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Abstract 

Background: Understanding human behavior under the effects of sleep deprivation allows for the 

mitigation of risk due to reduced performance. To further this goal, this study investigated the effects of 

short term sleep deprivation on using a tilt-based control device and examined whether existing user 

models accurately predict targeting performance.  

 

Methods: A task in which the user tilts a surface to roll a ball into a target was developed to examine 

motor performance. A model was built to predict human performance for this task under various levels of 

sleep deprivation. Ten participants completed the task every two hours until they reached 24 hours of 

wakefulness. Performance measurements of this task, which were based on , included movement 

time, task throughput, time intercept.  

 

Results: The model predicted significant performance decrements over the 24-hour period with an 

increase in movement time ($#"%"&'(!), a decrease in throughput ($#"%"&')*), and an increase in time 

intercept ($#"%"&'(&). However, it was found that in experimental trials there was no significant change in 

in movement time ($#"%"&'!!), throughput ($#"%"&'!)), or time intercept ($#"%"&'#*). 

 

Discussion: The results found were unexpected as performance decrement is frequently reported during 

sleep deprivation. These findings suggest a reexamination of the initial thought of sleep loss leading to a 

decrement to general function. 

 

Keywords: Cognitive Modeling, , Motor Control, Sleep Deprivation, Vigilance  
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Introduction 

There are a significant number of professions that frequently require working long hours or late at 

night that can lead to remaining awake for extended periods of time, causing sleep deprivation. It is 

important to understand the exact effects that sleep deprivation can cause so that it may be possible to 

, ameliorate decrements, and potentially prevent life 

threatening errors. Performance can manifest in many different forms; one way to examine it is in field of 

human-computer interaction (HCI). HCI is the primary mode from which humans perform crucial tasks in 

any environment, regardless if it is on the ground, underwater, or up in the air. 

In general, most computer input is done with three major tools: keyboard, touch screen, and 

mouse. However, interface interactions have expanded with mobile technologies and the wide spread use 

of gyro sensors and accelerometers, which have added a new dimension for HCI in the form of tilt-based 

control. The implications of tilt as an input method are far reaching. Tilting goes well beyond the other 

control systems in that it allows for a complex input parameter in a 3-dimensional space, which can be 

particularly useful for above ground operations. Tilt devices can also be used in situations when the use of 

a computerized system is extremely advantageous, but there are physical limitations associated with the 

task that constrain the use of other devices. With the advancement of tilt based interaction, it is becoming 

more impo . 

There are methods that start to model such behavior, such as cognitive architectures. One 

frequently used architecture that can be used to model HCI tasks is EPIC.12 While models developed in 

this architecture provide significant insight, the accuracy of these can be improved because they are still 

missing many components, for example those related to sleep deprivation.9 In addition, even the proposed 

mathematical models used to alleviate these drawbacks are very general, and may not encompass the 

necessary depth for reasonable insight. Thus, this study examines how wakefulness or acute sleep 

deprivation affects the performance of people using tilt-based devices through modeling as well 

experimentation to evaluate the predictive power of the models. 
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In general it has been established that sleep deprivation has the most significant effect on 

alertness and attention, frequently causing lapses or short periods of non-action following a stimulus.1,16,24 

These types of lapses are particularly seen in psychomotor vigilance tasks, in which a person waits for a 

stimulus to respond. In addition, it has been shown that sleep deprivation can result in an overall slowing 

of responses in general.15 However, the slowing of cognitive processing has also been observed, 

independent of lapses.1 Beyond that, sleep deprivation also increases the rate at which people make errors 

of omission and commission, many of which are partly caused by failures in vigilant attention.1  

