
CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

1

Christou, G., Ritter, F. E., & Jacob, R. J. K. (2012). CODEIN—A new notation for GOMS
to handle evaluations of reality-based interaction style interfaces. International
Journal of Human-Computer Interaction, 28(3), 189-201.

CODEIN – A NEW NOTATION FOR GOMS TO HANDLE EVALUATIONS OF

REALITY BASED INTERACTION STYLE INTERFACES

Corresponding Author:
Georgios Christou
Department of Computer Science & Engineering
European University Cyprus
6 Diogenes St.
2404, Engomi, Nicosia
Cyprus
Phone: +357-22713104
Email: g.christou@euc.ac.cy

Frank E. Ritter
College of Information Sciences and Technology
Penn State University
University Park, PA 16802
U.S.A.
Phone: +1 (814) 865-4453
Email: frank.ritter@psu.edu

Robert J. K. Jacob
Dept. of Computer Science
Tufts University
Halligan Hall
161 College Avenue
Medford, Mass. 02155
U.S.A.
Phone: +1 (617) 627-2225
Email: jacob@cs.tufts.edu

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

2

ABSTRACT

We propose a new diagrammatic notation system for GOMS, called Codein,

with extensions to support the evaluation of Reality Based Interaction Styles

(RBIs). The proposed notation gives added power to GOMS to model and

evaluate the task completion time of parallel actions during the performance of a

task, something that was previously only possible using CPM-GOMS, which is far

more complicated to use. Codein’s evaluative power is verified through an

experiment. The first condition of the experiment compares the completion time

predicted by a GOMSL model, a Codein model, and the actual completion time of

participants in a direct manipulation task. The second compares the completion

time of participants in a Tangible User Interface task with predictions by a

GOMSL model and a Codein model. Predicted task times by Codein in both

conditions come close to the actual experimental results.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

3

INTRODUCTION

There are many methods to evaluate Direct Manipulation (DMI) interfaces

(Hutchins, Hollan, & Norman, 1986; Shneiderman, 1983, Alonso-Ríos et al.,

2010), with one of the most prominent being the GOMS (Goals, Operators,

Methods, Selection Rules) family (Card, Moran, & Newell, 1983; John & Kieras,

1996a). But as new interaction styles are created to take advantage of quickly

evolving technology, can the existing evaluation methods be used with these new

interaction styles? Also, most established evaluation methods mostly apply to the

DMI style, and are not able to handle continuous, parallel interactions, because

they are not used in the DMI style. New interaction styles however, such as

Virtual Reality (VR), Tangible User Interfaces (TUI; Ishii & Ullmer, 1997),

Ubiquitous Computing (Weiser, 1991), and others, do use them. To refer to all

the new interaction styles, we use a term proposed by Jacob et al. (2008),

namely Reality-Based Interfaces (RBI).

Here, we propose a new notation system for GOMS (Card, Moran, & Newell,

1983), with extensions to support the evaluation of RBIs. The notation provides

tools to evaluate a task based on the knowledge that users need to possess to

perform that task. This is done through a diagrammatic notation that enables the

designer to model the interactions inside a RBI interface, given the interface

actions and the knowledge that the user needs to have to perform each action.

To evaluate how well the proposed notation performs compared to GOMS,

we present an experiment that compares the findings of the proposed notation to

GOMS augmented with Fitts’ Law. Fitts’ Law models human pointing movements

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

4

and predicts that the time required to point to an object is a function of the size of

the target object and the distance of the target to the actor (Fitts, 1954; Fitts &

Peterson, 1964; MacKenzie, 1991). The result is that the proposed notation

performs at least as well as GOMS and Fitts’ Law combined. We then describe

another experiment to test whether the proposed notation can be used to

evaluate a TUI (Ishii & Ullmer, 1997). We show that while GOMS is unable to

model this task, through the proposed notation with the addition of an operator,

the task can be modeled with predicted completion time close to the actual

completion time of the task.

BACKGROUND

GOMS is one of the most widely known evaluation methods in HCI. Based on

the goal of the user to perform a task, it analyzes the task using operators,

methods and selection rules. Kieras (2006) has written extensively on how

GOMS can be used to evaluate how interfaces support tasks.

GOMS, though, has some well known problems. First, it only applies to

expert, error-free performance (John, 2003), dealt with by other methods

(MacDorman et al, 2011), excluding evaluation for occasional users who are the

most frequent users of RBIs. Second, only one of its varieties, CPM-GOMS

(Gray, John, & Atwood, 1993), allows the evaluation of parallel tasks, something

common in RBIs (Jacob et al., 2008). However, CPM-GOMS is very complex for

most evaluation analyses (John & Kieras, 1996b). With the proposed notation we

aim to provide an easier approach to modeling parallel tasks.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

5

GOMS is frequently augmented with Fitts’ Law (Fitts, 1954; Fitts & Peterson,

1964; MacKenzie, 1991). A Fitts’ Law formulation often used is MT = α +

β*log(1+ D/W), where MT is the time to point to an object, D is the distance from

the object, W is the size of the object on the plane of observation, and α and β

are experimentally defined constants. It is common to replace the pointing

operator in GOMS with a Fitts’ Law model of the pointing task in question

(Christou, 2007).

The proposed notation uses Fitts’ Law to evaluate pointing movements and

KLM-GOMS (Card, Moran, & Newell, 1983) operators to evaluate other portions

of the task. The notation is influenced by State Transition Networks (Newman,

1969), Statecharts (Harel, 1987), and cognitive architectures, such as ACT-R

(Anderson & Lebiere, 1998) and Soar (Laird, Newell, & Rosenbloom, 1987).

State Transition Networks are graph theoretic structures denoting system

states as circles, and transitions between states as arrows in a diagram. The

transitions (arrows) are labeled with the user actions that trigger the transition

and the system response. Statecharts model state diagrams with the addition of

allowing each state diagram to transition inside of a state, creating super-states,

without affecting the states in the diagram. Last, cognitive architectures are

theories that aim to explain human cognition. A fundamental argument for some

cognitive architectures is the distinction between procedural and declarative

knowledge, where procedural knowledge is modeled as productions, and

declarative knowledge is modeled as a propositional network. The interested

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

6

reader is referred to Anderson (1982) and Anderson and Lebiere (1998) for

further information about declarative and procedural knowledge.

