
1

July 11th, 2011.

To appear in Cognitive Systems Research (Accepted July 2011)

An Intrinsically-Motivated Schema Mechanism to

Model and Simulate Emergent Cognition

Olivier L. Georgeonab, Frank E. Ritterb

a Université de Lyon
CNRS, LIRIS, UMR5205

F-69622, France
olivier.georgeon@liris.cnrs.fr

b The Pennsylvania State University
University Park. PA 16802, United States of America

Keywords: autonomous learning, cognitive development, cognitive architecture,

enactive cognition, constructivism, computer simulation.

Georgeon, O. L., & Ritter, F. E. (2012). An intrinsically-motivated schema mechanism to model and
simulate emergent cognition. Cognitive Systems Research. 15-16(May-June), 73–92.

A MODEL AND SIMULATION OF EMERGENT COGNITION

2

ABSTRACT

We introduce an approach to model and simulate the early mechanisms of emergent

cognition based on theories of enactive cognition and on constructivist epistemology. The

agent has intrinsic motivations implemented as inborn proclivities that drive the agent in

a proactive way. Following these drives, the agent autonomously learns regularities

afforded by the environment, and hierarchical sequences of behaviors adapted to these

regularities. The agent represents its current situation in terms of perceived affordances

that develop through the agent’s experience. This situational representation works as an

emerging situation awareness that is grounded in the agent’s interaction with its

environment and that in turn generates expectations and activates adapted behaviors.

Through its activity and these aspects of behavior (behavioral proclivity, situation

awareness, and hierarchical sequential learning), the agent starts to exhibit emergent

sensibility, intrinsic motivation, and autonomous learning. Following theories of

cognitive development, we argue that this initial autonomous mechanism provides a basis

for implementing autonomously developing cognitive systems.

A MODEL AND SIMULATION OF EMERGENT COGNITION

3

1. INTRODUCTION

We introduce a model that simultaneously addresses three issues regarding cognition:

intrinsic motivation, autonomously constructed internal state, and adaptive learning. The

first issue, intrinsic motivation, is the question of implementing a system whose behavior

is driven by inward forces, impetus, or proclivity (e.g., Blank, Kumar, Meeden, &

Marshall, 2005; Oudeyer & Kaplan, 2007). Intrinsically motivated behavior contrasts

with extrinsically motivated behavior that consists of performing a task, seeking a goal,

or solving a problem as prescribed or defined by an external person.

The second issue is the question of autonomously constructing an internal state that

reflects the agent’s situation. Such an internal situational state allows the agent to adapt

its behavior to the current context. In cognitive science, the agent’s situational state is

generally referred to as the agent’s representation of the situation or, in human factors,

situation awareness (Endsley, 1995). The term perception may also be used insofar as

perception is taken as a cognitive construct rather than simple data received from the

environment (e.g., Bajcsy, 1988). If autonomously constructed, the internal situational

state reflects how the agent experiences the situation rather than how the designer models

the situation. In other words, we expect an autonomous situational state to rest upon

minimal ontological commitments made by the designer about the environment.

Moreover, the designer should not predefine the semantics of such situational state nor

A MODEL AND SIMULATION OF EMERGENT COGNITION

4

implement this semantics in the form of a reasoning mechanism based on predefined

ontology. Many authors (e.g., Dennett, 1991; Hurley, 1998; Pfeifer, 1996) have agued

against such cognitive modeling based on predefined ontology. In essence, these

arguments prompt us not to implement a “Cartesian theater” (Dennett, 1991) where the

representation would be interpreted by a “homunculus” (Pfeifer, 1996). Instead, the

internal state should be directly operative by being interwoven with the motivational

mechanism that gives rise to behavior (Weill-Fassina, Rabardel, & Dubois, 1993).

The third issue is the question of adaptive learning through interaction. Most studies

in adaptive learning distinguish between a learning phase where the knowledge is

acquired, and a performance phase where the learning is assessed. Aha (1998) highlights

two categories of learning algorithms according to how the computation is balanced

across these two phases: eager learning and lazy learning. Eager learning algorithms

compile input samples and use only the compilation to make decision (e.g., reinforcement

learning). Lazy learning algorithms perform little compilation and reuse the stored input

samples to make decision (e.g., schema mechanisms, case-based-reasoning). In

agreement with Aha (1998), Wolpert and Macready (1997) argued that “there is no free

lunch” in unsupervised learning algorithms: what is gained in performance is lost in

generality, and vice versa. In this work, we investigate an autonomous developmental

approach where the system gradually learns to process its input through its activity. In

this case, the learning is intertwined with the performance. We accept the system to trade

generality for performance through its development, but we do not reduce generality a

A MODEL AND SIMULATION OF EMERGENT COGNITION

5

priori by making strong ontological assumptions about the environment.

This work investigates the hypothesis that these three issues (intrinsic motivation, self

created state, adaptive learning) are intertwined, and that addressing them simultaneously

will leverage the modeling and the simulation of emergent cognition. The intuition

behind this hypothesis is that the system’s intrinsic motivation would provide criteria for

autonomously assessing the system’s learning; the system’s autonomous learning would

provide an evolving way to autonomously encode the agent’s internal situational state;

and the autonomous internal situational state, in turn, would offer a way to aggregate the

agent’s experience into knowledge suited to the agent’s motivation. We named this

hypothesis the triple-autonomy hypothesis: motivational autonomy, representational

autonomy, learning autonomy.

With the triple-autonomy hypothesis, we want to contribute to an ongoing debate on

the notion of autonomy in the cognitive sciences (e.g., Froese, Virgo, & Izquierto, 2007).

Indeed, one could argue that even natural cognitive organisms are not fully autonomous

because they incorporate cognitive biases that implement knowledge gained through

phylogenetic evolution. In our case, we limit the knowledge pre-implemented in the agent

to two aspects: (a) we predefine the possibilities of interaction that the agent has with its

environment in the form of valued primitive interactions, (b) we implement a mechanism

capable of learning and exploiting hierarchical sequences of interactions. We posit that

the triple-autonomy hypothesis would be falsified if these kinds of prerequisites proved

A MODEL AND SIMULATION OF EMERGENT COGNITION

6

insufficient to implement agents that demonstrate emergent cognition. We nonetheless

acknowledge that other innate biases might be needed to facilitate higher-level

developmental stages, for example, to learn spatial regularities or object permanency.

With emergent cognition, we refer to cognitive development ab-nihilo—sometimes

called bootstrapping cognition (e.g., Dennett, 1998). Different developmental theories

have identified various stages in the cognitive development process. We retain here

Piaget’s (1937) idea of a sensorimotor earliest stage that precedes the discovery of

persistent objects in the world and underpins later symbolic thought upon such objects.

For the present work, though, the earliest stage can also fit the framework of phylogenetic

evolution of animal cognition, as discussed for example by Sun (2004). Because such

early stage mechanisms focus primarily on behavior organization rather than cognitive

states, these mechanisms can also be related to the situated (e.g., Hutchins, 1995;

Suchman, 1987), embodied (e.g., Varela, Thompson, & Rosch, 1991), and enactive (e.g.,

Noë, 2004; Stewart, Gapenne, & Di Paolo, 2008) theories of cognition. For these authors,

early stage cognitive phenomena generally include properties such as learning and

knowing something about how to interact with the environment, demonstrating emergent

preferences and awareness of the situation, and acquiring sequential behaviors capable of

generating anticipation of consequences of actions. More specifically, enactive theories

suggest a developmental design principle according to which, “as a result from action, the

agent’s perception of its environment may be altered in such a way that [the agent] will

never again perceive that environment in the same way” (De Loor, Manac'h, & Tisseau,

A MODEL AND SIMULATION OF EMERGENT COGNITION

7

2010, p. 330).

We report here a model as a proof-of-concept to generate emergent cognition by

following the triple-autonomy hypothesis. We named this model the intrinsically-

motivated schema mechanism. In its current state, we should make it explicit that we do

not expect this model to account for symbolic reasoning or reflecting as it is done in

human-like intelligence. Our motivation for this work comes from our belief that

studying such early mechanisms can open the way to implementing autonomous higher-

level intelligence, but, for the moment, we can only rely on arguments proposed by

psychologists or philosophers to support this claim (e.g., Dennett, 1991; Piaget, 1970).

Yet, we expect this algorithm to bring insights in that direction, especially by informing

the question of autonomously constructing an emergent representation of the situation

that is grounded in the agent’s activity (Harnad, 1990).

2. IMPLEMENTATION BACKGROUND

Our intrinsically-motivated schema mechanism mostly rests upon three different

mechanisms of machine learning and cognitive modeling. The first mechanism is a

mechanism of reinforcement learning based on intrinsic reward (Singh, Barto, &

Chentanez, 2005). The second mechanism is a hierarchical schema mechanism inspired

from Piagetian (1970) constructivist epistemology and from schema-based approaches to

cognition (e.g., Arbib, 1992; Rumelhart & Norman, 1981) and hierarchy in systems

(Simon, 1981). The third mechanism is a mechanism of episodic memory inspired by

A MODEL AND SIMULATION OF EMERGENT COGNITION

8

trace-based reasoning (Cordier, Mascret, & Mille, 2009; Mille, 2006). Besides these three

sources of inspiration, the algorithm also implements an original view of the agent’s

inward drives that define the agent’s intrinsic motivation.

The algorithm includes a notion of reinforcement learning in that the agent discovers

the environment’s structure through trial and error. Behaviors are weighted and their

weights are incremented when the behavior is enacted in the environment. This weight

operates as reinforcement in that the agent selects the most weighted behaviors. The

algorithm, however, differs from classical reinforcement learning in that the learning

does not come from a reward that is given when the agent reaches a goal, with the reward

backward-propagated to previous states. By definition of intrinsic motivation, our agent

has no pre-implemented mechanism that detects final goal achievement, nor is the agent

exploring a pre-defined problem space. Therefore, our agent cannot attribute the classical

utility values to transitions within such a problem-space.

To report our agent’s mechanism, we define the notion of proclivity value in

correspondence to the notion of utility value in traditional reinforcement learning

mechanisms. Subjectively, the notion of proclivity value corresponds to the agent’s

intrinsic satisfaction in an equivalent way as the notion of utility value corresponds to

reward. The nuance resides in that intrinsic satisfaction merely comes from enacting the

behavior while reward comes from the outcome of the behavior. To an external observer,

our agent seems to enjoy enacting behaviors that have a positive proclivity value, and to

A MODEL AND SIMULATION OF EMERGENT COGNITION

9

dislike enacting behaviors that have a negative proclivity value, regardless of the

behavior’s outcomes. With our algorithm, nonetheless, the agent can learn to choose

unsatisfying behaviors (negative proclivity value) in one context to reach other contexts

where the agent can enact behaviors that are even more satisfying (positive proclivity

value). In the rest of this paper, we indifferently use the terms proclivity value and

satisfaction value to refer to the same value, the former term corresponding to a

programming perspective and the later to an explanatory perspective. Overall, this

learning mechanism results in increasing the agent’s average satisfaction, that is,

improving the capacity of the agent to enact the behaviors that have the highest

proclivity.

