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Abstract 

This work demonstrates a mechanism that autonomously 
organizes an agent’s sequential behavior. The behavior 
organization is driven by pre-defined values associated with 
primitive behavioral patterns. The agent learns increasingly 
elaborated behaviors through its interactions with its 
environment. These learned behaviors are gradually organized 
in a hierarchy that reflects how the agent exploits the 
hierarchical regularities afforded by the environment. To an 
observer, the agent thus appears to exhibit basic self-
motivated, sensible, and learning behavior to fulfill its inborn 
predilections. As such, this work illustrates Piaget’s theories 
of early-stage developmental learning. 

Keywords: Developmental learning; cognitive architectures; 
situated cognition; computer simulation. 

Introduction 

We report the implementation of an agent that 

autonomously engages in a process of hierarchical 

organization of behavioral schemes as it interacts with its 

environment. This mechanism moves towards taking on 

developmental constraints as Newell (1990, p. 459+) called 

for, and generates high-level and long-term individual 

differences in representation and behavior that arise from 

lower level behavior. 

This implementation also refers to an “emergentist” and a 

constructivist hypothesis of cognition. According to these 

hypotheses, an observer can attribute cognitive phenomena 

(such as knowing, feeling, or having motivations) to the 

agent while observing its activity, provided that the agent’s 

behavior can appropriately organize itself. These hypotheses 

have often been related to Heidegger’s philosophy of mind, 

e.g., cited by Sun (2004). Additionally, these hypotheses 

correspond to work featuring constructivist epistemologies 

(Le Moigne, 1995; Piaget, 1937), situated cognition 

(Suchman, 1987), and embodied cognition (Wilson, 2002). 

We describe the agent as self-motivated because it does 

not seek to solve a problem pre-defined by the modeler, nor 

does it learns from a reward that is given when reaching a 

pre-defined goal. Rather, the agent learns to efficiently enact 

its inborn predilections by exploiting regularities it finds 

through its activity. As such, the implementation constitutes 

a model of agents exhibiting intrinsic motivation, pragmatic 

and evolutionist learning, as well as sensible behavior.  

To situate the technical approach in the field of artificial 

intelligence, we can refer to Newell and Simon’s (1975) 

physical symbol hypothesis. We subscribe to the 

hypothesis’s weak sense. We are using computation to 

generate intelligent behavior. We, however, do not 

subscribe to the hypothesis’s strong sense, in that we are not 

implementing symbolic computation based on symbols to 

which we would pre-attribute a denotation. Instead, we will 

discuss how knowledge appears to emerge (to an external 

observer) from the agent’s activity, and how the agent 

seems to make sense of the knowledge because it is 

grounded in the agent’s activity (Harnad, 1990).  

Although we did not follow a symbolic computational 

modeling approach, we have, nevertheless, implemented 

this model in a cognitive architecture, namely Soar 9.  We 

chose Soar because it has proven efficient for implementing 

mechanisms for behavior organization. In particular, we 

found Soar 9’s mechanisms for graph querying and operator 

selection based on valued preferences very helpful. 

Knowledge representation 

The agent’s behavioral patterns are represented using two 

kinds of objects: schemas and acts. We use the term schema 

in its Piagetian (1937) sense, meaning a behavioral pattern 

or sensorimotor pattern. An act is a notion specific to our 

work that refers to a schema’s enaction. By schema’s 

enaction, we mean the association of a schema with the 

feedback the agent receives when enacting the schema. 

Concretely, an act associates a schema with a binary 

feedback status: succeed (S) or fail (F). Hence, each schema 

is associated with at most two acts: its failing act and its 

succeeding act. Schemas and acts are organized in a 

hierarchy as shown in Figure 1. 

