
Herbal: A High-Level Language and Development Environment for Developing
Cognitive Models in Soar

Mark A. Cohen
Business Administration, Computer Science, and Information Technology

Lock Haven University
Lock Haven, PA 17745

mcohen@lhup.edu

Frank E. Ritter
Steven R. Haynes

School of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16801-3857

frank.ritter@ist.psu.edu, shaynes@ist.psu.edu

Keywords:
Cognitive Modeling, Development Environments, High-Level Languages, Ontologies, Protégé, Soar

ABSTRACT: Cognitive architectures are useful to a wide variety of users. To accommodate this wide range of users,
and to promote the use of cognitive systems, it is essential that tools such as high-level languages and development
environments are created to allow the modeler to focus more on the problem domain, and less on the nuances of a
particular architecture. This paper introduces a development environment and high-level behavior representation
language called Herbal that represents a step towards creating tools to support a wide range of cognitive model users.

1. Introduction

Cognitive architectures are useful to a wide variety of
users. Computer scientists, psychologists, cognitive
scientists, and various domain experts all have uses for
cognitive architectures. Unfortunately, designing,
implementing, and using cognitive architectures can be a
difficult task considering that the background and
expertise of this diverse set of users varies from novice to
expert (Ritter et al., 2003). In addition, the tasks
performed by users of such architectures can vary widely,
and can include a rage of different tasks.

Part of the problem stems from the fact that cognitive
architectures typically use low-level programming
languages to model behavior. Both Soar (Laird,
Congdon, & Coulter, 1999) and ACT-R (ACT-R
Research Group Department of Psychology Carnegie
Mellon University, 2004), for example, use production
rules as their primary programming construct.

A wider variety of users can be supported in the task of
developing cognitive models using a language that maps
more directly to the domain the user is familiar with. For
example, if this high level language is built on top of
Soar, and closely resembles the theory used by the Soar
architecture (Newell, 1990), it would make Soar easier to
use, while maintaining the features of Soar that make it

interesting, including learning, interaction, and
interuptability.

To promote the use of cognitive architectures, it is
essential that tools such as high-level languages and
development environments are created to allow the
modeler to focus more on the problem domain, and less
on the implementation nuances of a particular
architecture.

Several tools already exist to simplify the development of
cognitive architectures. For example, Soar developers
have VisualSoar (Laird, 1999), a powerful development
environment that simplifies the creation of Soar
productions. SoarDoc (Soar Technology Inc., 2004) is a
tool for automatically generating HTML documentation
directly from Soar source code. ViSoar (Hirst, 1999) is a
dialogue-driven interface for generating Soar code
automatically, and debugging, and reverse engineering
existing Soar productions. For ACT-R there is G2A (St.
Amant, Freed, & Ritter, 2005), and other architectures
include Integrated Development Environments (IDE)
(Busetta, Rönnquist, Hodgson, & Lucas, 1999; Lebiere et
al., 2002; Zachary, Jones, & Taylor, 2002). A further
partial review of similar tools can be found in (Morgan,
Cohen, Haynes, & Ritter, in press)

We propose a cognitive modeling tool that involves the
use of a high-level programming language and a

mailto:mcohen@lhup.edu
mcohen
Text Box
Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal: A high-level language and development environment for developing cognitive models in Soar. In Proceedings of the 14th Conference on Behavior Representation in Modeling and Simulation. 177-182. 05-BRIMS-044. Orlando, FL: U. of Central Florida

compiler. This tool is different because it is designed not
only to simplify the development of cognitive models, but
also to generate explanations of the running models.

The Herbal development environment introduced in this
paper makes Soar cognitive models easier to develop and
maintain by using a high-level language, a compiler, and
by implementing a theory for generating explanations.

2. Rationale for a High-Level Language

The usability of Soar in applied settings appears to be
limited by the unstructured ontology of Soar programs.
Developers are required to code Soar models at the
production level. The resulting programs are thus formed
as a list of condition-action rules with no particular order
or arrangement, except that which arises from the coding
conventions employed by the responsible developer(s).
All information regarding the intended processes of agent
cognition and behavior must be inferred by developers
while interpreting Soar code at the syntactic level,
observing run-time traces or displays (Taylor, Jones,
Goldstein, Frederiksen, & Wray, 2002), or
communicating directly with the developer.