The model also is related to Piaget’s (1970) constructivist epistemology. Piaget’s

foundational intuition is that the distinction between the inner self and the external world

is not innate but is learned by the subject: “Intelligence (and therefore knowledge), begins

not with the knowledge of the self, nor with the knowledge of things as such, but with the

knowledge of their interaction; intelligence organizes the world while organizing itself by

simultaneously considering the two poles of this interaction”1. Following this intuition,

1 Translated by the authors from the French “L'intelligence (et donc l'action de

connaître) ne débute ni par la connaissance du moi, ni par celle des choses comme telles,

mais par celle de leur interaction; c'est en s'orientant simultanément vers les deux pôles

A MODEL AND SIMULATION OF EMERGENT COGNITION

10

Piaget suggests that atomic elements of cognition are not symbols that represent

individual things but schemes that represent individual interactions.

Piaget’s theories have inspired a range of computer implementations called schema

mechanisms (e.g., Arkin, 1987; Chaput, 2004; Drescher, 1991; Guerin & McKenzie,

2008; Holmes & Isbell, 2005; Perotto, Buisson, & Alvares, 2007; Stojanov, Bozinovski,

& Trajkivski, 1997). These authors implemented schemes as triplets [perception1, action,

perception2] and referred to them with the term schema. The agent randomly explores its

environment and records schemas that mean that a certain action in a certain perceptual

state (perception1) would likely result in a certain perceptual outcome (perception2).

These authors, however, noted that this approach leads to a combinatorial explosion when

the environment’s complexity grows. We believe that this approach based on triplets

diverges from Piaget’s original views in that this implementation of schemas pre-assumes

the agent’s perception of the world, whereas Piaget considered perception of the world as

a construct arising from interaction.

In our work, we address the scalability issues of current schema mechanisms in three

ways. First, we do not include the perception of the environment in our schemes but

de cette interaction qu'elle organise le monde en s'organisant elle-même” (Piaget, 1937, p.

331).

A MODEL AND SIMULATION OF EMERGENT COGNITION

11

rather define the scheme’s context in terms of interactions. Our schemes are modeled as a

couple [interaction1, interaction2], meaning that, in the context of interaction1, the agent

can enact interaction2. Describing the context in terms of interaction means that the agent

learns to “see” its world in terms of affordances (Gibson, 1979) related to its own prior

experience. We follow Gibson’s definition of affordances as possibilities of interaction

afforded to the agent by the environment. With this formalism, schemes natively encode

entire sequences of interactions in a hierarchical fashion. To highlight this radical

difference from classical schema mechanisms, we choose to keep Piaget’s term scheme

rather than use the term schema. Second, our agent limits the number of schemes by

making a selection on the basis of the schemes’ proclivity values. The agent computes

higher-level schemes’ proclivity values from primitive schemes’ proclivity values, which

are preset by the modeler. Third, we do not use our agent to solve a predefined problem

but only expect it to construct satisfying behaviors to increase its average satisfaction

through its interaction with its environment.

Finally, our implementation uses a notion of episodic memory because the algorithm

involves a form of storage and reuse of the agent’s history (in the form of hierarchical

sequential schemes). Laird and Derbinsly (2009) have noted that implementing episodic

memory in a cognitive system closely relates to the computer science domain of learning

through experience. Learning through experience ranges from reusing declarative

knowledge, in the case of case-based reasoning (Kolodner, 1992), to reusing procedural

experience in the case of temporal case-based reasoning (Sanchez-Marre, Cortes,

A MODEL AND SIMULATION OF EMERGENT COGNITION

12

Martinez, Comas, & Rodriguez-Roda, 2005) or trace-based reasoning (Mille, 2006). In

particular, Trace-Based Reasoning addresses the issue of modeling non-Markovian

sequences—sequences that do not obey Markov’s hypothesis. Markov’s hypothesis

postulates that each item in the sequence depends only on a fixed number of previous

items, with this number being known a priori (Putterman, 1994). Trace-based reasoning,

however, usually follows a knowledge-representation approach that requires a human

modeler to define the process of encoding episodes, and a human user to drive the

process of reusing episodes.

Our approach differs from the trace-based reasoning’s knowledge-representation

approach in that we do not initially endow our agent with knowledge of its environment,

nor do we supply it with knowledge during its life. Instead, we propose a way for the

agent to autonomously encode and reuse episodes based on the agent’s intrinsic

motivations. To be autonomous, the learning mechanism needs to automatically address

three issues related to modeling non-Markovian sequences. First, it must determine

appropriate start and end points for sequential episodes of interest; second, it must

appropriately encode the contexts so that old episodes can be recalled based on context

similarity; and third, it must organize episodes into appropriate hierarchical levels so that

the appropriate level can be reused (an episode at a given level being a sequence of

lower-level episodes). By automatically addressing these issues, our model advances

theories of learning through experience in non-Markovian problems, moving towards an

implementation of episodic memory within autonomous cognitive agents as we have

A MODEL AND SIMULATION OF EMERGENT COGNITION

13

defined them previously.

Sections 3 and 4 present the algorithm’s implementation. Section 5 reports the

behavior of the algorithm in two experiments. Although we did not yet intend to model

reasoning processes, we have, nevertheless, implemented this algorithm in a cognitive

architecture, namely Soar 9 (Laird & Congdon, 2009). Implementing this algorithm in a

cognitive architecture allows us to compare it to other cognitive modeling approaches,

which we do in Section 6. Finally, in the conclusion, we discuss our results and the

lessons learned for future work.

We have named our agent Ernest for Evolutionist pRagmatic self-orieNted lEarning

in a conStructivist and boTtom-up approach, or simply because it is Ernest. From now on

in this paper, we refer to Ernest with the pronoun he for easier reading.

3. MAIN CONCEPTS IN THE ALGORITHM

Ernest’s interactions with his world are represented using two kinds of objects:

schemes and interactions that are hierarchically organized. Figure 1 provides an example.

A MODEL AND SIMULATION OF EMERGENT COGNITION

14

Figure 1: Example hierarchical structure of schemes and interactions that arise over time.

At its base level, Figure 1 shows three example primitive schemes: turn “”, touch

forward “–” (this dash represents Ernest’s antenna), and attempt to move forward “”

(in the text, we note schemes within double quotes). Ernest is initialized with these

primitive schemes as nodes in long-term memory. In Soar’s terms, the lattice of schemes

and interactions form working memory elements (WMEs) (i.e., extensions of the state

<s>). When Ernest is in a simulated world, the primitive schemes’ effects are hard-coded

in the environment and the environment returns a binary enaction status to Ernest (failure

or success). Enacted primitive schemes and their binary enaction feedback are the only

information exchanged between Ernest and his environment.

In Figure 1, primitive interactions are represented above the primitive schemes.

A MODEL AND SIMULATION OF EMERGENT COGNITION

15

Primitive failing interactions are represented with the scheme’s symbol being underlined.

For example, the interaction (-5) corresponds to bumping into a wall while the

interaction (5) corresponds to moving and succeeding in moving forward. Each

primitive interaction is associated with a proclivity value in Ernest’s long-term memory

(in the text, we note interactions without double quotes and followed by their proclivity

value in parenthesis, to differentiate them from schemes). Proclivity values are used to

compute Ernest’s impetus to select a scheme for enaction, as explained in section 4.1

(scheme selection).

Primitive proclivity values are chosen and preset by the modeler according to the

behavior he or she intends to generate. In our example, interaction (5) means that

Ernest enjoys moving forward, while interaction (-5) means that Ernest dislikes

bumping into walls. Similarly, interaction –(-1) means that Ernest touches a wall in front

if him and slightly dislikes it while –(0) means that Ernest touches an empty square,

leaving him indifferent. In these settings, touching a wall is considered as success and

touching an empty square is considered as failure, which is an arbitrary choice that has no

consequence on the agent’s learning (but the proclivity values do).

As introduced in Section 2, higher-level schemes—also called composite schemes—

consist of a sequence of two interactions “interaction1 interaction2”, meaning that, in the

context when interaction1 was enacted, the agent can intend to enact interaction2.

Accordingly, we refer to interaction1 as the scheme’s context interaction and to

A MODEL AND SIMULATION OF EMERGENT COGNITION

16

interaction2 as the scheme’s intention interaction. A scheme’s context interaction and

intention interaction are always contiguous in time. Ernest learns composite schemes by

associating context interactions with intention interactions as they are encountered during

his activity. A composite scheme will, in turn, propose to enact its intention interaction if

its context interaction matches again Ernest’s situation. Scheme learning consists of

adding the newly-learned scheme to Ernest’s long-term memory, as a node and two edges

pointing to its two sub-interactions, as depicted in Figure 1. This way, entire sequences of

interactions can be learned in a pair-wise fashion. In the figures throughout the paper, the

edge pointing to a scheme’s context interaction is represented as a dashed line and the

edge pointing to a scheme’s intention interaction as a dotted line. For example, scheme

“–” is learned when Ernest has performed the sequence of turning right and touching an

empty square. So, scheme “–” indicates that, when Ernest has successfully turned right,

he can expect to touch an empty square. Similarly, scheme “–” is learned when Ernest

has successfully turned right and touched a wall, meaning that Ernest has also learned

this sequence.

In addition, schemes have a weight that holds the expectation they generate. A

scheme’s weight corresponds to the number of times the scheme has been encountered, as

detailed in section 4.3 (learning mechanism). Consequently, over the course of Ernest’s

interactions, the relative scheme weights determine Ernest’s overall expectations in

specific contexts. For example, at a given point in time, if scheme “–” has been

encountered three times (weight = 3) and “–” only twice (weight = 2) then the overall

A MODEL AND SIMULATION OF EMERGENT COGNITION

17

expectation generated by a simple right turn would be of touching a wall with a weight of

(3-2 = 1). This expectation can, however, be balanced by other elements of context as we

will see.

Once learned, composite schemes can be enacted as a whole sequence. Like primitive

schemes, composite schemes can either succeed or fail when the agent tries to enact

them, as further explained in section 4.2. Each composite scheme can therefore give rise

to two higher-level interactions: its failing interaction and its succeeding interaction.

Composite schemes’ succeeding interactions are represented within parenthesis (e.g., (–

)(5)) and composite scheme’s failing interactions are represented within angled

brackets (e.g., [–](-1?)). This parenthesis and angle brackets notation reflects the

hierarchical structure of composite schemes and interactions.