 
Figure 1: Example schema and act hierarchy. 
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At its lowest level, Figure 1 shows primitive schemas S1, 

S2, and S3. Primitive schemas define the agent’s primitive 

possibilities of behavior within a given environment. For 

example, as further detailed in the experiment section, S1 

may correspond to turn right, S2 touch ahead, and S3 

attempt to move forward. Primitive acts are represented 

above primitive schemas. For example, act [S3, S, 5] 

corresponds to succeeding in moving forward, while [S3, F, 

-5] corresponds to bumping into a wall. Each act has a value 

associated with it, in this case: 5 and -5 (in parentheses in 

the figure). These values inform the selection of the next 

schema to enact, as explained later.  For now, we can 

understand these values as the agent’s satisfaction for 

performing the act.  

Primitive satisfaction values are chosen and hard-coded 

by the modeler according to the behavior she intends to 

generate. In our example, act [S3, S, 5] means that the agent 

enjoys moving forward, while act [S3, F, -5] means that the 

agent dislikes bumping into walls. Similarly, act [S2, S, -1] 

means that the agent touches a wall in front of him, which 

he slightly dislikes; while [S2, F, 0] means that the agent 

touches an empty square, which leaves him indifferent. 

Therefore, primitive satisfaction values are also a way for 

the modeler to define the agent’s intrinsic motivations. 

Higher-level schemas are learned through experience, by 

combining lower level schemas. Schema learning consists 

of adding the new-learned schema to the agent’s memory as 

a node and two arcs pointing to the schema’s sub-acts. For 

example, schema S5 is learned when the agent has turned to 

the right and then touched an empty square. Schemas have a 

context act (dashed line in the figures throughout this 

paper), an intention act (doted line), and a weight (w). So, 

S5 means that, when the agent has successfully turned right, 

the agent can expect to touch an empty square. Similarly, S4 

is learned when the agent has successfully turned right and 

touched a wall. S4 thus generates the opposite expectation 

from S5. A schema’s weight corresponds to the number of 

times the schema has been enacted. Over the course of the 

agent’s interactions, the relative schema weights thus 

balance the agent’s expectations in specific contexts. 

When a higher-level schema is learned, its succeeding act 

is also learned with a satisfaction value set equal to the sum 

of the satisfaction values of its sub-acts, e.g., [S4, S, -2] (-1-

1) and [S5, S, -1] (-1+0). When a higher-level schema gains 

enough weight, it can be selected for enaction. Enacting a 

higher-level schema consists of sequentially enacting its 

sub-acts. For example, enacting S5 consists of enacting S1 

with a succeeding status, then enacting S2 with a failing 

status. Hence, the satisfaction for enacting a high-level act is 

equal to the satisfaction for individually enacting its sub-

acts. 

When a high-level schema fails during enaction, it is 

interrupted. This happens if a status returned by the 

environment does not match the expected status of a sub-

act. In this case, the failing act of the schema is learned or 

reinforced, as well as the actually enacted act. The 

satisfaction value of the failing act is set equal to the 

satisfaction value of the actually enacted act. For example, if 

schema S6 fails because S2 succeeds, then [S6, F, -1] is 

learned. Because high-level schemas can potentially fail at 

any step of their sequence, their failing act’s satisfaction 

values are averaged over their different failures. 

When a high-level schema is enacted, it generates the 

learning of higher schemas. For example, when S5 is 

successfully enacted and followed by succeeding S3, then 

S7 is learned. In this example, S7 consists of turning right, 

touching an empty square, and then successfully moving 

forward. [S7, S]’s satisfaction is set equal to 4 (-1 + 5). 

Similarly, S8 (learned after S7) consists of touching a wall, 

turning right, touching an empty square, and moving 

forward. 

Algorithm 

The algorithm follows two overlapping cyclical loops. The 

control loop consists of: 1: selecting a schema for enaction, 

2: trying to enact the selected schema, 3: learning what can 

be learned from this trial, 4: computing the resulting 

situation, and finally looping to step 1. We call this loop the 

control loop because it is at this level that the agent decides 

what schema to try to enact. 

