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Abstract 

Adding a physiological representation to a cognitive architecture offers an attractive 

approach to modeling the effects of stress on cognition. We introduce ACT-R/Φ, an extended 

version of the ACT-R cognitive architecture that includes an integrative model of physiology. The 

extension allows the representation of how physiology and cognition interact. This substrate was 

used to represent potential effects of a startle response and task-based stress during a mental 

arithmetic (subtraction) task. We compare predictions from two models loaded into the new hybrid 

architecture to models previously developed within ACT-R. General behavior differed between 

models in that the ACT-R/Φ models had dynamic declarative memory noise over the course of the 

task based on varying epinephrine levels. They attempted more subtractions but were less accurate; 

this more closely matched human performance than the previous ACT-R models. Using ACT-R/Φ 

allows a more tractable integration of current physiological and cognitive perspectives on stress. 

ACT-R/Φ also permits further exploration of the interaction between cognition and physiology, 

and the emergent effects on behavior caused by the interaction among physiological subsystems. 

This extension is useful for anyone exploring how the human mind can occur in and be influenced 

by the physical universe.  
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Introduction 

How can we model the effects of stress and other behavioral moderators on cognition? 

Adding a physiological representation to cognitive architectures offers an attractive option for 

modeling these effects. We present the case for integrating a physiological simulation with a 

cognitive architecture.  This approach is demonstrated with ACT-R/Φ, an extended version of the 

ACT-R cognitive architecture (Anderson, 2007) that is coupled with HumMod, an integrative 

simulation of human physiology (Hester, Brown, et al., 2011). This extension allows one to begin 

modeling how cognition and physiology can influence each other using models built to run in the 

original ACT-R architecture. 

We use ACT-R/Φ to demonstrate lessons one can draw from connecting a physiological 

substrate to a cognitive architecture and developing a corresponding process model. By comparing 

the predictions made by the model that uses the physiological substrate in the hybrid architecture 

to predictions made by the same models that use the ACT-R cognitive architecture, we demonstrate 

a benefit of the inclusion of a physiological substrate to model some aspects of behavior. Though 

the extension only begins to model and use a few of the many possible connections between 

physiology and cognition, it has the potential to be very useful for anyone exploring how the 

human mind and body can occur in the physical universe, and, consequently, how the human mind 

and the physical universe may influence each other. 

In this paper, we provide a short review of past implementations of cognitive moderators 

in computational cognitive and agent architectures. Then, we introduce ACT-R/Φ (pronounced 

act-are-fee), an extended version of the ACT-R architecture that is connected to a model of human 

physiology. Variables from the physiological model that change with stress are used to modulate 

ACT-R parameters to simulate a stress response. We demonstrate this physiological modulation 
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of cognition using a modified version of an existing mental arithmetic model and discuss the results 

from this model. 

Past implementations of cognitive moderators in architectures 

We briefly review several existing moderator implementations represented in cognitive 

architectures. These existing implementations provide lessons for modeling the effects of 

moderators on cognition and behavior and integrating a physiological system with a cognitive 

architecture.  

CoJACK 

CoJACK (Ritter et al., 2012) is an extended version of the JACK (Java Agent Construction 

Kit) agent architecture that is based on the beliefs, desires, and intentions (BDI) model (Rao & 

Georgeff, 1995). CoJACK extends JACK with cognitive limitations and representations of 

cognitive moderators, including caffeine and fear. Cognitive limitations are represented in 

CoJACK, with the architecture allowing limited access to plans and belief-sets; in addition, models 

developed within the architecture can also retrieve incorrect plans or belief-sets.  

Under the effect of a moderator, such as caffeine, a set of changes to architectural 

parameters are overlaid onto the architecture. With caffeine, there is a dose-dependent curve of 

how processing speed changes with caffeine levels. Stress is represented in the architecture in a 

similar way.   

The work with CoJACK shows that extending an existing architecture with representations 

of the effects of physiology is possible and potentially useful. However, representing moderators 

as direct changes to cognitive parameters will lead to intractable conflicts arising from trying to 

combine multiple moderators (e.g., from PMFServ's list; Silverman, Cornwell, & O’Brien, 2004) 

and not having an appropriate way to represent interactions between moderators (e.g., cognitive 
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changes when fatigued but having recently ingested caffeine). Providing a more explicit 

representation of the underlying physiology connected to a cognitive architecture provides a way 

to represent the effects of multiple moderators in a unified, integrated, and tractable system. 

MicroPSI 

MicroPSI (Bach, 2009) is a hybrid architecture with both symbolic and subsymbolic 

(neural network) representations based on the Principle of Synthetic Intelligence (PSI) theory 

(Bartl & Dörner, 1998).  The architecture has an underlying module that provides representations 

for emotional components, perceptions, and urges. In particular, the urges are determined by body 

parameters and urge generators that in turn affect an agent’s motivational state. 

There are several urges represented in MicroPSI: intactness and energy (physiological 

level), competence and reduction of uncertainty (cognitive level), and affiliation (social level). 

These urges are important as they bring about a certain level of autonomy in MicroPSI agents. 

Thus, problems like perseveration are less pervasive in MicroPSI models because with time, urges 

will lead to new motivations that lead to new tasks. These urges also allow for emergent agent 

behavior over time in a complex environment; this is especially true for MicroPSI as it has learning 

mechanisms, as well as symbolic and subsymbolic memory representations. 

