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ABSTRACT:  A new model validation approach is presented that integrates parallel processing on high-
performance computing clusters with random search algorithms to fit cognitive models to human performance data. 
The efficiency, accuracy, and non-biasness of this approach surpasses the prevalent manual optimization 
techniques; results in exceptional model to human data fits; and is available and extendable to other parameterized 
models, search algorithms, cognitive architectures, and cluster computing resources. Results from testing the 
validation approach using a prototype cognitive model of a serial subtraction task, the ACT-R cognitive 
architecture, and 15 individual fits are described. 

 

1.  Introduction 

Model validation is an essential aspect of model 
creation and use. It is much more than the simple 
comparison of model predictions with empirical data 
and the binary determination that the model is or is not 
valid (Glenn, Neville, Stokes, & Ryder, 2004). Glenn 
et al. describe a continuum of validation processes for 
human performance models. At one end of the 
continuum is model calibration using the discrepancies 
between actual model predictions and empirical data to 
adjust parametric aspects of the model to improve 
correspondence for subsequent execution of the same 
model. For example, a parameter in the ACT-R 
cognitive architecture called W representing the sum of 
activations of all pieces of information in declarative 
memory was varied to model individual differences in 
working memory capacity in a digit memory task 
(Lovett, Reder, & Lebiere, 1997). At the other end of 
the validation continuum is fundamental inquiry 
regarding the inherent value of different modeling 
frameworks, paradigms, and philosophies. For 
example, in the Agent-based Modeling and Behavior 
Representation (AMBER) program (Gluck & Pew, 
2001), a set of alternative knowledge-based cognitive 
architectures (ACT-R, Soar/Epic, DCOG, and iGEN) 
were compared for relative effectiveness in the 
simulation of human performance in the context of a 
simplified air traffic control task. 

In Sargent’s (2005) examination of various validation 
techniques, the terminology parameter variability and 
sensitivity analysis is used instead of calibration. 

Sargent describes this technique as changing the values 
of input and internal parameters of a model to 
determine the effect upon the model’s behavior or 
output. Parameters identified as sensitive cause 
significant changes in the model’s behavior or output. 
The same relationship should occur in both the model 
and what Sargent calls the real system.  

Roberts and Pashler (2000) noted that the 
psychological research literature probably contained 
thousands of examples beginning in the early 1900s of 
quantitative psychological theories with free 
parameters supported by demonstrations that they can 
fit data—that the parameters can be adjusted so that the 
output of the theory resembles empirical results. This 
similarity is often shown by a graph with two 
functions: one labeled observed (or data), and the other 
labeled predicted (or theory). Roberts and Pashler 
argued that when the theory fits the data then the 
theory should be taken ‘seriously’. 

Similar terminology can be found in the portion of the 
human performance modeling community that focuses 
on knowledge-based models of cognitive performance. 
The terminology fitting the model is generally used 
when referring to the process of validating specific 
model configurations in detailed contexts by adjusting 
model parameters to achieve a valid model in a given 
instance of use.  

Originating from components of previous studies 
spanning more than a decade (Ritter, 1991; Tor & 
Ritter, 2004), the high performance computing (HPC) 
and parallel genetic algorithm (PGA) validation 
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approach presented in this paper lies at the calibration 
end of Glenn’s (2004) validation continuum. This 
validation approach is a precursor to more accurate, 
time and resource efficient methods and tools for the 
validation of human performance models developed 
within complex cognitive architecture environments. 

Recent related research by Gluck, Scheutz, 
Gunzelmann, Harris, and Kershner (2007) examined 
large-scale computing resources for execution of 
cognitive model parameter sweeps, as well as possible 
architectures enabling volunteer computing 
environments. Raymond, Fornberg, Buck-Gengler, 
Healy, and Bourne (2008) employed genetic algorithms 
and simulated annealing written in Matlab to search the 
parameter space of an IMPRINT model. The research 
discussed in this paper integrates these two 
perspectives by offering a parametric search algorithm 
validation approach on a HPC platform. 

