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STUDENT MODELING AND THE DIAGNOSIS PROBLEM

How can an ICAI system make plausible hypotheses concerning a
student’s knowledge state about a problem domain? The task of the
diagnostic module of the system is to make intelligent inferences about
the student’s knowledge, knowledge gaps, surface bugs, and, if possible,
the associated underlying misconceptions. The essential starting point
for such deep inferences is the observations of the student’s task
performance — the sequence of actions taken by the student as he
or she works on a problem. This constitutes the initial knowledge
base of the student diagnostic module. This surface performance
information is necessary for diagnosing and characterizing faulty
behaviors, but it is not sufficient even for diagnosing student difficulties
in relatively simple intellectual tasks such as the performance of simple
arithmetic computations using prescribed algorithmic procedures.
The diagnosis problem has been addressed by a number of ICAI
systems, including WEST, DEBUGGY, SOPHIE, and QUEST. The
concept of a differential student model was developed in WEST (Burton
& Brown, 1982), a computer board game designed to teach
computational skills through computation-based game-playing
strategy. The approach to diagnosis in WEST is to model the problem
performance of an expert player and to contrast that with the observed
performance of the student working on the same problem. This kind
of performance analysis can identify weaknesses in the student’s play,
but not the underlying difficulties responsible for them. For example,
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a poor move might be due to the student’s failure to consider an
alternative move or to an incorrect computation of a move, two
distinctly different kinds of difficulties calling for qualitatively
different instructional treatments.

DEBUGGY (Burton, 1982) is the instructional form of the well-
known BUGGY system for modeling the procedural bugs accounting
for most student subtraction errors. In DEBUGGY, the diagnosis of
a student’s procedural bugs is done using a pattern-matching scheme.
DEBUGGY incorporates a substantial data base of subtraction problem
bugs—faulty subtraction procedures obtained from empirical studies
of subtraction problem work across large student populations. If a
student’s performance across a set of representative problems is
identical to that of a buggy procedure in the data base, the system
identifies the buggy procedure as the student’s bug. This approach
is severely limited to those relatively simple types of problems for
which there is a small enough set of distinct types of bugs to permit
their explicit enumeration. It is not a feasible diagnostic methodology
for the problems of typical interest and complexity such as tactical
military tasks.

SOPHIE (Brown, Burton, & Bell, 1974), a pioneering ICAI system
for electronics troubleshooting training, used a general circuit
simulation program as a dynamic knowledge base for evaluating the
behavior of the circuit under working or faulted conditions. A
substantial part of the understanding capabilities in the SOPHIE ICAI
system was based on its use of this mathematical simulation model,
a general purpose circuit simulation called SPICE (Nagel, 1975),
together with a LISP-based functional simulator incorporating circuit
dependent knowledge. These facilities were essential for inferring
complex circuit interaction sequences such as fault propagation chains.
SOPHIE’s capabilities for modeling and understanding causal chains
of events formed the basis for its powerful explanation and question-
answering facilities.

SOPHIE used the simulator to make powerful deductive inferences
about hypothetical, as well as real, circuit behavior. For example,
it determined whether the behavior of the circuit was consistent with
the assumption of specified faults and whether a student’s
troubleshooting inference’s were warranted, that is, whether the student
had acquired information of the voltage and current states of relevant
circuit components sufficient to unambiguously isolate the fault.

SOPHIE could infer what the student should have been able to
conclude from his or her observations at any point. For example,
it determined the currently plausible hypotheses and those that were
untenable. However, because SOPHIE did not determine the reasons
for the student’s tests and measurements, the hypotheses the student
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was actually considering, it could not tell whether his or her
conclusions were based on logically complete and consistent reasoning.
It was unable to diagnose the student’s specific misconceptions or
difficulties in understanding circuit behavior or in troubleshooting
faults. Despite these deficiencies, SOPHIE was one of the first ICAI
systems capable of supporting compelling and educationally effective
instructional interactions.

