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Preface

The International Conference on Cognitive Modelling (ICCM) is the premier conference 
for research on computational models and computation-based theories of human 
cognition. ICCM is a forum for presenting and discussing the complete spectrum of 
cognitive modelling approaches, including connectionism, symbolic modeling, 
dynamical systems, Bayesian modeling, and cognitive architectures. Research topics can 
range from low-level perception to high-level reasoning. In 2023, ICCM was jointly 
held with MathPsych – the annual meeting of the Society for Mathematical Psychology. 
The conference was held at the University of Amsterdam from July 18th to July 21st. An 
additional, virtual conference was held online from June 19th to June 23rd. Submissions 
from both the in-person and virtual conferences are included in these proceedings. 
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Abstract

A core inferential problem in the study of natural and artificial
systems is the following: given access to a neural network, a
stimulus and behaviour of interest, and a method of systematic
experimentation, figure out which circuit suffices to generate
the behaviour in response to the stimulus. It is often assumed
that the main obstacles to this “circuit cracking” are incom-
plete maps (e.g., connectomes), observability and perturbabil-
ity. Here we show through complexity-theoretic proofs that
even if all these and many other obstacles are removed, an in-
trinsic and irreducible computational hardness remains. While
this may seem to leave open the possibility that the researcher
may in practice resort to approximation, we prove the task is
inapproximable. We discuss the implications of these findings
for implementationist versus functionalist debates on how to
approach the study of cognitive systems.
Keywords: Computational Complexity; Meta-theory; Neural
Networks; Neuroscience; Artificial Intelligence (AI); Circuit
Understanding; Implementationism; Functionalism

Introduction
Whether cognition is best studied from a functional or im-
plementational perspective1 is a longstanding debate that
has defined and divided researchers in the cognitive sci-
ences. The main conflict of intuitions is that some think
we can make faster progress by taking a function-first ap-
proach (Egan, 2018; van Rooij & Baggio, 2021), whereas
the implementation-first approach believes that cracking neu-
ral primitives is a necessary first step on the path to faster and
better understanding (P. S. Churchland & Sejnowski, 1999).
Function-first approaches are certainly no silver bullet and
face intractability challenges (Rich, de Haan, Wareham, &
van Rooij, 2021). Hence, the implementation-first approach
may seem to have the high ground. It may thus seem wise
to put all eggs in that implementation-first basket and to an-
swer calls to create complete maps of the territory (e.g., con-
nectomes) and build tools for full observability and full per-
turbability to probe how neural circuits support behaviors (cf.
Bargmann & Marder, 2013). While it seems intuitive that sci-
entific discovery is sure to be sped up by realizing these ideals
in practice, in this paper we show this intuition is mistaken.

Our case study is the circuit cracking problem. Under-
standing how internal circuits support behavior in natural and

1In the literature, terms like ‘top-down’ versus ‘bottom-up’, or
‘behaviour-first’ versus ‘brain-first’ are also used. We adopt the
‘functional’ versus ‘implementational’ terminology both as an um-
brella distinction and because these terms are more meaningful from
a computational perspective.

artificial systems is a central concern in the cognitive and
brain sciences. Cracking a circuit — identifying which cir-
cuits2 are involved in producing a target behavior — is re-
garded across disciplines as a basic facet of achieving such
understanding (cf. Voss, Goh, et al., 2021; Voss, Cammarata,
et al., 2021). It is often assumed that the main sources of com-
plexity in circuit cracking have to do with data-analytic strate-
gies, experimental design and control, statistical inference,
observability, perturbability, and access to connectomes.

We study the computational resource demands of the cir-
cuit cracking problem using formal concepts and proof tech-
niques from computational complexity theory (van Rooij,
Blokpoel, Kwisthout, & Wareham, 2019; Garey & Johnson,
1979). We build on and extend the work of Ramaswamy
(2019), who provided initial definitions and a proof sketch
of computational hardness. We formalize and flesh out cru-
cial details, and prove that the circuit cracking problem is not
only intractable to solve exactly, but even to solve approxi-
mately. This holds even when all aforementioned assumed
sources of complexity are removed. We explain how these
proofs challenge the conviction that implementation-first ap-
proaches should be prioritized over function-first approaches.

The remainder of this paper is organized as follows.
First we situate the circuit cracking problem in the fields
of neuropyschology, neuroscience and artificial intelligence.
Next we formalize the circuit cracking problem to make it
amenable to computational complexity analysis. We then
present proofs of hardness and inapproximability. Finally, we
discuss the implications of these complexity-theoretic find-
ings for meta-theoretical commitments and the allocation of
research resources in the cognitive sciences.

Situating Circuit Cracking
Circuit cracking is closely related to problems which have
been the focus of continued efforts in neuropsychology, neu-
roscience, artificial intelligence, and more recently in sub-
fields at their intersection. Neuropsychology has used lesion
studies to infer functional specialization of brain regions (e.g.,
Milner, 2005). Cognitive neuroscience has used functional
neuroimaging to identify “modules” for specific functions
such as face perception (e.g, Kanwisher & Yovel, 2006), and
invasive recording and perturbation techniques to crack cir-

2We use the term “circuit” for both natural and artificial circuits.
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cuits such as that for speech perception (Hamilton, Oganian,
Hall, & Chang, 2021). Systems neuroscience has used con-
nectivity mapping, direct recordings, and perturbation tech-
niques, to identify crucial circuits supporting animal behav-
iors, and canonical circuits (cf. Bargmann & Marder, 2013;
Olsen & Wilson, 2008). AI is increasingly concerned with
mechanistic interpretability and model compression with the
aim to understand which circuits in a learned system support
certain aspects of machine outputs (Geva, Schuster, Berant,
& Levy, 2021; Geva, Caciularu, Wang, & Goldberg, 2022).
At the intersection of these fields, it has been of interest to
use artificial neural networks to perform simulations of neu-
ral damage to circuits (for a meta-theoretical treatment of this
subfield, see Guest, Caso, & Cooper, 2020).

These efforts are consistent with causal theories of expla-
nation in philosophy of science (cf. Thompson, 2021). When
applied at the intersection of computation and neuroscience,
these meta-theories yield desiderata where circuit cracking
fits naturally as an initial subgoal. More generally, a shared
goalpost, which sometimes appears as a separate level of
analysis (e.g. Marr & Poggio, 1976), is to find “mechanis-
tic primitives” at early stages of inquiry (Hartley & Poeppel,
2020) to provide a foundation for and to facilitate the non-
trivial business of discovering circuit-behavior mappings (cf.
Rust & LeDoux, 2023).

Assumed sources of complexity
In pursuit of these non-trivial goals researchers have allocated
substantial resources to remove what they believe to be pri-
mary roadblocks holding back circuit cracking. One road-
block was construed as the lack of complete ”maps” of the ter-
ritory; the so-called “-omes” (e.g., connectomes). To address
this, researchers undertake, for instance, connectomic circuit
mapping (e.g., Schmidt et al., 2017) in specific regions of an
organism’s brain thought to subserve behaviors of interest.
Another roadblock was the lack of precise measurement and
causal intervention tools to enable full observability and per-
turbability. Engineering advances bring this possibility closer
for natural systems (cf. Juavinett, Bekheet, & Churchland,
2019), and current software tools provide these capabilities
for artificial systems (cf. Lindsay, 2022).

As ideals, complete maps, full observability, and full per-
turbability do not come without conceptual problems. A
rarely questioned conviction is that, since we do not know
what matters, every detail matters — that to understand, we
must measure fully (Gomez-Marin, 2021; Niv, 2021). The
promise seems to be that after achieving these first steps,
deeper understanding will surely follow.

As the conceptual issues turn into roadblocks in practice,
researchers acknowledge additional obstacles in the scaling
up of circuit cracking efforts (e.g., A. K. Churchland & Kiani,
2016; Urai, Doiron, Leifer, & Churchland, 2022). These
mostly have to do with data-analytic strategies, experimen-
tal control, and statistical inference. Where theoretical chal-
lenges are acknowledged, they are usually subservient to the
development of data models. Generally, there is a preoccu-

pation with the possibility that, as we scale up to higher di-
mensional circuits and behaviors, common data-analytic tools
might not identify the phenomena of interest efficiently (e.g.,
Lindsay, 2022). Critics of reductive views focus more on
the challenges related to behavioral experiment designs (e.g.,
Niv, 2021). Together, these views provide a more nuanced
perspective on what stands in the way of understanding.

However, we argue in this paper that even this updated list
is missing an important element. What researchers generally
fail to acknowledge are the computational constraints on no-
tions of understanding and their associated real-world epis-
temic processes (i.e. the computational complexity of the
tasks researchers set up for themselves in pursuit of under-
standing how neural circuits support behavior). We next set
the formal foundations to address this gap.

Formalizing Circuit Cracking
We formalize the experimental problem facing a scientist who
wants to discover a minimal sufficient neural circuit for elic-
iting a type of behaviour (see Fig. 1). We present defini-
tions of problem components (i.e., circuit connectivity, neural
dynamics, experimental apparatus) inspired by Ramaswamy
(2019), and then put them together in precise problem defini-
tions. By formally modeling the scientist’s problem at a high
level of abstraction it becomes a transparent theoretical tool
and amenable to formal analysis (cf. Morrison & Morgan,
1999; Guest & Martin, 2021; van Rooij & Blokpoel, 2020).
Our analyses will be without loss of generality because the
simplifications and idealisations we choose ensure that these
analyses yield lower-bounds on real-world complexity.

Figure 1: Schematic of the SUFFICIENT CIRCUIT problem.

Circuit Connectivity and Dynamics
Network models are ubiquitous in neuroscience, where they
are used to study both small- and large-scale neural circuits.
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They combine a network architecture with the dynamics that
occurs at each node (cf. Bassett, Zurn, & Gold, 2018).

Definition 1 (Circuit Connectivity). A graph G = (V,E)
whose vertices and directed edges represent neurons and
their connections, respectively, encodes the connectivity of
a neural circuit. Given such a graph, a subgraph encodes a
(sub)circuit.

Definition 2 (State Vector). A boolean vector r ∈ R =
{0,1}n that encodes the state of a circuit of size n is called a
state vector, where ri represents the state of the ith neuron;
active (ri = 1) or inactive (ri = 0).

Definition 3 (Circuit Parameters and Rules). The dynam-
ics of neuronal spiking in a circuit can be expressed using
spiking rules that specify under what conditions a neuron
spikes. An example is the following:

g(q(t),q(t−1)) =

{
1 ∑

1
i=0 ∑ j q(t−i)

j ≥ T
0 otherwise

where q(t) is a vector of inputs at time t, with q j encoding
the input from the jth neuron, and T is some neuron- or
neuron-type-specific firing threshold. In the example, the
neuron whose spiking rule is captured by g integrates all its
inputs over 2 time steps and compares the sum to a thresh-
old to determine whether to spike at the current time step.

Experimental Apparatus
Definition 4 (Inhibition/Stimulation Matrix). A boolean
matrix I is an inhibition matrix if it encodes a spatio-
temporal pattern of artificial neuronal inhibition of a cir-
cuit. The value at row i, column j indicates whether the ith

neuron at the jth timepoint in an experiment is artificially
silenced (Ii, j = 1) or not (Ii, j = 0). A stimulation matrix S
is defined similarly for artificial stimulation of circuits.

Definition 5 (Activity Matrix). A boolean matrix A is an
activity matrix if it encodes a spatio-temporal pattern of
activation of a neural circuit. The value at row i, column j
indicates whether the ith neuron at the jth timepoint in an
experiment is active (Ai, j = 1) or not (Ai, j = 0).

Definition 6 (Behavioral readout). The external detection
of an organism behavior is a behavioral readout with re-
spect to a target circuit and it is encoded as a boolean vari-
able b whose value, which is accessible to the experimenter
(via an experiment function), indicates whether the behav-
ior has been elicited (b = 1) or not (b = 0).

Definition 7 (Experiment Function). A computable func-
tion3 F : R ×I ×S →A×B that maps a state vector r∈R
for a circuit and perturbation (i.e., stimulation and inhibi-
tion) matrices I ∈ I ,S ∈ S to an activity matrix A ∈ A and
a behavioral readout b ∈ B = {0,1} is an experiment func-

3The function might also be an oracle (i.e., an imaginary device
that given the input to F computes the correct output in a single step)
or a tractable function, and our proofs would apply as well.

tion F(r,I,S) = (A,b) that encodes the ability to conduct
experiments on neural circuits by presenting the external
stimulus, performing perturbations on the input circuit, and
recording circuit activity and system behavior.4

Computational Problem
Notions of cracking in the context of neural circuits generally
include the following tasks as necessary steps before asking
more intricate questions: “(i) describing a behavior whose
neural circuit mechanisms we seek to understand, (ii) identi-
fying which neurons are involved...” (Olsen & Wilson, 2008).
Definition 8 (Sufficient Circuit). Given a neural circuit
G = (V,E), a subset C ⊆V of neurons is called a sufficient
circuit for a behavior if the latter can be elicited when all
neurons v ∈V \C are excluded from the circuit. A minimal
sufficient circuit C obtains when it is not possible to do the
same with any proper subset C′ ⊂C. A minimum sufficient
circuit is smallest among all sufficient circuits.
Problem 1. (MINIMAL / MINIMUM) SUFFICIENT CIR-
CUIT (search, optimization, and decision versions)
Input: a neural circuit G = (V,E) with unknown parame-
ters and rules and an experiment function F . (An integer k
is part of the input in the decision version).
Output: a minimal (minimum) sufficient circuit C ⊆V for
the behavior b = 1. (For the decision version, Question: is
there a sufficient circuit C ⊆V of size |C|= k?)

Hardness and Inapproximability of
Circuit Cracking

Our proofs of hardness and inapproximability build on con-
cepts and techniques from computational complexity theory
(Garey & Johnson, 1979; van Rooij et al., 2019; for def-
initions and remarks, see Appendix). We demonstrate a
polynomial-time reduction from CLIQUE (a known NP-hard
problem) to SUFFICIENT CIRCUIT, which proves hardness.
This proof builds on a proof sketch provided in Ramaswamy
(2019). We fill in formal details which are necessary to argue
the correctness of any such proof and to provide a foundation
to build subsequent proofs on. Later we use this construction
to prove hardness of approximation.

Hardness
We next present a proof that for every instance of CLIQUE
(decision) there exists a corresponding instance of SUFFI-
CIENT CIRCUIT (decision) such that there is a k + 2-sized
sufficient circuit in the latter if and only if there is a k-clique
in the former. Furthermore, we show that in each case the in-
stance of SUFFICIENT CIRCUIT can be constructed from the
instance of CLIQUE in polynomial time. Because CLIQUE is
NP-hard, it follows that SUFFICIENT CIRCUIT is too.

4An experiment function F[O,S,B] is specific to a particular organ-
ism O (and therefore to the input circuit C with its parameters and
rules), external stimulus S, and external behavior B. Since the input
circuit and experiment function are paired together in every instance
of the problem we will drop the subindices when referring to F .
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Theorem 1. (MINIMAL / MINIMUM) SUFFICIENT CIR-
CUIT is NP-hard.

Proof. Given an instance of CLIQUE, an undirected graph
G = (V,E) and an integer k, we construct an instance of SUF-
FICIENT CIRCUIT (decision), a directed graph G′ = (V ′,E ′)
and integer k′, as follows (see Fig. 2 for a schematic exam-
ple). Let V ′ =V ∪{s,m}, where s and m are new nodes. For
exposition, we informally call s “sensory neuron”, m “mo-
tor neuron”, and vertices in V ′ corresponding to V “interneu-
rons”, but formally these are not labelled vertices. Next, for
each undirected edge (u,v) ∈ E we construct both directional
edges (u,v) and (v,u) between the corresponding interneu-
rons V ∩V ′ of G′ (i.e., (u,v),(v,u) ∈ E ′). Neuron s is con-
nected with one directed edge (s,v) to each “interneuron”
v ∈ V ∩V ′, and m is connected with one directed edge (v,m)
from each “interneuron” v ∈ V ∩V ′. This transformation
can be completed in polynomial time (i.e., O(|V ′|+ |E ′|) ∼
O(|V |+ |E|)∼ O(|V |2)).

Next, we construct the unknown parameters and rules (see
Definition 3) which govern circuit dynamics. We add an ex-
periment function F for the circuit (see Definition 7), which
behaves according to the following rules. All conduction
delays between neuron pair types are the same (e.g., all
interneuron-motor delays are the same). The spiking rules
are constructed as follows. The sensory neuron signals the
arrival of the external stimulus which is controlled by the ex-
perimenter. Input from s or alternatively from at least k− 1
interneurons is enough to make interneurons spike.

ginter(q(t)) =

{
1 [q(t)sensory = 1] ∨ [∑i q(t)i ≥ T = k−1]
0 otherwise

The motor neuron spikes if it receives at least 2 subsequent
inputs of at least k spikes, or 1 input of size |V |.

gmotor(q(t),q(t−1)) =


1 [∑i q(t)i = |V |] ∨

[∑i q(t)i ≥ T ∧ ∑i q(t−1)
i ≥ T ],

T = k−1.
0 otherwise

We set the activity of the motor neuron m to correlate per-
fectly with the elicitation (or not) of the external behavior.

b =

{
1 m spikes
0 otherwise

This completes the SUFFICIENT CIRCUIT instance.
We next consider the properties of the constructed instance.

The entire resulting circuit is a sufficient circuit for the be-
havior. This can be seen by unfolding the dynamics of the
circuit according to the parameters and spiking rules, without
excluding any neurons. Starting from a quiet circuit, the sen-
sory neuron spikes at time t which will elicit a spike from |V |
interneurons at time t +1. According to the circuit’s spiking
rules, this makes the motor neuron spike at time t +2, so the
behavior is elicited (as F will show upon evaluation).

Figure 2: Schematic of an instance of SUFFICIENT CIRCUIT
(middle) constructed from an instance of CLIQUE (top) in the
hardness proof (Theorem 1). Circles, lines, and arrows indi-
cate vertices, undirected edges, and directed edges. An arrow
and a contour enclosing a set of vertices indicates all enclosed
vertices are connected. The colouring is shown here for illus-
tration purposes only (i.e., it is not formally part of the input).
In this example, there is a 3-clique in the CLIQUE instance,
and hence a (3+ 2)-clique in the SUFFICIENT CIRCUIT in-
stance. Note how the model circuit (middle) is much simpler,
smaller and highly idealized compared to real neural circuits
(bottom). This is why our analyses give a lower bound on
real-world complexity.

Consider now the case where we exclude from the circuit
(e.g., artificially silence) all interneurons in V except for a set
X ⊂V of size |X |= k. (Sensory and motor neurons cannot be
silenced without abolishing the behavior). At time t +1, only
|X | interneurons are allowed to spike in response to incom-
ing input from the sensory neuron. At time t + 2, the motor
neuron receives |X |< |V | spikes (insufficient to elicit a spike)
and at most |X | interneurons receive input spikes from |X |−1
other interneurons. Then, at time t +3, the motor neuron re-
ceives at most |X | spikes from interneurons. If X is not a
k-clique, at t +2 fewer than k of the interneurons X will have
received input from at least k−1 other interneurons, hence at
time t +3 the motor neuron will receive fewer than k spikes,
which is insufficient to spike. If, on the other hand, it receives
|X |= k spikes, the spiking rule dictates it will fire. This hap-
pens if and only if X is a k-clique. In this case, the sensory and
motor neuron, and X , together form a circuit which qualifies
as a (k+2)-sized minimum sufficient circuit for the behavior.

■

Inapproximability
We next prove inapproximability of MINIMUM SUFFICIENT
CIRCUIT by combining ideas from the hardness proof above
with a variant on a classic proof technique described in Garey
and Johnson (1979; see also van Rooij & Wareham, 2012).
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The key idea is that we can construct a larger instance of
MINIMUM SUFFICIENT CIRCUIT by creating multiple copies
of a given (smaller) instance and connecting them such that
obtaining an approximate solution for the larger instance
would imply obtaining an optimal solution for the smaller in-
stance. This implies that if MINIMUM SUFFICIENT CIRCUIT
were tractably approximable, then the problem would also be
tractably solvable exactly. As this contradicts Theorem 1, we
can conclude that no such approximation is possible.

Theorem 2. MINIMUM SUFFICIENT CIRCUIT cannot be
d-approximated tractably.

Proof. We prove by contradiction. Given a graph G = (V,E)
and an integer k, create circuit G′ = (V ′,E ′) and set k′ = k+2
for an instance of SUFFICIENT CIRCUIT with all parameters
and spiking rules as in the hardness proof, except that the
original sensory and motor neurons now drop their direct de-
pendence on the stimulus and behavior, respectively, to be-
come part of an interneuron circuit. Create d copies of G′

such that we obtain G′
1,G

′
2, ...,G

′
d+1 disconnected subgraphs.

Add 2 new neurons named (informally) “sensory” and “mo-
tor”. Connect the sensory neuron unidirectionally towards
the original sensory neurons, and the motor neuron unidirec-
tionally from the original motor neurons (see Fig. 3 for a
schematic).

Figure 3: A schematic of the padded-instance created in the
inapproximabilty proof (Theorem 2).

Next we define an experiment function F , parameters, and
rules for the circuit, exactly as in the hardness proof. As in
the proof of Theorem 1, for each copy G′ the “original” motor
neuron (blue in Fig. 3) will spike if and only if G has a clique
of size k. The motor neuron (yellow in Fig. 3) spikes if and

only if it receives concurrent input from all d+1 neurons that
were originally motor neurons in the non-padded instance.

gmotor(q(t)) =

{
1 ∑i q(t)i ≥ T = d +1
0 otherwise

Assume for a contradiction that there exists an approxima-
tion algorithm A for MINIMUM SUFFICIENT CIRCUIT capa-
ble of computing a solution that is at most a distance d ∈ N
away from the optimal solution optsol(.). That is, the size of
the subcircuit solution, in number of neurons, is such that

|optsol(ImSC)| ≤ |A(ImSC)| ≤ |optsol(ImSC)|+d

Since there are d+1 copies in the padded instance, and the
approximate solution is at most d away from optimal, at least
one copy must have an optimal solution to its non-padded in-
stance. We can find this special copy in polynomial time by
checking each copy for the minimum number of chosen neu-
rons that overlap with the solution set for the padded instance.
This, in turn, allows to compute an answer to the CLIQUE
problem, and we have thus produced the desired contradic-
tion. We conclude there cannot exist a d-approximation algo-
rithm for MINIMUM SUFFICIENT CIRCUIT as defined above.

■

Discussion
Discovery of explanations of natural and artificial cogni-
tion can be approached in multiple ways. A major issue of
contention has been whether implementation-first approaches
may have a claim to primacy. Here we studied the demands
of a core scientific problem in the implementationist research
agenda: circuit cracking. We verify that this problem is in-
tractable to solve exactly (Theorem 1), building directly on
previous work (Ramaswamy, 2019). It is conceivable, how-
ever, that researchers might be able to leverage approximate
answers, if these could be obtained tractably. Here we have
begun to ask and answer this open question formally. Our
proof of inapproximability shows it is not possible (Theo-
rem 2). Inapproximability holds even when the scientist has
perfect experimental control, observability and perturbability,
and even when the behaviors are simple.

Our results speak to a fundamental and irreducible compu-
tational barrier that is qualitatively distinct from commonly
assumed challenges. These include, for instance, coming
up with clever behavioral experiment designs (Niv, 2021;
Juavinett, Erlich, & Churchland, 2018), establishing causal-
ity under naturalistic conditions (Marinescu, Lawlor, & Kord-
ing, 2018), the impossibility of inferring cognition from cor-
relation (Guest & Martin, 2023), choosing and interpreting
replication experiments (Devezer & Buzbas, 2021), and elic-
iting ecological behaviors and neural activity using ecological
stimuli to avoid phenomena outside the environment as expe-
rienced by the organism (Testard, Tremblay, & Platt, 2021).
While these are legitimate, non-trivial obstacles, removing
them does not make a dent to computational intractability.
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This constraint should be part of discussions on the merits of
different approaches and the challenges each pose.

Our analyses should similarly inform discussions on scal-
ing up circuit understanding efforts in light of new techni-
cal capabilities. There is an ongoing preoccupation with the
suitability of current data-analytic tools to tackle increasingly
larger and higher-dimensional circuits and datasets (Lindsay,
2022). However, the kinds of barriers we uncover here are
rarely5 acknowledged as a source of concern, especially as
the field aims to scale up analyses to larger networks.6 In the
notable cases where they are acknowledged, the assumption
seems to be that better technology and data-analytic insights
are crucial to mitigate them. However, because the hardness
and inapproximability shown here are intrinsic in nature, bet-
ter tools cannot possibly make a difference (their indispens-
ability to surpass other obstacles notwithstanding).

The counterintuitive disconnect between complexity bar-
riers and the fast pace of data-analytic developments should
give researchers pause. There are two potential consequences
of ignoring it. First, even with well-honed tools we are at
risk of compounding errors that waste years of scientific re-
sources. Second, by ignoring computational complexity and
letting our data-analytic tools do the driving, we perpetuate a
pattern where our tooling plays a disproportionate role in de-
ciding what ideas succeed and which fail (cf. Hooker, 2020).

More concretely, consider what a complexity-theoretic bar-
rier looks like from the researcher’s point of view. An in-
tuitive scenario is the attempt, by individual researchers, to
use data-analytic tools (e.g., analysis software) to solve in-
tractable problems. These obstacles are comparatively easy
to spot, as one quickly finds that analysis pipelines take an in-
feasible amount of time to return results. A more slippery but
no less forgiving form of the barrier can be found in the dis-
tributed practices of individuals involved in parallel efforts.
In this case our intuitions about complexity-theoretic obsta-
cles are more prone to fail us. Consider two scenarios de-
scribing what intractability might look like for the collective
search for a target object (e.g., minimal circuits for a given
behavior). In scenario (a) the search does not terminate. That
is, a research community engages in the search for evidence
but fails to produce research output because the chosen proce-
dures can only be inefficient to give an answer one way or the
other. In scenario (b) the search is forced to terminate prema-
turely due to practical constraints. For instance, researchers
might be pressured, by forces better described in a sociology
of science frame (Field & Derksen, 2020), to produce inter-
mediate outputs and to draw conclusions. These outputs and
interpretations, however, are likely to contain severe errors, as
procedures which might in principle return correct answers if

5Even though neuro-scientists routinely express complexity in-
tuitions, these are rarely examined formally. Oftentimes they can be
shown wrong upon closer formal analysis (e.g. Adolfi, Wareham, &
van Rooij, 2022; Woensdregt et al., 2021; Zeppi & Blokpoel, 2017).

6A non-polynomial time algorithm (no faster method can exist as
per our proofs) running, e.g., in time O(2n) may not yet pose severe
problems for circuits of size n = 10 but for n = 100 it would take
millennia to run (see Ramaswamy, 2019 for an analysis of runtimes).

given enough time are cut short. For many (perhaps most)
fields, scenario (b) seems like the most plausible. Crucially,
this scenario accumulates and compounds errors. Our hard-
ness of approximation result is relevant here because it shows
that these errors cannot be contained to be “small”.

One upshot of our work is that theories in the cognitive
sciences should be allowed to speak about the mechanisms
behind behavior at higher levels of abstraction even when
finding or empirically verifying some of the associated im-
plementation parts may not be feasible. To get a grasp of the
issue, consider a hypothetical example involving the “gnostic
neurons” (or “grandmother cells”) in neuroscience, psychol-
ogy, and artificial intelligence (cf. Barwich, 2019; Thomas
& French, 2017; Gale, Martin, Blything, Nguyen, & Bow-
ers, 2020). We have here an explanation which puts forward
an empirical object: X-selective neurons, where X is some
complex but specific concept. Finding some form of such
units within a circuit, if the conjecture is true, could be done
tractably by algorithmic variants on brute-force search7. Now
consider a different theory whose associated implementation
part happens to be intractable to find (an example might in-
volve the minimum circuits for the instances we construct in
our proofs). If we mostly let our data-analytic tools do the ap-
praisal for us, only theories which happen to posit tractably
discoverable empirical objects will be selected for. Those
theories that fail this test would be discarded independent of
their explanatory merits. The hypothetical scenario we de-
scribe is arguably the reality in many subfields. If we factor
in the widespread belief among researchers that most ques-
tions (including explanation appraisal) are “empirical ques-
tions”, it becomes clear that the situation could not be more
delicately poised. It is only a matter of when and how far, not
whether, a field will wander off course as researchers “let the
data speak” and choose epistemic paths based on what empir-
ical objects are revealed in the data’s utterances. Safeguards
in the form of non-empirical theoretical appraisal, among oth-
ers, are therefore indispensable. This implies that we need to
actively seek this level of abstraction and to tolerate the state
of uncertainty that it comes with.

The above considerations do not imply that the implemen-
tationist research lines cannot be fruitful. They may well lead
to new discoveries. But they do not have the primacy that is
often ascribed to them (cf.8 Poeppel & Adolfi, 2020). This
is important because a more balanced distribution over func-
tional and implementational approaches to explaining cogni-
tion is more likely to make discoveries than an effort fixated
on any single approach (cf. Rich et al., 2021). Our work sug-
gests that if we postpone functional theory until we have an
implementationist grasp, we may end up getting neither.

7This might depend on definitional differences which are gener-
ally important but not relevant to our point here.

8The reader is cautioned against buying into the broader framing
Poeppel & Adolfi (2020) adopt (i.e., accidentally reinforcing “great
man theorizing”; cf. Guest, 2023) — an unintentional (albeit, fore-
seeable and preventable) consequence of using critique of a single
person’s claims to counteract widespread misconceptions.
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Appendix
Computational Complexity Analysis
Our proofs of hardness and inapproximability build on con-
cepts and techniques from computational complexity theory
(van Rooij et al., 2019; Garey & Johnson, 1979). We give
a set of definitions that are used in our proofs and/or their
interpretation.
Definition 9 (Polynomial-time). An algorithm is said to
run in polynomial-time if the number of steps it performs
is on the order of nc (also denoted O(nc)), where n is a
measure of the input size and c is some constant.
Definition 10 (Polynomial-time reducibility). Let P and
Q be computational problems. We say P is polynomial-
time reducible to Q if there exists a polynomial-time al-
gorithm (called reduction) that transforms instances of P
into instances of Q such that solutions for Q can be trans-
formed in polynomial-time into solutions for P .
Definition 11 (NP-hard). NP-hard problems are the hard-
est problems in the class NP.9 A problem is said to be NP-
hard if all problems in NP can be polynomial-time reduced
to it.
Definition 12 (Intractability). NP-hard problems are con-
sidered intractable, i.e., unsolvable with a realistic amount
of resources (e.g. time and space), because they cannot be
solved in polynomial-time (unless P = NP)10.

Note that it follows from the above definitions that a problem
Q can be shown to be intractable by polynomial-time reduc-
ing a known NP-hard problem P to Q .

The proofs construct reductions from the known NP-hard
problem CLIQUE (Garey & Johnson, 1979; van Rooij et al.,
2019)
Definition 13 (Clique). Given a graph G = (V,E), a sub-
set of vertices V ′ ⊆ V is called a clique if all v ∈ V ′ are
adjacent to each other under G (i.e., it is a complete sub-
graph).
Problem 2. CLIQUE (decision version)
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there a clique V ′ ⊆V of size |V ′| ≥ k?

In order to prove intractability for non-trivial scenarios we
assume the experimenter only sets up tractable tasks for their
experimental subjects. Furthermore, even if the experimenter
had perfect knowledge of F , and it was tractable, our results
would hold.

Problems that are intractable may still be tractable to ap-
proximate.11 We analyse the complexity of approximating
circuit cracking in the following sense.
Definition 14 (Approximation12). Given an optimization

9Here NP stands for non-deterministic polynomial time.
10Here P stands for (deterministic) polynomial time. It is widely

conjectured that P ̸= NP (Fortnow, 2009).
11It is generally overestimated how often this is possible for rele-

vant notions of approximation (van Rooij & Wareham, 2012).
12See also Ausiello et al., 1999.

problem P and an approximation algorithm A for P , we
call A an approximation algorithm if there exists a constant
d such that for all instances x of P the absolute error be-
tween the value m(·) of an optimal solution optsol(x) and
the output A [x] is such that | m(optsol(x))−m(A [x]) | ≤ d.

Hardness and Inapproximability of
Circuit Cracking
Here we spell out some aspects of the inapproximability
proof.

Inapproximability Consider the properties of the con-
structed instance. The entire circuit is a candidate solution,
i.e. a sufficient circuit for the behavior, because if the sensory
neuron spikes, (d + 1) of the original sensory neurons will
spike, subsequently (d + 1) copies of |V | interneurons will
receive enough input to spike, which is enough to make each
of the original motor neurons spike, and this in turn is a suffi-
cient condition for the motor neuron to spike. Now consider
what happens when some neurons are excluded from the cir-
cuit. The sensory and motor neuron of the padded instance,
as well as the original sensory and motor neurons of the non-
padded instances, cannot be excluded without abolishing the
behavior. This is because excluding any of these would pre-
clude the possibility of concurrent spikes from all original
motor neurons arriving at the motor neuron. We can therefore
consider next the case where we exclude none of the neurons
just mentioned and all but (d + 1)k of the original interneu-
rons V1, ...,Vd+1. If even a single one of the d +1 copies has
less than k included interneurons, then its corresponding orig-
inal motor neuron will not spike, hence the motor neuron of
the padded instance cannot spike due to receiving strictly less
than d+1 concurrent inputs. This implies that k interneurons
in each of d + 1 copies must be chosen to be in the solution
set. Each of the original motor neurons will spike if and only
if the k chosen interneurons in the corresponding copy form
a k-clique, by the same reasoning as in the hardness proof.
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Abstract 

Psychological distance spaces are the building block of many 
cognitive models, such as the generalized context model 
(Nosofsky, 1986) and the similarity-choice model (Luce, 
1963; Shepard, 1957). The distance between two stimuli is 
typically computed based on a multidimensional scaling 
solution using the Minkowski power metric. This paper 
proposes a novel method for computing pairwise 
dissimilarities between stimulus representations that is based 
on the Kullback-Leibler divergence of response distributions. 
The method is extended with Sharma-Mittal divergence, and 
its application and properties are illustrated using a classic set 
of perceptual identification and categorization data. 

Keywords: multidimensional scaling; identification; 
categorization; information theory; Kullback-Leibler 
divergence; Sharma-Mittal divergence; generalized context 
model; similarity-choice model 

Introduction 

Multidimensional scaling (MDS) is a powerful tool for data 

analysis, visualization, and dimensionality reduction that is 

widely applied across the sciences. Given a set of pairwise 

distances between data points, MDS finds coordinates in a 

Cartesian space that best fit the distances. 

The work of Torgerson (1952), Shepard (1962a, 1962b), 

Kruskal (1964a, 1964b), and others helped popularize the 

use of MDS within cognitive psychology, leading to the 

development of models that use multidimensional scaling to 

postulate a mental space that defines stimulus locations 

relative to two or more feature dimensions. Examples of 

such models include the MDS-choice model, an extension 

of the similarity-choice model (Luce, 1963; Shepard, 1957), 

which translates distances in the representational space into 

similarities that determine response rates in identification 

experiments, and the generalized context model (Nosofsky, 

1986), which applies the same principle to categorization. 

A key feature of these models is that information about 

pairwise connections between stimuli, such as similarity 

ratings or confusions between their respective responses, is 

indicative of the number of features that the stimuli are 

represented upon and of the locations of stimuli in this 

representation. For example, similarity ratings between 

different kinds of cars could be used to construct a mental 

space in which each car is represented as a location relative 

to various dimensions (e.g., type, brand, color). Cars that are 

closer to each other in the representational space would be 

harder to identify (confused more often), and cars that are 

further from each other would be easier to identify. 

In most of these applications – as in applications of MDS 

in general – the distance between stimuli is defined using 

the Minkowski (1896, see e.g., Borg & Lingoes, 1987, Borg 

& Groenen, 2005) power metric. The Minkowski metric 

generalizes several distance measures (e.g., Euclidean, 

Manhattan) and has been shown to capture task- and 

feature-specific variation in the structure of the similarity 

space (e.g., Shepard, 1964; Garner, 1974; Wiener-Ehrlich, 

1978; Dunn, 1983; Melara, Marks, & Lesko, 1992). In 

addition, it has been shown that selective attention can drive 

the structure of the similarity space by stretching or 

shrinking it along one or more of its coordinate axes, and 

that learning can increase distances between stimuli, which 

can be modeled by complementing the Minkowski metric 

with additional parameters (e.g., Nosofsky, 1986, 1987). 

The purpose of this project is to explore whether distance 

measures based on Kullback-Leibler (1961) divergence, 

Sharma-Mittal (1975) divergence, or other information-

theoretic constructs could yield results that are comparable 

to the Minkowski metric and/or provide new mathematical 

properties that would be meaningful considering 

psychological data. 

We will begin by introducing the Minkowski metric, 

Kullback-Leibler (KL) divergence, and Sharma-Mittal (SM) 

divergence. After that, we will propose a way to apply KL 

and SM divergence to extract pairwise dissimilarities 

between representations of individual stimuli from 

confusion matrix data. Finally, we will run MDS on these 

dissimilarities and illustrate their properties using existing 

identification and categorization data. 

Definitions: Minkowski Distance, Kullback-

Leibler (KL) Divergence, and Sharma-Mittal 

(SM) Divergence 

The Minkowski (1896, see e.g., Beckenbach & Bellman, 

1961) distance of order r between points x = (x1, …, xn) ∈ ℝ 
and y = (y1, …, yn) ∈ ℝ in an n-dimensional space is 

𝐷𝑀(𝑥, 𝑦) = [∑ |𝑥𝑖 − 𝑦𝑖 |
𝑟𝑛

𝑖=1 ]1/𝑟   (1) 

where r ∈ [-∞, ∞] determines the concavity of the distance 

metric used. For Euclidean distance, r = 2, whereas for 

Manhattan (city-block) distance r = 1. The lower the value 

of r is, the more weight smaller component 

(unidimensional) distances are given when computing 

overall (multidimensional) distance, resulting in larger 

overall distance when r is smaller for pairs of points that are 

not parallel to the coordinate axes. 

    The Kullback-Leibler (KL, 1961) divergence between the 

probability distributions p = (p1, …, pn) ∈ [0,1] and q = (q1, 

…, qn) ∈ [0,1], Ʃp,q = 1, of a discrete random variable X (or 

two discrete random variables X and Y) with n outcomes is 

𝐷𝐾𝐿(𝑝‖𝑞) = ∑ 𝑝𝑖
𝑛
𝑖=1 𝑙𝑛 (

𝑝𝑖

𝑞𝑖
) (2)
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where pi and qi denote probabilities associated with 

corresponding outcomes.1 Unlike the Minkowski metric, KL 

divergence is not symmetric (𝐷𝐾𝐿(𝑝‖𝑞) ≠ 𝐷𝐾𝐿(𝑞‖𝑝)) and it

violates the triangle inequality, due to which it is not 

considered a distance metric. KL divergence can, however, 

be made symmetric by taking the average of  𝐷𝐾𝐿(𝑝‖𝑞) and

𝐷𝐾𝐿(𝑞‖𝑝) (Jeffreys, 1948, divergence) or by applying some

other transformation, e.g., Jensen-Shannon divergence 

(Wong & You, 1985; Lin & Wong, 1990; Lin, 1991; see 

e.g., Nielsen, 2019, for alternatives).

The Sharma-Mittal (1975) family of entropies is a

generalization of Rényi and Tsallis entropies and gives rise 

to Sharma-Mittal (SM) divergence of order α and degree β 

𝐷𝑆𝑀(𝑝‖𝑞) =
1

𝛽−1
[(∑ 𝑝𝑖

𝛼𝑞𝑖
1−𝛼𝑛

𝑖=1 )
1−𝛽

1−𝛼 − 1]  (3) 

where α > 0, α ≠ 1, and β ≠ 1. When α → 1 and β → 1, SM 

divergence corresponds to KL divergence (i.e., Shannon 

entropy), whereas when α → 1 and β → α Rényi and Tsallis 

entropies are recovered, respectively (see e.g., Nielsen & 

Nock, 2011, for formal properties, and Crupi et al., 2018, 

for an application in cognitive science). Figure 1 illustrates 

the influence of variation in α and β on the concavity of the 

entropy function, and Figure 2 illustrates their influence on 

the convexity of the divergence function when comparing a 

distribution with two outcomes to the uniform distribution.  

Constructing Dissimilarities from Confusion 

Matrix Data using KL and SM Divergence 

To provide a basis for the construction of an MDS solution 

that represents stimulus coordinates in the postulated mental 

space, pairwise dissimilarities between individual stimuli 

are computed using KL divergence. This procedure 

translates a n x m confusion matrix of n stimuli S and m 

responses r (e.g., 16 x 4 for A1B1, …, A4B4 and a1, …, a4) 

into a n x n matrix of pairwise dissimilarities between 

stimuli (e.g., 16 x 16 for A1B1, …, A4B4 and A1B1, …, A4B4, 

where diagonal entries denote dissimilarity to self). 

Formally, the KL divergence between the response 

distribution of stimulus Si and the response distribution of 

stimulus Sj is 

𝐷𝐾𝐿(𝑟|𝑆𝑖‖𝑟|𝑆𝑗) = ∑ 𝑝(𝑟𝑘|𝑆𝑖)
𝑚
𝑘=1 𝑙𝑛 (

𝑝(𝑟𝑘|𝑆𝑖)

𝑝(𝑟𝑘|𝑆𝑗)
)     (4) 

where Si and Sj denote stimuli used in the experiment, and rk 

denotes one of m possible responses. For example, if Si = A1 

and Sj = A4 in the stimulus set A = {A1, A2, A3, A4, A5, A6} with 

response options a = {a1, a2, a3}, 

𝐷𝐾𝐿(𝑎|𝐴1‖𝑎|𝐴4) = 𝑝(𝑎1|𝐴1)𝑙𝑛 (
𝑝(𝑎1|𝐴1)

𝑝(𝑎1|𝐴4)
) +

𝑝(𝑎2|𝐴1)𝑙𝑛 (
𝑝(𝑎2|𝐴1)

𝑝(𝑎2|𝐴4)
) + 𝑝(𝑎3|𝐴1)𝑙𝑛 (

𝑝(𝑎3|𝐴1)

𝑝(𝑎3|𝐴4)
).      (5) 

1 Note that Shannon entropy (and KL divergence) is typically 

defined using the binary logarithm. We use the natural logarithm 

because it is the base of the Sharma-Mittal family of entropies. 

This process is repeated for every combination of Si and Sj, 

and the result is stored in the corresponding cell of the n x n 

matrix of pairwise dissimilarities. 

   Similarly, the SM divergence between the response 

distributions of Si and Sj is computed using 

𝐷𝑆𝑀(𝑟|𝑆𝑖‖𝑟|𝑆𝑗) =
1

𝛽−1
[(∑ 𝑝(𝑟𝑘|𝑆𝑖)𝛼𝑚

𝑘=1 𝑝(𝑟𝑘|𝑆𝑗)1−𝛼)
1−𝛽

1−𝛼 − 1]  (6) 

where α > 0, α ≠ 1, and β ≠ 1, and stored in a n x n 

dissimilarity matrix. 

Executing MDS with KL and SM Divergence 

Most of the statistical packages that execute MDS include 

Euclidean distance as the default distance metric, with the 

possibility to run the analysis using other Minkowski 

distance metrics as well. Typically, the MDS function is 

called with a similarity matrix and a set of parameters that 

define the kind of analysis to be run (e.g., metric vs. non-

metric, number of dimensions, distance metric). The MDS 

function translates the similarity matrix into a matrix of 

pairwise distances or dissimilarities (disparities) and finds 

coordinates that provide the best fit between distances in the 

MDS solution and disparities in the dissimilarity matrix by 

minimizing a stress function. The user can then compare 

solutions acquired with a different number of dimensions or 

with different distance metrics to determine which one of 

them provides the best fit. To avoid overfitting, the number 

of dimensions is chosen based on the end point of a steep 

decline in the stress function. 

    In our case, the MDS function is called with a 

precomputed, KL- or SM-divergence-based dissimilarity 

matrix, due to which the first step of the MDS procedure is 

bypassed. These dissimilarities are then used by the MDS 

function for finding the best fitting MDS solution 

(coordinates in Cartesian space)2, and the process is 

repeated for different values of α and β (i.e., the 

precomputed dissimilarity matrix is built again using 

different values of α and β). Because MDS requires a 

symmetric matrix, entries on opposite sides of the diagonal 

(e.g., (0,1) and (1,0)) in the dissimilarity matrix are 

averaged.3 

2 Note that the MDS package used in this paper (see 

Methodological Notes) uses Euclidean distance to quantify 

interpoint distances in the MDS solution regardless of the measure 

used for computing pairwise disparities. This produces a 

reasonable stress for MDS-KL but introduces bias for other values 

of α and β, especially β > 1. Using alternative distance metrics 

(Minkowski r ≠ 2, cosine, etc.) in MDS-SM and/or developing 

methods for divergence-based MDS is a topic for future work. 
3 Alternatively, KL divergence and SM divergence could be 

replaced with Jensen-Shannon and Jensen-Sharma-Mittal (Luza, 

2021) divergence, respectively, or a divergence measure that 

satisfies metric properties, such as Jensen-Shannon distance 

(Endres & Schindelin, 2003; Österreicher & Vajda, 2003). 
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Figure 1: Illustration of the influence of α (when β is fixed 

to 0.99999, left) and β (when α is fixed to 0.99999, right) on 

the value of Sharma-Mittal entropy for a distribution of two 

probabilities. All entropies reach their maximum at 

uniformity (p = 1 – p) and minimum at certainty (p = 0 or  

p = 1). Shannon entropy is denoted with a red line. 

Figure 2: Illustration of the influence of α (when β is fixed 

to 0.99999, left) and β (when α is fixed to 0.99999, right) on 

the value of Sharma-Mittal divergence between (p, 1 – p) 

and the uniform distribution p = 1 – p = ½. All divergences 

reach their minimum when the distributions are identical. 

KL divergence is denoted with a red line. 

Example Application: Nosofsky (1986) 

To provide an illustration of the kind of results that can be 

acquired with MDS-KL and MDS-SM, the proposed 

method was applied to data from Nosofsky (1986). 

Procedure 

Nosofsky collected identification and categorization data 

from two participants with stimuli that varied on two 

orthogonal dimensions with four levels. The stimuli were 

half-circles with a radial line pointing from the center, and 

they were varied in the size of the circle and the angle of the 

radial line. The identification part of the experiment 

consisted of three conditions: identifying both angle and 

size (AS), identifying angle only (A), and identifying size 

only (S). The categorization part of the experiment included 

classifying the stimuli into two groups based on four 

different category structures: dimensional, criss-cross, 

interior-exterior, and diagonal. The category structures are 

illustrated in Figure 4. 

    To model the data of the AS condition, Nosofsky applied 

the MDS-choice framework (Shepard, 1957), which consists 

of three parts: (1) an MDS solution that represents stimulus 

coordinates relative to two or more feature dimensions, (2) a 

function that translates interstimulus distances in the MDS 

solution to interstimulus similarities, and (3) a choice rule 

that determines the probability of responding Rj when 

stimulus Si is shown based on interstimulus similarities and 

response bias parameters. Nosofsky (1985) found that the 

model that best fit the data consisted of an MDS-solution 

with two dimensions, a Euclidean distance metric, and a 

Gaussian function for translating distance to similarity. 

    For the A, S, and categorization conditions, Nosofsky 

(1986) developed an extension of Medin and Schaffer’s 

(1978) context theory of classification, the generalized 

context model (GCM). The GCM proceeds in the following 

way: (1) extract stimulus coordinates from the MDS-choice 

solution of the AS condition, (2) compute interstimulus 

distances using the augmented Minkowski metric (described 

below), (3) translate distances into similarities using the 

same similarity function that was used in the AS condition, 

and (4) use a choice rule for responding Ck (category k) 

when stimulus Si is shown based on interstimulus 

similarities and response bias parameters. For more detail on 

the procedure, see Nosofsky (1986). 

The Augmented Minkowski Metric 

GCM presumes that, through attention allocation, the goal 

of the task can influence the shape of the perceptual space. 

This is modeled with the augmented Minkowski metric 

(Nosofsky, 1986, p. 41): 

𝐷𝑀(𝑥, 𝑦) = 𝑐[∑ 𝑤𝑖|𝑥𝑖 − 𝑦𝑖 |
𝑟𝑛

𝑖=1 ]1/𝑟               (7) 

where 0 ≤ wi ≤ 1, Ʃwi = 1 denotes the attentional weight 

given to each dimension, and 0 ≤ c < ∞ is a scaling 

parameter. When a dimension is given a high attentional 

weight (e.g., angle in condition A), it is stretched and, 

hence, identification and categorization performance on that 

dimension is improved. On the other hand, when a 

dimension is given a low attentional weight (e.g., size in 

condition A), stimuli become more confusable on that 

dimension. In addition, learning or increased stimulus 

exposure duration can increase the distance between stimuli, 

which can be modeled with the scaling parameter c. 

    Note that the order parameter r of the Minkowski metric 

works analogously to the order parameter α of the Sharma-

Mittal family of entropies: when α approaches 0, smaller 

probabilities are given more weight, which makes the 

entropy function more concave and divergence function 

more convex. Decreasing r, on the other hand, increases the 

weight given to smaller component distances, which makes 

the distance function more concave. Furthermore, the 

Sharma-Mittal degree parameter β increases the divergence 
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between two stimuli in proportion to the difference in their 

response distributions, whereas increasing the scaling 

parameter c increases the distance between all stimuli. 

Hence, even though α and r (and β and c) serve somewhat 

similar purposes, their exact implications on pairwise 

dissimilarities (and the consequent shape of the postulated 

perceptual space) are different. 

Results 

Condition AS Figure 3 illustrates the results of MDS-KL 

for subject 1 (upper row) and subject 2 (lower row) in the 

AS identification condition of the experiment. As can be 

seen from the figure, apart from differences in the rotation 

of the solution (which is arbitrary) and stretching in the 

corners of the solution, the results resemble the results of 

MDS-choice relatively closely. This is interesting given the 

very different ways in which these results are acquired: 

MDS-choice finds the stimulus coordinates and bias 

parameters that can best predict response probabilities given 

a distance metric, a translation from distance to similarity, 

and a choice rule, whereas the pairwise dissimilarities of 

MDS-KL are computed directly from the confusion matrix. 

Hence, in this sense, MDS-KL bypasses the choice rule and 

distance-to-similarity conversion of MDS-choice. 

Conditions A, S, and Categorization When MDS-KL is 

applied to unidimensional identification or categorization, 

the results become one-dimensional (Figure 4). This is 

because the pairwise dissimilarity between two stimuli is 

determined by the difference in their response distributions: 

if the response distributions only carry information about 

one dimension (i.e., involve one response option per level of 

the dimension) the interstimulus distances are also 

determined solely by that dimension. Hence, unlike GCM, 

MDS-KL does not postulate a perceptual space with more 

information than is included in the response options. For the 

A and S conditions, MDS-KL can order and cluster stimuli 

based on the level of the response variable, and express 

“distances” between individual stimuli (Figure 4, left 

column). For the categorization conditions, MDS-KL can 

order stimuli from the most distinctive representative of 

category 1 to the most distinctive representative of category 

2, cluster them based on their similarity to each other, and 

quantify the “distance” of outliers from other stimuli (Figure 

4, middle and right column).4  

Varying α and β To illustrate the influence of α and β on 

the MDS solution, MDS-SM is applied to the full 

identification (AS) condition of subject 1 (Figure 5).5     

4 This is somewhat trivial for a two-category classification task 

as the same information could be deduced from response 

probabilities alone. However, for tasks with a larger number of 

response options the solution would be more insightful. 
5 As mentioned in 2, note that Euclidean MDS is not able to fully 

capture the influence of variation in α and β on pairwise 

dissimilarities. Hence, the solutions presented here are directional 

    When α approaches 0, pairwise dissimilarities between 

stimuli approach 0, which is reflected in the MDS solution 

as a clustering of the stimuli. When α increases, the 

divergence function becomes less convex, increasing 

dissimilarity overall and especially between stimuli that 

have moderately similar response distributions. This is 

reflected in the MDS solution as more space being created 

in the center of the solution. 

    When β approaches 0, the range of the divergence 

function becomes more restricted, resulting in less distance 

between stimuli that have less similar response distributions. 

When β increases, the divergence between less similar 

response distributions increases exponentially, producing an 

MDS solution with more distance overall and especially 

between the edges and corners of the solution. 

    When α and β are varied together, interstimulus distances 

approach 0 when α and β approach 0, and when α and β are 

increased together the overall scale of the solution increases 

with less prominent changes in the shape of the solution. 

When both α and β approach 1, the solution becomes 

equivalent to the solution of MDS-KL. 

Comparison to GCM As compared to GCM, the results of 

MDS-KL for the A, S, and categorization conditions could 

be thought of as an alternative to augmented Minkowski 

distance, with the weight wi given to each dimension being 

reflected in the order of the stimuli in the MDS-KL solution, 

and the scaling parameter c corresponding to the overall 

resolution of the MDS-KL solution. For example, in the S 

and dimensional categorization conditions, the order of the 

rather than definite and the properties of MDS-SM should be 

evaluated together with more appropriate distance metrics. 

Figure 3: The results of MDS-KL for identification data in 

condition AS for subject 1 (upper right) and subject 2 (lower 

right), as compared to Gaussian-Euclidean MDS (upper left 

and lower left) in Nosofsky (1986). 
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Figure 4: Left: The results of MDS-KL for subject 1 in identification condition A (upper left) and identification condition S (lower 

left). Middle and right: The results of MDS-KL for subject 1 in dimensional (upper middle), criss-cross (upper right), interior-exterior 

(lower middle), and diagonal (lower right) categorization. The red line depicts the boundary for a higher than 0.50 probability of 

assigning the stimulus to each category. Illustrations of the category structures are adapted from Nosofsky (1986). 

Figure 5: Illustration of the influence of α and β on the results of MDS-SM for subject 1 in the AS identification condition. Upper row: 

α is varied from 0.0001 to 2 while β is fixed to 1.0001. Middle row: β is varied from 0 to 2 while α is fixed to 1.0001. Lower row: α 

and β are varied together from ~0 to 2. When α→1 and β→1 the results of MDS-SM are equivalent to the results of MDS-KL. 
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stimuli is determined solely by dimension S, whereas in 

other categorization conditions it is based jointly on A and 

S. Hence, the weight given to each dimension corresponds

to the mutual information between the dimension and the

ordering of the stimuli in the MDS-KL solution.

    As for MDS-SM, while varying α and β together can 

produce results that resemble variation in the scaling 

parameter c, varying α or β separately does not correspond 

to any existing construct in GCM. Furthermore, because 

MDS-KL and MDS-SM are based on pointwise differences 

in response distributions, they can account for response bias 

without postulating it as an explicit part of the model. Due 

to this, MDS-KL and MDS-SM do not have direct 

equivalents to the choice rule or response bias parameters. 

Conclusions 

The purpose of this paper was to introduce a novel, KL-

divergence-based dissimilarity measure for confusion matrix 

data and its extension with the Sharma-Mittal family of 

entropies. The protocol for generating a dissimilarity matrix 

using this method was described, along with the protocol for 

running MDS on the matrix, and the results of this process 

were illustrated using identification and categorization data 

from Nosofsky (1986). 

    MDS-KL provided remarkably similar results to the 

results of Gaussian-Euclidean MDS-choice in the full, 

bidimensional identification response condition, and was 

able to express order, clustering, and “distances” in 

unidimensional identification and categorization response 

conditions. These properties were compared to the weight 

and scaling parameters of the augmented Minkowski metric, 

noting that MDS-KL bypasses the choice rule and distance-

to-similarity conversion of MDS-choice and GCM by 

computing dissimilarities directly from the confusion 

matrix. Therefore, when the structure of the perceptual 

space is of primary interest, MDS-KL (and MDS-SM) could 

be able to access it with less computational resources. 

    Complementing MDS-KL with the Sharma-Mittal family 

of entropies (MDS-SM) provided a novel way to adjust 

pairwise dissimilarities, with α corresponding to the weight 

given to small probabilities and β corresponding to the 

magnitude of atomic information when computing the 

divergence between two response distributions. Hence, α 

and β could be considered as measures of how diagnostic 

certain features of the response distribution (e.g., small 

probabilities) are for deducing the structure of the 

underlying perceptual representation. Depending on the 

context, this could reflect between-participant or between-

condition variation in the shape of the response distribution 

induced e.g., by changes in task, response rule, or accuracy. 

On the other hand, as illustrated in this paper, variation in α 

and β can also be used to alter the shape of the perceptual 

representation. Unlike the augmented Minkowski metric, 

which adjusts scaling, dimensions, and the metric of fitted 

distances, MDS-SM adjusts pairwise dissimilarities 

(disparities) based on information from the entire response 

distribution. Consequently, MDS-SM produces results that 

are qualitatively different from the results of the augmented 

Minkowski metric. 

Suggestions for Future Work 

An obvious next step to the work presented in this paper 

would be to translate distances generated by MDS-KL and 

MDS-SM into interstimulus similarities by using the 

similarity function and choice rules of MDS-choice and 

GCM and to test these against existing (e.g., Euclidean-

Gaussian) MDS using diagnostic confusion matrix data 

(e.g., Nosofsky, 1986, 1987, 1989).6 

The proposed approach could also be extended to other 

types of data. For example, optional processes (induced by 

e.g., changes in task instructions) can have an impact on the

structure of the MDS solution (e.g., Melara, Marks, &

Lesko, 1992) in similarity rating tasks. If these processes

were reflected in the shape of the response distribution, α

and β could be better able to account for them than

approaches based on the Minkowski metric. Furthermore,

because KL-divergence (and SM-divergence) is not

symmetric and violates the triangle inequality, it could be

better suited for describing data that is not symmetric and/or

violates the triangle inequality (e.g., Tversky, 1977).

Finally, as suggested in 2,3,5, the proposed work could be 

complemented with other types of entropies and divergence 

measures, and/or divergence-based methods for MDS. The 

approach could also be complemented with modern versions 

of mutual uncertainty analysis (Garner & Morton, 1969; 

e.g., Fitousi, 2013; Akrenius, 2021) to capture the influence

of stimulus structure (in addition to task structure and

individual differences) on perceptual distance.

Methodological Notes 

The dissimilarity matrices of MDS-KL and MDS-SM were 

constructed from confusion matrix data using a Python 

program that implemented (4), (6), and the steps described 

in the same paragraph. Metric, 2-dimensional MDS was run 

on the matrices with sklearn.manifold.MDS in the skicit-

learn Python package (Pedregosa et al., 2011) using the 

SMACOF (Scaling by MAjorizing a COmplicated 

Function) algorithm. Estimates of Sharma-Mittal divergence 

close to a limit (α→0, α→1, and β→1) were computed by 

using a number that differed from the limit by a fourth 

decimal (e.g., 0.0001). 
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Abstract

When we learn new tasks, rather than starting from scratch,
we often reuse skills that we have learned previously. By in-
tegrating these previously learned skills in a new way, we can
learn how to do new tasks with little effort. In this research,
we test a method aimed at identifying the skills reused between
tasks. More specifically, we use a knowledge graph as a tool
for identifying reused skills. From this knowledge graph, we
built a cognitive model that shows how the identified skills can
be integrated to solve a new task. The final cognitive model can
successfully solve a variety of related but distinct tasks. This
shows it is possible to use knowledge graphs to identify the
skills reused between tasks. This ability may benefit how we
approach learning. Knowing, in advance, the skills needed to
successfully complete a new task may allow us to learn said
task in an easier, more focused manner.
Keywords: cognitive modelling; knowledge graph; skill trans-
fer; cognitive tutors

Introduction
Cognitive architectures have provided many insights in how
people process information, reason and learn by providing
precise predictions through simulation. Despite the many suc-
cesses, there are a number of limiting factors that become
important when the complexity of tasks increases. A first
limitation is that most models are constructed for a specific ex-
periment or set of experiments. This means that the knowledge
in the model is specifically tailored to that task. Instead, if
humans have to perform a new task, they build task knowledge
on the knowledge they already have, which many lead to a
different set of knowledge for the task, and a different learning
trajectory than a constructed model.

A second limiting factor is that models are constructed. It is
generally assumed that a model is valid if it fits enough data,
or better, if it is able to make testable predictions. However, it
is quite possible that alternative models provide the same or
even better fit. Moreover, as tasks become more complex it is
unlikely that all subjects follow the same strategy, making it
more likely that the eventual experimental results are produced
by a mixture of slightly different models.

The goal of this paper is to use the skill-based learning
approach (Hoekstra, Martens, & Taatgen, 2020) in combina-
tion with data-driven methods to arrive at a hybrid approach
to modeling, in which we use data to inform us about the
structure of the model. To fill in this structure we then use
“traditional” modeling to fill the details and create a runable
model.

The skill-based approach
The assumption of the skill-based approach to modeling
(Hoekstra et al., 2020) is that when humans have to perform
a new task, they combine a number of existing knowledge
components in a novel way, similar as in language where we
compose words in novel sentences to create new meaning. We
call these knowledge components skills. In terms of cognitive
architectures, a skill is a set of production rules or operators
(depending on the nomenclature of the architectures). We
define a skill as the largest collection of operators that can
be reused between tasks. For example, Hoekstra et al. have
shown that the Attentional Blink task, which is a novel tasks
for most subjects, can be successfully modeled as a combi-
nation of a visual search and a memory consolidation skill,
and that the Attentional Blink effect is due to the choice of the
wrong consolidation skill.

The large advantage of the skill-based approach is that it can
explain how people can do many novel tasks with very little
learning, assuming they already have the right skills, because
they only have to instantiate a few variables in the necessary
skills instead of acquiring a whole new set of operators.

We implement this idea in the PRIMs cognitive architec-
ture (Taatgen, 2013). PRIMs has been derived from ACT-R
(Anderson et al., 2004), and shares many of its representa-
tions and mechanisms. Specific in PRIMs is that it has been
designed with reuse of knowledge in mind. Operators (pro-
duction rules) in PRIMs are in declarative memory, instead of
a separate procedural memory, and are selected based on acti-
vation. Operators are not linked to any specific task or goal,
but are activated by context. To perform certain tasks, the
skills relevant to that task are activated (i.e., placed in the goal
buffer), and these in turn activate their relevant operators to
perform that skill. Skills can be instrumental to multiple tasks,
operators can be associated with multiple skills, and even the
smaller components of operators can be reused among oper-
ators. So, whenever there is overlap in knowledge, even on
different levels of abstraction, the architecture exploits it.

Data-drive modeling
How do you know what the right set of skills is to model
tasks? Instead of leaving this completely up to the modeler,
we can also try to derive skills from data. The key idea is
that individual differences can tell us something about the
number and nature of the skills. If one group of subjects fails
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Figure 1: Example constructed knowledge graph

to solve a particular type of problem, while another group is
successful, it means that the latter group has mastered one or
more skills that the former has not. The goal is to derive a
knowledge graph from the data, in which each node builds
upon the nodes below it. Figure 1 shows a constructed example
of such a graph. The basis for this graph is two (very broad)
skills: the ability to solve simple equations, and the ability to
add larger numbers. Students can have any combination of
these skills, and if we have a large enough sample of students
making problems from these four categories, the four groups
will emerge that match the four nodes in the graph.

To do this more systematically, we have derived an algo-
rithm that creates a graph out of data. We do not have the
space here to discuss the details of the algorithm, but broadly
speaking the outline is as follows:

The input for the algorithm is a matrix with subjects (stu-
dents) as rows, and assignments as columns, and in each of
the cells whether the student solved the assignment. We also
predefine the number of skills that we want in the graph. The
first step is to cluster the students in the rows, so that students
that perform roughly equal on the assignments are grouped to-
gether. The second step is to derive the graph from the reduced
matrix. We do this by starting with an empty graph, where
the number of nodes depends on the number of skills we are
looking for (two skills in the example). The algorithm then
tries to assign problems to nodes with the goal to minimize a
penalty. The penalty depends on the relation of that problem
to other problems. If problem A is earlier in the graph than
problem B (i.e., there is direct path from B to A), then you
expect students that can solve B can also solve A. Any excep-
tion to this results in a penalty. Similarly, if problems A and B
are assigned to the same node, any difference in the answer of
students gives a penalty. All penalties between problems are
added together, providing the value that we try to minimize,
which we do by simulated annealing.

Objectives
The goal of this study is to take a dataset of students solving
geometry problems, and use the graph algorithm to identify
the skills necessary to solve the problems. We then take the

outcome and use it as a basis for modeling these skills in
PRIMs.

Dataset
The dataset used in this study is the ‘Geometry Area (1996-97)’
dataset, which is publicly available via DataShop (Koedinger
et al., 2010). The dataset contains the answers of 59 students
to 40 geometry problems. All problems focus on the areas of
geometric shapes. To illustrate what these problems may look
like, Figure 2 shows two example problems for circles.

Figure 2: Two circle problems in the dataset

As these examples indicate, problems in the dataset consist
of an illustrated shape and one or multiple questions (with a
maximum of four). A question may consist of multiple steps,
as shown by e.g. question 1 of the CIRCLE-O problem. This
question asks students to calculate the radius, area, and circum-
ference of the depicted circle. Each of these calculations is its
own step, and students were expected to provide a response
for each step.
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Rather than the raw response, the ‘Geometry Area (1996-
97)’ dataset contains the evaluation of whether the student’s
response was correct or not. Each row in the dataset thus
specifies a student, a problem step, and its evaluated outcome.
In an ideal situation, each student would have answered all
steps of all problems. In practice, not all students solved all
problem steps nor all problems. The full dataset contains only
the outcomes of the problem steps students responded to.

To generate the knowledge graph, the outcomes to the prob-
lem steps are stored in a matrix that has the students as rows
and the problem steps as columns. Each cell in this 59 by 139
matrix is a student outcome. The outcomes are encoded as 1s
and 0s for correct and incorrect outcomes respectively. If a
student did not respond to a problem step, an NA is recorded.

To achieve a reliable outcome, a subset of the matrix was
selected as input for the graph algorithm. This subset consists
of the 69 problem steps that have the most recorded responses,
i.e. that were answered by the most students. Two students did
not respond to any of these problem steps and were therefore
excluded from the subset.

In addition to the outcome matrix, a second matrix is passed
to the graph algorithm that contains the order of the problem
steps. This order is different for each student, so the order
matrix contains, for each student, the order in which they
answered the problem steps.

Knowledge Graph
The knowledge graph algorithm takes as its input the outcome
and order matrices. Both are needed to generate a knowl-
edge graph that accurately represents the skills underlying the
dataset. Specifically, the graph algorithm uses the matrices
to calculate penalties, as explained in the Introduction. The
algorithm compares each problem pair in the outcome matrix
and assigns penalties according to the following rules:

1. If problem A and B are assigned to the same node, it is
expected that all students have the same outcome to both
problems. A penalty is assigned for each student that did
not have the same outcome to both problems.

2. If problem A is placed in a later node in the graph than
problem B, and the two nodes connect, then it is expected
that students who answer problem A correctly, also answer
problem B correctly. A penalty is assigned each time this is
not the case.

3. If problem A is placed in an earlier node in the graph than
problem B, and the two nodes connect, then it is expected
that students who answer problem B correctly, also answer
problem A correctly. A penalty is assigned each time this is
not the case.

4. If problem A and B are assigned to two unconnected nodes,
then their outcomes are expected to be different. A penalty
is assigned each time a student has the same outcome for
both problems.

The above rules result in four penalty matrices, one for each
case. The total penalty consists of all four matrices added
together. The penalty matrices are modulated by the order
of the problems, where the penalty in case 2 and 3 may be
negated if they can be attributed to a learning effect (i.e. a
student has learned the correct outcome over time).

Using the penalty matrices, the graph algorithm assigns
each problem to each possible node so as to minimise its
penalty. It uses simulated annealing to find an optimal solution,
where each problem is placed in the node that leads to its
minimum penalty. To determine the optimal number of skills,
we ran the algorithm for increasing numbers of skills, each
time examining the penalty of the solution. After running it
for seven skills the total penalty did not decrease anymore
significantly.

The final knowledge graph generated through this method
for this dataset is shown in Figure 3. The top node, node 0,
contains problems that require none of the skills underlying the
dataset (represented by the bit string: 0000000). The bottom
node, node 127, contains all skills (1111111), meaning all
skills are needed to solve the problems in that node.
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Figure 3: The knowledge graph generated by the graph algo-
rithm

For time reasons, we will not identify all seven skills.
Rather, we focus on node 0 and node 8 to identify one
skill underlying this dataset. Figure 4 shows the content
of these two nodes. Node 0 contains only one problem:
PAINTING_THE_WALL. Node 8 contains several triangle and
trapezoid problems. As visible by the bit strings at the bottom
of the nodes, these two nodes differ (according to the graph
algorithm) in one skill.
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Cognitive Models
Through the cognitive models, we try and identify the skill
that is needed to solve the problems in node 8, given the prior
knowledge established by node 0. We will set up two models
in the PRIMs architecture1 One for node 0 (Model 0) and for
node 8 (Model 8). These two models should differ in one skill
only, meaning Model 8 should be able to reuse most of the
skills it needs from Model 0.

Representing the Problems
As a starting point, we need to define a visual input that ac-
curately represents the problems of the dataset. This includes
a representation of both the geometric shape as well as the
question(s) asked. As in ACT-R, visual input in PRIMs is
represented by chunks in the visual buffer. To represent the
geometric shape, multiple visual chunks are used.

Each visual chunk consists of (at most) seven slots (item)
that together describe the represented visual object. The
chunks are structured through a visual hierarchy, where a
screen object represents the highest level of the hierarchy.
Contained within the screen is a geometric shape that forms
the “top” shape. The top shape, in turn, can consist of bases,
heights, and other shapes. Given this hierarchy, it is possible
for the cognitive model to shift its visual attention to another
chunk in the same level of the hierarchy (through the third
slot in each visual chunk) or to move one level down in the
hierarchy (through the fourth slot in each chunk).

Beyond the hierarchical information, each visual chunk
contains information about the visual object it is representing.
Generally, the second slot identifies the visual item’s type,
the fifth gives its width, the sixth its height, and the seventh
its area. The widths, heights, and areas that are given in the
questions are copied directly to the visual input, skipping over
any necessary reading (since that can be quite complex and is
not the model focus). If a value is missing (or not applicable,
e.g. in the case of a base not having a height or area), it is
recorded as nil. There is one visual chunk that does not
follow this format, which is the top screen chunk. Next to the
hierarchy, the screen chunks holds a top-level goal in the fifth
slot and, if applicable, a target shape in the sixth slot. The
questions of each problem are thus represented by parsing the
given numbers and placing the top-level goal (e.g. finding a
shaded area) in the screen chunk.

Model 0
As explained prior, node 0 contains only the
PAINTING-THE-WALL problem, which consists of four
questions. Each question asks the student to calculate the
shaded area of the shape, that is: the area of the wall minus
the door. The four questions are identical save from the given
numbers for the various parts of the visual input.

In the visual input, the wall is represented by the top shape
(as explained in the previous subsection), whose height is

1See https://github.com/IDMAkrum for the full code of both mod-
els.

given in each of the questions but whose base has to be cal-
culated separately. This calculation involves adding the bases
AE, EF (base of the door), and FB. Once the base of the wall
is found, it has to be multiplied with the height of the wall
to get the area of the wall. Then, the area of the door needs
to be calculated (whose base and height are both given in the
question). With both the area of the wall and the door, the
shaded area can be found by subtracting the area of the door
from the area of the wall.

To model this process of solving the PAINTING-THE-WALL
problem, Model 0 starts off with three defined skills. The
first skill is the shaded-area skill. This skill tries to find the
shaded area by subtracting the area of lower-level shapes from
the top-level shape. If the area of the top-level shape is not
known (i.e. nil in the visual representation), then the model
switches to an area skill that calculates the area of a rectangle,
given its base and height. If in the area skill, the model finds
the base is missing, it switches to a base skill to calculate
the base of a shape by adding the segments that make up said
base.

Each time the model finds an intermediate answer (like a
base or area), it updates the visual input. This mimics the idea
of writing down intermediate answers, which students were
expected to do when they were solving the problems of the
geometry dataset. Eventually, the visual input will be such
that the top-level shaded-area skill can execute fully, which
means the model then succeeds in calculating the shaded area
and thus in solving the question.

Together, the three skills can be used to solve the entire
PAINTING-THE-WALL problem. Their straightforward nature,
however, makes it difficult to re-use the skills for other prob-
lems. After creating and running this model, it was found that
the model could not solve the problems of node 8 by adding
only one skill.

To make sure Model 0 could be adapted with one skill
to solve the problems of node 8, its skills had to be made
more general. Mathematical operations (for this model: addi-
tion, subtraction, and multiplication) are turned into their own,
separate skills. Iterating over the various items in the visual hi-
erarchy also becomes its own skill. In practice, this means that
the shaded-area, area, and base (called segments in this
generalised version) skills now focus on describing the process
through which to get to the shaded-area, area, and base respec-
tively. The skills specify which slots of the visual chunks to
focus on, and which steps to take to get to a successful answer.
They also specify what to do in case of a failure (i.e. switching
to another skill). They rely on the iterate-over skill for
iterating, specifying only what to iterate to, and on the math
skills for doing the mathematical operations (after specifying
which numbers to add/subtract/multiply).

Model 8
The version of Model 0 with more generalised skills works
as a basis for Model 8. A comparison of node 0 and node
8 makes it clear that this model contains many transferable
skills. For example, it can use its shaded-area skill to find
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the shaded-area in the TRIANGLE_TRIANGLE problem. For
the problems involving trapezoids, the segments skill can be
used to add the two bases that trapezoids have. There are even
similarities in calculating the areas of triangles, trapezoids,
and rectangles. For all three shapes, a base and height must
be multiplied with each other to get to the shape’s area. In the
case of triangles and trapezoids, however, the answer from the
base times height multiplication still needs to be be divided
by two to get to the final area of the shapes. In fact, adding a
division skill to Model 0 should make it capable of solving all
node 8 problems.

To create Model 8, a division skill is thus added that works
similarly to the addition, subtraction, and multiplication skills.
Each of these skills models mathematical operations in the
same way: as a simple memorization. Rather than performing
a complex calculation, each math skill retrieves a memory
chunk from the model’s long-term memory. This memory
chunk contains the result of the specified operation between
two given numbers. The addition skill calls for an addition
memory chunk, the subtraction for a subtraction chunk, et
cetera. Of course, this is not a realistic representation of
mathematical operations. However, in the dataset, no skill
difference was found between problems with more complex
numbers (e.g. double digits multiplication) compared to sim-
pler numbers. It is assumed that students used a calculator for
their mathematics, and therefore, this abstraction is acceptable.

Adding a division skills makes it possible for Model 8
to solve the problems in node 8. However, the skills from
Model 0 do not specify how and when to use the division skill.
Therefore, it is necessary to further expand the skills of Model

0, so that they can be applied for the new context of dealing
with triangles and trapezoids.

Dealing with triangles is relatively easy. It differs from
the original area skill only in that the answer from the base
times height multiplication needs to be divided by two. Two
operators are added to the area skill to specify this: one that
says to divide the intermediate answer by two, and one that
specifies that the area skill is finished only after this division
has taken place. Both operators are specific to triangles and
trigger only for triangles. As such, alternative versions of these
operators are added to the area skill as well, which trigger
only for trapezoids.

In the case of triangles, the two operators, when combined
with existing operators, are enough to solve for the area of
a triangle. For trapezoids, there is the added complexity of
finding the base of the trapezoid. This calculation differs from
the others in that it is not considered its own step in the dataset.
It is therefore assumed students were not supposed to write
down the intermediate answer of adding the trapezoid bases.
Model 8 is updated with four operators to accommodate for
this.

Firstly, the segment skill is given an alternative success
scenario, where it does not write down the intermediate an-
swer but rather adds it to working memory. A new op-
erator in the area skill, in turn, ensures the alternative
success scenario is triggered when dealing with trapezoid
shapes. If the intermediate answer is stored in working
memory, the missing-base-trapezoid operator prevents
the model from adding the bases together again, while the
base-of-trapezoid operator specifies what the model must
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do with the intermediate answer (i.e. multiply it with the
trapezoid height).

The addition of in total 8 new operators to the area and
segment skills combined makes Model 8 a degree more com-
plex than Model 0. To ensure Model 8 uses its new operators
over some of the older ones, the new operators are given a
higher activation. This is done because both models assume
that the needed skills to solve the nodes are already mastered.
Mistakes are not intentionally modelled and actively prevented
where they do naturally occur.

The final models of node 0 and node 8 work according to
expectations. Model 0 can solve the PAINTING-THE-WALL
problem, while Model 8 can solve all problems of node 8,
as well as the PAINTING-THE-WALL problem. Since it has
more operators, Model 8 does require more time to solve the
PAINTING-THE-WALL problem than Model 0. This difference
can be mitigated by running Model 0 before running Model
8. In that case, the skills from Model 0 are more efficient
through practice, which Model 8 inherits since it uses those
same skills.

Discussion
The construction of the knowledge graph, and the model that
solves subsequent problems shows the viability of a hybrid
approach to modeling. Instead of constructing a model just on
the basis of the intuitions of the modeler, we used a data-driven
approach to help partition the model into seven skills, and
subsequently started implementing these skills (only finishing
the first two).

The knowledge graph
While there is no ground truth to evaluate the knowledge
graph with, it is possible to make an intuitive estimate of its
appropriateness. In a representative knowledge graph, it is
expected that easier problems are placed in the earlier nodes
and more difficult problems in the later nodes. There should
additionally be some sense to the way the problems are split
across nodes, where it should be possible to see the similarities
that connect the problems within one node, and the differences
between the problems across nodes.

Unfortunately, space limitations do not allow us to discuss
all the nodes in the graph in detail, but the final knowledge
graph matches intuition in some places and not in others. Prob-
lems that are deemed more difficult, like shapes within shapes
(e.g. the TWO-CIRCLES-IN-A-CIRCLE problem from Figure 2)
are placed primarily in node 127. By comparison, problems
that are restricted to only one shape are placed in the earlier
nodes. The graph additionally shows an intuitive hierarchy be-
tween shapes, with square and triangle problems being placed
in earlier nodes than circle and pentagon problems.

The graph can, at times, match intuition less well when
it comes to the differences and similarities between nodes.
While all triangle and trapezoid problems are placed in node
8, circle problems that seem similar are split across nodes 27
and 29, and a problem that asks students to calculate different

triangles within a rectangle has its steps split across four dif-
ferent nodes. Generally, the quality of the knowledge graph
differs per node but overall, the resulting knowledge graph
makes some intuitive sense.

An elaborate discussion of the knowledge graph can be
found in Akrum (2022).

The skills model
The reader may wonder at this point what the model’s pre-
dictions are, and how they relate to the data. However, that
was not the purpose of this model. It shows that it can solve
multiple different problems at different skill levels. We found
that the ideal that we started with, namely that the skills under-
lying the graph correspond one-to-one with skills in the model,
does not hold in practice. To model the transition from node
0 to node 8, we needed to add the division skill, but we also
needed to augment the existing skills to include triangles and
trapeziums. While theoretically possible, it is not very likely
that the students taking this tutorial were lacking the division
skill. Rather, it is just that this skill was not needed for the
node 0 problem. More likely, however, it is the augmentation
to the skill to calculate the area for triangles and trapeziums
(which does include division) that most distinguishes node 0
from 8.

Another possibility is that the transition between nodes
involves adding multiple skills. As long as the data cannot
distinguish between two skills, the graph algorithm will not
identify them. This can be either due to a lack of assignments
that separates them, or because not enough students have
mastered one but not the other.

Applications in Tutoring
Cognitive tutors are typically based on models that are con-
structed. Their quality therefore solely depends on the exper-
tise and skill of the modeler. By augmenting this process by
a data-driven analysis that guides the model, a more realistic
and reliable model can be build that matches skill differences
in student data. Such models can provide insight to the teacher
and student of the student’s current skills, and provide guid-
ance in what the best materials to study and practice with
are.
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Abstract 

In this study, we propose a roadmap for the analysis of various 
factors on cognitive models' parameters and utilizing different 
cognitive models to better understand the human decision-
making process in a binary choice task. Our experiment of a 
binary choice task is a Biased Coin Flip Game, where users 
predict the outcome of 150 trials of biased coin flips without 
knowing the coin's bias. In a previous study, we conducted a 
factorial ANOVA on the Biased Coin Flip Game to identify 
factors that significantly influence users' decision-making 
strategies, such as gender, the presence or absence of the 
WinRate, and the coin's bias value. In this paper, we employed 
a Genetic algorithm to identify cognitive models’ parameters 
that fit the users' behaviors the best in scenarios specific to each 
combination of effective factors. Subsequently, we fitted linear 
models on cognitive models’ parameters to examine the 
relationship between the identified parameters and the 
influential factors on decision-making. By analyzing and 
interpreting the coefficients of these linear models, we aim to 
gain insights into how these factors affect users' decision-
making processes and understand human decision-making 
better. Our proposed roadmap serves as a valuable resource for 
researchers who aim to interpret cognitive model parameters in 
different experimental settings. By providing a systematic 
approach to investigating the relationships between influential 
factors and cognitive model parameters, this work provides a 
deeper understanding of human decision-making processes 
and baselines for future modeling approaches in this domain. 

Keywords:  cognitive modeling; ACT-R; decision-making; 
binary choice task; human performance modeling 

Introduction 
The human decision-making process is a complicated 

blend of cognitive, emotional, and environmental factors that 
has been a topic of interest across multiple disciplines 
(Gigerenzer & Gaissmaier, 2011; Kahneman & Tversky, 
2013). Understanding the underlying principles that shape 
our decisions can have critical applications in improving 
individual and social outcomes. One aspect of decision-
making that has received considerable attention is the human 
utility function (Bourgin, Peterson, Reichman, Russell, & 
Griffiths, 2019; Peterson, Bourgin, Agrawal, Reichman, & 
Griffiths, 2021; Wang & Ruhe, 2007). It refers to the value 
that the decision-maker’s mind assigns to each potential 
outcome of a choice in an environment where multiple 
choices are presented to the decision-maker. The outcome of 
each option is unknown to the decision-maker. This paper 
aims to analyze (a) the elements that impact the human utility 
function, (b) the significance of their impact, and (c) the 

decision-making strategies users follow in different settings 
of a choice task experiment referred to as the “Biased Coin 
Flip Game." The game consists of virtual coin tosses in which 
the probabilities of the outcomes are not equal, i.e., the coin 
is biased. In each trial, the coin flip can result in either 
"Heads" or "Tails," and users must predict the outcome. The 
user's choices, Heads and Tails, correspond to the two 
potential results of the next coin flip which the user aims to 
predict correctly. This study aims to explore the factors that 
influence users' decision-making strategies in this binary 
choice task. 

Probability learning is a key component of decision-
making. It has been shown that probability learning plays a 
significant role in an individual's ability to adjust their 
decisions based on the probabilities associated with each 
choice (Gallistel, 1990; Rescorla, 1972). The Biased Coin 
Flip Game leverages this concept by presenting the users with 
a coin flip task where one side of the coin appears with a 
higher probability than the other one, which is unknown to 
the users. Through repeated trials, individuals are expected to 
learn the bias and adjust their decision-making strategies 
accordingly (Vulkan, 2000). However, the number of trials 
needed to learn the bias, and the strategy that users choose to 
follow are highly susceptible to the visual cues represented to 
users (Shanks, Tunney, & McCarthy, 2002). To the best of 
our knowledge, none of these studies have analyzed how 
different types of feedback affect the utility value that users 
devote to each option. Hence the development of a cognitive 
model is necessary to understand how different feedbacks 
effect users’ decision making and how to optimize the design 
for a desirable behavior by them. 

