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Abstract
Tying a cognitive model to a task simulation
and having it interact using a model eye and
hand provides many benefits, such as
accounting for both the physical constraints of
the task and the time spent interacting with the
task.  A cognitive model and task simulation of
a physical problem solving task are presented.
The model is shown to match adult behaviour
on the task very well.  Analysing the
interactions between the model and the task
simulation shows that approximately 50% of
the model’s task time is spent on interaction,
that is, eye movements, eye fixations, and hand
movements.  The breakdown shows that any
cognitive model of a physical task, including all
human-computer interaction tasks, that does not
simulate task interactions is likely to over-
estimate the time spent on cognition and
therefore attribute too much emphasis to
cognition and cognitive learning.

Introduction
Cognitive models have provided valuable
insight into the possible ways in which humans
may be solving particular tasks (e.g. Anderson
& Lebiere, 1998; Newell & Simon, 1972).  The
models can provide a test of a particular verbal
theory, or the model itself can be the theory of
how the task is accomplished.  Modelling has
been applied to various task domains, including
those involving physical interaction (i.e. eye
movements, hand movements, or both).

Which aspects of human behavior are most
worth capturing in a human modeling
architectures?  This paper presents a case for
including models of perception to interact with
an external task simulation.  The central part of
the paper illustrates several of these benefits by
detailing a task for which a model and
simulation have been developed, and shows that
the influence of cognitive aspects of the task
could easily have been over-estimated if the

model was not linked to an external task
simulation.  In addition, the benefits of
examining particular aspects of simulation use
(e.g., the amount of time spent on visual search)
are shown to provide insights into the task that
would not have been available had an external
task simulation been omitted.

Why have relatively few cognitive models
used a task simulation?
There appear to be three simple reasons as to
why task simulations have not been used
extensively with cognitive models.  First, the
task particulars may not demand it.  For
example, in modelling children's performance
on a balance beam task (e.g. McClelland &
Jenkins, 1991), there are really only two
observable states: the initial state of the beam,
and the final state of the beam (i.e. whether it
balances or tips to one side).  The mental
processes that the child may be using have to be
inferred because there is so little visible, overt
behaviour to aid the modeller.  Such tasks
increase the scope for criticism of the model
because there is little support that the
mechanisms by which the model performs the
task map onto the mechanisms that the child
may use.

Second, the model of the task may have
been developed in an architecture or modelling
environment for which there is little support for
the development of a task simulation.  This is
true of most model development languages.
For example, Lisp has graphical simulation aids
(e.g. Garnet, Myers et al., 1990), but specifying
how the model and simulation are linked
together is left to the modeller.  Only recently
have cognit ive archi tectures  began
incorporating simulation environments within
the architecture (Byrne, 1994, for CAPS; Byrne
& Anderson, 1997, for ACT-R; Ritter, Baxter,
Jones & Young, 1999, for Soar) to create
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integrated cognitive architectures (Pew &
Mavor, 1998).

Third, in the absence of an assortment of
tools to help build a task simulation, the
development of an adequate simulation requires
additional time and effort which many
researchers do not have.  This is partly because
the simulation often needs to be developed in a
different language from the model, and in an
environment where there is little support for
building simulations.  Although current
cognitive architectures (in particular: ACT-R,
Anderson & Lebiere, 1998; EPIC, Kieras &
Meyer, 1997; Soar, Congdon & Laird, 1996)
now include support for creating task
simulations, they are recent developments.
There is still comparatively little use of task
simulations in models of tasks which involve
interaction.

Benefits of including an external task
simulation
An interactive task means that a cognitive
model of the task is very likely to require a task
simulation.  There are two methods for linking
the task simulation with the model: either
include the task environment within the model's
implementation language, or have the model
interact with an external simulation of the task
environment (usually a graphical simulation
written in a fairly specialised language, but
possibly a graphical environment attached to a
cognitive architecture)1.  Incorporating aspects
of the simulation within the modelling
environment (e.g. John, Vera & Newell, 1994;
Peck & John, 1992) takes less time but is not
ideal because there is every likelihood that
some aspects of the task are taken for granted
when they are actually difficult.  Many existing
models may perform tasks too quickly for this
reason.  Even external simulations will have
idealisations (e.g. no slips of action) meaning
they may also perform the task too quickly
(Kieras, Wood & Meyer, 1997), but the
magnitude of the under-prediction will be
greatly reduced.  Another problem for
representing the simulation within the
modelling environment is that the modelling
environment is not ideal for representing a
simulation (because it is not a language which is
specialised for writing simulations) and so the
task representation is often simplified.