Step 2: (trying to enact a schema) constitutes a nested 

loop that goes through the selected schema’s hierarchical 

structure and tries to enact each of its primitive acts 

sequentially. We call this loop the automatic loop because 

this loop enacts sub-schemas below the agent’s decision 

process. Figure 2 illustrates this procedure. 

 

 
Figure 2: Algorithm procedure. 

 

In Figure 2, the large white circle represents the control 

loop while the small white circle represents the automatic 

loop. The gray circle represents the environment’s loop. 

Each revolution of the automatic loop corresponds to a 

revolution of the environment’s loop that returns the status 

of the enacted primitive schema. From the viewpoint of the 

control loop, the schema’s enaction constitutes only one 

step, whatever the schema level is in the hierarchy. 

Therefore, at the control loop level, any schema is handled 

similarly as a primitive schema, which makes possible the 

recursive learning of higher-level schemas. 

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning. 
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).



The four steps of the control loop are:  

Step 1: All schemas whose context act matches the 

previously assessed situation propose their intention act. 

The weight of this proposition is computed as the proposing 

schema’s weight multiplied by the intention act’s 

satisfaction. The schema with the highest proposition is 

selected (if several schemas are equal, one is randomly 

picked among them). In essence, this mechanism selects the 

schema that will result in the expected act having the 

highest satisfaction, balanced by the probability to obtain 

this expected act. This probability is based on what the 

agent has learned thus far concerning the current context. 

Due to this mechanism, the agent appears (to an observer) as 

though he was seeking to enact the act associated with the 

highest believed expected satisfaction and avoiding the acts 

with the lowest ones. Figure 3 illustrates this mechanism. 

 

 
Figure 3: Enaction mechanism. 

 

Figure 3 details the 84
th

 iteration of the control loop in the 

experiment reported in Figure 5. On the 83
rd

 iteration, 

schema S6 was successfully enacted (touch empty square, 

move forward), which resulted in a base situation of [S6, S], 

[S3, S], and [S11, S] (and other acts on top of [S6, S] not 

reported in the figure).  In this context, S9 and S10 were 

activated and proposed to enact S8 with a proposition 

weight of 6x3+4x3 (sum of the proposing schema’s weight 

multiplied by [S8, S]’s satisfaction) (the agent never 

experienced S8 failing). This proposition happened to be the 

highest of all the propositions, which resulted in S8 being 

selected for enaction.  

Step 2: The algorithm next enacts all the selected 

schema’s sub-acts. If all the sub-acts meet their 

expectations, the control loop proceeds to step 3. If the 

enaction of one of the sub-acts is incorrect, then the 

automatic loop is interrupted; the schema’s enaction status 

is set to fail; and control is returned to the control loop. In 

Figure 3’s example, the enaction of schema S8 consists of 

the enaction of acts [S2, S], [S5, S] (made of [S1, S] and 

[S2, F], as shown in Figure 1), and [S3, S] in a sequence. In 

this case, S8 was successfully enacted, resulting in the 

enacted act [S8, S]. 

Step 3: New schemas are learned or reinforced by 

combining the base situation and the current situation. In 

Figure 3’s example, S9’s weight is incremented from 6 to 7, 

and S10’s weight is incremented form 4 to 5. In addition, 

new schemas are learned based on the penultimate situation 

and on [S10, S] (e.g., S12 and S13 are created with a weight 

of 1, as well as other schemas not represented in the figure). 

Step 4: The base situation becomes the penultimate 

situation and the current situation becomes the base 

situation for the next cycle. A situation is made of the acts 

that surround the enacted act (i.e., the enacted act, the acts 

directly below it, and the acts directly above it). In Figure 

3’s example, the situation is made of [S8, S], [S7, S], [S9, 

S], and [S10, S]. The situation can be understood as the 

agent’s situation awareness, that is, a representation of the 

agent’s situation in terms of affordances (Gibson, 1979) 

capable of activating behavior. Limiting the situation to the 

acts directly surrounding the enacted act prevents the agent 

from being overwhelmed by a combinatorial explosion as 

the agent creates new schemas.  In essence, the agent 

focuses on the current level of abstraction for representing 

his situation, for making his choices, and for finding and 

learning higher-level regularities. When a high-level schema 

fails during enaction, the agent constructs the actually 

enacted schema and falls back to a lower abstraction level. 

