
=goal>
subgoal :commit
)

`(p ,(prod-name-fn "all-recall-literal-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
subgoal :commit
?imaginal>
state free
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?retrieval>
state free ;;safe to ommit - state error, because no modification could have happened
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall)
op-name ,operator-sym
=goal>
branch-order ,(prod-jump-fn 'return)
subgoal :empty
dm-reload :reload
)

)

(case literal-type
(:type-letter
(list
`(p ,(prod-name-fn "L-all-subexpr-to-literal")

=goal>
ISA metaproc
current-branch =branch
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branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
return-value =return-value
dm-reload :reload
subgoal :empty
loop-iteration =loop-iteration
starting-order =starting-order
timestamp =timestamp
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
timestamp ,(if (zerop arg-num) :no-value '=timestamp)
last-argument ,(if (zerop arg-num) :no-value (1- arg-num))
loop-iteration ,(if (zerop arg-num) :no-value '=loop-iteration)
=goal>
return-value =return-value
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
dm-reload :empty
)

`(p ,(prod-name-fn "L-literal-from-subexpr")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
subgoal :empty
- return-value :empty
- return-value :no-value
return-value =return-value
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
return-value =return-value
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
current-branch =branch
)

`(p ,(prod-name-fn "L-literal-from-subexpr-fallthrough")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
return-value :no-value
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
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branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,arg-slot :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
return-value :no-value
branch-order ,(prod-jump-fn 'return)
current-branch =branch
)

`(p ,(prod-name-fn "L-letter-ok")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
dm-reload =dm-reload
return-value =return-value
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@(per-arg-do arg-num :empty :processed)
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :commit
)

`(p ,(prod-name-fn "L-letter-ok-save")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :commit
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done =done
,@(per-arg-do arg-num :empty :bind)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
==>
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+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done =done
,@(per-arg-do arg-num :fill

(if path-control-operator :fill :bind)
'=return-value nil "=arg~d" t
(when path-control-operator arg-count)
(when path-control-operator '=arg0))

return-branch =return-branch
return-state =return-state
return-operator =return-operator
timestamp =timestamp
loop-iteration =loop-iteration
last-argument ,(if path-control-operator (1- arg-count) arg-num)
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :clear
)

`(p ,(prod-name-fn "L-letter-ok-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =return-value
dm-reload :clear
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
=retrieval>
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'done)
operator ,operator-sym
return-value =return-value
dm-reload :empty
)

`(p ,(prod-name-fn "L-letter-fail")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =old
- dm-reload :reload
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?retrieval>
state free
state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =old
dm-reload :fail-commit
)

`(p ,(prod-name-fn "L-letter-fail-novalue")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value :no-value
- dm-reload :reload
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value :no-value
dm-reload :fail-commit
)

`(p ,(prod-name-fn "L-letter-fail-save")
=goal>

ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =next-return-branch
next-branch-number =next-return-state
return-value =return-value
dm-reload :fail-commit
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
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branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done t
,@(per-arg-do arg-num :empty :bind)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
==>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done t;=done
,@(per-arg-do arg-num :fill

(if path-control-operator :fill :bind)
'=return-value nil "=arg~d" t
(when path-control-operator arg-count)
(when path-control-operator '=arg0))

return-branch =return-branch
return-state =return-state
return-operator =return-operator
loop-iteration =loop-iteration
timestamp =timestamp
last-argument ,arg-num
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :fail-clear
)

`(p ,(prod-name-fn "L-letter-fail-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =return-value
dm-reload :fail-clear
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
=retrieval>
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'done)
operator ,operator-sym
return-value =return-value
dm-reload :empty
)

)
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)
(:type-number
(list
`(p ,(prod-name-fn "N-all-subexpr-to-literal")

=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
return-value =return-value
dm-reload :reload
subgoal :empty
loop-iteration =loop-iteration
starting-order =starting-order
timestamp =timestamp
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
timestamp ,(if (zerop arg-num) :no-value '=timestamp)
last-argument ,(if (zerop arg-num) :no-value (1- arg-num))
loop-iteration ,(if (zerop arg-num) :no-value '=loop-iteration)
=goal>
return-value =return-value
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
dm-reload :empty
)

