Cogn Process (2005) 6: 142-146
DOI 10.1007/s10339-005-0052-4

LABORATORY NOTES

Lucio Inguscio - Frank E. Ritter

Applied Cognitive Science Laboratory at the Pennsylvania State University

Received: 13 December 2004 / Revised: 7 February 2005/ Accepted: 7 March 2005 / Published online: 10 May 2005

© Marta O. Belardinelli and Springer-Verlag 2005

Introduction

The Applied Cognitive Science Laboratory of the School
of Information Sciences and Technology at the Penn-
sylvania State University is situated in the town of State
College, PA, just about halfway between Pittsburgh
(Carnegie-Mellon University) and Philadelphia. The
head of laboratory is prof. Frank Ritter, who is inter-
ested in cognitive science and in its applications to hu-
man—computer interaction. The focus of research in this
lab is to understand human cognition by modeling its
output and process, creating models that can explain its
behavior, testing human—computer interfaces, and
serving as colleagues and opponents in simulations. The
projects are focused on models that learn, ranging from
how to provide them access to interfaces to analyzing
the effects of moderators (e.g., caffeine) on cognition.
Projects have also been created to simulate children’s
cognitive development. Therefore, behind this general
purpose, the research objectives are: (1) creating models
that more accurately reflect human behavior, (2) sup-
porting models to interact with a wider range of inter-
faces and more accurately (St. Amant et al. 2004), (3)
summarizing human behavior in reviews through the
gathering of additional data to support model building,
(4) developing models that are easy to understand and
that are reusable, and (5) building modeling tools. In this
paper, the authors show the tools used in ACS Lab in
order to summarize the benefits in their application and
to point out how they might be reused. Further infor-
mation is available at http://acs.ist.psu.edu/.

L. Inguscio (D<)

Department of Psychology, University of Rome ““La Sapienza”,
via dei Marsi 78, 00185, Rome

E-mail: lucio.inguscio@uniromal.it

F. E. Ritter

School of Information Sciences and Technology, Pennsylvania
State University, University Park, PA 16802, USA

E-mail: frank.ritter@ist.psu.edu

Behavioral moderators and CafeNav suite

A behavioral moderator, broadly defined, is any sub-
stance or factor that causes a change to an individual’s
physiological state there by altering the behavior of an
individual.

Current and forthcoming research have indicated
that behavioral moderators play a significant role in
almost every human behavior (Tomaka and Blascovich
1993). Since the Applied Cognitive Science Lab is very
interested in both learning from and replicating human
behavior, it is important to us to study and hypothesize
about the effects of behavioral moderators.

Our current hypothesis is that behavioral moderators
are quantifiable and that specific moderators affect
cognition and behavior in a consistent relationship.
Furthermore, we believe that we can derive the repre-
sentational formula of this relationship and implement
in a Cognitive Architecture Overlay (Ritter et al. 2004).
The specific behavioral moderator that we are choosing
to examine currently is caffeine.

Caffeine is the most popular psychoactive substance
in the world; we are not yet able to model its effects on
cognition. For this to be possible, cognitive architectures
must advance by adding overlays. Caffeine’s cognitive
effects are entirely dependent on how much caffeine is
currently in the body. Therefore, the pharmacokinetics
of caffeine must be examined with particular attention
on uptake and decay rates and dose-response curves.
Cognitive effects of caffeine appear to include: faster
reaction times, faster semantic processing, faster logical
processing, and increased subjective alertness (Lieber-
mam et al. 2002).We are using four specific tasks with
corresponding ACT-R models to gather and analyze
participants data.

1. Signal detection: In this task, we are using signal
detection theory to analyze the participant’s ability to
detect and to respond to ambiguous stimuli. In this
task, participants are asked to respond when they see



a circle. The circles appear for only 300 ms and they
are displayed at quasi-random locations on the
screen. Alternatively, squares can appear; however,
participants are asked to ignore these squares as noise
(false stimuli). We collect data throughout this pro-
cess, recording accuracy and response time.