Experiment 

To test the algorithm, we developed an environment that 

afforded the agent hierarchical sequential regularities to 

learn and organize. Although the interaction’s structure—

resulting from the coupling of the environment with the 

agent’s primitive schemas—is fundamentally sequential, the 

environment appears to external observers as a two-

dimensional grid represented in Figure 4, implemented from 

Cohen’s (2005) Vacuum environment. 

 

 
Figure 4: Experimental environment. 

 

In Figure 4, white squares represent empty squares where 

the agent can go, and filled squares represent walls. The 

agent’s primitive schemas and acts are defined as described 

above (S1=turn 90° right (-1/NA), S2=touch the square 

ahead (-1/0), S3=attempt to move one square forward (5/-

5)). Additionally, we have primitive schema S0 consisting 

of turning to the left (-1/NA) (turning schemas S0 and S1 

always succeed in this environment). These settings offer a 

first notable regularity, namely that the agent can increase 

his average satisfaction by touching ahead before trying to 

move forward, and not moving forward if he touches a wall. 
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Next, the agent can increase his satisfaction by repeating the 

sequence consisting of moving forward twice and turning 

once. Higher-level regularities consist of repeating this later 

sequence. The effects of this learning mechanism are shown 

in detail in Figure 5 that reports an example run. Videos of 

other runs can be seen online
1
. 

In Figure 5, an attempt to move forward is represented as 

an arrow to the right, a turn-left as an upward arrow, a turn-

right as a downward arrow, a touch as a O. Succeeding 

primitive schemas use a black font, while failing primitive 

schemas use a white font, i.e., white rightward arrows mean 

that the agent bumped into a wall, and white Os mean that 

the agent touched an empty square in front of him. Enacted 

schemas are represented at the lowest level in each line 

while learned schemas are represented on top of the enacted 

schemas. Failing higher-level schemas are represented as 

white boxes with black outlines (steps 68 and 72). The 

numbers from 1 to 91 indicate the control-loop iterations 

(steps). 

At the beginning, the agent acts randomly because he has 

not yet learned appropriate schemas that could propose their 

associated intention sub-schema. However, every cycle, the 

agent constructs or reinforces several schemas. For clarity, 

Figure 5 only reports the construction and the reinforcement 
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of the schemas that matter for the purpose of explanation, 

and references these schemas when they are mentioned in 

the text. Schema S4 is constructed on step 8. S4 is then 

reinforced on step 28, 34, and 49. The agent attempts to 

enact S4 for the first time on step 68 but fails and enacts S5 

instead.  

Notably, a schema turn right-turn right (not named in this 

paper) is constructed on step 19. This schema is reinforced 

on steps 33, 42, and 43. It is then enacted twice on steps 44 

and 45.  It is, however, not used any further because other 

options prove more satisfying (its satisfaction value is -2). 

On step 46, the agent constructs the schema S5 (using act 

[S1, S] that is the schema turn right-turn right’s intention 

act). Then, on step 47, the agent finds the schema S6 (touch 

empty, move forward), and also constructs the schema S7 

on top of S5. After step 47, the schema S6 always prompts 

the agent to try to move forward after touching an empty 

square; therefore, from then on, S6 is quickly reinforced in 

steps 55, 59, 63, and 71. The agent tries to enact S6 for the 

first time on step 72, but unsuccessfully, which results in 

falling back to [S2, S]. This experience instructed the agent 

that schema S6’s failing act has a satisfaction of -1, which is 

still better than trying to move forward without touching 

first and bumping into a wall (satisfaction -5). Therefore, 

from then on, the agent learned to touch before moving 

 
Figure 5: An example run among the 18 reported in row 6 of Table 1. 
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forward. S6 is then successfully enacted on steps 74, 77, 80, 

83, and 85. 