CODEIN: THE PROPOSED NOTATION

We propose a diagrammatic notation that extends GOMS so that it can be

used in the evaluation of RBIs, as well as DMI interfaces. We name this

diagrammatic notation COgnitive Description and Evaluation of INteraction

(Codein). The notation is based on the categorization of task knowledge into two

types: declarative and procedural (Anderson & Lebiere, 1998, Christou, Ritter, &

Jacob, 2009). Working with this notation presupposes that domain knowledge is

constant across interfaces, and that the user already possesses the required

domain knowledge for the task. For example, if the task is to cook a chicken

using a specific recipe, the notation does not model the recipe knowledge, as this

is considered known by the task performer. What is modeled is the knowledge

required for the use of the oven that will be used to cook the chicken. As the

recipe will be the same no matter what kind of oven is used, the domain

knowledge is considered to remain constant in the modeled scenarios.

The distinction between declarative and procedural knowledge is shown in

the following example: Suppose the goal is to move the pointer from point A to

point B on the screen. Then one of the things the user needs to know is that the

mouse is bound to the pointer, a declarative knowledge chunk without which the

user would not be able to complete the task. The user would also need to know

how to move the pointer using the mouse. This is a procedural knowledge chunk.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

7

But why the user needs to perform this task is not modeled, as this would be

domain knowledge.

Terminology

The proposed notation includes a few terms to refer to different devices and

user interface constructs in the same manner, over different interaction styles.

This is necessary to enable the notation’s users to talk about designs in different

interaction styles. For example, when talking about a user interface construct in a

Tangible User Interface vs. one in a Virtual Environment, the terminology will

help disambiguate the role of the constructs. This in turn, leads to clearer

conversations between designers of interfaces in different interaction styles.

Data Object
Every interaction style defines some representation for the actual system

data. Even though all data are ultimately described by 1’s and 0’s, each

interaction style has some representation of the logical groupings of those data,

be that graphical, physical, textual, or otherwise. The representations are used to

represent distinct data entities such as files, folders, database tables, and

applications.

A Data Object is defined as the representation of a distinct data entity or

group of entities in an interaction style. Data Objects may take many different

forms and may be used under different guises, but their sole purpose is to allow

the user to manipulate the data entities that they represent. Data Objects may be

comprised of other Data Objects, and they can be combined to create more

complex Data Objects.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

8

Examples of Data Objects in DMIs are the icons that represent files, folders,

applications, etc. In fact, a folder is a Data Object that includes other Data

Objects (the file icons). An example Data Object that includes other Data Objects

is a document page in Microsoft Word. The page can be considered a Data

Object because it is the representation of the document data in a form that allows

users to manipulate that data. A page is comprised of sections, paragraphs,

sentences, words, characters, and pictures, which are also Data Objects.

A VR museum application, created by Shiaw, Jacob and Crane (2004),

presents ancient Greek vases in various ways, one of these being a depiction of

the vases on pedestals. The user may approach the vases, grab them in the

virtual world and manipulate them to get a better sense of the exhibits than one

would in a real world museum where manipulation of the artifacts is strictly

forbidden.

In this application, the Data Objects are the vases as depicted in VR, because

these are the items that the user will manipulate. Here the interaction is smooth

and intuitive because users may interact with the Data Objects as they would

interact with the real artifacts in the real world.

Interaction Objects
In many interaction styles there are artifacts, real or virtual, that allow the user

to interact with the Data Objects. For example, in DMI the user may use the

pointer to drag and drop a file from one folder to another. In this case the user

uses the pointer, which is the Interaction Object to manipulate the icon of a file,

which is the Data Object.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

9

Interaction objects are the objects that are perceived by the user to be the

means of interaction with the Data Objects in an interaction style. They are the

tools that are provided by the interaction style that allow the manipulation of

properties, states, and attributes of the Data Objects. Interaction objects do not

have to be manipulated directly by a user, although in many RBIs this is possible.

Interaction objects do not have to act on only one Data Object. They may act

on a group of Data Objects, or on specific properties or attributes of a Data

Object. Multiple Interaction objects may be used together to achieve a desired

action, and Interaction objects may only work on a particular type of Data Object

as well.

In many RBIs the hands are the Interaction objects of the interface. However,

this statement is truer for some RBIs and not as true for others. In VR for

example, while the simulation tries to convince the user that the Interaction

objects are the hands, the actual Interaction objects are the representations of

the hands in the virtual environment and the quality of their simulation influences

the quality of the experience. The devices used to track the hands are

Intermediary Objects, as explained below.

Intermediary Objects
Intermediary objects are the physical objects used by the user to manipulate

the Interaction objects. Intermediary objects are usually physical artifacts in any

interaction style. These artifacts are used to manipulate the Interaction objects,

when the Interaction objects cannot be manipulated directly.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

10

Intermediary objects are never virtual. They are always real physical objects

that are bound to some Interaction object in the interface. Through this binding

they allow the manipulation of the interaction object by the user. As mentioned in

the previous section, a data glove can be an Intermediary object through which

the user controls her hands’ representations, which allow changes on the Data

Objects in the virtual environment. Having an Intermediary object control the

Interaction object that controls the Data Object adds a third level of abstraction to

the system, which in turn presents the added challenge to the user of learning

and understanding the various ways that the binding between the Intermediary

object and the Interaction object works.

Another example of an Intermediary object is the mouse, which in DMI is

bound to the pointer on the screen. The mouse is the physical artifact

manipulated by the user to control the pointer. The pointer in this case is the

Interaction object that allows the manipulation of Data Objects. But any device

that controls the pointer in DMI is an Intermediary object, such as track balls, the

touchpad, or even the cursor keys on the keyboard. There are, however, several

devices that are not Intermediary objects, because they do not control the

pointer, but rather become the pointer themselves, such as light pens, or they

allow the user to manipulate the Data Objects directly, such as the touch screen.

In Virtual Reality, on the other hand, the Intermediary objects take many

forms. In the case of immersive Virtual Reality, the head-mounted display is an

Intermediary object, which allows the immersion of the user into the virtual

environment. Even though the user does not use it directly to manipulate

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

11

anything, the head-mounted display will change the user’s view when the user

moves around and turns her head left, right, up or down. Thus, the head-

mounted display is an integral part of the virtual experience, and the head-

mounted display is the Intermediary object through which users orient

themselves in the virtual environment. Another Intermediary object is the device

that positions the user’s hand or hands in the virtual environment. This could be a

data glove or some other tracking device, which also provides the user with the

ability to act on the environment. In such cases, the mapping to the user is more

direct, because in the case of a data glove, the user just feels the glove, and

does not realize that the glove is an Intermediary object. Rather, the Intermediary

object’s role is partially hidden from the user.

