
An Algorithm for Self-Motivated Hierarchical Sequence Learning

Olivier L. Georgeon (olg1@psu.edu)

Jonathan H. Morgan (jhm5001@psu.edu)

Frank E. Ritter (frank.ritter@psu.edu)

The College of Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802

Abstract

This work demonstrates a mechanism that autonomously
organizes an agent’s sequential behavior. The behavior
organization is driven by pre-defined values associated with
primitive behavioral patterns. The agent learns increasingly
elaborated behaviors through its interactions with its
environment. These learned behaviors are gradually organized
in a hierarchy that reflects how the agent exploits the
hierarchical regularities afforded by the environment. To an
observer, the agent thus appears to exhibit basic self-
motivated, sensible, and learning behavior to fulfill its inborn
predilections. As such, this work illustrates Piaget’s theories
of early-stage developmental learning.

Keywords: Developmental learning; cognitive architectures;
situated cognition; computer simulation.

Introduction

We report the implementation of an agent that

autonomously engages in a process of hierarchical

organization of behavioral schemes as it interacts with its

environment. This mechanism moves towards taking on

developmental constraints as Newell (1990, p. 459+) called

for, and generates high-level and long-term individual

differences in representation and behavior that arise from

lower level behavior.

This implementation also refers to an “emergentist” and a

constructivist hypothesis of cognition. According to these

hypotheses, an observer can attribute cognitive phenomena

(such as knowing, feeling, or having motivations) to the

agent while observing its activity, provided that the agent’s

behavior can appropriately organize itself. These hypotheses

have often been related to Heidegger’s philosophy of mind,

e.g., cited by Sun (2004). Additionally, these hypotheses

correspond to work featuring constructivist epistemologies

(Le Moigne, 1995; Piaget, 1937), situated cognition

(Suchman, 1987), and embodied cognition (Wilson, 2002).

We describe the agent as self-motivated because it does

not seek to solve a problem pre-defined by the modeler, nor

does it learns from a reward that is given when reaching a

pre-defined goal. Rather, the agent learns to efficiently enact

its inborn predilections by exploiting regularities it finds

through its activity. As such, the implementation constitutes

a model of agents exhibiting intrinsic motivation, pragmatic

and evolutionist learning, as well as sensible behavior.

To situate the technical approach in the field of artificial

intelligence, we can refer to Newell and Simon’s (1975)

physical symbol hypothesis. We subscribe to the

hypothesis’s weak sense. We are using computation to

generate intelligent behavior. We, however, do not

subscribe to the hypothesis’s strong sense, in that we are not

implementing symbolic computation based on symbols to

which we would pre-attribute a denotation. Instead, we will

discuss how knowledge appears to emerge (to an external

observer) from the agent’s activity, and how the agent

seems to make sense of the knowledge because it is

grounded in the agent’s activity (Harnad, 1990).

Although we did not follow a symbolic computational

modeling approach, we have, nevertheless, implemented

this model in a cognitive architecture, namely Soar 9. We

chose Soar because it has proven efficient for implementing

mechanisms for behavior organization. In particular, we

found Soar 9’s mechanisms for graph querying and operator

selection based on valued preferences very helpful.

Knowledge representation

The agent’s behavioral patterns are represented using two

kinds of objects: schemas and acts. We use the term schema

in its Piagetian (1937) sense, meaning a behavioral pattern

or sensorimotor pattern. An act is a notion specific to our

work that refers to a schema’s enaction. By schema’s

enaction, we mean the association of a schema with the

feedback the agent receives when enacting the schema.

Concretely, an act associates a schema with a binary

feedback status: succeed (S) or fail (F). Hence, each schema

is associated with at most two acts: its failing act and its

succeeding act. Schemas and acts are organized in a

hierarchy as shown in Figure 1.

Figure 1: Example schema and act hierarchy.

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning.
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).

At its lowest level, Figure 1 shows primitive schemas S1,

S2, and S3. Primitive schemas define the agent’s primitive

possibilities of behavior within a given environment. For

example, as further detailed in the experiment section, S1

may correspond to turn right, S2 touch ahead, and S3

attempt to move forward. Primitive acts are represented

above primitive schemas. For example, act [S3, S, 5]

corresponds to succeeding in moving forward, while [S3, F,

-5] corresponds to bumping into a wall. Each act has a value

associated with it, in this case: 5 and -5 (in parentheses in

the figure). These values inform the selection of the next

schema to enact, as explained later. For now, we can

understand these values as the agent’s satisfaction for

performing the act.