While Figure 1 displays how the schemes and interactions are stored in Ernest’s long-

term memory, it does not render the schemes’ temporal structures. We illustrate these

temporal structures with an example in Figure 2.

A MODEL AND SIMULATION OF EMERGENT COGNITION

18

Figure 2: Enaction of an example scheme.

Figure 2 shows the enaction of scheme “–((–))” (touch wall - turn right - touch

empty - move forward) on the 84th decision cycle in our experiment. During this cycle,

the intention to enact this scheme came from the activation of higher-level schemes (not

represented in Figure 2) that matched the previous context, resulting in this scheme being

proposed then selected. In the figures throughout this paper, the selected scheme is

represented with double lines, and the enacted interaction with a wider gray line. A

scheme’s enaction consists of recursively following the scheme’s hierarchical structure

down to the primitive schemes, and sequentially enacting the primitive schemes in the

environment. For example, scheme –((–))’s enaction consisted of successfully

enacting scheme “–” (touch a wall), then successfully enacting scheme “(–)”,

consisting of successfully enacting “” (turn right) then enacting “–” with an expected

failure status (touch an empty square), and finally successfully enacting “” (move

A MODEL AND SIMULATION OF EMERGENT COGNITION

19

forward). While a composite scheme’s enaction results in a flat sequence of primitive

schemes, the algorithm keeps track of the scheme’s hierarchical structure to construct a

hierarchically organized context (as detailed in section 4.4, scope) and to support higher-

level hierarchical learning. Notably, schemes do not encompass branching behaviors.

Instead, branching behaviors are obtained during the scheme selection phase where

higher-level schemes compete to propose different possible intentions.

Note that in Figure 2, scheme “–” is represented twice in “–((–))’s” temporal

structure because it is enacted twice, whereas in Figure 1, “–” is represented once in “–

((–))’s” storage structure because “–” corresponds to a single node in Ernest’s long-

term memory. In this example, because all sub-schemes in the hierarchy met their

expected status, scheme “–((–))” was successfully enacted. Therefore, the enacted

interaction was (–((–)))(3).

Finally, we introduce the notion of the agent’s scope. The scope is a data structure

computed by the agent that represents the agent’s current situation. As such, the scope

constitutes the agent’s short-term memory that is, in fact, a set of pointers pointing to

interactions stored in long-term memory. The agent computes the next scope at the end of

each decision cycle. The scope is a subset of all the interactions that have been completed

during the previous decision cycle, as explained in section 4.4 (scope assessment).

Therefore, the scope corresponds to the agent’s internal representation of its current

situation in terms of interaction patterns. At the beginning of a decision cycle, the agent

A MODEL AND SIMULATION OF EMERGENT COGNITION

20

uses the current scope as a context to select the next scheme to enact, as detailed in

section 4.1 (scheme selection).

Overall, the concepts of scheme, interaction, and scope provide a novel way of

representing the interaction between an agent and its environment. In traditional methods,

the interaction is represented as a loop: perception-cognition-action (the “cognitive

sandwich” as criticized by Hurley (1998)). Instead, in our approach, the scope represents

perception as a construct created within the agent’s cognitive system. As such, we expect

the scope to better capture the entanglement of perception with intrinsic motivations and

decision processes. Moreover, because we do not encode our ontological views about the

environmental structure in the agent’s perception, these views do not shape the agent’s

information processing. The agent is left alone to discover the structure of its

environment through its experience.

4. ALGORITHM PROCEDURE

The algorithm follows two overlapping cyclical loops. These two loops are

represented in Figure 3. The highest-level loop (large white circle) consists of:

1: selecting a scheme for enaction, 2: trying to enact the selected scheme, 3: learning

what can be learned from this trial, 4: computing the resulting scope, and finally looping

back to step 1. We call this loop the control loop because it is at this level that the agent

decides what scheme to try to enact. Step 2: (trying to enact a scheme) constitutes a

nested loop that goes through the selected scheme’s hierarchical structure and tries

A MODEL AND SIMULATION OF EMERGENT COGNITION

21

to enact each of its primitive interactions recursively, as introduced in section 3. We call

this loop the automatic loop (small white circle) because this loop enacts sub-schemes

below the agent’s decision process.

Figure 3: Algorithm procedure.

In Figure 3, the gray circle represents the environment’s loop. Each revolution of the

automatic loop corresponds to a revolution of the environment’s loop that returns the

binary feedback on the enacted primitive scheme. In the control loop, the scheme’s

enaction constitutes only one step, regardless of the scheme’s level in the hierarchy.

Therefore, at the control loop level, all schemes are handled similarly to primitive

schemes, making it possible to recursively learn hierarchically-organized higher-level

schemes. The automatic loop returns control to the control loop either when the selected

scheme has entirely been correctly enacted, or when the automatic loop is interrupted

because one of the sub-interactions was not correctly enacted. The four control loop steps

are described next.

A MODEL AND SIMULATION OF EMERGENT COGNITION

22

4.1. Scheme selection

On each decision cycle, the scheme to enact is selected through an activation

mechanism triggered by the current scope. This mechanism is illustrated by an example

in Figure 4.

Figure 4: Example selection of a scheme.

Figure 4 describes Ernest’s behavior up to the point of Decision Cycle (DC) 56 in the

experiment. On DC 55, scheme “” was successfully enacted (move forward).

Accordingly, scheme “–” was completed over DC 54 and 55 (touch empty – move

forward), and scheme “(–)” was completed over DCs 53 through 55 (turn right –

touch empty – move forward). In this context, the scope after DC 55 was made of

interactions (5) and interaction (–)(5) (the scope can include several interactions as

detailed in section 4.4, scope assessment).

A MODEL AND SIMULATION OF EMERGENT COGNITION

23

All schemes whose context interaction belongs to the current scope are activated. All

the activated schemes create a weighted proposition for their intention interaction. The

weight of this proposition is equal to the weight of the proposing scheme multiplied by

the proclivity of the proposing scheme’s intention interaction. On DC 56, the activated

schemes are the six schemes represented in gray in Figure 4. All these schemes have a

weight of 1 because they all have been recently learned and not yet reinforced. For

example, scheme “” proposes to enact scheme “” next with a weight of 1x5 = 5.

This proposition can be understood as Ernest having an impetus to try to move forward

because he has previously succeeded once in this context and he enjoys that.

Alternatively, scheme “” proposes to enact scheme “” with a weight of 1x(-5) = -

5. In this case, Ernest’s impetus is counter-balanced by an apprehension to move forward

because he has also previously bumped into a wall in this context once before, and he

dislikes that. In addition, primitive schemes receive a default proposition with a weight of

0 if no higher-level scheme proposes them. This is the case of scheme “–” in our example

(not shown in Figure 4). This makes Ernest pick random primitive schemes when he has

not yet learned to compute anticipations.

When a composite scheme is proposed, a little heuristic applies (in this example,

scheme “–”). If its weight is greater than a threshold, called the regularity sensibility

threshold, then it is effectively proposed for being enacted as a whole. If its weight is

lower than or equal to the threshold and if its proclivity value is positive, then the scheme

is not proposed but its proposition is propagated to its first (context) subscheme. In

A MODEL AND SIMULATION OF EMERGENT COGNITION

24

essence, this mechanism ensures that higher-level schemes are sufficiently rehearsed

before being enacted as a whole. During each rehearsal, higher-level schemes are

reinforced, which tends to pass the reinforcement from one hierarchy level to the next. A

lower regularity sensibility threshold results in a faster adoption of potentially less

satisfying higher-level schemes. A higher regularity sensibility threshold results in a

slower adoption of potentially more satisfying higher-level scheme. The role of the

regularity sensibility threshold is further discussed in sections 4.4 (scope assessment) and

5 (experiment). In our example, scheme “–” has not reached the regularity sensibility

threshold (in this experiment, 4) in DC 56, and its satisfaction is negative, so its

proposition is not considered further at that point of time.

Finally, propositions are summed by schemes, and the scheme with the highest

summed proposition is selected. If several schemes are tied, one is picked randomly.

Notably, such stochasticity is not necessary in Ernest’s algorithm; we have also

implemented deterministic versions of Ernest that break the tie by simply picking the first

scheme in the list of tied schemes. In our example, the total proposition for “” equals

1*(-1)+1*(-1) = -2. The total proposition for “” equals 5-5 = 0. The highest summed

proposition was therefore 0 (for “” and “–”). Scheme “” happened to be selected

amongst these two (shown with a double lined box).

Then, scheme “” happened to fail, Ernest bumped into a wall, resulting in the

enacted interaction (-5) on DC 56 (shown in a gray outlined box). This experience

A MODEL AND SIMULATION OF EMERGENT COGNITION

25

caused scheme ’s weight to be incremented, and other schemes to be learned

according to the learning mechanism detailed in section 4.3 (learning).

This selection mechanism shows that proclivity values do not operate as a reward but

rather as inward drives that either push the agent toward or restrain him from enacting

certain behavior. Moreover, the reinforcement does not operate as a form of reward

propagation but as a mechanism for experience counting. By driving the agent’s

behavior, this selection mechanism also shapes the agent’s experience and consequently

the agent’s learning. The agent does not learn all that can be learned in the

environment—which would be overwhelming—but only what its motivations make it

experience. Moreover, this mechanism guaranties that higher-level regularities will only

be constructed upon lower-level regularities that have been effectively tested.

By including several interactions at different levels in the scope, the selection

mechanism is designed to capture different levels of regularities. Over time, the schemes

that capture the most robust level of regularity afforded by the environment and that best

fulfill the agent’s satisfactions become prevalent. For example, the safest decision to try

to move forward will not rest upon the last primitive step but rather requires exploiting

regularities that cover the experience of several steps.

4.2. Scheme enaction

Once a scheme has been selected, Ernest tries to enact it. To do so, the algorithm

A MODEL AND SIMULATION OF EMERGENT COGNITION

26

recursively looks down the selected scheme’s sub-interactions, as introduced in section 3

and illustrated in Figure 2. When a primitive sub-interaction is reached, its scheme is

enacted in the environment. The agent then compares the feedback status to the expected

status of the primitive interaction. If the received status matches the expected status, the

primitive interaction is considered as correctly enacted, and the algorithm proceeds to the

next interaction to enact. This enaction procedure continues until the end of the selected

scheme, unless a sub-interaction does not meet its expectation at any level in the

hierarchy.