Though Bach (2009) admits that the mechanisms currently in MicroPSI fail to represent 

several of the complexities of human cognition, MicroPSI’s hybrid memory structure and 

modulator representation are important architectural distinctions. This architecture provides an 

important functional middle ground between representing human-like cognitive abilities and the 

often downplayed modulators of cognition and behavior (e.g., physiology). Perhaps most 

importantly, MicroPSI illustrates that cognition might be interrupted by physiological urges, and 

that this process is important, underexplored, and pervasive. 
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Fatigue in ACT-R 

Gunzelmann and colleagues developed an ACT-R model that simulates the effects of 

fatigue (arising from sleep-deprivation) and circadian rhythms on human behavior and cognition; 

this is accomplished by altering ACT-R module parameters for utility calculation of procedural 

rules  (Gunzelmann, Gross, Gluck, & Dinges, 2009). Two biomathematical models1 (CNPA and 

SAFTE) drive parameter change over time while the ACT-R model is performing the Psychomotor 

Vigilance Test (PVT). 

This fatigue work is an interesting departure from the previously discussed architectures 

because of the explicit reliance on an external mathematical model. The highest and lowest alert 

values for the models are found off-line (i.e., before the model is run for the particular task) and 

linearly tied to corresponding utility parameters that produce the best and worst performance data. 

Production rule utility in the ACT-R model is then directly moderated by the biomathematical 

model's alertness. 

Though novel, the ACT-R biomathematical connection presented by Gunzelmann et al. 

(2009) has a few drawbacks, including how well the derived equations and results may generalize 

to tasks other than those used by the model (for tasks that have been modeled see, Gunzelmann, 

Gluck, Moore Jr, & Dinges, 2012; Gunzelmann et al., 2009; Gunzelmann, Moore Jr, Salvucci, & 

Gluck, 2011). As mentioned previously, the output from the biomathematical models was also 

found off-line; this limits flexibility of the model during a task (e.g., performance spikes during 

acute changes in alertness; Gunzelmann et al., 2011). This separation between the running 

biomathematical model and ACT-R architecture may make it difficult to generalize the use of this 

                                                 
1 Here, by biomathematical models, we mean mathematical models that provide a quantitative representation of how 
some biological process affects the state of a cognitive system, in this case, the model represents alertness (see 
Gunzelmann et al., 2009, for further discussion). 
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connection in modeling tasks in more dynamic environments. Nonetheless, this work suggests that 

there are theories that can be used to work with physiology and that there are numerous useful 

applications of connecting a physiological representation to a cognitive architecture. This work 

also suggests that ACT-R can be a useful cognitive architecture to base the combined architecture 

upon.  

Summary: Why should we represent the physiological level? 

Work in modeling the effects of stress and fatigue on cognition in ACT-R, as well as the 

work with the CoJACK architecture, represent applications of overlays (e.g., Ritter et al., 2007). 

In this case, an overlay is a model of how a single moderator affects cognition realized as a set of 

changes that are on top of the architecture, possibly including time-based components and 

reservoirs. In the end, overlays are probably not the best level for representing the effects of 

physiology on cognition2. Though overlays offer particular insights into potential routes of 

quantitatively altering behavior of cognitive models, the discussed implementations are often task-

specific, virtually impossible to combine, and will be difficult to generalize in the future to further 

moderators and deep physiology.  

Though the projects reviewed all work relatively well for their prescribed functions, a more 

unified approach should be pursued to represent specific moderators (e.g., fear or stress) and 

understand how these moderators affect systems that modulate cognition and behavior. Adding an 

account of the physiological level allows the representation of these modulators and their 

interactions in a more tractable and appropriate fashion. A physiological representation also allows 

a more realistic and straightforward quantification of experimental representations (e.g., 

                                                 
2 As implied by Ritter et al. (2007) and explicitly discussed by Ritter et al. (2012). 
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quantifying the effects of stress on cognition using existing experimental literature on peripheral 

catecholamines and consequent changes to cognition and behavior). It provides a theoretical way 

for combining the effects by using intermediate physiological representations including hormones, 

autonomic nerves, and receptors. Adding an underlying physiological substrate to a cognitive 

architecture could be used to provide a more unified manner to model these cognitive modulators 

quantitatively and qualitatively. 

Providing a physiological substrate allows for a more unified (e.g., Newell, 1990) approach 

to representing cognitive modulators, potentially providing a cognitive architecture for developing 

more diverse and interesting computational models. Having the ability to model human behavior 

on multiple levels within one system is useful as expansions and explorations of cognitive 

architectures (and subsequent models) continue not only on the physiological level (e.g., 

Anderson, 2007), but also on the affective (e.g., Marsella, Gratch, & Petta, 2010) and social levels 

(e.g., Morgan, Morgan, & Ritter, 2010; Zhao et al., 2012). Developing computational models of 

human behavior with a physiological and cognitive perspective (and with a suitable environment) 

may potentially provide support for examining theories on the effects of physiology on cognitive 

and social behavior, and, conversely, theoretical takes on the effects of cognitive and social 

behavior on physiological systems. 

A model of mental subtraction in ACT-R/Φ 

In the next sections, we review two systems (ACT-R and HumMod) that computationally 

represent two traditionally separate levels of inquiry (cognitive and physiological). We also discuss 

how we connected these systems and present this connection as the architecture ACT-R/Φ. This 

connection allows the simulation of physiological modulation of cognitive function and the 
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cognitive affect on physiology. We demonstrate this capability using a modified version of an 

existing model of mental serial subtraction. 

ACT-R 

ACT-R (Anderson, 2007) is a modular, hybrid cognitive architecture that provides both 

symbolic and subsymbolic representations; the inclusion of both is important because it allows one 

to alter processes like declarative memory retrieval on both gross and fine-grained levels. Thus, a 

model’s ability to retrieve a memory (from the declarative module) is affected not only by the 

availability of the declarative chunk in long-term memory storage, but also the current activation 

value of the memory. Figure 1 shows that the declarative module is one of several modules that 

exist within the ACT-R architecture. The production system is made up of several modules. 