Even experienced developers can have difficulty
understanding Soar code written by others. The lack of
explicit process representations coupled with the freedom
to adopt widely disparate coding conventions poses
significant difficulties for understanding large Soar
programs. Developers must actively generate their own
mental models of program behavior from the atomic
model components. Also, the common structures within a
program, such as representations of external objects, are
stored in multiple locations, requiring the programmer
keep track of objects without the aid of an IDE.

To improve the creation and readability of Soar programs,
a high-level language based on an ontology model was
created that presents a useful objectification of Soar
program components. Developers specify Soar systems at
the ontological level and have code generated directly
from these high-level design specifications.

3. The Herbal High-Level Language

The main goal of the Herbal high-level language is to
create models that can explain themselves (Haynes,
Councill, & Ritter, 2004; Haynes, Ritter, Councill, &
Cohen, 2005). As part of this process, Herbal makes it
easier to program cognitive models. The Herbal high-
level language accomplishes this by formalizing the
programming process through the use of an explicit
ontology of classes (as shown in Figure 2.1). The
ontology contains classes that represent concepts such as
models, states, operators, elaborations, impasses,

conditions, actions, and working memory, all as first-class
model objects.

The classes in this ontology also have some basic
relationships (Figure 2.2). A state can contain impasses,
working memory, operators, elaborations, and other
states. In addition, operators and elaborations can contain
zero or more conditions and actions.

Programming in the Herbal high-level language involves
instantiating objects using these ontological classes.
Thus, the process of programming a model is reduced to
instantiating objects from a set of fixed classes, instead of
coding the classes and structure implicitly in a large set of
heterogeneous Soar productions.

When objects are instantiated, the ontology includes
additional attributes that allow the developer to describe
the intent of the object. This descriptive information is
automatically embedded in the generated Soar code as
comments when the model is compiled. It will be used in
future version of Herbal to generate explanations.

Figure 2.1 Herbal Ontology Class Hierarchy

Figure 2.2 Herbal Ontology Class Relationships.

Herbal also makes it easier to reuse programming
constructs both within the same model and across
multiple models. For example, operators and elaborations
can share conditions and actions, and states can share

operators, elaborations, and impasses. Reusing
components in this fashion reduces the amount of cutting
and pasting that can be common when programming in
Soar.

It is important to note that the use of the Herbal high-level
language does not preclude the need to understand how to
program in Soar. This language makes it easier to
understand Soar models, generate code embedded with
descriptive text, and promote reuse – but it does not make
it possible to create Soar models without some basic
understanding of Soar programming.

4. The Herbal Development Environment

The Herbal development environment (version 0.9 is
available at acs.ist.psu.edu/projects/Herbal/) has two main
responsibilities: to make it easy to graphically generate an
Herbal high-level program, and to translate this program
into Soar productions (Figure 4.1).

Figure 4.1 The Herbal Development Environment
Software Architecture.

The first responsibility is realized using the Protégé
integrated knowledge-based development tool (Stanford
Medical Informatics, 2004). Without any customization,
Protégé makes it possible to graphically define an
ontology, create an instance of that ontology, and save it
in Resource Description Framework (RDF) format (W3C,
2004c). By combining our own custom Protégé plug-ins,
and the Herbal high-level language ontology, Protégé was
easily configured to create a graphical programming
environment for Soar models. Modelers use Protégé to
instantiate a model by extending the Herbal ontology, and
then saving this model in RDF format. Portions of
existing models can be reused by importing existing
model ontologies into Protégé and adapting as required.

The second responsibility of the Herbal development
environment is compiling the generated RDF into a valid
set of productions. The Extensible Stylesheet Language
Transformations (XSLT) standard is used to compile the
RDF into Soar productions (W3C, 2004a, 2004b).

Currently, Herbal supports the generation of Soar
productions. However, our design makes it easy to
support additional target architectures; to support a new

cognitive architecture, a new XSLT script must be written
and plugged into the Herbal development environment.

5. A Sample Model

To better illustrate how a model can be created using the
Herbal development environment, a modified version of
the blocks world model introduced in the Soar Manual
and Documentation (Laird et al., 1999) was implemented
using Herbal and is summarized here. Implementing this
model is also described in The Herbal Tutorial (Cohen &
Ritter, 2004).

