
The Pennsylvania State University

The Graduate School

College of Information Sciences and Technology

A THEORY-BASED ENVIRONMENT FOR CREATING REUSABLE

COGNITIVE MODELS

A Thesis in

Information Sciences and Technology

by

Mark A. Cohen

! 2008 Mark A. Cohen

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2008

ii

The dissertation of Mark A. Cohen was reviewed and approved* by the following:

Frank E. Ritter
Associate Professor of Information Sciences and Technology
Associate Professor of Computer Science and Engineering
Associate Professor of Psychology
Dissertation Advisor
Chair of Committee

Steven R. Haynes
Assistant Professor of Information Sciences and Technology

Mary Beth Rosson
Professor of Information Sciences and Technology

Richard A. Carlson
Professor of Psychology

John Yen
Professor of Information Sciences and Technology
Associate Dean for Research and Graduate Programs in
Information Sciences and Technology

*Signatures are on file in the Graduate School

iii

ABSTRACT

Intelligent agents and cognitive models are useful for a number of purposes.

Unfortunately, limited theory-based tool and language support for the creation of

intelligent agents has made it difficult for modelers to create, debug, and reuse agent

software. This dissertation explores how to make it easier to create intelligent agents, and

especially cognitive models, by taking advantage of established software engineering

principles. The benefits of applying software engineering principles to intelligent agent

development is demonstrated with the creation of a high-level language and development

environment that embodies these principles, and with an evaluation of this language and

environment, in use, by students and cognitive modelers.

iv

TABLE OF CONTENTS

LIST OF FIGURES ...viii

LIST OF TABLES...x

ACKNOWLEDGEMENTS...xiv

Chapter 1 Introduction ..1

Intelligent Agents and Cognitive Models ...1
Obstacles Facing Efficient Cognitive Modeling...4
A Theory for Simplifying Cognitive Modeling.. 5

High-Level Languages and Compilers ..7
Maintenance-Oriented Development Environments 9
Support for Reuse ..11
Preview of Contributions and the Structure of this Thesis............................12

Chapter 2 The Current State of Cognitive Modeling..15

Methods of Behavior Representations..15
Connectionist Representations ..15
Symbolic Representation...19

Low-Level Behavior Representation Languages..22
The Jess Expert System Shell..23
Cognitive Architectures...25

Soar...26
ACT-R..29
EPIC ...31

Summary..32
High-Level Behavior Representation Languages...32

RAPs..33
JACK ...34
GOMS-Based Languages ..36
TAQL ..39
HTAmap ..40
COGENT...40
HLSR...43
Summary..44

Cognitive Modeling Environments... 45
Jess Environments ...46
An ACT-R Environment: CogTool ...47
Soar Environments ..48
Summary..49

Reuse in Cognitive Modeling ...50

v

Summary...51

Chapter 3 Important Lessons from Software Engineering ...54

High-Level Languages..54
The Conceptual Gap ..55
Successful Use of High-Level Languages...56

Maintenance-Oriented Environments...58
Cause/Effect Chasm, Program Slices, and Editing Above the Code59
Program Navigation...61

Working Sets and JASPER ..62
Group Memory and Information Scent ..64

Cognitive Dimensions ...68
Software Reuse ...70

Four Dimensions of Reuse ..71
Reuse with Design Patterns ...72

Summary...74

Chapter 4 Herbal: A Theory-Based System for Simplifying Cognitive Modeling78

Herbal: A High-Level Behavior Representation Language..................................79
The Problem Space Computational Model..79
XML and XSchema...80
The Herbal Parser and Compiler ...84

Herbal: A Tool for Supporting Maintenance..89
The Herbal IDE ...90
Working Sets and Intent as Information Scent..94

Herbal: A Tool for Supporting Reuse...96
Libraries...97
Behavior Design Patterns ..99

Herbal: A Tool for Supporting Programming at Various Levels of
Abstraction ..101

Summary...103

Chapter 5 Evaluating Design: A Formative Evaluation of Herbal 105

Overview of the Task..107
Method..108

Participants ..110
Apparatus...111
Design..111
Procedure...113

Results...117
Discussion...124
Conclusions...128

vi

Chapter 6 Evaluating Functionality: Herbal as a Cognitive Modeling Tool132

Overview of the Task..133
Method..136

Participants ..136
Apparatus...136
Design..137
Procedure...137

Models ..139
Batter Models ..139
Pitcher Model ..140
Model Parameters ..140

Results...142
Discussion...143

Hacker and Chicken Strategies..144
Random Strategy ...145
Aggressive and Alternate Strategies..145
Transition from Hacker to Aggressive ..146
Transition from Chicken to Alternate..146
Additional Explanations ..147

Conclusions...148

Chapter 7 Evaluating Usability: A Summative Usability Evaluation of Herbal149

Overview of the Task..149
Method..151

Participants ..154
Apparatus...155
Design..155
Procedure...156

Models ..157
Results...159

Survey Results ...161
Summary of Survey Results ..170
Observation Results...171
Summary of Observation Results..194

Discussion...195
Conclusions...200

Chapter 8 Contributions, Lessons, and Future Work..202

Contributions towards Better Modeling Languages ...202
Contributions towards Better Maintenance-Oriented Modeling Environments...205
Contributions towards Better Model Reuse..207
Contributions towards Education of Modelers ...210
External Users...212

vii

Lessons and Future Work ...213
Future Work in High-level Modeling Languages ...213
Future Work in Maintenance-Oriented Modeling Environments214
Future Work in Model Reuse ..215
Future Work in Usability and Evaluation..215
Future Work in Graphical Agent Environments ...216

Conclusion ..217

References..219

Appendix A A Comparison of Representations..230

Appendix B Summative Evaluation Materials ...231

viii

LIST OF FIGURES

Figure 1-1: A simple definition of an intelligent agent..2

Figure 1-2: The difference between intelligent agents and cognitive models.2

Figure 1-3: Two important obstacles inhibiting the creation of cognitive models.4

Figure 1-4: An illustration of the focal theory. ..6

Figure 1-5: An example of software reuse in a modern web-based application..........11

Figure 2-1: The architecture of a typical artificial neural network (Negnevitsky,
2004). ..17

Figure 2-2: An illustration of the opacity problem with neural networks (Minsky,
1990). ..19

Figure 2-3: The architecture of the Jess rule-based system (Friedman-Hill, 2003).....24

Figure 2-4: Behavior as movement through a problem space (Newell, Yost, Laird,
Rosenbloom, & Altmann, 1991)...27

Figure 2-5: The organization of information in ACT–R 5.0 (Anderson et al.,
2004). ..30

Figure 2-6: G2A and ACT-Simple provide a GOMS-level abstraction on top of
ACT-R. ...38

Figure 2-7: A box-and-arrow diagram of the Modal Model of memory created
using COGENT (Cooper & Yule, 2007). ...41

Figure 2-8: CogTool provides a graphical environment that produces ACT-Simple
code automatically. ...47

Figure 3-1: The strategy design pattern. ..73

Figure 4-1: A High-level XML representation translated into low-level rule-based
representations. ...80

Figure 4-2: Herbal programming using XML Notepad..84

Figure 4-3: Parsing and compiling Herbal XML source code....................................85

Figure 4-4: The Herbal GUI Editor. ...91

Figure 4-6: The Herbal IDE showing multiple views of an Herbal library.93

ix

Figure 4-7: Viewing the static PSCM structure using the Model Browser View......94

Figure 4-8: Support for working sets in the Herbal IDE. ...95

Figure 4-10: Exporting a library and its dependencies. ...98

Figure 4-12: The Behavior Design Pattern Wizard. ...101

Figure 4-13: Supporting multiple levels of abstraction in the Herbal Development
Environment. ..102

Figure 5-1: Formative and summative evaluation (Rosson & Carroll, 2002).106

Figure 5-2: The Vacuum Cleaner Environment...108

Figure 5-3: Problem space hierarchy for assignments 4 and 5. 116

Figure 6-1: The baseball game task. ..134

Figure 6-2: Learning and unlearning rates used by the model.....................................142

Figure 6-3: Comparison of the model and participants for each batting strategy.......144

Figure 7-1: Different participants work in turn to complete the main task. 156

x

LIST OF TABLES

Table 1-1: The hypotheses forming the foundation of the focal theory.6

Table 1-2: Two different ways to describe the process of fetching a beer.7

Table 1-3: Two different ways to describe the factorial calculation.8

Table 1-4: A description of typical software maintenance tasks.10

Table 2-1: An example of a formal system in a particular state.20

Table 2-2: A summary of low-level behavior representations.....................................32

Table 2-3: A summary of high-level behavior representations.45

Table 2-4: A summary of cognitive modeling environments.49

Table 2-5: Problems with reuse in rule-based languages...51

Table 3-1: Design requirements that help support the use of working sets during
software maintenance (Ko, Aung, & Myers, 2005)..63

Table 3-2: Useful cognitive dimensions for evaluating a high-level behavior
representation language and modeling environment. ...70

Table 3-3: A succinct description of the problems facing cognitive modeling and
the software engineering solutions that will make a difference.77

Table 4-1: Summary of the solutions resulting from the literature review..................78

Table 4-2: XSchema describing an operator and an XML instance of an operator.....83

Table 4-3: A translation from an Herbal condition to Soar and Jess source code.86

Table 4-4: A translation from an Herbal action to Soar and Jess source code.87

Table 4-5: A translation from an Herbal operator to Soar and Jess source code........88

Table 5-1: The Cognitive dimensions used to evaluate the design of Herbal.110

Table 5-2: Summary of the experimental design for the formative evaluation.113

Table 5-3: Quantitative results from User Reaction Survey #1 (N=6).118

Table 5-4: Quantitative results from User Reaction Survey #2 (N=7).119

xi

Table 5-5: Quantitative results from User Reaction Survey #3 (N=6).120

Table 5-6: Quantitative results from User Reaction Survey #4 (N=4).121

Table 5-7: Qualitative results from User Reaction Survey #4.122

Table 5-8: Observation of participants completing assignment 4. 123

Table 5-9: Summary of the design changes resulting from the formative study.130

Table 6-1: Determining the outcome of a pitch. ..135

Table 6-2: Batter strategies in the baseball environment...138

Table 6-3: Pitching efficiency for the participants and the learning model................143

Table 7-1: Cognitive dimensions used as evaluation criteria for the summative
usability study...152

Table 7-2: The vacuum cleaner library components created by the participants.158

Table 7-3: The high-level model behaviors created by the participants.159

Table 7-4: Task performance times in minutes..160

Table 7-5: The survey questions used to measure support for various cognitive
dimensions. Shading indicates the positive (dark shading) and negative (light
shading) response ranges. ...162

Table 7-6: Survey responses for all participants and all tasks (N = 24).164

Table 7-7: Survey responses for participants performing the library creation task
(N = 8)...165

Table 7-8: Survey responses for participants performing the model creation task
(N = 8)...166

Table 7-9: Survey responses for participants performing the model maintenance
task (N = 8). ..167

Table 7-10: Survey responses for participants majoring in PSYC (N = 12).168

Table 7-11: Survey responses for participants majoring in CS, CIS, or MIS (N =
12). ..169

Table 7-12: A 2x2 chi-square contingency table used to test for independence
between survey responses and participant major.. 170

xii

Table 7-13: Dimensions of Concern as measured by survey results.171

Table 7-14: Event codes used during participant observation.174

Table 7-15: Number of occurrences by cognitive dimension for all participants
and all tasks (N = 24)..176

Table 7-16: Coded positive observations for all participants and tasks (N = 24).......177

Table 7-17: Coded negative observations for all participants and tasks (N = 24)......178

Table 7-18: Number of occurrences by cognitive dimension for all participants
performing the library creation task (N = 8)...179

Table 7-19: Coded positive observations for participants performing the library
creation task (N = 8). ..180

Table 7-20: Coded negative observations for participants performing the library
creation task (N = 8). ..181

Table 7-21: Number of occurrences by cognitive dimension for participants
performing the model creation task (N = 8). ..182

Table 7-23: Coded negative observations for participants performing the model
creation task (N = 8). ..184

Table 7-24: Number of occurrences by cognitive dimension for all participants
performing the model maintenance task (N = 8). ...185

Table 7-25: Coded positive observations for participants performing the model
maintenance task (N = 8)..186

Table 7-26: Coded negative observations for participants performing the model
maintenance task (N = 8)..187

Table 7-27: Number of occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12). ...188

Table 7-28: Number of positive occurrences by cognitive dimension across all
tasks for participants majoring in PSYC (N = 12)..189

Table 7-29: Number of negative occurrences by cognitive dimension across all
tasks for participants majoring in PSYC (N = 12)..190

Table 7-30: Number of occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12)..191

xiii

Table 7-31: Number of positive occurrences by cognitive dimension across all
tasks for participants majoring in CS, CIS, or MIS (N = 12).192

Table 7-32: Number of negative occurrences by cognitive dimension across all
tasks for participants majoring in CS, CIS, or MIS (N = 12).193

Table 7-33: A 2x2 chi-square contingency table used to test for independence
between observations and participant major...194

Table 7-34: Dimensions of Concern as measured by observations.195

Table 7-35: Summary of Dimensions of Concerns based on survey results (S),
participant observations (O), and both (B). ..196

Table 8-1: Contributions towards better modeling languages. 205

Table 8-2: Contributions towards better maintenance-oriented environments...........207

Table 8-3: Contributions towards better model reuse...210

Table 8-4: Contributions towards education of modelers...212

xiv

ACKNOWLEDGEMENTS

Fortunately for me, my advisor Dr. Frank Ritter takes advising very seriously. It

is not uncommon for him to spend large portions of lab meetings handing out reading

material on topics such as the importance of networking at conferences, how to avoid

common writing mistakes, and tips for surviving graduate school. Over the past six

years, his honest concern for his students and his dedication to mentorship have taught

me a tremendous amount about science, scholarship, success, and life.

Thanks Frank.

I was also fortunate enough to have a second mentor in IST, Dr. Steven Haynes,

who dedicated a lot of time helping me develop my research interests, and providing me

with additional guidance and encouragement when I needed it.

Thanks Steve.

I would also like to thank my parents for instilling in me the importance of

education, and inspiring me to pursue academic excellence.

Thanks Mom and Dad.

My deepest gratitude goes to my wife Lisa, whose patience and love kept this

research fun.

Thanks Lisa.

Chapter 1

Introduction

This dissertation explains how to make it easier to create intelligent agents, and

especially cognitive models, by taking advantage of established software engineering

principles. The benefits of applying software engineering principles to cognitive

modeling is demonstrated with the creation of a high-level language and development

environment that embodies these principles, and with an evaluation of this language and

environment, in use, by students and cognitive modelers.

Intelligent Agents and Cognitive Models

An intelligent agent is defined as a piece of software that perceives its

environment via sensors and acts on that environment by way of effectors (Russell &

Norvig, 2003). As shown in Figure 1-1, the mapping from an agent’s sensor readings to

its actions produces intelligent behavior. Due to the complexity of intelligent behavior,

the implementation of this mapping is both interesting and challenging. The easier it is to

define this mapping, the easier it will be to create agents.

2

What constitutes an intelligent mapping varies depending on the type and purpose

of the agent. As shown in Figure 1-2, a cognitive model is a special type of intelligent

agent with a distinctive definition for intelligence: Cognitive models are agents designed

to simulate human behavior. Cognitive models succeed when they precisely exhibit

human behavior: both the good and bad (Das & Stuerzlinger, 2007; Lindsay & Connelly,

2002; Ritter, Baxter, Jones, & Young, 2000).

Figure 1-1: A simple definition of an intelligent agent.

Figure 1-2: The difference between intelligent agents and cognitive models.

3

An actual example can help illustrate the difference between an intelligent agent

and a cognitive model. Consider the task of dialing a cell phone. An intelligent agent

designed to perform this task might utilize a sophisticated algorithm to help it dial

numbers in less than one second and with 99% accuracy. A cognitive model, on the other

hand, such as the one written by Das and Stuerzlinger (2007), for example, can use

psychologically plausible algorithms that lead to cell phone dialing in the same time and

accuracy exhibited by a typical novice user. Like a human, the cognitive model will

make errors, and this is desirable so that modelers can understand and predict errors, and

create better systems.

Both the agent and the cognitive model are useful, but for different reasons. The

impressive accuracy of an intelligent agent can help humans dial phones quickly and

accurately when driving a car, while the cognitive model can predict commons errors,

and their reasons, which can lead to better cell phone design for novice users. Prediction

and psychological insight are two important outcomes of a cognitive model that separate

it from other types of intelligent agents.

The different requirements of cognitive models lead to unique applications.

Cognitive models can be used for training and simulation in domains where actual human

participation could be dangerous (Jones et al., 1999). Computer games equipped with

opponents that follow predictable scripts can be made more interesting using cognitive

models of human adversaries (Laird, 2001). In addition, computer interfaces can be

tested more efficiently using models of human users (Ivory & Hearst, 2001; St. Amant &

Ritter, 2004).

4

The many uses for cognitive models lead to a varied set of potential model

developers and users. For example, military strategists, pilots, game programmers,

human factors experts, and psychologists, all stand to benefit from the use of cognitive

models. Unfortunately, cognitive modeling is hard (Pew & Mavor, 1998; Ritter et al.,

2003; Salvucci & Lee, 2003; Yost, 1993). I propose that the lack of good software

engineering practices in the field of cognitive modeling has made the creation and use of

cognitive models more difficult than it need be.

Obstacles Facing Efficient Cognitive Modeling

Figure 1-1 defines agent behavior as the mapping from sensor readings to actions.

Given the complexity of human behavior, creating this mapping under the unique

constraints of a cognitive model is challenging (Gluck & Pew, 2001; Jones, Crossman,

Lebiere, & Best, 2006; Jones & Wray, 2003). Figure 1-3 suggests that two important

reasons for this challenge are: (1) there are multiple competing cognitive architectures,

(2) cognitive modeling requires a variety of skills. The literature review in Chapter 2

supports the existence of these two obstacles.

Figure 1-3: Two important obstacles inhibiting the creation of cognitive models.

5

One important obstacle facing cognitive modelers is the use of many different

cognitive architectures, and their differing theories about how human behavior arises.

The use of different architectures makes it difficult to compare, reuse, and integrate

models (Gluck & Pew, 2001; Jones, Crossman, Lebiere, & Best, 2006; Jones & Wray,

2003). For example, modelers cannot reuse behavior written for the ACT-R cognitive

architecture within the Soar architecture.

A second important obstacle facing modelers is the varied skill set required of

those who build cognitive models. Creating cognitive models often requires significant

training in many areas (Salvucci & Lee, 2003). In most modeling environments (e.g.,

ACT-R, Soar, EPIC, JACK, and Jess), creating cognitive models requires computer

programming skills; knowledge of psychology; and expertise in the domain being

modeled. Unfortunately, few people possess all of these skills. Chapter 2 provides a

detailed and supported discussion of this obstacle.

Viewing cognitive modeling as a complicated software engineering problem

seems to be a natural approach. Creating complex software is not a new problem, and the

software engineering community has developed strong theories and principles about how

to solve complex problems with software solutions. This dissertation illustrates how

applying these lessons appropriately will help alleviate the obstacles shown in Figure 1-3.

A Theory for Simplifying Cognitive Modeling

The aim of the research presented here is to alleviate the obstacles shown in

Figure 1-3. This research accomplishes this by applying three broad software

6

engineering principles to the cognitive modeling task. The focal theory1 offered here

alleviates these obstacles by implementing a high-level language, a maintenance-oriented

development environment, and by providing strong support for reuse within and across

models. Figure 1-4 depicts this theory and Table 1-1 summarizes this focal theory as a

set of hypotheses.

1 Focal theory is used here as defined in Phillips and Pugh (2005): a precise description of the nature of a
problem and the focus of the research, along with any related hypotheses.

Figure 1-4: An illustration of the focal theory.

Table 1-1: The hypotheses forming the foundation of the focal theory.

Hypotheses
1. Cognitive modeling is difficult because there are multiple cognitive

architectures in use. This makes it difficult to compare, reuse, and integrate
models.

2. Cognitive modeling is difficult because the modeling task requires modelers to
acquire a variety of complex skills.

3. Applying three broad software engineering principles to the cognitive modeling
task will alleviate the two obstacles listed above. Specifically, the use of high-
level languages, maintenance-oriented development environments, and integral
support for reuse, will simplify the cognitive modeling task.

7

The next section further introduces this focal theory. Chapter 2 and Chapter 3

provide a more detailed background of the existing research that supports this focal

theory.

High-Level Languages and Compilers

Software engineers have used high-level languages and compilers with great

success (Auerbach et al., 1991; Beck & Perkins, 1983; Brooks, 1987; Daly, 1977;

Maxwell, Wassenhove, & Dutta, 1996). A high-level language and compiler allows the

programmer to express a model using abstract terminology. Consider the two methods

shown in Table 1-2 used to describe the process of fetching a beer from the refrigerator.

The high-level description in the first column is more concise and easier to

specify. However, to carry out these instructions a system must translate them into the

lower-level counterparts shown in the second column. A piece of software called a

compiler often performs this translation

Table 1-2: Two different ways to describe the process of fetching a beer.

High-Level Description Low Level Description
1. Walk to fridge
2. Open door
3. Get beer
4. etc., …
5.

1. Take one step forward
2. Take another step forward
3. Take another step forward
4. Raise arm
5. Grasp door handle
6. Pull
7. etc., …

8

Table 1-3 provides a more realistic example that illustrates the use of a high-level

programming language called Java to describe the process of taking the factorial of an

integer. A compiler translates the Java description into a low-level intermediate code.

Table 1-3 shows the low-level representation that the compiler generates, as well as its

high-level counter part. It is clear in this table just how much easier the high-level

representation is to create, read, and understand than the low-level representation that is

ultimately executed by the Java virtual machine.

The focal theory presented here proposes that the same principle will simplify the

cognitive modeling process by allowing a domain expert to describe the model’s behavior

more concisely using a high-level modeling language. If modelers use a high-level

language appropriately, compilers can make it easier to compare, integrate, and reuse

models across the low-level representations used by architectures.

Of course, it is important to consider the tradeoffs when using high-level

languages. For example, a compiler can translate a high-level representation to a low-

Table 1-3: Two different ways to describe the factorial calculation.

High-Level Description Low-Level Description
public static int factorial(int d)
{
 if (d == 1)
 return 1;
 else
 return d * factorial(d-1);
}

0: iload_0
1: iconst_1
2: if_icmpne 7
5: iconst_1
6: ireturn
7: iload_0
8: iload_0
9: iconst_1
10: isub
11: invokestatic #25;
14: imul
15: ireturn

9

level counterpart in many different ways. The compiler chooses one way, but it may not

always be what the programmer desired. As a result, many popular high-level

representations (e.g., C, C++, and Java) make it possible to override the translation

provided by the compiler, and mix low-level representations with high-level

representation when needed. The same option should exist for high-level modeling

languages. The ability to program at different levels of abstraction is important.

Maintenance-Oriented Development Environments

For complex systems, the process of software maintenance is the most expensive

phase of a system’s development life cycle (Boehm, 1987; Brooks, 1995). Developers

spend a lot of time performing maintenance (Ko, Myers, Coblenz, & Aung, 2006; Tassey,

2002). During maintenance, developers typically perform three types of tasks: fixing

flaws, implementing incremental updates, and adapting to changes in the system’s

environment (Brooks, 1995). Table 1-4 lists examples of these types of tasks.

10

Fortunately, the cost of maintenance has not gone unnoticed by the software

engineering community, and modern software development tools have incorporated rich

support for the tasks listed in Table 1-4 (Coblenz, Ko, & Myers, 2006; Cubranic,

Murphy, Singer, & Booth, 2005; DeLine, Czerwinski, & Robertson, 2005; Ko & Myers,

2004; Lawrance, Bellamy, Burnett, & Rector, 2008; Lewis, 2003; Reiss, 2006).

Development tools with this type of support are called maintenance-oriented

development environments, and at least one has been successful at reducing maintenance

programming tasks by as much as 35% (Ko, Aung, & Myers, 2005). Chapter 3 discusses

these tools in more detail.

Table 1-4: A description of typical software maintenance tasks.

Maintenance Types Example Tasks
Fixing flaws in the system 1. Fix the system so that it does not crash

when saving a file on the network
2. Change the address book so that

names are sorted properly
3. When editing the employee list,

disable the delete button if no
employee is selected

Performing incremental updates 1. Change the existing employee payroll
report so that it includes employee
numbers

2. Add the ability to print reports in
landscape orientation

3. Provide the current date as a default
when entering a new meeting note in
the system

Adapting to changes in the system’s
environment

1. Change the report generator to support
the newly installed printer

2. Change the interface to take advantage
of the new operating system widgets

3. Change the interface to take advantage
of new wide-screen monitors

11

Modelers are also likely to spend considerable time maintaining their models and

should benefit equally from similar tools. The theory presented here suggests that

creating cognitive modeling environments that are maintenance-orientated can reduce the

obstacles shown in Figure 1-3.

Support for Reuse

Support for reuse is the final component of the theory illustrated in Figure 1-4.

The software engineering community has continually reaffirmed the value of software

reuse (Boehm, 1987; Brooks, 1995; Krueger, 1992). As illustrated in the following

example, reuse of software is common in today’s applications. Consider the typical web-

based application, shown in Figure 1-5, built almost entirely from existing components.

On the client side of the application, the graphical user interface is provided by an

existing web browser that offers reusable functionality such as scrolling, HTML

rendering, printing, and hyperlink navigation. Reusable software components also

support the networking infrastructure used by web-based applications. This software

Figure 1-5: An example of software reuse in a modern web-based application.

12

reuse provides developers with reliable and ubiquitous networking for a very low cost.

Finally, on the server side, application servers and database management systems provide

security, transaction management, and data management.

The combination of all of these reusable components provides an infrastructure

that allows developers to spend more time on the business logic unique to the application,

and less time developing solutions that already exist.

The hypotheses shown in Table 1-1 state that cognitive modeling can benefit from

the similar gains provided by reuse in software engineering. For example, if a renowned

vision researcher creates a cognitive model of character recognition, and a famous

psychologist specializing in motor skills creates a model of manual dexterity, then a

graduate student in human computer interaction should be able to reuse these models to

create an agent that uses a keyboard.

This thesis proposes that this type of reuse would help simplify cognitive

modeling. However, as will be shown in the following two chapters, existing modeling

environments and languages do not support reuse. Although some counter-examples

exist (John, Remington, & Steier, 1991; Lewis, Newell, & Polk, 1989), reuse is an

infrequent occurrence in the modeling community.

Preview of Contributions and the Structure of this Thesis

This dissertation demonstrates the benefits of applying software engineering

principles to cognitive modeling development with the creation of a high-level language

and development environment, and with evaluations of this language and environment by

13

students and cognitive modelers. Several contributions arise from this work in areas such

as modeling languages, maintenance-oriented modeling environments, model reuse, and

education. This section only previews these contributions. Chapter 8 provides a more

detailed discussion.

This work’s contributions towards better modeling languages include the only

high-level modeling language with both explicit support for a popular theory of cognition

and the ability to translate models into multiple architectures. This contribution includes

an empirical validation of the high-level language with positive results.

This work’s contributions towards maintenance-oriented development

environments include the only cognitive modeling environment that has support for

simultaneously creating models at three different levels of abstraction: graphically,

textually at a high-level, and textually at a low-level. In addition, this environment brings

recent research in software engineering to the modeling community to support better code

navigation. Results from empirical studies show this environment is both useful and

usable.

With respect to model reuse, this dissertation contributes extensions to a popular

theory of cognition that provide an additional level of granularity. This added granularity

allows for better reuse within and across models. In addition, the high-level language

presented here is the only library-centric modeling language. Modelers must create

libraries, and can search these libraries for relevant components using methods not yet

applied to modeling environments.

This dissertation also makes educational contributions. For example, this work

presents new graphical environments that are based on examples given in a popular

14

textbook and a popular modeling tutorial. This allows students to work in graphical

environments that mirror the examples given in learning materials. In addition, Faculty

has exposed 89 undergraduates and 9 graduates to modeling using this work, and more

will follow in the fall 2008 semester. Students at Tufts University have also used this

work to gain a better understanding of high-level behavior representation languages.

Finally, the three levels of abstraction that this work supports appear to be useful for

teaching low-level rule-based programming. Observations of participants have showed

that editing the high-level graphical representation directly, and then viewing the

generated low-level productions, is a useful way to learn the low-level representation.

This dissertation is composed of four sections: the focal theory, the background

theory, the data theory, and contributions/future work2. This chapter introduces the focal

theory (shown in Figure 1-4), which describes the nature of the problem along with any

related hypotheses.

Chapter 2 and Chapter 3 give the background theory, which supports the focal

theory by synthesizing the current methods used by the cognitive modeling community,

with useful software engineering principles.

Chapter 4 thru Chapter 7 provides the data theory, which describes the precise

methods used to realize the focal theory and the results of the evaluations of these

methods.

Chapter 8 concludes this dissertation with a description of the contributions that

this research has made as well as ideas for future work.

2 The use of this structure for a Ph.D. is described and justified by Phillips and Pugh (2005).

Chapter 2

The Current State of Cognitive Modeling

To understand the problems facing cognitive modeling, this chapter presents the

techniques currently used by modelers. The following reviews behavior representations

methods, low-level behavior representations, popular cognitive architectures, modeling

environments, and reuse in cognitive modeling.

Methods of Behavior Representations

To produce software that exhibits intelligent behavior, a representation that

describes the behavior is required. Modelers typically develop models using

connectionist representations, symbolic representations, or some combination of the two.

Connectionist Representations

Parallel Distributed Processing (PDP) (Rumelhart & McClelland, 1987), also

known as neural networks, uses computer programs to represent behavior by mimicking

the parallel processing in the brain. Modelers often refer to this method of behavior

representation as a connectionist approach because it uses networks of connected

neurons.

The brain is made up of some 10 billion neurons and 60 trillion connections

between them (Shepherd & Koch, 1990), and these connections form a network that

16

allows the brain to function. Neural networks work in the brain as follows: Signals

propagate from one neuron to the next using electro-chemical reaction. Each neuron

connects to other neurons via an axon and the connection takes place at a synapse. The

synapse releases a chemical substance that changes the electrical potential of the cell

body. When this potential reaches some threshold, a pulse sends electricity down an

axon and towards other neurons. This signal changes the electrical potential of other

neurons, that may or may not reach their potential, leading to a continuation of the

electrical signal (Negnevitsky, 2004).

Neural networks in the human brain learn by changing the threshold at which they

fire, and by forming new connections or even migrating to other parts of the network.

The flexibility of the network is what makes it possible for the network to change and for

humans to learn. Because the changes are linked to feedback about what is “right”, the

network will change to produce new and more correct outputs (Negnevitsky, 2004).

Artificial neural networks consist of a set of interconnected simulated neurons.

Each neuron has several inputs and only one output. All networks have a set of input

neurons (the input layer) that can be activated and propagate a signal through a weighted

link (the simulated axon). These signals eventually reach a set of internal neurons (the

middle or hidden layer). When activated, the internal neurons produce a set of output

signals that move across connections that lead to the final output of the network (called

the output layer) (Bigus & Bigus, 2001; Negnevitsky, 2004; Ripley, 1993). Figure 2-1

shows a neural network with a single hidden layer.

17

Using known input/output pairs, researchers can train a network with a single

hidden layer to model a continuous function. It takes two hidden layers to model a

discontinuous function (Minsky & Papert, 1987; Negnevitsky, 2004).

The network calculates the total input activation energy for a neuron using the

weighted sum of the inputs. The neuron does not propagate the signal unless the input

signal exceeds some threshold. If the threshold is met, the neuron emits “+1”; otherwise

it emits “-1”. This type of output (based on some threshold) is called an activation

function. Specifically, the activation function described above (+1 or -1 based on a

threshold) is called the sign function. There are many other types of activation functions

including step, sign, linear and sigmoid. Different activation functions are useful for

different types of problems (Bigus & Bigus, 2001; Negnevitsky, 2004; Ripley, 1993).

Researchers use back propagation to train neural networks. Back propagation

compares the produced output to a desired output, and the error between these outputs

Figure 2-1: The architecture of a typical artificial neural network (Negnevitsky, 2004).

18

propagates through the network (from right to left) so that the weights on the links

between the neurons change to reduce the error. This back propagation is continued for

several iterations until the desired criteria are met (Bigus & Bigus, 2001).

The formula used to adjust the weights during back propagation results in each

weight being adjusted using an error gradient; which is calculated using the error signal

(the difference between actual and desired output) and the derivative of the activation

function (Bigus & Bigus, 2001).

A major advantage of using neural networks to represent behavior is that they are

easy to use. Neural networks do not require the explicit encoding of domain knowledge.

Instead, the network learns this knowledge with a matrix of coefficients and a set of

training data. Modelers present training data to the network, the network produces a

result, and the network updates its coefficients based on the correct result according to

the training data. In addition, many neural network systems (see, for example, Rumelhart

& McClelland, 1987) allow networks to be created and trained by simply entering

information using a graphical user interface; no programming is required.

However, neural networks also have disadvantages. The main criticism of neural

networks is what Minsky called the problem of opacity (1990). The problem of opacity

is that a network represents knowledge by way of numerical weights, and this knowledge

has very little apparent meaning to an observer, when related to the domain in which the

model operates. Essentially, neural networks serve as a black box that accepts input and

produces output, but the relationship between the input and the output is not intuitive.

This makes it difficult to understand, explain, and trust behavior generated by

connectionist approaches.

19

Symbolic representations, which the next section covers, are much less opaque.

Figure 2-2 illustrates his difference by comparing how symbolic and connectionist

representations might represent the concept of an apple.

Notice in Figure 2-2 how transparent the symbolic representation is. This

transparency can be essential for cognitive models, especially when the purpose of the

model is to provide insight into human cognition. It is also important for intelligent

agents when users require an explanation of the agent’s behavior for the justification of

the agent’s actions. Unfortunately, the explicit encoding of domain knowledge that

provides for this transparency leads to new challenges. The rest of this chapter

introduces symbolic representations and the challenges they create, and the rest of this

dissertation deals with alleviating these challenges.

Symbolic Representation

Haugeland (1987) provides an excellent description of the use of symbolic

manipulation in computational psychology. Haugeland explains symbolic manipulation

Figure 2-2: An illustration of the opacity problem with neural networks (Minsky, 1990).

20

by introducing the concept of a formal system. A formal system here consists of a set of

symbols; a starting point for the arrangement of the symbols; and a set of rules about how

the symbols can be manipulated. Games such as chess and checkers are formal systems.

Table 2-1 shows an example of a formal system in a particular state. This system

assigns meanings to symbols such as H and S (e.g., Hungry and Sally). Relationships can

also be modeled using symbols. For example, Sally is hungry might be represented using

H(S).

Programs used for symbolic modeling can take the form of production systems

(Russell & Norvig, 2003). A production system is a formal system that consists of two

categories of symbol groupings: facts and rules. Facts represent declarative memory:

memory that aids in the recollection of simple facts similar to those shown in Table 2-1.

Rules, also called productions, represent procedural memory, which is memory that aids

in the recollection of procedures. The formal system introduced in Table 2-1 could

include the following production: IF H(S) and O(A, T) THEN E(S, A) and REMOVE H(S)

This production declares that if Sally is hungry, and there is an apple on the table,

then Sally should eat the apple, and as a result, she should no longer be hungry. Rules

Table 2-1: An example of a formal system in a particular state.

Symbol Meaning

A Apple

T Table

S Sally

H(S) Sally is Hungry

E(S, A) Sally eats the Apple

O(A, T) The apple is on top of the table

21

like the one shown above interpret and manipulate symbols, and when meaning is

assigned to these symbols (e.g., A means apple), mental processes such as memory,

reasoning, decision making, and problem solving can be modeled (Newell & Simon,

1972).

Artificially Intelligent systems (AI systems) can be production systems that

attempt to model expert reasoning without concern for cognitive plausibility. These

models do not attempt to generate predictions about human behavior, but instead model

perfectly rational thought. One common type of AI system is the expert system, and

there are several examples of the successful use of expert systems.

DENDRAL is an expert system that reasons over mass spectrometer data to

analyze chemicals. Its creation was funded by NASA to analyze chemicals found in the

soil on Mars (Buchanan, Sutherland, & Feigenbaum, 1969). DENDRAL embodied a set

of productions based on the experience gained by analytical chemists, and could quickly

and accurately analyze chemicals using these rules of thumb. Other successful uses of

expert systems include MYCIN (Shortliffe, 1976), an expert system used for medical

diagnosis, and PROSPECTOR (Duda, Gaschnig, & Hart, 1979), an expert system used

for mineral exploration.

AI systems do not typically use theories of cognition and are less interesting as

true models of human behavior.

22

Low-Level Behavior Representation Languages

Two categories can classify behavior representation languages: low-level

behavior representation languages and high-level behavior representation languages.

Many computer programs use a low-level programming language called assembly

language, which is not that far removed from the language of ones and zeros understood

by the computer. High-level languages, on the other hand, contain instructions that map

more explicitly to a problem domain, and therefore create a level of abstraction from the

actual implementation of the system. Chapter 3 covers in detail the advantages high-level

languages have over low-level languages.

There are a wide variety of behavior representation languages in use today (some

connectionist, some symbolic, and some a hybrid of both), some are ideal for the creation

of intelligent agents, while others are useful for cognitive models. The following is a

review of four popular representations (i.e., Jess, Soar, ACT-R, and EPIC) that provides a

clear picture of the state-of-the-art in low-level behavior representation and illustrates the

problems noted in the introduction.

The languages reviewed here are high-level languages with respect to the level of

abstraction they provide above the machine code. However, from the perspective of the

cognitive modeler, these languages are considered low-level behavior representation

languages because they are programmed using rules rather than higher-level descriptions

of behavior (Jones, Crossman, Lebiere, & Best, 2006). The fact that the support for

behavior provided by these languages is implicit in a set of rules is one reason why they

are so difficult to use.

23

The Jess Expert System Shell

Jess is an example of a popular expert system that can be used to create a variety

of different intelligent agents (Friedman-Hill, 2003). Jess is an expert system shell

written in Java. It is fast, lightweight, and easy to integrate with existing Java

applications. Programmers do not typically base expert systems written in Jess on

psychological theories and therefore are not usually presented as psychologically

plausible.

The behavior representation language used by Jess derives from an older rule-

based language called CLIPS (Giarratano & Riley, 1998). This functional programming

language consists entirely of function calls specified as parenthesized lists. Jess includes

strong support for rules and, as stated earlier, this dissertation considers them a low-level

behavior representation language.

Unlike traditional programming languages that solve problems in a

straightforward and predictable way, rule-based languages, like the one used by Jess, are

well-suited for problems that consist of complicated control-flows and a tangled web of

possible decisions. Control flow in rule-based languages, like Jess, emerges from the

rules governing a particular problem. The creation and encoding of these domain specific

rules requires both computer programming skills and domain expertise. Unfortunately,

domain experts typically do not possess strong computer programming skills and

programmers typically do not possess the required domain expertise.

Figure 2-3 shows the Jess architecture, which is typical of many rule-based

systems. The inference engine operates in cycles in which the pattern matcher finds rules

24

in the rule base that apply to the particular situation, and therefore belong to the agenda.

A rule moves to the agenda when its antecedent (the if-part of the rule) has support from

facts in working memory. If multiple rules in the agenda, a conflict resolution strategy

selects a single rule for execution. Finally, the selected rule it is executed leading to

changes in working memory, and the cycle is repeated (Friedman-Hill, 2003).

Unfortunately, Jess can be difficult to use, especially for people without

considerable programming experience. The lack of organization of the rules is a major

reason for the difficulty encountered by rule-based programmers. Clancey (1981) argues

that the complexity inherent in traditional production systems like Jess is a direct result of

the fact that problem solving strategy is hidden implicitly within the structure of the rules

(e.g., the order in which they fire).

Figure 2-3: The architecture of the Jess rule-based system (Friedman-Hill, 2003).

25

Clancey (1981) studied the MYCIN expert system from the perspective of a

teacher and discovered that “there are points of flexibility in the (rule-based)

representation that can be easily exploited to embed structural and strategic knowledge in

task rules” (p. 64). As a result, people other than the original programmers find it hard to

understand and maintain the rules.

To simplify the creation and maintenance of production systems, there is a need to

formalize the structure and strategy used by programmers so that it is explicit in the code.

