
9
Dimensions of Concern: A Method to Use Cognitive Dimensions
to Evaluate Interfaces

MARK A. COHEN, Massachusetts College of Liberal Arts
FRANK E. RITTER and STEVEN R. HAYNES, The Pennsylvania State University

Producing useful and usable software often requires continuous and iterative evaluation. This paper in-
troduces a novel usability evaluation method based on the Cognitive Dimensions of Notations framework.
The target of our evaluation is Herbal a suite of tools designed to simplify agent development by providing
a high-level language and maintenance-oriented development environment. The method introduced here
uncovers dimensions of concern, which are used to measure the usability of Herbal and to identify areas for
improvement in the design. In this article, we demonstrate how we used dimensions of concern to effectively
evaluate and improve usability, and we discuss ways in which our method can be adapted, extended, and
applied to improving the usability of other interactive systems.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems—Human
information processing, software psychology, human factors

General Terms: Human Factors, Measurement, Design, Theory

Additional Key Words and Phrases: Cognitive dimensions, measuring usability, notational systems,
evaluating user interfaces

ACM Reference Format:
Cohen, M. A., Ritter, F. E., and Haynes, S. R. 2012. Dimensions of concern: A method to use cognitive
dimensions to evaluate interfaces. ACM Trans. Comput.-Hum. Interact. 19, 2, Article 9 (July 2012),
18 pages.
DOI = 10.1145/2240156.2240157 http://doi.acm.org/10.1145/2240156.2240157

1. INTRODUCTION
Producing useful and usable software requires continuous and iterative evaluation
[Pew and Mavor 2007]. This article introduces a novel usability evaluation method
based on the Cognitive Dimensions of Notations framework [Blackwell and Green
2000, 2003]. The method introduced here uncovers Dimensions of Concern, which are
used to measure the usability of Herbal (an example system) and to identify areas for
improvement in the design. The target of our evaluation is The Herbal [Cohen et al.
2010], a suite of tools that simplifies agent development by providing a high-level
language and maintenance-oriented development environment. Herbal was developed
to provide cognitive modelers with a modern and usable development environment.
In this article, we describe how we used dimensions of concern to effectively evaluate

Authors’ addresses: M. A. Cohen, Department of Computer Science, Massachusetts College of Liberal Arts,
North Adams, MA; email: Mark.Cohen@mcla.edu; F. E. Ritter, College of Information Sciences and Tech-
nology, Pennsylvania State University, University Park, PA; email: frank.ritter@psu.edu; S. R. Haynes,
College of Information Sciences and Technology, Pennsylvania State University, University Park, PA; email:
shaynes@ist.psu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1073-0516/2012/07-ART9 $15.00

DOI 10.1145/2240156.2240157 http://doi.acm.org/10.1145/2240156.2240157

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:2 M. A. Cohen et al.

and improve usability, and discuss ways in which this method of using cognitive
dimensions to evaluate user interfaces can be improved.

1.1 Cognitive Dimensions
Blackwell and Green [2003] define a notational system as a system consisting of a
programming language, development environment, and a medium of interaction. Ac-
cording to Blackwell and Green, the problem with notational systems is that “every
notation highlights some kinds of information, at the cost of obscuring other kinds”
[2003, p. 104]. Like any abstraction, notational systems are rich in trade-offs that
constrain their design. To manage these trade-offs, Blackwell and Green introduced
Cognitive Dimensions (CDs).

The primary benefit of CDs is that they provide a common vocabulary that design-
ers can use informally to discuss the trade-offs resulting from decisions made while
designing notational systems [Blackwell and Green 2003]. This vocabulary can be
shared and extended across development teams and projects. In addition, CDs allow
for the use of the same vocabulary during both design and evaluation. This ensures
that design goals are met and facilitates coummnication between designers, evalua-
tors, and users of the system.

Examples of CDs include closeness of mapping, which is a dimension that measures
how closely a notational system maps to the result it represents, and viscosity, which
measures how easily a high-level language and environment allow for change (e.g., a
language that makes it easy for developers to perform maintenance would have low
Viscosity). Additional examples of cognitive dimensions are shown in Table I.

In addition to providing an informal discussion tool, CDs have also been employed as
a questionnaire-based evaluation tool that allows actual users, rather than designers,
to evaluate the usability of a notational system. By using CDs to structure question-
naires, designers have been able obtain detailed feedback about a notational system
using the very same vocabulary that was used during the design of the system. Devel-
opers can use this feedback to inform design changes. In this way, CDs can act as both
formative design principles, and summative evaluation criteria.

Kadoda et al. [1999] were among the first to use CDs for usability evaluation. Using
only the dimensions deemed relevant to their system, Kadoda et al. presented users
with a questionnaire that paraphrased the dimensions in terms of the system under
consideration. By creating a questionnaire using only the dimensions that are directly
related to the system, it can be shorter and easier for users to understand.

Blackwell and Green [2000] took this evaluation technique a step further by creat-
ing a questionnaire that presented all of the dimensions, leaving it to the user to decide
which ones were relevant. This approach avoids potential bias introduced by the de-
signers of the system as they decide which dimensions are important. In addition, this
approach results in a more general questionnaire that does not have to be recreated
for each notational system one might wish to evaluate. However, the approach used by
Blackwell and Green [2000] can result in longer questionnaires, and may be harder for
the users to understand because it has not been tailored to the system being evaluated.

