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ABSTRACT 

 

We introduce an approach to model and simulate the early mechanisms of emergent 

cognition based on theories of enactive cognition and on constructivist epistemology. The 

agent has intrinsic motivations implemented as inborn proclivities that drive the agent in 

a proactive way. Following these drives, the agent autonomously learns regularities 

afforded by the environment, and hierarchical sequences of behaviors adapted to these 

regularities. The agent represents its current situation in terms of perceived affordances 

that develop through the agent’s experience. This situational representation works as an 

emerging situation awareness that is grounded in the agent’s interaction with its 

environment and that in turn generates expectations and activates adapted behaviors. 

Through its activity and these aspects of behavior (behavioral proclivity, situation 

awareness, and hierarchical sequential learning), the agent starts to exhibit emergent 

sensibility, intrinsic motivation, and autonomous learning. Following theories of 

cognitive development, we argue that this initial autonomous mechanism provides a basis 

for implementing autonomously developing cognitive systems. 
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1. INTRODUCTION 

We introduce a model that simultaneously addresses three issues regarding cognition: 

intrinsic motivation, autonomously constructed internal state, and adaptive learning. The 

first issue, intrinsic motivation, is the question of implementing a system whose behavior 

is driven by inward forces, impetus, or proclivity (e.g., Blank, Kumar, Meeden, & 

Marshall, 2005; Oudeyer & Kaplan, 2007). Intrinsically motivated behavior contrasts 

with extrinsically motivated behavior that consists of performing a task, seeking a goal, 

or solving a problem as prescribed or defined by an external person.    

The second issue is the question of autonomously constructing an internal state that 

reflects the agent’s situation. Such an internal situational state allows the agent to adapt 

its behavior to the current context. In cognitive science, the agent’s situational state is 

generally referred to as the agent’s representation of the situation or, in human factors, 

situation awareness (Endsley, 1995). The term perception may also be used insofar as 

perception is taken as a cognitive construct rather than simple data received from the 

environment (e.g., Bajcsy, 1988). If autonomously constructed, the internal situational 

state reflects how the agent experiences the situation rather than how the designer models 

the situation. In other words, we expect an autonomous situational state to rest upon 

minimal ontological commitments made by the designer about the environment. 

Moreover, the designer should not predefine the semantics of such situational state nor 
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implement this semantics in the form of a reasoning mechanism based on predefined 

ontology. Many authors (e.g., Dennett, 1991; Hurley, 1998; Pfeifer, 1996) have agued 

against such cognitive modeling based on predefined ontology.  In essence, these 

arguments prompt us not to implement a “Cartesian theater” (Dennett, 1991) where the 

representation would be interpreted by a “homunculus” (Pfeifer, 1996). Instead, the 

internal state should be directly operative by being interwoven with the motivational 

mechanism that gives rise to behavior (Weill-Fassina, Rabardel, & Dubois, 1993). 

The third issue is the question of adaptive learning through interaction. Most studies 

in adaptive learning distinguish between a learning phase where the knowledge is 

acquired, and a performance phase where the learning is assessed. Aha (1998) highlights 

two categories of learning algorithms according to how the computation is balanced 

across these two phases: eager learning and lazy learning. Eager learning algorithms 

compile input samples and use only the compilation to make decision (e.g., reinforcement 

learning). Lazy learning algorithms perform little compilation and reuse the stored input 

samples to make decision (e.g., schema mechanisms, case-based-reasoning). In 

agreement with Aha (1998), Wolpert and Macready (1997) argued that “there is no free 

lunch” in unsupervised learning algorithms: what is gained in performance is lost in 

generality, and vice versa. In this work, we investigate an autonomous developmental 

approach where the system gradually learns to process its input through its activity. In 

this case, the learning is intertwined with the performance. We accept the system to trade 

generality for performance through its development, but we do not reduce generality a 
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priori by making strong ontological assumptions about the environment. 

This work investigates the hypothesis that these three issues (intrinsic motivation, self 

created state, adaptive learning) are intertwined, and that addressing them simultaneously 

will leverage the modeling and the simulation of emergent cognition. The intuition 

behind this hypothesis is that the system’s intrinsic motivation would provide criteria for 

autonomously assessing the system’s learning; the system’s autonomous learning would 

provide an evolving way to autonomously encode the agent’s internal situational state; 

and the autonomous internal situational state, in turn, would offer a way to aggregate the 

agent’s experience into knowledge suited to the agent’s motivation. We named this 

hypothesis the triple-autonomy hypothesis: motivational autonomy, representational 

autonomy, learning autonomy.  

With the triple-autonomy hypothesis, we want to contribute to an ongoing debate on 

the notion of autonomy in the cognitive sciences (e.g., Froese, Virgo, & Izquierto, 2007). 

Indeed, one could argue that even natural cognitive organisms are not fully autonomous 

because they incorporate cognitive biases that implement knowledge gained through 

phylogenetic evolution. In our case, we limit the knowledge pre-implemented in the agent 

to two aspects: (a) we predefine the possibilities of interaction that the agent has with its 

environment in the form of valued primitive interactions, (b) we implement a mechanism 

capable of learning and exploiting hierarchical sequences of interactions. We posit that 

the triple-autonomy hypothesis would be falsified if these kinds of prerequisites proved 
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insufficient to implement agents that demonstrate emergent cognition. We nonetheless 

acknowledge that other innate biases might be needed to facilitate higher-level 

developmental stages, for example, to learn spatial regularities or object permanency. 

With emergent cognition, we refer to cognitive development ab-nihilo—sometimes 

called bootstrapping cognition (e.g., Dennett, 1998). Different developmental theories 

have identified various stages in the cognitive development process. We retain here 

Piaget’s (1937) idea of a sensorimotor earliest stage that precedes the discovery of 

persistent objects in the world and underpins later symbolic thought upon such objects. 

For the present work, though, the earliest stage can also fit the framework of phylogenetic 

evolution of animal cognition, as discussed for example by Sun (2004). Because such 

early stage mechanisms focus primarily on behavior organization rather than cognitive 

states, these mechanisms can also be related to the situated (e.g., Hutchins, 1995; 

Suchman, 1987), embodied (e.g., Varela, Thompson, & Rosch, 1991), and enactive (e.g., 

Noë, 2004; Stewart, Gapenne, & Di Paolo, 2008) theories of cognition. For these authors, 

early stage cognitive phenomena generally include properties such as learning and 

knowing something about how to interact with the environment, demonstrating emergent 

preferences and awareness of the situation, and acquiring sequential behaviors capable of 

generating anticipation of consequences of actions. More specifically, enactive theories 

suggest a developmental design principle according to which, “as a result from action, the 

agent’s perception of its environment may be altered in such a way that [the agent] will 

never again perceive that environment in the same way” (De Loor, Manac'h, & Tisseau, 
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2010, p. 330). 

We report here a model as a proof-of-concept to generate emergent cognition by 

following the triple-autonomy hypothesis. We named this model the intrinsically-

motivated schema mechanism. In its current state, we should make it explicit that we do 

not expect this model to account for symbolic reasoning or reflecting as it is done in 

human-like intelligence. Our motivation for this work comes from our belief that 

studying such early mechanisms can open the way to implementing autonomous higher-

level intelligence, but, for the moment, we can only rely on arguments proposed by 

psychologists or philosophers to support this claim (e.g., Dennett, 1991; Piaget, 1970). 

Yet, we expect this algorithm to bring insights in that direction, especially by informing 

the question of autonomously constructing an emergent representation of the situation 

that is grounded in the agent’s activity (Harnad, 1990).  

2. IMPLEMENTATION BACKGROUND 

Our intrinsically-motivated schema mechanism mostly rests upon three different 

mechanisms of machine learning and cognitive modeling. The first mechanism is a 

mechanism of reinforcement learning based on intrinsic reward (Singh, Barto, & 

Chentanez, 2005). The second mechanism is a hierarchical schema mechanism inspired 

from Piagetian (1970) constructivist epistemology and from schema-based approaches to 

cognition (e.g., Arbib, 1992; Rumelhart & Norman, 1981) and hierarchy in systems 

(Simon, 1981).  The third mechanism is a mechanism of episodic memory inspired by 
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trace-based reasoning (Cordier, Mascret, & Mille, 2009; Mille, 2006). Besides these three 

sources of inspiration, the algorithm also implements an original view of the agent’s 

inward drives that define the agent’s intrinsic motivation. 

The algorithm includes a notion of reinforcement learning in that the agent discovers 

the environment’s structure through trial and error. Behaviors are weighted and their 

weights are incremented when the behavior is enacted in the environment. This weight 

operates as reinforcement in that the agent selects the most weighted behaviors. The 

algorithm, however, differs from classical reinforcement learning in that the learning 

does not come from a reward that is given when the agent reaches a goal, with the reward 

backward-propagated to previous states. By definition of intrinsic motivation, our agent 

has no pre-implemented mechanism that detects final goal achievement, nor is the agent 

exploring a pre-defined problem space. Therefore, our agent cannot attribute the classical 

utility values to transitions within such a problem-space.  