 

Figure 1: A high-level representation of ACT-R and its modules. 

Modules in ACT-R have been correlated to structures in the brain (Anderson, 2007; 

Anderson, Fincham, Qin, & Stocco, 2008). Table 1 provides more details on what areas of the 
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brain have been correlated with ACT-R. This work allows one to make connections between 

representations in ACT-R and functional structures in the central nervous system. The most 

important correlations (for the work presented in this paper) are those between brain regions related 

to the declarative module (including the retrieval buffer). 

Table 1: ACT-R modules (bold) and buffers that are correlated with activity in specific regions of the brain. 

ACT-R Module/Buffer Brain Region 

Procedural Basal Ganglia (Caudate Nucleus) 
Visual Fusiform Gyrus 
Audio Secondary Audio Cortex 
Motor Motor/Sensory Cortex (Hands) 
Speech Motor/Sensory Cortex (Face and Tongue) 

Declarative Medial Temporal Lobe/Hippocampus 
Imaginal Posterior Parietal Cortex 

Goal Anterior Cingulate Cortex 
Retrieval (buffer) Ventral Lateral Prefrontal Cortex 

Goal (buffer) Dorsal Lateral Prefrontal Cortex 
 

The declarative module and retrieval buffer are associated with activity in the hippocampus 

and ventral lateral prefrontal cortex (respectively). These correlations allow one to hypothesize 

changes in the declarative module due to changes in central and peripheral physiology. Thus, one 

may have specific parameters in ACT-R that are modulated by representations of hormones or 

catecholamines; stress may elicit changes in the locus coeruleus and hypothalamus (i.e., 

Sympathetic-Adrenal Medullary, SAM, axis and Hypothalamic-Pituitary Adrenal, HPA, axis 

respectively), both of which directly affect areas of the prefrontal cortex and hippocampus. While 

there are several ways one may choose to represent physiological modulation of declarative 

parameters (as we discussed earlier), we suggest a specific physiological model and simulation 

system that provides gross anatomical representations of physiology. 
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HumMod 

HumMod (Hester, Brown, et al., 2011) is a simulation system that provides a top-down 

integrative computational model of human physiology (see Hester, 2011b, for a discussion on 

approaches to computational physiology). It is an extension of the physiological research of Arthur 

Guyton who originally applied engineering system analysis to the cardiovascular system under 

normal and pathologically significant physiological states. Guyton's work continues to serve as the 

basis of contemporary medical knowledge regarding cardiovascular physiology (Guyton, 

Coleman, & Granger, 1972; Montani & Van Vliet, 2009). The physiology model in HumMod is a 

derivative of the original Guyton model (Guyton et al., 1972) that represents over 1,500 linear and 

non-linear equations and over 6,500 state variables. HumMod provides a user with the opportunity 

to simulate physiology under normal and abnormal conditions over multiple time scales. The 

model also provides several points of access to the simulated body through parameters that can 

change many aspects of the physiological output including output related to both the endocrine 

and nervous systems.  Table 2 illustrates some of the major systems and example variables. 

Table 2: Some of HumMod's major systems. 

HumMod System Number of 
Variables 

Example Variables 

Body Fluids 214 Blood Plasma Volume 
Circulation 426 Sinoatrial (SA) Node Rate 
Electrolytes 140 Sodium Ion (NA+) Pool Mass 
Hormones 534 Adrenocorticotropic hormone Secretion 

Metabolism 321 Energy Stored (Calories) 
Nervous System 187 Norepinephrine (NE) Pool Mass 

Organs 2,349 Bladder Volume 
Respiration 326 Breathing Tidal Volume 

Other Systems (Lifestyle, Heat, etc.) 2,026 Skin Temperature 
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There are two ways to change the values attached to variables in HumMod െ changing the 

underlying XML-based model or changing the parameters after the model has been loaded into the 

simulator system (e.g., change EpiPump.Switch to pump epinephrine into the body). An alteration 

of the base model allows the changing of initial variables, derivations, and connections between 

variables. Changing the parameters has perhaps less systematic power than a change to the actual 

model, but allows one to work within the given model and quickly view the effect of these changes. 

The complex connections between state variables can make it difficult to change values of 

variables themselves െ it is easier to modify parameters designated by HumMod (e.g., one may 

choose to use the epinephrine pump parameter or adrenal nerve parameter instead of directly 

modifying the epinephrine variables). Using the parameters allows another simulation (e.g., ACT-

R) to be modified by and to modify the physiology model in a fairly straightforward fashion.   

ACT-R/Φ: Connecting a cognitive architecture to a physiological model 

ACT-R/Φ  is an extension of the ACT-R cognitive architecture with the addition of a 

physiological substrate (represented using the HumMod physiological simulation system)3. 

HumMod and ACT-R are connected using a physio module (Figure 2) that allows two-way 

communication between the two systems. Thus, one can simulate cognitive effects on physiology 

(e.g., stress caused by a high cognitive workload and time pressure) and consequent effects of 

physiology on cognition. The use of this simulation system also allows the exploration of possible 

emergent external behaviors arising due to non-linear changes in the physiology (e.g., a continuous 

gradual change in peripheral epinephrine over time) and interactions among physiological systems; 

                                                 
3 A newer version of the architecture has been developed to also include a representation of affect/emotion. A 
version with just the physio module was used for this work. 
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this computational exploration will become more important as one begins to develop more robust 

models of human behavior that run over longer periods of time and in more extreme environments. 