One issue that emerges from the use of an Intermediary object to control the

Interaction object is how the manipulation of the Intermediary object affects the

Interaction object. Usually, the user learns by experience that a specific

manipulation of the Intermediary object affects the Interaction object in a specific

way, and with enough experience the translation of Intermediary object

manipulations to Interaction object manipulations becomes automatic. This type

of knowledge is called a Binding, and it is described in the next section.

Bindings
A binding signifies the places where the Interaction object and the Data

Object directly connect to execute an action by the user. When an Interaction

object touches or in some other way comes in contact with the Data Object, we

say that the Interaction object is bound to the Data Object.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

12

When an Interaction object manipulates or controls one or more Data

Objects, or one of a Data Object’s properties, the Interaction object is said to be

bound to the Data Object. Binding an Interaction object to a Data Object means

that the Data Object has the user’s focus, and it is going to be manipulated or it is

being manipulated.

There can be two types of bindings: static and dynamic. Static bindings are

bindings that hold throughout the use of the particular interface between two

objects, and dynamic bindings are created and destroyed according to user

actions. Static bindings are usually found between Intermediary objects and

Interaction objects, such as the binding of the mouse to the pointer. Dynamic

bindings though, are usually found between Interaction objects and Data Objects.

A static binding example is of the mouse and the pointer. The Intermediary

object (the mouse) allows the user to control the pointer, throughout the lifetime

of an application. Dragging a file icon with the pointer though, creates a dynamic

binding between the icon and the pointer. This binding is only persistent during

the lifetime of the action.

Static bindings do not stop existing because of a change in the attributes of

the Interaction object. Consider the case of a video game that changes the

pointer shape. The pointer is still manipulated through its Intermediary object,

therefore the binding still applies.

Codein’s Notation

Codein’s notation uses a State Transition Network to represent the flow of the

task from one action to the other, and allows zooming into task states to see their

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

13

internals, similar to Statecharts (Harel, 1987). The full notation for the proposed

notation is shown in Figure 1.

[Figure 1 goes about here]

Figure 1 presents the four components that comprise the notation. First, the

rectangle represents a knowledge state. Each knowledge state may hold other

knowledge states, or knowledge that the user must have to perform the action

coming out of the state. An example is the knowledge state that users are in

every time they perform a double-click to open a folder. They summon

knowledge about how to open a folder using the left mouse button that will be

translated into the command “open folder” by the user interface.

A procedural chunk (Anderson & Lebiere, 1998) represents the procedural

knowledge that the user needs to possess to perform actions allowed at that

state. Procedural knowledge is how-to knowledge, and in Codein it is not

decomposed into its specific components. Rather, we consider that the required

knowledge for each action is atomic, in that it cannot be decomposed any further.

Declarative knowledge chunks can be thought of as procedures in cognitive

architectures, such as ACT-R (Anderson & Lebiere, 1998) or Soar (Laird, Newell

& Rosenbloom, 1987).

A declarative knowledge chunk (Anderson & Lebiere, 1998) is denoted by a

circle, with a description of the chunk inside it. Declarative knowledge is

knowledge about facts. Thus, when a declarative chunk is included in a state,

then that chunk is a fact that needs to be known (a precondition) for any action

coming out of that state.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

14

Last, an arrow represents an action that the user performs. The description of

the action is written as an arrow label and is underlined, and, if applicable, a

condition is written in the label, without underlining. The condition of the action

defines when the transition will be followed. In any knowledge state, when an

arrow exists, it may be followed (i.e., the action may be performed) as long as the

knowledge requirements of the knowledge state and any action conditions are

satisfied. Action conditions are optional.

Building Codein Models

Codein models are constructed similarly to GOMSL models (Kieras, 2006).

As with GOMS, Codein model construction begins after task analysis. Once the

designer defines the user interface tasks to be modeled, and decomposes those

tasks into actions and knowledge to execute those actions, a summary diagram

can be built. This diagram displays the knowledge states that users will go

through and the actions they will perform to reach the ending knowledge state,

the state where the user knows that the task was completed successfully. The

designer then draws diagrams for each knowledge state, denoting the procedural

and the declarative knowledge required for the performance of each action as

those are shown in the summary diagram. This knowledge must be included in

each action’s preceding knowledge state. The resultant diagrams thus describe

both the procedural and declarative knowledge required for the completion of the

task. Task completion time can then be predicted by assigning Keystroke Level

Model operators (Card et al., 1983) to the actions and the mental steps

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

15

performed. This process is best demonstrated by example, which we do in the

next section.

EVALUATION OF CODEIN

The experiment performed to compare task completion time predictions of

Codein and GOMSL (Kieras, D., 2006) consisted of having a group of 13

experienced MS Windows XP™ participants perform a file manipulation task in

two conditions. We then compare the participant’s completion times to GOMSL

and Codein’s predictions.

Participants

The 13 participants, 9 male and 4 female, were all undergraduate Computer

Science Students at the Computer Science department of the European

University Cyprus. Their ages varied between 19 to 30 years old (M = 22.8, SD =

3.5). All the participants were enrolled in an introductory HCI course at the time

of the experiment and participated in the study for course credit.

Materials and Design

The task was designed in two different interaction styles, as shown in Figures

2 and 3: one condition was based on MS Windows XP™ representing the DMI

style (Figure 2), and the second condition was a mockup of a TUI (Figure 3). The

DMI condition’s display size was 1024x768 pixels on a CRT monitor, and the

window size, which was kept constant over all trials, was 610x460 pixels.