2. MODS task: In this task, developed by Lovett, Re-
der, and Lebiere, working memory capacity is tested
by asking the participant to audibly repeat a list of
letters that are displayed one at a time and then
remember the digit presented at the end of the list.
There are three to six letter lists presented on each
trial, and thus the participant is asked to recall a three
to six digit number per trial.

3. Driving task: In this task, we asked participants to
play a video-game driving task (Fig. 1). Throughout
this task, we collect participants’ data monitoring the
key presses that control the driving process.

4. Serial subtraction: In this task, we ask participants to
start subtracting seven or thirteen from a given value.
We assess their mood and emotional status in order
to model the affects of emotion and worry. We have
conducted and will continue to conduct research on
the effects of behavioral moderators on a serial sub-
traction task. Currently, we are upgrading our cog-
nitive model from the ACT-R 4.0 architecture to the
ACT-R 5.0 architecture (Anderson 1998).

We have started to collect data from 135 subjects
performing most of these tasks, the CafeNav suite, un-
der a 3x3 design (0, 200, 400 mg caffeine), (serial sub-
traction, Argus and the driving task).

Testing these models will be useful for at least three
things. First, they will help to validate the models.
Currently, moderators are included in models, but it is
not clear that the changes lead to more accurate
behavior, they may just lead to different behavior. Sec-
ond, they will tell us where to improve the models. The
test that shows that a modified model’s behavior is
similar to human’s one is useful to validate the model.
The tests that show the model’s behavior is different will
also show where to improve the model. However, this is
more valuable in some sense, because it leads to pro-

o Applet Viewer: Driver.class
Applet
Checkpoints: 1 Speed: 73 Oriving Time: 21

T3

Fig. 1 The screen displayed during the driving task

143

gress. Finally, this will lead to a better science of human
behavior.

dTank 2.0

The project in the previous section offers a significant
advantage: including the effects of the behavioral mod-
erators in models will lead to more believable and useful
agents to train with, to train against, and to use within
synthetic environments. Improving models in this way
represents a move from multiple simple opponents to a
smaller number of more intelligent opponents (e.g., the
increasing complexity).

Modeling teams are becoming an increasingly active
topic for the research communities of multi-agent sys-
tems, cognitive modeling, and decision making. Many
research efforts have tried to use software-agents to
model teamwork. However, we found little work has
been done comparing different methods with common
experiments. The agent-based modeling and behavior
representation (AMBR) project has compared different
cognitive process modeling in a military simulation
environment (Gluck and Pew 2001), but it has only
examined single agent behavior so far. In teamwork
modeling, different architectures or models are often
evaluated with different domains, which are not com-
parable. For example, STEAM (a Shell for Teamwork)
used a helicopter combat scenario as a simulator (Tambe
1997), while collaborative agents for simulating team-
work (CAST) used a Wumpus grid-world as its test-bed
(Yen et al. 2001). Consequently, it is difficult to evaluate
teamwork performance between two architectures. As a
first attempt to address the issue, we conducted an
empirical study to compare team performance. First, we
built agent teams with two different architectures: CAST
and Soar. Then, we tested them within the dTank sim-
ulation.

dTank is a tank game simulator for agents in a dis-
tributed environment. dTank provides an architecture
and platform neutral test-bed for adversarial real-time
cognitive models, and a tool for teaching cognitive
modeling, and agent creation. It was inspired by the
Tank-Soar, and ModSAF systems.

E; = [B]K]
Health. 10 Ammo- 20

Fig. 2 The 3D interface used by the human



144

dTank 2.0, like Tank-Soar, is a simulation game,
created by Isaac Councill, where a user’s tank wages
battle with one to many agent-controlled tanks or other
users. A first-person view of the game is also available,
developed by Alexander Wood (in http://acs.ist.psu.edu/
dTank). Agents to play dTank are available in Java,
Jess, Soar, and Herbal (Soar).

Both agents and the server interpret the game like a
2D world. The 3D interface used by the human player is
an interpretation of the 2D world (Fig. 2).

Although agents live in a 2D world, they have a vi-
sion component and are limited to seeing only what a
human could see with the 3D interface (a small step
toward what has been called the fog of war). Therefore,
although the 2D plan view display is available to the
user, its use should be limited to demonstration work
with agents, and to debugging; it should not (and has
not been enabled to) be used for modeling human
behavior. This 2D interface eases debugging by allowing
the modeler to see tank actions and determine if those
actions make sense or if an agent needs revision.