To report our agent’s mechanism, we define the notion of proclivity value in 

correspondence to the notion of utility value in traditional reinforcement learning 

mechanisms. Subjectively, the notion of proclivity value corresponds to the agent’s 

intrinsic satisfaction in an equivalent way as the notion of utility value corresponds to 

reward. The nuance resides in that intrinsic satisfaction merely comes from enacting the 

behavior while reward comes from the outcome of the behavior. To an external observer, 

our agent seems to enjoy enacting behaviors that have a positive proclivity value, and to 
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dislike enacting behaviors that have a negative proclivity value, regardless of the 

behavior’s outcomes. With our algorithm, nonetheless, the agent can learn to choose 

unsatisfying behaviors (negative proclivity value) in one context to reach other contexts 

where the agent can enact behaviors that are even more satisfying (positive proclivity 

value). In the rest of this paper, we indifferently use the terms proclivity value and 

satisfaction value to refer to the same value, the former term corresponding to a 

programming perspective and the later to an explanatory perspective. Overall, this 

learning mechanism results in increasing the agent’s average satisfaction, that is, 

improving the capacity of the agent to enact the behaviors that have the highest 

proclivity. 

The model also is related to Piaget’s (1970) constructivist epistemology. Piaget’s 

foundational intuition is that the distinction between the inner self and the external world 

is not innate but is learned by the subject: “Intelligence (and therefore knowledge), begins 

not with the knowledge of the self, nor with the knowledge of things as such, but with the 

knowledge of their interaction; intelligence organizes the world while organizing itself by 

simultaneously considering the two poles of this interaction”1. Following this intuition, 

                                                

1 Translated by the authors from the French “L'intelligence (et donc l'action de 

connaître) ne débute ni par la connaissance du moi, ni par celle des choses comme telles, 

mais par celle de leur interaction; c'est en s'orientant simultanément vers les deux pôles 
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Piaget suggests that atomic elements of cognition are not symbols that represent 

individual things but schemes that represent individual interactions.  

Piaget’s theories have inspired a range of computer implementations called schema 

mechanisms (e.g., Arkin, 1987; Chaput, 2004; Drescher, 1991; Guerin & McKenzie, 

2008; Holmes & Isbell, 2005; Perotto, Buisson, & Alvares, 2007; Stojanov, Bozinovski, 

& Trajkivski, 1997). These authors implemented schemes as triplets [perception1, action, 

perception2] and referred to them with the term schema. The agent randomly explores its 

environment and records schemas that mean that a certain action in a certain perceptual 

state (perception1) would likely result in a certain perceptual outcome (perception2). 

These authors, however, noted that this approach leads to a combinatorial explosion when 

the environment’s complexity grows. We believe that this approach based on triplets 

diverges from Piaget’s original views in that this implementation of schemas pre-assumes 

the agent’s perception of the world, whereas Piaget considered perception of the world as 

a construct arising from interaction.  

In our work, we address the scalability issues of current schema mechanisms in three 

ways. First, we do not include the perception of the environment in our schemes but 

                                                                                                                                            

de cette interaction qu'elle organise le monde en s'organisant elle-même” (Piaget, 1937, p. 

331). 
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rather define the scheme’s context in terms of interactions. Our schemes are modeled as a 

couple [interaction1, interaction2], meaning that, in the context of interaction1, the agent 

can enact interaction2. Describing the context in terms of interaction means that the agent 

learns to “see” its world in terms of affordances (Gibson, 1979) related to its own prior 

experience. We follow Gibson’s definition of affordances as possibilities of interaction 

afforded to the agent by the environment. With this formalism, schemes natively encode 

entire sequences of interactions in a hierarchical fashion. To highlight this radical 

difference from classical schema mechanisms, we choose to keep Piaget’s term scheme 

rather than use the term schema. Second, our agent limits the number of schemes by 

making a selection on the basis of the schemes’ proclivity values. The agent computes 

higher-level schemes’ proclivity values from primitive schemes’ proclivity values, which 

are preset by the modeler. Third, we do not use our agent to solve a predefined problem 

but only expect it to construct satisfying behaviors to increase its average satisfaction 

through its interaction with its environment.  

Finally, our implementation uses a notion of episodic memory because the algorithm 

involves a form of storage and reuse of the agent’s history (in the form of hierarchical 

sequential schemes). Laird and Derbinsly (2009) have noted that implementing episodic 

memory in a cognitive system closely relates to the computer science domain of learning 

through experience. Learning through experience ranges from reusing declarative 

knowledge, in the case of case-based reasoning (Kolodner, 1992), to reusing procedural 

experience in the case of temporal case-based reasoning (Sanchez-Marre, Cortes, 



A MODEL AND SIMULATION OF EMERGENT COGNITION  

 

 

12 

Martinez, Comas, & Rodriguez-Roda, 2005) or trace-based reasoning (Mille, 2006). In 

particular, Trace-Based Reasoning addresses the issue of modeling non-Markovian 

sequences—sequences that do not obey Markov’s hypothesis. Markov’s hypothesis 

postulates that each item in the sequence depends only on a fixed number of previous 

items, with this number being known a priori (Putterman, 1994). Trace-based reasoning, 

however, usually follows a knowledge-representation approach that requires a human 

modeler to define the process of encoding episodes, and a human user to drive the 

process of reusing episodes.  

Our approach differs from the trace-based reasoning’s knowledge-representation 

approach in that we do not initially endow our agent with knowledge of its environment, 

nor do we supply it with knowledge during its life. Instead, we propose a way for the 

agent to autonomously encode and reuse episodes based on the agent’s intrinsic 

motivations. To be autonomous, the learning mechanism needs to automatically address 

three issues related to modeling non-Markovian sequences. First, it must determine 

appropriate start and end points for sequential episodes of interest; second, it must 

appropriately encode the contexts so that old episodes can be recalled based on context 

similarity; and third, it must organize episodes into appropriate hierarchical levels so that 

the appropriate level can be reused (an episode at a given level being a sequence of 

lower-level episodes). By automatically addressing these issues, our model advances 

theories of learning through experience in non-Markovian problems, moving towards an 

implementation of episodic memory within autonomous cognitive agents as we have 
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defined them previously. 

Sections 3 and 4 present the algorithm’s implementation. Section 5 reports the 

behavior of the algorithm in two experiments. Although we did not yet intend to model 

reasoning processes, we have, nevertheless, implemented this algorithm in a cognitive 

architecture, namely Soar 9 (Laird & Congdon, 2009). Implementing this algorithm in a 

cognitive architecture allows us to compare it to other cognitive modeling approaches, 

which we do in Section 6. Finally, in the conclusion, we discuss our results and the 

lessons learned for future work. 

We have named our agent Ernest for Evolutionist pRagmatic self-orieNted lEarning 

in a conStructivist and boTtom-up approach, or simply because it is Ernest. From now on 

in this paper, we refer to Ernest with the pronoun he for easier reading.  

3. MAIN CONCEPTS IN THE ALGORITHM 

Ernest’s interactions with his world are represented using two kinds of objects: 

schemes and interactions that are hierarchically organized. Figure 1 provides an example.  
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Figure 1: Example hierarchical structure of schemes and interactions that arise over time. 

At its base level, Figure 1 shows three example primitive schemes: turn “”, touch 

forward “–” (this dash represents Ernest’s antenna), and attempt to move forward “” 

(in the text, we note schemes within double quotes). Ernest is initialized with these 

primitive schemes as nodes in long-term memory. In Soar’s terms, the lattice of schemes 

and interactions form working memory elements (WMEs) (i.e., extensions of the state 

<s>). When Ernest is in a simulated world, the primitive schemes’ effects are hard-coded 

in the environment and the environment returns a binary enaction status to Ernest (failure 

or success). Enacted primitive schemes and their binary enaction feedback are the only 

information exchanged between Ernest and his environment.  

In Figure 1, primitive interactions are represented above the primitive schemes. 



A MODEL AND SIMULATION OF EMERGENT COGNITION  

 

 

15 

Primitive failing interactions are represented with the scheme’s symbol being underlined. 

For example, the interaction (-5) corresponds to bumping into a wall while the 

interaction (5) corresponds to moving and succeeding in moving forward. Each 

primitive interaction is associated with a proclivity value in Ernest’s long-term memory 

(in the text, we note interactions without double quotes and followed by their proclivity 

value in parenthesis, to differentiate them from schemes). Proclivity values are used to 

compute Ernest’s impetus to select a scheme for enaction, as explained in section 4.1 

(scheme selection).  

Primitive proclivity values are chosen and preset by the modeler according to the 

behavior he or she intends to generate. In our example, interaction (5) means that 

Ernest enjoys moving forward, while interaction (-5) means that Ernest dislikes 

bumping into walls. Similarly, interaction –(-1) means that Ernest touches a wall in front 

if him and slightly dislikes it while –(0) means that Ernest touches an empty square, 

leaving him indifferent. In these settings, touching a wall is considered as success and 

touching an empty square is considered as failure, which is an arbitrary choice that has no 

consequence on the agent’s learning (but the proclivity values do).   

As introduced in Section 2, higher-level schemes—also called composite schemes—

consist of a sequence of two interactions “interaction1 interaction2”, meaning that, in the 

context when interaction1 was enacted, the agent can intend to enact interaction2. 