The evaluation method presented here more closely follows the work done by
Kadoda et al. [1999] because we have chosen to use only the dimensions that we believe
are relevant to the technology we are evaluating. We chose this method because we
felt that the need to keep the questionnaire short and easy to understand outweighed
concerns about bias.

When using CDs as a tool for evaluating usability, it is important to gather the
reasons behind the users’ responses. For example, discovering that a notational system
has scored poorly in Closeness of Mapping may be interesting, but this information

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:3

Table I. Examples of Cognitive Dimensions [Blackwell and Green 2000, 2003]

CD Description
Visibility How easy is it to view the elements in a model, including their internal details?
Viscosity How easy is it to make changes to an existing model? The less the viscosity,

the easier it is to change the model.
Diffuseness How many symbols or how much space does the notation require to produce a

certain result or express a meaning?
Hard-mental operations How much hard mental processing lies at the notational level, rather than at

the semantic level? Are there places where the user needs to resort to fingers
or penciled annotation to keep track of what’s happening?

Error-proneness How easy is it to make errors using the behavior representation language?
Closeness of mapping How closely does the behavior representation language match the way that the

modeler describes the behavior?
Role-expressiveness How easy is it to discover why a modeler has chosen a particular design?

Explicit support for design rationale improves a systems role-expressiveness.
Progressive evaluation How easy is it to evaluate and obtain feedback on an incomplete solution?
Premature commitment How often is the developer forced to make a commitment in the model before

there is enough information to make the commitment?

alone cannot properly inform design unless it also reveals the reasons underlying the
problem.

The evaluation method presented here is novel because it measures the support of
CDs by combining scaled survey questions with open-ended questions and the use of
participant observation. The inclusion of open-ended survey questions and participant
observation helps the designer assemble the detailed explanations required to inform
future design. In addition, we use a novel analysis that identifies the CDs that demand
the designer’s attention. We call these CDs Dimensions of Concern.

The target of the usability study presented here is Herbal. Herbal is an example of a
notational system because it consists of a high-level behavior representation language,
an agent development environment, and a medium of interaction [Blackwell and Green
2003]. As a result, it is an ideal candidate for a CDs-based evaluation and a useful
example to explain our approach.

The primary focus of this article is to assess and report on the effectiveness of our
evaluation method. However, to understand our method, and its strengths and weak-
nesses, it is necessary to provide some details about the system we will be evaluating.
To this end, Section 1.2 provides background about Herbal.

1.2 Herbal
To simplify agent programming and cognitive modeling, a high-level behavior rep-
resentation language and associated parser and compiler were designed and imple-
mented as part of Herbal. This high-level language is based on the Problem Space
Computational Model (PSCM) [Lehman et al. 1996; Newell et al. 1991] and is rep-
resented using the Extensible Markup Language (XML)1. The Herbal language is
currently compiled into productions that execute within three popular agent archi-
tectures: Soar2, ACT-R3, and Jess4.

An Herbal program is made up of six different types of XML documents, each defin-
ing a set of reusable components: types, conditions, actions, operators, problem spaces,

1www.w3.org/XML/
2sitemaker.umich.edu/soar
3act-r.psy.cmu.edu
4herzberg.ca.sandia.gov/jess/

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:4 M. A. Cohen et al.

Table II. Typical Herbal High-Level Behavior Representation Language Fragment

<operator name=‘driveRight’>
<if>

<conditionref condition=‘okRight’/>
</if>
<then>

<actionref action=‘moveRight’/>
</then>

</operator>

Table III. Compiling an Herbal Condition to Jess and Soar Equivalents

Destination Architecture Code Fragment
Herbal High-Level Language <condition name=‘dirty’>

<match type=‘vacuum.types.spot’>
<restrict field=‘status’>

<eq>dirty</eq>
</restrict>

</match>
</condition>

Resulting Soar Code (<vacuum-types-spot2>
ˆstatus <status2> |dirty|)

Resulting Jess Code (topspace::vacuum.types.spot
(status ?status1&:

(eq* ?status1 "dirty")))

and agents. These documents are referred to as libraries in the Herbal language. Typ-
ical usage of Herbal consists of a modeler creating a model of human cognition by
defining an agent and the problem spaces it operates in to perform a task. The Herbal
suite of tools simplifies this process in many ways.

Table II lists a typical fragment of Herbal source code. The XML shown here
declares an instance of an operator called driveRight. The driveRight operator will
be proposed when the condition okRight is true, and when the operator is applied an
action called moveRight will move the agent to the right. The details of the okRight
condition and the moveRight action are given in additional libraries.

Code written in the Herbal high-level language (like the fragment shown in
Table II) can be transformed into executable productions for various agent architec-
tures. Table III illustrates how the Herbal compiler transforms the Herbal high-level
language for a condition into productions for the Soar and Jess architectures.

Herbal also includes an Integrated Development Environment (IDE) that provides a
graphical environment for creating and maintaining agents by leveraging the popular
Eclipse platform (eclipse.org). The Herbal IDE allows for the creation of Herbal agents
using a visual editor (see the top-left corner of Figure 1, The Herbal GUI Editor), and
by programming directly in the Herbal High-Level Language editor (see the top-right
corner of Figure 1). Agent programmers can freely switch between these two modes of
editing, and view the resulting low-level Soar and Jess code produced because of their
code changes (see the bottom two panels in Figure 1, pete.jess and pete.soar).

The Herbal IDE provides integral support for working sets [Ko et al. 2005], which
allow the modeler to automatically generate a collection of library components based
on keyword searches (see Figure 2). These sets can be saved and recalled as needed
during model maintenance.