If an expectation is not met, whether because the sub-interaction expects success but

fails at some point, or the sub-interaction expects failure somewhere but accidentally

succeeds, the enaction is interrupted and considered incorrect. In this case, an actually

enacted scheme is constructed based on the part of the hierarchy that has been enacted

before the interruption. This actually enacted scheme is associated with a success status

to form the actually enacted interaction that Ernest will include in the next scope. In

addition, the selected scheme that failed to complete is assigned a failing status to form a

failing interaction that will also be part of the next scope, we call this failing interaction

the performed interaction. Including both the actually enacted interaction and the

performed interaction in the next scope ensures that the next scope effectively reflects the

situation where Ernest ended up, both at the hierarchy level of Ernest’s intention (the

performed interaction) and at the hierarchy level where Ernest has felt back (the actually

enacted interaction). Figure 5 illustrates the scheme failing mechanism with an example.

A MODEL AND SIMULATION OF EMERGENT COGNITION

27

Figure 5: Example of an interruption due to incorrect enaction of a scheme.

On Decision Cycle 72 of our experiment, scheme “–” was selected for enaction

(touch empty square - move forward). At this point, scheme “–” has been learned

during earlier decision cycles and is about to dominate scheme “” precisely because it

brings less dissatisfaction when it fails, as we are going to see.

As it happened when Ernest tried to enact –’s first step (context act) in Figure 5,

Ernest touched a wall, an unexpected success. This unexpected feedback from the

environment caused “–” to be interrupted. Consequently, in this decision cycle, the

actually enacted scheme was “–” and the actually enacted interaction was –(-1). The

performed interaction was [–](-1) made of selected scheme “–” associated with a

failing status. Because scheme “–” was interrupted, Ernest did not suffer the

dissatisfaction of bumping into a wall but only the dissatisfaction of touching a wall.

Therefore, Ernest learned that the performed interaction [–]’s satisfaction value was

A MODEL AND SIMULATION OF EMERGENT COGNITION

28

equal to -1.

During forthcoming selection phases, higher-level schemes will generate balanced

expectations for success or failure of scheme “–”. Because scheme “–” yields less

dissatisfaction in case of failure than scheme “”, scheme “–” will tend to win

forthcoming selection phases over scheme “”. Hence, Ernest has learned to touch

before possibly moving forward instead of directly trying to move forward. Note that this

is more than just learning an IF THEN rule, this is adopting a proactive practice

consisting of touching in specific contexts to ensure safer moves (see the comparison

with bottom-up rule learning in the related work, Section 6).

Notably, a composite scheme’s failing interaction cannot have a fixed proclivity value

because a composite scheme can fail during any of its steps, each failure leading to a

possibly different proclivity value. To address this problem, when the selected scheme

fails more than once, its failing interaction’s proclivity value is replaced by the average of

both its previous value and of the actually enacted interaction’s proclivity value. This is a

simple way to have the failing interaction’s proclivity value reflect some plausible

proclivity value based on recent experience. Note that this proclivity value will be

balanced by higher-level schemes’ weight when generating a failure expectation during

forthcoming selection phases.

In effect, this scheme enaction mechanism, associated with the selection mechanism,

favors schemes that consist of going through unsatisfying interactions at the scheme’s

A MODEL AND SIMULATION OF EMERGENT COGNITION

29

beginning to reach more satisfying or safer interactions at the end (in this example,

touching before possibly moving forward). This is because the automatic loop does not

rely on proclivity values to select sub-schemes. Therefore, Ernest is not limited to simple

reflex interactions toward the highest immediate satisfaction; Ernest also learns to enact

unsatisfying interactions to place him in situations where he can enact more satisfying

interactions.

4.3. Learning mechanism

This section describes how new schemes are learned in Ernest’s long-term memory or

reinforced if they already exist. This section uses the term learning in its computer

science sense, meaning the recording of new data, as opposed to the rest of the paper that

views learning as an emergent phenomenon demonstrated by the agent’s behavior. The

learning of a higher-level scheme occurs from the experience gained through trying to

enact the selected scheme in a given context. The learning mechanism records higher-

level schemes to memorize the association of elements of context (interactions belonging

to the scope) with the enacted interactions. The proclivity value associated with a higher-

level interaction is set equal to the sum of the proclivity values associated with its sub-

interactions. This means that enacting a scheme as a whole is as satisfying as enacting all

its sub-interactions individually. Figure 6 illustrates this learning mechanism with an

example.

A MODEL AND SIMULATION OF EMERGENT COGNITION

30

Figure 6: Example of scheme learning.

On Decision Cycle 83, scheme “–” was successfully enacted, resulting in a current

scope that included interactions (5), (–)(5), and ((–((–))(–))(8), represented

inside a gray circle in Figure 6. From this scope, DC 84’s selection mechanism activated

schemes “(–((–)))” and “(–)(–((–)))” (among other schemes not

represented in Figure 6). These activated schemes proposed to enact scheme “–((–

))”. This proposition happened to win the selection phase, and this scheme happened to

be successfully enacted, resulting in the enacted interaction (–((–)))(3). Such a

scheme’s enaction results in two learning mechanisms.

The first learning mechanism consists of creating or reinforcing schemes whose

context interaction belongs to the current scope and whose intention interaction is the

A MODEL AND SIMULATION OF EMERGENT COGNITION

31

enacted interaction. In Figure 6’s example, the reinforced schemes are the activated

schemes “(–((–)))” and “(–)(–((–)))” (in light gray in the figure). The

learning consists of incrementing their weight from 4 to 5. The newly created scheme in

this case is “((–((–))(–))(–((–)))” that is added to Ernest’s long-term memory

with a weight of 1. In addition, interaction (((–((–))(–))(–((–))))(11) is added

to Ernest long-term memory with a proclivity value set equal to the sum of its sub-

interactions proclivity values: 8+3=11.

When the intended scheme is correctly enacted on step n, the number of schemes

learned or reinforced with the first learning mechanism (noted L1
n) is equal to the number

of interactions in the current scope (noted Sn-1 because it results from the previous cycle):

L1
n = Sn-1

When an intended composite scheme is incorrectly enacted, new or reinforced

schemes are constructed both from the actually enacted interaction and from the

performed interaction. Hence, in this case:

L1
n = 2 * Sn-1

In effect, the first learning mechanism tends to append new interactions to the right

side of already existing schemes. To extend schemes to their left side, a second learning

mechanism applies. This second learning mechanism focuses on a particular scheme that

we call the stream scheme. The stream scheme is the scheme that connects two

A MODEL AND SIMULATION OF EMERGENT COGNITION

32

consecutively enacted interactions (i.e., whose context interaction and intention

interaction correspond to the two interactions that have been consecutively enacted). We

also define the stream interaction as the stream scheme’s succeeding interaction. At a

given point in time, the stream scheme presents the particularity of being performed in

the context of the previous scope (if the intended scheme is incorrectly enacted, the

stream scheme is constructed from the actually enacted interaction). The second learning

mechanism consists of creating or reinforcing schemes that memorize the association of

elements of the previous context (interactions in the previous scope) with the stream

interaction. Schemes learned with the second learning mechanism will propose again the

stream scheme when situations similar to the previous context are encountered again,

which helps higher-level schemes dominate lower level schemes when appropriate.

In DC 84’s example, the stream interaction is ((–))(–((–))))(8) (underlined in

Figure 6). Figure 6 shows scheme “((–))(–((–))))((–))(–((–))))” (top left) as

an example scheme learned with the second learning mechanism on DC 84. All the

schemes learned with the second learning mechanism associate a context interaction that

belonged to DC 82’s scope (interactions not represented in Figure 6) with the stream

interaction. When scopes similar to DC 82’s scope occur again, these schemes will

propose to enact scheme “(–))(–((–)))” as a whole, which will result in this

scheme eventually replacing scheme “–((–))”.

On step n, the number of schemes learned or reinforced with the second learning

A MODEL AND SIMULATION OF EMERGENT COGNITION

33

mechanism is:

L2
n = Sn-2

Summing the two learning mechanisms, the total number of learned or reinforced

schemes on step n is given by the formulas:

Ln = Sn-1 + Sn-2 (in case of correct enaction)

Ln = 2 * Sn-1 + Sn-2 (in case of incorrect enaction)

Notably, the enacted scheme is not reinforced (“–((–))” on DC 84), nor are any

of its sub-schemes. The reinforcement is not associated with a scheme enaction but with

higher-level schemes learning. This highest-level reinforcement principle contributes to

letting higher-level schemes possibly override lower-level schemes when higher-level

schemes manage to capture higher-level regularities.

4.4. Scope assessment

The last step of the control loop consists of assessing the resulting new scope. As

noted in section 3, the scope is a set of interactions that where just completed. We call

these interactions the completed interactions. Completed interactions are of thee kinds:

(a) the interactions that where just learned or reinforced; (b) the interaction that was just

enacted, or incase of incorrect enaction, the actually enacted interaction plus the

performed interaction; (c) the last subsequences of the interaction that were just enacted.

A MODEL AND SIMULATION OF EMERGENT COGNITION

34

For example, Figure 7 shows the completed interactions on step 84.

Figure 7: Example of scope assessment.

As noted, on DC 84, interaction (–((–)))(3) was enacted meaning its intention

interaction ((–))(4) is also being just completed. Similarly, ((–))(4)’s intention

interaction (5) is also just completed. Moreover, interactions on top of (–((–)))(3)

are also being completed simultaneously, these are all the interactions learned or

reinforced during the learning phase.

If all the completed interactions were included in the next scope, then after the next

cycle, as many new schemes would be learned. Cycle after cycle, this process would lead

to the construction of top-level schemes that would be data structures representing

Ernest’s entire existence since being instantiated. In this case, we can approximate the

A MODEL AND SIMULATION OF EMERGENT COGNITION

35

rate of memory growth by reckoning that all the learned schemes would be part of the

next scope, that is, referring back to Section 4.3: Sn = Ln. Therefore, leaving apart the case

of incorrect enactions, the number of learned or reinforced schemes on step n is

approximated by:

 Ln = Ln-1 + Ln-2

This formula defines the Fibonacci sequence, which is known to grow exponentially.

To prevent such combinatorial explosion, the algorithm restrains the scope’s content.

Metaphorically, this restriction can be understood as Ernest not being aware of his full

prior history at each instant. Instead, Ernest’s awareness only covers the current stream of

his activity. His awareness of his current stream of activity is, however, framed by his full

experience of existence. At each moment, Ernest internally represents his situation as a

set of interactions that are at the highest possible—while sufficiently confirmed—level in

the hierarchy that he has learned thus far.

The heuristic we have implemented to restrain the scope consists of only including

the enacted interaction plus the other completed interaction whose scheme’s weight has

passed the regularity sensibility threshold (introduced in section 4.1). This means that

Ernest becomes aware of regularities only when they have been encountered a sufficient

number of times. Over Ernest’s learning process, regularities pop-up in Ernest’s scope

when they have sufficiently been encountered. These regularities form higher-level

schemes that Ernest then tries to enact as a whole. These schemes’ enactions open the

A MODEL AND SIMULATION OF EMERGENT COGNITION

36

way to even higher-level regularities popping up in Ernest’s scope and even higher-level

schemes learning.