[Figures 2 and 3 go about here]

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

16

The TUI condition’s interface was built as a Wizard of Oz interface (a term

coined by Kelley, 1983), as shown in Figure 3. Wizard of Oz interfaces are

mockups of the real interface, with a human confederate driving the interface

reacting to the actions of participants. Research on TUIs often uses Wizard of Oz

systems as mockups, because it allows ideas to be tested before the actual

interface can be built (Consolvo et al, 2007). Because a new interface to a

common problem (file management) is examined, the results of the experiment

should not be affected. The folders were represented by cardboard boxes (16 x

14 cm). The name of each folder was written on the front side of each box. Inside

each box there were regular paper cutouts of file objects (7.2 x 5.4 cm). Each

folder had a minimum of 3 and a maximum of 11 file objects. The file objects

represented the files that were inside each folder; the name of each file they

represented was printed in a box in the middle of the paper cutout. The file

objects are shown in Figure 4.

[Figure 4 goes about here]

Each experimental condition consisted of a single task. The song/album pairs

were constant across participants and conditions. All participants performed both

conditions but with the tasks in random order. Each participant performed ten

trials per condition, with different song/album pairs.

Procedure

Participants were asked to perform the following task: “Find the mp3 file

called X, in folder Y and move it from folder Y to folder Z”, where the mp3 file X,

the source folder Y and the target folder Z were disclosed to the participants at

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

17

the beginning of each trial. For example, a participant might be asked: “Find the

mp3 file called ‘Cleaning my closet’ by Eminem, in folder ‘Sting’ (source folder),

and move it to folder ‘Eminem’ (destination folder)”.

The participants began each trial with the pointer at the right side of the

window. This was considered to be the pointer’s home position, and all

subsequent Fitts’ Law calculations for the first movement of the condition’s task

are calculated from that position. The participants proceeded to move the pointer

above the source folder, double-clicked it, positioned the pointer over the target

file, right-clicked, and selected cut from the popup menu. This completed the

subtask of selecting the target mp3 file. Then the participants had to move the

pointer onto the “up folder” icon on the window toolbar, double-click on the

destination folder icon, and right-click inside of the white-space area of the

destination folder window, and select paste. This signaled the end of the trial.

The task was timed using a program that recorded the participants’ movements

and kept timing information for the complete duration of the task.

The TUI condition’s task was performed in the following manner: the

participants reached into the source folder, grabbed the file objects, and

physically searched through them. When they found the target mp3 file they

placed it into the destination folder. This signaled the end of the trial. In this

condition, the task was recorded using a video camera, and the time required for

the completion of the task was found through frame-by-frame analysis of the

recording. The software used was Virtual Dub (Lee, http://www.virtualdub.org/).

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

18

Because the software used for the analysis allowed viewing of one frame per

300–350ms, the results recorded were rounded to the nearest half-second.

Results

All participants completed the tasks without errors. Table 1 shows their

results. The GOMSL and Codein models’ results come from the models

described and discussed in subsequent sections. The deviation columns in Table

1 show by how much the models’ predictions either overshoot (positive deviation)

or undershoot (negative deviation) the actual results.

[Table 1 goes about here]

The first result to note in Table 1 is that the TUI condition task can be

completed faster than the DMI condition, and the standard deviation of the

completion time of the DMI condition’s task is greater than that of the TUI

condition. This was expected, because the tasks are not completely equivalent.

While the obvious difference is that one is designed to be performed on a

computer and the other is performed in a TUI, there are further differences. For

example, the TUI condition’s folder representation was always open, and some

of the content of each folder was always visible to the participants. On the other

hand, in the DMI condition’s task the participants needed to perform actions to

open the required folders, and in the folder view the contents of the folders were

not visible to the participants. Also, the participants were able to perform actions

using both hands in the TUI condition, whereas in the DMI condition participants

are restricted to the use of one pointer on the screen.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

19

CONSTRUCTION OF THE GOMS MODELS
GOMSL was chosen from the various GOMS methods based on

recommendations given by John and Kieras (1996b). The DMI task was modeled

in GOMSL (Kieras, 2006), with the model shown in Table 2. The TUI condition’s

task is shown as a GOMSL model in Table 3. Each step and each method has

an estimated completion time. The execution time for each GOMSL method is

calculated by summing up the execution times of the primitive operators and

adding 0.05 seconds for each step in the method (Kieras, 2006) that represents

the mental decision to execute that step.

[Tables 2 and 3 go about here]

The primitive operators are Keystroke Level Model operators (Card et al.,

1983). For each “method for accomplishing goal” step, 50 ms are added, and the

same applies for each selection rule and Decide operators, regardless of the

number of conditions. Next to each step in the GOMSL methods, the average

time (in seconds) for the performance of the operator is given in parentheses

from Card et al. (1983). The total time for the performance of a method is in

parentheses next to the beginning of the method. The time required for a step in

the method to be executed, as well as the time needed for calls to methods, is

not shown, but is included in the total time.

For each pointing task, we used Fitts’ Law to predict the movement time. The

pointing form of Fitts’ Law was used as indicated by Mackenzie (1991):

MT = 230 + ID*166.

The coefficients α and β were taken directly by Mackenzie’s (1991) experiments

with the mouse as a pointing device. During his experiments, the constants for

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

20

Fitts’ Law to match mouse pointing movements were α = 230 ms and β =

166 ms. The ID in the above equation is the index of difficulty for the task. The ID

for each movement was calculated using the distances of pointer travel on the

screen, using the Shannon formulation (MacKenzie, 1991), which has ID =

log2(D/W + 1), where D is the distance from the target, and W is the width of the

target on the axis of motion. Because the distance from the initial position of the

pointer to its target position changes every time, a different ID is calculated for

each situation. The task has 7 distinct pointing movements:

1. Moving from the home position of the cursor to the source folder

(ID = 3.46, MT = 0.80 s).

2. Moving from the current position of the cursor to the required file

(ID = 3.53, MT = 0.82 s).

3. Moving from the file icon to the “Cut” menu item (ID = 2.44, MT = 0.63 s).

4. Moving from the “Cut” menu item position to the “up hierarchy” button on

the window toolbar (ID = 2.96, MT = 0.72 s).

5. Moving from the “up hierarchy” button to the destination folder

(ID = 1.75, MT = 0.8 s).

6. Moving from the destination folder position to the unused area of the folder

window (ID = 1.75, MT = 0.52 s).

7. Moving from the current pointer position to the “Paste” menu item

(ID = 1.75, MT = 0.52 s).

Table 3 shows the TUI condition task modeled in GOMSL, with three GOMS

methods. The three methods capture the three parts of the task: (1) finding the

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

21

source folder and grabbing the file objects, (2) searching through the pile of file

objects to find the required one, and (3) placing the required file object in the

target folder and the rest of the file objects back in the source folder.

