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Abstract

The authors describe an appiication of genetic algorithms and
simulated annealing to a class section scheduling problem.
included are a comparison of the two types of optimizing
technologies, a discussion of the application domain, a description
of how annealing can be used to optimize in the domain with
annealing, and a description of new techniques used to optimize
annealing aigorithms or other numeric processes with a genetic
algorithm. The authors are able to conclude that the procedures
they have used for this application will generalize to similar
domains.

introduction

This paper describes the creation and optimization of a
probabilistic search routine to carry out scheduling of students in
class sections. The search routine uses simulated annealing. The
routine itself was optimized by the use of a genetic algorithm. The
resultant system performs the scheduling task better and more
quickly than the humans who currently perform it.

We will first discuss the problem and compare the algorithms
that we propose to use. Following this discussion, we describe our
solution to the problem using simulated annealing’ (SA), and our
improvements to the algorithm. Next, we cover our optimization of
the annealing parameters with the use of @ genetic algorithm.
Finally, we summarize our results and characterize other areas
where these algorithms may be used.

Discussion of the Problem

The problem is a scheduling problem with several interacting
constraints. Every semester it is currently solved without computer
assistance at Harvard University. Mr. Jeff Bradley, a preceptor in
the Expository Writing Department, provided us with the data and
the problem. in the data he provided us, 118 students were to be
placed in 120 classroom seats, divided into 8 classes of 15 seats.
Each student chose 4 sections, and ranked them in order of
preference, 1-4, lowest being most tavored. The objective of the
placement was to give all the students their lowest possible choice.
The teachers of each section would aiso like to see a

“Kirkpatrick’ is an excelient introduction, and Metropolis? is the seminal paper

roughly 50-50 male/femaie ratio, which they befieve results in
fivelier discussion and participation. Obviously not everyone will
get his or her first choice, and statistically the distribution in each
class will not be 50-50. Currently the teacher sorting the student
into classes has several rules of thumb for what is preferable. For
example, he would rather see two people in their second choice
than one in their first choice and one in their third. Aiso, fourth
choices are to be avoided if at all possible. There are additional
more complicated heuristics for balancing gender across sections.

A function that can estimate the unhappiness (energy) of the
students and teachers given a distribution was constructed. This
was done by having Mr. Bradiey rank pairings and triplets of
students and designing the function to conform to these example
constraints. The function (equation 1) was also designed with
efficiency in mind: it is linear, and it has a simple differential which
can be computed from local information. This is usetul because
the comparison of local operations such as flips for a SA is now
very economical. The professor's solution after an hour of work
had an unhappiness value of 242,

Discussion of Technologies

The problem is one well-fitted for probabilistic search techniques
-- the search space is large, and the globally best answer is not
required. We considered two such techniques: genetic aigorithms
and simulated annealing. In this section, we compare them and
describe which features influenced our decision of how to use
them best.

The technologies of genetic algorithms and simulated annealing
share many features. Both are used to search for near-optimal
solutions in large and complex search spaces. Both have been
shown to offer significant improvement over conventional
algorithms in some domains. Both are stochastic in nature. Both
are computer metaphors for optimization processes observed in
nature. Both are objects of intense interest at present to
individuals in Al and other research communities.

The two techniques aiso seem to differ aiong many orthogonal
dimensions. Genetic algorithms store the state of their search in
the genetic composition of a population of individuals, while
simulated annealing saves a singie individual. The search space
could be thought of as the possible states of individuals multiplied
by their chance of being visited. As individuals are chosen
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across time, the search space is explored. Seen in this context,
simulated annealing greatly resembles a genetic aligorithm with a
one-member population and a single genetic operator that
replaces the current individual while guaranteeing certain statistical
properties of the collection of such individuals.
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Where:

i represents a student preference
from 1 (first choice)
to 4 (last choice)

Count (i) is the number students
in their i’th choice.

Cost (i) is how unhappy students
are in an i’th choice section.

¢ is the number of classes,
in our example 8.

