
Modeling Bottom-Up Learning from Activity in Soar

Olivier L. Georgeon

Frank E. Ritter
Steven R. Haynes

College of Information Sciences and Technology
The Pennsylvania State University

University Park, PA 16802
814-865-6166

olg1@psu.edu, frank.ritter@psu.edu, shaynes@ist.psu.edu

Keywords:

Bottom-up learning, constructivist learning, activity trace, Soar

ABSTRACT: This paper presents an implementation of bottom-up learning in a cognitive model. The paper relates
the learning mechanism, its implementation in a Soar agent, and an experiment where the agent learns to solve an
example task. The agent first learns primary schemas (low-level patterns of behavior) and then secondary schemas
(patterns of primary schemas). This implementation draws from theories of hierarchical sequence learning and
constructivist learning. It constitutes a first implementation of these theories in Soar, and it shows that Soar can be
used to model bottom-up learning, using the weighted preference mechanism available in Soar 9. This study also
shows the importance of modeling the agent’s activity traces to help the modeler develop the agent. This approach
offers a way to represent how autonomous agents create declarative knowledge from and about their interaction with
their environment, teammates or opponents.

1. Introduction

This study addresses the question of how an agent can
acquire knowledge (learn) from his activity in an
environment. This is an important issue when developing
artificial cognitive agents, because this learning from
activity could substantially reduce the amount of
knowledge that the modeler has to manually encode in the
agent, assuming the modeler has this knowledge and has a
way to encode it.

Learning from activity is referred to as “bottom-up
learning”, in a view where sensory-motor skills are
considered as low-level, and where more abstract
knowledge is represented above it. Along with many
authors in the area of “Grounding Theory” (Harnad,
1990), we consider that bottom-up learning allows the
symbols to be “grounded in activity”. A nice
argumentation is given by Sun (2004) who claims that
behavior is prior to knowledge, and thus, we should focus
on organizing behavior, and then, organizing the
construction of knowledge from behavior. Our underlying
idea is that we should not represent goals, knowledge nor
emotions in artificial agents, but rather give them a way to
organize their behavior so that we can infer they have
goals, knowledge and emotions when we observe their
activity.

Classical cognitive architectures, such as Soar (Laird,
Gongdon, & Coulter, 1999) and ACT-R (Anderson &
Lebière, 1998) have been criticized for not supporting this

symbol grounding (Sun, 2004). In part to overcome this
limitation, other teams have developed alternative
architectures: CLARION (Sun, Peterson, & Merrill,
1999), MicroPsy (Bach, 2003), CLA (Chaput, 2004),
ICARUS (Langley & Choi, 2006).

In this study, however, we show that a well-tested,
cognitive architecture like Soar could be used in a novel
approach to implement bottom-up learning from activity.
By using Soar instead of these new cognitive
architectures, we take advantage of Soar’s 15-year
process of improvement, concerning both the modeling
facilities it offers and its robustness. Another reason for
using Soar is that we now have a higher level tool to help
generate Soar code, namely Herbal (Haynes, Cohen, &
Ritter, 2009).

We are approaching the implementation of learning from
a constructivist viewpoint, that is evolutionist (through
trial and error), pragmatic (knowledge is grounded on
praxis), and teleological (in our case, self-oriented). For
this approach we can refer to the work of Piaget (1937),
who proposed the idea that basic elements of cognition
are “schemes” or “schemas”, which correspond to
elementary patterns of behavior. These schemas are
organized in a hierarchy of schema/subschemas. Lowest-
level schemas correspond to sensory-motor skills. Above
them, more abstract schemas are constructed and
organized, which ultimately should lead the agent to the
knowledge that invariant objects exist in his environment,
and also lead him to the construction of abstract concepts.

Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation, Sundance, UT, 31 March - 2 April 2009
[paper: 09-BRIMS-016, pp. 65-72]

This hierarchical learning of higher-order schemas is an
important and a challenging first step in constructivist
learning. For instance, Sun and Sessions (2000) proposed
the Self Segmentation of Sequence (SSS) algorithm.

