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ABSTRACT: This paper presents an implementation of bottom-up learning in a cognitive model. The paper relates 
the learning mechanism, its implementation in a Soar agent, and an experiment where the agent learns to solve an 
example task. The agent first learns primary schemas (low-level patterns of behavior) and then secondary schemas 
(patterns of primary schemas). This implementation draws from theories of hierarchical sequence learning and 
constructivist learning. It constitutes a first implementation of these theories in Soar, and it shows that Soar can be 
used to model bottom-up learning, using the weighted preference mechanism available in Soar 9. This study also 
shows the importance of modeling the agent’s activity traces to help the modeler develop the agent. This approach 
offers a way to represent how autonomous agents create declarative knowledge from and about their interaction with 
their environment, teammates or opponents. 
 
 
1. Introduction 
 
This study addresses the question of how an agent can 
acquire knowledge (learn) from his activity in an 
environment. This is an important issue when developing 
artificial cognitive agents, because this learning from 
activity could substantially reduce the amount of 
knowledge that the modeler has to manually encode in the 
agent, assuming the modeler has this knowledge and has a 
way to encode it. 
 
Learning from activity is referred to as “bottom-up 
learning”, in a view where sensory-motor skills are 
considered as low-level, and where more abstract 
knowledge is represented above it. Along with many 
authors in the area of “Grounding Theory” (Harnad, 
1990), we consider that bottom-up learning allows the 
symbols to be “grounded in activity”. A nice 
argumentation is given by Sun (2004) who claims that 
behavior is prior to knowledge, and thus, we should focus 
on organizing behavior, and then, organizing the 
construction of knowledge from behavior. Our underlying 
idea is that we should not represent goals, knowledge nor 
emotions in artificial agents, but rather give them a way to 
organize their behavior so that we can infer they have 
goals, knowledge and emotions when we observe their 
activity. 
 
Classical cognitive architectures, such as Soar (Laird, 
Gongdon, & Coulter, 1999) and ACT-R (Anderson & 
Lebière, 1998) have been criticized for not supporting this 

symbol grounding (Sun, 2004). In part to overcome this 
limitation, other teams have developed alternative 
architectures: CLARION (Sun, Peterson, & Merrill, 
1999), MicroPsy (Bach, 2003), CLA (Chaput, 2004), 
ICARUS (Langley & Choi, 2006).   
 
In this study, however, we show that a well-tested, 
cognitive architecture like Soar could be used in a novel 
approach to implement bottom-up learning from activity. 
By using Soar instead of these new cognitive 
architectures, we take advantage of Soar’s 15-year 
process of improvement, concerning both the modeling 
facilities it offers and its robustness. Another reason for 
using Soar is that we now have a higher level tool to help 
generate Soar code, namely Herbal (Haynes, Cohen, & 
Ritter, 2009). 
 
We are approaching the implementation of learning from 
a constructivist viewpoint, that is evolutionist (through 
trial and error), pragmatic (knowledge is grounded on 
praxis), and teleological (in our case, self-oriented). For 
this approach we can refer to the work of Piaget (1937), 
who proposed the idea that basic elements of cognition 
are “schemes” or “schemas”, which correspond to 
elementary patterns of behavior. These schemas are 
organized in a hierarchy of schema/subschemas. Lowest-
level schemas correspond to sensory-motor skills. Above 
them, more abstract schemas are constructed and 
organized, which ultimately should lead the agent to the 
knowledge that invariant objects exist in his environment, 
and also lead him to the construction of abstract concepts. 

Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation, Sundance, UT, 31 March - 2 April 2009
[paper: 09-BRIMS-016, pp. 65-72]



This hierarchical learning of higher-order schemas is an 
important and a challenging first step in constructivist 
learning. For instance, Sun and Sessions (2000) proposed 
the Self Segmentation of Sequence (SSS) algorithm.  
 
In this paper, we show how we could implement such a 
two-level mechanism in Soar. Our implementation, draws 
from previous studies that started to implement 
constructivist learning, especially that of Drescher (1991). 
Drescher modeled schemas as triples (context, action, 
expectation). In this paper, for clarity, we sometimes 
group together action and expectation under the term 
“intention”. In that description, a schema is a context 
associated with an intention, and an intention is an action 
associated with an expectation.  
 