Ratio(c) is the male or (female)
excess in the c’th class.

Ratio-cost(x) is how unhappy the
teacher is with that excess.

Ratio-cost (i) = abs(i)
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Cost (2)
Cost (3)
Cost (4)
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Researchers of the two techniques have represented the
individuals in different ways, and the operators applied to those
individuals have been different as well.

The algorithms have tended to be applied at different levels of
" parallelism. SAs are often made parallel on a very fine grained
level, with each part of the solution an item to be operated on,
flipping in and out of the solution independently of the other parts.
GAs generally have each population member (a whole solution)
evolve on its own, producing a parallelism that is coarser-grained.

The communities of researchers developing and applying the
two technologies for search are nearly disjoint, and the domains in
which the two techniques have been applied have been disjoint as
well. (This situation will probably change as more representations
and operators are added to the body of genetic algorithm
knowledge and as SA also grows.)

Genetic algorithms incur more overhead than SA. GAs maintain
multi-member populations and store numerical evaluations for
each member. In the process of reproduction, computation is
required to determine, on the basis of the evaluations, which
parents reproduce, how often, and in combination with which other
parents. All of this permits GAs to exploit the use of crossover
operators between parents.

GAs are capabie of using crossover operators to accelerate the
inital stages of their search process, before the population is
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relatively homogeneous. Crossover operators allow GAs to
combine parts of two (or more) successful parents, with a
reasonable chance of yielding an offspring that is better than either
parent because it shares some beneficial features of both. The
matrix representation techniques commonly used by simuiated
annealing are not amenable to crossover operators of this type,
while the bit string representations used by many GA researchers
are.

The two technologies have not been applied to the same
domains. There are good reasons for this, the most important
being that the two technologies do not appear to perform well on
the same types of problems. SA has been used when one can
represent one’s solutions so that perturbations of them are rapid
and the effects of such perturbations are local. With such
representations, a simulated annealer is able to test a large
number of individuals in a short amount of time in a statistically
ordered manner. (A common representation of this type is a
matrix, with perturbations limited to pairwise exchanges of matrix
members. Semiconductor wiring problems and travelling
salesman problems are two examples of the many types of
problems that have been approached by SA researchers in this
way.) Genetic algorithms are applied to problems where the
overhead of population maintenance is paid for by rapid
convergence through crossover, or where the cost of evaluating
individuals is so high that more random search procedures are
undesirable.

Selection of the Appropriate Technology

Given these considerations, it is at present an engineering
choice which to use for practical applications. For the scheduling
problem described here, the utility function may be quickly and
locally recomputed, and so we chose simulated annealing as the
optimizing technology.

The derivation of an annealing schedule, however, is a problem
requiring intensive computation when individuals are evaluated,
and so we used a genetic algorithm to carry out the derivation.
Results described by Davis® show that GAs may be applied to a
wider range of applications than had been thought. The
techniques used require that one depart from bit string
representations of solutions, while preserving the crossover
potential of the representations used. Optimization of annealing
schedule parameters for the scheduling problem turned out to be a

problem that genetic algorithms were well suited for.

In the sections that follow, we describe the annealing approach
to the problem, and then the genetic approach to optimizing the
annealing schedules.

Distribution Generating Functions

Simulated annealing relies on the system visiting states which
have a Boltzmann distribution (lower energy states are
exponentially favored). This distribution is generated by the way
perturbations are accepted. The choice is done probabilisticaily by
comparing a random number between 0 and 1 with the value of the
acceptance probability generating function. We will refer to this
equation as the distribution generation function. There are two



functions of this type in current use. The Bolzmann Machine
9 uses eq. 2, and Kiripatrick' and Metropolis? use eq. 3.

The first equation actually comes closer to replicating reality.
The function does not unfairly favor motion that increases or
decreases the system's energy. This can be verified by noticing
that the function sums to 1 for P(-deitaE’) + P(deitaE). However,
the other equation, first used by Metropolis et. al., vioiates a
fundamental law of physics which states that a system can not use
information about its present state in a way different from
information about the state that it may transition into. Always
accepting a transition that lowers the energy is an example of
using information in this way. This presupposes that it was known
that the initial state, and not the final state, was higher in energy.
rather than considering the pair without regard to which was which.