In this paper, we show how we could implement such a
two-level mechanism in Soar. Our implementation, draws
from previous studies that started to implement
constructivist learning, especially that of Drescher (1991).
Drescher modeled schemas as triples (context, action,
expectation). In this paper, for clarity, we sometimes
group together action and expectation under the term
“intention”. In that description, a schema is a context
associated with an intention, and an intention is an action
associated with an expectation.

Although these principles are not new, their
implementation in Soar is innovative. The Soar
community may find useful both our model itself and the
remarks it suggests about Soar. More broadly, this work is
an illustration of constructivist learning that can be
applied to different architectures where an agent has to
learn from interaction, such as in teamwork or adversarial
interaction.

2. The task

The study of behavior requires a behavior and a task it
arises from. This study was started with the simplest
possible task. In this task, the agent has a choice between
two possible actions: A or B, and he could get two
possible responses from the environment: X or Y. This
approach may seem like Newell’s (1990) approach when
he proposed the “simplest response task” or the “two-
choice response task”. However, as early as this stage, our
approach is actually different. In Newell’s approach, the
task was “reactive”: the subject was previously told what
he had to do in response to a stimulus. In our case, the
task is “proactive”: the agent does not know what to do
but has a built-in “preference” for one of the two
responses, namely Y. Our purpose is to study how the
agent can learn to do the right action (A or B) to get Y
(good) and not X (bad). In other words, our goal is to
have the agent structure his behavior due to the fact that
he has an innate tendency to prefer actions that will lead
to get Y. To achieve this is to have learned a behavior that
results in a desired outcome.

We have placed our agent in different environments that
implemented this task. The first environment always
returned X when the agent was doing A, and Y when the

agent was doing B. So the agent could learn two very
basic schemas: Schema1 = (context = any, action = A,
expectation = X) and Schema2 = (context = any, action =
B, expectation = Y). Because the agent had a hard-coded
preference for schemas having an expectation of Y, then
after at most two tries, he kept performing Schema2 and
getting Y.

Then, we placed our agent in more complex environments
where he had to perform more complex sequences of
behavior before getting a Y. In these new environments,
the connection between action and response was not
systematic but depended on the previous context of
sequence. This approach can be compared to sequence
learning (Sun & Giles, 2000). It is not, however, a passive
sequence learning where the agent could only be an
observer of the sequence, but it is an active sequence
learning where the agent can formulate hypotheses and
test them in the environment. This formulation of
hypotheses is implemented as a construction mechanism
of new schemas. We think that this active approach
should facilitate a hierarchical learning of schemas and
subschemas. Newly constructed schemas are tested
against the environment and reinforced when they
succeed. Our approach differs however from a pure “trial-
and-error with reinforcement learning” approach by the
fact that reinforcement is contextualized into schemas,
and schemas are hierarchically organized.

The different environments where we have put our agent
are further reported in olivier-georgeon.blogspot.com. In
this paper, we only describe an environment where the
agent has to do two consecutive A or two consecutive B
to get a Y. Continuing with the same action will not lead
to Y anymore. So, the agent will only get a Y if he does A
when he has previously done B then A, or if he does B
when he has previously done A then B. We call this task
the “AXAYBXBY” task. This task is designed to
illustrate how the agent can learn second order schemas
that force him to enact primary schemas with an
expectation of X—which is against his hard-coded
tendency—to put himself in a situation where he can get a
Y at the next round.

3. The learning mechanism

Our implementation of learning can be described as three
levels of abstraction made by the agent, above level 0 that
is the raw activity. This mechanism is represented in
Figure 1.

Figure 1: Abstraction process.

The raw activity is a sequence of primary actions (A or B)
performed by the agent, followed by primary responses
(X or Y) returned by the environment. When we run our
agent in the environment, we obtain the raw_sequence =
“B X B Y B X B X A X A Y …”. Note that the first “nil
nil” elements at the beginning of Figure 1 represent the
content of the agent’s short-term memory at the beginning
of the experiment and does not correspond to any real
action.