To investigate the influence of visual cues on decision-
making strategy and decision time, (Bagherzadeh & 
Tehranchi, 2023) studied the effect of multiple cues such as 
(a) the hidden/unhidden win rate indicator (from now on in
this paper, we refer to it as WinRate), and (b)
hidden/unhidden the five most recent coin results alongside
demographic characteristics of users such as (c) gender and
(d) Education and experimental settings such as (e) bias value
and (f) the initial coin outcomes in the first 20 trials. Utilizing
Fractional Factorial Design (i.e., a statistical experiment
design method to analyze the significance of each cue), they
analyzed the effect of these cues on decision-making strategy
and decision-making time. In this work, we investigate how
these factors affect the decision-making process of the users.
Knowing how different factors affect users’ decision-making
processes will help us to better understand human cognition,
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design better interfaces, and know what to expect from users 
in different experimental settings. 

In recent years, cognitive architectures have emerged as a 
tool to model and simulate human cognition and behavior in 
complex tasks, such as probability learning, multi-cue 
decision-making, and utility function optimization 
(Anderson, 2009). These architectures offer a comprehensive 
framework for understanding the cognitive processes 
underlying decision-making, incorporating the interaction 
between various cognitive components such as memory, 
perception, attention, and reasoning. The integration of 
findings from the fields of psychology, neuroscience, and 
artificial intelligence makes cognitive architectures a great 
tool to simulate human behavior and predict decision-making 
outcomes in a wide range of contexts (Newell, 1990). 
Modeling users’ decision-making process with different 
cognitive architectures, will help us better understand users’ 
behavior in the presence of different factors and will help 
designers to know what types of behaviors to expect from 
users in different settings and designs and consequently, 
make better design decisions (Peschl & Stary, 1998).   

Cognitive architectures provide a great infrastructure for 
studying probability learning and multi-cue decision-making 
and can provide valuable insights into the processes that 
affect the human utility function and decision-making 
strategy. For example, through the use of cognitive 
architectures, researchers can simulate the effect of different 
visual cues on decision-making processes and investigate 
how users tend to think differently about the expected 
feedback from choices by modifying their internal utility 
functions based on the feedback they have received 
previously. Additionally, cognitive architectures can shed 
light on the role of various cognitive factors, such as working 
memory capacity and attentional control, which shape 
decision-making strategies and optimizes utility functions 
(Gray, Sims, Fu, & Schoelles, 2006; Marewski & Schooler, 
2011). Previously, we used ACT-R and PyIBL cognitive 
architectures, deep reinforcement learning with an epsilon 
Greedy decision-making algorithm, and Thompson sampling 
to model the decision-making process in the Biased Coin Flip 
Game  (Bagherzadeh & Tehranchi, 2022). We compared the 
versatility of these models in simulating different decision-
making behaviors that were observed from users in the 
literature. We showed that PyIBL and ACT-R are capable of 
simulating Matching and Maximizing which are the most 
common behaviors observed from users. However, we did 
not collect any data to analyze users’ behavior in the Biased 
Coin Flip Game. These findings will not only help us 
understand how different factors affect decision-making 
processes but also, will help us understand the differences 
between ACT-R and PyIBL decision-making processes, and 
understand which one is more suitable to simulate users’ 
decision-making in a binary choice task.  

Incorporating cognitive architectures into our study of the 
Biased Coin Flip Game can further advance our 
understanding of the relation between visual cues that are 
presented to the users and the decision-making strategy. 

Furthermore, the use of cognitive architectures can help 
researchers to identify potential cognitive bottlenecks or 
biases that may lead to suboptimal decision-making and 
suggest approaches to minimize the factors that lead to 
suboptimal decision-making through the design of more 
effective information presentation strategies⸺Suboptimal 
strategy is referred to any strategy that users' choices do not 
lead to the highest possible outcome. 

This study aims to analyze how different cues affect the 
decision-making strategy of users with different demographic 
characteristics and suggest ways to optimize decision-making 
environments suitable for different demographics. By doing 
so, we hope to provide insights into designing environments 
that promote optimal decision-making, avoid convergence to 
suboptimal strategies of decision-making. Identifying what 
the most effective visual cues are for guiding optimal 
decision-making can have practical implications in a wide 
range of fields, including interface design. 

Decision-Making in ACT-R 
Adaptive Control of Thought-Rational (ACT-R) cognitive 
architecture is a widely used computational model of human 
cognition (Anderson, 1990; Anderson & Lebiere, 1998). 
ACT-R offers a theoretical foundation for understanding the 
processes involved in human decision-making by simulating 
cognitive processes such as memory, learning, perception, 
and problem-solving. 
Production rules are the centerpiece of ACT-R architecture. 
They govern the manipulation of symbolic representations in 
the users’ working memory (Anderson, 2009). The 
architecture also incorporates a sub-symbolic level, which 
models the activation and retrieval of declarative knowledge 
from long-term memory (Anderson & Lebiere, 1998). This 
dual representation makes ACT-R ideal for the simulation of 
both rule-based and instance-based decision-making 
processes (Gonzalez, Lerch, & Lebiere, 2003). 
ACT-R has been applied to various decision-making studies, 
ranging from simple binary choices to complex problem-
solving tasks (Ritter, Tehranchi, Dancy, & Kase, 2020). 
These studies have shown that the ACT-R framework can 
effectively model human decision-making behavior and 
provide insights into the underlying cognitive processes 
(Marewski & Mehlhorn, 2011). For instance, ACT-R has 
been used to examine the role of cognitive biases in decision-
making (Johnson, 2006) and investigate the impact of 
expertise on decision-making performance (Taatgen, 2013). 
ACT-R employs a utility-based decision-making algorithm to 
select the most appropriate production rule in each given 
situation based on the value of the utility function. The utility 
function in ACT-R plays a critical role in estimating the 
expected value of firing a specific production rule, guiding 
the system toward a course of action (Anderson, 2009). 
The utility of a production rule (𝑈!) in ACT-R is calculated 
using the following equation: 

𝑈!(𝑛) = 𝑈!(𝑛 − 1) + 𝛼[ 𝑅!(𝑛) − 𝑈!(𝑛 − 1)] 
Where: 

• α is the learning parameter
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• 𝑅! (n) is the effective reward value given to
production i for its nth usage

• 𝑈! (0) is the initial utility value for production i.

The decision-making algorithm in ACT-R operates in a 
stochastic manner, using a Conflict-Resolution Equation 
(Bothell, 2017), also known as the Boltzmann equation, to 
select a production rule based on its utility, probabilistically. 
The probability 𝑃! of selecting a production rule i is given by 
the equation: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑖) =
𝑒"!/√%&

∑ 𝑒""/√%&'∈)
Where the summation j is over all the productions which 
currently meet the conditions required. The parameter s is 
called noise value. However, here, as for the similarity to 
other models, we refer to it as Temperature. ACT-R 
multiplies the Temperature value, s by the square root of two 
(similar to T in the Boltzmann equation).  
In order to fit the models’ results to users’ data, we can adjust 
the reward values, the learning parameter α, and the 
temperature value, s. We tune these parameters to minimize 
the Mean Square Error (MSE). We use the Genetic algorithm 
(Bozorg-Haddad et al., 2017) to find the combination of 
parameters that correspond to the smallest MSE. 

Decision-Making in PyIBL 
PyIBL (Python Instance-Based Learning) is a cognitive 
modeling framework that provides a computational 
implementation of Instance-Based Learning Theory (IBLT) 
(Gonzalez et al., 2003). IBLT is a psychological theory that 
aims to describe and predict human decision-making 
behavior in dynamic, complex, and uncertain environments 
such as the Biased Coin Flip Game. The core idea behind 
IBLT is that users rely on their past experiences or instances 
to make choices, rather than following predefined rules or 
optimization processes. PyIBL is specifically designed to 
simulate human cognitive processes and help researchers 
develop and test cognitive models that are grounded in IBLT. 
The PyIBL framework allows for the creation of cognitive 
models by incorporating key concepts from IBLT, such as 
instance storage, retrieval, and adaptation. In this framework, 
instances are stored in memory as chunks, and decision-
making is based on the retrieval of the most relevant chunk(s) 
from memory, considering similarity and activation values 
(Lebiere, Wallach, & Taatgen, 1998). By simulating human 
decision-making and gaining insights into cognitive 
processes, PyIBL contributes significantly to the fields of 
cognitive science, artificial intelligence, and human-
computer interaction. PyIBL has been developed based on 
PyACTUp, which is a Python implementation of ACT-R’s 
declarative memory and decision-making process. However, 
the decision-making process in ACT-R and PyIBL, even 
though similar, have differences that affect decision-making 
behavior. We previously explained ACT-R decision-making 
and now we explain the PyIBL decision-making process and 

illustrate the similarities and differences between ACT-R and 
PyIBL in the decision-making process.  

PyIBL uses the concept of blending to calculate the utility 
value of each choice in its decision-making process (Lebiere, 
1999). The blending mechanism consists of base-level 
activation, weights, utilities, noise, and Temperature. 
Activation 
The retrieval of an instance from the memory of the PyIBL 
model relies on its activation value. The activation value is 
determined by two factors: (a) the frequency and recency of 
the instance's experience by the model, and (b) how well it 
matches the attributes of the retrieval target. The activation is 
computed using the following formula: 

𝐴! = 𝐵! + 𝜖! 
Where: 

• 𝐴!: Activation of chunk i. It is also called “match
score” 𝑀!

• 𝐵!: This is the base-level activation and reflects the
recency and frequency of use of the chunk. We
elaborate on this and how to calculate this more.

• 𝜖!: The noise value.
Base Level 
The frequency and recency of the chunk i are described by its 
base-level activation, 𝐵!, which is influenced by the 
Memory's decay parameter, d. The base-level activation is 
calculated based on a function of the time passed since the 
previous occurrences of i, represented as 𝑡!' in the following 
equation. 

𝐵! = ln?@𝑡!'*+
'

A 

Activation Noise 
The activation noise, 𝜖!, implements the stochasticity of 
retrievals from Memory. It is sampled from a logistic 
distribution centered on zero. It is normally resampled each 
time the activation is computed. 
Blending 
A weight is calculated for chunks using their corresponding 
activation values to present the contribution of chunks in the 
blending value. 

𝑤! = 𝑒
,!
-

Where: 
• 𝑤!: The weight assigned to chunk i.
• 𝐴!: Activation of chunk i. It is also called “match

score” 𝑀!
• 𝜏: The temperature value.

With the activation values calculated for all the chunks 
corresponding to an action, the blending value is calculated 
as follows: 

𝐵𝑉 =@
𝑤!

∑ 𝑤''∈)
𝑢! =@

𝑒
,!
-

∑ 𝑒
,"
-'∈)!∈)!∈)

Lastly, the action with the largest blending value will be 
taken. If the outcome is already represented by a chunk, the 
base-level activation will be updated. If not, a chunk will be 
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created to represent the outcome in the next blending 
equation. 

Even though blending has been implemented in ACT-R’s 
retrieval time calculation, the blending equation cannot be 
used in the ACT-R decision-making process and simulating 
a decision-making process with blending is not possible in 
ACT-R. We tune the parameters of both cognitive models 
and analyze if either is simulating users’ behavior more 
accurately and use that model for further analysis. 

Methodology 

Experiment Description 
In this paper, we built upon our previous findings 
(Bagherzadeh & Tehranchi, 2023). We used 2.*% Fractional 
Factorial Experimental Design to identify the factors that 
influence users’ decision-making strategy in a Binary choice 
task. The study examined the impact of two cues (feedbacks), 
namely the last five results and the WinRate, across two types 
of settings: (a) the bias value of the coin and (b) Random seed 
to study the primacy bias in the first 20 trials. Because it can 
be difficult for users to recover from poor probability learning 
from initial 20 trial outcomes, in one level of this factor, the 
Heads and Tails appeared on the virtual coin equally and in 
another level, Heads appeared on 70 percent (14 out of 20) of 
trials. The study also accounted for demographic 
characteristics such as gender and education. We reported 
that potentially only gender, bias, and WinRate significantly 
influenced decision-making strategies. As a result, perhaps, 
cognitive models should only take these factors into account 
when making decisions. Using these findings, we analyze 
how these cues affect the decision-making process through 
cognitive modeling. 

Modeling 
Unique models to simulate the users’ behavior for each 

combination of the effective factors (gender, bias value, and 
WinRate) are required. Hence, at least eight models are 
needed to simulate all the possible combinations of factors. 
We used two different cognitive architectures: (a) ACT-R 
and (b) PyIBL. To evaluate our models’ performance, we 
used users’ data for every combination of factors which were 
collected in the previous study (Bagherzadeh & Tehranchi, 
2023). For the initial modeling details, please refer to 
(Bagherzadeh & Tehranchi, 2022). Initially, we adjusted the 
models' behaviors to match the users in each combination. 
We attempted to tune two parameters in the decision-making 
algorithms of both ACT-R and PyIBL: (a) Temperature and 
(b) noise value alongside the reward values for winning and
losing. To find the best parameter values, we employed a
Genetic algorithm (algorithm’s parameters are: maximum of
2000 iterations, 100 different sets of parameter values per
iteration) that minimized the Root Mean Square Error
(RMSE). For each set of parameters, we ran the model four
times and took the average proportion of Heads in blocks of
10 trials to reduce the impact of randomness and obtain a
more reliable estimate of the model decision-making
behavior with that parameter set. The Genetic algorithm will
be terminated if no improvements observed in RMSE in 200
iterations. If in two hundred iterations of the Genetic
algorithm, no improvement is observed in the value of the
RMSE, the algorithm is terminated.

None of the models’ results aligned with the users' data, 
resulting in a relatively high RMSE (6.1%). Hence, we turned 
to the feedback provided by the users after the experiment. 
They all stated that their decision-making strategy was based 

Table 1: PyIBL Models MSE and RMSE in Percentage are compared. The lowest RMSE values (the gray cell) are associated 
with Memory window size of 4. 

Measurement Memory window size (Considering the number 
of consecutive Heads) 

Memory window size (Considering wins after 
playing Heads) 

1 2 3 4 1 2 3 4 
MSE 0.0029 0.0025 0.0023 0.0027 0.0038 0.0036 0.0024 0.0020 
RMSE*100 5.4006 5.0518 4.7977 5.2251 6.1618 6.0326 4.9575 4.5069 

Table 2: ACT-R Models MSE and RMSE in Percentage are compared. The lowest RMSE values (the gray cell) are 
associated with the Memory size of 3. 

Measurement Memory window size (Considering the number 
of consecutive Heads) 

Memory window size (Considering wins after 
playing Heads) 

1 2 3 4 1 2 3 4 
MSE 0.0039 0.0036 0.0032 0.0034 0.0039 0.0036 0.0031 0.0034 
RMSE*100 6.2449 6.0011 5.6826 5.8686 6.2761 6.0116 5.6134 5.8686 
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on the number of consecutive wins they had while playing 
“Heads.” For instance, if they won four times in a row with 
Heads, they would switch to Tails. However, their decisions 
after playing Tails was only based on the last result. As Tails 
is the less likely outcome of the coin flip, the users will only 
switch to Tails if the outcome has been Heads for multiple 
trials in a row. Hence, if they win with Tails, they will switch 
to Heads. And if they lose with Tails, it means that Tails 
hasn’t been the outcome for even a longer period of time 
compared to the last coin flip. As a result, they will play Tails 
again with higher confidence. 

Hence in our second modeling attempt, we considered a 
memory window of four and set different rewards for 1, 2, 3, 
and 4 consecutive wins with Heads and two reward values for 
winning and losing with Tails. This is also in line with 
(Cowan, 2001) that users can hold up to four instances in their 
minds. Similar to the first attempt at modeling, the reward 
values were also chosen based on the goodness of RMSE 
using a Genetic algorithm. In PyIBL, the results were 
improved significantly across all cases (RMSE = 4.5%). To 
make sure that users are not utilizing less than four trials as 
some papers suggest a smaller number for working memory 
(Brockbank & Vul, 2020), we also developed models with 
smaller time windows. It resulted in a 10 percent increase in 
RMSE when the memory window decreased to 3. Lastly, we 
explored whether users made decisions based on the coin flip 
results ("Heads" or "Tails") rather than the outcome ("win" 
or "lose"). As shown in Table 1, the best performance was 
achieved by a memory window of four consecutive wins. 

In all instances, PyIBL outperformed ACT-R. The ACT-R 
model that took into account up to 4 consecutive wins 
exhibited an RMSE of 5.86%. However, by considering up to 

3 consecutive wins, the RMSE decreased to 5.61% (refer 
to Table 2). 

The result from this experiment showed that the PyIBL 
cognitive model of the decision-making process is more 
representative of users’ behavior than the decision-making 
process of ACT-R. An example of the PyIBL model with the 
memory of four compared to users in the case of (Male, no 
WinRate shown, and bias value of 0.6) is presented in Figure 
1. 

Sensitivity Analysis 
A linear model is fitted where the dependent variables are the 
PyIBL optimal parameters that we found by Genetic 
algorithm. Our independent variables are the factors that were 
identified by (Bagherzadeh & Tehranchi, 2023), i.e., (a) 
gender, (b) WinRate, and (c) bias value. The coefficients of 
the independent parameters provide valuable insights into 
how these different factors influence the reward that users 
expect to receive from choices and decision-making 
parameters, which consequently, modify the utility value and 
the decision-making process of different users. The general 
linear model for predicting the parameters is as follows: 

𝑃𝑎𝑟 = 𝐶/𝑥/ + 𝐶%𝑥% + 𝐶0𝑥0 + 𝐶1 
The three factors used in the general linear model to predict 
the decision-making parameters are gender (𝑥/), the presence 

or absence of the WinRate (𝑥%), and the value of bias (𝑥0). 
gender is represented using a binary variable (with male=1 
and female=0). The presence of the WinRate is also 
represented using a binary variable, with a value of 1 
indicating its presence and a value of 0 indicating its absence. 
The value of bias is represented using a binary variable, with 
a value of 1 representing a bias of 0.67 and a value of 0 
representing a bias of 0.6. The coefficients 𝐶/,𝐶%, and 𝐶0 were 
obtained by fitting a linear model to the data and representing 
the effect of each factor on the decision-making parameter 
being predicted. 

The coefficients were found by minimizing the RMSE of 
the predicted parameters by the linear model and the 
parameters found by the Genetic algorithm for each 
combination of factors. The value of the coefficients of the 
linear model can be found in Table 3. 

Analysis 
The coefficients of the factors in the formula for Temperature 
are found to be significantly smaller than the Temperature 
intersection 𝐶1. This suggests that sensitivity of users to the 
utility function is not affected by the factors considered in this 
study. The high value of the Temperature parameter indicates 
that users have a strong willingness to explore different 
choices and are less focused on valuing feedback based on 
their frequency of occurrence.  

Regarding the rewards, it seems that after a loss with the 
Heads (zero consecutive wins) and after two wins with 
Heads, users tend to play Heads again as the reward values 
are the highest among all cases. The effect of the features on 
rewards is most evident in three cases: (a) After a win, female 
users tend to play Heads more often than male users, (b) after 
one win with Heads, male users are more prone to play 
Heads, and (c) WinRate shows its effect more evidently after 
the users have won twice with Heads. If WinRate is shown, 
the users will be less likely to play Heads. Finally, 
contradictory to our expectation, after four wins, if the bias is 

Figure 1: The comparison of PyIBL model with memory 
window of four wins (n=4) with two male participants (𝑥/ =
0), with no WinRate (𝑥% = 0) and Bias value of 0.6 (𝑥0 =

0) with 95% confidence interval.
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higher, meaning if the probability of the Heads being the 
result of the coin flip increases, users are less likely to choose 
Heads.   

Table 3: The coefficient of the parameters for PyIBL models 
considering up to four consecutive wins. 𝐻! is the reward 
assigned after winning 𝑖, 𝑖 ∈ {1,2,3,4} consecutive times. 𝐻1 
is the reward after losing with “Heads”. 𝑇1, 	𝑇/ are the rewards 
assigned to winning and losing with Tails.  

In playing Tails, a loss is more encouraging to users to play 
Tails again in contrast to winning. This is a logical action. 
Because the probability of Tails is relatively low and two 
Tails in a row is an unlikely scenario in users’ minds. Hence, 
they are more likely to play Heads after winning with Tails.  
Finally, the noise seems to be affected the most by WinRate. 
Based on the result, it seems that when WinRate is shown to 
the users, the users are more likely to explore than exploit. 
They are likely to try various options even when they 
anticipate a higher reward from a particular choice. While if 
they were to exploit, they would exclusively select the option 
with the highest expected reward. This shows that WinRate 
induces a sense of insecurity that makes the users think their 
strategy is suboptimal and they need to exploit other 
strategies to reach a better Win rate. Also, users tend to try to 
achieve a higher Win rate value. In other words, users try a 
wider set of strategies to see if any of their strategies can 
result in a Win rate closer to 1.0. 

Discussion and Future Work 
Previously we examined the impact of two distinct cues, 
namely the last five results and the WinRate, across two types 
of experiment factors: one with bias values and the other with 
a random seed to reduce bias in the first 20 trials 
(Bagherzadeh & Tehranchi, 2023). We also accounted for 
demographic characteristics such as gender and Age group. 
We found that only gender, WinRate, and bias value affect 
the decision-making strategy of the users. Using these 
findings, here we developed 16 distinct cognitive models to 
simulate users’ decision-making process with ACT-R and 

PyIBL. The developed models produced different behaviors 
due to differences in the algorithms used to model decision-
making in ACT-R and PyIBL. A Genetic algorithm was used 
to find the models’ parameters that resulted in the smallest 
RMSE. PyIBL models performed significantly better than 
ACT-R models as evidenced by lower RMSE values of 
PyIBL models in comparison to ACT-R models.  

This result shows that the blending formula used in the 
calculation of the PyIBL utility function for each choice is 
more in line with what has been observed from the users. As 
a result, we chose PyIBL for a set of linear models where the 
dependent parameters were the rewards assigned to different 
outcomes alongside the parameters from the decision-making 
algorithm, such as Temperature, Decay, and Noise. And the 
independent parameters were (a) gender, (b) Win rate 
indicator which in this paper, we referred to it as WinRate, 
and (c) the bias value of the coin. We also conducted further 
analysis of the coefficients of these parameters to gain insight 
into the real-world interpretation of the coefficients and how 
they should be perceived. The result might not be a total 
representation of the reality of the effects. However, our work 
suggests a pipeline of how to analyze the decision-making 
process of different users in different scenarios. With a large 
number of users and more parameters to involve in our 
experiment, there is so much more to learn from the human 
decision-making process and how differences result in 
different types of behaviors. More studies and analyses are 
required to reach the real-world interpretation of these 
coefficients and how they should be perceived. 
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Abstract

We provide a  quantitative assessment  of  the part  of  speech
tagging accuracy rate of Double R Grammar. Double R is a
cognitively  and  linguistically  motivated  near  human-scale
computational  cognitive  model  for  the  analysis  of  written
English  which  is  focused  on  the  encoding  of  two  key
dimensions of meaning: referential and relational meaning. It
contains  a  lexicon  which  encodes  explicit  declarative
knowledge  of  words  and  grammatical  constructions,  and  a
procedural memory which encodes implicit knowledge about
how to analyze input expressions. With ~100,000 words and
multi-word units, the lexicon’s size aligns with estimates of
the size of the human mental lexicon. On 2 previously unseen
sample corpora, the system achieved a 98.50% part of speech
tagging  accuracy  rate  over  2604  tokens.  While  there  are
limitations to direct comparisons to competing approaches, the
current state of the art for part of speech tagging accuracy over
the annotated Penn Treebank corpus is ~98%.

Introduction

We describe a cognitively and linguistically motivated part
of  speech  tagging  capability within  the  written  word
recognition  subcomponent  of  the  computational
implementation  of  Double  R  Grammar  (Ball,  in
preparation). Double R is a near human-scale computational
cognitive  model  for  the  grammatical  analysis  of  written
English.  It  is  implemented  in  the  ACT-R  cognitive
architecture  (Anderson,  2007;  Anderson  et  al.,  2004;
Salvucci, 2020), and adheres to well-established cognitive
constraints on human language processing. It also adheres
to basic principles  of cognitive  (Langacker,  1987, 1991;
Ball, 2007a) and construction  (Goldberg, 1995; Sag, 2010,
Ball, 2007b) grammar, and is strongly usage based. 

The  computational  implementation  of  Double  R
Grammar  is  approaching  the  grammatical  breadth  and
accuracy of leading computational linguistic systems. The
mental  lexicon  was  developed  using  a  combination  of
automated  and  manual  techniques  and  contains  ~60,000
words and ~40,000 multi-word units with associated parts
of speech and morpho-grammatical features. The ~100,000
words and multi-word units align with numerous estimates
of the size of the human mental lexicon (Aitchison, 2003),
although we do not claim that Double R’s mental lexicon
encodes all the knowledge that humans have of words and
multi-word  units—especially  low-level  perceptual
knowledge  and  knowledge  of  fine-grained  meaning.  The
words  and  multi-word  units  in  the  mental  lexicon  were

mainly borrowed from the COCA corpus (Davies, 2008-),
the Penn Treebank corpus  (Marcus et  al.,  1993),  and the
multi-word  corpus  of  Hartmann,  Szarvas  &  Gurevych
(2012), and are assigned a part of speech specific base-level
activation based on their frequency of use. The retrieval of
lexical items corresponding to input tokens depends on the
spread of  activation from the lexical,  morphological,  and
grammatical context, and the base-level activation. 

Grammatical  productions  determine  how  to  integrate
retrieved  lexical  items  and  projected  grammatical
constructions  into  grammatical  representations.  There  are
~2500 manually created productions that cover the common
grammatical  patterns  of  English.  The  basic  processing
mechanism is  pseudo-deterministic  in  that  it  pursues  the
single best  analysis,  but  is  capable  of  non-monotonically
adjusting  to  the  evolving  context.  The  processing
mechanism  adheres  to  two  well  established  cognitive
constraints on human language processing: incremental and
interactive processing.

We  provide  a  quantitative  assessment  of  the  part  of
speech tagging accuracy rate  of  the of  the computational
implementation  of  Double  R  Grammar.  On  2  previously
unseen sample corpora, the system achieved a 98.50% part
of speech tagging accuracy rate over 2604 tokens. Although
this accuracy rate is not directly comparable to competing
machine  learning  approaches  trained  over  an  annotated
corpus, or deep learning approaches trained over big data,
the  current  state  of  the  art  for  part  of  speech  tagging
accuracy  is  around  98%  for  systems  trained  on  the
annotated Penn Treebank corpus. 

Two key  features  of  the  computational  implementation
are the ability to incrementally improve its capabilities, and
the  explicit  symbolic  representation  of  linguistic
knowledge.  These  features  make  it  possible  to  build
functional  systems  for  new  domains by  adding  domain
specific words and grammatical constructions,  along with
supporting  grammatical  integration  productions  to  the
domain general capability. We demonstrated this capability
in the Synthetic Teammate Project (Myers et. al, 2019). We
describe  ongoing  and  future  research  to  support  further
improvement of the part of speech tagging capability.

Implementation Details
In Double R Grammar, lexical knowledge is represented by
word plus part of speech chunks that are a combination of
word specific information, the part of speech of the word,
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and  information  about  the  semantic,  grammatical  and
morphological  features  of  the  word.  Word  plus  part  of
speech chunks are the lexical entries in the mental lexicon.
The term chunk is used technically to mean a small piece of
explicit  declarative knowledge.  Word plus  part  of  speech
chunks are not atomic—they contain internal  structure to
support the encoding of more than just the word form and
its part of speech. Word plus part of speech chunks are also
organized into a multiple inheritance hierarchy. At the  top
two  levels,  there  are  18  parts  of  speech  that  correspond
closely  to  the  traditional  part  of  speech  categories—e.g.
noun,  verb,  adjective,  adverb,  preposition.  More  broadly,
there are 56 parts of speech for which lexical items exist in
the  mental  lexicon—e.g.  personal  pronoun,  determiner,
nominal. These 56 parts of speech provide the basis for the
quantitative assessment.

Since the ultimate goal of Double R Grammar is language
understanding,  we  attempt  to  minimize  ambiguity  in  the
assignment of part of speech labels. Rampant ambiguity is
pernicious for language understanding. Where there is  no
difference in meaning across the different uses of a lexical
item, there should not be a difference in the part of speech.
The syntactic position of a lexical  item in a given use is
only  one  factor  which  is  used  to  determine  the  part  of
speech.  The  likely  parts  of  speech  of  a  lexical  item—as
encoded  in  the  mental  lexicon—are  determined  by  its
common uses, since the lexical item will not have occurred
frequently enough in an uncommon use to be encoded in
the  mental  lexicon  with  the  part  of  speech  typically
associated with the uncommon use.  In our view, parts of
speech  provide  coarse-grained  information  about  the
meaning  and  common  uses  of  lexical  items.  For  full
meaning determination, coarse-grained parts of speech and
grammatical structure need to be supplemented with fine-
grained meaning that may or may not be morphologically
or  grammatically  encoded.  Whether  or  not  fine-grained
meaning is grammatically encoded, it still has the potential
to influence grammatical structure. 

In  Double  R  Grammar,  part  of  speech  tagging  occurs
within  the  written  word  recognition  subcomponent  of  a
cognitively  and  linguistically  motivated  grammatical
analysis mechanism. The cognitive and linguistic principles
which  underlie  the  grammatical  analysis  mechanism and
written word recognition are discussed in detail in Ball (in
preparation). We mention some of them in this paper.

Cognitively,  Double  R  Grammar  is  a  computational
cognitive grammar of written English that details an explicit
system  of  lexical  and  grammatical  representation  and
processing.  Because  of  the  focus  on  the  grammatical
encoding of referential and relational meaning, we call the
underlying theory Double R Grammar. The computational
implementation identifies  the referring expressions in  the
input—e.g. object referring expression or nominal, situation
referring  expression  or  clause—and  the  relationships
between these referring expressions—e.g. a transitive verb
relating a  subject  and  an  object.  In  Double  R Grammar,
explicit  linguistic  knowledge is  encoded by lexical  items

and  grammatical  constructions  in  the  mental  lexicon.
During  grammatical  analysis,  lexical  items corresponding
to the input tokens are retrieved, grammatical constructions
are  projected,  and  retrieved  lexical  items  and  projected
grammatical  constructions  are  integrated  together  into
explicit  grammatical representations that  are  accessible to
conscious  awareness  and  manipulation  within  ACT-R
working  memory  buffers.  The  retrieval,  projection  and
integration of lexical items and grammatical constructions
is  implemented  via  productions  that  encode  implicit
knowledge  of  grammar  within  procedural  memory.
Although productions are implicit in the sense that they are
not declarative memory elements that are open to conscious
awareness in working memory buffers, they are explicitly
represented, and can be examined and manually adjusted. 

Double  R  Grammar  adheres  to  two  well-established
cognitive  constraints  on  human  language  processing—
incremental  and  interactive  processing  (Altmann  &
Mirkovic,  2009).  Double  R  incrementally  analyzes  the
written linguistic  input  one word or  multi-word unit  at  a
time,  using  all  available  lexical,  morphological,  and
grammatical  (and  eventually  fine-grained  semantic)
information  interactively  (in  parallel)  to  make  the  best
choice at each choice point. Once a choice is made, it  is
assumed  to  be  correct,  and  processing  proceeds
incrementally forward. However, the subsequent input may
require  modification  of  the  evolving  representation  via  a
non-monotonic  mechanism  of  context  accommodation.
Overall, the processing mechanism is pseudo-deterministic
in that it pursues the single best analysis given the current
input and context, but accommodates the subsequent input
and context when necessary (Ball, 2011). 

Linguistically,  Double R  Grammar aligns with cognitive
(Langacker,  1987,  1991;  Ball,  2007a)  and  construction
(Goldberg, 1995; Sag, 2010, Ball, 2007b) grammar, and is
strongly usage based. Double R Grammar also adopts and
adapts many ideas from traditional grammar as codified in
several reference grammars (Huddleston & Pullum, 2002;
Quirk  et  al.  1972,  1985;  Givon,  1993).  Some aspects  of
generative  grammar—most  notably  X-Bar  Theory
(Chomsky, 1970)—are also adapted (Ball, 2005). 

Grammatical analysis begins with the submission of an
unedited written input that may range in size from a single
word to an entire corpus of text, subject to computer system
performance  limitations.  The  input  is  incrementally
analyzed  one  word  or  multi-word  unit  at  a  time,  and  a
grammatical  representation  is  generated.  Grammatical
representations  consist  of  multiple  integrated  declarative
memory chunks.

During  incremental  grammatical  analysis,  the  written
word  recognition  subcomponent  analyzes the  next  four
space  delimited  input  tokens  and  attempts  to  retrieve  a
lexical item in the mental lexicon that matches the first and
zero or more of the remaining three input tokens. Retrieval
of  a  matching lexical  item is biased by the grammatical,
morphological,  and  lexical  context.  If  retrieval  succeeds,
the retrieved lexical item takes part in grammatical analysis.
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If retrieval fails, the first input token is subjected to further
analysis. If this token consists of only alphabetic characters
with zero or more hyphens or underscores, the input token
is analyzed as an unknown word, since it would otherwise
be in the mental lexicon. Unknown words are first analyzed
morphologically  to  identify any prefixes  or  suffixes.  If  a
prefix or suffix is identified, the remainder of the token is
analyzed to see if there is a matching lexical item. Some
spelling  adjustment  may  be  needed  to  identify  the
remainder as a lexical item—e.g.  intensifier → intensify +
ier. If there is a matching lexical item corresponding to the
remainder or base, it is retrieved and a copy of the lexical
item  is  made.  The  copy  is  updated  to  incorporate
information about the prefix or suffix, and a new word plus
part of speech chunk is created. The newly created word
plus  part  of  speech  chunk  participates  in  lexical  and
grammatical analysis. If the remainder does not correspond
to  a  lexical  item,  the  grammatical,  morphological,  and
orthographic context is used to bias retrieval of an unknown
word plus part of speech template. The retrieved word plus
part of speech template lacks word specific information and
has default values for grammatical features. If the retrieved
template is a proper noun, the input token is treated as an
unknown proper noun and a new word plus part of speech
chunk is created and used in grammatical analysis. If the
unknown word plus part of speech template is not a proper
noun,  the  input  token  is  subjected  to  spelling  correction
using  the  edit  distance  algorithm.  A cohort  of  spelling
correction  candidates  is  identified,  morphological  biases
relevant  to  any  identified  prefix  or  suffix  are  set,
orthographic  biases  are  set,  and  the  spelling  correction
candidate with the highest activation is retrieved and used
in subsequent grammatical analysis. A copy of the retrieved
part of speech template is also updated based on the original
input token, and a new word plus part of speech chunk is
created and stored in declarative memory where it can be
accessed, if the input token occurs again. This provides the
computational implementation with a  double shot learning
capability  following  spelling  correction.  If  no  spelling
correction  candidate  is  identified,  the  retrieved  part  of
speech template is updated with information from the input
token and a new word plus part of speech chunk is created.
In  this  case,  single  shot  learning  occurs  since  this  new
chunk is used immediately in grammatical analysis.

The Quantitative Assessment

To determine  part  of  speech  tagging  accuracy,  it  is  first
necessary  to  determine  the  number  of  tokens  for  which
parts  of  speech  must  be assigned.  Unlike  the  annotated
Penn Treebank corpus which is pre-tokenized, determining
the number of  tokens for  an unannotated corpus is  more
difficult.  Although  the  most  straightforward measure  of
token size would be the number of space delimited tokens,
this  measure  is  inadequate  in  several  respects.  In  the
unannotated  sample  corpora  used  in  this  study,  there  are
numerous space delimited tokens that contain punctuation
that  is  concatenated with what would otherwise be space

delimited  word  tokens  (e.g.  world—replete,  'Teddy,').  For
measurement purposes,  we split  off  punctuation and treat
punctuation  characters  as  separate  tokens,  unless  the
punctuation characters are part of a word (e.g. P.I.). We also
split off clitics like ‘s  (e.g.  John’s) and ‘ll (e.g.  we’ll go).
These adjustments align with the way tokenization works in
the Penn Treebank corpus. Familiar compound words that
are in the mental lexicon may be hyphenated (e.g. state-of-
the-art),  space  delimited  (e.g.  state  of  the  art),  or
concatenated  (e.g.  nonetheless).  Should  the  tokens  that
match subparts of compound words be treated as separate
tokens?  The  Penn  Treebank  treats  space  delimited
compounds as multiple  tokens, but  treats hyphenated and
concatenated compounds as a single token. This can lead to
odd tokenizing behavior. For example, in the expression a
new generation of  bin Ladens, the compound proper noun
bin  Ladens would be  tokenized  as  bin and  Ladens.  This
complicates  recognition of  the familiar  compound proper
noun  bin Laden to which the plural suffix  s is  atypically
attached. Instead of relying on ambiguous spaces to delimit
tokens, we use the linguistically motivated concept of a free
morpheme. A free morpheme is capable of standing on its
own as a space delimited token, but may also be part of a
compound  word.  Each  free  morpheme  is  counted  as  a
separate  token.  Within  compounds,  we  do  not  count  the
hyphen or space as a separate token. We also do not count
bound  morphemes—including  prefixes  and  suffixes—as
separate tokens. In the case of  bin Ladens,  which is not in
the mental  lexicon, we treat  it  as a two token compound
proper  noun  with  the  plural  s suffix  attached  to  the
rightmost token. For bin Ladens to be recognized, the plural
s suffix must first be removed so that the compound proper
noun  bin Laden  can be retrieved from the mental lexicon.
Once retrieved, the plural  s can be reattached and a new
compound proper noun token for bin Ladens can be created.

For  each  retrieved  lexical  item,  it  is  necessary  to
determine if the assigned part of speech is preferred in the
grammatical  context.  Since  the  Penn  Treebank  corpus  is
annotated, it is possible for systems trained on this corpus
to determine this  automatically.  For unannotated corpora,
some other  mechanism is needed. We do this assessment
manually using sampling techniques. For multi-unit words,
we count each free morpheme separately for part of speech
tagging  accuracy  purposes.  For  bin  Ladens which  is
categorized as a plural proper noun, we count this result as
two correctly tagged free morphemes bin and Ladens, even
though bin Ladens corresponds to one lexical entry.

For some words in some contexts, there is ambiguity in
the part of speech assignment that cannot be grammatically
resolved. For example, if a word can be both an adjective or
a noun, either one may be preferred—depending on fine-
grained meaning—when the word functions as a modifier in
a  nominal—e.g.  a  sterling (adj) example  vs.  a  sterling
(noun) spoon.  Words  describing  colors  can  atypically  be
used with or without a nominal head, without an obvious
difference in meaning—e.g. I like the red vs. I like the red
one.  For  color  words,  we  categorize  them  as  composite
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adjective nouns—i.e. a hybrid part of speech category that
inherits  from  both  the  higher  level  adjective  and  noun
categories. The existence of composite categories is a  key
feature  of  Double  R  Grammar  which  is  important  for
minimizing  ambiguity.  The  existence  of  composite
categories follows from the multiple inheritance hierarchy
of parts of speech. If a part of speech category has multiple
parents,  it  is  a  composite  category.  Words  like  fast are
categorized as composite adjective adverbs since they can
function as  both nominal  and  verbal  modifiers  without  a
difference  in  meaning—e.g.  the  fast car  vs.  he ran  fast.
The existence of composite categories minimizes ambiguity
and facilitates part of speech tagging accuracy. Composite
categories  make most sense for closely related categories
like adjective and adverb. A composite category like noun
verb would be helpful for minimizing ambiguity in the use
of words like zoning in the zoning (noun?) of the section vs.
they are zoning (verb) the section, but these two categories
are semantically very different and it  is  unclear  what the
meaning  of  a  composite  noun  verb  category  would  be.
There  is  no  notion  of  composite  categories  or  multiple
inheritance in the Penn Treebank tagset which provides a
flat listing of atomic parts of speech, although there is some
implicit  hierarchy—e.g.  NN  (noun,  singular)  →  NNS
(noun, plural) | NNP (proper noun, singular) and NNP →
NNPS (proper noun, plural).

For the quantitative assessment, we collected a sample of
previously  unseen,  unedited  and  unannotated  texts  and
grammatically analyzed them. The sample includes a few
paragraphs from a Clive Cussler novel, available on line,
and paragraph length abstracts of 25 books on the topic of
spy novels from www.smashwords.com. We chose to use
book abstracts, since each abstract is about a different book
with  a  different  set  of  characters  and  subject  matter.
However, since the abstracts were not annotated with parts
of speech, they needed to be small enough in size to make
manual assessment  feasible.  On  this  previously  unseen
corpus, the computational implementation correctly tagged
1810 out of 1838 tokens for an accuracy rate of  98.48%.
We submitted a second corpus of 8 abstracts of books on
the topic of self-help and two political biographies, and the
computational implementation correctly tagged 755 out of
766 tokens for an accuracy rate of  98.56%. This accuracy
rate was achieved even though only  97.65%  of the input
tokens  matched  a  lexical  entry  in  the  mental  lexicon.
Combining  the  two  samples,  the  computational
implementation correctly tagged 2565 out of 2604 tokens
for  an  accuracy  rate  of  98.50%.  We  computed  the  95%
confidence interval around 98.50% as ranging from 97.95%
to 98.90%. We plan to  make the quantitative  assessment
details available—including a word by word analysis—on
the ACT-R web site at  http://act-r.psy.cmu.edu/publication/
and in Ball & Rodgers (forthcoming).

Comparison to Other Approaches

We believe that the accuracy rate reported in this paper is
state of the art for a cognitively and linguistically motivated

approach  that  does  not  use  machine  learning  over  an
annotated corpus, or deep learning over big data. Basically,
it is state of the art for an approach that combines explicit
symbolic  representations  operating  over  a  probabilistic
substrate,  but  does not use machine learning to learn the
probabilities  or  production  rules.  We  make  this  claim
because  we  are  unaware  of  any  large-scale  symbolic
system,  with  or  without  probabilities,  that  does  better.
Perhaps the closest in performance is the rule-based Brill
part of speech tagger (Brill, 1992) which achieved a part of
speech tagging accuracy rate of around 95% on the Brown
corpus (a precursor to the Penn Treebank corpus), and was
used in the part of speech annotation of the Penn Treebank
corpus.  The  Brill  POS tagger  first  creates  a  baseline  by
identifying the highest  frequency part  of  speech for  each
known word in a corpus. For unknown words, if the word is
capitalized it  is treated as a proper noun. Otherwise,  it  is
treated  as  a  noun.  The  creation  of  this  simple  baseline
achieves  a  part  of  speech  tagging  accuracy  of  ~90%.
Following creation of the baseline, rules for adjusting the
part of speech of each word are iteratively applied until the
tagging  accuracy  stabilizes.  These  rules  can  either  be
manually created or  learned  via machine  learning.  As an
example, there is a rule that changes the part of speech of a
word  initially  categorized  as  a  past  tense verb  (VBD) to
past participle (VBN), if it follows an auxiliary verb—e.g.
the ball was kicked.

The tagging accuracy rate of the Brill POS tagger reaches
asymptote at ~95% on the Brown corpus. Interestingly, the
rules that adjust the part of speech are not associated with
probabilities, even though machine learning may have been
used to create them. Instead the iterative application of all
the rules is repeated until further iterations reach asymptote.
Since  the  rules  are  ordered,  inappropriate  serial  order
effects are likely as in the categorization of  airspeed as a
past tense verb (VBD) because of the -ed ending.

Like the Brill  tagger, the computational implementation
of  Double  R  Grammar  has  productions  that  can  non-
monotonically  change  the  part  of  speech  of  a  word  in
context. For example, there is a production that changes the
part of speech of a past tense verb to past participle in the
context of a regular (i.e. non-modal) auxiliary verb, similar
to the rule used by the Brill  tagger.  This production was
added to handle the case where only the past tense verb is in
the mental lexicon and necessarily gets retrieved even in the
context  of  a  regular  auxiliary  verb.  But  the  Double  R
Grammar production has access to more of the grammatical
context  than  the  Brill  tagger  rule.  For  example,  in  the
expression the soccer player that could kicked the ball, the
past  tense  verb  kicked follows  the  modal  auxiliary  verb
could, but should not be recategorized as a past participle as
the Brill tagger rule suggests. Surface position is not always
indicative  of  grammatical  constituency  or  function,  and
modal auxiliaries like  could, unlike regular auxiliaries like
be and have, are not typically followed by either past tense
or  past  participle  verbs.  As  another  example,  in  the
expression  John’s  sad story,  there  is  a  production  that
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overrides the  initial  treatment  of  the  adjective  sad as  a
predicate  (i.e.  John’s  sad)  to  be  a  modifier  within  a
predicate nominal when the noun story is processed.

We  can  view  the  computational  implementation  of
Double R Grammar as a rule-based system—like the Brill
part  of  speech  tagger—but  with  probabilistic  utilities
assigned to the production rules. If we can demonstrate that
our  rule-based  approach  achieves  a  state  of  the  art
capability  with  respect  to  machine  learning  approaches,
then we can site Rule 1 of the Google Machine Learning
Handbook in support of our approach: “Don’t be afraid to
launch  a  product  without  machine  learning...If  machine
learning is not absolutely required for your product, don't
use  it  until  you  have  data”  (Google  Machine  Learning
Handbook, downloaded 2023). For part of speech tagging
of  unannotated  text,  it  is  unclear  where  that  data  would
come from.
   With respect to machine learning approaches trained over
the annotated Penn Treebank corpus, the current state of the
art is ~98% tagging accuracy (POS Tagging state of the art,
downloaded  2023).  Unfortunately,  the  state  of  the  art
percentages  displayed  on  this  website  are  not  directly
comparable  to  our  results.  For  one,  Double  R  Grammar
uses a different set of part of speech tags organized into a
multiple inheritance hierarchy. Whereas the Penn Treebank
tagset consists of 36 parts of speech, Double R Grammar
includes 56 parts of speech for which at least one lexical
item exists in the mental lexicon. Whereas word plus part of
speech chunks in Double R Grammar are non-atomic and
have internal structure, Penn Treebank part of speech tags
are  atomic,  without  internal  structure.  Whereas  the
underlying theory of parts of speech in Double R Grammar
avoids having multiple parts of speech for a word, where
the  meaning  of  the  word  does  not  differ  in  different
contexts, words are assigned different parts of speech in the
Penn Treebank based primarily on syntactic position, often
ignoring  similarity  in  meaning.  For  example,  in  the
expressions  the bull is  running,  the  running bull and  the
running of the bull, the word  running is categorized as a
present participle verb in Double R Grammar. Since there is
no difference in meaning across these uses, and since the
meaning and most common use of running is as a verb, its
categorization  as  an  adjective  or  gerund  on  the  basis  of
syntactic position is unwarranted. Instead of changing the
part of speech of the word  running based on a particular
use,  we  allow  the  verb  running to  exhibit  different
grammatical  functions in different contexts. The syntactic
position of a word is only one factor used to determine its
part  of  speech.  Although it  is  possible to  map Double R
Grammar  parts  of  speech  to  Penn  Treebank  tags  for
comparison  purposes,  it  is  more  difficult  to  reconcile
theoretical  differences  in  part  of  speech  assignment.  For
example,  the  Penn  Treebank  tags  running in  people  are
running (RB) scared  (VGN) as an adverb (RB)—perhaps
because it functions as a modifier of the head verb scared.
In Double R Grammar,  running scared is a familiar multi-
word  verb.  Within  this  multi-word  verb,  the  functional

status  of  running and  scared is  unclear.  More  generally,
Double R Grammar makes extensive use of space delimited
multi-word units. Multi-word units facilitate processing and
reduce  ambiguity.  The  achievement  of  >98%  tagging
accuracy  is  dependent  on  the  inclusion  of  familiar  space
delimited multi-word units in the mental lexicon. Additional
differences include the pre-tokenization of the input in the
Penn Treebank corpus and the pre-identification of sentence
boundaries. The computational implementation of Double R
Grammar  accepts  unedited  textual  input  without  pre-
tokenization  or  pre-identification  of  sentence  boundaries.
Since the computational implementation is not trained on a
particular corpus, its performance generalizes to previously
unseen corpora. Any comparison of the performance of the
computational implementation of Double R Grammar to a
machine learning approach should consider  the ability  to
generalize  to  new  unannotated  corpora,  in  addition  to
considering performance on the held out testing portion of
the annotated corpus. When evaluating performance on an
unannotated  corpus,  use  of  sampling  techniques  for
measurement purposes becomes important.

In  addition  to  part  of  speech  tagging  accuracy,  it  is
possible to compare the computational implementation with
machine learning approaches  in  computational  terms like
part  of  speech  tagging  speed,  memory  usage,  and  CPU
usage.  An  important  goal  of  the  computational
implementation is to be able to process language in near
real-time  on  available  hardware  in  order  to  support  the
development  of  functional  systems capable  of  interacting
with humans in written English. In the synthetic teammate
project,  we  achieved  that  goal  (Myers,  et  al.  2019).
However,  machine learning based part  of speech taggers,
once trained, are much faster at part of speech tagging than
the computational implementation. 

The  computational  implementation  is  designed  to  be
incrementally  improved  by  the  addition  of  new  lexical
items, new parts of speech, new grammatical constructions,
and  new  grammatical  productions.  Incremental
improvement  of  machine  learning  systems trained  on  an
annotated  corpus  is  more  difficult.  At  a  minimum,  it  is
necessary  to  annotate  a  new (perhaps  smaller)  corpus  to
support  machine  learning  over  a  new  domain.  Deep
learning  approaches,  which  do  not  rely  on  an  annotated
corpus, may be able to overcome this challenge.

Linguistic knowledge in Double R Grammar is explicit.
The knowledge encoded in machine learning systems, and
especially  deep  learning  systems  is  largely  implicit.
Because  of  the  implicit  nature  of  knowledge  in  such
systems,  they  are  difficult  to  modify,  and  their  internal
behavior  is  difficult  to  explain.  The  explicit  nature  of
knowledge  in  Double  R  Grammar  makes  it  possible  to
make  explicit  changes  and  test  and  explain  the  results.
However, since Double R Grammar is highly interactive, it
is difficult to keep in mind all the interactions when making
a  change.  This  makes  regression  testing  following  a
substantive change very important. The ability to make an
explicit  change and test  to  see the result  is  an important
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advantage of our computationally grounded approach over
non-computational  approaches.  If  the  explicit  change
results  in  previously  unseen  errors,  the  change  can  be
modified to correct the errors. While the output of machine
learning  approaches  can  also  be  analyzed,  when  errors
occur  it  is  often  not  possible  to  correct  the  error,  since
linguistic  knowledge  is  only  implicitly  represented,
especially in deep learning systems.

Future Directions

The quantitative assessment of the  part of speech tagging
accuracy  rate of  the  computational  implementation  has
revealed  the  importance  of  lexical  entries  in  the  mental
lexicon  to  part  of  speech  tagging  accuracy.  The  primary
source of part of speech tagging errors is the absence of an
appropriate  lexical  entry.  In  the  most  common case,  the
lexical item is either missing (i.e. the word is unknown), or
the part of speech assigned to a lexical item is incorrect for
a  particular  use.  As  a  result  of  the  use  of  automated
techniques to create the mental lexicon (Freiman, Rodgers
&  Ball,  2008),  a  sizeable  number  of  lexical  items  were
either assigned incorrect parts of speech, or parts of speech
that are incompatible with Double R Grammar. Since the
computational  implementation  can  be  incrementally
improved,  missing  lexical  items  can  simply  be  manually
added or  extended to new parts  of  speech,  and incorrect
parts of speech can be corrected. We are currently updating
the mental lexicon manually to minimize such errors.

A secondary source of errors results from part of speech
ambiguity. Many words are associated with multiple parts
of  speech  and  meanings.  Resolving  the  ambiguity  of
genuinely ambiguous words is a significant challenge. We
currently  use  the  lexical,  morphological  and  grammatical
context  to  jointly  resolve  ambiguity  via  base-level  and
spreading  activation  during  lexical  retrieval.  We  are  not
currently  able  to  use  fine-grained  meaning  or  low-level
perceptual knowledge—including phonological knowledge
—to resolve lexical  ambiguity.  However,  the encoding of
frequently occurring multi-word units in the mental lexicon
facilitates ambiguity resolution, since multi-word units are
less  ambiguous  than  individual  words.  Although  the
~100,000 words and multi-word units in the mental lexicon
align  with  numerous  estimates  of  the  size  of  the  human
mental  lexicon  (Aitchison,  1993),  it  is  clear  from testing
that  many  familiar  words  and  multi-word  units  are  still
missing, and some existing words are unfamiliar. We plan
to continue to add familiar words and multi-word units to
the mental lexicon so that our claims to have a near human-
scale mental lexicon will be better supported, although we
do not claim that the lexical entries contain all the lexical
knowledge encoded by humans.

A third source of errors it due to incorrect tokenization,
whether  that  results  from  the  failure  to  split  a  complex
space  delimited  token  appropriately,  or  the  failure  to
recognize  a  familiar  multi-word  unit.  The  computational
implementation uses  regular  expressions—bypassing low-
level  perceptual  analysis—to  further  tokenize  space

delimited input tokens which do not match any lexical item.
This tokenization capability can be further improved.    
   A fourth source of errors is the input itself. These include
misspellings of  words—e.g  teh for  the,  word substitution
errors—e.g. it is and apple, inappropriate concatenations—
e.g.  the airspeed  isstable,  and nonce expressions like  the
paperboy porched the newspaper which use familiar words
in novel ways (Clark & Clark,  1979).  The occurrence of
unknown words  is  also a  potential  source  of  errors.  The
mechanisms  for  spelling  correction  and  the  handling  of
concatenation  errors,  nonce  expressions  and  unknown
words can all be improved. However,  we do not currently
have a mechanism for correcting word substitution errors.
We also have not yet developed a suitable theoretical basis
for the incorporation of fine-grained meaning.

We plan to evaluate the performance of the computational
implementation  on  samples  from  the  test  section  of  the
Penn Treebank corpus. Since we will not be using the Penn
Treebank tagset,  manual  evaluation of the results  will  be
necessary,  but  use  of  the  Penn  Treebank  corpus  should
provide a better basis for comparison to competing machine
and deep learning approaches which utilize this corpus. For
this purpose, we first plan to add any missing vocabulary
from  the  training  sections  of  the  corpus,  before  running
samples from the test  sections through the computational
implementation.  We  are  looking  for  suitable metrics  to
support  direct  comparison  to  machine  learning  and  deep
learning approaches. Commonly used metrics like precision
and recall—which rely on a fully annotated corpus—are not
available when evaluating performance on an unannotated
corpus, or using a different tagset than the annotated corpus.
Following creation of a concordance for the Penn Treebank
corpus,  we  plan  to  compare  the  tagging  of  a  sample  of
words like running as part of the evaluation.

The  representation  and  integration  of  the  grammatical
context is an important factor in the part of speech tagging
accuracy.  Although  the  grammatical  analysis  capabilities
have  been  under  development  for  many  years,  further
improvement is still needed. With respect to part of speech
tagging, we plan to continue to add productions that adjust
the part  of  speech and/or  grammatical  features  of  lexical
items in appropriate grammatical contexts. We have already
mentioned the capability to type shift a past tense verb to
past  participle in  the context  of  a  regular  auxiliary  verb.
More generally, when the right context is definitive, since it
is  not  incrementally  available,  context  accommodation in
the form of type-shifting or overriding is needed. 

 One direction we do not intend to pursue is the use of big
data  to  identify  very  infrequently  occurring  words.
Although it is likely that this would improve performance,
this approach lacks cognitive motivation. Of course, when
the computational implementation is used in a new domain,
addition  of  domain  specific  vocabulary  and  supporting
grammatical productions is needed. The ultimate goal is the
attainment  of  a  human-scale  domain  general  mental
lexicon, supplemented with domain specific vocabulary for
specific applications.
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Abstract

The Cooperative Action Task (CAT) is a platform for study-
ing the development of team coordination in complex dy-
namic task environments. Teams of four cooperate to play a
cooking video game across eight 1-hr sessions. Team mem-
bers communicate using gaze cursors that display the gaze
location of each player. Team coordination in the game is
achieved through a combination of planned and adaptive ac-
tions. Planned actions involve players acting according to pre-
assigned roles to reduce behavioral variability, while adaptive
actions are characterized by dynamic adaptations to changing
task demands. The results of the study reveal that strategic
reduction of behavioral variability was beneficial to game per-
formance for all teams. Additionally, team performance was
lower when teams switched between strategies across games
in the same kitchen.

Keywords: Action Coordination; Games; Teams; Com-
plex Task; Coordination Strategy; Team Roles; Planning;
Adaptation

Introduction
There has been a rising interest in team research among cog-
nitive scientists due to its significance in virtually every form
of human coordination. However, analysis of team behavior
in complex tasks can be challenging due to the dynamic na-
ture of human interactions. Simulated virtual environments
are an excellent tool for such analyses because they offer the
complexity of naturalistic tasks while ensuring sufficient con-
trol over the task environment (Elliott et al., 2017; Cooke,
Rivera, Shope, & Caukwell, 1999).

Computer games are excellent simulations for studying
complex human behavior, especially expert behavior and task
learning (Gray, 2017). For example, Tetris based studies have
shed light on the various advanced strategies that experts use
in the game and their implications on human learning (Gray
& Banerjee, 2021; Sibert, Gray, & Lindstedt, 2020; Lindst-
edt & Gray, 2013). Others focused on differences in cogni-
tive abilities among novices and experts (Large et al., 2019;
Green & Bavelier, 2003).

For the current study, we developed a cooperative cook-
ing game called “The CAT”; that is, the Cooperative Action
Task. Here, the CAT was used to explore the development
of team coordination (in 4-player teams) across eight 1-hour
gameplay sessions. The experimental setup was further de-
signed to enforce restrictions on communications within the
team: players were prevented from verbally communicating

with other team members during gameplay. However, players
were allowed to communicate through a gaze-based commu-
nication system.

Current literature on cooperative behavior in humans re-
veals that coordinating humans rely on strategic reductions in
action variability to improve action predictability for partners
when communication is limited. One such study explored
behavior in coordinating dyads in an action synchronization
task, where access to information about partner’s actions was
limited (Vesper, Schmitz, Sebanz, & Knoblich, 2013). The
authors discovered that subjects reduced action variability
and improved coordination by speeding up their movements.

In the current study, teams reduced behavioral variability
of players by assigning roles to its members. The teams used
this strategy to compensate for the lack of a rich communi-
cation channel. To test for player persistence in sticking to
assigned roles and its effect on team performance: we define
‘Role Stability’ (RS)— a measure of a player’s tendency to
stick to a certain role for the duration of a game. Results show
that reduction of behavioral variability through adherence to
player roles did improve team performance.

Methodology

Experimental Setup

The setup for the experiment is illustrated in Figure 1. It in-
cludes 5 computers, 4 eye-trackers (each attached to a moni-
tor), 4 Xbox controllers, and 4 acoustic pods. Each pod had
one controller, one eye-tracker, and one monitor inside. All 5
computers were set up outside the pods.

One of the 5 computers was used to run the game (the cen-
tral node), and the video output for this computer was mir-
rored across all 4 monitors using an HDMI splitter. This
meant all four players simultaneously received the same
video stream for the game inside each pod. Since the game
ran on the central node, the telemetry data (player actions and
game state information) was also locally stored there at 60
frames per second (60Hz). The remaining 4 computers (edge
nodes) were each connected to one of the 4 eye-trackers and
placed outside the pods. Each edge node collected gaze data
from the connected eye-tracker, stored the data locally, and
sent it to the central node over the Local Area Network.

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

38



Figure 1: Layout of the experimental setup for the CAT. The 4
translucent regions correspond to the 4 pods in the setup. All
entities enclosed within each one of the translucent regions
represent the content of the pods.

The Cooperative Action Task

We present the Cooperative Action Task (The CAT), a game-
based experimental paradigm (developed using the Unity
game engine) to study human coordination within small 4-
person teams in a controlled virtual environment. The goal
of each team is to work together inside a virtual kitchen to
prepare and deliver orders on time.

Orders appear at the top of the game interface, along with
a timer indicating the time remaining to prepare the order.
The example in Figure 2 presents two outstanding orders, a
mushroom soup (expires in 35 seconds) and an onion soup
(expires in 65 seconds). Players execute a series of actions to
prepare each order as they come in. For example, to prepare
the mushroom soup (from Figure 2) players from the team
would have to chop three mushrooms and one onion (at the
chopping counters), cook them in a pot (on a stove), plate the
soup and carry it to the delivery zone. A dirty plate appears
on the plate holder 10 seconds after each delivery. Players
must then wash the dirty plate at the sink to prepare for the
next order. Progress bars are used to indicate the progress of
the cooking, chopping, and washing processes. Finally, if an
item burns from being left on the stove too long, players need
to dispose of it in the trash.

In the current version of the system, only gaze-based com-
munication within teams was allowed during gameplay. To
eliminate the possibility of any verbal communication, each
player was placed in individual acoustic pods. Point-of-gaze
was indicated using translucent disc-shaped gaze-cursors on
the game interface, one corresponding to each player (see ‘
Gaze cursor’ labels in Figure 2). Every player could see all
four gaze cursors on their screen, thus giving each team mem-
ber access to others’ gaze locations. Further, players could
also draw attention to their own gaze cursors by making their

cursors pulse rapidly for half a second; this could be achieved
by pressing a button on their controller.

Figure 2: A (labelled) screenshot of a game in the ‘Clover’
kitchen layout. In this layout, the player at the top is locked
out of the rest of the kitchen and is the only player with access
to raw ingredients and the delivery zone.

Each game is a combination of a kitchen layout and an or-
der list. Kitchen layouts are task environments that present
unique challenges to team coordination, while order lists are
used to tune the task’s difficulty by varying the amount of
time available to prepare orders. Teams are awarded a score
for each order they correctly deliver. The score for a specific
order is 10 times the number of ingredients in the order. The
theoretical maximum score possible for each order list is a
function of the number and types of orders in the list.

During each session, teams played eight 5-minute games in
4 kitchen layouts (2 games per kitchen). Every pair of consec-
utive sessions shared the same set of 4 kitchen layouts. For
example, games in sessions 1 and 2 were played in kitchen
layouts 1 through 4, sessions 3 and 4 used layouts 5 through
8, and so on. So, each team played 4 games per kitchen.
16 kitchen layouts were used for the study; each layout pre-
sented a combination of various task constraints. Constraints
included lack of space (counter space/floor space), narrow
corridors, isolated players, and partitioned kitchens.

All 16 kitchen layouts were combined with 12 unique order
lists to generate 64 unique games. The number of orders in
any order list was kept high enough to ensure none of the
teams would be able to complete all orders in the list.

Participants
The participants were 24 university students (9 female and 14
male and one participant chose not to answer). Participant age
ranged from 19-27 years (mean=20.6, SD=1.84). All partici-
pants were between the ages of 19 and 22, except one 24- and
one 27-year-old. Only one of the 6 teams was a homogeneous
all-male team, the rest had both male and female members.

A campus-wide announcement was made for the study. 24
participants were selected from a pool of 40 students who
expressed interest in the study. The selection criterion was
based on the feasibility of all 4 participants being able to
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come into the lab (together) at least 3 times a week. Groups
of 4 people with similar schedules were selected, it was done
to minimize the number of canceled sessions due to the un-
availability of one or more individuals. All experimental pro-
cedures were reviewed and approved by University IRB.

Procedure
Participants were first brought in for an introductory session,
during which: (1) The study requirements and the partici-
pants’ responsibilities were explained. (2) Subject IDs and
team numbers were assigned, which remained constant for
the entire duration of the study. (3) Three 1-hour timeslots
were allotted to each group based on the availability of all
4 members. Two of the three timeslots were selected for
the group’s usual weekly schedule, that is, when they would
come to the lab each week for the study. The third times-
lot was used as a fallback option for rescheduling sessions, if
necessary.

The study required participants to come to the lab for 11
one-hour sessions. The 11 sessions were executed in the fol-
lowing order: (1) In the first session, participants completed
a Cognitive Task Battery (CTB) of 7 tasks; (2) the next 4
sessions (sessions 2-5), participants played the game; (3) dur-
ing the sixth session, participants completed the Advanced
Raven’s Matrices test; (4) this was followed by 4 more game
sessions (sessions 7-10); (5) in the final session, the CTB
from session 1 was repeated.

Each game session involved participants playing eight 5-
minute games (40 minutes total). Each player played the
game inside their assigned (by the experimenter) acoustic
pods. After playing the first 4 games, players were asked to
step out of their pods and take a short break before returning
to their pods to play the last 4 games of the session. Players
were encouraged to discuss game strategy during the session
breaks and at the end of each session. The experimenter on
duty manually logged these discussions.

Data
The data analyzed in this study was obtained from six univer-
sity student teams, each playing 64 games across the 8 game
sessions. Data from one game was lost due to technical prob-
lems (Game 2 for Team 2). So, we performed this analysis
using data from 383 games. Action, game state, and gaze in-
formation were recorded at 60Hz by the system. Game state
information included the position of every object and player
at every frame, score, active orders, time remaining per active
order, and time remaining for the game. Action data included
all button-press information for players and the resulting ac-
tion within the game environment.

Analysis and Results
We began our analysis by plotting the average performance
across all games played in each kitchen layout to test for the
effects of various kitchen constraints on task performance.
Figure 3 represents the average performance across all games
in each kitchen layout. Six teams participated in the study,

each playing 4 games per kitchen. This meant, we had data
from 24 games for each kitchen layout, with the exception of
the ‘BaseLevel’ kitchen, which had 23 data points because
data from one game was lost due to technical issues.
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Figure 3: The graph presents the mean and standard error of
scores across all games played in each kitchen. The kitchen
layouts are arranged in chronological order (the sequence in
which teams played games in the kitchens) from top to bot-
tom.

Figure 3 presents several interesting trends for changes in
performance across kitchens, which include increasing per-
formance for games played in the first 7 kitchens and the rel-
atively low performance in the final 4. However, in the cur-
rent study we focus on the ‘Divided’ kitchen layout because
of the consistent and considerably high scores associated with
the games played in this kitchen. This was confirmed using a
Tukey’s HSD test which showed that the game scores for the
Divided kitchen differed significantly (p < .05) from all other
kitchens.

The high scores in the Divided kitchen are particularly in-
triguing because it is the only kitchen design where each
of the four players was placed in separate sections of the
kitchen and forced to work in isolation (Figure 4). Addition-
ally, Teams played several games in 11 other kitchens before
playing in the Divided kitchen. All 11 kitchen layouts were
designed to allow (and, in some cases, force) players to col-
laborate with each other. Yet, none of the teams were able
to adopt a cooperative strategy which was more efficient than
working in isolation.

Interestingly, the Divided kitchen was not entirely devoid
of coordination among team members. For example, to en-
sure multiple players did not end up preparing the same or-
der, each individual had to keep track of the orders others
were working on. Given the fast-paced nature and the com-
plex structure of the game, in addition to the frequent overlap
of ingredients in many orders, it was challenging to keep track
of everything. However, based on experimenter observation,
apart from a small number of instances, players were able to
prepare orders without redundancy. Indeed, to reduce uncer-
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tainty, some teams used gaze cursors to indicate the orders on
which they were working.

Figure 4: The ‘Divided’ kitchen layout. In this layout, every
player is isolated to their own small kitchen with all necessary
resources.

Teams also used designated player roles to reduce uncer-
tainty during coordination on multiple occasions (teams dis-
cussed these strategies during session breaks and at the end
of sessions). Pre-assigning player roles reduced each play-
ers’ action variability, improving the team’s predictability for
player behavior, which ultimately aided coordination. Re-
sponsibilities for different player roles included chopping,
cooking, and fetching (moving items around the kitchen for
various purposes) items. Washing roles were almost never
assigned because it is a relatively rare event and was always
handled on the fly. So, washing actions were excluded from
the analysis.

A correlation analysis of the different actions indicated that
players who performed more cooking actions were also more
likely to fetch items (0.31), while, chopping actions were
negatively correlated with both cooking (-0.12) and fetch-
ing (-0.13). All correlations were statistically significant
(p < 0.05). The correlations between different actions indi-
cate players’ tendency to organize their behavior around cer-
tain actions (roles) in the game.

To study the effects of player roles on team performance,
we use ‘Role Stability’ (RS) to measure a player’s tendency
to adhere to specific roles in a game. We must first define
‘Action Vectors’ (AV) before we define role stability. An ac-
tion vector is simply a 3-dimensional vector assigned to each
player representing their contributions to different actions in a
specific game. The 3 components of the vector represent the
percentage of cooking, chopping, and fetching actions per-
formed by each player. For example, the value of the cooking
component of a particular player for a specific game is ob-
tained using the following formula:

NP
cooking

NTotal
cooking

∗100

Where NP
cooking is the number of cooking actions executed

by the player P in a game, and NTotal
cooking is the total number of

cooking actions executed by all players in that game.

RS of a player in a specific game is simply the standard
deviation of an AV. The value of RS is low when the values
of the components for the corresponding AV are relatively
similar (players engaging in all actions uniformly), while a
high RS indicates one or two components have relatively
higher values (players engaging more in specific activities).
So, higher RS values indicate greater adherence to player
roles, and lower RS values suggest more adaptation in players
(switching roles as necessary).

Washing actions were excluded from AVs and, conse-
quently, the measure of RS because the number of washing
events in a game was negligible compared to other actions,
and did not contribute sufficiently to the goals of the current
analysis.

To study the relationship between RS and team perfor-
mance, we first obtained a single measure of RS for each
game that reflects the overall strategy used in the game by
the team that played it; we refer to this as RSgame. RSgame is
calculated by averaging the RS values of all 4 players in each
game. A high value indicates a greater affinity among players
to stick to existing roles, while a low value indicates a general
adaptive behavior in the team. Figure 5 presents the mean and
standard errors (grouped by teams) for RSgame values (5a) and
game score (5b) for all 383 games.

Comparison of the two plots in Figure 5 reveals that the two
highest scoring teams (Teams 4 and 5 in Figure 5b) had some
of the lowest RSgame values (Figure 5a), while, the range of
RSgame values for the worst performing team (Team 3) was the
highest. Teams 2 and 6 demonstrated mediocre performance,
and their RSgame values also hovered somewhere in the mid-
ranges. Finally, the performance of Team 1 matched those
of Teams 2 and 6 but their RSgame values were very low. The
overall trend indicates an inverse relationship between RSgame
and team performance (with a correlation of -0.28).

To account for the hierarchical nature of the data, mixed
effects regression models were used to further test for the ef-
fect of role stability on team performance. However, in ad-
dition to RSgame, we define a second composite variable for
role stability to use in the model. RSgame conveys information
about the strategy used by a team in a specific game but fails
to capture team behavior across games in a task environment
(kitchen layout). The new variable was used in the model to
add information about the spread of RS values across games
played by a team in a kitchen. The values for the new vari-
able were obtained by calculating the standard deviation of
RSgame values for all 4 games played by each team in each
kitchen layout. A high value of the standard deviation indi-
cates greater variations in team strategy for games played in
a specific kitchen, while a low value suggests use of similar
strategies across games in a specific kitchen layout. Since the
new variable provided a measure of a team’s tendency to stick
to similar strategies in a specific kitchen layout, we call this
variable strategy consistency (SC).
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Figure 5: Mean and standard error plots for RSgame (left) and game score (right) across all games played by each team.

Random Effect
Variable Variance Std. Dev.

Team 1976 44.5
Kitchen Layout 7288 84.9

Fixed Effects
Variable Coeff. Std. Err. t value
Intercept 123.1 54.72 2.25
RSgame 4.24 1.19 3.55

SC -4.21 3.74 -1.26
Baseline 0.34 0.12 2.79

Table 1: Results of model fit for a mixed effects model pre-
dicting team performance based on the value of RSgame, SC,
and baseline performance for each team. The model also has
random intercepts for each team and each kitchen.

The game score of each game was used as the dependent
variable to fit mixed effects models. Random intercepts were
used for Team IDs and kitchen layouts. RSgame and SC values
were used as the fixed effect predictor variables. In addition,
a baseline score for each team was also added as a fixed ef-
fect. The baseline score for a team was set to the score of
the first game of the second session. Games from session 1
were not used for this purpose because teams spent their first
sessions familiarizing themselves with the game mechanics.
So, by using a game from the first session we open ourselves
up to the possibility of selecting a game that might not be an
accurate measure of the team’s baseline performance.

Three models were fit to the data to determine the useful-
ness of RSgame and SC in predicting game score. The first
model was a simple random effects model with random inter-
cepts for each team along with the baseline performance of
teams as a fixed effect (null model). For the second model,
RSgame was added as a fixed effect to the null model. For

the third and final model, SC was added as fixed effect to the
second model. Model fits were assessed using the Akaike
Information Criterion (AIC).

The model with no fixed effects was the worst of the three
models (AIC: 4510). The model with only RSgame as a fixed
effect was an improvement over the first model (AIC: 4498).
Finally, the model with both fixed effects was the best model
(AIC: 4493). Changes in AIC values between the 3 models
were statistically significant, which indicate that both mea-
sures added predictive power to the model. The results of the
final model fit are shown in Table 1. The positive coefficient
for RSgame suggests that teams scored higher in games where
they were more persistent about sticking to their roles com-
pared to games in which they showed more adaptive behavior,
while the negative coefficient for SC indicates that teams that
were more likely to stick to a strategy across games for a par-
ticular kitchen design, performed better in general.

Discussion
We used a cooperative cooking game (The CAT) to study hu-
man coordination in a complex dynamic task. Six 4-player
teams of university students each played the game across
eight 1-hour sessions. Team communication was limited to
a shared-gaze paradigm implemented in the system. How-
ever, teams were allowed to discuss gameplay outcomes and
strategies during session breaks and at the end of each ses-
sion.

Our data suggests that all 6 teams reached peak perfor-
mance when players were isolated in their own sub-kitchens
and forced to work alone (in the ‘Divided’ kitchen layout). In
this layout, each player had to perform all actions necessary to
prepare an order, including chopping, cooking, and fetching
items. In other kitchen designs, where the kitchen is shared
between players, teams would share responsibilities among
players. However, effectively dividing responsibilities during
gameplay was challenging in the absence of verbal communi-
cation channels. So, players often stuck to pre-assigned roles
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(decided by the team) to reduce prediction uncertainty and
improve coordination within the team.

We use ‘Role Stability’ to measure players’ tendency to
stick to specific roles in a game. Due to the hierarchical struc-
ture of the data, we fit mixed effects models (with random in-
tercepts for teams and kitchens) to determine the relationship
between role stability and game performance. The results of
the analysis suggest a positive relationship between role sta-
bility and performance, that is, reduction in behavioral vari-
ability through adherence to assigned player roles was bene-
ficial to performance in general.

The results of the hierarchical model seemingly contra-
dict the patterns observed in figure 5, which indicates an
inverse relationship between role stability and game perfor-
mance. However, this is not the case, as the apparent dif-
ferences between the two results may be attributed to the
random effects of team behavior and kitchen designs. In-
deed, the plots in figure 5 indicate that teams which used
more adaptive strategies on average (lower values of mean
role stability) had higher game scores overall. Higher per-
formance among adaptive teams in dynamic tasks have been
suggested in the past. In one such study, teams that showed
higher adaptability to role structure changes performed bet-
ter when they were faced with unforeseen changes in the
task (LePine, 2003). Dynamic allocation of team roles have
also been shown to benefit team performance among artificial
agents playing video games (Kim, 2006). Future publications
may consider a deeper analysis of the inter- and intra-team
differences in coordination.

Finally, The results also show that teams that stuck to sim-
ilar strategies across games in each kitchen design were more
likely to score higher. Teams that frequently switched strate-
gies may have been experimenting with different strategies to
find one optimal for the team, which could have led to poor
performance.

Conclusion

We introduced – The CAT – a game-based experimental
paradigm for studying team coordination. Each team played a
cooperative cooking game across eight 1-hour sessions. Data
was collected from six 4-player teams.

Team coordination strategies in the CAT belong to a spec-
trum between fully adaptive and fully planned behavior. Par-
ticipating teams used a combination of strategies which in-
volve assignment of player roles (planned behavior) and dy-
namic adaptation to changing task demands (adaptive behav-
ior), for coordination. Assignment of player roles reduced
behavioral variability thus increasing action predictability
among team members, which in turn helped with team coor-
dination. Our results show that strategic reduction of behav-
ioral variability through adherence to player roles was bene-
ficial to team performance. Finally, the results also show that
teams performed worse when there was higher variation in
their gameplay strategies across games.
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Abstract

Learning from experience, often formalized as Reinforcement
Learning (RL), is a vital means for agents to develop success-
ful behaviours in natural environments. However, while bio-
logical organisms are embedded in continuous spaces and con-
tinuous time, many artificial agents use RL algorithms that im-
plicitly assume some form of discretization of the state space,
which can lead to inefficient resource use and improper learn-
ing. In this paper we show that biologically motivated rep-
resentations of continuous spaces form a valuable state rep-
resentation for RL. We use models of grid and place cells in
the Medial Entorhinal Cortex and hippocampus, respectively,
to represent continuous states in a navigation task and in the
CartPole control task. Specifically, we model the hexago-
nal grid structures found in the brain using Hexagonal Spa-
tial Semantic Pointers, and combine this state representation
with single-hidden-layer neural networks to learn action poli-
cies in an Actor-Critic framework. We demonstrate our ap-
proach provides significantly increased robustness to changes
in environment parameters (travel velocity), and learns to sta-
bilize the dynamics of the CartPole system with comparable
mean performance to a deep neural network, while decreasing
the terminal reward variance by more than 150x across trials.
These findings at once point to the utility of leveraging biolog-
ically motivated representations for RL problems, and suggest
a more general role for hexagonally-structured representations
in cognition.
Keywords: Reinforcement Learning; Grid Cells; Spatial Se-
mantic Pointers; Representations

Introduction
Humans and animals are able to learn how to interact with
their environment through a process of trial-and-error, repeat-
ing behaviours that lead to high rewards, and avoiding behav-
iors that lead to punishments. This process is known as con-
ditioning and has inspired the development of Reinforcement
Learning (RL) algorithms for training computational systems.
RL algorithms, in turn, have provided further insights into the
nature of learning in biological agents.

Classical RL algorithms discretize state and action spaces,
and assume that time can be divided into discrete time steps.
However, biological agents exist and evolve in continuous
time and space, and therefore their learning mechanisms must

† These authors contributed equally.

also operate in continuous domains. While discretized repre-
sentations are convenient when working with standard com-
puters and can often produce good results in RL, they have
limitations. For instance, a coarse discretization can result
in non-smooth control output and poor performance, while
a fine discretization can lead to an explosion in the number
of states, memory resources, and time required to learn. Ad-
ditionally, selecting a discretization that does not match the
“correct discretization” of the environment may result in ei-
ther poor representation or inefficient resource use, or both.
Obtaining a good discretization scheme often requires prior
knowledge or trial and error. Furthermore, the environment
itself may not remain stable during its operational lifespan.
This could cause the selected and optimal discretizations to
diverge over time, at the expense of either performance or
wasted representational resources.

In RL, feature representation plays a crucial role in per-
formance. Various feature encoding methods have been pro-
posed, including discretization of the state space through
techniques like tile coding (Sutton, 1996) and using deep
auto-encoders to obtain latent state representations (Lange
& Riedmiller, 2010). In deep RL networks, a linear output
layer is typically used, and so the majority of the neural net-
work can be viewed as a state encoding network followed by
linear value function approximation. Additionally, biologi-
cally inspired state representations have been explored. For
instance, RL agents using grid-cell-like representations have
outperformed both deep AC models and agents with place-
cell-like representations in 2D navigation tasks (Banino et al.,
2018). This supports the idea that grid cells provide a useful
basis for RL tasks. However, to our knowledge these benefits
have been established only for navigation tasks. The extent to
which these benefit generalize to other types of tasks remains
an open question.

The use of grid or place cell-like encodings of spatial in-
formation in RL networks has been demonstrated to facili-
tate faster learning on spatial navigation tasks (Gustafson &
Daw, 2011; Banino et al., 2018; Dumont & Eliasmith, 2020;
Bartlett et al., 2022a,b). The method of modelling grid cells
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used in the present work, first presented by Dumont & Elia-
smith (2020), builds on Spatial Semantic Pointers (SSPs; Du-
mont et al., 2023; Komer & Eliasmith, 2020; Komer et al.,
2019), a high-dimensional representation of continuous val-
ues used in cognitive models that employ vector symbolic ar-
chitectures (VSAs). This method allows us to represent con-
tinuous state information as a specific type of SSP (hexag-
onal SSPs, or HexSSPs). The resulting representations can
be mapped to individual neurons giving rise to grid cells.
HexSSPs have been demonstrated to be flexible, computa-
tionally efficient and, being a VSA, highly interpretable (Du-
mont et al., 2023; Komer & Eliasmith, 2020; Bartlett et al.,
2022a,b). In general, SSPs can be generated for any spatial
environment regardless of size or shape, and scaled to ac-
commodate changes in the environment (Komer & Eliasmith,
2020). Komer & Eliasmith (2020) further demonstrated that
HexSSPs encoding spatial location can support supervised
learning of policies to navigate through complex, continuous-
space environments containing obstacles. HexSSPs have
also proven useful as representations for semantic mapping,
Bayesian optimization, and neural representations of proba-
bility (Dumont et al., 2023; Furlong et al., 2022; Furlong &
Eliasmith, 2022). Due to their ability to represent structured
data as vectors (e.g., Voelker et al., 2021), these representa-
tions may permit extending simple algorithms to more com-
plex spaces. In particular, SSPs can be used to represent se-
quences or trajectories through continuous spaces, along with
hierarchical representations that mix discrete and continuous
data. Consequently, algorithms designed to use SSP input can
be applied to tasks with complex feature data.

Recent research has illustrated the usefulness of HexSSPs
when learning navigation policies in an online fashion us-
ing RL (Bartlett et al., 2022a,b). However, this past work
was limited to a task defined in discrete space (Gymnasium’s
MiniGrid: Chevalier-Boisvert et al., 2018). In this paper, we
present the results of a series of simulations demonstrating
the benefit of using HexSSPs to represent continuous state to
solve tasks with an Advantage Actor-Critic (A2C) network.
The A2C network is first tested on a novel spatial naviga-
tion task ‘RatBox’, designed as a continuous-space variant
of MiniGrid. Additionally, as the representational capacity
of HexSSPs generalizes to representing continuous feature
spaces (Dumont & Eliasmith, 2020), we also run simulations
on a continuous state RL benchmark task, CartPole (Brock-
man et al., 2016). This problem is analogous to balancing an
inverted pendulum, relevant for numerous animal behaviors,
such as walking or perching on a branch. CartPole has previ-
ously been solved efficiently with continuous representations
of the state in an actor-critic model with neural networks (An-
derson, 1989) and spiking neural networks (Frémaux et al.,
2013). Furthermore, grid cell-like representations of the state
have been shown to improve the performance of a Deep Q
network on the CartPole problem (Yu et al., 2020).