(Boltzmann) 2)
P(deltaE) = 1/(1 + .xp(-d‘lt.l/k‘!))

for all deltakE

(Metropolis)
P(deltaE) = 1.0
= . exp (-deltaE/kT)

(3)
deltalk <= 0
deltakE > 0

Each equation has been used successfully. Given that one
equation was known to better approximate the physical metaphor
but was more computationally expensive, a series of experiments
was designed and carried out to determine their relationship.

An annealer that stayed at each temperature step until 1400
flips were accepted from T = 1000 to .01, changing by dettaT™,
was used in the first serigs of runs. it was run on the example data
supplied by the professor 15 times for each deltaT, and the results
were averaged. These values are shown in Figure 1.

The results were pleasing. The distribution generation function
that more closely replicated reality provided the better results. The
values were inversely proportional to deltaT, so the vaiues were
improved proportional to the log of the total number of flips. But
when the total number of flips used was compared, the more
correct generation function was aiso using significantly more flips
because it wasn't accepting all the negative deltaE flips, as the
less realistic function was doing. A second annealer which did a
set number of flips at each temperéture was used to normalize the
resources available to each algorithm. The results from these runs
are shown in Figure 2. ’

This time the two distribution generation functions did not differ
in a statistically significant way (Metropolis 228.11 vs. Boltzmann
228.08). The Metropolis distribution generation function was
chosen for the annealer in this paper. 1t offers the same
performance, and a small speedup because it doesn't do any
calculation when it automatically accepts ‘a beneficial flip, and has
a simpler equation to calculate when the proposed change is
increases the cost and it must probabilistically choose.

"doRaE = gy -
T, =doraT*T,

Values on both graphs are rounded to the nearest integer by the graphing
routine
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Figure 1: Average value of 15 runs vs. deltaT for fixed
number of acceptances

240
238
236
234
282
230
228

226
224

.1 .2 .3 4 .5 .6 .7 .8
METROPOLIS AND BOLTZMANN ANNEALING RUNS

Figure 2: Average value of 15 runs vs. deitaT for fixed
number of fiips

Operators for the Genetic Selection of Annealing Parameters

Although we did not know what combinations of rate of change
(TCHANGE), maximum temperature (TMAX), and minimum
temperature (TMIN) would perform well in the scheduling domain,
trial and error had given us bounds within which we were confident
those values would fall. Finding good combinations within those
bounds, however, was complicated by the stochastic nature of the
annealing process. Successive runs of an annealer that sampled
100,000 individuals varied widely in their final score, from 220
(best) to 238 (worst), with a fairly normal distribution of values
around the score 227 when the parameters were reasonable.
Each run of the annealer over 100,000 individuals consumed

Figures 1 and 2 should be reversed.



slightly more than five minutes’ time on a Symbolics 3640 Lisp
Machine.

The selection of parameters for the annealing schedule was a
different sort of problem; the evaluation process is noisy; we knew
ittle about the relation between the domain and the technology;
and evaluation time was by far the most cpu-intensive part of the
program, because the effect on an individua! caused by altering a
parameter's value ¢ould not be calculated without a complete re-
evaluation. Accordingly, we decided to use a genetic algorithm to
optimize the values of TCHANGE, TMAX, and TMIN.

The design of the genetic algorithm was as follows:

1. Our population was made up of 30 3-tuples. Each 3-tuple
was composed of a value for TCHANGE, TMAX, and TMIN

generated randomly within bounds of reasonableness determined -

empirically. The small size of the population was forced by time
(and budget) constraints.

2. We applied the GA to these populations through 30
generations. Thus, in our first run, 900 individuals were evaluated.

3. The evaluation of each combination of parameter values was
the result of performing a simulated annealing over 100,000
individuals using those values. This evaluation was carried out in
every generation for every individual in the population. Thus, each
evaluation of a given triplet of parameter values could (and did)
vary significantly.