Herbal supports several different forms of reuse including the creation of source
code libraries, instantiation of behavior design patterns, and the ability to capture the

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:5

Fig. 1. The Herbal GUI editor.

Fig. 2. Support for working sets in Herbal.

Fig. 3. Capturing design rationale in Herbal.

rationale underlying the design of each component. In Herbal, the design rational is
included as part of the component’s definition (see Figure 3). The capturing of design
rationale in Herbal was informed by the explanation design patterns developed by
Haynes et al. [2008].

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:6 M. A. Cohen et al.

Fig. 4. Dependencies between the different Herbal library types.

Fig. 5. Constructing agents by reusing libraries of general task behavior.

There are six different kinds of Herbal libraries: types, conditions, actions, oper-
ators, problem spaces, and agents. The dependencies between the contents of these
libraries are shown in Figure 4. The foundation of all the Herbal libraries is the types
library. This library contains the set of data types available to the agent programmer.
From these types, the programmer can define conditions and actions that can add,
edit, remove, or test for the existence of instances of the defined types. Operators are
then built from these conditions and actions, and problem spaces are built from a set
of conditions and operators that activate a problem space.

Finally, behavior for a specific agent can be defined by reusing existing libraries of
general task behavior. This layered approach allows developers to specify behavior at
the most appropriate level of abstraction for a given problem. For example, in Figure 5
aggressive vacuum cleaner agents (the Vacuum Cleaner World is described in more
detail in Section 2) are built on top of a collection of predefined libraries designed to
support all vacuum cleaners.

Reuse is also accomplished in Herbal using behavior design patterns. Structured
programming paradigms such as looping constructs are useful in agent programming,
but can be a challenge to program in a typical rule-based language. To address this
problem and to promote the reuse of meta-behaviors such as looping, a Behavior
Design Pattern Wizard was incorporated into the development environment (see
Figure 6). This wizard makes it possible for the agent developer to generate instanti-
ations of useful metabehaviors using existing PSCM components.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:7

Fig. 6. The herbal behavior design pattern wizard.

Table IV. Calculating a Dimension of Concern Based on Participant Observation

A CD is a Dimension of Concern if:
(En - Ep) > 0 AND (En - Ep) > (τ * N)

Where:
En is the number of negative events recorded for the CD
Ep is the number of positive events recorded for the CD
N is the number of participants observed
τ is the Dimension of Concern threshold

2. DIMENSIONS OF CONCERN
In this article, we will report the results of a study with the main goal of identifying
areas of weakness in the usability of Herbal, as well as ways to address these weak-
nesses. To help achieve this goal, the concept of a dimension of concern was developed.
A dimension of concern is a CD that is poorly supported by the notational system. A
CD is considered a dimension of concern when support for the CD by the notational
system fails to meet some minimum tolerance threshold for quality.

In the method we present here, dimensions of concern are identified based on ques-
tionnaire data and participant observations. A dimension of concern is identified from
questionnaire data by identifying the CDs in which the number of participants that
gave a negative response related to the CD exceeded some tolerance threshold. We call
this threshold the dimension of concern threshold.

The process we used to identify dimensions of concern from participant observations
was somewhat more complicated. In this case, a dimension of concern was identified by
calculating the difference between the number of participants experiencing negative
events related to a CD and the number of participants experiencing positive events re-
lated to a CD. A dimension of concern arises when this calculation produces a positive
score whose value is larger than the dimension of concern Threshold (see Table IV).

An important question when performing this type of analysis is how to determine
the dimension of concern threshold. Not having established thresholds to measure
usability is a known problem [Pew and Mavor 2007, pp. 324–328].

Blackwell and Green point out that the cognitive dimensions framework “illumi-
nates design maneuvers in which one dimension is traded against another” [2003,

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:8 M. A. Cohen et al.

p. 118]. For example, Error proneness can be reduced by requiring users to do things
in a specific order, but this can lead to poor support for premature commitment.
Choosing a very low tolerance threshold may result in several conflicting Dimensions
of Concern that are difficult to satisfy simultaneously. However, a very high tolerance
threshold can result in few dimensions of concern but unusable software.

The threshold value decision becomes more complicated because the severity of the
design trade-offs can depend on the type of users the system supports. For example,
the tradeoff between error proneness and premature commitment described earlier
may be less severe for expert users who make fewer mistakes and give more weight to
freedom and flexibility.

The difficult decision of what threshold to use should be considered an advantage
rather than a disadvantage. While difficult and subjective, the threshold value
provides the evaluator with tremendous flexibility. For example, the evaluator may
choose to utilize a series of usability studies that employ a spiraling tolerance value.
After each study and redesign, a new study with a lower tolerance threshold can be
conducted. Iterations can continue until the designers and users are satisfied or the
tradeoffs between CDs become too difficult to satisfy at such a low tolerance threshold.
Alternatively, experimenters could choose to use a completely different tolerance
threshold for each CD. This could reflect the relative importance the designers’ place
on each CD and the tradeoffs that exist between them. The flexibility and adaptability
provided by the dimension of concern threshold is a major strength of our method.

In general, we believe it makes sense to start with a relatively high threshold of
tolerance, especially for notational systems designed for use equally by novice and
expert users. The study presented here was conducted with participants with limited
or no experience developing cognitive models or intelligent agents. Our concern is
that a very low threshold of tolerance would lead to design recommendations that
compromise the system for expert users. For this reason, we decided to begin with a
tolerance threshold of 20%. Once the study results are used to redesign our system,
we hope to conduct a second usability study with a slightly lower tolerance threshold
and a wider variability of user types.