Methods
Hexagonal SSPs
Spatial Semantic Pointers (SSPs) are a high-dimensional
vector representation of lower-dimensional continuous
spaces (Plate, 1995; Komer et al., 2019; Komer & Elia-
smith, 2020), developed within the framework of the Se-
mantic Pointer Architecture (Eliasmith, 2013). SSPs repre-
sent state variables by selecting frequency components in the
Fourier domain and using those components to project con-
tinuous state variables into the high-dimensional frequency
space, followed by an inverse Fourier transform. Specifically,
to represent m-dimensional data, x ∈ Rm, we generate an en-
coding matrix, Θ ∈ Rd×m, and define the SSP representation
of x as:

φ(x) = F −1{eiΘx}, (1)

where elements of Θ are sampled uniformly from the interval
[−π,π] and d is the dimensionality of the SSP representation.
We further constrain Θ so that eiΘx has conjugate symme-
try, to ensure the inverse Fourier transform does not generate
imaginary components. This method for representing con-
tinuous values is also known as fractional binding (Komer
et al., 2019), fractional convolution powers (Plate, 1994), or
fractional power encoding (Frady et al., 2022).

In this work we use Hexagonal SSPs (HexSSPs), a variant
of SSPs in which the encoding matrix is specifically struc-
tured to model grid cell activity. The encoding matrix is con-
structed so that the dot product with an encoded point and
other points in the domain mimics the activity of grid cell
neurons in the medial entorhinal cortex (MEC) of the hip-
pocampus (Dumont & Eliasmith, 2020).

Algorithm 1 Hexagonal SSP Generator. Given data x with
dimensionality m, this returns its SSP encoding φ(x). The
input scales, S , are scalar values, and rotations, R , are a set
of m-dimensional rotation matrices.

1: procedure HEX-SSP(x, m, S , R )
2: v1, . . . ,vm+1←Coordinates of regular m-dim simplex

3: V←
(
| |

v1 ... vm+1
| |

)T

4: Θ← stack({sRV |s ∈ S ,R ∈ R })
5: φ(x) = F −1

{
eiΘx}

6: return φ(x)
7: end procedure

The algorithm for constructing HexSSPs is given in Al-
gorithm 1. HexSSP encoding matrices are constructed from
m+1 vectors that form a regular m-simplex in m-dimensional
space. The simplex is determined by minimizing the expres-
sion ∑

m
i ∑

m
j=1,i̸= j vi ·v j, where vi,v j are unit vectors that make

up the simplex. Stacking these vectors produces an initial
(m+ 1)×m encoding matrix, V. We can specify the kernel
function, k(x,x′) that is approximated by the dot product be-
tween two SSPs, φ(x) and φ(x′). With this initial encoding
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matrix, V, the resulting kernel function will have a hexago-
nally tiled pattern.

5 0 5
x

4

2

0

2

4

y 1

S(x)= 1{ei
T
1x}

5 0 5
x

4

2

0

2

4

1
2

3

S(x)= 1{ei[ 1 2 3]Tx}

5 0 5
x

4

2

0

2

4

S(x)= 1{ei x}

0.0

0.5

1.0

S
im
ila
rity

Figure 1: Construction of HexSSPs from Fourier basis
functions. Left: An encoding matrix consisting of a sin-
gle Fourier basis function, eiθT

1 x, results in a kernel function,
k(x,x′), with oscillations in 2D space characteristic of spatial
frequency representation. k(x,x′), in turn, is approximated
by the dot product between HexSSPs, each representing 2-
dimensional variables. Middle: When m+1 such Fourier ba-
sis functions are included (3 for the 2-dimensional space de-
picted here, and spaced 120◦ apart), the interference pattern
results in the hexagonally-patterned kernel function. Right:
As more rotations and scales of these vectors are used to
generate the encoding matrix, the kernel function becomes
smoother, with one centralized peak and more shallow local
optima.

The firing patterns of grid neurons in the MEC of the
hippocampus are characterized by different orientations and
sizes. To mimic this features, the complete encoding matrix,
Θ, used to construct HexSSPs is composed of multiple rota-
tions and scalings of V. This choice also has useful prac-
tical implications: as more rotations and scales are added
to the representation, the kernel function becomes smoother,
with one centralized peak and more shallow local optima, as
shown in Figure 1. SSPs created with such encoding matrices
are also more robust to noise than randomly generated repre-
sentations, and so can be more accurately encoded in spiking
neural networks via grid cells (Dumont & Eliasmith, 2020).

Advantage Actor-Critic Network
The Advantage Actor-Critic (A2C) network implemented
for these simulations was the same as that presented
in (Bartlett et al., 2022a). The network architecture is
shown in Figure 2. It was implemented in Python and
Nengo (Bekolay et al., 2014) using the principles of the
Neural Engineering Framework (NEF; Eliasmith & Ander-
son, 2003). The code is available at https://github.com/
maddybartlett/ImprovedRLContinuousStateReps.

States were represented either as a one-hot vector or by a
population of rectified linear neurons. When solving the Rat-
Box task, encoders were sampled from the regions of SSP
space associated with the observation space using the Sobel
sampling method, thus generating a population of grid cell
neurons. The number of neurons in this case was calculated
such that the number of neurons was at least 10 times the di-
mensionality of the HexSSP and a power of 2 (a requirement

of the Sobel sampling method). For the CartPole task, the
encoders were randomly sampled from the whole SSP space,
as the observation space is unbounded for some state vari-
ables. Other than the state representation layer, no other part
of the network used neurons. Learning was performed on the
connection weights from the state representation layer to the
output. Connection weights were initialized to zero.

State

Input

Hidden layer

Output

HexSSP

Value

Reward Action

Activities Error signal

Wencoders Wcritic

Wactor

TD update

...

Figure 2: A schematic of the Advantage Actor-Critic (A2C)
network. Wencoders project a HexSSP representation of the
state to neurons in the Hidden Layer.

Hyperparameter optimization

The performance of RL networks and algorithms is sensitive
to the selection of hyperparameters (Sutton & Barto, 2018).
To identify the hyperparameter configuration that maximizes
performance, we first defined the performance metric as the
terminal return, in turn computed as the mean reward received
in the last 100 episodes of a single trial. We then searched for
the configuration of hyperparameters that maximize perfor-
mance, a process referred to as hyperparameter optimization,
using the simulated annealing algorithm implemented in the
Neural Network Intelligence (NNI; Microsoft, 2021) Python
package. This algorithm begins by randomly sampling from
the hyperparameter space, and progresses by sampling from
regions that achieved higher performance. Each NNI experi-
ment therefore determines the performance achievable given
the stochastic selection of hyperparameters. For both the
HexSSP network and all state discretizations, 100 such NNI
experiments were conducted. The random seed was fixed
across all NNI experiments. Hyperparameter optimization
was performed over the parameter ranges specified in Ta-
ble 1, which were selected based on performance results ob-
tained through systematic exploration of the hyperparameter
space (Bartlett et al., 2022a) on a navigation task similar to
that used in this present work. In cases where identical, opti-
mal performance could be achieved with multiple sets of hy-
perparameters, the set of hyperparameters was selected based
on the most temporally stable terminal behavior. For discrete
representations of the state, the number of bins per state was
set for each NNI experiment and the remaining hyperparam-
eters were left free.
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Symbol Variable Range - RatBox Range - CartPole
ε probability of an off-policy action [0.3,0.6] [0.2,0.6]
α learning rate [0.001,0.5] [0.001,0.5]
β action value discount [0.8,1.0] 0.9
γ state value discount [0.8,1.0] 0.99
η proportion of active cells 9 [0.01,0.5] 9 [0.01,0.5]
N number of neurons 9 {1024,2048,4096}
R rotations of V 9 [4,5,6,7,8,9,10] 9 [4,5,6,7]
S scalings of V 9 [4,5,6,7,8,9,10] 9 8
l length scale of representation 9 [1,100] 9 [0.01,1.0]

Table 1: Hyperparameter values tested during optimization of
networks solving each task. Hyperparameters marked by 9
apply only to models using HexSSPs for state representation.

Evaluation on continuous space navigation with
obstacles (RatBox)

Discrete state representations are incapable of perfectly cap-
turing the boundaries of irregularly shaped objects. A novel
2D environment, ‘RatBox’, containing 4 obstacles that an
agent must navigate around to reach a goal location was de-
veloped for these experiments (see Figure 3), to assess the
ability of HexSSPs to learn an efficient policy in this scenario.
The state of the agent in this environment is its 2D position
and heading, s = (x,y,w). The state space within the envi-
ronment is continuous in that the agent can be in any location
within the 600×600 space. Additionally the agent is able to
face any direction, w ∈ [0,2π].

The discrete agent’s action space consists of a set of vec-
tors, {a1,a2, . . . ,ana}. In this task there are 4 action primi-
tives, each corresponding with a ‘compass’ direction (North,
South, East, West). The discrete A2C network learns a pol-
icy over this discrete action space. To allow for a continuous
action space, the action taken is a weighted sum of the action
primitives, i.e., a(t) = ∑

na
i ciai. In this case, the output from

the actor portion of the network is a 4-vector, c, consisting
of the learned value for each action primitive. This weighted
sum is the direction vector for the agent moving at a fixed
speed. The agent’s maximum speed was set to 10,000 pps
(pixels per second), which equates to 100 pixels per timestep.

To use this method of representing a continuous action
space, we formulate our policy as an isotropic Gaussian
distribution over the action vector, πW (s) = N (µW (s),σ2I),
with small isotropic noise, σ2 << 1, and where µW (s) is the
weighted sum of the discrete action vectors,

µW (s) = softmax(Wφ(s))T [a1, . . . ,ana ]
T (2)

This parameterization of the mean action vector is the soft-
max of a linear decoding from the state population, Wφ(s).

Figure 3: The RatBox environment

We assume the isotropic Gaussian noise added to this
action is small to obtain an approximately-deterministic
stochastic policy. Then we can derive the approximate pol-
icy gradient from the expected rate of reward as a function of
the policy parameters, J(W ):

∇W J(W ) = E[∇W logπW (s) A(s,a)] (3)

∇w logπW (s) = (I−πW (s))πW (s)φ(s)T (4)
Wnew =Wold +α∇W J(W ), (5)

where A(s,a) is the advantage function, α is the learning rate,
and I is the na×na identity matrix. With this update, we can
improve the policy – parameterized by the decoding weight
matrix, W ∈Rna×d – with the TD(0) actor-critic learning rule.

The network was tested under two different conditions. In
the baseline condition, the agent’s state was represented using
a tabular representation. We generated several resolutions by
applying 6, 8, 10 or 12 partitions to each of the three state di-
mensions. In the second condition, the state was represented
using HexSSPs and a population of grid cell neurons. In the
10- and 12-bin discrete conditions, none of the hyperparam-
eter combinations tested by NNI were able to solve the task.
We therefore instead used the hyperparameters found for the
6-bin condition. The optimal network for each condition was
then trained 10 times using 10 different random seeds. Inter-
estingly, in the 10-bin condition, the final network was able
to learn the task on some of the random seeds.

The average reward was calculated over a 100-trial win-
dow, and then averaged across the 10 random seeds. The re-
sults, shown in Figure 4, illustrate that the HexSSP and 6-bin
solutions were able to learn the task. Performance declines as
the resolution becomes finer in the discrete condition.

Learning in non-stationary environments can be challeng-
ing for RL algorithms that use a tabular representation of the
state, as changes in the environment can potentially cause
incompatibilities between the optimal and actual discretiza-
tions. In general, continuous state representations avoid this
limitation by allowing for generalization between states. This
holds for the HexSSP approach we use here, where the extent
of generalization over the state space is specified by the length
scale parameter. Assuming an appropriate length scale, we
would therefore expect our algorithm to exhibit robustness
to changes in the environment, as compared to the state dis-
cretization approaches. To test this prediction, we performed
hyperparameter optimization on the network with the agent’s
speed set to 10,000 pixels per second (pix/sec), and then as-
sessed performance with the agent’s speed set to either 10,000
pix/sec or reduced to 5,000 pix/sec. No other changes were
made and the networks were tested again with 10 random
seeds. The results are shown in Figure 4. While the perfor-
mance of the network using HexSSPs to represent the state
drops slightly following the change in speed, closer inspec-
tion revealed that this was due to two of the ten random seeds
resulting in no learning, while the rest of the seeds led to per-
formance as good as the original (data not shown). In con-
trast, none of the baseline networks were able to solve the
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Figure 4: Performance on RatBox. Left: Learning curves
using HexSSPs or tabular approaches for state representa-
tions, averaged across 10 random seeds. The shaded area
depicts the standard error of the mean. Right: Average termi-
nal reward (with 95% confidence interval) across the different
representations when the agent’s maximum speed was 10,000
pix/sec vs. 5,000 pix/sec.

task following the change in agent speed, suggesting that the
networks would need a different discretization, or to be re-
optimized, in order to adapt. This result shows that continu-
ous HexSSPs are a more general solution that is less sensitive
to changes in the task or environment compared to standard
discrete representations.

Evaluation on the inverted pendulum
(CartPole) problem

Here we characterize learning on the standard CartPole task
from OpenAI’s Gym Library (Brockman et al., 2016). The
CartPole’s dynamics are unstable, making performance par-
ticularly sensitive to state representation accuracy. Errors in-
troduced due to state discretization should therefore cause
a decrease in performance. Indeed, prior work investigat-
ing learning with continuous and discrete control schemes
report fewer trials to learn with a continuous algorithm com-
pared to a discrete algorithm on the similar CartPole Swingup
task (Doya, 2000). We therefore first sought to validate that
the proposed continuous representation confers a learning ad-
vantage over the state discretization approach. We character-
ized learning across 5 discretizations corresponding to a dis-
tinct number of partitions applied to each of the 4 state vari-
ables. Hyperparameter optimization was performed for each
discretization, and performance characterized across 10 runs
of the model with different seeds.

As can be seen in Figure 5, terminal reward grows slowly
as the resolution of the discretization increases, but is well be-
low the terminal reward achieved by the HexSSP model. Cru-
cially, and in contrast to performance with most of the tabular
approaches, terminal performance using HexSSPs to repre-
sent state exhibits relatively small variation across seeds (95%
confidence interval: [496.88,499.97]). This is especially sur-
prising as the only source of randomness using tabular ap-
proaches is the initial conditions given by the environment;
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Figure 5: Performance on CartPole. Left: Learning curves
using HexSSPs or tabular approaches for state representation.
Shown is the mean across 10 runs of the model. The shaded
area depicts the standard error of the mean. The dotted line
indicates the maximum possible episodic reward achievable.
Right: Terminal rewards observed in 10 runs of each model
(and 95% confidence intervals) for each discretization condi-
tion. The gray bar denotes the 95% confidence interval for
performance using HexSSPs.

HexSSPs are subject to this source of randomness in addition
to that incurred by the sampling of encoders for each model
run. Of course, hand-tuned discretizations may facilitate su-
perior or more consistent performance, but this requires trial
and error or a priori knowledge of the problem. HexSSPs re-
liably produce high terminal performance regardless of initial
environment or network conditions in the tested scenario.

Performance comparison against a deep
network baseline

So far we have described two advantages of representing state
information as a continuous variable with HexSSPs, as mea-
sured against state discretization approaches. On the navi-
gation task with RatBox, HexSSP representations conferred
greater robustness to changes in model parameters. On the
CartPole control task, we observed better terminal perfor-
mance and lower sensitivity to initial conditions. However,
neural networks can also represent continuous state informa-
tion, and multi-layer networks, in particular, can learn ef-
fective representations for decoding value and policy func-
tions. This can include representations similar to that which
we have used here in their hidden layers. What specific ad-
vantage, if any, is offered by using HexSSP representations
on RL problems over the state-of-the-art?

To address this question, we compare the performance of
our algorithm to an A2C method that uses a multi-layer per-
ceptron policy (Raffin et al., 2021) on the CartPole task. Fig-
ure 6 shows learning curves for both the proposed HexSSP
single-layer network model and the deep network baseline
model. On the CartPole task, the two methods exhibit com-
parable performance, as shown by the overlap in the me-
dians and interdecile range produced by a range of initial
seeds. Interestingly, the HexSSP method produces more re-
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Figure 6: Performance of a Single layer A2C network with
HexSSPs and a deep A2C network on CartPole. Compar-
ing the moving average over episodic rewards between our
proposed method using HexSSP representations and a base-
line implementation of A2C with a multilayer perceptron pol-
icy from (Raffin et al., 2021). Solid lines are the medians
and shaded areas are the interdecile range, taken over 20 ran-
domly chosen seeds.

liable terminal performance, indicating less sensitivity to the
initial seed as shown by lower variance in the terminal reward
(Baseline: σ2 = 20966.52, HexSSP: σ2 = 127.84, L = 6.19,
P = 0.017, Levene’s test of equal variances using group me-
dians). The high reliability of performance with HexSSP rep-
resentations as compared to that observed with a state-of-the-
art approach suggests a fundamental robustness across dif-
ferent types of continuous feature spaces. We speculate that
since the baseline model must learn the state representation,
it is therefore able to modify this representation late in train-
ing when it may no longer be advantageous to do so. The
representation for the HexSSP model is fixed, so additional
training is not able to degrade its performance in this way.

Discussion
In this paper, we presented HexSSPs as a method for repre-
senting continuous states when solving tasks using RL. We
evaluated the HexSSPs on a spatial navigation task and com-
pared performance to networks using tabular representations,
and to a multi-layer perceptron where the state representation
is learned via backpropagation. While a discrete represen-
tation could solve the RatBox task as well as the HexSSP
method, we found that the discrete method was not robust
to changes in the task; the HexSSPs proved to be very ro-
bust. We also found that the HexSSP representation was
able to achieve a final performance greater than any of the
tabular representations on the standard benchmark CartPole
task. The HexSSP solution’s performance was also compa-
rable to that of the Deep A2C network, but it is noteworthy
that the HexSSP network produced a more reliable terminal
performance suggesting that it is more robust to changes in
network initialisation. Notably, the performance on CartPole
was achieved while adopting a relatively inefficient method of
sampling encoders from the subspace spanned by the problem

domain. An important direction for future work is therefore
to explore the impact of more efficient sampling methods on
this task.

Experiments comparing the HexSSP method and tabular
approaches were designed to assess differences in average
performance. Assuming the performance metric follows a
Gaussian distribution, the sample size of 10 opted for in this
work confers to us a 99.8 % probability that the mean perfor-
mance falls within the span of the sampled data points (com-
puted as P = (1− 1

2N−1 )× 100%, where N is the number of
sample points). However, the observation that 2 (20%) of the
random seeds yield particularly poor performance on the Rat-
Box task suggest that more sampling would be needed if one
were to move beyond characterizing average performance
and towards understanding the full distribution of model be-
havior.

A key characteristic of the HexSSP method is that it allows
one to build neuron populations whose firing patterns mimic
those of grid and place cells found in MEC and hippocampus
across many animal species. The performance improvement
on the RatBox task gained by leveraging these hexagonally-
patterned representations is expected considering their role
in spatial navigation in biological agents. These firing pat-
terns are readily comparable to neural recordings from ani-
mal models used in neuroscience, such as rodents. However,
to our knowledge, these representations have not been impli-
cated in motor control analogous to that required to solve the
CartPole task. In this case, comparing the performance of our
network against the behavior of a biological agent may yield
insight into the specific role of hexagonally-patterned repre-
sentations in biological cognition.

On the RL problems explored in this work, we observed
the benefits of HexSSPs being more robust to noise and better
able to generalize to changes in the environment. These fea-
tures are essential for autonomous agents needing to learn on-
line, potentially in dynamic or unstable environments. Thus
an interesting avenue for future work would be to explore the
extent to which the HexSSP method proves useful in solv-
ing non-stationary problems. Additionally, the robustness to
noise is significant for cognitive models, and this representa-
tion supports encoding in spiking neural networks. Moreover,
these spiking implementations can be implemented straight-
forwardly on neuromorphic hardware.

Online Resources
All code necessary to reproduce these results are
hosted at: https://github.com/maddybartlett/
ImprovedRLContinuousStateReps
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Abstract

We investigate the viability of the drift-diffusion framework to
account for behaviour on magnitude comparison tasks. Data
from both published studies on magnitude comparison and
a simulation are analysed to estimate the key drift-diffusion
model parameters, using the EZ-diffusion method and HDDM
package. All methods resulted in linear mappings between
drift rate and difficulty (indexed using 1 - smaller/larger),
with an intercept that was consistently close to zero for non-
symbolic tasks. The EZ method was rapid and simple to apply,
but subject to bias when using aggregate data or when individ-
ual accuracy was very high. In contrast, the HDDM tool pro-
duced results that were less biased, but individual differences
were under-estimated. We conclude that application of param-
eter estimation methods, particularly in research on individual
differences, requires careful consideration of their limitations.
Keywords: magnitude comparison; numerical cognition; dis-
tance effect; drift-diffusion model; parameter estimation; indi-
vidual differences

Introduction
In tasks where two quantities are compared, a distance effect
is usually observed, in which performance improves as the
difference between the magnitudes increases (e.g, Buckley &
Gillman, 1974). In contrast, when asked to judge whether
three symbolic numbers are in order or not, a reverse-distance
effect is often found, such that performance is better when the
distance is small (as in the case of consecutive numbers).

Most studies of distance effects have used either accuracy
or response time (RT) to investigate the effects, analysing
these performance metrics individually, or sometimes com-
bined into a single measure. An alternative approach is to
use a drift-diffusion model (DDM) to quantify the decision
process. A DDM assumes that evidence for a decision is
extracted from the stimulus and accumulates until a given
threshold is reached, at which point a decision is deemed to
have been made.

Key advantages of the DDM approach include its ability
to disentangle the time required for a decision from that in-
volved in other processes (such as encoding the stimulus or
performing the motor response), its prediction of the distri-
bution of response times (rather than just an average) and the
fact that it can account for both the speed and accuracy of
responses (including a possible trade-off between the two).
However, while some studies have used a DDM to investi-
gate magnitude comparison tasks (e.g., Park & Starns, 2015;
Ratcliff & McKoon, 2018; Krajcsi, Lengyel, & Kojouharova,

2018), few of these have focused on individual differences
in the distance effect across a range of ratios using different
tasks and estimation methods.

The analyses presented here do just this. They are part of a
wider study exploring the reliability of distance and reverse-
distance effects under different conditions. In this article,
analyses are presented of data from a range of secondary
sources, as well as some simple simulations, with a view to
developing a baseline model that can account for the key be-
havioural findings from comparison tasks and, importantly,
allow individual differences to be modelled.

Estimating DDM parameters
The three most fundamental DDM parameters are the mean
drift rate, boundary separation and non-decision time. The
drift rate represents the rate at which evidence is accumulated,
and is related to the quality of information contained in the
stimulus and the participant’s sensitivity to it. The boundary
separation represents the evidence threshold at which one or
other decision is made, such that a wider separation is associ-
ated with a more cautious, slower decision. The non-decision
time corresponds to processes that are not directly involved
in the decision itself (primarily stimulus encoding and mo-
tor response). In the simplest version of the DDM, the initial
level of evidence is assumed to be central between the two
decision boundaries, so that there is no pre-existing bias for
either response at the start of a trial, and the predicted mean
RT for correct responses will be the same as that for incor-
rect ones. More complex models can include variation in the
initial evidence level, as well as trial-to-trial variation in the
three fundamental parameters. These will not be considered
here.

Several methods for estimating the key DDM parameters
from a set of experimental data have been described, includ-
ing fitting RT distributions using a chi-square or Kolmogorov-
Smirnoff test, the EZ-diffusion functions (Wagenmakers, Van
Der Maas, & Grasman, 2007), and the software packages
HDDM (Wiecki, Sofer, & Frank, 2013) and fast-dm (Voss
& Voss, 2007). These vary greatly in their complexity and
run-times, and each method has its own pros and cons (see
Alexandrowicz & Gula, 2020 and Ratcliff & Childers, 2015
for some examples of direct comparisons). The present anal-
yses focus on two methods, which were selected for the fol-
lowing reasons. Both methods are freely available, provide
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”off the shelf” functionality and have been used in numer-
ous studies across a wide range of tasks. The EZ-diffusion
method was chosen as it offers a very simple and quick
closed-form method of estimating the three key parameters
outlined above. Furthermore, it is possible (in principle) to
apply the EZ functions even when raw trial-level data are not
available. The EZ functions require three inputs: the pro-
portion of trials with a correct response, and the mean and
variance of the RT. The HDDM tool (an open-source Python
package) was selected because it allows a hierarchical analy-
sis to be performed, which may increase the statistical power
of the results when the number of trials in each condition is
small. HDDM uses trial-level data on the accuracy and RT
of responses and a Bayesian approach to estimate the joint
posterior distribution of the parameters in question, using a
Markov chain Monte Carlo method. In the hierarchical ver-
sion of this model, the parameter estimates for each individual
are constrained by the distribution of estimates for the group
as a whole.

Study 1: Secondary data analysis
Sources of secondary data
In order to explore how magnitude effects might be explained
within the DDM, data from three previous studies on magni-
tude comparison were selected.

1. Summary-level data from Agrillo, Piffer, and Adriano
(2013) were taken from the published article. Three vari-
ants of non-symbolic comparison were used: dot arrays,
line lengths and audible tone duration, and results were
presented in a way that allowed the EZ functions to be ap-
plied for each condition. In each task, quantities were pre-
sented sequentially and participants were asked to judge
which had a greater magnitude. The ratio of the two quan-
tities (larger/smaller) ranged from 1.05 to 4.00 in each vari-
ant.

2. Trial-level data from Krajcsi et al. (2018), who carried out
non-symbolic (dot array) and symbolic (single-digit num-
ber) comparison tasks, were used. In both tasks, the au-
thors presented two quantities simultaneously. There were
27 values of ratio in each task, ranging from 1.125 to 9.0.
For the non-symbolic task, the number of dots in each ar-
ray was five times the value of the digits used in the cor-
responding symbolic task, to avoid arrays with fewer than
five dots. Each stimulus pair was presented 10 times in
each of two counterbalanced arrangements (i.e., 10 times
with the larger on the left and 10 with the larger on the
right), giving a total of 720 trials per participant. The data
are available on the repository at osf.io.

3. A subset of results from Halberda, Ly, Wilmer, Naiman,
and Germine (2012) was used. The original study in-
volved over 10,000 participants in an online comparison
task, in which a set of intermixed yellow and blue dots
was presented on each trial. The number of dots of each

colour ranged between five and 20, with four different
ratios between 1.14 and 2.00, each presented around 70
times. Trial-level experimental data for the first 501 par-
ticipants (from the repository at osf.io) were used in the
present analyses.

Parameter estimates for the experimental data
Estimates for the three main DDM parameters were calcu-
lated for each of the tasks in the secondary datasets outlined
above. For the Agrillo et al. (2013) study, where only aggre-
gate data were available, the EZ diffusion method was used,
while both the EZ and the HDDM method were applied to
the trial-level data from Krajcsi et al. (2018) and Halberda
et al. (2012). Some of the resulting drift rate estimates are
summarised in Table 1. Figure 1A shows examples of the
estimated drift rates for each level of 1 - ratioL (see below),
calculated using the EZ method for the entire group and for
each individual, as well as the HDDM hierarchical and non-
hierarchical methods.

EZ-Diffusion estimates For each comparison task and ra-
tio level in Agrillo et al. (2013), aggregate data on accuracy
and RT were taken from tables 1 and 2 of the article. Two
different metrics for indexing difficulty level were tested. The
first used ratio defined using larger/smaller – this is the metric
that has been used most commonly in non-symbolic compar-
ison tasks (e.g., Halberda & Feigenson, 2008) and will be
referred to here as ratioH. The second metric (referred to
here as ratioL) utilised the reciprocal ratio, which was sub-
tracted from one so that smaller values corresponded to more
difficult comparisons (in keeping with the more traditional
measure), giving 1 - smaller/larger. This is equivalent to the
distance/larger measure suggested by Krajcsi et al. (2018).
The resulting estimates for drift rate were tested for deviation
from linearity using a Wald-Wolfovitz test on the residuals,
and a test based on sums of squares.

In each task, it was found that the ratioL difficulty metric
resulted in a more linear relation between difficulty and drift
rate than ratioH. Importantly, the intercept in each case was
close to zero, which is consistent with one of the central tenets
of the DDM, that the drift rate should approach zero as the in-
formation that can be extracted from the stimulus reduces (i.e,
in this context, as the two quantities become indiscriminable).
The highest drift rate estimate for the dots task was 0.259,
with a slope of 0.330 (using 1 - ratioL). For comparison, in
the line-length task, the estimated drift slope was 0.241 while
that in the tone-duration task was 0.366 (the mean boundary
separations were 0.118 and 0.110 respectively).

A similar pattern in drift rate was reported for the dot-array
task by Krajcsi et al. (2018) (see below), but it is noteworthy
that all of the non-symbolic tasks in Agrillo et al. (2013) fol-
lowed this trend and, arguably, the linearity of the relation
suggests that it captures an important aspect of the underly-
ing decision processes. The mean boundary separation for
the dots task was 0.129. However, the non-decision times
showed signs of bias, such that the estimates for the most dif-
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ficult trials appear to be unusually long (approaching 900ms
in some tasks) while those in the easiest trials appear rather
short (around 200ms). Although several studies have found
that the the DDM parameters do not show pure ”selective in-
fluence” (such that experimental changes that would be ex-
pected to affect only one parameter are often found to influ-
ence several, e.g., Rafiei & Rahnev, 2021), the range of non-
decision times seen here appears to be excessive.

When applied to the aggregated group data for the non-
symbolic dot-array task in Krajcsi et al. (2018), the EZ-
diffusion functions yielded patterns that were qualitatively
very similar to those seen in the Agrillo et al. (2013) data
– a good linear fit when difficulty is indexed by 1 - ratioL,
with an intercept close to zero. The highest drift rate estimate
was 0.345, and the drift slope was 0.336. However, the mean
boundary separation was 0.212, which is high compared to
values that are typically reported. Furthermore, once again,
the non-decision time estimates were problematic, with a
mean of around 212ms and 42% being negative. In both
datasets, the low and negative estimates for non-decision time
are probably due to inflated values for RT variance, caused by
the differences between individuals being incorporated into
the aggregated data for the group, as well as contamination
by outliers or lapses of concentration (see below).

EZ estimates based on group-level data for the dots task of
Halberda et al. (2012) similarly revealed a linear relation be-
tween estimated drift rate and 1 - ratioL, with a slope of 0.316
and intercept of zero. However, the estimated non-decision
time for the easiest ratio was just 67ms.

When trial-level data are available, the problem with in-
flated RT variance in the EZ method can be avoided by calcu-
lating the performance in each condition for every individual
separately. In this way, the proportion correct, RT mean and
RT variance values each apply to a particular stimulus and
participant. With this approach, the estimated drift rates for
the non-symbolic task in Krajcsi et al. (2018) are higher, but
still show a good linear fit (using 1 - ratioL) with intercepts
close to zero for all individuals. The drift slope was calculated
for each individual, giving a mean of 0.365 and standard de-
viation of 0.0905. The mean boundary separation was 0.144,
which is within the typical range. Although the mean non-
decision times were mostly positive, nearly all participants
showed at least one negative estimate (overall mean 266ms).

There are at least two potential issues remaining in the
EZ estimates. The first relates to outliers and ‘contaminant’
RTs. There is a range of opinions on how to deal with out-
liers (e.g., Berger & Kiefer, 2021). In contrast, contaminant
RTs may not even be identifiable. Ratcliff and Tuerlinckx
(2002) described contaminant trials as those in which the RT
is lengthened due to, for example, a momentary lapse of fo-
cus or the re-starting of the decision process on a given trial.
Importantly, some of these extended response times may fall
within the typical range, so that they do not stand out as out-
liers but may not be fitted well by a DDM. One imperfect
but common and very simple strategy for dealing with out-

liers is to remove trials with an RT greater than a given value
(although this will probably leave many contaminant trials in
place). Excluding all trials with an RT of more than three
seconds from the Krajcsi et al. (2018) data resulted in a gen-
eral increase in drift rates such the the mean slope increased
to 0.451. The mean boundary separation increased slightly to
0.153 while the mean non-decision time increased to 322ms,
although some negative estimates remained.

The second issue relates to the edge correction that must
be applied to the accuracy values in the EZ method. The
functions are undefined in cases where there are no errors,
so an adjusted value for proportion correct must be applied.
Wagenmakers et al. (2007) suggested a replacement value of
1− 1

2n should be used, where n is the number of trials in the
cell. For example, if there are 10 trials in the condition in
question, the replacement value for proportion correct would
be 0.95. This approach was adopted by Krajcsi et al. (2018).
When data for the group as a whole were used (as above in
the case of the Agrillo et al., 2013 data), few if any cells will
require this correction. In contrast, when data are analysed at
the individual level, a larger number of cells will reach 100%
accuracy. This will be particularly true of trials in which
the non-symbolic quantities are easy to discriminate (and is
likely to apply to some extent at all ratio levels in a sym-
bolic comparison task). In the non-symbolic task, over 60%
of cells required an edge correction. Using a higher replace-
ment value (e.g., 0.98) resulted in higher estimates for drift
rate and boundary, and better fits to the data for the easiest
trials.

When data from Halberda et al. (2012) were analysed at
the individual level using the EZ functions, the mean slope
of the drift rate estimates was 0.517 (higher than that for the
group-level analysis). The mean non-decision times ranged
from 106ms to 129ms, which still appear somewhat low. The
very large number of trials in this task may have increased
the number of contaminants, which would tend to bias the EZ
estimates.

HDDM Estimates In using the HDDM package, there
were three key aims. The first was to explore further the range
of individual differences in drift estimates, while avoiding the
biases in the EZ estimates described above. The second was
to compare a hierarchical model with a non-hierarchical one.
The third was to compare directly the variability of individ-
ual performance in the symbolic and non-symbolic variants,
by analysing estimates from the symbolic data from Krajcsi
et al. (2018).

For each task in the Krajcsi et al. (2018) dataset, both a
non-hierarchical analysis (using each participant’s data inde-
pendently) and a hierarchical one were performed. In the hi-
erarchical model, the overall performance of the group con-
strains the estimates for each individual. As noted above, the
use of a hierarchical method can increase the statistical power
of the Bayesian analysis, which may allow better detection of
subtle effects. When there is sufficient evidence, the estimates
for any given individual may still be allowed to vary substan-
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Mean drift slope Mean drift SD
EZ indiv Non-hierarchical Hierarchical EZ indiv Non-hierarchical Hierarchical

Krajcsi dots 0.365 0.504 0.575 0.0905 0.1 0.0192
Halberda dots - 0.517 - - 0.182 -
Krajcsi digits 0.158 0.242 0.205 0.0829 0.107 0.0198

Table 1: Mean drift slope estimates using various methods

Figure 1: (A) Drift rate estimates for Krajcsi et al (2018) non-symbolic task using four different methods. (B) Recovered drift
rates vs simulation drift rates for simulated non-symbolic task

tially from the group, as described in Wiecki et al. (2013). For
the Halberda et al. (2012) dataset, only the non-hierarchical
method was used. A hierarchical model was not run with this
dataset due to its large size.

For the non-symbolic task of Krajcsi et al. (2018), when
each individual was analysed separately, a linear relation be-
tween drift rate and ratioL, with a zero intercept, was ob-
served for all individuals. The slope of this relation was cal-
culated for each participant, giving a mean of 0.504 (higher
than the estimates from the group analysis above) and stan-
dard deviation of 0.100. The mean boundary separation was
0.173 and mean non-decision time 309ms.

When the non-symbolic task data analyses were repeated
using a hierarchical model, as described above, linear trends
were again observed for all individuals, with a slightly higher
mean slope (0.575) but much reduced range (standard devi-
ation 0.0192). The mean boundary separation was broadly
similar (0.180) while the mean non-decision time was a little
quicker (291ms).

When the symbolic comparison data were analysed, a lin-
ear drift slope was once again observed, but with a non-zero
intercept (as reported by Krajcsi et al., 2018, using the EZ
method). This finding is also consistent with the DDM ap-
proach, in that digit pairs with the closest ratios can still be
discriminated, so the drift rate in this case would not be ex-
pected to reach zero. Using the non-hierarchical method, the
mean drift slope was 0.242 (SD = 0.107), and the mean in-

tercept was 0.252 (SD = 0.0638). When using a hierarchi-
cal model, the mean slope decreased to 0.205 (SD = 0.0198),
while the mean intercept was 0.208 (SD = 0.0121). As above,
the hierarchical model tended to constrain the range of in-
dividual differences in drift rate. To determine whether a
general processing speed for each individual may have in-
fluenced the drift rates in both tasks, the correlation between
the drift rates in the two variants was computed. Because
the drift slopes in the symbolic task are relatively low (due
to the non-zero intercept), the maximum drift value was con-
sidered to be a more appropriate measure of an individual’s
processing speed. The correlation between maximum drift
rate in the non-symbolic and symbolic tasks was significant
(r2 = 0.238, p = 0.018), indicating that the individuals’ max-
imum sampling rates in the two variants were related.

Finally, data from Halberda et al. (2012) were analysed us-
ing the non-hierarchical approach with HDDM. The results
from the individual-level analyses showed that the mean drift
slope across all 501 participants analysed was 0.517 (SD =
0.182). The distribution of slopes was approximately normal
(with a slight right-skew of 0.693). The mean intercept was
-0.0260, with 95% of individuals having an intercept that was
in the range ±0.080. The mean boundary separation and non-
decision time were 0.161 and 246ms respectively.

For the non-symbolic tasks, given that each method of es-
timation yielded a linear drift mapping with an intercept that
was close to zero for every individual and for each group as a
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whole, it appears that the key source of individual differences
is the slope of this relationship. In the case of the symbolic
task, the relationship still appears to be linear but both the
slope and intercept appear to vary from person to person. In
both cases, the hierarchical HDDM estimates are constrained
by the group mean, reducing the range of drift estimates be-
tween individuals.

In the non-symbolic task, there were signs that some indi-
viduals had shown a speed-accuracy trade-off (as evidenced
by a reduction in boundary separation as the comparisons be-
come easier, for example), although this did not seem to be a
major factor for the group overall.

Study 2: Parameter recovery
In order to explore the differences between the individual
and hierarchical estimates, a set of simulated data for the
non-symbolic case was generated using the rtdists package
(Singmann, Brown, Gretton, & Heathcote, 2022) in R (R
Core Team, 2022). This package uses a DDM to generate
a set of simulated responses, with the accuracy and RT being
predicted using the given parameters.

Each simulation was designed to mirror the experimental
design of the non-symbolic task in Krajcsi et al. (2018), with
24 participants, and 27 different ratios. To simplify and speed
up the analysis process, each simulated pair of quantities was
repeated 10 times rather than 20 in the counterbalanced exper-
imental design, and the analyses were grouped by 1 - ratioL.
For each simulated individual, a linear function was used to
generate a drift rate at each difficulty level (indexed by 1 -
ratioL). The gradients for this mapping were drawn from
a normal distribution with mean 0.504 and standard devia-
tion of 0.1 (based on the individual estimates from the non-
symbolic experimental data of Krajcsi et al., 2018). In or-
der to focus purely on the drift rates, the boundary separation
and non-decision time were fixed at 0.150 and 300ms respec-
tively, and there was no trial-to-trial variation. The result-
ing data were analysed using the default priors in HDDM us-
ing two approaches as above: independent (non-hierarchical)
analysis of each individual, and a hierarchical model.

Once again, each approach gave a linear relation between
drift and 1 - ratioL for every individual, with intercepts close
to zero. The mean drift slope for the non-hierarchical esti-
mates was lower (0.481) than that for the hierarchical method
(0.499), where the true mean was 0.504. However, individ-
ual differences in drift rates were captured less well by the
hierarchical method (SD = 0.0196) than the non-hierarchical
method (0.0610), where the true value was 0.1. The mean
boundary separation estimates were close to the simulation
values (0.163 for the non-hierarchical and 0.153 for the hier-
archical analysis, true value of 0.150). Similarly, the mean
of the recovered non-decision times were very close to the
true values (297ms and 299ms respectively, compared with
300ms). Thus, in common with the experimental data, both
analyses allowed recovery of the boundary separation and
non-decision time, but the hierarchical analysis produced a

narrower range of drift slopes across the simulated individu-
als, such that those whose ‘true’ slope was small tended to be
overestimated and vice versa. This replicates the findings on
”shrinkage” reported by Ratcliff and Childers (2015). The re-
lation between the true (simulation) and recovered drift rates
is shown in figure 1B.

General discussion
A series of datasets (experimental and simulated) relating to
magnitude comparison have been analysed using a variety of
readily-available and popular tools for estimating DDM pa-
rameters. In all cases, a linear relation was found between
difficulty (indexed using 1 - ratioL) and estimated drift rate

In addition, for the non-symbolic tasks (involving dot ar-
rays, line lengths and tone duration), the intercept was con-
sistently close to zero. The robustness and linearity of these
relationships, across different tasks and large numbers of in-
dividuals, suggests that there may be a common underlying
factor at play. Note that the intention is not to suggest that
the underlying representations are necessarily linked (c.f.,
Walsh, 2003), or that the non-symbolic representations some-
how underpin other numerical representations (as argued by
Dehaene, 2011, for example). In particular, it could be ar-
gued that the concept of “difficulty” is only applicable to the
non-symbolic task (in which even the most skilled participant
would not be able to distinguish between two quantities that
have a ratio approaching unity). In contrast, the symbolic pair
“8 9” is, arguably, not more difficult to discriminate than “1
9” but the decision process does take longer. Hence, it is con-
jectured that the DDM results may indicate a commonality in
the decision process, based on the dynamic sampling of evi-
dence, the rate of which is a linear function of 1 - ratioL. The
correlation between the participants’ maximum drift rates in
the two variants hints that the general sampling rate for an in-
dividual may drive some of the similarities in distance effects
reported in different tasks. Furthermore, the decision process
may be related to the pattern of weights in a putative connec-
tionist network, which depends on the ratio of the quantities
being compared but may also be influenced by their relative
frequencies in the case of symbolic comparisons (see Verguts,
Fias, & Stevens, 2005, for example). Further work is ongoing
to explore this possibility.

Conclusions
The overall aim in the present study was to derive a sim-
ple baseline model for magnitude comparison, which may be
used to explore the patterns found in various tasks, including
the reliability across different individuals. As shown above,
as far as non-symbolic comparison is concerned, the inter-
cept of the linear relationship between difficulty (1 - ratioL)
and drift rate is consistently very close to zero (in line with
the theory underpinning the DDM). This leaves the slope of
the relationship as the main source of variation between indi-
viduals. For the symbolic task, the maximum drift rate may
be a better index of individual variability.
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The work reported here has both theoretical and and
methodological implications. From the theoretical perspec-
tive, when difficulty of magnitude comparison tasks is mea-
sured as 1 - ratioL, application of DDM parameter estimation
results in a linear relationship between task difficulty and drift
rate (and a zero intercept for non-symbolic tasks). This may
suggest that difference in magnitudes and the magnitude of
the larger item are the key factors affecting evidence accumu-
lation.

A second conclusion from this work is methodological. Pa-
rameter recovery shows that the hierarchical technique ap-
plied to the data here was able to capture the mean parame-
ters well but failed to recover the variability in those values
between individuals. This may be because smaller datasets
do not contain enough exemplars of each comparison to over-
come the central tendency imposed by the hierarchical tech-
nique. Larger datasets are more likely to provide sufficient
evidence for the individual estimates to deviate substantially
from the mean. However, larger numbers of trials are more
likely to lead to fatigue and other factors that could result in
contaminants, which would tend to increase bias when us-
ing some estimation methodologies. Hierarchical recovery
must balance these two opposing pressures. Although other
estimation methods exist, and there are settings within the
HDDM package that may be adjusted by the expert user, the
issues raised here demonstrate that, when the research focus
is differences between individuals, careful consideration must
be given to both the experimental design and the method of
parameter estimation.
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Abstract

Syllogistic reasoning is one of the core domains of human rea-
soning research. Over its century of being actively researched,
various theories have been proposed attempting to disentangle
and explain the various strategies human reasoners are relying
on. In this article we propose a data-driven approach to behav-
iorally cluster reasoners into archetypal groups based on non-
negative matrix factorization. The identified clusters are inter-
preted in the context of state-of-the-art theories in the field and
analyzed based on the posited key assumptions, e.g., the dual-
processing account. We show interesting contradictions that
add to a growing body of evidence suggesting shortcomings of
the current state of the art in syllogistic reasoning research and
discuss possibilities of overcoming them.

Keywords: syllogistic reasoning; cognitive modeling; cluster-
ing; non-negative matrix factorization; dual-process theory

Introduction
The ability to reason about information is an essential skill
for humans in almost all aspects of their lives. Consequently,
the research of human reasoning has been a key field of study
to advance our understanding about human cognition for an
extensive time span. One of the core domains within the field
is syllogistic reasoning, which is being investigated for over
a century now (Störring, 1908). In its most common form,
a syllogism consist of two quantified statements (premises)
with first-order logic quantifiers (All, Some, No, and Some ...
not), that interrelate three terms (commonly abbreviated by
A, B, and C) via a middle-term as shown in the following
example:

All A are B.
Some B are C.

What, if anything, follows?

The task is to conclude what the relation between the two
end-terms occurring in only one of the premises (A and C) is.
Additionally, there is the possibility that no valid conclusion
(NVC) is possible resulting in a total of nine distinct response
options.

For convenience, syllogisms are often abbreviated. Quan-
tifiers are represented by the letters (All: A, No: E, Some: I
and Some ... not: O). The arrangement of the terms is called
figure. Throughout this paper, we will use the figure notation
from Khemlani and Johnson-Laird (2012), which is shown in
the table below:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Put together, the syllogism in the example above would
be abbreviated as AI1. Conclusions can be represented in a
similar way, combining the quantifier and the direction (ac or
ca). For example, Some C are A would be abbreviated by Ica.

Given the long history of research, it is not surprising that
a large variety of competing theories and models exist. How-
ever, the field was unable to reach consensus: In a recent
meta-analysis, twelve theories of syllogistic reasoning were
compiled and evaluated, concluding that “none of the exist-
ing theories is correct. Investigators of reasoning need to de-
velop a better theory of monadic reasoning.” (Khemlani &
Johnson-Laird, 2012, p. 23).

Since the inferential mechanisms and strategies are sub-
stantially influenced by individual factors (e.g., working
memory Gilhooly, Logie, Wetherick, & Wynn, 1993) and
are susceptible to the influence of external factors (e.g., con-
tent and personal beliefs; Morgan & Morton, 1944), it is
not surprising that the observed reasoning behavior shows
significant inter-individual differences (e.g., Dames, Klauer,
& Ragni, 2022) that current models struggle to capture
(Riesterer, Brand, & Ragni, 2020a). As human reasoning be-
havior seems to be highly individual, the idea that no single
inferential account may be able to capture every individual
suggests itself (Khemlani & Johnson-Laird, 2012). Conse-
quently, it seems to be more sensible to try to disentangle the
different reasoning strategies.

From a more abstract data-driven perspective, the ob-
served behavior of a human reasoner can be represented as
a task-response-pattern. A model accounting for the behav-
ior then specifies a process that generates the respective pat-
tern. Thereby, it is restricted by its assumptions and the cor-
responding parameter space (for a model-evaluation based on
this principle, see Riesterer et al., 2020a). From this per-
spective, the question of disentangling different strategies can
be reformulated as a question of uncovering a set of latent
(iconic) patterns that are suitable for capturing the patterns
of most individuals to a satisfying degree. In this work, we
utilize clustering methods to uncover the latent response pat-
terns of individual reasoners and present a way to determine
the number of central reasoning strategies.
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The rest of the article is structured as follows: First, the
background relevant to this work will be introduced. Second,
our dataset and the clustering approach used to extract the
iconic patterns are described. Third, the obtained patterns are
interpreted with respect to their meaning for the state of the
art in syllogistic reasoning. Finally, the results are discussed
and a general outlook is given.

Background
A common approach aiming at describing the behavioral dif-
ferences observed in reasoning is the dual-processing account
(Evans, 2008), which proposes two mechanisms: a fast-and-
frugal heuristic approach (System 1; S1) and a deliberative,
more logical mechanism (System 2; S2). In the field of syllo-
gistic reasoning, models often fall clearly into one of the two
categories, with heuristics (e.g., PHM; Chater & Oaksford,
1999) belonging to S1 while approaches closer to logic (e.g.,
PSYCOP; Rips, 1994) would generally be considered to rely
on S2.

Probably the most prominent theory incorporating the
idea of dual-processing is the Mental Model Theory (MMT;
Johnson-Laird, 1975) and its implementation mReasoner
(Khemlani & Johnson-Laird, 2013). At its core, MMT as-
sumes that syllogistic inference is a three-step procedure
(Bara, Bucciarelli, & Johnson-Laird, 1995). In the first step,
the premises are interpreted to construct a mental model rep-
resentation of the information. This model is then extended
to also incorporate the information of the second premise. In
the second step, the constructed model is used to derive a con-
clusion candidate. This candidate is then put to the test in the
third step, which consists of a search for counterexamples,
i.e., models that contradict the conclusion but are still con-
sistent with the premise information. If no counterexample
is found, the candidate will be responded as the conclusion.
Otherwise, a new conclusion candidate is generated, which is
then subjected to the search for counterexamples again, or it
is concluded that “no valid conclusion” is possible if no new
candidates can be created.

The expensive search for counterexamples in MMT is as-
sumed to be a S2 process, while conclusions directly inferred
from the initial mental model reflect the more intuition-based
strategy associated with S1.

It is important to note that while the average correctness
of a participant’s responses typically increase with a higher
number of NVC responses (Dames et al., 2022), seemingly
corroborating the notion of S2 being responsible for NVC re-
sponses, invalid syllogisms are over-represented in the syl-
logistic domain with more than half of the syllogisms being
invalid despite NVC being only one out of nine possible re-
sponses. Furthermore, recent work found that the response
times did not increase for NVC responses as it would be as-
sumed when engaging in a exhaustive search for counterex-
amples (Brand, Riesterer, & Ragni, 2022), sowing doubt if
the proposed distinction into S1 and S2 truly reflects the pro-
cesses underlying syllogistic reasoning.

Method
Dataset
The foundation of our analysis is a publicly available dataset
by Dames et al. (2022), which contains the response data
of 106 participants to all 64 syllogistic tasks. In the origi-
nal analysis, participants were asked to complete all 64 tasks
twice to investigate potential retest effects. However, these
effects are out of scope for the present work and the respec-
tive data from the syllogistic retest is therefore excluded. Ad-
ditionally, a variety of individual information about the par-
ticipants is provided, out of which the Cognitive Reflection
Test (CRT; Frederick, 2005) including additional questions
by Toplak, West, and Stanovich (2014) and the participants’
Need for Cognition (NFC; see Cacioppo & Petty, 1982) are
relevant for this work.

Clustering
Clustering refers to an unsupervised learning process of
grouping objects together that are similar with respect to
some similarity measure (for an overview, see Aggarwal,
2015). The clustering methods used in this work are thereby
partitional approaches that grouping objects into disjoint sets
by minimizing a cost function (e.g., euclidean distances be-
tween objects and cluster centroids in k-Means clustering).
For our analysis, we compare the performance of k-Means,
k-Medoids and a clustering method based on Non-Negative
Matrix Factorization (for a similar method, see J. Kim &
Park, 2008). As k-Means and k-Medoids are standard pro-
cedures, they will only briefly be discussed with respect to
potential strengths and weaknesses for the specific analysis.

Of the three methods, k-Means is probably of the most
prominent approach for cluster analyses. As the name sug-
gests, k-Means divides objects into k clusters that are defined
by centroids representing the mean of the respective objects
in the cluster. Thereby, it behaves similar to an aggregation of
the data that is commonly performed to investigate response
distributions, with the difference that k distributions are ob-
tained instead of a single one, thereby having the potential
to provide a better fit for individuals. However, aggregation
of data has been criticized to be problematic when investigat-
ing individual processes (Riesterer, Brand, & Ragni, 2020c),
as different strategies might be entangled by the aggregation
process.

In contrast to k-Means, k-Medoids uses actual datapoints
as the centroids of the clusters. Hence, no aggregation is per-
formed, eliminating the problems associated with it. How-
ever, as the number of participants in reasoning experiments
is very limited compared to typical datasets used in machine
learning, the approach might not find an optimal centroid for
each cluster. Since human data is inherently prone to noise, a
pattern found by k-Medoids might contain artefacts that were
introduced by confounders unrelated to reasoning processes.

Clustering using NMF Non-Negative Matrix Factoriza-
tion has the goal of finding a decomposition for an input-
matrix X . To this end, a basis matrix W = m× k and a co-
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efficient matrix H = n×k for a given k need to be found such
that:

X ≈WHT (1)

These matrices can be obtained by using a variety of
solvers, including the commonly used non-negative least
squares solver (H. Kim & Park, 2008).

Formally, clustering can also be understood as a problem
of matrix decomposition (e.g., J. Kim & Park, 2008). The
columns in the W -matrix then represent the centroids of a
cluster, while the H-matrix contains the assignment of a data
point to the respective cluster.

To use NMF clustering on the syllogistic data, it needs
to be represented as a matrix X of shape m × n, where n
corresponds to the number of participants and each column
corresponds to an m-dimensional vector representing the re-
spective participant’s response pattern. To transform the data
accordingly, we first represented the responses of each par-
ticipant as a 64× 9 matrix (for the 9 possible response op-
tions), meaning that each task is represented as a one-hot-
encoded vector. The matrices were subsequently flattened
into a 576-dimensional vector, out of which the final data ma-
trix X containing all participant vectors was created (leading
to X = 576× 106). In order to find the matrices W and H,
we used the non-negative least squares solver included in the
Python package SciPy1 which is based on the algorithm pro-
posed by Lawson and Hanson (1995).

In order to realize clustering via NMF, additional con-
straints on the coefficient matrix H are necessary. As the co-
efficient matrix contains the assignment of the participants to
the respective patterns, it needs to be ensured that each par-
ticipant is only assigned to a single pattern, i.e., that each row
represents a one-hot-encoded vector. We realized the con-
straint by adjusting the H-matrix accordingly after each iter-
ation of the solving algorithm instead of incorporating it into
the minimization function, which has the advantage of guar-
anteeing that the constraint is satisfied.

While constraints on the W -matrices are not necessary,
they can be used to enforce properties that are tailored to
the specific domain. Each column in the W -matrix represents
a complete pattern for all 64 syllogisms, which means that
chunks of 9 values belong to a single syllogism. Therefore,
we normalized each chunk of a column in each iteration of
the NMF algorithm to the Euclidean norm in order to obtain
results that are more distinct compared to the wider distribu-
tions of k-Means. To ensure that the reconstruction remains
unaffected, we adjusted the corresponding column of the H-
matrix accordingly.

Note that these constraints are not applied to the final re-
sults, but after each iteration of the algorithm instead. This
ensures that the final result is optimized with respect to the
given constraints, which is a major advantage of methods like
NMF.

1https://scipy.org

Determining k Given the strong inter-individual differ-
ences and noise that become apparent in syllogistic reasoning,
it is challenging to determine an optimal (but low) number of
clusters since a higher number of clusters would always allow
to capture certain individuals better.

To assess this problem, we used a repeated hold-out valida-
tion (for different values for k with 1000 iterations each), i.e.,
we repeatedly divided the data in random subsets (training-set
and test-set). Both sets had the same number of participants.
We used four metrics to determine the number of clusters and
compare the different clustering methods:

The first metric used is the Inter-Similarity and assesses the
stability of the found patterns with respect to the specific set
of participants. If k is too high, patterns might start to rep-
resent outliers. In these cases, it is unlikely that the results
are stable, as they are likely to jump between different local
minima depending on the dataset at hand. Therefore, cluster-
ing is performed on both, the training- and the test set. The
resulting patterns of both clustering runs are then compared
to each other (pattern vs. pattern) using cosine-similarity:

sim(w1,w2) =
w1 ·w2

|w1||w2|
(2)

Inter-Similarity corresponds to the mean similarity be-
tween the patterns obtained from applying clustering to the
training- and test set. Since the order of patterns might dif-
fer between both runs, the result is only based on the most
optimal ordering of the patterns.

The second metric is the Intra-Similarity, which has a sim-
ilar reasoning behind it: If k is too high, patterns might start
to be too similar to each other. Therefore, the cosine simi-
larity is used to compare the patterns obtained from a single
run of clustering. Intra-Similarity is then defined as the maxi-
mum similarity between two patterns obtained from the same
clustering run. However, the Intra-Similarity is unable to dis-
tinguish between the occurrence of multiple distinct patterns
that are similar to each other and generally less distinct pat-
terns, that have a high similarity because of a more blurry
appearance.

For the above-mentioned reasons, we use our third met-
ric, the Entropy, which indicates how distinct the pattern is:
the more “blurry” a pattern is, the higher the entropy. There-
fore, by definition, k-Medoids has a perfect score, as it uses a
real participant pattern which always has a distinct response
to each task. The entropy for the response distribution for a
specific task is calculated as follows:

H =−∑
i

pi ∗ log2 pi (3)

We use the mean entropy of all tasks of a pattern as the
resulting entropy of a pattern.

Finally, we used the Test-Accuracy, which is defined as the
mean accuracy achieved when using the k patterns obtained
from clustering on the training-set as predictors for the par-
ticipants in the test set. Thereby, the best pattern is selected
for each participant.
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Figure 1: Results of a crossvalidation for kMeans, kMedoids and clustering based on the NMF in terms of inter- and intra-
similarity, mean accuracy on the test set and entropy for different numbers of clusters (k).

The results of the metrics for different values of k are
shown in Figure 1. For the Inter-Similarity, the disadvantage
of k-Medoids becomes apparent: The resulting patterns are
directly based on the participants, which makes it highly sus-
ceptible to changes of the dataset. For NMF and k-Means, a
substantial decrease of stability is noticeable with higher lev-
els of k, with k-Means being more robust to the changes over-
all. However, the downside of k-Means is clearly visible in
the Intra-Similarity, where its mean-based centroids are sub-
stantially less distinct compared to the other methods. For all
methods, a substantial change from k = 2 to k = 3 is apparent,
indicating that even a third pattern already leads to a higher
similarity between the patterns. However, higher values of
k seem to not further increase the similarity to the same ex-
tent. This gets confirmed by the Entropy, where k-Means also
shows to produce less distinct patterns compared to the other
methods. This indicates that the worse score of k-Means in
Intra-Similarity is not due duplicated patterns, but rather an
effect of the aggregation. Both, the NMF and k-Means, show
an improvement with higher values of k, since the additional
clusters allow to build more homogeneous groups. However,
as the Intra-Similarity indicates, this could also lead to over-
fitting in the form of almost identical patterns.

For the Test-Accuracy, k-Means and NMF show almost the
same performance, with k-Medoids falling behind slightly.
Also, the differences for varying number of clusters are neg-
ligible, suggesting diminishing returns for higher values of
k.

Overall, the analysis suggests that a total number of two
clusters seems to offer the best trade-off between accuracy
and stability. For k = 2, the NMF is best suited, since k-
Means has a substantially worse Intra-Similarity and Entropy,
while k-Medoids is lacking stability with and therefore also
generalizability. Hence, the final patterns (see Figure 2) were
obtained with k = 2 by using NMF clustering. In the follow-
ing section, the patterns will be interpreted with respect to
their meaning within the domain of syllogistic reasoning.

Interpreting the Patterns
In the following, we will take a closer look on the obtained
patterns and the groups of participants that were assigned to

Aac Iac Eac Oac NVC

AA1

AI1

AE1

AO1

IA1

II1

IE1

IO1

EA1

EI1

EE1

EO1

OA1

OI1

OE1

OO1

Aac Iac Eac Oac NVC

Figure 2: Both response patterns for the 64 syllogistic tasks
found by clustering with Non-negative matrix factorization
(for k = 2). Darker shades denote a higher weight of the re-
spective response.
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the respective patterns. For convenience and clarity, we will
reference the two groups by G1 (assigned to the blue pattern)
and G2 (assigned to the red pattern).

When comparing both patterns found by the NMF (see
Figure 2), the main difference seems to be revolving around
NVC. This is in line with previous analyses, which found the
main inter-individual differences to be found with respect to
NVC behavior (e.g., Riesterer, Brand, & Ragni, 2020b; Brand
et al., 2022). With respect to the logical correctness, G2
also shows a substantially higher correctness (mean = .68,
SD = .14) compared to G1 (mean = .4, SD = .14), which
is expected since NVC is integral for a high correctness due
to the high number of invalid syllogisms. While most dif-
ferences between the patterns are just a shift towards NVC,
a slight difference is also apparent for syllogisms with the
quantifier Some not (O) in the first premise, as responses with
the non-negative quantifier Some (I) are present for the blue
pattern, while - if not NVC - only negative conclusions (Oac
and Oca) are present in the red pattern. Besides these differ-
ences, the patterns seem to show identical response patterns.

Given that only two stable patterns were found that differ
substantially with respect to their correctness, it is tempting
to compare them with dual-processing accounts. Following
the idea of dual processes and the respective implementation
in mReasoner (Khemlani & Johnson-Laird, 2013), we clas-
sify the left (blue) pattern as being more likely to represent a
strategy relying on System 1 (S1), while the right (red) pat-
tern be more frequently engaged in the search for counterex-
amples and thereby relying on System 2 (S2). However, it is
important to note that the correctness and number of patterns
on their own do not corroborate a dual-processing account:
Instead, since two stable patterns seem to emerge from the
data that mostly differ with respect to NVC, it shows why
models for syllogistic reasoning tend to converge to describe
inter-individual effects with respect to NVC (i.e., confidences
in the Probability Heuristics Model (PHM; Copeland, 2006;
Riesterer et al., 2020a), NVC aversion in the model TransSet
(Brand, Riesterer, & Ragni, 2020), and the search for coun-
terexamples in MMT (Khemlani & Johnson-Laird, 2013)).
Still, assuming a dual-processing account allows us to de-
rive predictions about the groups of participants assigned to
the respective patterns by the clustering method: First, it is
expected that G2 has a higher response time compared to
G1, since relying on the deliberate inferences of S2 should
be substantially slower than applying fast-and-frugal heuris-
tics. Second, participants in G2 should show a higher cor-
rectness in the Cognitive Reflection Test (CRT), since the
test is designed to mislead participants relying on intuition.
Furthermore, Need for Cognition (NFC), is also expected to
be higher in G2, since participants with high NFC are more
likely to engage in tasks that require cognitive effort and de-
liberative thinking.

With respect to our predictions, we investigated the differ-
ences in Need for Cognition (NFC) and the correctness in a
Cognitive Reflection Task (CRT) as well as the mean response

Table 1: Overview and results of a Mann-Whitney-U test be-
tween the two groups as assigned by the NMF with respect
to Need for Cognition (NFC), Cognitive Reflection Task cor-
rectness (CRT) and the mean response times (RT). Factors
showing significant differences (with Bonferroni corrected
α = 0.0167) are written in bold.

Mean SD U pG1 G2 G1 G2
NFC 4.65 4.73 .9 .84 1224.5 .536
CRT .47 .7 .29 .28 747.0 < .001
RT 15803 13468 5969 6610 1697.0 .001

time needed for the 64 tasks. The results of the comparison
are shown in Table 1. While NFC did not show any signifi-
cant difference, the CRT differed significantly. With a mean
correctness of .47, participants in G1 were substantially more
susceptible for the traps of the CRT compared to G2 with
a mean correctness of .7. This strengthens the assumption
of the dual-process accounts, indicating that G1 relies on a
more intuitive process. However, the differences in response
times showed that G2 was significantly faster than G1. This
contradicts the assumption of a slower, more logical approach
using S2, but is in line with previous findings showing faster
response times for NVC responses (Brand et al., 2022).

Finally, we checked how well the participants would be
classified based on the NFC and CRT. To this end, we re-
assigned the participants to the two patterns based on their
NFC and CRT scores (using the median as a threshold). Sub-
sequently, the accuracy of the respective pattern in predict-
ing the participant’s responses was calculated for each partic-
ipant. Additionally, we included the original assignment as
obtained from the NMF (Fit) and a post-hoc optimal assign-
ment maximizing accuracy. Furthermore, the accuracy of the
Most-Frequent Answer (MFA) strategy was added as a base-
line. The MFA could thereby be understood as the result of a
clustering with k = 1, making it useful to assess the additional
gain by having an additional pattern. The results are depicted
in Figure 3.

As expected from the previous analysis, NFC could not be
used as an assignment strategy, even decreasing the accuracy
(0.514) below the level of the MFA (0.552). However, the
CRT only managed to improve the accuracy slightly (0.555),
illustrating that a significant factor does not necessarily trans-
late into being a powerful predictor on the level of individual
response predictions. Finally, both data-driven assignments
achieve an almost identical performance (0.599) which is a
substantial improvement over both, the CRT and the MFA.

Discussion
The key goal of this article was to find and investigate sta-
ble patterns of human syllogistic reasoning behavior, which
could be considered iconic for the task. Our analysis shows
that first, only two patterns can be identified robustly, and sec-
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Figure 3: Accuracy achieved when comparing the individual
patterns to the two iconic patterns for different assignment
strategies. Individual traits are shown in blue, data-driven as-
signments in green. As a baseline, the most-frequent answer
(MFA; orange) is added. Triangles denote the mean accuracy.

ond that these patterns differ most predominantly in terms of
the frequency of relying on NVC as a conclusion option.

The composition of the two identified patterns explains
why most of the proposed models in syllogistic reasoning
research (e.g., see Khemlani & Johnson-Laird, 2012) con-
verge to a similar distinction between NVC-friendly and an
NVC-averse participants in their response predictions. In-
stead, their key differences are mostly in the explanation of
why these patterns emerge in syllogistic reasoning.

The fact that two patterns are found specifically seems to
corroborate the dual-processing account assumptions under-
lying the search for counterexamples in MMT. This is further
reinforced by the fact, that the reasoners associated with the
more correct pattern also score high on the CRT, which is de-
signed to assess the affinity of reasoning in a deliberative and
logically correct manner. However, the observed response
times associated with the patterns are contradictory to what
is posited by the theory: the logically correct pattern is asso-
ciated with faster instead of slower reaction times. Addition-
ally, the CRT is known to correlate with various measures of
cognitive ability (Frederick, 2005), which could also explain
the a higher performance on syllogistic tasks. As a side-note,
the marginal improvement achieved by using the CRT as an
assignment strategy illustrated a pitfall in cognitive modeling:
Even highly significant factors due not necessarily translate
well to the level of predictors for individual patterns.

The results shown in this article raise the question if tra-
ditional modeling of syllogistic reasoning behavior has hit a
dead end or will hit it soon. As models converge to the same
patterns and only differ in their sets of explanatory assump-
tions, new experiments need to be designed and datasets ac-
quired to more specifically investigate the validity or falsity of
the underlying assumptions. One step towards this goal could
be to integrate more auxiliary information about individuals
for example via extended psychological test batteries. This
could also make it possible to find additional patterns more

nuanced to smaller sub-populations of participants. Further-
more, the explanatory component of models and their under-
lying theories will be of greater importance, since a model
comparison purely based on the general patterns will not suf-
fice for a meaningful distinction between the models’ capa-
bilities. Instead, deriving specific hypotheses tailored to test
certain assumptions of the model will become necessary.

On a technical level, our work showed that clustering, es-
pecially with flexible approaches like Non-Negative Matrix
Factorization, can help to uncover expressive iconic patterns
in human reasoning data. Paired with the proposed metrics,
which allow to assess the robustness of the found patterns
in domains where large inter-individual differences are to be
expected, these approaches are valuable assets in cognitive
modellers’ toolkits, irrespective of the domain of interest.
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Abstract
To explain the performance history of individuals over time,
particular features of memories are posited, such as the power
law of learning, power law of decay, and the spacing effect.
When these features of memory are integrated together into a
model of learning and retention, they have been able to account
for human performance across a wide range of both applied
and laboratory domains. However, these models of learning
and retention assume that performance is best accounted for
by a continuous performance curve. In contrast to this stan-
dard assumption of models of learning and retention, other re-
searcher have argued that ,over time, individuals display sud-
den discrete shifts in their performance due to changes in strat-
egy and/or memory representation. To compare these two ac-
counts of memory, the standard Predictive Performance Equa-
tion (PPE; (Walsh, Gluck, Gunzelmann, Jastrzembski, & Krus-
mark, 2018)) and was compared to a Change PPE on fits to
human performance in a naturalistic data set. We make sev-
eral hypotheses about the expected characteristics of individ-
ual learning curves and the different abilities of the models to
account for human performance. Our results show that perfor-
mance that Change PPE was not only able to be better fit the
data compared to the Standard PPE, but that inferred changes
in the participant’s performance was associated with greater
learning outcomes.
Keywords: Cognitive Models; Learning and Forgetting;
Change Detection; Naturalistic Data; Decay; Spacing Effect;
Strategies; Long Term Learning; Individual Learning

Introduction
The study of human memory has long been a primary inter-
est of psychology, focusing on how humans acquire, retain,
and recall information overtime. The findings from this re-
search hold a great deal of promise for a variety of different
applied domains, such as educational tutoring systems and
adaptive training systems in medical, military and education
domains. The main goal of these technologies is to attempt to
determine what an individual’s current ability or knowledge
is on some task and then prescribe a relevant training sched-
ule to improve or maintain their current ability over a period
of time. To estimate and predict an individual’s performance
over time, models of learning and retention which incorporate
specific features of memory are often used.

Three common features of memory which are used to ac-
count for performance over time are, the (1) power law of
learning (Newell & Rosenbloom, 1980), (2) power law of de-
cay (Rubin & Wenzel, 1996), and (3) spacing effect (Bahrick,
Bahrick, Bahrick, & Bahrick, 1993). Power law of learning
posits that an individual’s performance improves with addi-
tional exposures to a task. The power law of decay states that

an individual’s ability on a task decreases as a function of the
time between instances of practice. The spacing effect states
that if practice is spaced apart, knowledge is acquired at a
slower rate but will be retained at a higher rate when com-
pared to a massed learning schedule. Furthermore, models
which take these regularities of memory into account often
assume that individuals develop a singular representation of
the task or knowledge which has a particular memory strength
manipulated over time according to temporal distribution of
learning schedule leading to a continuous performance curve
(Walsh et al., 2018; Pavlik Jr & Anderson, 2005; Raaijmak-
ers, 2003).

Though the assumption of a continuous learning curve is
common in many different models of learning and retention
and has been found to account for large amounts of empirical
data (Walsh et al., 2018; Pavlik Jr & Anderson, 2005; Raai-
jmakers, 2003; Kumar, Benjamin, Heathcote, & Steyvers,
2022). Others have suggested that individuals display dis-
crete and sudden shifts in performance over time, due to
changes in memory representations (Collins, Tenison, Gluck,
& Anderson, 2020), strategies (Gray & Lindstedt, 2017), or
heuristics (Hintzman, 2011) To account for these discrete per-
formance shifts models of learning and retention have been
augmented to incorporate change points over time to account
for shifts in performance. (Collins et al., 2020; Tenison &
Anderson, 2016; Gray & Lindstedt, 2017).

We will now offer an overview of the predictive perfor-
mance equation (PPE) as well as review the assumptions
made by models of continuous learning models. Finally, we
make several hypotheses about the properties of individual
learning performance in a naturalistic data set collected from
Luminosity and made available by Kumar et al. (2022). Un-
derstanding the variability in learning behavior in naturalis-
tic data offers good test for psychological models attempting
to account for performance over long periods of time, days,
months, and years, due to the fact that most laboratory stud-
ies are conducted over a short period of time (i.e., days or
weeks).

Predictive Performance Equation
The core of the PPE is composed of six individual equations,
which attempt to account for the effect of the learning sched-
ule on performance based on three features of memory previ-
ously discussed, (1) power law of learning, (2) power law of
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decay, and (3) the spacing effect.
The center of the PPE revolves around the Activation term

(Mi, 1), which is product of a learning (Nc
i ) and a decay mech-

anism (T−d). The learning mechanism encapsulates the num-
ber of exposures (N) raised to a constant learning rate (c)1.

Mi = Nc
i ∗T−d

i (1)

PPE’s decay mechanism is a product of model time (Ti, 3)
which is a weighted sum (2) of wall clock time, raised to a
decay rate (di 4). PPE’s decay rate accounts for the spacing
effect through the use of the Stability term (STi, 5) which is
a weighted average of all previous lags between instances of
practice. When lags are closer together (i.e., massed train-
ing schedule) decay increases, and when lags increase (i.e.,
spaced presentation schedule) decay decreases. The effect of
the stability term on decay is modified by two free param-
eters b and m, which modify the decay intercept and slope,
respectively (4).

Ti =
n−1

∑
i=1

wi ∗ ti (2)

wi = t−x
i

n−1

∑
j=1

1
t−x

j
(3)

di = b+m∗STi (4)

STi = (
1

n−1
∗

n−1

∑
j−1

1
ln(lag j + e)

) (5)

Finally, to transform the Activation term (Mi) into a prob-
ability the activation term is nested within a logistic equation
(6), which is modified by free parameters τ and s controlling
the performance intercept and slope. Although nesting PPE’s
Activation term within the logistic function is the most com-
mon use of the PPE in domains where PPE is used to track an
individual’s performance accuracy, it can be further modified
by two more parameters to be used in events where there is
no task defined maximum performance value (7). In this ad-
ditional transformation, two more parameters A is defines the
maximum performance value and a defines the initial perfor-
mance coming into a task.

Probi =
1

1+ exp( τ−Mi
s )

(6)

Per f ormancei = a+Probi ∗A (7)

1For historical reasons the learning rate of the PPE is commonly
held at 0.1 (Walsh et al., 2018)

Continuous or Segmented Learning

Traditionally, to explain learning over time, models of learn-
ing and retention posit a single continuous performance curve
to account for an individual’s learning history. These contin-
uous performance curves can be modified according to dif-
ferent features of an individual learning history, such as de-
cay and spacing (Walsh et al., 2018). Assuming a continu-
ous performance curve has been the predominate approach
to account for learning across both laboratory and real-world
applications. However, positing a continuous performance
curve makes several assumptions about learning and reten-
tion. First, a continuous performance curve assumes that each
measurement of performance comes from the same mecha-
nism. Second, a continuous performance curve assumes that
individuals have stable sub-symbolic parameters (i.e, learn-
ing and decay rates) that account for their performance over
time.

Despite the practicality of using these commonly used
models of memory, the complexity of memory suggests that
they might not be adequate for explaining performance over
time at the individual level. Gray and Lindstedt (2017) has
shown that individuals often show systematic changes over
time when acquiring a skill. These systematic changes are of-
ten observed only at the individual level of performance and
are lost when performance is averaged over multiple partici-
pants. Lee, Gluck, and Walsh (2019) has shown that individ-
uals often change decision making strategies over time—to
either improve their overall performance, adjust to new en-
vironment, or explore different decision making strategies.
Tenison and Anderson (2016) have shown that, given enough
experience, individuals transition through different phases of
learning changing the mechanisms used to represent the prob-
lem over time moving from declarative to procedural.

However, each of these studies examined performance
in laboratory conditions, where tasks were designed to be
amenable to multiple different strategies or be consolidated
by different memory representations. It is currently unknown
to which degree individuals freely follow either a continuous
or segmented learning curve in a naturalistic domain. Given
these two different perspectives to account for an individu-
als performance over time, we compare these two different
learning features in a naturalistic data set collected over a pe-
riod of several years on the website Luminosity (Kumar et al.,
2022). We fit two different versions of the PPE using either
continuous or change learning assumptions to account for the
individuals performance and make several hypotheses about
capability of these two models.

First, (H1) we predict that a majority of the participants
will be identified as having at last one change point in their
observed performance. A change in performance could occur
for a variety of different reasons, such as a change in strategy,
an inability to recall their previous strategy due to a long lag
between trials, a lapse in attention, or strategy exploration.
Second, (H2) we predict that there will be a positive associ-
ation between the number of inferred change points and total
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number of performance opportunities. If changes in perfor-
mance are associated with an increase in experience then we
should expect to see more change points with increased at-
tempts. Third (H3), we predict a majority of the inferred
change points will be inferred after a brief lag between at-
tempts. If changes in performance occur due to an individ-
ual’s use of strategy or change in mechanism, then change
points should occur close together in the learning history and
not frequently occur after long lags. Finally (H4), we predict
a positive correlation between the number of inferred change
points and an individual’s improvement in performance. If
individuals are changing how they are completing a task in
order to improve their performance, then we should see a
positive relationship between the number of inferred change
points and the average performance of participants.

To evaluate these predictions, we conducted a model com-
parison fitting two versions of the PPE. The first version is
a standard version of the PPE (Continuous PPE), which es-
timates a continuous performance curve based on the three
features of memory previously discussed. The second ver-
sion of the PPE uses the same PPE model with the addition
of a change detection algorithm which allows for the detec-
tion of multiple change points given an individual’s perfor-
mance history (Change PPE). The rest of the paper is struc-
tured as follows: we provide an overview of the Luminosity
data set, the change detection algorithm, and the results from
our model comparison. Finally, we review the implications
of our finding to adaptive scheduling systems.

Method
Data set
A random subset(N = 1200) of individuals completing the
Lost in Migration game on Luminosity were collected be-
tween December 2012 and October 31, 2017. The full data
set was collected by Kumar et al. (2022), who formatted
the data from Luminosity for research purposes 2. The Lost
in Migration game was inspired by Erickson’s Flanker Task
(Eriksen & Eriksen, 1974), where individuals were shown a
set of birds moving across the screen and had to report the
direction that the birds were moving while ignoring the dis-
tractor signals.The data from each participant was organized
into instances of performance (i.e., trials) and sessions (i.e.,
a set of continuous game play with a delay no longer than
1 hour). Performance was measured by the total number of
correct game plays per trial. A full explanation of the organi-
zation of the data can be found in (Kumar et al., 2022).

Model Procedure
To infer the number of change points within an individ-
ual’s performance data, a simple unsupervised change detec-
tion algorithm was combined with the Standard PPE (Serre,
Chételat, & Lodi, 2020). Before the change detection algo-
rithm could be run, a maximum number of change points had

2The dataset is freely available on https://osf.io/zkyr8/?
view only=cb500b45c76f448ea486dd0ec2e6ea4a.

to be determined. For this paper a maximum of 5 change
points were chosen. This number of maximum change points
is similar to previous research articles (Collins et al., 2020;
Lee et al., 2019). Next, a genetic optimization algorithm was
used to determine both the number and location of change
points within an individual’s performance data. Genetic algo-
rithms are a type of optimization algorithm which are based
on the features of natural selection. Genetic algorithms work
by specifying a “population” of potential parameter values
and then determining the “fitness” of each proposed parame-
ter set by a user defined fitness function (i.e., RMSD, r, Like-
lihood). After the fitness of a set of parameters has been de-
termined a next generation of population parameters are se-
lected, according to mutation, cross over, and fitness values.
This process is repeated until the algorithm settles on a solu-
tion that maximizes the user defined fitness function.

Once the genetic algorithm proposed a set of potential
change points, the PPE’s 6 parameters (b,m,s,τ,a,A) were fit
to each of the individual performance segments using maxi-
mum likelihood. After the PPE was fit to each performance
segment, the fitness values of fit proposed change points was
evaluated. For this paper, the BIC of the PPE’s overall fit to
the participants’ performance data was chosen (8). Choosing
the BIC as a fitness function ensures that the change detection
model does not over fit to the participants’ data and incorpo-
rates two aspects commonly implemented in change detec-
tion algorithms. First, BIC takes into account the model’s fit
to the participants’ performance using a likelihood function
(LL), which was measured using a gamma distribution. Sec-
ond, BIC incorporates two different penalty parameters based
on the number of data points (N) and the number of free pa-
rameters (pi) in the model. By minimizing the BIC the num-
ber and location of change points can be inferred and ensure
the each additional change point and model parameters does
not add unwarranted complexity.

BIC =−2∗LL(
Pred2

i
σ2 ,

Predi

σ2 |Per fi:N)+ pi ∗ log(N) (8)

In addition to the Change PPE we also fit the Standard PPE
(Continuous PPE) to each participant’s performance data us-
ing BIC. Note that the Continuous PPE is equivalent to the
Change PPE with zero detected change points.

Results
Model Fit First, to compare the each model’s fit the par-
ticipants’ performance, we calculated the correlation (r) and
Root Mean Squared Error (RMSD) between both models’
fit to the participants’ individual performance. Overall, the
Change PPE (r = .95, RMSD = 2.97) was found to better fit
the participants’ data compared to the Continuous PPE (r =
.89, RMSD = 4.46; see Figure 1).

A visual inspection of Figure 1 shows that, overall, both
models fit the average data of participants in the Luminos-
ity data fairly well, with slight differences in the models’ fits
being observed. First, though both the Continuous and and

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

66



Figure 1: The average performance of participants (Black
line), the average Change PPE (blue line +/- 95%CI), and
Continuous PPE (red line, +/- 95%CI) fit to the participants’
first 100 trials of the Luminosity data.

Change PPE fit the the participants’ initial performance, dif-
ferences arise between each models’ ability to capture par-
ticipants’ later performance. The Continuous PPE has dif-
ficulty capturing the participants’ variability in later perfor-
mance, while the Change PPE is able to capture this vari-
ably in performance. Second, a large difference between the
Continuous and Change PPE’s estimates of uncertainty are
observed. The Continuous PPE estimated larger confidence
interval compared the the Change PPE over participants’ en-
tire performance history. Though the differences between the
two models fit is minimal at the average level, larger differ-
ences between the Continuous and Change PPE are appar-
ent at the individual participant level. For example, Figure
2 shows a participant for whom the Change PPE inferred 5
change points. From this example, the difference between
the Change PPE (left panel) and the Continuous PPE’s (right
panel) ability to capture the participant’s performance can
clearly be seen. While the the Change PPE is able to cap-
ture the specific changes in the participant’s performance over
time, the Continuous PPE can only capture the participant’s
initial performance and under fits the participant’s later per-
formance.

Taken together the analysis of each models fit is unsurpris-
ing due the the fact that the Change PPE had the potential of
using a greater number of parameters to fit the participant’s
Luminosity performance data. To ensure the inferences from
the the change detection are model are warranted, the BIC
of the Change and Continuous PPE were evaluated for each
participant. For all participants where the Change PPE in-
ferred one of more change points, the Change PPE’s BIC
was lower compared the Continuous PPE’s. When no change
points where inferred the BIC between the Continuous and
Change PPE were the equal. The comparison of the BIC be-
tween the two models shows that the Change PPE algorithm

did not over fit the participant’s data.

Figure 2: The performance of a single participant (black line)
and the average fit ( +/− 95%CI) of the Change PPE (left
panel) and the Continuous PPE (right panel).

Change Detection Analysis Now we will go on to evaluate
our hypotheses about the characteristics of the participants’
learning profile. Fist, our analysis showed that 52% of partic-
ipants were found to have one or more change points within
their recorded performance. As can be seen in Figure 3, there
is some variability in the number of change points inferred
across participants having either 1 or 5 change points, with 2
change points being the least inferred number.

Figure 3: A histogram of the number of inferred changes
points per participant across the Luminosity data set.

To investigate the relationship between number of in-
stances of performance and number of inferred change points,
we examined the correlation between total number of trials
and the number of inferred change points in the participants’
performance. We found that there was an overall positive cor-
relation (r = .48) between the total number of trials and num-
ber of inferred change points. This suggests that as partici-
pants gain more experience with the task they either change
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their sub-symbolic representation of the task or their strategy
over time.

Figure 4: The total number of trials completed by a partici-
pant as a function of inferred change points

To assess when changes were inferred, we examined the
time between the last trail of the previous learning segment
at the first trial of a new segment (segment lag). If change
points are inferred due to participants’ changing their strat-
egy or representation of the task then we would expect the lag
between segments to be small, less then a day. In contrast, if
change points are the results of participants’ forgetting, then
the lag between segments should be large. Our results show
that for participants who were found to have a minimum of of
1 change point, 58% of the data had a segment lag of less than
one day. Finally, to asses the effect of inferred changes on the
participant’s overall performance we examined the relation-
ship between the proportional change in participants perfor-
mance between their initial and final performance value (i.e.,
improvement) and the number of change points that were in-
ferred. We found a positive correlation (r = .95) between the
average proportional change and the number of change points
that were inferred across participants. This finding suggests
that change points inferred in the participants data are asso-
ciated with greater improvements in the participants’ perfor-
mance.

