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Abstract 

How do covert emotional stimuli affect decision-
making? We investigated this question by exposing par-
ticipants to subliminal visual stimuli during a computer-
ized version of the Iowa Gambling Task (IGT) to assess 
whether different categories of images (negative, neutral, 
or positive emotional evaluations) would influence deci-
sion-making behavior. Results did show sex-group inter-
actions for IGT scores. In decision learning model simu-
lations, it was found that different models were more ap-
propriate to explain the task performance for different 
sex-group pairs. Overall, women showed more of an 
ability to integrate the additive negative signals from the 
stimuli to make more advantageous decisions than the 
men; consequently, this made the men more resilient to 
the negative effects of the positive stimuli on task-
performance. When taken with existing research, the re-
sults indicate that subliminal emotional stimuli can have 
subtle, potentially sex-dependent, effects on behavior 
during the decision-making process. 

Keywords: Decision-Making, IGT, Emotion, Simulation 

Introduction 
How do covert emotional stimuli affect decision-
making and choice behavior? There have been several 
studies that have explored the processes involved in, 
and the outcomes of, decision-making behavior (e.g., 
see Lerner et al., 2015; Weber & Johnson, 2008), but 
relatively few studies that explore decision-making 
have also explicitly introduced emotional stimuli 
(Phelps & Sokol-Hessner, 2012) and even fewer have 
sought to understand the interaction between uncon-
sciously presented emotional stimuli and decision-
making. One decision-making study by Winkielman et 
al. (2005) found that subliminally presented images 
(emotional faces) influenced judgment and choice dur-
ing a series of decisions directly following the masked 
image exposure (with happy faces increasing the 

amount of a beverage poured and consumed, and the 
purchase price a participant would be willing to pay). 
These images affected the decision despite not being 
consciously perceived or semantically related to the 
series of decisions made after the exposure. Subliminal 
image presentation can also cause changes in peripheral 
physiology that may not be perceived, particularly 
measures related to activation of the LC-Noradrenergic 
system and amygdala, for example heart-rate and eye-
blink response  (e.g., Ruiz-Padial et al., 2011). These 
effects on peripheral physiology are important, as the 
areas of the brain that are shown to respond to these 
subliminal stimuli are likely causing these cascades of 
changes (Öhman & Mineka, 2001; Tamietto & de 
Gelder, 2010).  

 The Iowa Gambling task (IGT) has been used to bet-
ter explain links between changes in peripheral physi-
ology and choice behavior, as well as to better under-
stand some of the brain areas key to decision-making 
and related physiological behavior during the decision-
making process (Bechara et al., 1999).  

IGT subjects repeatedly chooses cards from 4 decks 
of cards. The payoff per card varies, and the subject is 
asked to maximize their payoff.  The decks differ in the 
payoff they give for each card; some decks give better 
average payoffs than others, although all have variabil-
ity.  The task is used to study how subjects learn to use 
the payoffs in their decision-making.  For some cogni-
tive deficits the choices are not learned very quickly. 

An important finding from Bechara et al. (1999) is 
that normal participants exhibited different skin con-
ductance response (SCR) behavior than clinical patients 
with amygdala lesions and those with lesions in the 
ventromedial prefrontal cortex (VMPFC). These dis-
tinct clinical groups exhibited different SCRs both prior 
to selecting a card from a deck and in response to re-
ceiving a net gain or loss after selecting a card; this 
difference is especially apparent in the disadvantageous 

1872



 

decks (those decks that had a negative average payoff). 
The group with amygdala lesions exhibited both a re-
duced SCR prior to selecting a card from a deck and a 
reduced SCR after receiving a reward or loss, while the 
VMPFC group showed a more attenuated SCR prior to 
the selection of a card from a deck, indicating that 
amygdala nuclei may play an important role in giving 
affective value to representations in decision-making. 
SCR response patterns by those with amygdala lesions 
indicated a difficulty with coupling an affective value 
with the different decks and the cards from those decks. 