The remainder of the paper is organized as follows: 
Section 2 is a brief description of the ACT-R cognitive 
architecture; Section 3 describes the most prevalent 
method of validation used by the cognitive modeling 
community; Section 4 defines the components of the 
HPC and PGA validation approach; Sections 5 and 6 
discuss testing this validation approach by fitting a 
prototype cognitive model of a serial subtraction task 
and analyzing the results; and Section 7 presents 
concluding comments.  

2.  Cognitive Architectures 

Many instances of cognitive architectures exist, for 
example: ACT-R (Anderson, 1993), Soar (Newell, 
1990), and Epic (Meyer & Kieras, 1997). This research 
utilizes the ACT-R version 6.0 architecture. ACT-R is 
a two-layer modular cognitive architecture on a 
production system framework. One layer contains 
symbolic representations and has a serial flow in that 
only one production can fire at a time. The second 
layer is a sub-symbolic layer whose representations are 
numeric quantities that are the result of computations 
performed as if they were executed in parallel. In 
ACT-R cognition emerges through the interaction of a 
number of independent modules through buffers that 
can hold a declarative memory fact. Each of these 
modules is associated with specific brain regions and 
theories about the internal processes of these modules 
(Anderson, 2007). Figure 1 is a diagram of the modules 
and buffers making up the ACT-R cognitive 
architecture.  

Declarative and procedural knowledge are symbolic 
level structures in ACT-R. Declarative memory 
contains chunks that are typed slot-value objects 

representing facts. Procedural memory consists of 
condition-action rules called productions. In most 
ACT-R models much of the quantitative structure of 
cognition is at the sub-symbolic level. Declarative 
memory chunks have a numeric activation value that is 
determined by the recency and frequency of use of the 
chunk and a component that reflects retrieval noise. 
Productions request the retrieval of the chunk from 
declarative memory that has the highest activation 
among all chunks that match a specified retrieval 
pattern. Productions have conditional constraints that 
are matched against the contents of the buffers. The 
production to execute is determined at the sub-
symbolic level by calculating a utility value for each 
matched production. The production with the highest 
utility is executed which consists of performing the 
operations specified in its actions. 

ACT-R offers many parameters to manipulate and 
adjust the sub-symbolic processes with each parameter 
having a meaning associated with a specific module 
and sub-symbolic process. Adjusting the values of the 
parameters adjusts the architecture’s theory of 
cognition for the purpose of modeling cognitive aspects 
of a task.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 1: The ACT-R 6.0 cognitive architecture. 

3.  Traditional Validation Approach 

If a cognitive model is structurally correct in 
simulating how a task is procedurally performed by 
humans, then the manipulation of architectural 
parameters can be used to simulate realistic effects on 
the cognitive performance of the task. For example, 
different sets of parameters and values can represent 
external conditions (e.g., conditions of the task 
environment, loud noise, human interruptions, or visual 



distractions), or internal conditions pertaining to 
psychological or cognitive states of the humans 
performing the task (e.g., stressed, fatigued, or 
frightened). There has been a long tradition in the 
development of models for factors such as those listed 
above that appear to have moderating effects on 
virtually all human performance (Neville, Takamoto, 
French, Hursh, & Schiflett, 2000; Ritter, Reifers, 
Schoelles, & Klein, 2007). These types of moderating 
factors are sometimes called behavior moderators. 

Traditionally, cognitive modeling researchers employ a 
manual optimization process to fit the model to human 
data. This is often a time consuming, iterative process 
involving the selection of architectural parameters 
supporting theory or a hypothesis, and then the 
assignment of a numeric value to each parameter. After 
the identification of parameters and value assignment, 
the model is run in the cognitive architecture and the 
resulting model predictions are compared to the human 
data. If the model fit is unsatisfactory, this fitting 
process is repeated and continues in a trial and error 
like manner building up a history of results that guide 
the next fitting attempt. 