Discussion
In this paper we compared the ability of two different ver-
sions of the PPE (i.e, Continuous and Change) to account
for the performance of individuals in a naturalistic data set
collected from Luminosity (Kumar et al., 2022). Compar-
ing the fit of both versions of the PPE allowed for a test of
different assumptions of learning and retention. The Contin-
uous PPE assumes that an individual’s performance will fol-
low a continuous performance curve, where the entire history
of an individual is informative to determining their perfor-
mance over time. In contrast the Change PPE, assumes that
individual performance is more dynamic and includes sudden

change points where an individual’s performance shifts due to
changes in strategy, memory representation, or heuristic. In
addition to comparing each model’s fit to the data, several hy-
potheses about the expected inferences made by the Change
PPE were evaluated.

Overall, the results reported in this paper support the notion
that a majority of individuals in the Luminosity data show ev-
idence for having sudden changes in their performance over
time. Furthermore, we found evidence to confirm each of our
four hypotheses. First, over half of the participants examined
in this paper were found to have at a minimum of one signif-
icant change point within their recorded performance. This
result supports the notion that a majority of participants’ per-
formance are better accounted by the Change PPE compared
to the Continuous PPE. However, it should be noted though
a majority of participants were inferred to have a minimum
of one change point, there were still large portion of partici-
pants whose performance was best fit by a single continuous
curve. The proportion of continuous to non-continuous per-
formance curves suggests that individuals naturally display a
wide range of performance curves. Second, we found a pos-
itive relationship between the amount of recorded instances
of performance and the number of inferred change points.
This finding supports the notion that the sudden changes in
an individual’s performance arise when an individual is given
enough experience to refine their strategy or memory rep-
resentation. Third, we found that a majority of the inferred
change points occur recently after previous experience. The
minimal time between instances of performance support the
notion that inferred changes are caused by changes in strat-
egy (Lee et al., 2019) or memory representation (Collins et
al., 2020; Tenison & Anderson, 2016) If it was found that
most inferred change points occurred after a long delay then
it would support that idea that participants had failed to recall
how to complete the game and had to relearn how to preform
the task. Finally, we found an overall positive relationship
between the number of inferred change points and the partic-
ipants’ improvement in performance, which strengthens our
claim that performance changes are made in order to improve
on the overall task and not necessarily due to lack of atten-
tion or mind wandering. Taken together the results of the this
paper support the idea that a majority of the participants’ per-
formance observed from Luminosity could not be accounted
by a continuous performance curve and that they contain sud-
den and discrete shifts in performance.

Finally, the findings from this paper have implications for
adaptive education systems. Most models used in adaptive
educational systems attempt to utilizes an individual’s full
performance history to generate a predictions of their future
performance. However, the results presented in this paper
suggests that using an individual’s entire performance history
might not always be the most appropriate methodology for
making predictions and may hinder a model’s predictive abil-
ity. Instead adaptive systems should attempt to incorporate
change point detection mechanisms within a model to deter-
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mine when or if an individual’s performance has significantly
changed as not to calibrate the model to performance which
is not longer informative for their future performance.

Limitations and Future Research

Although the findings presented in this paper were informa-
tive, several limitations and future research directions should
be addressed. First, due to the chosen change detection
methodology used in this paper we had to choose the max-
imum number of possible change points which could be in-
ferred from the participants’ data. Having to choose a po-
tential maximum change points limits the type of inferences
that could potentially be made from the participants data. Fu-
ture research should attempt to explore if allowing for more
change points allows the Change PPE to better account for
the dataset presented in this paper. Second, the results in this
paper explored the ability of two models’ ability to simply fit
the data of participants post-hoc. If the Change PPE is go-
ing to be incorporated into adaptive scheduling systems, then
these models will have to develop methods to generate pre-
dictions based on the previous instances that have been made.
One possible way to incorporate predictions into our model
is to utilize cross-entropy into the change detection approach
(Serre et al., 2020), which measures the discrepancy between
two segments of performance and can be used as a predic-
tive weights. Finally, given the nature of this data we can not
make any strong claims about the why or what mechanisms
lead to an individual’s performance changes, only that it is
more likely that the underlying performance changed. In or-
der to make more mechanistic inferences, we would have to
use reaction time data (Collins et al., 2020).

Conclusions

Many different models of learning and retention have been
developed with each model accounting for similar aspects of
human memory. Though these aspects of memory have been
identified through the use of laboratory studies where there is
a great degree of control of both the content and history of the
learning schedule. Other research has shown that as the task
become more complex or the control of participants is weak-
ened, participants will use a variety of different strategies,
mechanisms, or heuristics to solve a task and the effective-
ness of using only standard memory phenomena to account
for behavior starts to diminish. Our research here supports
these claims and highlights that in a naturalistic environment
individuals’ performance shows a wide range or learning and
performance curves.
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Abstract 

This paper will explore ways of computationally 
accounting for the metacognitive threshold — the 
minimum amount of stimulus needed for a mental state 
to be perceived — and discuss potential cognitive 
mechanisms by which this threshold can be influenced 
through metacognitive training.

Keywords: metacognition; threshold; metacognitive 
threshold; Common Model; proceduralization  

Introduction 
The ultimate goal of Cognitive Modeling is to build a 
Unified Cognitive Architecture that can simulate most, 
if not all, human cognitive abilities (Newell, 1994). 
Cognitive architectures like ACT-R and SOAR 
(Anderson & Lebiere, 1998; Laird, 2012) have achieved 
notable success in modeling knowledge-driven 
behaviour, however there is a scarcity of models related 
to phenomena surrounding metacognition. The ability 
for cognition to monitor and control its own processes,  
“metacognition,”  has risen to the forefront of research 
in psychology, psychiatry, and AI. Modeling the results 
of empirical studies of metacognition is important for 
making progress toward accurately describing human 
cognition. 
 This paper will address a cognitive phenomenon 
referred to as the metacognitive threshold, i.e., the 
minimum level of stimulus needed for a mental state to 
be perceived. Specifically, we will address the 
variability of the metacognitive threshold, which can be 
reliably lowered to allow an agent improved perceptual 
access to their own internal cognitive states (Pauen & 
Haynes, 2021). The degree of an individual’s 
introspective acuity is also referred to as “metacognitive 
sensitivity”. This can be reliably improved and the 
metacognitive threshold lowered by way of 
metacognitive training such as employing mindfulness 
techniques (Fox et al., 2016). In cognitive psychology, 
mindfulness is defined as deliberate attention directed 
toward perceptible mental experiences, i.e., affect, 
sensations, thoughts, etc. (Holas & Jankowski, 2013). 
Greater access to and control of one’s own mental states 
have shown to strongly correlate with improved 
psychological health and overall cognitive functioning 
(Grossman et al., 2004; Tang et al., 2015; Rigby et al., 
2014).  
 While decades of research strongly support the 
effectiveness of metacognitive techniques to influence 
one’s metacognitive threshold, the underlying cognitive 

mechanisms have remained poorly understood. 
Presently there exists little or no account of this 
phenomena — the cognitive and computational 
underpinnings by which the metacognitive threshold is 
raised or lowered.  
 This paper will investigate potential computational 
mechanisms that may contribute to the lowering of the 
metacognitive threshold. In particular, we will discuss 
metacognitive techniques that have shown to increase 
metacognitive sensitivity, and explore various 
frameworks for clarifying their underlying cognitive 
constituents.   
 For this purpose, we will employ the Common Model 
of Cognition (CMC), originally the ‘Standard 
Model’ (Laird, Lebiere, & Rosenbloom, 2017) which 
provides a unified framework for investigating the 
fundamental elements of cognitive and metacognitive 
phenomena. By utilizing the Common Model and 
specifically ACT-R in this endeavor, we intend to 
address unanswered questions regarding the 
architecture and particularly concerning the nature of 
production rules.  

Metacognition 
Metacognition refers to the monitoring and control of 
cognitive processes (Flavell 1979; Fleming, Dolan, & 
Frith, 2012). It also involves a wide range of 
introspective attitudes such as confidence ratings and 
judgments of learning (Frazier, Schwartz, & Metcalfe, 
2021; Rhodes, 2016).  

Metacognitive control involves the active regulation 
of cognitive states or processes (Proust, 2013; Wells, 
2019). This involves engaging in mental actions to 
either access or suppress cognitive states. Mental 
actions are distinct from world-oriented actions. The 
control of cognitive activity can involve a range of 
processes such as attention, emotion, planning, 
reasoning, and memory (Slagter et al., 2011; Efklides, 
Schwartz, & Brown, 2017; Pearman et al., 2020). 

Metacognitive monitoring refers to the ability to 
recognize and identify cognitive states. It involves the 
perception of internal mental states such as thoughts 
and feelings in order to regulate those states or direct 
behavior. Research has demonstrated that metacognitive 
monitoring can be developed and improved through 
training (Baird, Mrazek, Phillips, & Schooler, 2014). 
For instance, attentional processes can be developed 
and enhanced through the repeated practice of attention-
based tasks (Posner et al., 2015). In particular, 
mindfulness as a form of attention has shown to 
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develop through the three stages of skill acquisition 
defined by Fitts and Posner (Kee, 2019).   
 Metacognitive training such as mindfulness 
techniques plays a significant role in the success rates 
of Cognit ive Behavior Therapy (CBT) and 
Metacognitive Therapy (MCT). Both CBT and MCT 
instruct patients on metacognitive strategies to monitor 
and regulate their own thoughts and emotions (Dobson, 
2013; Normann & Morina, 2018). Research has 
demonstrated that those with improved metacognitive 
skills are better equipped to identify and manage their 
own disruptive and harmful thoughts and emotions 
(Wells, 2011, 2019; Hagen et al., 2017). 

Metacognitive monitoring as mindfulness 
Metacognitive monitoring and mindfulness are often 
used interchangeably within cognitive psychology 
(Holas & Jankowski, 2013). Scientific interest in 
mindfulness practice has become a target of 
interdisciplinary research and has grown exponentially 
over the past few decades (Tang, 2017; Van Dam et al., 
2018).   

Mindfulness involves the deliberate focus on 
perceptible experiences (sensory, affective, thought-
related) and the cultivation of a dispassionate awareness 
of mental states and processes (Brown & Ryan, 2003; 
Grossman, 2010). Studies indicate a technique called 
detached mindfulness to be a uniquely effective 
therapeutic practice in developing adaptive monitoring 
and control over maladaptive cognitive processes 
(Wells & Matthews, 1994; Wells, 2005).  

Detached mindfulness is characterized by the 
awareness of internal states (thoughts and emotions) 
without reacting to them — without trying to maintain 
or suppress them. This is achieved by way of 
attempting to perceive the momentary changes in 
mental events (such as the minute fluctuations of 
emotions) and letting them pass without emotional 
response. Mindfulness psychology contends that a 
significant degree of emotional distress and 
pathological symptoms are caused by the illusory 
perception of affective experience being more 
permanent than it actually is. This illusory perception is 
explained as the result of a high metacognitive 
threshold (poor metacognitive sensitivity) that does not 
allow for the subtle detection of affective fluctuations. 
Training in detached mindfulness aims to improve 
metacognitive sensitivity and one’s perception of 
affective impermanence, also referred to as equanimity. 
In mindfulness therapies that do not promote 
equanimity, awareness alone may not be sufficient to 
increase subjects’ psychological well-being 
(Cardaciotto et al., 2008). The increased, more 
skillful, capacity to perceive the impermanence of 
affective experience is considered a key mechanism 
responsible for decreasing emotional reactivity (Tang et 
al., 2015).  

Metacognitive threshold 
A psychophysical threshold is the minimum amount of 
physical stimulus needed to evoke a perceptual 
response in a person (Rouder & Morey, 2009). 
Psychophysical thresholds and their variability have 
been researched in domains such as sound, vision, 
interoception, and others (Kingdom & Prins, 2009). In 
metacognition research, psychophysical thresholds have 
been studied in reference to the minimal level of a 
stimulus required for a person to be aware of some 
mental state and make a judgment about it (Charles, 
Chardin, & Haggard, 2020; Sherman, Seth, & Barrett, 
2018; Pauen & Haynes, 2021). These include 
confidence ratings as well as the subtle fluctuations of 
affective experience.   
 Generally, it is believed that an individual’s 
metacognitive threshold is variable and can be lowered 
by way of training attention to perceive the momentary 
variations of internal cognitive states (equanimity). The 
training of equanimity through detached mindfulness 
and meditation practice has shown to be effective at 
lowering one’s metacognitive threshold and enhancing 
metacognitive sensitivity. 

Metacognitive sensitivity is the extent to which one is 
able to perceive their own mental processes or states, 
including thoughts, feelings, and emotions (Fleming & 
Lau, 2014). Mindfulness training can increase 
metacognitive sensitivity, allowing one to better 
perceive the nuances of their own feelings and thoughts. 

Various metacognitive strategies and meditation 
techniques can allow one to practice and improve 
certain cognitive processes. Meditation is an umbrella 
term for techniques that employ deliberate focus and 
engage neurocognitive processes that result in 
advantageous effects on brain and behavior (Fox et al., 
2016).   
 Various meditation techniques have the reported 
effect of enhancing metacognitive sensitivity, enabling 
one to perceive a weaker signal strength from internal 
cognitive states. In the case of developing equanimity, 
one becomes more capable of detecting subtle 
variations within emotional stimuli, such as the rapid 
arising and passing of feelings, thoughts, and emotions. 

Meditation can involve a variety of practices. We will 
use Vipassana meditation as an example. Vipassana 
meditation (in the tradition of S.N. Goenka) is an old 
and popular technique that largely focuses on 
cultivating equanimity — a refined perception and 
sensitivity to the momentary impermanence of affect 
and sensations. Regular practice of this technique has 
shown to result in various cognitive advantages, such as 
improving executive functioning, enhancing response 
inhibition, and control over automatic reactions 
(Chambers, Lo, & Allen, 2008; Andreu et al., 2019). 
 The Vipassana method engages practitioners in 
guided meditation that directs them to maintain 
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attention on the impermanence of their own sensations 
(Kakumanu et al., 2018). During this process, 
practitioners monitor their affective and bodily 
sensations moment-to-moment, without evaluation or 
emotional reactivity. 
 Following this technique, practitioners report being 
able to detect increasingly subtle properties of their own 
mental states, including improved perceptual access to 
fluctuations in affect that were previously inaccessible. 
In other words, subjects report greater metacognitive 
sensitivity and a concomitant lowering of their 
metacognitive threshold. 

Modelling the phenomena 
A computational model that accounts for the 
phenomena surrounding the metacognitive threshold 
must necessarily ask questions about the fundamental 
nature of the architecture. Which computational 
components might allow one to perceive subtler 
properties in internal signals? Does it require us to 
change the way we think about certain elementary units 
of the cognitive architecture? We discuss these 
questions with specific reference to ACT-R, however, 
the application is intended more generally to the CMC 
family of architectures (Note, because the focus is on 
ACT-R, references are made to production systems. 
Other CMC architectures, such as SOAR, use more 
complex mechanisms, but the issues raised here remain 
relevant). 
 The ACT-R cognitive architecture fundamentally 
distinguishes between procedural and declarative 
knowledge to explain the underlying components of 
skill, which accords with the literature in philosophy 
and psychology (Squire, 1992; Christensen, Sutton, & 
McIlwain, 2016). Declarative knowledge is formatted 
propositionally and structured within semantic 
networks. Procedural knowledge is commonly referred 
to by researchers as containing “procedural 
representations” (Anderson, 1982; Pavese, 2019). In 
Anderson’s ACT-R model, procedural representations 
are computationally specified as “production rules” 
which are a dominant form of representation within 
accounts of skill (Newell, 1994; Taatgen & Lee, 2003; 
Anderson et al., 2019). Production rules, or 
“productions”, transform information and change the 
state of the system to complete a task or resolve a 
problem. A production rule is modeled after a computer 
program instruction in the form of a “condition-action” 
pairing. Essentially, a production rule is a “pattern-
directed invocation of action” (Stocco et al., 2021). It 
specifies a condition that, when met, performs a 
prescribed action. A production is also thought of as an 
“if-then” rule. If the condition is satisfied, then it fires 
an action. Production rules are considered to be central 
to human intelligence and fundamental to the 
realization of cognitive skills (Anderson, 1993). 
Neurologically, production rules are associated with the 

50ms decision timing in the basal ganglia (Stocco,  
2018).  

Modelling the metacognitive threshold   
How might production rules account for an enhanced 
ability to detect internal cognitive signals and their 
variations? This could be accomplished through 
increasing the speed of production rules. Essentially, 
making productions faster, particularly productions that 
notice internal states, would increase the chances of 
picking up fleeting or intermittent signals related to 
emotions and noetic (epistemic) feelings, such as 
confidence and feelings of knowing (FoK).   
 A complete model of this phenomena would involve 
modelling internal signals, how they are detected, how 
they break into one’s current awareness, and how 
metacognitive training can improve this. Here, we 
discuss only how production rule acceleration can occur 
(however, see West and Conway-Smith [2019] for an 
account of how affect and noetic feelings can be 
incorporated into this type of model).  

With regard to the speed-up of production rules, there 
are at least four different mechanisms that could 
accomplish this:  

1. The ticking clock mechanism
Production rules fire when a fixed amount of time is up. 
The use of this mechanism produces production timing 
that is analogous to the intervals of a ticking clock. The 
timing for production firing is generally estimated to be 
50ms. During this interval, productions that match the 
buffer conditions are identified. When this time is up, 
the matching production with the highest utility will 
fire. The timing of this process is based on neural 
functions that are generally considered to occur within 
the Basal Ganglia. Using this mechanism, production 
time could be sped up by shortening the clock speed. 
This could possibly occur through top-down feedback 
related to attention, as its influence has been observed 
in other psychophysical thresholds, such as improving 
perceptual sensitivity (MacLean et al., 2010).    

2. The fire when ready mechanism
Production rules fire when they are ready. ACT-R is 
essentially a fire-when-ready model. ACT-R assumes 
that it takes 50ms for a production to fire, but if no 
production rule matches the buffer conditions, ACT-R 
will wait until the buffer conditions change. For 
example, for memory retrieval, ACT-R waits for the 
knowledge chunk to be delivered into the declarative 
memory buffer and then fires the matching production. 
Hence, the overall time taken is the memory retrieval 
time plus 50ms. However, if an alternative production 
matches the buffer conditions before this occurs, then it 
will fire instead. Using this mechanism, production 
firing can be made faster by using productions that do 
not wait for information from memory or perception. 
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These types of productions can be generated through 
the production compilation mechanism in ACT-R. 

3. The narrow focus mechanism
ACT-R is capable of multitasking and even mind 
wandering, if the appropriate productions are available. 
The simplest way of producing a faster rate of firing for 
a specific type of production is to maintain the buffer 
conditions such that only this type of production can 
fire. Under these conditions, ACT-R can be said to 
model a narrow focus of attention. 

4. The faster production mechanism
Some productions may be faster than others. 
Productions range in the complexity of their internal 
actions (Taatgen, 2013). The consequences of this at the 
neural level could imply that more complex productions 
take longer than simpler productions. Stewart et al.’s 
(2010) neural model of the Basal Ganglia estimates that 
this would produce a range between approximately 
34ms-44ms for simple productions, and 59-73ms for 
complex productions. If this is the case, then the use of 
simpler productions would speed up the firing time. 

All of these mechanisms could lower the metacognitive 
threshold by speeding up productions and thus 
increasing fidelity. To be clear, this viewpoint does not 
require that a threshold exists in fact, only that the 
resulting effect would appear to be so. Hence, from an 
architectural standpoint, this particular issue is not 
regarding thresholds but rather the complexity and 
timing of production rules. We propose that increasing 
the rate of production rule firing can potentially account 
for reports of increased metacognitive sensitivity as a 
result of metacognitive training, and that Common 
Model type architectures can model this.   

Metacognitive proceduralization  
The process by which simpler, faster production rules 
are developed through metacognitive training can be  
largely explained by way of metacognitive 
proceduralization. Proceduralization is a concept used 
in the skill acquisition literature to explain the cognitive 
mechanisms involved.  It refers to the process by which 
a task or skill becomes automated, allowing it to be 
performed more efficiently and accurately, with 
minimal conscious effort or attention. The process 
involves the converting of slow declarative knowledge 
into fast procedural knowledge that is increasingly 
refined. Performance can be further improved by 
mechanisms such as time delayed learning, where faster 
productions are rewarded.  

Proceduralization plays a significant role in the 
cognitive processes underlying skill learning in 
domains such as motor skill and cognitive skill (Ford, 
Hodges, & Williams, 2005; Beilock & Carr, 2001; 
Anderson, 1982; Tenison & Anderson, 2016).    

Conway-Smith, West, and Mylopoulos (2023) 
propose that metacognitive skill develops largely 
through the process of proceduralization. Based on the 
skill acquisition model of Fitts (1964) and Anderson 
(1982), this model relies on the principle that skill 
learning within any domain is principally realized by 
the development and refinement of production rules. 
Metacognitive proceduralization proposes a mechanism 
by which human cognition can become more skillful at 
monitoring and controlling its own states, such as 
attention, emotion, and, we suggest, metacognitive 
sensitivity.  
 Within this framework, metacognitive skill develops 
through three stages (Figure 1) similar to those of Fitts 
and Anderson, from an early stage of instruction 
following to an expert stage that relies on refined, 
automatic procedural knowledge (production rules).  

Figure 1: The three stages of metacognitive skill   
learning through proceduralization (Conway-Smith, 
West, & Mylopoulos, 2023). 

The metacognitive practitioner progresses through the 
following three stages: 

The novice stage begins with meta-instructions that 
direct monitoring and control resources in a specific 
way. In the case of metacognitive training in 
equanimity, meta-instructions direct the novice’s 
attention toward the momentary fluctuations of 
affective experience (a feeling, sensation, or emotion). 
These meta-instructions are carried out by productions 
that retrieve them from declarative memory and execute 
them. Here, production speed-up could occur through 
mechanism 3 and possibly mechanism 1. 

The intermediate stage of metacognitive training 
involves the process of proceduralization, where the 
practice of meta-instructions result in the creation of 
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faster production rules to accomplish the task. 
Specifically, repeated practice would lead to the 
compilation of task-specific production rules that 
bypass declarative knowledge. Because they are faster 
(due to bypassing declarative memory and possibly 
being less complex), these productions are more 
strongly rewarded and more likely to bypass the 
retrieval of instructions in the future. Here, speed-up 
occurs through mechanism 2 and possibly mechanism 4 
(with mechanism 3 and 1 still in play).  

The expert stage involves a robust accumulation of 
production rules that have been refined and stored in 
procedural memory. These productions can be deployed 
automatically to act out monitoring and control 
processes quickly and effectively. Here, it is possible 
that productions accelerated through mechanisms 2 and 
4 are so deeply engrained that fast productions resulting 
in metacognitive monitoring and control occur 
spontaneously. This would result in an increased ability 
to monitor, even without using mechanism 3 or 1 
(although 3 and 1 would could still increase 
effectiveness if employed). 

Discussion 
This paper investigates the empirical phenomenon 
where metacognitive training can effectively lower an 
individual’s metacognitive threshold, thereby increasing 
perceptual access to their own internal cognitive states. 
To explore the underlying cognitive and computational 
processes of this phenomenon, we have employed the 
Common Model of Cognition with a special emphasis 
on the ACT-R framework. In the course of this 
investigation we have proposed a novel method of 
explanation by way of metacognitive proceduralization.  
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Extending Counterfactual Reasoning Models to Capture Unconstrained Social
Explanations

Stephanie Droop 1 Neil Bramley 2

Abstract
Human explanations are thought to be shaped
by counterfactual reasoning but formal accounts
of this ability are limited to simple scenarios and
fixed response options. In naturalistic or social set-
tings, human explanations are often more creative,
involving imputation of hidden causal factors in
addition to selection among established causes.
Across two experiments, we extend a counter-
factual account of explanation to capture how
people generate free explanations for an agent’s
behaviour across a set of scenarios. To do this,
we have one group of participants (N=95) make
predictions about scenarios that combine short
biographies with potential trajectories through
a gridworld, using this to crowdsource a causal
model of the overall scenario. A separate set of
participants (N=49) then reacted to particular out-
comes, providing free-text explanations for why
the agent moved the way they did. Our final model
captures how these free explanations depend on
the general situation and specific outcome but also
how participants’ explanatory strategy is shaped
by how surprising or incongruent the behaviour is.
Consistent with past work, we find people reason
with counterfactuals that stay relatively close to
what actually happens, but beyond this, we model
how their tendency to impute unobserved factors
depends on the degree to which the explanandum
is surprising.

1. Introduction
Suppose you see a friend crossing a car park, making a
beeline for the end of an occluding wall behind which a
food stand is often parked. But your friend stops abruptly at

*Equal contribution 1Institute for Language, Cognition and
Computation, University of Edinburgh, Scotland, United King-
dom 2Department of Psychology, University of Edinburgh, Scot-
land, United Kingdom. Correspondence to: Stephanie Droop
<stephanie.droop@ed.ac.uk>.

the corner and changes direction. The tradition of Bayesian
theory of mind uses the rationality assumption (that people
act to achieve their desires given their beliefs) to work back-
wards to infer agents’ beliefs or desires from their behaviour
(Baker et al., 2007; 2017; Jara-Ettinger et al., 2020). A
salient explanation for this behaviour could be the favourite
food stand is absent today. But even if the stand is there, we
have no problem coming up with alternative explanations:
maybe seeing it reminded your friend of something more
urgent she had to do; maybe she felt sick; maybe she saw
someone she wanted to avoid. In everyday life, we seem to
generate explanations easily and fluently, and readily draw
on factors that go beyond the facts given. Natural human
behaviour is complex and dynamic, driven by a hierarchy
of short- and long-term goals. This presents a challenge
for models of social and explanatory reasoning that often
depend on a complete pre-existing model, and simplifying
assumptions such as that people have stable goals and act in
optimal ways to achieve them.

1.1. Explanations and Counterfactuals

A standard account of what it means to explain an event or
outcome is to point to preceding event(s) that seem particu-
larly causative for that event’s occurrence on this occasion.
A person might highlight a lightning strike to explain a fire
in a barn over other less unique factors like the presence
of hay and oxygen, while a data scientist might explain a
model’s classification decision on a particular fragment of
its input or training data. Either way, explanations involve
interrogating one’s generative model of the causal relation-
ships between the outcome and the various factors involved
in producing it.

A critical component of explanation quality is whether the
outcome depends on the highlighted factors not just in the
actual world but also across counterfactuals — different
ways that situation could have played out (Lagnado et al.,
2013). Phrased differently, people frequently produce and
find satisfying those explanations that pick out variables
which robustly correlate with the outcome across a range of
imagined counterfactual scenarios (Quillien, 2020; Gersten-
berg et al., 2021). For instance, we more readily blame the
lightning than the hay for the barn fire because many things
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in barns are flammable but in reality rarely catch fire without
a spark. Counterfactual accounts which perturb the variables
in a situation model to measure the explanatory power of
different causes therefore pose a promising account of how
people generate explanations. The next section discusses in
detail one particular model which we build on in this work.

1.2. Counterfactual Effect Size Model

The Counterfactual Effect Size Model (CESM, Quillien &
Lucas, 2023) operationalises the notion of simulating varia-
tions of what actually happens when selecting causal factors
to mention in an explanation. The authors hold that when
judging to what extent a cause C explains effect E, people
first simulate counterfactual possibilities (as in the structural
model pproposed by Lucas & Kemp, 2015), and secondly
compute the causal strength of C on E across these counter-
factuals.

Important to how this works is the notion of effect size, a
measure of correlation of cause with effect across counter-
factuals, modelling how reliably an intervention on C would
change E on average across a variety of possible background
circumstances. Ceteris paribus, the theory is that the more
strongly a cause correlates with an effect across counterfac-
tuals, the more likely we are to posit it as an explanation for
the effect.

In the CESM, the degree to which simulated counterfactu-
als depart from what actually happened is controlled by a
stability parameter, s. When we simulate a counterfactual
possibility, for each causal variable in the model, with prob-
ability s we leave the variable as it is the actual world. With
probability 1 − s, we instead sample the variable’s value
from its prior probability distribution, for each counterfac-
tual we can then sample whether the effect occurs or not.
Both Lucas & Kemp (2015) and Quillien & Lucas (2023)
found that the value of s that maximised correlation with
human selections was around 0.7.

The CESM works excellently for predicting explanations
for outcomes in simple urn problems (e.g., “If I need two
coloured balls to win, to what extent was drawing a blue
ball from Urn 1 responsible for my win?”, etc., Quillien
(2020)). The counterfactual effect size concept has also been
shown to give a good account of people’s estimates of how
causative different states’ results were for the overall 2020
US election outcome (Quillien & Barlev, 2022). However,
like many probabilistic models of cognitive processes, the
CESM assumes all possible explanans are enumerated from
the start, leaving the cognizer to simply select which to point
at. To make a start towards modelling more naturalistic
explanations, such as explanations of the behaviour of other
agents (“social explanation”), we investigated the free text
explanations people generate when asked to explain the
behaviours of agents in settings where there are a range of

potentially causal variables to latch onto.

1.3. Our Approach

We investigated social explanation using a novel paradigm
where participants react to scenarios involving an agent with
four salient personal and situational features, taking one of
two trajectories to one of two food stands. We designed the
scenarios to vary from over-determined (several variables
are salient explanations for their behaviour), through singly
determined (one good reason) to surprising or incongruous
behaviour (no good reasons for, and several reasons against).
We allowed participants to explain the agent’s behaviour in
each scenario using their own words and then developed
a coding scheme to categorise the different explanations
people gave. In this way, we explore how people generate
explanations in a relatively unconstrained setting.

We are not only concerned with which and how many of
the situational factors participants mention, but also with
whether and when they posit additional latent causes not
mentioned anywhere in the scenario. To model the human-
coded responses, we implement CESM (Quillien & Barlev,
2022; Quillien & Lucas, 2023) based on a crowdsourced
causal model of the general relationships between the vari-
ables manipulated in the scenarios. We build on the CESM
by 1) basing our causal model on human intuitions about the
relevant relationships 2) allowing for interactions between
variables and 3) allowing for “other” responses that refer to
latent exogenous factors.

2. Experiments
We ran two connected behavioural experiments (Figure 1).
The first (Exp.1a) elicited participants’ predictions about
how likely a character was to take different paths to different
food sources, given various biographical and environmental
factors. We used these to construct a generative situation
model that encapsulates laypeople’s intuitions of the casual
strengths and interactions between each factor. In the second
experiment (Exp.1b) participants were shown a subset of the
possible combinations of causal factors and path/food choice
outcome. Participants provided a free text explanation for
why each agent made that choice. We used the situation
model derived from Exp.1a to predict what features of the
scene participants would cite in their explanations.

2.1. Gridworld

Both experiments used the same “gridworld”, a simple
graphic showing an agent walking around in a suburban
environment before stopping to eat at a food stand. This was
accompanied by a short biography text about the agent. We
systematically varied three binary biography elements (Pref-
erence, Knowledge and Character) and one environmental
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Figure 1: Design and flow of experiment and models.

Table 1: Gridworld Settings

Factor Values Levels

1 Preference 0, 1 Absent, Hotdogs
2 Knowledge 0, 1 Doesn’t know area, Knows area
3 Character 0, 1 Lazy, Sporty
4 Start position 0, 1 Hotdog visible, Pizza visible

5 Food choice 0, 1 Pizza, Hotdog
6 Path taken 0, 1 Short, Long
Note: Factors 1:4 describe the situational factors; 5:6 are the

agent’s choice that participants are asked to explain.

property (Starting position), yielding 16 scenarios, pairing
these with two binary outcome variables (Food and Path),
so four potential action outcomes each, or 64 explanation
conditions in total (Table 1). Stimuli were the same for both
experiments although their presentation was slightly differ-
ent; see Section 3 and Figure 2 compared to Section 4 and
Figure 3. This allowed us to systematically vary different
combinations of factors and, first elicit predictions of how
likely people found each outcome in each situation (Exp.1a),
and second, elicit retrospective explanations for each action
in each scenario (Exp.1b).

3. Experiment 1a: Predictions
The aim of Exp.1a was to crowdsource a situation model, a
representation of people’s intuitions of the causal strengths
and interactions between factors 1–4 on characters’ be-
haviour (factors 5–6).

3.1. Methods

3.2. Participants

We recruited 90 UK-based participants (42 female, 1 other,
age Mean ± sd 40.7 ± 11.5, range 19-66) using the Testable
Minds subject pool. They were paid $1.60 and the experi-
ment took Mean ± sd 10.4 ± 4.7 minutes.

3.3. Design

All participants saw all 16 scenarios (specified by Factors
1:4 in Table 1) one by one in a random order. For each
trial participants rated the probability of the four possible
outcomes. The presentation position on screen of these four
was counterbalanced between participants to minimise any
left-right bias.

3.4. Stimuli

3.4.1. BIOGRAPHIES

Biography stimuli were eight unique short texts about the
agent in the gridworld, varying across three factors (Factors
1:3 in Table 1), each with two levels: Preference: {“X’s
favourite food is hotdog”, absent}, Knowledge: {“X knows
the area well”, “X doesn’t know the area well”} and Char-
acter: {“X is sporty”, “X is lazy”}. An example is: “Jesse’s
favourite food is hotdogs. They do not know that area well
and are sporty.” The agent’s name was different for each
biography to ensure participants treated each trial and agent
independently. Unisex names were used to minimise influ-
ence of gender stereotypes.

3.4.2. GRIDWORLD ENVIRONMENT

The gridworld stimuli depicted an agent in a stylised 2D
world with houses in the middle and a road around the
perimeter. The basic environment was always the same,
with a hotdog stand at top right and a pizza stand at bottom
left. Three factors were manipulated visually (Factors 4:6
in Table 1): starting location of the agent ({top left, bottom
right} aka hotdog visible, pizza visible), and then the two
outcome factors depicted with a red arrow: the agent’s
destination ({hotdog stand, pizza stand}), and the length
of the path the agent takes ({long, short}). In Exp.1a, the
four possible choices or action outcomes as shown by the
red arrow ({short path to hotdog stand, short path to pizza
stand, long path to hotdog stand, long path to pizza stand})
were presented all at the same time.

3.5. Procedure

The experiment was implemented in Testable and partici-
pants completed it in the browser on their own devices. After
calibrating their computer screen, they were presented with
the study’s information sheet and consent form. See Figure 2
for trial flow schema. Once consent was accepted, partici-
pants were given instructions for completing the experiment
and shown an example of the stimuli. Importantly, partici-
pants were informed that the depicted character could not
see through the houses in the middle of the grid-environment.
A button was then presented to begin the experiment.

Participants were first shown the agent’s biography accom-
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Figure 2: Experiment 1a

Figure 3: Experiment 1b

panied by the instruction, “They go for a walk and stop to
eat at a food stand. Remember they cannot see through the
houses or round a corner. Where do you think they will go?
Show how likely each path is by rating each between 1 (not
likely at all) and 7 (very likely)”. They were then shown
each of the four outcomes in counterbalanced order, with a
dropdown menu box below each offering the integers 1 to 7.
Each participant rated each biography once for each starting
position, completing 16 trials in random order.

3.6. Analysis

In Exp.1a, participants had rated how likely from 1 to 7
they thought each of the four possible choices (2 foods
× 2 paths), given the character’s biography and starting
position. These crowdsourced likelihood ratings became the
beta slopes of our situation model. To calculate them, we
first normalised each participant’s ratings to sum to 1 across
the four actions for each trial. For example, if they answered
7 for the short path to pizza and 1 for all others, on that trial
the short path to pizza was rated 0.7. If they answered
that each action was equally likely, then each action was
normalised to 0.25, regardless of whether they were all rated

1, 7, or something in between. We then fit two separate
generalised logistic mixed-effect regressions, one for each
dimension of the action: food choice (whether the person
went for a pizza or a hotdog) and path choice (whether they
travelled the shorter or longer way). We included random
intercepts for participants. We selected the final model for
each dimension using a stepwise procedure implemented
by timnewbold/StatisticalModels. By combining the two
regressions additively, we obtained the probability of each
of the four actions for each situation. This gives rise to
the situation model which is an intermediate stage in this
paper.

3.7. Results: Predictions

Participants in Exp.1a saw each combination of factors in
each scenario, and rated how likely was each outcome of
food choice and path choice. This means we can use their
responses to fit a structural equation model capturing the
relationships between the causes and the potential outcomes.
Concretely, this situation model was a combination of two
logistic mixed effects regressions for which we selected the
main effects and interaction terms using stepwise model se-
lection. For simplicity, we assumed independent influences
of the causes on the choice to take the longer or shorter
path and the choice of destination. The resulting model, one
outcome of one setting of which is visualised in Figure ??
and another outcome of the same setting in Figure ?? had
main effects of Preference, Character and Start Position on
food choice, as well as significant interactions, between
area Knowledge and Start position, and Character and Start
position. Only Knowledge and Character significantly in-
fluenced the predicted path length. The resulting model
assigns a probability to all four outcomes in each of the 16
scenarios. The odds ratio parameters for each edge can be
interpreted straightforwardly as causal influence strengths
raising or lowering the probability of the different outcomes.
For example, Preference’s weight of 5.2 means that, other
things being equal, a preference for hotdogs increases the
probability of the agent going to the hotdog stand by about
a factor of 5.

4. Experiment 1b: Explanations
4.1. Participants

We recruited 49 UK-based adults (40 female, age Mean ±
sd 21.1 ± 9.6, range 18-81) using SONA systems online
recruitment and a Reddit board for recruiting experimental
subjects. Participants were not paid. The task lasted Mean
± sd 10.4 ± 7.9 minutes.
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Figure 4: Schema of one setting of the situation model, with two outcomes. Nodes along top left are green for 1 and clear
for 0. Here preference is 0, indicating no mention of liking hotdogs. Edge annotations are odds ratios. Solid edges show
fitted regression slopes; dotted lines show logical and inferred relationships.

4.2. Design

The 64 stimuli were split into eight groups of eight using a
pseudo Latin Square approach. Each participant thus saw
one of each of the eight grid configurations and one of each
of the eight biographies, but across the sample as a whole all
combinations of biography and grid configuration appeared
a roughly equal number of times.

4.3. Stimuli

Stimuli were the same gridworlds as Exp.1a.

4.4. Procedure

As per Exp.1a, until presentation of stimuli. Thereafter
as per Figure 3. Participants were first shown the agent’s
biography and starting position in the grid environment.
After a few seconds, a red arrow was added to show the
agent’s choice. At the same time, a text box appeared with
the following question written above it: “What do you think
is the single best explanation for the person’s chosen path?”.
Once the participant typed their answer, they were presented
with another trial with a different stimulus. Each participant
saw eight separate trials.
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4.5. Analysis

Data were analysed using R version 4.1.

4.5.1. TEXTUAL ANALYSIS

Free text responses were stripped of participant and trial data
and coded by a research assistant naive to the experiment,
by placing a “1” in the relevant column, for whether the par-
ticipant cited explanations from the biography and situation.
The categories were: the agent’s Preference (e.g. “They
got a hotdog because they like hotdog”), Knowledge of the
area, Character (e.g. “They went the long way because they
are sporty so they probably wanted a walk before dinner”),
their Starting position (a particular food stand was either
closer or within sight), or Other which ranged from personal
(“He just wanted hotdog today”) to situational (“The hotdog
stand was closed that day”); see Section 4.7.1 for actual
examples. These ratings were then compared to the model
predictions after the modelling detailed in the next section.

4.5.2. EXTENDED COUNTERFACTUAL EFFECT SIZE
MODEL (“E-CESM”)

We adapted the CESM to apply to our gridworld setup (Fig-
ure 5). To obtain model predictions, for each of the 64
gridworlds we simulated outcomes for 1000 counterfactual
worlds, for whom the overlap of causal variable states with
the actual scenario was governed by a stability parameter
as in Quillien & Lucas (2023). For each simulation, the
outcome was sampled according to the probability of that
action given by the situation model (Figure ??), creating j
rows of sampled counterfactuals for i columns of causes in
matrix CF.

Then we calculated the correlation between each causal
variable and the actual outcome across these counterfactual
worlds. To do this, we looped over i, comparing the subset
of the counterfactuals for which the variable in question is
1 (CF [Ci == 1]) to those where CF [Ci == 0] and so
matching relative proportion of getting the same effect as
was actually obtained in the two subsets of counterfactuals.

We optimised stability parameter s through grid search (it
was computationally expensive to optimise directly), gen-
erating predictions for the model separately for 19 values
of s in steps of .05 from .05 to .95. Additionally, in fitting
the model to the participant data from Exp.1b, we directly
optimised two additional parameters: a parameter τ1 con-
trolling the probability of providing an explanation that
pertains to something not manipulated explicitly, and a soft-
max temperature parameter on selection τ2. We additionally
hypothesised that the probability of reaching beyond the
provided dimensions could be related to how surprising
the actual outcome was (i.e. how hard it was to explain
in terms of the provided factors). As such we modelled

Table 2: Comparison of our Extended-CESM model (top)
with the others explained in Section 4.5.3.

MODEL τ1 τ2 s NLL BIC

E-CESM .364 .168 .7 496.4 1010.7
CESM .228 .127 .8 497.2 1012.3
DD 1.05 1.01 - 545.8 1103.5
BASELINE - - - 630.9 1261.8

the probability of an explanation being classed as Other as
τ1(1 − P (Outcome)). These parameters were optimised
with Nelder-Mead as implemented by R’s optim function.

4.5.3. ALTERNATIVE MODELS

For comparison, we also ran the same model predictions
through a modified function where propensity to cite Other
causes was governed by just a flat τ1 value rather than be-
ing modulated by 1 − P (Outcome), assigning the same
probability to the other category for all explanations. This
represents the classic CESM although that has no provision
for outside factors. We also implemented a direct depen-
dency model (“DD”) where counterfactual dependence was
established just one factor at a time; Finally we calculated
a baseline fit which is simply the log likelihood of falling
into a category at chance (log(1/5)*392). Results and model
comparison are shown in Table 2. Code can be found in our
Repository.

4.6. Results: Explanations

The results of Exp.1b consisted of free text verbal explana-
tions for why the character in the gridworld scenario acted
the way they did. We used our E-CESM to predict what
people would likely mention. Our model had a negative log
likelihood of 496.4 and a Bayesian Information Criterion of
1010.7. See Table 2 for how this compares with the baseline
and lesioned versions, and Figure 6 for how the final model
predictions compare to actual participant data.

The stability parameter s fit best at 0.7, indicating that
when simulating counterfactuals, variables kept their origi-
nal value 70% of the time.

4.7. The Importance of “Other”

In some gridworld settings, participants predominantly an-
swered “Other”; these were cases where the character’s
choice was surprising given their biography and starting
position (as can be seen towards the lower right of Figure 6,
which is ordered by increasing unexpectedness of the char-
acter’s behaviour). For example, the subplot at the bottom
right corner represents gridworld 110001, where the charac-
ter chose the long path to pizza, despite having a preference
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Calculate congruence
P (E|C)

Assess congruence
pSelect = f(P (E|C), τ1)

Generate counterfactual settings CFj :
resample each C with probability 1− s and

regenerate E

Compute effect size

CESi =
[

1
|CFi=1|

∑
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j
CF = ETW ]

− 1
|CFi=0|

∑
j∈CF[Ci=0] I[E

j
CF = ETW ]

]

Softmax
p(SelectCi=1) = f(CES, τ2)

Respond
C1

p(SelectCi=1)

Respond
C5

p(SelectCi=5)

Respond
“Other”

Let:
C = [C1...C5]
CESi = counterfactual effect size vector
CF = matrix of j counterfactual samples for i causes
E = effect
I = identity function, IFTRUE = 1; 0
n = n samples
s = stability parameter; anchors variable to real
τ1 = temperature on select vs generate
τ2 = temperature on selection
TW = true world

For j ∈ n

For Ci ∈ C

Posit new latent
cause not in C
with 1− p(Select)

Select a cause in C
with p(Select)

Figure 5: Mixture (process) model of E-CESM. The model either selects from available causes (left branch) or generates a
new latent cause (right branch) as a function of how surprising (ie. improbable) the action was.

for hotdog, knowing the area, being lazy, and starting in a
position near a visible hotdog stand. Their behaviour could
therefore be seen as maximally incongruent with the given
facts of the situation and so we would expect both the model
and the participants to need to cite Other causes in order to
adequately explain the character’s choice.

4.7.1. EXPLORATORY ANALYSIS

We performed exploratory qualitative analysis of the “Other”
column of the text responses to gain initial insight into any
patterns of salient factors. We observed that participants
often mentioned temporary changes in the more stable bi-
ography factors as well as aspects of the situation. An RA
coded each response for mention of temporary Food state,
Character state, Other state and Other situation.

Out of 392 text responses received, 219 mentioned some
kind of Other factor, of which:

• 41 mentioned some kind of temporary desire for a food,
e.g. “He had a hotdog recently and wanted a change”,
“Changed their mind and wanted pizza”, “He wanted
to catch the aroma of pizza to stimulate his tastebuds
before a hotdog”.

• 28 mentioned a temporary character state related to
those in the biographies but opposed to the current
character’s biography, e.g. “He was in a lazy mood”,
“He decided to do exercise for a change”.

• 38 mentioned other temporary character states, e.g.
“They are tired today”, “They changed their mind once
they got there”.

• 52 mentioned something about the situation outside
the person’s goals, e.g. “Charlie was procrastinating
an assignment”, “The hotdog van was closed that day”,
“They had other things to do in the area”, “They got
lost”.

5. Discussion
In this paper we explored how people explain behaviour in
an ecologically richer and more open ended setting than has
previously been analysed with experiments and causal mod-
els. One way our setup differs from many past scenarios set
up is in its coverage: where Lombrozo (2006) and Lucas &
Kemp (2015) used scenarios where the behaviour generally
made sense under the intended causal situation model, we
presented people with a “fully balanced” set of scenarios
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Figure 6: Model predictions (red dots) against participant ratings for each of the 64 gridworld settings, ordered here by
the predicted probability of the character’s choice. Facet names encode the condition in following sequence: Preference,
Knowledge, Character, Start position, Food choice, Path taken following the level conventions in Table 1. For instance the
first facet “100010” shows the condition in which the agent likes hotdogs, doesn’t know the area, is lazy, can see the hotdog
stand, and goes to the hotdog stand by the shorter route.

where all variables were combined with all values of each
other.

We first crowdsourced a general model of the situation by
asking people to rate how likely the four possible outcomes
were for each set of starting values. This revealed that
certain behaviours are more or less surprising (why, for ex-
ample, would a lazy person who has no special preference
for hotdogs take the long way round to a hotdog stand they
can already see?). Eliciting judgements from people in this
way reduces some sources of experimenter-driven assump-
tions about how people understood the scenario in the task.
We then showed new participants each situation-outcome
pair, and elicited free explanations. These text responses
often made reference to factors from the situation, but also
often brought in imaginative reasons from outside the sce-
nario, especially when the behaviour was incongruent. Our

extended model could capture that, to some extent, these
Other factors tended to dominate the explanations when the
behaviour was surprising under the model.

5.1. Comparison with the CESM

We generalise the CESM (Quillien, 2020; Quillien & Lucas,
2023) to a more open-ended setting. Our findings thus offer
support for that model and an attempt to bridge the simple
and quantified setting of sampling coloured marbles from
urns (Quillien & Lucas, 2023) and real world issues like the
2020 US presidential election outcomes (cf. Quillien & Bar-
lev, 2022). Like that study we attempt to bring explanation
theories closer to the real world. Unlike it, however, our
experimental dataset and modelling is based on human in-
tuitions about the situation rather than a complex statistical
model. Their situation model was not proposed to match
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people’s mental models, whereas ours is.

In that light it is noteworthy that the the best fitting stability
parameter s = .70, is numerically close to the .73 value
found in Quillien & Lucas (2023) and .53 in Lucas & Kemp
(2015) for their own experimental data and .77 for their
reanalysis of Rips (2010). As such there appears to be some
converging support for the idea that counterfactuals humans
entertain involve resampling causal variables around a third
of the time.

5.2. “Other” Causes

Our results also demonstrate that people are rarely unable
to generate explanations, even for ostensibly unlikely or
surprising behaviours. This shows everyday explanations
are considerably richer and more creative than they might
appear in tasks that fix the response options to a set of pro-
vided causes (e.g., Lombrozo, 2006; Pacer & Lombrozo,
2017). Our results mesh with research suggesting people
both tend to overspecify causal relationships when explain-
ing things, and often prefer comprehensive, overdetermined
explanations (Zemla et al., 2017), i.e. referring to far more
variables than necessary. Although every Bayes net has
to simplify its corner of the world and draw artificial lines
around the boundaries of a causal system, in reality no sys-
tem is closed, and people are sensitive to this and able to
cast around outside a presented option set.

Our exploratory text analysis suggests social explanations
often reference a mixture of individual factors (e.g., person-
ality, preference, etc.) and situational factors (e.g., environ-
mental affordances, distance, convenience, etc.). This brings
to mind the long history in social psychology of theories that
seek to explain behaviour by making a distinction between
dispositional factors (those internal to an agent, e.g. abil-
ity, knowledge, goals) and situational factors (outside the
agent’s control, e.g., environment, societal pressure) (Hei-
der, 1958/2013) in addition to the later fundamental attribu-
tion error (Ross, 1977) and correspondence bias (Gilbert
& Malone, 1995) where people cite situational factors for
their own failures, apparently unwilling to concede they
may have acted irrationally, but happily cite character or
disposition for incongruent behaviour in others. While the
CESM does not make any predictions about which would
take precedence, and our study was not set up to compare
rates at which people are subject to the fundamental attribu-
tion bias, exploring self-other differences in what variables
are selected in explanations is an avenue for future work.

5.3. Limitations

Limitations to this approach include our simplifying choice
to treat the two components of participants behaviour as
causally independent, and the relatively small sample size
for Exp.1b. Once more data is collected, some of the noise

seen between the model predictions and the participant data
in Figure 6 should dissipate. We acknowledge the age and
gender imbalance between the participant samples of Exp1a
and Exp1b, due to 1b being mostly undergraduates and
unpaid, but this type of higher-level cognition is not known
to have any age or gender differences. Finally and most
importantly, although E-CESM is a step towards a model of
higher-level cognition, it still only predicts a single “catch-
all” Other category rather than truly modelling the flexibility
and dynamism of human cognitive processes. However,
modelling is in progress toward a generative explanation
model which is able to impute hidden variables, similar to
the edge replacement technique of Buchanan et al. (2010);
Buchanan & Sobel (2014).

5.4. Conclusion

In this paper we presented a computational model of how
people explain more or less surprising behaviour. This in-
volved a small extension to an existing counterfactual model
of causal selection, enabling it to cover the content of nat-
ural language explanations in a naturalistic setting. We
combined this with an open-ended free text response format
to obtain a richer view of spontaneous explanation, in addi-
tion to crowdsourcing a situation model, thereby minimising
our need for experimenter-set parameters. Our extension to
modulate Other by the probability of the outcome fit pro-
vided a modest but encouraging improvement in fit over
CESM, a Direct Dependency counterfactual model and a
Baseline, making it a promising start toward richer models
of human explanation.
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Introduction
How can we model the ways race-based systems of power

and oppression impact the ways people interact with AI
agents? To approach this question, we are developing a
computational model of a human-AI interaction study that
explores the impact of racialization on such interactions.
There has been a variety of discussions related to ways in
which implicit racial biases affect interactions between
people and interaction between people and artifacts; some
studies have shown this is not limited to phenotypical
perception of racialized people (e.g., Atkins, Brown, &
Dancy, 2021). Our initial perception and racialization of an
individual is shaped by numerous cues, ranging from their
physical appearance and social identity to their behavior
(such as facial expressions, gestures, proximity), and even
their scent. Additionally, situational factors can also play a
role in how we interpret an individual's behavior
(Kawakami, Amodio, & Hugenberg, 2017). Our
understanding of an individual's actions is influenced not
only by our perceptions of their behavior but also by the
assumptions we make about how they are likely to act based
on the impression we have formed (Macrae & Bodenhausen,
2000). Providing race as a cue not only influences how we
interpret an individual’s behavior but also the behavior of AI
agents.

Atkins et al explored whether people’s decision to
cooperate with an AI agent during the Pig Chase Task (a
modified version of the Stag hunt task) is affected by the
knowledge that the AI agent was trained on behavioral data
from people who identify and/or are racialized as
[Black/African American, White/Caucasian]; in the control
condition, racialization of data was not mentioned (though
racialization can occur nonetheless, given the racialization
of AI more broadly, Cave & Dihal, 2020). Unbeknown to
the participants, the AI agent used an A* algorithm to
complete the task and hadn’t been trained on any human
behavior. The data showed that participants who identified
as White performed the best when the agent was racialized

as White and not racialized at all, while participants who
identified as Black achieved the highest score when the
agent was racialized as Black. Qualitative data indicated that
participants who identified as White were less likely to
report that they believed that the AI agent was attempting to
cooperate during the task and were more likely to report that
they doubted the intelligence of the AI agent (when
compared to participants who identified as Black) (Atkins,
Brown, & Dancy, 2021).

Given the social and economic costs, how can we identify
why the participants (based on their treatment group) may
have exhibited certain responses? In this work we’ve been
exploring how ACT-R can help us understand the
socio-cognitive processing that leads to participants making
certain decisions over others while performing the task.

Connecting ACT-R to the Environment
We’re developing an ACT-R model that connects with the

existing study infrastructure and code to complete the Pig
Chase task. To establish a connection between the Pig Chase
Task environment and ACT-R we use NodeJS, a backend
JavaScript runtime environment, and particularly the
Socket.IO library. Socket.IO is a library that enables
low-latency, bidirectional and event-based communication
between a client and a server. It opens a communication
channel between ACT-R and the environment that allows
the model to receive information about the location of the
agents (in the visicon module) and respond to those
movements (through the motor module).

The code sets up a server using the Node.js and Express
framework, similar to the example server code included
with recent versions of ACT-R. This server then
communicates with the ACT-R environment, updating
visicon features based on javascript objects provided by the
Pig Chase task code. It also interprets incoming ACT-R
messages and commands so that the model can interact with
the environment. We were able to facilitate communication
with small injections of code at key interaction points in the
Pig Chase Task Javascript environment.
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Conclusion & Future Work
Connecting the existing Pig Chase Environment to

ACT-R provides us with an opportunity to understand and in
turn lay out the process of recognizing the steps taken to
make certain decisions, particularly without creating another
environment, something that can be especially time
consuming for the computational cognitive modeling
process (Dancy & Ritter, 2017). The data comprising the
movements of participants from the pig chase experiment in
Atkins et al would be used to feed information into the
ACT-R model. We have collected data from 1008
participants for 21 identity x treatment interactions. Those
data will be used to test and validate aspects of the cognitive
model. However, modeling of the cognitive aspects of the
decision-making process is still limited by the local
knowledge representations used in the typical ACT-R
models. ACT-R can provide a computational account of the
processes that lead to the steps taken to perform the task but
does not (by default) delve deeper into the interaction the
participants have with the information prompt provided
about the race (Black, White, None) the AI agent has been
trained on. Thus, there lack clear ways to include the
influence of sociocultural systems that are important to
everyday behavior. To develop a more complete simulation
of related human behavior with greater resolution, we are
developing a connection between ConceptNet (Speer et al.,
2017) and ACT-R. ConceptNet is an open-source
knowledge graph that combines knowledge from several
sources including crowd sourcing, certain games, and
existing online sources such as DBPedia, which makes it a
potentially useful declarative knowledge source “out of the
box” (Dancy, 2022). Integrating it with our model will
provide the model with existing historical and sociocultural
perspectives that we otherwise would have to build in
manually, which would likely lead to a less reusable model
for other tasks. This provides us with a more realistic ability
to understand the interaction between the user and the
environment after it has the knowledge of the race of the AI
agent.
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Abstract

Prior research has found interference effects (IEs) in decision
making. IEs violate classical probability theory (CPT), making
them hard to model. Our primary research goals are to (1) de-
termine whether a model called the probability theory + noise
(PTN) model can produce IEs, and (2) compare the predictions
of the PTN to an existing quantum probability-based model
called the Belief-Action Entanglement (BAE) model that is
able to model IEs. The PTN assumes that memory operates
consistently with CPT, but noise in the retrieval process can
produce violations of CPT. Using parameter space partition-
ing, we found that the PTN can produce IEs, and unconstrained
versions of both models can produce all possible patterns. We
also show the PTN (but not the BAE) predicts a relationship we
term the conditional attack probability equality (CAEP) which
is contradicted by previously reported data. Collectively, our
results show that the PTN can produce interference effects, but
the BAE is favored because it is not bound by the CAEP.
Keywords: Quantum Cognition; Interference Effect; Proba-
bility Theory; Decision Making

Introduction
An active debate concerns whether classical probability the-
ory (CPT) or quantum probability theory (QPT) should serve
as probabilistic foundation for models of cognition (e.g.,
Busemeyer, Pothos, Franco, & Trueblood, 2011). CPT is
based on set theory and Kolmogorov axioms, whereas QPT
is based on the logic of sub-spaces and a subset of the Kol-
mogorov axioms (Busemeyer et al., 2011). Research over
the past 50 years has compiled a long list of of violations
of CPT in judgment and decision making, including the con-
junction fallacy and order effects (see Busemeyer et al., 2011;
Costello & Watts, 2014). Understandably, this has cast doubt
on the utility of CPT for cognitive models and has led some
researchers to propose QPT as an alternative to CPT. Pro-
ponents of QPT note that it provides a natural explanation
of violations of CPT because its less restrictive axioms al-
low for the occurrence of order effects, interference effects,
and the conjunction fallacy, among other possible CPT viola-
tions (Busemeyer et al., 2011).

Given the long list of violations of CPT, it would seem as
though the debate could be easily resolved. However, resolv-
ing the debate has been challenging because many violations

can be explained by augmenting a CPT-based model with
simple cognitive mechanisms. One prominent example is the
probability theory + noise (PTN) model (Costello & Watts,
2014). According to the PTN, the organization of memory is
consistent with the rules of CPT. However, violations of CPT
stem from noise in the memory retrieval process, which has a
systematic rather than random effect on judgments. Thus, the
PTN predicts that judgments would conform to the rules of
CPT if noise could be eliminated. Prior research has demon-
strated that the PTN can account for a wide range of viola-
tions of CPT in joint (Costello & Watts, 2014) and condi-
tional (Costello & Watts, 2016) probability judgments.

In this paper, we focus on a violation of CPT called an in-
terference effect (IE). An IE occurs when a marginal choice
distribution depends on the presence or absence of a preced-
ing judgment (Wang & Busemeyer, 2016). IEs imply a viola-
tion a law of CPT called the law of total probability (LOTP).
Thus, IEs are incompatible with any model bound by the
LOTP. According to the LOTP, when a judgment is made,
the marginal choice probability can be divided into mutu-
ally exclusive and exhaustive partitions based on the possi-
ble judgment outcomes. These partitions sum to the original
value, meaning the judgment should not alter the marginal
choice distribution. Prior research has demonstrated that IEs
occur in decision making. To date, a quantum model called
the Belief-Action Entanglement (BAE) model has provided a
superior account of IEs compared to a Markov model which
is based on CPT (Wang & Busemeyer, 2016).

Our primary research question herein is whether the PTN
can also account for IEs with its noisy memory retrieval pro-
cess. In other words, is it necessary to use QPT to explain
IEs? Or could IEs also be explained by a noisy memory sys-
tem that otherwise satisfies CPT? To address this question,
we will extend the PTN model to a sequential decision mak-
ing paradigm previously used for studying IEs, and we will
use a model analysis method called parameter space parti-
tioning (Pitt, Kim, Navarro, & Myung, 2006) to compare the
PTN and the BAE in terms of the qualitative IE patterns they
can and cannot produce.

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

88



The remainder of the article is organized as follows. First,
we begin by detailing the categorization-decision paradigm
used to study IEs. Next, we introduce the PTN model and
briefly describe the BAE. We then explore the predictions of
the models using two methods: (1) parameter space partition-
ing to explore the qualitative patterns of IEs, and (2) a Monte
Carlo simulation to measure variability in the magnitude of
IEs across each model’s parameter space. We show that the
PTN imposes a qualitative equality constraint on conditional
attack probabilities which is violated in the data. We conclude
by discussing limitations and future directions.

Categorization-Decision Paradigm

The categorization-decision paradigm (CDP) is commonly
used to study how categorization interferes with subse-
quent decision making (Townsend, Silva, Spencer-Smith, &
Wenger, 2000; Wang & Busemeyer, 2016). In this paradigm,
participants are always asked to make a 2-alternative forced
choice action decision; in some conditions, they are also
asked to make an explicit categorization judgment of the stim-
uli prior to the action decision. On each trial in the Busemeyer
and Wang implementation of the paradigm, participants are
presented with a face in one of three instruction conditions:
(1) a decision-only condition (d) in which participants de-
cide to attack or withdraw, (2) a categorize-then-decide con-
dition (cd) in which participants categorize the face as good
or bad before deciding to attack or withdraw, and (3) an ex-
plicit category condition (xd) in which the true category is
told to the participant before their attack/withdraw decision.
IEs are measured by comparing the marginal attack probabil-
ities in the d condition to those in the xd and cd conditions.
Interference occurs when the comparisons are not equal.

Each face belongs to either the “good” category or the
“bad” category. In the conditions where participants did not
know to which category each face belonged, they could use
facial features (e.g., width) to infer the most likely category,
and by extension, whether a face was likely to be friendly or
hostile. As a convention, we will use the terms type-g and
type-b to refer to a facial feature associated with the good and
bad categories, respectively. Half of faces were type-g and
the other half were type-b. Type-g faces and type-b faces had
a 60% chance of being in the good and bad categories, re-
spectively. Participants received a reward on 70% of trials for
attacking a face in the bad category, or withdrawing from a
face in the good category (making correct action decisions).
Similarly, participants were punished on 70% of trials for at-
tacking a face in the good category or withdrawing from a
face in the bad category (making erroneous action decisions).
In this paradigm, it is assumed that people at least implicitly
categorize the faces before they make their explicit action de-
cisions; part of the categorization-decision paradigm is to ask
participants to make their category decisions explicitly in the
cd condition, to assess if making an explicit categorization
interferes with the rates of action decisions.

Interference Effects
The LOTP requires the marginal probability of attacking (ir-
respective of category membership) to be equal across each
condition. Using the d and cd conditions as an example, the
LOTP can be stated formally as:

Prd(a | tq)=Prcd(a | tq,g)Prcd(g | tq)+Prcd(a | tq,b)Prcd(b | tq),
(1)

where a represents attack, b represents the bad category, g
represents the good category, tq ∈ {tb, tg} represents a face
type, and tg and tb represents type-g and type-b face types,
respectively. Each probability statement is subscripted by its
condition; for example, cd is the categorize-and-decide con-
dition. An IE occurs when the equality above is violated.
Table 1 shows a common IE pattern found in aggregated data
known as the critical asymmetry. In the xd condition, the IEs
for type-b and type-b are similar in magnitude but opposite in
direction. However, in the cd condition, an IE only occurs for
the type-b face, and is typically positive.

Table 1: IEs reported in Wang and Busemeyer (2016) Exp.
2, computed as the difference in marginal attack probabilities
between the d condition and the comparison condition.

xd cd
type-b type-g type-b type-g

0.03 -0.03 0.04 0.00

Probability Theory + Noise
As depicted in Figure 1, the memory retrieval process of the
PTN can be illustrated as a processing tree. The core assump-
tion of the PTN model is that memory operates in accordance
with CPT, but violations of CPT arise from noise in the mem-
ory retrieval process (Costello & Watts, 2014). If noise could
be eliminated, judgments and decisions would follow CPT. It
is important to note that noise creates systematic rather than
random departures from CPT because noise has a regressive
effect on judgments. Thus, averaging noisy judgments does
not necessarily produce results consistent with CPT. Previous
research found the PTN is broadly consistent with the pat-
tern of observed CPT violations for identities related to joint
probabilities (Costello & Watts, 2014) and conditional prob-
abilities (Costello & Watts, 2016), including the conjunction
fallacy.

Judgments are made by estimating the relative frequency of
an event encoded in memory (Costello & Watts, 2014). For
example, the process of estimating the probability of event
A involves the following four steps: (1) retrieve n instances
from memory, (2) read the property flag of each memory, (3)
count the number of instances flagged as event A, nA, and
(4) estimate the probability of A as nA

n . The reading process
is subject to random error, leading to violations of CPT in
certain cases.

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

89



question
presented

retrieve
A

read
error ¬A

no read
error A

retrieve
¬A

read
error A

no read
error ¬A

Pr(A)

v

1−v

1−Pr(A)
v

1−v

Figure 1: A process tree diagram of the PTN’s retrieval pro-
cess for judging event A. Pr(A): probability of retrieving a
memory for event A, v: probability of an error in reading the
memory.

Figure 1 illustrates retrieval process for estimating the
probability of event A as a processing tree. Starting at the
root of the tree, the probability of retrieving a memory for
event A is Pr(A). Similarly, the probability of retrieving a
memory that is not for event A, denoted ¬A, is 1−Pr(A). Af-
ter retrieving a memory, there is a chance v ∈ [0, .5] that it
is read incorrectly (e.g., A is misread as ¬A). The probability
judgment for event A is found by multiplying the probabilities
within both paths leading to A, and summing them together.
Formally, this probability is given by:

J(A) = vPr(¬A)+(1− v)Pr(A) = (1−2v)Pr(A)+ v (2)

where Pr(A) is the true, subjective probability that a memory
is for event A. To reiterate, Pr(A) refers to the probability of
retrieving a memory for A, and v refers to the probability that
the information is misread once it has been retrieved. Impor-
tantly, events described by Pr(·) must conform to the rules
of CPT, but events described by J(·) may violate CPT due to
noise. If v = 0, then judgments and decision making obey
CPT because J(A) = Pr(A).

A similar process is used for estimating the joint probabil-
ity of multiple events occurring simultaneously. However, as
noted in Costello and Watts (2016), subsequent versions of
the PTN include an additional error term for complex events,
such as conjunctions. The rationale is that complex events
produce more errors in the reading process. We will denote
the augmented error term as ε = v+∆, where ∆ ∈ [0, .10] is
additional error for complex events, and ε ∈ [0, .50].

The judgment process for the conditional probability A
given B involves a two-step reading process. Step one is read-
ing whether a memory has a flag for event B. If the model
reads the flag as B, the model increments a counter nB for
event B. Next, if the memory was read as B, the model reads
whether a flag also indicates A, and if so, it increments nA∧B,
the counter for event A∧B. The conditional probability is
estimated as nA∧B

nB
.

Decision Process
One approach for extending the PTN to decision making in
the CDP is to assume a response is based on the retrieval of
a single memory (see also Borghetti, Fisher, Houpt, Blaha, &
Gunzelmann, 2022). Importantly, Costello and Watts (2016)
demonstrated that the expected value of the probability esti-
mate is invariant to sample size. For example, consider a trial
in the xd condition involving a type-g face in the good cate-
gory. We assume that the decision is based on the two-step re-
trieval process described above for conditional probabilities.
First, the model reads whether the memory has a flag match-
ing the conditioning event type-g and good. Next, if the flag
is read as type-g and good, it reads whether a flag also indi-
cates “attack”. If so, the model decides to attack. Otherwise,
it decides to withdraw.

Response Probabilities
Below, we outline the response probabilities each of the 12
CDP conditions which are based on the conditional proba-
bility equations presented in Costello and Watts (2016). We
augment our notation to include the probability of retrieving
instances from memory that contain information about mul-
tiple aspects of the stimulus by including more parameters
in the Pr(·) function. For example, Pr(a, tg) is the probabil-
ity that an instance of attack and a type-g face is drawn from
memory.

Explicit Category Given In the xd condition, participants
are given both the true category before deciding whether to
attack or withdraw. Given face type tq ∈ {tb, tg} and category
z ∈ {b,g} the probability of attacking is:

Jxd(a | tq,z) =

[1−2ε]2 Pr(a, tq,z)+ ε [1−2ε] [Pr(a)+Pr(tq,z)]+ ε2

[1−2ε]Pr(tq,z)+ ε
. (3)

We use the extended error rate term ε because the condition-
ing event is a conjunction. Note that the four conditional at-
tack probabilities in xd can be formed by substituting each
permutation face type and category into tq and z.

Categorize and Decide Unlike the xd condition, the cd
condition is divided into a categorization stage followed by
a decision stage. Given a facial feature tq, the probability of
categorizing a face as z is:

Jcd(z | tq)=
[1−2v]2 Pr(z, tq)+ v [1−2v] [Pr(z)+Pr(tq)]+ v2

[1−2v]Pr(tq)+ v
.

After categorizing the face, a decision to attack or withdraw
is made. The probability of attacking a face with feature tq in
category z is the same as defined in Eq. 3 for the xd condition:

Jcd(a | tq,z) = Jxd(a | tq,z) (4)

The conditional attack probabilities in Eq. 4 are equal because
PTN does not make a distinction between a judged category
vs. a true category. Thus, all that matters at the time of the
decision is the face type and the category values.
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Decision Only
In the d condition, participants are presented with a face and
decide whether to attack or withdraw. Participants are nei-
ther provided with the true category (as in xd), nor are they
instructed to categorize the faces (like cd). The probability of
attacking a face with the tq feature is given by:

Jd(a | tq)=
[1−2v]2 Pr(a, tq)+ v [1−2v] [Pr(a)+Pr(tq)]+ v2

[1−2v]Pr(tq)+ v
.

Table 2: Joint probability distribution for the probability
matching PTN model paneled by face type.

type-b
bad good sum

attack 0.21 0.06 0.27
withdraw 0.09 0.14 0.23
sum 0.3 0.2 0.50

type-g
bad good sum

attack 0.14 0.09 0.23
withdraw 0.06 0.21 0.27
sum 0.2 0.3 0.50

The BAE Quantum Probability Model
In contrast to CPT models which must adhere to the axioms
of set theory, the BAE model follows the logic of sub-spaces
(Busemeyer et al., 2011). Accordingly, event probabilities are
computed within a geometric Hilbert space across a field of
complex numbers such that an inner-product indexes belief
strength, and beliefs are described within a four-dimensional
space spanned by an orthonormal basis. At any moment
within this multidimensional structure, the cognitive system
is in a superposition state—an uncertain, conflicted state with
respect to the decision—that evolves throughout deliberation.

The initial state is superposed over four possible basis vec-
tors, ψψψtq = [ψGW,ψGA,ψBW,ψBA]

⊤, where B represents the
bad category and A represents the attack action. When pre-
sented with facial feature tq, ψψψtq is modeled as a linear com-
bination of the basis vectors. The parameter j governs the
probability a type-b or type-g face will be judged as belong-
ing to the bad or good category, respectively. For a type-b
feature, we have:

ψψψtb =
1√
2

[√
1− j,

√
1− j,

√
j,
√

j
]⊤

.

In the xd and cd conditions, probabilities are updated when
the category is provided by the experimenter or self-reported
by the participant, respectively. For example, after a facial
feature tq is categorized as bad, the state is updated to

ψψψtq −→ ψψψb =
1√
2
[0,0,1,1]⊤ .

The state does not update in the d condition as the category
remains unknown.

Decisions are driven by utility values associated with facial
feature and category, as well as the experimental reward rate.
For example, the utility for a type-b feature categorized as
bad, µtb,b, increases the attack probability, whereas the utility
for good categorization µtb,g decreases the attack probability.
Similarly, the utility for a type-g feature categorized as bad,
µtg,b, increases the probability of attack in contrast to a good
categorization µtg,g. Further, utilities are influenced by the γ

parameter which coordinates beliefs about categories and ac-
tions when the category remains unknown in the d and cd
conditions but not when known in the xd condition. Interac-
tions between utility and γ parameter allow the BAE model to
produce the critical asymmetry in the cd condition.

Conditional Attack Equality Property
As shown in Eq. 4, the PTN predicts that the conditional at-
tack probabilities in the xd and cd conditions must be equal
given the same feature tq and category z. We term this
equality constraint the conditional attack equality property
(CAEP). Importantly, the CAEP holds regardless of the pa-
rameter values assigned to the PTN, meaning a core assump-
tion the PTN must be changed to predict otherwise. Wang
and Busemeyer (2016) noted that a Markov decision model
based on CPT also predicts the CAEP and found evidence
that it was violated in their data. In contrast to the PTN, the
BAE is not constrained by the CAEP.

Parameter Space Partitioning
Parameter space partitioning (PSP) is a method for identi-
fying regions of a model’s parameter space associated with
qualitative patterns (Pitt et al., 2006). PSP is useful for ex-
ploring the behavior of a model and assessing its flexibility.
As noted in Roberts and Pashler (2000), a good fit not impres-
sive if a model can produce any pattern of data. PSP is par-
ticularly useful for identifying potential critical tests in which
one model predicts a pattern that is not predicted by another.

In the CDP, there are three qualitative patterns of IEs: nega-
tive, positive, and approximately equal. We consider an IE to
be approximately equal if it is less than |.005|. In total, there
are 34 = 81 possible IE patterns because four conditions are
formed by crossing face type and category.

As listed in Table 3, we developed a hierarchy of BAE and
PTN models based on various parameter constraints. By con-
straining a parameter, it is possible to understand its role in
producing IEs. An index of 1 indicates the presence of a con-
straint whereas an index of 0 indicates the absence of a con-
straint. For the BAE, we considered an unconstrained sub-
model BAE0 and a constrained sub-model BAE1 in which
µtg,b =−µtg,g as described the original paper (Wang & Buse-
meyer, 2016). In the PSP analysis, we searched for patterns
within the following parameter ranges except where con-
straints applied: j ∈ [0,1] and µtb,b,µtb,g,µtg,g,µtg,b,γ∈ [−2,2].

For the PTN, we developed a hierarchy of eight models
based on whether or not the following constraints apply: (1)
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v = 0, (2) ∆ = 0, and (3) the true subjective probabilities
are based on probability matching (i.e., the objective stim-
ulus probabilities). We use three indices to indicate which of
the three constraints apply. For example, PTN010 indicates
a sub-model in which only the second constraint applies. Ta-
ble 2 lists the parameters used for probability matching. In the
PSP analysis, we searched for patterns within the following
parameter ranges true subjective probabilities: pi ≥ 0, such
that ∑

n
i=1 pi = 1. The ranges for the other parameters were

ε = v+∆ ∈ [0, .50], v ∈ [0, .50], and ∆ ∈ [0, .10].

Empirical Data
We used data from Experiment 2 in Wang and Busemeyer
(2016) to test the CAEP. A total of 286 participants completed
the d, cd and xd conditions in the categorize-decide paradigm.
On 70% of the trials, participants received positive feedback
for attacking a face in the bad category or withdrawing from
a face in the good category. On 30% of the trials, participants
received positive feedback for attacking a face from the good
category or withdrawing from a face from the bad category.
We excluded data from five participants whose z-score for
missing trials was 2 or more standard deviations above the
mean. After excluding data from these participants, 0.3% of
trials were missing. Full details can be found in Wang and
Busemeyer (2016).

Results
Parameter Space Partitioning Results
Table 3 lists the number of IE patterns each model can pro-
duce and whether a model can produce the critical asymmetry
(see Table 1)1. As expected, the BAE can predict the critical
asymmetry. When µtg,b = −µtg,g, it cannot produce IEs for
type-g faces in the cd condition. When this constraint is re-
laxed, the BAE predicts all 81 patterns. Importantly, the PTN
can produce IEs, including the critical asymmetry. To pre-
dict the critical asymmetry, at least one noise parameter and
the true probabilities must be free to vary. Comparison of
the PTN sub-models shows that the noise parameters have a
small effect on interference patterns by themselves, but they
are necessary for producing the critical asymmetry.

Interference Effect Distributions
We generated IE distributions across the allowable parame-
ter space of each model to better understand variance in the
magnitude of the IEs. The parameter ranges used here are
the same as those used in the PSP analysis. Table 4 provides
the mean and standard deviations of the IE distributions for
each sub-model. Two general patterns emerged for the BAE
and PTN: (1) the mean IEs are close to zero, (2) the standard
deviations are typically larger in the xd condition than the cd
condition. One difference between the two models is that the
BAE tends to produce IE distributions with a larger variance

1We used https://github.com/itsdfish/ParameterSpacePartitions.jl
for the PSP analysis

Table 3: PSP results

Critical
Model Constraints n Asymmetry

PTN000 none 81 yes
PTN001 pm 3 no
PTN010 ∆ = 0 81 yes
PTN011 ∆ = 0, pm 2 no
PTN100 v = 0 81 yes
PTN101 v = 0,pm 2 no
PTN110 v = 0,∆ = 0 9 no
PTN111 v = 0,∆ = 0,pm 1 no
BAE0 none 81 yes
BAE1 µtg,b =−µtg,g 27 yes
pm: probability matching; n: number of IE patterns found with PSP.

compared to the PTN, suggesting that the BAE is more flexi-
ble in its predictions. An alternative way to assess the flexibil-
ity of the models is to examine the inter-correlations between
IEs. Due to space limitations, we will focus on the uncon-
strained version of each model. The mean absolute correla-
tion for the PTN000 was .56 (sd = .25) and .14 (sd = .20) for
the BAE0, indicating that the BAE tends to produce a wider
range of IEs.

Table 4: Mean (standard deviation) of IE distributions

Model xd,tb xd,tg cd,tb cd,tg
PTN000 .000 (.046) .000 (.045) .000 (.036) .000 (.035)
PTN001 .003 (.003) -.003 (.003) .006 (.003) -.006 (.003)
PTN010 .000 (.033) .000 (.034) .000 (.012) .000 (.012)
PTN011 -.001 (.001) .001 (.001) .003 (.002) -.003 (.002)
PTN100 .001 (.093) .000 (.092) .001 (.053) .000 (.052)
PTN101 .005 (.003) -.005 (.003) .005 (.003) -.005 (.003)
PTN110 .002 (.101) -.001 (.099) .000 (.000) .000 (.000)
PTN111 .000 (.000) .000 (.000) .000 (.000) .000 (.000)
BAE0 .007 (.230) -.002 (.229) .000 (.094) -.001 (.093)
BAE1 -.003 (.228) .002 (.152) .001 (.093) .000 (.000)

tg: type-g, tb: type-b, xd: explicit category condition, cd: categorize-
and-decide condition

CAEP
We used a Bayesian hierarchical latent trait model (Klauer,
2010) to test the CAEP as predicted by the PTN (see Eq. 4).
Briefly, the hierarchical latent trait model represents parame-
ters in real space as a multivariate normal distribution which
are mapped to a probability scale via a probit transforma-
tion to predict conditional attack probabilities for each con-
dition. We compare the conditions by taking their differ-
ence: θdiff = θxd − θcd. The CAEP is tested by comparing
the group-level posterior distribution of θdiff, to the value of 0
predicted by the CAEP. The CAEP is considered to be contra-
dicted if predicted value of 0 is outside the bulk of a posterior
distribution, defined by the 95% highest density interval.

Figures 3 and 2 display the group-level posterior distribu-
tions for the difference in predicted conditional attack prob-
abilities between xd and cd. Contrary to the PTN, the poste-
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Figure 2: Posterior distributions of the difference in predicted
conditional attack probabilities θdiff = θxd − θcd for type-g
faces. The vertical, dashed black line represents the CAEP
prediction derived from the PTN model. Shaded area repre-
sents the 95% highest density interval.

rior distributions for type-b faces in Figure 3 are positive and
shifted away from zero. In Figure 2, the highest density inter-
val overlaps with the predicted value of zero for type-g faces
in the bad category. However, for type-g faces in the good
category, the posterior distribution is negative, thus contra-
dicting the PTN.
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Figure 3: Posterior distributions of the difference in predicted
conditional attack probabilities θdiff = θxd − θcd for type-b
faces. The vertical, dashed black line represents the CAEP
prediction derived from the PTN model. Shaded area repre-
sents the 95% highest density interval.

Discussion
Our goal was to compare two competing accounts of IEs
which differed in their underlying probabilistic foundations.

The PTN is based on CPT whereas the BAE is based on QPT.
We found that the PTN is able to produce IEs despite being
based on CPT. In the PTN, two conditions are required to pro-
duce the critical asymmetry: the true probabilities must de-
part from the objective probabilities, and there must be some
degree of noise in the memory retrieval process. We found
that both models can produce all possible IE patterns, but the
BAE can produce the critical asymmetry with fewer quali-
tative patterns compared to the PTN. Another difference be-
tween the models is that the BAE produces IE distributions
with a larger variance than the PTN.

Conditional Attack Equality Property
Perhaps the most striking difference between the PTN and the
BAE was the CAEP rather than IEs. In contrast to the BAE,
the PTN is constrained by the CAEP, which requires condi-
tional attack probabilities to be equal in the xd and cd condi-
tions when given the same stimulus. This prediction was not
supported by the data. Given that this prediction holds for the
PTN regardless of parameter values, an interesting question
is whether alternative versions of the PTN are bound by the
CAEP. If the degree of noise depends on how the category
information is obtained (judged vs. given) and category, the
CAEP would not hold. However, there are at least two po-
tential challenges: (1) explaining how condition and category
affect memory processes, and (2) ensuring this change does
not eliminate the PTN’s ability to produce IEs.

Comparison to other models
Recently, Borghetti et al. (2022) proposed an ACT-R model
and Fisher, Borghetti, Houpt, Blaha, and Stevens (2022) pro-
posed the Judgment Revision Model (JRM) which can pro-
duce IEs. Somewhat similar to the PTN, IEs in the ACT-R
model emerge from errors during memory retrieval. Variants
of the ACT-R model without learning are also constrained by
the CAEP. One challenge for this model would be to show
that learning depends on condition, face type, and category in
a way that matches the empirical data. The JRM is a multino-
mial processing tree which assumes IEs emerge from a cate-
gory revision process. Unlike the PTN, the JRM is not con-
strained by the CAEP.

Conclusion
Our model comparison underscores the difficulty of distin-
guishing between models based on CPT and QPT. Although
the PTN is based on CPT, it can produce IEs through errors in
the memory retrieval process. Thus, a simple failure to pro-
duce interference effects cannot distinguish between the BAE
and PTN. It turns out the CAEP—which is orthogonal to the
underlying probability theory—is a distinguishing factor, and
supports the BAE over the PTN.
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Abstract
Likelihood functions form the basis for statistical inference
techniques, including maximum likelihood estimation, and
Bayesian estimation/model comparison. Unfortunately, de-
riving likelihood functions analyticly for cognitive architec-
tures such as ACT-R can be challenging, if not impossible in
some cases, often requiring considerable time and expertise.
Simulation-based approximations are computationally inten-
sive, making them impractical to implement in real-time appli-
cations. We demonstrate how recently-developed techniques
for learning intractable likelihood functions with neural net-
works can be applied to a visual search model based on ACT-R,
and reused once trained. Our work extends prior applications
in two ways: (1) we demonstrate that the technique can be
scaled to a large number of conditions based on the size of the
visual search array, and (2) we demonstrate that the technique
is applicable to both unimodal and multimodal versions of the
model. We conclude with a discussion for scaling up neural
network techniques for approximating likelihood functions.
Keywords: ACT-R; neural networks; likelihood-functions;
parameter-estimation

Introduction
One of the benefits of cognitive architectures, such as Adap-
tive Control of Thought -Rational (ACT-R; Anderson et al.,
2004), is the ability to develop cognitively plausible models
which scale to a wide range of complex tasks (Newell, 1990).
An unfortunate trade-off is the difficulty of deriving likeli-
hood functions due to their complex statistical structure. A
likelihood function connects a model to data via probability
distributions and describes how likely data are given a model
with specific parameter values. Likelihood functions are im-
portant because they form the basis for parameter estimation
and model comparison for both frequentist and Bayesian ap-
proaches (Kruschke, 2014). A practical benefit is that likeli-
hood functions are typically orders of magnitude faster than
Monte Carlo simulation approaches (e.g., Fisher et al., 2022),
making the models easier to evaluate.