3. TASK OVERVIEW
To evaluate the Herbal system, users were asked to complete a set of tasks. We
recorded the user’s behavior and analyzed it with our method to understand Herbal
usability, and how it might be improved.

The main study task was to create a working intelligent agent that operates a vac-
uum cleaner in the Vacuum Cleaner Environment [Cohen 2005]. The Vacuum Cleaner
Environment (Figure 7) is based on a very simple world introduced in a widely used
Artificial Intelligence textbook [Russell and Norvig 2003]. In the Vacuum Cleaner en-
vironment, the goal is to build a vacuum cleaner agent to clean up the dirty squares as
quickly as possible. A vacuum cleaner agent can be created using a rule-based program
written in one of two popular architectures: Jess and Soar.

In this study the main task is divided into three subtasks: creating a reusable li-
brary of agent components; creating a vacuum cleaner agent using this library; and
finding and fixing a bug in the resulting vacuum cleaner agent. These three sub-
tasks exercise all of the features of Herbal and closely mirror the different phases of
agent/model development: creating reusable components, using these components to
build agents, and debugging the resulting agents.

The first subtask exercised Herbal’s library creation facilities. In this subtask, par-
ticipants created a new library and populated it with low-level components needed
to build vacuum cleaners. The task instructions encouraged the inclusion of design
rationale in the library throughout this task.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:9

Fig. 7. The Vacuum Cleaner Environment.

The second subtask exercised Herbal’s model creation facilities. This task consisted
of building a vacuum cleaner agent out of higher-level model components. Participants
created these higher-level components by reusing the low-level components created
during the first subtask. The design rationale located in the library was available to
participants to help them during the task. In addition, participants were encouraged
to capture their own design rationale about the newly created components.

The third subtask exercised Herbal’s model maintenance facilities. This task con-
sisted of finding and fixing an error in the vacuum cleaner model created during the
second task (the experimenter injected this error in this model before the start of the
third task). During this task, participants used Herbal’s debugger and working set
feature to find and fix the bug in the broken vacuum cleaner. Participants were en-
couraged to make use of design rationale when needed.

4. THE DIMENSIONS OF CONCERN METHOD
Data were gathered during this study using a user reaction survey, and by participant
observations. These data measured Herbal’s support for CDs. The user reaction survey
was based on an earlier CD survey done by Kadoda et al. [1999].

Table I shows the nine CDs that this study used for usability evaluation criteria.
These nine dimensions were chosen because we felt they best measure the degree in
which Herbal achieves the principles that motivated its design (i.e., embracing high-
level languages, enabling reuse, and supporting maintenance-oriented development).

The criteria used to categorize dimensions were different depending on the type of
data analyzed: survey or observation. Because of the difficulty involved in observing
when a participant is experiencing Hard-Mental Operations, only survey questions
measured this dimension.

4.1 Participants
The participants recruited for this study had limited or no experience developing cog-
nitive models or intelligent agents. Participants were recruited from the population
of undergraduate students majoring in Computer Science (CS), Computer Informa-
tion Science (CIS), Management Information Science (MIS), and Psychology (PSYC)
at Lock Haven University. These majors represent the diverse population of potential
future modelers that Herbal was designed to support. Participants received $10 for
taking part in this study, which required approximately an hour of their time.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:10 M. A. Cohen et al.

Fig. 8. Different participants work in turn to complete the main task.

Twenty-four students participated: 12 PSYC students and 12 CS/CIS/MIS students.
The number of college credits completed by the participants ranged from 42 to 132. The
average number of hours per week spent using a computer was 4 for PSYC majors and
10 for CS/CIS/MIS majors. The average number of programming courses previously
taken was 0.25 for PSYC majors and 4.75 for CS/CIS/MIS majors. Finally, nine of the
12 PSYC majors were female and one of the CS/CIS/MIS students was female.

4.2 Apparatus
Participants used a Lenovo T60p laptop computer to perform the task. This laptop
was docked in a docking station including a keyboard, a mouse, a 17-inch flat screen
monitor, and a microphone.

Camtasia Studio 2.0.2 (TechSmith.com) recorded both the screen and audio while
the participants perform the subtasks. Additional software that was required for this
experiment inlcuded Eclipse (3.2.1), Java (1.5), Herbal (3.0), and the Vacuum Cleaner
Environment (2.0).

4.3 Design
The study design placed participants into groups of three. Each group was responsible
for completing a working vacuum cleaner agent. Groups contained either all PSYC
majors or all CS/CIS/MIS majors. This resulted in eight groups of three participants:
four groups of PSYC majors and four groups of CS, CIS, and MIS majors.

As described earlier, the main task for this study was to create a working intelligent
agent that operates a vacuum cleaner in the Vacuum Cleaner Environment. This
main task consists of three subtasks: creating a reusable library of agent components;
creating a vacuum cleaner agent using this library; and finding and fixing a bug in
the resulting vacuum cleaner agent. Each group completed the main task by having a
different member finish each subtask independently and in turn, as shown in Figure 8.

The first group member was responsible for producing the library, the second group
member was responsible for building an agent using the library, and the final group
member was responsible for finding and fixing bugs in the agent. The group members
did not work simultaneously, the successive work of participants two and three in each
triad depended on the work that had occurred before. Because they relied on previous
work, mistakes or decisions made by one participant in the group could influence the
performance of another participant in the group.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:11

4.4 Procedure
The study began with each participant reading and signing the consent form and com-
pleting the User Background Survey, which collected information about his or her
background and expectations prior to participating in the study.