This simple model consists of three blocks (A, B, and C)
positioned on a table. The goal of the model is to stack
these blocks such that block A is on top of block B, block
B is on top of block C, and block C is on top of the table.

This model is articulated in the following sections by
describing the different objects that were instantiated in
the Herbal development environment. The Herbal blocks
world model consists of working memory objects, state
objects, operator/elaboration objects, impasse objects, and
condition/action objects.

5.1 Working memory

The classes that represent the problem domain are created
using Protégé, and referenced by other components of the
model. For example, using the Herbal development
environment the blocks world model defines three classes
of working memory: Block, Table, and OnTop (the
OnTop class represents a relationship where a block is on
top of either a table or another block). Using these
classes, three Block instances were created, one for each
of the three blocks (A, B, and C). In addition, one Table
instance was created, and three OnTop objects were
created representing the fact that all three blocks start on
top of the table. These classes and instances are
illustrated in Figure 5.1.1.

Figure 5.1.1 Blocks World Model Working Memory
Objects.

5.2 States, operators and elaborations

The Herbal Blocks World Model also consists of two
states: the top state (BlocksWorldState) and a sub state
(ResolveTie).

The top state is adorned with the working memory objects
shown in Section 5.1. In addition, the top state consists of
an elaboration that checks to see if the goal has been
reached, and two operators: MoveBlockToTable and
MoveBlockToBlock. Finally, the top state has an
operator-tie impasse object (block-move-tie) that is meant
to handle the case where a choice must be made between
moving a block to the table and moving a block on top of
another block.

The block-move-tie impasse handles a tie between the
MoveBlockToTable and MoveBlockToBlock operators
using the ResolveTie state. The ResolveTie state contains
two operators: PreferAOnB and PreferBOnC. These two
operators designate a preference for one of the two tied
operators using a strategy that places a priority on putting
block B on block C, and then block A on block B.

A snapshot of the blocks world top state, taken from the
Herbal development environment, is shown in Figure
5.2.1.

Figure 5.2.1 Top State for the Blocks World Model.

Figure 5.2.1 illustrates how the theoretical components of
a Soar model can be developed and browsed from within
Herbal. For example, using the Herbal development
environment it is easy to ascertain the fact that the top
state in this model is made up of two operators, one

elaboration, an impasse, and various working memory
objects. Double clicking on any of the contained objects
shown in Figure 5.2.1 (e.g. , the MoveBlockToTable
operator) results in a dialog box that gives further detail
on the selected object and its attributes. This information
– typically implicit in Soar productions – is obvious from
within the Herbal environment, which represents some of
the most fundamental aspects of the explanation facilities
included and planned for Herbal.

In addition to the components already mentioned, the
blocks world model also consists of several conditions
and actions. These objects are used as major building
blocks for operators and elaborations and make it possible
to share conditions and actions.

5.3 Compiling the model

Compiling the Blocks World Model is accomplished
using the custom Protégé plug-in shown in Figure 5.3.1.
The compiler also allows the user to include a header or
other files in the compiled model. This code can, for
example, initialize the model, hook up the model to agent
environments like dTank (Morgan, Ritter, & Cohen,
2005), or include other models.

The generated Soar file for this model consists of over
300 lines of formatted and documented Soar code that
contains 11 Soar productions.

Figure 5.3.1 Herbal Protégé Compiler Plug-in.

The documentation included in the compiled productions
is generated using information provided by the modeler
when objects are instantiated in the Herbal language. All
of the Herbal high-level language classes contain
attributes such as “definition”, “purpose”, and “how-it-
works”, information we found to be most important to
explanation (Haynes et al., 2005), which are used by the
compiler to generate useful comments. In addition, we
are completing the design to use this same information at
runtime to generate explanations.

6. Experiences Using Herbal in an
Undergraduate Course

The Herbal development environment was used in IST
402 Emerging Technologies: Models of Human Behavior.
This course was taught in the Fall of 2004, to 38
undergraduates and 3 graduate students, in the School of
Information Sciences and Technology at The
Pennsylvania State University at University Park. IST402

is a required course for IST majors, but each section
covers a different emerging technology.