In the model of Table 3, there are two peculiarities. First, in two methods,

“Find Folders and Grab File Objects”, and “Place File in Destination Folder”, we

use a primitive operator that is not included neither in GOMSL (Kieras, 2006) nor

in the KLM (Card, Moran, & Newell, 1983). This operator is signified with the

letter R in step 2 of the first method and steps 2 and 3 of the second method. It

represents the prehension action (reach) that users perform when they reach and

grasp a physical artifact. GOMS does not have any operators that represent

hand or arm pointing actions, and the literature suggests that the prehension

action cannot be modeled by Fitts’ Law (Jones & Lederman, 2006; C. L.

Mackenzie & Iberall, 1994). Thus, we developed a prehension operator

(Christou, Ritter, & Jacob, 2008), and used it to calculate a prediction for the

prehension action.

Second, GOMSL cannot compute the completion time of the method “Find

Required File”, because there are no primitive operators defined for the steps of

this method, and because of its iterative nature. Therefore, a supplementary

experiment was performed to calculate the completion time of this method. A

summary of the study and data supporting this is given in Appendix 1.

Using the results from the supplementary experiment, we calculate the

completion time of the TUI task to be 8.95 s. This predicted time is 80% higher

than the data and is outside the GOMS suggested range of +/-20% and nearly 2

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

22

SDs from the data mean. This is outside the limits of the average + 1 standard

deviation of the experimental study. We believe that the discrepancy for the

GOMS analysis is that the participants performed some actions in parallel, such

as finding the source and target folders at the beginning, and placing the target

object in the target folder and the rest of the file objects back in the source folder.

Because GOMSL does not allow modeling of parallel actions, it is not surprising

that one of the most commonly used GOMS methods cannot accurately calculate

the completion time of the TUI task.

CONSTRUCTION OF THE DMI CODEIN MODEL
The same Fitts’ Law calculations were used in the Codein model of the DMI

condition, shown in Figures 5 to 8. The Codein model is summarized in Figure 5,

using knowledge states to describe the sequence of actions in the task. The

summary diagram is used as the top level method of the GOMSL model. By

using it, one can calculate the time that the user spends at every state, and how

long it takes for each transition from one state to the other. By the addition of all

the calculated times, a prediction for the completion time of the task is found.

[Figure 5 goes about here]

Each knowledge state in the summary diagram can be analyzed further, and

yields a diagram with its constituent knowledge and actions. Figures 6 to 8 show

enlargements of each of the subtasks in Figure 5. In these figures we use the

acronyms DO, IO and IN to signify Data Object, Interaction Object, and

Intermediary Object respectively.

[Figures 6, 7 & 8 go about here]

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

23

The folders and files are recognized as Data Objects, the pointer as an

Interaction object, and the mouse as an Intermediary object. In the TUI condition,

there is no Intermediary object, and the hands of the participants are the

Interaction objects. There is a static binding between the pointer and the mouse,

knowledge without which the participants would not be able to perform the DMI

action, and there are dynamic bindings between the pointer and the Data Objects

every time that a Data Object is moved using the Interaction object. These facts

lead to the analysis as shown in Figures 6, 7, and 8, where the diagrams include

“variables”, denoted as X_DO and Y_DO, to show that the targets of the cut and

paste mechanism may be any Data Object representation in the DMI condition.

The Intermediary object, again could have been any pointing device and the

diagrams would remain the same. The only thing that would change is the Fitts’

Law function constants to calculate the pointing time.

Taking figure 6 as an example of how knowledge state diagrams are

constructed, we decompose the “Open source/target folder” task into two actions:

moving the pointer and clicking with the mouse, yielding two knowledge states.

The two arrows coming out of the state represent the action of moving the pointer

until the pointer is over the required folder. This allows moving to the next

knowledge state that represents double clicking with the Intermediary object on

the folder to open it. Notice how the two arrows here signify the same action

(move IO), but with different conditions and results.

To calculate the completion time of this subtask, we use Fitts’ Law for all the

pointer moving actions and traditional KLM operator times for other actions. We

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

24

also take into account that the participants in the experiment were experts in the

DMI style. This means that they would know how to use the mouse, so we only

add an M operator for the retrieval of all the knowledge associated with the

mouse. Thus, in the subsequent states that need mouse knowledge, we do not

add retrieval from long-term memory of knowledge for the use of the mouse.

Taking this into account, we find that the folder position needs to be found by

visual search, thus adding another M operator. The movement time is already

calculated by Fitts’ Law in a previous section (0.80 s), yielding a total of 3.2 s

(M+M+0.8 s) for the first knowledge state in figure 6. The second knowledge

state in the same figure requires only mouse knowledge, which was already

recalled. The double click mouse button action is represented by operator BB =

0.4 s, totaling the completion time of the knowledge state ‘Open folder’ for the

source folder case to 3.6 s. The rest of the knowledge states shown in figures 7

and 8 are calculated in the same way with the operators shown in the figures.

The operator times in the figures are shown in the knowledge chunks and in the

action descriptions. The completion time required for the whole task of figure 5 is

calculated by adding up the completion times of the subtasks.

There is no search time for the position of X_DO when bound to the source

folder, because the experiment began with the participants able to view all the

folders. Therefore, the participants knew the position of the source folder before

the beginning of the experiment, so visual search was not part of the completion

time of the task. The completion times are as follows: Open Source Folder: 2.4 s;

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

25

Cut File: 4.25 s; Move to Folder View: 2.12 s; Open Target Folder: 2.12 s; and

Paste File: 2.64 s. The completion time of the whole task is 13.53 s.

CONSTRUCTION OF THE TUI CODEIN MODEL
The TUI condition’s summary diagram is shown in Figure 9. The TUI

condition task is decomposed into four subtasks: Finding the source and target

folders and grabbing all the file objects from the source folder, searching for the

target file object, and replacing the file objects to their respective final locations.

[Figure 9 goes about here]

Figure 10 is an expanded description of Figure 9. Here, the knowledge for the

performance and the flow of tasks are shown. Of note are the parallel actions

that occur during the task’s performance, observed during the experiment. The

parallel actions occur after the last knowledge state, from which two arrows

emerge. In this case the two arrows have different names, suggesting that the

two actions are different, and that they occur in parallel. The total time required

for the TUI task as calculated is 6.2 s.