Accordingly, we refer to interaction1 as the scheme’s context interaction and to 
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interaction2 as the scheme’s intention interaction. A scheme’s context interaction and 

intention interaction are always contiguous in time. Ernest learns composite schemes by 

associating context interactions with intention interactions as they are encountered during 

his activity. A composite scheme will, in turn, propose to enact its intention interaction if 

its context interaction matches again Ernest’s situation. Scheme learning consists of 

adding the newly-learned scheme to Ernest’s long-term memory, as a node and two edges 

pointing to its two sub-interactions, as depicted in Figure 1. This way, entire sequences of 

interactions can be learned in a pair-wise fashion. In the figures throughout the paper, the 

edge pointing to a scheme’s context interaction is represented as a dashed line and the 

edge pointing to a scheme’s intention interaction as a dotted line. For example, scheme 

“–” is learned when Ernest has performed the sequence of turning right and touching an 

empty square. So, scheme “–” indicates that, when Ernest has successfully turned right, 

he can expect to touch an empty square. Similarly, scheme “–” is learned when Ernest 

has successfully turned right and touched a wall, meaning that Ernest has also learned 

this sequence.  

In addition, schemes have a weight that holds the expectation they generate. A 

scheme’s weight corresponds to the number of times the scheme has been encountered, as 

detailed in section 4.3 (learning mechanism). Consequently, over the course of Ernest’s 

interactions, the relative scheme weights determine Ernest’s overall expectations in 

specific contexts. For example, at a given point in time, if scheme “–” has been 

encountered three times (weight = 3) and “–” only twice (weight = 2) then the overall 
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expectation generated by a simple right turn would be of touching a wall with a weight of 

(3-2 = 1). This expectation can, however, be balanced by other elements of context as we 

will see. 

Once learned, composite schemes can be enacted as a whole sequence. Like primitive 

schemes, composite schemes can either succeed or fail when the agent tries to enact 

them, as further explained in section 4.2. Each composite scheme can therefore give rise 

to two higher-level interactions: its failing interaction and its succeeding interaction. 

Composite schemes’ succeeding interactions are represented within parenthesis (e.g., (–

)(5)) and composite scheme’s failing interactions are represented within angled 

brackets (e.g., [–](-1?)). This parenthesis and angle brackets notation reflects the 

hierarchical structure of composite schemes and interactions.  

While Figure 1 displays how the schemes and interactions are stored in Ernest’s long-

term memory, it does not render the schemes’ temporal structures. We illustrate these 

temporal structures with an example in Figure 2. 



A MODEL AND SIMULATION OF EMERGENT COGNITION  

 

 

18 

 

Figure 2: Enaction of an example scheme. 

Figure 2 shows the enaction of scheme “–((–))” (touch wall - turn right - touch 

empty - move forward) on the 84th decision cycle in our experiment. During this cycle, 

the intention to enact this scheme came from the activation of higher-level schemes (not 

represented in Figure 2) that matched the previous context, resulting in this scheme being 

proposed then selected. In the figures throughout this paper, the selected scheme is 

represented with double lines, and the enacted interaction with a wider gray line. A 

scheme’s enaction consists of recursively following the scheme’s hierarchical structure 

down to the primitive schemes, and sequentially enacting the primitive schemes in the 

environment. For example, scheme –((–))’s enaction consisted of successfully 

enacting scheme “–” (touch a wall), then successfully enacting scheme “(–)”, 

consisting of successfully enacting “” (turn right) then enacting “–” with an expected 

failure status (touch an empty square), and finally successfully enacting “” (move 
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forward). While a composite scheme’s enaction results in a flat sequence of primitive 

schemes, the algorithm keeps track of the scheme’s hierarchical structure to construct a 

hierarchically organized context (as detailed in section 4.4, scope) and to support higher-

level hierarchical learning. Notably, schemes do not encompass branching behaviors. 

Instead, branching behaviors are obtained during the scheme selection phase where 

higher-level schemes compete to propose different possible intentions. 

Note that in Figure 2, scheme “–” is represented twice in “–((–))’s” temporal 

structure because it is enacted twice, whereas in Figure 1, “–” is represented once in “–

((–))’s” storage structure because “–” corresponds to a single node in Ernest’s long-

term memory. In this example, because all sub-schemes in the hierarchy met their 

expected status, scheme “–((–))” was successfully enacted. Therefore, the enacted 

interaction was (–((–)))(3).   

Finally, we introduce the notion of the agent’s scope. The scope is a data structure 

computed by the agent that represents the agent’s current situation. As such, the scope 

constitutes the agent’s short-term memory that is, in fact, a set of pointers pointing to 

interactions stored in long-term memory. The agent computes the next scope at the end of 

each decision cycle. The scope is a subset of all the interactions that have been completed 

during the previous decision cycle, as explained in section 4.4 (scope assessment). 

Therefore, the scope corresponds to the agent’s internal representation of its current 

situation in terms of interaction patterns. At the beginning of a decision cycle, the agent 
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uses the current scope as a context to select the next scheme to enact, as detailed in 

section 4.1 (scheme selection). 

Overall, the concepts of scheme, interaction, and scope provide a novel way of 

representing the interaction between an agent and its environment. In traditional methods, 

the interaction is represented as a loop: perception-cognition-action (the “cognitive 

sandwich” as criticized by Hurley (1998)). Instead, in our approach, the scope represents 

perception as a construct created within the agent’s cognitive system. As such, we expect 

the scope to better capture the entanglement of perception with intrinsic motivations and 

decision processes. Moreover, because we do not encode our ontological views about the 

environmental structure in the agent’s perception, these views do not shape the agent’s 

information processing. The agent is left alone to discover the structure of its 

environment through its experience.  

4. ALGORITHM PROCEDURE 

The algorithm follows two overlapping cyclical loops. These two loops are 

represented in Figure 3. The highest-level loop (large white circle) consists of: 

1: selecting a scheme for enaction, 2: trying to enact the selected scheme, 3: learning 

what can be learned from this trial, 4: computing the resulting scope, and finally looping 

back to step 1. We call this loop the control loop because it is at this level that the agent 

decides what scheme to try to enact. Step 2: (trying to enact a scheme) constitutes a 

nested loop that goes through the selected scheme’s hierarchical structure and tries 
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to enact each of its primitive interactions recursively, as introduced in section 3. We call 

this loop the automatic loop (small white circle) because this loop enacts sub-schemes 

below the agent’s decision process.  

 

Figure 3: Algorithm procedure. 

In Figure 3, the gray circle represents the environment’s loop. Each revolution of the 

automatic loop corresponds to a revolution of the environment’s loop that returns the 

binary feedback on the enacted primitive scheme. In the control loop, the scheme’s 

enaction constitutes only one step, regardless of the scheme’s level in the hierarchy. 

Therefore, at the control loop level, all schemes are handled similarly to primitive 

schemes, making it possible to recursively learn hierarchically-organized higher-level 

schemes. The automatic loop returns control to the control loop either when the selected 

scheme has entirely been correctly enacted, or when the automatic loop is interrupted 

because one of the sub-interactions was not correctly enacted. The four control loop steps 

are described next. 
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4.1. Scheme selection  

On each decision cycle, the scheme to enact is selected through an activation 

mechanism triggered by the current scope. This mechanism is illustrated by an example 

in Figure 4. 

  

Figure 4: Example selection of a scheme. 

Figure 4 describes Ernest’s behavior up to the point of Decision Cycle (DC) 56 in the 

experiment. On DC 55, scheme “” was successfully enacted (move forward). 

Accordingly, scheme “–” was completed over DC 54 and 55 (touch empty – move 

forward), and scheme “(–)” was completed over DCs 53 through 55 (turn right – 

touch empty – move forward). In this context, the scope after DC 55 was made of 

interactions (5) and interaction (–)(5) (the scope can include several interactions as 

detailed in section 4.4, scope assessment).  
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All schemes whose context interaction belongs to the current scope are activated. All 

the activated schemes create a weighted proposition for their intention interaction. The 

weight of this proposition is equal to the weight of the proposing scheme multiplied by 

the proclivity of the proposing scheme’s intention interaction. On DC 56, the activated 

schemes are the six schemes represented in gray in Figure 4. All these schemes have a 

weight of 1 because they all have been recently learned and not yet reinforced. For 

example, scheme “” proposes to enact scheme “” next with a weight of 1x5 = 5. 

This proposition can be understood as Ernest having an impetus to try to move forward 

because he has previously succeeded once in this context and he enjoys that. 

Alternatively, scheme “” proposes to enact scheme “” with a weight of 1x(-5) = -

5. In this case, Ernest’s impetus is counter-balanced by an apprehension to move forward 

because he has also previously bumped into a wall in this context once before, and he 

dislikes that. In addition, primitive schemes receive a default proposition with a weight of 

0 if no higher-level scheme proposes them. This is the case of scheme “–” in our example 

(not shown in Figure 4). This makes Ernest pick random primitive schemes when he has 

not yet learned to compute anticipations.  