Within the physio module, a physio-substrate buffer is used to request the module to begin 

retrieving physiological data from the HumMod simulation. The use of a buffer here is a 

convenient way to represent (in software) the set of connections and for explanation; we do not 

propose that the body provides a buffer to the brain—the body and buffer are better viewed as a 

substrate that the mind is based upon, is influenced by, and attempts to direct. One can start the 

HumMod simulation (using a model) by putting a chunk of type phys-var into the physio-substrate 

buffer. To explicitly request the value of any physiological variable one must send a request to the 

phys-substrate buffer with the specific name of the variable or parameter. Physiological variables 

in HumMod can be explicitly set to a certain value by adding a chunk to the efferent buffer. 
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Figure 2: A High-level schematic of ACT-R/Φ (top) and the physio module and its buffers (bottom). Thicker solid 

lines in the top figure represent current direct connections between the physiological module and cognitive modules 
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A mental arithmetic model 

Our example application of ACT-R/Φ uses a modified version of the ACT-R 6.0 

subtraction model developed by Ritter, Kase, Klein, Bennett, and Schoelles (2009)4. This model 

completes a mental serial subtraction task (analogous to the subtraction task in the Trier Social 

Stress Test, or TSST). Figure 3 displays a high-level description of the subtraction model and its 

relation to ACT-R/Φ. This model includes a representation of the CNS-PNS loop, i.e. a production 

rule affects the central nervous system (CNS) in HumMod that consequently affects the peripheral 

nervous system (PNS); the change in the PNS feeds back to affect the CNS over time. In the model, 

we represent a fluctuation of sympathetic nervous system (SNS) activity due to a scheduled 

aversive sound (during the task) that causes a form of a startle response5. The startle response in 

turn causes a change in HumMod (the orange boxes in the right half of Figure 3) and affected 

HumMod variables modify the noise the declarative knowledge retrieving process. The 

epinephrine variable in HumMod is tied to declarative memory noise in ACT-R (the :ans parameter 

in the ACT-R software); epinephrine was chosen due to existing literature indicating its importance 

in stress response6 and declarative memory encoding/retrieval (e.g., Cahill & Alkire, 2003; 

Miyashita & Williams, 2006). Peripheral epinephrine levels are known to affect neural structures 

(the nucleus of the solitary tract, NTS, and locus coeruleus, LC) that control neural norepinephrine 

levels (Miyashita & Williams, 2006; Ulrich-Lai & Herman, 2009). 

                                                 
4 More information on that model and project is located at http://acs.ist.psu.edu/ACT-R_AC/. 
5 The aversive speech sound is presented at the 2 minute point in every block. 
6 Reviews are available on the underlying physiology of the stress response (e.g., Charmandari, Tsigos, & Chrousos, 
2005; Joëls & Baram, 2009) and the underlying physiology of internal (e.g., Kemeny & Shestyuk, 2008) and 
external (e.g., Öhman, 2008) causes and effects of the stress response. 
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Figure 3: A schematic of the interctions in the ACT-R/Φ process model built to use the ACT-R/Φ physio module. 
Peripheral physiology affects memory noise whether or not the model processes the sound cognitively. The boxes in 

the left half of the figure that have a double border represent the process of the original ACT-R 6.0 model. 

Production rules are added to handle the fast processing of the aversive sound stimulus. 

After sensing the loud noise in the aural-location buffer, the model clamps (sets to 1) the central 

nervous system autonomic nerve integration variable (SympsCNS; via the efferent buffer in the 

physio module) that positively affects the adrenal nerve variable, thus simulating a feature of SNS 

activation. We developed two separate equations to tie the HumMod epinephrine variable to the 

ACT-R declarative memory noise (the :ans parameter). In both Equation 1 and Equation 2, the 

ansMultiplier variable was determined by solving for the equation when declarative memory noise 
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was equal to the value found in the non-caffeine parameter set found by Ritter et al. (2009), and 

the (current level) epinephrine value is equal to the result of HumMod adrenal nerve activity 

leading to sympathetic activity (e.g., heart-rate) similar to that found in the original TSST study 

(Kirschbaum, Pirke, & Hellhammer, 1993); a (HumMod) heart-rate of roughly 95 was used to 

calibrate the adrenal nerve activity variable. In this model, ansMultiplier was determined to be 

21.4 and ansACT-R-All is 0.7 (from Ritter et al., 2009). These values were chosen to calibrate the 

model because they were previously used/found experimentally (e.g., Ritter et al., 2009; Ritter et 

al., 2007) and this makes it more straightforward to compare this model to related previous models. 

Every time physiological variable values are updated in ACT-R/Φ (the interval between updating 

is determined by the :phys-delay parameter that is 0.25 seconds by default), the declarative 

memory noise value is determined using either Equation 1 or 2. Equation 2 is Equation 1 modified 

to cause an inverted u-shaped curve for performance as epinephrine levels increase from baseline, 

this partially follows the Yerkes-Dodson (1908) law for complex problems. (This u-shaped 

performance effect is shown in the next section.) 

 

: 	ݏ݊ܽ ൌ 	
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ݔܽܯ݅ܧ
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ݔܽܯ݅ܧ

െ	: ݈݈ܣെܴെܶܥܣݏ݊ܽ ݁ݑ݈ܸܽݐ݊݁ݎݎݑܥ݅ܧ	∀		  50.25
ሺݍܧ. 2ሻ 

 

Physiological change in ACT-R/Φ is accomplished by using a production rule to send a 

query to the efferent buffer in the physio module that specifies the name of a HumMod parameter 

and a new value for it. Perceiving the sound also results in a short processing of the specific sound. 