Clancey (1981) asserts that “Making explicit this structural, strategic and support

knowledge enhances the ability to understand and modify the system” (p. 1). However,

the tradeoff is that the implicit structure of these rules leads to flexibility and emergent

behavior.

A major problem when programming Jess (and other rule-based systems) is the

effort spent on translating the problem solving strategies used by the domain expert into a

set of interrelated Jess rules. An abstract representation, in the form of a high-level

language, that made it possible to explicitly represent a given problem solving strategy,

could make Jess, and other rule-based systems, easier to program.

Cognitive Architectures

Software systems created to implement unified theories of cognition are referred

to as cognitive architectures (Newell, 1990), and they provide the infrastructure to create

models that are based on the supporting theory. The theory embedded in these

architectures makes it possible to create models that mirror and predict human behavior.

26

Unlike AI systems (e.g., Jess), cognitive architectures are supposed to provide a

theoretical base that is used to express the structure and problem solving strategy of the

agent, rather than making this strategy implicit within a set of rules. As will be

demonstrated shortly, popular cognitive architectures do not actually achieve this goal.

Despite this overarching theory, current cognitive architectures (e.g., Soar, ACT-

R, EPIC) are programmed at the production level and suffer from the same exploitation

problem (introduced by Clancey) that plagues rule-based programming languages like

Jess. In addition, there are a number of cognitive architectures currently in use, and it is

very difficult to compare, reuse, or integrate models created using different architectures.

There are several different cognitive architectures available, including Soar, ACT-

R, and EPIC, and the next few sections briefly summarize them. The review provided

here is highly representative of the state of cognitive architectures. More detailed

reviews of cognitive architectures are also available (Morrison, 2003; Newell, 1990;

Ritter et al., 2003).

Soar

Soar is an instantiation of Allen Newell’s Unified Theory of Cognition (UTC)

(Newell, 1990), and as such, provides the modeler with the mechanisms and structures

necessary to use Newell’s theory of cognition to model behavior. Soar implements this

theory implicitly using rules rather than explicitly in the constructs proposed by the

theory.

27

Soar supports the Problem Space Computational Model (PSCM) (Lehman, Laird,

& Rosenbloom, 1996; Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). In Soar,

behavior is defined as movement through a problem space (see Figure 2-4), which is a

high-level organizational tool purported to be used by the brain to partition knowledge in

goal-relevant ways.

As shown in Figure 2-4, a problem space is a set of states (i.e., S0, S1) and a set of

operators (i.e., O0, O1). A task is formulated when a problem space (P) is adopted, a

desired goal (D) is set, and the state of the problem space (S0) is initialized. The task is

attempted as operators are selected and applied to the current state, transforming the

problem space into a new state. Finally, the task terminates when the current state

matches the goal (Newell, Yost, Laird, Rosenbloom, & Altmann, 1991).

Soar supports two different types of memory: long-term memory (LTM) and

working memory (WM). Applying general knowledge in LTM leads to changes to WM

Figure 2-4: Behavior as movement through a problem space (Newell, Yost, Laird,
Rosenbloom, & Altmann, 1991).

28

that can result in the application of operators that move the goal-context towards the goal.

This process takes place in regular intervals defined as the decision cycle. The decision

cycle simulates rational behavior, which consists of applying general knowledge to all

know facts in a situation to generate possible responses. Soar evaluates these possible

responses and chooses the best response.

Unfortunately, there is a large gap between the theory defined by the PSCM and

the language actually used to program Soar. Despite the high-level approach proposed

for the architecture, modelers program Soar at the symbolic level as a production system.

The language used by Soar is an extremely expressive low-level behavior representation

language that allows for the creation of powerful cognitive models. However, the

elements of the PSCM are not obvious when examining Soar productions. If given the

code for a Soar model, a novice would not be able to point out the basic PSCM

components that form the structure of the model. Greg Yost (1993) described this

problem succinctly: “Soar productions do not correspond in any obvious way to PSCM

concepts. The productions have a uniform structure with no syntactic differentiation with

respect to problem space concepts” (p. 29).

Naturally, the problem discussed above makes it more difficult to create models

in Soar. For example, a psychologist that is already well versed in PSCM concepts must

learn how to represent these concepts using Soar productions. Because these productions

do not map very clearly to the PSCM, this translation can be difficult, and might require

skills that psychologists and other domain-experts may not have, or might not care to

have.

29

ACT-R

Developed by John Anderson at Carnegie Mellon University, ACT-R is another

popular cognitive architecture that is based on a theory of cognition initially called:

Adaptive Control of Thought-Rational (ACT-R) (1993). ACT-R models rationality using

a cost-benefit model of decision-making. ACT-R models choose between strategies by

maximizing the probability of success and minimizing the costs in computation

(Morrison, 2003).

ACT-R supports declarative and procedural knowledge. ACT-R represents

declarative knowledge using chunks and procedural knowledge using rules. ACT-R

allows for a modular representation of behavior, where each module is responsible for a

specific function. These modules communicate using a central production system and by

placing information in data in buffers. The ACT-R theory consists of several modules

that communicate via buffers and a central production system (Anderson et al., 2004).

Figure 2-5 shows these modules, buffers, and production system. Interestingly, many of

the architectural pieces map directly to regions of the brain.

30

ACT-R is a hybrid system in which the symbolic reasoning of a formal system is

teamed with sub-symbolic connectionist learning to produce behavior. As described

earlier, sub-symbolic methods rely on assigning weights to various components (e.g.,

facts or rules) and those components become active only when their weights reach certain

activation levels. By adjusting the weights based on feedback, the behavior of the system

changes, resulting in learning.

The programming language used by ACT-R is implemented in Lisp (McCarthy,

1960), which is a functional programming language popular in mathematics and artificial

intelligence. Similar to Jess, Lisp code consists of functions written as parenthesized

lists. Lisp does not contain a rule-based component. Instead, ACT-R augments Lisp

with constructs that add chunks and rules. ACT-R interprets code resulting in rule-based

processing that forms the ACT-R production system.

(DLPFC stands for dorsolateral prefrontal cortex; VLPFC stands for ventrolateral

prefrontal cortex)

Figure 2-5: The organization of information in ACT–R 5.0 (Anderson et al., 2004).

31

Like Soar, modelers program ACT-R at the rule level. As a result, some of the

higher-level cognitive constructs in ACT-R are not as explicit as they could be with a

high-level language. This makes it difficult to ascertain the structures and problem

solving strategies used by an ACT-R model when looking at the ACT-R Lisp code. This

can be especially difficult for modelers without extensive programming skills. However,

understanding and utilizing the psychological theory supported by ACT-R often requires

knowledge of psychology, and implementing a model for a specific domain often

requires a subject matter expert. The need for programming skills, knowledge of

psychology, and domain knowledge complicates the model creation process.

EPIC

The Executive Process Interactive Control Architecture (EPIC) is another popular

cognitive architecture (Kieras & Meyer, 1997). The design of EPIC couples information

processing, and perceptual and motor activity, with a cognitive theory of procedural skill.

EPIC provides perceptual processors, such as a visual processor and an auditory

processor, and motor processors for the hands, eyes, and vocal organs. In addition, EPIC

simplifies the interaction between the model and the computer interface by simulating

screen elements and keys.

Similar to ACT-R and Soar, EPIC is a production system. Modelers are required

to provide a description of the simulated task environment, task-specific sensory

parameters, and a set of productions (rules). EPIC represents productions using the

Parsimonious Production System (PPS) interpreter. There is no high-level language

32

support for the theory supported by EPIC: modelers are required to program at the rule-

level. Consequently, EPIC is also difficult to program.

Summary

Table 2-2 summarizes the previous review of low-level behavior representation

languages. Importantly, not one of the languages shares the same theory of cognition.

This makes it difficult for modelers to compare, reuse, and integrate models across

architectures. In addition, all languages require models to be represented using rules that

form a low-level representation of the actual theory the architecture supports. This

results in languages that are difficult to use, especially for modelers with little or no

programming experience.

High-Level Behavior Representation Languages

The low-level behavior representation languages just reviewed do not provide

explicit support for the structures and problem solving strategies used by the modeler to

Table 2-2: A summary of low-level behavior representations.

Architecture Theory Language Type
Jess None Rule-based Symbolic
Soar PSCM Rule-based Symbolic

ACT-R ACT-R Rule-based with
activations

Hybrid
(Symbolic and
Connectionist)

EPIC EPIC Rule-based Symbolic

33

produce agent behavior. In all these cases, the structures and strategies are implicit

within a set of rules.

The absence of higher-level languages that incorporate cognitive theory as an

explicit object in the language (instead of using rules) has not gone entirely unnoticed

(Ritter et al., 2006). In response, researchers have begun developing higher-level

languages that simplify the encoding of behavior by creating representations that map

more directly to a theory of how behavior arises in humans. In other words, the theory is

explicit in the language.

The following is a review of current high-level languages used to develop

cognitive models. While this is not a complete review of all high-level modeling

languages, it is representative of the current state of high-level languages in use.

RAPs

A good example of a high-level agent programming language that reduces the role

of rules is the language used by Reactive Action Packages (RAPs). RAPs is a plan and

task representation language that is designed to specify tasks and plans in a way that is

flexible enough to deal with the uncertainty of an agent’s interaction within a complex

and unpredictable world (Firby, 1989).

The RAPs language makes it possible to create a hierarchical set of building

blocks that combine in different ways to generate a plan for achieving a task. As the

environment changes, different methods of achieving a task make the plan dynamic.

34

Each RAP divides into three parts: a task goal, a success clause that determines if

the goal is satisfied, and one or more methods that accomplish the goal. Each method

further divides into two associated sections: the steps involved in the method and the

context in which those steps apply.

One key lesson from RAPs is that the high-level language provided by RAPs

decreases the degree of programming skills needed to create agents. Importantly, RAPs

accomplishes this without the use of explicit rules. In addition, RAPs can be combined

easily to form more complicated, dynamic behaviors (Firby, 1989).

RAPs also uses language constructs to accomplish common needs, which can be

difficult to implement using rules. For example, consider a looping construct, which is

not only difficult to implement in rules, but is also difficult to recognize within a rule-

based program: RAPs makes looping constructs explicit using a simple REPEAT-

WHILE language construct. According to Firby (1989), "The primary reason for having

an explicit repeat clause is thus to notify a planner that the RAP is explicitly designed to

loop” (p. 129). Firby’s statement may seem like common sense, but explicit looping

structures like REPEAT-WHILE are not common in rule-based cognitive modeling

languages.

JACK

Created by the Agent Oriented Software Group, JACK implements the Belief-

Desire-Intention (BDI) framework (Norling, 2004). In the BDI framework, an agent

defines a set of beliefs, desires, intentions, and plans. Driven by goals, and what it

35

believes about the world, an agent formulates intentions to execute certain plans.

Intentions lead to the execution of plans that eventually lead to completing a goal

(Norling, 2004).

The programming language used by JACK is a modified version of Java, which is

a modern object-oriented programming language. Because JACK is not rule-based, it

does not suffer from the problems discussed by Clancey (1981). In other words, JACK

directly supports a framework (BDI) that makes the problem solving strategy explicit, as

opposed to hiding this strategy implicitly within a collection of rules.

In JACK, the BDI level of abstraction was added directly to the Java

programming language (Howden, Ronnquist, Hodgson, & Lucas, 2001) providing direct

access to the high-level framework underlying JACK. BDI concepts such as belief sets

and plans are explicit in the JACK language, making the code easier to comprehend and

reducing the problem of hiding structure and strategy within rules.

Unfortunately, because BDI is derived from a folk-psychological view of

reasoning, or an ordinary person's idea of cognition that may not be based on sound

psychological theory (Goldman, 1993), JACK is not well-suited for creating

psychologically plausible models. While JACK provides a high-level language that is

suitable for a wider range of users (not just experienced rule-based programmers), it is

not an ideal language for creating cognitive models. A more comprehensive architecture

that accounts for the low-level details of human cognition may be better suited.

Efforts are underway to augment JACK to be more psychologically plausible

(Norling & Ritter, 2001). COJACK is an agent-based cognitive environment that extends

JACK with psychologically plausible human variability (Norling & Ritter, 2004; Ritter &

36

Norling, 2006). COJACK constrains JACK agents using a set of parameters that vary

agent behavior across all agents, or within an individual agent. COJACK is a good

example of how a cognitive overlay provides new levels of abstraction, such as support

for individual differences. The ability to overlay different levels of abstraction on top of

a high-level behavior language is an important lesson from the COJACT work.

GOMS-Based Languages

G2A (St. Amant, Freed, & Ritter, 2005) is a high-level representation language

that allows for the creation of ACT-R models using the Goals, Operators, Methods, and

Selection Rules (GOMS) description. GOMS is a high-level behavior representation

language that can be used to model skilled users performing error-free tasks. GOMS

excels at individual, user-paced, passive systems (John, 2003). One of the strengths of

GOMS is its simplicity. The GOMS language is abstract and maps directly to the task.

However, this simplicity is also a weakness: GOMS is not well suited for modeling

novice users learning or performing complex, interactive tasks. This is because GOMS

does not model the errors that novice users often make, the change in performance that

occurs because of learning, or the exceptions that can occur during interactive tasks

(John, 2003).

The use of GOMS by G2A allows modelers to create behavior using an explicit

representation of a theory. G2A translates this representation into the low-level rules

required by ACT-R. One naturalistic experiment has shown that G2A has significantly

37

reduced the amount of effort required to produce ACT-R models (St. Amant, Freed, &

Ritter, 2005).

Currently, G2A only supports the creation of ACT-R models. In addition, the

high-level language supported by G2A (GOMS) is limited to modeling expert behavior in

simple tasks. However, the significant speed up in ACT-R model development afforded

by G2A, along with its use of a high-level language and compiler, provides important

lessons for the work presented in this dissertation.

ACT-Simple is another example of a high-level language designed to simplify

cognitive modeling (Salvucci & Lee, 2003). ACT-Simple is similar to G2A in that it

provides a GOMS-based higher-level language that can be complied into low-level ACT-

R rules. ACT-Simple has been shown to be useful for quickly building models that

predict expert performance (Salvucci & Lee, 2003).

ACT-Simple and G2A are good examples of how combining the simplicity of an

abstract behavior representation language, with the complexity of a lower-level cognitive

architecture, can simplify the modeling task. Figure 2-6 illustrates how the languages

and compilers used by ACT-Simple and G2A provide a layer of abstraction above ACT-

R that simplifies the programming task.

38

Unfortunately, both ACT-Simple and G2A suffer from the same problem: the

higher-level languages they use derive from GOMS, which is limited in the types of tasks

it can model. A richer cognitive theory would be useful when modeling certain tasks.

However, the concept of implementing a high-level language on top of an existing

architecture is an important step towards simplifying cognitive modeling. Salvucci and

Lee provide three significant benefits to this approach: theoretical consistency,

inheritance of architecture, model refinement, and model integration (2003).

Theoretical consistency specifies that, regardless of the level used to create the

model, the underlying theory of cognition (for ACT-Simple this is ACT-R) should be

consistent.

Inheritance of architecture specifies that the simplicity of the higher-level

representation does not necessarily limit its predictive power. By compiling the simpler

model into low-level productions for a sophisticated architecture like ACT-R, modelers

get predictions that go beyond what is in the higher-level representation.

Model refinement allows the modeler to resort to working in the low-level

language when the higher-level language is not sophisticated enough to handle issues that

Figure 2-6: G2A and ACT-Simple provide a GOMS-level abstraction on top of ACT-R.

39

arise during model creation. This allows the modeler to create a model using the high-

level representation and then refine it when they need lower-level control. This is an

essential component of any high-level representation, and is another example of the need

to allow programming at multiple levels of abstraction.

Model integration relates to model reuse, which the end of this chapter covers in

more detail. All three of these benefits are important for reducing the degree of

programming skills required by cognitive modelers, and can help with the integration and

reuse of models written across theories and architectures.

TAQL

One major difficulty with programming Soar is the low-level production language

it uses. As mentioned earlier, Soar’s language does not explicitly express the PSCM

theory. This problem was addressed by Greg Yost (1993) using the Task Acquisition

Language (TAQL).

TAQL is a high-level language designed to map directly to the PSCM and to

compile into Soar productions. Yost chose the PSCM for two reasons: It represents the

underlying theory used by Soar, and it provides a simple and flexible problem solving

method.

The evaluations done by Yost on TAQL’s effectiveness were encouraging. The

use of TAQL significantly reduced the amount of time developers spent creating Soar

productions, and this improvement persisted as the problem size and complexity

increased (Yost, 1993).

40

TAQL maintenance ceased when Soar moved to C and Tcl/Tk. As a result,

TAQL only supports Soar 5 (a much older version of Soar). In addition, the syntax of

TAQL is complex (Ritter, 1992) and does not include a visual development environment

to help developers with this complexity. However, TAQL showed that a high-level

language, based on the PSCM and used for Soar development, could be effective.

HTAmap

HTAmap (Heinath, Dzaack, Wiesner, & Urbas, 2007) is a high-level

representation based on the Sub Goal Template (SGT) task analysis method (Ormerod &

Shepherd, 2004). Using HTAmap, SGT task descriptions are transformed into an

intermediate XML-based representation called Cognitive Activity Patterns (CAP). These

patterns can be compiled into lower-level ACT-R productions. Like many of the high-

level languages introduced here, HTAmap is designed to make modeling available to a

wider range of users.

COGENT

COGENT is a graphical environment for creating cognitive models. The primary

goal of COGENT is to provide a tool that simplifies the cognitive modeling process

(Cooper & Fox, 1998).

With the use of a box-and-arrow notation, COGENT makes it possible for

developers to model cognitive functioning quickly, and with little or no programming.

41

Using COGENT, a modeler can build a model based on a set of cognitive processes.

COGENT processes can use either symbolic or connectionist representations. These

processes are connected using communication links (see Figure 2-7). Once a model is

sketched, it is configured and then executed within the COGENT environment to analyze

its behavior (Cooper & Fox, 1998; Cooper & Yule, 2007). The COGENT environment

provides several different visualizations to support behavior analysis.

Figure 2-7: A box-and-arrow diagram of the Modal Model of memory created using
COGENT (Cooper & Yule, 2007).

42

COGENT supports several different model components such as rule-based

processes, memory buffers, connectionist networks, I/O sources and sinks, sockets, and

inter-module communication links (Cooper & Yule, 2007).

COGENT is a modeling environment and graphical language, not a cognitive

architecture. As a result, COGENT does not enforce a set of architectural constraints

based on psychological theory. Instead, COGENT allows modelers to build their own

theory of cognition within COGENT and create models based on these constraints. For

example, in theory COGENT could be use to implement existing architectures such as

ACT-R and Soar (Cooper & Yule, 2007).

The COGENT project provides many lessons. Making cognitive modeling easier

and more accessible is a goal shared by both COGENT and this dissertation. COGENT

approaches this problem using an environment in which users sketch models graphically,

thus allowing programming at a higher level of abstraction. In addition, modelers build

COGENT models from a library of existing components. This flexibility makes it

possible for models that utilize different theories of cognition to interact within the same

environment, and can alleviate the problem of reuse and integration across the many

different theories currently in use. Lastly, COGENT provides visualizations to help with

the analysis of running models. The benefits achieved by COGENT using graphical

development environments, component reuse, theory integration, and visualizations are

valuable.

Unfortunately, COGENT does not take the idea of a graphical development

environment far enough. As will be discussed in Chapter 3, recent research in software

engineering proposes the use of maintenance-oriented development environments that

43

offer more than just model sketching (Ko, Aung, & Myers, 2005; Ko & Myers, 2004;

Lewis, 2003; Reiss, 2006; Robillard, Coelho, & Murphy, 2004). In addition, COGENT

models can only be graphical. There is no option to create models using a lower-level

representation, which as discussed in Chapter 1 and reinforced by Salvucci’s concept of

model refinement, is important. Again, we see the lack of support for programming at

multiple levels of abstraction.

Lastly, COGENT is a meta-architecture. It does not provide a cognitive

architecture for its modelers, nor does it support existing architectures such as Soar and

ACT-R. Modelers must implement their own architectural constraints, and cannot easily

integrate their models with more established, theory-based architectures.

HLSR

The High Level Symbolic Representation (HLSR) project aims at creating a

formal language that encompasses a wide variety of modeling tasks using a variety of

cognitive architectures. Importantly, HLSR strives to make it easier to create models by

providing high-level language support for common modeling problems. HLSR consists

of three core elements: relations, transforms, and activation tables (Jones, Crossman,

Lebiere, & Best, 2006).

A compiler exists that translates HLSR to an underlying architecture. Currently,

HLSR creates Soar and ACT-R productions. HLSR supports two architectures using

something called microtheories, which describe how an HLSR architectural construct

will compile into a specific architecture.

44

The ability of HLSR to use microtheories to remove the architectural

dependencies from the code that represents the cognitive model is an important

accomplishment. This allows modelers to implement a model once, yet executed in

different architectures. In addition, the high-level language used by HLSR is rich enough

to model complex behavior.

However, the architectural neutrality of HLSR results in the lack of explicit

support for a popular unified theory of cognition (e.g., PSCM and ACT-R). Instead,

microtheories hide this theory. Because modelers often use one of these theories of

cognition to understand how to perform a task, they must take an extra step to translate

their understanding of the task into a description using HLSR. This gap between the

modeler’s conceptualization of behavior, and its realization in the high-level language, is

exactly what a high-level language is supposed to prevent.

Summary

Table 2-3 summarizes this review of high-level behavior representations. Notice

that only three of these high-level representations explicitly support a theory of cognition,

and two of these three are based on GOMS, which is limited in scope. HLSR supports

programmable theories using “microtheories”, which makes it extremely flexible, but

removes explicit theory support in the language.

Table 2-3 also shows that only one representation can compile productions for

multiple architectures, which is required if modelers want to be able to compare, reuse,

and integrate behavior across architectures. It is clear from the review that the cognitive

45

modeling community lacks is a high-level representation language that explicitly supports

a well-known theory of cognition, allows for the reuse of behavior, compiles into

productions for multiple well-tested architectures, supports model refinement, and allows

programming at several different levels of abstraction.

Cognitive Modeling Environments

While high-level languages have helped simplify the development of intelligent

agents and cognitive models, their use alone is not enough. Model development can be

further simplified using development environments that simplify the programming task.

These environments help developers build behavior by transforming the task of rule

creation into an interactive process using a graphical user interface (GUI). This reduces

the modeler’s need for advanced programming skills. In addition, some of these

environments help developers maintain their agents using visual debuggers and code

Table 2-3: A summary of high-level behavior representations.

Representation Explicit Theory
Supported

Architectures Supported

RAPs Plan based RAPs
JACK BDI JACK
G2A GOMS ACT-R

ACT-Simple GOMS ACT-R
TAQL PSCM Soar

HTAmap STG ACT-R
COGENT None COGENT

HLSR Programmable Soar and ACT-R

46

navigation techniques. Software developers call these environments Integrated

Development Environments (IDE).

Many of the behavior representation languages discussed above are combined

with development environments to simplify the development process. While helpful,

these environments do not implement recent findings by researchers in the software

engineering community (Chapter 3 discusses these findings in detail). The following is a

review of existing cognitive modeling and intelligent agent environments. Chapter 3

discusses the recent software engineering developments that these environments are

lacking.

Jess Environments

There are several development environments available for use with the Jess expert

system shell. For example, JessPad (http://www.ida.liu.se/~her/JessTab/) provides

integration between Jess and a popular ontology editor called Protégé. This allows Jess

developers to create knowledge using the graphical interface provided by Protégé.

Another Jess development environment is the JessDE

(http://herzberg.ca.sandia.gov/jess/docs/70/eclipse.html). JessDE is a plug-in for the

popular Java development environment Eclipse (www.eclipse.org). JessDE provides

low-level programming features such as syntax coloring, code assistants that

automatically find and correct syntax errors, automatic code formatting, graphical code

navigation, and an integrated debugger.

47

An ACT-R Environment: CogTool

CogTool (John, Prevas, Salvucci, & Koedinger, 2004) is a graphical environment

that allows user interface designers to develop a GUI and at the same time, a cognitive

model that predicts skilled performance of a user utilizing the GUI. Using CogTool,

complex interfaces can be mocked-up using storyboards that demonstrate the interface

and how users can interact with it. From this storyboard, CogTool generates ACT-

Simple code that a compiler translates into ACT-R productions (Figure 2-8). The

resulting ACT-R represents a cognitive model that utilizes the interface. This allows for

the rapid creation and evaluation of user interfaces without the need for programming or

expensive user studies.

Because CogTool does not require any programming, this system promises to

bring modeling to a community (UI designers) that has been limited in its ability to test

interfaces using simulated users. Unfortunately, because CogTool generates ACT-

Simple, it is subject to the limitations of GOMS discussed earlier. In addition, CogTool

focuses primarily on creating and testing user interfaces and does not apply to a wider

Figure 2-8: CogTool provides a graphical environment that produces ACT-Simple code
automatically.

48

range of model types. Finally, CogTool only supports programming at the visual level,

and therefore does not support model refinement.

Soar Environments

Soar developers also benefit from development environments. For example, there

is ViSoar (Hirst, 1999), which is a Tcl/Tk dialogue-driven interface for generating Soar

code automatically, debugging Soar code, and reverse engineering existing Soar

productions. ViSoar provides a GUI interface for creating Soar productions.

Visual Soar (Laird, 1999) is a Java based development environment that

simplifies the creation of Soar productions. Visual Soar makes it easier to maintain a

collection of Soar source code files and a hierarchy of Soar operators. In addition, Visual

Soar supports a Data Map editor that allows some code generation and helps add much

needed type checking when working with elements in working memory. Lastly, Visual

Soar makes it easier to write Soar productions by providing syntax highlighting and other

formatting techniques.

A recent addition to the set of available Soar development environments is Soar

IDE (Knudsen, Quist, Ray, & Wray, 2007). Soar IDE is an Eclipse plug-in similar to

JessDE, that it provides syntax coloring, code assistants that automatically find and

correct syntax errors, automatic code formatting, graphical code navigation, and an

integrated debugger.

Unfortunately, all Soar IDEs are designed for experienced Soar programmers.

Not one is built to support users with a variety of skills and experience.

49

Summary

Table 2-4 summarizes the review of cognitive modeling development

environments. Importantly, this table shows that not one of the environments provides

good support for programming at multiple levels of abstraction. In addition, the

environments discussed above do not implement recent findings by researchers in the

software engineering community. Chapter 3 presents the recent software engineering

work that can greatly improve the effectiveness of many of these environments.

Table 2-4: A summary of cognitive modeling environments.

Environment Architecture Support for programming at multiple
levels of abstraction?

JessPad Jess No. Only supports graphical
programming.

JessDE Jess No. Only supports text-based
programming of the low-level

productions.

CogTool ACT-R (via ACT-
Simple)

No. Only supports graphical
programming.

ViSoar Soar No. Only supports dialogue-driven
programming.

Visual Soar Soar No. Only supports text-based
programming of the low-level

productions.

Soar IDE Soar No. Only supports text-based
programming of the low-level

productions.

50

Reuse in Cognitive Modeling

Unfortunately, compared to traditional software development there has been very

little reuse of models of human behavior (Jones, Crossman, Lebiere, & Best, 2006). A

major reason for this is that low-level representation languages are rule-based, yet many

of these languages do not provide support for the reuse of rules.

For example, modern programming languages such as Java and C# make it

possible to package a set of classes into libraries that can be easily included and reused by

other systems. In addition, these libraries contain standard interfaces that allow

development environments to discover the contents of the libraries and how to share

them.

Engineers have also applied the concept of self-describing reusable libraries to the

World Wide Web in the form of web services. These services are discoverable and self-

describing. Unfortunately, none of the low-level behavior representation languages

described here (e.g., Jess, Soar, ACT-R, EPIC) provide support for this type of reuse.

The nature of rule-based representation languages also makes it difficult to reuse

the components of a rule. For example, the two rules shown in Table 2-5 share a similar

condition: an enemy tank that is nearby and aggressive. However, what defines a tank as

nearby and aggressive can consist of a complex set of sensor readings and logical tests.

In addition, these definitions may change over time as operational procedures evolve or

sensors become more sophisticated. Unfortunately, rule-based languages require that the

modeler repeat the conditions in every rule in which they are used. As a result, when the

definition of nearby or aggressive changes, all the rules that rely on these definitions must

51

also change. The same thing is true for actions contained in the consequent of a rule.

This makes it difficult to reuse conditions and actions within and across models.

Reuse in rule-based languages is also difficult because of the dependencies that

exist between the conditions in the rule’s antecedent and the actions in the rule’s

consequent. For example, in the second rule shown in Table 2-5 the attack action relies

on the condition identifying the enemy tank. This dependency between conditions and

actions makes it difficult to reuse the condition or the action within a new context (e.g.,

the attack action must be used in a rule whose antecedent identifies an enemy tank).

As languages become more high-level, reuse becomes more common (Brooks,

1987). For example, because JACK uses object-oriented concepts supported by a robust

object-oriented language (Java), it is easier to create and share libraries of JACK

behavior. In addition, HLSR provides support for the creation of named relations and

transformations that modelers can reuse within and across models.

Summary

This review covers a set of modeling architectures, behavior representations, and

environments that is representative of the current state of cognitive modeling. In

Table 2-5: Problems with reuse in rule-based languages.

Rules That Share Conditions

If an enemy tank is nearby and aggressive and this tank is in trouble then retreat.

If an enemy tank is nearby and aggressive and this tank is healthy then attack the
enemy tank.

52

addition, it illustrates the current problems with cognitive modeling and several recent

developments that help simplify modeling.

One major problem presented here is that low-level symbolic languages are the

norm in the most popular and powerful architectures (see Table 2-2). This increases the

required skill set for modeling and reduces the population of potential modelers (Pew &

Mavor, 1998; Ritter et al., 2003; Salvucci & Lee, 2003; Yost, 1993). In addition, the

architectures all support different underlying theories, which makes it very difficult for

models written for different architectures to be compared, shared, and reused (Gluck &

Pew, 2001a; Jones, Crossman, Lebiere, & Best, 2006; Jones & Wray, 2003).

The good news is that high-level languages are emerging that help support reuse

and more closely map the theory or framework to the representation (Ritter et al., 2006).

Some of these languages (e.g., RAPs, and JACK) also support higher-level abstractions

such as plans, beliefs, desires, and intentions.

However, only one language reviewed here (HLSR) creates models that run in

more than one architecture (see Table 2-3). The cognitive modeling community lacks is

a high-level representation language that explicitly supports a well-known theory, allows

for the reuse of behavior, compiles into productions for multiple well-tested architectures,

supports model refinement, and allows programming at multiple levels of abstraction.

In addition to high-level languages, development environments are also important

for supporting a larger audience of modelers. Once again, there is some good news.

Development environments for modeling are emerging (e.g., JessDE, Visual Soar, and

CogTool). Unfortunately, there is a strong need for environments that strike a better

balance between the support for experienced modelers (e.g., Visual Soar, Soar IDE) and

53

environments that support end-user programmers (e.g., COGENT and CogTool) by

supporting different levels of programming to ease the transition as users gain

experience.

There are many lessons here, and their impact on the direction of this dissertation

will become even more evident in Chapter 3, which reviews important software

engineering principals. Research in software engineering is rich in methods for creating

high-level languages that simplify programming, support reuse, and work with multiple

platforms. In addition, there is significant software engineering research that can help

with creating environments that support both the beginner and experienced programmer.

The next chapter reviews this research and completes the theoretical foundation for this

dissertation.

Chapter 3

Important Lessons from Software Engineering

The focal theory offered in this dissertation suggests that utilizing well-

established software engineering principles can simplify cognitive modeling and

intelligent agent development. This chapter reviews important literature about software

engineering principles such as high-level languages and maintenance-oriented

development environments. By combining the lessons from Chapter 2, this chapter

builds a foundation for the focal theory presented in this dissertation.

High-Level Languages

Software developers regularly use high-level languages because they simplify the

creation of complex systems. The influence high-level languages have had on

programming is made clear by Brooks (1987, p. 14):

Surely the most powerful stroke for software productivity, reliability, and
simplicity has been the progressive use of high-level languages for
programming. Most observers credit that development with at least a
factor of five in productivity, and with concomitant gains in reliability,
simplicity, and comprehensibility.

Empirical evidence of the advantages of high-level languages also exists in the

literature. For example, as far back as 1977 a 20% reduction in development time was

reported by GTE Automatic Electric Laboratories when development was done using a

high-level language as opposed to assembly language (Daly, 1977). In addition, a survey

55

of professional programmers showed that developers rated high-level languages as an

effective method for software development (Beck & Perkins, 1983). More recent

empirical evidence also exists in the literature (see, for example, Maxwell, Wassenhove,

& Dutta, 1996).

Unfortunately, as mentioned in Chapter 2, many of the cognitive modeling

environments in use today rely on low-level rule-based programming languages, and this

is a major reason for the difficulty encountered by modelers. The problem with the low-

level production systems is simple: The concepts that are embodied in the low level-

language have little to do with the concepts that are used by the programmer to solve the

problem. Modelers need higher-level representations.

The Conceptual Gap

A study by Petre and Blackwell (1997) showed that programmers create mental

images when they design programs, and that these images rarely match the programming

language being used. According to Petre and Blackwell (1997), “it appears that the

experts are not designing ‘close to the code’; they are thinking abstractly and

strategically, in some cases with a substantial translation to the implementation” (p. 110).

The conceptual gap between the ideas used to solve the problem, and the ideas

supported by the language, forces the programmer to keep track of two distinct models:

the one embodied in the program and the one in their heads. The research done by Petre

and Blackwell (1997) reinforces the idea that the model used by programmers is

primarily visual. This visual representation is rich enough to allow the programmer to

56

engage in mental simulation: the act of “building and exploring structures ‘in their heads’

before making commitments to external representations” (Petre & Blackwell, 1997, p.

111).

The use of mental simulation in programming is also evident in work done by

Salomon (1992). Salomon provided good advice on the importance of well-designed

high-level languages in his discussion of the interplay between machine and human

independence. Salomon (1992) argues that “when one designs a programming language,

one should design it not only for execution by machines, but also for execution by

humans” (p. 49).

Successful Use of High-Level Languages

There are many examples of how researchers have successfully applied high-level

languages to a specific domain. For example, in the early 1990’s, traditional

programming environments were geared towards the creation of single applications. As

the need to create distributed applications (applications that work together across

processes or computers) increased, programmers had to step away from the current high-

level language of the time (in this case the C programming language) and program using

low-level assembly language. The need for assembly language made distributed

application development very difficult because of the low-level nature of assembly

language.

As distributed systems became more prevalent, researchers began to experiment

with new languages that directly supported the distributed programming paradigm.

57

Auerbach and colleagues (1991) introduced a solution in which “The complexity (of

distributed programming) is hidden inside the implementation of a small number of

higher-level language constructs” (p. 173). The languages created by Auerbach et al.

(Hermes and Concert-C) were successful because they simplified the task of distributed

programming by directly supporting the distributed programming paradigm.

Modern object-oriented languages provide a more recent example of the

successful application of high-level representations. Object-oriented analysis has the

advantage of simplifying the mapping of the real world domain to the code designed to

model it (Coad & Yourdon, 1991). Object-oriented techniques accomplish this by

making classes of objects, and objects themselves, explicit structures of the

representation. Researchers theorize that this direct mapping between the objects in the

real world, and the objects in the actual representation, simplifies the creation and

comprehension of software (Coad & Yourdon, 1991).

Interestingly, the application of object-oriented programming languages has not

been universally successful. A study done by Agarwal, et al. suggests that the success of

the adoption of a high-level language depends on the experiences of the programmers and

the nature of the domain being modeled (2000). In other words, the language not only

must map to the domain, but also to the programmers’ preconceived way of viewing and

modeling reality. The successful adaption of object-oriented representations requires a

good fit between the type of problem and also the modelers themselves (Agarwal, De,

Sinha, & Tanniru, 2000). This lesson is very applicable to the development of high-level

languages for cognitive modelers. The review given in Chapter 2 provides lessons about

58

the theories cognitive modelers use to represent behavior. A successful high-level

language must ground itself on one of these popular cognitive theories.

Maintenance-Oriented Environments

Programmers spend considerable time performing software maintenance.

According to Brooks (1995), the total cost of software maintenance is often at least 40%

of the total cost of developing it the software. A recent study done by the National

Institute of Standards and Technology (Tassey, 2002) showed that U.S. programmers

spend over 70% of their time testing and debugging. One reason for this large cost is that

fixing a bug, which on average takes 17.4 hours to do (Tassey, 2002), results in a

considerable chance of introducing a new bug (Brooks, 1995).

According to the National Institute of Standards and Technology, programmers

blame testing and debugging tools for this problem (Tassey, 2002). As a result,

researchers often describe the process of software maintenance as a one-step forward and

one-step back affair (Brooks, 1995, pp. 122-123).

Fortunately, the use of high-level languages can help with maintenance (Brooks,

1995). For example, a literature review by Hordijk and Wieringa (2005) categorized the

factors that influence the maintainability of a software system. Included in these factors

were code-level properties such as code complexity and duplication. High-level

languages help here because they reduce code complexity and duplication.

In addition to high-level languages, the survey done by Hordijk’s and Wieringa’s

(2005) also identified development environments as a factor that influences

59

maintainability. This implies that creating environments that explicitly support software

maintenance (referred to as maintenance-oriented development environments) can help

reduce the cost of software development.

Cause/Effect Chasm, Program Slices, and Editing Above the Code

Weiser (1982) attempted to understand how programmers encode and process

information during software maintenance. Weiser performed an experiment to test his

hypothesis that programmers use something called program slicing during software

debugging. According to Weiser (1982, p. 446), program slicing is the process of

striping a program of code that has no influence on the particular problem being

debugged, thus being left with relevant program slices. Weiser’s study suggested that

providing support for the slicing process, as part of the development environment, would

be beneficial to programmers engaged in debugging.

Additional work on supporting maintenance-oriented tasks was done by

Boshernitsan (2003). Boshernitsan proposed the use of a scripting language that modifies

source code at a level above the syntax, allowing the programmer to alter code at a much

higher-level. Boshernitsan proposed graphical user interfaces to simplify the use of such

a scripting language. As demonstrated next, editing a program at a level above the syntax

has been shown to be a useful concept, not just for maintenance but also for teaching

programming to novices.

Alice (Conway et al., 2000), an innovative approach to teaching programming

concepts, is a paragon of the concept of editing above the level of syntax. Students create

60

Alice programs by placing objects in a 3D world, and then visually programming them to

interact. The Alice development environment hides the syntax from the programmer, and

eliminates the possibility of syntax errors. At the same time, the concepts students use to

animate their 3D world closely match the concepts of a modern object-oriented

programming. This makes it possible for students to learn object-oriented programming

without the frustration that fragile, text-based environments often cause entry-level

programmers (Dann, Cooper, & Pausch, 2008).

One major goal of Alice is to introduce programming to a much wider audience.

For example, a study by Kelleher, Pausch, and Kiesler (2007) was successful using Alice

to introduce programming to middle-school girls, which may help bring a traditionally

under-represented group to computer science. However, transitioning students from the

Alice environment to one of the more traditional high-level languages (e.g., C++, Java)

has been shown to be problematic (Powers, Ecott, & Hirshfield, 2007).

Powers, Ecott and Hirshfield (2007), have encountered trouble transitioning

students from the Alice environment to a more traditional programming language such as

Java. They found that students struggled with the shift to advanced object-oriented

concepts, and had trouble seeing the relationship between Java code and Alice code. In

addition, by deemphasizing syntax, Alice may have contributed to students having

trouble adjusting to the syntax intensive Java programming environment.

There are two very important lessons that the Alice project contributes. First, it is

possible to bring computer programming to a wider audience by creating a visual

environment that allows programming at a level above syntax. Second and most

important, successful environments must provide a bridge between the abstract visual

61

programming they provide and the concepts that the programmers may ultimately need to

grasp.

This dissertation proposes that an environment can simplify this transition by

supporting programming at multiple levels, instead of just at the visual one, thus allowing

the environment to better accommodate programmers as they gain experience.

Program Navigation

Much recent work pertaining to the simplification of the software maintenance

task has been done (Coblenz, Ko, & Myers, 2006; Ko, Aung, & Myers, 2005; Ko &

Myers, 2003, 2004; Ko, Myers, Coblenz, & Aung, 2006; Reiss, 2006; Robillard, Coelho,

& Murphy, 2004). On particularly rich area is program navigation.