The first abstraction level consists of having the agent
group primary actions with their primary responses in
what we call an act. For example act A3 = “B X”. The
first abstraction of raw_sequence is then act_sequence =
“A3 A4 A3 A3 A5 A6 …”

The second abstraction level consists of having the agent
group two acts into one primary schema. For example,
Schema S12 = “A3 A4”. A3 is the context act of S12, and
A4 is its intention act. That means that, in a context where
A3 has just been performed, S12 proposes to do A4. A4
consists of doing the primary action “A” and expecting a
response of “Y”. Thus, the second abstraction level of
raw_sequence is primary_schema_sequence = “S12 S17
S13 S11 S19 …”

The third abstraction level consists of grouping three
primary schemas into one secondary schema. For
example, Schema S27 = “S13 S11 S19”. S13 is the
context of S27. S11 is the action of S27, and S19 is the
expectation of S27. S11 and S19 together form the
intention of S27. That means that, in a context where S13
has just been performed, S27 proposes to enact S11,
which should (if it succeeds) lead to the possibility of

enacting S19, which should (if it succeeds) lead to getting
a Y.

In Figure 1, the ascendant solid arrows represent the
construction of more abstract items by the agent. The
relation between higher level and lower level is somewhat
complex, globally higher levels tend to “control” lower
levels, but sometimes they fail, and lower levels “trigger”
higher level schemas, but it is not certain what higher
level schema is performed until the environment has
responded and the schema is completely over. When the
actually performed schema is known, its weight is
incremented. This weight is then used during the selection
phase for selecting the action that lead to a Y. Dashed
gray double-headed arrows “Trigger/Control” represent
this tightly coupling between levels. In the
“AXAYBXBY” environment, secondary schemas always
succeed, so the agent becomes "in control" of his activity
when secondary schemas start to be enacted. In Figure 1,
that is shown by “S29 S30” in green that control the
enaction of S15, S19, S26, S12, which finally control the
sequence AXAYBXBY. This sequence is the beginning
of a stable sequence that gives a Y to the agent every
second round, which is the best he can get in this
environment.

4. The Agent

We have modeled this agent and its environment in Soar
9.1, and executed it with the Soar debugger. So the agent
and his environment are firing each cycle in turn, thanks
to a token mechanism, but they are both part of the same
overall Soar system. This approach avoids tying the
model to an external task at this point, an important, but

complicated aspect of model development (Ritter, Baxter,
Jones, & Young, 2000).

Each round, the agent executes one of the two green
clockwise loops in Figure 2, and the environment
executes the blue counterclockwise loop. At the
beginning, the model starts from the “Construct Context”
phase. The context corresponds to the current situation as
it is retained in the agent’s short-term memory (“nil” at
the beginning).

Figure 2: Execution cycle.

Construct context: structures the current context to
prepare the schema construction and the schema selection.
The context is made up of the three previously enacted
schemas, stored in short-term memory. These schemas
can be of any level and can refer to subschemas. This
phase indexes these different levels.
Construct new schemas: creates new schemas that match
the current context. If they do not yet exist, these new
schemas are added to long-term memory. They constitute
hypotheses about how to deal with a new context, but
they still need to be tested.
Select a schema / First step: selects a schema to be
executed in this context. High-level schemas add weight
to their subschemas. Weights are positive if they lead to Y
and negative if they lead to X. Schemas of any level
compete, and the one with the highest weight is selected.
If there are several equivalent, one of them is randomly
picked. This phase initialize the selected schema at its
first step.
Execute schema step: sends the selected action defined
in the current schema step to the environment: A or B.
(Here the token is passed to the environment.)
Environment: computes the response from the
environment and sends it (Y or X) to the agent. The
environment has its own memory and cycle.
(Here the token is passed back to the agent.)
Assess environment's response: checks if the schema
has succeeded or failed. If the current subschema has

succeeded but it is not the last step of the selected schema,
then the "ongoing" loop is selected.
Next step / subschema: selects the next step in the
subschema hierarchy of the selected schema.
Memorize / reinforce schema: when the schema ends, if
it has succeeded, then it is referred to as the last enacted
schema in short-term memory. The previous two are
shifted, and the previous third is drop out of short-term
memory. If the schema has failed at some point, then the
actually enacted schema is stored in short-term memory
and reinforced in long-term memory. For example, if a
primary schema expecting Y has been selected, but if the
environment actually returned X, then an equivalent
schema but with an expectation of X is actually
memorized and reinforced. The reinforcement consists of
adding 1 to the schema weight.
Trace: is only used to generate the trace of this cycle and
to clear the temporary data.