Results

As individual models become aggregated into teams of
models, comparing architectures for teamwork modeling
will become more important for cognitive engineers
making decisions on choosing tools and implementing
models. Through a set of experiments, we compared two
architectures and their behaviors. Compared with Soar,
CAST has more features that are designed specifically
for modeling teams, and performed well where increased
communication was useful. Furthermore, we grouped
the knowledge into domain-dependent knowledge and
domain-independent knowledge. The domain- indepen-
dent knowledge is needed to compliment certain features
from the architecture. In the Soar team, for example,
knowledge about how to aim a gun at an enemy is do-
main-dependent; knowledge on how to compose mes-
sages is domain-independent. In CAST, communication
is a part of the architecture. Therefore, the boundary
between domain-independent knowledge and architec-
ture can be blurred. Different architectures may be able
to capture or use different domain-dependent knowl-
edge. When we compare the knowledge coded for CAST
and Soar, we find that Soar can incorporate more
knowledge for making decisions. Although the above
findings are not conclusive, we have learned lessons on
the relations between architecture and knowledge: (1) by
including equivalent knowledge, a Soar team can per-
form collaborative behavior that is partially similar to a
CAST team; (2) some team behavioral differences are
difficult to resolve with knowledge alone; (3) the exper-
iments suggest that capturing teamwork behaviors as a
part of the architecture or as a part of the agent’s
knowledge is important and perhaps equivalent decision
choice for team modeling; (4) human teams may vary on
the teamwork behavior. Is it also affected by differences

in knowledge? The question will motivate us to collect
human data and compare with the models.

Purpose of dTank

To summarize the usefulness of this project, dTank is
intended to serve in three distinct but related roles,
teaching, cognitive modeling, and agent creation.

1 As a teaching tool. dTank provides a simple, well-
documented environment for experimenting with
agent programming. A sample API for Soar agents is
included with the dTank distribution, and instructions
exist within this manual for creating interfaces for
other types of agents. dTank supports protocol cap-
ture from human players. Students can use dTank to
study cognitive modeling techniques including model-
to-data fitting, in addition to general Al applications.

2 As a modeling tool. Due to the protocol capture
facility mentioned above, as well as dTank’s com-
munication layer, dTank provides a good environ-
ment for modeling both individual and team
phenomena. Any cognitive architecture that can be
made to support socket communication can interact
with dTank. The communication layer is general en-
ough that virtually any theory of multi-agent com-
munication can be tested. One experimental setting
could be, for example, studying how a user works with
a social environment defined by a set of agents with
known characteristics, knowledge, and behavior.

3 As a developmental test-bed for advanced Al applica-
tions. The primary reason for the development of
dTank was to create a tool to investigate the usability
of distributed Al (multiagent) systems. In particular,
the ACS Lab is using dTank to inform the develop-
ment of tools that help to explain the behavior (both
actual and intended) of complex cognitive models to
that of the modeler and human opponents of these
models. This effort is aimed to improve the usability
and usefulness of applied agent technologies, as well
as to provide improved facilities for the validation of
model behavior.

Choosing and getting started with a cognitive
architecture

Cognitive architectures are useful to a wide variety of
users. Computer scientists, psychologists, cognitive sci-
entists, and various domain experts can all use cognitive
architectures. Unfortunately, designing, implementing,
and using cognitive architectures can be a difficult task
considering that the background and expertise of this
diverse set of users varies from novice to expert. In
addition, the tasks performed by users of such archi-
tectures can vary considerably, and can include a wide
variety of tasks. It is essential that development envi-
ronments are created to allow the modeler to focus more



on the problem domain, and less on the details of a
particular architecture, in order to accommodate the
wide range of users and to promote the use of cognitive
systems. An example answer is herbal.

Herbal

We are working on an integrated development envi-
ronment called Herbal that acts as a first step toward
creating development tools that support the wide range
of users of cognitive models. Users can create models
graphically using it, and they can have these models
compiled into Soar productions. The productions will
work as any Soar model does. The structure of the
model can be passed to an associated tool that can help
to display and to explain the model and how the model
runs. Last fall, in IST at Penn State University, 35 stu-
dents used it in a senior-level course on cognitive mod-
eling.