Next, each participant watched a 15-minute video before performing his or her sub-
task. The video provided the participant with a high-level introduction to intelligent
agents, the Vacuum Cleaner Environment, the PSCM, and creating and maintaining
libraries and agents in the Herbal Integrated Development Environment.

At the completion of the video, the experimenter informed the participant what
subtask he or she would be performing and gave each participant the General Task
Instructions. These instructions ask the participants to think-aloud during the ex-
periment [Ericsson and Simon 1993; Newell and Simon 1972], and to ask questions if
they were confused. After the participant read the General Task Instructions, the ex-
perimenter asked them to practice thinking aloud while performing a simple memory
recollection exercise to practice verbal protocols.

Next, the experimenter provided each participant with specific task descriptions
that provided systematic instructions about how to perform the subtask. The exper-
imenter also started the recording of the computer monitor and audio. At this point,
the participants began their subtask.

In addition to the video and audio recordings, the experimenter noted observations
about the participant’s performance during the execution of the task and entered ob-
servations in a data collection form. The experimenter focused on entering events
related to the CDs of interest. The same experimenter ran all participants.

Upon completion of the subtask, the experimenter asked the participants to com-
plete a User Reaction Survey. The User Reaction Survey contained 17 questions that
mapped directly to the CDs shown in Table I. A five-level Likert scale structured 11 of
these questions. The remaining six questions were open-ended and sought information
explaining responses to the scaled questions.

5. SURVEY RESULTS
Table V lists the 11 scaled questions. Shading in this table identifies negative re-
sponses and the absence of shading identifies positive responses.

Participant responses were analyzed using six different groupings: (1) all partici-
pants; (2) participants performing the library creation task; (3) participants perform-
ing the model creation task; (4) participants performing the model maintenance task;
(5) participants majoring in PSYC, (6) participants majoring in CS, CIS, or MIS. These
groupings were created to help make decisions about the support for CDs based on
task type and the participants’ major.

Dimensions of concern were identified from questionnaire data by identifying ques-
tions in which more than 20% of the participants gave a negative response. Table VI
lists dimensions of concern based on the survey results.

6. OBSERVATION RESULTS
Upon completion of the study, the experimenter coded all of the screen and audio
recordings based on the CDs shown in Table I. In addition, a subset of the record-
ings was coded by a second experimenter. Cohen’s [1960] kappa was used to determine
the agreement between the two raters, and an overall agreement 0.83 was calculated.
A value that is greater than 0.8 is acceptable, and shows that this set of CD features
can be coded.

These coded observations complement the survey results previously presented. Un-
like the survey results, information from the context of the observations helps explain

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:12 M. A. Cohen et al.

Table V. The Survey Questions Used to Measure Support for Various CDs

Shading indicates the negative response ranges.
Visibility (Q1 & Q2) How easy was it to see or find the various parts (e.g., problem

spaces, operators, conditions) of your agent or library while it was
being created, changed, or debugged?
very easy easy neutral difficult very difficult
If you needed to compare different parts (e.g., problem spaces, op-
erators, conditions) of your agent or library, you could easily see
these parts at the same time.
strongly agree agree neutral disagree strongly disagree

Viscosity (Q3) How easy was it to make changes to your agent or library?
very easy easy neutral difficult very difficult

Diffuseness (Q4) The elements (e.g., problem spaces, operators, and conditions) you
used to build your agent or library allowed you to say what you
wanted to say reasonably briefly.
strongly agree agree neutral disagree strongly disagree

Hard-Mental Operations (Q5) In general, the task you performed did not seem especially com-
plex or difficult to work out in your head.
strongly agree agree neutral disagree strongly disagree

Error Proneness (Q6) During this task, you often found yourself making small mistakes
that irritated you or made you feel stupid.
strongly agree agree neutral disagree strongly disagree

Closeness of Mapping (Q7) The notation (e.g., problem spaces, operators, and conditions) you
used to describe your agent or library was closely related to how
you might describe the agent or library naturally.
strongly agree agree neutral disagree strongly disagree

Role Expressiveness (Q8) During the task, you often did not know what many of the agent or
library pieces meant (e.g., problem spaces, operators, conditions)
but you put them in anyway.
strongly agree agree neutral disagree strongly disagree

Progressive Evaluation (Q9 & Q10) It was easy to stop in the middle of creating the agent or library,
and check your work so far.
strongly agree agree neutral disagree strongly disagree
During this task, it was easy to find out how much progress you
made, or check what stage in your work you were in.
strongly agree agree neutral disagree strongly disagree

Premature Commitment (Q11) When working on this task, there were times when you felt like
you could have changed the order you performed the steps without
breaking the agent or library.
strongly agree agree neutral disagree strongly disagree

the positive or negative participant experiences related to a dimension. This infor-
mation plays an important role in helping the designers make improvements to the
design after the study.

The experimenter identified 37 unique event types during observation, and these
types represented either a negative or a positive contribution to a particular CD. A
positive contribution to a CD means the software helped a participant in a manner
that is consistent with the definition of the dimension. A negative contribution to a di-
mension means the software was a hindrance to the participant in a fashion consistent
with the definition of the dimension.