When a composite scheme is proposed, a little heuristic applies (in this example, 

scheme “–”). If its weight is greater than a threshold, called the regularity sensibility 

threshold, then it is effectively proposed for being enacted as a whole. If its weight is 

lower than or equal to the threshold and if its proclivity value is positive, then the scheme 

is not proposed but its proposition is propagated to its first (context) subscheme. In 
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essence, this mechanism ensures that higher-level schemes are sufficiently rehearsed 

before being enacted as a whole. During each rehearsal, higher-level schemes are 

reinforced, which tends to pass the reinforcement from one hierarchy level to the next. A 

lower regularity sensibility threshold results in a faster adoption of potentially less 

satisfying higher-level schemes. A higher regularity sensibility threshold results in a 

slower adoption of potentially more satisfying higher-level scheme. The role of the 

regularity sensibility threshold is further discussed in sections 4.4 (scope assessment) and 

5 (experiment). In our example, scheme “–” has not reached the regularity sensibility 

threshold (in this experiment, 4) in DC 56, and its satisfaction is negative, so its 

proposition is not considered further at that point of time. 

Finally, propositions are summed by schemes, and the scheme with the highest 

summed proposition is selected. If several schemes are tied, one is picked randomly. 

Notably, such stochasticity is not necessary in Ernest’s algorithm; we have also 

implemented deterministic versions of Ernest that break the tie by simply picking the first 

scheme in the list of tied schemes. In our example, the total proposition for “” equals 

1*(-1)+1*(-1) = -2. The total proposition for “” equals 5-5 = 0. The highest summed 

proposition was therefore 0 (for “” and “–”). Scheme “” happened to be selected 

amongst these two (shown with a double lined box).  

Then, scheme “” happened to fail, Ernest bumped into a wall, resulting in the 

enacted interaction (-5) on DC 56 (shown in a gray outlined box). This experience 
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caused scheme ’s weight to be incremented, and other schemes to be learned 

according to the learning mechanism detailed in section 4.3 (learning).  

This selection mechanism shows that proclivity values do not operate as a reward but 

rather as inward drives that either push the agent toward or restrain him from enacting 

certain behavior. Moreover, the reinforcement does not operate as a form of reward 

propagation but as a mechanism for experience counting. By driving the agent’s 

behavior, this selection mechanism also shapes the agent’s experience and consequently 

the agent’s learning. The agent does not learn all that can be learned in the 

environment—which would be overwhelming—but only what its motivations make it 

experience. Moreover, this mechanism guaranties that higher-level regularities will only 

be constructed upon lower-level regularities that have been effectively tested.   

By including several interactions at different levels in the scope, the selection 

mechanism is designed to capture different levels of regularities. Over time, the schemes 

that capture the most robust level of regularity afforded by the environment and that best 

fulfill the agent’s satisfactions become prevalent. For example, the safest decision to try 

to move forward will not rest upon the last primitive step but rather requires exploiting 

regularities that cover the experience of several steps. 

4.2. Scheme enaction 

Once a scheme has been selected, Ernest tries to enact it. To do so, the algorithm 
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recursively looks down the selected scheme’s sub-interactions, as introduced in section 3 

and illustrated in Figure 2. When a primitive sub-interaction is reached, its scheme is 

enacted in the environment. The agent then compares the feedback status to the expected 

status of the primitive interaction. If the received status matches the expected status, the 

primitive interaction is considered as correctly enacted, and the algorithm proceeds to the 

next interaction to enact. This enaction procedure continues until the end of the selected 

scheme, unless a sub-interaction does not meet its expectation at any level in the 

hierarchy.  

If an expectation is not met, whether because the sub-interaction expects success but 

fails at some point, or the sub-interaction expects failure somewhere but accidentally 

succeeds, the enaction is interrupted and considered incorrect. In this case, an actually 

enacted scheme is constructed based on the part of the hierarchy that has been enacted 

before the interruption. This actually enacted scheme is associated with a success status 

to form the actually enacted interaction that Ernest will include in the next scope. In 

addition, the selected scheme that failed to complete is assigned a failing status to form a 

failing interaction that will also be part of the next scope, we call this failing interaction 

the performed interaction. Including both the actually enacted interaction and the 

performed interaction in the next scope ensures that the next scope effectively reflects the 

situation where Ernest ended up, both at the hierarchy level of Ernest’s intention (the 

performed interaction) and at the hierarchy level where Ernest has felt back (the actually 

enacted interaction). Figure 5 illustrates the scheme failing mechanism with an example. 
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Figure 5: Example of an interruption due to incorrect enaction of a scheme. 

On Decision Cycle 72 of our experiment, scheme “–” was selected for enaction 

(touch empty square - move forward). At this point, scheme “–” has been learned 

during earlier decision cycles and is about to dominate scheme “” precisely because it 

brings less dissatisfaction when it fails, as we are going to see. 

As it happened when Ernest tried to enact –’s first step (context act) in Figure 5, 

Ernest touched a wall, an unexpected success. This unexpected feedback from the 

environment caused “–” to be interrupted. Consequently, in this decision cycle, the 

actually enacted scheme was “–” and the actually enacted interaction was –(-1). The 

performed interaction was [–](-1) made of selected scheme “–” associated with a 

failing status. Because scheme “–” was interrupted, Ernest did not suffer the 

dissatisfaction of bumping into a wall but only the dissatisfaction of touching a wall. 

Therefore, Ernest learned that the performed interaction [–]’s satisfaction value was 
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equal to -1. 

During forthcoming selection phases, higher-level schemes will generate balanced 

expectations for success or failure of scheme “–”. Because scheme “–” yields less 

dissatisfaction in case of failure than scheme “”, scheme “–” will tend to win 

forthcoming selection phases over scheme “”. Hence, Ernest has learned to touch 

before possibly moving forward instead of directly trying to move forward. Note that this 

is more than just learning an IF THEN rule, this is adopting a proactive practice 

consisting of touching in specific contexts to ensure safer moves (see the comparison 

with bottom-up rule learning in the related work, Section 6). 

Notably, a composite scheme’s failing interaction cannot have a fixed proclivity value 

because a composite scheme can fail during any of its steps, each failure leading to a 

possibly different proclivity value. To address this problem, when the selected scheme 

fails more than once, its failing interaction’s proclivity value is replaced by the average of 

both its previous value and of the actually enacted interaction’s proclivity value. This is a 

simple way to have the failing interaction’s proclivity value reflect some plausible 

proclivity value based on recent experience. Note that this proclivity value will be 

balanced by higher-level schemes’ weight when generating a failure expectation during 

forthcoming selection phases. 

In effect, this scheme enaction mechanism, associated with the selection mechanism, 

favors schemes that consist of going through unsatisfying interactions at the scheme’s 
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beginning to reach more satisfying or safer interactions at the end (in this example, 

touching before possibly moving forward). This is because the automatic loop does not 

rely on proclivity values to select sub-schemes.  Therefore, Ernest is not limited to simple 

reflex interactions toward the highest immediate satisfaction; Ernest also learns to enact 

unsatisfying interactions to place him in situations where he can enact more satisfying 

interactions. 

4.3. Learning mechanism 

This section describes how new schemes are learned in Ernest’s long-term memory or 

reinforced if they already exist. This section uses the term learning in its computer 

science sense, meaning the recording of new data, as opposed to the rest of the paper that 

views learning as an emergent phenomenon demonstrated by the agent’s behavior. The 

learning of a higher-level scheme occurs from the experience gained through trying to 

enact the selected scheme in a given context. The learning mechanism records higher-

level schemes to memorize the association of elements of context (interactions belonging 

to the scope) with the enacted interactions. The proclivity value associated with a higher-

level interaction is set equal to the sum of the proclivity values associated with its sub-

interactions. This means that enacting a scheme as a whole is as satisfying as enacting all 

its sub-interactions individually. Figure 6 illustrates this learning mechanism with an 

example. 
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Figure 6: Example of scheme learning. 

On Decision Cycle 83, scheme “–” was successfully enacted, resulting in a current 

scope that included interactions (5), (–)(5), and ((–((–))(–))(8), represented 

inside a gray circle in Figure 6. From this scope, DC 84’s selection mechanism activated 

schemes “(–((–)))” and “(–)(–((–)))” (among other schemes not 

represented in Figure 6). These activated schemes proposed to enact scheme “–((–

))”. This proposition happened to win the selection phase, and this scheme happened to 

be successfully enacted, resulting in the enacted interaction (–((–)))(3). Such a 

scheme’s enaction results in two learning mechanisms. 

The first learning mechanism consists of creating or reinforcing schemes whose 

context interaction belongs to the current scope and whose intention interaction is the 



A MODEL AND SIMULATION OF EMERGENT COGNITION  

 

 

31 

enacted interaction. In Figure 6’s example, the reinforced schemes are the activated 

schemes “(–((–)))” and “(–)(–((–)))” (in light gray in the figure). The 

learning consists of incrementing their weight from 4 to 5. The newly created scheme in 

this case is “((–((–))(–))(–((–)))” that is added to Ernest’s long-term memory 

with a weight of 1. In addition, interaction (((–((–))(–))(–((–))))(11) is added 

to Ernest long-term memory with a proclivity value set equal to the sum of its sub-

interactions proclivity values: 8+3=11.  