The design of herbal is based on question that users
ask about a model (Council et al. 2003).

A tutorial exists for the herbal integrated develop-
ment environment (IDE) (version 0.9) and Herbal
Viewer (version 0.8); the latest versions are available for
download at http://acs.ist.psu.edu/projects/herbal (Co-
hen 2005).

A short note on the Dismal spreadsheet
Sequential data

Dismal was developed to support sequential data (pro-
tocol) analysis. It provides typical support for explor-
atory sequential data analysis, such as the ability to
compute word counts, to search for lines matching given
patterns, and to semi-automatically assign codes to
segments. Furthermore, it supports aligning predictions
with sequential data, for example, a model trace and
verbal utterances. When a complete description of cor-
respondences can be provided such as keystrokes by the
subject and the model, the two sequences can be auto-
matically aligned. When the comparison is less clear,
such as between a subject’s verbal utterances and the
representations in the model, semi-automatic commands
allow an analyst to align items by pointing. Together,
these commands substantially reduce the work of testing
cognitive models with protocols by up to a factor of five
(Ritter and Larkin 1994), allowing such analyses to be
performed more often and with more insight.

HCI experimentation

Dismal is useful in teaching principles of HCI because it
is instrumented—it is possible to automatically record
each user action and the time it occurred. We have
found that undergraduates are able to use this in 5 week

145

practical to gather realistic user data and test HCI the-
ories [e.g., the keystroke model of Card et al. (1983)]. As
the source code is provided, dismal can be used itself as a
test bed for evaluating various interface designs, and
comparisons can be based on actual user data.

Extendibility through implementation in GNU Emacs

Dismal is implemented as part of and it is now included
in the distribution for the GNU-Emacs editor, which
leads to four relatively novel features. (1) Dismal is
mainly keystroke driven although it can be partially
mouse and menu driven. For example, the key binding
to cut a region of text now cuts a range of cells. This
leads to ease of use for expert users, a high transfer of
skill for Emacs users, and a large potential user base. (2)
Dismal is directly extendible because its Lisp source code
is provided. This allows users to write their own custom
commands, for example, to count the occurrences of
sequences in a column. (3) Its architecture is designed to
allow it to be given commands from an associated pro-
gram. This permits models of human behavior to use it
as an interactive task environment. These models can
either be written in the native Lisp code or called as an
associated Unix process.

More about GNU and dismal at http://www.
gnu.ai.mit.edu/ (Ritter and Wood 2005).

Categorical data display—CaDaDis

Categorical data display is a tool that shows the inner
workings of a cognitive model through a visualization.
The screenshot is an example of the Waterjug demo
running on Soar (Fig. 3).

It is our belief that these multiple views into the
model help in learning how to develop cognitive models,
debugging models, comparing models, and comparing
architectures. Agent displays that are generated auto-
matically are not uncommon in the area of cognitive

File View Soar Help
[Pert_| Nonstandard Pert | Gantt |

CODE —

| »

initialize

initialize

fill

[«]

-

I ¢ Jl4] i I3

4] Tl

Fig. 3 A Soar model for waterjug task



146

science. For example, there were similar displays in
CPM/GOMS, APEX, and the TSI.

Our display offers two Pert Charts and one Gantt
Chart. Other displays can and will be included in the
future. The two Pert Charts are the standard Pert Chart
and the variation based on the work of Bonnie John
et al. (2002) where the action occurrence is displayed,
but not the length. The CaDaDis can be used in con-
junction with different cognitive architectures since the
graphics stem from messages. As long as messages can
be pulled from the agent, a display can be generated
(Tor et al. 2004).

Categorical Data Display is written in Java using the
Vista package created by SoarTech. Currently, there are
three cognitive architectures that are able to create dis-
plays, Soar, ACT-R, and JESS. JACK and CAST are
the next two to be included.