4. One of our genetic operators was a traditional one, but the
others were not, for our parameter values were not coded as
binary strings. We hypothesized that the optimization search
space was not one with the sort of periodicity that lends power to
bit string crossover. Rather, we expected there to be a limited
number of isolated minima that wouid be difficult to detect owing to
< the amount of noise in the evaluation process. Grefenstette and
DedJong’.5, have carried out experiments with meta-level genetic
algorithms using bit string representations of parameter values, but
our experiment appears to be the first one in which genetic
algorithms employed operators that manipulated objects
interpreted directly as numbers.

We used four operatorss CROSSOVER, AVERAGE-
CROSSOVER, MUTATE-VALUE, and CREEP-VALUE. Their
effects are described below.

CROSSOVER functioned like the traditional crossover. Given
the two parents (1 2 3) and (4 5 6), CROSSOVER produced one of
these four lists as offspring: (1 56), (1286), (423),0r(453).

AVERAGE-CROSSOVER applied to two parents produced a list’

of the average of their respective members. For example,
AVERAGE-CROSSOVER applied to the parents (1 3 2) and (1 7
4) produces the child {1 5 3).

MUTATE-VALUE replaced a value in a parent with a randomly
generated value within the bounds of reasonableness for that
value. MUTATE-VALUE appiied to the second member of the
parent (1 3 2), for example, would produce (1 n 2), where n is one
of the reasonable values the second member can take on.

CREEP-VALUE replaced a value in a parent with the result of
creeping that value up or down from 1-5 times the creep-factor
associated with that value. More precisely, where V is the current
value, R is a random number from 1 to 5, C is the creep value of
that member obtained by dividing the difference of the upper and
lower bounds on that member by 100, and S is +1 or -1, randomty
chosen, then CREEP-VALUE replaces V with V+(S8°*C"R)
unless this resutt falls outside the reasonable bounds for this
parameter. In that case, V is replaced by the boundary value that
is exceeded.

5. The probability of application of these operators over the
course of the run from generation 1 to generation 30 was
interpoiated as follows: CROSSOVER from 40% to 10%;
AVERAGE-CROSSOVER from 40% to 10%; MUTATE-VALUE
from 4% to 1%; and CREEP-VALUE from 1% to 4%. These
probabilities were derived by trial and error from test runs on &
different problem that allowed near-instantaneous evaluation.
They, too, could have been derived by genetic techniques similar
to those described here, but at some point in the meta-hierarchy
the values must be set by theory, by guess, or by experimentation.
The interpolation of parameters is a technique that is not generally
used by genetic researchers, but our experimental results with
interpolation were consistently better than those without it, so we
used it here.)

6. The reasonable bounds for the parameters were as foliows:
TCHANGE from .1 to .95; TMIN from .0001 to .1; TMAX from 20 to
1000. Using 1/100 of the ditference between the maximum and
minimum bounds as the creep factor kept the grain size consistent
for each parameter.

7. Evaluations returned from the annealer were processed
before reproduction took place. Given E (the list of evaluations of
the 30 current parents) and MIN (the smallest value in E), each
value V in E was replaced by the greater of 1 or V - (.09 * MIN).

8. The result of the genetic run was taken to be the average of
values of the ten best parents in the final generation. The
population had converged by that time, with most of its diversity
apparently due to creeping. Averaging yielded the result
(TCHANGE = .516, TMIN = .061, TMAX = 560), a combination that
was representative of the members of the final generation.

Assessment of the Annealing Schedules

We carried out evaluation of these results in two ways. The first
consisted of a series of trial-and-error experiments that were
caried on without knowledge of the genetic population's
composition during the two weeks in which the genetic strain was
evolving. We had hoped that these hand-derived values (.85 .0t
1000) would be simifar to the genetically-derived values, but they
differed significantly. This discrepancy caused us to question the
genetic values. The nature of the values themselves was
suspicious, in that the genetic values lie close to the midpoint of
the reasonable ranges given them. 1t appeared that the
AVERAGE-CROSSOVER operator might have inappropriately
driven the population toward the center of the ranges of values,
rather than exploring the areas in the neighborhood of the best
values. In addition, the value of TMAX derived by us lay on the




boundary of our previously-derived range of reasonable values,
and we worried that we had inappropriately delimited TMAX's
parameter's values.