To generate these event types, the experimenter relied on the participants’ actions
and utterances. Table VII lists the 37 event categories along with their associated

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:13

Table VI. Dimensions of Concern as Measured by All Survey Results

Dimension All Library Model Model PSYC CS/CIS/MIS
Creation Creation Maintenance

Visibility X X X X
Viscosity
Diffuseness
Hard-mental operations X
Error-proneness X X X
Closeness of mapping
Role-expressiveness X X
Progressive evaluation
Premature commitment X X X X X X

dimensions. It is important to keep in mind that this table shows types of events not
actual instances. These event types (or codes) are useful for providing the rationale
behind the classification of an observation, and for suggesting improvements to future
releases of the software.

For example, while editing model components several participants became confused
when specifying properties in the model properties dialog box. This was because the
dialog box does not contain the name of the component the participant was editing.
This problem became apparent when the participant moved the dialog box out of the
way to see what component they had selected before the dialog box appeared. Category
23 (the participant became confused about what specific component they were working
on) in Table VII coded this particular observation, and the suggested design change
would be to add the component name to the dialog box.

Table VIII lists the Dimensions of Concern based on participant observations.

7. DISCUSSION
Table IX lists dimensions of concern based on both survey results and participant ob-
servations. The table indicates concerns based on survey results with the letter S,
and concerns based on observations with the letter O. In this table, 54 possible dimen-
sion/condition pairings (nine dimensions * six conditions). Of these 54 pairings, 65%
(35) show agreement between the survey results and the observations (the absence of
a dimension of concern using both a survey and participant observation is considered
agreement). According to the surveys and observations, Herbal appears to be strong
with respect to Viscosity, Diffuseness, Hard-Mental Operations, Closeness of Mapping,
and Progressive Evaluation.

Observations related to Viscosity show that participants found it easy to make
changes to components. In addition, the working set feature made it easy for par-
ticipants to change a collection of related components. Only during the model main-
tenance task was there an indication (by observation) of difficulty making changes to
the model. During this task, several participants encountered problems when editing
the operator that was causing the vacuum cleaner to malfunction.

Observations of appreciation for the code automatically created by Herbal provided
evidence of positive support for Diffuseness. Several participants mentioned that
they were very happy they did not have to generate the Soar code manually. The
Design Pattern Wizard also proved to be a compact way of expressing complicated
behavior. Problems with Diffuseness took place only during library creation when the
participant attempted to enter design rationale. Several participants commented on
the redundancy of the design rational task, relying on copy/paste to hasten design

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:14 M. A. Cohen et al.

Table VII. Event Codes Used during Participant Observation

ID Event Description Dimension +/-
1 Participant appeared confused by notation used to represent agent Closeness of mapping -
2 Participant preferred a term not used by high-level language Closeness of mapping -
3 The design pattern wizard allowed participants to create several

components using a brief terminology
Diffuseness +

4 Participant was thankful for code automatically created by Herbal Diffuseness +
5 Participant found design rationale to be verbose and/or redundant Diffuseness -
6 Participant used copy and paste when entering design rationale Diffuseness -
7 The consistency in the Herbal interface helped reduce errors Error prone +
8 The design pattern wizard prevented errors creating components Error prone +
9 The search feature of the new project dialog lead to errors Error prone -
10 Participant had problems distinguishing types of design rationale Error prone -
11 Participant confused Eclipse export with Herbal library export Error prone -
12 Poor design in the working set dialog lead to errors Error prone -
13 Trouble locating the Herbal GUI Editor Error prone -
14 Instructions mislead participant to create action instead of type Error prone -
15 Participant selected wrong problem space in design pattern wizard Error prone -
16 Participant entered literal value in local variable edit box Error prone -
17 Participant confused by wire screen when there is nothing to wire Error prone -
18 Participant confused by conditions with no restrictions Error prone -
19 Lack of required order made it easier to fix mistakes Premature commitment +
20 Participant changed order of steps in task without problems Premature commitment +
21 Participant was confused by order required to run debugger Premature commitment -
22 It was easy for participants to check the status of the model, and

for any errors, by looking at what has been done so far
Progressive evaluation +

23 The participant became confused about what specific component
they were working on, or what step they were doing

Progressive evaluation -

24 Participant viewed rationale to learn more about model Role expressiveness +
25 Participant demonstrated strong understanding of the model Role expressiveness +
26 Commented that components are self-explanatory Role expressiveness +
27 Participant entered quality design rationale Role expressiveness +
28 Participant demonstrated poor understanding of the model Role expressiveness -
29 Participant had trouble understanding component/subcomponent Role expressiveness -
30 Participant viewed rationale but did not find it helpful Role expressiveness -
31 Participant misunderstood interface between model/environment Role expressiveness -
32 Behavior of agent was easy to see using the debugger Visibility +
33 A portion of the Herbal GUI editor was hidden Visibility -
34 Easy for participant to make a change to a component Viscosity +
35 Working sets helped participant find location of a problem Viscosity +
36 Participant had problems editing an action Viscosity -
37 Participant had problems editing an operator Viscosity -

rationale entry. Perhaps with a more complicated model, entering design rationale
would have been a more interesting task.