 We sought to better understand behavioral effects of 
this unconscious emotion perception and decision-
making interaction by exposing study participants to 
subliminal emotional stimuli while they completed the 
IGT. Behavioral responses to the affective value of ob-
jects are mediated by cognitive processes that are mod-
ulated by neural processing in the amygdala 
(Moscarello & LeDoux, 2013; Panksepp et al., 2011; 
Phelps, 2006). Given that the amygdala is also im-
portant for the processing of unconsciously presented 
emotional stimuli (Tamietto & de Gelder, 2010), the 
unconscious perception of emotional stimuli may have 
behavioral effects on decision-making even if the stim-
uli are not integral to the decisions being made (e.g., 
Winkielman et al., 2005).  

We expected that decision-making would differ de-
pending on whether the subliminal image presented had 
negative, neutral, or positive evaluations. We present a 
study to test this hypothesis. Normally, in non-
pathological populations, IGT performance is largely 
dependent upon learning deck contingencies over-time. 
This can be represented somewhat as a reinforcement 
learning process (e.g., with the expectance-valence 
model or the prospective-valence model; Ahn et al., 
2008). To further explore the potential differences be-
tween groups (and, later, participant sex), we developed 
decision learning models (e.g., Ahn et al., 2008) that 
were run in simulations1; this gave us the opportunity to 
understand potential computational processes affected 
by the treatment. 

Method 
97 undergraduate students were recruited as partici-

pants for this study (52 males; 45 females). The average 
ages of males and females were similar at 20.7 and 19.8 
(respectively). Electrodermal Activity (EDA) data were 
collected for the final 66 (37 males and 29 females) 
participants (data not reported here). All participants 
were given college course extra credit.  

A filter process that removed participants who com-
pleted less than 20% of their trials due to time re-

                                                        
1 Software available at gitlab.bucknell.edu/AI-

CogSci-Group/IGT-Open/ 

strictions (max 3.5s per trial) resulted in the removal of 
4 participants’ data from further analysis; data from 93 
total participants were analyzed. The negative, neutral, 
and positive (image) groups each had 31 participants. 
We ceased participant enrollment in the study after we 
crossed a 31 per-group threshold for task-related behav-
ioral analysis and all volunteers had the opportunity to 
participate. 

Participants used a version of the IGT that included a 
fixed reward and punishment schedule for each deck 
that was the same as the schedule used for the original 
IGT by Bechara et al. (2000). A modified computerized 
version of the IGT was used that runs in Matlab and 
uses the Psychtoolbox Matlab extensions (Brainard, 
1997), which were used due to their high timing accu-
racy, community support, and cross-platform availabil-
ity. The specific software used has had IGT-specific 
timing tests done to confirm timing accuracy (Dancy & 
Ritter, 2017). 

The visual stimuli presented during the IGT were ob-
tained from the International Affective Picture System 
(IAPS; Lang et al., 1997). Table 1 lists the images used 
in the image sets used by the groups. Male and female 
pictures were matched so that, for each group, they had 
similar valence/arousal/dominance ratings and had a 
similar content subject; for example, some snake pic-
tures had different ratings between sexes within the 
IAPS manual, so those images with lower va-
lence/higher arousal ratings among the same category 
were chosen. Given that picture ratings in all categories 
differed between sexes, this method allowed more con-
sistency in mean measured quantitative ratings among 
participant sexes. 

Table 1. The IAPS images used in the experiment. 

Picture-Set Picture Numbers 
NegativeMale 1050, 1202, 1220, 1304, 1525 
NegativeFemale 1050, 1120, 1201, 1202, 1525 
NeutralMale 1670, 7006, 7010, 7080, 7175 
NeutralFemale 1670, 7004, 7010, 7012, 7175 
PositiveMale 4180, 4210, 4232, 4664, 8501 
PositiveFemale 4505, 4525, 4660, 8001, 8501 

Procedure 
Before participating in the study, all participants read 

and signed a consent form approved by the Office of 
Research Protections (ORP) at Penn State. After con-
senting to the form, all participants filled out a Positive 
and Negative Affect Schedule (PANAS) questionnaire. 
All participants who had their EDA recorded were then 
fitted with a Q sensor EDA device (Ming-Zher et al., 
2010).  

Each participant was assigned to one of three groups 
that determined which set of images they were shown: 
(a) a negative image group that consisted of images 
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with a low rated valence, and a high arousal; (b) a neu-
tral image group that consisted of images with a medi-
um rated valence and a low arousal (c) a positive image 
group that consisted of images with a high rated va-
lence and a high arousal.  