Given these considerations, we compared the two resuits by
running a simulated annealer over 100,000 individuals 200 times
for the hand-derived parameters and 200 times for the genetically-
derived parameters. The average final value for the hand-derived
parameters was 227.2, while that for the genetic parameters was
226.6. This improvement was statistically significant with a
confidence level > 99% for n = 200. Some of our doubts were
allayed by this test. The genetic aigorithm had given us a better
combination of parameters than our own explorations had found.
{The fact of the difference, rather than its magnitude, is important.
Our use of a large raw evaluation function has made the
improvement seem small. The evaluations sampled ranged in
value from 220 up. One could scale them by subtracting 219 from
each, or by rewriting the evaluation function so that a student's
receiving a preferred class costs 0, second choice costs 1, and so
forth. Using 219 as a basis, the improvement from 226.6 to 227.2
is an improvement of 8%.

Our second test of the genetic approach lay in carrying out
another run, different from the first in three ways: the probability of
AVERAGE-CROSSOVER was diminished to extend from 20% to
5%, the upper iimit on TMAX was raised to 1300 from 1000, and
we used the logarithms of the values of TCHANGE, TMAX, and
TMIN in each parent so that the midpoints of the parameter ranges
were changed. The result of this run, computed as before after 30
generations, yielded the logarithms of the parameter values (.566
0042 67.7). The first value, .566, was close to the comparable
value from the first run, and far from .308, the midpoint of its
fogarithmic range. The second, .003, was 33% greater than its
midpoint, but far from the comparable value found in the first run.
The third, 67.7, was closer to 161, the midpoint of its range, than it
was to 560, the comparable value from the first run. The average
of 200 runs with these vaiues was 226.8.

The values .516 and .566 for TCHANGE could be independently

" validated. As shown in Figure 3-2, when TMIN and TMAX were

held constant, the best value of TCHANGE iay in the vicinity of .58.

We concluded from these results that the AVERAGE-

CROSSOVER operator did not overpower the most critical

parameter value in any significant way, but that it might have
caused drift in parameter vaiues that are less important.

Summary

We believe that there are several lessons and techniques that
are worth noting for others who wish to apply these general
algorithms in similar domains:

«The annealing technique out-performed the humans
on the problem in a fraction of the time, and the
genetic algorithm found better parameter settings for
the annealer than the humans found.

« The results shown in Figures 1 and 2 above indicated
that either Boltzmann distribution generating function
produces roughly the same behavior for this problem.
Using the Metropolis function (Eq. 2) should allow the
Boftzmann Machine and other programs based on
simulated annealing to run faster, with no loss of
performance.
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eFor the individual considering applying these
technologies, Figure 1 bears out the theoretical
prediction that each increment of improvement yielded
by a simulated annealer costs exponentially more.

» Our numerically-oriented genetic operators such as
CREEP-VALUE appear to optimize function
parameter values successfully.

« Employing the logarithms of parameter values in order
to alter the shape of the search space resulted in a
useful check on the results of GA runs over other
shapings of the search space.

« The interpolation of probability settings for operators in
a GA produced useful results; our suspicion that
genetic algorithms with interpolated values will out-
perform ones with constant values is another area for
further work.

o Kirkpatrick et al. in! describe experiments in which
simulated annealing yielded solutions that were 10 to
15 percent better than those found by greedy
algorithms or human performance. We have
determined here that meta-level applications of such
technologies can improve the performance of untuned
SA. While the effects of a similar improvement will not
be as great at the meta-level, they are significant
nonetheless, and in a production environment one
would surefy want the option of acquiring them.
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