There is a straightforward approach to improving a system'’s
knowledge of a student’s thinking during a problem-solving
interaction. Instead of basing the system’s inferences solely on the
external actions taken by the student (for example, voltage
measurements or continuity tests in electrical troubleshooting), the
system can also attempt to elicit associated information concerning
the student’s hypotheses, goals, and plans. This approach has been
developed in the context of the QUEST instructional system.

AN OVERVIEW OF QUEST

QUEST (Qualitative Understanding of Electrical System Trouble-
shooting) is a current ICAI system for teaching electrical system
troubleshooting (White & Frederiksen, 1986; 1987). QUEST uses
qualitative simulation methods (White & Frederiksen, 1985; Ritter,
1986) to teach knowledge-based reasoning about circuit behavior and
troubleshooting. Humans think about the behavior of phenomena
and systems in a qualitatively different way from that used to describe
such behavior in mathematical simulation models. Experts in adomain
(not only beginning students) use qualitative modes of thought and
qualitative models to reason about system behavior. Thus, though
it is necessary to employ mathematical simulations to obtain precise
detailed descriptions of system behaviors, we also want to teach
conceptually sound qualitative reasoning. The use of qualitative
simulation models is valuable for producing understandable
explanations and for generating animated displays to show dynamic
behavior in a clear manner. This facilitates learning by fostering the
student’s development of effective mental models for understanding
and reasoning about system behavior.

QUEST employs a qualitative simulation model for reasoning
ab'out the behavior of simple electrical circuits composed of batteries,
wires, resistors, coils, condensers, lamps, switches, and testlights. An
C?(ample of a QUEST circuit is shown in Figure 16.1. The qualitative
Slmul.ation includes a description of the circuit topology, a runnable
function model for each device in the circuit, rules for evaluating
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device states at each time increment, and circuit-tracing procedures
toaid in evaluating conditions for device states. Itis designed to support
a dynamic presentation environment by generating graphical
representations of circuit operation. An expert troubleshooting
program is provided to demonstrate troubleshooting concepts and
strategy within that environment. The expert troubleshooter can be
called upon to solve problems and to explain its reasoning along
the way. QUEST also provides an instructional mode that allows
students to practice troubleshooting (Feurzeig, 1985). In this mode
the instructional system provides students with a problem-solving
environment within which circuits can be built, tested, and modified.
When requested, the program generates qualitative explanations of
circuit operation in both working and faulted states. Circuit problems
given to students include predicting circuit behavior and troubleshoot-
ing faults within circuits.

When solving problems, students can call upon the qualitative
simulation and expert troubleshooter programs to explain reasoning
about circuit operation or troubleshooting logic. Each tutorial
program utilizes a model that articulates reasoning at a level of
explanation that is appropriate for the particular stage of instruction.
The circuit simulation program can explain to students the operation
of circuits in either faulted or working condition. Explanation of
troubleshooting logic are produced by the troubleshooting expert and
are coordinated in level of complexity with the explanations of circuit
behavior offered by the circuit simulation.

KNOWLEDGE ACQUISITION
FOR STUDENT MODELING IN QUEST

The distinctive diagnostic feature of QUEST that sets it apart from
the other ICAI systems is its facility for eliciting explicit information
from the student about the intended purpose of his or her actions
before they are performed and about his conclusions afterward. This
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interaction is carried out throughout the detailed course of the
roubleshooting activity. An example of the use of the QUEST
instructional monitor is shown in Figure 16.2. The scenario shows
a student troubleshooting a simple circuit consisting of a battery, two
resistors, a wire, and a bulb to illustrate the interaction (QUEST is
also capable of modeling the dynamic behavior of capacitors and
inductors in relatively complex circuits.)

This scenario represents just a few minutes of interaction during
the problem-directed explanation mode of QUEST. The querying of
the student proceeds effortlessly. The student is asked before each action
(for example flipping a switch or inserting a test light) what he or
she hopes to learn through taking this action. After his or her response,
the action is carried out by the system. The student may also take
other actions at this point, call the simulation to be run, and see
the effects of these actions. After this, the student is asked what he
has learned. Following his response, the entire process resumes with
the student’s next troubleshooting action. In addition to gathering
data, this procedure helps shape a student’s thinking and approach
to circuit problems by providing an explicit model and an analytic
framework.