Preliminary results show that CaDaDis is successful
in showing model behavior. It can create unique displays
showing information with more clarity than textual
traces. It provides nice displays of model activity in two
different architecture. Furthermore, it can prove useful
in debugging cognitive models by analyzing rule usage,
whether certain operators fire, and so on. The reuse of
these displays with cognitive architectures (Soar and
ACT-R) suggest that the first major reuse of cognitive
modeling and agent behavior may be in interface design
and not in the knowledge. This might not be that sur-
prising, given that the interface code looks more like the
code that gets reused now. Interfaces make up about
50% of most systems (Meyers and Rossen 1992). If this
is true, which we believe, it can be for cognitive models
and agents using CaDaDis, this is a very worthwhile
result.

Acknowledgments The authors wish to thank Andrew L. Reifers
and Geoffrey P. Morgan for material from their web sites that we
used.

References

Anderson JR, Lebiere C (1998) The atomic components of
thought. Lawrence Erlbaum, Mahwah, NJ

Card S, Moran T, Newell A (1983) The psychological human-
computer interaction. Lawrence Erlbaum Associates, Hillsdale,
NJ

Cohen M (2005) Version 0.9 of the Herbal IDE/Viewer Tutorial,
from http://acs.ist.psu.edu/projects/herbal/index.html

Council IG, Haynes SR, Ritter F (2003) Explaining soar: analysis
of existing tools and user information requirements. In: Pro-
ceedings of the 5th international conference on cognitive
modeling, Bamberg

Gluck KA, Pew RW (2001) Overview of the agent-based modeling
and behavior representation (AMRB) model comparison pro-
ject. In: Proceedings of the 10th computer generated forces and
behavioral representation conference

John B, Vera A, Matessa M (2002) Automating CPM-GOMS. In:
Proceedings of the CHI’02 conference on human factors in
computer systems, New York

Liebermam HR, Thairon WJ, Shukitt-Hale B, Speckman KL,
Tulley R (2002) Effects of caffeine, sleep loss, and stress on
cognitive performance and mood during U.S Navy SEAL
training, from http://link.springer.de/link/eservice/journals/
00213/contents/02/01217 /paper/s00213-002-12179ch000c.html

Meyers BA, Rossen MB (1992) Survey on user interface pro-
gramming. In: Proceedings of CHI’92, New York

Ritter FE, Larkin JH (1994) Using process models to summarize
sequences of human actions. Hum-Comput Interact 9:345-383

Ritter FE, Wood A (1991, revised every 6 months since 1991).
Dismal, a spreadsheet for GNU Emacs, from http://
www.gnu.org/software/dismal

Ritter FE, Wood AB (2005) Dismal: a spreadsheet for sequential
data analysis and HCI experimentation. Behavior Research
Methods, Instruments, and Computers

Ritter FE, Reifers A, Klein L, Quigley K, Schoelles M (2004) Using
cognitive modeling to study behavior moderators: pre-task
appraisal and anxiety. In: Proceedings of the human factors and
ergonomics society, Santa Monica, CA

St. Amant R, Horton TE, Ritter, FE (2004) Model-based evalua-
tion of cell phone menu interaction. In: Proceedings of the
CHI'04 conference on human factors in computers systems,
New York

Tambe M (1997) Towards flexible teamwork. J Artif Intell 33(1):
1-64

Tomaka J, Blascovich J, Kelsey RM, Leitten CL (1993) Subjective,
physiological and behavioral effects of threat and challenge
appraisal. J Pers Soc Psychol 65:248-260

Tor K, Haynes SR, Ritter FE, Cohen MA (2004) Categorical data
displays generated from three cognitive architectures illustrate
their behavior. In: Proceedings of the 17th international joint
conference on artificial intelligence (IJCAI-01), Los Altos

Yen J, Yin J, loerger TR, Miller MS, Xu D (2001) CAST: col-
laborative agent for simulating teamwork. In: Proceedings of
the 17th international joint conference on artificial intelligence
(IJCAI-01), Los Altos



	Sec1
	Sec2
	Sec3
	Fig1
	Fig2
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Sec12
	Fig3
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR9
	CR10
	CR11
	CR18
	CR20
	CR12
	CR14
	CR15
	CR16
	CR17
	CR19