Recently, researchers have developed various techniques to
approximate intractable likelihood functions using neural net-
works (Papamakarios et al., 2019; Fengler et al., 2021; Boelts
et al., 2022). The basic idea is that a neural network can be
given simulated data from a cognitive model and learn the
mapping between the parameters and the likelihood function.
We will focus on one such technique called likelihood ap-
proximation networks (LANs; Fengler et al., 2021). LANs
learn the relationship between model inputs (e.g., parame-
ters, stimulus values) and the likelihood function, which is

approximated from a distribution of simulated data using a
kernel density estimator. Although generating training data
and training the LAN can be computationally intensive, this
is a one-time, upfront cost. Once the LAN is trained, eval-
uating the likelihood function is extremely fast, consisting
of a simple forward pass through the network. Using LANs
greatly speeds up the parameter estimation process because
(1) evaluating the likelihood function is the primary bottle-
neck, and (2) the likelihood function must be evaluated hun-
dreds or thousands of times during parameter estimation. In
addition, the trained LAN can be saved, shared, and reused to
quickly perform maximum likelihood or Bayesian parameter
estimation.

Prior research has demonstrated the feasibility and util-
ity of using LANs to approximate the likelihood function of
various evidence accumulation models (Fengler et al., 2021;
Boelts et al., 2022), such as the drift diffusion model (Ratcliff,
1978). Although LANs show promise as a proof-of-concept,
little is currently known about the performance of LANs with
respect to other types of models, such as cognitive architec-
tures, which may have different model structures and likeli-
hood typologies.

Our goal is to demonstrate how LANs can be used to ap-
proximate likelihood functions for the ACT-R cognitive ar-
chitecture using a visual search model (VSM) as a test case.
The likelihood function for the VSM is challenging to de-
rive because it describes a complex mixture of visual fixations
which becomes increasingly complex as the set of visual ob-
ject grows. Our application of LANs extends previous work
in two ways: (1) we demonstrate that LANs work for a large
range of experimental conditions, and (2) we apply LANs to
unimodal and multimodal versions of the VSM to showcase
its flexibility.

Overview
The remainder of the paper is structured as follows. First,
we will review techniques for developing and approximat-
ing likelihood functions, and describe their relative trade-offs.
Next, we will describe a conjunctive visual search task fol-
lowed by two VSMs based on ACT-R. We then apply LANs
to these models and perform benchmarks for execution time
and parameter recovery. Finally, we discuss future directions
and challenges for using LANs with more complex models.
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Approaches for Likelihood Functions
In this section, we review several approaches for developing
and using likelihood functions: analytic derivations, probabil-
ity density approximations (PDAs), lookup tables (LTs) and
LANs. Each approach is characterized by different trade-offs.
Before proceeding, we will formally introduce the likelihood
function. A likelihood function for a vector of independent
observations Y = {y1,y2, ..,yn} given a vector of parameters
Θ = {θ1,θ2, ...,θk} can be written in terms of the probability
density function (PDF), f :

L(Θ;Y) =
n

∏
i

f (yi | Θ) . (1)

To provide some intuition, Figure 1 shows the relationship be-
tween the top-down weight parameter ωtd (explained below)
and the likelihood of data generated with ωtd = .50. As one
might expect, the likelihood is maximized near ωtd = .50, and
decreases rapidly as the value of ωtd moves away from .50.

Perhaps the most common method for developing a like-
lihood function is the analytic approach whereby the like-
lihood function is derived through a series of mathematical
operations and theorems to produce a closed-form equation
(e.g., Fisher et al., 2022). Typically, analytic likelihood func-
tions can be evaluated quickly and impose few hardware de-
mands. Unlike other methods discussed here, another benefit
of the analytic approach is that it may provide mathematical
insights about properties of the model and its relationship to
other models. The primary drawbacks are (1) the time invest-
ment, (2) the required mathematical expertise, and (3) poten-
tial challenges scaling to some complex models.

In light of challenges with analytic approach, methods such
as PDA have been developed to approximate likelihood func-
tions through Monte Carlo simulation of the generative model
(Turner & Sederberg, 2014). Using PDA entails the follow-
ing three steps: (1) simulate the model thousands of times,
(2) approximate the likelihood function with a kernel density
estimator (KDE), and (3) evaluate the likelihood of the data
with the KDE. One benefit of PDA is that it can scale to any
model and the initial costs are low. Perhaps the most signifi-
cant drawback of PDA is that it can be computationally inten-
sive at run-time, which makes model evaluation slow and pro-
hibits real-time model evaluation in practical applications. In
addition, predictions generated with PDA are discarded rather
than reused in future applications.

An alternative approach involves precomputing the predic-
tions of the model and storing them in a lookup table (LT) for
later use where they can be compared to observed data (Fisher
et al., 2016). Although generating the LT requires a large ini-
tial computational cost, the benefits include ability to save and
reuse the results, and the ability to quickly evaluate the fit of
the model. One problem with LTs is the trade-off between
accuracy and RAM usage. As the parameter space increases,
more samples are needed to maintain the same level of accu-
racy, which eventually imposes high demands on RAM. This

0.3 0.4 0.5 0.6 0.7
ωtd

0.00
0.02
0.04
0.06


(ω

td
;Y

)

Figure 1: The likelihood of the data as a function of parameter
ωtd. The data generating value of ωtd = .50 represented by
dashed vertical line.

trade-off stems from the fact that the input and outputs are
stored rather than the function linking the two together.

As mentioned previously, LANs approximate the likeli-
hood function of a model by learning the mapping between
the inputs and output of the function. LANs involve three
steps: (1) generate training data from the model using PDA,
(2) train a neural-network on the relationship between model
inputs and the log-likelihood, (3) evaluate the log-likelihood
with a forward pass of the trained neural network. Much like
the LT approach, LANs can be reused and are very fast at run-
time. Given that LANs learn the relationship between model
inputs and log likelihood, they have two significant advan-
tages over LTs: (1) the trained neural network has a small
RAM footprint, and (2) neural networks can interpolate the
log likelihood of parameters values not used in the training
data. One obvious drawback is the initial computational cost,
which involves training the neural network in addition to gen-
erating a large set of training data from the model.

Conjunctive Visual Search Task
In a conjunctive visual search task (CVST), subjects must lo-
cate a stimulus that matches a target on multiple dimensions
(Treisman & Gelade, 1980). The target stimulus is embedded
within an array of scattered distractors without overlap. The
set-size effect is a well established finding in which reaction
time (RT) increases with the number of visual objects in the
array (Treisman & Gelade, 1980). In our CVST, visual ob-
jects vary along two dimensions: color (black vs. grey), and
shape (p vs. q). A target stimulus must match the target on
both dimensions (e.g., black q), whereas distractors match on
only one dimension (e.g., black p, or grey q). Visual objects
of length .86◦ were placed randomly within a 11.33◦×11.33◦

visual array, such that no overlapping occurred. Targets were
present in 50% of trials and absent in the remaining trials.

Visual Search Model
We developed two visual search models (VSMs) based on
ACT-R (Anderson et al., 2004) and an extension to its visual
system called Pre-Attentive Attentive Vision (PAAV; Nyam-
suren & Taatgen, 2013). One variant of the VSM produces
a unimodal RT distribution and the other variant produces a
multimodal RT distribution. As illustrated in Figure 2, RTs in
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the VSM arise from a mixture of a different number of visual
fixations. We leverage this fact to create unimodal and mul-
timodal versions of the VSMs by manipulating the variance
of the processing time of low level cognitive processes (e.g.,
conflict resolution, saccade, etc.). Although RT distributions
are not typically multimodal in CVSTs (Palmer et al., 2011),
we include a multimodal VSM to showcase the flexibility of
LANs.

Visual Objects and Chunks
In ACT-R, visual objects, v j and chunks, c j, are represented
as a set of feature-value pairs. For example, a visual object
is represented as v j =

{
( f j,i,b j,i)

}
i∈I j

, where f j,i and b j,i are
the feature and value of pair i, and I j is the index set for slot-
value pairs of visual object j. As a specific example, the target
could be represented as vt = {(color,black),(shape, q)}. We
will use the set Q j = { f j,i}i∈I j , to denote a set of features (e.g.
domain) in v j (or c j for a chunk). The mapping from features
to values is defined as vi( f ) = bi.

Visual Activation
In PAAV, visual activation is a weighted sum of three compo-
nents: (1) top-down activation, (2) bottom-up activation, and
(3) activation noise. Activation for visual object i is given by:

ai = ωtdtai +ωbubai + εi, (2)

where tai and bai are top-down and bottom-up activation,
ωtd and ωbu are top-down and bottom-up weights, and εi ∼
normal(0,σ) is activation noise. We fix ωbu = 1.1 and σ =
sπ√

3
, with s = .2 as the default value.
Top-down activation reflects the accentuation of features

based on the goal to find the target, which is encoded as a
chunk ct in the goal buffer at the beginning of the trial. A
visual object matching the target will have more top-down
activation than one that does not match. Formally, top-down
activation is given by:

tai =
n f

∑
k=1

sim(vi( fk),ct( fk)), (3)

where n f is the number of features, and sim is a binary simi-
larity function, which returns 1 if vi( fk) = ct( fk) and 0 other-
wise.

Bottom-up activation is based on the contrast between a
visual object and those surrounding it, such that the effect
of contrast increases with decreasing distance. Formally,
bottom-up activation is defined as:

bai =
nv

∑
j=1

n f

∑
k=1

dissim(vi( fk),v j( fk))√
di, j

, (4)

where nv is the number of visual objects, di, j is the distance
between visual objects i and j, and dissim is a binary disimi-
larity function which returns 1 if vi( fk) ̸= vt( fk) and 0 other-
wise.

Inhibition of Return

ACT-R briefly tracks a small number of visual objects to pre-
vent multiple fixations of the same visual objects in quick
succession. By default, the maximum number of objects (i.e.,
“finsts”) is 4 and the maximum duration is 3 seconds. If more
than 4 visual objects are encountered within the maximum
duration, the oldest visual objects are discarded in favor of
more recently fixated visual objects.

Processing Times

In our VSM, we assume that the processing times of elemen-
tary cognitive processes, such as conflict resolution and mo-
tor execution, follow a gamma distribution with a standard
deviation that depends on the mean. We reparameterized the
gamma distribution as follows: gamma(µp,σp) where µp is
the mean processing time of process p, and σp = wµp is the
standard deviation of processing time of process p. The pa-
rameter w determines how large the standard deviation is rel-
ative to the mean. In all models, we used default values for
each µp. In the multimodal model, we set w = .20 so that
the component distributions are distinguishable. In the uni-
modal model, we increase w to .50 so that the component
distributions sufficiently overlap. Under the assumption that
processing times are serial and independent, the observed RT
is the sum of individual processing times.

Response Rules

Departing from PAAV, our model uses a dynamic termina-
tion threshold based on Moran et al. (2013) to decide whether
to fixate on the most active visual object or to terminate the
search. The dynamic threshold is defined as:

τr = µr + εr, (5)

where µr is the expected threshold value after encountering r
distractors, and µ0 = 0. After encountering a distractor, the
threshold is updated according to:

µr = µr−1 +∆, (6)

where ∆ is the updating factor. Thus, the probability of termi-
nating and responding “absent” increases with each failed at-
tempt to find the target. Given vm—the visual object with the
highest activation—and ct—a chunk in the goal buffer rep-
resenting the target—the response rules can be divided into
three cases:

Case 1: am ≥ τr and ∀kvm( fk) = ct( fk)
All features match and the model responds “present”.

Case 2: am ≥ τr and ∃kvm( fk) ̸= ct( fk)
The model updates the threshold according to Equation 6 af-
ter encountering a distractor and continues searching.

Case 3: am < τr
The model responds “absent” and ends the search.
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Challenges with Likelihood Function
Several characteristics of the VSM present challenges for de-
riving the likelihood function. Perhaps the most significant
challenge is marginalizing over the large set of component
distributions which comprise the observed RT distribution.
As shown in Figure 2, the VSM can be characterized as a
mixture of multiple unobserved component distributions cor-
responding to elementary cognitive processes (e.g., conflict
resolution, saccades etc.). A general expression for the PDF
of a mixture model with one mixing variable is given by:

f (x) =
n

∑
i=1

pi fi(x) (7)

where f (x) is the PDF of the mixture model, n is the num-
ber of components, pi is the probability of the ith component,
and fi(x) is the PDF of the ith component. The biggest chal-
lenge with deriving a likelihood function is the large num-
ber of component distributions, n, which is large due to three
unknown quantities: (1) the number of fixations, (2) which
visual objects were fixated, and (3) the order in which vi-
sual objects were fixated. As the number of visual objects
increases, the n increases exponentially, eventually making
the PDF infeasible to compute.
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Figure 2: Densities of component distributions as a function
of number of fixations. Black dotted line is the probability
density for the observed RT distribution. Densities are based
on a “present” response on a target present trial with a dis-
tractor set size of 6.

Simulation Methods
Likelihood Approximation Networks
As illustrated in Figure 3, we trained a LAN to learn the map-
ping between inputs (e.g., parameters, rt/choice, conditions)
and the corresponding log likelihood. The LAN is a multi-
layer perceptron consisting of an input layer for model inputs
(e.g., parameters, stimulus values, data), three hidden layers
of size [100,100,120], and an output layer that maps to a sin-
gle node for the log likelihood (e.g., Fengler et al., 2021).

Training input vectors consisted of three types of informa-
tion contributing to the log likelihood: (1) model parameters
ωtd and ∆, (2) experiment parameters p—a target indicator
variable—and nd—the number of distractors in the array, and

(3) simulated data consisting of a response and RT. The label
used for feedback was the log likelihood associated with the
training input vector.

We generated training data for the model as follows. First,
we sampled 15k parameter vectors from the following dis-
tributions: ωtd ∼ uniform(0,2), ∆ ∼ uniform(.25, .75), p ∼
Bernoulli(.5) and nd ∼ uniform([2,4, . . . ,20]). For each pa-
rameter vector, we approximated the likelihood function by
estimating the kernel density function from 50k simulated
data points. Next, to create training data for each parameter
vector, we generated 300 samples of data, and evaluated the
log likelihood of each sample, resulting in 15k×300 = 4.5M
training vectors. The test data were sampled using the same
procedure, except we used 1,000 parameter vectors instead.

We trained the neural networks over the course of 50
epochs with a batch size of 1k, using the ADAM optimizer
with a learning rate of .001.
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Figure 3: An illustration of the LAN for learning ACT-R like-
lihood functions. The input layer consists of parameters and
data. The ouput layer emits the predicted log likelihood.

Parameter Recovery

We performed a parameter recovery simulation to assess the
ability of the LAN to accurately estimate model parame-
ters. A parameter recovery simulation involves three steps:
(1) sample a vector of parameters θi from a distribution to
serve as the ground truth, generate simulated data Y j|θi =
[y j,1|θi ,y j,2|θi , . . . ,y j,m|θi ] from the model using θi, and (3) es-
timate the parameters from simulated data Y j|θi , yielding θ̂i.
After repeating these steps multiple times, the true and esti-
mated parameters are compared.

For each model, we generated 50 simulated trials from 100
simulated subjects, each represented by a different θi. Given
that we are interested in point estimates rather than posterior
distributions, we used differential evolution (DE) to find the
maximum likelihood estimates (Storn & Price, 1997). The
parameters were sampled from the same distributions used to
generate training data for the LANs, except the ranges were
decreased by 30% to prevent estimates from falling outside
the training data.
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Simulation Results
LAN Test Accuracy
We assessed the accuracy of the LAN using visual inspection
and quantitative measures. Figure 4 shows that probability
density from the LAN provides a good fit to the histogram of
simulated data. The out of sample correlations and root mean
squared errors were 0.99 and 0.07 for the unimodal VSM and
0.99 and 0.11 for the multimodal VSM.
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Figure 4: The probability density overlaid on histogram of
simulated data for a “present” response on a target present
trial with a distractor set size of 2. Top: the unimodal VSM.
Bottom: the multimodal VSM.

Parameter Recovery
We evaluated the quality of parameter recovery with the cor-
relation between true and estimated parameters and mean rel-
ative bias (e.g., 1

n ∑
n
i=1

θ̂−θ

θ
). We only visualize the results for

the unimodal model in Figure 5 due to space limitations. For
the unimodal VSM, correlation and mean relative bias were
.95 and .14 for ωtd and .94 and .08 for ∆. For the multimodal
VSM, correlation and mean relative bias were .94 and .03 for
ωtd and .94 and .02 for ∆. Given that the density overlay fit
the simulated data well (e.g., Figure 4), its possible that the
bias is an inherent property of the model. Overall, the param-
eters were recovered with an acceptable degree of accuracy
for both versions of the VSM.

Timing Benchmark
We performed a benchmark to compare the execution times of
LAN and PDA. Given that the evaluating the likelihood func-
tion is the primary bottleneck during inference, we decided
to benchmark log likelihood of a single choice-rt pair. This
means that the relative timing between PDA and LAN will be
roughly constant across parameter estimation methods, but
the absolute timing will depend primarily on the number of
evaluations.

Unlike LAN, the PDA method is sensitive to the size of the
distractor set and the number of samples is used to estimate
the kernel density. For this reason, we varied both factors:
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Figure 5: Scatter plot of the true and estimated parameters for
the unimodal model.

the number of samples to construct the kernel density was 1k,
10k, 20k, and 50k, and the size of the distractor set was ei-
ther 2 or 20. In each condition, we repeated the benchmark
1,000 times and computed the mean across replicates. The
benchmark results in Figure 6 reveals three important find-
ings: (1) LAN was 3-6 orders of magnitude faster the PDA,
and (2) evaluation time for PDA increased with the number of
samples, and (3) evaluation time for the PDA also increased
with set size as expected. In addition, estimating the parame-
ters for a single simulated subject using DE with LAN, three
groups of 10 particles and 1,000 iterations required approx-
imately 2.15 seconds. Parameter estimation would take sig-
nificantly longer with PDA due to the use of Monte Carlo
simulations.
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Figure 6: Mean time to evaluate log likelihood for LAN and
PDA for distractor set size 2 and 20. Note that x-axis not
applicable to LAN.

Discussion
Our goal in the present research was to determine to what ex-
tent LANs can approximate the likelihood function of mod-
els which differ from previous applications. As a test case,
we used a VSM based on the ACT-R cognitive architecture.
Deriving a likelihood function for the VSM is challenging
because the model is a complex mixture with a large num-
ber of component distributions. Extending prior research, we
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demonstrated that LANs (1) can scale up to a large number
of experimental conditions, and (2) are sufficiently flexible to
approximate the likelihood for both unimodal and multimodal
distributions.

Consistent with prior research, we also found that LANs
were multiple orders of magnitude faster than simulation
based approaches such as PDA. In addition, our results high-
light an important feature of LANs—namely, evaluation time
is invariant to factors that affect PDA. In the VSM, for ex-
ample, simulation times increase with set size due to the in-
crease in the number of simulated visual fixations. Indeed, the
increase was approximately 1 order of magnitude at the ex-
tremes (2 vs. 20). An increase in simulation time also occurs
by decreasing the updating factor of the termination thresh-
old. This effect is more pronounced during the simulation of
target absent trials.

Many interesting questions remain for future research to
address regarding the scalability of LANs to other more com-
plex model structures commonly encountered in cognitive ar-
chitectures. In prior investigations, including our own, the
task consisted of a simple, repetitive trial structure involving
a single goal and response mode. However, the structure of
some tasks is less rigid and may require multiple response
modes. Aviation tasks, for example, may require a person
to prioritize multiple, potentially conflicting goals within a
dynamic environment. Aviation controls are numerous and
varied, ranging from buttons, dials, throttle levers, and rudder
pedals. The resulting model structure for this type of task is
multivariate and dynamic. In addition, unlike a simple labora-
tory task, the environment is reactive—responding modifies
the environment, which in turn, creates new set of conditions
with which a person must interact. The universal approxima-
tion theorem (Hornik et al., 1989) suggests that LANs can, in
principle, be extended to accommodate more complex struc-
tures. The question, however, is whether this can be achieved
in practice given limited computational resources.

Conclusion
In the past, mathematical intractability and computational
limitations have impeded our ability to use likelihood based
methods to evaluate many models based on cognitive archi-
tectures. We believe that LANs provide a promising method
for approximating intractable likelihood functions. More re-
search will be needed to identify boundary conditions and
limitations of LANs. Nonetheless, our research provides evi-
dence that the scope of applicable models is somewhat larger
than previously known.
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Abstract 

Traditional fit indices used in the context of factor analysis are 
based on the objective function of the Maximum Likelihood 
(ML), or modified ML, estimates of the free parameters. 
Therefore, these indices are an indication of how well the fitted 
model describes the observed correlation matrix. However, 
these indices do not provide a direct assessment of the validity 
of the assumed causal relations between the latent and observed 
variables. The objective of this study is to propose a tetrad fit 
index (TFI) that indicates how well the assumed causal 
relations in the model are reflected in the data. The TFI is 
defined as the complement of the average of the root-mean-
squared difference between the tetrads of the observed 
correlation matrix and the correlation matrix implied by a fitted 
factor analytic model. A preliminary simulation study provides 
initial evidence in favor of using the TFI instead of other 
traditional fit indices to identify the correct factor model in 
comparison to concurrent models. 

Keywords: Model comparison; causal inference; 
psychometrics 

Introduction 

In factor analysis and structural equation modeling 

applications one is interested in identifying how well a 

theoretical model reflects the data. Several fit indices have 

been developed to operationalize what “well” means in this 

context. Two main classes of fit indices were proposed to try 

to operationalize the “goodness” (or “badness”) of models 

(Xia & Yang, 2019): incremental fit indices, and absolute fit 

indices.  

Absolute fit indices assess how far the fitted model is from 

a “perfect” model, whereas a “perfect” model is defined as 

the model that can perfectly predict the values of the observed 

correlation matrix. One of the most used absolute fit indices 

is the root mean square error of approximation (RMSEA; 

Steiger & Lind, 1980). Incremental fit indices, on the other 

hand, assess how the fitted model performs in comparison to 

a “baseline” model. The baseline model, in this context, is 

usually define as the model where all variables are considered 

to be independent and, therefore, should be the model with 

the worst possible fit. The comparative fit index (CFI; 

Bentler, 1990) and the Tucker-Lewis index (TLI; Tucker & 

Lewis, 1973) are two of the most commonly used incremental 

fit indices.  

Independent of a fit index being incremental or absolute, 

the “quality” of the fit is defined according to the objective 

function of the factor model, which is usually defined in 

terms of some type of difference between the observed 

correlation matrix and the correlation matrix implied by the 

fitted model (or something alike). However, Spearman 

(1904) has shown that whenever a set of observed variables 

is linearly caused by a common latent variable, some more 

implicit patterns arise in the correlation matrix. More 

specifically, Spearman (1904) has shown that the difference 

between the product of some pair of correlations and the 

product of another pair among four random variables with a 

common latent variable should be equal to zero. This 

difference is known as the vanishing tetrad (Hart & 

Spearman, 1912) and it reflects a consequence of the causal 

assumption of factor models. 

The vanishing tetrads have been known for a long time, but 

their applications in psychometrics have been quite sparse. In 

fact, it is not unreasonable to state that, after Spearman, 

vanishing tetrads have been ignored in mainstream 

psychometric (Bartholomew, 1995). Justifications for this 

include the fact that tetrads are more computationally 

expensive to calculate (as will be shown later, it involves the 

calculation the difference of products of products), 

procedures based on tetrads are not easy to use or interpret, 

and some of the existing methods are not readily accessible 

in statistical software (e.g., Spirtes et al., 2000). The objective 

of this study is to propose a tetrad fit index (TFI) that is easy 

to calculate and interpret, integrating the family of absolute 

fit indices with causal information that is not included in the 

current existing fit indices. 

Factor Analysis and Traditional Fit Indices 

The main objective of factor analysis is to find a structure of 

latent causes that can be used to explain the correlational 

structure of the observed data. In formal terms, the observed 

correlation matrix Σ is assumed to be the result of a linear 

combination of the factor loading matrix Λ, the matrix of 
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correlations between the latent causes Φ, and the diagonal 

matrix of uniqueness Ψ (i.e., the part of the variance of each 

item that is not shared with the other items): 

Σ = ΛΦΛ𝑇 +Ψ. (1)

Computationally, the Maximum Likelihood (ML) 

estimator of the model in Equation 1 can be defined in several 

different ways, depending on the restrictions that one believes 

to be necessary for the estimation process in the given data 

(Xia & Yang, 2019). These restrictions are the properties that 

differentiates the traditional ML estimator from the DWLS, 

ULS, WLS, WLSMV, and other possible estimators (Flora & 

Curran, 2004). Therefore, all estimators are special cases of 

the traditional ML estimator (or objective/fit function) which 

can expressed as 

𝐹𝑀𝐿 = ln|Σ̂| + tr(ΣΣ̂−1) − ln|Σ| − 𝑝, (2)

where Σ̂ = Λ̂Φ̂Λ̂𝑇, the hat operator ( ̂ ) indicates estimated

parameters, and p is the number of variables in the model. 

With a perfect model, Σ̂ = Σ and tr(ΣΣ̂−1) = 𝑝; therefore,

resulting in 𝐹𝑀𝐿 = 0.

In real applications, the model will be perfect usually only 

in the cases where the model is overidentified (i.e., the 

number of free parameters is larger than the amount of 

information in the model; Bamber & van Santen, 2000). 

Therefore, in most real applications, 𝐹𝑀𝐿 > 0 and the

estimation method will find the smallest possible value of 

𝐹𝑀𝐿 given the restrictions imposed over Λ̂ and Φ̂. A

consequence of this is that, apart from random error, 

misspecification of the restrictions imposed over the loadings 

and latent correlations matrices will also decrease the chances 

of finding a “good enough” model. Fit indices are, then, a 

way of checking if the identified model is, indeed, good 

enough to explain the data. 

The RMSEA measures the “badness-of-fit” and is defined 

as 

RMSEA = √
�̂�

𝑑𝑓
, (3) 

where df are the degrees of freedom of the fitted model. The 

RMSEA represents the magnitude of the misfit given the 

number of free information (i.e., the dfs) of the model. The 

CFI measures the “goodness-of-fit” and is defined as 

CFI = 1 −
�̂�

𝐹𝐵
, (4) 

where 𝐹𝐵 is the estimated objective function for the baseline

model. The CFI is a likelihood ratio-like measure of 

goodness-of-fit, being equal to 1 only when the baseline 

model is infinitely worse than the fitted model. The TLI is 

defined as 

TLI = 1 −
�̂� 𝑑𝑓⁄

𝐹𝐵 𝑑𝑓𝐵⁄
, (5) 

where dfB are the degrees of freedom of the baseline model. 

The TLI also measures the “goodness-of-fit” and is 

interpreted similarly to CFI, but similarly to RMSEA it is also 

weighted by the relative free information of the fitted model 

in relation to the baseline model. 

For a researcher to say if a model is “good enough” to 

explain the correlation structure of a set of data, the decisions 

based on fit indices are dependent on a set of cutoff criteria 

(Bentler & Bonett, 1980; Jöreskog & Sörbom, 1993). For 

instance, Hu and Bentler (1999) have shown, through 

simulation studies, that an RMSEA smaller than .06 and a 

CFI and TLI larger than .95 indicate a relatively good model-

data fit for continuous observed variables. With nominal and 

ordinal data, however, these fit indices tend to be biased in 

the direction of a good fit. Therefore, with nominal and 

ordinal data, one should use more stringent criteria or yet 

another decision criterion for model selection (Xia & Yang, 

2019).  

One important procedure of model selection that is usually 

overlooked in the psychometric literature is that of model 

comparison. In this perspective, instead of depending heavily 

on the “good enough” fit indices, researchers compare 

theoretically competing models and, based on the relative 

differences of the fit indices, choose the model that provides 

the best possible fit to the data. We believe (and some other 

authors also hold this view; e.g., Xia & Yang, 2019) that 

model comparison can sometimes be more efficient than 

selecting models based on somewhat arbitrary cut-off 

criteria. 

Apart from the discussion of the best way of using fit 

indices to make theoretically meaningful decisions, it is also 

a heated debate in the literature of what is the “best” fit index 

to decide on what model better describe the data (e.g., Heene 

et al., 2011; Sun, 2005). Because RMSEA, CFI, and TLI are 

all based on similar principles, they tend to be quite 

correlated. However, it is also not uncommon that one fit 

index indicates that the model is “good enough” for the given 

data, but another fit index indicates that the model is not good 

enough for the given data. Several simulation studies have 

then been conducted to show what fit index works better in 

what context (e.g., Heene et al., 2011; Hutchinson & Olmos, 

1998; McNeish & Wolf, 2021; Shi & Maydeu-Olivares, 

2020). Despite some interesting results, mathematically, the 

models are quite similar, and it is reasonable to state that 

RMSEA, CFI, and TLI are all some type of standardized 

effect size of the difference between the estimated correlation 

matrix and the observed correlation matrix (i.e., some type of 

residual-based measure). 

In the recent psychometric literature, researchers have been 

discussing applications of probabilistic graphical models 

(known in this context as “network psychometrics”; 

Epskamp et al., 2018) as an alternative way to 

explain/describe the correlation patterns found among 

observed variables. For some of these models, latent 

variables are not considered. In fact, some simulation (e.g., 

van Bork et al., 2021) and theoretical (e.g., Kruis & Maris, 

2016) studies have shown that network and factor analytic 

models can sometimes explain the same patterns of 

correlation. This highlights a limitation of fit indices such as 

RMSEA, CFI, and TLI for the assessment of the “quality” of 

factor models: they do not necessarily consider the causal 

assumptions embedded in factor models. Therefore, a fit 
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index that take into account the causal structure assumed by 

factor models could, in principle, provide additional 

information that is necessary to perform more adequate 

model selection. 

Vanishing Tetrads and the TFI 

The usual assumption of linearity was used by Spearman 

(1904), and later deepened by Bollen (1989) and Glymour et 

al. (2000), to show that the correlation matrix may “hide” 

some evidence regarding the presence of a common latent 

cause to a set of observable variables. In more technical 

terms, the common latent cause imposes some restrictions to 

the correlation matrix of observed variables in a way that it is 

possible to test (given some qualitative assumptions such as 

linearity and multivariate normality) if the data was generated 

by a common cause data generating process or not (Bollen & 

Ting, 1993). In fact, this was the method originally proposed 

by Spearman to assess the goodness-of-fit of his factor 

models. However, computing vanishing tetrads is expensive 

and, therefore, Spearman’s approach was quickly abandoned 

in exchange for principal component analysis and maximum 

likelihood estimation (Bartholomew, 1995). 

The calculation of the vanishing tetrads is presented in 

Figure 1. In a data-generating process with a single common 

cause φ for the same four observed variables (x1 to x4), the 

implied correlation 𝜌𝑖𝑗  between two observed variables i and

j is simply the product of the variables’ factor loadings 𝜆𝑖 and

𝜆𝑗. For the sake of simplicity, here the procedure assumes that

the variance of the latent variable is equal to 1. However, it 

could be similarly calculated with the covariance matrix of 

the latent variables, without additional restrictions to their 

variances. The tetrads 𝜏ℎ𝑖𝑗𝑘  implied by this data-generating

process is, therefore, defined as the difference between the 

product of a pair of correlations and the product of another 

pair among four random variables: 

𝜏ℎ𝑖𝑗𝑘 = 𝜌ℎ𝑖𝜌𝑗𝑘 − 𝜌ℎ𝑗𝜌𝑖𝑘 . (6)

One should note at this point why is the tetrad analysis 

computationally expensive in comparison to the other 

methods. For RMSEA, CFI and TLI, the necessary values are 

calculated with the optimization method, so are readily 

available right after the model was fitted. For tetrads, 

however, one still need to do some additional steps. First, one 

needs to calculate the products between all the correlations. 

Then, one needs to calculate the products between all the 

products of correlations. And finally, one needs to calculate 

the difference between the products of products of 

correlations. Despite the fact that modern computers can do 

these operations quite efficiently, in comparison to other fit 

indices, these calculations require exponential time, 

dependent on the number of variables in the dataset. 

Regarding the usefulness of tetrads per se, the most 

important consequence of the common cause data-generating 

process is that all the tetrads implied by this model should be 

equal to 0; therefore, vanishing tetrads. Previous work with 

vanishing tetrads includes the exploratory tetrad analysis 

proposed by Glymour et al. (2000) and the confirmatory 

tetrad analysis proposed by Bollen and Ting (1993). Some 

other work has also studied asymptotic properties of test 

statistics derived from the vanishing tetrads analysis (e.g., 

Kenny, 1974), allowing the development of test statistics 

based on tetrads. However, all these previous works have at 

least one of some major limitations: they are computationally 

expensive (e.g., the exploratory tetrad analysis require the 

calculation of all the tetrads dozens or even hundreds of times 
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before reaching a valid result); they are overpowered (i.e., are 

biased against the factor model); or are not easy to interpret. 

Also, except for the exploratory tetrad analysis, which is 

implemented in the TETRAD software (Spirtes et al., 2000), 

to our knowledge, none of these methods are implemented in 

readily accessible statistical software. 

Departing from Bollen and Ting (1993) and Kenny (1974), 

we will use the ML estimate of a factor model as the reference 

for the tetrad fit index (TFI). But instead of using �̂� as the 

reference value for the calculation, we will use a direct 

comparison of Σ̂ and Σ. More specifically, from all the tetrads 

�̂� implied by the estimated correlation matrix Σ̂ and from all 

the tetrads 𝜏 implied by the observed correlation matrix Σ, the 

TFI is defined as 

TFI = 1 −
∑√(�̂� − 𝜏)2

𝑘
, 

(7) 

where k is the number of all the tetrads calculated for both of 

the correlation matrices. A value of TFI equal to 1 represents 

a model that perfectly fits the data. A value of TFI equal to 0 

represents a model that fits the data as badly as possible. It is 

also worth noting that a similar index could be calculated 

using the estimated and observed covariance matrices 

instead. However, this would produce an index with ranges 

sensible to the variance of the variables in the model, and, 

therefore, more difficult to interpret. 

The TFI represents an advantage to some previous tetrad 

methods especially because it only requires calculating all the 

tetrads twice. The exploratory tetrad analysis, for instance, 

can take hundreds of iterations to finish and, at each iteration, 

it needs to calculate all of the tetrads again. In comparison to 

other fit indices, the TFI provides not only an indication of 

how well the model describes or predicts the observed 

correlation matrix but also if (or how well) the implications 

of the causal model assumed in the factor analysis hold in the 

observed data. 

Method 

We ran a pilot simulation study to investigate if the TFI could 

be, indeed, a promising fit index for factor models. We 

simulated 100 datasets that were generated with a 5-

dimensional factor model, with 5 observed variables per 

factor and a constant sample size of 500 respondents. The 

correlation matrix between the latent variables was sampled 

from a Wishart distribution with degrees of freedom equal to 

5 and with the parameter matrix defined as a diagonal matrix 

of size 5. The factor loadings were sampled from a uniform 

distribution with a lower bound equal to .4 and an upper 

bound equal to .9. From the sampled latent correlation and 

loading matrices, we calculated the implied correlation 

matrix, and then, we sampled the observed continuous 

variables. Therefore, the data generating process was a factor 

model with five orthogonal factors that were the latent causes 

of each block of five variables in all the simulated datasets. 

For each simulated dataset, we fitted two models: a “best 

empirical model”, estimated using the exploratory graph 

analysis procedure (EGA; Golino & Epskamp, 2017); and a 

model that reflected the data generating process (i.e., the 

model that truly reflects our simulation process). The final 

step for each iteration was to calculate the fit indices CFI, 

TLI, RMSEA, and TFI. After we calculated the fit indices for 

all the simulated datasets, we calculated the proportion of 

times that the right decision (regarding what was the correct 

model to choose) was made. 

Results 

The results regarding the proportion of times that each index 

would choose the correct model are shown in Table 1. The 

TFI fit index proposed in this study showed the highest 

performance for selecting the best model, with 100% 

accuracy. In addition, TLI was the second best among these 

fit indices, while the worst average performance happened 

with both CFI and RMSEA. In Figure 2, we present 

scatterplots of the 100 fit indices calculated for all the 

simulated datasets. Therefore, these values represent the 

“agreement” between the methods: stronger correlations 

indicate that the methods would suggest that the same model 

is the one to best describes the data. The fit indices ending 

with “1” represent the measures for the model estimated with 

EGA. The fit indices ending with “2” represent the measured 

for the model that correctly represents the true data 

generating process. Therefore, the upper diagonal plots show 

that the TFI exhibits comparatively lower correlations with 

the other fit indices, whereas the other indices display 

significant correlations with each other. The average absolute 

correlation of the TFI with the other indices is of about 0.320. 

Among the other indices, the average absolute correlation is 

of about 0.948. This suggests that the TFI may be evaluating 

something that the other indices do not consider. 

Furthermore, it also indicates that the other indices tend to 

converge in regards to what model will be considered as the 

most appropriate, given a specific dataset. 

Table 1: Simulation Results For TFI, CFI, TLI, and 

RMSEA Fit Indices. 

Average 

Performance 

Lower IC 

95% 

Upper IC 

95% 

TFI 1 1 1 

CFI 0.76 0.67 0.84 

TLI 0.86 0.79 0.93 

RMSEA 0.76 0.67 0.84 

Discussion 

In this study, we proposed a fit index for factor models using 

vanishing tetrads, called the Tetrad Fit Index (TFI), which we 

demonstrated, at least providentially, to be more effective 

than other fit indices commonly used in the literature. Our 

simulation study shows that TFI is more accurate to select the 

best model, providing more accurate results than other fit 

indices. One potential explanation for the superior 

performance of TFI is that it takes into account the causal 

relations between the latent variable and its’ indicators, 

capturing some essential information that other fit indices 
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miss. It is worth noting that we still don’t have sufficient 

evidence to state that TFI is the best-fit index for model 

selection in a variety of scenarios. Therefore, before a 

stronger conclusion is drawn, further studies with different 

simulation configurations are necessary. For instance, it 

would be particularly interesting to test if the TFI still works 

well when considering complex models such as second-

order, bifactor, random-intercepts, and whatever combination 

of these models. However, our results suggest that 

researchers should consider testing the performance of the 

TFI as an alternative to other commonly used fit indices. We 

encourage researchers to use TFI in their future studies and 

to continue developing similar fit indices that can better 

capture the assumptions of the latent variable theory. 
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Abstract

Probability theory is often used to model animal be-
haviour, but the gap between high-level models and how
those are realized in neural implementations often re-
mains. In this paper we show how biologically plausi-
ble cognitive representations of continuous data, called
Spatial Semantic Pointers, can be used to construct single
neuron estimators of probability distributions. These rep-
resentations form the basis for neural circuits that perform
anomaly detection and evidence integration for decision
making. We tested these circuits on simple anomaly de-
tection and decision-making tasks. In the anomaly detec-
tion task, the circuit was asked to determine whether ob-
served data was anomalous under a distribution implied
by training data. In the decision-making task, the agent
had to determine which of two distributions were most
likely to be generating the observed data. In both cases we
found that the neural implementations performed compa-
rably to a non-neural Kernel Density Estimator baseline.
This work distinguishes itself from prior approaches to
neural probability by using neural representations of con-
tinuous states, e.g., grid cells or head direction cells. The
circuits in this work provide a basis for further experi-
mentation and for generating hypotheses about behaviour
as greater biological fidelity is achieved.

Keywords: neural probability; spatial semantic pointers;
anomaly detection; decision making; evidence integration

Introduction
Even without being tied to strict mathematical defini-
tions, learning about the relative likelihood of differ-
ent phenomena is useful for organisms operating in the
world. Consequently, probability theory has become a
useful tool in cognitive modelling. In this paper we use
models of neural representations of continuous spaces to
construct single neuron estimators of probability distri-
butions. From those models we construct neural circuits
for anomaly detection and evidence integration.

Approaches connecting neural activity to probability
exist (see, e.g., Doya et al., 2007). The Probabilistic Pop-
ulation Code (PPC; Ma et al., 2006, 2008) hypothesizes
that neuron populations’ activity represent posterior dis-
tributions conditioned on stimuli. Bayesian inference can
be implemented using linear techniques, as can decod-
ing distributions over the stimulus. PPC has been used
to model cognition (e.g., Ma et al., 2011; J. M. Beck et
al., 2011; J. Beck et al., 2012; Hou et al., 2019; Walker

et al., 2020), including the forced decision task. Simi-
larly, convolutional codes, in the terminology of Ma et al.
(2008), posits that distributions over stimuli are encoded
in neural populations’ latent states, that can be linearly
decoded (Anderson & Van Essen, 1994; Zemel et al.,
1996; Eliasmith & Anderson, 2003; Barber et al., 2003).
This technique has been employed to execute Bayesian
inference in populations of spiking neurons (Sharma et
al., 2017).

Figure 1: A probability distribution fit for 500 samples
for a KDE and single-neuron SSP representation. Verti-
cal dashed black lines indicate the bounds of the training
data. Outside the training set the SSP estimator has peaks
of probability due to the nature of the sinc quasi-kernel.

Alternatively, one can treat the activity of neurons not
as encoding distributions, but samples from a distribu-
tion, (e.g., Anastasio et al., 2000; Hoyer & Hyvärinen,
2002; Buesing et al., 2011; Huang & Rao, 2014; Kap-
pel et al., 2015). In the case of Buesing et al. (2011)
and Huang & Rao (2014), neuron activity is averaged to
estimate the probability of the random variables the neu-
rons represent, similar to the method presented in this
paper. However, we differ in how we specify the synap-
tic weights of the neurons encoding probability.

More recently, work with the Semantic Pointer Archi-
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tecture (SPA; Eliasmith, 2013) has demonstrated the use
of representations of continuous-valued data to model
probability. Spatial Semantic Pointers (SSPs) are high-
dimensional embeddings of data that have been used in
high-level cognitive modelling (Komer, 2020; Voelker
et al., 2021), as well as low-level state representa-
tions (Komer et al., 2019; Komer, 2020; Dumont et al.,
2023), including grid cells in the medial entorhinal cor-
tex (Dumont & Eliasmith, 2020). Furlong & Eliasmith
(2022) showed that similarity between SSPs has a funda-
mental mathematical relationship with probability, and
that algebraic manipulations of SSPs imply operations
on distributions, extending prior results in hyperdimen-
sional computing (Joshi et al., 2017; Frady et al., 2021).

In this paper we use SSPs to construct single neurons
that encode probability distributions, and using those
neurons, construct probabilistic algorithms. Figure 1
compares the tuning curve of such a neuron to a Kernel
Density Estimator (KDE). To test SSP-based probabil-
ity models, we use it to construct anomaly detection and
evidence integration algorithms that are simple, but that
have biological motivation. For anomaly detection, we
simply threshold the output of a single neuron. This ap-
proach is similar to Dasgupta et al. (2018), who proposed
single-neuron novelty detection circuit in the mushroom
body of drosophila. For the evidence integration task
we employ a neural implementation of Wald’s sequen-
tial probability ratio test (SPRT). The SPRT has been
suggested as a model of drift diffusion for forced-choice
tasks, although it is not without its limitations (Drugow-
itsch & Pouget, 2012; Ratcliff et al., 2016). Further, a
multi-hypothesis SPRT has been proposed as a frame-
work for optimal decision making in the Basal Gan-
glia (Bogacz & Gurney, 2007; Bogacz & Larsen, 2011;
Bogacz, 2015). What we show is how these cognitive
representations can support the neural implementation of
information theoretic algorithms.

We find that the neural distribution estimators have
performance comparable to a non-neural KDE. While the
neural anomaly detector does not reach the performance
of a KDE baseline, it does achieve a high F1 score – a
combined measure of precision and recall – relative to
an analytical implementation of the anomaly detector. In
the evidence integration task we find our model is statis-
tically indistinguishable from a KDE baseline at a 95%
confidence level. These results support the notion that
one can, with confidence, combine cognitive representa-
tions like SSPs with neural circuits to implement prob-
abilistic algorithms. Further, the particular circuits pro-
vide opportunities to generate hypotheses about neural
structures and biological behaviour.

Methods
To illustrate the utility of single neuron distribution mod-
elling we apply the technique in two settings. The

first application is novelty detection, which may have
explanatory power in novelty-seeking behaviour. The
second application is in decision making, framed using
Wald’s sequential probability ratio test, which has been
previously used as a metaphor for perceptual decision
making and action selection in the basal ganglia.

Task description For the novelty detection task we
present a sequence of observations drawn from a gaus-
sian mixture model, G1(X) = 0.3N (µ1 =−4,σ1 = 1)+
0.7N (µ2 = 2,σ2 = 0.75). At some point tchange, the ob-
servation generating distribution switches to a second
distribution, G2(x) = N (µ = 7,σ = 0.5). We run the
experiment for T = 2000 observations and classify each
observation as either “anomaly” or “non-anomaly”.

For the decision making task we required the network
to classify a sequence of observations as being gener-
ated by one of two hypotheses, H0 or H1, with distribu-
tions over observations, P(x | H0) = Beta(α0 = 2,β0 =
5), and P(x | H1) = Beta(α1 = 5,β1 = 2). Observa-
tions were then generated from distributions Gobs(x) =
Beta(αobs,βobs), were αobs = γα0 + (1 − γ)α1, βobs =
γβ0 +(1− γ)β1, and γ ∈ [0,1]. Performance is assessed
relative to an algebraic implementation of the SPRT al-
gorithm for values of γ.

Algorithms and baselines: Fundamental to this work
is the Spatial Semantic Pointer representation, which we
use to model probability as described by Furlong & Elia-
smith (2022). SSP encodings (eq. (1)) project lower di-
mensional data into a high dimensional vector represen-
tation, and are defined by a randomly selected encoding
matrix, ΘX ∈ Rd×n, where d is the SSP dimensionality,
and m is the dimensionality of the encoded data, x ∈ X .

φX (x) = F −1
{

eiΘX x
}

(1)

Where F −1 is the inverse Fourier transform. In this work
we randomly sample the elements of the encoding matrix
from the uniform distribution, U[−π,π]. We use 1024 di-
mensional SSPs to encode samples from the probability
distributions.

The dot product between m-dimensional data repre-
sented as SSPs approximates a product of sinc functions
along each dimension of the m-dimensional data (eq. (2);
Voelker, 2020). This function can be used as a quasi-
kernel function for density estimation (Tsybakov, 2009).

φX (x/l) ·φX (x′/l)≈
m

∏
i=1

sinc(∥xi − x′i∥/l). (2)

One can use the kernel trick (Rahimi et al., 2007) to ap-
proximate a kernel density estimator using simple linear
methods, e.g., P(X)≈ φX (x) · 1

n ∑i φX (xi), given a dataset
D = {x1, . . . ,xn}. We can further equip the SSP encod-
ing with a length scale parameter, l, which controls the
bandwidth of the kernel function.
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+

−

+
+
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Figure 2: Schematic of neural circuit to compute the sequential probability ratio used in decision making. We use the
principles of the NEF to represent probabilities and then compute log probabilities, and then use neural population
dynamics to integrate log probability ratios.

The sinc function is a quasi-kernel because it can be
negative, violating Kolmogorov’s axioms of probabil-
ity. Glad et al. (2003) provide a correction for sinc ker-
nel estimators – rectifying a biased version of the sinc-
estimator (eq. (3)).

P(x′ | D)≈ max
{

0,w ·φ(x′/l)−ξ
}
. (3)

Where w = 1
nl ∑xi φX (xi/l), and ξ is selected such that

the function integrates to 1 over the input domain, X .
Equation (3) can be interpreted as a rectified linear
(ReLU) neuron with synaptic weights, w and bias ξ.
Hence one can construct a single neuron that approxi-
mates a probability distribution.

Below we outline how to use this neuron model to
make anomaly detection and evidence integration cir-
cuits. To do so we rely on the Neural Engineering Frame-
work (Eliasmith & Anderson, 2003), the core principles
of which are that we can: encode latent states in the ac-
tivity of neural populations; linearly decode neural activ-
ity to transform it from one latent state to another; and
use control theory to design neural circuits whose activ-
ity executes desired behaviour in said latent space.

Anomaly detection Novel observations are reported
when the probability of the tth observation is below the
specified threshold. In this circuit a single neuron’s activ-
ity will reduce when it receives anomalous stimuli. Like
Dasgupta et al. (2018), we posit its role as an inhibitory
neuron that ceases inhibition in the presence of anoma-
lies. We determine the synaptic weights for the neuron
by first sampling n = 5000 observations from a distri-
bution, xi ∼ G1(X), and encoding the data as described
above. We then define a neuron with activity, a(t), given:

a(t) = ReLU(w ·φX (x(t))−ξ) . (4)

Anomalies are detected when a(t) < θ, where θ is a
threshold on the probability of an event. To determine
the length scale parameter for the SSP encoding we used

the estimate bandwidth function from the Scikit Learn
clustering package with the quantile parameter set to 0.3.

As a baseline comparison we fit a kernel density es-
timator (KDE) using a Gaussian kernel, and selecting
the length scale parameter using Silverman’s rule of
thumb (Silverman, 1986). This method was fit on the
same training set used for the single-neuron distribution
model. To provide ground truth for the anomaly detec-
tion task we also implemented anomaly detection using
the exact probability distribution, G1(X). To test the sig-
nal we generate 1000 samples from the data generating
distribution, G1(X), which were then followed by 1000
samples from the anomalous distribution G2(X).

Decision making The second task is to integrate se-
quential observations to make a decision between two al-
ternatives. This task has previously been formalized us-
ing Wald’s sequential probability ratio test (SPRT; Wald,
1945), a method for selecting hypotheses from sequen-
tial observations. The SPRT is defined in eq. (5), where
P(X | H0) and P(X | H1) are probability distributions as-
sociated with the two possible decision outcomes.

Λ(t)=
t

∑
τ=1

log(P(X = x(τ) |H0))−log(P(X = x(τ) |H1))

(5)
The test integrates the log probability ratio, Λ(t), of
observations, (x(1), . . . ,x(t)), until one of two decision
thresholds are reached. If Λ(t) > θH0

, then hypothesis
0 is selected, and if Λ(t) < θH1

, then hypothesis 1 is se-
lected. θH0

and θH1
can be specified using the desired

false positive rate (fpr) and false negative rate (fnr) of the
decision process, θH0

= log 1−fnr
fpr and θH0

= log fnr
1−fpr , re-

spectively.
A diagram for a network that implements the SPRT is

given in fig. 2. The first step of the circuit is to encode the
observed point x(t) as an SSP. This SSP is then fed di-
rectly into two neurons, one neuron encoding P(X | H0)
and the other encoding P(X | H1). Each probability neu-
ron is fed into a population of 2000 neurons which also
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represents the probability of the input observation. The
neural population is then connected to another 2000 neu-
ron population that approximates the quantity log(P(X |
Hk)), k ∈ {0,1}. The population size was chosen arbi-
trarily to ensure a good approximation of the log func-
tion. The log(P(X | H0)) and log(P(X | H1)) populations
then converge on an integrator population (Eliasmith &
Anderson, 2003, §8.2.1), with log(P(X | H1)) scaled by
−1. The activity of this final neural population then rep-
resents the SPRT quantity, Λ(t).

Because the log function is unbounded for values near
zero, it is hard to approximate neurally. To mitigate this
we use a “safe” log function for all algorithms, defined
safe log(x) = logmax{ε,x}, where ε = 10−3. To further
ensure that log is well approximated for small values,
the tuning curves of the neurons in the population repre-
senting probability were generated to disproportionately
activate for small values of P(X).

Analysis: Anomaly detection is a binary classification
problem. We ran the system for 50 trials for 2000 ran-
domly generated observations. The first 1000 samples
are drawn i.i.d. from the true GMM distribution, while
the second 1000 samples are drawn from a Gaussian dis-
tribution, N (µ = 7,σ2 = 0.25). To assess the ability of
the single neuron distribution model to approximate a
distribution we compare the probability of the generated
samples under the true distribution, P(X), with distribu-
tions estimated using a KDE, P̂KDE(X), and using SSPs,
P̂SSP(X). Using a linear fit, we computed the coefficient
of determination, R2. We also approximated the Total
Variation (TV) goodness of fit, supx∈X ∥P(X)− P̂(X)∥.
R2 and TV were computed for each of the 50 trials, and
were compared using a paired Student’s t-test. Where
statistically significant differences were found, we as-
sessed the effect size using Cohen’s d. We compared the
novelty classifiers using the F1 score for each trial, as a
function of the decision threshold, θ.

For the decision-making task we run 50 trials for each
setting of the mixing parameter, γ. The circuit is tested
on 200 observations drawn from the query distribution.
We run the circuit until one of the decision boundaries
have been crossed. In this setting there are three possi-
ble outcomes, either H0 or H1 are selected, or in the case
of the SPRT quantity never crossing a decision thresh-
old, then no decision is made (denoted N.D.). Because
there is more than one possible classification we use the
weighted F1 score, which is the F1 score computed one-
vs-all for each class, weighted by the relative prevalence
of the given class in the data set. Because each trial only
computes one decision, we used the bootstrap method to
compute the standard error for the F1 score.

Because there is a temporal aspect of the decision-
making task we also report the error between the time the
exact method arrives at a decision and when the tested al-

gorithms cross the decision threshold, terror = texact − talg.
We plot this quantity as a function of the mixing param-
eter γ with 95% confidence intervals computed over the
corresponding 50 trials.

The above neural circuits were implemented using
Nengo (Bekolay et al., 2014), the repository for the code
is given in the Online Resources section. Baseline algo-
rithms were implemented using SciKit Learn (Pedregosa
et al., 2011). The experiments were executed on a com-
puter with an Intel i5-8265U CPU, 8GB of ram, and run-
ning Ubuntu 22.04.1 LTS.

Results and Discussion
Anomaly Detection As can be seen in fig. 3, the KDE
has a statistically significantly better linear relationship
with the true probability than the SSP method, with a
large effect size (p< 0.001,Cohen′s d = 2.43). However,
we will note that the R2 parameter is, on average, greater
than 0.98, with 1 being a perfect linear relationship.

Figure 3: R2 indicates the quality of a linear fit, with a
value of 1 being a perfectly linear fit. While the KDE
outperforms the SSP-based estimator, the single neuron
estimator provides a reasonable level of performance.

The total variation scores for the KDE and the SSP es-
timator are statistically indistinguishable at a 95% con-
fidence level, as shown in fig. 4. From this we can con-
clude that the upper bound on errors in probability esti-
mates are similar for both the KDE and SSP estimator.

More interesting is the change in the F1 performance
as the decision threshold is changed (fig. 5). For large
values of the decision threshold, θ > 0.01, the behaviour
of the SSP estimator follows the KDE estimate, although
both differ from the exact distribution. As the decision
threshold approaches zero, we see that the F1 score for
the SSP estimator decreases exponentially (linearly on
the log scale). This is due to an increase in false neg-
atives, as the SSP overestimates the probability of low-
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Figure 4: Total variation (TV) upper bounds element-
wise error between two distributions, a TV of 0 indicates
a perfect fit. In this test the total variation for the KDE
and SSP estimators are indistinguishable.

probability events. Figure 1 shows the PDF estimated by
the SSP estimator, and we see that outside the bounds
of the input domain, the interference of the sinc kernel
causes periodic but decreasing peaks of high-probability
for what should be low-probability.

Figure 5: The above graph shows how the classifica-
tion performance of the systems changes as a function
of the decision threshold. While the SSP method follows
the KDE reasonably closely, we see a decrease in per-
formance as the threshold approaches zero. The dashed
vertical line indicates a decision threshold of θ = 0.01.
Shaded regions indicate a 95% confidence interval.

Decision Making We compared the performance of the
KDE and SSP estimators against the exact implemen-
tation of the SPRT algorithm. We found that both the
KDE and SSP implementations were statistically indis-
tinguishable from each other, and except for the ambigu-

ous distribution, where the mixing parameter γ = 0.5,
they were in perfect agreement with the exact implemen-
tation, indicated by an F1 score of 1. The KDE is faster to

Figure 6: The top panel shows the F1 score for the multi-
class classification of the decision-making task. The bot-
tom panel shows the error in the decision time, relative to
the exact implementation of SPRT. Shaded regions rep-
resent 95% confidence intervals.

reach a decision than the neural circuit, as can be seen in
the bottom panel of fig. 6. Interestingly, in the ambiguous
case of γ = 0.5, while it is not possible to draw firm con-
clusions due to the wide confidence intervals, it appears
that the KDE comes to a decision faster than baseline,
while the neural circuit tends to take longer.

One observation that should be made is that in the
anomaly detection test we found that while the SSP was
a reasonable fit to the probability distribution, it was not
as good a fit as the KDE, yet their performance on the de-
cision making task are effectively equivalent. For this we
should consider two things. First, in the anomaly detec-
tion task, the SSP estimator had errors estimating small
probabilities. In the SPRT task unlikely events are un-
likely to be observed, thus favouring one of the two dis-
tributions in a forced choice task. Second, in the SPRT
algorithm all approaches used the “safe” log function,
where probabilities were limited to be no less than 10−3.
This mitigates the SSP estimator’s worse performance
estimating small probabilities. If we were to make this
lower-limit smaller in the current circuit performance is
likely to decrease, but it could be recovered through the
use of additional neural resources.

Conclusions
We have demonstrated that it is possible to use represen-
tations that we anticipate to exist in the brain to capture
probability distributions, and use them to detect novelty
and integrate evidence for decision making. We have
demonstrated that neural encodings of continuous spaces
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can support neural implementations of information theo-
retic algorithms. We have also constructed a neural cir-
cuit that uses these representations to compute the SPRT
criterion. This circuit provides parameters that can be
manipulated to provide hypotheses about behaviour.

We have found that neural approximations do deviate
from the analytic model, although this is to be expected.
We also note that using LIF neurons instead of ReLU
neurons should cause further deviation from the exact
expressions of novelty and evidence integration. Explor-
ing these differences remains an area of ongoing work.
However, because the tuning curve of the LIF neuron is
a monotonically increasing function, it should be possi-
ble to make meaningful statements about probability.

In this work we assumed that all the training data
for the synaptic weights of the single neuron distribu-
tion models were available instantaneously. This as-
sumption does not hold for agents that are embedded in
time. Indeed, an open question of future work is how
online learning may be integrated into the circuit. To
learn the synaptic weights that encode the distributions,
which is fundamental to this approach, one could em-
ploy a simple learning rule, like the vectorized version
of Oja’s rule (Voelker et al., 2014). However, this will
then have implications for how the ordering and recency
of data effect decision-making. Online learning will also
change the kernel approximated by the dot product from
an atemporal kernel to a temporal one. Further, the SPRT
task is criticized as a decision-making framework be-
cause of the fixed decision thresholds. The choice of
decision threshold, and their modification, could be for-
mulated as an RL task, allowing agents to have context-
dependent criteria for confidence in a decision.

One may ask the question - why use these representa-
tions to model probability when exact probabilistic mod-
els already exist? This is a fair question, but we are ask-
ing the question: How far into neurology can we push
probability as a model of cognition, given representa-
tions that unify high-level cognition and low-level imple-
mentation, and what implications do neural implemen-
tations have for probabilistic models? While more in-
vestigation is warranted, the present results constitute a
modest first effort in these directions.

Online Resources
All code necessary to reproduce these results are hosted
at: https://gitlab.com/furlong/neural-anomaly
-detection.
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Abstract 
   Individual learners rely on different strategies (e.g., different 

combinations of declarative and reinforcement learning) to 
acquire new skills, but little is known about how these 
strategies change throughout the duration of learning. In this 
study, we fit four idiographic ACT-R models the first and 
second halves of a stimulus-response learning task (Collins, 
2018) to identify learning strategy dynamics within an 
individual. We found that a majority learners were best 
described by a declarative memory (LTM) model in both 
halves of the task (86%). Of the minority of learners who were 
best described by a reinforcement learning strategy (RL) or 
combined RL-LTM strategy in the first half, most were more 
successful in the second half if they fit an LTM only strategy.  

Keywords: individual differences, learning, learning strategies, 
reinforcement learning, declarative memory, ACT-R. 

Introduction 

Individual differences in learning strategies exist (e.g., Haile 
et al., 2020). The match between an appropriate learning 
strategy and task demand has been related to successful 
learning  (e.g., DeCaro et al., 2008). But it is of considerable 
interest to investigate individual learning dynamics; in other 
words, do learning strategies change in an individual learner, 
for a particular task, during learning? Capturing these 
changes and identifying if a mismatch occurs between 
strategy and task demand, might facilitate better learning.  
   Several studies have successfully demonstrated that 
learning strategies can be captured using computational 
models (e.g., Collins, 2018; Haile et al., 2020). Learning 
strategies are defined as the combination of available learning 
mechanisms, like declarative long-term memory (LTM), 
reinforcement learning (RL), or even brief task completion 
using working memory (WM), that learners use to acquire 
new associations or skills. Individual learning strategies 
might arise due to differences in cognitive capacities like 
WM capacity (Just et al., 1992; DeCaro et al., 2008), and 
LTM decay rate (Haile et al., in review).  But they are also 
affected by meta-cognitive evaluation of success with 
learning (Winne, 1996; Shute, 1991), previous knowledge 
(e.g., Heitzman et al., 2023; Cetron et al., 2020), and other 
factors that affect task engagement and motivation like 
fatigue (e.g., Krimsky et al., 2017). These might trigger a 
change in learning strategy during task progression. Some of 
these strategy changes might result in improvement of 
learning outcomes, while others might detract from 
successful learning.   

   In this study, we aim to use ACT-R (Anderson, 2007) based 
idiographic computational models, fit to two halves of a long 
learning task (RLWM task, Collins, 2018), separately, to 
detect if a strategy change occurs. 
   The RLWM task (Collins, 2018), is the task of choice for 
this study because its design makes it amenable to being 
completed using multiple strategies, as previous studies have 
established (Haile et al., 2020). But we also hope to exploit 
the fact that this task has a long learning phase 
(approximately 40 minutes) with two symmetric sets of 
learning blocks. Briefly, the RLWM task involves learning 
associations between images and letters in two learning 
conditions, easy short blocks, and difficult long blocks. 
Participants are then given a surprise test after a 10-minute 
break, which comprises images from across the 40-minute 
learning task. We hope to capture strategy changes, if they 
occur, by comparing model fits from the first 20 minutes of 
learning to the last 20 minutes, along with test accuracy for 
images from those time epochs. We further aim to ascertain 
whether a change in strategy is reflected in improvements to 
learning.  

Materials and Methods 
Participants. 83 undergraduate students from the University 
of Washington participated in this experiment. All 
participants were monolingual English speakers recruited 
through the UW Psychology subject pool (47 females, aged 
18-35 years) who received extra credit for their participation.
Data were collected after receiving informed consent in one
2-hour session.
Behavioral Task. The Reinforcement Learning Working
Memory task (RLWM, Collins, 2018) involves learning
stimulus-response associations through a series of 14 blocks.
Participants are instructed to respond with a keypress of
either ‘C’, ‘V’ or ‘B’ to the displayed images. In 8 of the 14
blocks, participants learn to associate keypresses with three
unique images, presented 12 times in random order. In the
remaining 6 of the 14 blocks, participants learn to associate 6
unique images each presented 12 times within the block with
the key presses stated above. The stimulus-response
associations are deterministic, and participants learn through
reward (+1 point for correct responses and 0 points for
incorrect responses). The same sequence of set-size 3 and 6
blocks was presented to all participants. Following this
learning phase, a 10-minute distractor task is administered
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before a surprise 206-trial test block. Participants make 
responses without feedback to items taken from both 3- and 
6-set learning blocks. Stimulus presentations and data
collection were done in MATLAB (mathworks.com) and
Psychophysics Toolbox (Brainard, 1997).

Models 
We built a series of four models in the ACT-R cognitive 

architecture to capture different learning strategies in the 
RLWM task (Anderson, 2007). We hypothesized that 
learners might use a single-component strategy, based on 
either the declarative long-term (LTM) or Reinforcement 
Learning (RL) memory systems or a multi-system approach 
with specific designs on integration.  ACT-R was the optimal 
choice because of its integrated and flexible architecture for 
knowledge representation. ACT-R represents declarative 
memories as static records of information in its declarative 
module, and stimulus-response associations learned through 
reinforcement learning as conditional IF-THEN rules in its 
procedural module. These two modules interact with each 
other as well as with other perceptual and motor modules, 
capturing multiple aspects of cognition in a single 
framework. The use and acquisition of declarative and 
procedural representations are governed by a formal system 
of equations that capture the hallmarks of declarative and 
procedural memories, like memory decay over time, learning 
rate in response to feedback and, for explicit memories, the 
role of attention and working memory resources.  

Declarative Learning Model. This single-system model 
stores memories of specific task events, like stimulus images, 
responses, and outcomes, for later recall and use. If it has 
never encountered a particular stimulus before, it executes a 
random response, the outcome of which is stored for later 
recall. If it does have memory of a previous encounter, it 
attempts to retrieve a response that led to a correct outcome, 
it makes a random response otherwise. All attempts and 
outcomes are memorized.  
In ACT-R, declarative memories consist of multiple identical 
traces, each of which   decay over time according to a power 
function (Anderson, 2007; Anderson 2000). The availability 
of a memory m depends on its activation A(m), which is the 
log function of the sum of its decaying traces. Activation can 
be momentarily increased through spreading activation, an 
attentional mechanism that can be used to maintain 
information for a brief amount of time and reflects the 
weights W given to any existing association between a 
contextual cues q and m. Formally: 

A(m,t) =∑i (t-ti)-d + ∑qWSq,m      (1) 

     We rely on three parameters that affect memory retrieval 
to capture individual differences: (a) activation  noise s, 
which captures random fluctuations in a memory’s 
activations and are associated with the probability of 
retrieval, (b) decay rate d, which captures the rate at which 
memories fade away and are forgotten (Sense et al., 2016); 

and (c) spreading activation weight W, which captures the 
attentional resources allocated, and has been shown to 
capture individual differences in working memory capacity 
(Lovett, et al., 2000; Daily et al, 2001).  

Reinforcement Learning Model. This second single-system 
model uses production rules to represent all the possible 
stimulus-response associations in the RLWM task. The 
model initially responds randomly, until the correct rule 
accrues sufficient rewards to overcome the competitors as the 
task progresses, and the interface provides feedback. 
 ACT-R’s procedural module relies on reinforcement 
learning where the value or utility of a specific production, 
which contains a rule for a specific response, given a 
stimulus, is determined gradually through feedback.  
   We rely on two parameters that affect the utility of 
productions, learning rate (α), and selection noise (soft-max 
temperature (τ)).  Specifically, each production rule p has an 
associated utility value, U(p), that reflects its expected 
rewards and is learned through a temporal difference rule. 

Ut (p) =Ut -1 (p) + α [Rt  - Ut-1 (p)]     (2) 
 in which α is the learning rate and Rt is the reward given at 
time t. In our experiment, Rt is binary and corresponds to the 
feedback (“Correct”, Rt = 1, and “Incorrect”, Rt = -1) given 
by the task interface. Competing responses are selected on the 
bases of their respective utilities, using a soft-max rule 
controlled by a noise parameter τ.  

Integrated RL-LTM Model: Biased. The simpler of our 
two integrated, multi-system models utilizes a bias parameter 
(β), in addition to the two RL and three LTM parameters. This 
parameter explicitly biases the model to use its LTM or RL 
sub-system to deploy to learn and respond to task trials. The 
bias is set in proportions of RL-use from mostly LTM at 20% 
to mostly RL at 80% in twenty percent increments.  
  This model was designed with the expectation that learners 
might, somewhat rigidly, utilize a strategy that favors either 
RL or LTM or both, consistently throughout a learning task. 
The next model uses a more dynamic approach to address 
how systems might be integrated.  

Integrated RL-LTM Model: Meta. This more complex 
version of our integrated model does not have additional 
parameters but includes meta-learning productions (prefer-
RL and prefer-LTM) that are deployed dynamically 
throughout the task. They compete for task control through 
reinforcement learning, and the best subsystem, RL or LTM, 
is selected depending on how many rewards each was able to 
accumulate throughout the task. We measure what 
percentage of RL was used at the end of a simulation run. 
  This model assumes that individuals are adaptive learners 
and can optimally choose strategies based on their relative 
success over a short time. For example, if the long-term 
memory strategy proves too difficult (as in the case of too 
many stimuli), the model would switch to a RL-based 
learning strategy. RL learned associations are shared with the 
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LTM system by inserting explicit information into the 
memory module.  

Experiment 
For this study, we executed a two-pronged approach: (1) 
obtain model fitting reliability by performing parameter 
recovery (e.g., Wilson and Collins, 2019), and (2) split the 
learning data in half and fit models separately to assess if a 
change in individual strategy occurs. The parameter recovery 
step was necessary to establish the sensitivity and reliability 
of our models and model fitting procedure to identify a 
learning strategy. Here, we can generate simulated learning 
data from known learning strategies like Declarative long-
term memory, Reinforcement learning and a mix of the two 
and see how well those ground truths are recovered.   

Modelling Procedure. Each of the above models was run 
across a discretized range of its parameter space. Each model 
interacted with the same interface that displayed a stimulus, 
received response, and provided feedback. One simulation 
run contains 1 block of the short set-size 3 and 1 block of the 
longer set-size 6 condition.  To obtain stable estimates, each 
model was run 100 times  for each possible combination of 
parameters. In discretizing the range of each parameter, 
values were chosen to form an interval that surrounds the 
recommended value in the ACT-R documentation.  

Model Fitting Procedure. Models were fit to each 
participant’s data by selecting parameters that maximized 
each model’s fit while penalizing the models’ complexity. To 
this end, the Bayesian Information Criterion (Schwartz, 
1978) was used (see Results, below).    

Figure 1: Proportions of simulated data (x-axis, 8 
simulations for set-size 3 and 6 simulations for set-size 6) 
correctly identified by the model (100 simulations per 
model).  

Figure 2: Correlation of recovered RL parameters (y-axis) 
with true parameter values from participant simulations (x-
axis). Shown are the 15 unique parameter-sets, out of 25, that 
were correctly identified as RL. 

Parameter recovery. To perform parameter recovery  
analysis a new set of model simulations were generated with 
the intent to mimic a level of experience with the task similar 
to that of human participants. Recall that human participants 
encountered 8 set-size 3 blocks and 6 set-size 6 blocks. One 
run of a simulation is equivalent to just one block of learning 
on the two set-size conditions, so final simulated data were 
averages of 8 (set-size 3) and 6 (set-size 6) simulations. This 
produced considerably noisier simulations that closely 
resembled our human participants. These simulated 
“participants” were then fit with the original set of 100-run 
simulations.  

Split-half analysis. In this analysis, we split the 14-block 
learning data in half (labeled Half-1 and Half-2). Each half 
contained equal numbers of set-size 3 and 6 blocks. The test 
phase of the task contained one large block of 210 images 
sampled from all learning blocks, so the images were filtered 
by their occurrence in Half-1 and Half-2 to  separately 
measure test accuracy for each half. Finally, the halves were 
separately fit to models to identify learning strategies.  
Figure 3: Correlation of recovered LTM parameters with true, 
simulation generating parameters. Size of the markers shows 
the count of overlapping points. Shown are the 109 unique 
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Figure 3: Correlation of recovered LTM parameters with true, 
simulation generating parameters. Size of the markers shows 
the count of overlapping points. Shown are the 109 unique 
parameter-set simulations (out of 125) that were correctly 
identified as coming from the LTM model. 

parameter-set simulations (out of 125) that were correctly 
identified as coming from the LTM model.  

Results 

Parameter recovery 
In this two-pronged approach, we first performed the 
parameter recovery analysis. Here, as described above, 
simulated participants were generated using our ACT-R 
models and fit to 100-run simulations. All simulated subjects 
were fit to all four models and the best fit model was 
identified by selecting the fit that had the lowest BIC value 
produced by equation 3.  

BIC = n + n log (2π) + n log (RSS)/n) + log(n) (k + 1)  (3) 

  We performed two sets of analyses that answered the 
questions: (1) Does the procedure correctly identify which 
model produced the data? And (2) Does the procedure 
identify which sets of parameters, for a given model, 
produced the data? 
  Regarding the first question, we found that our models 
correctly identified where the simulated data came from 
76.51% of the time. This percentage was highest for the LTM 
model at 87.2%, and lowest for the RL model at 60% (Meta: 
86.85%; Biased 72%). Interestingly, 20% of the RL 
simulated data were identified as Meta (Figure 1).  
  Next, we tested how well parameters were recovered. Here, 
our success rate was different for the types of models. We 
achieved high levels of parameter recovery for RL 
parameters but not for LTM parameters (Figures 2 and 3).  

Parameters for RL simulations were recovered well at r = 
0.76 for α (learning rate) and r = 0.79 for τ (soft-max 
selection noise). For the LTM model however, recovered 
parameters for the LTM decay rate (d), selection noise (s), 

and spreading activation (w), were poorly correlated with 
simulation parameter values (d: r = 0.22; s: r = 0.21; w : r = 
0.35).  

 Parameter recovery for the two mixed models showed 
similar patterns to that of the two single-system models but 
correlations were considerably lower for the Biased model, 
even for the RL portions of the models (α: r = 0.22, τ: r = 
0.38, w: r = 0.15, d: r = 0.18,  s: r = 0.03 ), but well recovered 

Figure 4: Matrix showing distributions of model fits across 
the two halves based on where participants landed in Half-1 
(columns add up to 100%).  

for most parameters in the Meta model (α: r =0.51, τ: r = 0.69, 
w: r = 0.53, d: r = 0.44, s: r =0.10). However, the bias 
parameter (β) was better recovered for the Biased model (r = 
0.58) than the estimated bias in the Meta model (r = 0.40). 
This comparison takes advantage of the single-system 
models by providing a frame of reference, but it should be 
stressed that the parameters affect model performance in 
unison.  For instance, when looking at the Meta model alone, 
preference for RL or LTM sub-systems (estimated post-hoc) 
was influenced by all the constituent parameters together  
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Split-half analysis 
In the second part of this analysis, we sought to test if 
participants relied upon the same strategies to learn the 
associations throughout the task. So, the learning data were 

Figure 5: A) Shows the mean difference in accuracy between 
Half-1 and Half-2 for learning. B) Shows the mean difference 
in accuracy between Half-1 and Half-2 for Test. The columns 
are grouped by the best fitting model in Half-2 (x-axis). Of 
the 22 participants, 12 fit LTM, 5 fit RL and the remaining 5 
fit the Biased model. 

split into the first and last 7 blocks to compare learning 
outcomes and fit to models separately to identify strategies 
that might have led to those learning outcomes. 

    We first correlated behavioral learning outcomes - learning 
accuracy and test accuracy- for the two set-size conditions, 
from Half-1 to Half-2. This analysis was done to ensure that 
participants behaved similarly across the two halves of the 
task. Correlation was highest for learning accuracy in set-size 

6 condition (r = 0.67, p < 0.01), and lowest for learning 
accuracy in the set-size 3 condition (r = 0.34, p < 0.01). 
Correlations between the two halves for the testing conditions 
were high and significant (set-size 3: r = 0.57; set-size 6: r = 
0.65; p < 0.01). Additionally, there is not a significant main   

effect of blocks in the 2 halves (F(1, 656) =0.96, p = 0.33). 
This suggests that performance in the two halves, for most 
participants, is stable, and perhaps likely reliant on the same 
learning strategies, but we sought to answer this next, more 
robustly, by fitting models to each half and comparing 
identified learning strategies. 

After fitting the models to each half separately, model 
predictions were compared.  We found that 73.4% (n = 61) 
of participants fit the same models in the two halves, 
suggesting that strategy use was stable throughout the 
learning task. This percentage is higher (86%) for participants 
who fit the LTM model in Half-1  (Figure 4). It is important 
to note here that none of our participants fit the Meta model 
in either half and that most participants fit the LTM model 
most (n = 56, in Half-1), and the RL model least (n = 11; 
Biased: n = 16, in Half-1).  
  Let us assume for a moment that we were able to identify a 
true switch in strategy for the minority of participants who fit 
different models in the two halves (n = 22), is there a 
measurable benefit in learning outcomes for this group?  Our 
results indicate that there were no statistically significant 
differences between the two halves, in-terms of accuracy, 
during learning and test phases within the two set-size 
conditions, when comparisons were agnostic to best-fit 
model types. However, when split up by best-fit model type, 
“switching” to a LTM strategy was associated with a higher 
increase in accuracy from learning to test, by almost 20%, but 
only for set-size 3, and only during test (Figure 5B). Similar 
benefits were not observed for the set-size 6 testing phase, 
and both set-sizes for accuracy at the end of learning. 
Accuracy, however, tends to be lower in the second half  for 
the learning phase (Figure 5A). 

Discussion 
How learners use their available memory resources, what we 
call a learning strategy, affects how well they acquire new 
associations or skills. We hypothesized that some learners 
might rely mostly on single memory mechanisms like 
declarative long-term memory or use a mixture when 
learning a task. But it is not clear if strategy selection at the 
individual level is stable. Meaning, once a learner lands on a 
strategy, do they tend to alter their learning approach, perhaps 
based on meta-cognitive evaluation of learning success, or 
differing task demands or changes in motivation? In this 
study, we attempted to address this question by breaking up 
a long stimulus-response learning task into two identical 
halves, and test if different models explain learning in the two 
halves.  
    First, we demonstrated that our four ACT-R models can 
capture which memory system likely led to specific patterns 
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of behavior, by performing a parameter recovery procedure. 
This involves generating learning data on the     task using 
known models and parameters, albeit with fewer ‘learning 
blocks’ or simulations than the testing models, to mimic 
noisy participant data. Our testing models, generated from 
100-run simulations (equivalent to learning in 100 blocks)
were then fit to the participant simulations, and the recovered
parameters and models were compared to our ground truth
values. This resulted in as high a congruence as 87% for the
declarative only model (LTM) and as low as 60% for the
Reinforcement Learning only model (RL). However, success
in recovery of the generating parameters was mixed. We were
able to obtain high correlations between true and recovered
parameters for the RL model but not for the LTM model. This
is perhaps owing to the fact that we only have 2 parameters
for the RL model - learning rate (α) and selection noise (τ),
where pairs of values resulted in unique patterns of behavior.
For instance, low performance is only evident in situations
where there is high noise, low learning rate or the
combination of the two. But the LTM model has three
parameters, memory decay rate (d), retrieval noise (s), and
spreading activation (w), which leads to more ambiguous
instances. In other words, many more combinations of
parameter values could lead to similar results. In future
studies we aim to use independent tasks to estimate these
parameters separately to improve our predictive or
measurement accuracy in-terms of estimating reliable
individual parameters that describe and explain the learners’
strategy choices.
  In the next analysis, we fit the models to each half of the 
data separately and compared model fits. The goal here was 
to identify if learners stably use a learning strategy 
throughout the task or switch. Strategy use dynamics might 
be one of the determining factors of successful learning 
outcomes. A learner might adjust strategies after meta-
cognitive evaluation of outcomes or task requirements, due 
to fatigue, or change in motivation to complete the task.  
  We found that many participants (72%) fit the same models 
in the two halves. This was considerably higher for the 
participants who fit the LTM model in the first half. It also 
appears that most participants fit the LTM model in the 
second half, regardless of which model fit them best in the 
first half.  
  The RLWM task (Collins, 2018) can potentially be 
successfully completed (i.e., achieving high accuracy in 
learning with little or no decay during test) using either an 
RL, LTM or combined RL-LTM strategies as evidenced by 
our modeling efforts. Meaning, the major contributing factor 
to low learning accuracy, or large decay, seems to be the 
specific parameter values; all model instances that had 
favorable parameter values, regardless of model type, learned 
well. But a majority of our learners exhibit behaviors that are 
most similar to those generated by the LTM model. It would 
seem that, if they landed on an LTM strategy, they saw little 
reason to switch, hence the large percentage of participants 
who fit the same (LTM) model for both halves. We cannot 
identify why a strategy change occurred, but it appears that if 

a learner did not start out with a strategy that resembled LTM, 
they made a switch. Surprisingly, this switch was associated 
with large gains in learning, at least for test accuracy in the 
set-size 3 condition, and minimally in the set-size 6 condition. 
While insignificant, there were fewer losses to learning 
accuracy in set-size 3, compared to the other strategies.  
   There are limitations to our modeling effort that deserve 
mention. It can be argued that an explicit, declarative strategy 
is popular with our participants, perhaps because they are 
university students where a lot of learning is instructed, 
explicit and declarative. It is also not too far a leap to suggest 
that most students would rely on semantic links between 
stimuli in the same block for the aforementioned reason. The 
stimuli in this task also are rich in detail and amenable to 
forming idiosyncratic semantic categories, which are 
supported by  declarative memory. But our model fitting 
procedure might be biased towards the LTM model as it is 
also a relatively simple model with a small number of 
parameters. The BIC function that we minimize during model 
fitting penalizes larger models, so we tend to see fewer 
numbers of those models explaining learning behavior.  

While we can label learning behavior with the model that 
likely produced it, we cannot confidently estimate the 
parameters that led to that behavior. This limits what we can 
explain about our learners and their learning outcomes. 
Lastly, we explored a coarse-grained,  narrow set of 
parameters for our models. This might have led to some 
participants being shifted to a different model because a 
specific learning pattern did not exist in the hypothetical true 
model because of the limited range in parameter values. We 
hope to address these limitations in future studies by 
providing validation from independent tasks and exploring 
more fine grained parameter sets.  
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Philipp Beckerle (philipp.beckerle@fau.de)
Chair of Autonomous Systems and Mechatronics,

Department of Artificial Intelligence in Biomedical Engineering,
Friedrich–Alexander Universität Erlangen–Nürnberg

Nele Russwinkel (nele.russwinkel@uni-luebeck.de)
Institute of Information Systems,

Universität zu Lübeck

Abstract

Interactions between human users and assistive robotic sys-
tems in real life often involve both cognitive and physical in-
teractions. In order to support humans well in their daily life, a
robotic agent needs to be aware of the situation, anticipate the
human agent, and generate human-like behaviors. In this work,
we present an ACT-R observer model as a possible implemen-
tation on the robotic agent’s cognitive level. The model antici-
pates the human agent’s behaviors in an application example: a
tea-making task. We discuss how such a model provides us the
possibility to connect cognitive and physical human-robot in-
teractions, and the advantages of such a model compared with
common state-of-the-art approaches for human intention and
behavior predictions. We also discuss how such an individual
ACT-R model provides potential for an anticipatory, situation-
aware robotic agent in real life applications, allowing us to
solve ambiguities from acquiring input via various sensors and
gain time for proactive support.
Keywords: human-robot interaction; anticipatory thinking;
ACT-R

Introduction
Assistive robots are becoming increasingly common, provid-
ing people with social support as well as physical assistance.
We are particularly interested in improving robotic assistive
devices that aim to help and support patients with motor
control impairments in their everyday life such as a tremor
(Castrillo-Fraile et al., 2019; Fromme, Camenzind, Riener, &
Rossi, 2019). Such an assistive device can either be a robotic
arm or a wearable assistive device.