The interface is easy to use. The student answers a question by
choosing from an appropriate range of responses on a display window,
clicking the mouse when it points to the response selected. Some
answers require more than one response; for example, when the student
wants to add a new fault, he must also select the component of the
subcircuit suspected of being faulty and designate the fault. The
instructor can set up the system to require that the student answer
all the questions posed. At the opposite extreme, the system can be
set up so that it is possible for the student to bypass the entire
monitoring process.

The Quest Instructional Monitor (QUIMON) is invoked each time
the student takes an action. This elicitation procedure is designed
to be non-intrusive and unforced. The student is not required or even
requested to be deliberative about every single action taken along the
way. A more sophisticated procedure, incorporating knowledge of the
arcuit and utilizing the information elicited from the student about
his current plans, could be designed. This kind of procedure would
need to be invoked less frequently, at points corresponding to
completion of a global operation sequence or to a shift in the student’s
current focus of attention.

The session produces a substantial knowledge base of the student’s
Pla.ns and goals with minimal interference to his troubleshooting
acuivity. We believe that such finegrained information about the
student’s intentions, expectations, and conclusions can be uniquely
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FIGURE 16.2a A student interaction with Quest Instructional Monitor.

valuable for understanding his performance and making plausible
diagnoses of his misconceptions and difficulties. Moreover, such
information can only be elicited from the student—it is, at the very
least, extremely difficult for an ICAI system based on present Al
methods to infer the student’s mental states from his surface behavx(?rs.
Thus we believe that QUIMON work provides an effective starting
point for development of more competent student diagnostic models.
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A sample operation of QUIMON follows.

QUEST has created a circuit for the student to troubleshoot. The
student has a menu from which to choose several possible actions.
In Figure 16.2a, the student points an arrow (1) to “Connect the test
light.”

In order to model the student’s behavior, a menu pops up to
ask the student why he wants to insert a test light. The student is
allowed to answer simply “Don’t know.” In Figure 16.2b, however,
the student clicks where arrow 2 is pointing, “To explore general
circuit behavior,” indicating a lack of specificity to his actions. A
student who would like to be more specific can go as far as specifying
that he is testing the feed to a device. In that case, the system would
prompt him for the specific device.

The system responds by entering the test light, pointed out by
arrow 3, (see Figure 16.2c) into the circuit at the place where the
student indicates (not shown here), and brings the student back to
the action menu. The student then clicks where arrow 4 is pointing,
to run the simulation of the current circuit.

The tail end of the written explanation of the qualitative
simulation in QUEST, detailing the state changes of parts, and
explanations of why the parts changed state, is visible in the Trace
Output Window, arrow 5 (see Figure 16.2d). The spoken output is
not shown, nor is the system’s use of flashing in inverse video to
show the paths that the simulation used in computing voltage drops.
The student is asked if he wishes to continue the simulation for another
clock cycle. He does not (see Figure 16.2d) arrow 6, and clicks on
“Stop.”’

After the simulation has run, the student is asked what he or
she has learned—for example, what new possible faults he has
discovered. Arrow 7 in Figure 16.2¢ points to the list of faults identified
by the student. The list of possible faults ruled out by the student
is also displayed. The student can indicate that he has not drawn
any conclusions from the current action, and can proceed directly
back to the action menu. In this scenario, the student clicked at arrow
8.(Figure 16.2¢) indicating that he or she suspects a new fault in the
circuit.

The student now is asked to indicate the exact part that he or
she thinks is faulted by clicking on it with the mouse. The student
does so by clicking on “BULBI” (arrow 9, Figure 16.2f). The system
knows the set of faulis each part can have, and now pops up the
T(;e;fl; for bulb faults. The student picks “Open” (arrow 10, Figure

The new fault is now displayed in the window containing possible
faults (arrow 11, Figure 16.2g). The student also believes he learned
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that another part is unfaulted and indicates this by clicking (where
arrow 12 points): “‘Rule out possible fault.”
The student is then prompted for the part that is to be marked
as not faulted. He clicks on the wire “W1,” pointed to by arrow 13
in Figure 16.2g. .
The choice of W1 as an unfaulted part is shown in the appropriate
window. The student is returned to the menu that allows him to
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specify additional information, for example other faulted or unfaulted
parts. The student declines to do so, by clicking where arrow 14
indicates (see Figure 16.2h), and is returned to the action menu to
continue troubleshooting.