Primitive satisfaction values are chosen and hard-coded

by the modeler according to the behavior she intends to

generate. In our example, act [S3, S, 5] means that the agent

enjoys moving forward, while act [S3, F, -5] means that the

agent dislikes bumping into walls. Similarly, act [S2, S, -1]

means that the agent touches a wall in front of him, which

he slightly dislikes; while [S2, F, 0] means that the agent

touches an empty square, which leaves him indifferent.

Therefore, primitive satisfaction values are also a way for

the modeler to define the agent’s intrinsic motivations.

Higher-level schemas are learned through experience, by

combining lower level schemas. Schema learning consists

of adding the new-learned schema to the agent’s memory as

a node and two arcs pointing to the schema’s sub-acts. For

example, schema S5 is learned when the agent has turned to

the right and then touched an empty square. Schemas have a

context act (dashed line in the figures throughout this

paper), an intention act (doted line), and a weight (w). So,

S5 means that, when the agent has successfully turned right,

the agent can expect to touch an empty square. Similarly, S4

is learned when the agent has successfully turned right and

touched a wall. S4 thus generates the opposite expectation

from S5. A schema’s weight corresponds to the number of

times the schema has been enacted. Over the course of the

agent’s interactions, the relative schema weights thus

balance the agent’s expectations in specific contexts.

When a higher-level schema is learned, its succeeding act

is also learned with a satisfaction value set equal to the sum

of the satisfaction values of its sub-acts, e.g., [S4, S, -2] (-1-

1) and [S5, S, -1] (-1+0). When a higher-level schema gains

enough weight, it can be selected for enaction. Enacting a

higher-level schema consists of sequentially enacting its

sub-acts. For example, enacting S5 consists of enacting S1

with a succeeding status, then enacting S2 with a failing

status. Hence, the satisfaction for enacting a high-level act is

equal to the satisfaction for individually enacting its sub-

acts.

When a high-level schema fails during enaction, it is

interrupted. This happens if a status returned by the

environment does not match the expected status of a sub-

act. In this case, the failing act of the schema is learned or

reinforced, as well as the actually enacted act. The

satisfaction value of the failing act is set equal to the

satisfaction value of the actually enacted act. For example, if

schema S6 fails because S2 succeeds, then [S6, F, -1] is

learned. Because high-level schemas can potentially fail at

any step of their sequence, their failing act’s satisfaction

values are averaged over their different failures.

When a high-level schema is enacted, it generates the

learning of higher schemas. For example, when S5 is

successfully enacted and followed by succeeding S3, then

S7 is learned. In this example, S7 consists of turning right,

touching an empty square, and then successfully moving

forward. [S7, S]’s satisfaction is set equal to 4 (-1 + 5).

Similarly, S8 (learned after S7) consists of touching a wall,

turning right, touching an empty square, and moving

forward.

Algorithm

The algorithm follows two overlapping cyclical loops. The

control loop consists of: 1: selecting a schema for enaction,

2: trying to enact the selected schema, 3: learning what can

be learned from this trial, 4: computing the resulting

situation, and finally looping to step 1. We call this loop the

control loop because it is at this level that the agent decides

what schema to try to enact.

Step 2: (trying to enact a schema) constitutes a nested

loop that goes through the selected schema’s hierarchical

structure and tries to enact each of its primitive acts

sequentially. We call this loop the automatic loop because

this loop enacts sub-schemas below the agent’s decision

process. Figure 2 illustrates this procedure.

Figure 2: Algorithm procedure.

In Figure 2, the large white circle represents the control

loop while the small white circle represents the automatic

loop. The gray circle represents the environment’s loop.

Each revolution of the automatic loop corresponds to a

revolution of the environment’s loop that returns the status

of the enacted primitive schema. From the viewpoint of the

control loop, the schema’s enaction constitutes only one

step, whatever the schema level is in the hierarchy.

Therefore, at the control loop level, any schema is handled

similarly as a primitive schema, which makes possible the

recursive learning of higher-level schemas.

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning.
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).