Real-life interactions between the human user and assistive
robotic systems often involve both cognitive interactions and
physical interactions (Bartneck et al., 2020). On the cogni-

tive level, the robot infers human intentions and predicts hu-
man behaviors; on the physical level, the robotic agent pro-
vides the human with required physical assistance based on
information on the cognitive level. In the daily life, assistive
robotic devices for patients are often expected to also react
proactively during the interaction in order to prevent injuries
in potentially dangerous situations. This requires the robotic
agent to have a cognitive understanding of the task situation,
be able to anticipate and adapt to the human agent’s actions,
and generate goal-directed human-like behaviors (Hao, Russ-
winkel, Haeufle, & Beckerle, under review; Klein, Snowden,
& Pin, 2011).

In this paper, we present an ACT-R based observer model
that takes a step towards implementing a cognitive architec-
ture for the assistive robot’s cognitive layer. Our model aims
to provide the assistive robot with the ability to be aware of
the state of the task and the environment, and anticipate nec-
essary future task states. We construct our model for a spe-
cific use case: a tea-making task. The model observes the
human user’s tea making actions, predicts the human user’s
next step, and provides an alert in anticipation of a potentially
dangerous situation (e.g., spilling hot water).

In the remaining sections of the paper, we first briefly dis-
cuss models of situation understanding and anticipation in
general, as well as requirements for our model. Then, we
present our use case and our observer model. Lastly, we dis-
cuss our future steps.
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Models of Anticipation
User anticipation for robots that assist human users in specific
tasks requires the robot to 1) predict the user’s mental states
based on the understanding of the user’s goals and intentions,
i.e., to have the ability of Theory of Mind (ToM), and 2) be
aware of the situation and have a shared representation of the
task with the human user (Borst, Bulling, Gonzalez, & Russ-
winkel, 2022).

Various forward generative models and inverse models of
human planning and decision making can already be used
to predict the human user’s intentions and behaviors to the
current state-of-the-art level (Ho & Griffiths, 2022), includ-
ing computational models directly based on ToM (Berke &
Jara-Ettinger, 2021; Jara-Ettinger, 2019; Rabinowitz et al.,
2018). Such models can be very helpful for the robotic agent
to achieve anticipatory thinking (Klein et al., 2011).

In addition, anticipation could be realized through con-
structed mental representations of tasks and specific situa-
tions to build up expectations about the human user’s in-
tentions, goals, and mental states (Borst et al., 2022). Past
work has shown this possibility with various models, includ-
ing models based on visual attention (Wickens, 2015), mental
models for human reasoning (Johnson-Laird, 2010), predic-
tive coding (Friston & Kiebel, 2009), instance-based learn-
ing (Gonzalez & Dutt, 2011), models for situation awareness
in decision making (Endsley, 2015), and so on. These ap-
proaches indicate that it is also helpful for the assistive robotic
agent to have a structured representation of the situation.

Realizing anticipation with a structured representation of
the situation and providing the robotic system with situation
awareness can bring several advantages. Particularly, com-
bined with external data input, a structured cognitive layer
can make the robotic system more flexible to emerging situ-
ations, leading to the potential to generate real-time behav-
iors proactively. In addition, structured models can be the-
ory driven (e.g., unified theory of cognition, Newell, 1994)
and provide a transparent illustration of how the mind (in our
case, the artificial mind of the robotic agent) observes data,
keeps awareness of the situation, and anticipates further.

Cognitive architectures such as ACT-R (Anderson, 2009)
provide us with a possibility to construct such structured sys-
tems that can take data input from the human user and provide
real-time support or feedback in the interaction between the
human user and the assistive robotic system (Fu et al., 2006).
Besides, ACT-R’s structure also provides us a possibility to
interface the robotic agent’s cognitive layer with models of
the human’s motor system such as a neuromusculoskeletal
model or interaction primitives (Amor, Neumann, Kamthe,
Kroemer, & Peters, 2014) on the robotic agent’s physical
layer, enabling the robot to produce physical assistance based
on the anticipated task states from its cognitive layer.

Our work takes a first step towards such a structured ACT-
R model by creating a simple observer model for an ap-
plication example (or a use case) of real-life human-robot
interaction—a tea-making task. However, we believe that a

structured anticipatory model have the potential for applica-
tions of assistive robotic systems for other tasks as well.

A Use Case for Assistive Robotic Systems
Consider an example where a human user is making tea with
the help of a assistive robot. Tea-making is a simple task
that happen in the daily life. However, patients with motor
control impairments such as a tremor may find some aspects
challenging—from picking up a spoon precisely to keeping
the kettle or the mug stable while pouring hot water. When
the patients experience a tremor episode while trying to make
tea or drink hot tea, they may accidentally spill hot water,
leading to potential injuries such as burning.

Besides the real-life implications, a tea-making task repre-
sents a good use case because the task has a general structure
while allowing individual flexibility (see Figure 1 for an anal-
ysis of the task). Specifically, the usual ordering suggests that
water and tea leaves should be readily prepared before the
tea is made, but each human user may have individual habit
or preference over whether boiled water is poured into cup
first or if tea leaves are put into cup first. This task feature
particularly challenges the model to attend to the interaction
environment and be aware of the changes in the task state re-
gardless of the user’s individual preferences.

Figure 1: An analysis of the tea-making task: we assume that
the general task structure contains three main phases: boiling
water, putting water in mug, and putting tea in mug, with the
order where boiling water precedes putting water in mug and
the order of the other two phases interchangeable. The actions
within each phase follow a specific order.

In order to achieve this, the anticipatory model for the
robotic agent needs to have a general task-specific knowledge
about tea making sequences. The model also needs to have a
shared situation understanding or representation as the human
user. As the human agent performs sequences of actions (e.g.,
pour water in the kettle), the task situation changes. By pro-
cessing information about the interaction environment such
as whether the water in the kettle is hot, the model integrates
observed interactions and keeps an awareness of the state of
the task. With these captured essential aspects for anticipa-
tion, the model also makes a prediction about the subsequent
task states and the human user’s next action. If there is po-
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tential danger (e.g., being burnt), the model can alert the user
that there is a possibility of spilling hot water.

Tea-Making Task Data Set
Data showing action sequences of 8 healthy participants
(N=8) making tea in a real-life setting were collected in the
motion laboratory of the Crona Clinics Tübingen.

The experimental setup of the tea-making task is shown in
Figure 2. In front of the participant, there is a kettle, a box
with tea bags, and a cup for making and drinking tea. For
time purpose the water in the kettle is cold but is assumed to
be boiled already. In addition, participants can also choose
to put sugar in the tea from a shaker or use a spoon if they
choose to.

The participants were instructed to make tea in any order
they wish to and the task ends with them drinking the tea.
Each participant completed the task ten times and the posi-
tions of the objects on the table were changed between the
repetitions.

Figure 2: Tea-making task setup shown from the egocentric
camera perspective.

Although the full tea-making process was recorded in
video format for each trial, for our simple observer model
in this paper, we only used the transcribed data, i.e., action
sequences, of one trial as a guide to construct our observer
model for the tea-making task. For the basic version of the
model, we also simplified the action sequences by keeping
only the basic actions by ignoring processes such as adding
sugar into the tea. We also categorize each action in the se-
quence into its corresponding tea-making phase (see Figure
1 for our specified phases). One example of such an action
sequence is shown in Table 1.

An ACT-R Based Observer Model for the
Tea-Making Task

We take the first step towards a fully situation aware and an-
ticipatory model by constructing an ACT-R based simple ob-
server model to achieve a shared representation between the
robotic agent (whose cognitive layer is represented by our
model) and the human user.

In this model, we assume three critical phases: boiling wa-
ter, putting water in the mug, and putting tea in the mug.

Step Action Phase
1 step near start
2 pick up kettle waterInMug
3 pour water in cup waterInMug
4 put away kettle waterInMug
5 take out tea bag teaInMug
6 put tea bag in cup teaInMug
7 pick up spoon mixTea
8 mix tea mixTea
9 put away spoon mixTea

10 pick up cup not categorized
11 drink tea complete

Table 1: One transcribed and simplified trial of a participant
completing the tea-making task. Each action corresponds to
a pre-defined phase in the tea-making task and some actions
(e.g., mixing tea) do not belong to any of the ”critical” phases.

When all three critical phases are achieved, the task is com-
pleted. To match our data, we also assume that the boiling
water phase is already completed at the beginning of the task.

Our observer model has several main components in its
declarative memory: task knowledge includes chunks that
represent action sequences in their corresponding phases.
Each action is also combined with the object that affords the
action. In addition, input data representing the action se-
quences are stored as chunks that link each action and object
pair with the subsequent action object pair—this structure of
input data provides us with a method to iterate through the
action sequence in a trial, allowing the model to update task
states at each action, achieving a certain level of situation
awareness. Lastly, the ability of situation awareness is repre-
sented as a chunk that keeps track of the current task phase,
the state of each critical phase, as well as the model’s internal
state indicating whether task states have been updated or not.

The simple observer model has seven productions and uses
the declarative memory module, the goal module, the imagi-
nal module and their corresponding buffers (retrieval buffer,
goal buffer, and imaginal buffer).

When the model starts with the step near action, the chunk
keeping information directly related to situation awareness is
created in the imaginal buffer—and gets updated through out
one task trial.

After starting, the model iterates through the actions from
the input data. For each step of the data, situation aware-
ness chunk is updated in the imaginal buffer. Given the cur-
rent state suggested by the chunk in the imaginal buffer, the
model retrieves a chunk that represents the current action-
object pair, with information on the next action-object pair
in the current phase, making a prediction (of the next action-
object pair).

With such simple declarative memory and only seven pro-
ductions, our model is able to observe one example of the tea-
making process, keep its awareness of the situation through
out the process, update the state of the task situation at each
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step, and make predictions of the upcoming action. We will
discuss this result further and our future steps in the next sec-
tion.

Discussion

In this paper, we present an ACT-R based observer model
for a tea-making task as a use case for real-life human-robot
interaction.

Although our model is simple at the moment, it already
achieves a certain level of situation awareness and is able
to maintain an constant update of the state of the task with
only basic knowledge of the task. The model’s main compo-
nent, a chunk representing its ability of situation awareness,
keeps track of whether critical phases of the task are com-
pleted or not. When a non-essential action such as picking
up a spoon happens, the model recognizes the corresponding
mixTea phase but does not update the critical phase.

However, there are several exceptions that this model yet
needs to handle. One example is that when an action does
not belong to any existing phase (e.g., picking up a cup), the
model stops due to its failure to retrieve a chunk containing
information about this new action. Such actions may be han-
dled with additional context/data-driven bottom-up produc-
tions. Another example is that the situation awareness chunk
in the imaginal buffer lacks a corresponding slot indicating
that danger may appear. Therefore, while our model can iden-
tify the correct tea-making phase and predict the next corre-
sponding action, it does not yet provide an alert as an output.

Based on our current result and the identified model excep-
tions, we have a few immediate future goals for our model
development. First, we will make the observer model more
flexible for handling the situations stated above and be able
to produce alert to the human user. Second, we plan to test
the model systematically with the full tea-making data set in
order to achieve a result where the model can predict most ac-
tions correctly while maintaining an accurate understanding
of the task state. This would indicate our model’s ability of
keeping aware of the situation and adapt to individual users
flexibly.

Going forward, we also aim to explore the advantages of
the ACT-R model further for human-robot interaction. Partic-
ularly, its structure brings potentials for interfacing the ACT-
R with other models representing the human’s motor control
system, unifying cognitive and physical human-robot inter-
actions. In addition, such a structured model provides us
with a possibility for situation awareness to be online-updated
with multi-modal sensor data from the human user, e.g., eye-
tracking, motion capture data, etc., leading to more precise
support for the human user. (Hao et al., under review)

By starting with such a simple model, we believe that we
show the potential of using structured representation of the
collaborative task for achieving situation awareness and an-
ticipatory proactive behaviors for assistive robotic systems
that aid human users in the daily life.

Data & Material Availability
The current ACT-R model containing one tea-making process
based on real-data is available at https://osf.io/tv7da/
?view only=c313235ae6314ecfbe8f6d3327aa153f.
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Abstract

The GPT-family of Large Language Models has garnered sig-
nificant attention in the past year. Its ability to digest natu-
ral language has opened up previously unsolvable natural lan-
guage problem domains. We tasked GPT-3 with generating
complex cognitive models from plain text instructions. The
quality of the generated models is dependent upon the qual-
ity and quantity of fine-tuning samples, but is otherwise quite
promising, producing executable and correct models in four of
six task areas.

Introduction

Since their initial development, transformers (Vaswani et al.,
2017) have shown incredible promise in natural language do-
mains, producing a new class of model, large language mod-
els (LLM). The most visible of these LLMs, OpenAI’s Chat-
GPT (Brown et al., 2020) has garnered incredible interest
from business and researchers alike. These LLMs are able to
generate novel, grammatically and semantically correct prose
from limited inputs. This enables diverse tasks from sum-
marization and translation to debugging, and code generation
(Zong & Krishnamachari, 2022).

Code generation, the process of creating functional code
from textual descriptions, is a special case of translation
where the target is a written programming language instead
of a spoken language. Given a large enough corpus of qual-
ity and well-commented code (say from GitHub.com), trans-
formers can be trained to output novel code snippets, func-
tions, or entire programs. The correctness and quality of the
code is often an issue (Azerbayev, Ni, Schoelkopf, & Radev,
2023), but it still represents an incredible achievement. Given
the input requirements it should come as no surprise that such
pipelines are limited to the most popular programming lan-
guages (e.g. Python, JavaScript, etc.).

One common feature of the LLMs is that they are pre-
trained on a corpus and then fine-tuned to their application
domain. This fine-tuning process is faster and cheaper than
full-training, enabling the LLMs to be customized from their
base, pre-trained forms. This fine-tuning process has enabled
LLMs trained in one programming language to generate code
in a different, but related language (Azerbayev et al., 2023).
We applied this fine-tuning process in order to produce exe-
cutable cognitive models from plain text instructions.

Implementation Considerations
GPT-3 Fine-tuning At the time of this research, only the
general GPT-3 model was available for fine-tuning, however,
it too is capable of generating code. The fine-tuning data
should consist of tens of thousands, if not hundreds of thou-
sands, of comment-code pairs. This data requirement, while
cheaper and more accessible than training from scratch, still
represents a significant challenge.

Model Availability Given the volume of data required for
fine-tuning, even the totality of cognitive models published by
the ACT-R community (Kotseruba & Tsotsos, 2020) would
be insufficient by a few orders of magnitude.

These considerations would seem to exclude the possibil-
ity of a LLM supporting ACT-R, or any cognitive modeling
language for that matter. However, these issues only arise if
we rely upon the existing code-base of ACT-R models; we
could instead choose to generate an entirely new code-base
that meets our training requirements.

Implementation
Jass Instead of generating full Lisp ACT-R models, we
chose to generate models using a higher-level modeling lan-
guage, Jass (Harrison, 2020) Jass aims to simplify cognitive
modeling by providing an imperative programming interface
that compiles directly to ACT-R productions. The Jass mod-
els are significantly smaller and simpler than the production
sequences that they represent 1.

Jass’s language toolkit includes not only a parser and com-
piler, but also code generation capabilities. This allows us to
programmatically create, edit, and generate Jass models. This
textual manipulation enables us to parameterize the creation
of new models based on existing templates.

Model Templates Thirty different models were written in
Jass. These models were all of simple UI tasks (from clicking
the mouse to conditionally selecting a button) situated within
an abstract computer task (i.e., all actions were of GUI in-
teractions). The simple UI tasks fit within six different, in-
creasingly difficult, categories. The categories and a sample
of each are listed in figure 1. For each model, three to ten
different but consistent comments were written. These com-
ments were then variablized by replacing subjects, objects,

1See (Harrison, 2020) for sample code
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Table 1: UI Task Coverage

UI Task Example
Keyboard Press the ENTER key.
Search and Select Select the blue button.
Simple Conditional If you see a yellow sign, abort.
Search Between Select the yellow sign between the

car and the parking space.
While Loop While monitoring is true, look for an

empty parking spot and right click it.
Composite While the car is not black, look for

a yellow sign between the blue
car and the green parking spot.
If there is one, click it.

verbs, and adjectives within each description, effectively cre-
ating Madlibs™ for fine-tuning. By varying the label sets,
we were able to generate twenty thousand different model-
comment pairs for fine-tuning.

Fine-tuning The generated Jass dataset was passed through
OpenAI’s Davinci GPT-3 model for four epochs of fine-
tuning (the recommended number of epochs for fine-tuning).

Evaluation
We evaluated the performance of the system by giving it
novel task descriptions for simple UI tasks embodied within
a computer-based task environment. Six task comments were
written by three different individuals (other than the primary
author) for a total of eighteen comments to generate models
from. Each was examined to ensure that the training set in-
cluded nothing identical. For each comment, a model was
generated and it was evaluated based on three incrementally
harder conditions. First, is the code syntactically correct?
Second, is the code actually executable? Finally, does it have
the intended consequences when run?

Results
The results of the evaluation are listed in table 2. Each cell
represents the percentage of the instructions for that task that
passed the associated test. As can be seen, GPT-3 does well
at generating syntactically correct code. This code not only
compiles but conforms to the stylistic patterns (e.g. consistent
use of case) that it was trained upon. Of the models that ran,
all of them produced the correct behavior in the RESCHU
task environment. However, for the last two task categories
(while-loop & composite), GPT-3 was unable to produce ex-
ecutable code, which was absolute gibberish.

Discussion
Generally speaking, GPT’s ability to adapt to relatively little
data through fine-tuning shows great potential and opens the
door to many natural language processing problems that just

Table 2: Results

UI Task Compile Run Correct
Keyboard 100% 100% 100%
Search and Select 100% 100% 100%
Simple Conditional 100% 100% 100%
Search Between 100% 100% 100%
While Loop 100% 0% 0%
Composite 100% 0% 0%

couldn’t be solved using traditional methods. GPT’s compe-
tence on any one of the UI tasks was directly the result of its
coverage in the training data. Specifically, the simpler tasks
(keyboard manipulation, search and select, and simple con-
ditionals) were over-represented since they are also present
in the more complex tasks (while-loop & composite). Those
same complex tasks were under-represented; there simply
weren’t enough examples to extrapolate any form of compo-
sition in the model.

It is worth iterating that this was the default LLM from
OpenAI, not the source-code specific version, Codex. Should
OpenAI open Codex to fine-tuning, we expect that the system
would be better able to handle composition and other high-
level constructs.

The volume of data required for training LLMs or even
fine-tuning them, presents a significant barrier of entry, pre-
venting us from applying the LLMs to more niche problems.
Parametric generation of textual inputs seems to be a viable
reconciliation of this problem, at least for fine-tuning.
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Abstract 

Recognising the intention of a human partner is a key challenge 
for collaborative systems in human-robot interaction. 
However, existing studies of intention recognition abilities in 
AI system mostly focus on data-driven approaches and the 
recognition of direct action intentions (low-level intentions). 
We propose an artificial intention recognition approach that is 
implemented as a cognitive model in the theory-based ACT-R 
architecture and that infers superordinate action goals (high-
level goals). We tested our approach for the recognition of 
cocktails from mixing sequences performed by human 
participants in an experimental study. Intention recognition 
speed of the model was evaluated and compared to human 
intention recognition performance. Our results indicate that the 
implemented model successfully recognises high-level 
intentions and tends to be substantially faster than humans. 

Keywords: Human-robot interaction; intention recognition; 
cognitive modelling; ACT-R 

The Challenge of Intention Recognition in 

Human-Robot Interaction 

For AI systems that are designed to interact with a human 

partner in real-world scenarios it is of essential importance 

that the system can anticipate actions of the human to adapt 

to them accordingly. This requirement has been described 

under the term intention recognition in an increasing branch 

of human-robot interaction (HRI) research. The ability to 

infer a partner’s intention has been identified to be a key 

factor for the performance of collaborative AI systems 

(Smith, Belle, & Petrick, 2022). Collaborative system 

behaviour, which is defined by both human and AI partner 

working on one task at the same time and in the same place 

(as opposed to cooperative behaviour where both work on 

different (sub-)tasks) (Bauer et al., 2016), poses high 
demands on a system’s capability to recognise a human’s 

next action fast and reliably. 

However, in HRI settings, the robot’s behaviour is still 

often pre-programmed (Angleraud et al., 2021). Attempts 

have been made to enhance the flexibility of AI systems with 

intention recognition abilities, using unsupervised machine 

learning (Vinanzi, Cangelosi, & Goerick, 2021), probabilistic 

models (Luo & Mai, 2019), or Gaussian Mixture Models 

(Duarte et al., 2018). Such approaches showed promising 

anticipative performances, while are still lacking important 

criteria for interactive AI systems. According to 

Kambhampati (2020), it is crucial that such systems are 

explicable, meaning that a human partner can comprehend 

them. Further, data-driven approaches pose the challenge that 

they always need pre-existing large data sets they can be 

trained with, which often also bears the problem that they 

can’t be transferred to other situations. 

For this reason, we propose an artificial intention 

recognition approach based on a cognitive architecture. 
Cognitive architectures offer a cognitive plausible framework 

and can make explicit predictions from abstract cognitive-

psychological theories (Brasoveanu & Dotlačil, 2020). 

Thereby, cognitive models that are developed within a 

cognitive architecture provide verbalisable, explicable 

process descriptions, which are furthermore based on a 

cognitive theory instead of data sets and thereby enable 

transferability to similar, but new situations. 

Another important aspect is the level of intentions that shall 

be recognised by an AI system. In previous work on intention 

recognition in HRI contexts, distinctions were made between 

different levels of intentions, where intentions on a lower 

level serve to realise intentions on a higher level (Howard & 

Cambria, 2013). Gomez Cubero & Rehm (2021) define low-

level intentions as direct action intentions and high-level 

intentions as the superordinate goals of actions. For example, 

a person grabs a key (low-level intention) to unlock a door 
(high-level intention). Fulfilling a high-level intention can 

involve the necessity of several low-level intentions to be 

carried out. For our work, we adopt the distinction by Gomez 

Cubero & Rehm (2021) and distinguish between low-level 

and high-level intentions. Previous studies exist, e.g. those by 

Gomez Cubero & Rehm (2021) and (Duarte et al., 2018), that 

have successfully fed eye-tracking data into artificial systems 

to enable them to infer the low-level intentions of humans. 

However, more work is needed on artificial high-level 

intention recognition capabilities. Further, we believe that the 

recognition of high-level intentions is of especial importance 

for a collaborative AI system since it will typically have more 

time to adapt and react to high-level than to low-level actions. 

We therefore propose a high-level intention recognition 

approach in a cognitive architecture, with the aim to improve 

human-robot collaboration in variable real-world scenarios. 

Cognitive Modelling with ACT-R 

ACT-R (Anderson et al., 2004) is a well-established 

cognitive architecture that allows for executable models, that 

is, direct simulations of human task solving behaviour. Its 
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framework is set by rules and constraints that are based on 

the current state of cognitive psychological research. ACT-R 

model runs result in predictions about behavioural markers, 

e.g. reaction times or error rates.

A core characteristic of ACT-R is its modular structure,

where modules interact through their corresponding buffers 

and different modules represent specific brain areas. Related 

to this is a sharp distinction between declarative and 
procedural knowledge, each implemented into a different 

module. Declarative knowledge units, either in the form of 

pre-known knowledge that a model is assumed to be 

equipped with or in the form of new facts learned during the 

task, are represented as so-called chunks. Chunks consist of 

a unique chunk name, a chunk type and a certain number of 

slots which can but need not contain specific values. Number 

and names of slots that a chunk has are defined by its chunk 

type. Procedural knowledge is represented as so-called 

productions. Productions in ACT-R are divided into a 

condition part and an action part, where the condition part 

describes the states of certain buffers or chunks that they 

contain, and the action part describes requests or changes to 

certain buffers or to their content. A model run in ACT-R is 

a chain of match-select-apply cycles, where in each cycle one 

production whose condition part matches the current state of 

the model is selected and subsequently, its action side is 
applied. 

Another important feature of ACT-R is its inherent 

combination of symbolic and sub-symbolic processing, 

which defines it as a hybrid architecture (Kotseruba & 

Tsotsos, 2016). The symbolic processing of an ACT-R model 

happens on the level of chunks and productions. Sub-

symbolic processing, which can optionally be enabled, refers 

to additional calculations involving adjustable parameters 

that influence symbolic processing. For instance, activation-

based sub-symbolic processing mechanisms can influence 

the probabilities of certain chunks to be retrieved from 

declarative memory, while utility-based sub-symbolic 

processing mechanisms can influence the probabilities of 

certain productions to be selected. 

The combination of symbolic processing on the level of 

chunks and productions, which can at any time during task 

solving be described in an explicit verbal manner, and sub-
symbolic processing, which allows for the modelling of 

complex learning and context effects, make the ACT-R 

architecture a promising candidate for modelling an artificial 

intention recogniser that fulfils the above-mentioned criteria 

of flexibility, explicability, and transferability. 

Research Goals and Requirements for the 

Experimental Study 

In the present work, we address the question whether high-

level intention recognition can successfully be modelled in 

the cognitive architecture ACT-R. As a secondary research 

question, we investigate whether such a model of artificial 

intention recognition resembles human intention recognition, 
that is, whether the ACT-R model identifies intentions with 

similar speed as humans. 

Since we imbed our research into the context of 

collaborative human-robot interaction, our research goal 

makes several demands on the exemplary task that the 

artificial intention recogniser is tested with. The primary 

criterion for the exemplary task shall be that it resembles a 

real-world scenario, at best a daily activity that can be a 

realistic test case for assistive robots. This criterion holds for 

preparation tasks like food or drink preparation. These tasks 
typically require humans to fulfil a number of low-level 

actions, e.g. selections of ingredients and their combinations, 

in order to reach a high-level goal, e.g. a dish or a drink. 

Further, the context of our research goal demands that the 

high-level intention to be recognised is chosen by a human, 

with the possible options being known to the artificial system. 

Also, a realistic test case demands that high-level intention 

recognition cannot solely rely on the stepwise comparison of 

executed low-level actions with pre-known unambiguous 

action instructions. Rather, realistic real-world preparation 

tasks typically involve some degree of overlap in the low-

level actions to take. Also, realistically, the preparations 

should involve both sequences of fixed sequential steps (fixed 

sequences) as well as sequences of freely ordered steps (free 

sequences).  

These criteria hold for the task of cocktail mixing. The 

preparation of cocktails by recipe resembles many daily 
preparation tasks and initially requires the choice of a certain 

cocktail among a given selection. Moreover, ingredients for 

different cocktails typically overlap to a certain degree. 

Further, cocktail recipes involve both fixed sequences and 

free sequences. For instance, mixing any cocktail requires to 

take a vessel before any alcohol or juice can be inserted, but 

whether alcohol or juice is added first usually does not matter. 

We therefore chose to test artificial intention recognition 

for the task of cocktail mixing. The task for the artificial 

intention recogniser, implemented as an ACT-R model, is to 

infer from the incremental combination of ingredients (low-

level actions) which cocktail is being mixed (high-level 

intention). 

To evaluate the performance of the artificial intention 

recogniser, human cocktail mixing actions are needed. We 

gathered this data in a lab study with a virtual “cocktailbar” 

where participants were tasked with preparing cocktails from 
a given selection. To compare artificial with human intention 

recognition speed, a follow-up task for participants in the lab 

study was to recognise which cocktail was being prepared by 

another person shown in a pre-recorded video sequence. 

Experimental Study 

We conducted an experimental study based on a touch-

sensitive smartboard. Participants were guided through a 

virtual “cocktailbar” and were instructed to “mix” five 

cocktails of their choice out of a selection of eleven cocktails. 

The cocktails consisted of between five and ten ingredients, 

where each recipe involved fixed sequences (e.g. a glass has 

to be taken bevor ice cubes can be inserted), and free 

sequences (e.g. a straw can be added before a decorative lime, 

or vice versa). The cocktails shared differing numbers of 
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ingredients, resulting in varying degrees of overlap between 

the recipes. 

In each of the five iterations, participants first selected a 

cocktail, then saw the corresponding recipe, including all 

necessary ingredients and the information which parts of the 

preparation were in fixed or free order, which they were 

instructed to memorise. Subsequently, the screen turned into 

the “cocktailbar mode” were participants saw all ingredients 
of all possible cocktails. Their instruction was to “mix” the 

cocktail of their choice according to the memorised recipe, 

which meant to select the ingredients in the correct order via 

touch, where the order of ingredients in the free sequences 

was up to the participant’s decision. Ingredients were 

presented as graphical drawings. Whenever a correct 

ingredient was touched, participants saw a graphical drawing 

version of the cocktail proceed. Since we wanted to limit our 

intention recognition paradigm to correct sequences without 

errors, incorrect ingredients (whether completely incorrect 

for the chosen cocktail, or just in the wrong order) could not 

be selected, meaning that participants could not make errors. 

After the last correct ingredient was added, participants saw 

their ready cocktail as a complete graphical drawing. Figure 

1 shows the experimental screen in the “cocktailbar mode”. 

Figure 1: Experimental screen in the “cocktailbar mode”. 

Participants “mixed” a cocktail based on the memorised 

recipe by touching the ingredients in order. 

For each participant, the order of selected ingredients for 

each chosen cocktail was recorded. In addition, eyetracking 

data was recorded but not further processed in this study. The 

eyetracking required participants to stand in front of the 

smartboard screen with approximately one meter distance, 

which made it necessary for participants to touch the 

smartboard using a long stick. 

The recorded behavioural data was used to later test the 

ACT-R model’s ability to recognise high-level intentions, i.e. 

which cocktail a participant is about to mix in a given trial. 

To test human intention-recognition ability for the same task, 

participants went through a second experimental phase after 

their fifth cocktail was completed. They were shown pre-

recorded video sequences of another person mixing those five 

cocktails they had just created, but in randomised order. For 

each cocktail, one video was created, with the ingredients in 
the free sequences being selected in a random order. 

Participants were instructed to say aloud which cocktail was 

being created in the video as soon as they were confident to 

recognise it. The step where participants correctly recognised 

the cocktail was manually noted. 

20 participants were acquired among students at 

Technische Universität Berlin and via advertisements (12 

female), with a mean age of 25.65 years (SD = 1.74), ranging 

from 23 to 29 years. All participants signed an informed 
consent. The eye gaze recording required to exclude wearers 

of glasses. Where applicable, participants were compensated 

with course credit. 

ACT-R Model 

For building the ACT-R model, two major criteria had to be 
met: (i) The model must be able to “observe” the human 

cocktail mixing, that is, the steps that are taken. (ii) It must 

have pre-knowledge about the cocktail recipes. 

Regarding the challenges for high-level intention 

recognition in our cocktail mixing paradigm, the model 

needed to have the following abilities: (1) It must be able to 

recognise which cocktail is being built out of a selection of 

eleven cocktails, starting with zero prior information. (2) It 

must be tolerant to the ambiguity resulting from the 

overlapping ingredients between cocktails. (3) It must be able 

to include information from both fixed and free sequences 

into its recognition process. 

Our implementations of these criteria and requirements are 

outlined in the following. Importantly, since our primary 

research goal was to investigate the implementation of high-

level intention recognition in ACT-R and the post-hoc 

comparison with human data was only secondary, 
psychological plausibility was not our focus for the usage of 

ACT-R mechanisms. 

Criterion (i): Information about the human cocktail 

mixing sequences was provided to the model in the form of 

pre-known knowledge in declarative memory. Each of these 

chunks, in the following referred to as trial chunks, 

represented either one experimental trial, i.e. one cocktail 

mixing sequence by a human participant, or one cocktail 

mixing sequence as shown in the pre-recorded video 

sequences. The performed action sequence was encoded in 

the form of values, standing for the ingredients, assigned to 

numbered slots. At the beginning of each model run, one trial 

chunk was placed into the goal buffer. 

Criterion (ii): Information about the eleven cocktail 

recipes was equally provided to the model in the form of pre-

known knowledge in declarative memory. Each of these 

chunks, in the following referred to as recipe chunks, 
represented one cocktail recipe. Analogously to the trial 

chunks, the recipe chunks contained numbered slots filled 

with values representing the required ingredients in the 

correct order. Since slots must be listed sequentially, free 

sequences in the recipes were treated as fixed sequences 

listed in a random order. 

Ability (1): For a realistic modelling of high-level 

intention recognition, the model must start at the beginning 

of each run without any prior information about the high-
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level goal, but it must incrementally be provided with 

information about which action was taken, i.e. which 

ingredient was added, by the human participant. Therefore, 

the imaginal buffer was chosen for the model’s information 

maintenance and information updating. At the beginning of 

each model run, the imaginal buffer was empty. The first 

production to fire requested the imaginal buffer to create and 

hold one chunk of type memory, in the following referred to 
as memory chunk. The memory chunks had the same 

structure as the trial chunks, but with the numbered slots, 

representing the performed actions, being empty. Then, 

iterative cycles followed, each represented by one 

production. In each of these productions, the next action in 

the human’s mixing sequence, that is, the ingredient value in 

the next slot of the trial chunk in the goal buffer, was placed 

into the next slot in the memory chunk in the imaginal buffer. 

Thereby, the model’s information base was built up 

incrementally. The model could use this permanently 

extending representation of its “observation” for stepwise 

comparisons with its knowledge about the eleven cocktail 

recipes. 

Ability (2) and ability (3): Stepwise comparisons between 

the information held in the imaginal buffer and the recipe 

chunks in declarative memory were made using specific 

retrieval requests, that is, requests to the retrieval buffer to 
search for a recipe chunk in declarative memory whose slot 

values matched with those currently contained in the memory 

chunk. When such a recipe chunk was found, the model 

output its guess about which cocktail was being mixed. 

However, the overlapping cocktail recipes and the free 

sequences in the recipes, resulting in several possible action 

sequences for one cocktail, caused ambiguity for the model 

that did not allow for simple stepwise comparisons. 

Therefore, the sub-symbolic mechanism of spreading 

activation was added to the model. This mechanism 

influences retrieval requests such that activation affects 

which chunk is retrieved, rather than specific slot value 

matches between the retrieval request and the chunks in 

declarative memory. We set the imaginal buffer as source for 

spreading activation, whereby at every retrieval request, 

activation spread to those chunks in declarative memory that 

contained the values that were hold in the chunk in the 
imaginal buffer at that point of time. Importantly, spreading 

activation is unaffected by the specific slot assignments. 

Therefore, retrieval requests without any slot assignments 

can be made and it is irrelevant which slot of a chunk in 

declarative memory contains a relevant value. Consequently, 

the model’s retrieval requests were completely blind to fixed 

or free sequences since the order of ingredients did not matter 

in the stepwise comparisons between the memory chunk and 

the recipe chunks. Hence, the holistic instead of order-

sensitive nature of spreading activation-based retrieval 

requests ensured that the model had ability (3). Regarding 

ability (2), it was the cumulative character of spreading 

activation that made the model robust to slot value 

overlapping between different recipe chunks: The activation 

that a chunk in declarative memory receives increases with 

the number of values it shares with the chunk in the source 

buffer, which means that the chunk in declarative memory 

that shares the most values with the chunk in the source buffer 

receives the most activation and, as a consequence, will be 

retrieved. 

One model run can be summarised as follows: A model run 

started with the placement of one trial chunk into the goal 

buffer and the creation of one memory chunk in the imaginal 
buffer. In the following iterations, i.e. production firings, 

continuous retrieval requests to declarative memory were 

made that were based on the iteratively growing information 

in the memory chunk in the retrieval buffer, mediated through 

the spreading activation mechanism. In each iterative cycle, 

the recipe chunk with the highest activation was retrieved and 

additionally output by the model, representing its current 

guess about the high-level intention. A model run stopped 

when all information from the trial chunk had been provided 

to the memory chunk, i.e. the number of iterations equalled 

the number of actions taken by the human participant in the 

respective trial, which in turn equalled the number of 

ingredients of the cocktail that was being mixed. 

The structure and function of the ACT-R model is depicted 

in Figure 2. 

Figure 2: Structure and function of the ACT-R model. 

Arrows show actions carried out in the production firings. 

Declarative memory content and chunks are shortened for 

illustrative purposes. In declarative memory, the two 

different kinds of trial chunks are depicted as examples. 

The model’s intention recognition performance was 

measured in two tasks: First, the model was tasked with 

recognising the human participants’ intentions based on their 

cocktail mixing sequences. For this, one model run was 

simulated for each of the trial chunks representing participant 

cocktail mixing sequences. Second, since the human 

participants inferred intentions not from other participants’ 

action sequences but from the pre-recorded videos, the model 
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was also tasked with recognising intentions based on the 

cocktail mixing sequences shown in the eleven pre-recorded 

video sequences. For this, each video was “shown” to the 

model the total number of times the according cocktail had 

been chosen by the human participants, meaning that the 

according number of model runs was simulated for each of 

the trial chunks representing video mixing sequences. 

Results 

Speed of intention recognition was operationalised as the step 

number in the mixing sequence where the correct cocktail 

was identified by a human participant or by the ACT-R  

Figure 3: Mean intention recognition speeds and standard 

deviations for Human(Videos), Model(Participants) and 

Model(Videos). 

model, respectively. Since our primary research goal was to 

analyse whether high-level intention recognition can 

succesfully be modelled in ACT-R, we were mainly 

interested in an investigation of the model’s performance and 

its variation between different high-level goals, i.e. between 

the different cocktails. In a second step, we investigated the 

comparison with the human performance. 

Figure 3 shows a descriptive comparison between the 

averaged intention recognition speeds of human participants 

watching the videos (HumanVideos), the ACT-R “watching” 

the mixing sequences performed by the human participants 

(ModelParticipants), and the ACT-R model “watching” the 

mixing sequences in the videos (ModelVideos). The mean 
speeds were calculated separately for each cocktail to allow 

for the descriptive identification of differences between 

cocktails. Since the total number of times a cocktail was 

mixed by the human participants differed substantially 

between cocktails, with a minimum of two total choices for 

the Wodka Mojito and a maximum of 16 total choices for the 

Mojito and the Margarita, respectively, we decided against 

inferential statistics and statistical model estimation. 

Except for the Mojito, the ACT-R model showed a faster 

mean intention recognition speed than the human participants 

for all cocktails, both when anticipating the cocktail from the 

mixing sequences performed by the human participants and 

when anticipating them from the videos. Apparently, for all 

cocktails, the mean intention recognition speed of the ACT-

R model is very similar for both kinds of anticipations.  

As a measure for the deviation of the model’s mean 
intention recognition speed from those of the human 

participants, we applied the root mean square deviation 

(RMSD) measure which is a common measure to evaluate 

model fit when models are compared to empirical data 

(Schunn & Wallach, 2005).  Since the human participants  

inferred intentions only from the video sequences and 

therefore there was no “human equivalent” to the data from 

Model(Participants), RMSD was calculated only for the 

comparison between Model(Videos) and Human(Videos). 

RMSD ranged between .17 for the Wodka Cranberry and 

4.75 for the Hurricane, underpinning the huge variance 
between different cocktails. 

Discussion 

The artificial intention recognition approach implemented as 

a cognitive model in the ACT-R architecture is able to infer 

high-level intentions in the form of cocktails from a sequence 
of mixing actions taken by humans, that is, ingredients that 

are sequentially chosen. This result illustrates how symbolic 

and sub-symbolic processing mechanisms in ACT-R can be 

combined to achieve a system with incremental information 

growth and context-dependent, robust memory retrievals. 

Our approach extends previous research which has mainly 

focused on data-driven approaches and low-level intention 

recognition based on eye tracking data. 
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The ACT-R model proves to be robust against ambiguity 

resulting from overlapping cocktail recipes and from free 

sequences within recipes. The latter is underpinned by the 

model’s similar intention recognition speeds for mixing 

sequences performed by the human participants and mixing 

sequences performed in pre-recorded videos, which is 

consistent for all cocktails. This indicates that our artificial 

intention recognition approach fulfils the criterion of 
flexibility in terms of robustness against varying input. 

Regarding Kambhampati (2020)’s criterion of 

explicability, the function of the developed ACT-R model 

can explicitly be linked to its structure, which in turn can be 

described transparently. Thus, ACT-R models proof to be 

promising candidates for implementing high-level intention 

recognition into AI systems that are designed to interact with 

humans. 

Concerning the criterion of transferability, we argue that 

the implemented ACT-R mechanisms, in particular the 

combination of symbolic processing mechanisms in the form 

of structured pre-knowledge and iterative production cycles, 

and sub-symbolic processing mechanisms in the form of 

spreading activation, are general enough to be transferable to 

other tasks or experimental paradigms. Most importantly, 

models in the theory-driven ACT-R architecture do not need 

to be trained with pre-existing data, which poses a practical 
advantage over data-driven approaches. 

The model’s intention recognition speed varies 

substantially between different cocktails. Future 

developments of our study will have to analytically 

investigate how the number of free sequences, and the 

number of ingredients within free sequences, in a cocktail 

recipe influences how fast the cocktail can be recognised by 

the model. Also, the degree of overlap between cocktail 

recipes will have to be considered as a factor for intention 

recognition speed. 

Our results point to substantial differences between the 

model’s and the human participants’ intention recognition 

speed for most, albeit not all cocktails, strongly suggesting 

that the modelled intention recognition approach differs 

essentially from human high-level intention recognition. 

Since except for the Mojito, human participants were, on 

average, slower in correctly recognising the high-level 
intention, it can be assumed that the efficient use of memory 

mechanisms in the ACT-R models deviates from average 

human cognitive processing. For instance, humans can be 

assumed to have a much more error-prone maintenance of the 

observed information than the model which perfectly updates 

and maintains information in its imaginal buffer. Moreover, 

the model has equally complete memory for all eleven 

cocktail recipes, whereas human participants had been 

confronted with five cocktail recipes for a short time only and 

supposedly remember some recipes better than others, where 

relevant factors can assumed to be extent of the recipe and 

previous experience with the cocktail, or cocktails in general. 

Future studies will have to analyse the influence of factors 

such as structural differences between the possible high-level 

goals (here: different cocktails with their differing recipes) on 

the intention recognition speed of an artificial system. 

Methodically, statistical model estimation, for instance in the 

form of linear mixed models, could be suitable to 

systematically analyse the influence of item differences on 

the model’s performance. Likewise, the influence of item as 

well as participant differences on human intention 

recognition performance could be analysed using such 

methods. 
Critically, our experimental paradigm prevented the 

possibility of making mistakes during cocktail mixing. 

However, robustness to human errors and violations of rules 

and instructions will be an important property of future 

assistive AI systems in real-world scenarios. Thus, future 

developments of our study will have to take errors into 

consideration and carefully evaluate the applicability of the 

demonstrated ACT-R mechanisms for high-level intention 

recognition in imperfect task executions. 
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Abstract 

Cognitive and sensorimotor functions are usually assessed 
separately and therefore also modeled individually although 
they are strongly intertwined. One way to link these two 
levels conceptually is sensorimotor abstraction. It is the 
simplification of complex sensorimotor experiences, and it 
might enable goal-directed planning in situations with high 
uncertainties. We propose a computational model for 
dynamic decision-making that employs two distinct layers, a 
(lower) sensorimotor control layer holding sub-symbolic 
information, and a (higher) cognitive control layer holding 
abstracted information as symbols. In this two-layer 
architecture information about action control is passed 
upwards in the hierarchy, abstracted, and used to generate 
explicit action intentions which are passed downwards again. 
The hierarchization of model components is intended to 
represent the different levels of regulatory control (automated 
vs. fully conscious).  We also use different forms of modeling 
for the individual layers. We employ predictive coding for 
sensorimotor and ACT-R for cognitive control. An agent 
equipped with the two-layer architecture is situated in a grid 
world and tasked to reach a finish line. However, the 
environment poses challenges on motor control by causing 
perturbations in the action execution of traversal reflecting 
varying uncertainty encountered in the real world. Here we 
describe a straightforward approach to the multi-layer 
architecture and relate it to the embodied cognition 
perspective. We also discuss possible extensions that we plan 
to introduce which depict fundamental cognitive functions 
such as representing the visual environment in varying 
granularity.  

Keywords: Embodied cognition, dynamic decision-making, 
ACT-R, Sensorimotor abstraction 

Introduction 
The field of embodied cognition supports the assumption that 
higher cognitive functions are grounded in low-level 
sensorimotor experiences (Shapiro, 2019). Explicit 
computational models of cognition are less concerned with 
how sensorimotor grounding is intrinsic to cognitive 
processes (Pezzulo et al., 2011). The challenge in this is to 
implement theoretical descriptions using mathematical 
mechanisms. We present here a computational cognitive 
model for dynamic decision-making (Gonzalez et al., 2017) 

appropriate for representing sensorimotor grounding, and 
specifically relates decision-making to the motor experience 
of control in addition to what is visually perceived. For this 
purpose, we define 2 different layers, which are embedded in 
a cognitive architecture, henceforth called two-layer 
architecture. 

Humans show efficient problem-solving capabilities in 
highly dynamic environments. This may be based on the 
ability to reduce complex environments to simple 
representations of various modalities which are then used for 
goal-oriented behavior (Turner et al., 2019). This implies that 
humans do not act alone on what is perceived at that very 
moment but rather they represent the environment in terms of 
action possibilities between which a decision is made. In 
these representations, many things are combined. Not only 
environment-related properties themselves, but also 
properties that relate to the action within the environment are 
included. This could aid decision-making by having the 
decision process only consider represented options, in turn 
reducing the number of possibilities and thus reducing mental 
load. Where several possibilities that are similar to each other 
and share rough features are combined into one represented 
option. The shared features refer on the one hand to the 
changes in the environment brought about by this option, and 
on the other hand to the motor executions required to bring 
about these changes. The result is a simplification of the 
complex environment represented by its possibilities to be 
acted upon. However, implementing this in a computational 
model poses the difficulty of how to simulate spatial 
associations of abstract concepts (Pezzulo et al., 2011). We 
are currently in the process of developing the computational 
model and simulating behavior while situating it in a custom 
environment. Human behavioral data for a later comparison 
are already available. 

Rationale for Hierarchical Structure 
Representing the environment from the perspective of 
embodied cognition can be achieved through the process of 
sensorimotor abstraction. For this, we adopt the perspective 
of Eppe and colleagues (2022) to distinguish between action 
and state abstraction. Action abstractions refer to the 
summarization of many individual consecutive motor 
commands into a comprehensive movement primitive (Flash 
& Hochner, 2005; Schaal, 2006). The other relevant type of 
abstraction, state abstraction, refers to a simplification of the 
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environment into a representation that focuses on task-
relevant features while giving less weight to task-irrelevant 
features. The two-layer architecture described here is 
intended to cover both forms of abstraction. In our model, 
these representations are depicted as explicit symbols on a 
high level of abstraction while sensorimotor experiences are 
depicted sub-symbolically. We put particular emphasis on 
modeling the construction of mental representations at the 
cognitive level from sub-symbolic information passed up by 
the sensorimotor level. We thereby postulate a hybrid model 
which combines symbols with mathematical mechanisms 
(Wang, 2017).  

To test the assumptions that went into our two-layer 
architecture and to enable simulations, we situate the 
computational model in a 2-dimensional grid world by means 
of an agent. The grid world resembles a complex physical 
world which is the condition for situated action (Vera & 
Simon, 1993). It is a theoretical framework that emphasizes 
the importance of considering the direct (social and) physical 
contexts in which human behavior occurs. Here, in our 
architecture, the physical features of the world are 
experienced through sensorimotor functions and transformed 
into symbols. 

We narrow down the sensorimotor experiences the two-
layer architecture draws upon to two essential ones. It is able 
to visually perceive its surroundings. In this respect, the 
sensorimotor level has information about the exact position 
in pixels of objects in the world. The world, however, is not 
visually perceived as a whole, but only the immediate 
environment, which is determined by the size of the 
observation window. Furthermore, the two-layer architecture 
has access to information expressing the correctness of the 
realization of its motor commands. This information is 
extracted from the deviation between expected consequences 
in the environment by motor executions and the actual 
perceived consequences. It reflects the situated action 
control, termed Sense of Control (SoC; Pacherie, 2007), and 
plays a fundamental role within the two-layer architecture. 
The two layers within the architecture are a sensorimotor 
control layer implemented in Python (Van Rossum & Drake, 
2009) and a cognitive control layer implemented in ACT-R 
(Anderson & Lebiere, 1998). Each layer contains different 
levels of control processes. The multilevel structure is 
intended to emphasize the abstraction from sub-symbols at 
the sensorimotor level to symbols at the cognitive level as 
information is passed up in the hierarchy. 

Multi-layered Computational Model 
Our two-layer architecture highlights the intersection 
between low-level sensorimotor and higher-level cognitive 
functions. Both the defined layers have to be distinct from 
another holding their individual functions for explicitness 
while nevertheless being strongly interconnected through 
active exchange of information. The result is a complex 
structure of predictive and postdictive processes with action 
planning and motor control components. Different levels of 

regulatory control are deployed in the individual model 
layers. The sensorimotor layer applies automated regulatory 
control which is happening unconsciously. When applied, the 
agent can usually infer that something went wrong, but not 
exactly what. On the other hand, the cognitive control layer 
applies fully conscious regulatory control. In this the agent is 
completely aware of what went wrong. This is implemented 
through a fundamental aspect of the two-layer architecture, 
the SoC. It is the subjective feeling of whether the agent is in 
control of a current action execution (Pacherie, 2007). We 
defined two individual SoCs, one at the level of sensorimotor 
control and one at the level of cognitive control. The low-
level Sense of Control (LL SoC) and the high-level Sense of 
Control (HL SoC) respectively. Both range from 0 (total loss 
of control) to 1 (being in full control). They are 
interconnected in the way that the HL SoC is only affected if 
LL SoC reaches a threshold given by the free parameter 
Cognitive Control Layer (CCL) threshold. This means that 
only large changes or several consecutive changes in the 
same direction and without recovery in LL SoC cause 
changes in HL SoC. This is supposed to reflect becoming 
aware of previously subconscious information. The transition 
from LL SoC to HL SoC is to depict state abstraction (Eppe 
et al., 2022), where dynamics on control at the sensorimotor 
level are represented in a simplified way (summed up in our 
case) at the cognitive level. We argue the existence of two 
distinct SoCs embedded at different levels of the model 
structure with the hierarchization of intentions by Pacherie 
(2007). Originally the author postulates the existence of three 
levels of intentions (distal vs. proximal vs. motor), where 
each individual level refers to a different temporal scale and 
rigor in which aspects of the intention are specified. The 
aspects of the intention thereby comprise of the goal state of 
the intention. How strict this goal state is defined depends on 
the level of the intention. With increasing level of the 
intention in the hierarchy, the more distant in the future its 
realization is and the more abstract the intention is specified. 

On the highest level of abstraction and time scale, Pacherie 
(2007) denotes distal intentions. They reflect general future 
objectives, that can be directed only a few moments or far 
into the future. Due to distal intentions being completely 
detached from the current situation and therefore from 
situated action, they are not of interest for this specific model 
structure. We therefore omit this level of intentions within the 
two-layer architecture. 

Once distal intentions are passed downstream in the 
hierarchy, they become situated in the agent's current spatial 
and temporal environment. Now termed proximal intentions, 
at this level the temporal scale is defined less flexible 
compared to distal intentions, in the way in which one plans 
only a few moments into the future (Pacherie, 2007). We 
model these intentions at the level of cognitive control (CCL) 
as general action goals (Kahl et al., 2021). An action goal is 
a symbol of the consequences anticipated in the environment. 
An example would be the agent's action goal of having 
walked around his desk to the refrigerator in order to get the 
leftover donut from the day before. It is situated by taking 
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into account the agent's immediate environment (refrigerator 
at the other end of the office, with desk in the way) as well as 
the agent's motor repertoire (walking around the desk). The 
symbol of the action goal contains the final consequence (to 
be in the immediate vicinity of the refrigerator hopefully with 
a donut in hand), as well as a specification of the path to the 
final outcome (around the desk). 

But the action goal is not the only possible way to act at 
that exact moment. In one fell swoop, we can think of several 
ways to reach the objective, of several action possibilities. 
Inspired by affordances which denote all possible relations of 
agent and direct environment (Gibson, 1966), we define the 
action field. We use this term to refer only to perceived 
affordances (Norman, 1988) that can be used to directly solve 
the objective at hand. For the specific objective of getting the 
leftover donut, the action field may contain possible paths 
around the desk to get to the refrigerator. The possible path 
to climb over the desk for example is not perceived by the 
agent, perhaps due to the motor repertoire not allowing to 
climb, preventing the agent to even be aware of that 
possibility. It will therefore not be contained in the action 
field. Action abstraction is applied to the perceived paths, 
summarizing the consecutive motor commands to a 
representation, a general motor primitive which might simply 
be going clockwise vs. counterclockwise around the desk. 
Finally, in order to solve the objective at hand, a decision has 
to be made between the action possibilities contained in the 
action field. We assume that when an agent engages in a new 
self-selected action there is a boost in self-belief regarding 
the ability to realize it (Kahl et al., 2021). We model this by 
an increase in HL SoC by a fixed factor. The cognitive 
function of generating an action field and selecting an action 
goal is implemented in the ACT-R architecture (Anderson & 
Lebiere, 1998) in which we base the decision process on the 
HL SoC. 

As soon as an action goal is selected, it is passed on to the 
next level down in the hierarchy, the sensorimotor control 
layer (SCL; Kahl et al., 2021). It is tasked to realize the action 
goal in the environment by interpreting and executing the 
required individual consecutive motor commands. In our 
example the action goal is to go clockwise around the desk 
towards the refrigerator. Now the SCL lays out all the 
necessary steps to get to the destination. However, these are 
not the literal steps, but rather the individual muscle 
movements it takes to walk. These motor intentions are at the 
lowest level of the hierarchy (Pacherie, 2007). They refer to 
the shortest temporal scale and their implications are 
specified in great detail. The SCL is also tasked to assess the 
extent of control over the realization of the action goal. We 
apply predictive coding implemented in Python (Van 
Rossum & Drake, 2009) for the evaluation of the LL SoC. 
For this during each of these motor commands, the SCL 
generates a sensorimotor prediction (predicted position of the 
agent in pixel), anticipating the changes in the environment 
right after the execution. Sensorimotor feedback (also given 
in pixel position) after the motor command is then compared 
with the prediction. In the two-layer architecture, the 

feedback solely involves visual information of the 
environment, but it can just as well be haptic or 
proprioceptive, depending on the modality in which aspects 
of the intention were formalized. Deviations between 
predictions and sensory feedback given by the absolute 
distance in pixel that exceed a certain magnitude are referred 
to as prediction errors and lead to a reduction in LL SoC. 
Deviations below the magnitude are referred to as matches 
and lead to an increase in LL SoC. The change in LL SoC as 
well as the magnitude are again based on individual fixed 
factors. 

Ultimately both layers of our computational model 
generate a loop in which bottom-up evidence about the 
execution of motor commands is fed to the CCL which in turn 
passes top-down intentions, action goals, down the hierarchy 
to the SCL for it to implement and evaluate action control 
(Figure 1). We aimed for the model to be capable of 
performing dynamic decision-making in environments in 
which each decision (the execution of it) directly influences 
the situation (Gonzalez et al., 2017). For this we programmed 
the Dodge Asteroids environment. A custom environment 
that is inspired by the standard domain of Atari games for 
implementing computational agents (Mnih et al., 2013). It is 
a video game setting meant to especially challenge action 
control. 

Figure 1. Schematic of the two-layer architecture. The arrows 
depict the information exchange within the two-layer 
architecture. In the CCL, an action goal is selected from the 
action field. The HL SoC is integrated in the decision process. 
In the SCL the action goal is broken down into individual 
motor commands. Their execution is accompanied by a 
prediction. Sensory feedback of the changes in the 
environment from the motor execution is compared with the 
prediction. Depending on prediction error or match, the LL 
SoC is adjusted down or up. 
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Environment 
We have implemented the Dodge Asteroids environment in 
Python (Van Rossum & Drake, 2009). Based on the concept 
of situated action, the environment must offer the possibility 
to interact with it. A simple form of interaction is traversing 
through the environment. Here, each action of the agent has 
direct influence on its position within the world. Also, for 
situated action to take place, temporal demand is required 
(Vera & Simon, 1993). Therefore, we introduce “free fall”, 
automatic traversal downwards, which if not controlled, will 
result in a crash or losing the game. The game runs in 60 FPS 
meaning that every time step is 1/60 of a second. An agent 
will be situated within the environment having access to the 
visual information within a restricted area, the observation 
space, the size of which can be freely varied as well as the 
height and width of the whole world in pixels. The starting 
position of the agent will be at the horizontal center of the 
vertical top of the world. In every time step the agent will 
automatically traverse 6 pixels vertically down. There are 
three possible actions the agent can execute at every time 
step: left vs. stay vs. right. Steering left or right will shift the 
agent's horizontal position by 6 pixels in the respective 
direction whereas when executing stay the agent keeps its 
horizontal position. The objective of the game is to avoid 
crashing into walls or incoming obstacles and reach the finish 
line at the bottom of the world. The walls surround the world 
on both sides. Obstacles are randomly scattered in the world, 
with the exact position in height and length drawn from a 
uniform distribution. We control for non-overlapping 
obstacles. The number of obstacles within the world can be 
freely varied and reflects the degree of necessary action 
control, as more obstacles more often demand execution to 
the left or right. We introduce drift to the environment, a 
manipulation specifically to affect action control. Drift zones 
cover the entire width of the world and feature variable 
vertical size (Figure 2). In this example drift is kept constant 
in its size of 270 pixels in height. Drift can either be visible 
or invisible, directly influencing whether it is able to be 
anticipated prior to onset or not. As soon as the agent enters 
a drift zone, its horizontal position is affected displacing the 
agent by a specific number of pixels with every time step, 
whereby drift can be directional (either left or right) or 
randomized. In randomized drift zones, the drift direction is 
randomly sampled from left and right in each time step. We 
kept drift magnitude at 3 pixels, making it able to be 
countered by steering in the opposite direction of the drift 
direction. We intended for the agents' actions to still have 
tangible effects, so that they engage in goal-directed 
planning. 

If the agent is now controlled by our computational model, 
at the CCL the perceived observation space is searched for 
collision threats. If one is detected, an action field is 
generated containing routes that pass the obstacle on the left 
or right. In the following step, an action goal is selected, with 
the decision process also considering visible drift. The 
decision process focuses on the horizontal distance to the 

potential action goal, preferring shorter distances. In case of 
drift, however, action goals are additionally selected on the 
basis of free space, which offers more possibilities to 
counteract drift. The action goal is passed to the SCL which 
tries to reduce horizontal distance to the intended position, 
thereby steering left or right. At every time step, the SCL 
generates a prediction of the future position at the next time 
step. LL SoC is reduced if the prediction is violated due to 
drift. In case LL SoC falls below the CCL threshold, HL SoC 
is adjusted downwards. This signals the activation of CCL 
functions within the model, the fully conscious regulatory 
control. Now the model tries to infer the directionality of the 
drift at the CCL, generating a new action field that more 
accurately incorporates the drift properties. Subsequently, a 
decision is made again, which is passed on to the SCL. 

Figure 2. Visualization of an instance within a run in the 
Dodge Asteroids environment. The complete environment 
for this run is shown on the right. For scale purposes, a world 
height of 9,000 was chosen. The right axis label shows the 
time in seconds it takes the agent to get to that location. The 
enlarged section shows the agent's observation space, the 
space that can be visually perceived. Obstacles are scattered 
between the two walls on the left and right. The red bar 
signals a, in this case, visible drift that is directed to the right. 

Methods 
To test the dynamic decision-making capability of our model, 
we will run simulations in which world height will be set to 
18,000 and world width to 720. The observation space will 
be 720x720. These numbers correspond to the visualization 
of the Dodge Asteroids environment on a computer screen for 
an experiment with humans. The CCL threshold parameter 
will be varied while the threshold for prediction errors as well 
as the respective increase and decrease in LL SoC will be kept 
constant. We will specifically explore the behavior elicited 
by the computational model focusing on the statistical 
features of the imminent environment when it crashes. These 
environmental properties tell us what other capabilities the 
model needs to solve challenging decision moments. On top 
of that, we will compare the model behavior with that of 
human participants. This comparison will include crash 
situations. However, the focus will be on decision situations 
based on the paths taken between obstacles. In this way, we 
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can investigate, for example, the assumption that participants 
steer towards areas of more free space in case of visible drift. 
Presumably, however, human behavior in our environment 
will be based on more than this one policy. Adding more 
decision criteria to the CCL and simulating behavior again 
and again could incrementally lead to the accurate modeling 
of human dynamic decision-making. 

Ultimately, we would like to keep a low number of free 
parameters with unambiguous interpretability in our two-
layer architecture to allow for inference of parameter values 
from real human behavior at a later stage. We therefore 
differentiate between fixed factors and free parameters, such 
as the CCL threshold, that we plan to explore. 

Conclusion & Prospect 
We have explicitly defined the operations within the 
computational model. At present, we are in the process of 
implementing our two-layer architecture and simulating 
behavior within our custom Dodge Asteroids environment. 
This allows us to closely examine the hypotheses behind 
these operations based on the resulting behavior. 
Furthermore, we can compare the model behavior with 
already collected behavior of human participants and, if 
necessary, adjust the inner operations continuously to better 
match human dynamic decision-making. 

The two-layer architecture described here is intended to be 
the starting point for a more sophisticated computational 
model capable of making decisions in more complex 
environments. For this, we will add a function at the CCL that 
abstracts and thus simplifies the visual environment of the 
agent. We will introduce a convolution of the visual 
environment, with the pooling factor being a free parameter 
that reflects the granularity of the mental representation of 
what is visually perceived. The current state abstraction of the 
two-layer architecture, which is an abstraction of the control 
state, is thus extended by a state abstraction of the direct 
physical environment of the agent. This could lead to 
generating action goals that lie behind an obstacle. Therefore, 
we need to adjust the SCL as well because simply reducing 
the horizontal distance will not do the trick anymore.  

We will employ model-based deep reinforcement learning 
(Sutton & Barto, 1998) for the SCL. A forward model will 
generate sensorimotor predictions. Furthermore, during the 
training, the SCL will elaborate policies that will make it 
possible to realize even complex paths around obstacles. 
While this will remove explicitness from the 2-layer 
architecture, it also allows us to focus on the functions in the 
CCL and examine them in more detail. Overall, the model 
thus becomes more potent in making and executing dynamic 
decisions. These increased capabilities make it possible for 
us to introduce even more dynamics to the Dodge Asteroids 
environment and add more uncertainties, giving us a more 
variable test bed to explore the limits of human dynamic 
decision-making. 
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Introduction 

Workload while driving has been investigated in numerous 

forms. While most researchers focus on cognitive overload, 

increasing automation draws attention to the effects of low 

cognitive workload, which has shown to be harmful as well 

(e.g., Nijboer et al., 2016). The authors suggested that low 

driving performance in low workload scenarios may be due 

to drivers starting to mind-wander, which has been found to 

have a harmful effect on driving performance (Yanko & 

Spalek, 2014). 

An optimal level of workload – neither under- nor overload 

– can be reached by using an adaptive system that increases

or decreases workload. However, artificially increasing

workload during driving to prevent cognitive underload may

be dangerous as it can quickly have negative effects if the

system is miscalibrated.

In this work, we combined three different models in the 

cognitive architecture ACT-R (Anderson, 2007) to test 

different interventions intended to prevent harmful mind-

wandering during driving. 

Methods 

We combined the seminal driving model by Salvucci 

(2006) with a mind-wandering model by Van Vugt et al. 

(2015) to simulate the dangerous effects of mind-wandering 

while driving. 

The driving model used in this work is identical to the 

Salvucci driving model (2006) and consists of a driving loop 

that utilizes a two-point steering model to maintain a steady 

lane position. 

When the model starts mind-wandering, it starts retrieving 

random chunks from the declarative memory of ACT-R. 

According to the model by Van Vugt et al. (2015), we defined 

31 chunks in declarative memory. The chunks are divided in 

30 memories and a single chunk that encodes the spontaneous 

refocusing on the driving task (“remembering to drive”). 

Upon a successful retrieval of a memory, the model issues 

another retrieval and continues until it hits one of two criteria: 

a) the model retrieves the single chunk that encodes the

refocusing on the driving task or b) the model refocuses to

the driving task upon exceeding a lateral threshold as this was

assumed to be so disruptive that it would stop mind-

wandering.

During mind-wandering, the model does not initiate any 

driving productions. 

Next, we simulated varying levels of effort needed to 

process an auditory stimulus based on a listening model by 

Borst et al. (2010, exp. 3). We defined a “mild load” stimulus 

that needed only superficial processing and an “intermediate 

load” stimulus that recruited the full listening stream of the 

model by Borst et al. (2010) to process. When the mild-load 

stimulus appears in the environment (step 2 in Figure 1), it is 

stuffed into the aural-location buffer of ACT-R (step 3) and 

after attending the stimulus (step 4), the model refocuses to 

driving. However, the “intermediate load” stimulus needs 

additional processing as the audio signal needs to be decoded 

(step 5) and the meaning of the words needs to be accessed 

(step 6-7) before driving can be resumed.  

Using this procedure, we essentially simulated adaptive 

systems that may display auditory stimuli that require 

Figure 1: Sketch of the full model. 
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different amounts of cognitive workload to process. We 

devised four interventions intended to reduce mind-

wandering in four different models. 

We tested these interventions in a simple driving 

environment, where the model had to follow a lead car that 

was driving at a consistent speed with no brakes. The driving 

environment consisted of a highway with no turns or bends 

in the road. Each model run lasted for five minutes. 

Intervention models 

1. The mild load model simulates a system that injects

minor load continuously.

2. The intermediate load model simulates a system that

injects intermediate load to ensure the human is not

underloaded.

3. The warning model simulates the effects of a single

disruptive signal that is activated when the human is

underloaded and starts mind-wandering. The warning

is processed using the full listening stream.

4. The mild load + warning model simulates a system

that continuously injects minor cognitive load and, in

addition, plays a warning signal when the human starts

mind-wandering.

Results 

To evaluate the models, we calculated the number of mind-

wandering productions in each model run, which indicates 

the effectiveness of the respective intervention. 

The results show that the amount of mind-wandering can 

be reduced by all interventions (Figure 2). However, the 

mild-load model showed the lowest amount of mind-

wandering. In addition, the results indicate that inducing 

intermediate workload does not interrupt mind-wandering as 

quickly and therefore more productions may fire before an 

episode gets interrupted.  

Interestingly, adapting the intervention to the current 

mental state of the model (mind-wandering vs. driving) does 

not reduce mind-wandering more effectively than 

continuously inducing cognitive load while driving. Both the 

warning and the mild load + warning model show an 

increased amount of mind-wandering compared to the 

models that continuously induce a fixed load on the driver. 

Similarly, all interventions lead to a lower standard 

deviation of lateral position (SDLP) compared to the MW + 

driving model (Figure 3). However, the additional processing 

cost in the intermediate load model lead to a higher SDLP 

compared to the mild load model. In addition, even though 

the mild load + warning model shows fewer mind-wandering 

productions than the warning model, it displays the highest 

SDLP, indicating the worst driving performance. 

Discussion 

In this work, we compared different interventions intended 

to prevent mind-wandering during driving. We found that 

interventions imposing little workload showed the most 

effect. Furthermore, we found that interventions that adapt to 

the cognitive state of the model perform worse than 

interventions that continuously impose workload. 

In the continuous models the auditory processing is 

constantly ongoing, which may lead to a very fast 

interruption of the mind-wandering process if the auditory 

processing of a stimulus is almost complete.  However, in the 

adaptive models, the auditory processing always starts after 

mind-wandering has begun as the warning signal is only 

displayed when the model starts mind-wandering. This acts 

as a switch-cost and results in a longer time until the mind-

wandering process is interrupted.  

In conclusion, our models indicate that with increases in 

cognitive load, there comes an additional processing cost that 

affects driving performance negatively. In addition, 

interventions designed to prevent mind-wandering in driving, 

need to account for the cost of switching to a new stimulus. 
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Abstract
In adversarial operational environments like radar monitoring,
humans have to monitor large amounts of information, multi-
task, and manage threats. They may also face electronic dis-
ruption or attacks aimed at degrading radar monitor effective-
ness (a.k.a electronic warfare or EW). In these settings, it is
unclear how frequent changes in personnel, training, and up-
dates to visual displays affect an operator’s readiness. A recent
experiment used an analogous radar monitoring task to inves-
tigate effects of display density and electronic warfare on an
operator’s threat detection performance. Here, we present a
cognitive model capable of completing a scaled-down version
of that task to better understand the experimental results and
underlying cognitive processes. Similar to the human exper-
iment, our cognitive model completed conditions comprised
of changes to the nature of the task(s), the number of targets
to track, and the presence or absence of distractors, deemed
’friendlies’. Although this initial cognitive model uses primar-
ily default ACT-R parameters, it was able to capture patterns in
human performance across conditions. We present the results
and discuss limitations to address in future work.
Keywords: Cognitive model; ACT-R; Multiple object track-
ing; Multitasking

Introduction
Many tasks in modern environments require individuals to
maintain awareness of complex, evolving situations. For ex-
ample, air-traffic-control, lifeguarding, and childcare are all
situations in which an overlooked detail or event can lead to
serious consequences. It is important to understand the way
in which people maintain awareness in these complex situa-
tions, and the circumstances under which that awareness will
be impaired. Here we consider a particular variety of radar
monitoring that occurs in naval operational environments. In
these settings, operators must monitor visual displays with
many entities (tracks) and identify certain tracks for follow
on action. These situations often involve large amounts infor-
mation, multitasking, and continuous decision making. Op-
erators rely on systems like the Aegis Combat System (i.e.,
ACS) that continuously update visual displays with informa-
tion from multiple sources (Bath, 2020). Appropriate rep-
resentation of entity types (e.g., hostiles and friendlies) in
such systems is important for correctly identifying threats to
avoid accidents (Pogue, 2016) and it is not clear how frequent
changes to the system and training affects monitor’s readiness
(Fisher & Kingma, 2001).

Visual search literature provides constraints (Treisman &
Gelade, 1980; Glavan, Haggit, & Houpt, 2020) and mod-
els (Wolfe, 2021; Nyamsuren & Taatgen, 2013; Fleetwood

& Byrne, 2006) for representing human-like visual search.
However, dynamic stimuli are out of scope for most models.
Here, we present a cognitive model capable of completing a
laboratory radar monitoring task with dynamic stimuli. We
show how well it captures human performance and discuss
its limitations to address in future work.

MOT-EW Task
The MOT-EW task (Fox et al., 2023) served as an AEGIS
analog to investigate human performance in a laboratory set-
ting. The multiple object tracking (MOT) task (Figure 1) in-
volved four quadrants with moving hostiles and friendlies.
Hostiles (i.e., targets) were presented as red circles and
friendlies (i.e., distractors) were comprised of octagons and
diamonds that were pink or magenta. Objects had protruding
black track lines indicating the direction they were moving.
Hostiles were slightly larger and had longer track lines.

Figure 1: Depiction of the MOT-EW task, alarm states for
quadrants, and EW attacks from Fox et al. (2023).

The task involved turning on quadrant alarms when at least
one hostile was present and turning off alarms when hostiles
were no longer present in that quadrant (See Figure 1a). The
electronic warfare (EW) task used the same stimuli, but in-
volved a hostile disappearing for 1-4 seconds once during 30
second windows. An EW alarm was turned on after a hostile
had disappeared and off when it returned (see Figure 1b). In
Fox et al. (2023), participants completed 18 conditions with
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three independent variables: number of hostiles (i.e., 2, 4,
and 6), presence of friendlies (i.e., yes or no), and task (MOT,
EW, or MOT-EW). Each condition was completed in a sepa-
rate session that lasted approximately 12 minutes. Our goal
was to develop a cognitive model capable of capturing human
behavior in all of these 18 conditions.

MOT-EW Model
We implemented a cognitive model, we simply call the MOT-
EW model, in the ACT-R cognitive architecture (Anderson,
2007). ACT-R includes both symbolic and sub-symbolic
structures, and modules that represent systems of the mind.
The MOT-EW model uses the goal, vision, motor, and proce-
dural modules. The goal module serves as the models focus
and stores goal relevant information. The vision module al-
lows the model to perceive visual stimuli and direct attention.
The motor module allows the model to turn on/off alarms us-
ing a keyboard. The procedural module uses condition-action
rules (i.e., productions) to represent knowledge about how to
do things and to drive the behavior of the model.

Our approach was to construct the simplest model without
modifying parameters to test the ”out-of-the-box” capability
of ACT-R to complete the MOT-EW task. However, we had
to make three modifications so the model could reasonably
perform the task: 1) We modified the experimental task, 2)
changed one parameter, and 3) deviated from typical visual
perception methods allowing the model to reach and maintain
human-like performance. We start by explaining the MOT-
EW model task and then describe the model.

Model Task
Our overall goal for designing the model was to remain as
faithful as possible to the experimental task, and to default
ACT-R assumptions and design patterns. However, due to
several constraints we had to make changes to both the vir-
tual version of the task and the model. The first change we
made to the task was reducing the number of friendlies on the
screen. We reduced the number of friendlies for two reasons
(Figure 2). First, if we included several hundred objects, the
ACT-R visicon (i.e., collection of information available to the
visual module ”what” system) would get bogged down updat-
ing positions of moving objects. Interestingly, we did learn
that the model is capable of handling at least 100 objects, but
time and computation costs become unacceptable. Second,
ACT-R has limited visual search capabilities. By default, it
is possible to build a model that searches for more than one
feature simultaneously (e.g. find a red circle). However, this
will result in flat response time curves with respect to set size,
contrary to what has been well established in the visual search
literature for decades (Treisman & Gelade, 1980).

It would also result in the inability to account for effects of
the presence of friendlies, which were observed in the orig-
inal experiment (Fox et al., 2023). Alternatively, one could
search for one feature at a time (e.g. find a red object) and
search through the available objects linearly until an object is
found that matches both desired criteria (Fleetwood & Byrne,

Figure 2: Depiction of model MOT-EW task and alarm states
for quadrants and EW attacks.

2006). This produces set size effects, but still becomes pro-
hibitively slow for a display with hundreds of objects. These
limitations have motivated previous extensions to the vision
module, such as PAAV (Nyamsuren & Taatgen, 2013) and
JSegMan (Tehranchi & Ritter, 2018). However, these ca-
pabilities do not currently exist in a form that is compatible
with the version of ACT-R we used for the model (7.14). We
also made two minor changes to the task representation. The
model task uses colored letters instead of colored shapes and
the location of alarms were modified. Letter locations can be
modified, which ensured moving letters were still considered
the same object. The model task is therefore, a scaled-down
version of the experimental task.

Model Description

The model uses only four modules (i.e., goal, vision, motor,
and procedural memory) and there is no semantic or procedu-
ral learning. There are several important parameters related
to the task: visual attention latency, the speed of productions
(i.e., processes), and visual finsts (i.e., number and span). All
but one parameter, number of visual finsts, are left at default
values. The number of visual finsts controls how many visual
objects can be marked as attended and the span controls how
long they remain marked. We have changed the number of vi-
sual finsts to 16 (default is 4). In addition, we deviated from
the standard visual find-attend-encode loop. Typically, an ob-
ject is found, the model shifts its attention to that object, and
the object is then encoded (i.e., identified). In two instances,
we allow the model to skip the attend step to simulate hu-
man’s ability to extract information peripherally without di-
rectly fixating on it. We further explain why we adjusted the
number of visual finsts and deviated from the standard visual
processing loop in the following sections to provide context.

The MOT and EW tasks have their own set of processes,
but share several general productions. They are completed
separately in single task conditions or serially interleaved dur-
ing dual task conditions. The model was provided informa-
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tion about the task (i.e., MOT, EW, or DUAL) at the start of
each session (i.e., condition), but was not provided with in-
formation about the amount of hostiles or friendlies. We start
by describing the MOT processes, followed by EW, and then
the full model that interleaves both.

MOT Processes. For the MOT task, the model has to dif-
ferentiate between quadrants, determine their unique alarm
state, and identify which do and do not have a hostile. To
accomplish this, the model searches through quadrants one
at a time in a clockwise direction and makes alarm decisions
(Figure 3). Once a quadrant is selected (e.g., search NW),
the model orients to that quadrant’s coordinates and checks
the alarm state (i.e., check-alarm). Rather than attending and
encoding the alarm state, the model finds the quadrant and
encodes alarm state information or color peripherally without
shifting attention directly. Alarm state information for the
current quadrant is held in the goal buffer. After checking the
alarm state, the model finds objects in the quadrant (i.e., find-
object). If a friendly is found, it is marked as attended without
shifting attention (i.e., friendly-no-attend), like the quadrant
alarm state. The model continues to find objects until there
are no new objects to find (i.e., all objects marked) or a hos-
tile is found. In rare cases, the model shifts attention to a
hostile, but there is no object at that location. This occurs be-
cause the object can potentially move beyond the focal area of
the model. A reorient production (i.e., reorient) handles these
rare cases and reorients the model to find the nearest object
to the attended location, which should be the intended target.
This represents a fixation that was slightly off and corrected.

Once all objects are searched or a hostile is found, the
model makes an alarm decision. If the quadrant was com-
pletely searched and no hostile was found, the model turns off
the alarm if it is currently on (i.e., turn-off-alarm), or moves
to the next quadrant if it is already off (i.e., alarm-off-ok).
If a hostile is found, the model shifts attention to the loca-
tion of the hostile (i.e., hostile-attend). The subsequent pro-
duction encodes the hostile and either turns on the alarm if
currently off (i.e., turn-on-alarm), or moves to the next quad-
rant if already on (i.e., alarm-on-ok). The model turns on and
off alarms by pressing a keyboard key corresponding to the
quadrant using the punch command that assumes fingers are
resting on the home keys. After making a decision, the quad-
rant is marked as searched in a goal buffer slot and visual
finsts are cleared. The model leverages visual finsts to ensure
that quadrants are searched and setting the number of finsts
to 16 ensures that the model does not get stuck in an endless
loop within a quadrant (e.g., number of objects exceeds the
parameter). Furthermore, clearing visual finsts ensures that
the model does not skip over a marked object that moves into
another quadrant within the default finst span time of 3 sec-
onds. This could result in missing a hostile and either not
turning on a quadrant alarm or incorrectly turning one off.
The model completes the same process for each quadrant un-
til all quadrants are searched and then model starts another
quadrant search cycle (i.e., all-quads-searched).

Now that the MOT processes have been described, we pro-
vide an explanation for why we chose to skip the attend step
for quadrant alarms and friendlies. The standard time for each
production is 50ms, shifting attention takes 85ms, and punch-
ing (i.e. pressing a key) takes 210ms. The standard find-
attend-encode loop would take 235ms to encode a single ob-
ject or alarm state and changing an alarm state takes 260ms.
Therefore, it would take 730ms just to encode a quadrant
alarm state, encode a single object, and change an alarm state.
Additionally, it would take 965ms to encode two objects,
1200ms for three, and 1435 for four. For comparison, the
average human response time for changing quadrant alarm
states is 900ms for the single MOT task and that includes
conditions ranging from 2-6 hostiles and 498-994 friendlies.
Reasonable response times are important, because they are
related to alarm state change accuracy. By eliminating the
need for the model to attend to alarm states and friendlies, we
were able to achieve an average 1020ms response time across
varied hostiles and friendlies in the scaled-down MOT model
task. This decision also aligns with the human ability to ex-
tract information without direct fixation (Wolfe, 2021) and
change alarm states quickly. These decisions are more impor-
tant for EW processes, where the standard find-attend-encode
loop would result in unreasonable response times, even in this
scaled-down version of the experiment.

Figure 3: Diagram of processes to complete both MOT and
EW tasks.

EW Processes. To complete the EW task, the model lever-
ages MOT productions, which are considered general visual
search processes (i.e., check-alarm and find-object). The
model continuously checks whether an EW attack is occur-
ring (i.e., a hostile has disappeared), and the EW alarm is
turned on when an EW attack is ongoing and off when it ends
(i.e., hostile reappears). The model starts the EW task by ori-
enting to the entire screen (i.e., ew-search) and treating all
four quadrants as the search area. Next, it checks the alarm
state the same way as it does for MOT (i.e., check-alarm) and
stores the alarm state in a slot in the goal buffer. The model
then searches for objects (i.e. find-object), but contrary to
the MOT, it is an exhaustive search. There are a maximum
of 16 objects in one of the conditions (i.e., 6 hostiles and 10
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friendlies) and this is why we set the number of visual finsts
to 16. Although exhaustive, the model completes EW search
similar to MOT. It perceives friendlies without attending and
marks them as attended (i.e., friendly-no-attend). Using a
find-attend-encode loop for all objects would be more of an
issue for EW as there are more objects to search. It would
take between 1200ms (i.e., 2 hostiles without friendlies) and
4255ms (i.e., 6 hostiles and 10 friendlies) to do a complete
search and change the alarm state. For reference, the aver-
age human reaction time across number of objects was 734ms
(1006ms for our model). Just like during MOT, if the model
finds a hostile it shifts attention to its location (i.e., hostile-
attend). However, rather than moving right to an alarm deci-
sion as in the MOT, the model encodes the hostile and keeps
a count of how many hostiles have been attended (i.e., count-
hostiles). Similar to participants, the model does not know
how many hostiles to expect at the start of the session. For
generality across conditions, the model updates a slot in the
goal buffer that stores the amount of hostiles to expect. This
slot is set to the highest number of hostiles counted during a
session. For instance, if there are four hostiles and no EW at-
tacks occur during the first five seconds, the model will count
and set expected hostiles to four. If there was an EW attack
at the start of the session, the model would count three and
miss the EW attack. Once the model has performed its ex-
haustive search, it compares how many hostiles were counted
with the amount expected (i.e,. conditions for alarm deci-
sions). If it found the amount expected it turns off the EW
alarm (i.e., turn-off-EW-alarm) if already on or it does noth-
ing if the alarm is already off (i.e., EW-alarm-off-ok). If it
found less hostiles than expected, it turns on the EW alarm if
currently off (i.e., turn-on-EW-alarm) or does nothing if the
alarm is already on (i.e., EW-alarm-on-ok). There is one ad-
ditional alarm decision production (i.e., hostile-vanish-turn-
on-EW-alarm) that is analogous to a person seeing a hostile
disappear. A hostile could disappear after the model finds
a hostile and starts shifting attention to that hostile. This
hostile-vanish production handles this by turning on the EW
alarm. Once a decision is made, the finsts are cleared and the
model starts another EW check.

MOT-EW Processes. The complete model (Figure 3) is
used for single and dual task conditions. During the dual task
conditions, the model has to change quadrant alarm states
based on hostile presence and change the EW alarm depend-
ing on whether an EW attack is occurring. The current model
treats these as separate tasks and interleaves them. MOT pro-
cesses are given priority and EW checks are initiated after all
four quadrants have been searched. Therefore, a full quadrant
search and EW check can be considered a complete cycle in
the dual task conditions. After all quadrants are searched, the
all-quads-search production fires, followed by the EW-search
production that begins the EW check. One exception to this
cycle is the production that turns on the EW alarm if a hostile
disappears while shifting attention to a hostile (i.e., hostile-
vanish-turn-on-alarm), which can supersede the cycle.

Results
We assess model performance and show how well it fits col-
lected human data from the MOT-EW experiment (Fox et al.,
2023). The experiment included 28 participants and a within-
subjects 3 (amount of hostiles: 2, 4, and 6) x 3 (task: MOT,
EW, and MOT-EW) x 2 (friendlies: present and not present)
design. We simulated 25 participants for all 18 conditions. As
the model does not possess individual differences, the model
essentially simulates one participant completing the experi-
ment 25 times. To assess how well the model captured the
human data, we compared single and dual task performance
for MOT and EW separately. We included both accuracy
and response time for correct responses (i.e., time for correct
alarm changes) as the dependent measures. For each com-
parison, we assess behavior patterns in dependent measures
across variations in the number of objects (i.e., amount of
hostiles and presence of friendlies). We used correlations to
assess the ability for the model to capture patterns across con-
ditions and use root mean squared error (RMSE) to assess the
average difference between the model and human data.