The system also met the needs of the participants with respect to Progressive Eval-
uation. Observations confirmed that participants could easily check the progress of

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:15

Table VIII. Dimensions of Concern as Measured by Observations

Dimension All Library Model Model PSYC CS/CIS/MIS
Creation Creation Maintenance

Visibility
Viscosity X
Diffuseness X
Hard-mental operations
Error-proneness X X X
Closeness of mapping
Role-expressiveness X
Progressive evaluation
Premature commitment X

Table IX. Summary of DoCs Based on Survey Results (S) and Participant Observations (O)

Dimension All Library Model Model PSYC CS/CIS/MIS
Creation Creation Maintenance

Visibility S S S S
Viscosity O
Diffuseness O
Hard-mental operations S
Error-proneness O S SO S O
Closeness of mapping
Role-expressiveness O S S
Progressive evaluation
Premature commitment S S S SO S S

the model at any point in time, regardless of task. In addition, the participants were
able to browse the model for potential errors when needed.

Closeness of mapping was another dimension that Herbal supported well. Survey
results were positive with respect to the high-level language used to describe agents
written in Herbal. In addition, only three participants experienced negative events
with respect to closeness of mapping. Two participants thought the term “mode” or
“state” would be more useful than problem space, and one participant became confused
by the notation used to represent the agent and its behavior.

Finally, participants indicated in the surveys that, as a whole, they did not find
the tasks particularly complex. This is due in part to the fact that the tasks tested
the usability of the system, and were not problem solving exercises (aside from the
maintenance task). On the surveys, participants indicated some complexity in the
model maintenance task. This is not surprising because this is the one task where
participants were asked to solve a problem (i.e., what was wrong with the vacuum
cleaner) rather than navigate an interface.

Herbal appears to lack adequate support on two dimensions: error proneness, and
premature commitment. Table IX lists these two dimensions as Dimensions of Concern
in nearly every column.

The classification of Error Proneness as a concern was due to both observations
and survey results. Only the library creation tasks did not suffer from problems
with error proneness. Recordings of the observed events give reasons for the prob-
lems participants had with error proneness. For example, 13 errors resulted from
participants having problems distinguishing between the different types of design

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:16 M. A. Cohen et al.

rational. Twenty-one errors resulted from problems with the design and layout of the
Working Set, New project, and design pattern Wizard dialogs. Four errors resulted
from confusion caused by the use of a condition with no restrictions. Finally, four errors
took place because of a problem in the wording of one of the steps in the instructions.

Survey data in all six conditions classified premature commitment as a concern,
yet participant observations only classified premature commitment as a concern dur-
ing the model maintenance task. Due to a lack of useful responses to the open-ended
portions of the survey, it is difficult to tell why participants felt restricted to order.
Observations provided a somewhat different account with respect to Premature Com-
mitment. Eight participants were able to fix mistakes more easily because Herbal did
not enforce order. In addition, nine participants changed the order of the steps in the
task, on their own, and without problems.

A task where order appeared to present problems (during observation) was the
model maintenance task. Connecting the debugger to the Vacuum Cleaner Environ-
ment requires a fixed order and three participants were observed having problems
with this rigid order. Because survey data indicated a problem with Premature Com-
mitment, and observations did not, further exploration of this concern is required.

Table IX shows mixed results for role expressiveness and visibility. Three conditions
classified role expressiveness as a concern, and four conditions classified visibility as a
concern. Role expressiveness was a concern during library creation, where three par-
ticipants demonstrated a poor understanding of the model in general, and three partic-
ipants demonstrated trouble understanding the relationship between components and
subcomponents. Surveys indicated a problem with role expressiveness during model
creation and for PSYC students as a whole. Visibility was a concern in survey data for
all conditions except model maintenance and for PSYC students as a whole. However,
observations did not indicate Visibility as a concern for any condition.

8. CONCLUSIONS
The method presented here has been shown to be an effective way to measure and
summarize the usability of Herbal and has helped us discover areas of strength and
areas for improvement in the design.

For example, based on agreement between surveys and participant observation we
determined that Herbal is strong in five of the nine dimensions: viscosity, diffuseness,
progressive evaluation, closeness of mapping, and hard-mental operations. The use of
abstractions such as a high-level language and graphical editor were a conscious de-
sign decision in Herbal, and this appears to have helped reduce viscosity. In addition,
the variety of views provided in the Herbal Development Environment to make it easy
for developers to check the status of a model, and this appears to have strengthened
Herbal’s support for progressive evaluation. However, it is important to put these re-
sults in the context of the dimension of concern tolerance threshold value of 20% and
given the experience level of the participants.

Also based on agreement between surveys and participant observation, Error Prone-
ness was shown to be a dimension of concern; only the library creation task did not
suffer from problems with error proneness. A major strength of our dimensions of
Concern analysis is its use of both questionnaire data and participant observations.
There is agreement in both the surveys and observations about a dimension of con-
cern, the observations could be used to determine the cause of the concern and help
inform design change.

For example, the observations related to error proneness revealed that 13 negative
events related to design rationale were the result of confusion about the difference be-
tween the three different design rational types. The explanation behind the problems
reported by the users in the questionnaire would not have been discovered without

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

Dimensions of Concern: A Method to Use Cognitive Dimensions to Evaluate Interfaces 9:17

these observations. Interestingly, this issue with design rationale that our analysis
uncovered went unnoticed during design because the designers were all very familiar
with the design rational types.

In addition, observations of users performing the working set task revealed the rea-
sons behind the issues with error proneness reported by users in the questionnaires.
Users were observed struggling with the working set feature because the search
feature is case sensitive, and because it is difficult to refine searches while building
working sets. These results can be used to inform a redesign of the working set
feature.