The four steps of the control loop are:

Step 1: All schemas whose context act matches the

previously assessed situation propose their intention act.

The weight of this proposition is computed as the proposing

schema’s weight multiplied by the intention act’s

satisfaction. The schema with the highest proposition is

selected (if several schemas are equal, one is randomly

picked among them). In essence, this mechanism selects the

schema that will result in the expected act having the

highest satisfaction, balanced by the probability to obtain

this expected act. This probability is based on what the

agent has learned thus far concerning the current context.

Due to this mechanism, the agent appears (to an observer) as

though he was seeking to enact the act associated with the

highest believed expected satisfaction and avoiding the acts

with the lowest ones. Figure 3 illustrates this mechanism.

Figure 3: Enaction mechanism.

Figure 3 details the 84
th

 iteration of the control loop in the

experiment reported in Figure 5. On the 83
rd

 iteration,

schema S6 was successfully enacted (touch empty square,

move forward), which resulted in a base situation of [S6, S],

[S3, S], and [S11, S] (and other acts on top of [S6, S] not

reported in the figure). In this context, S9 and S10 were

activated and proposed to enact S8 with a proposition

weight of 6x3+4x3 (sum of the proposing schema’s weight

multiplied by [S8, S]’s satisfaction) (the agent never

experienced S8 failing). This proposition happened to be the

highest of all the propositions, which resulted in S8 being

selected for enaction.

Step 2: The algorithm next enacts all the selected

schema’s sub-acts. If all the sub-acts meet their

expectations, the control loop proceeds to step 3. If the

enaction of one of the sub-acts is incorrect, then the

automatic loop is interrupted; the schema’s enaction status

is set to fail; and control is returned to the control loop. In

Figure 3’s example, the enaction of schema S8 consists of

the enaction of acts [S2, S], [S5, S] (made of [S1, S] and

[S2, F], as shown in Figure 1), and [S3, S] in a sequence. In

this case, S8 was successfully enacted, resulting in the

enacted act [S8, S].

Step 3: New schemas are learned or reinforced by

combining the base situation and the current situation. In

Figure 3’s example, S9’s weight is incremented from 6 to 7,

and S10’s weight is incremented form 4 to 5. In addition,

new schemas are learned based on the penultimate situation

and on [S10, S] (e.g., S12 and S13 are created with a weight

of 1, as well as other schemas not represented in the figure).

Step 4: The base situation becomes the penultimate

situation and the current situation becomes the base

situation for the next cycle. A situation is made of the acts

that surround the enacted act (i.e., the enacted act, the acts

directly below it, and the acts directly above it). In Figure

3’s example, the situation is made of [S8, S], [S7, S], [S9,

S], and [S10, S]. The situation can be understood as the

agent’s situation awareness, that is, a representation of the

agent’s situation in terms of affordances (Gibson, 1979)

capable of activating behavior. Limiting the situation to the

acts directly surrounding the enacted act prevents the agent

from being overwhelmed by a combinatorial explosion as

the agent creates new schemas. In essence, the agent

focuses on the current level of abstraction for representing

his situation, for making his choices, and for finding and

learning higher-level regularities. When a high-level schema

fails during enaction, the agent constructs the actually

enacted schema and falls back to a lower abstraction level.

Experiment

To test the algorithm, we developed an environment that

afforded the agent hierarchical sequential regularities to

learn and organize. Although the interaction’s structure—

resulting from the coupling of the environment with the

agent’s primitive schemas—is fundamentally sequential, the

environment appears to external observers as a two-

dimensional grid represented in Figure 4, implemented from

Cohen’s (2005) Vacuum environment.

Figure 4: Experimental environment.

In Figure 4, white squares represent empty squares where

the agent can go, and filled squares represent walls. The

agent’s primitive schemas and acts are defined as described

above (S1=turn 90° right (-1/NA), S2=touch the square

ahead (-1/0), S3=attempt to move one square forward (5/-

5)). Additionally, we have primitive schema S0 consisting

of turning to the left (-1/NA) (turning schemas S0 and S1

always succeed in this environment). These settings offer a

first notable regularity, namely that the agent can increase

his average satisfaction by touching ahead before trying to

move forward, and not moving forward if he touches a wall.

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning.
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).