With the varied results in literature regarding sleep deprivation there are three general views on 

the effects of sleep deprivation. The first is based on controlled attention and suggests that tasks which are 

cognitively highly demanding are unaffected by short sleep deprivation.15 It is also found that tasks that 

are more monotonous or less engaging are more affected by sleep deprivation as described by the 

controlled attention model.23 Finally, a neuropsychological based hypothesis describes sleep deprivation 

as causing lower activation in the prefrontal cortex region of the brain.4,15 This suggests that tasks that are 

oriented toward the pre-frontal cortex are more susceptible to sleep deprivation.7 Even with these 

hypotheses, many argue that sleep loss exerts a non-specific effect on performance, and most modeling 

efforts have been based of this idea.3,10,15,20 

This study focuses on examining human movement with the control of interfaces for the goal of 

finding metrics that can describe, and consequently characterize,  on additional 

measures. To do this we utilize aw, which, describes a psychological model of human 

performance, and has been used to provide information regarding how the human psychomotor system 

processes targeting tasks.8,11,14,18,21,25  

To increase the understanding of the relationship between sleep deprivation and human 

performance, some groups have chosen to simulate sleep deprivation tasks using computational cognitive 

modeling within a cognitive architecture.9 Unlike many standard mathematical modeling techniques, 

cognitive architectures act as a blueprint for cognition and focus on predicting human behavior during 

specific tasks.6 The architecture incorporates various basic information processing mechanisms 
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predictably used by humans collected in literature (e.g., memory retrieval, typing speed, saccadic 

velocity), and allows a computer to simulate tasks based on human abilities.12  

One of the drawbacks of computation architectures is the lack of accurate ways for predicting the 

changes in the processing mechanisms of cognitive models due to sleep deprivation.9 Gunzelmann et al.9 

have made an attempt at characterizing the effects of sleep deprivation within the Adaptive Control of 

Thought Rational (ACT-R) cognitive architecture. The architecture adaptations consisted mainly of the 

manipulation of constants that influenced the information processing systems of the architecture based on 

the time an individual had spent continuously awake. The manipulation performed leads to a steady 

increase in errors of commission, median reaction time, and number of lapses as the simulated time awake 

increased during tasks. 

While this work was informative, cognitive architectures are constantly evolving and some of the 

variables used in the previous study are no longer part of the newer cognitive models as they are updated 

and changed.5 

action, as well as preprogrammed probabilities of success for individual actions.9 Thus, 

there is a need to gain more information on how conditions, such as sleep deprivation, affect human 

performance to better incorporate the information into newer models. For this study, the current models in 

the architectures are used as a precursor to predict results so that they may be compared to the empirical 

data, and it can be determined if there are portions of the cognitive architecture that should be replaced in 

the future. 

Methods 

Participants 

The experiment was conducted with the assistance of 10 student volunteers from Worcester 

Polytechnic Institute. This research complied with the American Psychological Association Code of 

Ethics and was approved by the Institutional Review Board at Worcester Polytechnic Institute. Informed 
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consent was obtained from each participant. The population consisted of 5 male and 5 female participants 

between the ages of 22 and 32, none of whom had any extensive experience working with gyroscopic-

based devices in a manner that utilized tilt type control. Participants reported an average of 7.7 hours (SD 

= 0.72) of sleep each night for 7 nights prior the start of the experiment. Participants were compensated 

for their time. 

Equipment 

(Jellybean) operating system. The task was done on a screen that was 14.23 cm by 21.35 cm (800 px by 

1200 px) using a ball that was 0.36 cm (25 px). The software was developed in Java using the Android 

 sensor. Pitch and roll values were 

converted to tilt magnitude and direction. The task implemented in the software allowed a user to tilt the 

device to control a circle that that was shown on screen. The goal of each individual task trial was to 

move a ball (represented by a small circle) to a target (represented by a large circle) location on the 

screen. The application was set up to run multiple trials, in which a single trial consisted of a particiant 

moving a circle on the screen of the device to the target by tilting it. 