The above problems highlight the need to
complete the modelling task by including an
external task simulation, which can be linked to
any cognitive model of the task and not just the
particular model which has been developed.
The development of an external task simulation

has clear advantages over including the task
environment within the model (or not including
a task environment at all):
1. The simulation can indicate how
complex the task is and how great a role the eye
and hands play, based on the number of times
the model has to interact with the simulation,
and for what length of time.
2. Modelling only the high-level processes
involved in the task assumes that access to the
external task information is effortless.
Accessing the external task information may in
fact influence speed and accuracy in the task
(Anderson, Matessa & Lebiere, 1997).  For
example, the main source of the extra time
required to complete a subitizing task (Jensen,
Reese & Reese, 1950) is likely to be the extra
fixations required when there is a larger
number of objects.
3. An external task simulation enables the
parameters associated with the eye and hands to
be changed easily.  If the representations of the
eye and hands were within the model, the
parameters can be difficult to modify, because
the extent to which alterations can be made is
restricted by the cognitive modelling
environment.  For example, altering the area
that the eye covers would be easy for an
external simulation because the simulation
should be written in an appropriate specialised
language.  The language of the model (e.g. rule
based or connectionist) could make these
changes awkward.
4. The simulation may indicate possible
aspects of the task which occur in parallel.
Aligning the model/simulation behaviour
against subject behaviour may reveal task
processes where the model is too quick or too
slow, based on matching specific behaviour to
specific time points.  Although a simulation is
not strictly required to elicit this knowledge, in
tasks which emphasise use of the eye and hands,
it is likely that mismatches will be found with
regard to eye/hand behaviour being done
concurrently (indeed, the EPIC architecture
assumes this).
5. Modelling only the high-level processes
involved in the task, and not modelling how
information is obtained, may mean modellers
are “granting themselves unanalysed degrees
of freedom in terms of choice of
representation” (Anderson et al., 1997, p.442).
The success of the model may simply be
because of the chosen representation and not
because of the high-level processes that have
been modelled.
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6. The behaviour of the model can be
viewed on the graphical representation that the
simulation provides.
7. A task simulation offers the opportunity
to examine task behaviour that is difficult to
obtain from subjects (i.e. providing further
measures of behaviour).  For example, the time
spent performing visual search would require
tracking eye movements which for some tasks
are difficult to obtain (especially ones where the
subjects are children).

Allowing a model to interact with a clear
task simulation allows more fine grained
comparisons to be performed.  Models that
have interacted with a task similar or identical to
that seen by subjects have generally been able
to profit from it.  Work within a variety of
architectures, for example, EPIC (Kieras, Wood
& Meyer, 1997), EPIC-Soar (Chong & Laird,
1997), Soar (Nelson, Lehman & John, 1994),
and ACT-R (Anderson, Matessa & Lebiere,
1997) have shown that it is possible and that the
resulting models can be quite accurate and
useful.

What has not been fully done, which is
presented here, is a break down and summary
of where the task time goes—what proportion
of the behaviour in an example task is spent on
cognition and what proportion is spent on
interaction.  The example task used will show
that the time spent on interaction is about equal
to the time spent on cognition.

An example task to illustrate some of the
advantages of using an external task simulation
is presented, together with the actual task model
and task simulation used.  The model’s match
to adult behaviour is summarised.  Some of the
benefits of using task simulations are then
illustrated using the cognitive model and task
simulation environment.  The model predicts
that for this task (which is similar to many tasks
in HCI and cognitive psychology) over half of
the task time is spent on interaction.

The task, the model, and its simulation
The task, the model, and the task simulation are
only discussed briefly here.  More detailed
descriptions are available for the task (e.g.
Wood, Bruner & Ross, 1976), and the model
and task simulation (Jones, 1998; Jones, Ritter
& Wood, 2000).