In this version of the IGT, participants had a maxi-
mum of 3.5 seconds to select a card from one of the 
four decks and if they failed to make a selection in the 
allotted time on any trial, a random deck was selected 
for them. After a card was selected from a deck, a red 
or black card was shown for 4 seconds. A (group-
dependent) image was shown in place of the back-
ground image of the box where the reward and losses 
were shown for 17 ms when the participant selected 
from deck A or B. If the participant made a selection 
from deck C or D, a plain gray background image was 
shown for 17 ms. Directly after this 17 ms, the reward 
and loss that the participant received in response to 
their deck selection was presented in the same box for 
3.5 seconds.  All images used from the image set, as 
well as the background image used throughout the task, 
were converted to gray scale. Each intertrial break last-
ed 3.5 seconds, except every 20th trial, after each of 
which the participant was asked two questions to assess 
their awareness of the task itself.  

After the IGT was completed, participants filled out a 
second PANAS questionnaire and then (as needed) had 
the EDA device removed. Participants were then asked 
“Did you discover anything new by the end of the 
game?” and were partially debriefed on the task itself. 
Participants then completed the Affective Neuroscience 
Personality Scales (ANPS) questionnaire and were fully 
debriefed before ending the study session.  

Results 
To understand the results, we used both traditional 

statistical techniques (e.g., one-way and repeated meas-
ure ANOVAs), as well as results from decision learning 
models. While the ANOVAs were useful for under-
standing general differences between participant 
groups, the decision-learning models allowed us to ex-
plore potential differences in the computational pro-
cesses that may govern group differences. 

Analysis of Initial Hypotheses 
We hypothesized that the score would be different 

between the negative, neutral, and positive image 
groups, and that performance would be highest in the 
negative image group and lowest in the positive image 
group. A one-way ANOVA for cumulative score (total 
score at the end of the IGT) did not show a statistically 
significant difference between groups (!"#$%&' ()
(&*+,, -. ) ( *&#). We also hypothesized that score 
would improve over the course of the task (indicating a 
learning of the advantageous decks) and that this im-

provement would also differ between groups. A 3 (im-
age group) x 5 (block) mixed-model ANOVA for score 
revealed a statistically significant block factor, showing 
that learning occurred (! /$01& ) (,0*##$ 2 3
*&&&,$ -4. ) *,0), but did not show a statistically signif-
icant block:group interaction (!"+$01&' () (&*/&, -4. )
*&,).  

Post-hoc Analysis 
Additional analysis of the data indicated that partici-

pant sex was a behavioral factor. Figure 1 shows mean 
cumulative scores by group for both males and females. 
The distribution of mean scores on the task among 
groups is mirrored between males and females; the 
mean cumulative score for the positive group among 
females (5#*/) is closer to the negative group mean 
cumulative score in male participants (50*/) than the 
positive group mean score in male participants (,,*1). 

 

Figure 1 Cumulative score for male (left) and female 
(right) participants at the end of the task. (The error 

bars represent the standard error means) 

A 2 (sex) x 3 (group) ANOVA for cumulative score 
showed a marginally statistically significant sex:group 
interaction (! #$+6 ) (#*66$ 2( ) ( *&6$ -4. ) *&1). A 
#x0x7 mixed-model ANOVA for score showed a sta-
tistically significant block factor (! /$0/+ )
(,0*77$ -4. ) *,0) and a statistically significant 
block:sex:group interaction (! +$0/+ ) (#*,#$ 2 )
(*&0/$ -4. ) *&7) indicating a difference in trends be-
tween sex:group pairs. 
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Thus, we see that the effect of stimuli valence had an 
effect on the cumulative score on this task, but that the 
positive and negative valence images appear to have 
different effects on men and women. 

Using Decision-Learning Models 
Though using methods such as those used above are 

useful for finding differences between groups, simula-
tions of decision-learning models can also be useful as 
they allow one to explore theoretical aspects of the 
computation leading to learning and decision-making 
performance. We ran simulations of decision-learning 
models to explore how different groups may have eval-
uated positive and negative payoffs (utility), how they 
learned these utilities after experiencing them (learning 
rule), and how these learned expectations may have 
influenced participants’ actual choice (choice probabil-
ity rule). This resulted in simulation parameter sweeps 
on 8 total models (2 per category); each model was run 
100 times during the parameter sweep using the Mind-
Modeling@Home cognitive research system.  