Next, the agent can increase his satisfaction by repeating the

sequence consisting of moving forward twice and turning

once. Higher-level regularities consist of repeating this later

sequence. The effects of this learning mechanism are shown

in detail in Figure 5 that reports an example run. Videos of

other runs can be seen online
1
.

In Figure 5, an attempt to move forward is represented as

an arrow to the right, a turn-left as an upward arrow, a turn-

right as a downward arrow, a touch as a O. Succeeding

primitive schemas use a black font, while failing primitive

schemas use a white font, i.e., white rightward arrows mean

that the agent bumped into a wall, and white Os mean that

the agent touched an empty square in front of him. Enacted

schemas are represented at the lowest level in each line

while learned schemas are represented on top of the enacted

schemas. Failing higher-level schemas are represented as

white boxes with black outlines (steps 68 and 72). The

numbers from 1 to 91 indicate the control-loop iterations

(steps).

At the beginning, the agent acts randomly because he has

not yet learned appropriate schemas that could propose their

associated intention sub-schema. However, every cycle, the

agent constructs or reinforces several schemas. For clarity,

Figure 5 only reports the construction and the reinforcement

1
 http://e-ernest.blogspot.com/2009/07/ernest-64.html

of the schemas that matter for the purpose of explanation,

and references these schemas when they are mentioned in

the text. Schema S4 is constructed on step 8. S4 is then

reinforced on step 28, 34, and 49. The agent attempts to

enact S4 for the first time on step 68 but fails and enacts S5

instead.

Notably, a schema turn right-turn right (not named in this

paper) is constructed on step 19. This schema is reinforced

on steps 33, 42, and 43. It is then enacted twice on steps 44

and 45. It is, however, not used any further because other

options prove more satisfying (its satisfaction value is -2).

On step 46, the agent constructs the schema S5 (using act

[S1, S] that is the schema turn right-turn right’s intention

act). Then, on step 47, the agent finds the schema S6 (touch

empty, move forward), and also constructs the schema S7

on top of S5. After step 47, the schema S6 always prompts

the agent to try to move forward after touching an empty

square; therefore, from then on, S6 is quickly reinforced in

steps 55, 59, 63, and 71. The agent tries to enact S6 for the

first time on step 72, but unsuccessfully, which results in

falling back to [S2, S]. This experience instructed the agent

that schema S6’s failing act has a satisfaction of -1, which is

still better than trying to move forward without touching

first and bumping into a wall (satisfaction -5). Therefore,

from then on, the agent learned to touch before moving

Figure 5: An example run among the 18 reported in row 6 of Table 1.

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning.
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).

forward. S6 is then successfully enacted on steps 74, 77, 80,

83, and 85.

As said previously, on step 68, the agent intended to enact

S4 but actually enacted S5. Because S7 is directly above

enacted schema S5, S7 is included in the agent’s situation

awareness, which results in the learning of the fourth-order

schema S8 on step 69. Then, on step 73, the enaction of

schema S7 generated the learning of schema S10. As

detailed in Figure 3, S8 is enacted for the first time on step

84, which generated the learning of S12. S10 starts to be

enacted on step 87.

After step 87, the agent keeps on performing the sequence

touch empty, move forward, touch wall, turn right, touch

empty, move forward. This regularity introduces repeated

circuits that lead to higher-level repetitions of this sequence.

With this sequence, the agent obtains a satisfaction of 8

within 6 primary steps, i.e., 1.33 per primary step.

In this example, the agent did not learn the optimum

sequence in the environment. In fact, the agent has no way

to know whether the stabilized sequence is optimum or not.

The agent only repeats a sequence when other actions

appear less likely to bring satisfaction, based on what he has

learned before. In most instances, the agent first learns to

touch before moving, after which he begins to build other

regularities based on this initial pattern.

The experiment was run 100 times, stopping each run

when the agent has reached a stable sequence, and clearing

the agent’s memory between each run. The results are

summarized in Table 1.

Table 1: Summary of hundred runs.