`(p ,(prod-name-fn "N-literal-from-subexpr")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
- return-value :empty
- return-value :no-value
return-value =return-value
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym ;index-of-letter
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
return-value =return-value ;:empty
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
current-branch =branch
)

`(p ,(prod-name-fn "N-literal-from-subexpr-fallthrough")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
return-value :no-value
subgoal :empty
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?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym ;index-of-letter
,arg-slot :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
return-value :no-value
branch-order ,(prod-jump-fn 'return)
current-branch =branch
)

`(p ,(prod-name-fn "N-num-ok")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
dm-reload =dm-reload
return-value =return-value
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@(per-arg-do arg-num :empty :processed)
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :commit
)

`(p ,(prod-name-fn "N-num-ok-save")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :commit
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
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done =done
,@(per-arg-do arg-num :empty :bind)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
==>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done =done
,@(per-arg-do arg-num :fill

(if path-control-operator :fill :bind)
'=return-value nil "=arg~d" t
(when path-control-operator arg-count)
(when path-control-operator '=arg0))

return-branch =return-branch
return-state =return-state
return-operator =return-operator
timestamp =timestamp
loop-iteration =loop-iteration
last-argument ,(if path-control-operator (1- arg-count) arg-num)
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)

;branch-step-number 4
operator ,operator-sym
return-value =return-value
dm-reload :clear
)

`(p ,(prod-name-fn "N-num-ok-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =return-value
dm-reload :clear
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
=retrieval>
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'done)
operator ,operator-sym
return-value =return-value
dm-reload :empty
)

`(p ,(prod-name-fn "N-num-fail")
=goal>
ISA metaproc
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current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =old
- dm-reload :reload
?retrieval>
state free
state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =old
dm-reload :fail-commit
)

`(p ,(prod-name-fn "N-num-fail-novalue")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value :no-value
- dm-reload :reload
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value :no-value
dm-reload :fail-commit
)

`(p ,(prod-name-fn "N-num-fail-save")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =next-return-branch
next-branch-number =next-return-state
return-value =return-value
dm-reload :fail-commit
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
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?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done t;=done
,@(per-arg-do arg-num :empty :bind)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
==>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done t
,@(per-arg-do arg-num :fill

(if path-control-operator :fill :bind)
'=return-value nil "=arg~d" t
(when path-control-operator arg-count)
(when path-control-operator '=arg0))

return-branch =return-branch
return-state =return-state
return-operator =return-operator
loop-iteration =loop-iteration
timestamp =timestamp
last-argument ,arg-num
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :fail-clear
)

`(p ,(prod-name-fn "N-num-fail-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =return-value
dm-reload :fail-clear
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
=retrieval>
=goal>
current-branch =branch
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branch-order ,(prod-jump-fn 'done)
operator ,operator-sym
return-value =return-value
dm-reload :empty
)

)
)

(:type-boolean
(list
`(p ,(prod-name-fn "B-all-subexpr-to-literal")

=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
return-value =return-value
dm-reload :reload
subgoal :empty
loop-iteration =loop-iteration
starting-order =starting-order
timestamp =timestamp
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
timestamp ,(if (zerop arg-num) :no-value '=timestamp)
last-argument ,(if (zerop arg-num) :no-value (1- arg-num))
loop-iteration ,(if (zerop arg-num) :no-value '=loop-iteration)
=goal>
return-value =return-value
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
dm-reload :empty
subgoal :notgeneric
)

`(p ,(prod-name-fn "B-literal-from-subexpr")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
- return-value :empty
- return-value :no-value
return-value =return-value
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=goal>
return-value =return-value
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
current-branch =branch
subgoal :notgeneric
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)
`(p ,(prod-name-fn "B-literal-from-subexpr-fallthrough")

=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
return-value :no-value
subgoal :empty
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym ;index-of-letter
,arg-slot :empty
return-branch =return-branch
return-state =return-state
return-operator =return-op
==>
=retrieval>
=goal>
return-value :no-value
branch-order ,(prod-jump-fn 'return)
current-branch =branch
subgoal :notgeneric
)