The course covers cognitive modeling, ontologies, and
involves creating and testing working models. It used
Soar, the Herbal development environment (version 0.7),
and dTank (Morgan et al., 2005) as an example
application domain.

Students provided positive feedback in their formal
course evaluations on both Protégé and Herbal as
modeling environments. In general, the students
encountered fewer problems programming in Soar when
using Herbal. This is admittedly an anecdotal result, and
could also be the result of other factors. However, a
recent single subject analysis of how long it takes to
create a dTank model using the Herbal development
environment (Morgan et al., in press) showed that Herbal
can be as fast as TAQL (Yost, 1993)

A total of nine group final projects were created, and four
out of nine used the Herbal development environment to
create their final projects (all groups used Herbal in their
homework). Two of the four teams that settled on Herbal
had a model that ran, and one of the two that settled on
using just Soar had a model that ran. The most complex
of the working models was an Herbal model that
contained 16 pages of rules with 25 operators. The
students all took advantage of Herbal’s facility to include
a header in their code that hooked up the models to dTank
as they loaded.

Among the advantages noted by students was Herbal’s
ability to reuse conditions and actions across several
operators. This enabled teams to build more complex
tanks using a set of predefined conditions and actions
specific to the dTank environment. Students also
commented on the usefulness of Herbal’s ability to
automatically generate comments.

At the time the course was taught, Herbal did not support
impasses and this was noted by the students as one of the
major disadvantages (impasses have since been added in
version 0.9). Another disadvantage noted by the students
was related to usability issues with Protégé. A new
version of Protégé (version 3.0) has since been released
that has addressed many of these issues.

7. Conclusion

We believe that the ability to create cognitive models
using powerful architectures such as Soar can be
simplified using high-level languages. The Herbal high-
level language is an example of such a solution and is
capable of producing Soar productions from models
created using the Herbal development environment,
which is based on a modified ontology editor.

In this paper, a simple model built using Herbal was
described to help illustrate how Herbal simplifies
programming in Soar. In addition, feedback provided by
undergraduate students who used Herbal in a course at
Penn State was discussed.

Future development of Herbal is currently focused on
using the information contained in the Herbal ontology to
generate explanations while the model is running.
Runtime explanations should further aid developers, as
well as other users, with the creation of cognitive models.

8. Acknowledgements

The development of this software was supported by the
Office of Naval Research and was carried out under the
terms of Contract No N000140210021. We also thank
Geoffrey P. Morgan, Urmila Kukreja, Isaac Councill, and
the students of IST 402 the last two years for their work
with and comments on Herbal.

9. References

ACT-R Research Group Department of Psychology
Carnegie Mellon University. (2004). ACT-R 5.0
Tutorials, from http://act-r.psy.cmu.edu/tutorials/

Busetta, P., Rönnquist, R., Hodgson, A., & Lucas, A.
(1999). JACK Intelligent Agents - Components
for Intelligent Agents in Java. AgentLink
Newsletter.

Cohen, A. M., & Ritter, F. E. (2004). The Herbal Tutorial
(No. Tech. Report No. 2004-2): Applied
Cognitive Science Lab, School of Information
Sciences and Technology, Penn State.

Haynes, S. R., Councill, I. G., & Ritter, F. E. (2004).
Responsibility-driven explanation engineering
for cognitive models. In R. M. Jones, R. E. Wray
& M. Scheutz (Eds.), AAAI Workshop on
intelligent agent architectures: Combining the
strengths of software engineering and cognitive
systems (pp. 46-52). Menlo Park, CA: AAAI
Press.

Haynes, S. R., Ritter, F. E., Councill, I. G., & Cohen, M.
A. (2005). Explaining Intelligent Agents.
Manuscript submitted for publication.

Hirst, T. (1999). ViSoar - Towards an Agent Development
Environment for the Soar Architecture. Paper
presented at the 4th Online Workshop on Soft
Computing (WSC4).

Laird, J. E. (1999). Visual Soar. Paper presented at the
Soar Workshop 19, University of Michigan.

Laird, J. E., Congdon, C. B., & Coulter, K. J. (1999). The
Soar User's Manual Version 8.2: University of
Michigan.