The startle response does not last long (cognitively), and the rules that perform the subtraction task 
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continue firing shortly after the encounter with the noise. However, the SympsCNS variable is not 

changed until a production rule is fired to setup the mental representation of the next subtraction 

problem7, this happens at the beginning of the block and after an incorrect subtraction answer is 

given; thus, epinephrine increases non-linearly until the model resets the internal subtraction 

representation. (This is not to imply that production rules particularly represent the correct 

theoretical construct for cognitive change of physiology. It is an artifact of the current 

implementation and will be altered in future iterations to better reflect theoretical constraints.) 

Model Results and Comparison 

To illustrate the potential of the ACT-R/Φ architecture, we ran a model that used the 

components principally affected by the physiological substrate. In this example model, we focus 

on the effects of memory noise modulation by varying the epinephrine levels during the modified 

subtraction task. We compare model performance, specifically the total number of attempts and 

proportion of problems answered correctly, when using either equation 1 or 2 to the performance 

of the ACT-R-All model (a model with static parameters set to match those used in Ritter et al., 

2009).  

All models completed 4 blocks of 4 minutes (240 seconds) of mental serial subtraction. 

Blocks 1, 2, 3, and 4 had a starting value of 9095, 6233, 8185, and 5245 and a subtraction constant 

of 7, 13, 7, and 13 (respectively). More details of the task are available in Ritter et al. (2009). We 

ran each model 200 times; this number is acceptable based on criteria described by Ritter, 

Schoelles, Quigley, and Klein (2011)8. 

                                                 
7 This is a simple approximation to an appraisal mechanism. 
8 Our models (Eq1 and Eq2) had a SEM of 0.708 and 0.920 (respectively). While these SEMs are higher than that 
reported as an example in Ritter, Schoelles, et al. (2011), our much higher run cost (~2*real-time) modified our 
SEM threshold. 
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Model physiology 

Figure 4 shows average epinephrine levels during the ACT-R/Φ-Eq1 and ACT-R/Φ-Eq2 

runs; Figure 5 shows average declarative memory noise over the course of the task (changed 

according to the epinephrine values). The shaded area above and below each point represents the 

standard deviation at that point in time based on 200 runs. The model’s average epinephrine levels 

displayed a higher maximum average during block 1 and 3 as compared to block 2 and 4. Overall, 

block 2 displayed the lowest average epinephrine levels; other physiological variables modulated 

by activity in the sympsCNS HumMod variable followed the same general pattern.  

 
Figure 4: The solid line (mean) and dotted line (median) represents epinephrine levels of models (n=200) while the 

area around the solid line represents the standard deviation for EQ1 (Top) and EQ2 (Bottom) models. The red 
dashed line represents the point at which the startle was presented. 
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Figure 5: Mean declarative memory noise values for the ACT-R/Φ-Eq1(top) and ACT-R/Φ-Eq2(bottom) models 
(n=200). The red dashed lines represent the points at which the startles were presented. 

 In block 2 of the task, both ACT-R/Φ models had smaller range of epinephrine values that 

resulted in a lower declarative memory noise (as seen in Figure 5). This attenuated epinephrine 

response occurred because when there is an incorrect answer, the model refocuses on the problem 

and sets it up as a task; the activation of the SNS is then stopped. So, in block 2 and 4, where the 

problems are more difficult, the physiology response to the startle has a lower amplitude. Thus, 

using this hybrid architecture allows one to explore how seemingly small effects of interruption 

during a task can affect the overall outcome of the task over time and how complexity and attention 

of the task can affect reaction to non-integral stimuli. This allows one to look at the emergent 

effects physiology may have on cognition and behavior over time and how problem difficulty can 

interact with reactions to outside stressors. 
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Model performance 

General descriptive statistics of the models’ performance in ACT-R/Φ over 200 runs is 

presented in Table 3 along with the performance of models run in the ACT-R architecture; we also 

include performance data by human subjects from the original study conducted by Ritter et al. 

(2009) who appraised the task as threatening and were more reactive to the task. The ACT-R/Φ-

Eq1 average performance was closest to the human performance during the serial subtraction task.  

We compared the models’ task-performance (percentage correct) to see how models that 

were identical to those used by Ritter et al. (2009) compared to models that had similar cognitive 

components, but were modulated by certain physiological change. We also compared model output 

when using the positive linear slope equation (ACT-R/Φ-Eq1) and the piecewise equation 

developed to achieve inverted u-shaped performance during the task. A Mann–Whitney U test was 

used to compare the models. The ACT-R/Φ-Eq1 performance (percent correct) was found to be 

significantly different (p < .0001; z=11.74) than performance of the ACT-R/Φ-Eq2 model. 

Performance of the ACT-R-All and ACT-R-Threat models were both found to be significantly 

different than both ACT-R/Φ-Eq1 and ACT-R/Φ-Eq2 model performance 

(p < .0001; z= െ7.99 & z = -19.08); the difference between output from the ACT-R-All model and 

the ACT-R-Threat model was not found to be statistically significant. Histograms, showing the 

distribution of each model's performance, are presented in Figure 6. The distribution shapes may 

indicate that a higher number of runs would yield a more normal distribution (the relatively high 

standard deviation of the results found when running the models 200 times also indicate it may be 

beneficial to run the model even more times, see Byrne, 2013, for a related discussion). 
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Table 3: Percent correct and number of attempts (average) by human subjects who fell under the Threat appraisal condition (Ritter et al., 2009), the original 
ACT-R based models, and the ACT-R/Φ model with equation 1 and equation 2. 