Row Runs Satisfaction/step Cycles

1 22 3.00 50

2 22 2.25 79

3 4 1.80 75

4 4 2.00 69

5 16 1.60 62

6 18 1.33 84

7 1 1.40 76

8 1 1.17 109

9 1 1.00 108

10 2 0.75 116

11 3 1.00 61

12 1 0.80 95

13 3 1.00 71

14 2 0.40 96

 100 1.92 72

In Table 1, the runs are aggregated by average satisfaction

per step obtained when the agent has reached a stable

sequence. The column Cycles reports the average number of

control loop cycles before reaching this sequence. Rows 1

through 6 report 86 runs where the agent learned to go

around his environment and got a satisfaction per step

greater than or equal to 1.33. Rows 7 to 14 report 14 runs

where the agent has stabilized on a sequence that results in

staying on one edge of the environment, and reached a

satisfaction per step that ranged between 0.40 and 1.40.

The summary row shows that the average reached

satisfaction per step was of 1.92. It was reached in an

average of 72 cycles. In comparison, other experiments

yielded an average satisfaction values per step of -0.93

without any learning and -0.38 with only the first-level

schema learning. This data demonstrates that, in all the runs,

the hierarchical learning mechanism has substantially

increased the agent’s satisfaction, compared to no or non-

hierarchical learning.

Related works

To our knowledge, this work constitutes the first

implementation of an intrinsically motivated agent who

recursively learns to exploit hierarchical sequential

regularities to fulfill drives. The closest related work is

probably Drescher’s (1991) attempt to implement Piagetian

constructivist learning through what he called the

constructivist schema mechanism. Like our implementation,

Drescher’s work constructed hierarchical schemas that

associated context, actions, and expectations. In Drescher’s

implementation, however, schemas were neither associated

with satisfaction values nor did the agents exhibit self-

driven behavior. The agent’s exploration was rather random

and resulted in a combinatorial explosion as the agent

encountered increasingly complex environments.

Chaput (2004) proposed the Constructivist Learning

Architecture (CLA) to address Drescher’s scalability issues.

The CLA implemented a scheme harvesting mechanism at

each hierarchical level. This harvesting, however, depended

on goals defined by the modeler. Chaput’s solution,

therefore, relies upon a problem-solving approach that in

fact differs from our self-driven mechanism of interest.

In developmental robotics (Weng et al., 2001), the

literature often refers to Brooks’s (1991) pioneering work.

For example, Blank, Kumar, Meeden, and Marshall (2005)

describe the principles for a self-motivated/self-organizing

robot. They use the robot’s anticipation reliability as a

motivational regulator for the robot. As opposed to our

work, these implementations do not make explicit the

robot’s driving satisfaction values. They also rely on a

limited number of predefined hard-coded hierarchical

layers, which restricts the agent’s learning possibilities.

As for the testbed environment and self-driven learning

paradigm, our approach appears to be rather unique. We

must note that our learning paradigm substantially differs

from maze solving experiments (e.g., Sun & Sessions, 2000)

or from hierarchical sequence learning as depicted in the

classical taxi cab experiment (Dietterich, 2000). In these

experiments, the learning occurs over multiple runs (often

thousands), and comes from a reward value that is given

when the goal is reached and then backward propagated

during subsequent runs. On the contrary, in our paradigm,

there is no final goal that would provide a reward; the

learning occurs through each run; and all the agent’s

memory is reinitialized between each run (including all

forms of reinforcement).

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning.
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).

Discussion and conclusion

Besides the quantitative results of the agent’s measured

satisfaction and that it learns at a nice pace (neither one shot

nor thousands shots learning), this work offers qualitative

results in the form of the agent’s exhibited behavior. When

observing the agent, an observer can infer that the agent

seems to enjoy certain behaviors (such as moving forward)

and dislike others (such as bumping into walls). Moreover,

the agent appears to learn to endure unpleasant behaviors

(such as turning or touching) to have more opportunities to

move forward. The agent thus appears to be self-motivated

and appears to learn knowledge about his environment that

he uses to satisfy his predilections. More elaborated

behaviors can be watched in videos online
2
.

In addition, the agent appears to learn to use certain

schemas as perceptions (e.g., schema S2 to sense the square

forward), and to determine subsequent actions based upon

these schema’s outcomes. Therefore, the agent seems to

simultaneously learn to perceive his environment and to

make sense of his perception. This result is original in that

the agent’s perception was not pre-defined by the modeler in

the form of a perceptual buffer, as it is in many cognitive

models. In our case, perception emerges from the agent’s

behavior, which grounds the meanings of the agent’s

perceptions in his activity.