Manual optimization can be a reasonably effective 
process when using one parameter and fitting to one set 
of performance data, such as an average performance 
across subjects. However, when the goal is to fit a 
model to many individual subject’s performance data, 
for example in the case of moderator factors or 
individual differences modeling, the validation effort in 
terms of time and computational resources can become 
prohibitively expensive on a single processor 
computer. Furthermore, systematic techniques for the 
estimation of multiple parameter value combinations 
out of the many free parameters available in 
architectures are notably absent in the modeling 
community. 

When validation efforts associated with the manual 
optimization process impeded an investigation of how 
stress moderates cognitive performance (Ritter, 
Schoelles, Klein, & Kase, 2007), a new validation 
approach was developed for fitting a cognitive model 
of a serial subtraction task to human performance data 
from individual subjects. 

4.  New Validation Approach 

The new validation approach is based on a genetic 
algorithm (GA) executed on a high performance cluster 
platform. This approach conducts an automated search 
of the cognitive model’s parameter space for the best 
fitting combinations of parameter values that produce 
predictions that match human performance data. 

GAs are based on the principles of natural selection 
and genetics, and have been applied successfully to 
numerous problems in business, engineering, and 
science (Goldberg, 1994). GAs are randomized, 
parallel search algorithms that search from a population 
of points. The points (often referred to as genotypes) 
represent individuals in a population. The genotypes 
are evaluated for fitness, then propagated to later 
generations by means of probabilistic selection, 
crossover, and mutation operations. 

In a cognitive modeling context, the GA’s genotypes 
are sets of cognitive architecture parameters applied to 
the cognitive model. The population evolves to find 
better ‘solutions’ by selecting the most fit parameter 
sets (those that give the best match to the human data), 
and propagating these solutions to the next generation. 

In this validation approach the fitness evaluation 
consists of running the model in the cognitive 
architecture, analyzing the model’s performance 
output, and calculating a fitness value for the model’s 
predictions. This is done by running copies of the 
model—one per processor. A parallel version of the 
GA (PGA) distributes the computational load of the 
fitness evaluation among multiple processors reducing 
the time required to reach acceptable solutions.  

There are several classes of PGAs distinguished by 
their level of parallelization (Cantu-Puz, 2001). This 
validation approach utilizes a master-slave global 
parallelization PGA. In a master-slave PGA, one 
master-processing node executes the GA-related 
functions, while the fitness evaluation is distributed 
among numerous slave processors. The slave 
processors evaluate the fitness of the genotypes that 
they receive from the master process, and then return 
the fitness results back to the master node. Table 1 
presents pseudo code for optimizing a cognitive model 
using a master-slave PGA with a message-passing 
interface (MPI). 

In the PGA, the slave processors each receive a 
different set of ACT-R architecture parameters 
representing a genotype, run the cognitive model in the 
architecture, collect the model output, and calculate the 
associated statistics and fitness value based on the 
model’s performance compared to the human data. 

In this case, the ACT-R architecture and cognitive 
model are written in the Lisp programming language. 
For this project the CMUCL dialect was used because 
it runs on most Unix platforms. Generally, MPI is 
available on cluster computing resources in the form of 
C or Fortran libraries. To utilize parallel processing in 
the cognitive model fitting process, ACT-R and the 
cognitive model are packaged into an executable Lisp 



image file. This image file can be run by a system call 
from a C program on each processor in parallel while 
utilizing MPI to communicate genotypes and fitness 
values among the processors. Figure 2 illustrates the 
components of the validation approach executed on a 
high-performance cluster located at the National Center 
for Supercomputing Applications (NCSA). 

Table 1: Pseudo code for master-slave PGA using MPI. 
 

MPI_Init . . . 
if (rank is 0)  // master 
   Initialize population 
. . . . . 
for (each generation) 
{ 
   if (rank is 0)  // master 
   { 
    Selection 
    Crossover 
    Mutation 
    // creates a new generation 
   } 
 
   // find fitness of genotypes in population 
   // master and slaves 
   MPI_Scatter individuals out to processors 
   Run cognitive model 
   Calculate fitness of model predictions 
   MPI_Gather up resulting fitness values 
 
   if (rank is 0)  // master 
    Print out generational statistics 
} 
Test best solutions found // master and slaves 
MPI_Finalize . . . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Components of HPC and PGA validation 
approach executed on a Linux cluster at NCSA. 
 