The movement of the target was controlled by the pitch and roll values produced by the user 

when tilting the device. In addition, the movement of the ball was influenced by a gain parameter, which 

was determined empirically prior to the experiment to allow for adequate object manipulation and to 

control the speed of trials. The velocity of the ball along with the angle of movement was calculated using 

equations 1 and 2, with pitch and roll in degrees from horizontal. 

 

22 pitchroll*gain Velocity  Ball     (1) 

)
pitch
rollarctan(   horizonal) (from AngleMovement    (2) 
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The total number of trials in a set included 8 target positions, 1 movement gain, 1 ball size, 3 

target sizes, 2, target distances, and 5 repetitions for a total of 240 trials per set. Table 1 shows the 

independent variables used. The combinations of these variables were presented in a random order for all 

trials to eliminate sequence effects. 

Table I  

        Independent variables and task values 

Independent Variables Values 

Target Position (° from horizontal) 0, 45, 90, 135, 180, 225, 270, 315 

Movement Amplitude (cm (px)) 2.22 (125), 4.45 (250) 

Target Size (cm (px)) 0.71 (40), 1.07(60) , 1.79 (100) 

Time Awake (hours) 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 

Procedure 

Creating a model prior to the experiment allowed for parallel analysis of the results. The purpose 

for choosing to create a model rather than just use a function that defines performance through sleep, is to 

ensure that the modeling effort incorporates as many factors of cognition available to account for factors 

outside a simple task performance relationship. The EPIC architecture was chosen for this study due to its 

capacity to model gyroscopic tasks.19 The task environment and production rules were prepared within the 

cognitive architecture. The control 

, shown in equation 3.19  

      ID * TimeMovement ba      (3)      

a variable is the time intercept, or the minimum amount of time required for 

completing a task.  The b variable is the slope, or the increase in movement time, as the difficulty of a 

task increases. The inverse of the slope is the index of performance (IP), also referred to as throughput, 

which, represents a quantitative value for the ability to perform with increasing difficulty. Thus, task 
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completion time was based on the parameters of time intercept and index of performance as well as the 

properties of the task. 

 The model was designed with the parameters and independent variables, to precede in the same 

manner as the experiment. The production rules had the model search for the target and then move the 

ball to the center. The values of time intercept and IP were changed over time, based on the performance 

effective changes described in the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model 

(mathematical model describing task effectiveness with sleep deprivation) to simulate wakefulness 

between 6 and 24 hours awake.9,10 The equation describing SAFTE is shown in equation 4. 

  I  )(C   
R

)(*100 )(E
c

ttRt      (4) 

The SAFTE equation describes task effectiveness as E(t) based on three parts. The 100*R(t)/Rc 

term representing the reservoir level or homeostatic sleep drive describing change in effectiveness with 

fatigue.10 C(t) represents the circadian process function or rather the change in task effectiveness 

alongside the circadian rhythm.10 Finally, I describes sleep inertia  or the time of lesser task performance 

shortly after waking.10 The equation was implemented within the EPIC model using the parameters 

described by Hursh et al.10 and used to modify various performance variables within the EPIC 

ule. A diagram describing how the variables were changed 

and derived is shown in Figure 1.10 
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Figure 1. I llustration of the manipulation of performance variables and implementation of SAFTE 

within EPIC. The variables of b0 parameter, the 

varied performance parameter, and the derived one respectively. The variables of a0

represent the input intercept parameter, the varied intercept parameter, and the derived one 

respectively. 

The IP (b), used in movement calculations, was changed by decreasing the mean value based on 

time awake and the on effectiveness in the SAFTE model. The time intercept (a) parameters was also 

changed by increasing it based on the number of hours awake and effectiveness. These changes were 

designed in an effort to simulate lapses, and were meant to integrate with the EPIC library established by 

Kieras et al.13. This model was run to simulate 10 people, each doing 240 actions or trials per 2 hour 

period, totaling to 2400 runs for every simulated period of wakefulness or 24,000 total runs. 