`(p ,(prod-name-fn "B-value-ok")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
dm-reload =dm-reload
return-value =return-value
subgoal :notgeneric
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@(per-arg-do arg-num :empty :processed)
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :commit
)

`(p ,(prod-name-fn "B-value-ok-save")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
subgoal :notgeneric
dm-reload :commit
starting-order =starting-order
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loop-iteration =loop-iteration
timestamp =timestamp
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done =done
,@(per-arg-do arg-num :empty :bind)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
==>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done =done
,@(per-arg-do arg-num :fill

(if path-control-operator :fill :bind)
'=return-value nil "=arg~d" t
(when path-control-operator arg-count)
(when path-control-operator '=arg0))

return-branch =return-branch
return-state =return-state
return-operator =return-operator
timestamp =timestamp
loop-iteration =loop-iteration
last-argument ,(if path-control-operator (1- arg-count) arg-num)
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :clear
)

`(p ,(prod-name-fn "B-value-ok-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =return-value
subgoal :notgeneric
dm-reload :clear
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
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=retrieval>
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'done)
operator ,operator-sym
return-value =return-value
dm-reload :empty
subgoal :empty
)

`(p ,(prod-name-fn "B-value-fail")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value =old
- dm-reload :reload
subgoal :notgeneric
?retrieval>
state free
state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =old
subgoal :notgeneric
dm-reload :fail-commit
)

`(p ,(prod-name-fn "B-value-fail-novalue")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
return-value :no-value
- dm-reload :reload
subgoal :notgeneric
?retrieval>
state free
- state error
?imaginal>
state free
==>
-imaginal>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value :no-value
subgoal :notgeneric
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dm-reload :fail-commit
)

`(p ,(prod-name-fn "B-value-fail-save")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =next-return-branch
next-branch-number =next-return-state
return-value =return-value
subgoal :notgeneric
dm-reload :fail-commit
starting-order =starting-order
loop-iteration =loop-iteration
timestamp =timestamp
?imaginal>
state free
?retrieval>
state free
- state error
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done t
,@(per-arg-do arg-num :empty :bind)
return-branch =return-branch
return-state =return-state
return-operator =return-operator
==>
+imaginal>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
done t
,@(per-arg-do arg-num :fill

(if path-control-operator :fill :bind)
'=return-value nil "=arg~d" t
(when path-control-operator arg-count)
(when path-control-operator '=arg0))

return-branch =return-branch
return-state =return-state
return-operator =return-operator
loop-iteration =loop-iteration
timestamp =timestamp
last-argument ,arg-num
problem =starting-order
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
return-value =return-value
dm-reload :fail-clear
)

`(p ,(prod-name-fn "B-value-fail-commit")
=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'save)
operator ,operator-sym
next-branch =return-branch
next-branch-number =return-state
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subgoal :notgeneric
return-value =return-value
dm-reload :fail-clear
=retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
?imaginal>
state free
?retrieval>
state free
- state error
==>
-imaginal>
=retrieval>
=goal>
current-branch =branch
branch-order ,(prod-jump-fn 'done)
operator ,operator-sym
return-value =return-value
dm-reload :empty
subgoal :empty
)

)
)

(otherwise
(list
`(p ,(prod-name-fn "ELSE-all-subexpr-to-literal")

=goal>
ISA metaproc
current-branch =branch
branch-order ,(prod-jump-fn 'return)
operator ,operator-sym
return-value =return-value
dm-reload :reload
subgoal :empty
?retrieval>
state free
- state error
==>
+retrieval>
ISA op-sequence
branch-name =branch
branch-order ,(prod-jump-fn 'dm-recall-parent t)
op-name ,operator-sym
,@prod-slots-save-match-now
=goal>
return-value =return-value
current-branch =branch
branch-order ,(prod-jump-fn 'jump)
operator ,operator-sym
dm-reload :empty
)

)
)

)

))
)

))

debug-result
)

)

Listing 54: ARGUMENT-P-SEQUENCE-FOR Code Listing
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