The population of genotypes (ACT-R parameter sets), 
in the form of a matrix, are ‘scattered’ row-wise to the 
processors. Each processor executes the Lisp image file 
that runs the model within the ACT-R architecture. 
Each processor then calculates a fitness based on the 
model’s performance predictions and the human data 
statistics. In this case, sum of the squares error is 
calculated on two performance statistics. The fitness 
values calculated by the processors are ‘gathered’ up 

by the master process, which then applies genetic 
functions to the population based on the fitness of the 
genotypes (refer to Table 1). This is repeated through a 
number of generations with the effect of evolving a set 
of candidate solutions. 

5.  Testing the Validation Approach 

The HPC and PGA validation approach was tested by 
fitting a prototype cognitive model of the serial 
subtraction task written in the ACT-R cognitive 
architecture to individual-level performance data. The 
model was developed in collaboration with Dr. 
Michael Schoelles at the Cognitive Science 
Department at Rensselaer Polytechnic Institute (Ritter 
et al., 2007). The model simulates a human subject 
performing the serial subtraction task. Serial 
subtraction is the mental arithmetic stressor portion of 
the Trier Social Stressor Test (TSST, Kirschbaum, 
Pirke, & Hellhammer, 1993). The TSST has been used 
to provide an acute physiological stress response in 
human subjects in 100’s of studies since the 1960’s.  

The serial subtraction task consisted of four 4-minute 
blocks of mentally subtracting by 7s and 13s from 4-
digit starting numbers. Figure 3 illustrates the serial 
subtraction task with the four starting numbers for each 
subtraction block shaded in gray. The task is performed 
mentally with no visual or paper clues. An 
experimenter gives the subject the starting number; 
from then on, the subject speaks the answer to each 
subtraction problem. 

 

 
 
Figure 3: An illustration of the four blocks of the serial 
subtraction task as in the experiment; subjects perform 
the task mentally without paper or visual cues. 

During the serial subtraction task, subjects’ answers 
were scored against a list of correct answers from the 
starting number. For each subject the number of 
subtraction problem attempts was recorded and a 
percent correct score was calculated by dividing the 



total number of correct attempts by the total number of 
attempts for each block of the subtractions. 

Table 2 shows the subtraction rates for the subjects’ 
performance on the two blocks of subtracting by 7s. 
The large standard deviations indicate a wide range of 
performance on this task suggesting a high degree of 
individual differences within the subject pool.  

Table 2: Human subject (N=15) mean performance and 
standard deviation for serial subtraction on two 4-
minute blocks of subtracting by 7s. 

 7s – 1st block 7s – 2nd block 

Number of Attempts 47.3 (15.2) 47.8 (19.2) 

Percent Correct 82.0 (10.0) 88.8 (7.0) 
 

To test the validation approach, 15 PGAs were setup to 
fit the serial subtraction model to each individual 
subject’s performance data. Each PGA ran 100 
generations of 200 binary-encoded genotypes. The 
genotypes consisting of three 12-bit substrings each 
representing the value of an ACT-R parameter. This 
means that one run of the PGA would sample 20,000 
parameter combinations. Three ACT-R parameters 
appeared important for the model and were 
incorporated into the genotype’s composition: seconds-
per-syllable (SYL), base level constant (BLC), and 
activation noise (ANS). 

The model’s speaking rate is controlled by the SYL 
parameter. The ACT-R default timing for speech is 
0.15 seconds per assumed syllable based on the length 
of the text string to speak. There is a default of three 
characters per syllable controlled by the characters-per-
syllable parameter. The seconds-per-syllable and 
characters-per-syllable parameters control sub-
symbolic processes in ACT-R’s vocal module. The 
vocal module gives ACT-R a rudimentary ability to 
represent speech and the time and content of speaking.  