Figure 4: Model fit to human accuracy (a) and RT for correct
responses (b) across all MOT conditions.

MOT Task
For the MOT (Figure 4), the model captured accuracy and re-
sponse time patterns for single and dual task conditions (p <
.05). However, the average difference for dual task accuracy
(RMSE = .19) and response time (RMSE = 820ms) was higher
than single task accuracy (RMSE = .07) and response time
(RMSE = 210ms). The model had a larger difference between
single and dual task accuracy (.15) and response time (787ms)
than human data (.02 and 106ms, respectively). Therefore,
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the model was better able to capture human performance in
the single task MOT, then dual task. We also assessed the
overall relationship between accuracy and response time in
single and dual conditions for the human data and model. For
the single task MOT, there were non significant negative rela-
tionships between accuracy and reaction time for both human
(r(10) = -.78, p = .07) and model data (r(10) = -.63, p = .177).
However, there were significant negative relationships in the
dual task MOT for both human (r(10) = -.82, p = .044) and
model (r(10) = -.91, p = .010).

Figure 5: Model fit to human accuracy (a) and RT for correct
responses (b) across all EW conditions.

EW Task
For the EW task, there were clearer average differences be-
tween human and model performance. The model captured
the pattern for the EW single task accuracy, but not dual task
accuracy (p > .05). The model had a higher average differ-
ence for EW accuracy in single (RMSE = .21) and dual task
(RMSE = .41) compared to the MOT (RMSE = .07 and RMSE
= .19, respectively). Similar to the MOT, the model had a
greater difference in EW accuracy between single and dual
task (.2) compared to humans (.01). The model was able to
capture EW response time patterns for both single and dual
task (p < .05) and similar to the MOT, the average difference
was higher for the dual task (RMSE = .5) compared to the sin-
gle (RMSE = .33). However, the average difference for EW
dual task was lower than the MOT dual task (.5 compared to
.82), suggesting EW processes had a stronger negative effect
on MOT in the dual task conditions than vice versa. Again,
the human data demonstrated a lesser difference between sin-
gle (.01) and dual task (415ms) compared to the model (.2
and 594ms, respectively). We also assessed the relationship

between accuracy and response time for the human data and
model. In the single task EW, there were significant nega-
tive relationships for both human (r(10) = -.98, p = .001) and
model (r(10) = -.98, p = .001). There were also significant
negative relationships in the dual task EW for human (r(10)
= -.94, p = .004) and model (r(10) = -.97, p = .001).

Table 1: Relationships between accuracy and RT.

Condition df r p

M
od

el
H

um
an

Single MOT 10 -.78 .066
Dual MOT 10 -.82 .044*
Single EW 10 -.98 .001*
Dual EW 10 -.94 .005*

Single MOT 10 -.63 .177
Dual MOT 10 -.91 .010*
Single EW 10 -.98 .001*
Dual EW 10 -.97 .001*

Discussion
The model was able to capture behavior patterns for both ac-
curacy and response time, via significant correlations, for all
but one task and condition (i.e., EW dual task accuracy). Al-
though, the average difference in performance as measured by
RMSE varied and in some cases, was rather high. MOT per-
formance was captured better than EW, particularly with the
single task. There was more deviation in MOT accuracy and
response time for the dual task compared to the single task,
which was not found in the human data. Interestingly, the
model dual task average difference for MOT response time
was greater than EW. This suggested that completing EW had
a stronger effect on MOT performance in the dual task condi-
tions than number of hostiles and presence of friendlies.

The model was not able to capture EW behavior as well.
In contrast to MOT performance, model performance for EW
is consistently lower for both single and dual. This suggests
the EW model processes are not as well aligned with humans
and is likely contributing to the performance decrement seen
in the MOT during dual task. The model takes longer than
humans to change EW alarm states, suggesting humans are
doing EW checks differently or potentially adopting differ-
ent EW strategies across conditions. For example, the model
EW checks involve exhaustive search regardless of condition,
and tasks are treated as separate and are interleaved serially
instead of processed in parallel (e.g., multitasking). Given
the nature of the model EW checks, there should be a rather
linear decrease in EW performance as the number objects to
search increases and this is evident in the EW figures (Figure
5). We see a similar pattern with the stronger negative trend
in the MOT dual task accuracy. The trend for the MOT dual
task reaction time is consistent with that of single task, but re-
sponses took an average of 787ms longer across conditions.
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As stated, this model was intended to test out of the box
capabilities of ACT-R and serve as a baseline. We believe we
have achieved close to the best performance possible using
canonical ACT-R without adjusting more than one parameter.
There are of course, limitations with the existing model. Next
we discuss these limitations and ideas to improve the model.

Limitations and Future Work
The model has several limitations: 1) There is no variation
in task execution for single and dual task conditions (i.e., no
strategies or individual differences), 2) the speed of process-
ing and visual attention is notably slower than humans, and 3)
EW performance is notably worse than MOT and is the likely
cause for the decrease in dual task MOT performance.

The model has a rigid approach to completing the MOT,
EW, and interleaving them in the dual task condition. There
are no strategies and the model does not learn. In the hu-
man data, there is more variation within and between partici-
pants compared to the model. However, this is not surprising
given the model could be considered one individual complet-
ing the experiment repeatedly. Using current and future hu-
man data could identify strategies, condition specific strate-
gies, and perhaps clusters of individuals or types that have
similar patterns of behavior. This would inform the ability of
the model to capture individual differences and adding learn-
ing mechanisms enables strategy shifts across conditions. In
addition, we could consider threaded cognition (Salvucci &
Taatgen, 2008) as a method to enable multitasking rather than
treating tasks as separately and interleaving them.

As mentioned, ACT-R does not currently have vi-
sual search capabilities beyond deterministic or featureless
strategy-based search. To facilitate visual search, we devi-
ated from the typical find-attend-encode loop and allowed the
model to attend some stimuli peripherally. This decision was
guided by the visual search literature (Wolfe, 2021) and was
a plausible way to speed up visual search processes. Despite
our efforts, it was clear that the model took longer to change
alarm states than humans, which also relates to accuracy. Fur-
thermore, the model interacted with a scaled-down version
of the task presented to human participants. To address vi-
sual search capabilities and improve model performance, we
plan to revive or implement features from the PAAV mod-
ule (Nyamsuren & Taatgen, 2013). PAAV has both bottom
up (e.g., color and shape salience) and top-down (e.g., strat-
egy based) features that enable more directed visual search
observed in humans. Furthermore, this should eliminate the
need for exhaustive serial search. After making progress with
visual search capabilities, we plan to scale up the model task
to better align with the experimental task.

The model performed worse for the EW task, which ap-
peared to reduce MOT performance in the dual task condi-
tions. We believe this resulted from: 1) flawed EW processes,
not as well aligned with human behavior and 2) limited visual
search capabilities that encouraged exhaustive serial search.
We plan to address these points with the future work outlined
above: 1) better understand and implement strategies and 2)

make some improvements to visual search capabilities.

Conclusions
We successfully implemented a simplified model in ACT-R
capable of performing a complex radar detection task and
testing hypotheses about the underlying cognitive processes.
The model provided a reasonable fit to human data across 18
conditions and serves as a solid baseline by demonstrating the
out of the box capabilities of ACT-R. Future work will extend
this model to address identified limitations of the architecture,
model performance, and the scaled-down model task.
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Abstract
Analogical reasoning is a core cognitive process. Models have
implemented features of analogical reasoning with varied suc-
cess. Successful models approximate analogical mapping but
are not focused on cognitive plausibility. Here, we present and
demo an integrated model framework leveraging a component
model of analogy (Structure Mapping Engine) to extend a cog-
nitive architecture (ACT-R) for cognitively plausible analogi-
cal mapping to inform higher-order cognition.
Keywords: ACT-R; Structure mapping engine; Analogy; Sim-
ilarity; Generalizability; Cognitive modeling

Introduction
Analogical reasoning is important for understanding (Hough
& Gluck, 2019) and involves the cognitive process of map-
ping: finding a common or similar relational structure be-
tween systems (e.g., concepts) (Gentner, 1983). For instance,
finding commonalities between an atom and a solar system
(i.e., force causes one body to revolve around another). Map-
ping is a main component in models of analogy, but is less
common in cognitive architectures (Gentner & Forbus, 2011).
Here, we present a proof-of-concept leveraging strengths of a
cognitive architecture and model of analogy. We drew inspi-
ration from the path mapping model (i.e., PM) (Salvucci &
Anderson, 2001) implemented in the ACT-R cognitive archi-
tecture (Anderson, 2007) and the structure mapping engine
(i.e., SME) (Falkenhainer et al., 1989; Forbus et al., 2017).

PM used direct word matches or partial matching based on
provided similarity values to complete a series of retrievals.
Retrieved chunks are ”chained” to represent a path from an
object to its root (i.e., highest level) relation. The mapping
process then compared a source path (e.g., electromagnetism
causes electron to revolve) to one in an identified target (e.g.,
gravity causes planet to revolve).

SME is a computational implementation of Structure-
mapping theory (i.e., SMT) (Gentner, 1983). The theory
suggests mapping new (i.e., target) and existing (i.e., base)
knowledge structures underlies experiential learning. While
mapping, one assumes relations in the base also exist in
the target. There is a preference for relations (e.g., sun is
larger than planet) over attributes (e.g., sun is yellow), and
interrelated or second-order relations (e.g., sun has more
mass/gravity than planet causing planet to revolve around
sun) over lower-order (e.g., sun is hotter than planet). This
preference for greater coherence is referred to as the system-
aticity principle and it guides the mapping process. In SMT,

mappings are restricted to one-to-one correspondence (i.e.,
one item in base maps to only one in target) and are struc-
turally consistent (i.e., if second-order relations map, then
their first-order must too). SME incorporates these features,
generates matches between objects and relations (i.e., match
hypotheses), and calculates structural evaluation scores.

Proof-of-concept Cognitive Model
The proof-of-concept framework includes a model imple-
mented in ACT-R leveraging SME as an external module to
map knowledge structures and quantify similarity. We demo
initial capabilities using sport representations (Figure 1).

Figure 1: Proof-of-concept demo model processes and chunk
types with SME interactions outlined in blue.

The demo model was provided knowledge implemented as
chunks in declarative memory (i.e., DM) that represent sports.
There are three chunk types: 1) Sport chunks represent the
sport and contain two entities that ”best” represent it, 2) en-
tity chunks contain single entities, and 3) relation chunks con-
tain a relation and entities ordered to represent their roles.
The model is given a sport (i.e., base) and productions guide
the model through a series of retrievals to compile all infor-
mation (i.e., chunks) for that sport. SME compiles this in-
formation into two complete structured representations: 1)
dgroup describes systems as a list of entities and predicates,
and 2) a common vocabulary file. After all base sport chunks
have been retrieved, the model finds another sport in mem-
ory (i.e., target), compiles it, and maps the base and target.
The mapping production passes these structured representa-
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tions to SME and it computes: 1) match hypotheses or pairs
of items that align between base and the target, 2) structural
evaluation quantifies the degree of match, and 3) candidate
inferences extrapolate information from base to target. The
demo model uses a fraction of structural evaluations and nor-
malizes them to 1. Normalized values are passed to ACT-R
and are multiplied by default chunk similarity values, which
default to -1 due to max similarity and difference defaults.
After a target sport is mapped and similarity values are set,
targets are sequentially retrieved, compiled, and mapped un-
til all have been mapped to the base sport. Then the model
uses similarity values to retrieve the best matching target.

Demo Model Results
We tested the demo model with knowledge about 8 different
sports: soccer, water-polo, baseball, kickball, ping-pong, ten-
nis, volleyball, and badminton (Figure 2).

Figure 2: Example sport representations

Each has a single sport chunk with two entities (e.g., soc-
cer ball goal), several entities (e.g., entity field), and several
relation chunks with two entities (e.g., play game ball). Rela-
tion chunks were designed to be general (e.g., play and use),
the order of entities shows their role (e.g., play game field
means the game is played on a field), and some relations are
interdependent (e.g., use player foot and kicks foot ball).

Figure 3 shows match hypotheses between soccer and bad-
minton. Entities are matched based on their roles within rela-

Figure 3: Match hypotheses between soccer and badminton

tions. For instance, foot and hand matched with racket (use),
field matched with court (play), ball is matched with shuttle-
cock (score), and goal is matched with bounce (score).

In Figure 4, we show chunk similarities in ACT-R post-
SME interaction. When soccer was the base sport, water-
polo was the best match (i.e., most likely to be retrieved),
followed by baseball and kickball. We note match similar-
ities are low, which we suspect is due to our normalization
procedure, which we plan to improve.

Figure 4: Similarities for soccer after integration in ACT-R.

Discussion
We presented a proof-of-concept framework: A cognitive
model implemented in ACT-R that leveraged SME as an ex-
ternal module to map structures and set similarity. For the
demo, we provided representations of sports to ACT-R DM
and through a series of processes, the model successfully
mapped sport representations to the base and responded with
the ”best” match. Through the addition of a SME module we
provided ACT-R with a different way to learn by experience:
abstractly comparing new knowledge to existing knowledge
(i.e. analogy). Using ACT-R allows easy exploration of in-
teractions with other cognitive phenomena like fatigue and
workload. In future work, we plan to refine the framework
and explore its capabilities to facilitate things like: 1) analog-
ical transfer for realistic situations and 2) situation awareness
in multi-modal decision making tasks.
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Abstract

Individual beliefs and expectations shape how we per-
ceive our surroundings. In a complex and ever-changing
world, prior beliefs need to be flexibly integrated and
updated during the decision process. The goal of this
study was to dissociate the cognitive mechanisms in-
volved in the integration of learned beliefs in visual deci-
sions under uncertainty. Combining two well-established
cognitive models – Hierarchical Gaussian Filtering and
the Drift Diffusion Model – this study replicates the well-
established finding that priors bias the starting point of
evidence accumulation and the rate of evidence accumu-
lation. Critically, the results also reveal a decrease in non-
decision time and an increase in the amount of evidence
accumulated when the belief was congruent with the out-
come. Collectively, these results provide evidence for the
hypothesis that prior beliefs are implemented into visual
decisions through distinct cognitive mechanisms.

Keywords: Uncertainty; Prior; Belief Update; Visual Decision;
Modeling

Introduction

Beliefs and expectations, or priors, shape our perception of
the environment (Gold & Stocker, 2017). In an ever-changing
world, priors must be flexibly and continuously integrated
into sensory decision processes to guide adaptive behavior.
Nonetheless, its underlying cognitive mechanisms are not well
understood. The Drift Diffusion Model (DDM) is a widely used
model for studying visual decision-making (Gold & Shadlen,
2007; Ratcliff & Rouder, 1998). Previous studies have shown
that priors can increase the starting point of evidence accumu-
lation and the drift rate (Dunovan & Wheeler, 2018; Dunovan,
Tremel, & Wheeler, 2014; Thakur, Basso, Ditterich, & Knowl-
ton, 2021). However, these studies often overlook the poten-
tial effects of priors on decision threshold and non-decision
time parameters.

The goal of this study was to dissociate the effects of priors
on multiple cognitive mechanisms in visual decisions. Specif-
ically, I tested how the strength of prior beliefs affects: (a) the
integration of momentary sensory evidence; (b) the amount
of evidence required to decide; (c) pre-stimulus presentation
processes; and (d) non-evidence accumulation effects.

Method

Eight participants completed a behavioral task that required
tracking the cue validity across trials and using the cue infor-
mation flexibly. The task combined a reversal learning and a
random dot motion discrimination task (Figure 1) and involved
three main decisions per trial: cue choice, confidence, and
motion direction. The identity of the cue was determined by
its color, and the cue direction was displayed with a prede-
termined but unknown validity. Each participant completed a
maximum of 320 trials, which were divided into informative
and non-informative blocks. The interval between blocks var-
ied from 15-30 trials. The validity of the cue in informative
blocks was set at 80% or 30%, while the validity of the cues
in non-informative blocks was set at 30% for both cues. At the
end of each trial, participants received rewards for their mo-
tion judgment and cue choice. The reward for the cue choice
depended on the confidence reported earlier in the trial.

Results

Belief Tracks Subjective Confidence and Accuracy

To evaluate the validity of the estimated belief, we tested
whether belief strength is associated with confidence and the
true contingency. Belief strength was higher when participants
reported high confidence in their cue choice (t(7) = 5.31, p =
.001). Furthermore, when belief strength was higher, partici-
pants chose the best cue for the block more often than when
belief strength was low (t(7) = 24.52, p < .001). Altogether,
these findings provide evidence of validity for trial-wise mea-
sures of belief strength.

Multiple Cognitive Mechanisms of Prior Integration

The results show that the strength of belief affects various as-
pects of visual decision-making (Figure 2). When the cue was
valid, stronger beliefs increased the drift rate (rate of evidence
accumulation), increased the response bias towards the di-
rection indicated by the cue, increased the threshold (amount
of evidence needed to reach a decision), and reduced non-
decision time (secondary processes involved in the decision
execution). In contrast, when the cue was invalid, stronger
beliefs had the opposite effects on these parameters. Overall,
belief strength modulates the DDM parameters depending on
the accuracy of the belief for a given trial.

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

153



Figure 1: Behavioral task. During each trial, participants made three decisions: selecting a cue, indicating their level of
confidence in the cue, and indicating the direction of the motion they observed. The motion stimulus consisted of a series of
moving dots, with a small subset of them (up to 20%) moving in a specific direction. At the end of each trial, participants received
two rewards: one for their judgment of the motion and another for their choice of cue.

Discussion

The main goal of this study was to behaviorally dissociate
the effect of belief on visual decision-making using trial-wise
estimates of belief strength. The effects on drift rate reflect
the ramping of activity in parietal regions that scale with the
strength of evidence (Hanks et al., 2015). In the present study,
the effect of belief strength on the drift rate is congruent with
biased evidence sampling driven by the post-decisional confi-
dence (Rollwage et al., 2020).

The effects on the starting point are usually interpreted as
a choice response bias (Dunovan et al., 2014; Dunovan &
Wheeler, 2018). The origin of such biases in the starting point
can be a result of a tendency to accept belief-congruent evi-
dence, motor preparation (de Lange, Rahnev, Donner, & Lau,
2013), or even an increase in the sensitivity of low-level sen-
sory representations before stimulus presentation (Kok, Fail-
ing, & de Lange, 2014). Although DDM does not dissoci-
ate between these subcomponents, it is possible to constrain
them neurophysiologically (Harris & Hutcherson, 2022).

Effects on the evidence accumulation threshold are associ-
ated with speed-accuracy trade-offs (Bogacz, Wagenmakers,
Forstmann, & Nieuwenhuis, 2010). In the present study, we
observed an effect of belief on decision threshold, suggest-
ing that belief strength increases the amount of evidence that
needs to be accumulated when the belief is congruent with
visual input. This effect might be caused by a compensation
mechanism to maintain high accuracy when the belief is in-
valid for a particular trial.

The non-decision time parameter has often been neglected
in the literature. Despite its marginalization, it might reflect im-
portant processes. For example, the latency of N200 poten-
tials, which is associated with the encoding of visual stimuli,
seems to track non-decision times (Nunez, Gosai, Vandeker-
ckhove, & Srinivasan, 2019). The effect of non-decision time
found in this study could emerge from the evidence-encoding
onset, evidence accumulation onset, or post-decision motor
execution time (Kelly, Corbett, & O’Connell, 2021). In the
future, we will leverage the temporal dynamics of decision-
making using neurophysiological recordings to constrain and
dissociate these parameters (Harris & Hutcherson, 2022).

Figure 2: Effect of belief strength on visual decision-
making. Left: Posterior distributions of within-subject effects
of belief strength for each DDM group-level parameter are
shown according to cue validity. Right: 95% Highest Density
Interval (HDI) of the difference between posterior distributions
for each parameter.
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The Case for Modeling Transitions of Control 

Current commercial cars can assist the human driver with 

various driving tasks (i.e., SAE levels 1, 2; SAE Int., 2018). 

The next generation of semi-automated vehicles is expected 

to take over more driving tasks, giving the human driver more 

a monitoring role. Specifically, in SAE level 3, the car can 

drive independently in some operational domains, but can 

prompt the driver for help, in which case they must assist. 

This is a “transition of control” process from car to human. 

Transitions of control are interesting to describe using 

cognitive models, as such models can help to understand the 

cognitive process that the human driver goes through. In 

addition, cognitive models can aid in the design of the vehicle 

and its interfaces (cf. e.g., Oulasvirta, 2019; Salvucci, 2009). 

For example, by quantifying how long it might take to 

transition control, and in what modality information can be 

best presented to avoid user overload. Indeed, there is already 

a wide set of models for human-automated vehicle interaction 

(Janssen, Baumann, Oulasvirta, Iqbal, Heinrich, 2022) 

The current paper presents our first steps in developing 

formal, cognitive model-based, predictions for SAE level 3 

transitions of control scenarios. Based on a theoretical model 

of attention interleaving, we developed a tool that breaks 

down transitions of control in five steps. We then use the tool 

in combination with empirical literature to predict response 

times for different steps of the interleaving process. 

Theoretical Model: Interruption Handling 

Transitions of control are mostly studied as relatively fast 

responses. For example, in a meta-review of 129 studies by 

Zhang et al (2019), the time between an alert and the first 

human action (e.g., steering movement, brake press) is 

reported. These studies reported fast response times (M = 

2.7s, SD = 1.5s; only one study had a response time over 

8.5s). This is consistent with design-oriented research that 

suggests having alerts 5-8 s before a critical incident (e.g., 

Gold et al., 2013). In effect, this describes transitions of 

control as a fast task switch in which almost all attention is 

dedicated to one task at a time. 

As argued elsewhere in detail (Janssen et al., 2019), an 

alternative is to describe transitions of control as task 

interruption handling. In such scenarios, people might not 

immediately give up on their original (non-driving) task, but 

instead take time to transition from non-driving to driving. It 

is motivated by a.o. user needs for automated vehicles in 

which performance on non-driving tasks is central (e.g., 

Pfleging et al., 2016) and the assumption that transitions of 

control will become rare, yet critical events. Moreover, alert 

processing might be limited under automated vehicle 

conditions (Van der Heiden et al., 2022), and models from 

the ICCM community have shown that alerting people at the 

wrong moment can have detrimental consequences for later 

tasks (e.g., Borst et al., 2015; Janssen et al., 2012). Therefore, 

people might want to defer giving up on a task until they 

reach a “natural breakpoint”. 

Janssen et al. (2019) describe transitions of control through 

the lens of interruption handling (cf. other domains, e.g., 

Boehm-Davis & Remington, 2009; Borst, et al., 2015). The 

core of the model is that humans go through a series of stages 

before fully taking control of a vehicle, as illustrated in Figure 

1. While the driver is performing an original task (stage 0),

they notice an alert (stage 1), which leads to disengage briefly

with the original task (stage 2), to then orient to the driving

task (stage 3). If time allows, they interleave between

rounding off their original task and orienting to the driving

task, before fully suspending (stage 4), and then taking

physical control of the vehicle (stage 5).

The first studies indeed suggest that drivers take longer to 

take control if they are given the opportunity by an early “pre-

alert” (Borojeni et al, 2018; Van der Heiden et al., 2017) and 

that they go through some of these interruption stages 

(Nagajaru et al., 2021). However, to understand the process 

deeper, a model implementation is needed of all stages.  

Mapping Empirical Data to Processes Stages 

As a first modeling step, we mapped the empirical 

literature to the processing stages proposed in Janssen et al. 

(2019). Specifically, we analyzed all studies in the meta-

Figure 1: Stages in Janssen et al (2019)’s interleaving model 
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review of Zhang et al. (2019) to identify which details on 

response times map to which processing stage. We also 

annotated the characteristics of each study, such as alert 

modality and modality of non-driving task.  

The software then predicts the best fitting distribution of 

response times for each stage. In the fitting process, we 

assume that response time data has positive skewness (cf. 

Ratcliff, 1993) and that there are no negative response times. 

The tool can then be used to visualize likely response times 

for each stage of the take-over process, and how this varies 

by study characteristics. As an example, Figure 2 shows the 

expected distribution times for the interval between initial 

alert and stages 2, 3, 4, and 5 respectively, with different 

distributions based on alert modalities. For some stage (e.g., 

stage 4, bottom-left) there is no data on specific modalities. 

The Figure also highlights that having a bi-modal alert (red 

data) tends to systematically impact the early stages of alert 

processing (stages 2, 3, and 4), but less the eventual response 

time (stage 5). This is consistent with more general literature 

that shows the benefits of multi-modal alerts, but adds a level 

of model precision by quantifying the times for each stage. 

General Discussion 

The presented model is only a first step towards 

understanding the process of transition of control in more 

detail. We implemented a theoretical model in such a way 

that it can map to existing literature and generate process 

model related predictions. These more detailed predictions 

can be used to calibrate even more detailed cognitive models. 

More generally, the tool can be used to guide design decisions 

and estimate in what stage a design intervention (such as alert 

modality) might impact performance most. 
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Abstract

This poster presents interim results from an ACT-R-based sta-
tistical model of a series of lexical decision experiments in Ko-
rean. The model uses two tiers of spreading activation, one
of which represents semantic distance, and the other of which
represents the effect of the Hanja writing system on the mental
lexicon. Modelling the data requires assumptions to be made
about the relationship between the tiers of spreading activa-
tion, and about the method of computing semantic association.
The poster is supported by an interactive browser interface that
allows participants to vary these assumptions, as well as the
standard ACT-R spreading activation parameters, and explore
how this impacts the model fit.
Keywords: ACT-R; lexical decision; priming; spreading acti-
vation;

Introduction
Korean uses two writing systems: Hangul, an alphabet of
individual letters which are written in syllabic groups; and
Hanja, an ideographic system that uses traditional Chinese
characters. Words with a Chinese origin form around two-
thirds of the Korean lexicon, and both Hangul and Hanja writ-
ten forms are available for these words1. Figure 1 shows how
the word hakkyo ‘school’ is represented in the two systems.

Figure 1: Hakkyo ‘school’ as (a) Hangul and (b) Hanja

Hangul is the first writing system that children learn and is
the more frequently used system overall. However, Hanja are
often used in South Korea to disambiguate homonyms or in
signage and some knowledge of Hanja is an expected part of
literacy. The South Korean Ministry of Education maintains
a list of 1800 high-frequency Hanja that are learned as part
of the school curriculum: 900 at middle school and a further
900 at high school.

Y. Kim (2019) investigated how knowledge of Hanja is
stored in memory, looking specifically at its impact on the or-
ganisation of the mental lexicon. She carried out two primed
lexical decision experiments, one intra-modally with primes
presented in Hangul, and a one cross-modally with primes

1Unlike Kanji in Japanese, Korean does not use Hanja to repre-
sent words of native Korean origin.

presented aurally. In both experiments, the targets were pre-
sented visually in Hangul. Stimuli were drawn from sets of
four disyllabic words, comprising three primes, categorised
as Unrelated, Direct or Indirect, and one target. In each stim-
ulus set, the Unrelated prime had no phonological or seman-
tic relationship to the target. The speed of retrieval of the tar-
get following the Unrelated prime was taken as the baseline
retrieval time for the word. The Direct prime had a semantic,
but not a phonological relationship to the target. Crucially,
the Indirect prime had neither a semantic nor a phonological
relationship with the target. However, the Indirect and Direct
primes in a set contained Hanja from the same phonological
cohort, and thus the Hanja writing system provided an indi-
rect connection between prime and target.

Each participant saw each target only once, preceded by
one of the three primes. A Latin square design was used,
to balance the conditions across and between participants.
Half of the trials were foils, consisting of a random lexical
prime paired with a non-word target. In the intra-modal ex-
periment the prime was presented for 300ms, followed by a
blank screen for 250ms, before the target was presented for
300 ms. In the cross-modal experiment, the target was pre-
sented immediately after the audio signal had finished and
again remained on the screen for 300ms. Participants then
had 1500ms to give their lexical decision before the next trial.

Y. Kim’s results present a mixed picture. The expected
semantic priming effect was not found for all Direct–target
pairs. However, for those stimulus sets where direct seman-
tic priming was observed, there was also a small but statis-
tically significant priming effect for the Indirect–target pairs.
Y. Kim concludes that the facilitation observed with an In-
direct prime arises because of activation of the entire Hanja
cohort associated with the morphemes of the prime. This ac-
tivation includes the Direct prime, from which there is further
spreading of activation because of this word’s semantic asso-
ciation with the target (Figure 2).

The model
The model assumes that variations in decision latency for a
particular target across the three conditions arise primarily
from differences in the activation of lexical memory. This,
following Y. Kim, is assumed to arise from semantic simi-
larity which, for the Indirect–target pairs, is moderated by
spreading activation between the Indirect prime and its asso-
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Figure 2: Proposed activation spreading (Y. Kim, 2019)

ciated Direct prime. Because the primes were presented for
a duration that allowed conscious perception (300ms visually
or at a normal speaking rate aurally), priming is also assumed
to be conscious. In ACT-R terms, the model assumes when
the prime is read or heard, its lexical entry is retrieved and
a chunk containing information including its meaning and
its associated Hanja with is created and held in the Imaginal
buffer. Spreading activation from this chunk is then available
when the target appears on the screen.

For the Direct prime, we assume that there is one tier of
spreading activation, which derives from semantic associa-
tion. The model’s level of semantic activation is based on co-
sine similarity measures derived from the Korean vector set
(Grave, Bojanowski, Gupta, Joulin, & Mikolov, 2018) avail-
able for the Fasttext word representation system (Bojanowski,
Grave, Joulin, & Mikolov, 2016). However, an alternative
approach using Korean WordNet (J. Kim, 2018) and the WN-
LEXICAL module developed by Emond (2006) is also possi-
ble.

For the Indirect prime, we propose that there are two
tiers of spreading activation. The first of these is calculated
through symbolic representations of Hanja knowledge, and
the second tier is derived from semantic association as for
the Direct prime. Spreading activation in ACT-R is deter-
mined by equation (1), where i represents the chunk receiving
spreading activation, j represents chunks held in the slots of
the chunk in a buffer that produces spreading activation, and
k represents the buffers that produce spreading activation.

Si = ∑
k

∑
j

Wk jS ji (1)

In the model, we assume that only the Imaginal buffer is
spreading activation and so k = 1. Parameter j is the co-
hort size of a syllable, the number of Hanja that are asso-
ciated with a particular Hangul morpheme. This varies not
only per Hangul, but also with the level of knowledge of the
speaker. For example, a speaker with Middle School knowl-
edge of Hanja can associate the morpheme [pj2N] with 3

Hanja, whereas a speaker with High School knowledge will
have learned two further Hanja, giving a cohort size of 5. For
the morpheme [s2], the corresponding cohort sizes are are 4
and 12 respectively.

The strength of association S ji is determined by the size of
the fan of j, that is, the number of words in the vocabulary
that contain Hanja j. Initial assumptions for this parameter
take into account lexical frequency as well as the level of
Hanja knowledge: work to refine this element of the model
is ongoing.

Alongside the poster, a Shiny app (Chang et al., 2023) has
been produced that shows how the model fits with experi-
mental data. This allows interactive exploration of the effect
of parameter values on the overall fit.
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Abstract
Recent studies suggest that errors facilitate learning in certain
conditions. Despite this, reinforcement paradigms dominate
learning methods, subscribing to the narrative that errorless
learning is the foundation of an ideal learning environment. If
we continue to view learning from this restrictive perspective,
we may fail to capture and apply the benefits of errors. In this
paper, we investigate two potential mechanisms of learning
from errors. Participants (N = 61) learned word pairs in either
a study or error trial before taking a final test. Supporting past
error learning literature, errors before a study opportunity led
to better performance on a final test. Differences in reaction
times between conditions support the theory that errors
increase learning by acting as a mediator, or secondary cue, to
the correct answer on subsequent tests. Individual differences
in model fit using log-likelihood trial-by-trial calculations
solidified support for the mediator method.
Keywords: learning from errors; memory; retrieval;
elaboration; mediation; computational models; ACT-R

Introduction
Many people believe that ideal learning is errorless. Errors
are often viewed as detrimental to learning with the
expectation that they will interfere with future retrievals of
correct information (Ceraso, 1967; Anderson & Reder,
1999). These concepts stem from studying more procedural
behavior where learning is a constant reinforcement process;
thus, errorless learning minimizes opportunities to reinforce
errors. However, errors committed with high confidence are
more likely to be corrected (Butterfield & Metcalfe, 2001).
It appears reinforcement paradigms do not generalize well
to learning by memorization compared to more procedural
learning. Successful memorization requires the ability to
retrieve information; errors may increase this type of
learning by promoting better encoding and thus, more
successful recall. We may be able to enhance the most
common form of learning for humans by critically
examining how and when errors are beneficial to
memorization and subsequent retrieval.

Derivatives of associative learning tasks have introduced
paradigms to study post-error learning, or improvements in
subsequent recall after a memory error. In the pretesting
paradigm, participants generate an answer before studying
it; with no prior exposure to the correct answer, participants
are likely to generate an incorrect response (Mera,
Rodriguez, & Marin-Garcia, 2021). Although this paradigm
encourages errors, pretesting information is more beneficial
than simply studying it. Many studies have confirmed this

finding, extending the benefits of pretesting to real-world
materials (Kornell, 2014), educational materials (Kapur &
Bielaczyc, 2012), and older adults (Cyr & Anderson, 2015).

Although post-error learning is now well-documented, an
investigation into its underlying mechanisms is sparse. Two
prominent theories have arisen out of this research; the
elaborative hypothesis and the mediator hypothesis. To go
beyond speculation, both must be examined empirically to
successfully leverage post-error learning.

The Elaborative Hypothesis
The elaborative theory posits that unsuccessful retrieval
attempts allow for a richer encoding of the correct answer.
Retrieval attempts activate various semantically related
candidates, one of which is the correct answer, thus setting
up a network among the cue and target words (Mera et al.,
2021). In the pretesting paradigm, an error could help form
a more meaningful relationship between the cue and target.
For example, one may generate the word “swims” as a free
associate in response to the cue “whale” when the target is
“tail.” Instead of simply encoding the pair “whale–tail,” the
individual may use the error to create a more robust network
between the two words, perhaps thinking of a whale using
its tail for swimming. The underlying idea is that prompted
retrieval of the target word following the presentation of a
cue word evokes several semantically related items.
Merging these concepts forms an elaborative memory trace
at the time of encoding, which is more likely to be retrieved
later at subsequent cue presentations (Huelser & Metcalfe,
2012; Karpicke, 2017). One important finding supporting
this theory is that weakly associated word pairs produce
stronger learning than strong associates (Carpenter, 2009).
Weakly associates prompt participants to generate many
related words to recall the target while strongly related pairs
are only associated with each other. Elaboration enhances
future retrieval because additional semantically related
items are encoded alongside the cue and target words.

The Mediator Hypothesis
The mediator hypothesis proposes errors act as secondary
cues to retrieve correct answers. In a paired-associate task,
generating a non-target word related to the cue could
mediate between the cue and target words (Huelser &
Metcalfe, 2012; Mera et al., 2021). Instead of solely using a
cue during retrieval, one can retrieve the error from the cue
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and the target from the error. Referring to the previous
example, at subsequent presentations of the word “whale,”
one may recall their previous error, “swims,” and from it,
the correct target word, “tail.” 

This theory finds its strength in an episodic context
account of memory retrieval; people encode information
about learning events and the episodic and temporal context
in which they occur (Howard & Kahana, 2002). This
episodic context may be restored during retrieval to
facilitate correct recall (Lehman & Malmberg, 2013). In
retrieval-based learning, retrieval increases recall because
individuals think back to and reinstate their prior learning
contexts (Karpicke, 2017).

Models of Post-Error Learning
Both hypotheses point to distinct mechanisms of post-error
learning. Examining these mechanisms could establish one
as superior to the other. One way to do this is with the use of
formal computational frameworks. Here, we used the
Adaptive Control of Thought–Rational (ACT-R) cognitive
architecture. ACT-R’s mechanisms reflect brain circuits and
computations using its functional components and their
parameters. ACT-R’s reliable declarative memory module
makes it particularly suitable to model various memory
paradigms (Ritter, Tehranchi, & Oury, 2019; Taatgen,
Lebiere, & Anderson, 2006). ACT-R encodes memories in
its declarative memory module as chunks in a semantic
network. Each chunk i has a corresponding base-level
activation based on the recency and frequency of its𝐵

𝑖
presentation as seen in Eq. (1):

𝐵
𝑖

= ln(
𝑗=1

𝑛

∑ 𝑡
𝑗
−𝑑) (1)

where n is the number of presentations of chunk i; tj is the
time since the jth presentation of i; d is the decay parameter
reflecting how quickly chunks are forgotten. In addition to
this base-level activation, the probability of retrieving i is
also a function of spreading activation and noise.
Altogether, chunks matching a retrieval request compete for
successful retrieval following the formula, seen in Eq. (2)

𝐴
𝑖

=  𝐵
𝑖

+  
𝑘
∑

𝑗
∑ 𝑊

𝑘𝑗
𝑆

𝑗𝑖
+ ε (2)

where the sum of k sums spreading activation across all
buffers set to provide it; the sum of j refers to the potential
sources of activation that spread to chunks in buffer k; W of
kj is the weight or amount of activation spread from source j
to chunk i; S of ji is the strength of association from source j
to chunk i. Lastly, reflects noise to model the noise of aε
human brain. ACT-R accurately models forgetting and
errors, producing results that closely fit human behavioral
data on paired associate tasks (Anderson, 1981; Anderson &
Reder, 1999; Pavlik & Anderson, 2005). Using this

theoretical foundation, we can create models that implement
both hypotheses of post-error learning and compare their
predictions and their relative fit to the empirical data.

Spreading activation in ACT-R can be used to properly
model elaborative encoding via errors in a paired-associate
task. ACT-R’s declarative memory encodes relationships
between chunks by linking words in a lexical semantic
network. When an error is committed, and feedback is
provided, chunks linking the cue and target words could
merge with chunks containing the cue and error words to
form one elaborative chunk. In the previous paired-associate
example, whale-tail would be merged with whale-swims to
create a chunk: whale-tail-whale-swims. This chunk could
represent the previously discussed meaningful links between
cue and target words (i.e., the whale swims with its tail) or
simply whale-tail, not whale-swims. Subsequent
presentations of the cue spread more activation to this
elaborative chunk; multiple references of the cue word
within the chunk increase their strength of association
(Figure 1). Overall, this elaborative encoding of the error
alongside the cue and target increases its activation.

Figure 1: Using spreading activation to model elaborative
error learning.

In addition to the declarative module, ACT-R’s procedural
module articulates cognitive steps (Anderson et al., 2004).
The mediator hypothesis relies on remembering the error
itself, suggesting that a cognitive process occurs when
remembering and recalling an error. Thus, a production rule
that checks for an error can model a mediator explanation of
post-error learning (Figure 2). If a previous error is detected,
another production fires to retrieve the error as a second cue.

Figure 2: Using an additional production rule to model
mediator error learning.
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Theoretical Predictions Derived from the Models
It is possible to derive ordinal predictions from these
models. Both models predict that error items would be
associated with greater response accuracy. In the case of the
elaborative model, this is due to the additional spreading
activation and, in the case of the mediator model, to the
existence of two retrieval routes.

The two models, however, make opposite predictions
about the relative response times associated with study and
error items, respectively. In ACT-R, response times depend
on a number of factors, including non-retrieval times spent
on perceptual and motor processes, indicated as TER , and the
retrieval time associated with an item i, indicated as R(i).
Thus, in general, the response time for the i-th item is:

RT = TER + R(i) (3)

In turn, R(i) depends on the activation A(i) of item i,
which is the sum of its base-level and spreading activation.
Specifically, retrieval times are related to activation by the
equation (Anderson et al., 2004):

R(i) = λ e-A(i) = λ / eA(i) (4)

Where λ is another individual-specific parameter that
scales the retrieval latency.

Both models assume that all study items have been
encoded in the same session and practiced the same number
of times, so they have comparable activations. The two
models make different predictions for the times to retrieve
an error item e.

In the elaborative model, the additional information
encoded in the error item provides additional spreading
activation, which sums up the global activation of the error
item A(e). We will indicate this additional activation as S(e)
so that A(e) = A(i) + S(e). So, the retrieval time for an error
item R(e) is:

R(e) = λ e-[A(i)+S(e)]

= λ / e[A(i)+S(e)] (5)
= [λ / eA(i)] / eS(e)

= R(i) / eS(e)

Note that, because S(e) > 0, eS(e) > 1, and thus R(e) < R(i).
According to the mediator hypothesis, error items do not

differ in terms of activation but in terms of retrieval
attempts. That is, on a fraction f of trials involving error
items, participants would first retrieve an incorrect target,
then detect the error, and finally retrieve the correct item.
Both the correct and incorrect items would have comparable
activation levels and thus take approximately the same
retrieval time as a study item, R(i). Thus, if we indicate the
fraction of trials f in which an error is retrieved, we obtain

R(e) = (1-f)R(i) + f[R(i) + R(i)] = (1+f)R(i) (6)

Because 0 < f < 1, response time will be longer for error
items, with the specific amount depending on f.

Thus, although both models leave much room for
individual differences across participants (due to differences
in the TER, S(e), λ, and f parameters), the models make
clearly opposite predictions about the relative time to
respond to study and error items.

Experimental Predictions
Based on the previous theoretical analysis, we can make the
following predictions. Firstly, we expect to confirm the
results of previous pretesting research (Huelser & Metcalfe,
2012; Kornell et al., 2009). That is, participants should
perform better on error generation items compared to study
items on the final test of our first experiment.

Additionally, we expect to find a difference in response
times on the final test between conditions. However, we are
unsure about the directionality of this difference. Longer
reaction times in the error condition suggest the majority of
participants are learning from errors in a mediator method.
Shorter reaction times in the error condition suggest the
majority of participants are learning from errors in an
elaborative method. Finally, by fitting each model to each
participant trial-by-trial using maximum log-likelihood, we
expect to gain additional insight into error learning
mechanisms. Specifically, we may find out whether certain
participants are better fit by mediation and others,
elaboration (i.e., mediator learners vs elaborative learners).

Materials and Methods
Participants
A total of 61 University of Washington undergraduate
students were recruited for the pretesting task and provided
with course credit for their participation.

Pretesting Task
To replicate Huelser and Metcalfe (2012), 60 weakly related
word pairs were selected from Nelson, McEvoy, and
Schreiber’s (1998) norms. This experiment had three
phases: learning, distractor, and final test. In the learning
phase, the task randomly interleaved study trials and test
trials. In study trials, the cue word (e.g., “whale”) and its
corresponding target (e.g., “tail”) were presented
simultaneously on the screen for 10 seconds. On test trials,
only the cue word was presented on the screen (e.g.,
“whale”). Participants were asked to respond by typing what
they thought the target word was in a textbox (e.g.,
“swims”). They were given 5 seconds to respond before
they were shown the cue word and correct target word
simultaneously for 5 seconds. After learning all pairs once,
participants played a visuospatial game for 5 minutes as a
distractor to prevent rehearsal. Finally, participants took a
self-paced final test containing all 60 word pairs.
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Results

Replicating the Pretesting Effect
On average, participants had higher recall accuracy on error
items (M = 0.70 +/- 0.16) than study items (M = 0.60 +/-
0.18), as seen in Figure 3. Mixed linear models were used to
account for variability and individual differences.
Specifically, we fitted a mixed model to all of the
experimental trials, including the particular trial condition
(Study vs. Error) as a fixed effect and the participant-level
intercept as a random effect; the latter accounts for
individual differences in response accuracies. Because
accuracy is a binary variable, the model used a binomial
distribution to capture the predicted variable. The model
uncovered a large main effect of condition (β = -0.47, SE =
0.08, t = -6.13, p < 0.0001). The complete results of the
model are shown in Table 1. These findings confirm the
results of previous studies (Huelser & Metcalfe, 2012;
Kornell et al., 2009).

Figure 3: Differences in average final cued-recall accuracy
split by condition. Gray dots and lines represent data for

individual participants; colored dots and error bars represent
means +/- SE for the Error (purple) and Study (yellow)

conditions

Table 1: Results of the Mixed-Level Model for Accuracy

Statistical Test β estimate SE t p

(Intercept) 0.925*** 0.107 8.651 5e-18

Condition - 0.468*** 0.076 - 6.130 8e-10

*p < 0.05 **p < 0.01 *** p < 0.001

Reaction Times
To remove extreme values from our data, we used a
maximum cutoff point of 15,000ms and a minimum cutoff
point of 200ms. Only correct trials were included.

On average, participants had longer response times on
error items (M = 4,104 +/- 779ms) than study items (M =
3,920 +/- 936ms), as seen in Figure 4. The difference
between condition response times was compared with a

mixed linear model. As in the previous case, the model
includes each trial condition (Study vs. Error) as a fixed
effect and the participant-level intercept as a random effect;
the latter accounts for individual differences in response
latencies. Unlike the previous case, the model used a
Gaussian distribution to model the dependent variable.
Additional random factors, such as random slopes to
account for different effects for each participant, did not
improve the fit of the model. The model confirmed a large
and significant main effect of condition (β = -261.40, SE =
88.79, t = -2.944, p < 0.005). The complete results of the
model are shown in Table 2.

To examine the possibility that different individuals might
use different strategies, a second mixed linear model was
created, which included the participant-level slope as a
random effect. This model allows for different individuals to
have either shorter or longer RTs in the error conditions,
thus allowing the possibility that some individuals might use
an elaborative strategy. This second model replicated the
results of the first, finding a significant main effect of the
condition (β = -255.99, SE = 89.18, t = -2.87, p < 0.005).
An ANOVA test confirmed that the second model does not
provide a greater fit than the first (χ(3) = 0.38, p > 0.94);
furthermore, all the fitted slopes in the ensuing model were
negative, suggesting that the apparent differences in slopes
in Figure 4 are due to outlier responses, rather than
systematic use of the elaborative model.

Figure 4: Differences in final test response times by
condition. Gray dots and lines represent data for individual
participants; colored dots and error bars represent means +/-

SE for the Error (purple) and Study (yellow) conditions

Table 2: Results of the Mixed-Level Model for Response
Times.

Statistical Test β estimate SE t p

(Intercept) 4109.70*** 103.06 39.877 2e-16

Condition -261.40** 88.79 - 2.944 0.003

*p < 0.05 **p < 0.01 *** p < 0.001
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Individual Model Fitting and Comparison
Although the experimental results are strongly in favor of

the mediator hypothesis, considerable variability exists in
the data, as shown in the averages of Figures 3 and 4.
Despite allowing for the fit of individual data, MLM models
are by nature poorly fit to capture the nonlinear dynamics of
memory. We are also interested in seeing precisely how well
each model fits each individual to examine individual
differences comprehensively. For this reason, we
implemented the two hypotheses by running ACT-R models
and used convex optimization techniques to maximize their
fit to every individual. The fit of the two models was
compared by estimating their likelihoods given the data. The
likelihood of a model M given a vector of data x, L(M|x), is
the probability of observing the data, given M: L(M|x) =
P(x|M). Our data consists of multiple independent responses
x1, x2, …, xN, thus

L(M|x) = P(x1|M) ⋅ P(x2|M) ⋅… ⋅ P(xN|M) = ∏i P(xi|M)

Because the product of probabilities becomes vanishingly
small, it is common to use log-likelihood:

log L(M|x) = log ∏i P(xi|M) = ∑i log P(xi|M)

In our case, each model was jointly fitted to two
behavioral measures: The responses x and its corresponding
response time RT.

Responses Probabilities The retrieval probability PR of a
specific response x can be computed using the Boltzmann
equation:

P(x) = eA(x)/s / ∑i eA(i)/s (7)

Where s is a noise or temperature parameter, and the sum
in the denominator refers to all of the competing memories
for a given cue, including errors and potentially associated
concepts. To get a realistic representation of the pool of
competing memories, all of the responses produced by all
participants for a given word were included as potential
distractors in the model and given a trace at time 0.01
resulting in a minimal activation value.

In the case of the elaborative hypothesis, Equation 7 can
be directly applied to the given response x. In the case of the
mediator hypothesis, a correct response can be made either
by directly retrieving the correct response or by first
retrieving the error-generated response. Thus, the
probability of observing a correct response is given by
P(x=correct) + P(x=error).

Response Time Probabilities The probability of observing
a given response time for the response x can be computed
from Equation 4 if the distribution of the noise term s is
known. In ACT-R, declarative memory noise follows a
logistic distribution with a mean of zero and a standard
deviation of π*s/√3 (Anderson et al., 2004). Applying
Equation 4 to the probability density function of the noise

gives the probability density function of different response
times, as shown in Figure 5:

Figure 5: Different response time probability density
functions for different levels of noise s.

Model Fitting Each model was fit to all the choices of
every participant by identifying parameter values that
maximize the log-likelihood function. Because no
closed-form solutions exist to derive the maximum
likelihood of ACT-R equations, the best-fitting parameter
values were identified using Powell’s (1964) optimization
algorithm as implemented in Python’s SciPy package
(Virtanen et al., 2020). This method was chosen because it
does not require explicit derivates and allows us to specify
meaningful bounds for parameter values.

Using Powell’s method, three parameters were fit for each
individual: the decay rate d (which is known to vary
significantly across people: Sense et al., 2016), the noise s,
and the non-decision time TER. Parameters W (Eq. 3) and λ
(Eq. 4) were kept constant to a default value of W = λ = 1.
This was done because of the parameter identifiability
problem: W is difficult to separate from d in Equation 2, and
λ has similar effects to TER in Equation 4.

Results To perform the trial-by-trial analysis, the models
were implemented directly in Python, rather than using the
ACT-R architecture. In a way that mimicked the behavioral
task, for each participant on each trial (i.e., cue
presentation), the model calculated the probability of
retrieving the participant’s actual response given word
activations within the model’s declarative module as well as
the probability of the participant’s response time given word
activations and the number of retrievals. In this way, the
elaborative model assigned higher probabilities to shorter
response times on error items due to spreading activation,
while the mediator model assigned higher probabilities to
longer response times on error items due to multiple
retrievals. After fitting the values of the d, TER, and s
parameters, and computing the maximum log-likelihoods
for each participant, we found the greatest majority of
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participants were best fit by the mediator model (N = 55),
with only a few best fit by the elaborative model (N = 6), as
seen in Figure 6.

The group-level difference in the two models can be
computed by aggregating their participant-level differences
(Yang & Stocco, 2021). In this case, the cumulative
difference in log-likelihood between the two models is
1,728. Because of the definition of log-likelihood, this
difference indicates an odds ratio of e1,728, indicating that the
mediator model is e1,728 more likely to fit the data than the
elaborative model.

Figure 6: Histogram log-likelihood differences between the
mediator and elaborative models across all participants:

yellow indicates participants best fit by the elaborative, and
purple by the mediator, models. The green dotted line

indicates the point at which the difference is zero; the red
line indicates the mean difference (27.9) across all models.

Discussion
In this paper, we examined if errors facilitate learning,
including an investigation to probe potential underlying
mechanisms. While the pretesting paradigm’s success in
improving learning compared to just studying is well
documented (Huelser & Metcalfe, 2012; Kornell et al.,
2009), research into the underlying cognitive processes
facilitating this phenomenon remains speculative. Without
understanding how post-error learning works, applications
remain restrictive. Revealing underlying mechanisms may
allow us to increase the efficacy of current learning and
memory models by harnessing the power of errors. Our
study aims to provide a baseline to research post-error
learning mechanisms using cognitive models.

Importantly, we were able to replicate the pretesting
results of existing literature; final cued-recall accuracy was
higher in the error-generation condition than in the
study-only condition. This helps to confirm the benefit of
retrieval attempts before study opportunities and advocates
for further research into the mechanisms of this process.

Different reaction time hypotheses arose from our two
post-error learning models based on the ACT-R architecture.
First, an elaborative model predicts that error learning
results in quicker response times on subsequent tests. This is

because elaboration works through spreading activation,
adding activation to the correct answer which speeds up
retrieval and response times. Alternatively, a mediator
model predicts that error learning results in slower response
times on subsequent tests. Mediation uses an extra step to
retrieve an error as a secondary cue to get the correct
answer. Although this procedure increases accuracy, it also
costs extra time, resulting in longer response times. Results
from the current study demonstrate that average response
times are longer on error items than on study items. This
supports the mediator hypothesis of post-error learning.
Additional investigation into trial-by-trial fits of models
revealed overwhelming support for the mediator model.

The most notable limitation of this study is the
generalizability of the pretesting paradigm. Errors as we
think of them are often made after a study opportunity.
Looking at encoding errors in learning would extend this
research to more real-world errors. While the mediator and
elaborative hypotheses are some of the most notable
explanations of post-error learning, other explanations exist
which may also account for reaction time differences.
Analyzing these errors in a different framework may allow
us to investigate more theories which is critical for the
advancement of learning optimization. Additionally, this
paradigm does not look at memory over longer periods of
time. Deeper encoding processes resulting from error
commission may lead to facts that are more resistant to
forgetting over days, weeks, and months. An alternative
paradigm is the adaptive fact-learning system developed by
Sense and van Rijn (2022; Sense et al., 2016), in which new
paired associations are presented at a pace individualized to
each participant to optimize retention. Importantly, their
paradigm internally makes use of ACT-R to model each
individual’s memory, and yields highly reliable estimates of
each individual and each item’s decay rate (Sense et al.,
2016). A modification of this paradigm that includes an
error-generating phase provides important information as to
whether, for example, error items are forgotten at lower
speeds, rather than (or in addition to) having additional
retrieval routes.

Models are unique in their ability to reconceptualize
behavioral results. By decoding human behavior, models
begin to reveal cognition by stabilizing the messiness of
data. As such, the proposed cognitive models in this paper
can help identify mechanisms of post-error learning. These
models could distinguish different learners from one another
and propose ways to manipulate post-error learning by
targeting the relevant cognitive processes. Moreover, these
findings could extend to fields outside of cognitive
psychology, advocating for the benefit of making mistakes
in various educational settings and assisting in developing
AI and machine learning advancements that update
comprehensive feedback histories with each new learning
experience.
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Abstract
During learning humans often test new hypotheses to infer
causal relations between objects and actions. One very com-
mon example of learning is category learning in which hu-
mans learn to differentiate between different stimuli based on
their features. The rational aspects of category learning in
form of hypotheses testing need to be taken into consideration
for improving computational models. Compared to reinforce-
ment learning models that assume gradual learning, cognitive
modeling allows to implement hypotheses testing and thus en-
abling steep transitions in learning. Here we extend our previ-
ously developed ACT-R model in a systematic way to further
improve its fit to an auditory category learning and reversal
learning experiment. For the initial category learning phase
we optimized the model by enabling it two use two stimulus
features right from the start. For improving the model’s per-
formance in the reversal phase, we introduced an additional
mechanism of switching the motor-response for a given cate-
gorization. With these two changes we significantly increased
the model’s performance in our task. By comparing the back-
ward learning curves of the participants to those of our model
we observed that our model exhibits steep transitions during
the initial category learning phase, a feature that reinforcement
learning models have difficulties to reproduce.
Keywords: ACT-R; Category Learning; Reversal Learning;
Cognitive Modeling

Introduction
When facing new complex problems, we often approach a
solution by trial and error. During the course of learning,
causal relations between objects and actions become evident
which may result in hypotheses and strategies that are tested
in subsequent trials. A prime cognitive function that has been
the focus of several computational models for understand-
ing human learning is categorization. How human category
learning works and which modeling method is best suited
to understand the involved processes is still an open ques-
tion. Most current modeling approaches are based on rein-
forcement learning algorithms that make the assumption of
a gradual learning process. Since human category learning
often shows steep transitions in performance, such models
often cannot fully explain learning data. Thus, modeling ac-
counts are required that can capture sudden transitions in per-
formance (Smith & Ell, 2015). An alternative approach to
reinforcement based models for explaining human category
learning is ACT-R. A vast number of cognitive tasks have
been implemented with ACT-R that predict human behavior.

Especially task models using memory and learning mecha-
nisms have shown good correspondence to human behavior
(e.g. (Nijboer, Borst, van Rijn, & Taatgen, 2016; Morita et
al., 2020).

In previous work, we have implemented a basic ACT-R
model to explain the average learning data of humans in
a multidimensional auditory category learning and reversal
learning task (Prezenski, Brechmann, Wolff, & Russwinkel,
2017), and improved its performance by adapting the salience
level of stimulus dimensions that are selected for initial deci-
sions of the human learners (Lommerzheim, Prezenski, Russ-
winkel, & Brechmann, 2020). However, we still found dis-
crepancies between the overall performance of the model and
that of human learners, especially during the initial learning
phase.

The aim of the present study was therefore to improve the
existing model in order minimize the difference to the exper-
imental data and to test it on a new set of learning data. The
initial focus was on improving the initial speed of category
acquisition that was still behind to that of the human partic-
ipants. We then proceeded by investigating this models per-
formance during two reversals of the assignment of the target
button and found that the model needed further refinements
to capture the participants performance. Moreover, we inves-
tigated whether the model is able to reproduce steep transi-
tions that occur during the initial category learning as evident
in the backward learning curves (BLC) of the participant’s
performance which are not easily explained in reinforcement
models (Jarvers et al., 2016).

Methods
Experiments
Participants 55 subjects participated in experiment I (27
female, 28 male, age range between 21 and 30 years, all right
handed, with normal hearing). 22 subjects participated in ex-
periment II (11 female, 11 male, age range between 18 and
34 years, all right handed, with normal hearing). Both exper-
iments took place inside a 3 Tesla MR scanner. All subjects
gave written informed consent to the studies, which was ap-
proved by the ethics committee of the University of Magde-
burg, Germany.
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Stimuli A set of 160 different frequency-modulated tones
served as stimuli for the categorization task. The sounds had
five different features, with one of two possible categorical
values: duration (short, 400 ms, vs. long, 800 ms), direction
of frequency modulation (rising vs. falling), volume (low,
76-81 dB, vs. high, 86-91 dB), frequency range (five low
frequencies, 500-831 Hz, vs. five high frequencies, 1630-
2639 Hz), and speed of modulation (slow, 0.25 octaves/s, vs.
fast, 0.5 octaves/s). The task relevant features were the direc-
tion of frequency modulation and sound duration, resulting in
four sound categories: short/rising, short/falling, long/rising,
and long/falling. For each participant, one of these categories
constituted the target sounds (25%), while the other three cat-
egories served as non-targets (75%). As feedback stimuli,
we used naturally spoken utterances (e.g., ja, “yes”; nein,
“no”) as well as one time-out utterance (zu spät, “too late”)
taken from an evaluated prosodic corpus (Wolff & Brech-
mann, 2012, 2015).

Task The experiments lasted about 33 minutes in which a
large variety of sounds were presented in 240 trials in pseudo-
randomized order and with a jittered inter-trial interval of six,
eight, or ten seconds. The participants were instructed to in-
dicate via button-press whether they considered the sound in
each trial to be a target (right index finger) or a non-target
(right middle finger). They were not informed about the target
category but had to learn by trial and error. Correct responses
were followed by positive feedback, incorrect responses by
negative feedback. If participants failed to respond within
two seconds following the onset of the sound, the time-out
feedback was presented.

In experiment I a break of 20 seconds was introduced after
120 trials. From the next trial on, the contingencies were re-
versed such that the target stimulus required a push of the
right instead of the left button. The participants were in-
formed in advance about a resting period after finishing the
first half of the experiment but they were not told about the
contingency reversal. In experiment II two such reversals
happened, the first after 80 trials and the second switch back
to the initial assignment of the target button after 160 trials.

Model

The experimental task was modeled with the ACT-R frame-
work, a cognitive architecture that provides a set of differ-
ent cognitive functionalities called modules that interact with
each other coordinated by a central production system. We
will first describe the general modeling approach as originally
implemented by Prezenski et al. (2017) and then outline the
changes that we made to improve the model fit of the data of
experiment I further in order to test this model on the experi-
mental data of experiment II.

General Approach Our model uses the motor, the declar-
ative, the imaginal, the goal, the aural, and the procedural
module of ACT-R. The motor module is responsible for the
motor output, i.e. button press. The declarative module repre-

sents the long-term memory of ACT-R in which all represen-
tation units (chunks) are stored and retrieved. The imaginal
module acts as the working memory that holds and modifies
the current problem state. The goal module represents the
control states. The aural module is responsible for process-
ing auditory information. The procedural module is central
for ACT-R as it coordinates the other processing units by se-
lecting production rules (representing procedural knowledge)
based on the current state of the modules.

In order to specify a model in ACT-R, the production rules
and the chunks (representing background knowledge) need
to be defined. Chunks are the smallest units of information
and can be exchanged between buffers. Production rules or
productions have a condition and an action part. They are
selected sequentially. Thus, only one production can be se-
lected simultaneously. They are only selected if the condition
part of the production matches the state of the modules. Sub-
sequently, the action part modifies the chunks in the modules.
In the case that more than one production matches the state
of the modules, a subsymbolic production selection process
chooses which production is selected. Another subsymbolic
process of ACT-R is the activation of a chunk. The activation
of a chunk determines whether a chunk can be retrieved from
memory and how long this takes. A chunk’s activation value
is determined by its past usefulness (base-level activation), its
relevance in the current context (associative activation) and a
noise parameter.

Table 1: Strategy and control chunks.

Strategy chunks
Slot Value
complexity (one or two)
1.feature-value-pair (e.g. duration short)
2.feature-value-pair (nil, e.g. volume high)
response (0 or 1)

unsuccessful (nil-yes)
first attempt (nil-yes)
1.count (nil, 1,2...threshold)
2.count (nil, 1,2...threshold)

Control chunks
Slot Value
complexity (one or two)
uncertain (nil - yes)
environment (nil-change)

The model is equipped with two different types of chunks
depicted in Table 1: strategy chunks and control chunks.
Strategy chunks represent the strategies in form of examples
of feature-value pairs (i.e. duration is long, volume is loud)
and responses (i.e. left or right button). These strategy chunks
are stored in and retrieved from long-term memory (declar-
ative module). The currently pursued strategy is stored in
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working memory (imaginal module). A strategy chunk con-
tains the following information: Which feature(s) (i.e. vol-
ume) and what corresponding categorical value(s) (i.e. loud)
are relevant, the proposed response, and the degree of com-
plexity. The degree of complexity determines whether the
model attends to just one feature (one-feature strategy) or to
two features (two-feature strategy). This approach of storing
the environmental state, the action and the response within
one chunk resembles that of Instance-based learning origi-
nally proposed by Gonzalez, Lerch, and Lebiere (2003). Fur-
thermore, it contains a meta-cognitive process that includes
noting whether and how often a strategy was successful. All
of the different possible strategy chunks are stored in declar-
ative memory right from the start and randomly one of them
is chosen at the beginning of each model run. Control chunks
represent other meta-cognitive aspects of the model. They are
stored in the goal buffer of the model. They include first the
level of rule complexity used, second whether or not a long-
time successful strategy resulted in negative feedback, and
third whether external changes occurred that require a new
search for a strategy.

The production rules used for defining the task are de-
scribed now in detail with the specific names in parenthe-
ses as shown in Figure 1. When a sound is presented to
the model, it enters the aural location buffer (listen). Subse-
quently it is encoded in the aural buffer (encode). This results
in a chunk with all audio information necessary (duration, di-
rection of pitch change, volume, and frequency range) stored
in the aural buffer. This audio chunk is then compared to the
strategy chunk in the imaginal buffer (compare). If the spe-
cific features of the strategy chunk match those of the audio
chunk, the response is chosen according to the strategy chunk
(react-same), if not, the opposite response is selected (react-
different). The model then listens to the feedback and holds
it in the aural-location buffer (listen-feedback). Subsequently
it is encoded in the aural buffer (encode-feedback). In case
of positive feedback, the current strategy is maintained and
the count-slot is updated (feedback-correct). In case of neg-
ative feedback, the strategy usually is altered depending on
previous experiences (feedback-wrong).

The strategy updating is implemented in the following
way: in case that a one-feature strategy fails in the first at-
tempt, a different motor response is selected for this feature-
value pair. Otherwise, the feature-value pair is changed while
the response is retained. When a one-feature strategy was
successful often and then fails once, it is not directly ex-
changed, but re-evaluated and it is noted that the strategy has
resulted in negative feedback. A switch from a one-feature
strategy to a two-feature strategy can occur in two conditions:
Either no successful one-feature strategy is left or an often
successful one-feature strategy fails repeatedly. For switches
of two-feature strategies the following rules apply: If the first
attempt of a two-feature strategy fails, any other two-feature
strategy is used. In the case a two-feature strategy that was
initially successful fails, a new strategy that retains one of the

Figure 1: The productions used by the model to run through
a trial (taken from Prezenski et al. (2017)

feature-value pairs is selected and the response is transferred
to the imaginal buffer. When an environmental change is de-
tected, an often successful two-feature strategy will fail and a
retrieval of another two-feature strategy takes place.

In order to improve the models performance and to bet-
ter fit the human experimental data, in a subsequent work we
added preferences to relevant strategies (Lommerzheim et al.,
2020). While the probability of selecting a strategy in the first
model was equal for all one-feature strategies, we changed
the model by increasing the probability (by changing the util-
ity of the production) of being selected for different strategy
chunks. We did so by setting the activation values of strate-
gies that use duration and/or direction of frequency modula-
tion as features to 1.0.
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Figure 2: Mean learning curves of the participants of experiment I, the previously published modeling results and the results of
the adapted model that allows to use two features right from the start. Error bars depict standard deviance of the mean.

Improving Initial Category Learning As there was still a
significant difference between the mean human performance
and the model especially in the first half of experiment I, we
considered different ways of further improving the model’s
performance. Ultimately, based on hypothetical considera-
tions that some participants might think of a combination of
two features as relevant right from the start, we added produc-
tions to allow the model to also start with a 2-feature strategy
at the beginning of each model run (saliencyConjunction).

Learning to Switch Back As we found that this model is
not able to profit from the previously found categorization
when switching back in the third phase of experiment II, we
added productions that allow the model to just switch the re-
sponse of the current strategy when it encounters situations
in which a previously successful strategy unexpectedly failed
(saliencyConjunctionSwitch).

Backward Learning Curves To obtain backward learning
curves, we used an approach similar to that of Smith and Ell
(2015): we determined the first block of 12 trials in which
each participant reached a learning criterion of three correct
responses to each of the different categories in a row. Sub-
sequently, the individual learning curves were aligned to this
block 0 and then averaged across participants. Thus, block
0 shows high performance by definition. However, compar-
ing the performance of the previous block -1 to the following
block +1 allows to identify the true nature of the underlying
transition: if the performance in block -1 is near the perfor-
mance of the learning criterion there was only a gradual im-
prove in performance. Models based on gradient descent can

perfectly well capture such transitions. On the other hand, a
performance in block -1 that is still far away from the learn-
ing criterion suggests a form of sudden learning that cannot
be explained by models based on gradual changes but instead
need different types of categorization models as pointed out
by Smith and Ell (2015).

Results
Initial Category Learning
Initially we aimed for a better fit of the initial category learn-
ing. Accordingly, Figure 2 shows the results obtained for ex-
periment I. Here, the previously published model still showed
a rather large difference especially for the first 4 blocks of
the experiment. By allowing the model to also start with a
2-feature strategy the learning speed at the beginning of the
experiment could be improved nearly matching that of the
participants while the ability to relearn after the reversal re-
mained unaffected.

Reversal Learning
We tested the models ability to learn reversals further by com-
paring its performance to the participants experiment II as
shown in Figure 3. Especially in block 9 right after the sec-
ond reversal the participants are relearning faster than the best
fitting model of experiment I. This difference required us to
adapt our model further. By adding additional productions for
just switching the response after receiving unexpected nega-
tive feedback we could drastically increase the performance
of the model after the second reversal, suggesting that this
modification captures the behavior of some participants well.
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Figure 3: Mean learning curves of the participants of experiment II, the best fitting model for experiment I and the model
enhanced with productions for just switching the response. Error bars depict standard deviance of the mean.

Sudden Learning
To compare the learning behavior of participants and our
model in more detail, we calculated their BLCs during the
initial category learning. Figure 4 clearly shows that in the
blocks before reaching the criterion the participants perfor-
mance is around 0.75 and suddenly increases to a perfor-
mance of around 1 indicating a discontinuous learning pro-
cess. The ACT-R model shows a similar sudden increase in
performance with a transition from around 0.5 to 1 from block
-1 to 1. Even though there is a quantitative difference be-
tween the participants and our model, the main finding is the
same steep increase in performance when reaching the learn-
ing threshold which is something that reinforcement learning
models based on gradient descent are not able to reproduce.

Discussion
The purpose of this study was to improve our existing model
of categorization and reversal learning and to adapt it for the
additional findings in our experiment with a repeated rever-
sal. The results show that the difference to our experimental
data can be further reduced by allowing the model to pay at-
tention to two stimulus features right from the start. We did
not include this possibility in the initial model because studies
on rule-based category learning have claimed that during the
initial phase of learning, humans typically apply one-feature
strategies (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).
However, strategies based on more than one feature can be
learned (Ell, Smith, Deng, & Hélie, 2020), but are more diffi-
cult (Ishizaki, Morita, & Morita, 2015). Since the additional
mechanisms captures the behavior of the human learners well

Figure 4: Backward learning curves of the participants and
the model in experiment I.

suggests that two-feature strategies might be adopted by the
participants early on during initial learning. Testing this opti-
mized model on the new data of experiment II showed that the
participants’ performance after the second reversal was not
well explained. This failure of replicating the significantly
better performance after the second compared to the first re-
versal was also evident in a previous modeling approach with
reinforcement based algorithms (Jarvers et al., 2016). In our
ACT-R model, we could compensate this limitation by in-
troducing the additional mechanism for switching the motor
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response.
By analyzing backward learning curves, in addition to the

forward learning curves, we showed that our model quali-
tatively produces similar learning transitions as the human
learners. This is an advantage to reinforcement learning mod-
els because of their gradient descent algorithms.

One remaining discrepancy between our model and the ex-
perimental data is the performance towards the end of ex-
periment II. The model performs better than our participants
which might be due to reduced attention/mental exhaustion of
our participants. How such effects of fatigue can be modeled
within our ACT-R model will be addressed in future research.

Another limitation of our model might be the assumption
that all features of each tone are perceived and compared to
the feature-value pair of the current strategy chunk. This
could be changed by implementing an attentional mechanism
in the way the model listens to the tones. Even though this
would initially reduce the performance of the model it might
provide room for further improvements: an additional work-
ing memory mechanism could be implemented that increases
the probability of picking up strategies which were compati-
ble with the obtained feedback.

Another point for future investigations is the high variance
in performance of the human learners which the model can-
not account for in the present state. While our model solely
relies on an explicit learning system that generates and tests
hypotheses, some of the participants might take another ap-
proach and try to solve the task subsymbolicly. Another rea-
son for the high variance seems to be that some participants
were satisfied with receiving positive feedback in 3 out of 4
trials by just paying attention to one feature. Our model on
the other hand always strives to avoid all negative feedback.
In future versions of the model this might be mitigated by in-
troducing an additional parameter that determines the model’s
aspiration of obtaining correct feedback.

Another line of future research to test the model’s predic-
tions would be to compare the activation of the ACT-R model
to the fMRI activation in corresponding brain regions. Borst
and Anderson (2015) showed how the activation of the differ-
ent modules can be used to make predictions for the BOLD
signals of different brain regions that are thought to represent
these modules. By comparing these predictions to our exper-
imental findings the model could be further evaluated and re-
fined. Figure 5 shows the mapping of the declarative module
to the dorsolateral prefrontal cortex and the error-related acti-
vation we found for the contrast of incorrect vs. correct feed-
back (Wolff & Brechmann, 2022). Our model also predicts a
different activation for those trial types within the declarative
module: while correct feedback merely leads to an update of
the currently held strategy in the imaginal buffer, incorrect
feedback requires the model to switch to another compati-
ble strategy and thus leads to a higher activation within the
declarative module.

In summary, we showed how our existing model’s capabil-
ity for category learning and reversal learning could be further

Figure 5: Left part shows the different ACT-R modules
(adapted from Borst and Anderson (2015)), right part shows
the claimed location of the declarative memory within the
brain (grey box) and the contrast of incorrect vs. correct feed-
back measured during experiment I.

improved and that it is able to replicate essential characteris-
tics of transitions in learning observed in humans performing
a rule-based category learning task.
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Abstract

This paper presents Xyrast, an integrative model of hu-
man response processes on the Raven’s Matrices fam-
ily of fluid intelligence tests, and reports on a simula-
tion study addressing its response characteristics and
verisimilitude. Xyrast is implemented in the Clarion
cognitive architecture and models the influence of re-
sponse strategy, working memory capacity, and persis-
tence on performance. Simulations suggest that the
model captures a wide range of phenomena offering,
in some cases, novel explanations for observed results.
These findings suggest several avenues for future re-
search.

Keywords: clarion; cognitive modeling; cognitive ar-
chitectures; raven’s matrices; fluid intelligence; response
process; motivation

Introduction

Fluid intelligence (gF ) may be defined as “[t]he ability
to solve problems in unfamiliar domains using general
reasoning methods” (Kyllonen and Kell, 2017). In brief,
gF is one of the broadest and most prominent psychome-
tric ability constructs in existence and appears to factor
in many forms of thinking and reasoning (deductive, in-
ductive, quantitative, analogical, etc.). Thus, gF is a
natural candidate for cognitive modeling work at the in-
tersection of psychometrics and cognitive science.

The Raven’s Matrices tests are among the most pop-
ular measures of gF , owing to their elegant format
and strong psychometric properties (Kyllonen and Kell,
2017). By one estimate, up to 60% of score variance in
Raven’s Matrices may be attributed to gF , with another
25% attributable to test-specific variance (see Gignac,
2015). This paper presents Xyrast, a new integrative
model of human response processes on Raven’s Matri-
ces. Xyrast is implemented in the Clarion cognitive ar-
chitecture (Sun, 2016) and solves matrix problems in
the style of the Sandia Matrices (Matzen et al., 2010),
an open variant of Raven’s Matrices designed for use in
psychological research. As evidenced below, the model
accounts for important empirical phenomena and poses
several questions for future research.

Model

Xyrast is a granular discrete-time model of human re-
sponse processes in Raven’s Matrices. The model in-

cludes three main psychological parameters and intro-
duces a novel visual reasoning complex for the Clar-
ion cognitive architecture. Its design is closely informed
by existing psychological findings, which are briefly re-
viewed below, and builds on existing cognitive models of
the task (e.g., Carpenter et al., 1990; Kunda et al., 2013;
Lovett and Forbus, 2017; Stocco et al., 2021).

The relevant psychological parameters are response
strategy, working memory capacity (WMC), and persis-
tence. The model simulates multiple response strategies
following Newell’s (1973) injunction to “never average
over methods” (p. 13). WMC is included because it is
an important correlate of gF (Engle et al., 1999). Fi-
nally, persistence is included to account for motivational
influences on performance, which have remained rela-
tively unexplored despite theoretical and empirical evi-
dence pointing to their importance (e.g., Raven, 2008;
Wieber et al., 2010).

Psychological Considerations

Raven’s Matrices tests consist of a series of matrix prob-
lems in increasing order of difficulty (Raven, 2008). As
depicted in Figure 1, matrix problems are multiple-
choice pattern-completion problems. Subjects are asked
to complete a visual figure matrix (i.e., a square array
of figures where the bottom right entry is missing) by
choosing the alternative that is the best fit. Matrix prob-
lems are constructed by varying visual features along ma-
trix rows or columns according to various patterns. The
choice of a correct alternative is thus taken to signal that
the subject has correctly induced all patterns present in
the matrix (see e.g., Carpenter et al., 1990).

Human response processes in Raven’s Matrices appear
indeed to be characterized by an incremental process
of pattern discovery, as revealed by analyses of errors,
think-aloud protocols, and eye movements (e.g., Carpen-
ter et al., 1990; Hayes et al., 2011; Vodegel Matzen et
al., 1994). Discovered patterns are thought to inform
response selection according to two strategies typically
associated with multiple-choice tests (e.g., Hayes et al.,
2011; Vigneau et al., 2006). The constructive match-
ing strategy involves the construction of a response hy-
pothesis that is matched to available alternatives for re-
sponse selection. The response elimination strategy, on
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(a) (b)

Figure 1: Matrix problems in the style of Sandia Matri-
ces (Matzen et al., 2010).

the other hand, involves more direct evaluation of alter-
natives, via surface features, for their fit with accepted
pattern hypotheses.

Crucially, the pattern discovery process appears to in-
volve identifying and comparing properties of and rela-
tions among visual objects. The incremental nature of
the pattern discovery process may be explained in part
by human visual architecture. Indeed, the detection of
visual relations appears to require sequential processing
of visual objects (Franconeri et al., 2012). Thus, an
important demand of the task appears to be the res-
olution of perceptual ambiguities (for identification of
visual objects in crowded scenes) through the use of at-
tentional resources (Primi, 2001). Comparing and re-
taining information about patterns may also be an im-
portant source of the task’s working memory demands,
though the exact nature of these demands is a subject of
debate (e.g. Unsworth and Engle, 2005). Finally, the ev-
idence suggests that increased motivation improves per-
formance through greater time investments (Wieber et
al., 2010), which may reduce the chances of failing to
account for the complete set of patterns governing an
item (see Vodegel Matzen et al., 1994). That said, the
relationship between item scores and latencies appears
to be rather complex (Goldhammer et al., 2015).

Implementation Overview

In light of the considerations above, Xyrast tackles ma-
trix problems using an interruptible inductive search
that incrementally discovers patterns in item matrices.
This discovery process involves sampling and testing pat-
tern hypotheses using visual information from the item
matrix.

Much of the model is structured according to the Clar-
ion cognitive architecture (Sun, 2016). Clarion is a neu-
rosymbolic hybrid cognitive architecture. It consists of
four subsystems and exhibits a unique two-level repre-
sentational structure. The architecture may be viewed
as a network of neural networks where the top level cap-

tures explicit knowledge via rule-based processing on lo-
calist representations, and the bottom level captures im-
plicit knowledge via associative networks and distributed
representations. The two levels also interact via chunks,
which link chunk nodes in the top level to (micro)feature
nodes in the bottom level.

At the highest level, the architecture is organized as
follows. The action-centered subsystem (ACS) is the pri-
mary locus of action control in Clarion and coordinates
both overt behavior and cognitive processing. The non-
action centered subsystem (NACS) maintains declara-
tive knowledge (in both implicit and explicit forms) and
is capable of retrieving task-relevant declarative mem-
ory chunks. The motivational subsystem (MS) main-
tains motivational states, which consist of motivational
drive strengths in the bottom level and explicit goals
in the top level. The metacognitive subsystem (MCS)
houses modules dedicated to the maintenance, monitor-
ing, and control of various internal parameters. Finally,
the working memory module (WM) temporarily stores
chunks retrieved by the NACS, monitors the similarity
of such chunks to perceptual inputs and/or current cog-
nitive states, and maintains a system of (implicit) flags
that serve as internal cues for the ACS.

Xyrast simulates processing in 50 ms increments. At
each time step, the model issues various external or inter-
nal actions. External actions include fixating on one of
the sixteen panels in the current matrix problem, mark-
ing an alternative as a response choice, and submitting
a response. Internal actions allow the model to control
cognitive processing by setting attentional parameters,
updating internal procedural cues, and retrieving declar-
ative memory chunks into working memory. The model’s
behavior is governed by a set of 916 fixed action rules,
which are defined over a space of 1430 (micro)features.
These rules are housed in the top level of the ACS and
control behavior through a competitive process that ac-
counts for the model’s current perceptual, cognitive, and
motivational states.

Pattern discovery is enabled by Xyrast’s visual archi-
tecture, which is inspired by Feature Integration The-
ory (Treisman and Gelade, 1980). The visual architec-
ture is founded on a dimensional visual code, in which
visual objects are represented via synchronous activa-
tion of matching basic visual features. When multiple
objects are present in a scene, the visual code is sub-
ject to a classic instance of the binding problem (see
e.g., von der Malsburg, 1999). Thus, to work around
this problem, Xyrast introduces a selective attentional
filter that suppresses unwanted objects as directed by
the ACS.1 The model detects visual relations by sequen-
tially fixating on visual objects. The resulting sequence
of object representations is processed by an autoregres-

1Details of the filtering process are omitted due to space
limitations.
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sive neural network in the bottom level of the NACS and
drives the activation of relevant relational feature nodes.
Using this complex of architectural components, Xyrast
processes patterns pertaining to object size, orientation,
shape, shading, and numerosity.

Visual patterns and response hypotheses are repre-
sented by chunks maintained in the NACS. For each pat-
tern hypothesis, the model is programmed to retrieve
into WM a corresponding pattern chunk. Under the
constructive matching strategy, the model is additionaly
programmed to retrieve a response hypothesis chunk for
each accepted pattern hypothesis. The model is not pre-
loaded with any pattern or response hypothesis chunks.
Instead, it automatically constructs new chunks in the
NACS based on the novelty of the activation patterns
in the bottom level. A second selective attentional filter,
also directed by the ACS, controls the flow of bottom-up
activations, allowing pattern hypotheses to guide chunk
construction.

The model is programmed to test patterns and alter-
natives by monitoring perceptually-driven, bottom-up
activations of relevant NACS chunks. A prerequisite for
conditioning model behavior on NACS chunk activations
in this way is to have the relevant chunks in WM. Reli-
able retrieval is therefore essential for performance. The
retrieval process involves a competition among all chunks
in the NACS. The probability that a chunk will be re-
trieved into WM from the NACS is given by a Boltzmann
distribution over chunk activations. Generally speaking,
the more activated a chunk, the more likely it is to be re-
trieved. The distribution has a temperature parameter
that controls how strongly retrieval depends on chunk
strengths and is (consequently) used to model WMC.
As the temperature increases, retrievals become increas-
ingly random.

Finally, the model persists on a given item if its mo-
tivation to solve the item outweighs the cost of time al-
ready sunk into that item. The motivation to solve an
item is calculated on the basis of drive strengths in the
MS and the relevance of the task goal to the agent’s
drives (see Sun et al., 2022). The cost associated with
working on an item is calculated as a function of the base
level activation (BLA) associated with the goal to solve
the item. In Xyrast, goal BLAs decay monotonically af-
ter goal creation. Thus, the cost term tracks the time
that has elapsed since the goal was set.

Simulations

Xyrast’s response characteristics and verisimilitude are
addressed in the following simulation study, which exam-
ines the model’s behavior and ability to capture salient
phenomena from the empirical literature. The study
focuses on phenomena from three human-participants
studies (discussed below), each of which addresses one of
the model’s three main psychological parameters: Gold-

hammer et al. (2015), Unsworth and Engle (2005), and
Vigneau et al. (2006).

The Vigneau et al. (2006) study presents a window
into the validity of the Xyrasts’s procedural program-
ming. A key element of that study is an examination
of correlations between scores, latencies, and eight eye-
movement indices pertaining to response strategy. The
matrix of correlations obtained from Vigneau et al.’s
sample may be used to examine the verisimilitude of
Xyrast’s fixation patterns, which depend primarily on
the implementation of its two strategies.