Although these principles are not new, their 
implementation in Soar is innovative. The Soar 
community may find useful both our model itself and the 
remarks it suggests about Soar. More broadly, this work is 
an illustration of constructivist learning that can be 
applied to different architectures where an agent has to 
learn from interaction, such as in teamwork or adversarial 
interaction. 
 
2. The task 
 
The study of behavior requires a behavior and a task it 
arises from. This study was started with the simplest 
possible task. In this task, the agent has a choice between 
two possible actions: A or B, and he could get two 
possible responses from the environment: X or Y. This 
approach may seem like Newell’s (1990) approach when 
he proposed the “simplest response task” or the “two-
choice response task”. However, as early as this stage, our 
approach is actually different. In Newell’s approach, the 
task was “reactive”: the subject was previously told what 
he had to do in response to a stimulus. In our case, the 
task is “proactive”: the agent does not know what to do 
but has a built-in “preference” for one of the two 
responses, namely Y. Our purpose is to study how the 
agent can learn to do the right action (A or B) to get Y 
(good) and not X (bad). In other words, our goal is to 
have the agent structure his behavior due to the fact that 
he has an innate tendency to prefer actions that will lead 
to get Y. To achieve this is to have learned a behavior that 
results in a desired outcome. 
 
We have placed our agent in different environments that 
implemented this task. The first environment always 
returned X when the agent was doing A, and Y when the 

agent was doing B. So the agent could learn two very 
basic schemas: Schema1 = (context = any, action = A, 
expectation = X) and Schema2 = (context = any, action = 
B, expectation = Y). Because the agent had a hard-coded 
preference for schemas having an expectation of Y, then 
after at most two tries, he kept performing Schema2 and 
getting Y. 
 
Then, we placed our agent in more complex environments 
where he had to perform more complex sequences of 
behavior before getting a Y. In these new environments, 
the connection between action and response was not 
systematic but depended on the previous context of 
sequence. This approach can be compared to sequence 
learning (Sun & Giles, 2000). It is not, however, a passive 
sequence learning where the agent could only be an 
observer of the sequence, but it is an active sequence 
learning where the agent can formulate hypotheses and 
test them in the environment. This formulation of 
hypotheses is implemented as a construction mechanism 
of new schemas. We think that this active approach 
should facilitate a hierarchical learning of schemas and 
subschemas. Newly constructed schemas are tested 
against the environment and reinforced when they 
succeed. Our approach differs however from a pure “trial-
and-error with reinforcement learning” approach by the 
fact that reinforcement is contextualized into schemas, 
and schemas are hierarchically organized.  
 
The different environments where we have put our agent 
are further reported in olivier-georgeon.blogspot.com. In 
this paper, we only describe an environment where the 
agent has to do two consecutive A or two consecutive B 
to get a Y. Continuing with the same action will not lead 
to Y anymore. So, the agent will only get a Y if he does A 
when he has previously done B then A, or if he does B 
when he has previously done A then B. We call this task 
the “AXAYBXBY” task. This task is designed to 
illustrate how the agent can learn second order schemas 
that force him to enact primary schemas with an 
expectation of X—which is against his hard-coded 
tendency—to put himself in a situation where he can get a 
Y at the next round. 
 
3. The learning mechanism 
 
Our implementation of learning can be described as three 
levels of abstraction made by the agent, above level 0 that 
is the raw activity. This mechanism is represented in 
Figure 1. 
 

 
 



 
Figure 1: Abstraction process. 

 
The raw activity is a sequence of primary actions (A or B) 
performed by the agent, followed by primary responses 
(X or Y) returned by the environment. When we run our 
agent in the environment, we obtain the raw_sequence = 
“B X B Y B X B X A X A Y …”. Note that the first “nil 
nil” elements at the beginning of Figure 1 represent the 
content of the agent’s short-term memory at the beginning 
of the experiment and does not correspond to any real 
action. 
 