The Tower task is analogous in many ways
to direct manipulation graphical user interfaces.
Like them, the problem solver in this task has to
choose objects to manipulate, pick up or select
objects,, and arrange or manipulate objects.
The difference here is the objects are modelled

and represent three-dimensional objects, but in
terms of timing and distribution of effort, it will
be very similar to numerous tasks, such as
drawing in MacDraw, circuit layout with a
graphical user interface, and simulation games
like Sim-City.

The Tower task
The Tower task (Wood & Middleton, 1975) is a
problem solving puzzle in which a pyramid
(shown in Figure 1) must be assembled from a
set of 21 wooden blocks.  There are six layers
to the pyramid; the lower five consist of four
blocks each, with a single block as the top layer.
The blocks which comprise each layer are all of
the same size, but the size of blocks changes
uniformly across layers.  The blocks in the
lower layers all share the same characteristics
(as shown in Figure 1), differing only in size.

A B

C D

Figure 1.  On the top are the four blocks that
make up each of the lower five layers in the
Tower task, together with (on the bottom) the
final assembly of the Tower.

The interactive nature of the task enables a
variety of measures of behaviour to be taken.
Matching subject data on multiple measures
provides more constraints on the model because
it has to fit the subject data on more data points.
Providing a good match to subject data also
allows the processes of cognition and
interaction to be examined to give indications
as to how tasks are being completed, and where
task learning is occurring.  In addition, the task
allows timing data to be recorded.  Timing data
is often neglected by cognitive models even
though it provides a very important measure,
partly because it indicates possible areas where
learning takes place, and helps to indicate areas
where the model is either too quick or too slow
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in accomplishing a component of the task.
Where the model does not match the subject
data can indicate where the model can be
improved.

The task has been used extensively to
examine the effects of instruction and tutoring
in children, who show a wide range of
behaviour across different ages.  Three year old
children are complete novices who can hardly
be taught the task, whilst eight year old children
are relative experts who can teach themselves.
In general, older children accomplish more
correct operations, produce less errors, and take
less time than their younger counterparts
(Murphy & Wood, 1981; Wood & Middleton,
1975).

The blocks that comprise the task have
several different features.  The single block
which comprises the top layer has two salient
features: its size, and a circular depression.
Every other block in the Tower task has five
salient features: size; a quarter circle depression
(except for blocks in the bottom layer); a
quarter circle elevation; a peg or a hole; a
halfpeg or a halfhole.  One or a combination of
these features will be used when subjects select
one or more blocks.  For example, one of the
largest blocks which has a peg may be required
if one of the largest blocks having a hole is
currently being held.

The block features allow the task to have
several interesting characteristics.  First, every
peg and half-peg can fit into every hole.
Second, the position of pegs and holes from the
edge and bottom of each block is the same,
such that placing the peg of one block into the
hole of a different sized block can result in a
construction which is “flush” on its outer
edge.  Third, each layer is formed by putting
together correctly the four blocks comprising a
layer (excluding the single block top layer),
such that the quarter circle elevations on each
block form a circular elevation, and the quarter
circle depressions form a circular depression.
The diameters of the circles are the same for
every layer, permitting the stacking of layers in
any order of size.  Fourth, the six layers all
differ in size by the same magnitude (the size6
blocks are the largest; the size1 block is the
single top block).  For example, the difference
between the size two and size three layers is the
same as that between the size five and size six
layers (this is shown in Figure 1).

The features of the blocks allow various
incorrect constructions to be made, such as
placing halfpegs into holes, fitting different
sized blocks together, and fitting blocks so that
their outside edges are flush, but the blocks are

not connected in any way (e.g. blocks B and D
can be connected in this way if block B is
rotated 180 degrees and placed alongside block
D with their quarter circles aligned).  How an
incorrect construction is produced can help
give insights as to what task knowledge is
known.  For example, if a subject always
produces incorrect constructions which are
flush on their outer edges, then this implies that
some knowledge of the appearance of correct
constructions is known.  Error-free
performance involves twenty correct
constructions; three for the production of each
of the five layers (for example, placing the peg
of block A into the hole of block B to make a
pair, the same process for blocks C and D, and
then fitting the two pairs together), and five for
stacking layers.