Functions Used to Construct the Models The two 
utility functions used were the expectancy utility 
function (hereinafter referred to as EU) and the prospect 
utility function (hereinafter referred to as PU). EU 
contains a parameter meant to specify a model’s 
attention to loss (8 in eq. 1). Instead of assuming a 
subjective utility that is linearly proportional to the 
payoff amount, PU uses a non-linear function (e.g., 
Tversky & Kahneman, 1992) to better account for the 
gain-loss frequency effect (whereby multiple small 
losses have a larger effect on choice behavior than a 
single loss equal to the sum of the smaller losses. In 
(eq. 2) 9:;";' represents the net amount gained (or lost) 
on trial ;, 8 is a loss-aversion parameter, and ! governs 
the shape of the equation.  

< ; ) , 5 8 = >:8 ; 5 8 = ?@AA";'                      (1) 

< ; )
9:;";'B((((((((((((((((((((C(9:; ; (D &(
E8 = ( 9:; ; B(((((C(9:; ; (D &

               (2) 

For learning, the Rescorla-Wagner, or delta, rule 
(Rescorla & Wagner, 1972) and the decay reinforce-
ment rule (Erev & Roth, 1998) were used in separate 
decision models. In the Rescorla-Wagner rule (eq. 3) " 
represents a learning rate that determines the effect of 
the the prediction error (the utility minus the current 
expectancy). The same parameter provides a slightly 
different representation for the decay reinforcement rule 
(shown in e. 4). Here, the rule represents a recency pa-
rameter, which determines discount of past expectancy 
when updating with the new utility. Both the delta and 
decay rules are represented in Table 2 as Del and Dec, 
respectively. 

FG ; ) (FG ; 5 , H (I = "< ; 5(FG ; 5 , '               (3) 

FG ; ) ( (I = FG ; 5 , H < ;                (4) 

Finally, every model had one of two choice rules: tri-
al-dependent and trial-independent. These rules define a 
parameter that affects the probability of selecting a card 
from each deck # in equation 5. In this case, # affects 
the propensity to explore or exploit the problem space. 
When the parameter is low, the model is more likely to 
explore and select a random deck, and when it is higher 
it will exploit its knowledge and be more likely to select 
the decks that have a higher utility. The trial-dependent 
rule (eq. 6) is affected by the number of trials which the 
model has completed and the consistency parameter c, 
while the trial independent rule (eq. 7) is only affected 
by the parameter c (and thus static during the task).  

J KG ; H , ) ( :L M =(NO M :L M =(NP MQ
RST               (5) 

U ; ) "; ,&'V                  (6) 

U ; ) 0V 5 ,                 (7) 

Model Results As one may predict from the human 
results reported above, the models that best matched 
human behavior differed between sex-group pairs. To 
find the best matching models we calculated the R2 for 
each model-parameter-set combination using the 
proportions of cards selected from each deck during 
that particular block (i.e., four proportions adding to 1.0 
in each of the five blocks). This measure was chosen 
because it allowed us to further specify how different 
processes (i.e., models) may explain not only the 
overall performance (i.e., score), but the proportions of 
cards selected from decks in each block that define the 
overall performance. Table 2 lists the top model (and 
related parameters) for each sex-group combination. 

Table 2. Models and corresponding parameters that best 
matched each sex:group pair. Dec = Decay; Del = 

Delta; TI = Trial Independent; TD = Trial Dependent. 
All R2 (19) p < .01  

Sex:Group Model c W X Y R2 

Male:Neg PU-Dec-TI -9.25 5.2 .35 .15 .87 
Male:Neu PU-Dec-TD -8.25 4.1 .20 .93 .89 
Male:Pos PU-Del-TI -1.50 .13 .00 .75 .88 
Female:Neg PU-Del-TI -5.50 2.5 .65 .43 .87 
Female:Neu PU-De1-TI -6.75 6.8 .15 .30 .92 
Female:Pos PU-Dec-TI -2.50 0.5 .25 .25 .89 

 
While there were varying parameters for all models a 

variant of the prospect utility (PU) model showed the 
greatest match to all of the sex:group pairs. The same 
model had the highest R2 for the negative scoring per-
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formance group for each sex (females in the positive 
group and males in the negative group). The 
male:neutral group was the lone group pair to show the 
highest R2 with a trial dependent model. 