The final figure shows the end of the session and displays the
fault. The student was correct in choosing BULBI being open as the
fault (arrow 15, Figure 16.21).
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substantially enhances the power and reliability of ICAI inferencing
capabilities, and it has importance for a wide range of applications
to complex systems maintenance and troubleshooting training.

This approach does have limitations. In common with other
approaches, it is ineffective with noncooperative students. Also, it
assumes the principle of rationality, that problem-solving behavior,
whether correct or not, is always rational behavior even when based

Probiems 1o go

TROUBLESHOOTING

Which part 15 taulted

#g fan't rroxy
- [ndtcate new poszibla faule
No ndication ot naw fiults
Rule out possibla fautt
No new faults ruled out
Indicate suipect subcircuit
Indicate newly cleared subcircun
Proceed to ne-t sction

at drd you learn?

Ml 4 H2 w1 3 EuLBL Nl RS

FIGURE 16.2d

CONCLUSIONS

The addition of information about the student’s intentions,
expectations, and plans, as well as his observed actions is, we believe,

essential to making informed and insightful diagnostic hypotheses.
This approach to diagnosis integrates commonsense principles from
cognitive science with powerful Al inferencing methods. It
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on incorrect knowledge. Further, the elicitation procedure that is
central to it will not be applicable in problem-solving situations where
students lack either the knowledge or an appropriate vocabulary or
language for talking about their problem-solving plans and goals.
For example, beginning students of mathematics may be ill-equippt_?d
to discuss their surategy, or even their step-by-step actions, In
performing tasks such as solving equations. This problem can be
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mitigated in QUIMON by placing items the student should be
considering on the menu to prompt his or her thinking. Finally, in
certain real-time situations, where tasks have to be performed on the
fly, there is little time or attention available for the kind of interventions
required to discuss actions, much less their antecedents and
consequences. Other kinds of intelligent instructional methods must

be developed to deal with such real-time interactions.
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Characterizing a student’s problem-solving knowledge solely or
primarily by observations of his overt actions has unnecessarily limit@d
the power of student models. Soliciting the student’s assistance in
the attempt to determine the intentions and the reasoning, correct
and faulty, that underlie his actions, is not at variance with the purpose
or spirit of the intelligent instructional enterprise. Inviting students
to rationalize their actions and to identify their hypotheses and goals
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can enormously enrich a program’s knowledge of the student. The
use of a mouse, menu, and window-based interactions on current
machines enables rapid and nonintrusive elicitation during problem
solving in intelligent tutoring systems that acquire and use this new
rich source of data.
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MOTIVATION AND GOALS

The standard architecture of an Intelligent Tutoring System (ITS)
is depicted in Figure 17.1. By and large, the majority of research effort
goes into developing the student modeling module, the expert module,
and the tutorial module, just as almost all effort is put into building
these modules, since they do form the core of the ITS. However, we
have found that developing an effective interface and developing an
effective evaluation may require as many resources as did the
development of the three core modules. We are not alone in this
experience. Yet, there are few guidelines for how to build an effective
interface for educational software, and how to design an effective
evaluation for intelligent tutoring systems. Even though human-
computer interaction is a topic of growing interest, that field has not
focused on the special properties of educational sofiware. Similarly,
even though educational evaluation is an established field,
methodologies have not been developed for evaluating educational
systems that attempt to teach students to “understand”’ —rather than
simply to get the right answer.

In this chapter, we present two case studies, one dealing with
our efforts to understand the special properties of interfaces for
eduFalional software, and one dealing with our efforts to evaluate
an intelligent tutoring system. Our intent is more to spotlight the
problems than to present a coherent, well-worked-out theoretical
framework in which these issues can be viewed and resolved. The
bottom line is this: As ITS become usable entities, and not merely
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