In addition, only one sub-level of the actually enacted interaction is included in the

scope. That is, referring back to Figure 7, sub-intention interaction ((–))(4) is

included in the scope but not its sub-intention interaction (5). Therefore, the scope

construction mechanism works consistently across any level of the enacted scheme in the

hierarchy; this enables the recursive learning of higher-level schemes. We can interpret

this as Ernest being unaware of the interactions that he enacts at the lowest levels of the

hierarchy; this again helps Ernest deal with the situation complexity. Following this

heuristic, the current scope on DC 84 is thus made of interactions ((–((–))))(8), ((–

)(–((–))))(8), (–((–)))(3), and ((–))(4) (in gray boxes in Figure 7). This

scope covers 6 steps of interaction with the environment that encode the sequence sense

empty - move forward - sense wall - turn right - sense empty - move forward.

In our experiments, the number of new learned schemes per cycle proved to range

from 0 to 10, making the memory grow linearly with the number of cycles. An additional

decay function could be implemented to delete unused schemes and keep the memory

constant.

4.5. Implementation

Because we developed this algorithm to study and generate cognitive phenomena, it

A MODEL AND SIMULATION OF EMERGENT COGNITION

37

is natural to consider implementing it with a cognitive architecture. The most widely-

used cognitive architectures, ACT-R (Anderson, 2007) and Soar (Laird & Congdon,

2009), were originally designed to model problem solving and symbolic processing rather

than adaptive mechanisms. It might thus appear more natural to use cognitive

architectures that are designed to support implicit knowledge, for example CLARION

(Sun, Peterson, & Merrill, 1999), MicroPsi (Bach, 2008), CLA (Chaput, 2004), ICARUS

(Langley & Choi, 2006), or ADAPT (Benjamin, Lyons, & Lonsdale, 2004). These later

architectures, however, already implement specific learning algorithms, and we found

that only Soar offered enough flexibility for our research on a new learning algorithm.

Moreover, Soar latest release, version 9, supports reinforcement learning (Soar-RL).

While we are not implementing classical reinforcement learning, Soar-RL provides a

mechanism that is useful to our approach, namely the valued preference mechanism. This

mechanism provides an easy way to implement Ernest’s scheme selection phase because

it supports the weighted proposition of operators. Soar-RL then easily supports selecting

the most weighted operator. For these reasons, we have chosen Soar 9. The current

version of the algorithm has 60 Soar productions, making it not an overly complex Soar

model.

5. EXPERIMENTS

We developed two experiments where the agent was afforded hierarchical sequential

regularities to learn and organize. We used the first experiment to illustrate the learning

A MODEL AND SIMULATION OF EMERGENT COGNITION

38

process in detail (section 5.2) and to demonstrate the gain in Ernest’s satisfaction over

each run (section 5.3). We use the second experiment for a qualitative analysis of

Ernest’s emergent behavior (section 5.4).

5.1. Simple loop experiment

Although the interaction’s structure—resulting from coupling the environment with

the agent’s primitive schemes—is fundamentally sequential, the environment can be

presented to external observers as a two-dimensional grid. This environment is

represented in Figure 8 and was implemented from Cohen’s (2005) Vacuum environment

based on Russell and Norvig’s (1995) general vacuum cleaner environment.

Figure 8: The environment for experiment 1.

In Figure 8, the triangle represents Ernest, white squares represent empty squares

where Ernest can go, and filled squares represent walls. Ernest’s primitive schemes and

interactions are defined as described above (“”= turn 90° right (-1/NA), “–”= touch the

A MODEL AND SIMULATION OF EMERGENT COGNITION

39

square ahead (-1/0), “”= attempt to move one square forward (5/-5)). Additionally, we

have primitive scheme “” consisting of turning to the left (-1/NA) (turning schemes

“” and “” always succeed in this environment). Notably, the squares do not offer a

unique identifier accessible to the agent, in contrast with many experiments with

reinforcement learning mechanisms (e.g., Singh, Lewis, & Barto, 2009; Sun & Sessions,

2000). This lack of unique identifier for each agent’s state makes the learning more

challenging than in classical reinforcement learning experiments because the agent

cannot attribute a quality value to transitions identified a priori. This additional difficulty

explains the choice of an environment whose topological layout seems otherwise simpler

than in traditional reinforcement learning experiments.

Our experimental settings offer a first notable regularity, namely that Ernest can

increase his average satisfaction by touching ahead before trying to move forward, and by

not moving forward when he touches a wall. Next, Ernest can increase its satisfaction by

repeating sequences consisting of moving forward twice and turning once. Higher-level

regularities consist of repeating this later sequence. The effects of this learning

mechanism are described in detail in section 5.2.

A MODEL AND SIMULATION OF EMERGENT COGNITION

40

5.2. An example life of Ernest

Figure 9 illustrates an example run. Videos of similar runs can be seen online2.

Figure 9: An example run among the 18 reported in row 6 of Table 1.

In Figure 9, enacted schemes are represented at the lowest level in each line with a

black outline. Learned schemes are represented on top of the enacted schemes with a gray

2 http://e-ernest.blogspot.com/2009/07/ernest-64.html

A MODEL AND SIMULATION OF EMERGENT COGNITION

41

outline. Failing higher-level schemes are represented as gray boxes (occurring at steps 68

and 72). The numbers from 1 to 91 indicate the control loop iterations (Decision Cycles).

At the beginning, Ernest acts randomly because he has not yet learned expectations.

Every cycle, however, Ernest constructs or reinforces several schemes. For clarity, Figure

9 only reports the construction and the reinforcement of the schemes that proved decisive

in increasing Ernest’s satisfaction in this run. Scheme “–” is constructed on step 8.

Scheme “–” is then reinforced on DC 28, 34, and 49. Then scheme “–” passes the

regularity threshold and Ernest attempts to enact it for the first time on step 68 but fails

and enacts “–” instead.

Notably, a scheme “” is constructed on DC 19. This scheme is reinforced on DC

33, 42, and 43. It is then enacted twice on DC 44 and 45. It is, however, not used any

further because other options prove more satisfying (its proclivity value is -2).

On DC 47, Ernest discovers the regularity touch empty-move forward, allowing him

to generate schemes “–” and “(–)”. After DC 47, scheme “–” always prompts

Ernest to try to move forward after touching an empty square. Consequently, from then

on, scheme “–” is quickly reinforced (rehearsed) in DC 55, 59, 63, and 71. Ernest tries

to enact “–” for the first time on DC 72, but unsuccessfully. –’s failure resulted in

falling back to –(-1), as detailed section 4.2 and Figure 5. From then on, Ernest has

learned to always touch before moving forward. Scheme “–” is then successfully

enacted on DC 74, 77, 80, 83, and 85.

A MODEL AND SIMULATION OF EMERGENT COGNITION

42

On DC 69, scheme “(–)” passed the regularity sensibility threshold, and became

included in the scope, which resulted in the learning of the fourth-order scheme “–((–

))”. Then, on DC 73, the enaction of scheme “(–)” generated the learning of

scheme “(–)(–((–))”. Scheme “–((–))” is enacted for the first time on DC 84

as detailed in Figure 2. Scheme –((–))’s enaction generated the learning of “(–)(–

((–))(–)(–((–))” as described in section 4.3 and in Figure 6. Scheme “(–)(–

((–))” starts to be enacted on DC 87.

After DC 87, Ernest keeps on performing the sequence touch empty - move forward -

touch wall - turn right - touch empty - move forward. With this sequence, Ernest obtains

a satisfaction of 8 with 6 primary steps, i.e., 1.33 per primary step. If we keep Ernest

running, the repetition of this sequence generates higher-level schemes that keep on

doubling this sequence.

In this example, Ernest did not learn the optimum sequence in the environment. In

fact, Ernest has no way of knowing whether the stabilized sequence is optimum or not.

Ernest only repeats a sequence when other actions appear less likely to bring satisfaction,

based on what he has learned previously. In most instances, Ernest first learns to touch

before moving, after which he begins to build other regularities based on this initial

pattern.

The time before stabilization depends on the value of the regularity sensibility

threshold. As noted in section 4.1, schemes are not proposed for enaction until they pass

A MODEL AND SIMULATION OF EMERGENT COGNITION

43

this threshold. As said in section 4.4, interactions are not included in the scope until their

scheme has passed this threshold. Consequently, schemes do not contribute to higher-

level learning until they have passed this threshold. As a tradeoff between satisfaction

and the pace of learning, the regularity sensibility threshold was set to 4 in this

experiment, meaning that a sequence had to be encountered 4 times before being

considered for automatic enaction or retention in Ernest’s situation awareness.

5.3. A hundred lives of Ernest

Experiment 1 was run 100 times, stopping each run when Ernest had reached a stable

sequence, and clearing Ernest’s memory between each run. The results are summarized in

Table 1.

Table 1: Performance of Ernest over a hundred runs sorted by satisfaction of final scheme.

Row

number

Runs

Satisfaction
of final
scheme

Steps of
final

scheme
Average
Sat/step

Decision
Cycles to
stability

1 22 9 3 3.00 50
2 22 9 4 2.25 79
3 4 9 5 1.80 75
4 4 8 4 2.00 69
5 16 8 5 1.60 62
6 18 8 6 1.33 84
7 1 7 5 1.40 76
8 1 7 6 1.17 109
9 1 7 7 1.00 108

10 2 6 8 0.75 116
11 3 4 4 1.00 61
12 1 4 5 0.80 95
13 3 3 3 1.00 71
14 2 2 5 0.40 96

 100 7.98 4.49 1.92 72

A MODEL AND SIMULATION OF EMERGENT COGNITION

44

In Table 1, the runs are aggregated by the proclivity value (satisfaction) of the final

stable sequence (third column). The fourth column indicates the number of primitive

steps that constitutes the stable sequence. The fifth column indicates Ernest’s average

satisfaction per step when he has reached the stable sequence. The last column reports the

average number of decision cycles before reaching this sequence. Rows 1 through 6

report 86 runs where Ernest learned to circle the whole loop, achieving a satisfaction per

step greater than or equal to 1.33. Among these rows, the first row represents 22 runs

where Ernest found the optimum sequence: move forward – move forward – turn (this

sequence may be implemented by different schemes). Rows 7 to 14 report 14 runs where

Ernest has reached a stable sequence that results in him staying on one lap of the

environment, with a satisfaction per step between 0.40 and 1.40.

The summary row shows that the average reached satisfaction per step was 1.92. It

was reached in an average of 72 decision cycles. In comparison, other experiments

yielded an average satisfaction value per step of -0.93 without any learning and -0.38

with only the first-level scheme learning. This data demonstrates that, in all the runs, the

hierarchical learning mechanism substantially increased the agent’s satisfaction,

compared to no or non-hierarchical learning.