For example, a study by Ko, Myers, Coblenz, and Aung (2006) found that

developers spend 35% of their time (much of which could have been avoided given better

tools) navigating source code to find fragments relevant to a specific task. This illustrates

the need to provide better support for the navigation task.

Importantly, the development environment played a large role in what the

developer perceived as relevant information. Interestingly, the use of poor or incomplete

terms when searching for relevant code fragments caused much of the navigational

overhead incurred by the developer.

62

Working Sets and JASPER

Ko, Aung, and Myers (2005) also looked at how Java programmers approached

the task of software maintenance. Their study suggested that programmers perform

maintenance by forming a working set of task relevant code fragments. This working set

was typically built by the programmer using the find and replace dialog or visually

searching the program’s source code. This type of methodical, structured investigation of

code, in which developers kept a record (or working set) of their findings, was also

reported in an earlier study conducted by Robillard, Coelho, and Murphy (2004), and is

similar to the concept of program slices (Weiser, 1982).

After the developer formed the working set, they navigated the working set to

uncover direct and indirect dependencies. An example of a direct dependency would be

the link between an element’s use and its declaration. An example of an indirect

dependency would be the link between an element’s use and the place where code

manipulated the element’s value.

An outcome of their study is a set of design guidelines that they suggest will

enhance support for finding, navigating, and editing working sets of task relevant code

fragments. Table 3-1 lists these findings.

63

The theories resulting from the empirical studies conducted by Coblenz, Ko,

Aung, and Myers (2006) are embodied in a tool called JASPER. Based on the guidelines

given in Table 3-1, JASPER makes it possible for developers to gather artifacts that are

relevant to the maintenance task into a working set. Each working set can consist of code

fragments, uniform resource locators (URL), and free-form notes. Coblenz et al. are

currently evaluating of JASPER’s effectiveness in reducing the time required to perform

software maintenance tasks.

Despite the demonstrated importance of the maintenance task, not one of the

cognitive modeling environments reviewed in Chapter 2 support any of the design

requirements listed in Table 3-1.

Table 3-1: Design requirements that help support the use of working sets during software
maintenance (Ko, Aung, & Myers, 2005).

64

Group Memory and Information Scent

Researchers have attempted to address the problem of navigational overhead

incurred by the developer. Specifically, researchers are looking at reducing the use of

poor or incomplete terms when searching for relevant code fragments.

For example, DeLine, Czerwinski, and Robertson (2005) created Team Tracks, a

system that helps new developers comprehend programs by recording and presenting

code navigation patterns of fellow developers. Visualizations in Team Tracks are based

on two ideas. First, the more often developers view a code fragment, the more important

that fragment is for new developers. Second, how often a developer visits two different

code fragments in sequence, determines the strength of the relationship between these

two fragments. The results of two user studies showed that Team Tracks helped

developers navigate to areas of code that were relevant to their current goals.

Hipikat is another example of leveraging the group history of developers

performing maintenance (Cubranic, Murphy, Singer, & Booth, 2005). Hipikat is a

recommender system that uses the history of a project’s development as a basis for its

recommendations. In addition to the source code, Hipikat also includes other forms of

history such as requirements specifications, email and discussion postings, test plans, and

bug reports. Most interesting is the fact that Hipikat uses information about the current

task as a basis for the kinds of recommendations it makes. Like Team Tracks,

researchers have demonstrated Hipikat’s usefulness in two user studies.

Another way of reducing the navigation overhead is to extend information

foraging theory (Pirolli & Card, 1999). Programmer Flow by Information Scent (PFIS) is

65

a model that predicts how programmers navigate while performing software maintenance

(Lawrance, Bellamy, Burnett, & Rector, 2008). Based on information foraging theory,

the theory suggests that programmers use “scent” to determine where to navigate in the

source code to solve a particular problem.

Building on the Web User Flow by Information Scent (WUFIS) (Chi, Pirolli,

Chen, & Pitkow, 2001), PFIS uses the source code’s topology and its scent to predict

where a programmer will navigate. According to Lawrance et al., the concept of scent

relates linguistically to the words used to express a developer’s task. PFIS relies on the

topology of the source code in the same way that WUFIS relies on the topology of the

Web. Links in the source code are a means by which the programmer can navigate from

one place in the code to another via a single click. Links in PFIS are dependent on the

actions allowed by the programming environment. For example, a programmer using the

Eclipse development environment will have more links available to them than if they

were using a simple text editor such as VIM.

From user studies, PFIS did a good job of predicting aggregated human

navigation decisions and had better performance than the individual programmer had.

Lawrance et al., also suggest that different tasks may rely more or less on information

scent. For example, it may be that fixing a bug requires the developer to follow scent

more than adding a new feature.

Another way to streamline the software maintenance process is to make it easier

for programmers to discover the intent of the programmer when creating the code. This

intent can provide “scent” that helps developers search for relevant code fragments.

Without access to this intent, it can be difficult for developers to perform software

66

maintenance task (Ko & Myers, 2004; Lewis, 2003). Using the intent recorded in the

names of the software components, or in comments created by developers, it would be

possible to further reduce the overhead of source code navigation (Ko, Myers, Coblenz,

& Aung, 2006).

Unfortunately, developers currently spend a lot of time figuring out the rationale

that other developers implicitly embedded within the source code. In a study of software

developers conducted by LaToza, Venolia, and DeLine (2006), respondents conveyed

that understanding the rationale behind code was a serious problem faced during

maintenance. In addition, they found that developers spend a lot of effort understanding

why the code is implemented the way it is, how the code works, and what the code is

trying to accomplish.

Ko and Myers confirmed this in another study of how programmers debug. Ko

and Myers found that 68% of the questions asked by programmers were about “why

didn’t” something happen or “why did” something happen (2003). Answers to these

questions rely, in part, on understanding the rationale behind the design of the program,

and the easier it is to get at this design rationale, the easier it will be for the programmer

to find and fix the bug.

Making design rationale more explicit using documentation would help alleviate

this problem, but surprisingly, developers do not take the time to consult existing

documentation to uncover the rationale behind the code they are working on. The

reasons given are that the documentation is hard to locate or often out of date. According

to LaToza, Venolia, and DeLine (2006, p. 499), “even if developers thought there was a

67

possibility of a design document containing the information they cared about, it was not

worth looking for.”

Ko and Myers developed an Interrogative Debugging environment (a debugger

that allows developers to debug by asking questions) called Whyline (2004). Whyline

allows programmers to ask “why did” and “why didn’t” questions during debugging,

allowing the programmer to gain a better understanding of the intent and purpose of the

code being debugged.

Another project that has contributed to better maintenance-oriented environments,

and allows the programmer to interrogate the program to infer rationale about its design,

is the Omniscient Debugger for Java. Created by Bil Lewis, the Omniscient Debugger

changes the typical paradigm of a debugger from finding out what is going on at a

specific point in time, to keeping track of the complete history of a running program.

Using the Omniscient Debugger, programmers can navigate through time (forward and

backward) keeping an eye on values of interest (Lewis, 2003).

Creating facilities to help developers understand the rationale of the design of a

system, and to maintain executing systems, has not been limited to traditional software

development. Researchers have also done work on explanation facilities used for

explaining the behavior of intelligent agents. Haynes, Cohen, and Ritter (2008) provide a

review of these systems, along with a novel approach to supporting explanation in agent

development environments. According to Haynes et al. (2008), the guidelines presented

“support creating more usable and more affordable intelligent agents by encapsulating

prior knowledge about how to generate explanations in concise representations that can

68

be instantiated or adapted by agent developers” (p. 1). These explanations can be used to

help developers find relevant code fragments quickly.

Not one of the cognitive modeling environments reviewed in Chapter 2 take

advantage of any of the code navigation techniques reviewed here.

Cognitive Dimensions

A discussion of high-level languages and maintenance-oriented environments is

not complete without a review of notational systems and cognitive dimensions. A

notational system consists of a high-level language, a development environment, and a

medium of interaction (Blackwell & Green, 2003).

According to Blackwell and Green (2003), the problem with notational systems is

that “every notation highlights some kinds of information, at the cost of obscuring other

kinds” (p. 104). The degree in which this tradeoff exists was evident in the review of

current modeling languages presented in Chapter 2. Blackwell and Green introduce

cognitive dimensions as a way of helping the language designer deal with this tradeoff.

Designers can also use cognitive dimensions as a questionnaire-based evaluation

tool. Kadoda, Stone, and Diaper (1999) were among the first to use cognitive dimensions

as an evaluation tool. Using only the dimensions deemed relevant to their system,

Kadoda et al. presented users with a questionnaire that paraphrased the dimensions in

terms of the system under consideration. Blackwell and Green (2000) took this

evaluation technique a step further by creating a questionnaire that presented all of the

dimensions, leaving it to the user to decide which ones were relevant. By using cognitive

69

dimensions to structure feedback questionnaires, designers can get detailed feedback

using a common vocabulary for evaluating the quality of a notational system. Designers

can use this feedback inform design changes and improve the system.

Examples of cognitive dimensions include Closeness of Mapping, which is a

dimension that measures how closely the notational system maps to the result it

represents. For the reasons already discussed, this dimension measures a critical attribute

of a well-designed high-level language. Another relevant cognitive dimension is

Viscosity, which measures how easily a high-level language and environment allows

change. A language or environment that makes it easy for developers to perform

maintenance tasks would have low Viscosity.

Table 3-2 gives a summary of some of the more useful dimensions for evaluating

high-level behavior representations and cognitive modeling environments.

70

Software Reuse

One way to simplify software maintenance is to support code reuse (Boehm,

1987). Reuse of code, even within a single program, can reduce development and

maintenance costs. As far back as 1969, the importance of software reuse was presented

as an invited paper by McIlroy (1968). In his talk, McIlroy (1968) described a scenario

of the future of software reuse: “...the purchaser of a component from a family will

choose one tailored to his exact needs. He will consult a catalogue offering routines in

Table 3-2: Useful cognitive dimensions for evaluating a high-level behavior
representation language and modeling environment.

Cognitive
Dimension

Description

Visibility How easy is it to view the elements in a model, including their
internal details?

Viscosity How easy is it to make changes to an existing model? The less the
viscosity, the easier it is to change the model.

Diffuseness How many symbols or how much space does the notation require to
produce a certain result or express a meaning?

Hard-mental
operations

How much hard mental processing lies at the notational level, rather
than at the semantic level? Are there places where the user needs to
resort to fingers or pencilled annotation to keep track of what is
happening?

Error-proneness How easy is it to make errors using the behavior representation
language?

Closeness of
mapping

How closely does the behavior representation language match the
way that the modeler describes the behavior?

Role-
expressiveness

How easy is it to discover why a modeler has chosen a particular
design? Explicit support for design rationale, as discussed earlier,
improves a systems role-expressiveness.

Progressive
evaluation

How easy is it to evaluate and obtain feedback on an incomplete
solution?

Premature
commitment

How often is the developer forced to make a commitment in the
model before there is enough information to make the commitment?

71

varying degrees of precision, robustness, time-space performance, and generality” (p.

140).

Progress towards this vision has since been made in software engineering and the

value of software reuse has continually been reaffirmed (Brooks, 1995; Krueger, 1992).

Empirical evidence of the advantages of software reuse is also evident in the literature.

For example, reusable libraries created by Raytheon have resulted in the development of

new applications using as much as 60% preexisting code (Boehm, 1987). This resulted in

cost savings of 10% in the design phase, 50% in the code and test phase, and 60% in the

maintenance phase (Boehm, 1987). In addition, Toshiba’s library of reusable

components for industrial process control has also resulted in significant productivity

gains (Boehm, 1988b).

Four Dimensions of Reuse

A useful framework for considering reuse was developed by Krueger (1992).

Krueger breaks software reuse into four dimensions: (a) abstraction, (b) selection,

(c) specialization, and (d) integration.

According to Krueger (1992), “Abstraction is the essential feature in any reuse

technique” (p. 133). Abstraction allows programmers to consider a programming task at

a more general level, separate from the concrete realities of the modeling language, and is

a reason why high-level languages provide such great support for reuse. Although often

taken for granted, abstraction in high-level languages is one of the most successful

vehicles of software reuse (Brooks, 1987; Krueger, 1992).

72

Selection, as defined by Krueger, helps programmers locate and select reusable

components. Reusable components are not useful when they are difficult to locate,

select, and compare to other software components. According to Kruger, good

maintenance-oriented environments should make it easy for clients to search for reusable

components based on a number of criteria.

Krueger (1992) defines specialization as allowing programmers to tailor reusable

components to their specific needs. Specialization is essential for reuse because the

reusability of a component is dependant on its generality. Without specialization,

developers would be unable to configure a component for a specific use: transforming the

component from a general artifact to a more specialized object.

The fourth and final of Krueger’s dimensions is integration, which designers can

accomplish with an environment that allows developers to combine reusable components

into a working program. The usefulness of reusable components depends on how easy it

is to integrate these components. Again, a maintenance-oriented environment can play a

major role in simplifying the integration piece of reusable software. All four of

Krueger’s dimensions are necessary for effective software reuse and high-level behavior

representation languages and cognitive modeling environments must support them.

Reuse with Design Patterns

Design patterns provide another effective way to promote reuse and, in some

cases even reduce defects (Vokac, 2004). Design patterns are reusable templates that

provide solutions to recurring problems. A design pattern consists of four elements: The

73

pattern name, which makes it possible for developers to identify and communicate about

a pattern; a problem, which helps developers recognize when a particular pattern is

useful; a pattern solution, which provides an abstract description of the pattern and how it

can be used to solve the problem; and the consequences, which discuss the trade-offs

related to the pattern’s use (Gamma, Helm, Johnson, & Vlissides, 1995).

An example is useful to illustrate how design patterns can promote reuse. The

Strategy design pattern, described in the seminal book on design patterns (Gamma, Helm,

Johnson, & Vlissides, 1995), is a rather simple design pattern meant to solve the

following dilemma: A programmer wishes to create a system that implements many

different strategies for solving a particular problem, and would like to decouple these

strategies from the program that solves them. In other words, the programmer needs to

be able to create new strategies without breaking the code that uses them to solve the

problem.

Figure 3-1 illustrates (using the Universal Modeling Language, a standard

graphical language for illustrating object-oriented designs) the Strategy pattern, an

object-oriented pattern that provides a solution to this general problem.

Figure 3-1: The strategy design pattern.

74

In Figure 3-1, the entity that solves the problem (Problem) uses an abstract

definition of a strategy to find a solution. This abstract entity can take many forms:

StrategyA, StrategyB, and StrategyC. However, the problem itself is not aware of the

details surrounding these different strategies. Designers can add, remove, or alter

concrete strategies without affecting the entity that solves the problem. This decouples

the problem from the strategies used to find a solution making it easy to reuse strategies.

Developers can adopt the general configuration of object-oriented entities shown

in Figure 3-1 to solve any number of related problems. Gamma et al. (1995) cataloged

several object-oriented design patterns like this in a single publication that has since

served as a cookbook of reusable solutions for object-oriented developers.

Unfortunately, a similar collection of reusable solutions for cognitive modelers is

absent and its creation would help promote the reuse of behavior in the cognitive model

community. Of course, before modelers can build this collection, there must be support

for reuse within the behavior representation languages.

Summary

This chapter presents a representative subset of the large body of literature

supporting the use of high-level languages, maintenance-oriented environments, and

reuse in software development.

High-level languages have played an important role in improving the

productivity, reliability, and simplicity of software. However, the review of popular

75

agent and cognitive architectures in Chapter 2 shows that they are all programmed using

low-level rule-based languages.

A conceptual gap between the ideas used to model human behavior, and the ideas

supported by the language, can force the programmer to keep track of two distinct models

(Petre & Blackwell, 1997). Therefore, a successful high-level behavior representation

language should closely match a widely adopted theory of cognition. In addition, the

success of the adoption of a high-level language depends on both the representation and

the experiences of the programmers (Agarwal, De, Sinha, & Tanniru, 2000). As a result,

the paradigm supported by the high-level behavior representation language should be

familiar to cognitive scientists. Unfortunately, in the review in Chapter 2 only one of the

high-level behavior representations reviewed (TAQL) explicitly supported a theory of

cognition (other than those that support GOMS, which is limited in scope).

Recent research has aimed at improving development environments by adding

features that simplify all aspects of development. The environments reviewed in Chapter

2 (e.g., JessPad, CogTool, Visual Soar) do provide cognitive modelers with environments

that help with the creation of model. However, the fact that developers might be

spending 35% of their time navigating source code (Ko, Myers, Coblenz, & Aung, 2006),

underscores the need for maintenance-oriented environments that support code

navigation. Researchers are looking at techniques such as working sets, group memory,

and information scent to improve the modeler’s ability to navigate code quickly to find

task relevant fragments. Yet not one of the cognitive modeling environments in Chapter

2 takes advantage of these techniques.

76

The software engineering literature also clearly documents the benefits of reuse.

Traditional software development has been able to reuse software by using high-level

languages, following Krueger’s dimensions of reuse, and taking advantage of libraries of

design patterns. Fortunately, many of the high-level behavior representation languages

reviewed in Chapter 2 help make reuse within a cognitive model possible. However,

only one of these languages (HLSR) supports multiple architectures. The lack of cross-

architecture languages, makes reuse across architectures difficult. In addition, not one of

the languages or environments reviewed in Chapter 2 provides special support for design

patterns.

This detailed look at the state of cognitive modeling (Chapter 2) and software

engineering (this chapter) has illuminated two important problems, and uncovered well-

defined and tested solutions to these problems. Table 3-3 summarizes these problems

and the solutions, and explicitly outlines the direction taken by this dissertation.

77

The next chapter describes, in detail, how I embedded portions of an existing tool

with the software engineering theories reviewed here to alleviate the obstacles that are

facing cognitive modelers.

Table 3-3: A succinct description of the problems facing cognitive modeling and the
software engineering solutions that will make a difference.

The Problems The Solutions
1. The cognitive modeling

community lacks is a high-level
representation language that
explicitly supports a well-known
theory, allows for the reuse of
behavior, compiles into
productions for multiple well-
tested architectures, supports
model refinement, and allows
programming at several different
levels of abstraction.

2. The cognitive modeling
community lacks a maintenance-
oriented development environment
that supports both novice and
experienced programmers using
recent software engineering
research (e.g., graphical
environments and code navigation
techniques).

1. Close the conceptual gap by designing a
high-level representation language that
provides a good fit between the type of
problem and the modelers themselves. A
successful high-level language must
ground itself on a popular cognitive
theory, support multiple architectures,
allow for model refinement, support
reuse, and support a variety of additional
high-level behavioral abstractions.

2. Create a maintenance-oriented
environment that makes it possible for
modelers to edit and browse a program
graphically and at a level above the actual
text-based code.

3. Create a maintenance-oriented
environment that facilitates code
navigation using some of the design
guidelines listed in Table 3-1, and by
taking advantage of working sets, group
memory, or information foraging theory.

4. Ensure proper support for reuse by paying
attention to Krueger’s dimensions of
reuse and by supporting reusable
templates that provide solutions to
recurring problems.

5. Conduct formative and summative
evaluations of the resulting notational
system using validated methods based on
cognitive dimensions.

Chapter 4

Herbal: A Theory-Based System for Simplifying Cognitive Modeling

The detailed look at the state of cognitive modeling and software engineering

presented in Chapter 2 and Chapter 3 has illuminated two important problems, and

uncovered well-defined and tested solutions to these problems (see Table 4-1). This

chapter describes how I have implemented these solutions in an existing tool called

Herbal (version 3.0.0). Importantly, the formative evaluation described in Chapter 5 has

also guided this implementation.

Table 4-1: Summary of the solutions resulting from the literature review.

1. Close the conceptual gap by designing a high-level representation language that

provides a good fit between the type of problem and the modelers themselves.
A successful high-level language must ground itself on a popular cognitive
theory, support multiple architectures, allow for model refinement, support
reuse, and support a variety of additional high-level behavioral abstractions.

2. Create a maintenance-oriented environment that makes it possible for modelers
to edit and browse a program graphically and at a level above the actual text-
based code.

3. Create a maintenance-oriented environment that facilitates some of the code
navigation using the design guidelines from (Ko, Aung, & Myers, 2005), and
by taking advantage of working sets, group memory, or information foraging
theory.

4. Ensure proper support for reuse by paying attention to Krueger’s dimensions of
reuse and by supporting reusable templates that provide solutions to recurring
problems.

5. Conduct formative and summative evaluations of the resulting notational
system using validated methods based on cognitive dimensions.

79

Herbal: A High-Level Behavior Representation Language

To simplify agent programming and cognitive modeling, I implemented a high-

level behavior representation language, and associated parser and compiler. The Problem

Space Computational Model (PSCM) forms the basis for the Herbal high-level language,

and the Extensible Markup Language (XML) (W3C, 2004a) specifies the syntax of this

language. The Herbal system compiles this language into productions that execute within

two popular agent architectures: Soar (sitemaker.umich.edu/soar) and Jess

(herzberg.ca.sandia.gov/jess/).

The Problem Space Computational Model

The high-level language supported by the Herbal Toolset is based on the PSCM

(Lehman, Laird, & Rosenbloom, 1996; Newell, 1990; Newell, Yost, Laird, Rosenbloom,

& Altmann, 1991). As explained in detail in Chapter 2, the PSCM is a unified theory of

cognition that defines behavior as movement through a problem space. The choice to use

the PSCM will help close the conceptual gap between the language used by modelers to

describe behavior and the language used by architectures to represent that behavior. The

PSCM is a robust, and well-tested cognitive theory that closely maps the modeling

domain to the people who typically create cognitive models.

The PSCM also serves as an organizational structure for intelligent agents in

general. Explicit support for PSCM constructs allows all modelers to partition behavior

into a hierarchy of problem spaces, operators, states, and desired goals. The ability to

80

create componentized programs hierarchically is something that should resonate with all

software engineers that are used to creating modularized programs.

XML and XSchema

The PSCM-based high-level language supported by the Herbal Toolset takes the

form of an XML application. Herbal uses XML to provide explicit support for the

PSCM, and to translate the PSCM into a low-level rule-based representation for

execution within an agent environment (see Figure 4-1).

Choosing an XML-based language provides many benefits. For example, XML

allows for the creation of structured documents that can directly represent the hierarchical

structure of the PSCM. In addition, compared to low-level rule based languages, the

portable text format used by XML is easily readable by both people and computers. In

fact, there are a large number of robust XML editors that parse XML and provide a

graphical environment for quickly and safely editing the XML (e.g., XMLSpy, oXygen,

XMetaL, XMLBuddy, and XML Notepad). Research promises to provide even better

support for XML editing (Chidlovskii, 2003; Quint & Vatton, 2004). As a result, a wide

Figure 4-1: A High-level XML representation translated into low-level rule-based
representations.

81

range of existing graphical programming tools can support editing the Herbal high-level

language.

Programmers can also transform XML into other formats using the Extensible

Stylesheet Language (XSL) (Royappa, 1999; W3C, 2004b). For example, Herbal agent

code can be easily transformed into HTML documentation, making it easy for developers

to generate documentation directly from source code. In addition, Herbal agent code can

be easily transformed into Scalable Vector Graphics (SVG) (W3C, 2003) which can be

an effective way for creating visualizations of complex data (Jackson, 2002; Vullo &

Bogaard, 2004). Finally, the popularity of XML helps reduce the learning curve that

might otherwise form a barrier to the adoption of Herbal.

XSchema (W3C, 2004c) defines the Herbal high-level language specification.

The use of XSchema for this language was advantageous for many reasons. XSchema

provides a clear documentation of the structure and content of XML documents

(Campbell, Eisenberg, & Melton, 2003). In addition, XML parsers can use the Herbal

XSchema to validate the content of an Herbal program. This eliminates the common

problem of the specification becoming “out of sync” with the implementation because the

XSchema serves as both the language specification and the documentation of the

language specification. Lastly, most commercial and open source XML editors utilize

XSchema to provide features such as syntax highlighting and auto completion to help

programmers quickly create valid XML documents. Because the Herbal language uses

XSchema, these features are immediately available to the Herbal programmer.

Six different types of XML documents make up an Herbal program, each defining

a set of reusable components including namely types, conditions, actions, operators,

82

problem spaces, and agents. These documents represent libraries in the Herbal language

and these libraries give the Herbal high-level language explicit support for Krueger’s first

dimension of reuse: abstraction (Krueger, 1992).

XSchema defines the allowed structure and content of each of these library types.

In many cases, the components in these libraries mirror the elements of the PSCM, and

should be familiar to most cognitive scientists. However, there are components in the

Herbal high-level language (such as types, conditions, and actions) that extend the PSCM

by providing additional levels of abstraction (further support of Krueger’s first

dimension). The choice to add these components specifically addresses the reuse

problem introduced in Chapter 2, which describes how the nature of rule-based

representation languages makes it difficult to reuse the conditions and actions in a rule.

As an example of this new granularity, the left-hand side of Table 4-2 shows an

operator element, which has a unique name, and child elements of ifType and thenType.

The ifType element contains references to conditions and the thenType element contains

references to actions. These references point to conditions and actions that reside in a

separate XML document (library), and whose syntax specification is in a separate

XSchema. Unlike operators, conditions and actions are not explicitly part of the PSCM,

but were included in the Herbal high-level language to provide granularity that supports

reuse at the condition/action level.

83

The right-hand side of Table 4-2 lists a typical section of Herbal source code. The

XML shown here declares an instance of an operator called driveRight, and obeys the

Schema given in the left-hand side of Table 4-2.

The driveRight operator will be proposed when the condition okRight is true, and

when the operator is applied an action called moveRight will move the agent to the right.

The details of the okRight condition and the moveRight action are encapsulated in the

libraries that contain their instantiations.

Table 4-2: XSchema describing an operator and an XML instance of an operator.
XSchema Specification for an Operator Instance of an Operator

<xs:complexType name="operatorType">
 <xs:sequence>
 <xs:element name="if"
 type="ifType"
 minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="then"
 type="thenType"
 minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="name"
type="xs:ID" use="required"/>
</xs:complexType>

<xs:complexType name="ifType">
 <xs:sequence>
 <xs:element name="conditionref"
 type="conditionRefType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

<xs:complexType name="thenType">
 <xs:sequence>
 <xs:element name="actionref"
 type="actionRefType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<operator name='driveRight'>
 <if>
 <conditionref
 conditioN='okRight'/>
 </if>
 <then>
 <actionref actioN='moveRight'/>
 </then>
</operator>

84

The XSchema and associated XML code shown in Table 4-2 can be edited

graphically using any of the commercial or open source XML editors. For example,

Figure 4-2 shows an XML document, containing instantiations of several operators edited

in XML Notepad. XML Notepad is using the XSchema to determine the required syntax

for the declaration of operators, and can even find problems and help the programmer fix

them. In Figure 4-2, XML Notepad is indicating that an operator is missing the required

name attribute, and can help the programmer add this attribute.

The Herbal Parser and Compiler

Herbal can transform code written in the Herbal high-level language into

executable productions for either the Soar or Jess agent architectures. The ability to

compile to multiple architectures is essential for reuse across architectures. Herbal

Figure 4-2: Herbal programming using XML Notepad.

85

supports the Soar architecture because it is widely used for cognitive modeling, and

Herbal supports Jess because of its popularity as an intelligent agent architecture.

Support for two very different types of architectures was intentional because it

emphasizes the ability for high-level languages to support architectural-neutral reuse. In

addition, it allows for architectural comparison.

The first phase in this transformation (shown in Figure 4-3) consists of parsing the

XML code and creating a Document Object Model (DOM) of the PSCM. I used Java to

create the Herbal parser, and the DOM consists of a hierarchical collection of Java

objects.

The parser validates the XML based on the associated XSchema. In addition,

custom logic extends the parser for additional validation. This validation makes it

possible to check for semantic errors that the XSchema cannot not specify.

Figure 4-3: Parsing and compiling Herbal XML source code.

86

Once in memory, Herbal accesses the DOM for many different purposes

including the creation of useful visualizations, and the creation of executable productions.

The Herbal compiler is responsible for the transformation of the in-memory DOM into

executable code.

The main challenge in creating a compiler is deciding how to transform the

PSCM DOM into a semantically equivalent set of productions for a specific architecture.

The degree of difficulty of this transformation relates to the underlying language support

for the PSCM. For example, the Soar architecture is an exemplar of the PSCM, while

Jess provides no explicit support for the PSCM.

Table 4-3 provides a few examples that illustrate how the Soar and Jess compilers

transform the PSCM into appropriate productions. Consider the Herbal XML code

shown in Table 4-3. This code defines a condition, called dirty, that tests if a vacuum

cleaner agent (Cohen, 2005) is on a dirty square. Table 4-3 also shows the resulting Soar

and Jess code produced by the Herbal compiler. This translation is straightforward

because both Soar and Jess have clear support for the concept of a condition.

Table 4-3: A translation from an Herbal condition to Soar and Jess source code.
Architecture Source Code
Herbal XML Language <condition name='dirty'>

 <match type='vacuum.types.spot'>
 <restrict field='status'>
 <eq>dirty</eq>
 </restrict>
 </match>
</condition>

Compiled Soar Code (<vacuum-types-spot2> ^status <status2> |dirty|)

Compiled Jess Code (topspace::vacuum.types.spot (status ?status1&:(eq* ?status1
"dirty")))

87

A second example, given in Table 4-4, illustrates how the Soar and Jess compilers

transform Herbal XML code for an action called clean. This translation is less

straightforward because Soar and Jess have different support for the interaction between

an agent and its environment.

Soar defines explicit structures to support an agent’s communication with its

environment. These structures take the form of an input and output link. As a result, the

Herbal compiler adds the clean working memory element directly to the output link

(labeled <i2> in Table 4-4). Jess, on the other hand, has no special language constructs

that deal with agent/environment interaction so the clean command is treated like any

other fact in working memory.

The third example, shown in Table 4-5, demonstrates how the Herbal compiler

transforms an Herbal operator. Recall that the operator is an important component of the

PSCM. Unlike Soar, the Jess language has no concept of operators. As a result, the

Herbal compiler must simulate the operator concept in Jess using a basic production.

Table 4-4: A translation from an Herbal action to Soar and Jess source code.
Architecture Source Code
Herbal XML
Language

<action name=clean'>
 <add type='vacuum.types.action'>
 <set field='move'><value>clean</value></set>
 </add>
</action>

Compiled Soar
Code

(<i1> ^output-link <i2>)
-->
(<i2> ^|vacuum.types.action| <vacuum-types-action20>)
(<vacuum-types-action20> ^move |clean|)

Compiled Jess Code (assert (topspace::vacuum.types.action (move "clean")))

88

Table 4-5 shows the differences between how the Herbal compiler produces

operators in Soar and Jess. For Jess, the compiler translates the Herbal operator directly

into a simple production. However, in Soar an operator consists of a proposal rule and an

application rule (Lehman, Laird, & Rosenbloom, 1996). The proposal rule fires when the

operator is appropriate for the current situation. The application rule contains knowledge

about how the operator changes working memory. The distinction between operator

proposal and operator application allows for interruptability, which is an important part

Table 4-5: A translation from an Herbal operator to Soar and Jess source code.
Architecture Source Code
Herbal XML
Language

<operator name='clean'>
 <if>
 <conditionref conditioN=dirty'/>
 </if>
 <then>
 <actionref actioN='suck'/>
 </then>
</operator>

Compiled Soar
Code

sp {propose*clean
 (state <local> ^top <top> ^parent <parent> ^name cleanps)
 (<top> ^io <i1>)
 (<i1> ^input-link <i2>)
 (<top> ^|origvac.types.status| <vacuum-types-spot2>)
 (<vacuum-types-spot2> ^status <status2> |dirty|)
-->
 (<local> ^operator <o> + =)
 (<o> ^name clean)
 (<o> ^count <count>) }
sp {apply*clean
 (state <local> ^top <top> ^name cleanps ^operator <o>)
 (<o> ^name clean)
 (<top> ^io <i1>)
 (<i1> ^output-link <i2>)
-->
 (<i2> ^|vacuum.types.action| <vacuum-types-action20>)
 (<vacuum-types-action20> ^move |suck|)}

Compiled Jess Code (defrule clean
 (topspace::vacuum.types.spot
 (status ?status18&:(eq* ?status18 "dirty")))
=>
 (assert (topspace::vacuum.types.action (move "suck"))))

89

of the psychological plausibility of Soar agents and is necessary to support learning in

Soar.

The examples given in Table 4-3, Table 4-4, and Table 4-5 illustrate how the

Herbal high-level language has augmented the PSCM. In some cases (i.e., the addition of

conditions and actions as explicit objects), these modifications have added greater

granularity, which allows for better reuse. While in other cases (e.g., simulated operators

in Jess), sacrifices were made in the richness of the problem solving abilities and

psychological plausibility of the PSCM. These sacrifices are apparent when supporting

architectures that do not provide direct support the PSCM. These trade-offs are common

throughout the design of the Herbal Toolset.

There will always be times when the modeler will be unhappy with the sacrifices

made by the compiler for the sake of architectural neutrality. Model refinement (Salvucci

& Lee, 2003) allows the modeler to create a model using a high-level representation and

then refine it when they need lower-level, architecture specific, control. This is an

essential component of any high-level representation and the Herbal tool supports this

using prescripts and postscripts. Herbal’s prescript and postscript files allow the modeler

to inject architecture specific code that will be automatically included into the generated

low-level representation.

Herbal: A Tool for Supporting Maintenance

The Herbal Toolset includes an Integrated Development Environment (IDE) that

provides a graphical environment for creating and maintaining agents. This environment

90

supports the creation and maintenance of agents by extending the popular Eclipse

extensible platform (Shavor et al., 2003). The Herbal IDE provides support for

developers to modify source code at a level above the syntax, and support for code

navigation using working sets and information scent.

The Herbal IDE

I have implemented the Herbal IDE as an Eclipse plug-in. Eclipse is a universal

platform providing an open and extensible IDE. Basing the Herbal IDE on Eclipse

provides many advantages. First, Eclipse provides a robust framework for the creation of

powerful development tools. This framework consists of many of the modern IDE

features expected by developers, including project management, multiple views, and real-

time compilation. In addition, the popularity of the Eclipse IDE has grown considerably,

and as a result, the learning curve for using the Herbal IDE is small for users who are

already familiar with the Eclipse environment. Finally, Eclipse is free and executes on a

variety of different platforms, making the Herbal IDE available to a wide range of

potential users.

The Herbal IDE supports the creation of Herbal agents either graphically or by

programming directly in the Herbal high-level language. Agent programmers can freely

switch between these two modes at any time.

Modelers perform graphical editing in Herbal with the Herbal GUI Editor (shown

in Figure 4-4). The Herbal graphical editor provides support for modifying source code

at a level above the syntax (Boshernitsan, 2003).

91

Like the Herbal high-level language, the GUI Editor is library centric. Using the

editor, programmers can use wizards to create or modify existing library components

(i.e., types, conditions, actions, operators, problem spaces, and agents). Developers can

also create agents without having to write code in the Herbal high-level language. Herbal

creates the Herbal XML code automatically as the developer interacts with the GUI

Editor.

In addition to saving time and reducing programming errors, modelers can use the

GUI Editor as a means for learning the Herbal XML language. Developers can create a

PSCM component using the GUI Editor and then inspect the XML code created. By

switching between the editor and the generated code, programmers can quickly learn the

syntax of the Herbal high-level language.

While the editor simplifies the creation of PSCM components, some developers

may prefer to work directly with the Herbal high-level language. This is another example

Figure 4-4: The Herbal GUI Editor.

92

of support for model refinement (Salvucci & Lee, 2003), but at a level of abstraction

higher than what Salvucci and Lee proposed. At any time during development,

programmers can edit the Herbal XML code directly, and the GUI Editor immediately

displays the changes (see Figure 4-5).

Typical of most Eclipse plug-ins, Eclipse automatically invokes the compiler as

the programmer is working. In other words, with each change made by the agent

developer, the Herbal IDE compiles the Herbal XML code into both Soar and Jess

productions. This feature serves as an excellent mechanism for learning the underlying

Soar or Jess programming languages. Herbal programmers can create PSCM constructs

using either the Herbal GUI Editor or the Herbal high-level language, then inspect the

generated Soar and Jess code to learn how Herbal implements these constructs in the

underlying architectures.

Figure 4-5: Developing agents using both the GUI Editor and by editing the Herbal
XML by hand.

93

Figure 4-6 shows the Herbal IDE displaying multiple views of an Herbal library.

The top left view shows the Herbal GUI editor. To the right of the GUI Editor is a

snapshot of some Herbal high-level XML code. The bottom two views in Figure 4-6

show the generated Jess and Soar code. Finally, along the very bottom of Figure 4-6 is a

list of current warnings and errors. In this case, a typo made by the developer has

generated a warning. Double-clicking on this warning will open an editor to the

appropriate location so the warning can be resolved.

The Model Browser View shown in Figure 4-7 makes it easy to browse the static

PSCM structure of an Herbal agent and, therefore, may simplify the maintenance of these

structures.

Figure 4-6: The Herbal IDE showing multiple views of an Herbal library.

94

Working Sets and Intent as Information Scent

Chapter 3 clearly documents the need to support code navigation. Working sets

are one method for providing this support. Studies done by Ko, Aung, and Myers (2005)

suggest that better support for working sets can help simplify the code navigation task.

Ko, Aung, and Myers (2005) present a set of design requirements for maintenance-

oriented tools, three of which I have implemented in Herbal. The following is a list of

the design requirements that Herbal supports for better code navigation.

1. Provide a working set interface that supports the quick addition and removal
of task-relevant code fragments.

2. Automatically save and recover working sets of task-relevant code fragments,
ensuring that the tools used to navigate working sets are distinct from the tools
used to represent working sets.

3. When programmers add code to a working set interface, automatically add its
direct and indirect dependencies. Then, directly or indirectly related code can
be placed side-by-side avoiding the interactive overhead of opening and
closing file tabs.

Figure 4-7: Viewing the static PSCM structure using the Model Browser View.

95

As shown in Figure 4-8, the Herbal IDE makes it possible for developers to build

a working set of task relevant code fragments. The key design question when building

working set interfaces is how to help developers find relevant code fragments. As

outlined in Chapter 2, several different approaches have been taken including leveraging

group memory (Cubranic, Murphy, Singer, & Booth, 2005; DeLine, Czerwinski, &

Robertson, 2005), information foraging theory (Lawrance, Bellamy, Burnett, & Rector,

2008), and design rationale (Ko, Myers, Coblenz, & Aung, 2006). I have chosen to

utilize the design rationale feature that already exists in Herbal to help modelers find and

follow scent when building working sets of relevant code fragments.

In Herbal, developers build working sets manually or by executing a search

through the libraries using keywords related to the current maintenance task. Relying on

a search of component names using keywords can be fragile because it requires the

modeler to use descriptive names that exactly match the keyword (Ko, Myers, Coblenz,

& Aung, 2006). Fortunately, Herbal’s existing support for design rationale, based on the

work done by Haynes, Cohen, and Ritter (2008), make it possible to also search the

Figure 4-8: Support for working sets in the Herbal IDE.

96

component’s design rational for the specified keyword. If the modeler previously entered

design rationale, Herbal will use it to increase the relevance of the search results.

Herbal also takes into account the topology of the model when searching for

relevant components based on keywords. The items returned in the result set either

contain or reference the keywords themselves or are dependent on items that contain or

reference the keywords.

The modeler can save the collection of code fragments as a named working set

and share them between developers or recall them for future use. Finally, double-

clicking on items in the working set will open the code fragment in the Herbal GUI editor

for inspection.

Interestingly, the working set interface implemented in Herbal supports Kruger’s

second dimension: selection. In addition to facilitating code navigation, Herbal’s

working set interface also helps programmers locate and select reusable components.

This is especially effective because of the inclusion of intent by the selection algorithm

used by the working set search.

Herbal: A Tool for Supporting Reuse

The design of Herbal includes support for several different forms of reuse

including the reuse of low-level PSCM components, the creation of libraries, and the

instantiation of behavior design patterns.

97

Libraries

The Herbal high-level language is library centric, in that Herbal projects must

consist of XML documents that define several libraries of reusable components. There

are six different types of Herbal libraries: type libraries, condition libraries, action

libraries, operator libraries, problem space libraries, and agent libraries.