A model and simulation of the Tower task
Both a cognitive model and a task simulation
have been developed for the task; the two
interact in order to complete the pyramid.  The
cognitive model is based in the ACT-R
cognitive architecture (Anderson, 1993) and
consists of 317 rules.  Learning involves
altering the strength of rules based on the
perceived success or failure of the rules in
achieving construction goals.  The model
interacts with a simulation of the task which
includes all blocks and block features, and an
eye and two hands.  The model directs the eye
and hands in order to look at what objects are
on the table, and to pick up, drop, assemble, and
disassemble blocks and constructions.

For the simulated eye, three areas of
decreasing visual quality are defined: fovea,
parafovea, and periphery.  To be certain of
viewing blocks and features correctly, they must
be seen in the fovea.  New information
concerning what the simulated eye sees is only
given to the model when the model requests a
fixation from the simulated eye.  Both the
decreasing visual quality and the model being
forced to request information from the
simulated eye mean that the model's view of the
world is not the same as the external task
simulation's.  This causes occasions where
blocks will be selected which do not have the
particular features that the model was looking
for.  Subjects also show this type of behaviour.

The model also incorporates timing
estimates, meaning timings for the complete
task and sub-components of the task can be
predicted by the model.  The timings are based
on combining cognition and interaction.  Times
for cognition are taken from ACT-R and are
based on its default parameters.  For interaction
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times, times for the eye are in accordance with a
review of the vision literature (Baxter & Ritter,
1996), and the hand movement timing is based
on an estimate from the adult subjects (Jones &
Ritter, 1997).

A comparison of the model's behaviour and
adult's behaviour on the Tower
The behaviour of ten runs of the model will be
compared to the behaviour of five adult
subjects completing the Tower task.  The
methods by which the subject and model data
were obtained will be briefly described,
followed by a comparison of the two across
several measures of behaviour.  The validated
model can then be used to examine specific
aspects of interaction, such as the specific
allocation of task time to each different process
of interaction.

Obtaining the adult and model data
Five adult subjects who had never encountered
the task before were used.  The subjects were
asked to build the Tower unaided, whilst giving
verbal protocols.  All construction behaviour
and verbalisations were transcribed.  The results
of the construction behaviour will be reported
here (the verbalisations aided the development
of the cognitive model).  Ten runs of the model
are used to compare the model's results to the
subject's results, in order to minimise the effects
of the random components that the model has
(e.g. a random unseen block is selected when
the model wishes to fixate on a block it does
not yet know the features of).  The construction
behaviour of the model was automatically
transcribed in exactly the same way as the
transcriptions for the adult behaviour.  In this
way, exactly the same analyses can be carried
out for both the adults and the model.

Comparison of adult and model behaviour
There are two types of measure that the model
has been compared with: overall measures and
the same measures taken over a series of layers
(Jones, 1998).  The overall measures describe
general task behaviour in building the Tower,
such as the time taken and the number of
constructions made.

These same measures taken over a series of
layers indicate if there is any learning taking
place whilst building the Tower.  This type of
analysis is necessary because the task involves
building five layers where the blocks in each
layer share the same characteristics.  Learning
should occur because each subsequent layer

should take less time to construct.  The overall
measures and layer-by-layer measures will be
shown in turn so as to illustrate the general fit
of the model to the adult data.

Overall measures
A variety of overall measures exist.  The two
most important measures, which are reported
here, are the time taken to complete the Tower,
and the number of constructions made in
completing the Tower (these define the task and
influence scores on other overall measures).
Table 1 shows that the model provides a close
match to the subjects for the two primary
measures of overall behaviour.  Jones (1998)
shows that the model matches the subject data
on a total of seven out of nine measures of
overall behaviour.

Table 1.  Time taken and number of
constructions made in completing the Tower
for adults and the model. Standard deviations
are in parentheses.