Moreover, the agent constructs an internal data structure

made of elaborated behavioral patterns, and uses this data

structure to deal with his environment. The behavioral

patterns used in this data structure are only those confirmed

through experience, which helps the agent deal with the

environment’s complexity. These data structures can be

seen as the agent’s situation awareness that is constructed

through his interactions, and that activates subsequent

behavioral patterns based on expected enjoyment. At each

point in time, the current agent’s knowledge frames how the

agent sees the world, which makes possible the recursive

learning of higher-level regularities and which accounts for

the agent’s individualization through his development.

Preliminary experiments in more complex environments

show that this algorithm faces two notable limitations. One

limitation is that the algorithm may represent the same

primitive sequence by different schemas that have different

hierarchical structures. These different schemas are useful to

find appropriate hierarchical regularities but they impede the

agent’s performance in more complex environments. Future

studies should find a way to merge these schemas. The

second limitation is that the algorithm is not good at finding

spatial regularities. For example, if we replace the central

wall square with an empty square, the agent becomes less

likely to find the most satisfying regularity, that of making a

continuous circuit around his environment.

We, nevertheless, believe that these limitations are not

insurmountable, and we plan to gradually increase the

complexity of the agent and of the environment in future

studies. We will add new drives to the agent, for example

2
 http://e-ernest.blogspot.com/2009/10/enrest-72.html

homeostatic drives (similar to hunger) or boredom-

avoidance based on top-level regularity detection. We will

also add other primitive schemas, especially schemas

associated with distal perception. These schemas should,

we believe, help the agent deal with open spatial

environments.

Acknowledgments

Support was provided by ONR (N00014-06-1-0164 and

N00014-08-1-0481) and DTRA (HDTRA 1-09-1-0054).

References

Blank, D. S., Kumar, D., Meeden, L., & Marshall, J. (2005).

Bringing up robot: Fundamental mechanisms for

creating a self-motivated, self-organizing architecture.

Cybernetics and Systems, 32(2).

Brooks, R. (1991). Intelligence without representation.

Artificial Intelligence Journal, 47, 139–159.

Chaput, H. H. (2004). The Constructivist Learning

Architecture: A model of cognitive development for

robust autonomous robots. Unpublished doctoral

dissertation, The University of Texas, Austin.

Dietterich, T. G. (2000). An Overview of MAXQ

Hierarchical Reinforcement Learning. Paper presented

at the SARA02 4th International Symposium on

Abstraction, Reformulation, and Approximation.

Drescher, G. L. (1991). Made-up minds, a constructivist

approach to artificial intelligence. Cambridge, MA:

MIT Press.

Gibson, J. J. (1979). The ecological approach to visual

perception. Boston: Houghton-Mifflin.

Harnad, S. (1990). The symbol grounding problem. Physica,

D(42), 335-346.

Le Moigne, J.-L. (1995). Les épistémologies

constructivistes. Paris: Presse Universitaire de France.

Newell, A. (1990). Unified Theories of Cognition.

Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. (1975). Computer science as

empirical inquiry: symbols and search.

Communications of the ACM, 19(3), 113-126.

Piaget, J. (1937). The construction of reality in the child.

New York: Basic Books.

Suchman, L. A. (1987). Plans and situated actions.

Cambridge: Cambridge University Press.

Sun, R. (2004). Desiderata for cognitive architectures.

Philosophical Psychology, 17(3), 341-373.

Sun, R., & Sessions, C. (2000). Automatic segmentation of

sequences through hierarchical reinforcement learning.

In R. Sun & C. L. Giles (Eds.), Sequence Learning (pp.

241–263). Berlin Heidelberg: Springer-Verlag.

Weng, J., McClelland, J., Pentland, A., Sporns, O.,

Stockman, I., Sur, M., et al. (2001). Artificial

intelligence - Autonomous mental development by

robots and animals. Science, 291(5504), 599-600.

Wilson, M. (2002). Six views of embodied cognition.

Psychonomic Bulletin & Review, 9(4), 625-636.

Georgeon, O. L., Morgan, J. H., & Ritter, F. E. (2010). An algorithm for self-motivated hierarchical sequence learning.
In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM - 2010- Tenth International Conference on Cognitive Modeling (pp. 73-78).