For the experimental portion, participants were asked to refrain from consuming any stimulants 

and depressants for 48 hours prior to the start of the experiment, and were advised to keep a normal and 

consistent sleep schedule for 1 week prior to the study. All particiantss submitted journals containing their 

sleeping and eating habits for the week before the experiment, which indicated compliance. 

Each particiant completed a set of 240 movements over a 20 to 30 minute session, a session 

occurred every two hours over a period of 24 hours. Throughout all experimental periods, an 

experimenter monitored participants to ensure that they remained awake. The time at which participants 

awoke during the day of the trial was monitored, and participants began the experiment four hours after 
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waking up. The first two sessions were considered learning sessions and not were not included in final 

data analysis. All subsequent trials were run every two hours until the point at which the participant had 

remained awake for 24 hours. 

Once the experiment began, a start screen was provided between each task. A trial began once a 

button that appeared on the screen and was pressed by the participant. At this point a target appeared on 

the screen and the ball in the center moved as the device was tilted. A target was considered acquired or 

successfully hit once the circle remained within the target area for a total of 500 ms. 

Analysis 

To u  to measure the performance, we determine the difficulty of every task. The task 

difficulty, referred to as index of difficulty (ID), is shown in equation 5, and is derived based on the 

movement distance required to move to a target and the width of that target.  The width used is the 

effective width of the task (the difference in size between the target and the ball) rather than the width of 

the target itself, as the effective width estimates the target width focused on by the participant, and has 

been determined to be more accurate for the purposes of determining difficulty of a task.17,19 The other 

performance parameters of throughput and time intercept 

law, shown in equation 3. 

 )
Width

Distance(1Log  Difficulty ofIndex 2     (5)  

Because this task continues until a target is reached, we examine additional measures of accuracy 

which are movement variability, movement error, and number of target exits and reentries. These metrics 

are based on the path that the participants take to reach the target and the ideal most direct path. From this 

point, we will refer to the distance between any point on the actual path and the ideal path as yi. In 

addition, there is the average path taken by a person, and we will refer to the distance between the average 

path and the ideal path as .  
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The first measure of accuracy, movement variability, examines the extent to which the movement 

path, taken by a participant, lies along a mean line parallel to that of the original task axis. The 

calculations for movement variability is the same that was used by MacKenzie et al.19 for the evaluation 

of accuracy measurement (equation 6). 

 
1

)(y
  MV

2
i

n
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      (6) 

Movement error compares the movement of the participant the ideal task axis. 

Once again, the calculation for movement error was done using the same calculation as Mackenzie et al.19 

and is shown in equation 7. Finally, target exits and reentries describes the number of times that a 

participant exited and entered the target before successfully remaining inside for 500ms. 

 

 
n
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Results 

The variables examined with the model were minimum task time, index of performance, and a 

a task. The results are shown in Figure 2. Though second order affects appear to be present, linear 

regression is used to test for general trends. It was found that average predicted movement time increased 

over time R2 = 0.61, p < 0.01. The average predicted throughput decreased over time, R2 = 0.57, p < 0.01. 

The average intercept increased over time, R2 = 0.60, p < 0.01.  
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Figure 2. (A) The average movement time (±SEM) across all participant data (open markers) and 

the model predication (solid markers). (B) The average throughput (±SEM) across all participant 

data (open markers) and the model predication (solid markers). (C) The average intercept (±SEM) 

across all participant data (open markers) and the model predication (solid markers). 

The performance data can also be visualized in the average performance lines for each time 

awake and difficulty curves in Figures 3A and 3B, which display how movement times change with the 

difficulty of the task. It is possible to see a general increase in movement time with hours awake along 

with an influence of circadian rhythm especially after 24 hours in the model results. The performance 
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lines and difficulty curves once again show the significant change in performance across various 

measures as time awake increases. 