However, issues did arise when the surveys and the observations did not agree.
In these cases, it was difficult to come to any decisive conclusion on how to improve
the design. For example, for many tasks, the survey data indicated poor support for
premature commitment, but the participant observations did not agree. The Herbal
Development Environment was designed to be library-centric so that users could
develop model components without constraining order. Why did the users feel con-
strained in the sequence that they developed the model? Unfortunately, participants
failed to provide sufficient explanations in the open-ended survey questions, which
made it difficult to draw conclusions about how to improve design.

It is essential that future evaluations place more emphasis on the open-ended sur-
vey questions to ensure that explanations are provided by participants. Actual ap-
plication stakeholders as evaluators in future studies may help produce open-ended
responses that are more useful.

As reported in our results, a large number of error proneness events were re-
ported during the coding process. Error proneness was defined as a measure of how
easy is it to make errors using the behavior representation language. However, neg-
ative events related to many of the other dimensions can also lead to errors. When
coding the participant observations it was not always clear when to use an error
proneness code as opposed to (or in addition to) other CD codes. We believe that it
is possible participants had the same confusion when responding to the surveys. As
a result, error proneness was one of the most common codes employed during coding
and we believe that this may have obscured important information related to other
CDs. In future evaluations we will provide better guidance on how to differentiate be-
tween error proneness in the notation, as opposed to errors caused by deficiencies in
other CDs.

The evaluation method presented here more closely follows the work done by
Kadoda et al. [1999] because we have chosen to use only the dimensions that we be-
lieve are relevant to the system we are evaluating. We chose this method because we
felt that the need to keep the questionnaire short and easy to understand, especially
considering the participants were undergraduates who were not major stakeholders
in the application. However, there is legitimate concern about introducing bias when
filtering the CDs presented to the users [Blackwell and Green 2000]. In future studies,
if the users are stakeholders in the system being evaluated and have sufficient back-
ground and interest in the application, it may be appropriate to include questions in
the questionnaire pertaining to all of the CDs.

In conclusion, the usability evaluation method presented here proved helpful for
measuring the usability and identifying several areas for improvement to the design
of Herbal. By identifying dimensions of concern using both survey responses and par-
ticipant observation, we were able to identify design improvements that should lead to
a more usable system. We believe that this method can be used successfully to evalu-
ate the usability of a variety of notational systems, and that the dimensions of concern
threshold provides researchers enough flexibility to handle the complex tradeoffs that
exist between CDs in a variety of systems.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

9:18 M. A. Cohen et al.

REFERENCES
BLACKWELL, A. F. AND GREEN, T. R. G. 2000. A cognitive dimensions questionnaire optimised for users.

In Procedings of the 12th Workshop of the Psychology of Programming Interest Group.
BLACKWELL, A. F. AND GREEN, T. R. G. 2003. Notational systems: The cognitive dimensions of notations

frameworks. In HCI Models, Theories, and Frameworks, J. M. Carroll Ed., Morgan Kaufmann, San
Francisco, CA, 103–133

COHEN, J. 1960. A coefficient for agreement for nominal scales. Edu. Psych. Measure. 20, 37–46.
COHEN, M. A. 2005. Teaching agent programming using custom environments and Jess. Newslet. Soc. Study

Artif. Intell. Simul. Behav. 120, 4.
COHEN, M. A., RITTER, F. E., AND HAYNES, S. R. 2010. Applying software engineering to agent develop-

ment. AI Mag., 31, 2, 25–44.
ERICSSON, K. A. AND SIMON, H. A. 1993. Protocol Analysis: Verbal Reports as Data. MIT Press,

Cambridge, MA.
HAYNES, S. R., COHEN, M. A., AND RITTER, F. E. 2008. Design patterns for explaining intelligent agents.

Int. J. Hum.-Comput. Stud.
KADODA, G., STONE, R., AND DIAPER, D. 1999. Desirable features of educational theorem provers: A cog-

nitive dimensions viewpoint. In Collected Papers of the 11th Annual Workshop of the Psychology of
Programming Interest Group, T. R. G. Green, R. Abdullah, and P. Brna Eds., Leeds: Leeds University
Press, Leeds, 18–23.

KO, A. J., AUNG, H. H., AND MYERS, B. A. 2005. Eliciting design requirements for maintenance-oriented
IDEs: A detailed study of corrective and perfective maintenance tasks. In Proceedings of the Interna-
tional Conference on Software Engineering.

LEHMAN, J. F., LAIRD, J. E., AND ROSENBLOOM, P. S. 1996. A gentle introduction to Soar: An architecture
for human cognition. In An Invitation to Cognitive Science, Vol. 4, D. Scarborough and S. Sternberg Eds.,
MIT Press.

NEWELL, A., AND SIMON, H. A. 1972. Human Problem Solving. Prentice Hall, Englewood Cliffs, NJ.
NEWELL, A. YOST, G. R., LAIRD, J. E., ROSENBLOOM, P., AND ALTMANN, E. 1991. Formulating the

problem space computational model. In Carnegie Mellon Computer Science: A 25-Year Commemorative,
R. F. Rashid Ed., ACM Press-Addison-Wesley, Reading, MA, 255–293.

PEW, R. W. AND MAVOR, A. S. Eds. 2007. Human-System Integration in the System Development Process: A
New Look. National Academies Press, Washington, DC.

RUSSELL, S. AND NORVIG, P. (2003). Artificial Intelligence: A Modern Approach 2nd Ed. Prentice Hall,
Upper Saddle River, NJ.

Received March 2010; revised March 2011, October 2011; accepted October 2011

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 9, Publication date: July 2012.