As said previously, on step 68, the agent intended to enact 

S4 but actually enacted S5. Because S7 is directly above 

enacted schema S5, S7 is included in the agent’s situation 

awareness, which results in the learning of the fourth-order 

schema S8 on step 69. Then, on step 73, the enaction of 

schema S7 generated the learning of schema S10. As 

detailed in Figure 3, S8 is enacted for the first time on step 

84, which generated the learning of S12. S10 starts to be 

enacted on step 87. 

After step 87, the agent keeps on performing the sequence 

touch empty, move forward, touch wall, turn right, touch 

empty, move forward.  This regularity introduces repeated 

circuits that lead to higher-level repetitions of this sequence. 

With this sequence, the agent obtains a satisfaction of 8 

within 6 primary steps, i.e., 1.33 per primary step.  

In this example, the agent did not learn the optimum 

sequence in the environment. In fact, the agent has no way 

to know whether the stabilized sequence is optimum or not. 

The agent only repeats a sequence when other actions 

appear less likely to bring satisfaction, based on what he has 

learned before. In most instances, the agent first learns to 

touch before moving, after which he begins to build other 

regularities based on this initial pattern. 

The experiment was run 100 times, stopping each run 

when the agent has reached a stable sequence, and clearing 

the agent’s memory between each run. The results are 

summarized in Table 1. 

 

Table 1: Summary of hundred runs.  

 
Row Runs Satisfaction/step Cycles 

1 22 3.00 50 

2 22 2.25 79 

3 4 1.80 75 

4 4 2.00 69 

5 16 1.60 62 

6 18 1.33 84 

7 1 1.40 76 

8 1 1.17 109 

9 1 1.00 108 

10 2 0.75 116 

11 3 1.00 61 

12 1 0.80 95 

13 3 1.00 71 

14 2 0.40 96 

 100 1.92 72 

 

In Table 1, the runs are aggregated by average satisfaction 

per step obtained when the agent has reached a stable 

sequence. The column Cycles reports the average number of 

control loop cycles before reaching this sequence. Rows 1 

through 6 report 86 runs where the agent learned to go 

around his environment and got a satisfaction per step 

greater than or equal to 1.33.  Rows 7 to 14 report 14 runs 

where the agent has stabilized on a sequence that results in 

staying on one edge of the environment, and reached a 

satisfaction per step that ranged between 0.40 and 1.40.  

The summary row shows that the average reached 

satisfaction per step was of 1.92. It was reached in an 

average of 72 cycles. In comparison, other experiments 

yielded an average satisfaction values per step of -0.93 

without any learning and -0.38 with only the first-level 

schema learning. This data demonstrates that, in all the runs, 

the hierarchical learning mechanism has substantially 

increased the agent’s satisfaction, compared to no or non-

hierarchical learning. 

Related works 

To our knowledge, this work constitutes the first 

implementation of an intrinsically motivated agent who 

recursively learns to exploit hierarchical sequential 

regularities to fulfill drives. The closest related work is 

probably Drescher’s (1991) attempt to implement Piagetian 

constructivist learning through what he called the 

constructivist schema mechanism. Like our implementation, 

Drescher’s work constructed hierarchical schemas that 

associated context, actions, and expectations. In Drescher’s 

implementation, however, schemas were neither associated 

with satisfaction values nor did the agents exhibit self-

driven behavior. The agent’s exploration was rather random 

and resulted in a combinatorial explosion as the agent 

encountered increasingly complex environments.  

Chaput (2004) proposed the Constructivist Learning 

Architecture (CLA) to address Drescher’s scalability issues. 

The CLA implemented a scheme harvesting mechanism at 

each hierarchical level. This harvesting, however, depended 

on goals defined by the modeler. Chaput’s solution, 

therefore, relies upon a problem-solving approach that in 

fact differs from our self-driven mechanism of interest. 

In developmental robotics (Weng et al., 2001), the 

literature often refers to Brooks’s (1991) pioneering work. 