 

Figure 3. (A) Average predicted performance lines representing movement times for the levels of 

IDs and sleep deprivation (±SEM). (B) Predicted difficulty curves for each ID showing movement 

times for 4 IDs, with ID values A through D representing increasing task difficulty (±SEM). (C) 

Average performance lines representing movement times for various levels of sleep deprivation 

from participant data (±SEM). (D) Difficulty curves for each ID showing movement times for 4 IDs, 

with IDs A through D representing increasing task difficulty from participant data (±SEM).  

The performance lines, based on the output of EPIC, show a culmination of the three metrics: 

movement time, throughput, and intercept. Unfortunately, the EPIC architecture does not have a way of 

simulating accuracy, and therefore only these predictions can be used. 

Following creation of the model, ten participants performed all the movement tasks without data 

loss or having to restart. The R2 between the index of difficulty and average movement time was 

computed for every set of 240 trials. Over 100 sets of trials (10 participants over 10 sessions), the average 
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R2 value was .99 with a standard deviation of 0.015. This provides strong evidence that movements in the 

. 

Data from the learning trials showed that performance followed the power law of learning and did 

not appear to be significantly affected by fatigue, and showed a plateau by the end of the second session 

for each person.22 Figure 2 show the average movement time, throughput, and intercept values from each 

participant that were taken for each set of trials, overlaid on the predictions from the model. These values 

were then averaged and compared to hours awake. After examining overall trend using regression and 

performing one-way ANOVA analysis in conjunction with Dunn-Sidak post-hoc to look for differences in 

performance between different levels of wakefulness, it was found that over the period of 24 hours, there 

was no reliable change in movement time F(9,90) = 0.26, , R2 = 0.11, p = 0.35. In addition, no reliable 

change in throughput was found F(9,90) = 0.45, R2 = 0.15, p = 0.26.  Finally no change was found with 

intercept F(9,90) = 0.69, R2 = 0.27, p = 0.12. All results show no significant change in performance as 

time awake increases. 

Average performance lines and difficulty curves, based on equation 5, and are shown in Figures 

3C and 3D. The performance lines and difficulty curves once again show that the movement time, 

throughput, and intercept have no reliable changes as participants become more susceptible to sleep 

deprivation. 

Accuracy based measurements were also taken in the form of movement variability, movement 

error, and movement reentries.  Similar to the performance results, after regression and performing 

ANOVA analysis with Dunn-Sidak post-hoc analysis, it was found that was no noticeable change in 

movement variability with time awake F(9,90) = 0.15, R2 = 0.15, p = 0.03. There was also no noticeable 

change in movement error F(9,90) = 0.35, R2 = 0.35, p = 0.01, and no noticeable change in movement 

reentries F(9,90) = 0.35, R2 = 0.32, p = 0.01. Figure 4 shows the data for all accuracy based 

measurements for all participants and difficulties, there are not corresponding predictions from the model. 



!)"
"

 

Figure 4. (A) The average movement variability (±SEM) for all participant data. (B) The average 

movement variability (±SEM) for all participant data. (C) The average reentries (±SEM) for all 

participant data.  

Discussion 

The purpose of this study was to determine how the performance of a person performing a tilt-

based interface task changed over the course of 24 hours awake, and how that performance compared to 

existing models (i.e., SAFTE). When modeled within the EPIC architecture, the model predicted a 

decrement in performance with increased time awake in the three performance measures of movement 

time, throughput, and intercept. However, the predicted changes were not supported in the experiment. 

Like other models, the parameters were modified on the number of hours awake alone. The relationship 

between hours awake and how the individual parameters vary is more complex than what was modeled 

and seems to be also dependent on the task at hand. This implies that the predictions for the task 

demonstrated in this study were not as expected based on current models of sleep loss. 