4.1 The implementation in Soar

Figure 3 shows a part of our model’s memory structure as
it is implemented in Soar. There are three main branches:
the agent’s memory (<agt>), the environment’s memory
(<env>), and a memory structure used for the interface
between the agent and the environment (<int>). The
agent’s primary schema memory and short-term memory
are explicitly represented (<scm> and <stm>). For
example, schema S12 = (A3 A4) = (B X B Y) is stored as
a subgraph (<sch>) of the schema memory node (<scm>).
A3 = (B X) is the context act (<sch>.<con>) made up of
the primary action B (<con>.<set>) and the primary
response X (<con>.<get>). The second B is the primary
action proposed by the schema (<sch>.<set>). Y is the
schema expectation (<sch>.<get>). In addition, this
schema has a weight (<sch>.<wei>) that is an integer
value equal to the number of times this schema has been
successfully enacted.

Figure 3: Memory architecture.

Secondary schemas are stored in a different memory
structure than primary schemas that is not represented on
the figure. Implementing a recursive exploitation of

schemas of any level that would lie on the same memory
structure appears difficult at this point in Soar.

5. The behavior study

To help develop this agent and understand its behavior,
we have given special attention to his activity traces. We
have set up a mechanism to easily format, configure and
display them, based on our previous work on
understanding activity traces (Georgeon, 2008; Georgeon,
Mille, & Bellet, 2006).

This mechanism exports activity traces from the Soar
debugger to text files. It converts these text files into
XML files using a Java program. These XML traces are
filtered to retain only the useful information at a specific
step of the study. The XML files are then displayed in a
browser using stylesheets. These stylesheets are both XSL
and CSS. XSL allows us to specify in which blocks the
trace elements will be rendered, and to define a page
setup. CSS allows us to specify which format will be used
for each block: font, colors, size, margin, etc. This process
automatically generates traces like that shown in Figure 4.
When displayed with Firefox, these traces can be spoken
aloud, which makes them easier to understand. This can
be seen online at olivier-georgeon.blogspot.com. The
trace of Figure 4 is a subpart of the trace drawn in Figure
1 that focuses on the construction and enaction of
secondary schemas.

Figure 4: XML activity trace.

Each round ends by a red or a dark green line: red when
the agent gets X (bad, he says O-o at the end of lines) and
dark-green when he gets Y (good, he says Yee!). Light-
green lines are intermediary steps of context construction
and schema construction. For example the context at the
top is made up of the three previously enacted schemas

S11, S19, and S24. S24 is expanded as acts A6 and A5.
A5 is expanded as primary action A and primary response
X. Below, when S12 succeeds, we can see the
construction of a secondary schema S28 made up of the
three previously enacted schemas S20, S22, S12. At the
bottom of the figure we can see the first enaction of a
secondary schema S29, because its context primary
schema S12 matched the previously-enacted primary
schema.