[Figure 10 goes about here]

RESULTS AND DISCUSSION
Table 3 shows the results of each condition with the results of the two

analyses. The combination of GOMS and Fitts’ Law gives an accurate estimated

completion time for the DMI condition. However, even when they are used

together, GOMS and Fitts’ Law do not provide an accurate estimation for the TUI

condition. The reason is that GOMSL cannot model parallel actions. One could

suppose that the two actions of placing the target file in the destination folder,

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

26

and placing the rest of the files in the source folder in the ‘Place File in

Destination Folder’ method of the TUI GOMSL model could be replaced by one

action and get a completion time result closer to that of Codein. However, if one

operator were used, then the model would describe a task different than the one

performed. Namely, it would describe a task where the actor only performs one

action to place both the stack of data objects back in the source folder and the

selected item in the target folder. But the GOMSL model should show that two

actions occur, not one.

Codein provides a comparable result to the experimental average of the DMI

condition, close to the GOMS result. Also, for the TUI condition, Codein provides

a more accurate result than GOMS.

It is a well established fact that GOMS with Fitts’ Law can accurately model

the performance of tasks designed in the DMI style. However, as can be seen

from Table 4, Codein also predicts the completion time of the DMI condition at

least as accurately as the GOMSL model. The Codein model, though, not only

provides a prediction, but it also provides information about what the user needs

to know to perform a task, something that is less evident in the GOMS model.

While the GOMS model delineates the procedure required for the performance of

the task, the declarative knowledge required for the performance of the task is

not shown. On the contrary, in the Codein model, one may represent the

procedure for the task as well as both the declarative and procedural knowledge

requirements of the task. This allows comparative evaluations between different

designs of the task, in the same interaction style or in different interaction styles.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

27

For example, the comparison of the DMI condition vs. the TUI condition can be

performed on the basis of required knowledge instead of speed of performance

using the Codein model. Using GOMS, one would only be able to compare the

two designs on the basis of number of steps required for the performance of the

task, or on the basis of methods required for the performance of the task. These

two measures however, may not be representative of the difficulty of the task,

because more or less steps or methods for the performance of the task may not

convey the fact that the user may need to learn many more facts in the design

that requires fewer steps or methods for its completion. Modeling the task in

Codein though, provides this information.

[Table 4 goes about here]

Table 5 shows that the greatest difference in the two models is the ‘Place File

in Destination Folder’ procedure. The reason is that Codein considers that when

two actions occur in parallel, only the action with the longest completion time will

be counted towards the total completion time (as shown in the last knowledge

state of Figure 10). On the contrary, GOMSL considers that each action’s

completion time must be calculated and added to the task’s completion time.

There also is a slight difference between each model’s estimate in the “Find

Folders and Grab File Objects” subtask.

[Table 5 goes about here]

As discussed earlier, GOMSL lacks the capability of modeling parallel actions,

and thus cannot describe the TUI condition correctly. CPM-GOMS (Gray, John, &

Atwood, 1993; John, 2003; John & Kieras, 1996a, 1996b) may be more accurate

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

28

than the GOMSL model shown here, because it can handle parallel actions.

However, even the creators of CPM-GOMS suggest that when modeling simple

tasks, such as the experimental task here, one should not use CPM-GOMS

because of the complexity of model creation. We posit that the proposed notation

provides this added functionality using simpler notation that CPM-GOMS,

creating a more versatile GOMS tool, especially in the evaluation of those that

allow or require parallel actions.

CONCLUSIONS

In this article we presented a new notation, Codein, that is based on GOMS

and that extends GOMS’ capabilities in two ways. The first way is that Codein

provides an easy to use representation parallel actions, while in most GOMS

notations this is not possible. The second is that it provides more information

about the performance of a task than a GOMS model. Specifically, declarative

knowledge is not included in GOMS models, but it is included in Codein.

To examine whether a model built with the proposed notation performs as

well as the GOMS model, we performed a file manipulation task experiment in

two different interaction styles: DMI and TUI. It was found that the predicted task

completion times are comparable in the DMI condition. It was further found that

the proposed notation’s model was more accurate when used to predict the task

completion of a task performed in the TUI condition. This was because the new

notation models parallel tasks. We thus believe that the added capabilities make

Codein suitable to model Reality-Based Interfaces.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

29

The limits of Codein are that its graphical representation is more bulky,

because each action of a task may be composed of one or more knowledge

states, leading to large diagrams. However, we expect that users of the notation

will eventually develop their own templates for commonly performed actions, thus

reducing the number of diagrams required to model tasks and a completely

textual representation could be easily created. Another limitation is that there is

no automated tool for the calculation of completion times or for the creation of

task diagrams. It is in our plans to develop such tools for this notation in the near

future.

This work shows a usability approach for modeling new types of interfaces.

This report is just one example of its use and one test of its prediction accuracy.

Future reports will need to test a wider range of interfaces to make it more robust

and to provide examples of use.

ACKNOWLEDGMENTS

Portions of this research were supported by the National Science Foundation

(Grant IIS-0414389). We also want to thank Junya Morita and Panayiotis Zaphiris

for their valuable input and suggestions on drafts of this paper.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

30

REFERENCES

Alonso-Ríos, D., Vázquez-García, A., Mosqueira-Rey, E., & Moret-Bonillo,
V. (2010). Usability: A Critical Analysis and a Taxonomy. International
Journal of Human Computer Interaction, 26(1), 53-74.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review,
89(4), 369-406

Anderson, J. R., & Lebiere, C. (1998). Atomic Components of Thought. Mahwah,
NJ: Erlbaum.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human
Computer Interaction. Hillsdale, NJ: Erlbaum.

Christou, G. (2007). Towards a New Method of Evaluation for Reality-Based
Interaction Styles. Paper presented at the Extended Abstracts of CHI 07
Conference on Human Factor in Computing Systems, San Jose, CA,
pp.2165-2170

Christou, G., Ritter, F. E., & Jacob, R. J. K. (2008). Modeling Prehensile Actions
for the Evaluation of Tangible User Interfaces. In the Proceedings of ITI 08
International Conference of Information Technology Interfaces,
Cavtat/Dubrovnik, Croatia, pp.415-420. IEEE XPLORE.