When the intended scheme is correctly enacted on step n, the number of schemes 

learned or reinforced with the first learning mechanism (noted L1
n) is equal to the number 

of interactions in the current scope (noted Sn-1 because it results from the previous cycle):   

L1
n = Sn-1 

When an intended composite scheme is incorrectly enacted, new or reinforced 

schemes are constructed both from the actually enacted interaction and from the 

performed interaction. Hence, in this case:  

L1
n = 2 * Sn-1 

In effect, the first learning mechanism tends to append new interactions to the right 

side of already existing schemes. To extend schemes to their left side, a second learning 

mechanism applies. This second learning mechanism focuses on a particular scheme that 

we call the stream scheme. The stream scheme is the scheme that connects two 
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consecutively enacted interactions (i.e., whose context interaction and intention 

interaction correspond to the two interactions that have been consecutively enacted). We 

also define the stream interaction as the stream scheme’s succeeding interaction. At a 

given point in time, the stream scheme presents the particularity of being performed in 

the context of the previous scope (if the intended scheme is incorrectly enacted, the 

stream scheme is constructed from the actually enacted interaction). The second learning 

mechanism consists of creating or reinforcing schemes that memorize the association of 

elements of the previous context (interactions in the previous scope) with the stream 

interaction. Schemes learned with the second learning mechanism will propose again the 

stream scheme when situations similar to the previous context are encountered again, 

which helps higher-level schemes dominate lower level schemes when appropriate.  

In DC 84’s example, the stream interaction is ((–))(–((–))))(8) (underlined in 

Figure 6). Figure 6 shows scheme “((–))(–((–))))((–))(–((–))))” (top left) as 

an example scheme learned with the second learning mechanism on DC 84. All the 

schemes learned with the second learning mechanism associate a context interaction that 

belonged to DC 82’s scope (interactions not represented in Figure 6) with the stream 

interaction. When scopes similar to DC 82’s scope occur again, these schemes will 

propose to enact scheme “(–))(–((–)))” as a whole, which will result in this 

scheme eventually replacing scheme “–((–))”. 

On step n, the number of schemes learned or reinforced with the second learning 
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mechanism is:  

L2
n = Sn-2  

Summing the two learning mechanisms, the total number of learned or reinforced 

schemes on step n is given by the formulas:  

Ln = Sn-1 + Sn-2  (in case of correct enaction) 

Ln = 2 * Sn-1 + Sn-2 (in case of incorrect enaction)  

Notably, the enacted scheme is not reinforced (“–((–))” on DC 84), nor are any 

of its sub-schemes. The reinforcement is not associated with a scheme enaction but with 

higher-level schemes learning. This highest-level reinforcement principle contributes to 

letting higher-level schemes possibly override lower-level schemes when higher-level 

schemes manage to capture higher-level regularities.  

4.4. Scope assessment 

The last step of the control loop consists of assessing the resulting new scope. As 

noted in section 3, the scope is a set of interactions that where just completed. We call 

these interactions the completed interactions. Completed interactions are of thee kinds: 

(a) the interactions that where just learned or reinforced; (b) the interaction that was just 

enacted, or incase of incorrect enaction, the actually enacted interaction plus the 

performed interaction; (c) the last subsequences of the interaction that were just enacted. 
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For example, Figure 7 shows the completed interactions on step 84. 

 

Figure 7: Example of scope assessment. 

As noted, on DC 84, interaction (–((–)))(3) was enacted meaning its intention 

interaction ((–))(4) is also being just completed. Similarly, ((–))(4)’s intention 

interaction (5) is also just completed. Moreover, interactions on top of (–((–)))(3) 

are also being completed simultaneously, these are all the interactions learned or 

reinforced during the learning phase. 

If all the completed interactions were included in the next scope, then after the next 

cycle, as many new schemes would be learned. Cycle after cycle, this process would lead 

to the construction of top-level schemes that would be data structures representing 

Ernest’s entire existence since being instantiated. In this case, we can approximate the 
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rate of memory growth by reckoning that all the learned schemes would be part of the 

next scope, that is, referring back to Section 4.3: Sn = Ln. Therefore, leaving apart the case 

of incorrect enactions, the number of learned or reinforced schemes on step n is 

approximated by: 

 Ln = Ln-1 + Ln-2  

This formula defines the Fibonacci sequence, which is known to grow exponentially. 

To prevent such combinatorial explosion, the algorithm restrains the scope’s content. 

Metaphorically, this restriction can be understood as Ernest not being aware of his full 

prior history at each instant. Instead, Ernest’s awareness only covers the current stream of 

his activity. His awareness of his current stream of activity is, however, framed by his full 

experience of existence. At each moment, Ernest internally represents his situation as a 

set of interactions that are at the highest possible—while sufficiently confirmed—level in 

the hierarchy that he has learned thus far.  

The heuristic we have implemented to restrain the scope consists of only including 

the enacted interaction plus the other completed interaction whose scheme’s weight has 

passed the regularity sensibility threshold (introduced in section 4.1). This means that 

Ernest becomes aware of regularities only when they have been encountered a sufficient 

number of times. Over Ernest’s learning process, regularities pop-up in Ernest’s scope 

when they have sufficiently been encountered. These regularities form higher-level 

schemes that Ernest then tries to enact as a whole. These schemes’ enactions open the 
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way to even higher-level regularities popping up in Ernest’s scope and even higher-level 

schemes learning.  

In addition, only one sub-level of the actually enacted interaction is included in the 

scope. That is, referring back to Figure 7, sub-intention interaction ((–))(4) is 

included in the scope but not its sub-intention interaction (5). Therefore, the scope 

construction mechanism works consistently across any level of the enacted scheme in the 

hierarchy; this enables the recursive learning of higher-level schemes. We can interpret 

this as Ernest being unaware of the interactions that he enacts at the lowest levels of the 

hierarchy; this again helps Ernest deal with the situation complexity. Following this 

heuristic, the current scope on DC 84 is thus made of interactions ((–((–))))(8), ((–

)(–((–))))(8), (–((–)))(3), and ((–))(4) (in gray boxes in Figure 7). This 

scope covers 6 steps of interaction with the environment that encode the sequence sense 

empty - move forward - sense wall - turn right - sense empty - move forward. 

In our experiments, the number of new learned schemes per cycle proved to range 

from 0 to 10, making the memory grow linearly with the number of cycles. An additional 

decay function could be implemented to delete unused schemes and keep the memory 

constant.  

4.5. Implementation 

Because we developed this algorithm to study and generate cognitive phenomena, it 
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is natural to consider implementing it with a cognitive architecture. The most widely-

used cognitive architectures, ACT-R (Anderson, 2007) and Soar (Laird & Congdon, 

2009), were originally designed to model problem solving and symbolic processing rather 

than adaptive mechanisms. It might thus appear more natural to use cognitive 

architectures that are designed to support implicit knowledge, for example CLARION 

(Sun, Peterson, & Merrill, 1999), MicroPsi (Bach, 2008), CLA (Chaput, 2004), ICARUS 

(Langley & Choi, 2006), or ADAPT (Benjamin, Lyons, & Lonsdale, 2004). These later 

architectures, however, already implement specific learning algorithms, and we found 

that only Soar offered enough flexibility for our research on a new learning algorithm.  

Moreover, Soar latest release, version 9, supports reinforcement learning (Soar-RL). 

While we are not implementing classical reinforcement learning, Soar-RL provides a 

mechanism that is useful to our approach, namely the valued preference mechanism. This 

mechanism provides an easy way to implement Ernest’s scheme selection phase because 

it supports the weighted proposition of operators. Soar-RL then easily supports selecting 

the most weighted operator. For these reasons, we have chosen Soar 9. The current 

version of the algorithm has 60 Soar productions, making it not an overly complex Soar 

model.  

5. EXPERIMENTS 

We developed two experiments where the agent was afforded hierarchical sequential 

regularities to learn and organize. We used the first experiment to illustrate the learning 
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process in detail (section 5.2) and to demonstrate the gain in Ernest’s satisfaction over 

each run (section 5.3). We use the second experiment for a qualitative analysis of 

Ernest’s emergent behavior (section 5.4). 

5.1. Simple loop experiment 

Although the interaction’s structure—resulting from coupling the environment with 

the agent’s primitive schemes—is fundamentally sequential, the environment can be 

presented to external observers as a two-dimensional grid. This environment is 

represented in Figure 8 and was implemented from Cohen’s (2005) Vacuum environment 

based on Russell and Norvig’s (1995) general vacuum cleaner environment. 

 

Figure 8: The environment for experiment 1. 

 

In Figure 8, the triangle represents Ernest, white squares represent empty squares 

where Ernest can go, and filled squares represent walls. Ernest’s primitive schemes and 

interactions are defined as described above (“”= turn 90° right (-1/NA), “–”= touch the 
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square ahead (-1/0), “”= attempt to move one square forward (5/-5)). Additionally, we 

have primitive scheme “” consisting of turning to the left (-1/NA) (turning schemes 

“” and “” always succeed in this environment). Notably, the squares do not offer a 

unique identifier accessible to the agent, in contrast with many experiments with 

reinforcement learning mechanisms (e.g., Singh, Lewis, & Barto, 2009; Sun & Sessions, 

2000). This lack of unique identifier for each agent’s state makes the learning more 

challenging than in classical reinforcement learning experiments because the agent 

cannot attribute a quality value to transitions identified a priori. This additional difficulty 

explains the choice of an environment whose topological layout seems otherwise simpler 

than in traditional reinforcement learning experiments. 