6. Results and discussion

The interesting results that we think this study has
brought are:
• We have defined a simple task suitable to study
bottom-up learning. We have named this task the
“AXAYBXBY” task.
• We have implemented an agent that can learn two
levels of schemas to perform the “AXAYBXBY” task as
well as other related tasks (reported in the website),
namely, all tasks with a regularity span lower or equal
than two rounds.
• We have shown that this agent could be implemented
in Soar, which is a cognitive architecture that is better
known for supporting learning from higher-level impasses
(through chunking) than bottom-up learning from actions.
• We have developed a mechanism to generate and
display activity traces from Soar debugger logs. We show
that it is useful that the modeler has the possibility to
easily configure and format activity traces during the
modeling process.
• We have illustrated a constructivist approach of
learning, inspired from a conception of cognition where
the basic elements are not declarative chunks but schemas
that can be seen as “contextualized patterns of behavior”.
As said in the introduction, this approach is not novel, but
it is the first time it has been implemented with Soar.
• More broadly, we think that this approach can
illustrate psychological phenomena related to learning and
activity control. For instance, it is interesting to notice
that the cycle represented in Figure 2, which has been
defined from purely logical and ad-hoc engineering
purpose, can be related to more psychological theories,
namely the OODA loop (Hammond, 2001).
• Our implementation led us to several remarks on how
Soar could be used in this approach. These remarks are
listed below.

6.1 Remarks on how Soar is used in this approach

Implementing this in Soar led to a deeper understanding
of Soar and how to build models efficiently with Soar.

We do not use Soar's input and output functions. The Soar
system implements both our agent and his environment.
From the Soar viewpoint, this model does not interact
with any outside environment; it evolves by interaction
between subcomponents of the system. It is only us, as

observers, who understand it as an agent interacting with
an environment. This approach suggests that there may
be a sub-type of environment where the environment’s
behavior and actions can be represented using the same
theory of what is in the head. We term such environments
‘cognitive’ environments. Early work on problem solving
used these environments, such as small towers of Hanoi,
missionaries and cannibals, and water jugs.

Our agent’s memory does not match the classical Soar
memory definition. From our agent’s viewpoint, he stores
schemas in his long-term memory, and the current
situation in his short-term memory. From the Soar
viewpoint, however, these schemas and this situation are
actually stored in what the Soar vocabulary calls working
memory, usually considered as declarative and semantic.
Thus, Soar modelers could think that our agent learns
semantic knowledge, but that would be seen by many as
inappropriate because, from our agent’s viewpoint, this
knowledge has no semantics, it is only behavioral patterns
and thus should be seen as a type of procedural
knowledge.

We do not describe our agent’s action possibilities as
operators, contrary to many Soar models. Instead, we
describe them as schemas, and our model dynamically
creates operators to generate the appropriate action that
results from the evaluation of schemas.

We cannot use Soar-9's built-in reward mechanism for
two reasons. The first is that it only applies to operators,
and we do not need to reinforce operators but schemas.
The second is that Soar reinforcement learning is
designed to let the modeler define rewards from the
environment. From these rewards, Soar computes
operator preferences through an algorithm on which we
have insufficient control. In our case, our agent’s behavior
is not driven by rewards sent to him as inputs (and that
would be backward propagated trough an algorithm like
the bucket brigade algorithm), but by hard-coded
preferences for schemas having certain types of
expectation. Therefore, the Soar reward mechanism does
not help us, and we have to implement our own
reinforcement mechanism that just increments a schema's
weight each time it is enacted. We use, however, the
numerical preference mechanism available in Soar-9, to
select the operator that receives the highest overall weight
from the different schemas that support it.

So far, we do not use the Soar impasse mechanism. In our
approach, when the agent has no knowledge to help him
choose between two or more schemas, that really means
that he has no other thing to do than randomly pick one.

We do not use the Soar's default probabilistic action
selection mechanism. The idea that there should be an
epsilon probability that our agent chooses not his
preferred action is useless in our case. It only impedes the

exploration and learning process. We force the epsilon
value to zero. A non-null epsilon value could however be
useful in the environment’s model, if we would like to
test our agent in a noisy environment. But even in a noisy
environment, we do not think it is useful to add noise in
the agent himself, because, in our approach, the necessary
stochastic exploration comes from the random action
when there is no preferred schema.

From these remarks, it is clear that our usage of Soar does
not correspond completely to what Soar has been
designed to support. Soar has been created for
representing the modeler's knowledge but does not fully
support our approach for developing agents who construct
their own knowledge from their activity. Nevertheless, so
far, Soar has proven to offer enough flexibility to be
usable for this approach. It provides us with powerful and
efficient graph manipulation facilities, and weight
preference management that are essential for our agent.
Further work may align this approach more directly with
how Soar’s mechanisms are typically used, or may
provide more robust suggestions for how they should be
used.