The first abstraction level consists of having the agent 
group primary actions with their primary responses in 
what we call an act. For example act A3 = “B X”. The 
first abstraction of raw_sequence is then act_sequence = 
“A3 A4 A3 A3 A5 A6 …” 
 
The second abstraction level consists of having the agent 
group two acts into one primary schema. For example, 
Schema S12 = “A3 A4”. A3 is the context act of S12, and 
A4 is its intention act. That means that, in a context where 
A3 has just been performed, S12 proposes to do A4. A4 
consists of doing the primary action “A” and expecting a 
response of “Y”. Thus, the second abstraction level of 
raw_sequence is primary_schema_sequence = “S12 S17 
S13 S11 S19 …” 
 
The third abstraction level consists of grouping three 
primary schemas into one secondary schema. For 
example, Schema S27 = “S13 S11 S19”. S13 is the 
context of S27. S11 is the action of S27, and S19 is the 
expectation of S27. S11 and S19 together form the 
intention of S27. That means that, in a context where S13 
has just been performed, S27 proposes to enact S11, 
which should (if it succeeds) lead to the possibility of 

enacting S19, which should (if it succeeds) lead to getting 
a Y. 
 
In Figure 1, the ascendant solid arrows represent the 
construction of more abstract items by the agent. The 
relation between higher level and lower level is somewhat 
complex, globally higher levels tend to “control” lower 
levels, but sometimes they fail, and lower levels “trigger” 
higher level schemas, but it is not certain what higher 
level schema is performed until the environment has 
responded and the schema is completely over. When the 
actually performed schema is known, its weight is 
incremented. This weight is then used during the selection 
phase for selecting the action that lead to a Y. Dashed 
gray double-headed arrows “Trigger/Control” represent 
this tightly coupling between levels. In the 
“AXAYBXBY” environment, secondary schemas always 
succeed, so the agent becomes "in control" of his activity 
when secondary schemas start to be enacted. In Figure 1, 
that is shown by “S29 S30” in green that control the 
enaction of S15, S19, S26, S12, which finally control the 
sequence AXAYBXBY. This sequence is the beginning 
of a stable sequence that gives a Y to the agent every 
second round, which is the best he can get in this 
environment. 
 
4. The Agent 
 
We have modeled this agent and its environment in Soar 
9.1, and executed it with the Soar debugger. So the agent 
and his environment are firing each cycle in turn, thanks 
to a token mechanism, but they are both part of the same 
overall Soar system. This approach avoids tying the 
model to an external task at this point, an important, but 



complicated aspect of model development (Ritter, Baxter, 
Jones, & Young, 2000). 
 
Each round, the agent executes one of the two green 
clockwise loops in Figure 2, and the environment 
executes the blue counterclockwise loop. At the 
beginning, the model starts from the “Construct Context” 
phase. The context corresponds to the current situation as 
it is retained in the agent’s short-term memory (“nil” at 
the beginning). 
 

 
Figure 2: Execution cycle. 

 
Construct context: structures the current context to 
prepare the schema construction and the schema selection. 
The context is made up of the three previously enacted 
schemas, stored in short-term memory. These schemas 
can be of any level and can refer to subschemas. This 
phase indexes these different levels. 
Construct new schemas: creates new schemas that match 
the current context. If they do not yet exist, these new 
schemas are added to long-term memory. They constitute 
hypotheses about how to deal with a new context, but 
they still need to be tested. 
Select a schema / First step: selects a schema to be 
executed in this context. High-level schemas add weight 
to their subschemas. Weights are positive if they lead to Y 
and negative if they lead to X. Schemas of any level 
compete, and the one with the highest weight is selected. 
If there are several equivalent, one of them is randomly 
picked. This phase initialize the selected schema at its 
first step. 
Execute schema step: sends the selected action defined 
in the current schema step to the environment: A or B. 
(Here the token is passed to the environment.) 
Environment: computes the response from the 
environment and sends it (Y or X) to the agent. The 
environment has its own memory and cycle. 
(Here the token is passed back to the agent.) 
Assess environment's response: checks if the schema 
has succeeded or failed. If the current subschema has 

succeeded but it is not the last step of the selected schema, 
then the "ongoing" loop is selected. 
Next step / subschema: selects the next step in the 
subschema hierarchy of the selected schema. 
Memorize / reinforce schema: when the schema ends, if 
it has succeeded, then it is referred to as the last enacted 
schema in short-term memory. The previous two are 
shifted, and the previous third is drop out of short-term 
memory. If the schema has failed at some point, then the 
actually enacted schema is stored in short-term memory 
and reinforced in long-term memory. For example, if a 
primary schema expecting Y has been selected, but if the 
environment actually returned X, then an equivalent 
schema but with an expectation of X is actually 
memorized and reinforced. The reinforcement consists of 
adding 1 to the schema weight. 
Trace: is only used to generate the trace of this cycle and 
to clear the temporary data. 
 