These results vary depending upon the configuration of the primitive proclivity values

and the regularity sensibility threshold. Our purpose was not to optimize this experiment;

other values would lead to other learning results. For example, at the extreme, when

A MODEL AND SIMULATION OF EMERGENT COGNITION

45

Ernest is given a positive proclivity value for turning, he learns to keep spinning in place

forever, which indeed gets him a good satisfaction but does not demonstrate much

interesting behavior.

5.4. Ernest in other worlds

Because the mechanism works bottom-up, the learning of low-level regularities does

not depend on the environment’s overall complexity. To illustrate this, we placed Ernest

in the more complex environment displayed in Figure 10.

Figure 10: The environment for experiment 2.

In Environment 2, Ernest was endowed with extra primitive schemes to touch the

square to the right and to the left, and their associated proclivity values listed in Table 2

(symbols \ and / represent Ernest antenna toward his right and left sides).

A MODEL AND SIMULATION OF EMERGENT COGNITION

46

Table 2: Primitive acts and their proclivity in the second experiment.

Act Description Proclivity

 Move forward 10
 Bump wall -10
 Turn to the right toward an empty square 0
 Turn to the right toward a wall -5
 Turn to the left toward an empty square 0
 Turn to the left toward a wall -5

– Touch a wall ahead 0
– Touch an empty square ahead -1
\ Touch a wall on the right 0
\ Touch an empty square on the right -1
/ Touch a wall on the left 0
/ Touch an empty square on the left -1

Ernest learned more elaborate perceptual behaviors in experiment 2 than in

Experiment 1 because he could construct a better sense of his situation by touching on his

sides. These behaviors can be seen in videos online3. Table 3 provides an example

activity trace.

Table 3: Example activity trace in the second experiment

1 2\ 3! 4\ 5\ 6/! 7\ 8/ 9/! 10! 11! 12! 13/! 14/ 15! 16 17! 18! 19! 20/!
21/ 22 23 24! 25\! 26/ 27! 28! 29- 30! 31! 32- 33! 34- 35! 36\ 37 38-!
39 40/ 41! 42/! 43/ 44- 45/! 46/ 47/ 48/ 49 50\ 51-! 52 53- 54/! 55\! 56! 57
58 59! 60/! 61/ 62(//) 63/ 64(//) 65 66 67! 68 69 70- 71- 72(//) 73 74
75/ 76\! 77-! 78 79\ 80- 81\ 82- 83(//) 84 85 86/ 87! 88/ 89 90 91\! 92- 93/!
94- 95\! 96 97 98\ 99-! 100 101- 102- 103/ 104\! 105 106 107\ 108- 109(//) 110
111 112-! 113 114- 115/! 116/ 117- 118\! 119 120 121- 122\! 123- 124/! 125()
126-! 127 128-! 129/! 130\ 131 132 133(-) 134(-) 135-! 136/! 137\ 138()
139(-) 140-! 141/! 142\ 143() 144-! 145(/())! 146(-) 147-! 148/! 149(\())
150-! 151(/())! 152(-) 153-! 154/! 155(\()) 156-! 157 158(-) 159-! 160/!
161(\()) 162(-) 163-! 164/! 165(\()) 166-! 167(/())! 168(-) 169-! 170/!
171(\()) 172-! 173(/()) 174(-) 175-! 176/! 177(\()) 178-! 179 180((-)/)
181(\()) 182(-) 183-! 184/! 185(\()) 186-! 187(/()) 188(-) 189-!
190(/(\())) 191(-(/())) 192(-) 193-! 194(/(\())) 195-! 196 197((-)/)
198(\()) 199(-) 200-! 201(/(\())) 202-! 203((/())(-)) 204-! 205(/(\()))

3 http://e-ernest.blogspot.com/2009/10/enrest-72.html

A MODEL AND SIMULATION OF EMERGENT COGNITION

47

 In Table 3, numbers from 1 to 205 indicate the 205 first decision cycles during which

Ernest learned to circle this new environment. For each decision cycle, the actually

enacted scheme is reported. If the enacted scheme was not the intended scheme, an

exclamation mark (!) is appended. Ernest completed a first tour on DC 171 and a second

tour on DC 205.

The sequence “–” was first encountered on DC 38 and 39. Scheme “–” was first

incorrectly enacted on DC 128 and first correctly enacted on DC 133. In parallel, Ernest

learned “” and “” that exploit turning schemes’ feedback to ensure safe move

forward (first enacted on DC 125 and 138). Due to the effects of learning, Ernest stopped

bumping into walls after DC 67 and started exhibiting a more methodic explorative

behavior shown by more consistent touching, turnings, and moving forward. On DC 128

through 131, we can see that he started applying a strategy consisting of, when he has

touched a wall ahead, touching to the left, then, if there is a wall to the left, touching to

the right, and, if there is no wall to the right, turning to the right. This strategy let him

safely circle around his environment. This strategy is then implemented by the

construction of schemes “/()” and “\()” first enacted on DC 145 and DC 149.

This association demonstrates the emergence of the use of inexpensive behaviors

(touching) as “perception” and the use of expensive behavior as “action” (turning). Then,

on DC 203, the trace shows that Ernest started enacting a higher-level scheme consisting

of turning and moving forward twice.

A MODEL AND SIMULATION OF EMERGENT COGNITION

48

This trace also shows that the sequence representing Ernest’s activity is non-

Markovian because Ernest’s behavior relies on regularities whose duration was not

limited a priori. Moreover, Ernest is capable of using knowledge learned a long time

earlier. For example, the behavior enacted during the last decision cycle (DC 205) still

relies on the pattern  that was first learned during DC 22 and 23.

It is not obvious to attribute emergent cognitive phenomena to Ernest when observing

a printed report of his behavior but we find it striking when watching the experiment

running. In particular, observers can infer Ernest’s growing awareness of his sides as he

begins to associate touching with turning toward each side. Through empathy, observers

can also infer basic subjective states such as enjoyment, pain, angst, hope, and growing

knowledge of the environment. Moreover, across runs, Ernest instances differentiate

themselves from each other through their choices and resulting experiences. While these

basic cognitive phenomena are still rudimentary, we consider they support the triple-

autonomy hypothesis. A model whose implementation follows the principles of intrinsic

motivation, autonomous situation awareness, and autonomous learning did generate

behaviors that arguably exhibit early-stage cognitive phenomena.

Other experiments show that, when shifts in the environment occur during the course

of Ernest’s activity, he reuses low-level schemes that still apply and learns new higher-

level schemes applicable to the new environment. However, studies in more complex

environments show the current algorithm’s limitations, which are discussed in the

A MODEL AND SIMULATION OF EMERGENT COGNITION

49

conclusion.

6. COMPARISON WITH RELATED WORK

We first must note that our model uses Soar in a significantly different way than

traditional symbolic cognitive models (Newell, 1990). In our case, although we use

Soar’s symbolic computation mechanism, we do not use physical symbols (Newell &

Simon, 1975) to transcribe our own ontology of the environment into the agent (e.g., we

do not define a symbol for walls). In this sense, our model can be seen as entirely situated

at a sub-symbolic level even though it uses Soar’s symbolic computation level. As such,

our model constitutes an example showing that the distinction between symbolic and sub-

symbolic levels is not tied to the architecture’s commitments but can depend on the usage

the modeler makes of the architecture.

In a related way, our work also differs from a bottom-up rule learning mechanism

(e.g., Sun, Merrill, & Peterson, 2001). Certainly, to an external observer, Ernest seems to

learn logical rules. For example, as discussed in section 4.2, Ernest learns that if he

touches a wall ahead, then he should not move forward. As opposed to rule learning

mechanisms, however, our algorithm does not construct explicit logical rules in the

agent’s long-term memory, nor are we claiming that our agent has learned to process

explicit logical knowledge. We do not expect our agent to learn logic but only to exploit

regularities of interaction. This conforms to Piaget’s (1937) developmental theory that

states that logical knowledge processing will only arise after a long developmental

A MODEL AND SIMULATION OF EMERGENT COGNITION

50

process. This developmental process would imply finding persistent objects in the

environment and representing them internally before eventually learning language and

logic (mostly through social interaction).

 Our work also differs from robotics studies that develop mechanisms for

autonomously learning the correlation between actuators and sensors (e.g., Pierce &

Kuipers, 1997). These studies conform to the perception-cognition-action loop by

implementing a mechanism that transfers the sensors’ signal to a perceptual buffer

independently from the mechanisms that exploit the content of this buffer. Instead, we

pre-encode the association of the agent’s actions with the agent’s inputs within primitive

sensorimotor schemes. Our agent does not need to learn the relation between its actions

and its inputs because these relations are predefined. What our agent needs to learn is the

appropriate behavior to construct its perceptual representation of its situation. Our

approach offers the advantage that sensorimotor schemes provide a place to implement

the agent’s intrinsic motivations. We nevertheless expect difficulties when implementing

more complex perceptual behaviors (such as vision) and will consider using a hybrid

approach in future studies, as suggested for example by Norman (2002).

As we mentioned in section 2, our work also borrows from reinforcement learning

principles. On the other hand, our work differs from reinforcement learning in that the

reinforcement does not come from a reward that is given when a final goal is reached.

Because of this difference, we could not use Soar’s built-in reinforcement learning

A MODEL AND SIMULATION OF EMERGENT COGNITION

51

mechanism (Soar-RL, Laird & Congdon, 2009). Soar-RL’s mechanism requires that all

transitions between states in the problem-space be identified a priori, under the form of

one or several operators. In this way, the reinforcement-learning algorithm can backward

propagate the reward by modifying the operator preference values. Instead, we do not

encode all the transitions a priori in our agent’s model; rather our agent dynamically

learns to identify contexts and transitions. This dynamic context recognition allows the

agent to adapt to different environments, and, we believe, better accounts for natural

organisms that do not have all their possible situations in the world uniquely identifiable

(a problem often known as perceptual aliasing).

The algorithm also draws from work in the field of Trace-Based Reasoning (Mille,

2006) to implement a mechanism that enables the agent to learn by reusing past

sequential episodes of activity. With this mechanism, we bring an innovative answer to

the issues related to non-Markovian sequence modeling introduced in section 2—issues

of automatically delimitating episodes, organizing episodes in a hierarchy, and encoding

context in a way that supports the appropriate reuse of episodes. By addressing these

issues, our work differs from studies that require Markov’s hypotheses, such as models

based upon Bayesian statistics (e.g., Griffiths, Kemp, & Tenenbaum, 2008). Our answer

to the issues of non-Markovian problems rests upon the idea that behavioral patterns

should be constructed from the bottom up in a hierarchical fashion. Our work,

nevertheless, differs from approaches of mere statistical hierarchical temporal learning

such as Hawkins and Blakeslee’s (2004) in that our agent interactively tests hypothetic

A MODEL AND SIMULATION OF EMERGENT COGNITION

52

patterns in the environment and makes a selection based on the agent’s intrinsic

motivation before learning higher-level patterns. These views relate to pragmatic

epistemology (James, 1907), to evolutionist epistemology (Popper, 1972) that suggest

that knowledge evolves on the basis of usage, and to constructivist epistemology (Piaget,

1970), that suggests that knowledge selection is driven by the subject’s intrinsic

motivations.