The other two parameters making up the genotype 
(BLC and ANS) affect declarative knowledge access. 
The BLC parameter and a decay parameter affect 
declarative memory retrieval and retrieval time. The 
ANS value affects variance in retrieving declarative 
information and error rate for retrievals in the model. 
Other parameters, such as base level learning, decay, 
and the characters-per-syllable parameters were built 
into the model as modifiable but were left at their 
default values throughout the PGA runs. The search 
space for this optimization problem was defined by the 
following parameter value boundaries: both ANS and 
SYL 0.1 to 0.90 and BLC 0.1 to 3.0. 

In the PGA code the selection probability (selection of 
the fittest) was set to 0.5, meaning half the genotype 
population is replaced each generation by offspring of 
the fittest genotypes. Random mutations alter a certain 
percentage of the bits in the list of genotypes. This 
operation introduces new traits in the original 
population and keeps the PGA from converging too 
quickly before sampling the entire search space. The 
mutation rate was set at 0.15. The terminating 
condition was a specified number of generations (100), 
instead of proximity to performance statistics. 

The PGA’s fitness function compared the sum of the 
squares error for the model’s predicted number of 
attempted subtractions and percent correct to the 
corresponding human data. For these individual-level 
problems, the fitness is in terms of error (or cost) and is 
the discrepancy between the model’s predictions and 
the actual human performance on the cognitive task 
(e.g., (83-83.2)2 + (94-94.2)2 = 0.1463). Therefore, a 
fitness value of zero means there is no discrepancy 
between model predictions and human data—the 
model predicted the human performance perfectly. The 
PGA produced fitness values are discussed next. 

6.  Validation Results  

This section examines the results of fitting the serial 
subtraction model to performance data from the 15 
subjects in the experiment using the HPC and PGA 
validation approach. Table 3 is a summary of the 
results for the subjects ordered by human performance 
on number of attempts from worst to best performance. 

The fitness value column shows good fits. Genotypes 
resulting in fitness values close to zero were found for 
all subjects. The closer the fitness value is to zero the 
better the model-to-data fit. Fitness values ranged from 
0.0006 to 0.7682. When comparing the human 
performance column to the model prediction column, 
both number of attempts and percent correct were fit to 
the human data to within a fractional part of a 
subtraction problem and a fractional part of a 
percentage point for all subjects. The best/lowest 
fitness value (0.0006) in Table 3 corresponds to the 
subject with the worst performance by number of 
attempts (subject 1). There is a cluster of excellent fits, 
the first three rows in Table 3, for the poor performers 
(0.0006, 0.0866, 0.0487). In the next three rows, there 
is a cluster of fits closer to 1.0 (0.6836, 0.5523, 
0.7682), with row 6, subject 2’s fit, producing the 
worst fitness value (0.7682) out of all the subjects.  

The genotype column in Table 3 shows the ACT-R 
parameters values in the sequence of ANS, BLC, and 
SYL that produced the best fit for each subject. By 



examining the contents of Table 3 trends or patterns in 
reference to parameter values and performance can be 
observed for good fits, and represent changes in the 
mechanisms of cognition between these subjects.  

Table 3: HPC and PGA validation results for 15 
subjects comparing human performance (number of 
attempts and percent correct), model predictions 
(number of attempts and percent correct), and fitness 
values with the corresponding genotypes (ACT-R 
parameters ANS, BLC, SYL). 