4.1 The implementation in Soar 
 
Figure 3 shows a part of our model’s memory structure as 
it is implemented in Soar. There are three main branches: 
the agent’s memory (<agt>), the environment’s memory 
(<env>), and a memory structure used for the interface 
between the agent and the environment (<int>). The 
agent’s primary schema memory and short-term memory 
are explicitly represented (<scm> and <stm>). For 
example, schema S12 = (A3 A4) = (B X B Y) is stored as 
a subgraph (<sch>) of the schema memory node (<scm>). 
A3 = (B X) is the context act (<sch>.<con>) made up of 
the primary action B (<con>.<set>) and the primary 
response X (<con>.<get>). The second B is the primary 
action proposed by the schema (<sch>.<set>). Y is the 
schema expectation (<sch>.<get>). In addition, this 
schema has a weight (<sch>.<wei>) that is an integer 
value equal to the number of times this schema has been 
successfully enacted. 
 
 

 
Figure 3: Memory architecture. 

 
Secondary schemas are stored in a different memory 
structure than primary schemas that is not represented on 
the figure. Implementing a recursive exploitation of 



schemas of any level that would lie on the same memory 
structure appears difficult at this point in Soar. 
 
5. The behavior study 
 
To help develop this agent and understand its behavior, 
we have given special attention to his activity traces. We 
have set up a mechanism to easily format, configure and 
display them, based on our previous work on 
understanding activity traces (Georgeon, 2008; Georgeon, 
Mille, & Bellet, 2006). 
 
This mechanism exports activity traces from the Soar 
debugger to text files. It converts these text files into 
XML files using a Java program. These XML traces are 
filtered to retain only the useful information at a specific 
step of the study. The XML files are then displayed in a 
browser using stylesheets. These stylesheets are both XSL 
and CSS. XSL allows us to specify in which blocks the 
trace elements will be rendered, and to define a page 
setup. CSS allows us to specify which format will be used 
for each block: font, colors, size, margin, etc. This process 
automatically generates traces like that shown in Figure 4. 
When displayed with Firefox, these traces can be spoken 
aloud, which makes them easier to understand. This can 
be seen online at olivier-georgeon.blogspot.com. The 
trace of Figure 4 is a subpart of the trace drawn in Figure 
1 that focuses on the construction and enaction of 
secondary schemas.  
 

 
Figure 4: XML activity trace. 

 
Each round ends by a red or a dark green line: red when 
the agent gets X (bad, he says O-o at the end of lines) and 
dark-green when he gets Y (good, he says Yee!). Light-
green lines are intermediary steps of context construction 
and schema construction. For example the context at the 
top is made up of the three previously enacted schemas 

S11, S19, and S24. S24 is expanded as acts A6 and A5. 
A5 is expanded as primary action A and primary response 
X. Below, when S12 succeeds, we can see the 
construction of a secondary schema S28 made up of the 
three previously enacted schemas S20, S22, S12. At the 
bottom of the figure we can see the first enaction of a 
secondary schema S29, because its context primary 
schema S12 matched the previously-enacted primary 
schema. 
 
6. Results and discussion 
 
The interesting results that we think this study has 
brought are: 
• We have defined a simple task suitable to study 
bottom-up learning. We have named this task the 
“AXAYBXBY” task. 
• We have implemented an agent that can learn two 
levels of schemas to perform the “AXAYBXBY” task as 
well as other related tasks (reported in the website), 
namely, all tasks with a regularity span lower or equal 
than two rounds. 
• We have shown that this agent could be implemented 
in Soar, which is a cognitive architecture that is better 
known for supporting learning from higher-level impasses 
(through chunking) than bottom-up learning from actions.  
• We have developed a mechanism to generate and 
display activity traces from Soar debugger logs. We show 
that it is useful that the modeler has the possibility to 
easily configure and format activity traces during the 
modeling process. 
• We have illustrated a constructivist approach of 
learning, inspired from a conception of cognition where 
the basic elements are not declarative chunks but schemas 
that can be seen as “contextualized patterns of behavior”. 
As said in the introduction, this approach is not novel, but 
it is the first time it has been implemented with Soar. 
• More broadly, we think that this approach can 
illustrate psychological phenomena related to learning and 
activity control. For instance, it is interesting to notice 
that the cycle represented in Figure 2, which has been 
defined from purely logical and ad-hoc engineering 
purpose, can be related to more psychological theories, 
namely the OODA loop (Hammond, 2001). 
• Our implementation led us to several remarks on how 
Soar could be used in this approach. These remarks are 
listed below. 
 