Adults
(N=5)

Model
(N=10)

Time taken 126.6 s (34.0) 129.0 s (31.5)

Construction
attempts

22.8 (2.9) 23.1 (2.4)

Layer-by-layer measures
Learning is expected to occur throughout the
task because the layers of the Tower share the
same block characteristics.  Subjects should be
faster at constructing subsequent layers as they
become more familiar with the block and
construction characteristics.  Figure 2 shows the
mean time taken to construct each layer for the
adults and the model.  There is a good
correlation between the adults and the model
for the mean time taken to construct each layer
(r=0.96), but not for the mean number of
constructions made in producing each layer
(r=0.40) because the curve for adults is flat.
Comparisons are also favourable for the RMS
error for each layer, which indicates the average
percentage difference between the model scores
and subject scores for each layer.  The RMS
error is good for both the time to construct
each layer (4.1%) and the number of
construction attempts made in producing each
layer (5.7%).



6 8 July 2001

�

�

�

�

�

Size6 Size5 Size4 Size3 Size2
0

5

10

15

20

25

30

35

40

T
im

e 
(s

ec
on

ds
)

Layer

� Adult subjects

Model
50

60

70

Figure 2.  Time taken (in seconds) for adults
and the model to complete each layer.  Error
bars are to the left for adults, right for the
model.

Looking at the inner working of the model
Having a model which matches the data this
well and which interacts with an external task
simulation, allows several questions regarding
interaction to be answered in a more theoretical
way.  The first is to examine whether the speed-
up in constructing subsequent layers is because
of the reduced visual search that is required
(because there are less blocks on the table).
The second is to examine to what extent eye
and hand timings predict task behaviour.  The
third shows additional benefits of using a task
simulation which is external to a cognitive
model.

Does reduced visual search account for all of
the speed-up in layer building?
With these adult subjects, the reduction in time
to construct layers combined with a relatively
fixed number of construction attempts per layer
suggests that task learning by adults is not due
to more efficient construction strategies or due
to making less construction errors.  The
reduction in the time to produce subsequent
layers is perhaps because there are less blocks
to select from as the task progresses (i.e. the
reduction is due to reduced visual search).

The task simulation enables the behaviour
of the model to be analysed in more detail to
find where the time is spent when constructing
each layer.  The interaction between the model
and the task simulation allows the extraction of
timings for moving and fixating the eye,
manipulating the blocks, and cognizing.  The
time spent on each of these processes can be
seen in Figure 3.

The model does not incorporate learning in
its simulation eye and simulation hands, so the
timings allocated to a single eye movement (50
ms), a single fixation (200 ms), and a single
hand movement (550 ms) are fixed across the
task.  A decrease in interaction time thus
represents less interactions, not faster
interactions.  The lack of learning in perception
will slightly over-estimate eye movements and
fixations, but the perceptual skills used in the
task should be fairly well practised.
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Figure 3.  Contributions (in terms of time) of
cognition, hand movements, and eye
movements and fixations involved in
completing each layer of the Tower.  The final
layer (the single pinnacle block) is omitted
because it is trivial.

The reduction in the amount of eye and
hand use accounts for 84% of the total
reduction in time taken between constructing
the first layer (size6) and the second layer
(size5).  The reduction in the amount of eye
and hand use accounts for 42% of the
reduction in time taken for the second and third
layers constructed (size5 and size4).  A
reduction in cognitive effort therefore accounts
for 16% and 58% of the reduction in time
taken between the first and second, and second
and third layers respectively.  The reduction in
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time between the first, second, and third layers
is due to cognitive learning as well as a
reduction in visual search.  This would suggest
that adults are learning on the task even though
it is not reflected in their construction attempts.
The timings for the eye and hands remain
constant after the size4 layer is produced,
suggesting a minimum time for searching and
constructing the blocks involved in the task.
This helps to explain why adult performance
does not improve much after completing the
size4 layer.

The fact that eye movements, fixations, and
hand movements are having a marked influence
on the reduction in layer timings (they also
account for 52% of the total time to complete
the Tower) indicates that to ignore interactions
with the environment will lead to cognitive
models under-predicting task elements.

Simulations carried out within the EPIC
architecture also show the influence of
interaction on task times.  For example, one
simulation shows that behaviour in highly
interactive short time-span tasks such as menu
search cannot use a serial-search strategy.  For
serial-search, the time expenditure in eye
movements and fixations would mean subjects
had no time to process any of the information –
therefore there has to be some parallel
processing (Kieras & Meyer, 1997).  Using
EPIC’s interaction constraints enabled some
hypothesised task strategies to be ruled out
because subjects could not have completed the
task as quickly as they did if they had used the
strategies.