Subject 
Human 

Performance 
Model 

Prediction 
Fitness 
Value 

Genotype 
ACT-R Parameters 
ANS, BLC, SYL 

1 28, 67.9  28.0, 67.8 0.0006 0.83, 2.76, 0.87 

47 29, 62.1  29.3, 62.0 0.0866 0.66, 2.25, 0.83 

25 31, 80.7 30.8, 80.8 0.0487 0.48, 2.25, 0.76 

11 35, 65.7 34.5, 65.1 0.6836 0.82, 2.49, 0.69 

14 37, 75.7 36.3, 75.8 0.5523 0.83, 2.75, 0.62 

2 37, 78.4 36.2, 78.6 0.7682 0.81, 2.80, 0.63 

46 45, 80.0 44.7, 80.4 0.2510 0.43, 1.90, 0.47 

27 46, 87.0 46.1, 87.7 0.4917 0.76, 2.96, 0.46 

16 50, 92.0 50.4, 92.3 0.2233 0.50, 2.46, 0.41 

43 54, 89.0 53.9, 89.0 0.0214 0.72, 2.88, 0.38 

41 55, 87.3 55.2, 86.8 0.2261 0.54, 2.32, 0.36 

23 57, 84.2 56.8, 84.4 0.0744 0.79, 2.71, 0.35 

9 57, 87.7 57.2, 87.1 0.4089 0.78, 2.92, 0.35 

21 65, 90.8 64.8, 91.2 0.1997 0.53, 2.24, 0.29 

26 83, 94.0 83.3, 94.2 0.1463 0.47, 2.14, 0.16 
 

The value of SYL (last ACT-R parameter in the 
genotype) represents seconds per syllable in speaking 
the solution of each subtraction problem. Using the 
ACT-R vocal module, the model speaks the subtraction 
answers as the human subjects do. During the 
experiment nearly all subjects spoke the subtraction 
answers out in full. For example, the answer 8185 was 
spoken as “eight thousand one hundred and eighty 
five” (about 8 to 9 syllables), instead of “eight one 
eight five” (4 syllables). An average performing 
subject would speak between 368 to 414 syllables 
during one block of serial subtraction. Viewing Table 3 
from the bottom up the SYL parameter values show a 
nearly perfect increase as performance decreases, with 
the exception of subjects 14 and 2 that are misordered 
by 0.01. The range for SYL in the individual subject 
fits is a speedy 0.16 to a slow-speaking 0.87 
seconds/syllable, a substantial difference of 0.71. These 
results show top performers speaking a syllable much 
more quickly than the poor performers. Surprisingly, 
all individual subject fits show SYL values greater than 
the architecture’s default value of 0.15. 

In Table 3, the BLC value component of the genotypes 
shows only one value under 2.0; subject 46, one of the 
average performers, has a BLC of 1.90. This subject 
also has the lowest ANS value (0.43). BLC is the base 
level constant of the activation sub-symbolic process 
affecting both retrieval probability and retrieval time. 
Overall, Table 3 shows low ANS values associated 
with low BLC values (subjects 26, 25, and 46), and 
similarly, high ANS values associated with high BLC 
values (subjects 1, 2, 9, 14, 23, 27, and 43). 

As mentioned previously, the lowest fitness value in 
Table 3 corresponds to subject 1, the worst performer. 
The ANS part of the genotype that produced subject 
1’s lowest fitness value is 0.83. ANS is ACT-R’s 
activation noise parameter. The value 0.83 is higher 
than what is normally considered reasonable within the 
ACT-R modeling community. Cognitive modelers 
using traditional manual optimization would generally 
not assign a value for ANS that is over 0.5. In Table 3 
we see that 60% of the values for ANS are 
substantially above 0.5 and give good fits. 

Table 3 lists only one fit for each subject—the fit 
resulting in the lowest fitness value. In actuality, each 
PGA produced a set of good fits less than 1.0 during 
each run. When all the parameter sets yielding good 
fits were analyzed, the patterns described above held 
true. Subsequently, two of the three patterns can be 
linked to theories of working memory and stress—
reported in Kase (2008). 