Group/Parameter Set B1 % 
Correct (std 

dev) 

B2 % Correct 
(std dev) 

B3 % Correct 
(std dev) 

B4 % Correct 
(std dev) 

Total % Correct 
(std dev)  

Attempts (std 
dev) 

Human-Threat (n=8) 78.6 (9.1) 84.0 (4.6) 74.9 (9.6) 79.3 (9.7) 79.2 (5.0) 152.9 (30.9) 

ACT-R-All (n=200) 93.2 (10.1) 84.8 (14.6) 87.9 (10.2) 84.3 (11.2) 84.5 (11.0) 121.1 (2.6) 

ACT-R-Threat (n=200) 93.5 (9.7) 83.5 (15.1) 87.2 (10.3) 83.5 (11.0) 83.6 (10.9) 120.8 (2.6) 

ACT-R/Φ-Eq1 (n=200) 96.5 (2.0) 73.5 (14.3) 82.1 (9.1) 78.3 (10.4) 78.4 (10.0) 144.3 (2.9) 

ACT-R/Φ-Eq2 (n=200) 82.9 (16.5) 64.4 (18.4) 75.0 (13.3) 72.4 (13.3) 72.7 (13.0) 145.1 (3.1) 
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Figure 6: Histograms of performance (% correct) for the ACT-R-All (top-left), ACT-R-Threat (top-right), ACT-R/Φ-
EQ1 (bottom-left), and ACT-R/Φ-EQ2 (bottom-right) models; each model was run 200 times. 

To see what range of performance the physiology would impose on the model in the hybrid 

cognitive architecture, we ran the ACT-R-All model with two sets of declarative memory noise 

(:ans) values; see Figure 8 and the related discussion below to get an indication of how declarative 

memory noise affects the performance (percent correct) of this model. These runs gave us a 

distribution of mean performance and the noise of those mean values. There was an inverted u-

shaped performance distribution due to this physiological modulation in the EQ2 set of models. 

Each time the ACT-R/Φ models in Figure 6 (Eq1 and Eq2) were run, we recorded the :ans 

values used over each ¼ second9 of the task; this gave us two sets of 3,955 :ans values. We then 

ran the ACT-R-All model (:syl = 0.44, :blc = 2.49) with each of these :ans values held constant; 

this resulted in two model-sets where : ௗݏ݊ܽ ൌ		: : ௧ and whereݏ݊ܽ  ௧ is the averageݏ݊ܽ

                                                 
9 This time interval was chosen because this is how often physiological values were updated in ACT-RΦ (the :phys-
delay parameter). Thus, :ans values automatically changed the moment physiology changed. 
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:ans value found at ݁݉݅ݐ after running the ACT-R/Φ-Eq1 or ACT-R/Φ-Eq2 models. As an 

example, at 175s into the task, our ACT-R/Φ-Eq210 model had an average :ans (declarative 

memory noise) value of 0.53; consequently ݉  ଵହ in that model-set was run with an :ans value݈݁݀

of 0.53. Each model in the two model sets was then run 200 times. This process resulted in over 

1,582,000 model runs of the ACT-R-All model; Figure 7 and Figure 8 display the results from 

these runs.  

 

 
Figure 7: The solid line represents mean performance (percent correct) of a single serial subtraction model while the 
area around the line represents the standard deviation. Each point in the line represents the mean performance of a 
model run with an :ans parameter value (declarative memory noise) as determined by a list obtained by averaging 

:ans values used by the ACT-R/Φ-Eq1 (Top) and ACT-R/Φ-Eq2 (bottom) models, i.e. the point at time 125s 
represents the mean percent correct of the ACT-R serial subtraction model run with an :ans value of 0.1 (Top) and 

an :ans value of 0.53 (Bottom). 

 

                                                 
10 As a reminder, this model has a varying declarative memory noise value due to physiological modulation. 
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In Figure 7 at t=125s (in block 1, shown with a dashed line), the y-value is the mean of 

percent of subtraction problems answered correctly for the ACT-R-All model with an :ans 

(declarative memory noise) parameter value of 0.1 and 0.53 (top and bottom, respectively). The 

area above and below each point (red) represents the standard deviation at that particular point; 

thus, we generally see a higher standard deviation when declarative memory noise (:ans) is higher; 

a lower mean performance also accompanies higher declarative memory noise. 

The higher mean performance for models using block 2 values for the EQ1-based models 

(top) was due to epinephrine levels that failed to reach a value as high as the other models (using 

values from blocks 1, 3, or 4) before beginning to decrease towards the baseline. This resulted in 

noise values that did not have a large effect on the mean performance of the models.  

Figure 8 shows that the model's accuracy (percentage of problems answered correctly) 

partially depends on its ability to retrieve declarative memories  as the declarative memory noise 

parameter increases, percent correct decreases. Despite the models’ reliance on declarative 

memory, a declarative memory noise value of roughly 0.55 or higher was still needed to have the 

models’ percent correct consistently go below 90%. 
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Figure 8: The effect of declarative memory noise for the ACT-R-All model on performance (% correct) on the serial 
subtraction task. 

Summary 

We were able to reuse an existing subtraction model in this new hybrid architecture and 

demonstrate a useful way to begin using an extended version of the ACT-R architecture with a 

physiological substrate. Though the modifications were reasonably simple, quantitatively and 

qualitatively different behavior was obtained when compared to the original model built to run in 

ACT-R. We were also able to use output from the extended models run in ACT-R/Φ to explore 

the range of values output by the original subtraction model with different static declarative 

memory noise values. 
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Discussion and Conclusions 

Here we review and discuss the results reported and potential future directions for the work. 