For example, Blank, Kumar, Meeden, and Marshall (2005) 

describe the principles for a self-motivated/self-organizing 

robot. They use the robot’s anticipation reliability as a 

motivational regulator for the robot. As opposed to our 

work, these implementations do not make explicit the 

robot’s driving satisfaction values. They also rely on a 

limited number of predefined hard-coded hierarchical 

layers, which restricts the agent’s learning possibilities. 

As for the testbed environment and self-driven learning 

paradigm, our approach appears to be rather unique. We 

must note that our learning paradigm substantially differs 

from maze solving experiments (e.g., Sun & Sessions, 2000) 

or from hierarchical sequence learning as depicted in the 

classical taxi cab experiment (Dietterich, 2000). In these 

experiments, the learning occurs over multiple runs (often 

thousands), and comes from a reward value that is given 

when the goal is reached and then backward propagated 

during subsequent runs. On the contrary, in our paradigm, 

there is no final goal that would provide a reward; the 

learning occurs through each run; and all the agent’s 

memory is reinitialized between each run (including all 

forms of reinforcement).  
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Discussion and conclusion 

Besides the quantitative results of the agent’s measured 

satisfaction and that it learns at a nice pace (neither one shot 

nor thousands shots learning), this work offers qualitative 

results in the form of the agent’s exhibited behavior. When 

observing the agent, an observer can infer that the agent 

seems to enjoy certain behaviors (such as moving forward) 

and dislike others (such as bumping into walls). Moreover, 

the agent appears to learn to endure unpleasant behaviors 

(such as turning or touching) to have more opportunities to 

move forward. The agent thus appears to be self-motivated 

and appears to learn knowledge about his environment that 

he uses to satisfy his predilections. More elaborated 

behaviors can be watched in videos online
2
. 

In addition, the agent appears to learn to use certain 

schemas as perceptions (e.g., schema S2 to sense the square 

forward), and to determine subsequent actions based upon 

these schema’s outcomes. Therefore, the agent seems to 

simultaneously learn to perceive his environment and to 

make sense of his perception. This result is original in that 

the agent’s perception was not pre-defined by the modeler in 

the form of a perceptual buffer, as it is in many cognitive 

models. In our case, perception emerges from the agent’s 

behavior, which grounds the meanings of the agent’s 

perceptions in his activity. 

Moreover, the agent constructs an internal data structure 

made of elaborated behavioral patterns, and uses this data 

structure to deal with his environment. The behavioral 

patterns used in this data structure are only those confirmed 

through experience, which helps the agent deal with the 

environment’s complexity. These data structures can be 

seen as the agent’s situation awareness that is constructed 

through his interactions, and that activates subsequent 

behavioral patterns based on expected enjoyment. At each 

point in time, the current agent’s knowledge frames how the 

agent sees the world, which makes possible the recursive 

learning of higher-level regularities and which accounts for 

the agent’s individualization through his development. 

Preliminary experiments in more complex environments 

show that this algorithm faces two notable limitations. One 

limitation is that the algorithm may represent the same 

primitive sequence by different schemas that have different 

hierarchical structures. These different schemas are useful to 

find appropriate hierarchical regularities but they impede the 

agent’s performance in more complex environments. Future 

studies should find a way to merge these schemas. The 

second limitation is that the algorithm is not good at finding 

spatial regularities. For example, if we replace the central 

wall square with an empty square, the agent becomes less 

likely to find the most satisfying regularity, that of making a 

continuous circuit around his environment. 

We, nevertheless, believe that these limitations are not 

insurmountable, and we plan to gradually increase the 

complexity of the agent and of the environment in future 

studies. We will add new drives to the agent, for example 
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homeostatic drives (similar to hunger) or boredom-

avoidance based on top-level regularity detection. We will 

also add other primitive schemas, especially schemas 

associated with distal perception.  These schemas should, 

we believe, help the agent deal with open spatial 

environments. 
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