Our experimental settings offer a first notable regularity, namely that Ernest can 

increase his average satisfaction by touching ahead before trying to move forward, and by 

not moving forward when he touches a wall. Next, Ernest can increase its satisfaction by 

repeating sequences consisting of moving forward twice and turning once. Higher-level 

regularities consist of repeating this later sequence. The effects of this learning 

mechanism are described in detail in section 5.2.  
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5.2. An example life of Ernest 

Figure 9 illustrates an example run. Videos of similar runs can be seen online2. 

 

Figure 9: An example run among the 18 reported in row 6 of Table 1. 

In Figure 9, enacted schemes are represented at the lowest level in each line with a 

black outline. Learned schemes are represented on top of the enacted schemes with a gray 

                                                

2 http://e-ernest.blogspot.com/2009/07/ernest-64.html 
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outline. Failing higher-level schemes are represented as gray boxes (occurring at steps 68 

and 72). The numbers from 1 to 91 indicate the control loop iterations (Decision Cycles). 

At the beginning, Ernest acts randomly because he has not yet learned expectations. 

Every cycle, however, Ernest constructs or reinforces several schemes. For clarity, Figure 

9 only reports the construction and the reinforcement of the schemes that proved decisive 

in increasing Ernest’s satisfaction in this run. Scheme “–” is constructed on step 8. 

Scheme “–” is then reinforced on DC 28, 34, and 49. Then scheme “–” passes the 

regularity threshold and Ernest attempts to enact it for the first time on step 68 but fails 

and enacts “–” instead.  

Notably, a scheme “” is constructed on DC 19. This scheme is reinforced on DC 

33, 42, and 43. It is then enacted twice on DC 44 and 45.  It is, however, not used any 

further because other options prove more satisfying (its proclivity value is -2). 

On DC 47, Ernest discovers the regularity touch empty-move forward, allowing him 

to generate schemes “–” and “(–)”. After DC 47, scheme “–” always prompts 

Ernest to try to move forward after touching an empty square. Consequently, from then 

on, scheme “–” is quickly reinforced (rehearsed) in DC 55, 59, 63, and 71. Ernest tries 

to enact “–” for the first time on DC 72, but unsuccessfully. –’s failure resulted in 

falling back to –(-1), as detailed section 4.2 and Figure 5. From then on, Ernest has 

learned to always touch before moving forward. Scheme “–” is then successfully 

enacted on DC 74, 77, 80, 83, and 85. 
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On DC 69, scheme “(–)” passed the regularity sensibility threshold, and became 

included in the scope, which resulted in the learning of the fourth-order scheme “–((–

))”. Then, on DC 73, the enaction of scheme “(–)” generated the learning of 

scheme “(–)(–((–))”. Scheme “–((–))” is enacted for the first time on DC 84 

as detailed in Figure 2. Scheme –((–))’s enaction generated the learning of “(–)(–

((–))(–)(–((–))” as described in section 4.3 and in Figure 6. Scheme “(–)(–

((–))” starts to be enacted on DC 87. 

After DC 87, Ernest keeps on performing the sequence touch empty - move forward -

touch wall - turn right - touch empty - move forward. With this sequence, Ernest obtains 

a satisfaction of 8 with 6 primary steps, i.e., 1.33 per primary step. If we keep Ernest 

running, the repetition of this sequence generates higher-level schemes that keep on 

doubling this sequence. 

In this example, Ernest did not learn the optimum sequence in the environment. In 

fact, Ernest has no way of knowing whether the stabilized sequence is optimum or not. 

Ernest only repeats a sequence when other actions appear less likely to bring satisfaction, 

based on what he has learned previously. In most instances, Ernest first learns to touch 

before moving, after which he begins to build other regularities based on this initial 

pattern.  

The time before stabilization depends on the value of the regularity sensibility 

threshold. As noted in section 4.1, schemes are not proposed for enaction until they pass 
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this threshold. As said in section 4.4, interactions are not included in the scope until their 

scheme has passed this threshold. Consequently, schemes do not contribute to higher-

level learning until they have passed this threshold. As a tradeoff between satisfaction 

and the pace of learning, the regularity sensibility threshold was set to 4 in this 

experiment, meaning that a sequence had to be encountered 4 times before being 

considered for automatic enaction or retention in Ernest’s situation awareness. 

5.3. A hundred lives of Ernest 

Experiment 1 was run 100 times, stopping each run when Ernest had reached a stable 

sequence, and clearing Ernest’s memory between each run. The results are summarized in 

Table 1. 

Table 1: Performance of Ernest over a hundred runs sorted by satisfaction of final scheme. 

 
Row 

number 
 

Runs 

Satisfaction 
of final 
scheme 

Steps of 
final 

scheme 
Average 
Sat/step 

Decision 
Cycles to 
stability 

1 22 9 3 3.00 50 
2 22 9 4 2.25 79 
3 4 9 5 1.80 75 
4 4 8 4 2.00 69 
5 16 8 5 1.60 62 
6 18 8 6 1.33 84 
7 1 7 5 1.40 76 
8 1 7 6 1.17 109 
9 1 7 7 1.00 108 

10 2 6 8 0.75 116 
11 3 4 4 1.00 61 
12 1 4 5 0.80 95 
13 3 3 3 1.00 71 
14 2 2 5 0.40 96 

 100 7.98 4.49 1.92 72 
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In Table 1, the runs are aggregated by the proclivity value (satisfaction) of the final 

stable sequence (third column). The fourth column indicates the number of primitive 

steps that constitutes the stable sequence. The fifth column indicates Ernest’s average 

satisfaction per step when he has reached the stable sequence. The last column reports the 

average number of decision cycles before reaching this sequence. Rows 1 through 6 

report 86 runs where Ernest learned to circle the whole loop, achieving a satisfaction per 

step greater than or equal to 1.33. Among these rows, the first row represents 22 runs 

where Ernest found the optimum sequence: move forward – move forward – turn (this 

sequence may be implemented by different schemes). Rows 7 to 14 report 14 runs where 

Ernest has reached a stable sequence that results in him staying on one lap of the 

environment, with a satisfaction per step between 0.40 and 1.40.  

The summary row shows that the average reached satisfaction per step was 1.92. It 

was reached in an average of 72 decision cycles. In comparison, other experiments 

yielded an average satisfaction value per step of -0.93 without any learning and -0.38 

with only the first-level scheme learning. This data demonstrates that, in all the runs, the 

hierarchical learning mechanism substantially increased the agent’s satisfaction, 

compared to no or non-hierarchical learning. 

These results vary depending upon the configuration of the primitive proclivity values 

and the regularity sensibility threshold. Our purpose was not to optimize this experiment; 

other values would lead to other learning results. For example, at the extreme, when 
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Ernest is given a positive proclivity value for turning, he learns to keep spinning in place 

forever, which indeed gets him a good satisfaction but does not demonstrate much 

interesting behavior. 

5.4. Ernest in other worlds 

Because the mechanism works bottom-up, the learning of low-level regularities does 

not depend on the environment’s overall complexity. To illustrate this, we placed Ernest 

in the more complex environment displayed in Figure 10.  

 

Figure 10: The environment for experiment 2. 

In Environment 2, Ernest was endowed with extra primitive schemes to touch the 

square to the right and to the left, and their associated proclivity values listed in Table 2 

(symbols \ and / represent Ernest antenna toward his right and left sides).  
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Table 2: Primitive acts and their proclivity in the second experiment. 

Act Description Proclivity 

 Move forward 10 
 Bump wall -10 
 Turn to the right toward an empty square 0 
 Turn to the right toward a wall -5 
 Turn to the left toward an empty square 0 
 Turn to the left toward a wall -5 

– Touch a wall ahead 0 
– Touch an empty square ahead -1 
\ Touch a wall on the right 0 
\ Touch an empty square on the right -1 
/ Touch a wall on the left 0 
/ Touch an empty square on the left -1 

Ernest learned more elaborate perceptual behaviors in experiment 2 than in 

Experiment 1 because he could construct a better sense of his situation by touching on his 

sides. These behaviors can be seen in videos online3. Table 3 provides an example 

activity trace. 

Table 3: Example activity trace in the second experiment 

1 2\ 3! 4\ 5\ 6/! 7\ 8/ 9/! 10! 11! 12! 13/! 14/ 15! 16 17! 18! 19! 20/! 
21/ 22 23 24! 25\! 26/ 27! 28! 29- 30! 31! 32- 33! 34- 35! 36\ 37 38-! 
39 40/ 41! 42/! 43/ 44- 45/! 46/ 47/ 48/ 49 50\ 51-! 52 53- 54/! 55\! 56! 57 
58 59! 60/! 61/ 62(//) 63/ 64(//) 65 66 67! 68 69 70- 71- 72(//) 73 74 
75/ 76\! 77-! 78 79\ 80- 81\ 82- 83(//) 84 85 86/ 87! 88/ 89 90 91\! 92- 93/! 
94- 95\! 96 97 98\ 99-! 100 101- 102- 103/ 104\! 105 106 107\ 108- 109(//) 110 
111 112-! 113 114- 115/! 116/ 117- 118\! 119 120 121- 122\! 123- 124/! 125() 
126-! 127 128-! 129/! 130\ 131 132 133(-) 134(-) 135-! 136/! 137\ 138() 
139(-) 140-! 141/! 142\ 143() 144-! 145(/())! 146(-) 147-! 148/! 149(\()) 
150-! 151(/())! 152(-) 153-! 154/! 155(\()) 156-! 157 158(-) 159-! 160/! 
161(\()) 162(-) 163-! 164/! 165(\()) 166-! 167(/())! 168(-) 169-! 170/! 
171(\()) 172-! 173(/()) 174(-) 175-! 176/! 177(\()) 178-! 179 180((-)/) 
181(\()) 182(-) 183-! 184/! 185(\()) 186-! 187(/()) 188(-) 189-! 
190(/(\())) 191(-(/())) 192(-) 193-! 194(/(\())) 195-! 196 197((-)/) 
198(\()) 199(-) 200-! 201(/(\())) 202-! 203((/())(-)) 204-! 205(/(\())) 

                                                

3 http://e-ernest.blogspot.com/2009/10/enrest-72.html 
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 In Table 3, numbers from 1 to 205 indicate the 205 first decision cycles during which 

Ernest learned to circle this new environment. For each decision cycle, the actually 

enacted scheme is reported. If the enacted scheme was not the intended scheme, an 

exclamation mark (!) is appended. Ernest completed a first tour on DC 171 and a second 

tour on DC 205.  