Our autonomous mechanism of learning through interaction offers a novel way of

implementing episodic memory. In essence, the agent’s encoding of its experience

reflects the way the agent has learned to understand this experience. This approach also

addresses the problem introduced in Section 1 of getting the agent to gradually learn to

pre-encode its experience for future reuse. Figure 9 and Table 3 can be seen as views on

Ernest’s episodic memory in particular instances, where the agent’s activity is

represented in the form of increasingly elaborated patterns of behavior. This approach of

episodic memory differs from Soar’s built-in episodic memory (version 9.3). Soar’s

episodic memory does not encode the temporal structure of episodes but rather encodes

snapshots, therefore, Soar’s episodic memory cannot be as directly queried as ours.

Furthermore, Soar’s manner of encoding does not evolve over the agent’s experience but

consists of the raw content of the agent’s working memory in each interaction cycle

(corresponding to our automatic loop cycles that enact primitive schemes). Because of

these differences, we could not use Soar’s episodic memory.

A MODEL AND SIMULATION OF EMERGENT COGNITION

53

The algorithm also pulls lessons from genetic algorithms (e.g., Mitchell, 1996)

because both adopt an evolutionist approach. They, however, differ because genetic

algorithms typically focus on phylogenetic evolution of the learning mechanism over

generations of agents (e.g., Floreano, Mondada, Perez-Uribe, & Roggen, 2004), whereas

our algorithm focuses on the ontogenetic cognitive development of each agent through

the selection of the most useful knowledge. In the future, we nonetheless believe the

phylogenetic approach can help us implement mechanisms to adapt our agent’s inborn

primitive proclivity values based on an evolutionist selection over generations of agents.

There are currently two major approaches in implementing intrinsic motivation in

artificial agents. One approach consists of implementing motivation as behavioral rules

that directly represent either emotions (e.g., Gadanho & Hallam, 1998) or drives (e.g.,

Sun, 2009). The second approach implements intrinsic motivation as curiosity and search

for novelty (Blank et al., 2005; Oudeyer & Kaplan, 2007; Schmidhuber, 2010). We

follow a third approach that implements an inversion of reasoning argument as some

authors have argued for (e.g., Dennett, 1991). With the inversion of reasoning argument,

Dennett postulates that humans do not “eat the cake because they find it sweet” but

humans rather “find the cake sweet because they eat it”. Humans have evolved with the

tendency to enact this behavior, which defines their liking for sweetness. Our algorithm

implements this view by incrementally organizing the agent’s behavior around inborn

proclivities. We consider that our algorithm illustrates this argument in the case of

emergent cognition. We, nonetheless, imagine that the three approaches could be

A MODEL AND SIMULATION OF EMERGENT COGNITION

54

complementary in the case of higher-level cognition.

As for the test bed environment and for the experimental paradigm, our approach

appears to be rather unique. We must note that our experiment substantially differs from

maze solving experiments (e.g., Sun & Sessions, 2000) or from hierarchical sequence

learning as depicted in the classical taxi cab experiment (Dietterich, 2000). In their

experiments, the learning comes from a reward value that is given when the goal is

reached, the learning requires that the agent has a pre-encoded way to uniquely identify

each state in the environment, and the learning occurs over multiple runs (often

thousands). In contrast, we have no final goal for the agent that would provide a reward,

states are not directly identifiable by the agent, the learning occurs through each run; and

all the agent’s memory is reinitialized between each run (including all forms of

reinforcement, i.e., the schemes’ weight). Our experimental paradigm also radically

differs from these proposed in the Soar package and tutorial (e.g., the Eaters and

TankSoar environments, Laird & Congdon, 2009) in that our approach does not encode

the modeler’s strategy and problem analysis. Because we could not find experiments

related to our approach in the literature, we propose our experiments as an initial test

paradigm for investigating the triple-autonomy hypothesis.

7. CONCLUSION

This study advocates approaching cognition by primarily focusing on interaction

while conceiving perception and representation as secondary constructs. In a proof-of-

A MODEL AND SIMULATION OF EMERGENT COGNITION

55

concept algorithm, we show that this approach offers a way to implement intrinsic

motivation in the form of inborn proclivities associated with primitive possibilities of

interaction. This approach also offers a way for the agent to construct a representation of

the situation that is not tied to the modeler’s ontological commitments about the

environment. In addition, this approach offers a way to implement an autonomous

learning mechanism where the agent learns to encode its experience to cope with the

environment’s complexity in compliance with the agent’s intrinsic motivation.

In our experiments, the agent appears to an observer as if it learned to use certain

schemes to inform its perceptions (schemes “–”, “/”, and “\” to sense the squares around,

Section 5.4) and to determine subsequent actions based upon these perceptions.

Therefore, the agent seems to learn to actively perceive its environment and

pragmatically understand its perception simultaneously. By pragmatic understanding, we

refer to a pragmatic epistemology according to which “meaning is use” (Wittgenstein,

1953). This result is original in that nothing in our agent initially differentiated perceptual

behavior from action behavior except their cost (predefined proclivity value). Perceptual

behavior emerged through the agent’s activity, which also grounded the meanings of the

agent’s perceptions in its activity (Harnad, 1990). Once this perceptual behavior is

learned, the agent perceived its environment in a new way, which makes new behavior

possible, specifically, more systematic exploration. This conforms to the developmental

design principle suggested by enactive theories of cognition (De Loor et al., 2010)

mentioned in the introduction.

A MODEL AND SIMULATION OF EMERGENT COGNITION

56

Moreover, the way the algorithm constructs a data structure in short-term memory

(namely the scope) that represents the agent’s situation can throw some light on the

notion of situation awareness. One of the most accepted definition of situation awareness

(SA) is Endsley’s (1995): “The perception of the elements in the environment within a

volume of time and space, the comprehension of their meaning, and the projection of

their status in the near future”. Because the scope is usable by the agent for following its

motivations, we argue that the agent understands the scope in a pragmatic sense. Because

the scope activates schemes, the scope lets the agent construct a “projection of its current

state in the near future”. Our algorithm, therefore, offers an implemented model of these

two aspects of Endsley’s views. The scope is nevertheless not a representation of the

agent’s environment as we see it. Instead, the scope is a representation of the agent’s

situation in terms of the agent’s possibilities of behavior. As such, the scope meets

Gibson’s (1979) ecological understanding of situation awareness. Gibson suggested that

the environment is perceived in terms of interactions afforded to the agent by the

environment, i.e., affordances. Our algorithm, therefore, also illustrates Gibson’s views.

This model has emergent SA and acts like it has emergent SA, even though the

representation is not explicit to an outside observer.

In our implementation, the scope is, however, still rudimentary. While it covers a

certain “volume of time” as Endsley called for, it does not cover the finding of distinct

“elements of the environment [..] within a volume of space”. Developmental theories

suggest that finding interaction regularities constitutes a prerequisite toward finding

A MODEL AND SIMULATION OF EMERGENT COGNITION

57

persistent objects in the environment, but we still need to investigate the concrete

mechanisms that will implement this passage.

 Preliminary experiments in more complex environments indicate that the current

algorithm faces three notable limitations. The first limitation concerns the management of

a large number of learned schemes. Although the number of learned schemes is kept

controlled as described in Section 4.4 (scope assessment), the algorithm, nevertheless,

constructs several hundred schemes during each run in the environment described in

Figure 10. The algorithm stores schemes in Soar’s declarative working memory and Soar

is not optimized for a large working memory. This commitment of Soar eventually

becomes a serious constraint on developing the algorithm. The agent’s knowledge

operates both as procedural (when a scheme is enacted), and as declarative (when a

scheme is part of the agent’s situational representation in the scope). Soar’s strong

distinction between procedural and declarative knowledge, therefore, further

compromises future developments in Soar. These limitations of Soar for handling

schemes have also been noted by Benjamin, Lyons, and Lonsdale (2004) who proposed

the ADAPT cognitive architecture as an extension of Soar that supports schema

manipulation. Additionally, more advanced implementations will require mechanisms to

reduce the number of schemes, for instance, by forgetting unused schemes or merging

schemes that have similar primitive sequences.

The second limitation is that the algorithm is not good at finding spatial regularities.

A MODEL AND SIMULATION OF EMERGENT COGNITION

58

For example, if we replace the central wall square with an empty square in Figure 8, the

agent becomes less likely to find the most satisfying regularity, that of making a

continuous circuit around its environment. We expected this limitation because we did

not design this algorithm to learn spatial regularities, but moving the agent to more

complex 2-D or 3-D environment will require addressing this issue in the future.

The third limitation is that the agent becomes quickly trapped in local optimums,

preventing it from exploring complex environments. As the agent continues to run, its

recursive learning mechanism causes it to learn schemes representing increasingly long

repetitions of a cyclical pattern. Our current experimental setup stops the agent when it

detects these repetitions. To generate more interesting behaviors, future algorithms

should implement other forms of intrinsic drives. For example, we can exploit the

detection of cyclical behaviors to generate a sense of boredom that would incite the agent

to break the cycle and move toward more exploration.

To move the agent to more complex environments, we are currently re-implementing

the algorithm in Java. We have also implemented primitive interactions that react to distal

properties of the environment (a sort of rudimentary vision) (Georgeon, Cohen, &

Cordier, 2011). To help the agent find spatial regularities, we are now working on

enhancing the agent’s architecture with additional mechanisms to represent space

(Georgeon, Marshall, & Ronot, 2011).

The algorithm currently works as an advanced adaptive mechanism but does not

A MODEL AND SIMULATION OF EMERGENT COGNITION

59

allow the agent to reflect upon or reason about knowledge. To move toward reflection,

we envision making the agent capable of inhibiting its actions and only simulating them

internally, without enacting them in the environment. We are now able to implement such

an internal simulation mechanism because our agent’s knowledge is associated with

expectations, that is, our agent learns knowledge of its actions’ effects. The agent can

internally simulate different possible courses of action based on the expected outcomes

associated with each action. The agent can then choose the course of action that has the

best expected satisfaction based on these simulations. Understanding the scope as the

agent’s situation awareness, we anticipate such internal simulations would resemble a

stream of awareness, in compliance with Cotterill’s (2001) proposal that thought is an

‘‘internally simulated interaction with the environment’’, and Hesslow’s (2002) argument

that this simulation hypothesis can explain our experience of an inner world.