Christou, G., Ritter, F. E., & Jacob, R. J. K. (2009). Knowledge-based usability
evaluation for Reality-Based Interaction. Paper presented at the CHI 2009
Workshop on Challenges in Evaluating Usability and User Experience in
Reality-Based Interaction, Boston, MA.

Consolvo, S., Harrison, B., Smith, I., Chen, M. Y., Everitt, K., Froehlich, J.,
& Landay, J. A. (2007). Conducting In Situ Evaluations for and With
Ubiquitous Computing Technologies. International Journal of Human
Computer Interaction, 22(1-2), 103-118.

Fitts, P. M. (1954). The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental
Psychology, 47(6), 381-391.

Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor
responses. Journal of Experimental Psychology, 67(2), 103-112.

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a
GOMS Analysis for Predicting and Explaining Real-World Task
Performance. Human Computer Interaction, 8(3), 237-309.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

31

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming. 8(3), 231-274.

Hutchins, E., Hollan, J., & Norman, D. (1986). Direct Manipulation Interfaces. In
D. A. Norman & S. W. Draper (Eds.), User Centered System Design: New
Perspectives in Human-Computer Interaction (pp. 87-124). Hillsdale, NJ:
Erlbaum.

Ishii, H., & Ullmer, B. (1997). Tangible Bits: Towards Seamless Interfaces
between People, Bits and Atoms. Paper presented at the CHI Conference
on Human Factors in Computing Systems, Atlanta, GA, USA,

Jacob, R. J. K., Girouard, A., Hirshfield, L. M., Horn, M. S., Shaer, O., Solovey,
E. T., et al. (2008). Reality-Based Interaction: A Framework for Post-
WIMP Interfaces. Paper presented at the CHI 08 Conference on Human
Factors in Computing Systems, Florence, Italy, pp.201-210

John, B. E. (2003). Information Processing and Skilled Behaviour. In J. M. Carroll
(Ed.), HCI Models, Theories, and Frameworks (pp. 55-101). San
Francisco, CA: Morgan Kaufmann.

John, B. E., & Kieras, D. (1996a). The GOMS Family of User Interface Analysis
Techniques: Comparison and Contrast. ACM Transactions on Computer-
Human Interaction, 3(4), 320-351.

John, B. E., & Kieras, D. (1996b). Using GOMS for User Interface Design and
Evaluation: Which Technique? ACM Transactions on Computer-Human
Interaction, 3(4), 287-319.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive
Human Performance Modeling Made Easy. Paper presented at the CHI
2004 Conference on Human Factors in Computing Systems, Vienna,
Austria, pp.455-462

Jones, L. A., & Lederman, S. J. (2006). Human Hand Function. New York, NY:
Oxford University Press.

Kelley, J. F. (1983). An empirical methodology for writing user-friendly natural
language computer applications. Paper presented at the CHI ’83
Conference on Human Factors in Computing systems, Boston, MA,
pp.193-196

Kieras, D. (1988). Towards a Practical GOMS Model Methodology for User
Interface Design. In M. Helander (Ed.), The Handbook of Human
Computer Interaction (pp. 135-158). Amsterdam: North-Holland.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

32

Kieras, D. (2006). A Guide to GOMS Model Usability Evaluation using GOMSL
and GLEAN4. Retrieved March 1st, 2011, from
ftp://www.eecs.umich.edu/people/kieras/GOMS/GOMSL_Guide.pdf

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An Architecture for
General Intelligence. Artificial Intelligence, 33(1), 1-64.

Lee, A. Virtual Dub. Retrieved 24th January 2008 from http://www.virtualdub.org/.

MacDorman, K., Whalen, T., Ho, C., & Patel, H. (2011). An Improved Usability
Measure Based on Novice and Expert Performance. International Journal
of Human - Computer Interaction, 27(3), 280-302.

Mackenzie, C. L., & Iberall, T. (1994). Advances in Psychology: The Grasping
Hand. Amsterdam: Elsevier Science BV.

MacKenzie, I. S. (1991). Fitts' Law as a Performance Model in Human-Computer
Interaction. Toronto, Ontario, Canada: Ph.D. Thesis, University of Toronto.

Newman, W. M. (1969). A System for Interactive Graphical Programming.
Proceedings of the 1968 Spring Joint Computer Conference, 47-54.

Shiaw, H. Y., Jacob, R. J. K., & Crane, G. R. (2004). The 3D Vase Museum: A
New Approach to Context in a Digital Library. In Proc. JCDL 2004 Joint
Conference on Digital Libraries, Tucson, Arizona, USA, pp.125-134

Shneiderman, B. (1983). Direct Manipulation: A step beyond programming
languages. IEEE Computer, 16(8). 57-69.

Weiser, M. (1991). The computer for the 21st Century. Scientific American, 265,
94-104.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

33

APPENDIX I - SUPPLEMENTARY EXPERIMENT
The experiment was performed to calculate the completion time of the TUI

search.

Participants

The experiment involved 10 participants different from those used in the

Codein vs. GOMS experiment. Their ages were from 20 to 30 (std. dev = 2.2), 7

males and 3 females, who were asked to perform the search through the tangible

file objects in the way described in the method ‘Find Required File’ in Table 3.

Procedure

Each participant was given a pile of 11 file objects, and was asked to find the

target file object. The target object was inserted at a specific position by the

experimenter, from 2nd to 10th in the pile. The first position was not used, as

during the experiment described in the main article, the target object was never

placed on top of the pile. Each participant performed 90 trials, 10 searches at

each of the 9 possible positions of the target file object, randomly ordered.

Materials and Design

The file objects used were identical to the ones in the TUI condition of the

main experiment. The time was measured in the same way, and with the same

limitations, as described for the main experiment’s TUI condition.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

34

Analysis

Figure 11 shows the results of this experiment. The graph shows that the

relationship between the average time taken to find the non-top, required object

in the pile, against the required file object’s position in the pile is linear on the

position of the target object in the pile. Linear regression analysis on the data

gives R2 = 0.999, F(8, 9) = 15,434, p < 0.001. The average time taken for the

participants to find the target object was 3.5 seconds, which we used in the

GOMSL analysis of the TUI condition as well as in the Codein analysis.