Beca

useful to examine the results of the observational data, starting with the average movement time to 

complete a task. This measurement represented the full action as a whole, and allows for simple 

evaluation of the performance of the participants. The final results provided evidence that the average 

movement time did not change over the period of sleep deprivation, which is consistent with previous 

sleep deprivation tasks that employed a psychomotor vigilance task .  
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Previous studies have found that reaction time for psychomotor vigilance tasks, tasks that frequently 

cause lapses in participants, increased clearly and distinctly with wakefulness.15 

Examining the difference between this task and others it is reasonable to examine aspects of this 

experiment and task that may have caused these differences. It is unlikely that learning effects had a 

significant influence on the results, as any effects would have been detected in early trials and would need 

to identically keep pace with fatigue throughout the entire experiment. The sample size could also be 

increased; however, the low standard error empirically suggests that increasing the sample size to the 

point of finding significance will lead to low ecological relevance.  

The examination of the index of performance in this study represents the throughput of 

information being processed by the participants. This measurement represents the increase in time 

necessary to complete a task as the difficulty increases. It was found that over a period of 24 hours of 

sleep deprivation that the throughput of participants did not significantly change between trials, meaning 

that there was no increase in time between tasks of different difficulties as the participants became more 

sleep deprived. While this particular experiment did not show any change in throughput, it is possible that 

a difference in performance could be found if certain parameters of the experiment were altered such as 

the hours awake, velocity gain, or the range of index of difficulties. 

The intercept, representing the minimum time required to complete a task, also did not 

significantly change with increasing sleep deprivation. This value is affected by many of the same 

parameters that affect throughput. However, unlike throughput, the intercept could also have been 

affected by the start screen interface, which removed some of the psychomotor vigilance elements of this 

task. A button between each trial was meant to create consistency between trials as well as provide 

definitive start and stop times for each task that were controlled by the participant. However, because the 

start time was defined by the participants, one element where lapses could occur was removed. A 

different type of interface or pause between trials could show an increase in intercept with increasing 

hours awake, however, it would change the type of task (i.e., make it a vigilance-based task). 
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The accuracy of the tasks was also found to not have a significant change over a wakeful period 

of 24 hours. This indicated that the motor skills of the participants did not appear to decrease over time, 

and were able to retain their accuracy while simultaneously retaining their performance over the period of 

wakefulness. There does appear to be influences on task completion time from circadian rhythms, but 

they were muted in this task. Thus, there is not a speed-accuracy trade off masking effects of sleep loss on 

response time. 

Taking into account that all performance and accuracy measurements remained consistent over 

the 24 hour period, the previous assumption that performance and accuracy would decrease with 

increased wakefulness did not hold true, as was expected from previous research regarding psychomotor 

vigilance and wakefulness and included in our model from the SAFTE model.10,23 It was found that for 

this type of task, the previous general decrement with sleep loss does not accurately predict an 

this task.  

In this particular experiment, the type of task presented to the participants was a more active task 

and it was possible that it did not require the level of vigilance to complete as other similar tasks, which 

could explain why there was no effects of sleep loss. This was unexpected because this task seemed to 

require low levels of engagement and was fairly monotonous and thus based on the controlled attention 

hypothesis it would be susceptible to sleep deprivation.23 Thus, one possibility for a lack of change in 

performance be that the task was simply more engaging than those tasks used in the past. However, this 

task did not have nearly the wide range of information processing as those task explored when examining 

control attention, and a high degree of engagement for this task could be of a different type. 23  

Another potential alternative for the performance observed in this study could be that the task in 

this experiment used different or additional cognitive or perceptual motor processes than initially thought. 

For example, if this this task caused lower activation in the prefrontal cortex, but higher activation 

elsewhere, the prediction based on the neuropsychological hypothesis would not hold.4 The tilt-based task 

was also only run for a period of 20 minutes every 2 hours, which may not have been long enough to 



!-"
"

induce potential time-on-task effects or the induction of conceivable intertwining between sleep 

deprivation and time-on-task.2  Finally, while this study examined participants that were kept awake for 

24 hours, it may be that people did not reach  the level of sleep deprivation needed to be affected.  