There could be problems in placing so
much emphasis on eye and hand timings,
because the model and task simulation do not
incorporate any learning in their perception
and action.  However, the findings should still
be reliable for two reasons.  First, a large
amount of the eye and hand behaviour occurs
during the building of the first two layers—no
significant speed-up would be expected this
early into the task (in fact, Zelinsky and
Sheinberg, 1995, did not find any differences
in fixation duration for a visual search task
involving 17 items over the same task involving
only 5 items – time differences were due to the
time taken to initiate the first eye movement).
Second, the eye and hand timings account for
more than half of the overall task time; even if
speed-up was included, the eye and hand
timings would still account for a significant
portion of task times.

To what extent do eye and hand timings
predict task behaviour?
The extent to which the eye and hand timings
influence the overall behaviour of the model
can be examined by seeing how well the eye
timings, and the hand timings, correlate with the
model timings as a whole.  For clarity,
cognition timings will also be correlated.  The
time spent on each of the three individual
processes (eye, hands, cognition) in the model
correlate very well with the full model for
timings per layer (minimum r=0.97).  The eye
and hand timings per layer also correlate very
well with the model's construction attempts per
layer (r=0.97 and r=1.00 respectively),
although the correlation between the cognitive
timings per layer and construction attempts per
layer is not as high (r=0.87).

The eye and hand timings are better
predictors of the number of construction
attempts that the model makes than cognition
timings are.  This is because some fit attempts
are aborted before a physical construction
attempt is made.  For example, features seen in
the parafovea are subject to a certain amount of
noise.  This means one feature (e.g. a halfpeg)
can be mistaken for another (e.g. a peg).  Once
the features are in the fovea the mistake will be
caught and the fit attempt may be aborted.
This represents cognitive effort without the
observed behaviour of attempting to fit blocks.
To some extent this may explain why adult
timings and construction attempts do not
correlate well, because the task time increases
without there being a corresponding
construction attempt.

Having eye and hand timings that are easy
to extract from the model means that it is
relatively straightforward to see the extent to
which the eye and hand timings predict the
behaviour of the adult subjects on the task.  If
they are a good predictor, then this suggests
that the eye and hands play a significant role in
task behaviour.  The extent to which the eye
and hand timings predict the behaviour of adult
subjects can be examined by correlating the
time spent on each process with the time the
adult subjects take to complete each layer.  This
is shown in Table 2 (which includes cognition
timings, for clarity).  The correlations for the
eye, hand, and full model timings are all similar
in how well they correlate with the adult subject
layer timings.  This suggests that a good
predictor of task time is the time spent looking
at and manipulating blocks (this data is not
available for the adult subjects).
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Table 2.  Correlations between adult subjects and the model when individual model processes are
extracted out of the timing data.

Model process Process time
Correlation with

adult layer timings

Correlation with
adult layer

construction
attempts

Eye movements and fixations 27.5 s (21.8%) 0.97 0.35

Hand movements 38.5 s (30.6%) 0.98 0.37

Cognition 60.0 s (47.6%) 0.91 0.32

Full model (excluding

stacking final top block)
126.0 s (100.0%) 0.96 0.40

The time spent interacting with the
simulation eye and hands should also correlate
well with the number of construction attempts
that adults produce, because any interaction is
toward the goal of completing each layer.
Further construction attempts should mean
more fixations on blocks, and more blocks
being manipulated by the hands.  Table 2
shows that this is not the case, mainly because
the curve for adult construction attempts is flat.

The correlations show that the eye and hand
timings are a better predictor of task behaviour
than cognition timings.  The is an important
finding because it again shows the importance
of using a task simulation for interactive tasks:
the time spent on interaction is the best
predictor of task behaviour.