[Figure 11 goes about here]

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

35

Table 1 Average completion times for the experiment and models in seconds (SD)

 DM Deviation TUI Deviation

Mean Task
Time

13.47

(7.59)
-

 5.00

(2.10)
-

GOMSL + Fitts’
Law 13.26 -0.21 8.95 3.95

Codein 13.53 0.06 6.20 1.2

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

36

Table 2 The GOMSL model for the DMI condition of the experiment

Top Level Method (13.26 s)
Method for Goal: Move file from source folder to destination folder
Step 1: Accomplish Goal Open Source Folder (1.40 s)
Step 2: Accomplish Goal Cut Required File (3.45 s)
Step 3: Accomplish Goal Go back to folder list (2.37 s)
Step 4: Accomplish Goal Open Destination folder (2.70 s)
Step 5: Accomplish Goal Paste file (2.99 s)
Step 6: Return with goal accomplished

Method for Goal: Open Source Folder (Total time = 1.40 s)
Step 1: Point to Source Folder (Fitts’ = 0.8 s)
Step 2: Double-click mouse button (BB = 0.4 s)
Step 3: Return with goal accomplished

Method for Goal: Cut Required File (Total time = 3.45 s)
Step 1: Recall that required file is Y (negligible)
Step 2: Locate Y on the screen (M = 1.2 s)
Step 3: Point to Y (Fitts’ = 0.82 s)
Step 4: Click mouse button (B = 0.2 s)
Step 5: Point to “Cut”. (Fitts’ = 0.63 s)
Step 6: Click mouse button (B = 0.2 s)
Step 7: Return with goal accomplished

Method for Goal: Go back to folder list (Total time = 2.37 s)
Step 1: Locate “Up Folder” Button (M = 1.2 s)
Step 2: Point to “Up Folder” (Fitts’ = 0.72 s)
Step 3: Click mouse button (BB = 0.2 s)
Step 4: Return with goal accomplished

Method for Goal: Open Destination Folder (Total time = 2.70 s)
Step 1: Recall that the Target folder’s name is X (negligible)
Step 2: Locate X on the screen (M = 1.2 s)
Step 3: Point to X (Fitts’ = 0.8 s)
Step 4: Double-click mouse button (BB = 0.4 s)
Step 5: Return with goal accomplished

Method for Goal: Paste file (Total time = 2.99 s)
Step 1: Point to white space (Fitts’ = 0.52 s)
Step 2: Click mouse button (B = 0.2 s)
Step 3: Locate “Paste” Menu Item (M = 1.2 s)
Step 4: Point to “Paste” (Fitts' = 0.52 s)
Step 5: Click mouse button (B = 0.2 s)
Step 6: Return with goal accomplished

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

37

Table 3 The GOMSL model for the TUI condition of the experiment
Top Level Method (8.95 s):
Method for Goal: Move file from source folder to destination folder
Step 1: Accomplish Goal Find Folders and Grab File Objects (2.25 s)
Step 2: Accomplish Goal Find Required File (3.5 s)
Step 3: Accomplish Goal Place File in Destination Folder (2.95 s)
Step 4: Return with Goal Accomplished

Method for Goal: Find Folders and Grab File Objects (2.25 s)
Step 1: Locate source and target folders (M = 1.2 s)
Step 2: Reach into source folder and grab files (R = 0.75 s)
Step 3: Examine the name of the file object on top of the file object pile (negligible)
Step 4: Decide: If the filename matches the required filename
 Then Accomplish Goal: ‘Place File in Destination Folder’ (2.95 s)
 Else Accomplish Goal: ‘Find required file’ (3.5 s) (Step = 0.05 s)
Step 5: Return with goal accomplished

Method for Goal: Find Required File (3.5 s)
Step 1: Move file object from top of file object file to bottom.
Step 2: Examine the name of the file object on top of the file object pile
Step 3: Decide: If the filename matches the required filename
 Then ‘Return with goal accomplished’
 Else Accomplish Goal: ‘Find Required File’

Method for Goal: Place File in Destination Folder (2.95 s)
Step 1: Locate destination folder (M = 1.2 s)
Step 2: Place file in the destination folder (R = 0.75 s)
Step 3: Place remaining files in source folder (R = 0.75 s)
Step 4: Return with goal accomplished

Table 4 DMI condition’s subtask breakdown of the analysis of each modeling
method, in seconds.

Subtask Codein
Estimate

GOMS with
Fitts’ Law

Open Source Folder 2.40 1.40

Cut Target File 4.25 3.45

Go Back to Folder List 2.12 2.37

Open Destination Folder 2.12 2.70

Paste File 2.64 2.99

Top Level Method Execution - 0.35

Total Completion Time 13.53 13.26

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

38

Table 5 TUI condition’s subtask breakdown of the analysis of each modeling
method.

Subtask Codein
Estimate

GOMS
Estimate

Find Folders and Grab File
Objects 1.95 2.25

Find Required File 3.50 3.50

Place File in Destination Folder 0.75 2.95

Top Level Method Execution - 0.25

Total Completion Time 6.20 8.95

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

39

Description Symbol

Knowledge State

Procedural Knowledge Chunk

Declarative Knowledge Chunk

Action

Figure 1 The components of the diagrammatic notation

Figure 2 The DMI condition layout of the experiment

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

40

Figure 4 The regular paper cutout used in the TUI condition.

Aerosmith – Hole in
my soul

Figure 3 The TUI Condition of the experiment

Open Source
Folder

Cut Required
File

Move to
Folder View

Open Target
Folder

Paste File

Figure 5 A summary diagram of the DMI condition of the experiment.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

41

Figure 6 The "Open source/target folder" knowledge state from the summary

diagram of Figure 5, enlarged to show the knowledge and constituent actions for its
completion

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

42

Figure 7 The analysis of the "Cut/Paste File" states in the summary diagram of

Figure 5.

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

43

Figure 8 Analysis of the Move to Folder View state in Figure 5.

Figure 9 Summary diagram for the TUI condition.

Locate the
source and
target
folders

Grab the file
objects from the
source folder

Search for the
target file object

Replace the
file objects

CODEIN, an extension to GOMS to handle RBIs v2.0d/16.3.2011
Original WC: 9634, 7331 Running WC: 9405, 7141

44

Figure 10 The Codein analysis of the task in the TUI condition

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10

Position of target in stack

Ti
m

e
(s

ec
on

ds
)

Figure 11 The average search time vs. the target object's position in the pile, with
regression line.