Figure 4-9 shows the dependencies between these libraries. The foundation of all

the Herbal libraries is the type library. This library contains the set of data types

available to the agent programmer. This is a major improvement over the lack of data

type checking typical in most rule-based languages. From these types, the programmer

can define conditions and actions that can add, edit, remove, or test for the existence of

instances of the defined types. Modelers build operators from these conditions and

actions, and problems spaces from a set of operators and conditions. Finally, the

developer defines agent behavior using a hierarchy of problem spaces. This layered

approach allows developers to choose and reuse behavior at just the level of abstraction.

Figure 4-9: The dependencies between the six different types of libraries in Herbal.

98

Herbal libraries are uniquely qualified using a namespace. This allows developers

to create any number of libraries and share them across models. The Herbal IDE

supports library sharing graphically using wizards for the importing and exporting of

libraries across projects. As shown in Figure 4-10, this feature automatically detects

library dependencies, thus ensuring that the required library components are included in

the export.

The following example illustrates how Herbal supports library reuse. In this

example, a modeler creates libraries of basic reusable components for the vacuum cleaner

agent environment (Cohen, 2005) and prefixes them with the namespace ‘vacuum’. A

different modeler then uses these components to build additional higher-level libraries

and new, more aggressive vacuum cleaner agents. The modeler prefixes the new libraries

with the namespace ‘aggressive’ (see Figure 4-11).

This type of layered reuse is common in traditional software development. This is

a great example of support for the Krueger’s fourth dimension – integration – because of

the way it facilitates the combination of reusable components into a working model.

Figure 4-10: Exporting a library and its dependencies.

99

Behavior Design Patterns

In addition to the PSCM level, Chapter 2 and Chapter 3 illustrated the importance

of supporting additional high-level behavioral abstractions, like the procedural patterns

implemented in RAPs (Firby, 1989), the BDI framework supported by JACK (Norling,

2004), and the activation tables supported in HLSR (Jones, Crossman, Lebiere, & Best,

2006).

Structured programming paradigms like looping constructs can be useful in agent

programming, but can be a challenge to program in a typical rule-based language. In

addition, modelers often copy looping constructs throughout an agent program. High-

level support for these constructs can allow modelers to reuse complex behavior, as

opposed to duplicating it.

For example, agents created for graphical agent environments such as the Vacuum

Cleaner Environment (Cohen, 2005) and the dTank environment (Ritter, Kase,

Figure 4-11: Building custom agents by reusing libraries.

100

Bhandarkar, Lewis, & Cohen, 2007) often implement looping constructs. For the

vacuum cleaner agents, behaviors like “while the vacuum is on a clean square search for

dirt using this pattern of movement” are common, and for the dTank agents, behaviors

like “while no enemy tank is spotted search for an enemy using this search strategy” are

common.

To address this problem and to promote the reuse of high-level meta-behaviors

such as looping, the Herbal development environment utilizes a Behavior Design Pattern

Wizard (see Figure 4-12). This wizard makes it possible for the agent developer to

generate instantiations of useful meta-behaviors using existing PSCM components. The

Wizard automatically creates these PSCM components to produce behavior within a

problem space.

The Design Pattern Wizard is also an excellent example of support for Krueger’s

third dimension of reuse (specialization) (1992). Using the wizard, modelers can

transform a general design pattern into a more specialized object tailored to their needs.

I have also designed Design Pattern Wizard to be extensible. This gives

ambitious users the ability to plug-in support for the instantiation of additional patterns of

high-level behavior (e.g., BDI constructs and HLSR activation tables).

101

Herbal: A Tool for Supporting Programming at Various Levels of
Abstraction

The design of Herbal includes support for programming at several different levels

of abstraction. Figure 4-13 summarizes these levels and Appendix A gives examples of a

model represented at each of these levels.

Figure 4-12: The Behavior Design Pattern Wizard.

102

The graphical level represents the highest level of abstraction supported by

Herbal. The Herbal GUI Editor (Figure 4-4), Model Browser View (Figure 4-7), and

Behavior Design Pattern Wizard (Figure 4-12) form the core of this level. Using these

graphical tools, modelers can interact with the model visually and at a level above the

syntax (Boshernitsan, 2003; Dann, Cooper, & Pausch, 2008) using two different abstract

behavior representations (i.e., the PSCM and Looping Control Structures). The modular

design of the Design Pattern Wizard allows for the addition of other abstract

representations in the future, such as the BDI framework (Norling, 2004) and the

constructs supported by HLSR (Jones, Crossman, Lebiere, & Best, 2006).

The middle layer represents a level of abstraction that allows programming with

XML using the PSCM (Friedrich, Cohen, & Ritter, 2007). The use of XML in this layer

allows modelers to interact with the model using a variety of specialized XML editors, or

simply an ordinary text editor. The use of the PSCM here helps reduce the conceptual

Figure 4-13: Supporting multiple levels of abstraction in the Herbal Development
Environment.

103

gap between a theoretical representation of the behavior, and the underlying rule-based

code.

The bottom layer allows for programming using a low-level representation

language (Jess or Soar). This level allows for model refinement (Salvucci & Lee, 2003)

by fine tuning the resulting low-level code produced automatically by the Herbal

compiler.

Modelers are free to interact with the model using all three of these layers. The

graphical nature of the first layer is well suited for novice modelers, but is useable by

modelers with any level of experience. As modelers gain experience and encounter

situations that need more control, they can interact with the model at progressively lower

levels. This structure provides support for users as they gain experience and transition

from novice to expert (Powers, Ecott, & Hirshfield, 2007).

Summary

The design and implementation described in this chapter is based on theories

developed by the software engineering community about how to solve complex problems

with software solutions (Chapter 3). Theories about high-level languages, reuse, and

maintenance-oriented environments are central to Herbal’s design. In addition, Herbal

leverages theories from cognitive science, such as the PSCM to make it easier to develop

useful agents and cognitive models (Chapter 2).

The focal theory introduced in this dissertation proposes that the combination of

these theories can simplify agent and cognitive model development. The evolution and

104

ultimate success of this focal theory must be guided and evaluated using both formative

and summative evaluations. The design presented in this chapter incorporates the lessons

learned during the formative evaluation of Herbal (Chapter 5). In addition, the success of

this theory has been measured using two different summative evaluations (Chapter 6 and

Chapter 7). The next three chapters explain these evaluations in detail

Chapter 5

Evaluating Design: A Formative Evaluation of Herbal

Producing useful and usable software requires continuous and iterative evaluation

(Boehm, 1988a; Rosson & Carroll, 2002). It is helpful to categorize evaluation as either

formative evaluation or summative evaluation (Scriven, 1967). Formative evaluation is

useful during the design of a system. Designers use feedback from formative evaluations

to inform future design. It is common to perform several formative evaluations during

system development (Boehm, 1988a; Rosson & Carroll, 2002).

Summative evaluations evaluate the quality of a completed design, and typically

take place when system development is complete. The results of a summative evaluation

provide a measurement of how well the system meets specific design objectives (Rosson

& Carroll, 2002). Figure 5-1 illustrates the difference between formative and summative

evaluation.

106

Following these guidelines, the design and implementation of Herbal underwent

both formative and summative evaluation during its development. The formative

evaluation of Herbal is described in detail in this chapter.

In the fall of 2006, an empirical formative evaluation of a prototype of Herbal,

and some of the theories it embeds, was conducted to inform the design of Herbal. The

Vacuum Cleaner Environment (discussed next) (Cohen, 2005) was used as a basis for the

tasks used to evaluate Herbal. This environment was chosen because it is simple enough

to introduce to undergraduates, yet complicated enough to allow for the creation of

interesting agents. In addition, this environment is colorful and entertaining, thus holding

the interest of the study participants. Understanding the formal evaluation of Herbal

requires a basic understanding of the Vacuum Cleaner Environment. A description of

this environment follows.

Figure 5-1: Formative and summative evaluation (Rosson & Carroll, 2002).

107

Overview of the Task

The Vacuum Cleaner Environment is based on a very simple world that was

introduced in a widely used Artificial Intelligence text book, Artificial intelligence: A

modern approach by Stuart Russell and Peter Norvig (2003). In the Vacuum Cleaner

World, a vacuum cleaner resides in an environment that contains two squares: A and B.

Each square can be either clean or dirty. The vacuum cleaner’s percepts allow it to detect

what square it is in and the state of the square (i.e., clean or dirty). In addition, the

vacuum cleaner can perform four actions: move left, move right, suck, or do nothing.

This environment is useful because its entire state space, consisting of only eight states,

can be easily illustrated and explored. In addition, if a performance measure is used, the

concept of agent rationality (Russell & Norvig, 2003) can be introduced.

There are several implementations of the Vacuum Cleaner World available. For

example, the Pyro robotics toolkit (Blank, Kumar, Meeden, & Yanco, 2006) includes an

implementation in Python. Another interesting extension of the Vacuum Cleaner World,

created by Musicant and Exley (2004), allows students to program a physical robot to

navigate a simplified version of the Vacuum Cleaner World. Additional

implementations, in a variety of languages, are included on the official website for

Artificial Intelligence: A Modern Approach (aima.cs.berkeley.edu).

While these implementations are useful for introducing basic agent programming

concepts, they are either too simplistic for more advanced rule-based programming, or

require the overhead of expensive hardware. To effectively evaluate Herbal, a custom

graphical agent environment was created in Java (Cohen, 2005). This environment adds

108

complexity to the Vacuum Cleaner World described earlier. In addition, this

environment supports rule-based programs written in two widely used agent

architectures: Jess and Soar. A screenshot of the Vacuum Cleaner Environment is shown

in Figure 5-2.

Method

This section describes the method used for a formal study conducted in parallel

with an undergraduate artificial intelligence class. The ultimate goal of this study was to

improve the design of Herbal and the Vacuum Cleaner Environment. Specifically, this

study was designed to measure four different factors:

" The students’ impressions of rule-based programming in general, and Jess
specifically

" The students’ impressions of graphical development environments in general,
and Herbal and the Vacuum Cleaner Environment specifically

Figure 5-2: The Vacuum Cleaner Environment.

109

" The students’ impressions of higher-level methods for organizing rules in
general, and the use of the PSCM specifically

" The students’ impressions of the Herbal high-level language.

This study took advantage of cognitive dimensions research (Blackwell & Green,

2003; Blackwell & Green, 2000) to evaluate the Herbal Integrated Development

Environment (Cohen, Ritter, & Haynes, 2005). These dimensions provide a framework

and a common vocabulary that can be used to judge the design of a notational system like

Herbal (Blackwell & Green, 2003).

Table 5-1 shows the eight cognitive dimensions selected as usability evaluation

criteria. These dimensions were chosen because they measure the degree in which the

principles that mediated the design of Herbal were achieved (i.e., embracing high-level

languages, enabling reuse, and supporting maintenance-oriented development).

110

Participants

The seven participants recruited for this study were undergraduate students

majoring in Computer Science (CS) or Computer Information Science (CIS) at Lock

Haven University and were enrolled in an upper-level Artificial Intelligence course at

Lock Haven. Participants were not paid for taking part in this study. Seven students in

Table 5-1: The Cognitive dimensions used to evaluate the design of Herbal.

Cognitive Dimension Description

Closeness of mapping How closely does the behavior representation language
match the way that the modeler describes the behavior?

Error-proneness How easy is it to make errors using the behavior
representation language?

Hidden dependencies How easy does the behavior representation language
make it to create hidden dependencies between model
entities?

Premature commitment How often is the developer forced to make a
commitment in the model before there is enough
information to make the commitment?

Provisionality How easy is it to make provisional commitments that
can be corrected at a later time? Provisionality allows
modelers to easily examine design options and construct
what-if scenarios.

Role-expressiveness How easy is it to discover why a modeler has chosen a
particular design? Explicit support for design rationale,
as discussed earlier, improves a systems role-
expressiveness.

Viscosity How easy is it to make changes to an existing model?
The less the viscosity, the easier it is to change the
model.

Visibility How easy is it to view the elements in a model,
including their internal details?

111

the class agreed to participate: one CIS student and six CS students. Each participant was

assigned a Participant ID and this ID is the only way that participants can be associated

with the data collected during the study. The Lock Haven University Institutional

Review Board (IRB) approved the study prior to its implementation.

Apparatus

Participants used Dell Desktop computers running Linux to complete the required

tasks. These desktops are all located in the Lock Haven Penguin Lab and are equipped

with a keyboard, a mouse, a 100MB external hard-drive, and a 17-inch flat screen

monitor.

The required software for this experiment was installed on each machine. The

software was Eclipse (3.2.1), Java (1.5), Herbal (2.0.2 Pre-release D), Jess (6.1), the Vim

text editor, and the Vacuum Cleaner Environment (2.0).

Design

As part of the course requirements, all students were asked to complete four

assignments. The assignments turned in by the students who agreed to participant in this

study were used for the formative evaluation. The first assignment asked the participants

to create a Jess program that simulated customers entering a bank and waiting in a queue

for service. This assignment measured the participants’ initial impressions of rule-based

programming in Jess, and of graphical development environments in general.

112

The second assignment required the participants to create two vacuum cleaner

models. The purpose of this assignment was to measure the participants’ impressions of

rule-based programming in Jess, graphical development environments, and the Vacuum

Cleaner Environment.

The third assignment asked the students to use Jess modules to create a vacuum

cleaner agent that operated in the PSCM. The purpose of this assignment was to measure

the participants’ impressions of problem spaces and the PSCM from the perspective of

organizing and modularizing code.

The fourth assignment was to repeat assignment number three, but to use an early

prototype of the Herbal high-level language and development environment (Version 2.0.2

Pre-Release D) to create the agent. The purpose of this assignment was to measure the

participants’ impressions of Herbal.

Data collection consisted of participant observation and quantitative and

qualitative survey questions. Participant observations and open-ended survey questions

were coded based on the cognitive dimensions in Table 5-1. Portions of the assignments

were completed during class time so that participant observation could be conducted.

Upon completion of each assignment, surveys were administered to the participants.

Table 5-2 provides a summary of the four tasks performed by the participants.

113

Procedure

On the first day of class, participants were recruited from the group of students

enrolled in the course. The study began with each participant reading and signing the

consent form as well as completing a User Background Survey, which collected basic

Table 5-2: Summary of the experimental design for the formative evaluation.

Exp Task Data Collected Purpose

1 Create a Jess program that
models customers
entering a bank and
waiting in a queue for
service

The Jess source code

Completed survey

Participant observations

To measure student impressions
of rule-based programming and
graphical development
environments

2 Create a vacuum cleaner
agent that cleaned a room

Create a second vacuum
cleaner agent that cleaned
a room and also kept
track of how many
squares it cleaned so that
it would halt when the
room was clean

The Jess source code

Completed survey

Participant observations

To see if the participants’
impressions of rule-based
programming and graphical
development environments
changed after using the Vacuum
Cleaner Environment

To measure the students’
impressions of the Vacuum
Cleaner Environment

3 Use Jess modules to
create a vacuum cleaner
agent that operated in
problem spaces

The Jess source code

Completed survey

Participant observations

To measure the participants’
impressions of problem spaces
and the Problem Space
Computational Model

4 Use the Herbal Graphical
Development
Environment to create a
vacuum cleaner agent that
operated in problem
spaces

The Jess source code

Completed survey

Participant observations

To measure the participants’
impressions of Herbal

114

information about his or her background and expectations prior to participating in the

study.

During the semester, participants were assigned each of the four assignments in

order. Assignments were completed both during class time, and outside of class. When

participants were given class time to work on the assignments, observations about the

participant’s performance, as well as the interactions between the experimenter and the

participant, were /noted by the experimenter. When participants finished each

assignment, they were asked to complete a different user reaction survey for each

assignment. The surveys were designed to measure the four objectives given in the

Methods section. The Results section contains details about the content of these surveys.

The first assignment asked the participants to create a Jess program that simulated

customers entering a bank and waiting in a queue for service. The simulation operates by

generating random numbers that determine how much time will elapse before the next

customer enters the bank, and how much time it will take for the teller to service the

current customer. For example, customers can arrive at the bank in intervals between 1

and 10 minutes, and tellers can take between 1 and 7 minutes to service a customer. The

simulation was run for 1000 simulated minutes, and during this time customers were

added to a queue when they enter the bank and, as the teller becomes available,

customers were removed from the queue so they can be serviced by the teller. The wait

time for each customer was be calculated as the amount of time the customer spends on

line, and did not include the time the customer spends with the teller.

Participants worked alone on this assignment and used the Vim text editor to

create their programs. Although hard to control, participants were asked not to use

115

graphical development environments and debuggers. When the assignment was finished,

participants were each asked to complete User Reaction Survey #1.

The second assignment required the participants to create two vacuum cleaner

agents. The first agent was a simple agent that cleaned a dirty room. This agent was run

with no state, no penalty for movement, no radar sensor, and in an environment two

squares wide and one square tall. Participants were asked to record the best possible

score for a run of 10 steps and the average score of their agent. The second agent

operated in the same environment; however, this agent was allowed to maintain state and

was assigned a penalty for each movement. Students were asked to minimize the penalty

by remembering where the vacuum had been so it stopped moving when all squares were

visited. Participants worked alone on this assignment and used the Vim text editor to

create their programs. Again, graphical development environments and debuggers were

forbidden. When the assignment was finished, participants were each asked to complete

User Reaction Survey #2.

Problem spaces are simulated in Jess using Jess modules (Friedman-Hill, 2003).

The third assignment asked the students to use Jess modules to create a vacuum cleaner

agent that operated in problem spaces. The problem space hierarchy and the

relationships between them are shown in Figure 5-3.

116

When the agent in the third assignment started, it entered the FindTopLeft

problem space which caused it to go immediately to the top left square on the board;

cleaning dirty squares along the way. The FindTopLeft problem space used the MoveUp

and MoveLeft problem spaces to accomplish its goal and the MoveUp and MoveLeft

problem spaces used the Clean problem space to make sure squares were cleaned a long

the way.

After the agent arrived at the top left square, it walked the perimeter of the board,

cleaning any dirty squares it encountered during its travels. While the agent walked the

perimeter, it was asked to assert the following three facts: a fact that represents the height

of the board, a fact that represents the width of the board, a fact that represents the total

number of squares on the board. The MoveUp, MoveLeft, MoveDown, and MoveRight

problem spaces accomplished this behavior.

Figure 5-3: Problem space hierarchy for assignments 4 and 5.

117

After the agent walked the entire perimeter, it entered a problem space called

Wander that caused the agent to explore the board using the following algorithm. If the

agent was on a dirty square, it cleaned it. If there was a dirty square adjacent to the agent,

it should move to that square. If there were no dirty squares near the agent, it should

randomly move to a new square, if the agent had visited every square on the board since

it began to wander, it should stop moving.

As in the first two assignments, participants worked alone on assignment three

and used the Vim text editor to create their programs. Graphical development

environments and debuggers were forbidden. When the assignment was finished,

participants were each asked to complete User Reaction Survey #3.

The fourth assignment was to repeat assignment number three, but to use the

Herbal development environment (Version 2.0.2 Pre-Release D) to create the agent,

instead of Vim. Participants worked alone on assignment four. When the assignment

was finished, participants were each asked to complete User Reaction Survey #4.

Results

Throughout this study, data were collected using surveys and participant

observation. Many of the questions in the surveys were designed to measure the

cognitive dimensions listed in Table 5-1. Although all of the participants completed each

of the four required assignments, not all participants choose to complete each survey

(despite constant reminders). Table 5-3, Table 5-4, Table 5-5, and Table 5-6 show

quantitative results for each of the four surveys. The number of participants that

118

completed each survey is indicated in the caption of each table. In addition, if a question

or result mapped to a cognitive dimension, it is indicated in the Table.

Table 5-3: Quantitative results from User Reaction Survey #1 (N=6).

Impressions of rule-based programming and graphical development
environments

I understand the main constructs in Jess but I find it difficult to implement them
because the Jess syntax is difficult.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
0 2 1 3 0

Programming agents would be easier if the behavior of my running agent was
displayed visually in a graphical environment.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
1 4 1 0 0

Using print statements to print the progress of my agent in a console window is all
want in order to help me create and debug my agents.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
0 0 3 3 0

I would enjoy programming in Jess more if there was a better development
environment.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
1 2 3 0 0

119

Table 5-4: Quantitative results from User Reaction Survey #2 (N=7).

Impressions of rule-based programming, graphical development environments,
and the Vacuum Cleaner Environment

I understand the main constructs in Jess but I find it difficult to implement them
because Jess syntax is difficult.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
0 1 1 5 0

Programming agents would be easier if the behavior of my running agent was
displayed visually in a graphical environment.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
2 4 1 0 0

Using print statements to print the progress of my agent in a console window is all
want in order to help me create and debug my agents.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
0 0 2 5 0

The vacuum cleaner graphical agent environment made programming agents
more fun.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
4 3 0 0 0

The vacuum cleaner graphical agent environment made it easier to learn how to
create rule-based agents.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
1 4 2

The vacuum cleaner graphical agent environment had just the right amount of
complexity to make it possible to create interesting agents without getting
distracted by the details of the environment.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
1 6 0 0 0

120

Table 5-5: Quantitative results from User Reaction Survey #3 (N=6).

Impressions of problem spaces and the Problem Space Computational Model
The ability to group a set of operators and behavior into a problem space makes it
easier to create complicated agents.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
0 4 2 0 0

A graphical environment that simplified the use of problem spaces, operators, and
impasses is needed to make them useful in Jess.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
1 1 3 1 0

Breaking my agent code into problem spaces made it possible to breakup
complicated agent behavior into smaller, less complicated parts.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
3 2 1

It would be easier to use problem spaces if there was a graphical debugger that
showed my agent as it moved from problem space to problem space.
Strongly Agree Agree Neutral Disagree Strongly

Disagree
1 3 2 0 0

121

Table 5-7 shows the qualitative results from Survey #4, and Table 5-8 shows the

observations made while the participants were working on the assignments. The

Table 5-6: Quantitative results from User Reaction Survey #4 (N=4).

Impressions of the Herbal Prototype
If given the choice, I would rather use Herbal that pure Jess in order to complete the agent
programming assignments given in this course.

Strongly Agree Agree Neutral Disagree Strongly Disagree
1 0 0 2 1

Herbal would be easier to use if there were better
visualizations of the agent structure.

Measures Visibility

Strongly Agree Agree Neutral Disagree Strongly Disagree
3 1 0 0 0

It takes less time to create an agent using Herbal that to write code in Jess.
Strongly Agree Agree Neutral Disagree Strongly Disagree

1 1 1 1 0
It takes less time to learn how to use Herbal than to learn how to write Jess Code.

Strongly Agree Agree Neutral Disagree Strongly Disagree
0 2 1 1 0

The Herbal GUI editor makes it easier than Jess
programming to recognize components of my agent
(problem spaces, operators, etc.).

Measures Visibility

Strongly Agree Agree Neutral Disagree Strongly Disagree
0 1 2 1 0

Herbal makes it easier than Jess to reuse conditions and actions in my agent.
Strongly Agree Agree Neutral Disagree Strongly Disagree

1 1 2 0 0
Herbal’s XML language is easy to read/understand. Measures Closeness of Mapping

Strongly Agree Agree Neutral Disagree Strongly Disagree
0 2 2 0 0

I would rather write code in Herbal using thee XML high-
level language than with the GUI editor.

Measures Closeness of Mapping and
Viscosity

Strongly Agree Agree Neutral Disagree Strongly Disagree
0 2 0 2 0

Herbal makes it easier than Jess to change my agent. Measures Viscosity
Strongly Agree Agree Neutral Disagree Strongly Disagree

1 0 0 3 0
Herbal placed very little restrictions on the order in
which I created my agent.

Measures Provisionality and
Premature Commitment

Strongly Agree Agree Neutral Disagree Strongly Disagree
0 1 1 2 0

122

responses to the open-ended questions, and the observations made while programming,

were coded based on the related cognitive dimensions. This coding is displayed in

Table 5-7 and Table 5-8.

Table 5-7: Qualitative results from User Reaction Survey #4.

Impressions of the Herbal Prototype
What part of Herbal did you find most useful?
Response # Responding Cognitive Dimension
Syntax becomes a non-issue 2 Closeness of mapping
Wiring aliases 1 N/A

What part of herbal did you find most confusing?
Response # Responding Cognitive Dimension
Understanding the order in which to create
components

2 Provisionality and
Premature
Commitment

Wiring aliases 2 N/A
Getting a high-level picture of the agent
structure

1 Visibility

If you were in charge of programming Herbal, what improvements would you
make?
Response # Responding Cognitive Dimension
Visual representation of the model structure 3 Visibility
Wizard or flow-chart that helps you create
components

2 Provisionality and
Premature
Commitment

123

Table 5-8: Observation of participants completing assignment 4.
Observation Cognitive Dimension

Participants had problems understanding what an alias is in
Herbal. They struggled with this term. Discussions with
participants revealed that it helped them to think of them as
input and output variables.

Closeness of Mapping

Participants had problems understanding when you would
want to use a problem space as opposed to just an operator.
Thinking of the problem space as a behavior seemed to be
very helpful.

Closeness of Mapping

Participants had a hard time understanding the term
impasse. It helped to explain the impasse as a set of
conditions that cause entry into a problem space.

Closeness of Mapping

Participants had problems debugging common problems.
For example, they struggled figuring out why an agent was
not entering a specific problem space or why an operator
was not firing.

Role-expressiveness
Hidden Dependencies

Participants were frustrated by the requirement to fully
specify a component when it was created.

Provisionality,
Premature Commitment
Viscosity
Hidden Dependencies

Participants were frustrated when the system forced them to
delete all references to a component before they could
delete the component.

Provisionality,
Premature Commitment
Viscosity

Participants were frustrated by the lack of warnings. The
system produced errors for situations that occur during
development but were easily corrected later in the
development process. There errors were highly dependent
on the order in which the model was created. The
participants would prefer these to be reported as warnings.

Provisionality,
Premature Commitment
Viscosity

In some cases, participants were allowed to make certain
mistakes that caused the visual editor to stop functioning
and could only be fixed using the XML code.

Error-proneness

Participants continued to express the need for a high-level
visualization of the model and its structure.

Visibility

Participants continually commented that they would have
rather learned Herbal and then Jess instead of the other way
around. They all felt that Herbal is useful in learning how
to program in pure Jess.

N/A

124

Discussion

Responses to the first two surveys (Table 5-3 and Table 5-4) indicate that after the

first assignment, participants were divided about their comfort level with Jess syntax.

Two out of six found the syntax challenging, one was neutral, and three did not find the

syntax difficult at all. The level of comfort with Jess syntax was not surprising:

especially because this evaluation was conducted in an upper-level, CS/CIS course using

students with considerable programming experience.

The participants comfort level with Jess syntax increased after completing the

second assignment, with five out of seven disagreeing with the statement that Jess syntax

is difficult. Reasons for becoming more comfortable with Jess syntax could be related to

gaining more experience with the language. One might expect less comfort with Jess

given a more diverse set of participants.

In addition, participants agreed that being able to view a running agent visually in

a graphical environment would help make agent programming easier. They also

expressed the need for more than just console output for debugging their agents.

Responses to these same questions remained strong after they were introduced to the

Vacuum Cleaner Environment in the second assignment.

Survey #2 (Table 5-4) shows participants were positive about the effectiveness of

the Vacuum Cleaner Environment. Participants found that the environment made the

programming assignments easier and more enjoyable. In addition, participants felt that

the Vacuum Cleaner Environment was created with just the right amount of complexity.

125

Results from Survey #2 supported the belief that graphical agent environments can make

agent programming more enjoyable for students.

Responses from Survey #3 (Table 5-5) validated the use of the PSCM as the

foundation for the Herbal high-level language. Participants agreed that the PSCM made

agent programming easier because it componentized their agents. In addition, responses

showed that participants favored the idea of a development environment and debugger

that supported the PSCM. Results from Survey #3 illustrate that a higher-level language

that allows programmers to organize rules into higher-level structures was appreciated,

and that the PSCM is a good choice for this purpose. This was a very encouraging result

because it suggests that the PSCM may be a familiar construct in computer science

students, not just psychology.

Results from Survey #4 (Table 5-7), which are directly related to the design of

Herbal, are mixed. Most participants felt that they would rather program using pure Jess

than the Herbal Development Environment. The also felt strongly that Herbal needed

better visualizations of the agent’s structure. In addition, participants were not convinced

that Herbal made it easier to make changes to agent code. They also felt that Herbal

forced them to work in a particular order when developing agents. This means that

Herbal poorly supports the Visibility, Viscosity, Provisionality, and Premature

Commitment dimensions. In addition, mixed responses from participants about the time

it takes to learn and use Herbal also indicated a need for design changes.

However, some responses in Survey #4 were positive. For example, participants

found it easier to reuse model components using Herbal than when programming using

126

pure Jess. In addition, participants found the XML high-level language used by Herbal to

be easy to read and understand.

Interestingly, in Survey #4 half of the participants preferred programming by

editing the Herbal XML high-level language, while the other half preferred the GUI

editor. Herbal was designed to support both methods of programming because it was

believed that preferences, and requirements, for both styles of programming exist

(Powers, Ecott, & Hirshfield, 2007; Salvucci & Lee, 2003). These results support this

design choice.

Responses to the open-ended questions (Table 5-7) and the participant

observations (Table 5-8) were used to help discover the reasons behind some of the

negative responses in Survey #4. These reasons were used to help improve the design of

Herbal. For example, the frustration with the order that Herbal enforced while creating

agents is evident in both the open-ended questions and the participant observations.

Participants did not like having to provide a complete specification for a component at

the time it was created. They also did not like having to remove references to a

component before the component could be deleted. These problems made it difficult to

create and change an agent. This feedback suggests the need for design changes for

better support of the Viscosity, Provisionality, and Premature Commitment cognitive

dimensions.

Another problem indicated in both the open-ended questions and participant

observations was poor support for the Visibility cognitive dimension. Specifically,

participants requested better visualizations of the model structure. The need for this type

of visualization was also evident during participant observation.

127

Participants also had trouble getting comfortable with some of the terminology

used by Herbal. For example, participants struggled with the difference between a

problem space and an operator. Discussions with participants suggested that it helped to

refer to problem spaces as behaviors or goals. Participants also indicated that they

preferred to think of aliases as input/output variables and impasses as a set of conditions

for entry into a new behavior.

Participant observations and survey responses indicated that participants had

trouble finding and fixing errors in their agents. One possible factor was that the console

method of debugging caused execution to be traced using rules instead of the PSCM

terminology used when the agent was created. Participants were trying to see what

problem space their agent was in, and which operator was recently applied, but the trace

they were using contained a list of rules. This mismatch between the behavior

representation language and the way that trace describes the model’s behavior resulted in

poor support for the Closeness of Mapping dimension. A good debugger or tracing tool

that maps directly to the PSCM rather than the rules would help here.

Finally, bugs within the GUI editor, that allowed fatal mistakes to be made (e.g.,

the GUI editor stopped functioning) that could only be fixed in the XML code, frustrated

participants, and this frustration was evident during participant observation and in open-

ended responses. Experimenter observations indicated that this frustration was a major

cause for some of the negative responses in Survey #4.

128

Conclusions

There were several important lessons learned during the formative study

described here, and many of these lessons resulted in changes in the Herbal design. For

example, participants felt strongly that Herbal needed a better visualization of the agent

structure. This feedback resulted in the development of the Model Browser View in

Herbal. This window shows a hierarchical view of a model’s structure, giving the

programmer a high-level picture of the model and its components. This view was

specifically designed to improve Herbal’s support for Visibility.

In addition, participants were annoyed by the fact that Herbal forced them to work

in a particular order when developing agents. To correct this problem, “soft” warnings

were implemented in Herbal. During normal development, an agent is often only

partially completed. With the addition of soft warnings, an incomplete agent produces a

message that is passively displayed in the Eclipse output window. When a warning is

displayed, the developer is allowed to continue without interruption. This makes it

possible for developers to work in any order by building or editing models that are not yet

complete. The warnings remind the programmer which components are not complete,

but they do not prevent the developer from continuing. This should lead to better support

for Viscosity and Premature Commitment.

The participants’ difficulty debugging models indicated poor support by Herbal

for Role Expressiveness and Closeness of Mapping. Participants had problems finding

and fixing problems in existing agents, which indicates poor understanding of how the

model works and what the model was doing. To correct this problem, working sets that

129

leveraged existing design rationale, were added to Herbal. These working sets should

make it easier for modelers to find task relevant model components during maintenance.

In addition, a graphical debugger was built that traces model execution using PSCM

components rather than rules. These additions directly targeted better support for Role

Expressiveness and Closeness to Mapping.

To correct the participants’ problems with terminology some of the model

components were renamed. For example, aliases were renamed to input and output

variables, and the concept of an impasse is now presented as a set of conditions for entry

into a problem space. In addition, the concept of a behavior was introduced to help users

understand problem spaces, and a Design Pattern Wizard was created to make it easy for

users to create new model behaviors that are ultimately represented as problem spaces.

All of these changes were implemented to improve Herbal’s support for Closeness of

Mapping.

Finally, several bugs in the GUI Editor were discovered during this study. These

bugs frustrated participants and made it difficult for them to complete the tasks. All the

bugs identified during the formative evaluation were fixed.

Results from this study also indicated strengths in the current Herbal design.

These results helped confirm many of the design decisions that were made early on in

development process. For example, the choice to use the PSCM as the basis of the

Herbal high-level language was confirmed by participants, as they indicated that the

PSCM made agent programming easier. In addition, the emphasis on reuse during

Herbal’s design was successful as participants found it easier to reuse model components

using Herbal.

130

The decision to use XML for Herbal’s high-level language was also supported by

this study. Participants clearly found the XML high-level language used by Herbal to be

easy to read and understand. Finally, the design decision to allow users to edit Herbal

code using both the GUI Editor and by directly editing the XML code was appreciated by

participants. Half of the participants preferred programming by editing the Herbal XML

high-level language, while the other half preferred the GUI editor.

Table 5-9 summarizes the lessons learned during this study, and the changes that

were implemented to address these lessons.

The formative evaluation presented here resulted in the confirmation of many of

the design decisions made during the implementation of the Herbal prototype. In

addition, survey results and participant observations lead to several changes in Herbal.

Table 5-9: Summary of the design changes resulting from the formative study.

Formative Result Design Change

Herbal needed a better visualization of the
agent structure

Added a Model Browser View

Herbal forced them to work in a particular
order

Implementation of “soft” warnings

Difficulty debugging models Implementation of working set feature
that leverages existing design rationale,
and a graphical debugger based on the
PSCM

Problems with some PSCM terminology Aliases renamed to input/output
variables, impasses presented as
conditions for entry, and behavior
design pattern associates problem spaces
with agent behaviors

Participants encountered frustrating bugs in
the GUI editor

Bugs fixed

131

Of course, the success of these changes needed to be evaluated. Two different

summative evaluations were conducted to measure the overall effectiveness and usability

of the Herbal system. These evaluations are described in detail in the next two chapters.

Chapter 6

Evaluating Functionality: Herbal as a Cognitive Modeling Tool

Two summative evaluations were performed to evaluate both the functionality

and the usability of Herbal. The functionality of Herbal as a cognitive modeling tool was

evaluated by creating a cognitive model (using only Herbal) that was capable of learning

in a competitive environment.

The usability of Herbal was evaluated with the design and implementation of a

summative usability study. The criteria for success in this evaluation were acceptable

ratings for a collection of cognitive dimensions. This chapter describes the evaluation of

the functionality of Herbal as a cognitive modeling tool. The next chapter covers the

usability evaluation.

Cognitive models of people interacting in competitive environments can be

useful, especially in games and simulations (Jones et al., 1999; Laird, 2001a, 2001b;

Ritter et al., 2003). To be successful in such environments, it is necessary to learn the

strategy used by the opponent. In addition, as the opponent adjusts its tactics it is equally

important to unlearn opponent strategies that are no longer used.

Learning by reflection (or introspection) is one technique that can be used to learn

and unlearn an opponent’s changing strategies while at the same time preserving the

variability in which people learn (e.g., Bass, Baxter, & Ritter, 1995; Cox & Ram, 1999;

Ritter & Wallach, 1998).

133

Learning by reflection is a form of metacognition that allows the model to learn

by reflecting on its performance, and adjusting accordingly. When reflection reveals

previous actions that were beneficial, the model should be more likely to repeat those

same actions in similar situations. However, when reflection reveals poor performance,

the actions that lead to that performance are less likely to be repeated. Thus, learning by

reflection is a form of reinforcement learning (Russell & Norvig, 2003).

Reflective learning requires that both the cognitive model and its environment are

fully observable (Russell & Norvig, 2003). In other words, the model must be able to

observe the effects of its actions on the environment and other models.

Because reflective learning strategies are based on probability, the behaviors they

generate are not deterministic. This allows reflective models to exhibit variability in

learning and thus performance. When playing a game or participating in a simulation,

variable behavior is a crucial part of the realism that these systems must portray.

For all the reasons already discussed, using Soar to create non-deterministic

models that learn is a challenge. Therefore, this problem serves as a good test of the

functionality and usefulness of Herbal.

Overview of the Task

Lehman, Laird, and Rosenbloom (1996) in their A Gentle Introduction to Soar use

baseball repeatedly as an example. This inspired me to implement a simple version of a

baseball game to study adversarial problem solving and support people learning Soar. In

134

a broader context, this environment provides an accessible platform for the future study

of cognitive models interacting with other agents in a social simulation (Sun, 2006).

Figure 6-1 shows the basic interface and one of the feedback screens. In this

game, participants play the role of the pitcher competing against a series of agent-

operated batters. The goal of this game, as in baseball, is to get batters out.

The baseball game described here was written in Java and interacts with the Soar

cognitive architecture using the Soar Markup Language (SML Quick Start Guide, 2005).

The software and instructions on how to use it are available online

(acs.ist.psu.edu/herbal).

There are two ways to get a batter out in this game: The batter can get three

strikes (a strike results when a batter either swings and misses or does not swing at a

good pitch), or the batter can hit the ball directly at a fielder who catches the ball.

Figure 6-1: The baseball game task.

135

There are also two ways for a batter to get on base in this game: The batter can

get four balls (a ball results when the batter does not swing at a bad pitch), or the batter

can hit the ball in a way that prevents the fielders from catching it.

The pitcher has a choice of throwing either a fastball or a curveball to the batter.

Once it threw a pitch, the batter had a choice of either swinging at the pitch or letting it

go by. Both the pitcher and batter are always aware of how many balls and how many

strikes the batter has. The rules shown in Table 6-1 describe how to determine the

outcome of each pitch.

Based on the rules described in Table 6-1, the most certain way to get a batter out

is to throw a curveball when the pitcher thinks the batter will be swinging and to throw a

fastball when the pitcher thinks the batter is not going to swing. Naturally, if the

participant can learn what strategy the batter is using then they have a better chance of

getting them out.

Table 6-1: Determining the outcome of a pitch.

Pitcher Batter Response Outcome

Fastball Batter swings Contact is made that may result in either an out
(50% of the time) or a hit (50% of the time).

Fastball Batter does not
swing

The pitch will result in a strike.

Curveball Batter swings The pitch will result in a strike.

Curveball Batter does not
swing

The pitch will result in a ball.

136

Method

The purpose of this study was to measure how quickly participants learned batter

strategies while performing the baseball task described above and to compare this

performance to a cognitive model designed to do the same task with similar performance

and with equal variability.

Participants

Participants were recruited from the set of undergraduate students majoring in

Computer Science (CS) and Computer Information Science (CIS) at Lock Haven

University. Ten participants were chosen: nine of the 10 participants were male. Each

participant was assigned a Participant ID based on the order in which they requested to

participate in the study. This ID is the only way that participants can be associated with

data collected during the study. The Lock Haven University Institutional Review Board

(IRB) approved the study prior to its implementation.

Apparatus

A Lenovo T60p laptop computer was used by the participants to perform the

required task. This laptop was in a docking station equipped with a keyboard, a mouse,

speakers, a 250MB external hard-drive, and a 17-inch flat screen monitor.

137

Design

In this study, participants and several models performed the baseball task

described above. As the participants and the model performed the task, each pitch

thrown, the batter’s reaction, and the outcome of the pitch was recorded in a log file.