6.2 Difficulties

Our mechanism of schema construction may require some
more discussion; it is different between primary and
secondary schemas. The construction of primary schemas
is implemented through a combination of all the possible
primary actions that could be done in a specific context
with all the primary responses that can be expected. This
is illustrated in Figure 1 by the blue upward arrows. For
example, in context A3, the agent constructs four schemas
S10, S11, S12, S13; respectively of doing A, expecting Y;
doing A, expecting X, doing B, expecting Y; and doing B
expecting X. In contrast, the construction of secondary
schemas is made from the memory of which patterns of
primary schema succeeded. For example, secondary
schema S27 was constructed because the successful
primary schema S19 was enacted. We should explore
more generic schema construction mechanism in the
future.

In terms of scalability, we should notice that the number
of new schemas constructed at each round would not
grow with the environment complexity but with the
agent’s complexity, which remains under the modeler’s
control. The time needed to explore the environment
would however grow with the environment complexity.
This raises the interesting question of the agent’s
“education”, that is, designing “pedagogical” situations
where the agent could more easily learn lower-level
schemas on which higher-level schemas could anchor.

Another difficulty, although related, is that it is not easy
to implement a recursive schema/subschema mechanism
in Soar. Soar has not been designed for this kind of

recursivity. If we could complete that, it would provide a
way for creating further models that use this approach. It
should be pretty general, and particularly applicable to
other Soar models.

6.3 Future work

We now need to continue implementing higher-level
abstraction mechanisms in our agent and test it in more
complex environments. The idea of modeling the
environment in Soar is nice as long as we don’t need a
spatial environment. For a 2D environment that provides
a screen display and 2D interactions, we plan first to use
Vacuum (Cohen, 2005). Vacuum is a simple grid
environment that allows an agent, represented as a
vacuum cleaner, to move in search for dust to clean up.
Then we plan to use dTank (Ritter, Kase, Bhandarkar,
Lewis, & Cohen, 2007). dTank is a lightweight
environment that simulates a battlefield where two teams
of tank can compete. Putting our agent in these
environments will allow us to compare it with previous
agents that have been developed through classical
methods. This will help quantify how less knowledge the
modeler has to encode in the agent with our approach.

We also plan to implement a speech mechanism in real
time, instead of having the trace spoken when it is
analyzed. We believe this would help modelers and users
better understand the agent.

7. Conclusion

We have proposed an approach that offers a way to
implement unsupervised learning that occurs while a
model implemented in Soar is performing a task. This
approach uses reinforcement learning to improve
performance and to generate a summary of behavior. It
does so with declarative representations used to generate
procedural behavior, which is relatively novel.

One could think that Soar is not designed to model
subsymbolic processing. However, from our agent’s
viewpoint, this low-level behavior organization can be
seen as subsymbolic. In our approach, the learned
knowledge is not computed as it is in classic computo-
symbolic approaches. Knowledge of how to perform a
task is not binary in that the agent does or does not know
how to perform a task at a given point in time. Our
approach provides more graded knowledge
representations. We do not claim that our agent “has
symbols in his mind”, nor that he is “mindful” at all. We
think however that this first step of bottom-up learning is
a required step before modeling agents that are able to
manipulate symbols that are grounded in their activity as
well as the world, and thus, in a pragmatic conception of
knowledge, agent for which these symbols make sense.
So far in this study, we demonstrated that a symbolic

cognitive architecture like Soar supports working towards
this goal.

This learning mechanism is important in at least three
ways. First, it provides a way for procedural knowledge to
be learned by an agent through a trial-and-error and the
reinforcement mechanism. Second, the abstraction
mechanism opens a way for declarative knowledge to be
learned by an agent about its procedural knowledge. This
is a novel result. Third, in our approach, the environment
can be seen as another agent, thus this approach can
provide a way for an agent to learn about another agent.
This type of knowledge is useful for understanding
teammates or opponents.