In addition to the lack of consistency with psychomotor tasks, when working with psychological 

modeling, there are significantly more processes that need to be taken into account than just how long an 

individual has been awake. In the prediction model developed by Gunzelmann et al.9, variables that 

Other mathematical models that estimate performance based on sleep deprivation use a blanket variable 

of percent performance to all tasks in a non-specific manner.10,20 However, it is very likely that the 

relationship between task specific cognitive processes and fatigue dependent cognitive processes needs to 

be clearly defined before a more accurate model for prediction can be built. 

This study modeled and empirically examined the change in users  performance and accuracy 

while using a tilt-based control device over a period of 24 hours of sleep deprivation. The model, based 

on information in the literature predicted that there would be a significant change in performance. The 

observed performance parameters of movement time, throughput, and average intercept did not 

significantly change over the duration of the experiment, which differed from the expected prediction of 

the model. In addition, the accuracy parameters of movement error, movement variability, and number of 

reentries also did not change over the experimental period. The sustained performance and accuracy over 

this time period for this type of control does not follow previously found parameters from psychomotor 

vigilance tasks. The results suggest that this task was not affected by sleep deprivation within the time 

period tested. The findings presented here undermine the notion that fatigue affects all performance tasks 

equally as is currently predicted. 

In the future, the next steps would be to examine varied psychomotor tasks such as the one 

examined in this paper to determine which aspects are more or less affected by sleep deprivation. This 
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information can lead to valuable data that can be used to improve theories of the effects of sleep loss as 

they are realized in cognitive architectures.  

A few changes could be made to this type of experiment that would allow a deeper examination 

of tilt-based control. The first would be in using a wider range of task difficulty (e.g., smaller targets) to 

see if differences can be found at higher levels of difficulty. Next, the interface between trials could be 

changed to mimic a participant receiving a specific stimulus so that more possibilities for lapses to occur 

could be introduced.  

Finally, while decrements are seen in other tasks within 24 hours, that sleep loss time span may 

not have been a long enough time to see performance degradation from sleep deprivation on this task, and 

future studies may look to increase this time, as studies have shown that time awake is one of the most 

significant factors when examining between-studies variability.15 However, these results suggest that 

perceptual-motor skills may be more robust against sleep fatigue than other components of thought.   
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Table I  

        Independent variables and task values 

Independent Variables Values 

Target Position (° from horizontal) 0, 45, 90, 135, 180, 225, 270, 315 

Movement Amplitude (cm (px)) 2.22 (125), 4.45 (250) 

Target Size (cm (px)) 0.71 (40), 1.07(60) , 1.79 (100) 

Time Awake (hours) 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 
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Figure 1. I llustration of the manipulation of performance variables and implementation of SAFTE 

within EPIC. The variables of b0

varied performance parameter, and the derived one respectively. The variables of a0

represent the input intercept parameter, the varied intercept parameter, and the derived one 

respectively. 

Figure 2. (A) The average movement time (±SEM) across all participant data (open markers) and 

the model predication (solid markers). (B) The average throughput (±SEM) across all participant 

data (open markers) and the model predication (solid markers). (C) The average intercept (±SEM) 

across all participant data (open markers) and the model predication (solid markers). 

Figure 3. (A) Average predicted performance lines representing movement times for the levels of 

IDs and sleep deprivation (±SEM). (B) Predicted difficulty curves for each ID showing movement 

times for 4 IDs, with ID values A through D representing increasing task difficulty (±SEM). (C) 

Average performance lines representing movement times for various levels of sleep deprivation 

from participant data (±SEM). (D) Difficulty curves for each ID showing movement times for 4 IDs, 

with IDs A through D representing increasing task difficulty from participant data (±SEM).  

Figure 4. (A) The average movement variability (±SEM) for all participant data. (B) The average 

movement variability (±SEM) for all participant data. (C) The average reentries (±SEM) for all 

participant data.  
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