Using the data recorded in the log file, the model’s and the participant’s ability to

learn a particular strategy was measured quantitatively using a measure of pitching

efficiency (PE). The following formula was used to calculate pitching efficiency:

PE = Ns / Ts

Where Ns is the number of batters using strategy s that were faced by the

participant, and Ts is the consecutive out threshold for strategy s. A decrease in PE

indicates an increase in the efficiency of the pitcher. A value of 1.0 for PE indicates the

most efficient pitching strategy because it means the pitcher retired every batter they

faced that was using a particular strategy. For example, if a participant faced 14

Aggressive batters before they could retire seven in a row, the participant’s pitching

efficiency would be 14 / 7, or 2.

Procedure

The study began with each participant reading and signing the consent form.

Next, each participant was given instructions explaining the rules of the baseball task as

described above. After reading the instructions, the participants were ready to perform

the baseball task.

138

During the task, each participant faced five different batter strategies, each

represented by a different model created using Herbal. Each participant faced the same

set of strategies and in the same sequence. As the task progresses, strategy changes took

place based on the number of consecutive outs that the participant recorded against a

given strategy. When a predetermined out threshold was reached, a strategy shift by the

batter would take place. The exact sequence of batter strategies and their corresponding

out thresholds was defined in a configuration file that was used by the baseball

environment, but the participant did not know what type of strategies to expect, or when

strategy changes would take place. The batter strategies, along with their consecutive out

thresholds, are shown in Table 6-2.

Table 6-2: Batter strategies in the baseball environment.

Name Strategy Out Threshold

Hacker Always swings 4

Aggressive Swings at the first pitch
and when there are fewer
strikes than balls, unless
there are three balls and

two strikes

7

Random Randomly chooses when
to swing

5

Chicken Never swings 4

Alternate Swings if the last pitch
was a fastball and does not
swing if it is the first pitch

or the last pitch was a
curve

7

139

Participants were given as much time as needed to complete the task and were

allowed to consult the instruction sheet during play. All the participants seemed to have

no problem understanding the game and no questions were asked while performing the

task.

Models

Six cognitive models were written to conduct the study described here. All six

models were written using the Herbal high-level language and development environment

and were completed in just one day. Because of the use of the Herbal high-level/

language and graphical editor, the creation of the models described here required only an

understanding of the PSCM and some visual modeling techniques. This serves as an

example of how Herbal can provide modelers without a strong programming background

access to the complicated machinery used by architectures that may traditionally be out

of their reach.

Batter Models

Five cognitive models were written to represent the strategies used by the batter

(Hacker, Aggressive, Random, Chicken, and Alternate). These models are not capable of

learning and served only as opponents that exhibit the behavior described in Table 6-2

140

Pitcher Model

A sixth model was written in Herbal to play the role of the pitcher. The goal of

the pitcher model was to exhibit behavior similar to that demonstrated by the participants.

Unlike the batter strategy models, the pitcher model was able to learn using reflection.

More specifically, this model operated within two problem spaces: one to deliberate what

pitch to throw next, and one to reflect on recent performance and modify future

deliberation.

The pitcher model started with an equal probability of throwing a curveball or a

fastball. Within the explicit reflection problem space, the pitcher model considers the

following features of the environment: the previous number of balls and strikes on the

batter, the previous pitch thrown, and the outcome of that pitch. If the outcome is

positive (i.e., a strike was called or the batter struck out) the pitcher adjusts a probability

so that it is more likely to throw the same pitch the next time it encounters this situation.

If, on the other hand, the outcome was negative (i.e., a ball was called, or contact was

made by the batter, including contact resulting in an out), and the pitcher had previously

experienced a positive outcome in this situation (a strike or a strikeout), the probability of

throwing the same pitch in that situation was decreased.

Model Parameters

The pitcher model takes two parameters: the learning rate and the unlearning rate.

The learning rate specifies how quickly the model will commit to throwing a particular

pitch in a particular situation; in other words, how quickly the probability increases given

141

a positive outcome. The unlearning rate specifies how quickly the model will reduce this

learned commitment. The best values for these learning rates almost certainly depend on

the nature of the particular task.

Considering the relatively simple rules in the baseball task described above, it was

expected that participants would be able to learn strategies quickly. In addition, it was

hypothesized that participants would at first be reluctant to unlearn until they were sure

that a strategy shift has taken place. Given persistent negative feedback on a previously

learned response, participants should eventually accelerate their unlearning rate.

The fact that four of the five batter strategies are deterministic further justifies

these parameter values. When a particular pitch works for a batter in a specific situation,

it will continue to work until a strategy shift takes place. After a particular pitch stops

working for a batter, it can be assumed that a strategy shift has occurred.

As a result, in an effort to match human behavior the pitcher model described here

was equipped with a fast learning rate and an initially stubborn, but later accelerating,

unlearning rate. Figure 6-2 depicts the learning and unlearning rates used by the model.

142

Results

Because a primary goal of this work was to produce a model that not only

matches the average pitching efficiency, but also matches the variability in pitching

efficiency, the cognitive models created here are not deterministic. This made it possible

to consider each run of the model as being equivalent to a participant run. To reduce any

sampling error with this theory, the model was run 100 times.

Table 6-3 shows the results of the participant study and of the model executions.

The mean pitching efficiency and the standard deviation of the pitching efficiency are

listed for all participants and all model runs. Recall that the smaller the pitching

efficiency the more efficient the pitcher, and the most efficient strategy has a PE equal to

1.0. In addition, Table 6-3 shows the out threshold for each strategy in square brackets.

Figure 6-2: Learning and unlearning rates used by the model.

143

Figure 6-3 visualizes the data listed in Table 6-3. Each bar in Figure 6-3

represents the mean pitching efficiency. White bars represent the participant data and

shaded bars represent the model data. The error bars in Figure 6-3 signify one standard

deviation from the mean pitching efficiency.

Discussion

Analysis of Figure 6-3 reveals that the model’s behavior matched both the

participant’s mean performance, and variability in performance, for three of the five

presented strategies. However, for two of the strategies the model did not satisfactorily

reflect the participant’s performance.

Table 6-3: Pitching efficiency for the participants and the learning model.

 Participants
(N = 10)

Model
(N = 100)

Strategy Mean StdDev Mean StdDev
Hacker [4] 1.53 0.80 1.69 0.70

Aggressive [7] 1.81 1.62 1.13 0.20
Random [5] 5.00 6.24 5.36 4.67
Chicken [4] 1.03 0.08 1.25 0.33
Alternate [7] 1.54 0.72 3.53 2.01

144

Hacker and Chicken Strategies

The model’s performance matched very well for both the Hacker and Chicken

strategies. Given the simplicity of the learning strategy used, this is an interesting result.

Both the participants and the model were able to retire the requisite number of

consecutive batters quickly and without much variability. Interestingly, the Hacker

strategy proved to be more difficult for both the participants and the model. This may be

because the very aggressive strategy used by the Hacker makes it more likely for the

batter to get a hit when the pitcher made a mistake. On the other hand, the reserved

approach used by the Chicken strategy only punishes mistakes with a single ball as

Figure 6-3: Comparison of the model and participants for each batting strategy.

145

opposed to a hit. In this baseball task, an aggressive batter strategy is more dangerous to

the pitcher than a timid one.

Random Strategy

As expected, the variation of the pitching efficiency against the Random strategy

was quite large for both the participants and the model. Both the participant and the

model could not consistently figure out the random strategy, because, well, it was

random. The difference between the pitching efficiency for the model, and that of the

participants, might be related to the number of participants run. Due to the random nature

of this strategy, additional participants might cause these means to match more closely.

Aggressive and Alternate Strategies

Unexpectedly, the model did not do as good of a job matching the Aggressive and

Alternate strategies. The order in which these strategies are presented may play an

important role here. One possible explanation for these problems is that the unlearning

rate used by the model is not fast enough. While good enough to match the transitions

between some strategies, the unlearning rate may need to be faster in other cases. To

understand this theory, the transitions from the Hacker strategy to the Aggressive

strategy, and from the Chicken strategy to the Alternate strategy, need to be examined

more closely.

146

Transition from Hacker to Aggressive

Because the Hacker strategy always swings, the pitcher must learn to throw a

series of curveballs to get a batter out consistently. In addition, the inability to quickly

unlearn the Hacker strategy is not immediately detrimental when an Aggressive batter

follows the Hacker strategy. For example, if the pitcher continues to throw a series of

curveballs to an Aggressive batter, the batter will not get on base until after the sixth

curveball is thrown. This gives the pitcher several pitches, and therefore a lot of time to

unlearn the strategy.

On the other hand, if the participant or model quickly unlearns the Hacker

strategy, it will lead to throwing an early fastball, which will result in a 50% chance of

the batter getting a base hit. In other words, in this particular case quickly unlearning the

previous strategy is not beneficial. This might explain why the model performed better

against the Aggressive strategy; the model simply does not unlearn as quickly as the

participants did, and this proved to be more efficient in this particular ordering of

strategies.

Transition from Chicken to Alternate

The opposite can be said about the transition from the Chicken strategy to the

Alternate strategy. A series of consecutive fastballs will get a batter out using the

Chicken strategy because this strategy never swings. However, if this knowledge goes

unlearned, the same series of fastballs thrown to an Alternate batter will result in frequent

hits because the Alternate batter swings immediately after a fastball is thrown. In this

147

particular case, failure to quickly unlearn the Chicken strategy results in poor

performance and might explain why the model did not perform as well as the participants

in this case. Once again, it appears as if the model did not unlearn the learned strategy

quickly enough in this particular ordering of strategies.

Unfortunately, the reflective learning strategy is fundamentally limited in how

quickly it can unlearn. This limit may be a major reason for the model’s inability to

unlearn the Chicken strategy quickly enough. The learning algorithm used here cannot

unlearn unless it has already encountered positive feedback. This causes a problem if the

model’s initial encounter with a strategy involves a series of negative outcomes, which is

precisely the case when transitioning from Chicken to Alternate. Augmenting the

algorithm to use Soar’s numeric-indifferent preference might eliminate this limitation and

possibly improve the model’s fit.

Additional Explanations

Factors other than unlearning rate may have also had an effect on the model’s

inability to match the participant’s behavior. For example, if the pitcher follows the

simple pattern of throwing a fastball, followed by curve, followed by fastball, they will

always get the Alternate batter out. While speculative, it is possible that participants

were quick to recognize this alternating pattern while the model did not treat alternating

patterns any differently from other patterns.

148

Conclusions

A major outcome of this study is a demonstration that cognitive models that

compete in adversarial environments using introspective learning can be written quickly

and easily using Herbal. All the cognitive models used in this study were created in a

single day using only the Herbal toolset. This serves as an example of how Soar models

that learn can be written without directly writing Soar productions, hopefully making

Soar available to a wider audience of modelers. In addition, the pitcher model was

compared to participants’ performance and was shown to match both the participants’

mean performance and variability in performance against many of the presented batting

strategies.

In addition, for strategies that the model did not satisfactorily master, insight into

the limitations of the algorithm used, and how people possibly perform this task, was

gained. These results motivate future work that will lead to improvements in the learning

algorithm, and in the Herbal high-level language. For example, one way to improve the

learning algorithm is to take advantage of Soar’s numeric-indifferent preference.

However, Herbal’s usability by a range of modelers with different backgrounds

was still in question. The next section describes a summative usability study, conducted

with first-time Herbal users, designed to measure the general usability of Herbal.

Chapter 7

Evaluating Usability: A Summative Usability Evaluation of Herbal

As mentioned in Chapter 5, producing useful and usable software requires

continuous and iterative evaluation. Chapter 5 described the implementation of a

formative evaluation to ensure continual improvement, in both the functionality and

usability, of the Herbal system. Chapter 6 described the implementation of a summative

evaluation of the usefulness of Herbal. This chapter describes the results of a summative

evaluation that uses a new method for analyzing cognitive dimension data, and provides a

measurement of the final usability of the Herbal system.

Overview of the Task

This main task in this study was to create a working intelligent agent that operates

a vacuum cleaner in the Vacuum Cleaner Environment (Cohen, 2005). Chapter 5

describes the Vacuum Cleaner Environment in detail.

The study design divides the main task into three subtasks: creating a reusable

library of agent components; creating a vacuum cleaner agent using this library; and

finding and fixing a bug in the resulting vacuum cleaner agent. These three subtasks

exercise all of the features of the Herbal Development Environment and closely mirror

150

the different phases of agent/model development: creating reusable components, using

these components to build agents, and debugging the resulting agents.

The first subtask exercised Herbal’s library creation facilities. In this subtask,

participants created a new library and populated it with low-level components needed to

build vacuum cleaners. The task instructions encouraged the inclusion of design

rationale in the library throughout this task.

The second subtask exercised Herbal’s model creation facilities. This task

consisted of building a vacuum cleaner agent out of higher-level model components.

Participants created these higher-level components by reusing the low-level components

contained during the first subtask. The design rationale located in the library was

available to participants to help them during the task. In addition, participants were

encouraged to include further design rationale about the newly created components.

The third subtask exercised Herbal’s model maintenance facilities. This task

consisted of finding and fixing an error in an existing vacuum cleaner model (the

experimenter injected the same error before the start of the third subtask). The broken

model did not clean dirty squares when the vacuum cleaner encountered them. During

this task, the participants used Herbal’s debugger and working set feature to fix the

broken vacuum cleaner. In addition, the participant was encouraged to view design

rationale when needed.

151

Method

This study evaluated the usability of the Herbal Integrated Development

Environment (Cohen, Ritter, & Haynes, 2005) based on Cognitive Dimensions research

(Blackwell & Green, 2003; Blackwell & Green, 2000).

The data generated by a user reaction survey, and by participant observations,

measured support for the Cognitive Dimensions shown in Table 7-1. The user reaction

survey was based on a validated and generalized Cognitive Dimension evaluation done

by Blackwell and Green (2000). Their evaluation showed that a generalized Cognitive

Dimension questionnaire of system users is useful for evaluating usability.

Table 7-1 shows the nine Cognitive Dimensions that this study used for usability

evaluation criteria. These nine dimensions best measure the degree in which Herbal

achieves the principles that mediated its design (i.e., embracing high-level languages,

enabling reuse, and supporting maintenance-oriented development).

152

Because of the difficulty involved in observing when a participant is experiencing

Hard-Mental Operations, only survey questions measured this dimension. The criteria

used to categorize dimensions were different depending on the type of data analyzed:

survey or observation.

A five-level Likert scale structures the survey questions. The term Dimension of

Concern was used to categorize a dimension in which more than 20% of the participants

Table 7-1: Cognitive dimensions used as evaluation criteria for the summative usability
study.

Cognitive
Dimension

Description

Visibility How easy is it to view the elements in a model, including their
internal details?

Viscosity How easy is it to make changes to an existing model? The less the
viscosity, the easier it is to change the model.

Diffuseness How many symbols or how much space does the notation require to
produce a certain result or express a meaning?

Hard-mental
operations

How much hard mental processing lies at the notational level, rather
than at the semantic level? Are there places where the user needs to
resort to fingers or pencilled annotation to keep track of what’s
happening?

Error-proneness How easy is it to make errors using the behavior representation
language?

Closeness of
mapping

How closely does the behavior representation language match the
way that the modeler describes the behavior?

Role-
expressiveness

How easy is it to discover why a modeler has chosen a particular
design? Explicit support for design rationale, as discussed earlier,
improves a systems role-expressiveness.

Progressive
evaluation

How easy is it to evaluate and obtain feedback on an incomplete
solution?

Premature
commitment

How often is the developer forced to make a commitment in the
model before there is enough information to make the commitment?

153

responded negatively. A negative response is an answer in the bottom two levels of the

Likert scale.

For participant observations, the difference between the number of participants

experiencing positive events and the number of participants experiencing negative

represents a score for each dimension. In this study, a Dimension of Concern has a

negative score whose absolute value is larger than 20% of the total participants.

For example, if a participant experienced six positive events and nine negative

events related to Viscosity, the score for Viscosity would be negative four. If there were

10 participants, Viscosity would be a Dimension of Concern because the score is negative

and its absolute value is greater than 20% of the number participants (2 in this example).

For the Herbal system, a reasonable goal is to have fewer than 20% of the

participants experience problems. However, in general researchers should select a

threshold based on the needs of the users, and the importance of the dimensions

considered in the context of the task. This is especially true because of the tradeoffs that

exist between different dimensions. A very high threshold might lead to frequent

inability to complete a task, as well as very frustrated users. A very low threshold may

be necessary for critical tasks where mistakes can be catastrophic, but this can also lead

to a less flexible user experience(Blackwell & Green, 2003). The method presented here

is a general approach because other researchers can adjust the threshold for a wide variety

of dimensions, tasks, and systems.

How well Herbal supports the nine dimensions listed in Table 7-1 determines the

success of this evaluation. The final analysis of this study gives special attention to the

areas of weakness found during the formative evaluation described in Chapter 5. Recall

154

that the formative evaluation concluded a need for better support for Visibility, Premature

Commitment, Role Expressiveness, and Closeness of Mapping.

Participants

The participants recruited for this study had limited or no experience developing

cognitive models or intelligent agents. Participants recruited were from the set of

undergraduate students majoring in Computer Science (CS), Computer Information

Science (CIS), Management Information Science (MIS), and Bachelor of Science in

Psychology (PSYC) at Lock Haven University. These majors represent likely users of

the Herbal system. Participants received $10 for taking part in this study, which required

approximately an hour.

Twenty-four students participated: 12 PSYC students and 12 CS/CIS/MIS

students. The number of college credits completed by the participants ranged from 42 to

132. The average number of hours per week spent using a computer was 4.00 for PSYC

majors and 10.00 for CS/CIS/MIS majors. The average number of programming courses

previously taken was 0.25 for PSYC majors and 4.75 for CS/CIS/MIS majors. Finally,

nine of the 14 PSYC majors are female and one of the CS/CIS/MIS students is female.

A Participant ID identified each participant based on the order in which they

requested to participate in the study. This ID is the only way that participants can be

associated with data collected during the study. The Lock Haven University Institutional

Review Board (IRB) approved the study prior to its implementation.

155

Apparatus

Participants used a Lenovo T60p laptop computer to perform the required

subtasks. This laptop was docked in a docking station equipped with a keyboard, a

mouse, speakers, a 250MB external hard-drive, a 17-inch flat screen monitor, and a

microphone.

Camtasia Studio 2.0.2, created by TechSmith, recorded both the screen and audio

while the participants perform the subtasks. Additional software that was required for

this experiment was Eclipse (3.2.1), Java (1.5), Herbal (3.0), and the Vacuum Cleaner

Environment (2.0).

Design

The study design placed participants into groups of three. Groups contained

either all PSYC majors or all CS/CIS/MIS majors. This resulted in eight groups of three

participants: four groups consisting of PSYC majors and four groups consisting of CS,

CIS, and MIS majors.

As described earlier, the main task for this study was to create a working

intelligent agent that operates a vacuum cleaner in the Vacuum Cleaner Environment.

This main task consists of three subtasks: creating a reusable library of agent

components; creating a vacuum cleaner agent using this library; and finding and fixing a

bug in the resulting vacuum cleaner agent.

Each group completed the main task by finishing each subtask independently, and

in turn, as shown in Figure 7-1.

156

Procedure

The study began with each participant reading and signing the consent form as

well as completing the User Background Survey (see Appendix B), which collected

information about his or her background and expectations prior to participating in the

study.

Next, each participant watched a 15-minute video before performing his or her

subtask. The video provided the participant with a high-level introduction to intelligent

agents, the Vacuum Cleaner Environment, the Problem Space Computation Model, and

creating and maintaining libraries and agents in the Herbal Integrated Development

Environment.

After the video completed, the experimenter informed the participant what

subtask he or she will be performing and gave each participant the General Task

Instructions (see Appendix B). These instructions ask the participants to think-aloud

Figure 7-1: Different participants work in turn to complete the main task.

157

during the experiment (Ericsson & Simon, 1993; Newell & Simon, 1972), and to ask

questions if they were confused at any time during the experiment. After the participant

read the General Task Instructions, the experiment asked them to practice thinking aloud

while performing a simple memory recollection exercise that was unrelated to this study.

Next, the experiment provided each participant with Specific Task Instructions

(see Appendix B) that provided systematic instructions about how to perform the subtask,

and the participants began their subtask.

The experimenter noted observations about the participant’s performance during

the execution of the task and recorded all observations in a Data Collection Form (see

Appendix B). The experimenter focused on recording events related to the Cognitive

Dimensions of interest. The same experimenter ran all participants.

Upon completion of the subtask, the experimenter asked the participants to

complete a User Reaction Survey (see Appendix B). The User Reaction Survey

contained 17 questions that mapped directly to the Cognitive Dimensions shown in

Table 7-1. A five-level Likert scale structured 11 of these questions. The remaining six

questions were open-ended and sought information explaining responses to the scaled

questions.

Models

As mentioned earlier, the vacuum cleaner agent that participants built in this study

reused components contained in a library. The library that participants created and used

to build the vacuum cleaner agent consisted of four data types, four vacuum cleaner

158

actions, and three environmental conditions. Table 7-2 summarizes these library

components.

The resulting vacuum cleaner agent consisted of higher-level model components,

such as operators and problems spaces, that participants built on top of the low-level

components contained in the library. Specifically, three high-level behaviors: Survive,

Wander, and Clean were created. Table 7-3 summarizes these three high-level behaviors.

Table 7-2: The vacuum cleaner library components created by the participants.

Component Component
Type

Description

action data type Used by the agent to perform actions like moving or
cleaning a square

position data type Specifies the location of the vacuum cleaner agent

radar data type Contain information about the clean or dirty status of
the squares around the vacuum cleaner

spot data type Specifies the clean or dirty status of the square
currently occupied by the agent

up action Causes the vacuum to move up one square

down action Causes the vacuum to move down one square

left action Causes the vacuum to move left one square

right action Causes the vacuum to move right one square

isClean condition True if the current square is clean

isDirty condition True if the current square is clean

isAlive condition True if the vacuum cleaner is operational

159

The completed vacuum cleaner model survived by wandering randomly until it

encountered dirt. When dirt was encountered the agent cleaned the dirty spot and then

resumed wandering, looking for more dirt.

Results

All participants completed the tasks successfully. The mean time to complete a

task was 24.38 minutes with a standard deviation of 9.40 minutes. Means (with standard

deviations in parenthesis) for the library creation task, the model creation task, and the

model maintenance task, took 34.38 (7.76), 23.13 (2.23), and 15.63 (4.63) minutes,

respectively.

Table 7-4 lists completion times for all participants by major and by task. Means

(with standard deviations in parenthesis) for PSYC majors and CS/CIS/MIS majors,

across all tasks, were 27.08 (10.27) and 21.67 (7.95) minutes, respectively. The Soar

model contained 13 productions and the Jess model contained 16 productions resulting in

approximate mean times per production of 2 minutes / Soar production and 1.5 minutes /

Jess production.

Table 7-3: The high-level model behaviors created by the participants.

Behavior Description
Survive This is the model’s top-level behavior and is composed of the Wander and

Clean behaviors. The model survives by wandering the board and cleaning
dirty squares as they are encountered

Wander Causes the agent to wander in a random fashion as long as it is on a clean
square

Clean Causes the agent to clean the current square

160

Importantly, there was no statistical evidence of a difference between the mean

task times, across all tasks, of the PSYC and CS/CIS/MIS participant groups: t(22) = -

1.44, p = .163, (t-tests for mean task times in the subgroups are not included due to the

small number of participants in each subgroup).

The user reaction survey described earlier, and the coded observations of

participants performing the subtasks, generated a score for each Cognitive Dimensions

shown in Table 7-1. The following sections discuss the survey and observation results.

Table 7-4: Task performance times in minutes.

All Tasks

Library Task
Mean 40.00 STDEV 4.08 Mean 28.75 STDEV 6.29

Model Task
Mean 23.25 STDEV 2.36 Mean 23.00 STDEV 2.45

Maintenance Task
Mean 18.00 STDEV 3.56 Mean 13.25 STDEV 4.72

ID Major Task Time ID Major Task Time
8 PSYC Library 45 1 CS Library 30
10 PSYC Model 25 2 CS Model 20
11 PSYC Maint. 15 3 CS Maint. 20
12 PSYC Library 40 4 CIS Library 30
14 PSYC Model 23 5 CIS Model 25
15 PSYC Maint. 20 6 CIS Maint. 10
16 PSYC Library 35 7 CIS Library 35
17 PSYC Model 20 9 CS Model 25
18 PSYC Maint. 15 13 CIS Maint. 10
19 PSYC Library 40 20 CIS Library 20
21 PSYC Model 25 22 MIS Model 22
23 PSYC Maint. 22 24 MIS Maint. 13

Mean 27.08 STDEV 10.27 Mean 21.67 STDEV 7.95

161

Survey Results

Upon completion of the subtask, the experimenter asked the participants to

complete a User Reaction Survey based on the questionnaire validated by Blackwell and

Green (2000). The User Reaction Survey contained 17 questions that mapped directly to

the Cognitive Dimensions shown in Table 7-1. A five-level Likert scale structured 11 of

these questions. The remaining six questions were open-ended and sought information

explaining responses to the scaled questions. Unfortunately, participants provided very

little useful information in the open-ended questions, making it difficult to provide

rationale for the participant’s responses.

Table 7-5 lists the 11 scaled questions. When more than 20% of the participants

responded negatively to any question pertaining to a specific dimension, that dimension

became a Dimension of a Concern. A negative response is a response in the bottom two

levels of the scale. Table 7-5 uses shading to represent the positive and negative response

ranges for each question. Dark shading identifies positive responses and light shading

identifies negative responses.

162

Table 7-5: The survey questions used to measure support for various cognitive
dimensions. Shading indicates the positive (dark shading) and negative (light shading)
response ranges.

Visibility

Q#1 How easy was it to see or find the various parts (e.g., problem spaces, operators,
conditions) of your agent or library while it was being created, changed, or debugged?

very easy easy neutral difficult very difficult

Q#2 If you needed to compare different parts (e.g., problem spaces, operators, conditions) of
your agent or library, you could easily see these parts at the same time.

strongly agree agree neutral disagree strongly disagree
Viscosity

Q#3 How easy was it to make changes to your agent or library?
very easy easy neutral difficult very difficult

Diffuseness

Q#4 The elements (e.g., problem spaces, operators, and conditions) you used to build your
agent or library allowed you to say what you wanted to say reasonably briefly.

strongly agree agree neutral disagree strongly disagree
Hard-Mental Operations

Q#5 In general, the task you performed did not seem especially complex or difficult to work
out in your head.

strongly agree agree neutral disagree strongly disagree
Error Proneness

Q#6 During this task, you often found yourself making small mistakes that irritated you or
made you feel stupid.

strongly agree agree neutral disagree strongly disagree
Closeness of Mapping

Q#7
The notation (e.g., problem spaces, operators, and conditions) you used to describe your
agent or library was closely related to how you might describe the agent or library
naturally.

strongly agree agree neutral disagree strongly disagree
Role Expressiveness

Q#8 During the task, you often did not know what many of the agent or library pieces meant
(e.g., problem spaces, operators, conditions) but you put them in anyway.

strongly agree agree neutral disagree strongly disagree
Progressive Evaluation

Q#9 It was easy to stop in the middle of creating the agent or library, and check your work so
far.

strongly agree agree neutral disagree strongly disagree

Q#10 During this task, it was easy to find out how much progress you made, or check what
stage in your work you were in.

strongly agree agree neutral disagree strongly disagree
Premature Commitment

Q#11 When working on this task, there were times when you felt like you could have changed
the order you performed the steps without breaking the agent or library.

strongly agree agree neutral disagree strongly disagree

163

The upcoming sections summarize participant responses based on each

dimension. Reponses were analyzed the same way, using six different groupings: (1) all

participants; (2) participants performing the library creation task; (2) participants

performing the model creation task; (3) participants performing the model maintenance

task; (4) participants majoring in PSYC, (5) for participants majoring in CS, CIS, or MIS.

A single table for each grouping shows the results. For each question, the tables

show the number of responses in each of the five Likert levels. The tables use shading to

distinguish the positive and negative responses ranges.

Ideally, all responses should be in the heavily shaded area (the positive range).

When more than 20% of the responses fall inside the negative response range (the lightly

shaded area), the dimension is marked as a Dimension of Concern, and bold font

emphasizes the responses that exceed the 20% threshold.

The following six tables present the data for all six groupings.

164

Table 7-6: Survey responses for all participants and all tasks (N = 24).

Visibility
Q#1 3 13 6 2 0
Q#2 1 17 1 5 1

Viscosity
Q#3 12 10 2 0 0

Diffuseness
Q#4 6 15 3 0 0

Hard-Mental Operations
Q#5 7 13 0 3 1

Error Proneness
Q#6 0 4 6 8 4

Closeness of Mapping
Q#7 8 12 2 2 0

Role Expressiveness
Q#8 0 4 2 10 8

Progressive Evaluation
Q#9 10 13 1 0 0
Q#10 7 14 3 0 0

Premature Commitment
Q#11 3 8 6 7 0

Darkly shaded areas indicate the positive response range. Bold values indicate negative
responses that exceed the threshold. Visibility and Premature Commitment are
Dimensions of Concern because each had more than 20% of their responses within the
negative response range.

165

Table 7-7: Survey responses for participants performing the library creation task (N = 8).

Visibility
Q#1 0 3 4 1 0
Q#2 0 4 1 3 0

Viscosity
Q#3 5 1 2 0 0

Diffuseness
Q#4 2 6 0 0 0

Hard-Mental Operations
Q#5 1 6 0 1 0

Error Proneness
Q#6 0 0 4 4 0

Closeness of Mapping
Q#7 5 2 1 0 0

Role Expressiveness
Q#8 0 1 1 4 2

Progressive Evaluation
Q#9 5 3 0 0 0
Q#10 2 5 1 0 0

Premature Commitment
Q#11 2 3 1 2 0

Darkly shaded areas indicate the positive response range. Bold values indicate negative
responses that exceed the threshold. Visibility and Premature Commitment are
Dimensions of Concern because each had more than 20% of their responses within the
negative response range.

166

Table 7-8: Survey responses for participants performing the model creation task (N = 8).

Visibility
Q#1 2 5 1 0 0
Q#2 1 5 0 2 0

Viscosity
Q#3 5 3 0 0 0

Diffuseness
Q#4 2 6 0 0 0

Hard-Mental Operations
Q#5 4 3 0 1 0

Error Proneness
Q#6 0 2 1 1 4

Closeness of Mapping
Q#7 2 5 0 1 0

Role Expressiveness
Q#8 0 2 1 2 3

Progressive Evaluation
Q#9 4 4 0 0 0
Q#4 3 2 0 0 4

Premature Commitment
Q#11 1 1 4 2 0

Darkly shaded areas indicate the positive response range. Bold values indicate negative
responses that exceed the threshold. Visibility, Error Proneness, Role Expressiveness, and
Premature Commitment are Dimensions of Concern because each had more than 20% of
their responses within the negative response range.

167

Table 7-9: Survey responses for participants performing the model maintenance task (N =
8).

Visibility
Q#1 1 5 1 1 0
Q#2 0 8 0 0 0

Viscosity
Q#3 2 6 0 0 0

Diffuseness
Q#4 2 3 3 0 0

Hard-Mental Operations
Q#5 2 4 0 1 1

Error Proneness
Q#6 0 2 2 2 2

Closeness of Mapping
Q#7 1 5 1 1 0

Role Expressiveness
Q#8 0 1 0 4 3

Progressive Evaluation
Q#9 1 6 1 0 0
Q#10 1 6 1 0 0

Premature Commitment
Q#11 0 4 1 3 0

Darkly shaded areas indicate the positive response range. Bold values indicate negative
responses that exceed the threshold. Hard Mental Operations, Error Proneness, and
Premature Commitment are Dimensions of Concern because each had more than 20% of
their responses within the negative response range.

168

Table 7-10: Survey responses for participants majoring in PSYC (N = 12).

Visibility
Q#1 2 3 5 2 0
Q#2 1 10 1 0 0

Viscosity
Q#3 5 5 2 0 0

Diffuseness
Q#4 4 6 2 0 0

Hard-Mental Operations
Q#5 3 7 0 2 0

Error Proneness
Q#6 0 3 3 4 2

Closeness of Mapping
Q#7 4 7 0 1 0

Role Expressiveness
Q#8 0 3 1 6 2

Progressive Evaluation
Q#9 6 5 1 0 0
Q#0 6 4 2 0 0

Premature Commitment
Q#11 1 4 3 4 0

Darkly shaded areas indicate the positive response range. Bold values indicate negative
responses that exceed the threshold. Error Proneness, Role Expressiveness, and
Premature Commitment are Dimensions of Concern because each had more than 20% of
their responses within the negative response range. In total, there were 117 positive
responses and 15 negative responses.

169

A chi-square test of independence was performed to check for a correlation

between the number of negative and positive responses and the participants’ major

(PSYC or CI/CIS/MIS). Table 7-12 summarizes the results of this analysis. Importantly,

there is no statistical evidence that there is a correlation between the number and type of

Table 7-11: Survey responses for participants majoring in CS, CIS, or MIS (N = 12).

Visibility
Q#1 1 10 1 0 0
Q#2 0 7 0 5

Viscosity
Q#3 7 5 0 0 0

Diffuseness
Q#4 2 9 1 0 0

Hard-Mental Operations
Q#5 4 6 0 1 1

Error Proneness
Q#6 0 1 4 3 4

Closeness of Mapping
Q#7 4 5 2 1 0

Role Expressiveness
Q#8 0 1 1 4 6

Progressive Evaluation
Q#9 4 8 0 0 0
Q#10 1 10 1 0 0

Premature Commitment
Q#11 2 4 3 3 0

Darkly shaded areas indicate the positive response range. Bold values indicate negative
responses that exceed the threshold. Visibility and Premature Commitment are
Dimensions of Concern because each had more than 20% of their responses within the
negative response range. In total, there were 119 positive responses and 13 negative
responses.

170

survey responses, and the participants’ major: !2 = 0.160, DF = 1, p = .689 (Howell,

1987).

Summary of Survey Results

Table 7-13 lists Dimensions of Concern based on the survey results. Dimensions

of Concern are shown using six different groupings: (1) all participants; (2) participants

performing the library creation task; (2) participants performing the model creation task;

(3) participants performing the model maintenance task; (4) participants majoring in

PSYC, (5) for participants majoring in CS, CIS, or MIS. For example, survey responses

from participants majoring in CS, CIS, or MIS indicated that Visibility and Premature

commitment were Dimensions of Concern.

Table 7-12: A 2x2 chi-square contingency table used to test for independence between
survey responses and participant major.

Major # Positive
Responses

Negative
Responses

Total

PSYC 117
118.00
0.008

15
14.00
0.071

132

CS/CIS/MIS 119
118.00
0.008

13
14.00
0.071

132

Total 236 28 264

Expected counts are printed below observed counts and chi-square contributions are
printed below expected counts. !2 = 0.160, DF = 1, p = .689

171

Observation Results

Upon completion of the study, the experimenter coded the data collection forms

and the screen and audio recordings based on the cognitive dimensions shown in Table 7-

1. These observations compliment the survey results previously presented. Unlike the

survey results, information from the context of the observations helps explain the positive

or negative participant experiences related to a dimension.

The experimenter identified thirty-seven unique event types during observation,

and these types were either a negative or a positive contribution to a particular cognitive

Table 7-13: Dimensions of Concern as measured by survey results.

Dimension All Library
Creation

Model
Creation

Model
Maintenance

PSYC CS/CIS/MIS

Visibility X X X X

Viscosity

Diffuseness

Hard-mental
operations

 X

Error-
proneness

 X X X

Closeness of
mapping

Role-
expressiveness

 X X

Progressive
evaluation

Premature
commitment

X X X X X X

172

dimension. A positive contribution to a cognitive dimension means the software helped a

participant in a fashion consistent with the definition of the dimension. A negative

contribution to a dimension means the software was a hindrance to the participant in a

fashion consistent with the definition of the dimension. To generate these event types,

the experimenter relied on the participants’ actions and utterances.

Table 7-14 lists the 37 event categories along with their associated dimensions. It

is important to keep in mind that this table shows types of events not actual instances.

These event types (or codes) are useful for providing the rationale behind the

classification of an observation, and for suggesting improvements to future releases of the

software.

For example, while editing model components several participants got lost when

specifying properties in the model properties dialog box. This was because the dialog

box does not contain the name of the component the participant was editing. This

problem became apparent when the participant moved the dialog box out of the way in

order to see what component they had selected before the dialog box appeared. Category

10 (the participant became confused about what specific component they were working

on) in Table 7-14 coded this particular observation, and the suggested design change

would be to add the component name to the dialog box.

As another example, category 3 (the participant became confused about what

specific component they were working on) in Table 7-14 coded observations of

participants having problems interacting with the search feature in the new project dialog

box. Several participants entered the project name in the search field, rather than in the

project name field. It is likely that the placement of the search field in a location

173

typically occupied by the project name in other dialog boxes caused this error. The

recommended design change might be to rearrange the order of the fields in the dialog

box.

174

Table 7-14: Event codes used during participant observation.
ID Event Description Dimension +/-

23 Participant appeared confused by notation used to represent agent Closeness of mapping -
27 Participant preferred a term not used by high-level language Closeness of mapping -
14 The design pattern wizard allowed participants to create several

components using a brief terminology
Diffuseness +

18 Participant was thankful for code automatically created by Herbal Diffuseness +
17 Participant found design rationale to be verbose and/or redundant Diffuseness -
24 Participant used copy and paste when entering design rationale Diffuseness -
2 The consistency in the Herbal interface helped reduce errors Error prone +

15 The design pattern wizard prevented errors creating components Error prone +
3 The search feature of the new project dialog lead to errors Error prone -

11 Participant had problems distinguishing types of design rationale Error prone -
12 Participant confused Eclipse export with Herbal library export Error prone -
21 Poor design in the working set dialog lead to errors Error prone -
25 Trouble locating the Herbal GUI Editor Error prone -
28 Instructions mislead participant to create action instead of type Error prone -
31 Participant selected wrong problem space in design pattern wizard Error prone -
37 Participant entered literal value in local variable edit box Error prone -
38 Participant confused by wire screen when there is nothing to wire Error prone -
29 Participant confused by conditions with no restrictions Error prone -
6 Lack of required order made it easier to fix mistakes Premature

commitment
+

8 Participant changed order of steps in task without problems Premature
commitment

+

19 Participant was confused by order required to run debugger Premature
commitment

-

7 It was easy for participants to check the status of the model, and for
any errors, by looking at what has been done so far

Progressive
evaluation

+

10 The participant became confused about what specific component
they were working on, or what step they were doing

Progressive
evaluation

-

13 Participant viewed rationale to learn more about model Role expressiveness +
16 Participant demonstrated strong understanding of the model Role expressiveness +
30 Commented that components are self-explanatory Role expressiveness +
33 Participant entered quality design rationale Role expressiveness +
26 Participant demonstrated poor understanding of the model Role expressiveness -
5 Participant had trouble understanding component/subcomponent Role expressiveness -

32 Participant viewed rationale but did not find it helpful Role expressiveness -
36 Participant misunderstood interface between model/environment Role expressiveness -
20 Behavior of agent was easy to see using the debugger Visibility +
1 A portion of the Herbal GUI editor was hidden Visibility -
4 Easy for participant to make a change to a component Viscosity +

34 Working sets helped participant find location of a problem Viscosity +
9 Participant had problems editing an action Viscosity -

35 Participant had problems editing an operator Viscosity -

175

Of the 37 event types shown in Table 7-14, 12 are related to the Error Prone

cognitive dimension, eight to Role Expressiveness, four to Viscosity and Diffuseness,

three to Premature Commitment, and two to Closeness of Mapping, Progressive

Evaluation, and Visibility. In addition, 23 of the 37 types represented negative events

and 14 represented positive events.

For each dimension, the difference between the number of participants

experiencing positive events and the number of participants experiencing negative

represented a score for that dimension. A Dimension of Concern has a negative score

whose absolute value is larger than 20% of the total participants.

Table 7-15 lists the total number of events observed for all subjects and all tasks.

The table groups these events by their associated dimension and sorts them by total

number of events. In addition, the table shows the total number of participants

experiencing positive and negative events and the final score for each dimension.

For example, for all participants performing all tasks, there were 69 events

observed that relate to the Error Prone cognitive dimension. Of these 69 events, 16

participants experienced a positive event related to Error Proneness and 21 experienced a

negative event related to Error Proneness. This results in a score of minus five, which

has an absolute value greater than 20% of the total number of participants. Therefore,

Error Proneness is as a Dimension of Concern. Overall, there were 241 event instances.