6.1 Remarks on how Soar is used in this approach 
 
Implementing this in Soar led to a deeper understanding 
of Soar and how to build models efficiently with Soar. 
 
We do not use Soar's input and output functions. The Soar 
system implements both our agent and his environment. 
From the Soar viewpoint, this model does not interact 
with any outside environment; it evolves by interaction 
between subcomponents of the system. It is only us, as 



observers, who understand it as an agent interacting with 
an environment.  This approach suggests that there may 
be a sub-type of environment where the environment’s 
behavior and actions can be represented using the same 
theory of what is in the head. We term such environments 
‘cognitive’ environments. Early work on problem solving 
used these environments, such as small towers of Hanoi, 
missionaries and cannibals, and water jugs. 
 
Our agent’s memory does not match the classical Soar 
memory definition. From our agent’s viewpoint, he stores 
schemas in his long-term memory, and the current 
situation in his short-term memory. From the Soar 
viewpoint, however, these schemas and this situation are 
actually stored in what the Soar vocabulary calls working 
memory, usually considered as declarative and semantic. 
Thus, Soar modelers could think that our agent learns 
semantic knowledge, but that would be seen by many as 
inappropriate because, from our agent’s viewpoint, this 
knowledge has no semantics, it is only behavioral patterns 
and thus should be seen as a type of procedural 
knowledge. 
 
We do not describe our agent’s action possibilities as 
operators, contrary to many Soar models. Instead, we 
describe them as schemas, and our model dynamically 
creates operators to generate the appropriate action that 
results from the evaluation of schemas. 
 
We cannot use Soar-9's built-in reward mechanism for 
two reasons. The first is that it only applies to operators, 
and we do not need to reinforce operators but schemas. 
The second is that Soar reinforcement learning is 
designed to let the modeler define rewards from the 
environment. From these rewards, Soar computes 
operator preferences through an algorithm on which we 
have insufficient control. In our case, our agent’s behavior 
is not driven by rewards sent to him as inputs (and that 
would be backward propagated trough an algorithm like 
the bucket brigade algorithm), but by hard-coded 
preferences for schemas having certain types of 
expectation. Therefore, the Soar reward mechanism does 
not help us, and we have to implement our own 
reinforcement mechanism that just increments a schema's 
weight each time it is enacted. We use, however, the 
numerical preference mechanism available in Soar-9, to 
select the operator that receives the highest overall weight 
from the different schemas that support it. 
 
So far, we do not use the Soar impasse mechanism. In our 
approach, when the agent has no knowledge to help him 
choose between two or more schemas, that really means 
that he has no other thing to do than randomly pick one. 
 
We do not use the Soar's default probabilistic action 
selection mechanism. The idea that there should be an 
epsilon probability that our agent chooses not his 
preferred action is useless in our case. It only impedes the 

exploration and learning process. We force the epsilon 
value to zero. A non-null epsilon value could however be 
useful in the environment’s model, if we would like to 
test our agent in a noisy environment. But even in a noisy 
environment, we do not think it is useful to add noise in 
the agent himself, because, in our approach, the necessary 
stochastic exploration comes from the random action 
when there is no preferred schema. 
 
From these remarks, it is clear that our usage of Soar does 
not correspond completely to what Soar has been 
designed to support. Soar has been created for 
representing the modeler's knowledge but does not fully 
support our approach for developing agents who construct 
their own knowledge from their activity. Nevertheless, so 
far, Soar has proven to offer enough flexibility to be 
usable for this approach. It provides us with powerful and 
efficient graph manipulation facilities, and weight 
preference management that are essential for our agent. 
Further work may align this approach more directly with 
how Soar’s mechanisms are typically used, or may 
provide more robust suggestions for how they should be 
used. 
 