Lebiere, C., Biefeld, E., Archer, R., Archer, S., Allender,
L., & Kelley, T. (2002). IMPRINT/ACT-R:

http://act-r.psy.cmu.edu/tutorials/

Integration of a task network modeling
architecture with a cognitive architecture and its
application to human error modeling. Paper
presented at the Advanced Technologies
Simulation Conference, San Diego, CA.

Morgan, G. P., Cohen, A. M., Haynes, S. R., & Ritter, F.
E. (in press). Increasing Efficiency of the
Development of User Models. IEEE System
Information and Engineering Design
Symposium.

Morgan, G. P., Ritter, F. E., & Cohen, A. M. (2005).
dTank: An Environment for Architectural
Comparisons of Competitive Agents. Paper
presented at the 14th Conference on Behavior
Representation in Modeling and Simulation
(BRIMS), Universal City, CA.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R.,
Gobet, F., & Baxter, G. D. (2003). Techniques
for modeling human and organization behavior
in synthetic environments: A supplementary
review, Wright Patterson Air Force Base, OH:
Human Systems Information Analysis Center.

Soar Technology Inc. (2004). SoarDoc, 2004, from
www.eecs.umich.edu/~soar/sitemaker/projects/s
oardoc/soardoc.html

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005).
Specifying ACT-R models of user interaction
with a GOMS language. Cognitive Systems
Research, 6(1), 71-88.

Stanford Medical Informatics. (2004). Protege (Version
2.1.1).

Taylor, G. E., Jones, R. M., Goldstein, M., Frederiksen,
R., & Wray, R. E. (2002). VISTA: A Generic
Toolkit for Visualizing Agent Behavior. Paper
presented at the Procedings of the Eleventh
Conference on Computer Generated Forces and
Behavioral Representation, Institute for
Simulation and Training.

W3C. (2004a). The Extensible Markup Langauge.
W3C. (2004b). The Extensible Stylesheet Language

Family, from www.w3.org/Style/XSL/

W3C. (2004c). Resource Description Framework, from
www.w3.org/RDF/

Yost, G. R. (1993). Acquiring Knowledge in Soar. IEEE
Expert, 8(3), 26-34.

Zachary, W., Jones, R. M., & Taylor, G. (2002). How to
communicate to users what is inside a cognitive
model. Paper presented at the 11th Computer
Generated Forces Conference, Orlando, FL.

Author Biographies

MARK COHEN is an instructor in the Business
Administration, CS and IT Department at Lock Haven
University, and a PhD student in the School of IST at
Penn State. His current research efforts include
developing software that simplifies the creation and
maintenance of cognitive models. He received an MS in
CS from Drexel University and a BS EE from Lafayette
College. He has over 10 years of experience developing
health care and pharmaceutical software.

FRANK RITTER is one of the founding faculty of the
School of IST, an interdisciplinary academic unit at Penn
State to study how people process information using
technology. He works on the development, application,
and methodology of cognitive models, particularly as
applied to interfaces and emotions. He is an editorial
board member of Human Factors and AISB Journal. His
review (with others) on applying models in synthetic
environments was published as a HSIAC State of the Art
Report in 2003 (iac.dtic.mil/hsiac/S-docs/SOAR-
Jun03.pdf).

STEVEN HAYNES is an assistant professor at the
School of IST. He researches system design, modeling,
and development; human-computer interaction; design
rationale; system explanation; and the philosophy of
technology. Prior to entering academia he worked at
Apple Computer, Adobe Systems, and several smaller
technology companies in the US and in Europe.

http://www.eecs.umich.edu/%7Esoar/sitemaker/projects/soardoc/soardoc.html
http://www.eecs.umich.edu/%7Esoar/sitemaker/projects/soardoc/soardoc.html
http://www.w3.org/Style/XSL/
http://www.w3.org/RDF/

	1. Introduction
	2. Rationale for a High-Level Language
	3. The Herbal High-Level Language
	4. The Herbal Development Environment
	5. A Sample Model
	5.1 Working memory
	5.2 States, operators and elaborations
	5.3 Compiling the model
	6. Experiences Using Herbal in an Undergraduate Course
	7. Conclusion
	8. Acknowledgements
	9. References
	Author Biographies