176

Participants experienced more negative events than positive events for two

dimensions: Error Proneness and Closeness of Mapping. Only Error Proneness

exceeded the 20% threshold. As a result, Error Proneness is a Dimension of Concern.

Table 7-16 and Table 7-17 provide a more detailed look at the dimensions listed

in Table 7-15. These data provide rationale for the classification of each dimension, as

well as suggestions for improvements in future releases. The first table lists the positive

events by event type and the second table shows the negative events by event type. For

example, of the nine positive Diffuseness events, six were the result of interaction with

the Design Pattern Wizard (event #14) and three the result the participants’ reaction to the

automatically generated code (event #18). In addition, for all participants, event number

seven was the most observed positive event; 21 participants experienced this event.

Table 7-15: Number of occurrences by cognitive dimension for all participants and all
tasks (N = 24).

Dimension Total
Events

Participants
Experiencing

Positive Events

Participants
Experiencing

Negative Events

Final
Score

Error prone 69 16 21 -5
Progressive
evaluation

53 21 9 12

Viscosity 47 16 7 9
Premature

commitment
27 10 3 7

Role expressiveness 21 10 6 4
Diffuseness 13 7 4 3
Visibility 8 5 2 3

Closeness of Mapping 3 0 3 -3
Total 241

177

Table 7-16: Coded positive observations for all participants and tasks (N = 24).
Dimension Total

Events
Event Description # Participants

Experiencing
Event

Progressive
evaluation

40 7 - It was easy for participants to check the
status of the model, and for any errors, by
looking at what has been done so far

21

Viscosity 36 4 - Easy for participant to make a change to a
component

13

Error prone 12 2 - The consistency in the Herbal interface
helped reduce errors

11

Premature
commitment

12 6 - Lack of required order made it to fix
mistakes

8

Premature
commitment

12 8 - Participant changed order of steps in task
without problems

9

Role
expressiveness

7 16 - Participant demonstrated strong
understanding of the model

7

Diffuseness 6 14 - The design pattern wizard allowed
participant to create several components using
a brief terminology

6

Error prone 6 15 - The design pattern wizard prevented
errors creating components

6

Visibility 6 20 - Behavior of agent was easy to see using
the debugger

5

Viscosity 4 34 - Working sets helped participant find
location of a problem

4

Diffuseness 3 18 - Participant was thankful for code
automatically created by Herbal

3

Role
expressiveness

3 33 - Participant entered quality design
rationale

3

Role
expressiveness

2 13 - Participant viewed rationale to learn more
about model

2

Role
expressiveness

1 30 - Commented that components are self-
explanatory

1

Total 150

178

Table 7-17: Coded negative observations for all participants and tasks (N = 24).
Dimension Total

Events
Event Description # Participants

Exper. Event
Progressive
evaluation

13 10 - The participant became confused about what
specific component they were working on, or what
step they were doing

9

Error prone 13 11 - Participant had problems distinguishing
between types of design rationale

12

Error prone 9 21 - Poor design in working set dialog lead to
errors

6

Error prone 8 3 -The search feature of the new project dialog
lead to errors

8

Error prone 4 28 - Instructions mislead participant to create
action instead of type

4

Error prone 4 29 - Participant confused by conditions with no
restrictions

4

Error prone 4 31 - Participant selected wrong problem space in
design pattern wizard

4

Viscosity 4 35 - Participant had problems editing an operator 4
Role

expressiveness
3 5 - Participant had trouble understanding

component/subcomponent
3

Viscosity 3 9 - Participant had problems editing an action 3
Error prone 3 12 - Participant confused Eclipse export with

Herbal library export
3

Premature
commitment

3 19 - Participant was confused by order required to
run debugger

3

Role
expressiveness

3 26 - Participant demonstrated poor understanding
of the model

3

Error prone 3 37 - Participant entered literal value in local
variable edit box

3

Diffuseness 3 17 - Participant found design rationale to be
verbose and/or redundant

3

Visibility 2 1 – A portion of the Herbal GUI editor was hidden 2
Error prone 2 25 - Trouble locating the Herbal GUI Editor 2
Closeness of

mapping
2 27 - Participant preferred a term not used by high-

level language
2

Closeness of
mapping

1 23 - Participant appeared confused by notation
used to represent agent

1

Diffuseness 1 34 - Participant used copy and paste when entering
design rationale

1

Role
expressiveness

1 32 - Participant viewed rationale but did not find it
helpful

1

Role
expressiveness

1 36 - Participant misunderstood interface between
model/environment

1

Error prone 1 38 - Participant confused by wire screen when
there is nothing to wire

1

Total 91

179

Table 7-18 lists the total number of events observed for subjects performing the

library creation task. The table groups these events by their associated dimension and

sorts them by total number of events. In addition, the table shows the total number of

participants experiencing positive and negative events and the final score for each

dimension.

Participants experienced more negative events than positive events for four

dimensions: Role Expressiveness, Diffuseness, Visibility, and Closeness of Mapping.

Role Expressiveness and Diffuseness exceeded the 20% threshold. As a result, Role

Expressiveness and Diffuseness are Dimensions of Concern.

Table 7-19 and Table 7-20 provide a more detailed look at the dimensions listed

in Table 7-18.

Table 7-18: Number of occurrences by cognitive dimension for all participants
performing the library creation task (N = 8).

Dimension Total
Events

Participants
Experiencing

Positive Events

Participants
Experiencing

Negative Events

Final
Score

Error prone 33 8 8 0
Viscosity 33 8 4 4

Progressive evaluation 25 8 4 4
Premature

commitment
18 6 0 6

Role expressiveness 8 2 4 -2
Diffuseness 2 0 2 -2
Visibility 1 0 1 -1

Closeness of Mapping 1 0 1 -1
Total 121

180

Table 7-19: Coded positive observations for participants performing the library creation
task (N = 8).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Viscosity 29 4 - Easy for participant to make a change

to a component
8

Progressive
evaluation

19 7 - It was easy for participants to check
the status of the model, and for any
errors, by looking at what has been done
so far

8

Error prone 9 2 - The consistency in the Herbal
interface helped reduce errors

8

Premature
commitment

9 6 - Lack of required order made it easy to
fix mistakes

6

Premature
commitment

9 8 - Participant changed order of steps in
task without problems

6

Role
expressiveness

1 33- Participant entered quality design
rationale

1

Role
expressiveness

1 30 - Commented that components are
self-explanatory

1

Total 77

181

Table 7-21 lists the total number of events observed for subjects performing the

model creation task. The table groups these events by their associated dimension and

sorts them by total number of events. In addition, the table shows the total number of

Table 7-20: Coded negative observations for participants performing the library creation
task (N = 8).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Error prone 6 11 - Participant had problems

distinguishing between types of design
rationale

6

Progressive
evaluation

6 10 - The participant became confused about
what specific component they were working on,
or what step they were doing

4

Error prone 5 3 - The search feature of the new project dialog
lead to errors

5

Error prone 4 28 - Instructions mislead participant to create
action instead of type

4

Error prone 3 29 - Participant confused by conditions with no
restrictions

3

Role
expressiveness

3 5 - Participant had trouble understanding
component/subcomponent

3

Viscosity 3 9 - Participant had problems editing an action 3
Role

expressiveness
3 26 - Participant demonstrated poor

understanding of the model
3

Error prone 3 37 - Participant entered literal value in local
variable edit box

3

Error prone 2 12 - Participant confused Eclipse export with
Herbal library export

2

Viscosity 1 35 - Participant had problems editing an
operator

1

Diffuseness 1 17 - Participant found design rationale to
be verbose and/or redundant

1

Diffuseness 1 24 - Participant used copy and paste when
entering design rationale

1

Visibility 1 1 - A portion of the Herbal GUI editor was
hidden

1

Closeness of
mapping

1 27 - Participant preferred a term not used by
high-level language

1

Error prone 1 38 - Participant confused by wire screen when
there is nothing to wire

1

Total 44

182

participants experiencing positive and negative events and the final score for each

dimension.

Participants experienced more negative events than positive events for one

dimension: Closeness of Mapping. None of the dimensions exceeded the 20% threshold

and therefore no dimensions are Dimensions of Concern.

Table 7-22 and Table 7-23 provide a more detailed look at the dimensions listed

in Table 7-21.

Table 7-21: Number of occurrences by cognitive dimension for participants performing
the model creation task (N = 8).

Dimension Total
Events

Participants
Experiencing

Positive Events

Participants
Experiencing

Negative Events

Final
Score

Error prone 25 8 7 1
Progressive
evaluation

20 7 5 2

Diffuseness 11 7 2 5
Role expressiveness 10 6 1 5

Premature
commitment

6 4 0 4

Viscosity 2 2 0 2
Closeness of Mapping 1 0 1 -1

Visibility 0 0 0 0
Total 75

183

Table 7-22: Coded positive observations for participants performing the model creation
task (N = 8).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Progressive
evaluation

13 7 - It was easy for participants to check
the status of the model, and for any errors,
by looking at what has been done so far

7

Diffuseness 6 14 - The design pattern wizard allowed
participant to create several components
using a brief terminology

6

Error prone 6 15 - The design pattern wizard prevented
errors creating components

6

Role
expressiveness

5 16 - Participant demonstrated strong
understanding of the model

5

Error prone 3 2 - The consistency in the Herbal
interface helped reduce errors

3

Premature
commitment

3 8 - Participant changed order of steps in
task without problems

3

Diffuseness 3 18 - Participant was thankful for code
automatically created by Herbal

3

Premature
commitment

3 6 - Lack of required order made it easy to
fix mistakes

2

Viscosity 2 4 - Easy for participant to make a change
to a component

2

Role
expressiveness

2 33 - Participant entered quality design
rationale

2

Role
expressiveness

2 13 - Participant viewed rationale to learn
more about model

2

Total 48

184

Table 7-24 lists the total number of events observed for subjects performing the

model maintenance task. The table groups these events by their associated dimension

and sorts them by total number of events. In addition, the table shows the total number of

participants experiencing positive and negative events and the final score for each

dimension.

Table 7-23: Coded negative observations for participants performing the model creation
task (N = 8).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Error prone 7 11- Participant had problems

distinguishing between types of design
rationale

6

Progressive
evaluation

7 10 -The participant became confused about
what specific component they were working
on, or what step they were doing

5

Error prone 4 31 - Participant selected wrong problem
space in design pattern wizard

4

Error prone 3 3 - The search feature of the new project
dialog lead to errors

3

Diffuseness 2 17 - Participant found design rationale to
be verbose and/or redundant

2

Error prone 1 12 - Participant confused Eclipse export with
Herbal library export

1

Closeness of
mapping

1 27 - Participant preferred a term not used by
high-level language

1

Error prone 1 25 - Trouble locating the Herbal GUI Editor 1
Role

expressiveness
1 32 - Participant viewed rationale but did not

find it helpful
1

Total 27

185

Participants experienced more negative events than positive events for four

dimensions: Viscosity, Error Proneness, Premature Commitment, and Closeness of

Mapping. Viscosity, Error Proneness, and Premature Commitment exceeded the 20%

threshold. As a result, these three dimensions are Dimensions of Concern.

Table 7-25 and Table 7-26 provide a more detailed look at the dimensions listed

in Table 7-24.

Table 7-24: Number of occurrences by cognitive dimension for all participants
performing the model maintenance task (N = 8).

Dimension Total
Events

Participants
Experiencing

Positive Events

Participants
Experiencing

Negative Events

Final
Score

Viscosity 12 6 3 -3
Error prone 11 0 6 -6
Progressive
evaluation

8 6 0 6

Visibility 7 5 1 4
Role expressiveness 3 2 1 1

Premature
commitment

3 0 3 -3

Closeness of
Mapping

1 0 1 -1

Diffuseness 0 0 0 0
Total 45

186

Table 7-25: Coded positive observations for participants performing the model
maintenance task (N = 8).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Progressive
evaluation

8 7 - It was easy for participants to check
the status of the model, and for any errors,
by looking at what has been done so far

6

Visibility 6 20 - Behavior of agent was easy to see
using the debugger

5

Viscosity 5 4 - Easy for participant to make a change
to a component

4

Viscosity 4 34 - Working sets helped participant find
location of a problem

4

Role
expressiveness

2 16 - Participant demonstrated strong
understanding of the model

2

Total 25

187

Table 7-27 lists the total number of events observed for subjects majoring in

PSYC. The table groups these events by their associated dimension and sorts them by

total number of events. In addition, the table shows the total number of participants

experiencing positive and negative events and the final score for each dimension.

Table 7-26: Coded negative observations for participants performing the model
maintenance task (N = 8).

Dimension Total

Events
Event Description # Participants

Experiencing Event
Error prone 9 21 - Participant had problems

distinguishing between types of design
rationale

6

Viscosity 3 35 - Participant had problems editing an
operator

3

Premature
commitment

3 19 - Participant was confused by order
required to run debugger

3

Error prone 1 25 - Trouble locating the Herbal GUI
Editor

1

Error prone 1 29 - Participant confused by conditions
with no restrictions

1

Visibility 1 1 - A portion of the Herbal GUI editor was
hidden

1

Role
expressiveness

1 36 - Participant misunderstood interface
between model/environment

1

Closeness of
Mapping

1 23 - Participant appeared confused by
notation used to represent agent

1

Total 20

188

Participants experienced more negative events than positive events for three

dimensions: Error Proneness, Role Expressiveness, and Closeness of Mapping.

However, none of the dimensions exceeded the 20% threshold. As a result, no

dimensions are Dimensions of Concern.

Table 7-28 and Table 7-29 provide a more detailed look at the dimensions listed

in Table 7-27.

Table 7-27: Number of occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12).

Dimension Total
Events

Participants
Experiencing

Positive Events

Participants
Experiencing

Negative Events

Final
Score

Error prone 32 8 10 -2
Progressive
evaluation

27 12 4 8

Viscosity 25 10 4 6
Premature

commitment
14 6 0 6

Role expressiveness 12 3 5 -2
Diffuseness 6 4 1 3
Visibility 4 3 1 2

Closeness of Mapping 1 0 1 -1
Total 121

189

Table 7-28: Number of positive occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Progressive
evaluation

22 7 - It was easy for participants to check the
status of the model, and for any errors, by
looking at what has been done so far

12

Viscosity 18 4 - Easy for participant to make a change to a
component

7

Premature
commitment

9 6 - Lack of required order made it to fix
mistakes

5

Error prone 6 2 - The consistency in the Herbal interface
helped reduce errors

6

Premature
commitment

5 8 - Participant changed order of steps in task
without problems

5

Error prone 3 15 - The design pattern wizard prevented
errors creating components

3

Diffuseness 3 14 - The design pattern wizard allowed
participant to create several components using
a brief terminology

3

Viscosity 3 34 - Working sets helped participant find
location of a problem

3

Role
expressiveness

3 16 - Participant demonstrated strong
understanding of the model

3

Visibility 3 20 - Behavior of agent was easy to see using
the debugger

3

Role
expressiveness

2 33 - Participant entered quality design
rationale

2

Diffuseness 2 18 - Participant was thankful for code
automatically created by Herbal

2

Total 79

190

Table 7-30 lists the total number of events observed for subjects majoring in CS,

CIS, or MIS. The table groups these events by their associated dimension and sorts them

Table 7-29: Number of negative occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Error prone 6 11 - Participant had problems distinguishing

between types of design rationale
6

Progressive
evaluation

5 10 - The participant became confused about
what specific component they were working on,
or what step they were doing

4

Error prone 4 21 - Poor design in the working set dialog lead to
errors

3

Error prone 3 3 - The search feature of the new project dialog
lead to errors

3

Error prone 3 31 - Participant selected wrong problem space in
design pattern wizard

3

Error prone 3 29 - Participant confused by conditions with no
restrictions

3

Viscosity 3 35 - Participant had problems editing an operator 3
Role

expressiveness
3 26 - Participant demonstrated poor

understanding of the model
3

Role
expressiveness

2 5 - Participant had trouble understanding
component/subcomponent

2

Error prone 2 28 - Instructions mislead participant to create
action instead of type

2

Error prone 2 37 - Participant entered literal value in local
variable edit box

2

Closeness of
Mapping

1 27 - Participant preferred a term not used by
high-level language

1

Viscosity 1 9 - Participant had problems editing an action 1
Visibility 1 1 - A portion of the Herbal GUI editor was

hidden
1

Diffuseness 1 17 - Participant found design rationale to be
verbose and/or redundant

1

Role
expressiveness

1 32 - Participant viewed rationale but did not find
it helpful

1

Role
expressiveness

1 36 - Participant misunderstood interface between
model/environment

1

Total 42

191

by total number of events. In addition, the table shows the total number of participants

experiencing positive and negative events and the final score for each dimension.

Participants experienced more negative events than positive events for two

dimensions: Error Proneness and Closeness of Mapping. Only Error Proneness

exceeded the 20% threshold. As a result, Error Proneness is a Dimension of Concern.

Table 7-31 and Table 7-32 provide a more detailed look at the dimensions listed

in Table 7-30.

Table 7-30: Number of occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12).

Dimension Total
Events

Participants
Experiencing

Positive Events

Participants
Experiencing

Negative Events

Final
Score

Error prone 37 8 11 -3
Progressive
evaluation

26 9 5 4

Viscosity 22 6 3 3
Premature

commitment
13 4 3 1

Role expressiveness 9 7 1 6
Diffuseness 7 3 3 0
Visibility 4 2 1 1

Closeness of Mapping 2 0 2 -2
Total 120

192

Table 7-31: Number of positive occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Progressive
evaluation

18 7 - It was easy for participants to check the
status of the model, and for any errors, by
looking at what has been done so far

9

Viscosity 18 4 - Easy for participant to make a change to a
component

6

Premature
commitment

7 8 - Participant changed order of steps in task
without problems

4

Error prone 6 2 - The consistency in the Herbal interface
helped reduce errors

5

Role
expressiveness

4 16 - Participant demonstrated strong
understanding of the model

4

Error prone 3 15 - The design pattern wizard prevented
errors creating components

3

Diffuseness 3 14 - The design pattern wizard allowed
participant to create several components using
a brief terminology

3

Premature
commitment

3 6 - Lack of required order made it to fix
mistakes

3

Visibility 3 20 - Behavior of agent was easy to see using
the debugger

2

Role
expressiveness

2 13 -Participant viewed rationale to learn more
about model

2

Diffuseness 1 18 - Participant was thankful for code
automatically created by Herbal

1

Role
expressiveness

1 30 - Commented that components are self-
explanatory

1

Role
expressiveness

1 33 - Participant entered quality design
rationale

1

Viscosity 1 34 - Working sets helped participant find
location of a problem

1

Total 71

193

Table 7-32: Number of negative occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12).

Dimension Total
Events

Event Description # Participants
Experiencing

Event
Progressive
evaluation

8 10 - The participant became confused about
what specific component they were working on,
or what step they were doing

5

Error prone 7 11 - Participant had problems distinguishing
between types of design rationale

6

Error prone 5 3 - The search feature of the new project dialog
lead to errors

5

Error prone 5 21 - Poor design in the working set dialog lead
to errors

3

Premature
commitment

3 19 - Participant was confused by order required
to run debugger

3

Error prone 3 12 - Participant confused Eclipse export with
Herbal library export

3

Diffuseness 2 17 - Participant found design rationale to be
verbose and/or redundant

2

Viscosity 2 9 - Participant had problems editing an action 2
Error prone 2 25 - Trouble locating the Herbal GUI Editor 2
Error prone 2 28 - Instructions mislead participant to create

action instead of type
2

Error prone 1 31 - Participant selected wrong problem space in
design pattern wizard

1

Error prone 1 37 - Participant entered literal value in local
variable edit box

1

Error prone 1 38 - Participant confused by wire screen when
there is nothing to wire

1

Error prone 1 29 - Participant confused by conditions with no
restrictions

1

Diffuseness 1 24 - Participant used copy and paste when
entering design rationale

1

Viscosity 1 35 - Participant had problems editing an operator 1
Visibility 1 1 - A portion of the Herbal GUI editor was

hidden
1

Role
expressiveness

1 5 - Participant had trouble understanding
component/subcomponent

1

Closeness of
Mapping

1 23 - Participant appeared confused by notation
used to represent agent

1

Closeness of
Mapping

1 27 - Participant preferred a term not used by
high-level language

1

Total 49

194

A chi-square test of independence was performed to check for a correlation

between the number of negative and positive observed events and the participants’ major

(PSYC or CI/CIS/MIS). Table 7-12 summarizes the results of this analysis. Importantly,

there is no statistical evidence that there is a correlation between the number and type of

observed events during task completion, and the participants’ major: !2 = 0.961, DF = 1,

p = .327 (Howell, 1987).

Summary of Observation Results

Table 7-34 lists Dimensions of Concern based on participant observations.

Dimensions of Concern are shown using six different groupings: (1) all participants; (2)

participants performing the library creation task; (2) participants performing the model

creation task; (3) participants performing the model maintenance task; (4) participants

majoring in PSYC, (5) for participants majoring in CS, CIS, or MIS. For example,

Table 7-33: A 2x2 chi-square contingency table used to test for independence between
observations and participant major.

Major # Positive
Observations

Negative
Observations

Total

PSYC 79
75.31
0.181

42
45.69
0.298

121

CS/CIS/MIS 71
74.69
0.182

49
45.31
0.300

120

Total 150 91 241

Expected counts are printed below observed counts and chi-square contributions are
printed below expected counts. !2 = 0.961, DF = 1, p = .327

195

observations of participants majoring in CS, CIS, or MIS indicated that Error Proneness

was the only Dimensions of Concern.

Discussion

Table 7-35 lists Dimensions of Concern based on both survey results and

participant observations. The table indicates concerns based on survey results with the

letter S, and concerns based on observations with the letter O. The table indicates

concerns recorded based on both survey results and observations with the letter B.

Table 7-34: Dimensions of Concern as measured by observations.

Dimension All Library
Creation

Model
Creation

Model
Maintenance

PSYC CS/CIS/MIS

Visibility

Viscosity X

Diffuseness X

Hard-mental
operations

Error-
proneness

X X X

Closeness of
mapping

Role-
expressiveness

 X

Progressive
evaluation

Premature
commitment

 X

196

Table 7-35 shows Dimensions of Concern using six different groupings: (1) all

participants; (2) participants performing the library creation task; (2) participants

performing the model creation task; (3) participants performing the model maintenance

task; (4) participants majoring in PSYC, (5) participants majoring in CS, CIS, or MIS.

For example, both survey responses and observations of participants performing model

maintenance indicated that Error Proneness and Premature Commitment were

Dimensions of Concern.

Table 7-35 presents 54 possible dimension/condition pairings (nine dimensions *

six conditions). Of these 54 pairings, 64.8% (35) show agreement between the survey

results and the observations. According to the surveys and observations, the Herbal

Table 7-35: Summary of Dimensions of Concerns based on survey results (S), participant
observations (O), and both (B).

Dimension All Library
Creation

Model
Creation

Model
Maintenance

PSYC CS/CIS/
MIS

Visibility S S S S

Viscosity O

Diffuseness O

Hard-mental
operations

 S

Error-proneness O S B S O

Closeness of
mapping

Role-expressiveness O S S

Progressive
evaluation

Premature
commitment

S S S B S S

197

system appears to be strong with respect to Viscosity, Diffuseness, Progressive

Evaluation, Closeness of Mapping, and Hard-Mental Operations.

Observations related to Viscosity show that participants found it easy to make

changes to components. In addition, the working set feature made it easy for participants

to change a collection of related components. Only during the model maintenance task

was there an indication (by observation) of difficulty making changes to the model.

During this task, several participants encountered a problem when editing the operator

that was causing the vacuum cleaner to malfunction.

Observations of appreciation for the code automatically created by Herbal

provided evidence of Positive support for Diffuseness. Several participants mentioned

that they were very happy they did not have to generate the Soar code manually. The

Design Pattern Wizard also proved to be a compact way of expressing complicated

behavior. Problems with Diffuseness took place only during library creation when the

participant attempted to enter design rationale. Several participants commented on the

redundancy of the design rational task, relying on copy/paste to hasten design rationale

entry. Perhaps with a more complicated model, entering design rationale would have

been a more interesting task.

The system also met the needs of the participants with respect to Progressive

Evaluation. Observations confirmed that participants could easily check the progress of

the model at any point in time, regardless of task. In addition, the participants were able

to browse the model for potential errors when needed.

Closeness of Mapping was another dimension that Herbal supported well. Survey

results were positive with respect to the high-level language used to describe agents

198

written in Herbal. In addition, only three participants experienced negative events with

respect to Closeness of Mapping. Two participants thought the term “mode” or “state”

would be more useful than problem space, and one participant became confused by the

notation used to represent the agent and its behavior.

Finally, participants indicated in the surveys that, as a whole, they did not find the

tasks particularly complex. This is due in part to the fact that the tasks tested the usability

of the system, and were not problem solving exercises (aside from the maintenance task).

A poorly designed interface can make basic tasks complex, and in this respect, Herbal

scored well. On the surveys, participants did indicate some complexity in the model

maintenance task. This is not surprising because this is the one task where participants

were asked to solve a problem (i.e., what was wrong with the vacuum cleaner) rather than

exercise an interface.

Herbal did appear to lack good support two dimensions: Error Proneness, and

Premature Commitment. Table 7-35 lists these two dimensions as Dimensions of

Concern in nearly every column.

The classification of Error Proneness as a concern was due to both observations

and survey results. Only the library creation tasks did not suffer from problems with

Error Proneness. Recordings of the observed events give reasons for the problems

participants had with Error Proneness. For example, 13 errors resulted from participants

having problems distinguishing between the different types of design rational. Twenty-

one errors resulted from problems with the design and layout of the Working Set, New

Project, and Design Pattern Wizard dialogs. Four errors resulted from confusion caused

199

by the use of a condition with no restrictions. Finally, four errors took place because of a

problem in the wording of one of the steps in the instructions.

Survey data in all six conditions classified Premature Commitment as a concern,

yet participant observations only classified Premature Commitment as a concern during

the model maintenance task. Due to a lack of useful responses to the open-ended

portions of the survey, it is difficult to tell why participants felt restricted to order. The

fact that the task instructions consisted of ordered steps most likely played a role.

Observations told a different story with respect to Premature Commitment. Eight

participants were able to fix mistakes more easily because Herbal did not enforce order.

In addition, nine participants changed the order of the steps in the task, on their own, and

without problems.

A task where order did appear to present problems (during observation) was the

model maintenance task. Connecting the debugger to the Vacuum Cleaner Environment

requires a fixed order and three participants were observed having problems with this

rigid order.

Because Survey data indicated a problem with Premature Commitment, and

observations did not, further exploration of this concern is required.

Table 7-35 shows mixed Results for Role Expressiveness and Visibility. Three

conditions classified Role Expressiveness as a concern, and four conditions classified

Visibility as a concern. Role Expressiveness was a concern during library creation,

where three participants demonstrated a poor understanding of the model in general, and

three participants demonstrated trouble understanding the relationship between

components and subcomponents. Surveys indicated a problem with Role Expressiveness

200

during model creation and for PSYC students as a whole. Visibility was a concern in

survey data for all conditions except model maintenance and for PSYC students as a

whole. However, observations did not indicate Visibility as a concern for any conditions.

As a result, further exploration of this concern is required.

Finally, a two-sample t-test did not show a difference between the mean

performance times of the two groups: t(22) = -1.44, p = .163 (two-tailed). In addition,

chi-square tests of independence did not show a relationship between the participants’

major and the survey results (!2 = 0.160, DF = 1, p = .689), or the observed events (!2 =

0.961, DF = 1, p = .327). These results are encouraging because they support the design

goal that Herbal is usable by users with varying backgrounds and skill sets.

Conclusions

The Herbal system appears to be very strong in five of the nine dimensions:

Viscosity, Diffuseness, Progressive Evaluation, Closeness of Mapping, and Hard-Mental

Operations. This is a very positive result with respect to the overall usability of Herbal.

The data show mixed results on Role Expressiveness, and Herbal’s support for

Error Proneness was of concern. Finally, the observations contradicted the survey results

for Visibility and Premature Commitment, opening the door for further evaluation of

these two dimensions.

The strong ratings in five of the nine dimensions are very encouraging, especially

the improvement in the problems with Closeness of Mapping reported during the

formative study (Chapter 5). In addition, the lack of Visibility concerns during

201

participant observations also shows improvement over the findings during the formative

study. The changes recommended by the formative study, such as changes to the

terminology used by Herbal and its high-level language, and the addition of a model

browser view, appear to have improved the usability of the system.

Another encouraging result came from the statistical analysis of the data based on

major. Herbal’s implementation of reuse, visual programming, working sets, graphical

displays, and a well-designed high-level representation, appears to be helping people use

the tool independently of their skill set.

One discouraging result was the apparent poor support for the Premature

Commitment dimension, despite changes made because of the formative evaluations.

Unfortunately, most of the data indicating poor support for Premature Commitment is

from the surveys, and the lack of good open-ended responses makes it difficult to

determine the reason for this result. Contradicting the survey results, observations

showed that eight participants were able to fix mistakes more easily because Herbal did

not enforce order. In addition, nine participants changed the order of the steps in the task

on their own and without problems. Additional work is required, perhaps with a more

open-ended task, to evaluate this dimension.

Finally, Error Proneness was a concern in both observations and survey results.

Only the library creation task did not suffer from problems with Error Proneness.

Fortunately, the observations revealed several ways to address this issue. For example, a

better explanation of the difference between the three different design rationale types

would have eliminated 13 errors. In addition, improvements to the design and layout of

the Working Set, New Project, and Design Pattern Wizard could eliminate 21 errors.

Chapter 8

Contributions, Lessons, and Future Work

Cognitive models are useful for a number of purposes. Unfortunately, limited

theory-based tool and language support for the creation of cognitive models has made it

difficult for modelers to create, debug, and reuse cognitively plausible software (Pew &

Mavor, 1998; Ritter et al., 2003; Salvucci & Lee, 2003; Yost, 1993). In addition, the use

of multiple cognitive architectures has further complicated cognitive modeling by making

it difficult to compare, reuse, and integrate models (Gluck & Pew, 2001a; Jones,

Crossman, Lebiere, & Best, 2006; Jones & Wray, 2003).

This dissertation demonstrated the benefits of applying software engineering

principles to cognitive modeling development, with the creation of a high-level language

and development environment, and with evaluations of this language and environment, in

use, by students and cognitive modelers. The upcoming sections detail the specific

contributions and lessons generated by the work presented in this dissertation, along with

opportunities that arise from this work.

Contributions towards Better Modeling Languages

The high-level language presented here is a significant contribution to better

modeling languages because it allows modelers to program using a high-level

representation that is compiled for multiple architectures (presently Soar and Jess). This

203

allows modelers to create a model using a well-known theory of cognition (PSCM) and

translate this model into different architectures unifying different theories. For example,

a modeler might choose Soar because of its learning mechanism and its emphasis on

psychological plausibility. Alternatively, an agent developer might choose Jess because

of its cross-platform strengths and ease at which it integrates with existing Java

applications. With Herbal, modelers can share components across both models despite

the fact that they execute in different architectures.

Currently, only one other high-level cognitive modeling language supports

multiple architectures: HLSR, which was reviewed in Chapter 2 (Jones, Crossman,

Lebiere, & Best, 2006). However, the high-Level language and environment presented in

this dissertation has two distinct advantages over HLSR.

First, Herbal has explicit support for a well-established theory of cognition. The

PSCM forms the basis of the Herbal high-level language, and the components of the

PSCM are explicit in the code. This helps close the conceptual gap between a theory

commonly used by cognitive modelers and the representation used to express behavior.

The high-level language used by HLSR does not explicitly support a theory of cognition.

Instead, HSLR hides this theory within programmable microtheories. Although the

HLSR language does simplify cognitive modeling, there is still a conceptual gap between

the theories commonly used to describe behavior and the HLSR representation.

Second, the Herbal high-level language uses XML to represent models. XML is a

free and open standard specification that provides the foundation for nearly all modern

markup languages and open-document formats. Models written in the Herbal high-level

language can immediately benefit from a large set of open-source and commercial tools

204

(e.g., editors, graphics engines, mathematical notations, and databases). Developers can

edit their models using existing XML editors, easily translate their code into a variety of

formats (e.g., HTML, SVG, PDF, or even productions for additional cognitive

architectures), and create their own Herbal tools using one of the many programming

languages that support XML.

Another contribution of this work is confirmation of the usefulness of the PSCM

as a high-level behavior representation language and hierarchical organization tool. This

contribution arises from the evaluations completed in support of this dissertation. In

general, results from the formative evaluation described in Chapter 5 illustrate that

participants appreciated the PSCM for its ability to organize rules into higher-level

structures, structures often obscured by rule-based languages. In addition, results from

the summative evaluation presented in Chapter 7 show that Closeness of Mapping and

Diffuseness were dimensions of strength for the system presented here. This is a further

indication that the PSCM is a good choice for a behavior representation language because

it closely matches the way that the modeler describes behavior naturally, and provides a

brief way to produce results or express behavior.

Table 8-1 summarizes this dissertation’s contributions towards better modeling

languages.

205

Contributions towards Better Maintenance-Oriented Modeling
Environments

Programmers spend considerable time performing software maintenance. As

mentioned in Chapter 3, the total cost of software maintenance is often at least 40% of

the total cost of developing it the software (Brooks, 1995) and U.S. programmers spend

over 70% of their time testing and debugging (Tassey, 2002). As a result, strong support

for usability and maintenance is an important part of simplifying cognitive modeling.

This dissertation makes four contributions towards better maintenance-oriented modeling

environments: support for multiple levels of editing source code; support for better code

navigation; a strong emphasis on usability; and a novel method of analyzing the results of

a cognitive dimension evaluation.

The Herbal development environment is currently the only cognitive modeling

environment that has support for simultaneously creating models at many different levels

of abstraction (Figure 4-13). Support for programming at these levels makes Herbal

useful for both end-user programmers, who can create models visually, and expert

Table 8-1: Contributions towards better modeling languages.

Contributions
1. A high-level modeling language based on the PSCM and represented in XML

2. The ability to translate models written in this language into two popular, yet
different, architectures

3. Empirical validation of the high-level language and the choice of the PSCM for
this representation

206

programmers, who may prefer to build models using multiple levels. This also may

provide better support for users as they transition from novice to expert user.

This dissertation contributes the only maintenance-oriented cognitive modeling

environment that supports the creation, maintenance, and persistence, of working sets for

the development of cognitive models. Studies have shown both the need, and the benefit

of the use of working sets for software maintenance (Ko, Aung, & Myers, 2005; Ko,

Myers, Coblenz, & Aung, 2006). The Herbal working set feature includes information

about the intent of the model’s components during a search. This gives the modeler

access to additional information “scent” when building working sets. Modelers can also

save these working sets and share them with other modelers or recall them for future use.

In addition, Herbal is the only cognitive modeling environment evaluated by three

different studies, and is the only research effort that used cognitive dimensions as the

basis for its evaluation. A semester long formative usability study has informed Herbal’s

design. In addition, this project has subjected Herbal to two different summative

evaluations, one evaluating the usefulness of the environment and the other evaluating

the usability of the environment. The summative usability evaluation showed that Herbal

was strong in the Viscosity, Hard-mental Operations, Closeness of Mapping, and

Progressive Evaluation cognitive dimensions. This same study has also identified

methods for the improvement of some of these dimensions.

Finally, the method this project used to analyze data generated by the summative

evaluation is novel. Specifically, when negative responses or negative observations

about a dimension exceeded a threshold, this method classified that dimension as a

Dimension of Concern. The concept of a Dimension of Concern, as described above, is

207

new and can be useful to other researchers that are implementing a similar evaluation

based on cognitive dimensions. By adjusting the threshold based on the importance of

the task, and the needs of the users, other researchers should be able to reuse this method

of analysis, and perhaps the term “Dimension of Concern” will become common

vocabulary for dimension-based evaluations.

Table 8-2 summarizes this dissertation’s contributions towards better

maintenance-oriented environments.

Contributions towards Better Model Reuse

The Herbal high-level language and environment has also contributed towards

better model reuse. Using Krueger’s dimensions of reuse, Herbal’s language and

environment facilitate the reuse of behavior across models in several novel ways.

Herbal’s high-level PSCM-based language, including the addition of conditions

and actions, is an example of Krueger’s first dimension of reuse: abstraction. The

Table 8-2: Contributions towards better maintenance-oriented environments.

Contributions
1. A cognitive modeling environment that has support for simultaneously creating

models at three different levels of abstraction

2. A cognitive modeling environment with support for better code navigation
using working sets that leverage model dependencies and the developer’s intent

3. A cognitive modeling environment with a strong emphasis on usability

4. A novel and useful method of analyzing the results of a cognitive-dimension-
based evaluation

208

extension of the PSCM to include conditions and actions as standard objects has added a

level of granularity that allows for better reuse within and across PSCM models.

Operators that utilize similar conditions and actions no longer need to duplicate the whole

operator, previously the smallest unit in the PSCM. This type of reuse is difficult to

achieve because of the dependencies between actions and conditions (e.g., modelers often

design actions to work with specific conditions). Herbal’s ability to “wire” conditions to

actions is a new contribution that makes this possible.

Herbal is also the only high-level cognitive modeling language that is library

centric. All of Herbal’s model components must reside within a library, and modelers

can identify each component using a unique namespace that simplifies the reuse of these

components. The required use of libraries, and the ability to assemble components from

these libraries to create models, is an example of abstraction and integration (Krueger’s

first and fourth dimensions).

Another contribution made by this dissertation is the support for the creation and

reuse of even higher-level behavior patterns created on top of the PSCM. For example,

structured programming patterns can be instantiated, thus creating looping structures

within traditionally unstructured rule-based environments. Herbal builds these looping

constructs out of standard PSCM components that are reusable, provides a graphical

wizard so simplify their creation, and translates these constructs into productions that run

in two widely used architectures. The ability for modelers to tailor reusable behavior

design patterns to their specific needs is an example of specialization (Krueger’s third

dimension of reuse), and this is a new contribution to reuse in cognitive modeling.

209

Herbal’s working set functionality also contributes to better reuse by supporting

Krueger’s second dimension: selection. Modelers can browse libraries looking for

components related to their needs by using the working set search feature. Because this

search feature includes design rationale and component dependencies, modelers can

discover reusable components quickly and efficiently. No other cognitive modeling

environment supports this type of component selection.

An evaluation using an early version of Herbal has empirically confirmed the

benefits of reuse in Herbal. In a study done by Morgan, Haynes, Ritter, and Cohen

(2005), a Soar model consisting of 29 productions was created using Herbal. In this

study, the authors showed a reduction in the time it took to create productions as the

library of reusable components (e.g., conditions and actions) expanded. This reduction in

time was primarily due to the increased reuse provided by Herbal over standard Soar. In

addition, the overall average time per production was less than that reported in a similar

study of graduate students programming in Soar (Yost, 1993).

Table 8-3 summarizes this dissertation’s contributions towards better model reuse.

210

Contributions towards Education of Modelers

This dissertation has also made several contributions towards education. The

baseball environment created to evaluate the usefulness of the Herbal modeling

environment extends the baseball examples presented in the Soar tutorial (Laird &

Congdon, 2005). Students using the tutorial to learn Soar now have a graphical Soar

environment to work with that mimics examples given in the tutorial.

Another outcome of this work is the Vacuum Cleaner Environment (Cohen,

2005). The Vacuum Cleaner Environment also extends a popular learning example, in

this case the vacuum cleaner world presented in a widely used artificial intelligence

textbook (Russell & Norvig, 2003). Students learning AI using this textbook can now

execute textbook examples in a dynamic graphical environment using two very different

modeling languages.

Table 8-3: Contributions towards better model reuse.

Contributions
1. The extension of the PSCM to include conditions and actions as standard

objects has added another level of granularity that allows for better reuse within
and across PSCM models

2. Library-centric modeling language

3. Support for the creation and reuse of even higher-level behavior patterns
created on top of the PSCM

4. The ability to browse libraries looking for components related to their needs
using the search feature of working sets

211

Herbal is used extensively as a teaching tool in classes at Lock Haven University

and Penn State University. To date, professors have exposed 89 undergraduates and 9

graduates to modeling using Herbal. In addition, in the fall of 2008 another graduate

class at Penn State will use Herbal.