The results described here suggest that an automated 
and extensive search of the model and architectural 
parameter space aided by a search algorithm and 
parallel processing on a cluster computing resource is 
an ideal validation environment for investigating the 
affects of moderator influenced behavior (i.e., stress) 
and individual differences in cognitive performance. 
The results provide better fits than would be obtained 
by manual optimization (although not tested, the fits 
appear as tight as ever reported). The fits also reveal 
suggestions about the architecture. The PGA will 
adjust parameters to values within any specified range. 
Exploring parameter spaces beyond the acceptable 
modeling norm (e.g., ANS values over 0.5) comes at a 
negligible cost. Additionally, as a secondary outcome 
of the fitting process, erroneous architectural default 
values for parameters can be detected (e.g., SYL 
default value of 0.15). 

7.  Comments and Conclusion  

The HPC and PGA validation approach presented in 
the paper integrates parallel processing on high-
performance computing clusters with random search 



algorithms, such as PGAs, to effectively search without 
human limitations model and architectural parameter 
spaces for best fitting sets of parameter values 
producing performance predictions matching human 
data. This validation approach could potentially 
supersede the traditional manual optimization 
techniques used throughout the cognitive modeling 
community. 

During the testing of the HPC and PGA validation 
approach with the prototype serial subtraction 
cognitive model, one validation run of fitting the model 
to an individual subject’s performance data evaluated a 
total of 20,000 ACT-R parameter combinations in a 
3-D parameter space (ANS, BLC, and SYL). Each 
validation run used only 112 to 176 minutes of runtime 
on 200 processors. In approximately one day and a half 
the validation approach could fit the serial subtraction 
model to all 15 subjects participating in the experiment 
returning nearly perfect fits for all subjects, showing 
how they changed.  

The HPC and PGA validation approach is a powerful 
model-fitting methodology that could potentially lead 
to misuse as warned by Rodgers and Rowe (2001). 
This new validation approach could either contribute to 
Roberts and Pashler’s (2000) three problems of judging 
theories by goodness of fit, or enable solutions to these 
problems (p. 363). Possible HPC and PGA validation 
enabled solutions include: varying each free parameter 
over its entire range in all possible combinations; 
modeling data variability—the distributions of the 
performance statistics; identifying what the theory 
cannot fit by manipulating the parameter space or 
attempting to fit data beyond plausible experimental 
results—generating simulated behavior; and comparing 
predictions of competing theories in parallel. 

Aside from theoretical testing concerns, the increased 
accuracy, efficiency, and non-biasness that this 
validation approach has to offer is available to 
modelers and extendable in several ways. The 
approach can be used to fit other cognitive models 
besides the serial subtraction model. In theory, any 
parameterized cognitive model could be modified in 
the same way as our model to run in a parallel 
processing environment. The primary modifications 
required are listed in Table 4.  

Additionally, different types of search algorithms could 
be applied, even in combination, to find the best 
model-to-data fits. For this research, the majority of the 
search algorithm code was written separately from the 
cognitive model, interfacing with the model only in the 
fitness function. For example, the basic code for the 
PGA was taken from a textbook and then modified to 

incorporate the running of the ACT-R cognitive 
architecture and serial subtraction model. 

Table 4: Summary of modifications needed to fit a 
cognitive model using the HPC and PGA validation 
approach. 

1. Specialized front-end function written in the language of the 
cognitive model (e.g., Lisp) to start up the architecture and 
model from a call within the search algorithm code. 

2. A representation for the model’s parameter values (e.g., 
genetic algorithm genotypes encoded as ACT-R parameter 
values) that can be passed as arguments through the front-end 
function to the model. 

3. An evaluation of model prediction fitness implemented as a 
fitness function used by the search algorithm. 

4. If a graphical display is required, it should be simulated. 

 
Lastly, for this research, a large cluster computing 
resource was used for the validation of the serial 
subtraction model. Most universities have some type of 
cluster computing resource available to faculty and 
students. With the exception of the serial subtraction 
model, all other applications used here are open source 
(CMUCL, ACT-R) or reside on the cluster itself (C, 
MPI). With the increased availability of open source 
applications and academic high performance 
computing resources, and easy integration of a 
cognitive architecture and model, this type of 
validation approach could be adopted for use by 
cognitive modelers using different architectures. 
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