What benefits does an external task simulation
give?
Tasks of a physical nature, such as the Tower
task, gain clear advantages by having an
external task simulation.  One reason for this is
that all of the important features of the task
environment can be properly represented.  In
the Tower task, the simulation is able to
precisely ascertain whenever any object
prevents two other objects from being fit
together (for example, if there is an obstructing
block in between two blocks that the model is
trying to fit together).  When the model knows
the hands are holding two blocks (or
constructions), it performs a mental operation
of fitting the blocks together.  The model only
proceeds with actually fitting the blocks if the
result of this mental operation is positive.
There is an average of 17.4 of these pseudo-
construction attempts (in that they are not
actually carried out) each time the model
completes the Tower, suggesting that they
account for a reasonable amount of the task

time.  Determining whether a block will
obstruct the fitting together of two other blocks
would be more difficult to accomplish if done
within the modelling environment, because the
modelling environment is not normally a
specialised language for dealing with graphical
objects.

There are other advantages to having an
external task simulation, such as the ease with
which simulation specific variables can be
altered to test alternative theories.  For example,
the timings associated with eye movements and
fixations can be altered easily to test
developmental psychology hypotheses that
propose that children’s behaviour may be due
to taking longer to look and act.  When eye
movement timings are increased to 100 ms
(from 50 ms) and fixation timings increased to
400 ms (from 200 ms), the time for the model
to complete the task increases from 129.0 s to
156.5 s.  When hand movement timings are
increased to 1050 ms (from 550 ms), the time
for the model to complete the task rises to
164.0 s.  These and other similar modifications
have been used examine theories of behavioural
differences between adults and children’s
performances on the Tower (Jones, 1998).

Conclusions
Having a model interact with an external task
simulation provides several benefits in this
example task.  Most importantly, it has allowed
a fine grained comparison between subject
behaviour and the model’s behaviour.  An
external task simulation provided the model
with an environment where it could perform
more of the actions that the subject performed.
This allowed the model’s behaviour to closely
match subject behaviour on the task.  The
explicit perceptions and actions supported more
detailed predictions of task times, which could
be compared with subject times.  These
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comparisons also hold across learning—the
timing predictions from the model, on a layer-
by-layer basis, matched the adult subjects.

The closeness of the match between the
behaviour of the model and that of subjects’
supported a detailed analysis of task time.
Analysing the time spent on cognition and
interaction showed that the interactive nature of
the task accounted for just over half of the total
task time.  The model was able to predict this
based on the number of interactions with the
external task simulation that were necessary to
complete the Tower.  Although the time spent
on interaction may be slightly high because no
learning occurs in the model’s perception and
action components, and because interaction and
cognition are performed serially, interaction
still clearly represents a significant amount of
total task time.  The close fit between the model
and subject data suggests that adults must also
spend a significant amount of time interacting
with the task.

The model shows that, for tasks of a highly
interactive nature (such as many direct
manipulation HCI tasks), any cognitive model
which does not include a simulation of the task
is likely to over-estimate the cognitive aspects
of the task.  This is likely to be one of the
aspects of behaviour that Kieras (1985) has
alluded to when models run too fast.  The task
used is comparable to larger scale HCI tasks
such as CAD/CAM design where a large
proportion of the task involves interaction.  As
such, any models of user behaviour on HCI
tasks will be best served by having the model
interact with an external task simulation.

The results have shown that a physical and
highly interactive task can be successfully
modelled using a cognitive model and an
external task simulation.  The variety of
measures used meant that a detailed analysis of
the task behaviour (such as how much time was
spent interacting) was possible.  Using various
measures to match model-subject data also has
a welcome side-effect: it helps to reduce the
“black box” criticism of cognitive models
(e.g. Searle, 1980/1997).  This criticism
suggests that there is little way of knowing that
the processes carried out in the model reflect
the processes carried out by subjects.  By
matching the subject behaviour on as many
measures as possible, the scope for this criticism
is reduced.  This is a general advantage of
modelling tasks which have many observable
measures.

The findings that have been presented
indicate that when modelling any task which
involves interaction, it is important to also have

a simulation of the task which the model is able
to interact with.  Two critical benefits arise from
including a task simulation: there is less
likelihood that cognition time will be over-
estimated, and a more fine grained analysis of
task behaviour can be carried out.  In
combination, these benefits allow attention to be
focused more appropriately on how much time
the user spends performing each task process.
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