Students in a Cognitive and Brain Sciences course at Tufts University have used

Herbal as a tool for learning Soar and gaining a better understanding of high-level

behavior representation languages. Audrey Girouard and Noah W. Smith took a well-

written Soar model and decompiled it into an equally functional Herbal high-level

representation. This helped students understand the tradeoffs between high-level and

low-level representations, and obtain a better understanding of how Soar productions

represent the PSCM.

During observations of students using Herbal, I have also discovered some

unexpected instructional benefits. Initially designed to reduce the need to program at a

low-level, the Herbal high-level language and GUI Editor also appear to be valuable for

teaching low-level rule-based programming. Working with the Herbal GUI editor and

the Herbal high-level language editor side-by-side, students have used the tool to learn

the Herbal language by making changes graphically and then viewing the generated

Herbal representation. In addition, by editing the Herbal representation directly, and then

viewing the generated low-level productions, students have been able to learn native Jess

and Soar programming.

Table 8-4 summarizes this dissertation’s contributions towards education.

212

External Users

Maik Friedrich (2008), a masters student in Germany, used Herbal for the

modeling portion of his dissertation. In his dissertation, Friedrich (2008) re-implemented

a model (Ritter & Bibby, 2008) that was created to solve a diagrammatic reasoning task

(this older model was written for Soar 6 and was no longer supported).

The first phase of Friedrich’s work involved creating a library of components

using Herbal. This phase took six weeks to complete. The second phase involved

creating four different models based on this library. The most complex model contained

80 productions. Each model used a different strategy to solve the diagrammatic

reasoning task. This phase took two weeks to complete. Overall, the modeling effort

took eight weeks to complete, which was significantly less that the six months required to

build the original model (based on comments in the original source code). Part of this

Table 8-4: Contributions towards education of modelers.

Contributions
1. Students using the Soar tutorial now have a graphical environment to work with

that mimics the baseball examples given in the tutorial

2. Eighty-nine undergraduates and nine graduates have been exposed to modeling
using Herbal, and more will follow in the fall 2008 semester

3. Herbal has been used at Tufts to learn Soar and to gain a better understanding
of high-level behavior representation languages

4. The Herbal GUI Editor is also useful for teaching low-level rule-based
programming, by editing the Herbal representation directly, and then viewing
the generated low-level productions

213

improvement can be attributed to the ability to reuse the design work in the original

model, but some of this improvement is very likely attributable to the use of Herbal.

In addition, four external sites have downloaded or are using Herbal to conduct

research (NYU, the Netherlands Government, the Laboratory for Telecommunications

Sciences at UMD, and Pace University).

Lessons and Future Work

In addition to the positive empirical results, the implementation of Herbal

produced and reinforced some areas of future research. Five categories classify this

future work: high-level languages, maintenance-oriented environments, reuse, usability

and evaluation, and graphical agent environments. The next few subsections describe

this future work in detail.

Future Work in High-level Modeling Languages

The most pressing area of work is support for more cognitive architectures. One

possibility is ACT-R. ACT-R is a very popular cognitive architecture that supports a

theory quite different from Soar and Jess. In addition, the hybrid nature of ACT-R allows

modelers to more easily explore variability in behavior. By adding support for more

cognitive architectures like ACT-R, modelers can further realize a main goal of this

research: the reusability of behavior across architectures.

214

The development of the Herbal high-level modeling language continually

reinforced the trade-off between the power of programming close to the architecture and

the simplicity of programming at a higher-level. On the one hand, basing the Herbal

high-level language on the PSCM provided some much needed structure and organization

to a traditionally rule-based programming environment. However, the absence of

underlying architectural support for the PSCM in Jess created a need to limit or simulate

portions of the PSCM. Understanding this trade-off, and looking for ways of minimizing

it, is an excellent task for future research.

Future Work in Maintenance-Oriented Modeling Environments

Based on recent research, the Herbal maintenance-oriented development

environment has been equipped with a working set feature that simplifies the creation of

a navigable and related set of components.

As discussed in Chapter 3, researchers have been working on additional

techniques that can enable environments to generate these working sets automatically.

For example, a tool might linguistically analyze a description of the modeler’s current

task, perhaps as described in a bug report, to build working sets automatically. In

addition, the use of code navigation history by project team members, and recent

adaptations of information processing theory (e.g., PFIS), can also provide automatic

working sets generation (Cubranic, Murphy, Singer, & Booth, 2005; DeLine, Czerwinski,

& Robertson, 2005). In the future, researchers could implement these techniques into

Herbal’s working set feature and confirm its effectiveness.

215

Future Work in Model Reuse

One of the exciting contributions made by this dissertation is the ability to build

complex behavior on top of the Herbal high-level PSCM components using the Behavior

Design Pattern Wizard. Modelers can name these behaviors and reuse them in models

that run on different architectures.

Currently, Herbal supports procedural looping behaviors. However, researchers

could add several other behavior patterns to the wizard. For example, support for the

BDI framework would make it easier for BDI researchers to create and possibly reuse

behavior between Herbal and JACK. In addition, support for the abstract constructs (e.g.,

activation tables) in HLSR would simplify behavior creation and reuse between Herbal

and HLSR.

Future Work in Usability and Evaluation

Based on the summative usability study discussed in Chapter 6, Herbal could

better support Error Proneness, and Premature Commitment. Observations of

participants have given clues about why Error Proneness was a problem. For example,

13 errors resulted from participants having problems distinguishing between the different

types of design rational. Twenty-one errors resulted from problems with the design and

layout of the Working Set, New Project, and Design Pattern Wizard dialogs. There are

opportunities for improving Herbal’s support for Error Proneness by addressing these

issues.

216

The concern with Premature Commitment is a bit more complicated. Because

survey data supported the concern for Premature Commitment, but observations

contradicted this concern, researchers should explore this further. One task where order

did present problems was the model maintenance task. Connecting the debugger to the

Vacuum Cleaner Environment requires a fixed order, and three participants were

observed having problems with this rigid order. Future improvements to the integration

between the debugger and the graphical environments would certainly help with

Premature Commitment.

Another area for potential research would be to address the problems encountered

with the open-ended questions in the cognitive dimensions survey. Students seemed to

be in too much of a hurry to provide meaningful responses to the qualitative questions.

This made it difficult to understand the reasons behind some of their responses. Future

work exists for discovering how to improve a generalized cognitive dimensions survey to

get useful responses to the open-ended questions.

Future Work in Graphical Agent Environments

This research has lead to the creation of two graphical agent environments: the

baseball environment and the Vacuum Cleaner Environment. Both of these environments

present opportunities for future work. Because the Herbal development environment

automatically creates both Soar and Jess models, the opportunity exists for comparisons

of a single Herbal high-level pitcher model running in two very different architectures.

These types of comparisons have been shown to be important (Gluck & Pew, 2001a;

217

Gluck & Pew, 2001b; Morgan, Ritter, Cohen, Stevenson, & Schenck, 2005; Sun,

Councill, Fan, Ritter, & Yen, 2004), and Herbal makes this easier to do.

In addition, future work could make improvements to the pitcher model by

enhancing the reflective process so that benefit from negative experiences takes place

without requiring previous positive experiences. In the absence of positive learned

events, negative reflection should still lead to a decrease in the probability of repeating

the action.

There are also opportunities to explore other parts of the baseball task. For

example, researchers can expand the environment and its models to include other batting

strategies, other batter sequences, batting tournaments, and learning batters.

Future work also exists in the Vacuum Cleaner Environment project. In the

current version, vacuum cleaners never have mishaps. They always clean when told to,

and they always move when commanded to. Of course, real world environments are

much less predictable. The addition of random errors committed by the vacuum cleaner

would allow for more interesting models.

Conclusion

This dissertation demonstrated the benefits of applying software engineering

principles to cognitive model development, with the creation of a high-level language and

development environment, and with evaluations of this language and environment, in use,

by students and cognitive modelers.

218

The high-level language was designed to close the conceptual gap (Petre &

Blackwell, 1997) between the mental model used by cognitive modelers and the low-

level representations used to model behavior. In addition, this language uses Krueger’s

four dimensions to support reuse (Krueger, 1992). Finally, the compiler for this language

supports multiple architectures, so modelers can compare, reuse, and integrate behavior

across architectures.

Motivated by research confirming the importance of the maintenance phase of

software development (Brooks, 1995; Ko, Myers, Coblenz, & Aung, 2006; Tassey,

2002), this dissertation leverages design patterns (Gamma, Helm, Johnson, & Vlissides,

1995), and working sets (Ko, Myers, Coblenz, & Aung, 2006), to bring modelers the

type of maintenance support that is has been shown to benefit traditional software

development.

This research concluded with two different evaluations to help validate the

hypothesis that the theory embedded in this system simplifies the modeling task. In

addition, these evaluations demonstrated that the system is usable. While these

evaluations were positive, they have also suggested future work. The result of this

dissertation is research that has made significant contributions to the modeling

community and has set an important precedent of considering software engineering and

usability to progress the field of cognitive modeling.

References

Agarwal, R., De, P., Sinha, A. P., & Tanniru, M. (2000). On the usability of OO
representations. Communications of the ACM, 43(10), 83-89.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S. A., Lebiere, C., & Qin, Y.
(2004). An integrated theory of the mind. Psychological Review, 111(4), 1036-
1060.

Auerbach, J. S., Bacon, D. F., Goldberg, A. P., Goldszmidt, G. S., Kennedy, M. T.,
Lowry, A. R., Russell, J. R., Silverman, W., Strom, R. E., Yellin, D. M., &
Yemini, S. A. (1991). High-level language support for programming distributed
systems (No. RC 16441): IBM.

Bass, E. J., Baxter, G. D., & Ritter, F. E. (1995). Creating models to control simulations:
A generic approach. AI and Simulation Behaviour Quarterly, 93, 18-25.

Beck, L. L., & Perkins, T. E. (1983). A survey of software engineering practice: Tools,
method, and results. IEEE Transactions on Software Engineering, 9(5), 541-561.

Bigus, J. P., & Bigus, J. (2001). Constructing Intelligent Agents Using Java: Professional
Developer's Guide (2nd ed.): Wiley.

Blackwell, A. F., & Green, T. (2003). Notational systems: The cognitive dimensions of
notations frameworks. In J. M. Carroll (Ed.), HCI Models, Theories, and
Frameworks (pp. 103-133). San Francisco, CA: Morgan Kaufmann.

Blackwell, A. F., & Green, T. R. G. (2000). A cognitive dimensions questionnaire
optimised for users. In Proceedings of the 12th Annual Meeting of the Psychology
of Programming Interest Group, 137-152.

Blank, D. S., Kumar, D., Meeden, L., & Yanco, H. (2006). The Pyro toolkit for AI and
robotics. AI Magazine, 27.

Boehm, B. W. (1987). Improving software productivity. IEEE Computer, 20(9), 43-57.

Boehm, B. W. (1988a). A spiral model of software development and enhancement.
Computer, 21(5), 61-72.

220

Boehm, B. W. (1988b). Understanding and Controlling Software Costs. IEEE
Transactions on Software Engineering, 15(10), 1462-1477.

Boshernitsan, M. (2003). Program manipulation via interactive transformations. In
Proceedings of the OOPSLA, 392-393. Anaheim CA.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20, 10-19.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering (20th
Anniversary ed.): Addison Wesley.

Buchanan, B. G., Sutherland, G. L., & Feigenbaum, E. A. (1969). Heuristic DENDRAL:
A program for generating explanatory hypothesis in organic chemistry. In B.
Meltzer, D. Michie & M. Swann (Eds.), Machine Intelligence 4 (pp. 209-254).
Edinburgh Scotland: Edinburgh University Press.

Campbell, C. E., Eisenberg, A., & Melton, J. (2003). XML schema. ACM SIGMOD
Record, 32(2), 96-101.

Chi, E., Pirolli, P., Chen, K., & Pitkow, J. (2001). Using information scent to model user
information needs and actions on the web. In Proceedings of the CHI 2001: ACM
Press.

Chidlovskii, B. (2003). A structural adviser for the XML document authoring. In
Proceedings of the ACM Symposium on Document Engineering, 203-211. New
York, NY: ACM.

Clancey, W. J. (1981). The epistemology of a rule-based expert system: A framework for
explanation (No. STAN-CS-91-896). Stanford, CA: Stanford University.

Coad, P., & Yourdon, E. (1991). Object-Oriented Analysis (2nd ed.). Englewood Cliffs,
NJ: Yourdon Press/Prentice Hall.

Coblenz, M. J., Ko, A. J., & Myers, B. A. (2006). JASPER: An Eclipse plug-in to
facilitate software maintenance tasks. In Proceedings of the 2006 OOPSLA
workshop on eclipse technology eXchange, 65-69. Portland, Oregon: ACM Press.

Cohen, M. A. (2005). Teaching agent programming using custom environments and Jess.
The Newsletter of the Society for the Study of Artificial Intelligence and the
Simulation of Behavior, 120, 4.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal: A high-level language and
development environment for developing cognitive models in Soar. In
Proceedings of the 14th Behavior Representation in Modeling and Simulation,
133-140. Orlando, FL.: U. of Central Florida: 05-BRIMS-043.

221

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., Durbin,
J., Gossweiler, R., Kogi, S., Long, C., Mallory, B., Miale, S., Monkaitis, K.,
Patten, J., Pierce, J., Schochet, J., Staak, D., Stearns, B., Stoakley, R., Sturgill, C.,
Viega, J., White, J., Williams, G., & Pausch, R. (2000). Alice: Lessons learned
from building a 3D system for novices. In Proceedings of the CHI, New York,
NY: ACM.

Cooper, R. P., & Fox, J. (1998). COGENT: A visual design environment for cognitive
modeling. Behavior Research Methods, Instruments, & Computers, 30(4), 553-
564.

Cooper, R. P., & Yule, P. (2007). An introduction to the COGENT Modeling
Environment. In Proceedings of the International Conference on Cognitive
Modeling, Ann Arbor, MI.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy learning: On the construction
of learning strategies. Artificial Intelligence, 112, 1-55.

Cubranic, D., Murphy, G. C., Singer, J., & Booth, K. S. (2005). Hipikat: a project
memory for software development. IEEE Transactions on Software Engineering,
31(6), 446-465.

Daly, E. B. (1977). Management of Software Development. IEEE Transactions on
Software Engineering, 3(3), 229-242.

Dann, W. P., Cooper, S., & Pausch, R. (2008). Learning to program with alice (2nd ed.).
Upper Sadde River, NJ: Pearson Education Inc.

Das, A., & Stuerzlinger, W. (2007). A cognitive simulation model for novice text entry
on cell phone keypads. In Proceedings of the 14th European Conference on
Cognitive Ergonomics, 141-147. New York, NY: ACM.

DeLine, R., Czerwinski, M., & Robertson, G. (2005). Easing program comprehension by
sharing navigation data. In Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, 241-248. IEEE.

Duda, R., Gaschnig, J., & Hart, P. (1979). Model design in the PROSEPCTOR consultant
system for mineral exploration. In D. Michie (Ed.), Expert systems in the
microelectronic age (pp. 165-190). Edinburgh, Scotland: Edinburgh University
Press.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: verbal reports as data.
Cambridge, MA: MIT Press.

Firby, R. J. (1989). Adaptive Execution in Complex Dynamic Worlds. Unpublished
Doctoral Dissertation, Yale University.

222

Friedman-Hill, E. (2003). Jess in action: Rule-based systems in Java. Greenwich, CT:
Manning Publications Company.

Friedrich, M. B. (2008). Implementing diagrammatic reasoning strategies in a high level
language: Extending and testing the existing model results by gathering
additional data and creating additional strategies., University of Bamberg,
Germany.

Friedrich, M. B., Cohen, A. M., & Ritter, F. E. (2007). A gentle introduction to XML
within Herbal. State College, PA: Applied Cognitive Science Laboratory, College
of Information Sciences and Technology, Penn State University.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of
reusable object-oriented software. Reading, MA: Addison-Wesley.

Giarratano, J., & Riley, G. (1998). Expert systems: principles and programming. Boston:
PWS Publishing.

Gluck, K. A., & Pew, R. W. (2001a). Lessons learned and future directions for the
AMBR model comparison project. In Proceedings of the 10th Computer
Generated Forces and Behavioral Representation Conference, 113-121. Orlando,
FL.: Division of Continuing Education, University of Central Florida.

Gluck, K. A., & Pew, R. W. (2001b). Overview of the agent-based modeling and
behavior representation (AMBR) model comparison project. In Proceedings of
the 10th Computer Generated Forces and Behavioral Representation Conference,
Orlando, FL.: Division of Continuing Education, University of Central Florida.

Goldman, A. I. (1993). The psychology of folk psychology. Behavioral and Brain
Sciences, 16, 15-28.

Haugeland, J. (1987). Semantic engines: An introduction to mind design. In J. Haugeland
(Ed.), Mind Design (pp. 368). Cambridge, MA: The MIT Press.

Haynes, S. R., Cohen, A. M., & Ritter, F. E. (2008). Design patterns for explaining
intelligent agents. Manuscript submitted for publication (copy on file with
author).

Heinath, M., Dzaack, J., Wiesner, A., & Urbas, L. (2007). Simplfying the development
and the analysis of cognitive models. In Proceedings of the EuroCogSci07,
Delphi, Greece.

Hirst, T. (1999). ViSoar - Towards an Agent Development Environment for the Soar
Architecture. In Proceedings of the 4th Online Workshop on Soft Computing
(WSC4).

223

Hordijk, W., & Wieringa, R. (2005). Surveying the factors that influence maintainability.
In Proceedings of the ESEC-FSE, 385-388. New York, NY: ACM Press.

Howden, N., Ronnquist, R., Hodgson, A., & Lucas, A. (2001). JACK intelligent agents -
summary of an agent infrastructure. In Proceedings of the 5th International
Conference on Autonomous Agents, Montreal, CA: ACM Press.

Howell, D. C. (1987). Statistical methods for psychology (2nd ed.). Boston, MA: PWS
Publishers.

Ivory, M. Y., & Hearst, M. A. (2001). The state of the art in automating usability
evaluation of user interfaces. Computing Surveys, 3(4), 470-516.

Jackson, D. (2002). Scalable vector graphics (SVG): the world wide web consortium's
recommendation for high quality web graphics. In Proceedings of the
International Conference on Computer Graphics and Interactive Techniques 319-
319. New York, NY: ACM.

John, B. E. (2003). Information Processing and Skilled Behavior. In J. M. Carroll (Ed.),
HCI Models, Theories, and Frameworks (pp. 55-101). San Francisco, CA:
Morgan Kaufmann.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. R. (2004). Predictive human
performance modeling made easy. In Proceedings of the 2004 Conference on
Computer Human Interaction, 455-462.

John, B. E., Remington, R. W., & Steier, D. M. (1991). An analysis of space shuttle
countdown activities: Preliminaries to a computational model of the NASA test
director. (No. CMU-CS-91-138). Pittsburgh, PA: Carnegie Mellon University
School of Computer Science.

Jones, R. M., Crossman, J. A. L., Lebiere, C., & Best, B. J. (2006). An abstract language
for cognitive modeling. In Proceedings of the International Conference on
Cognitive Modeling, 160-165. Mahwah, NJ: Lawrence Erlbaum.

Jones, R. M., Laird, J. E., Nielson, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999).
Automated Intelligent Pilots for Combat Flight Simulation. AI Magazine, 20, 27-
41.

Jones, R. M., & Wray, B. (2003). Design principles for heavy intelligent agents. In
Proceedings of the International Conference on Autonomous Agents 1022-1023.
New York, NY: ACM.

Kadoda, G., Stone, R., & Diaper, D. (1999). Desirable features of educational theorem
provers: A cognitive dimensions viewpoint. In T. R. G. Green, R. Abdullah & P.

224

Brna (Eds.), Collected Papers of the 11th Annual Workshop of the Psychology of
Programming Interest Group (pp. 18-23). Leeds: Leeds University Press.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school
girls to learn computer programming. In Proceedings of the Proceedings of the
SIGCHI conference on Human factors in computing systems 1455-1464. New
York, NY: ACM.

Kieras, D., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition
and performance with application to human-computer interaction. Human
Computer Interaction, 4, 230-275.

Knudsen, K., Quist, M., Ray, D., & Wray, B. (2007). Soar IDE. Paper presented at the
2007 Soar Workshop.

Ko, A. J., Aung, H. H., & Myers, B. A. (2005). Eliciting design requirements for
maintenance-oriented IDEs: A detailed study of corrective and perfective
maintenance tasks. In Proceedings of the ICSE, 126-135. New York, NY: ACM
Press.

Ko, A. J., & Myers, B. A. (2003). Development and evaluation of a model of
programming errors. In Proceedings of the IEEE Symposium on Human Centric
Computing Languages and Environments, 7-14. Auckland, New Zealand: IEEE
Computer Society.

Ko, A. J., & Myers, B. A. (2004). Designing the Whyline: A debugging interface for
asking questions about program behavior. In Proceedings of the SIGCHI
conference on Human factors in computing systems 151-158. Vienna, Austria:
ACM Press.

Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006). An exploratory study of
how developers seek, relate, and collect relevant information during software
maintenance tasks. IEEE Transactions on Software Engineering, 32(12), 971-987.

Krueger, C. W. (1992). Software reuse. ACM Computer Surveys, 24(2), 131-183.

Laird, J. E. (1999). Visual Soar. In Proceedings of the Soar Workshop 19, 99-102.
University of Michigan: Soar Group.

Laird, J. E. (2001a). It knows what you're going to do: Adding anticipation to a
Quakebot. In Proceedings of the Fifth International Conference on Autonomous
Agents, 385-392. New York, NY: ACM Press.

Laird, J. E. (2001b). Using a computer game to develop advanced AI. IEEE Computer,
34(7), 70-75.

225

Laird, J. E., & Congdon, C. B. (2005). The Soar User's Manual Version 8.6: The Soar
Group: University of Michigan.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining mental models: A study of
developer work habits. In Proceedings of the 28th International Conference on
Software Engineering, 492-501. Shanghai, China: ACM Press.

Lawrance, J., Bellamy, R., Burnett, M., & Rector, K. (2008). Using information scent to
model the dynamic foraging behavior of programmers in maintenance tasks. In
Proceedings of the CHI 2008: ACM Press.

Lehman, J. F., Laird, J. E., & Rosenbloom, P. S. (1996). A gentle introduction to Soar:
An architecture for human cognition. In D. Scarborough & S. Sternberg (Eds.),
An invitation to cognitive science (Vol. 4). New York: MIT Press.

Lewis, B. (2003). Debugging backwards in time. In Proceedings of the 5th Workshop on
Automated and Algorithmic Debugging, 225-235. Ghent, Belgium.

Lewis, R. L., Newell, A., & Polk, T. A. (1989). Toward a Soar theory of taking
instructions for immediate reasoning tasks. In Proceedings of the Eleventh Annual
Conference of the Cognitive Science Society, 514-521.

Maxwell, K. D., Wassenhove, L. V., & Dutta, S. (1996). Software development
productivity of European space, military, and industrial applications. IEEE
Transactions on Software Engineering, 22(10), 706-718.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation
by machine, Part I Communications of the ACM, 3(4), 184-195.

McIlroy, M. D. (1968). Mass produced software components. In Proceedings of the
Software Engineering; Report on a conference by the NATO Science Committee,
138-150. NATO Scientific Affairs Division.

Minsky, M. (1990). Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs.
Scruffy. In P. H. Winston (Ed.), Artificial Intelligence at MIT, Expanding
Frontiers (Vol. 1): MIT Press.

Minsky, M., & Papert, S. (1987). Perceptrons - expanded edition: An introduction to
computational geometry (Expanded ed.): MIT Press.

Morgan, G. P., Cohen, A. M., Haynes, S. R., & Ritter, F. E. (2005). Increasing efficiency
of the development of user models. In Proceedings of the IEEE System
Information and Engineering Design Symposium, Charlottesville, VA: University
of Virginia.

226

Morgan, G. P., Ritter, F. E., Cohen, M. A., Stevenson, W. E., & Schenck, I. N. (2005).
dTank: An environment for architectural comparisons of competitive agents. In
Proceedings of the 14th Conference on Behavior Representation in Modeling and
Simulation, 133-140. Universal City, CA.

Morrison, J. E. (2003). A review of computer-based human behavior representations and
their relation to military simulations. Alexandria, VA: Institute for Defense
Analyses.

Musicant, D. R., & Exley, A. (2004). Easy Integration of LEGO Mindstorms into
Vacuum World Simulations. In Proceedings of the ACM SIGCSE, Norfolk, VA.

Negnevitsky, M. (2004). Artificial intelligence: A guide to intelligent systems (2nd ed.):
Addison Wesley.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University
Press.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice Hall.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P., & Altmann, E. (1991). Formulating
the problem space computational model. In R. F. Rashid (Ed.), Carnegie Mellon
Computer Science: A 25-Year commemorative (pp. 255-293). Reading, MA:
ACM-Press (Addison-Wesley).

Norling, E. (2004). Folk psychology for human modeling: Extending the BDI paradigm.
In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems, 202-209. New York.

Norling, E., & Ritter, F. E. (2001). Embodying the JACK agent architecture. In
Proceedings of the 14th Austrailian Joint Conference on Artificial Intelligence,
368-377. Berlin: Springer.

Norling, E., & Ritter, F. E. (2004). Towards supporting psychologically plausible
variability in agent-based human modeling. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
758-765. New York: ACM Press.

Ormerod, T. C., & Shepherd, A. (2004). Using Task Analysis for Information
Requirements Specification: The Sub-Goal Template (SGT) Method. In D. Diaper
& N. A. Stanton (Eds.). Mahwah, NJ: LEA.

Petre, M., & Blackwell, A. F. (1997). A glimpse of expert programmers' mental imagery.
In Proceedings of the Seventh workshop on empirical studies of programmers,
109-123. Alexandria, VA.

227

Pew, R. W., & Mavor, A. S. (Eds.). (1998). Modeling human and organizational
behavior: Application to military simulations. Washington, DC: National
Academy Press.

Pew, R. W., & Mavor, A. S. (Eds.). (2008). Modeling human and organizational
behavior: Application to military simulations. Washington, DC: National
Academy Press.

Phillips, E. M., & Pugh, D. S. (2005). How to get a Ph.D. (4th ed.). Berkshire, England:
Open University Press.

Pirolli, P., & Card, S. (1999). Information foraging. Psychology Review, 106(4), 643-675.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching
CS0 with Alice. ACM SIGCSE Bulletin, 39(1), 213-217.

Quint, V., & Vatton, I. (2004). Techniques for authoring complex XML documents. In
Proceedings of the ACM Symposium on Document Engineering 115-123. New
York, NY: ACM.

Reiss, S. P. (2006). Incremental maintenance of software artifacts. IEEE Transactions on
Software Engineering, 32(9), 692-697.

Ripley, B. D. (1993). Statistical Aspects of Neural Networks. In B.-N. O. E., Jensen J. L.
& K. W. S. (Eds.), Networks and chaos - Statistical and probabilistic aspects.
London: Chapman and Hall.

Ritter, F. E. (1992). TBPA: A methodology and software environment for testing process
models' sequential predictions with protocols. Carnegie Mellon University,
Pittsburgh, PA.

Ritter, F. E., & Bibby, P. A. (2008). Modeling how, when, and what learning happens in
a diagrammatic reasoning task. Cognitive Science.

Ritter, F. E., Haynes, S. R., Cohen, M. A., Howes, A., John, B. E., Best, B., Lebiere, C.,
Jones, R. M., Lewis, R. L., St Amant, R., McBride, S. P., Urbas, L., Leuchter, S.,
& Vera, A. (2006). High-level behavior representation languages revisited. In
Proceedings of the Seventh International Conference on Cognitive Modeling,
404-407. Trieste, Italy: Edizioni Goliardiche.

Ritter, F. E., Kase, S. E., Bhandarkar, D., Lewis, B., & Cohen, A. M. (2007). dTank
updated: Exploring moderator-influenced behavior in a light-weight synthetic
environment. In Proceedings of the the 16th Conference on Behavior
Representation in Modeling and Simulation, 51-60. Orlando, FL: U. of Central
Florida.

228

Ritter, F. E., & Norling, E. (2006). Including human variability in a cognitive architecture
to improve team simulation. In R. Sun (Ed.), Cognition and multi-agent
interaction (pp. 417-427). New York, NY: Cambridge University Press.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R., Gobet, F., & Baxter, G. D. (2003).
Techniques for modeling human and organizational behavior in synthetic
environments: A supplementary review: Wright-Patterson Air Force Base, OH:
Human Systems Information Analysis Center.

Ritter, F. E., & Wallach, D. P. (1998). Models of two-person games in ACT-R and Soar.
In Proceedings of the Second European Conference on Cognitive Modeling, 202-
203. Nottingham: Nottingham University Press.

Robillard, M. P., Coelho, W., & Murphy, G. C. (2004). How effective developers
investigate source code: An exploratory study. IEEE Transactions on Software
Engineering, 30(12), 889-903.

Rosson, M. B., & Carroll, J. M. (2002). Usability engineering: Scenario-based
development of human-computer interaction. San Francisco, CA: Morgan
Kaufmann.

Royappa, A. V. (1999). Implementing catalog clearinghouses with XML and XSL. In
Proceedings of the ACM symposium on Applied computing 616 - 621. New York,
NY: ACM.

Rumelhart, D. E., & McClelland, J. L. (1987). Parallel Distributed Processing.
Explorations in the microstructure of cognition (2 Vol. Set). Cambridge, MA: The
MIT Press.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A modern approach (2nd ed.).
Upper Saddle River, NJ: Prentice Hall.

Salomon, D. J. (1992). Four dimensions of programming-language independence. ACM
SIGPLAN Notices, 27(3), 35-53.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive modeling in a complex cognitive
architecture. In Proceedings of the SIGCHI conference on human factors in
computing systems, 265-272. Ft. Lauderdale, FL: ACM Press.

Scriven, M. (1967). The methodology of evaluation. In R. Tyler, R. Gagne & M. Scriven
(Eds.), Perspectives of curriculum evaluation (pp. 39-83). Chicago: Rand
McNally.

Shavor, S., D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., & McCarthy, P. (2003).
The Java developer's guide to Eclipse: Addison-Wesley Professional.

229

Shepherd, G. M., & Koch, C. (1990). Introduction to synaptic circuits. In G. M. Shepherd
(Ed.), The synaptic organisation of the brain (pp. 3-31). New York: Oxford
University Press.

Shortliffe, E. H. (1976). MYCIN: Computer-based medical consultations. New York:
Elsevier Press.

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005). Specifying ACT-R models of user
interaction with a GOMS language. Cognitive Systems Research, 6(1), 71-88.

St. Amant, R., & Ritter, F. E. (2004). Model-based evaluation of cell phone menu
interaction. In Proceedings of the International Conference on Human Computer
Interaction, 343-350. Vienna, Austria.

Sun, R. (Ed.). (2006). Cognition and multi-agent interaction. Cambridge University
Press: New York.

Sun, S., Councill, I. G., Fan, X., Ritter, F. E., & Yen, J. (2004). Comparing teamwork
modeling in an empirical approach. In Proceedings of the Sixth International
Conference on Cognitive Modeling, 388-389. Mahwah, NJ.: Erlbaum.

Tassey, G. (2002). The economic impacts of inadequate infrastructure for software
testing (No. 7007.011): National Institute of Standards and Technology.

Vokac, M. (2004). Defect frequency and design patterns: An empirical study of industrial
code. IEEE Transactions on Software Engineering, 30(12), 904-917.

Vullo, R. P., & Bogaard, D. S. (2004). Visualization with dynamically generated SVG. In
Proceedings of the 5th Conference on Information Technology Education, 271-
271. New York, NY: ACM.

W3C. (2003). Scalable Vector Graphics 1.1 Specification from www.w3.org/TR/SVG

W3C. (2004a). The Extensible Markup Language. from http://www.w3.org/XML/

W3C. (2004b). The Extensible Stylesheet Language Family. from
www.w3.org/Style/XSL/

W3C. (2004c). XML Schema Part 0: Primer Second Edition. from
http://www.w3.org/TR/xmlschema-0/

Weiser, M. (1982). Programmers use slices when debugging. Communications of the
ACM, 25(7), 446-452.

Yost, G. R. (1993). Acquiring knowledge in Soar. IEEE Expert: Intelligent systems and
their applications, 8(3), 26-34.

Appendix A

A Comparison of Representations

Graphical PSCM Representation

XML PSCM Representation

vac.txt 8/3/2008

1 <?xml version='1.0'?>
2 <models version='1.0'
3 xmlns='http://acs.ist.psu.edu/herbal'
4 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
5 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
6 ../schema/models.xsd'>
7

8 <model name='Pete'>
9 <problemspaceref problemspace='Survive'>
10 <problemspaceref problemspace='DesignPat.problemspaces.wander'>
11 </problemspaceref>
12 <problemspaceref problemspace='DesignPat.problemspaces.clean'>
13 </problemspaceref>
14 <impasse subspace='DesignPat.problemspaces.wander'>
15 <conditionref condition='vacuum.conditions.isClean'/>
16 </impasse>
17 <impasse subspace='DesignPat.problemspaces.clean'>
18 <conditionref condition='vacuum.conditions.isDirty'/>
19 </impasse>
20 </problemspaceref>
21 </model>
22

23 </models>
24

25

26 <?xml version='1.0'?>
27 <problemspaces version='1.0'
28 xmlns='http://acs.ist.psu.edu/herbal'
29 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
30 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
31 ../schema/problemspaces.xsd'>
32

33 <problemspace name='Survive'>
34 <init>
35 </init>
36 </problemspace>
37

38 </problemspaces>
39

40 <?xml version='1.0'?>
41 <problemspaces version='1.0'
42 xmlns='http://acs.ist.psu.edu/herbal'
43 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
44 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
45 ../schema/problemspaces.xsd'>
46

47 <problemspace name='wander'>
48 <init>
49 </init>
50 <operatorref actionscope='top' conditionscope='top'
51 operator='vacuum.operators.moveUp' elaboration='false'/>
52 <operatorref actionscope='top' conditionscope='top'
53 operator='vacuum.operators.moveDown' elaboration='false'/>
54 <operatorref actionscope='top' conditionscope='top'
55 operator='vacuum.operators.moveLeft' elaboration='false'/>
56 <operatorref actionscope='top' conditionscope='top'

Page 1

vac.txt 8/3/2008

57 operator='vacuum.operators.moveRight'
elaboration='false'/>

58 </problemspace>
59

60 <problemspace name='clean'>
61 <init>
62 </init>
63 <operatorref actionscope='top' conditionscope='top'
64 operator='vacuum.operators.cleanUpSpot'
65 elaboration='false'/>
66 </problemspace>
67

68 </problemspaces>
69

70 <?xml version='1.0'?>
71 <actions version='1.0'
72 xmlns='http://acs.ist.psu.edu/herbal'
73 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
74 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
75 ../schema/actions.xsd'>
76

77 <action name='up'>
78 <add order='0' type='action'>
79 <set field='move'><value>up</value></set>
80 </add>
81 </action>
82

83 <action name='right'>
84 <add order='0' type='action'>
85 <set field='move'><value>right</value></set>
86 </add>
87 </action>
88

89 <action name='suck'>
90 <add order='0' type='action'>
91 <set field='move'><value>suck</value></set>
92 </add>
93 </action>
94

95 <action name='left'>
96 <add order='0' type='action'>
97 <set field='move'><value>left</value></set>
98 </add>
99 </action>
100

101 <action name='down'>
102 <add order='0' type='action'>
103 <set field='move'><value>down</value></set>
104 </add>
105 </action>
106

107 </actions>
108

109 <?xml version='1.0'?>
110 <conditions version='1.0'
111 xmlns='http://acs.ist.psu.edu/herbal'

Page 2

vac.txt 8/3/2008

112 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
113 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
114 ../schema/conditions.xsd'>
115

116 <condition name='isClean'>
117 <match type='spot'>
118 <restrict field='status'><eq>clean</eq></restrict>
119 </match>
120 </condition>
121

122 <condition name='isAlive'>
123 <match type='position'>
124 <restrict field='y'></restrict>
125 <restrict field='x'></restrict>
126 </match>
127 </condition>
128

129 <condition name='isDirty'>
130 <match type='spot'>
131 <restrict field='status'><eq>dirty</eq></restrict>
132 </match>
133 </condition>
134

135 </conditions>
136

137 <?xml version='1.0'?>
138 <operators version='1.0'
139 xmlns='http://acs.ist.psu.edu/herbal'
140 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
141 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
142 ../schema/operators.xsd'>
143

144 <operator name='moveDown'>
145 <if>
146 <conditionref condition='isAlive'/>
147 </if>
148 <then>
149 <actionref action='down'>
150 </actionref>
151 </then>
152 </operator>
153

154 <operator name='moveRight'>
155 <if>
156 <conditionref condition='isAlive'/>
157 </if>
158 <then>
159 <actionref action='right'>
160 </actionref>
161 </then>
162 </operator>
163

164 <operator name='moveLeft'>
165 <if>
166 <conditionref condition='isAlive'/>
167 </if>

Page 3

vac.txt 8/3/2008

168 <then>
169 <actionref action='left'>
170 </actionref>
171 </then>
172 </operator>
173

174 <operator name='cleanUpSpot'>
175 <if>
176 <conditionref condition='isDirty'/>
177 </if>
178 <then>
179 <actionref action='suck'>
180 </actionref>
181 </then>
182 </operator>
183

184 <operator name='moveUp'>
185 <if>
186 <conditionref condition='isAlive'/>
187 </if>
188 <then>
189 <actionref action='up'>
190 </actionref>
191 </then>
192 </operator>
193

194 </operators>
195

196 <?xml version='1.0'?>
197 <types version='1.0'
198 xmlns='http://acs.ist.psu.edu/herbal'
199 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
200 xsi:schemaLocation='http://acs.ist.psu.edu/herbal
201 ../schema/types.xsd'>
202

203 <type name='position' isIO='true'>
204 <field name='x' type='number'/>
205 <field name='y' type='number'/>
206 </type>
207

208 <type name='radar' isIO='true'>
209 <field name='dir' type='string'/>
210 <field name='reading' type='string'/>
211 </type>
212

213 <type name='action' isIO='true'>
214 <field name='move' type='string'/>
215 </type>
216

217 <type name='spot' isIO='true'>
218 <field name='status' type='string'/>
219 </type>
220

221 </types>
222

Page 4

Jess Representation

vac.txt 8/3/2008

1 ; --
2 ; Created automagically by Herbal 2.0.10
3 ; Date Compiled: Thu Jul 31 12:34:17 EDT 2008
4 ; Compiled By: mcohen
5 ; --
6

7 (bind ?rnd (new java.util.Random))
8 (deffunction randChoice ($?choices)
9 (bind ?i (call ?rnd nextInt (length$?choices)))
10 (return (nth$ (+ ?i 1) ?choices))
11)
12 ;---

13 ;define Survive
14 ;---

15

16 ;define the module...
17 (defmodule Survive)
18

19 ;define the types...
20 (deftemplate vacuum.types.position
21 (slot x (default 0))
22 (slot y (default 0))
23)
24 (deftemplate vacuum.types.radar
25 (slot dir (default ""))
26 (slot reading (default ""))
27)
28 (deftemplate vacuum.types.action
29 (slot move (default ""))
30)
31 (deftemplate vacuum.types.spot
32 (slot status (default ""))
33)
34

35 ;define the impasses...
36 (defrule Pete.models.impasse1
37 ?f <- (Survive::initial-fact)
38 (Survive::vacuum.types.spot (status ?status1&:(eq* ?status1

"clean")))
39 =>
40 (retract ?f)
41 (assert (Survive::initial-fact))
42 (initProblemspace-wander)
43)
44 (defrule Pete.models.impasse2
45 ?f <- (Survive::initial-fact)
46 (Survive::vacuum.types.spot (status ?status2&:(eq* ?status2

"dirty")))
47 =>
48 (retract ?f)
49 (assert (Survive::initial-fact))
50 (initProblemspace-clean)
51)
52

Page 1

vac.txt 8/3/2008

53 ;define the inialize problemspace function...
54 (deffunction initProblemspace-Survive ()
55 (set-current-module Survive)
56 (assert (Survive::initial-fact))
57 (focus Survive)
58)
59 ;---