6.2 Difficulties  
 
Our mechanism of schema construction may require some 
more discussion; it is different between primary and 
secondary schemas. The construction of primary schemas 
is implemented through a combination of all the possible 
primary actions that could be done in a specific context 
with all the primary responses that can be expected. This 
is illustrated in Figure 1 by the blue upward arrows. For 
example, in context A3, the agent constructs four schemas 
S10, S11, S12, S13; respectively of doing A, expecting Y; 
doing A, expecting X, doing B, expecting Y; and doing B 
expecting X. In contrast, the construction of secondary 
schemas is made from the memory of which patterns of 
primary schema succeeded. For example, secondary 
schema S27 was constructed because the successful 
primary schema S19 was enacted. We should explore 
more generic schema construction mechanism in the 
future. 
 
In terms of scalability, we should notice that the number 
of new schemas constructed at each round would not 
grow with the environment complexity but with the 
agent’s complexity, which remains under the modeler’s 
control. The time needed to explore the environment 
would however grow with the environment complexity. 
This raises the interesting question of the agent’s 
“education”, that is, designing “pedagogical” situations 
where the agent could more easily learn lower-level 
schemas on which higher-level schemas could anchor. 
 
Another difficulty, although related, is that it is not easy 
to implement a recursive schema/subschema mechanism 
in Soar. Soar has not been designed for this kind of 



recursivity. If we could complete that, it would provide a 
way for creating further models that use this approach.  It 
should be pretty general, and particularly applicable to 
other Soar models. 
 
6.3 Future work  
 
We now need to continue implementing higher-level 
abstraction mechanisms in our agent and test it in more 
complex environments. The idea of modeling the 
environment in Soar is nice as long as we don’t need a 
spatial environment. For a 2D environment that provides 
a screen display and 2D interactions, we plan first to use 
Vacuum (Cohen, 2005). Vacuum is a simple grid 
environment that allows an agent, represented as a 
vacuum cleaner, to move in search for dust to clean up. 
Then we plan to use dTank (Ritter, Kase, Bhandarkar, 
Lewis, & Cohen, 2007). dTank is a lightweight 
environment that simulates a battlefield  where two teams 
of tank can compete. Putting our agent in these 
environments will allow us to compare it with previous 
agents that have been developed through classical 
methods. This will help quantify how less knowledge the 
modeler has to encode in the agent with our approach. 
 
We also plan to implement a speech mechanism in real 
time, instead of having the trace spoken when it is 
analyzed. We believe this would help modelers and users 
better understand the agent. 
 
7. Conclusion 
 
We have proposed an approach that offers a way to 
implement unsupervised learning that occurs while a 
model implemented in Soar is performing a task. This 
approach uses reinforcement learning to improve 
performance and to generate a summary of behavior. It 
does so with declarative representations used to generate 
procedural behavior, which is relatively novel. 
 
One could think that Soar is not designed to model 
subsymbolic processing. However, from our agent’s 
viewpoint, this low-level behavior organization can be 
seen as subsymbolic. In our approach, the learned 
knowledge is not computed as it is in classic computo-
symbolic approaches. Knowledge of how to perform a 
task is not binary in that the agent does or does not know 
how to perform a task at a given point in time. Our 
approach provides more graded knowledge 
representations. We do not claim that our agent “has 
symbols in his mind”, nor that he is “mindful” at all. We 
think however that this first step of bottom-up learning is 
a required step before modeling agents that are able to 
manipulate symbols that are grounded in their activity as 
well as the world, and thus, in a pragmatic conception of 
knowledge, agent for which these symbols make sense. 
So far in this study, we demonstrated that a symbolic 

cognitive architecture like Soar supports working towards 
this goal.  
 
This learning mechanism is important in at least three 
ways. First, it provides a way for procedural knowledge to 
be learned by an agent through a trial-and-error and the 
reinforcement mechanism. Second, the abstraction 
mechanism opens a way for declarative knowledge to be 
learned by an agent about its procedural knowledge.  This 
is a novel result. Third, in our approach, the environment 
can be seen as another agent, thus this approach can 
provide a way for an agent to learn about another agent.  
This type of knowledge is useful for understanding 
teammates or opponents. 
 
8. References 
 
Anderson, J. R., & Lebière, C. (1998). The Atomic 

Components of Thought. Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Bach, J. (2003). The MicroPsi agent architecture. Paper 
presented at the ICCM-05, Universitäts-Verlag 
Bamberg. 15-20. 