8. References

Anderson, J. R., & Lebière, C. (1998). The Atomic

Components of Thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Bach, J. (2003). The MicroPsi agent architecture. Paper
presented at the ICCM-05, Universitäts-Verlag
Bamberg. 15-20.

Chaput, H. H. (2004). The Constructivist Learning
Architecture: A model of cognitive development for
robust autonomous robots. Unpublished doctoral
dissertation, The University of Texas, Austin.

Cohen, M. A. (2005). Teaching agent programming using
custom environments and Jess. AISB Quarterly,
120(Spring), 4.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005).
Herbal: A high-level language and development
environment for developing cognitive models in
Soar. Paper presented at the 14th Conference on
Behavior Representation in Modeling and
Simulation, Orlando, FL. 177-182.

Drescher, G. L. (1991). Made-up minds, a constructivist
approach to artificial intelligence. Cambridge, MA:
MIT Press.

Georgeon, O. (2008). Analyzing traces of activity for
modeling cognitive schemes of operators. AISB
Quarterly, 127, 1-2.

Georgeon, O., Mille, A., & Bellet, T. (2006, 4-8 Sept
2006). Analyzing behavioral data for refining
cognitive models of operator. Paper presented at the
Philosophies and Methodologies for Knowledge
Discovery, Seventeenth international Workshop on
Database and Expert Systems Applications, Krakow,
Poland. 588-592.

Hammond, G. (2001). The mind of War: John Boyd and
american security. Washington, DC: Smithsonian
Institution Press.

Harnad, S. (1990). The symbol grounding problem.
Physica D(42), 335-346.

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009).
Design patterns for explaining intelligent systems.
International Journal of Human-Computer Studies,
67(1), 99-110.

Laird, J. E., Gongdon, C. B., & Coulter, K. J. (1999). The
Soar User's Manual Version 8.2: University of
Michigan.

Langley, P., & Choi, D. (2006). Learning recursive
control programs from problem solving. Journal of
Machine Learning Research, 7, 493-518.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Piaget, J. (1937). The construction of reality in the child.
New York: Basic Books.

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R.
(2000). Supporting cognitive models as users. ACM
Transactions on Computer-Human Interaction, 7(2),
141-173.

Ritter, F. E., Kase, S., E., Bhandarkar, D., Lewis, B., &
Cohen, M. (2007). dTank updated: Exploring
moderator-influenced behavior in a light-weight
synthetic environment. Paper presented at the 16th
Conference on Behavior Representation in Modeling
and Simulation, U. of Central Florida: Norfolk, VA.
51-60.

Sun, R. (2004). Desiderata for cognitive architectures.
Philosophical Psychology, 17(3), 341-373.

Sun, R., & Giles, C. L. (2000). Sequence Learning -
Paradigms, Algorithms, and Applications (Vol.
1828). Berlin Heidelberg: Springer.

Sun, R., Peterson, T., & Merrill, E. (1999). A hybrid
architecture for situated learning of reactive
sequential decision making. Applied Intelligence,
11, 109-127.

Sun, R., & Sessions, C. (2000). Automatic Segmentation
of Sequences through Hierarchical Reinforcement
Learning. In R. Sun & C. L. Giles (Eds.), Sequence
Learning (pp. 241–263). Berlin Heidelberg:
Springer-Verlag.

Acknowledgments

Support was provided by ONR Contracts N00014-08-1-
0481 and N00014-06-1-0164.

Author Biographies

OLIVIER GEORGEON is a cognitive scientist with an
interest in learning from experience; he is currently a
research associate in the ACS (Applied Cognitive
Science) Lab in the college of IST at Penn State.

FRANK RITTER is on the faculty of the College of IST,
an interdisciplinary academic unit at Penn State to study
how people process information using technology. He
edits the Oxford Series on Cognitive Models and
Architectures and is an editorial board member of Human
Factors, AISBQ, and the Journal of Educational
Psychology.

STEVEN HAYNES is a Professor of Practice in the
College of IST at Penn State. His research focuses on

explanation facilities for intelligent systems, and design
rationale.