60 ;end Survive
61 ;---

62 ;---

63 ;define wander
64 ;---

65

66 ;define the module...
67 (defmodule wander)
68

69 ;define the types...
70 (deftemplate vacuum.types.position
71 (slot x (default 0))
72 (slot y (default 0))
73)
74 (defrule removevacuum.types.positions (declare (salience -100)) ?f

<- (vacuum.types.position) => (retract ?f))
75 (deftemplate vacuum.types.radar
76 (slot dir (default ""))
77 (slot reading (default ""))
78)
79 (defrule removevacuum.types.radars (declare (salience -100)) ?f <-

(vacuum.types.radar) => (retract ?f))
80 (deftemplate vacuum.types.action
81 (slot move (default ""))
82)
83 (defrule removevacuum.types.actions (declare (salience -100)) ?f <-

(vacuum.types.action) => (retract ?f))
84 (deftemplate vacuum.types.spot
85 (slot status (default ""))
86)
87 (defrule removevacuum.types.spots (declare (salience -100)) ?f <-

(vacuum.types.spot) => (retract ?f))
88

89 ;define the rules...
90 (defrule vacuum.operators.moveUp
91 (Survive::vacuum.types.spot (status ?status3&:(eq* ?status3

"clean")))
92 (Survive::vacuum.types.position (y ?y4)(x ?x5))
93 =>
94 (assert (Survive::vacuum.types.action (move "up")))
95)
96 (defrule vacuum.operators.moveDown
97 (Survive::vacuum.types.spot (status ?status6&:(eq* ?status6

"clean")))
98 (Survive::vacuum.types.position (y ?y7)(x ?x8))

Page 2

vac.txt 8/3/2008

99 =>
100 (assert (Survive::vacuum.types.action (move "down")))
101)
102 (defrule vacuum.operators.moveLeft
103 (Survive::vacuum.types.spot (status ?status9&:(eq* ?status9

"clean")))
104 (Survive::vacuum.types.position (y ?y10)(x ?x11))
105 =>
106 (assert (Survive::vacuum.types.action (move "left")))
107)
108 (defrule vacuum.operators.moveRight
109 (Survive::vacuum.types.spot (status ?status12&:(eq* ?status12

"clean")))
110 (Survive::vacuum.types.position (y ?y13)(x ?x14))
111 =>
112 (assert (Survive::vacuum.types.action (move "right")))
113)
114

115 ;define the exit problem space rule...
116 (defrule wander-exit (declare (salience -200)) ?f <-

(wander::initial-fact) => (retract ?f) (focus Survive))
117

118 ;define the inialize problemspace function...
119 (deffunction initProblemspace-wander ()
120 (set-current-module wander)
121 (assert (wander::initial-fact))
122 (focus wander)
123)
124 ;---

125 ;end wander
126 ;---

127 ;---

128 ;define clean
129 ;---

130

131 ;define the module...
132 (defmodule clean)
133

134 ;define the types...
135 (deftemplate vacuum.types.position
136 (slot x (default 0))
137 (slot y (default 0))
138)
139 (defrule removevacuum.types.positions (declare (salience -100)) ?f

<- (vacuum.types.position) => (retract ?f))
140 (deftemplate vacuum.types.radar
141 (slot dir (default ""))
142 (slot reading (default ""))
143)
144 (defrule removevacuum.types.radars (declare (salience -100)) ?f <-

(vacuum.types.radar) => (retract ?f))
145 (deftemplate vacuum.types.action

Page 3

vac.txt 8/3/2008

146 (slot move (default ""))
147)
148 (defrule removevacuum.types.actions (declare (salience -100)) ?f <-

(vacuum.types.action) => (retract ?f))
149 (deftemplate vacuum.types.spot
150 (slot status (default ""))
151)
152 (defrule removevacuum.types.spots (declare (salience -100)) ?f <-

(vacuum.types.spot) => (retract ?f))
153

154 ;define the rules...
155 (defrule vacuum.operators.cleanUpSpot
156 (Survive::vacuum.types.spot (status ?status15&:(eq* ?status15

"dirty")))
157 (Survive::vacuum.types.spot (status ?status16&:(eq* ?status16

"dirty")))
158 =>
159 (assert (Survive::vacuum.types.action (move "suck")))
160)
161

162 ;define the exit problem space rule...
163 (defrule clean-exit (declare (salience -200)) ?f <-

(clean::initial-fact) => (retract ?f) (focus Survive))
164

165 ;define the inialize problemspace function...
166 (deffunction initProblemspace-clean ()
167 (set-current-module clean)
168 (assert (clean::initial-fact))
169 (focus clean)
170)
171 ;---

172 ;end clean
173 ;---

174 ;---

175 ;initialize the top problem space so we are ready to run
176 ;---

177 (initProblemspace-Survive)
178

179

180

181

Page 4

Soar Representation

vac.txt 8/3/2008

1 # --
2 # Created automagically by Herbal 2.0.10
3 # Date Compiled: Thu Jul 31 12:34:17 EDT 2008
4 # Compiled By: mcohen
5 # --
6

7

8 #---

9 #elaborations to retract completed output...
10 #---

11 sp {apply*global*remove-vacuum-types-position
12 (state <s> ^operator <o> ^io.output-link <out>)
13 (<out> ^|vacuum.types.position| <x>)
14 (<x> ^status complete)
15 -->
16 (<out> ^|vacuum.types.position| <x> -)
17 }
18

19 sp {apply*global*remove-vacuum-types-radar
20 (state <s> ^operator <o> ^io.output-link <out>)
21 (<out> ^|vacuum.types.radar| <x>)
22 (<x> ^status complete)
23 -->
24 (<out> ^|vacuum.types.radar| <x> -)
25 }
26

27 sp {apply*global*remove-vacuum-types-action
28 (state <s> ^operator <o> ^io.output-link <out>)
29 (<out> ^|vacuum.types.action| <x>)
30 (<x> ^status complete)
31 -->
32 (<out> ^|vacuum.types.action| <x> -)
33 }
34

35 sp {apply*global*remove-vacuum-types-spot
36 (state <s> ^operator <o> ^io.output-link <out>)
37 (<out> ^|vacuum.types.spot| <x>)
38 (<x> ^status complete)
39 -->
40 (<out> ^|vacuum.types.spot| <x> -)
41 }
42

43 #---

44 #define Pete-problemspaces-Survive
45 #---

46

47 sp {propose*initialize-Pete-problemspaces-Survive
48 (state <local> ^type state -^name)
49 (<local> ^superstate nil)
50 -->
51 (<local> ^operator <o> +)
52 (<o> ^name initialize-Pete-problemspaces-Survive)

Page 1

vac.txt 8/3/2008

53 (<o> ^top <local>)
54 (<o> ^parent <local>)
55 }
56

57 sp {apply*initialize-Pete-problemspaces-Survive
58 (state <local> ^operator <o>)
59 (<o> ^name initialize-Pete-problemspaces-Survive ^top <top>

^parent <parent>)
60 (<top> ^io <i1>)
61 (<i1> ^output-link <i2>)
62 -->
63 (<local> ^name Pete-problemspaces-Survive)
64 (<local> ^top <local>)
65 (<local> ^parent <local>)
66 (write |<hdb>Pete.models.Pete</hdb>| (crlf))
67 (write |<hdb>Pete.problemspaces.Survive</hdb>| (crlf))
68 }
69

70 #define the impasses...
71 sp

{propose*Pete-problemspaces-Survive*impasse*DesignPat-problemspaces-wa
nderps

72 (state <local> ^top <top> ^name Pete-problemspaces-Survive)
73 (<top> ^io <i1>)
74 (<i1> ^input-link <i2>)
75 (<i2> ^|vacuum.types.spot| <vacuum-types-spot1>)
76 (<vacuum-types-spot1> ^status <status1> |clean|)
77 -->
78 (<local> ^operator <o> + =)
79 (<o> ^name impasse*DesignPat-problemspaces-wanderps)
80 (write |<hdb>vacuum.conditions.isClean</hdb>| (crlf))
81 }
82

83 sp
{propose*Pete-problemspaces-Survive*impasse*DesignPat-problemspaces-cl
eanps

84 (state <local> ^top <top> ^name Pete-problemspaces-Survive)
85 (<top> ^io <i1>)
86 (<i1> ^input-link <i2>)
87 (<i2> ^|vacuum.types.spot| <vacuum-types-spot2>)
88 (<vacuum-types-spot2> ^status <status2> |dirty|)
89 -->
90 (<local> ^operator <o> + =)
91 (<o> ^name impasse*DesignPat-problemspaces-cleanps)
92 (write |<hdb>vacuum.conditions.isDirty</hdb>| (crlf))
93 }
94

95 #---

96 #define DesignPat-problemspaces-wander
97 #---

98

99 sp {propose*initialize-DesignPat-problemspaces-wander
100 (state <local> ^type state -^name)
101 (<local> ^impasse no-change ^attribute operator)

Page 2

vac.txt 8/3/2008

102 (<local> ^superstate <parent>)
103 (<parent> ^top <top>)
104 (<parent> ^operator <imp>)
105 (<imp> ^name impasse*DesignPat-problemspaces-wanderps)
106 -->
107 (<local> ^operator <o> +)
108 (<o> ^name initialize-DesignPat-problemspaces-wander)
109 (<o> ^top <top>)
110 (<o> ^parent <parent>)
111 }
112

113 sp {apply*initialize-DesignPat-problemspaces-wander
114 (state <local> ^operator <o>)
115 (<o> ^name initialize-DesignPat-problemspaces-wander ^top <top>

^parent <parent>)
116 (<top> ^io <i1>)
117 (<i1> ^output-link <i2>)
118 -->
119 (<local> ^name DesignPat-problemspaces-wander)
120 (<local> ^top <top>)
121 (<local> ^parent <parent>)
122 (write |<hdb>Pete.models.Pete</hdb>| (crlf))
123 (write |<hdb>DesignPat.problemspaces.wander</hdb>| (crlf))
124 }
125

126 #define the rules...
127 sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveUp
128 (state <local> ^top <top> ^parent <parent> ^name

DesignPat-problemspaces-wander)
129 (<top> ^io <i1>)
130 (<i1> ^input-link <i2>)
131 (<i2> ^|vacuum.types.position| <vacuum-types-position3>)
132 (<vacuum-types-position3> ^y <y3>)
133 (<vacuum-types-position3> ^x <x4>)
134 -->
135 (write |<hdb>PROPOSAL.vacuum.operators.moveUp</hdb>| (crlf))
136 (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
137 (<local> ^operator <o> + =)
138 (<o> ^name vacuum-operators-moveUp)
139 }
140 sp {apply*DesignPat-problemspaces-wander*moveUp
141 (state <local> ^top <top> ^name DesignPat-problemspaces-wander

^operator <o>)
142 (<o> ^name vacuum-operators-moveUp)
143 (<top> ^io <i1>)
144 (<i1> ^output-link <i2>)
145 -->
146 (write |<hdb>vacuum.operators.moveUp</hdb>| (crlf))
147 (write |<hdb>vacuum.actions.up</hdb>| (crlf))
148 (<i2> ^|vacuum.types.action| <vacuum-types-action5>)
149 (<vacuum-types-action5> ^move |up|)
150 }
151 sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveDown
152 (state <local> ^top <top> ^parent <parent> ^name

DesignPat-problemspaces-wander)
153 (<top> ^io <i1>)

Page 3

vac.txt 8/3/2008

154 (<i1> ^input-link <i2>)
155 (<i2> ^|vacuum.types.position| <vacuum-types-position6>)
156 (<vacuum-types-position6> ^y <y6>)
157 (<vacuum-types-position6> ^x <x7>)
158 -->
159 (write |<hdb>PROPOSAL.vacuum.operators.moveDown</hdb>| (crlf))
160 (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
161 (<local> ^operator <o> + =)
162 (<o> ^name vacuum-operators-moveDown)
163 }
164 sp {apply*DesignPat-problemspaces-wander*moveDown
165 (state <local> ^top <top> ^name DesignPat-problemspaces-wander

^operator <o>)
166 (<o> ^name vacuum-operators-moveDown)
167 (<top> ^io <i1>)
168 (<i1> ^output-link <i2>)
169 -->
170 (write |<hdb>vacuum.operators.moveDown</hdb>| (crlf))
171 (write |<hdb>vacuum.actions.down</hdb>| (crlf))
172 (<i2> ^|vacuum.types.action| <vacuum-types-action8>)
173 (<vacuum-types-action8> ^move |down|)
174 }
175 sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveLeft
176 (state <local> ^top <top> ^parent <parent> ^name

DesignPat-problemspaces-wander)
177 (<top> ^io <i1>)
178 (<i1> ^input-link <i2>)
179 (<i2> ^|vacuum.types.position| <vacuum-types-position9>)
180 (<vacuum-types-position9> ^y <y9>)
181 (<vacuum-types-position9> ^x <x10>)
182 -->
183 (write |<hdb>PROPOSAL.vacuum.operators.moveLeft</hdb>| (crlf))
184 (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
185 (<local> ^operator <o> + =)
186 (<o> ^name vacuum-operators-moveLeft)
187 }
188 sp {apply*DesignPat-problemspaces-wander*moveLeft
189 (state <local> ^top <top> ^name DesignPat-problemspaces-wander

^operator <o>)
190 (<o> ^name vacuum-operators-moveLeft)
191 (<top> ^io <i1>)
192 (<i1> ^output-link <i2>)
193 -->
194 (write |<hdb>vacuum.operators.moveLeft</hdb>| (crlf))
195 (write |<hdb>vacuum.actions.left</hdb>| (crlf))
196 (<i2> ^|vacuum.types.action| <vacuum-types-action11>)
197 (<vacuum-types-action11> ^move |left|)
198 }
199 sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveRight
200 (state <local> ^top <top> ^parent <parent> ^name

DesignPat-problemspaces-wander)
201 (<top> ^io <i1>)
202 (<i1> ^input-link <i2>)
203 (<i2> ^|vacuum.types.position| <vacuum-types-position12>)
204 (<vacuum-types-position12> ^y <y12>)
205 (<vacuum-types-position12> ^x <x13>)

Page 4

vac.txt 8/3/2008

206 -->
207 (write |<hdb>PROPOSAL.vacuum.operators.moveRight</hdb>| (crlf))
208 (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
209 (<local> ^operator <o> + =)
210 (<o> ^name vacuum-operators-moveRight)
211 }
212 sp {apply*DesignPat-problemspaces-wander*moveRight
213 (state <local> ^top <top> ^name DesignPat-problemspaces-wander

^operator <o>)
214 (<o> ^name vacuum-operators-moveRight)
215 (<top> ^io <i1>)
216 (<i1> ^output-link <i2>)
217 -->
218 (write |<hdb>vacuum.operators.moveRight</hdb>| (crlf))
219 (write |<hdb>vacuum.actions.right</hdb>| (crlf))
220 (<i2> ^|vacuum.types.action| <vacuum-types-action14>)
221 (<vacuum-types-action14> ^move |right|)
222 }
223 #---

224 #define DesignPat-problemspaces-clean
225 #---

226

227 sp {propose*initialize-DesignPat-problemspaces-clean
228 (state <local> ^type state -^name)
229 (<local> ^impasse no-change ^attribute operator)
230 (<local> ^superstate <parent>)
231 (<parent> ^top <top>)
232 (<parent> ^operator <imp>)
233 (<imp> ^name impasse*DesignPat-problemspaces-cleanps)
234 -->
235 (<local> ^operator <o> +)
236 (<o> ^name initialize-DesignPat-problemspaces-clean)
237 (<o> ^top <top>)
238 (<o> ^parent <parent>)
239 }
240

241 sp {apply*initialize-DesignPat-problemspaces-clean
242 (state <local> ^operator <o>)
243 (<o> ^name initialize-DesignPat-problemspaces-clean ^top <top>

^parent <parent>)
244 (<top> ^io <i1>)
245 (<i1> ^output-link <i2>)
246 -->
247 (<local> ^name DesignPat-problemspaces-clean)
248 (<local> ^top <top>)
249 (<local> ^parent <parent>)
250 (write |<hdb>Pete.models.Pete</hdb>| (crlf))
251 (write |<hdb>DesignPat.problemspaces.clean</hdb>| (crlf))
252 }
253

254 #define the rules...
255 sp {propose*DesignPat-problemspaces-clean*vacuum-operators-cleanUpSpot
256 (state <local> ^top <top> ^parent <parent> ^name

DesignPat-problemspaces-clean)

Page 5

vac.txt 8/3/2008

257 (<top> ^io <i1>)
258 (<i1> ^input-link <i2>)
259 (<i2> ^|vacuum.types.spot| <vacuum-types-spot15>)
260 (<vacuum-types-spot15> ^status <status15> |dirty|)
261 -->
262 (write |<hdb>PROPOSAL.vacuum.operators.cleanUpSpot</hdb>| (crlf))
263 (write |<hdb>vacuum.conditions.isDirty</hdb>| (crlf))
264 (<local> ^operator <o> + =)
265 (<o> ^name vacuum-operators-cleanUpSpot)
266 }
267 sp {apply*DesignPat-problemspaces-clean*cleanUpSpot
268 (state <local> ^top <top> ^name DesignPat-problemspaces-clean

^operator <o>)
269 (<o> ^name vacuum-operators-cleanUpSpot)
270 (<top> ^io <i1>)
271 (<i1> ^output-link <i2>)
272 -->
273 (write |<hdb>vacuum.operators.cleanUpSpot</hdb>| (crlf))
274 (write |<hdb>vacuum.actions.suck</hdb>| (crlf))
275 (<i2> ^|vacuum.types.action| <vacuum-types-action16>)
276 (<vacuum-types-action16> ^move |suck|)
277 }
278

279

280

281

Page 6

Appendix B

Summative Evaluation Materials

User Background Survey
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

Major: Computer Science / Computer Information Science / BS Psychology

Age: _______ Gender: M / F

Number of undergraduate credits completed: ______

On average, how many hours a day do you use a computer: ______

1. Please describe what tasks you perform on your computer during a typical week:

2. Please list any courses that you have taken that covered computer programming:

3. Please list any courses that you have taken that covered cognitive modeling or intelligent

agent development:

4. How stressful do you expect the upcoming task to be?
1 2 3 4 5

Not at all Moderately Very

5. How well do you think you will be able to cope with the upcoming task?
1 2 3 4 5

Not at all Moderately Very

6. How demanding do you expect the upcoming task to be?
1 2 3 4 5

Not at all Moderately Very

 Page 1 of 2

User Background Survey
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

7. How well do you think you will perform in the upcoming task?

1 2 3 4 5

Not at all Moderately Very

8. Is there anything else you would like to tell us about your interests or background that

you think we should know? If yes, briefly describe:

 Page 2 of 2

General Task Instructions for the Herbal Study

In the next 40 minutes or so, you will be performing a task using the Herbal Development

Environment. You will be responsible for one of the following three tasks: to create a reusable

library for creating vacuum cleaner agents; to create a specific vacuum cleaner agent using a

library; or to debug and fix an existing vacuum cleaner agent.

It is important that you take your time during this task. The task instructions you will be using

are, at times, intentionally vague in order to measure how intuitive the interface is. Please “think

out loud” (narrate your actions) as you work so I can get a better idea about what you are doing

and why. Also, you should feel free at any point during the task to ask questions. In addition, if I

see that you are in need of help I will intervene. Enjoy!

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 1 of 1

Specific Task Instructions for the Library Creation Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

Library Creation
Background: You have been asked to create a general library that will make it easier to create

agents that operate in the Vacuum Cleaner Environment. The library you create here will be

reused by other developers so they can quickly develop vacuum cleaner agents.

Steps

1. Execute Herbal by double-clicking the icon labeled Herbal.

2. Using the File->New->Project menu item create a new, empty Herbal project named

vacuum. Select the type of project first and then click Next to give your project a name.

Be sure to use all lower-case letters in the project name.

3. Using the Herbal menu, open the Herbal GUI Editor and add the following types to the

library (if you see certain items in the wizard that you are unsure about, feel free to accept

the default values):

a. action which contains a single string field called move. This type will be used

by the agent to perform actions like moving or cleaning a square. This type

should be marked as “used for I/O” and should be placed in the vacuum.types

library.

b. position which contains two number fields, named x and y. This type will be

used to specify the location of the vacuum cleaner agent. This type should be

marked as “used for I/O” and should be placed in the vacuum.types library.

c. radar which contains two string fields named dir and reading. This type will

contain information about the clean or dirty status of the squares around the

vacuum cleaner. This type should be marked as “used for I/O” and should be

placed in the vacuum.types library.

d. spot which contains a single string field named status. This type will be used to

specify the clean or dirty status of the square currently occupied by the agent.

This type should be marked as “used for I/O” and should be placed in the

vacuum.types library.

BREAK

4. Using the Herbal GUI Editor add the following actions to the library (if you see certain

items in the wizard that you are unsure about, feel free to accept the default values):

 Page 1 of 3

Specific Task Instructions for the Library Creation Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

a. up which contains a single action clause that adds a new fact of type

vacuum.types.action and sets the move field to the literal value up. This action

should be placed in the vacuum.actions library and can be used to make the

vacuum cleaner move up one square.

b. down which contains a single action clause that adds a new fact of type

vacuum.types.action and sets the move field to the literal value down. This

action should be placed in the vacuum.actions library and can be used to make

the vacuum cleaner move down one square.

c. left which contains a single action clause that adds a new fact of type

vacuum.types.action and sets the move field to the literal value left. This action

should be placed in the vacuum.actions library and be used to make the vacuum

cleaner move left one square.

d. right which contains a single action clause that adds a new fact of type

vacuum.types.action and sets the move field to the literal value right. This

action should be placed in the vacuum.actions library and can be used to make

the vacuum cleaner move right one square.

e. suck which contains a single action clause that adds a new fact of type

vacuum.types.action and sets the move field to the literal value suck. This action

should be placed in the vacuum.actions library and can be used to make the

vacuum cleaner clean the square that the vacuum cleaner is on.

BREAK

5. Using the Herbal GUI Editor add the following conditions to the Vacuum namespace.

You can ignore any fields related to output or input variables (if you see certain items in

the wizard that you are unsure about, feel free to accept the default values):

a. clean which tests to see if there is a vacuum.types.spot item with a status value

restricted to the literal value equal to clean. This condition should be placed in

the vacuum.conditions library and will be true if the current square occupied by

the vacuum cleaner is clean.

b. dirty which tests to see if there is a vacuum.types.spot item with a status value

restricted to the literal value equal to dirty. This condition should be placed in

the vacuum.conditions library and will be true if the current square occupied by

the vacuum cleaner is dirty.

 Page 2 of 3

Specific Task Instructions for the Library Creation Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

c. alive which tests to see if there is a vacuum.types.position item with no

restrictions on its fields. This condition should be placed in the

vacuum.conditions library and will be true as long as the vacuum cleaner is still

alive and well.

6. Your boss has decided that it is better to begin the names of condition with the prefix

“is”. Using the Herbal GUI Editor rename all of the conditions you just created so they

contain the prefix “is”. For example, clean should be renamed to isClean.

BREAK

7. Using the Herbal GUI Editor add the following operators to the vacuum.operators library:

a. moveLeft: if the isAlive condition is true then perform the left action.

b. moveRight: if the isAlive condition is true then perform the right action.

c. moveUp: if the isAlive condition is true then perform the up action.

d. moveDown: if the isAlive condition is true then perform the down action.

e. cleanUpSpot: if the isDirty condition is true then perform the suck action.

8. Choose either the conditions, actions, or operators that you created in the previous steps

and add design rationale to them. You should only enter information in the “What is this

element?” field in the design rationale. When entering information, keep in mind that

someone else will be using this library, so add information that will helpful to other

people.

9. Use the Herbal GUI Editor to browse the elements in your library and ensure that you

have created them properly.

10. Using the Herbal menu, export the vacuum.operators library to a file in the

HerbalEvaluation folder on the desktop called P[your participant id].hlib (for example

P12.hlib).

 Page 3 of 3

Specific Task Instructions for the Model Creation Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

Model Creation
Background: In this task you will create a vacuum cleaner agent called Pete that operates in the

Vacuum Cleaner Environment. Pete will wander randomly until it finds a dirty square. When a

dirty square is encountered Pete will clean it. Your task will be simplified by reusing a library of

model elements created previously.

Steps

1. Execute Herbal by double-clicking the icon labeled Herbal.

2. Using the File->New->Project menu item create a new, empty Herbal project named

Pete.

3. Using the Herbal menu, open the Herbal GUI Editor.

4. Using the Herbal menu, import the library named P?.hlib that is located on the desktop.

5. Using the Herbal GUI Editor, browse all of the library elements that were imported.

Specifically, examine the actions, conditions, and operators that were imported. Feel free

to use the Rationale button to view details about each element.

6. Perform the next two steps in any order:

a. Using the Herbal GUI Editor (use the agent tab in the editor) to create a new

agent in the Pete.models library named Pete.

b. Using the Herbal GUI Editor (use the problem space tab in the editor) create a

new problem space named survive. This problem space will be used as the top

level problem space for Pete. All of Pete’s behavior will take place within this

problem space, or a problem space below it.

7. Using the Herbal GUI Editor (use the agent tab in the editor), add the survive problem

space to the agent named Pete.

BREAK

8. Using the Behavior Design Pattern Wizard you will create a new behavior called wander.

The purpose of this behavior is to randomly move left, right, up, and down while the

vacuum cleaner is on a clean square. This can be accomplished by using the while loop

design pattern.

a. Specifically, use the Herbal->Behavior Design Patterns menu item to create an

unordered while loop behavior called wander. Specify that Pete should exhibit

 Page 1 of 3

Specific Task Instructions for the Model Creation Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

this behavior, and be sure to trigger this behavior while Pete is in the survive

problem space. The condition that should trigger this behavior should be the

isClean condition because we want Pete to wander when it is on a clean square.

Finally, the operators that should be executed while the square is clean are

moveUp, moveDown, moveLeft, and moveRight. These operators will happen in

any order causing Pete to wander randomly!

9. Using the Behavior Design Pattern Wizard you will create a new behavior called clean.

The purpose of this behavior is to clean the current square when Pete is on a dirty square.

This can be accomplished by using the while loop design pattern.

a. Specifically, use the Herbal->Behavior Design Patterns menu item to create an

unordered while loop behavior called clean. Specify that Pete should exhibit this

behavior, and be sure to trigger this behavior while Pete is in the survive problem

space. The condition that should trigger this behavior should be the isDirty

condition because we want Pete to clean only when it is on a dirty square.

Finally, the operator that should be executed while the square is dirty is the

cleanUpSpot operator.

BREAK

10. Browse your agent using the Model Browser View located at the bottom of the Herbal

window. Make sure that the agent shown in this view matches the agent you intended to

build. Check closely for any errors.

11. Go back to each problem space and agent (use the agent and problem space tabs in the

Herbal GUI Editor) that you created in the previous steps and add design rationale to

each of them. You don’t have to fill in all of the fields. However, keep in mind that over

time you may forget what these model components do. The design rationale you enter

here will help you recall how your agent works and is also helpful for anyone else who

tries to understand how agent Pete works.

BREAK

12. It is now time to test your agent. Double-click on the file named vacuum_2.0.jar in the

My Computer Window currently showing in the task bar at the bottom of the screen.

This will execute the Vacuum Cleaner Environment. Using the File->Open Soar Agent

menu item, brows to the HerbalEvaluation\Workspace\Pete\output\soar directory and

open the Pete.soar file.

13. Click on the Run button and watch Pete go to work. Is Pete executing as you expected?

 Page 2 of 3

Specific Task Instructions for the Model Creation Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

14. Go back to the Herbal window and make sure that the Navigator view is visible on the

left-hand side of the Herbal window. Open the Pete project node and then open the

output\soar folder. Double click on the Pete.soar file and the contents of the file will be

displayed. This is the computer program that was created automatically by Herbal!

 Page 3 of 3

Specific Task Instructions for the Model Maintenance Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

Model Maintenance
Background: A vacuum cleaner agent has been created named Pete that operates in the Vacuum

Cleaner Agent Environment. Your job is to execute Pete and determine if it is operating

correctly. Pete is supposed to wander the environment randomly. When Pete encounters a dirty

square it should clean it and the resume wandering. If you observe a problem with Pete’s

behavior you will debug the agent to find and correct the problem.

Steps

1. Double-click on the file named vacuum_2.0.jar. This will execute the Vacuum Cleaner

Environment. Using the File->Open Soar Agent menu item, browse to the

HerbalEvaluation\Workspace\BrokenPete\output\soar directory and open the Pete2.soar

file.

2. Click on the Run button and watch Pete go to work. Is it executing as you expected? Are

squares getting cleaned?

3. Stop the vacuum cleaner agent.

4. You will need to debug the vacuum cleaner agent so you can understand the problem that

you discovered in step 2. Execute Herbal by double-clicking the icon labeled Herbal, and

open the Herbal GUI Editor. Next, click on the Debug View tab on the bottom of the

Herbal window. Expand the Debug View so that it takes up a larger portion of the Herbal

window.

5. Go back to the Vacuum Cleaner Environment, reset the board, and run the agent.

Quickly switch to Herbal and click on the Connect button in the Debug View. Next,

select the agent from the drop down list box. Finally, click on Listen button.

6. Allow the vacuum cleaner agent to run for a while and wait while Herbal generates a

trace of the running agent. After you get at least 15 events, click the Stop button in the

Vacuum Cleaner Agent Environment and then click on Disconnect in the Herbal Debug

View.

7. Examine the trace to see if you can find the problem with the agent.

8. You will now try and fix the problem. Using the Working Set View on the left-hand side

of the Herbal window, create a new working set and then use the Add Elements button to

search the model for elements that might help you find the problem. Select search

 Page 1 of 2

Specific Task Instructions for the Model Maintenance Task
Participant ID: __________________________ Date: _______________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

criteria that will give you model elements that are likely to be related to the problem

(what keywords should you search for?. Click Finish when you are done searching and

the elements that were found will be added to your working set.

9. Double-click on each element in your working set to get a closer look. Study these

elements in detail until you find the problem that is causing Pete to malfunction. Try to

fix the problem.

10. If you think you have fixed the problem, go back to the Vacuum Cleaner Environment

and run the agent again to see you were successful.

 Page 2 of 2

User Reaction Survey for the Herbal Study
Participant ID: __________________________ Date: _______________

Task (circle one): library creation / model creation / library maintenance

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 1 of 5

Visibility and Juxtaposability

1) How easy was it to see or find the various parts (e.g., problem spaces, operators,

conditions) of your agent or library while it was being created, changed, or debugged.

very easy easy neutral difficult very difficult

2) If you needed to compare different parts (e.g., problem spaces, operators, conditions) of

your agent or library, you could easily see these parts at the same time.

strongly agree agree neutral disagree strongly disagree

Viscosity

3) How easy was it to make changes to your agent or library?

very easy easy neutral difficult very difficult

4) Were there changes that were especially difficult to make?

Diffuseness

5) The elements (e.g., problem spaces, operators, and conditions) you used to build your

agent or library allowed you to say what you wanted to say reasonably briefly.

strongly agree agree neutral disagree strongly disagree

User Reaction Survey for the Herbal Study
Participant ID: __________________________ Date: _______________

Task (circle one): library creation / model creation / library maintenance

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 2 of 5

6) Where there any things (e.g., problem spaces, operators, and conditions) in your agent

or library that took too much space to describe?

Hard Mental Operations

7) In general, the task you performed did not seem especially complex or difficult to work

out in your head.

strongly agree agree neutral disagree strongly disagree

8) During this task, what kinds of things required a lot of mental effort?

Error Proneness

9) During this task, you often found yourself making small mistakes that irritated you or

made you feel stupid.

strongly agree agree neutral disagree strongly disagree

User Reaction Survey for the Herbal Study
Participant ID: __________________________ Date: _______________

Task (circle one): library creation / model creation / library maintenance

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 3 of 5

10) What mistakes did you encounter during the task that seemed particularly common or

easy to make?

Closeness of Mapping

11) !The notation (e.g., problem spaces, operators, and conditions) you used to describe your

agent or library was closely related to how you might describe the agent or library

naturally.

strongly agree agree neutral disagree strongly disagree

12) ! Which parts of the notation (e.g., problem spaces, operators, conditions) used to

describe your agent or library seemed to be a particularly strange way to describe

something?

Role Expressiveness

13) During the task, you often did not know what many of the agent or library pieces meant

(e.g., problem spaces, operators, conditions) but you put them in anyway.

strongly agree agree neutral disagree strongly disagree

User Reaction Survey for the Herbal Study
Participant ID: __________________________ Date: _______________

Task (circle one): library creation / model creation / library maintenance

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 4 of 5

14) For which parts (e.g., problem spaces, operators, conditions) of the agent or library did

you not understand the meaning?

Progressive Evaluation

15) It was easy to stop in the middle of creating the agent or library, and check your work

so far.

strongly agree agree neutral disagree strongly disagree

16) During this task, it was easy to find out how much progress you made, or check what

stage in your work you were in.

strongly agree agree neutral disagree disagree

Premature Commitment

17) When working on this task, there were times when you felt like you could have changed

the order you performed the steps without breaking the agent or library.

strongly agree agree neutral disagree strongly disagree

Appraisal

16) How stressful did you find task to be?
1 2 3 4 5

Not at all Moderately Very

User Reaction Survey for the Herbal Study
Participant ID: __________________________ Date: _______________

Task (circle one): library creation / model creation / library maintenance

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 5 of 5

17) How well do you think you coped with the upcoming task?
1 2 3 4 5

Not at all Moderately Very

18) How demanding did you find the task to be?
1 2 3 4 5

Not at all Moderately Very

19) How well do you think you performed in the task?
1 2 3 4 5

Not at all Moderately Very

Wrap Up

20) After completing this questionnaire, can you think of obvious ways that the design of

the system could be improved? What are they?

 Data Collection Form for Herbal Study
Participant ID: __________________________ Date: _______________

Task (circle one): library creation / model creation / library maintenance

Start Time: ___________ End Time: ___________

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu)

 Page 1 of 1

Comments made by participant:

Errors observed including any assistance offered:

Other:

VITA

Mark A. Cohen, Ph.D.

Residence: MARK A. COHEN Office: 226 Akeley Hall
 91 Ravine Drive Department of Bus., CS & IT
 Jersey Shore, Pennsylvania 17740 Lock Haven University
 (570) 753-8178 Lock Haven, PA 17745
 mark.cohen@acm.org (570) 484-2493
 mcohen@lhup.edu

EDUCATION

PhD, College of Information Sciences and Technology, 2008, The Pennsylvania State University

MS, Computer Science, 1996, Drexel University

BS, Electrical Engineering, 1991, Lafayette College

TEACHING EXPERIENCE

Assistant Professor of Computer Information Science Since September 2002
Department of Business Administration, Computer Science, and Information Technology
Lock Haven University of Pennsylvania, Lock Haven, PA

Adjunct Instructor January 1997 to January 2004
University of Massachusetts, Lowell, MA

INDUSTRY EXPERIENCE

Senior Java Consultant August 1999 to August 2002
GlaxoSmithKline, King Of Prussia, PA

SELECTED PEER REVIEWED PUBLICATIONS

Cohen, A. M., Ritter, F. E., & Haynes, S. R. (2007). Using Reflective Learning to Master
Opponent Strategy in a Competitive Environment. In Proceedings of International
Conference on Cognitive Modeling, 219-228 Ann Arbor, MI.

Cohen, M. A. (2005). The Development of a Game Playing Framework Using Interface-based
Programming. Best of Crossroads: The ACM Student Magazine, Fall 2005.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (2005). Herbal: A high-level language and
development environment for developing cognitive models in Soar. In proceedings of the
14th Behavior Representation in Modeling and Simulation, 133-140. University City, CA.

Cohen, M. A. (2005). Teaching agent programming using custom environments and Jess. The
Newsletter of the Society for the Study of Artificial Intelligence and Simulation Behavior,
120, 4.

	Chapter 1 Introduction
	Intelligent Agents and Cognitive Models
	Obstacles Facing Efficient Cognitive Modeling
	A Theory for Simplifying Cognitive Modeling
	High-Level Languages and Compilers
	Maintenance-Oriented Development Environments
	Support for Reuse
	Preview of Contributions and the Structure of this Thesis

	Chapter 2 The Current State of Cognitive Modeling
	Methods of Behavior Representations
	Connectionist Representations
	Symbolic Representation

	Low-Level Behavior Representation Languages
	The Jess Expert System Shell
	Cognitive Architectures
	Soar
	ACT-R
	EPIC

	Summary

	High-Level Behavior Representation Languages
	RAPs
	JACK
	GOMS-Based Languages
	TAQL
	HTAmap
	COGENT
	HLSR
	Summary

	Cognitive Modeling Environments
	Jess Environments
	An ACT-R Environment: CogTool
	Soar Environments
	Summary

	Reuse in Cognitive Modeling
	Summary

	Chapter 3 Important Lessons from Software Engineering
	High-Level Languages
	The Conceptual Gap
	Successful Use of High-Level Languages

	Maintenance-Oriented Environments
	Cause/Effect Chasm, Program Slices, and Editing Above the Code
	Program Navigation
	Working Sets and JASPER
	Group Memory and Information Scent

	Cognitive Dimensions

	Software Reuse
	Four Dimensions of Reuse
	Reuse with Design Patterns

	Summary

	Chapter 4 Herbal: A Theory-Based System for Simplifying Cognitive Modeling
	Herbal: A High-Level Behavior Representation Language
	The Problem Space Computational Model
	XML and XSchema
	The Herbal Parser and Compiler

	Herbal: A Tool for Supporting Maintenance
	The Herbal IDE
	Working Sets and Intent as Information Scent

	Herbal: A Tool for Supporting Reuse
	Libraries
	Behavior Design Patterns

	Herbal: A Tool for Supporting Programming at Various Levels of Abstraction
	Summary

	Chapter 5 Evaluating Design: A Formative Evaluation of Herbal
	Overview of the Task
	Method
	Participants
	Apparatus
	Design
	Procedure

	Results
	Discussion
	Conclusions

	Chapter 6 Evaluating Functionality: Herbal as a Cognitive Modeling Tool
	Overview of the Task
	Method
	Participants
	Apparatus
	Design
	Procedure

	Models
	Batter Models
	Pitcher Model
	Model Parameters

	Results
	Discussion
	Hacker and Chicken Strategies
	Random Strategy
	Aggressive and Alternate Strategies
	Transition from Hacker to Aggressive
	Transition from Chicken to Alternate
	Additional Explanations

	Conclusions

	Chapter 7 Evaluating Usability: A Summative Usability Evaluation of Herbal
	Overview of the Task
	Method
	Participants
	Apparatus
	Design
	Procedure

	Models
	Results
	Survey Results
	Summary of Survey Results
	Observation Results
	Summary of Observation Results

	Discussion
	Conclusions

	Chapter 8 Contributions, Lessons, and Future Work
	Contributions towards Better Modeling Languages
	Contributions towards Better Maintenance-Oriented Modeling Environments
	Contributions towards Better Model Reuse
	Contributions towards Education of Modelers
	External Users
	Lessons and Future Work
	Future Work in High-level Modeling Languages
	Future Work in Maintenance-Oriented Modeling Environments
	Future Work in Model Reuse
	Future Work in Usability and Evaluation
	Future Work in Graphical Agent Environments

	Conclusion

	References
	Appendix A A Comparison of Representations
	Appendix B Summative Evaluation Materials
	Appendix1.pdf
	Appendix A A Comparison of Representations
	GraphicalH.pdf
	Graphical PSCM Representation

	GraphicalH.pdf
	Graphical PSCM Representation

	GraphicalH.pdf
	Graphical PSCM Representation

	XMLH.pdf
	XML PSCM Representation

	JessH.pdf
	Jess Representation

	SoarH.pdf
	Soar Representation

	Appendix2.pdf
	Appendix B Summative Evaluation Materials
	SpecificTaskInstructionsLibraryCreation.pdf
	Library Creation
	Steps

	SpecificTaskInstructionsModelCreation.pdf
	Model Creation
	Steps

	SpecificTaskInstructionsModelMaintenance.pdf
	Model Maintenance
	Steps

	UserReactionsSurvey.pdf
	Visibility and Juxtaposability
	Viscosity
	Diffuseness
	Hard Mental Operations
	Error Proneness
	Closeness of Mapping
	Role Expressiveness
	Progressive Evaluation
	Premature Commitment
	Appraisal
	Wrap Up