A MODEL AND SIMULATION OF EMERGENT COGNITION

60

NOTES

Acknowledgments. We gratefully thank Richard Carlson, Jonathan Morgan, Amélie
Cordier, and Mark Cohen for their much-appreciated comments on this report.

Support. Support for this study was provided by ONR (N00014-06-1-0164 and
N00014-08-1-0481), DTRA (HDTRA 1-09-1-0054), and ANR (ANR-10-PDOC-007-01).

A MODEL AND SIMULATION OF EMERGENT COGNITION

61

REFERENCES

Aha, D. W. (1998). Feature weighting for lazy learning algorithms. In H. Liu & H.
Motoda (Eds.), Feature extraction construction and selection: A data mining
perspective. Norwell, MA: Kluwer Academic Publishers.

Anderson, J. R. (2007). How can the human mind occur in the physical Universe? New
York: Oxford University Press.

Arbib, M. (1992). Schema theory. In S. Shapiro (Ed.), Encyclopedia of Artificial
Intelligence, 2nd Edition (Vol. 2, pp. 1427–1443). New York, NY: John Wiley &
Sons.

Arkin, R. (1987). Motor schema-based mobile robot navigation. The International
Journal of Robotics Research, 8(4), 92-112.

Bach, J. (2008). Principles of synthetic intelligence: Building blocks for an architecture
of motivated cognition. New York, NY: Oxford University Press.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996-1005.

Benjamin, P., Lyons, D., & Lonsdale, D. (2004). ADAPT: A cognitive architecture for
robotics. Paper presented at the Sixth International Conference of Cognitive
Modeling, Pittsburgh, PA: Lawrence Earlbaum, 337-338.

Blank, D. S., Kumar, D., Meeden, L., & Marshall, J. (2005). Bringing up robot:
Fundamental mechanisms for creating a self-motivated, self-organizing
architecture. Cybernetics and Systems, 32(2), 125-150.

Chaput, H. H. (2004). The Constructivist Learning Architecture: A model of cognitive
development for robust autonomous robots. Unpublished doctoral dissertation,
The University of Texas, Austin.

Cohen, M. A. (2005). Teaching agent programming using custom environments and Jess.
AISB Quarterly, 120(Spring), 4.

Cordier, A., Mascret, B., & Mille, A. (2009). Extending case-based reasoning with
traces. Paper presented at the Grand Challenges for reasoning from experiences,
Workshop at IJCAI, Pasadena, CA, 23-32.

Cotterill, R. (2001). Cooperation of basal ganglia, cerebellum, sensory cerebrum and
hippocampus: Possible implications for cognition, consciousness, intelligence and
creativity. Progress in Neurobiology, 64, 1-33.

A MODEL AND SIMULATION OF EMERGENT COGNITION

62

De Loor, P., Manac'h, K., & Tisseau, J. (2010). Enaction-based artificial intelligence:
Toward co-evolution with humans in the loop. Minds and Machine, 19, 319-343.

Dennett, D. (1991). Consciousness explained: The Penguin Press.

Dennett, D. (1998). Brainchildren: Essays on designing minds. Cambridge, MA: MIT
Press.

Derbinsly, N., & Laird, J. E. (2009). Efficiently implementing episodic memory. Paper
presented at the 8th International Conference on Case-Based Reasoning, ICCBR,
Seattle, WA, 403-417.

Dietterich, T. G. (2000). An Overview of MAXQ Hierarchical Reinforcement Learning.
Paper presented at the SARA02 4th International Symposium on Abstraction,
Reformulation, and Approximation, London, UK: Springer-Verlag, 26-44.

Drescher, G. L. (1991). Made-up minds, a constructivist approach to artificial
intelligence. Cambridge, MA: MIT Press.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.
Human Factors, 37(1), 32-64.

Floreano, D., Mondada, F., Perez-Uribe, A., & Roggen, D. (2004). Evolution of
embodied intelligence. In F. Iida, R. Pfeifer, L. Steels & Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence (Vol. 3139, pp. 293-311). Berlin: Springer-
Verlag.

Froese, T., Virgo, N., & Izquierto, E. (2007). Autonomy: A review and a reappraisal.
Paper presented at the 9th Conference on Artificial Life, Lisbon, Portugal:
Springe-Verlag, 455-464.

Gadanho, S., & Hallam, J. (1998). Exploring the role of emotions in autonomous robot
learning. Paper presented at the AAAI Fall Symposium on emotional intelligence,
Orlando, FL: AAAI Press, 84-89.

Georgeon, O., Cohen, M., & Cordier, A. (2011). A Model and simulation of Early-Stage
Vision as a Developmental Sensorymotor Process. Paper presented at the
Artificial Intelligence Applications and Innovations, Corfu, Greece.

Georgeon, O., Marshall, J., & Ronot, P.-Y. (2011). Early-Stage Vision of Composite
Scenes for Spatial Learning and Navigation. Paper presented at the First Joint
IEEE Conference on Development and Learning and on Epigenetic Robotics,
Frankfurt, Germany.

A MODEL AND SIMULATION OF EMERGENT COGNITION

63

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-
Mifflin.

Griffiths, T., L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In
R. Sun (Ed.), The Cambridge handbook of computational cognitive modeling.
Cambridge, MA: Cambridge University Press.

Guerin, F., & McKenzie, D. (2008). A Piagetian model of early sensorimotor
development. Paper presented at the Eighth International Conference on
Epigenetic Robotics.

Harnad, S. (1990). The symbol grounding problem. Physica, D (42), 335-346.

Hawkins, J., & Blakeslee, S. (2004). On intelligence. New York, NY: Times Books.

Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception.
Trends in Cognitive Science, 6(6), 242–247.

Holmes, M., & Isbell, C. (2005). Schema learning: Experience-based construction of
predictive action models. Advances in Neural Information Processing Systems,
17, 583-562.

Hurley, S. (1998). Consciousness in action. Cambridge, MA: Harvard University Press.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.

James, W. (1907). Pragmatism.

Kolodner, J. (1992). An introduction to case-based reasoning. Artificial Intelligence
Review, 6(1), 3-34.

Laird, J. E., & Congdon, C. B. (2009). The Soar User's Manual Version 9.1: University
of Michigan

Langley, P., & Choi, D. (2006). Learning recursive control programs from problem
solving. Journal of Machine Learning Research, 7, 493-518.

Mille, A. (2006). From case-based reasoning to traces-based reasoning. Annual Reviews
in Control, 30(2), 223-232.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University
Press.

A MODEL AND SIMULATION OF EMERGENT COGNITION

64

Newell, A., & Simon, H. (1975). Computer science as empirical inquiry: Symbols and
search. Communications of the ACM, 19(3), 113-126.

Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.

Norman, J. (2002). Two visual systems and two theories of perception: An attempt to
reconcile the constructivist and ecological approaches. Behavioral and Brain
Sciences, 25(1), 73-144.

Oudeyer, P.-Y., & Kaplan, F. (2007). Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on Evolutionary Computation, 11(2),
265-286.

Perotto, F., Buisson, J., & Alvares, L. (2007). Constructivist anticipatory learning
mechanism (CALM): Dealing with partially deterministic and partially
observable environments. Paper presented at the Seventh International
Conference on Epigenetic Robotics, Rutgers, NJ.

Pfeifer, R. (1996). Building fungus eaters: Design principles of autonomous agents.
Paper presented at the 4th International Conference on Simulation of Adaptive
Behavior, Cambridge MA: The MIT Press, 3-12.

Piaget, J. (1937). The construction of reality in the child. New York: Basic Books.

Piaget, J. (1970). L'épistémologie génétique. Paris: PUF.

Pierce, D., & Kuipers, B. (1997). Map learning with uninterpreted sensors and effectors.
Artificial Intelligence, 92, 169-227.

Popper, K. (1972). Objective knowledge. Oxford: Oxford University Press.

Putterman, M. L. (1994). Markov Decision Processes. Discrete stochastic dynamic
programming. New York, NY: Wiley-Interscience.

Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in learning. In J. R.
Anderson (Ed.), Cognitive skills and their acquisition (pp. 335-359). Hillsdale:
NJ: Erlbaum.

Russell, S., & Norvig, P. (1995). AI: A modern approach. Englewoods Cliffs, NJ:
Prentice-Hall.

Sanchez-Marre, M., Cortes, U., Martinez, M., Comas, J., & Rodriguez-Roda, I. (2005).
An approach for temporal case-based reasoning: Episode-based reasoning. Paper
presented at the ICCBR, Chicago, IL: Springer, Heidelberg.

A MODEL AND SIMULATION OF EMERGENT COGNITION

65

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation. IEEE
Transactions on Autonomous Mental Development, 2(3), 230-247.

Simon, H. (1981). The sciences of the artificial. Cambridge: MIT Press.

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically motivated reinforcement
learning. Advances in Neural Information Processing Systems, 17.

Singh, S., Lewis, R. L., & Barto, A. G. (2009). Where do rewards come from? Paper
presented at the 31st Annual Conference of the Cognitive Science Society,
Austin, TX, 2601-2606.

Stewart, J., Gapenne, O., & Di Paolo, E. (2008). Enaction: A new paraigm for cognitive
science. Cambridge, MA: MIT Press.

Stojanov, G., Bozinovski, S., & Trajkivski, G. (1997). Interactionist-expectative view on
agency and learning. Mathematics and Computers in Simulation, 44(3), 295-310.

Suchman, L. A. (1987). Plans and situated actions. Cambridge: Cambridge University
Press.

Sun, R. (2004). Desiderata for cognitive architectures. Philosophical Psychology, 17(3),
341-373.

Sun, R. (2009). Motivational representations within a computational cognitive
architecture. Cognitive Computation, 1(1), 91-103.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge: A
bottom-up model of skill learning. Cognitive Science, 25, 203-244.

Sun, R., Peterson, T., & Merrill, E. (1999). A hybrid architecture for situated learning of
reactive sequential decision making. Applied Intelligence, 11, 109-127.

Sun, R., & Sessions, C. (2000). Automatic segmentation of sequences through
hierarchical reinforcement learning. In R. Sun & C. L. Giles (Eds.), Sequence
Learning (pp. 241–263). Berlin Heidelberg: Springer-Verlag.

Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science
and human experience. Cambridge: MIT Press.

Weill-Fassina, A., Rabardel, P., & Dubois, D. (1993). Représentations pour l'action.
Toulouse: Octares.

Wittgenstein, L. (1953). Philosophical Investigations.

A MODEL AND SIMULATION OF EMERGENT COGNITION

66

Wolpert, D., & Macready, W. (1997). No free lunch theorem for search. IEEE
Transactions on Evolutionary Computation, 1(1), 67-82.