Models built to run in the ACT-R/Φ architecture exhibited task performance that was significantly 

different than the original models that do not include a physiological substrate and was closer to 

observed human behavior. This difference is due to the physiological substrate that continuously 

affects cognitive performance. Though ACT-R/Φ and the subsequent models present a novel 

method for simulating effects of a stressor on cognition, there remains room for improvement in 

the architecture and model to better encompass the many dynamics of the interaction between 

physiology and cognition. We next discuss some of our results and some of the potential ways one 

could expand this hybrid architecture. 

Performance Results 

As expected, the results from the ACT-R/Φ-Eq1 and ACT-R/Φ-Eq2 models differed 

significantly; consequently the model-sets constructed from those models’ declarative memory 

noise values (e.g., Figure 7) also exhibited a different range of performance. The pattern 

performance found using declarative memory values from the ACT-R/Φ-Eq2 model was more 

realistic than the ACT-R/Φ-Eq1 model, with the first models in the model-set beginning the task 

with a higher noise level (and lower sympathetic activation) that resulted in a lower initial 

performance. The presented stressor causes a brief increase in performance, but over time the stress 

causes an adverse effect on performance as physiological variables continue to change due to the 

stressor; the effect of stress also does not stop immediately,  the model-set continues to be affected 

with the performance range never returning to the initial range of values. The ACT-R/Φ models 

show it is possible to non-linearly change model performance with a relatively simple modification 
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to an original ACT-R model and the use of physiological equations provided in the ACT-R/Φ 

system. 

The different mean performance among models can be attributed to a varying :ans value 

that is directly connected to epinephrine (discussed below). Mean performance was expected to be 

significantly different among the models due to a difference in setting the :ans statically (e.g., once 

during the model run) versus dynamically. We believe ACT-R/Φ-Eq2 provides a good prospect for 

a higher fidelity model of the effects of stress on serial subtraction (and vice versa). This is due to 

the known dynamic interaction between stress systems and physiological precedents to the 

cognitive processes embodied in the ACT-R architecture (e.g., Anderson, 2007; Joëls, Pu, Wiegert, 

Oitzl, & Krugers, 2006; Sara, 2009).  

Physiological Variable Results 

Perhaps most noteworthy, one can see an obvious feedback between epinephrine levels and 

task performance. The lower epinephrine levels in block 2 and 4 are likely due to the way the ACT-

R/Φ models affect the underlying physiology. The models stop the initial activation of the 

autonomic integration nerve variable with a rule that is applied when the model must restart a 

subtraction problem; this was meant to represent a refocusing of attention following an opportunity 

to restart on a subtraction problem session. Though this switch is effectively off shortly after the 

event, epinephrine levels do not immediately drop, instead they fall over time non-linearly based 

on the equations in HumMod. 

Although the epinephrine level falls during the second half of the blocks, it does not reset 

to the original baseline, it never actually reaches the original baseline before being raised again the 

next block. Thus, the model performance in block 4 is affected by the startle response in block 1. 
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Summary of Results 

There are improvements to be made to this model and the ACT-R/Φ extension (some of 

which are discussed below), however we believe the current state of the work represents an 

opportunity to begin to model not only cognitive processes, but also underlying physiological 

processes affecting and being affected by cognition. The model is affected by both immediate 

physiological changes and by longer term physiological changes, thus physiology never resets. 

The data from this model illustrates the potential for developing cognitive models with factors that 

vary linearly and non-linearly over time and that take account of the effects of physiological factors 

on cognition and performance, such as noted in the review.  

The data also indicate that models that use the stochastic functions available in 

architectures like ACT-R/Φ need to be reported with an indication of how many times the model 

has been run. These data show that models with a stochastic component need to be run a larger 

number of times than non-stochastic models to get a more stable representation of the descriptive 

statistics often used to judge them against human data (see Ritter, Schoelles, et al., 2011 for a 

discussion on this topic). Larger runs will become even more important as the mechanisms include 

more variance arising from physiology, and when distributions, rather than just means, are 

examined. 

Though our stress representation provides a more explicit and realistic representation of 

some interactions between physiology and cognition during a response to a stressor, there are 

additional representations of stress (both on the physiological and cognitive levels) that would 

potentially benefit this and related models. More globally for ACT-R/Φ, homeostatic motivations 

(e.g., Bach, 2009) would also likely lead to higher model fidelity and an increase in autonomy.  
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One could also begin to model stress on a more social-level and describe the interaction 

between stress and social processes. In previous work, Morgan et al. (2010) looked at processes 

affecting cognitive and social behavior. The use of ACT-R/Φ provides another way to represent 

how social and other processes affect cognition and even how this interaction can mediate social 

network formation (see Zhao et al., Accepted, for an example of how a cognitive architecture can 

be used to explore cognitive mediation of network formation). 

Limitations and Potential Future Work in Extending the Representation of Stress 

Though we discussed several different physiological effects of encountering a stressor, 

currently ACT-R/Φ only represents a single aspect of the sympathetic adrenal medullary (SAM) 

axis. Only three system parameters/variables are used in ACT-R/Φ but other parameters in 

HumMod could be connected to the cognitive representations in ACT-R/Φ (e.g., those controlling 

adrenocorticotropin hormone (ACTH), α-amylase, corticotropin releasing Factor (CRF), and 

cortisol) and countless others likely have secondary or tertiary effects on variables directly 

implicated in affecting cognition. We plan on continuing to expand the representation within the 

extended architecture by exploring the combined modulation of architecture (and model) behavior 

by both the HPA and SAM axes. More recent articles on the physiological antecedents to 

perception of a stressor (e.g., Joels & Baram, 2009) and physiological changes due to a stressor 

(e.g., Klein, Bennett, Whetzel, Granger, & Ritter, 2010) present potential roadmaps for quantifying 

physiological modulation in ACT-R/Φ;  additional representations may require alternative 

connections in ACT-R/Φ or even modification of the underlying physiological model. Particular 

causes for stressors also need to be explored in the continuation of this work.  