Discussion and Conclusion 
These data indicate that the subliminal emotional 

stimuli had an effect on decision-making. There appears 
to be an important interaction between sex and emo-
tional decision-making. Even though the stimuli were 
presented subliminally and were non-integral to the 
choices made, participants exposed to affectively 
charged stimuli responded differently to the outcomes 
of deck selections and performed better or worse on the 
task, depending on sex and the valence of the stimuli.  

We did not find statistically significant evidence for a 
between group (negative, neutral, or positive) differ-
ence in IGT scores. However, we did find that there 
were significant differences between groups for IGT 
scores when factoring in participants’ sex. What’s 
more, mean scores among males showed a trend oppo-
site of females across groups. These results seem to 
indicate that the stimuli had opposite effects on males 
and females. 

This may be due to these stimuli affecting portions of 
the affect-memory coupling portion of the decision-
making process that can go unnoticed without con-
scious reflection by the decision-maker. This seems 
likely given the mirrored distributions, but with similar 
performance between men and women in the neutral 
group. Indeed, the simulation model results showed that 
males in the negative group and females in the positive 
group were similar to the same class of model. 

Similar to the results from a previous study by Aïte et 
al. (2013), the image-deck congruency also affected the 
participant’s decision-making behavior, albeit different-
ly in men and women. Though females exhibited a pat-
tern similar to Aïte et al. (2013) with the cumulative 
score for the negative image group being the highest 
and the cumulative score for the positive group being 
the lowest, males exhibited the opposite behavior and 
the image effect was intensified. Indeed, a more recent 
review points to a difference between men and women 
in decision-making behavior during the IGT (van den 
Bos et al., 2013). In the study presented here, women 
perhaps showed more of an ability to integrate the addi-
tive negative signals from the stimuli to make more 
advantageous decisions than the men; this explanation, 
would also apply to men, making them more resilient to 
the negative effects of the positive stimuli on task-
performance. The difference in this affective signal 
integration may be partially due to the differences in 
amygdala activity found in men and women (e.g., 
Cahill, 2006; Hamann et al., 2004). These differences 
may have also led to a difference in memory processes 

predominantly used to make decisions, as the differ-
ences in models (particularly learning processes) may 
suggest. A decay-based learning rule would better lend 
itself to a more hippocampal/declarative memory, time-
dependent (e.g., Anderson et al., 1999) emphasized 
decision-making process. 

While this study yields interesting and worthwhile 
results, there were limitations in the study that restricted 
the scope of analysis and discussion. Our study is 
somewhat limited in that we were unable to compliment 
the results with neuroimaging data (e.g., fMRI). Neu-
roimaging data could allow more comment on the neu-
ral process mediated reasons that we found a difference 
in decision-making performance between groups that 
was dependent on participant sex. 

Furthermore, the model analysis could be expanded 
in the future. Indeed, it may also be interesting to inte-
grate an affective component into the simulations to 
more directly account for the stimuli. This would allow 
a finer analysis of the computational processes at work, 
albeit with a more complex model. 

The aim of this study was to better understand how 
non-integral, subliminal stimuli may affect decision-
making behavior and physiological responses during 
decision-making.  Though we found some expected 
image-deck congruency effects, these were not as prev-
alent as originally hypothesized and participant sex also 
played a role in how decision behavior was uncon-
sciously moderated by the stimuli. More study is neces-
sary to better understand how these unconsciously per-
ceived stimuli are affecting the process of decision-
making.  

Nonetheless, this work provides evidence that non-
integral subliminal stimuli may affect decision-making 
behavior at several points in the process depending on 
stimuli characteristics relative to the decision-maker, 
and reward and punishment contingencies present in the 
series of decisions. The work also provides evidence 
that methods of affective intervention during decision-
making (e.g., presentation of an emotionally charged 
image to an individual as a part of a decision to pur-
chase an item) should take into consideration the poten-
tial effects of the stimulus on males and females. The 
stimulus will likely have dissimilar effects and may 
have completely contrasting effects on individual 
choices based upon the sex of the decision-maker; this 
could lead to unintended behavioral consequences. 
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