The sequence “–” was first encountered on DC 38 and 39. Scheme “–” was first 

incorrectly enacted on DC 128 and first correctly enacted on DC 133. In parallel, Ernest 

learned “” and “” that exploit turning schemes’ feedback to ensure safe move 

forward (first enacted on DC 125 and 138). Due to the effects of learning, Ernest stopped 

bumping into walls after DC 67 and started exhibiting a more methodic explorative 

behavior shown by more consistent touching, turnings, and moving forward. On DC 128 

through 131, we can see that he started applying a strategy consisting of, when he has 

touched a wall ahead, touching to the left, then, if there is a wall to the left, touching to 

the right, and, if there is no wall to the right, turning to the right. This strategy let him 

safely circle around his environment. This strategy is then implemented by the 

construction of schemes “/()” and “\()” first enacted on DC 145 and DC 149. 

This association demonstrates the emergence of the use of inexpensive behaviors 

(touching) as “perception” and the use of expensive behavior as “action” (turning). Then, 

on DC 203, the trace shows that Ernest started enacting a higher-level scheme consisting 

of turning and moving forward twice.  
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This trace also shows that the sequence representing Ernest’s activity is non-

Markovian because Ernest’s behavior relies on regularities whose duration was not 

limited a priori. Moreover, Ernest is capable of using knowledge learned a long time 

earlier. For example, the behavior enacted during the last decision cycle (DC 205) still 

relies on the pattern  that was first learned during DC 22 and 23.  

It is not obvious to attribute emergent cognitive phenomena to Ernest when observing 

a printed report of his behavior but we find it striking when watching the experiment 

running. In particular, observers can infer Ernest’s growing awareness of his sides as he 

begins to associate touching with turning toward each side. Through empathy, observers 

can also infer basic subjective states such as enjoyment, pain, angst, hope, and growing 

knowledge of the environment. Moreover, across runs, Ernest instances differentiate 

themselves from each other through their choices and resulting experiences. While these 

basic cognitive phenomena are still rudimentary, we consider they support the triple-

autonomy hypothesis. A model whose implementation follows the principles of intrinsic 

motivation, autonomous situation awareness, and autonomous learning did generate 

behaviors that arguably exhibit early-stage cognitive phenomena. 

Other experiments show that, when shifts in the environment occur during the course 

of Ernest’s activity, he reuses low-level schemes that still apply and learns new higher-

level schemes applicable to the new environment. However, studies in more complex 

environments show the current algorithm’s limitations, which are discussed in the 
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conclusion. 

6. COMPARISON WITH RELATED WORK 

We first must note that our model uses Soar in a significantly different way than 

traditional symbolic cognitive models (Newell, 1990). In our case, although we use 

Soar’s symbolic computation mechanism, we do not use physical symbols (Newell & 

Simon, 1975) to transcribe our own ontology of the environment into the agent (e.g., we 

do not define a symbol for walls). In this sense, our model can be seen as entirely situated 

at a sub-symbolic level even though it uses Soar’s symbolic computation level. As such, 

our model constitutes an example showing that the distinction between symbolic and sub-

symbolic levels is not tied to the architecture’s commitments but can depend on the usage 

the modeler makes of the architecture.   

In a related way, our work also differs from a bottom-up rule learning mechanism 

(e.g., Sun, Merrill, & Peterson, 2001). Certainly, to an external observer, Ernest seems to 

learn logical rules. For example, as discussed in section 4.2, Ernest learns that if he 

touches a wall ahead, then he should not move forward. As opposed to rule learning 

mechanisms, however, our algorithm does not construct explicit logical rules in the 

agent’s long-term memory, nor are we claiming that our agent has learned to process 

explicit logical knowledge. We do not expect our agent to learn logic but only to exploit 

regularities of interaction. This conforms to Piaget’s (1937) developmental theory that 

states that logical knowledge processing will only arise after a long developmental 
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process. This developmental process would imply finding persistent objects in the 

environment and representing them internally before eventually learning language and 

logic (mostly through social interaction).  

 Our work also differs from robotics studies that develop mechanisms for 

autonomously learning the correlation between actuators and sensors (e.g., Pierce & 

Kuipers, 1997). These studies conform to the perception-cognition-action loop by 

implementing a mechanism that transfers the sensors’ signal to a perceptual buffer 

independently from the mechanisms that exploit the content of this buffer. Instead, we 

pre-encode the association of the agent’s actions with the agent’s inputs within primitive 

sensorimotor schemes. Our agent does not need to learn the relation between its actions 

and its inputs because these relations are predefined. What our agent needs to learn is the 

appropriate behavior to construct its perceptual representation of its situation. Our 

approach offers the advantage that sensorimotor schemes provide a place to implement 

the agent’s intrinsic motivations. We nevertheless expect difficulties when implementing 

more complex perceptual behaviors (such as vision) and will consider using a hybrid 

approach in future studies, as suggested for example by Norman (2002).   

As we mentioned in section 2, our work also borrows from reinforcement learning 

principles. On the other hand, our work differs from reinforcement learning in that the 

reinforcement does not come from a reward that is given when a final goal is reached. 

Because of this difference, we could not use Soar’s built-in reinforcement learning 
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mechanism (Soar-RL, Laird & Congdon, 2009). Soar-RL’s mechanism requires that all 

transitions between states in the problem-space be identified a priori, under the form of 

one or several operators. In this way, the reinforcement-learning algorithm can backward 

propagate the reward by modifying the operator preference values. Instead, we do not 

encode all the transitions a priori in our agent’s model; rather our agent dynamically 

learns to identify contexts and transitions. This dynamic context recognition allows the 

agent to adapt to different environments, and, we believe, better accounts for natural 

organisms that do not have all their possible situations in the world uniquely identifiable 

(a problem often known as perceptual aliasing). 

The algorithm also draws from work in the field of Trace-Based Reasoning (Mille, 

2006) to implement a mechanism that enables the agent to learn by reusing past 

sequential episodes of activity. With this mechanism, we bring an innovative answer to 

the issues related to non-Markovian sequence modeling introduced in section 2—issues 

of automatically delimitating episodes, organizing episodes in a hierarchy, and encoding 

context in a way that supports the appropriate reuse of episodes. By addressing these 

issues, our work differs from studies that require Markov’s hypotheses, such as models 

based upon Bayesian statistics (e.g., Griffiths, Kemp, & Tenenbaum, 2008). Our answer 

to the issues of non-Markovian problems rests upon the idea that behavioral patterns 

should be constructed from the bottom up in a hierarchical fashion. Our work, 

nevertheless, differs from approaches of mere statistical hierarchical temporal learning 

such as Hawkins and Blakeslee’s (2004) in that our agent interactively tests hypothetic 
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patterns in the environment and makes a selection based on the agent’s intrinsic 

motivation before learning higher-level patterns. These views relate to pragmatic 

epistemology (James, 1907), to evolutionist epistemology (Popper, 1972) that suggest 

that knowledge evolves on the basis of usage, and to constructivist epistemology (Piaget, 

1970), that suggests that knowledge selection is driven by the subject’s intrinsic 

motivations.  

Our autonomous mechanism of learning through interaction offers a novel way of 

implementing episodic memory. In essence, the agent’s encoding of its experience 

reflects the way the agent has learned to understand this experience. This approach also 

addresses the problem introduced in Section 1 of getting the agent to gradually learn to 

pre-encode its experience for future reuse. Figure 9 and Table 3 can be seen as views on 

Ernest’s episodic memory in particular instances, where the agent’s activity is 

represented in the form of increasingly elaborated patterns of behavior. This approach of 

episodic memory differs from Soar’s built-in episodic memory (version 9.3). Soar’s 

episodic memory does not encode the temporal structure of episodes but rather encodes 

snapshots, therefore, Soar’s episodic memory cannot be as directly queried as ours. 