Chaput, H. H. (2004). The Constructivist Learning 
Architecture: A model of cognitive development for 
robust autonomous robots. Unpublished doctoral 
dissertation, The University of Texas, Austin. 

Cohen, M. A. (2005). Teaching agent programming using 
custom environments and Jess. AISB Quarterly, 
120(Spring), 4. 

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). 
Herbal: A high-level language and development 
environment for developing cognitive models in 
Soar. Paper presented at the 14th Conference on 
Behavior Representation in Modeling and 
Simulation, Orlando, FL. 177-182. 

Drescher, G. L. (1991). Made-up minds, a constructivist 
approach to artificial intelligence. Cambridge, MA: 
MIT Press. 

Georgeon, O. (2008). Analyzing traces of activity for 
modeling cognitive schemes of operators. AISB 
Quarterly, 127, 1-2. 

Georgeon, O., Mille, A., & Bellet, T. (2006, 4-8 Sept 
2006). Analyzing behavioral data for refining 
cognitive models of operator. Paper presented at the 
Philosophies and Methodologies for Knowledge 
Discovery, Seventeenth international Workshop on 
Database and Expert Systems Applications, Krakow, 
Poland. 588-592. 

Hammond, G. (2001). The mind of War: John Boyd and 
american security. Washington, DC: Smithsonian 
Institution Press. 

Harnad, S. (1990). The symbol grounding problem. 
Physica D(42), 335-346. 

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009). 
Design patterns for explaining intelligent systems. 
International Journal of Human-Computer Studies, 
67(1), 99-110. 



Laird, J. E., Gongdon, C. B., & Coulter, K. J. (1999). The 
Soar User's Manual Version 8.2: University of 
Michigan. 

Langley, P., & Choi, D. (2006). Learning recursive 
control programs from problem solving. Journal of 
Machine Learning Research, 7, 493-518. 

Newell, A. (1990). Unified Theories of Cognition. 
Cambridge, MA: Harvard University Press. 

Piaget, J. (1937). The construction of reality in the child. 
New York: Basic Books. 

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. 
(2000). Supporting cognitive models as users. ACM 
Transactions on Computer-Human Interaction, 7(2), 
141-173. 

Ritter, F. E., Kase, S., E., Bhandarkar, D., Lewis, B., & 
Cohen, M. (2007). dTank updated:  Exploring 
moderator-influenced behavior in a light-weight 
synthetic environment. Paper presented at the 16th 
Conference on Behavior Representation in Modeling 
and Simulation, U. of Central Florida: Norfolk, VA. 
51-60. 

Sun, R. (2004). Desiderata for cognitive architectures. 
Philosophical Psychology, 17(3), 341-373. 

Sun, R., & Giles, C. L. (2000). Sequence Learning - 
Paradigms, Algorithms, and Applications (Vol. 
1828). Berlin Heidelberg: Springer. 

Sun, R., Peterson, T., & Merrill, E. (1999). A hybrid 
architecture for situated learning of reactive 
sequential decision making. Applied Intelligence, 
11, 109-127. 

Sun, R., & Sessions, C. (2000). Automatic Segmentation 
of Sequences through Hierarchical Reinforcement 
Learning. In R. Sun & C. L. Giles (Eds.), Sequence 
Learning (pp. 241–263). Berlin Heidelberg: 
Springer-Verlag. 

 
 
Acknowledgments 
 
Support was provided by ONR Contracts N00014-08-1-
0481 and N00014-06-1-0164. 
 
Author Biographies 
 
OLIVIER GEORGEON is a cognitive scientist with an 
interest in learning from experience; he is currently a 
research associate in the ACS (Applied Cognitive 
Science) Lab in the college of IST at Penn State.  

FRANK RITTER is on the faculty of the College of IST, 
an interdisciplinary academic unit at Penn State to study 
how people process information using technology. He 
edits the Oxford Series on Cognitive Models and 
Architectures and is an editorial board member of Human 
Factors, AISBQ, and the Journal of Educational 
Psychology. 

STEVEN HAYNES is a Professor of Practice in the 
College of IST at Penn State. His research focuses on 

explanation facilities for intelligent systems, and design 
rationale. 

 