We have developed a particular event-based stressor (disruptive noise), however it would 

be useful to develop additional stressors based on factors like cognitive workload or time pressure. 
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Work on the AMBR project (Gluck & Pew, 2005) particularly with the work on representing 

cognitive workload in the ACT-R architecture (e.g. Lebiere et al., 2001), offers useful guidelines 

for adding cognitive-based stressors to the architecture. Time pressure may also potentially be 

accomplished by leveraging the goal module/buffer along with the temporal module. Models of 

cognitive appraisal, which focus on how changes in the agent-environment relationship (e.g., 

Marsella & Gratch, 2009), will also prove particularly useful for exploring known causes of stress 

like time pressure. 

One could also examine stress on a more microgenetic basis. One could then look at the 

standard deviation of performance and error types with this new hybrid architecture. Intra-

individual differences in cognition and several physiological variables (e.g., heart-rate, blood-

pressure, etc.) can also be simulated with this type observation. 

Potential Work in Homeostatic-Appetitive Motivations 

Homeostatic-appetitive (e.g., energy balance, thirst, and skin temperature) motivations are 

fundamental modulators on human cognition and behavior (e.g., Aarts, Dijksterhuis, & De Vries, 

2001; Mogg, Bradley, Hyare, & Lee, 1998; Wright et al., 2012); ACT-R does not yet provide an 

architectural representation for this modulation. ACT-R/Φ provides a basic representation for these 

modifications by using the osmoreceptor, gi-lumen, and heatskin variables for thirst, hunger, and 

skin temperature (respectively). The physiological variables are tied to variables placed into the 

goal state by the physio module. 

 Though this method is admittedly crude, identification of particular physiological 

variables to tie to cognitive architecture changes is an important step; the ACT-R side of the 

connection will need to be expanded for more meaningful testing of the representations. It should 

be mentioned that most models built in ACT-R do not complete tasks over a time-period that would 
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suitably leverage these motivations to display more autonomous behavior11; though one may still 

begin to simulate other cognitive effects of these motivations (e.g., participating in a psychological 

experiment while thirsty; Wright et al., 2012). As previously noted, existing architectures like 

MicroPSI offer potential insights into ways one may add physiological representations to ACT-R 

by expanding current connections in ACT-R/Φ. 

Potential Applications 

Extending the architecture to include additional aspects of behavior like circadian rhythms 

or affect and emotion, may also facilitate the use of the architecture to develop models that can be 

used in tutoring systems (e.g., Anderson & Gluck, 2001; Fincham, Anderson, Betts, & Ferris, 

2010), for systems engineering (e.g., Pew & Mavor, 1998), or for the design of interfaces (e.g., 

Hudlicka & Mcneese, 2002) as traditional ACT-R models have already been used for some of 

these purposes. Models that use the new components of ACT-R/Φ would likely benefit from the 

ability to change physiology over time. One could model how the hunger experienced right before 

lunch affects cognitive performance and adjust a system to account for these affects.  Furthermore, 

one could provide a caffeine overlay that predicts how a caffeinated beverage changes physiology 

and that changes cognition. The new hybrid architecture makes development of process models 

that include a depiction of physiological changes on cognition over time more tractable. 

 

Final Thoughts 

Minds need brains to support them and brains need bodies to support them.  As models of 

cognition continue to develop, we will need to add a physiological representation of the substrates 

                                                 
11 See Byrne et al. (2004) and Gunzelmann et al. (2011) for counterexamples. 
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that support and implement cognition on multiple levels. Though it is as of yet unclear the best 

manner to represent the connections between the levels of physiology and cognition (one may ask, 

for example, where emotions fit into the picture), it is important to continue to develop systems 

that can test quantitative predictions made by theoretical models. ACT-R/Φ is a step in this 

direction, and likely will continue to provide insights as the connections and representations are 

expanded. It is also important to develop these systems so that migration of older models to the 

new architecture is tractable and one can build on work already done; ACT-R/Φ allows this since 

any ACT-R 6 model can be run in ACT-R/Φ.  

Modeling physiological, cognitive, and social effects on human behavior is a fairly 

complex task given the large amount of background knowledge needed to produce accurate 

process models. However, as physiological sensing devices continue to become less invasive and 

increase in resolution, the amount of physiological data one will be able to collect during a 

psychological experiment is likely to lighten the load on anyone wishing to develop a model within 

an architecture like ACT-R/Φ; that is, develop a model within an architecture that provides 

representations on both the physiological and the cognitive levels.  

The most beneficial level of physiological representation for a computational system to 

provide quantitative predictions remains an open question (Hester, Iliescu, Summers, & Coleman, 

2011) and depends on the function of the computational system. This question has to be further 

explored to determine the best levels of representation for a hybrid computational architecture like 

ACT-R/Φ; reviews that explore behavioral effects of physiological changes on multiple levels 

(e.g., Joëls & Baram, 2009) help make potential answers to this question more clear. Nonetheless, 

mechanistic models used in hybrid architectures like ACT-R/Φ can be used to represent and 

resolve ambiguous theoretical interactions between physiological and cognitive levels. The 
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architecture could, for example, be used to explain how noisiness in behavior may be the product 

of differences in physiological states over time and between people. Lastly, ACT-R/Φ can be used 

to explore implications of physiological and cognitive interactions on different time-scales, 

providing new insights into the precedents to emergent effects found over time. 
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