Furthermore, Soar’s manner of encoding does not evolve over the agent’s experience but 

consists of the raw content of the agent’s working memory in each interaction cycle 

(corresponding to our automatic loop cycles that enact primitive schemes). Because of 

these differences, we could not use Soar’s episodic memory.  
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The algorithm also pulls lessons from genetic algorithms (e.g., Mitchell, 1996) 

because both adopt an evolutionist approach. They, however, differ because genetic 

algorithms typically focus on phylogenetic evolution of the learning mechanism over 

generations of agents (e.g., Floreano, Mondada, Perez-Uribe, & Roggen, 2004), whereas 

our algorithm focuses on the ontogenetic cognitive development of each agent through 

the selection of the most useful knowledge. In the future, we nonetheless believe the 

phylogenetic approach can help us implement mechanisms to adapt our agent’s inborn 

primitive proclivity values based on an evolutionist selection over generations of agents.  

There are currently two major approaches in implementing intrinsic motivation in 

artificial agents. One approach consists of implementing motivation as behavioral rules 

that directly represent either emotions (e.g., Gadanho & Hallam, 1998) or drives (e.g., 

Sun, 2009). The second approach implements intrinsic motivation as curiosity and search 

for novelty (Blank et al., 2005; Oudeyer & Kaplan, 2007; Schmidhuber, 2010). We 

follow a third approach that implements an inversion of reasoning argument as some 

authors have argued for (e.g., Dennett, 1991). With the inversion of reasoning argument, 

Dennett postulates that humans do not “eat the cake because they find it sweet” but 

humans rather “find the cake sweet because they eat it”. Humans have evolved with the 

tendency to enact this behavior, which defines their liking for sweetness. Our algorithm 

implements this view by incrementally organizing the agent’s behavior around inborn 

proclivities. We consider that our algorithm illustrates this argument in the case of 

emergent cognition. We, nonetheless, imagine that the three approaches could be 
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complementary in the case of higher-level cognition.   

As for the test bed environment and for the experimental paradigm, our approach 

appears to be rather unique. We must note that our experiment substantially differs from 

maze solving experiments (e.g., Sun & Sessions, 2000) or from hierarchical sequence 

learning as depicted in the classical taxi cab experiment (Dietterich, 2000). In their 

experiments, the learning comes from a reward value that is given when the goal is 

reached, the learning requires that the agent has a pre-encoded way to uniquely identify 

each state in the environment, and the learning occurs over multiple runs (often 

thousands). In contrast, we have no final goal for the agent that would provide a reward, 

states are not directly identifiable by the agent, the learning occurs through each run; and 

all the agent’s memory is reinitialized between each run (including all forms of 

reinforcement, i.e., the schemes’ weight). Our experimental paradigm also radically 

differs from these proposed in the Soar package and tutorial (e.g., the Eaters and 

TankSoar environments, Laird & Congdon, 2009) in that our approach does not encode 

the modeler’s strategy and problem analysis. Because we could not find experiments 

related to our approach in the literature, we propose our experiments as an initial test 

paradigm for investigating the triple-autonomy hypothesis. 

7. CONCLUSION 

This study advocates approaching cognition by primarily focusing on interaction 

while conceiving perception and representation as secondary constructs. In a proof-of-
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concept algorithm, we show that this approach offers a way to implement intrinsic 

motivation in the form of inborn proclivities associated with primitive possibilities of 

interaction. This approach also offers a way for the agent to construct a representation of 

the situation that is not tied to the modeler’s ontological commitments about the 

environment. In addition, this approach offers a way to implement an autonomous 

learning mechanism where the agent learns to encode its experience to cope with the 

environment’s complexity in compliance with the agent’s intrinsic motivation. 

In our experiments, the agent appears to an observer as if it learned to use certain 

schemes to inform its perceptions (schemes “–”, “/”, and “\” to sense the squares around, 

Section 5.4) and to determine subsequent actions based upon these perceptions. 

Therefore, the agent seems to learn to actively perceive its environment and 

pragmatically understand its perception simultaneously. By pragmatic understanding, we 

refer to a pragmatic epistemology according to which “meaning is use” (Wittgenstein, 

1953). This result is original in that nothing in our agent initially differentiated perceptual 

behavior from action behavior except their cost (predefined proclivity value). Perceptual 

behavior emerged through the agent’s activity, which also grounded the meanings of the 

agent’s perceptions in its activity (Harnad, 1990). Once this perceptual behavior is 

learned, the agent perceived its environment in a new way, which makes new behavior 

possible, specifically, more systematic exploration. This conforms to the developmental 

design principle suggested by enactive theories of cognition (De Loor et al., 2010) 

mentioned in the introduction. 
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Moreover, the way the algorithm constructs a data structure in short-term memory 

(namely the scope) that represents the agent’s situation can throw some light on the 

notion of situation awareness. One of the most accepted definition of situation awareness 

(SA) is Endsley’s (1995): “The perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the projection of 

their status in the near future”.  Because the scope is usable by the agent for following its 

motivations, we argue that the agent understands the scope in a pragmatic sense. Because 

the scope activates schemes, the scope lets the agent construct a “projection of its current 

state in the near future”. Our algorithm, therefore, offers an implemented model of these 

two aspects of Endsley’s views. The scope is nevertheless not a representation of the 

agent’s environment as we see it. Instead, the scope is a representation of the agent’s 

situation in terms of the agent’s possibilities of behavior. As such, the scope meets 

Gibson’s (1979) ecological understanding of situation awareness. Gibson suggested that 

the environment is perceived in terms of interactions afforded to the agent by the 

environment, i.e., affordances. Our algorithm, therefore, also illustrates Gibson’s views. 

This model has emergent SA and acts like it has emergent SA, even though the 

representation is not explicit to an outside observer.    

In our implementation, the scope is, however, still rudimentary. While it covers a 

certain “volume of time” as Endsley called for, it does not cover the finding of distinct 

“elements of the environment [..] within a volume of space”. Developmental theories 

suggest that finding interaction regularities constitutes a prerequisite toward finding 
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persistent objects in the environment, but we still need to investigate the concrete 

mechanisms that will implement this passage. 

 Preliminary experiments in more complex environments indicate that the current 

algorithm faces three notable limitations. The first limitation concerns the management of 

a large number of learned schemes. Although the number of learned schemes is kept 

controlled as described in Section 4.4 (scope assessment), the algorithm, nevertheless, 

constructs several hundred schemes during each run in the environment described in 

Figure 10. The algorithm stores schemes in Soar’s declarative working memory and Soar 

is not optimized for a large working memory. This commitment of Soar eventually 

becomes a serious constraint on developing the algorithm. The agent’s knowledge 

operates both as procedural (when a scheme is enacted), and as declarative (when a 

scheme is part of the agent’s situational representation in the scope).  Soar’s strong 

distinction between procedural and declarative knowledge, therefore, further 

compromises future developments in Soar. These limitations of Soar for handling 

schemes have also been noted by Benjamin, Lyons, and Lonsdale (2004) who proposed 

the ADAPT cognitive architecture as an extension of Soar that supports schema 

manipulation. Additionally, more advanced implementations will require mechanisms to 

reduce the number of schemes, for instance, by forgetting unused schemes or merging 

schemes that have similar primitive sequences. 

The second limitation is that the algorithm is not good at finding spatial regularities. 



A MODEL AND SIMULATION OF EMERGENT COGNITION  

 

 

58 

For example, if we replace the central wall square with an empty square in Figure 8, the 

agent becomes less likely to find the most satisfying regularity, that of making a 

continuous circuit around its environment. We expected this limitation because we did 

not design this algorithm to learn spatial regularities, but moving the agent to more 

complex 2-D or 3-D environment will require addressing this issue in the future.  

The third limitation is that the agent becomes quickly trapped in local optimums, 

preventing it from exploring complex environments. As the agent continues to run, its 

recursive learning mechanism causes it to learn schemes representing increasingly long 

repetitions of a cyclical pattern. Our current experimental setup stops the agent when it 

detects these repetitions. To generate more interesting behaviors, future algorithms 

should implement other forms of intrinsic drives. For example, we can exploit the 

detection of cyclical behaviors to generate a sense of boredom that would incite the agent 

to break the cycle and move toward more exploration. 

To move the agent to more complex environments, we are currently re-implementing 

the algorithm in Java. We have also implemented primitive interactions that react to distal 

properties of the environment (a sort of rudimentary vision) (Georgeon, Cohen, & 

Cordier, 2011). To help the agent find spatial regularities, we are now working on 

enhancing the agent’s architecture with additional mechanisms to represent space 

(Georgeon, Marshall, & Ronot, 2011). 

The algorithm currently works as an advanced adaptive mechanism but does not 
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allow the agent to reflect upon or reason about knowledge. To move toward reflection, 

we envision making the agent capable of inhibiting its actions and only simulating them 

internally, without enacting them in the environment. We are now able to implement such 

an internal simulation mechanism because our agent’s knowledge is associated with 

expectations, that is, our agent learns knowledge of its actions’ effects. The agent can 

internally simulate different possible courses of action based on the expected outcomes 

associated with each action. The agent can then choose the course of action that has the 

best expected satisfaction based on these simulations. Understanding the scope as the 

agent’s situation awareness, we anticipate such internal simulations would resemble a 

stream of awareness, in compliance with Cotterill’s (2001) proposal that thought is an 

‘‘internally simulated interaction with the environment’’, and Hesslow’s (2002) argument 

that this simulation hypothesis can explain our experience of an inner world.  
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