The Unsworth and Engle (2005) study is ideal for
addressing the verisimilitude of Xyrast’s WM mecha-
nisms. The study investigates how the correlation be-
tween WMC and item scores varies as a function of item
difficulty in order to examine the role of WMC in per-
formance, predicting that, if WMC demands are pri-
marily storage-related, WMC-score correlations should
increase as a function of item difficulty (as reflected by
item ordering) whereas, if these demands are primar-
ily related to attention control, these correlations should
not vary systematically with item difficulty. Empirically,
WMC-score correlations are found to be relatively steady
for easy and moderate items, supporting the attention
control explanation. Unexpectedly, the correlations are
found to decrease among the most difficult items.

Finally, the Goldhammer et al. (2015) study presents
an opportunity to examine the verisimilitude of Xyrast’s
motivational mechanisms. Goldhammer et al. analyze
how the relationship between item score and latency
varies as a function of subject ability and item difficulty
using generalized linear mixed models. They find a neg-
ative fixed effect of item latency on scores that appears
to diminish (possibly even reverse) among lower-ability
subjects and higher-difficulty items.

Setup

The simulations include a total 8,640 responses from 144
simulated subjects on a set of 60 generated items in the
style of the Sandia Matrices (Matzen et al., 2010). Be-
tween items, simulated subjects’ WMs and declarative
memories are cleared. The simulation design is fully
crossed and includes 5 item classes (see below), 2 strat-
egy levels (re, cm), 4 WMC levels (temperature settings
of 2−1, 2−3, 2−5, and 2−7), and 3 persistence levels (.33,
.66, and 1.0).2 There are therefore 6 subjects and 12
items per cell. For each item-subject pair, scores, la-
tencies, fixation sequences, and fixation durations are
recorded.

Persistence levels are varied using the strength of the
model’s achievement drive (ach). These achievement
drive settings correspond, in respective order, to ex-
pected time investments of 24.75, 45.5, and 75 seconds

2WMC and persitence levels were selected manually to
maximize variation in scores.
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in simulated time. Simulation runs are limited to 90
simulated seconds per subject-item pair, after which the
simulation is stopped and a timeout event is recorded.
This measure serves to abort simulation runs which have
entered a corrupted state.

The five item classes vary the source and level of item
difficulty and are named, in increasing order of theo-
retical difficulty (see, e.g., Matzen et al., 2010; Primi,
2001), OT-1, OT-2, OT-3, LP-2, and LP-3. The OT
prefix designates object transformation problems, which
vary in their structural complexity, as measured by the
number and type of distinct patterns used to generate
attribute variation. The LP prefix designates logic prob-
lems, which vary in their perceptual complexity, as mea-
sured by the maximum number of overlapping objects
allowed in individual matrix panels. In Figure 1, items
(a) and (b) are OT-2 and LP-3 problems, respectively.

Results

Of all item responses, only 1.67% (N = 144) are asso-
ciated with timeout events, the vast majority of which
are on LP problems (N = 139). These responses are ex-
cluded from all analyses. Among items included in the
analysis, the grand mean for item scores is 51% and the
grand mean for response latencies is 39.69 seconds.

Regarding item characteristics, a clear negative rela-
tionship exists between the by-item mean scores and la-
tencies (τ = −.797). A similar pattern is observed when
scores and latencies are averaged by item class. Average
scores show a clear increasing trend, and average laten-
cies a clear decreasing trend, as a function of theoretical
item difficulty. The only exception to this pattern is the
OT-3 item class which presents characteristics similar to
the OT-1 class.3

All considered, the model takes more time to pro-
cess more difficult items, replicating a well-known phe-
nomenon in human studies (see, e.g., Goldhammer et
al., 2015; Vigneau et al., 2006), and simulated item-
class difficulty levels accord well with theoretical expec-
tations. The case of the OT-3 class may be explained
by a lack of plausible alternatives in these items due to
unanticipated limitations in the alternative generation
procedure. A similar problem affects the original Sandia
Matrix generation software (Matzen et al., 2010). This
result therefore suggests that the contribution of alterna-
tives to item difficulty, often neglected in formal analyses
of matrix problems, deserves greater scrutiny.

Turning to subject characteristics, Table 1 presents
two linear probability models quantifying the influence of
the model’s psychological parameters on scores.4 These
regression models are selected based on a hierarchi-
cal analysis comparing four specifications: main effects

3This observation is corroborated by a regression analysis,
omitted here due to space limitations.

4Similar analyses were also performed for latencies but are
omitted due to space limitations.

(1) (2)

cm -21.062∗∗∗ -22.001∗∗∗

(2.151) (3.938)
wmc 42.994∗∗∗ 16.812∗∗∗

(3.288) (3.850)
ach 26.443∗∗∗ 26.958∗∗∗

(2.761) (3.074)
wmc:cm 27.750∗∗∗

(4.008)
ach:cm -19.625∗∗∗

(3.308)
wmc:ach 18.561∗∗∗

(4.955)
Intercept 22.906∗∗∗ 29.558∗∗∗

(3.235) (3.291)

Observations 8,496 8,496
R2 0.169 0.184
Adj. R2 0.168 0.183
F-Stat. 123.209∗∗∗ 85.983∗∗∗

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered by subject and item

Table 1: Regression of subject parameters on scores (%)

only, all two-way interactions except WMC-persistence,
all two-way interactions between the three psychologi-
cal parameters, and a full three-way model. The pre-
ferred model is the one that includes all two-way inter-
actions among the three psychological parameters. Table
1 shows the main-effects model (Model 1) and the pre-
ferred model (Model 2). In these regressions, response
strategy is coded using a dummy variable for construc-
tive matching and WMC is coded to range between 0
and 1. For WMC, 0 corresponds to the lowest level, 1
corresponds to the highest level, and the remaining levels
divide the interval evenly. Achievement drive strengths
are included in the regressions without any additional
processing.

The regression analyses reveal that Xyrast exhibits a
negative effect of constructive matching on scores at the
aggregate level (Model 1). This result is in tension with
findings that, in human samples, constructive matching
is typically associated with higher scores and more effi-
cient processing (see, e.g., Hayes et al., 2011; Vigneau et
al., 2006). However, it is worth taking note of the sub-
stantively large positive interaction between construc-
tive matching and WMC (Model 2). This interaction
effect more or less nullifies the score loss incurred by
the use of constructive matching at the highest-WMC
levels. Mechanically, the negative effect of constructive
matching on scores is attributable to the fact that, in
Xyrast, constructive matching demands a greater num-
ber of successful retrievals (per pattern) than response
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Figure 2: Score-WMC correlations as a function of item
rank.

elimination. Taken together, these findings suggest that,
in Xyrast, scores are more sensitive to WMC under con-
structive matching and that the apparent relationship
between scores and strategy choice among human sub-
jects may be driven by a process of adaptive strategy
selection.

Regarding the model’s ability to capture the target
phenomena, the results are as follows. There is moder-
ate agreement between the correlation matrix for per-
formance and strategic eye-movement indices reported
in Vigneau et al. (2006) and a corresponding matrix ob-
tained from the simulation data (τ = .439, p < .001 by
permutation test). This agreement improves if samples
are weighted in accordance with the notion that higher-
ability (i.e., higher scoring) subjects are more likely
to use the constructive matching strategy (τ = .518,
p < .001 by permutation test). These results support
the verisimilitude of Xyrast’s procedural programming.

As depicted in Figure 2, when items are ordered from
easiest to most difficult (according to simulated scores),
simulated WMC-score correlations vary with item rank
in a manner similar to the findings of Unsworth and En-
gle (2005). Interestingly, when item rank is regressed
against scores, a small increasing trend is observed
among OT items (p < .001) and a similarly small de-
creasing trend is observed among LP items (n.s.). These
results suggest that Unsworth and Engle’s findings may
be driven, at least in part, by qualitative differences in
item demands.

Last, the model’s behavior also appears to agree with
the findings of Goldhammer et al. (2015), as evidenced
by replication of the main mixed model from that study.
The mixed model predicts the probability of a correct re-
sponse as a function of (log-transformed) item latencies
with by-item and by-subject random effects and slopes.
Similar to humans, the simulations exhibit a negative

fixed effect of item latency on the probability of a correct
response. Also in agreement with the human results, by-
subject intercepts and adjustments to the latency effect
are negatively correlated. The same is true for by-item
intercepts and adjustments to the latency effect. Thus,
Xyrast captures the finding that the negative effect of la-
tency on scores is diminished among low-ability subjects
and high-difficulty items.

Discussion
Xyrast captures many aspects of human response pro-
cesses in Raven’s Matrices, as evidenced in the preceed-
ing discussion. Indeed, Xyrast’s behavior agrees with a
rather wide range of empirical findings. Furthermore, in
many cases, the model offers novel explanations for ob-
served phenomena which warrant further investigation.

That said, Xyrast’s most important contribution is its
ability to account for interactions among multiple psy-
chological parameters. The model encourages a funda-
mentally conative analysis of the Raven’s Matrices task,
where cognitive factors (e.g., item demands, strategy
choice, WMC) influence time costs while motivational
factors contribute to time investments. Crucially, this
analysis integrates classical cognitive considerations with
motivational considerations, providing for a nuanced and
detailed analysis of human response processes.

To close, it is notable that the relationship between
the model’s performance and its basic psychological pa-
rameters appears to depend on contingent factors like
strategy choice. This phenomenon may have some im-
portant implications for developing mechanistic theories
of gF . Namely, extraneous variability in the relationship
between performance on gF -test items and basic psycho-
logical variables, like WMC or persistence, presents a po-
tential challenge for explaining gF in terms of more basic
psychological processes, echoing some concerns raised in
Hunt (1987). That said, such variability need not pose
a problem if, for instance, it contributes only to test-
specific variance. Either way, closer collaboration be-
tween empirical and modeling work seems necessary to
advance our understanding of the mechanisms underly-
ing fluid intelligence.
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Abstract

The environment surrounding organisms changes dynamically,
and humans acquire motor skills by improving the prediction
of such environmental changes. The research on cognitive ar-
chitectures has so far proposed several mechanisms explain-
ing the process of human motor learning. Adaptive Control
of Thought-Rational (ACT-R), one of the representative cog-
nitive architectures, has perceptual and motor modules for in-
teraction with the external environment. However, the perfor-
mance of these modules is insufficient for real-time environ-
ments, especially in terms of learning speed. This study pro-
poses a method to simulate human-level rapid motor learning
using a pre-trained motor learning module. We assume that in
a novel perceptual-motor task, a pre-trained motor schema is
rediscovered/recalled. In the simulations, we trained the motor
learning module in advance and conducted a simulation where
difficulties of rediscovering schemata were manipulated. As a
result, we confirmed that the pre-trained phase increased the
human-model fitting in motor learning.
Keywords: motor schema theory; perceptual-motor task; cog-
nitive modeling; ACT-R

Background
The environment surrounding organisms change dynami-
cally. To enable quick and accurate action on the environ-
ment, humans acquire patterns predicting those changes. Re-
search related to cognitive architecture has long been con-
cerned with such motor learning processes. Adaptive Con-
trol of Thought-Rational (ACT-R) (Anderson, 2007), which is
one of the representative cognitive architectures (see exhaus-
tive review by Kotseruba and Tsotsos (2020)), has perceptual
and motor modules responsible for interaction with the ex-
ternal world. Historically, these modules were developed in
another cognitive architecture, Exclusive Process-Interactive
Control (EPIC) (Kieras & Meyer, 1997) and later integrated
into an official ACT-R through a version called ACT-R/PM
(Byrne, 2000) 1.

The perceptual and motor modules in ACT-R can inter-
act with higher cognitive functions such as memory and goal
management. This architectural characteristic allows the flex-
ible model adaptation to the external world. However, these
modules only work well in environments requiring no imme-
diate responses. Each of ACT-R’s modules has its own ded-
icated buffer. The continuous signal input to the perceptual
module is converted into discrete symbols through the buffer,

1See Ritter, Tehranchi, and Oury (2019) as a review of the devel-
opment history of ACT-R.

and the symbols are sent to the buffer of the motor module.
Therefore, there is a large time cost in the perceptual-motor
process. On the other hand, Common Model of Cognition
(CMC) proposed by Laird, Lebiere, and Rosenbloom (2017)
aiming to integrate several cognitive architectures proposes to
send the input of the perceptual module directly to the motor
module without going through buffers.

There are studies applying ACT-R’s perceptual and mo-
tor modules to real-time tasks. However, these studies used
motor commands developed in a program outside ACT-R ba-
sic functions. For example, the driving model developed by
Salvucci (2006) simulated human-level complex motor oper-
ations such as steering, accelerating, and braking with simple
mathematical functions. There is also a module (tracker mod-
ule) that learns the numerical parameters involved in motor
actions to interact with the external world without these ex-
ternal programs (Anderson, Betts, Bothell, Hope, & Lebiere,
2019; Gianferrara, Betts, & Anderson, 2021). However, those
studies have not shown that movements involving a large
number of parameters are acquired at the same speed as in
humans. Based on the above background, we propose an ap-
proach to represent human performance in perceptual-motor
tasks without using externally programmed motor sequences.
In our approach, the model stores the previously learned mo-
tor sequences as a schema and rediscovers them in novel sit-
uations.

In the following section, we will introduce related studies
concerning the abovementioned goal of the study. Follow-
ing this, the target human behaviors concerning human mo-
tor learning in perceptual-motor tasks will be presented. The
simulation results will present a model performance com-
pared to human behaviors. In the final section, we will discuss
the implications and limitations of this study.

Related Works
This study aims to represent human performance in
perceptual-motor tasks in ACT-R. This section introduces two
directions of previous studies: human and ACT-R perceptual
motor learning.

Human Perceptual Motor Learning
There are cognitive aspects to human motor learning. Some
researchers claim that the process of motor expertise is fa-
cilitated by verbalization (Suwa, 2008). As a background of
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such aspect, Fitts (1964) proposed a nonlinear theory, which
divides human motor learning into three levels. The lev-
els correspond to a cognitive phase in which prior knowl-
edge is used, an associative phase in which prior knowledge
and movement begin to connect directly, and an autonomous
phase in which all movement is automatic. Human motor
learning can be viewed as a process of transition from the
cognitive phase to the autonomous phase.

There is also a theory that explains the learning of motor
movement as the acquisition of a schema representing a pat-
tern of connecting perceptual and motor program (Schmidt,
1975). This theory assumes two types of schemata, re-
call schema and recognition schema, are acquired through
perceptual-motor tasks. The recall schema consists of a set
of motor parameters, past motor content, and past motor out-
comes, while the recognition schema consists of a set of mo-
tor parameters, past motor senses, and past motor outcomes.
Through the recall and recognition schemata, the content
and sensory information of past motion are recalled respec-
tively. By acquiring and utilizing this abstract knowledge of
movement, humans can quickly acquire movement patterns
in novel situations.

As described above, there is a link between motor learning
and cognitive processes. Cognitive architectures are useful to
explain these connections in detail. Therefore, in the follow-
ing, we refer to the model developed using ACT-R.

ACT-R Model of Perceptual Motor Learning
Several studies have used ACT-R to explain internal human
processes during complex perceptual-motor tasks such as a
video game environment (Anderson et al., 2019; Gianfer-
rara et al., 2021). The main claim of those studies is that
the nonlinear mastering process of motor skills (Fitts, 1964)
is represented by combining the motor learning module with
other higher-order cognitive modules. In addition, those stud-
ies implemented a game state buffer that describes temporal
relationships between objects projected into the visual field.
They reproduced the human performance by making the state
of the game state buffer as the condition for activating the
motor commands.

The other studies utilize a simpler task to manipulate ex-
perimental variables involved in perceptual-motor processes.
The ACT-R model constructed by Morita et al. (2020) per-
forms the simple task of manipulating a circular object to fol-
low a scrolling line. In the experiment that the model simu-
lated, participants followed the object either manually or au-
tomatically. Under conditions in which the performance of
those manipulation modes varied, they investigated the mech-
anism of dependence on automation. To obtain results com-
patible with human performance, the manual mode of this
model was controlled by the ACT-R’s perceptual and motor
modules with the support of an external program for deter-
mining the timing of key presses 2. Concerning this limi-

2See the source code obtained from https://github.com/j-morita-
shizuoka/line-following-tak

Figure 1: Task interface.

tation, Nagashima, Nishikawa, Yoneda, Morita, and Terada
(2022) modified the model to include the ACT-R motor learn-
ing module to realize motor function in this task without any
programmatic assistance. Although Nagashima et al. (2022)
succeeded in simulating the interaction between motor learn-
ing and task arousal, which was the target of their study, they
failed to simulate human-level task performance.

As shown in the above, ACT-R can simulate perceptual-
motor tasks that require immediate responses with some limi-
tations. However, as already mentioned, existing research has
not revealed a mechanism to replicate human learning rates in
situations involving a large number of parameters. The motor
learning module of ACT-R learns parameters that map per-
ception to motor action from a trial-error history. Such model
learning usually requires more trials than human learning.
Against this background, this study investigates the mecha-
nism of convergence of parameters coordinating between per-
ception and motor actions in a short period.

Human Data
To obtain data on human motor learning, we set up the line-
following task, as in previous studies. Figure 1 shows the
task interface. In this task, participants manipulate a blue cir-
cle called a vehicle to follow a polyline that automatically
scrolls from top to bottom on the screen. The line changes
according to a predefined course, as shown on the right side
of Figure 1. The line is drawn by combining 48 pixels high
line patterns of varied angles (30, 45, 90, 135, and 150 de-
grees). The course repeats from the beginning approximately
every minute 3. The repetition of the course is called a round.
Participants perform these operations for 30 minutes.

The data covered in this study were obtained in an on-
line experiment via recruitment on a crowdsourcing website
(Lancers.jp) in January 2023. The data from twenty-four par-
ticipants were the target of the analysis, excluding incomplete
data from a total of 50 participants.

Figure 2 shows the performance of the task. The vertical
axis shows the offline rate (the percentage of time that the ve-
hicle did not follow the line in the total time of the segment),
and the horizontal axis shows the time that the 30-minute task

3Scroll speed is 40 fps, the total course length is 1500 frames.
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Figure 2: Human data. Error bars indicate a standard error of
mean.

Figure 3: Block diagram showing basic model processing.

was segmented into 1-minute intervals. The graph shows a
decreasing tendency of the offline rate with time. In partic-
ular, we confirm that the decrease in the offline ratio occurs
rapidly at the beginning of the task.

Model
This section introduces a model of the line-following task.
The focus of this study is on learning in the motor module.
In particular, we aim to express the cognitive mechanisms
behind rapid learning as shown in Figur 2. In the following,
we describe the structure and process of the model and then
describe the mechanism of motor learning.

Module and Process
While following the previous models (Morita et al., 2020; Na-
gashima et al., 2022), this study focuses on the fitting between
human and model performance. The internal state transit of
the model is shown in Figure 3. As seen in the figure, the
model consists of cyclic behaviors of perceptual and motor
processing. Because individual cognitive functions support
this process, this section explains the model according to the
ACT-R modules. Among several modules implemented in
ACT-R, the model uses the visual, motor, goal, and produc-
tion modules. These modules function as follows.

Visual Module This module simulates interaction with the
external environment (a virtually created window) by recog-
nizing symbols needed to perform a task (e.g., the position of
a vehicle or the angle of a line). Figure 4 shows the virtual
interface for the line following task 4. Similar to humans, the
model manipulates the vehicle based on a positional relation-
ship to the line to be followed. The relationship is indicated
by two lines drawn from the top of the vehicle toward the
scrolling line.

4The courses presented in the figure are different from the ones
used in the simulation (same as Figure 1) for explanation purposes.

Figure 4: Model interface.

• VL (Vehicle to Line): It indicates how well the model fol-
lows the current scrolling line. If the length of the VL is
less than or equal to the vehicle’s radius, the model suc-
cessfully performs the task. This on/offline status is also
indicated as the vehicle’s color (red: online, blue: offline).
The color of the VL is also changed according to the po-
sitional relation between the vehicle and the scrolling line.
When the vehicle is positioned to the left of the scrolling
line, the VL colors magenta, while when the vehicle is po-
sitioned to the right, the VL colors yellow. By recognizing
these colors, the model determines which direction the ve-
hicle needs to go next.

• VG (Vehicle to Goal): It indicates the direction in which
the model will head in the future (subgoal). The subgoals
are placed at the next contact points of each 48 pixels pat-
tern. In addition, it is placed at the x-coordinate offset by
the radius of the vehicle from the line to be followed so that
the shortest path where the line and the vehicle touch can
be traced.

Goal Module This module stores the current state of the
task to control the flow. In this study, the state includes the
lengths of VG and VL, the left-right relationship between the
vehicle and the scrolling line.

Motor Module This module simulates the operations re-
quired by the task. In the line-following model, key presses
are performed to move the vehicle. Nagashima et al. (2022)
prepared four operations: Stop (release the key), Left (press
the key assigned to the left), Right (press the key assigned
to the right), and Continue (continue the previous operation).
This study adds Left Punch (briefly press the key assigned to
the left twice) and Right Punch (briefly press the key assigned
to the right twice) to follow 45 and 135 degrees angle lines.

The selection of these operations is conditioned on the
lengths (continuous values) of VL and VG held in the goal
module. Table 1 summarizes those conditions for each action
selection. The role of each row indicates as follows.

1. Current Action: Current action.

2. Position: Relative position of the model to the scrolling
line.
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3. Goal: The goal that the model is heading. Far represents
the subgoal and Near represents the scrolling line.

4. Online: The distinction of the state that model is following
the line.

5. Tracker: Conflict resolution criteria using the vehicle coor-
dinates and the motor learning module adjustment values.

Continue is chosen when none of these conditions is satisfied.

Production Module This manipulates the other modules
by selecting and applying production rules using chunks held
by the other modules. In the current model, the application of
this module results in the flow shown in Figure 3.

1. Perception: The model sees the state of the external en-
vironment in the visual module and it updates the current
state.

2. Objective: The model recalls chunks about the current
goal.

3. Manipulation: The model operates a vehicle to trace the
line.

The time required for these state transitions is determined
by the method defined in ACT-R (e.g., the default production
execution time of 50 ms).

Mastering Motor Control
The accuracy of the perceptual-motor loop (Figure 3) is im-
proved by learning through the task. This learning is con-
trolled by a tracker module included in ACT-R 7.27, initially
proposed by Anderson et al. (2019). This module adjusts the
continuous conditions for selecting motor operations based
on positive and negative feedback from the environment and
simulated annealing algorithm (Kirkpatrick, Gelatt Jr, & Vec-
chi, 1983).

In this study, positive feedback is generated when the
model goes from the offline state (viewing the blue vehicle)
to the online state (viewing the red vehicle). Negative feed-
back is generated in the opposite pattern. Based on the values
of these feedbacks, the parameter θ in Table 1 is adjusted to
be optimal to follow the line. If this optimization fails, the
model cannot trace the line because the vehicle either crosses
the line or stops moving before reaching the line.

The problem with such learning is the time to find optimal
combinations of the parameter values because the number of
combinations becomes large depending on the size of the pa-
rameter set. To reproduce the rapid learning observed in the
human experiment, we assume a fixed set of parameters as a
motor schema (Schmidt, 1975). In more detail, we suppose
that the rapid learning observed in Figure 2 was accomplished
by recalling (or rediscovering) the motor schema held in the
individual’s prior memory. Even participants who perform
this task for the first time have experienced playing similar
games in the past. Thus, they could recall such motor schema
coordinating perceptual and motor processing during the task,
rapidly improving their performance.

To examine this hypothesis, in the following simulation,
we perform a pseudo-pre-learning phase (schema construc-
tion phase) to construct the optimal parameter set for this
task in advance. Then, in the phase that reproduces the hu-
man experiment (schema application phase), we aim to repre-
sent human-level rapid learning in a situation where the pre-
constructed parameter set (schema) can be easily discovered.

Simulation
In this simulation, we set two phases: the preliminary schema
construction phase and the schema application phase. In the
later phase, the discoverability of the constructed schema
was manipulated. Furthermore, to strengthen the alignment
with human performance, we manipulated the dat parameter,
which defines the firing time of productions in ACT-R. The
default setting of this parameter is 0.05. However, past mod-
els of ACT-R have shown delays in reaction time if it uses
the default setting. To validate the performance of the base
perceptual-motor process in ACT-R, this study examined a
setting (dat = 0.025) that allows for twice as fast reactions in
addition to the default setting.

Procedure
The following procedures were performed for each phase.

Schema Construction We assume that the optimal param-
eters (a motor schema) are obtained by learning over a long
period of time for a sufficiently large parameter space. To
apply this assumption, the following procedure is executed.

1. Set the value range of each θ to minConstruct = −64 and
maxConstruct = 64 centered at 0. This range is divided into
128 segments by the control-count parameter of this mod-
ule.

2. Run a three-hour simulation, compared to 30 minutes for
the human experiment.

3. Search for rounds that had an offline ratio of 0 (perfectly
follow the line) in the last hour.

4. For each of those rounds, the difference between the maxi-
mum and minimum values for each θ is calculated and add
them together.

5. Select the round with the lowest total range of θ as the
candidate for the best parameter.

In this study, we performed the above procedure 10 times.

Schema Application We assume that the optimal parame-
ters discovered above are acquired by participants prior to the
start of the experiment. Thus, the learning process during the
experiment is considered to be the process of rediscovering
the motor schema. This process of rediscovery is considered
to be a search among a limited set of parameters. Based on
this assumption, the following procedures are executed in the
schema application phase.

1. Set the range of each θ to constants defined by maxApply
and minApply, centered on the optimal value obtained in the
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Table 1: Condition-action correspondence.
Left Left Punch Right Right Punch Stop

Current
action Stop Stop Stop Stop Stop Stop Stop Stop Left Left Left Right Right Right

Position Right Right Right Right Left Left Left Left Right Right Left Left Left Right
Goal Far Near Far Near Far Near Far Near Far Near Far Near

Online False False False False

Tracker
vgx ≧ vgy +θ5

vgx > θ1
vl ≧ vg+θ4

vl > θ1
vl > θ2

vl < vg+θ4

vgx < vgy +θ5
vgx > θ1

vl ≧ vg+θ4

vl > θ1
vl ≦ θ2

vl < vg+θ4

vgx ≧ vgy +θ5
vgx > θ1

vl ≧ vg+θ4

vl > θ1
vl > θ2

vl < vg+θ4

vgx < vgy +θ5
vgx > θ1

vl ≧ vg+θ4

vl > θ1
vl ≦ θ2

vl < vg+θ4

vl ≧ vg+θ6
vgx ≦ θ3

vl ≦ vg+θ6
vl ≦ θ3

vl ≧ vg+θ6
vgx ≦ θ3

vl ≦ vg+θ6
vl ≦ θ3

* vg denotes the distance to the goal. vgx and vgy denote its xy components. vl denotes the distance to the line. Each θ is a
correction value adjusted by the motor learning module.

Figure 5: Result of schema construction. The thick lines are
averages, and the thin lines are individual cases. (n = 10)

schema construction phase. The range is divided into three
segments by the control-count parameter.

2. Run a 30 minutes simulation.

The above settings make it easier for the model to discover
the constructed optimal parameters as a schema by decreas-
ing the divisions. In this study, maxApply and minApply were
set to the same values, and three conditions were prepared,
each setting the parameters to 32, 64, and 128. The other pa-
rameters of the motor learning module were set as same as
Gianferrara et al. (2021).

Results
Schema Construction Figure 5 shows the offline ratio for
three hours, obtained in the process of pre-training with two
different dat parameters. The blue and green series represent
the model and the human results (a reference) respectively.
Although neither the blue line of dat setting did not reach
the human performance, there were individual cases where
it outperformed humans. Furthermore, the blue line can be
seen that as the task progresses, the offline ratio became lower
and the performance of the model improved. We can also
confirm that the lower dat led to an overall improvement in
performance.

For each dat setting, we searched for rounds in which the
offline ratio was zero in the last hour and the parameters were
less variable. The maximum and minimum values for each θ
in the obtained rounds are summarized in table2. The range
of values from -64 to 64 was searched for all parameters, but

Table 2: Ranges of θ after the schema construction.
dat = 0.05 dat = 0.025
min max min max

θ1 -35.8 -33.8 2.5 7.6
θ2 -9.6 -7.6 -33.8 -29.7
θ3 15.6 24.7 17.6 25.7
θ4 -48.9 -28.7 21.7 31.7
θ5 -64.0 -46.9 12.6 14.6
θ6 63.0 64.0 60.0 64.0

Figure 6: Result of schema application. Error bars in the
offline ratio indicate a standard error of mean. (n = 100)

the obtained range was different for each parameter. For ex-
ample, the range of θ3 is larger than that of θ2, etc. In this
study, the median value between the maximum and minimum
values for any of the parameters was considered the optimal
parameter.

Schema Application Figure 6 shows the simulation results
of the model with the constructed schema. Each series indi-
cates a different maxApply/minApply setting. In both dat set-
tings, we can confirm that the narrower the width of the value
range leads to better initial performance. It can also be con-
firmed that except for a 32 in dat=0.050 condition, the hu-
man characteristic of rapid learning in the early stages of the
task was reproduced. Note that a smaller dat setting improves
the final performance and is closer to the human performance
than the default dat setting.

Table 3 shows the model-human fitting. It can be seen
that for each dat setting, the correlation is higher in the
schema application phase than in the schema construction
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Table 3: Pearson correlation coefficients between human and
model results.

dat = 0.05 dat = 0.025
base 0.34 (100 ×0.12) 0.33 (10−1 ×0.36)
128 0.78 (10−1 ×0.25) 0.85 (10−2 ×0.99)
64 0.75 (10−1 ×0.20) 0.90 (10−2 ×0.65)
32 0.69 (10−2 ×0.64) 0.90 (10−2 ×0.37)

* The numbers in parentheses indicate Root Mean
Squared Error (RMSE). The base is for the first 30 min-
utes during schema construction. The others correspond
to the series in Figure 6. The bold numbers indicate the
best fit.

phase (base). The RMSE is also shown to be higher for the
schema construction phase (base) on the schema application
phase. These results support the hypothesis that rapid learn-
ing in humans can be explained as the rediscovery of a con-
structed schema.

The best fit between the model and human was obtained
when dat was accelerated from the ACT-R default to twice
the speed. This result may indicate room for improvement in
modeling in this study or the limitations of the default pro-
duction cycle settings in ACT-R.

Conclusion
This study aimed to explain human rapid motor learning us-
ing the motor learning module of ACT-R. The proposal of
this study is that humans achieve rapid learning on a task by
reconstructing a pre-learned motor schema during the task.
To examine this hypothesis, we conducted simulations with
schema construction and schema application phases based on
the motor schema theory. The results showed that the schema
application phase was more consistent with human learning
performance than the schema construction phase.

The significance of this study is the proposal of modeling
human learning using parameter optimization, which usually
requires a long learning time. This method follows the motor
learning transfer proposed in the previous study (Anderson
et al., 2019) in terms of leveraging past related experience.
We also consider that this method is extendable to end-to-end
deep learning and reinforcement learning frameworks that
have been the dominant artificial technology in recent years.
These technologies usually take a vast amount of learning tri-
als. Our method aims to reproduce a learning rate equivalent
to that of humans by using prior learning. Such a method
can be regarded as an application of the recent learning algo-
rithm (Wang, Yao, Kwok, & Ni, 2020) from a small number
of examples in large-scale models to the domain of cognitive
models.

In addition, we would claim that the advantage of our
model in requiring no external programs as was used in the
models of driving (Salvucci, 2006) or the past line-following
task (Morita et al., 2020). Therefore, the method of this study
can be viewed as an attempt to create a unified theory of hu-

man cognition during perceptual-motor tasks.
This approach needs to be progressed further in the future.

Although in the present study, the prior learning involved in
the construction and application of the schema had a certain
effect in terms of performance improvement, it was not suf-
ficient in terms of achieving human performance. One fac-
tor that could be considered is the possibility that the schema
construction procedures of this study did not find the optimal
parameters, as shown in Table 2. It is possible that more opti-
mal parameters could be found by taking a larger number of
model runs over a longer period of time. In addition, the loop
in the execution of the task in Figure 3 needs to be improved.
Performance would be improved by skipping the component
of task cycle.
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Abstract

I present a novel cognitive model of reading based on a contin-
uous flow of information approach, the CoFI reader, where par-
tial information from different levels of representation is con-
tinuously being made available to next levels. In an example
application, I implement the model in a hierarchical Bayesian
framework and fit it to self-paced reading times data: a reading
task where one word is presented at a time and the presenta-
tion time is controlled by the experimental subject. The results
show that the model provides a reasonable fit to word-level
reading times, and can account for two previously observed
findings: (i) reading times are much shorter than the minimum
time required for all cognitive processes that should take place,
and (ii) the processing difficulty of a word affects the read-
ing times of subsequent words (i.e., spillover or lag effects).
Computational models have explained these findings through
parafoveal preview, that is, the partial processing of upcom-
ing words during reading before they are directly fixated by
the eyes. The CoFI reader model provides an explanation for
these findings that is relevant for natural reading, but also, cru-
cially, for self-paced reading, where parafoveal preview is not
possible.
Keywords: continuous flow of information; Bayesian hierar-
chical modeling; reading times; self-paced reading

The classic perspective on human information processing
posits that cognition is composed of a series of discrete,
non-overlapping cognitive processes, a notion introduced by
Donders (1868–1969) through his pioneering work on men-
tal chronometry (a view modernized later by, among others,
Sternberg, 1969). Despite the development of alternatives
(e.g., Mcclelland, 1979), non-overlapping discrete processes
(whether they are serial, parallel, or a combination of the two)
have been the overwhelming and sometimes implicit choice
in human information processing and cognition (Townsend &
Wenger, 2021). This is also the case in the study of human
sentence processing, where verbal and computational models
of reading overwhelmingly assume discrete cognitive stages.
In contrast to this “Dondersian” approach, I propose here the
foundations of a computational model of reading, where the
processing of different stages overlaps because information
cascades from lower levels of representation (e.g., spatial in-
formation) to higher ones (e.g., semantics/syntax).

Reading times as a window to cognitive processes
Reading times are widely used to investigate human sentence
processing in psycholinguistics, as they are meant to provide
insight into cognitive processing difficulty. For example, con-
sider the following sentences:

(1) It’s raining, I’ll take the umbrella before I leave the house.

(2) It’s raining, I’ll take the hat before I leave the house.

Say that we have some measure of the predictability of
“umbrella” and “hat” as a continuation of “It’s raining, I’ll
take the”, where “umbrella” is more predictable than “hat”.
Predictability can be measured with a cloze task or using neu-
ral network models (as in Frank, 2013). Longer reading times
at an unpredictable word (e.g., “hat”) in comparison with a
more predictable one (e.g., “umbrella”) (controlling for the
effect of length) has been taken as evidence for increased pro-
cessing difficulty for readers (e.g., Ehrlich & Rayner, 1981).

There are two methods commonly used to measure reading
times: Eye-tracking-while-reading and self-paced reading. In
the eye-tracking-while-reading paradigm, eye movements are
recorded while subjects read a text “normally” (usually using
a head mounted device to prevent head movements). This
method allows researchers to determine the duration of the
first fixation on a word, the sum of fixations entering from the
left, the sum of all fixations, and other metrics. As in every-
day reading, short words are skipped and words in sentences
are not necessarily read in sequential order. Furthermore,
while readers fixate their gaze on a word, they obtain some
information about the upcoming word(s) through parafoveal
preview (how much information is obtained in this preview is
contested, e.g., Vasilev & Angele, 2017). In contrast, in the
self-paced reading paradigm, words are presented one by one,
with the subject pressing a button to reveal each new word.
The difference in times between button presses is used to de-
termine reading times. This method, while admittedly less
naturalistic, simplifies modeling, as eye movements are not
relevant and there is no parafoveal preview. Crucially, how-
ever, all findings in psycholinguistics are consistent across the
two methodologies.

There are two issues that complicate a straightforward in-
terpretation of reading times of word n as an index of pro-
cessing difficulty for the same word and suggest a looser cou-
pling between processing and reading times than the one typ-
ically assumed in psycholinguistics (a phenomenon that has
been recognized in cognitive psychology for some time: e.g.,
Bouma & De Voogd, 1974; Kliegl, Nuthmann, & Engbert,
2006): (i) The times spent at each word (whether these are
reaction times in self-paced reading or fixation durations in
eye-tracking methodology) are too short to be affected by all
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the cognitive processes required for successful reading (Re-
ichle & Reingold, 2013), if the assumed processes would oc-
cur serially and in a non-overlapping way. (ii) Spillover ef-
fects (Mitchell, 1984) or lag effects (Kliegl et al., 2006), that
is the observation that characteristics of a given word affect
subsequent words, are ubiquitous in both eye-tracking and
self-paced reading paradigms.

(i) Reading times are very short considering all the cog-
nitive processes involved. Computational models of read-
ing have attempted to solve this paradox by assuming (i) that
much of the processing occurs before a reader fixates on a
word through parafoveal preview during the previous fixa-
tion, and (ii) that only a minimal amount of linguistic pro-
cessing is required to initiate a saccade or press a button. For
example, according to the E-Z Reader (Reichle, Warren, &
McConnell, 2009) a signal to initiate a saccade is sent imme-
diately after a familiarity check stage, which is unaffected by
most linguistic processing. According to SWIFT (Engbert,
Nuthmann, Richter, & Kliegl, 2005), lexical processing can
inhibit a timer that triggers the saccades, but the model does
not account for post-lexical high-level linguistic processing
(there is, however, a recent attempt to integrate memory pro-
cess to the model: Rabe, Paape, Vasishth, & Engbert, 2021).

(ii) Spillover/lag effects are ubiquitous. A widespread
view in psycholinguistics is that spillover effects result be-
cause some aspects of processing join a buffer and are dealt
with later (Mitchell, 1984). However, given that spillover ef-
fects happen at each word in reading, it is unclear then how
much can be processed at each word. Computational mod-
els of reading such as SWIFT and E-Z reader explain the
spillover/lag effects mostly through parafoveal preview: If
a reader fixates on a challenging word n, they are likely to
perceive “less” of word n+ 1 with their parafoveal preview,
and, thus, when they fixate on word n+ 1 they would need
to process more in comparison with a situation where word n
is easier and allows for “more” parafoveal preview on word
n+ 1. However, SWIFT provides an additional explanation
that does not depend on parafoveal preview: When the reader
fixates on a difficult word, they inhibit the progress of the
timer that triggers the saccades. Depending on whether a sac-
cade program is already running, inhibition can either affect
the saccade timer for word n, or for the saccade for the word
n+1. This means, however, that it cannot affect the saccade
program of word n+2 and later words.

A proposal for a computational framework to
model (self-paced) reading data: CoFI reader

We introduce here the CoFI reader model, which can account
for the seemingly fast reading times and explain spillover ef-
fects without the need of parafoveal preview. Whereas in
principle it could be extended to “normal” reading, the fo-
cus of this specific model is to account for self-paced read-
ing data. This means that the effect of parafoveal preview
and the mechanism directing the target for the eye move-

ments are ignored. CoFI reader assumes that parallelism
while reading is present to a large extent (similarly to Eng-
bert et al., 2005; Reilly & Radach, 2006; Snell, van Leipsig,
Grainger, & Meeter, 2018; Trukenbrod & Engbert, 2014),
and that there is a signal to control the motor system (here
to press a button and be presented with the next word). This
signal is controlled by a stochastic timer and can be inhib-
ited by processing load (similarly to Engbert et al., 2005;
Trukenbrod & Engbert, 2014). The CoFI reader model differs
from other reading models by assuming that information cas-
cades from lower levels of representation (e.g., spatial infor-
mation) to higher ones (e.g., syntactic/semantic information),
and its implementation assumes a continuous flow of infor-
mation from different processes (Ashby, 1982; Coles, Grat-
ton, Bashore, Eriksen, & Donchin, 1985; Mcclelland, 1979;
Townsend & Wenger, 2021; also compatible with a dynamic
systems-approach, e.g., Spivey, 2008). This is depicted in
Figure 1.

wordnwordn−1 wordn+1

v(·)Spatial
information

f(·)Low level ling.
information

g(·)High level ling.
information

h(·)Timer

p(·)Execute movement
to wordn+1

un(t)

xn(t)

yn(t)

zn(t)

yn−1(t)

More stages

could be added here.

Figure 1: Schematic of the CoFI model.

The first three stages, v, f , g, process information which
is represented with a real value between 0 and 1. The first
stage involves the processing of visual information. To sim-
plify the model, v(t) is assumed to be a step function for word
n, un(t) = 1 if t > t0, with t0 = 50 ms after the presentation of
word n; otherwise un(t) = 0. I assume that the visual infor-
mation is accessible even if the word is no longer in the field
of vision (as shown, among others, by Rayner, Inhoff, Morri-
son, Slowiaczek, & Bertera, 1981). As time elapses, the vi-
sual information of word n should becomes unavailable. As a
simplifying assumption, the reader is assumed to have access
to visual information of words up to n−3 when viewing word
n. The spatial information feeds into the low level linguistic
information processing stage:

f (u, t,r) = un(t) ·sigmoid
(
(t− tn,0) ·rn, f ·un(t)

)
= xn(t) (1)

The sigmoid function starts by yielding an output of zero
and, as it acquires information from the preceding stage, its
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output gradually grows in time until it reaches a plateau (of
output one). The sigmoid function is 1− e−(x/λ)k

with λ = 5
and k = 2. The growing rate of the information is determined
by r. The output of the entire function is zero when u is zero,
that is before tn,0 (tn,0 : t0 after word n is presented).

The high-level linguistic information stage is similar to the
previous one with the difference that it depends not only on
the output of the previous stage, xn(t), but also on the out-
put of the previous word analogous stage yn−1(t). The intu-
ition behind this is that to process high-level linguistic fea-
tures such as syntax, the reader needs to have (some extent
of) knowledge about the current word and also the context.

g(x, t,r)= xn(t)·sigmoid
(
(t− tn,0)·rn,g ·xn(t)·yn−1(t)

)
= yn(t)

(2)
As a first implementation, the current model has only two

stages for linguistic processing. The last processing stage out-
put feeds a timer:

h(t) = yn(t) · (t− tn,0) · rh = zn(t) (3)

When the output of the timer reaches a threshold cn(t), a
signal is sent to the motor system. This threshold is not a
function of the characteristics of the current word, and it is
assumed to be affected by the difficulty of the task, and char-
acteristics of the reader such as motivation, tiredness, etc (as
in other accumulator models). Finally, tpress time after the sig-
nal is sent, p(t) is set to one meaning that a button is pressed
and word n+1 is displayed. The output of the different func-
tions are shown in Figure 2 for a single word. Figure 3 shows
the way in which the model accounts for spillover effects.

u x y

z

infor−
m

ation
tim

er

0 100 200 300 400

0

1

0

Time [ms]

Figure 2: The upper panel shows the accumulation of infor-
mation of the different stages for a single word. The lower
panel shows the timer reaching its theshold triggering the mo-
tor system. Notice that while the figure ends with the press-
ing of a button, the accumulation of information for this word
would continue.

Example application: Self-paced reading data of
Frank, Fernandez Monsalve, Thompson, &
Vigliocco (2013)
In the following example application, I focus on the effect of
word frequency as a representative characteristic of a word
that might affect a low-level linguistic processing stage, and
surprisal (to what extent a word is unpredictable given a con-
text) as a characteristic of a word and context that might affect

1
2

3
4

5
6x: f output

y: g output

tim
er

Time

R
T

word position

Figure 3: A toy simulation depicting the processes involved in
understanding a six-word sentence, where each word shares
similar features except for the word in position 3. The gray
boxes illustrate the time period when each word is displayed.
For each word, the first black dot indicates that the visual in-
formation of the given word is available, the second black
dot indicates the moment when the timer reaches the thresh-
old. In this toy example, the complexity of word3 results in a
lower r3,g. As for all the words the g stage is barely processed
when the timer is triggered (i.e., y is low), the change in g3
is most relevant for the timers of word4 and word5, where the
effect of g4 and g5 (influenced by g3) is more pronounced.

a higher-level linguistic processing stage. In addition, I exem-
plify how the output of a model could determine the value of
the parameters that control the growing rate of the sigmoid
functions, r, by using the output of a log-normal regression.

Data The CoFI reader model was fit to a small subset of
data from the Frank et al. (2013) study, which collected
word self-paced reading times from independent (and dis-
connected) sentences taken from amateur novels written in
British English spelling. The data were collected from 114
subjects, but non-native English speakers and those with low
comprehension scores were excluded. Because the current
implementation of the model cannot handle outliers, only 6
subjects whose first 100 sentences contained reading times
between 200 and 3000 ms were used for the analysis.

Modeling The CoFI model has a tractable likelihood and
is implemented as a Bayesian hierarchical model. For each
subject i and word n, the rate of accumulation of information
in the low- and high-level linguistic information processing
stages is modeled as a function of r with a hierarchical struc-
ture by subject, where r is sampled from a log-normal model:

rn, f ∼ LogNormal
(
α+ f reqn · (β f +νβ, f ),σr

)
rn,g ∼ LogNormal

(
α+ surpn · (βg +νβ,g),σr

) (4)

f reqn represents the scaled Zipf value of the frequency of
word n derived using SUBTLEX-UK (Van Heuven, Mandera,
Keuleers, & Brysbaert, 2014), surpn is a scaled measure of
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Table 1: Priors for the parameters. Distributions followed
by + indicate support for only positive values. Distributions
followed by T [0,min(RT )i] indicate support between 0 and
the minimum reading time for each subject (in seconds).

Parameter Prior

α Normal(3,0.5)
β f ,g Normal(0,0.1)
σr Normal+(3,2)
αc Normal(0,1)
βc Normal(0,1)

σc Normal+(0.5,0.5)
lc1 Normal(−2,1)
σ Normal+(3,2)
tpress,1..6 NormalT [0,min(RT )i](0.1,0.05)

surprisal, formally − logP(wn|w1...wn−1) derived using a
recurrent neural network in Frank (2013). The parameters
α, β f , and βg represent, respectively, a baseline rate for both
stages when a word is present, the effect of frequency, and
the effect of surprisal. The parameters νβ are the by-subject
adjustments.

The rate of the timer is stochastic with a fixed mean fol-
lowing a log-normal distribution as shown in Eq. (5).

rh ∼ LogNormal(0,σ) (5)

The threshold of the timer, c, follows a hierarchical log-
normal first order autoregressive model, AR(1):

cn ∼ LogNormal
(
αc +να,c + log(cn−1) ·

(
βc +νβ,c

)
,σc

)
(6)

where n 6= 1, and c1 = elc1+νlc1 . This means that changes in
the threshold are much slower than changes due to process-
ing of information (as in the model of visual search ICAT,
Trukenbrod & Engbert, 2014).

All the by-subject adjustments to the parameters are drawn
from uncorrelated normal distributions as shown in Eq. (7).

ν∼N (0,Σ) ;ρ = 0 (7)

Finally, the minimum time needed for pressing a button is
estimated individually for each subject as tpress,i. Priors for
all the parameters can be found in Table 1.

Next, I derive the observational model to obtain the likeli-
hood of the model. When the threshold is reached, the fol-
lowing holds:

h(t) = yn(t) · (t− tn,0) · rh = zn(t) = cn

rh =
cn

yn(t) · (t− tn,0)
(8)

A draw of t is accepted if rh is such that solving the equa-
tion yields a root in a narrow interval (smaller than ε) around

the observed t?. This, in turn, means that rh falls in a narrow
interval around r?h (the value of rh that implies that t = t?):

|t− t?|< ε ⇐⇒ |rh− r?h|<
∣∣∣∣∂rh

∂t

∣∣∣∣ε

P
(
|rh− r?h|<

∣∣∣∣∂rh

∂t

∣∣∣∣ε

)
≈ 2ε · p(r?h)

(9)

where p(rh) is the probability density function for the prior
distribution of rh and ε is a constant (which will not matter for
the posterior distribution). Then,

L(t|Θ,n)≈

∣∣∣∣∣cn∂
1

yn(t)·(t−tn,0)

∂t

∣∣∣∣∣ · p(rh) (10)

where Θ represents all the parameters of the model, and
p(rh) is the PDF of LogNormal(0,σ).

Results I fit the models using Stan with the cmdstanr pack-
age (Gabry, Češnovar, & Johnson, 2022; Stan Development
Team, 2023) in R (R Core Team, 2022) and verified that the
model converged. Figure 4 shows the successful recovery of
the model parameters using a non-hierarchical version of the
current model.

σ σc σr
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Figure 4: Parameter recovery based on a non-hierarchical ver-
sion of the model through 20 simulations; only the 10 models
that converged were kept. The x-axis shows the true values,
which were sampled from priors, while the y-axis shows the
posterior mean and 95% credible intervals.

The posterior distributions of the parameters are summa-
rized in Figure 5. Given that the population-level parameter
βc and the by-subject estimates (βc,i = βc +νc,i) are below 1,
it is possible to conclude that the threshold is weakly station-
ary. The parameter that control the growth of f , β f (i.e., the
low level-linguistic stage), is inconclusive regarding the effect
of frequency. This is probably because frequency is highly
(anti) correlated with surprisal (ρ = -0.74). In contrast, the
parameter that controls the growth of g, βg (the high level-
linguistic stage), has a negative sign, indicating (as expected)
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that a more suprising word leads to a slower accumulation of
information at this stage.

Descriptive adequacy of the model Posterior predictive
checking is employed to assess the extent to which the model
accurately describes the observed data. This involves verify-
ing that the observed data appears plausible when compared
to simulated data from the posterior predictive distribution.
The simulated datasets are generated by drawing 50 samples
from the posterior and then (i) solving for t using the bisec-
tion method cn− h(t) = 0; (ii) given that t is the time from
the presentation of word 1 up to the moment when the timer
n reaches the threshold (and before a button is pressed, which
takes tpress), it follows that RTn = t−Σ

n−1
j=1t j + tpress.

Figure 6 reproduces the general trends of reading times at
the level of individual words by subject. It is evident that the
model overestimates reading times in certain regions. This
could be because the model fails to account for the inter-
subject variability in the presence of long reading times. De-
spite the exclusion of extreme outliers in the data, the pres-
ence of infrequent long reading times may disproportionately
influence the model’s predictions. Figure 7 shows that that
the simulated dataset partially replicates the pattern of sur-
prisal effects and the spillovers of surprisal. Specifically, the
simulated effects for surprisal and the second spillover of sur-
prisal align well with the observed effects, but the model un-
derestimates the first spillover.

Conclusion and future directions
I introduced the CoFI reader model, a novel framework that
models reading as a continuous flow of information allowing
information to cascade from lower to higher levels of rep-
resentation, with the partial output of each processing stage
being available to the next one. The model uses a stochastic
timer that depends on the processing of the current displayed
word and previous words to predict reading times.

By fitting the model to self-paced reading data using a hi-
erarchical Bayesian method and using word frequency and
surprisal values as predictors, I found that the model provides
a reasonable fit to word-level reading time trends. Further-
more this framework provides a formal account of the loose
coupling between cognitive difficulty and reading times and
provides a novel explanation to two previously observed find-
ings without the need of parafoveal preview (which is un-
available in self-paced reading): (i) that reading times are
much shorter than the minimum time required for all the cog-
nitive processes that should take place, and (ii) the presence
of spillover or lag effects, that is that processing difficulty of
a word affects the reading times of subsequent words.

The proposed framework offers a basis for further investi-
gation by extending the model: (i) One clear limitation of the
current model is that it cannot handle outliers, this could be
solved by incorporating a mixture process that takes into ac-
count lapses of attention. (ii) In the current model, the rate of
information accumulation was assumed to be the output of a
log-normal regression. It would possible, however, to embed

more complex models to investigate other phenomena from
sentence processing. (iii) The model could be extended by
adding other processing stages such as discourse or reanal-
ysis stages. (iv) The model could readily incorporate how
individual differences influence various aspects of reading.
This could be achieved by integrating measures of individual
differences, which might impact different processing stages
or the threshold. (v) While the current version of the model
only handles self-paced reading data, it would be possible to
extend the model by including insights from models of ocu-
lomotor control to fit natural reading data.
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Abstract 

Symbolic/hybrid computational cognitive architectures, 
including the ACT-R framework, are adept at capturing a wide 
variety of human cognitive processes and behaviors including 
problem-solving, memory, and language. However, such cognitive 
architectures do not capture visuomotor behaviors that tightly 
couple perceptual and motor processes – such as manual tracking. 
In this study, we aimed to improve the cognitive fidelity of manual 
tracking behavior within the ACT-R framework by implementing 
the position control model (PCM) – a continuous, linear control 
model that effectively captures human tracking behavior (Powers, 
1978). We integrated  PCM within a MATB task model developed 
within the ACT-R framework, to examine if the integrated ACT-
R/PCM model showed improvement in capturing human tracking 
performance relative to the Standard ACT-R model. Results indicate 
that the ACT-R/PCM Integrated model showed improved 
performance in capturing certain aspects of human tracking 
behavior, in comparison to the Standard ACT-R model.  
Keywords: ACT-R; manual tracking; visuomotor behavior; Fitt’s 
law; perceptual control theory; linear control model 

Introduction 
Few symbolic/hybrid computational cognitive theories 
expressed as architectures incorporate the tight coupling of 
perceptual and motor systems. Years of research in visual-
motor control have demonstrated that their relationship can 
be mathematically described. We seek to improve visual-
motor control within a commonly used cognitive 
architecture, ACT-R, to improve tracking, visual and motor 
pursuit of a target, etc. In the following sections, we will 
identify the key components to this project: the task, the 
problem, and the solution. 

Task 
We are interested in improving the cognitive fidelity of 
symbolic computational cognitive architectures, specifically 
in the context of human tracking behavior. To this end, we 
start with ACT-R. To successfully track a target, one must 
perceive the spatial discrepancy between the tracking item 
(i.e., the cursor) and the item to be tracked (i.e., the target), 
and produce control adjustments that minimize the distance 
between the cursor and the target through manual inputs to an 
end-effector (e.g., joystick, mouse; Powers, 1973). 
Compensatory tracking requires the subject to control an end-
effector to maintain alignment between a cursor and a target 
as the cursor is randomly displaced over time (Poulton, 
1952a; Cherkinoff et al., 1955).   

 As human tracking behavior is exhibited across many 
everyday tasks that humans complete (e.g., maintaining lane 

position while driving down a road), there is a long tradition 
of research dedicated to computationally modeling human 
tracking behavior (Craik,1948; McRuer & Jex, 1967; Navas 
& Stark, 1968; Powers, 1973). Compensatory tracking 
requires motor behaviors that rapidly respond to visual 
information to reduce control error (i.e., the distance between 
current cursor position and desired cursor position), thus 
necessitating a tight coupling between perception and action.  

Problem 
Theoretical frameworks that are focused on developing high 
cognitive fidelity models of visuomotor behavior, 
specifically ecological psychology and perceptual control 
theory, demonstrate that there is a tight coupling between 
human perception and motor capacities (Gibson, 1986; 
Powers, 1978; Warren, 2006). However, symbolic 
computational cognitive architectures, including ACT-R, are 
limited in their ability to represent tight couplings between 
perceptual and motor processes due to structural constraints. 
Currently, the ACT-R architecture does not facilitate 
communication directly between perceptual and manual 
modules– rather, information exchange is mediated via the 
production system. Thus, ACT-R does not use direct 
communication between motor and perceptual cognitive 
processes to execute tracking behavior. Instead, ACT-R 
requires sharing information over a procedural bottleneck 
(i.e., production system).  
   One can examine and implement the control solutions 
developed by the ecological psychology framework or 
perceptual control theory framework to implement the tight 
coupling between visual and motor control. Such an 
implementation will result in (1) a more accurate 
representation of how cognitive processes interact to produce 
visuomotor behavior, and (2) the execution of continuous, 
smooth motor control that resembles human motor behavior. 

Solution 
To improve the cognitive fidelity of human tracking behavior 
within the ACT-R architecture, we implemented the position 
control model – a linear control model that effectively 
captures human tracking behavior (Powers, 1973). The 
position control model uses a simple and effective control 
heuristic that minimizes the distance between the cursor and 
the fixed target location (i.e., center of the screen). We 
integrated the position control model within the ACT-R 
framework and (1) compared the model to human tracking 
data, and (2) investigated if the combination of both models 
improved ACT-R’s tracking performance. 
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Background 

ACT-R Cognitive Architecture 
ACT-R is an integrated theory of human cognition and action 
(Anderson, 2009). The ACT-R cognitive architecture is a 
computational instantiation of that theory. Most critical for 
the current research is that ACT-R includes mechanisms for 
visual perceptual and manual motor processes. Relevant 
existing ACT-R capacities are introduced and covered in the 
following subsections. 

Visual System The visual theory instantiated in ACT-R is a 
straightforward interpretation of Feature Integration Theory 
(Treisman & Gelade, 1980). Most central to this work is that 
attending to visual stimuli takes time, on the order of 135 ms 
to find and integrate visual stimuli into the visual buffer. This 
integration of visual information can be performed in parallel 
with motor movements. 

Motor System The manual motor theory is closely related to 
that instantiated in the EPIC cognitive architecture (Meyer & 
Kieras, 1997). Most central to this work is that manual motor 
movements are characterized by Fitts’ law (Fitts, 1954), 
predicting the timing of ballistic pointing movements based 
on the distance from start to end point and target width. End 
points may be retrieved from memory or guided by 
information in the visual buffer. 

Production System All of the cognitive, perceptual, and 
motor processes represented in ACT-R are coordinated 
through the production system, acting as a serial bottleneck. 
The production system matches conditions specified in 
procedural memory, represented as if-then statements of task 
knowledge and strategy, to the state of the perceived 
environment that exists in the various buffers (e.g., visual and 
declarative) to produce action, such as locations for pointing 
behavior. All interactions between the visual and motor 
processes are mediated by this central cognitive production 
system. 

Tracking in Cognitive Architectures 
A variety of methods have been used to model tracking tasks 
in cognitive architectures, including Fitts’ law related 
methods for tracking tasks and control theory related methods 
for driving. By far the most common method for modeling 
tracking in cognitive architectures, Fitts’ law related methods 
tend to use ballistic mouse-like cursor plying as surrogates 
for joystick deflection (e.g., Ballas et al., 1999; Balint, 
Reynolds, Blaha, & Halverson, 2017). These models 
generally use one or more productions to find discrepancies 
between target and cursor, decide to move the joystick, and 
execute a motor movement with timing described by Fitts’ 
law. 
   While restricted to models of driving behavior, control 
theory-like methods have been used in cognitive 
architectures (Salvucci, 2006) and cognitive constraint model 

frameworks (Brumby, Salvucci, & Howes, 2009). These 
models adjust steering movements with the motor movement 
extents described by control law-like equations. 
  A relatively new method for modeling tracking in 
computational cognitive models is the discrete movement 
model for cursory tracking that uses Fitts’ law to determine 
the time course of non-ballistic, incremental movements in 
tracking (Zhang & Hornof, 2012). This method of modeling 
is perhaps most similar to the method presented here, 
although the theory and implementation are substantially 
different. Like the control law models, the movements are 
incremental instead of ballistic. Unlike the control law 
models, the details of the model lie in the timing rather than 
the extent of movements. 
   ACT-R’s structure hinders direct communication between 
perceptual and motor modules – limiting its ability to capture 
visuomotor tasks that exhibit a tight coupling between 
perception and action including human tracking behavior. 
How can we further develop the ACT-R framework to better 
capture the rapid and adaptive behavior of humans during 
compensatory tracking tasks? To start, we can examine the 
sensorimotor literature that is dedicated to developing 
theories and models of human tracking behavior. 

Visual-Motor Control Model 
One of the predominant theoretical frameworks that aim to 
capture human manual tracking behavior is perceptual 
control theory (PCT). PCT provides control heuristics that 
couple visual information to motor behavior – producing 
smooth and continuous motor behavior (Powers 1973). PCT 
applies concepts and methods from negative feedback 
control, and proposes that biological control systems nullify 
effects of unpredictable internal/external perturbations by 
controlling perceptual input (rather than motor output). More 
specifically, biological control systems modify their behavior 
to receive perceptual input that matches referent goal states. 
For example, a goal state would be to move the joystick in 
such a way that the cursor overlaps with the target location. 
PCT models are simple and effective control heuristics 
formulated as linear control models that reduce control error 
over time. 

Formulation of Linear Control Models A general 
formulation of linear control models is expressed as 

�̇�(𝑡) =  −𝐾 ∙ 𝑃(𝑡 − 𝜏ௗ)̇   (1)

specifying the rate of change of a motor command executed 
by a biological control system (Markkula et al., 2017). P 
specifies control error –  a function that determines the 
difference between the goal state of a perceptual input and the 
current state of a perceptual input. The term P(t-τd) represents 
the control error given perceptual, control decision, and 
motor delays. The gain parameter, K, scales and inverts the 
sign of control error to specify the rate of change of a given 
control adjustment. 
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    In the context of manual tracking within the PCT 
framework, control error or P is considered to be the distance 
in pixels between the cursor location and target location. Ċ 
specifies the rate of change in cursor position to reduce 
control error P to zero. The control adjustment determines a 
new visual location for the cursor that brings it closer to the 
target location. Gain K and delay τd are parameters that are 
specific to individuals, and studies show that these parameter 
values are internally consistent (Parker et al., 2017). 

Applications Linear control  models, such as PCT, are 
effective at capturing human motor control behavior, 
particularly manual tracking behavior. There are numerous 
studies that have rigorously analyzed and validated the PCT 
architecture with human tracking data (see review by Parker 
et al., 2020). Previous studies show that PCT models are able 
to act against disturbances, capture individual specificity, and 
simulate complex tracking behavior (Bourbon & Powers, 
1999; Marken & Powers, 1989; Parker et al.,2017). 

Approach 

Task Environment 
We gathered data to validate the model using the NASA 
MATB-II (from now on, just “MATB”) tracking task 
(Santiago-Espada, Myer, Latorella, & Comstock, 2011).  The 
MATB can be configured to include four subtasks: tracking, 
system monitoring, communications, and resource 
management. We configured the MATB to include tracking 
only for this validation data. 
   The MATB tracking task is a slightly unique variation of 
tracking tasks. The goal of the task is to keep the center of a 
cursor with a 25 pixel radius within a 75 pixel square centered 
within a 300 pixel square tracking window. The location of 
the cursor is updated every 100 ms to include a random 
perturbation and input from the joystick. The direction of the 
random perturbation is selected pseudo-randomly from eight 
directions, the four cardinal and four intercardinal directions. 
The extent of the perturbation is 3 pixels in each dimension 
of the selected direction; the intercardinal directions would 
change both the x and y location, whereas the cardinal 
directions would change either the x or y location. The extent 
is configurable from 1 to 3 pixels, but set to 3 for this 
validation.  
   The input from the joystick is discretized in much the same 
way as the random perturbation. The direction of joystick 
deflection is grouped into one of the same eight directions. 
The extent of the input is scaled to an integer value with a 
maximum determined by the joystick sensitivity 
configuration. For this validation, we varied the sensitivity 
between sessions for each participant to be either low (6 pixel 
max) or high (18 pixel max). The location of the center of the 
cursor was always limited to the edges of the tracking 
window. 

Human Tracking Data 
Data were collected for validation purposes only. The 
tracking data exported from MATB are RMSE from the 
center of the tracking window in one second bins, the 
narrowest bin boundary allowed by MATB. Data were 
collected from two conditions: low and high joystick 
sensitivity (described above).  
   Three collaborators very familiar with the MATB 
performed the tracking task for eleven minutes in each 
condition, always performing the low sensitivity condition 
first. Data were collected with a Logitech Extreme 3D Pro 
joystick and 27” IPS LED monitor running at 1080p (60Hz) 
attached to a Windows 10 system. 

Position Control Model 
The position control model we implemented is adapted from 
PCT (Powers, 1973; Powers, 2008). The functions in the PCT 
architecture are the input function, comparator function, and 
output function. These functions contain parameter values 
that can be specific to individuals: delay, gain, damping 
constant, and reference value. To start, the model uses the 
input function to detect the distance between the target 
position CT and the actual cursor position C: 

𝐷(𝑡) =  𝐶(𝑡) − 𝐶்(𝑡)  (2) 

where D specifies control error, which is then applied to the 
comparator function: 

𝑃(𝑡) = 𝑅 − 𝐷(𝑡)  (3) 

where P(t)  is the error signal that compares the perceptual 
signal D to the reference signal R, the desired position of the 
cursor. If R is equal to zero (i.e., if the desired position of the 
cursor is at the target location), then D and P are equivalent. 
However, if R is a nonzero value (i.e., the desired position of 
the cursor is not exactly on the target location due to bias or 
intentional imprecision of the subject), then D and P are not 
equivalent. 
   Lastly, the output function specifies the joystick position, 
which determines cursor position: 

�̇�(𝑡) =  𝐾 ∙ 𝑃(𝑡 − 𝜏ௗ) − 𝐾ௗ ∙ 𝐶(𝑡 − 1) ∙ ∆𝑡  (4) 

𝐶(𝑡) = 𝐶(𝑡 − 1) + �̇�(𝑡)  (5) 

In Equation 4, gain Ko is multiplied to control error P given a 
perceptual delay of τd to calculate the cursor translation. The 
damping constant Kd is multiplied to the previous output C(t-
1) to reduce the effects of the previous output in the
calculation of the current output. t is the time increment
between each control adjustment. Lastly, Equation 5
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Table 1: Low and High Sensitivity Mean and SD of RMSE  Low Sens. Mean RMSE  High Sens. Mean RMSE 

 Figure 1: Bar graph comparing Mean RMSE across models.

expresses the output function C, which is the summation of 
the previous cursor position C(t-1) and the rate of change of 
the cursor position Ċ.  
    In summary, PCM is a one-dimensional, continuous control 
model that contains four mutable parameters: reference value 
R, damping constant Kd, delay τd, and gain Ko. Note that, in 
our implementation, we extended the model to two-
dimensions (controlling both the x and y axis of the cursor). 
We tuned the parameters for these values with guidance from 
Parker et al. (2017), with the aim of reproducing similar mean 
RMSE to that of human subjects completing the tracking 
task.  

Model Implementation 
Python Implementation of PCM To test and verify our 
implementation of the position control model before 
integrating it with ACT-R, we wrote a program in Python that 
simulates the model as it completes the manual tracking task 
that human subjects completed. Analogous to the MATB 
tracking task, the simulation randomly perturbs the cursor 
location over time. After the cursor is displaced, the position 
control model is executed to determine the new location of 
the cursor. The PCM model was validated with human 
tracking data and analytically compared to other tracking 
models -- specifically, the Standard ACT-R model and 
Integrated ACT-R/PCM model. 

ACT-R/PCM Integration Once the position control model 
was tested and verified, we then integrated it within a MATB 
task model developed within the ACT-R framework (version 
7.14). As previously discussed, the ACT-R framework does 
not facilitate communication directly between perceptual and 
motor modules. To couple the manual and visual modalities 
within the model, we developed a new Tracking module that 
receives the visual location chunks of the cursor and target 
and then executes the manual movements based on 
underlying position control model, thus bypassing the 
production system bottleneck.  
   The Tracking module implements three new motor 
commands: “set-target”, “set-cursor”, and “track”. The first 

two take the visual locations of the respective objects as 
arguments. The “track” command can either use previously 
specified target and cursor locations or provide new visual 
locations as arguments. When this command is executed, the 
position control model specified earlier determines the 
joystick. 
   The ACT-R/PCM model contains four productions. First, 
the model finds the target (center of the tracking area). 
Second, the model attends the target and sets the tracking 
target. Third, the model finds the cursor (tracking reticle). 
Finally, the model attends the cursor and starts tracking the 
cursor. 

Differences between Implementations When applying the 
position control model to the ACT-R framework, we made a 
couple of alterations to the PCM model for the sake of 
compatibility. A difference between assumptions in PCM and 
ACT-R is that the output function in PCM directly specifies 
the new visual location of the cursor over time. On the other 
hand, the ACT-R architecture interacts with (simulated) 
computer input devices (e.g., a joystick) which have their 
own dynamics (e.g., gain) separate from the human 
controller. Thus, in our ACT-R/PCM integration, we 
modified the output function in PCM to accommodate 
feeding its values into a polar coordinate system that 
determines the joystick deflection, which then influences the 
new velocity of the cursor within the simulated device. 

Standard ACT-R Model An ACT-R model using the 
original joystick manual motor command was developed 
in  the ACT-R framework (version 7.14) for comparison with 
the ACT-R/PCM model. There are only two productions in 
the model. The first finds the visual location of the tracking 
reticle when the visual and motor modules are free, and the 
second moves visual attention to the reticle in parallel with a 
manual motor movement toward the center of the tracking 
window. The extent of the joystick movement was scaled 
linearly so that the maximum joystick deflection would result 
when the current error (distance between the reticle and 
center) was at its maximum (reticle in a corner of the tracking 
window). 
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Figure  2 : RMSE over time for one of the three human participants and each model. Red lines show RMSE in the high 
sensitivity condition, and the green lines show RMSE for the low condition. 

Results 
How does the ACT-R/PCM model compare in tracking 
performance relative to its counterparts -- PCM and Standard 
ACT-R? To address this question, we ran simulations with 
the ACT-R/PCM, PCM, and Standard ACT-R models. Then, 
we compared RMSE values between human data and each of 
the models.  
   There are two conditions that the model was tested under: 
low sensitivity and high sensitivity. As discussed in the Task 
Environment section, the low and high sensitivity correspond 
to the gain of the simulated joystick. In the human data, there 
is a trend in mean RMSE between the low and high 
conditions, in which the mean and variability of RMSE is 
higher in the high sensitivity condition compared to the low 
sensitivity condition. We were interested in observing if the 
ACT-R/PCM model can capture similar trends.  
   To examine how effectively the ACT-R/PCM model 
captures human tracking behavior relative to the PCM model 
and Standard ACT-R model, we measured: (1) mean and 
standard deviation of RMSE across low and high sensitivity 
conditions, and (2) RMSE over time. Model fits were 
evaluated using the sum of the mean RMSE error and mean 
standard deviation (SD) error between the human and model 
data. Note: the trials we used to compare these models have 
different sequences of randomized perturbations for the 
cursor. The following sections will describe the parameter 
values that produced RMSE values that most closely matched 
the human tracking data for each of the three models. 

PCM Fitting 
The damping constant Kd, delay τd, and gain Ko parameters 
were each varied by sampling ten evenly spaced values 
within the respective ranges to find a good fit: 0.01 to 0.06, 
0.0 to 10ms, and 1.0 to 5.0. The reference signal parameter R 
was not varied and maintained a value of 0 (i.e. the desired 
position of the cursor is at the target location). The model was 
run 30 times for each parameter value. 
   For the low and high sensitivity conditions, delay τd and 
damping constant Kd were held constant and showed a 
goodness of fit at 8.33ms and 0.06. A Ko parameter value of 
1.22 produced an acceptable fit of the low sensitivity 

condition with a 4.9% error in mean and a 3.4% error in 
standard deviation, as seen in Table 1. 

ACT-R/PCM Fitting 
The gain PCM Ko parameter was varied from 4 to 8.0 in 
increments of 0.25 to find a good fit. All other PCM 
parameters were left at the best fitting values for the 
standalone PCM model (τd = 8.33; Kd = 0.06). All ACT-R 
parameters were left at default. The model was run 30 times 
for each parameter value. 

A Ko parameter value of 7.25 produced a good fit of the 
low sensitivity condition with a 2.7% error in mean and a 
9.0% in standard deviation. A Ko parameter value of 5.25 
produced an acceptable fit of the high sensitivity condition 
with a 12% error in mean and an 11.6% error in standard 
deviation, as seen in Table 1. 

Standard ACT-R Model Fitting 
Except for the cursor Fitts’ coefficient parameter (:cursor-
fitts-coeff), all parameters were left at default. For all 
parameter values, the model was ran 30 times. The Fitts’ 
coefficient parameter was systematically varied between the 
default value (0.1) and 0.2 in increments of 0.05. A parameter 
value of 0.145 produced a very good fit to the low sensitivity 
condition with a 0.7% error in mean and a 5.1% error in 
standard deviation. A parameter value of 0.155 produced the 
best fit to the high sensitivity condition with a 12.5% error in 
mean and a 1.4% error in standard deviation (Table 1). 
   The bottom panel in Figure 2 shows a randomly selected 
trial from these fits. As can be seen, the poor fit of the high 
sensitivity condition is a result of underpredicting the mean 
error while predicting variance in the error that is more 
sporadic than observed. To predict a greater mean error in the 
high sensitivity condition required a substantially higher 
Fitts’ coefficient parameter, which then results in variance in 
the data that is too incredibly high. 
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Discussion 

Comparative Analysis 
In this study, we are interested in comparatively analyzing the 
tracking performance of the ACT-R/PCM model relative to 
the PCM and Standard ACT-R models. We looked at how 
each of the three models compared in terms of (1) capturing 
mean RMSE and standard deviation of RMSE across the low 
and high sensitivity conditions, and (2) qualitative 
differences in trends of RMSE over time across the low and 
high sensitivity conditions. The following sections will 
describe our findings across these analyses. 

Trends of Mean and Standard Deviation of RMSE 
We captured human-like tracking behavior for the PCM and 
ACT-R/PCM models by setting consistent delay τd and 
damping constant Kd values at 8.33ms and 0.06 across both 
models, as well as across both the low and high sensitivity 
conditions. Only gain Ko was varied between the low and 
high conditions and between models – revealing that gain Ko 
was higher in the high sensitivity condition compared to the 
low sensitivity condition.  
   We propose that the gain parameter values were different 
between low and high sensitivity conditions because subjects 
had to adapt to the differences in gain between the two 
conditions. Additionally, we propose that the gain parameters 
were different between the PCM and ACT-R/PCM models, 
as the ACT-R/PCM model contained two gain parameters 
that affected the output: gain Ko for the PCM model, and 
another gain for the simulated joystick. Thus, the difference 
in gain dynamics between the two models may have been the 
cause to differences in gain Ko fits. 
   As shown in Table 1, all three models captured the trend of 
a lower mean and standard deviation of RMSE in the low 
sensitivity condition vs. the high sensitivity condition. The 
standard ACT-R model produced values with the lowest error 
percentage. However, the Standard ACT-R model did not 
capture the differences in mean RMSE between the low and 
high conditions as well as the PCM or ACT-R/PCM models, 
as the Standard ACT-R mean RMSE values between 
conditions were more consistent (Figure 1). Although the 
Standard ACT-R model best fits the human data, it does not 
capture behavioral differences caused by joystick sensitivity 
as well as the PCM or ACT-R/PCM models.  

Trends of RMSE over Time 
When observing RMSE over time for the human subjects, 
there is higher variance in the high sensitivity condition 
compared to the low sensitivity condition – as shown by the 
taller red spikes that intermittently appear across a given trial 
(Figure 2). We propose that, as the high sensitivity condition 
increases the gain of the joystick for participants, there is less 
stability in human tracking movements compared to the low 
sensitivity condition.  When examining the RMSE over time 
for the three tracking models, we find that the Standard ACT-
R tracking model also exhibits higher variance for the high 

sensitivity condition, showing intermittent spikes as well. 
However, these spikes show significantly higher error and 
persist for longer than the spikes shown in human data. When 
examining the PCM model, it shows higher variance and a 
higher frequency in spikes in the high sensitivity condition – 
however, these spikes are much more regular and closer in 
resemblance to the human data. The ACT-R/PCM model also 
shows higher variance for the high sensitivity condition; 
however, it does not appear to produce spikes as high in error 
as the human data.  
   We propose that these qualitative differences in variance 
across these models may be due to the different capabilities 
between the models. While fitting PCM model to the human 
data, we found that the damping constant Kd allowed the 
PCM model to produce human-like variance in the tracking 
movements. Without Kd, the PCM model would go through 
phases where it would accumulate error over time and 
destabilize, producing increasingly larger control 
adjustments in response to the growth in error. The damping 
constant prevents destabilization by scaling down the control 
adjustments to smaller distances. The Standard ACT-R 
model does not contain a damping constant; thus, if error 
starts to rapidly accumulate, the model produces control 
adjustments that are less stable and more persistent than 
human control adjustments. 

Limitations 
Due to limitations in the human tracking data, we were unable 
to conduct analyses that would allow us to examine certain 
aspects of human tracking behavior. Specifically, the time 
resolution of the data was relatively coarse, at 100ms per 
second. If humans made control adjustments between these 
100ms increments, we were not able to capture that with our 
current dataset. Additionally, the only tracking data we 
acquired was RMSE over time. We did not have access to the 
location of the cursor over time, thus were not able to make 
distinctions in error along the x-axis or y-axis. In future work, 
we would like to acquire human tracking data that contains 
cursor position information, as well as a higher time 
resolution. 

Conclusion 
The aim of this study was to examine if integrating the 
position control model (PCM) within the ACT-R framework 
would increase not only the cognitive fidelity of the model’s 
tracking behavior, but also its performance in capturing 
human-like tracking behavior movements. When comparing 
RMSE between human tracking data and the PCM, ACT-
R/PCM, and Standard ACT-R models, results indicated that 
the Standard ACT-R model produced the best overall fit to 
human data. However, the PCM model performed the most 
successfully in (1) capturing mean differences in RMSE 
between low and high conditions, and (2) producing human-
like variance in RMSE over time. In future work, we would 
like to simulate these models in a multitasking context, as the 
MATB is primarily used to investigate multitasking behavior. 
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Abstract
Temporal binding (TB) is the subjective compression between
a voluntary action and its associated outcome. It is regarded as
an implicit measure of the sense of agency; however, an under-
lying mechanism has yet to be agreed upon. Previous research
suggests memory as an alternative explanation for TB in two
publicly available datasets. We test this idea by implementing a
model within the ACT-R cognitive architecture and leveraging
its existing memory and time perception mechanisms to simu-
late participants from these datasets. Our simulations provide
evidence to suggest that memory and time perception mecha-
nisms can explain the pattern of results. Implications for tem-
poral binding and the sense of agency are discussed.
Keywords: Temporal Binding; ACT-R; Cognitive Models;
Sense of Agency; Time Perception

Introduction
Temporal binding (TB) is assumed to be an implicit measure
of the sense of agency. TB is defined as the perceived sub-
jective compression of time between a voluntary action and
its associated outcome (Haggard, Clark, & Kalogeras, 2002).
In the seminal study by Haggard et al. (2002), participants
were asked to press a button at a time of their choosing; a
few hundred milliseconds later, there was an audible tone.
Participants were then asked to estimate the timing of their
button press and the tone. The key finding was that when the
action is voluntary—as opposed to involuntary—participants
subjectively estimated that their button press occurred later
than it objectively did. Furthermore, participants also sub-
jectively estimated that the tone occurred earlier than it ob-
jectively did. This compression, or underestimation, of the
subjective time interval between the action and its outcome
is what is known as temporal binding. Importantly, the op-
posite effect, or a repulsion of the subjective time interval,
occurred for involuntary actions (e.g., finger twitch produced
by transcranial magnetic stimulation of the motor cortex) and
their outcomes. This difference in the pattern of results be-
tween these two conditions led to the conclusion that TB is
an implicit marker for the sense of agency.

There is some theoretical debate in the literature over
whether it is the presence of a voluntary action, and there-
fore intentionality (Haggard, 2005), or the perceived causal-
ity between events (Hoerl et al., 2020) that is necessary to
elicit TB. One reconciliatory explanation for TB comes from
cue integration theory (Ernst & Banks, 2002). This theory
suggests the motor system optimally combines cues from dif-
ferent sources to reduce the overall variability of estimates.

Cues are weighted by their reliability such that information
from more reliable cues is more heavily weighted in the inte-
gration process. There has been one successful formal imple-
mentation of a Bayesian cue integration model in the context
of TB (Legaspi & Toyoizumi, 2019); it remains unclear if this
model can be applied to all timing estimation methods.

Though most TB tasks involve free recall, the role of mem-
ory has been largely underexplored in this literature. Re-
cently, a memory process was proposed as a potential expla-
nation for TB (Saad, Musolino, & Hemmer, 2022). In this
paper, a regression pattern was revealed by re-plotting partic-
ipant estimates from two publicly available datasets (Weller,
Schwarz, Kunde, & Pfister, 2020) as the difference between
the subjective responses and objective values (i.e., bias). Re-
gression here refers to the bias in estimations such that partic-
ipants, when making estimations, select a value closer to the
mean of intervals observed in the task. This regression pattern
replicated across conditions regardless of the agency manipu-
lation. Saad et al. (2022) then successfully simulated partici-
pant estimates using a Bayesian rational memory model. This
provided the first evidence that a memory mechanism could
account for estimations at the aggregate level in a TB task.

Relatedly, the role of time perception in eliciting the TB
effect has also been understudied in this literature. During
encoding, participants perceive the timing of or the inter-
vals between events. One mechanism that has been proposed
to explain this is a pacemaker-accumulator process, where a
pacemaker produces pulses at some rate, and these pulses are
counted in an accumulator. The perceived length of the inter-
val between two events is a function of how many pulses are
in the accumulator; more pulses correspond to a longer per-
ceived duration. This mechanism makes a prediction that a
shortening of a perceived time interval (i.e., the compression
characteristic of the TB effect) is a result of a slower pulse
rate leading to fewer pulses in the accumulator.

Fereday, Buehner, and Rushton (2019) empirically inves-
tigated whether internal clock slowing is a viable explana-
tory mechanism for TB. In two experiments, the authors in-
corporated a temporal discrimination task where participants
compared durations of causal (button press and a flash) and
non-causal trials (two flashes) to a reference duration (black
square presented on screen) and were asked to report which
interval length was longer. The authors calculated point of
subjective equality (PSE) values across conditions. The PSE
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value represents the duration of the comparison interval (i.e.,
causal or non-causal) that is perceived as the same as the ref-
erence interval 50% of the time. The prediction is such that
lower values of PSE correspond to more compression or un-
derestimation (i.e., binding). The authors reported evidence
to support this prediction in both experiments.

Although the pacemaker-accumulator process makes ex-
plicit predictions which can be tested empirically, a formal
model of this process has never been implemented. Impor-
tantly, though much of the TB literature is focused on devel-
oping a theory of agency, there has not yet been an investi-
gation into how memory and time perception processes may
work together to influence or explain the temporal binding
effect. We aim to do just this. We hypothesize the regres-
sion pattern in the human data results from a memory mecha-
nism where participants estimate time intervals according to a
pacemaker-accumulator process and then use estimates from
previous trials during recall. We develop a cognitive model
to test this hypothesis; the model specifies mechanisms for
memory and time perception and is capable of simulating hu-
man performance in one condition in a TB task. We then
explore how estimating different parameters related to mem-
ory mechanisms in the model affect simulation results at the
aggregate and individual level.

We focus first on simulating one trial-type, action trials,
because they represent the most frequently used trial-types in
this literature. Additionally, our initial aim was to establish a
cognitive model as a viable means for simulating human be-
havior in these tasks. These results lay the groundwork for
future simulations using the same cognitive model to simu-
late the passive, comparison trial-type and therefore the entire
temporal binding effect. We discuss this and other ideas for
future work in the final section of the paper.

Method
Data Set
We model the publicly available data from experiment 3A in
Weller et al. (2020). Code for all analysis, figures, and sup-
plementary material included in this paper are also publicly
available (https://osf.io/6bkjp/). A detailed description of the
experimental method and procedure can be found in the orig-
inal Weller et al. (2020) paper.

We briefly describe the procedure for experiment 3A. The
experiment included three trial-types: action, non-action, and
baseline. At the beginning of each trial, participants were
asked to choose between an action and a non-action which
would each produce distinct outcomes. These trials were
called operant trials. During non-action trials, participants
chose not to act and a default outcome would occur; in the
action trials, participants acted by pressing a button at a tim-
ing of their choosing to change the default outcome. In the
baseline trials, there was no initial decision necessary, and
participants passively watched two events unfold: a progress
bar filled which ended in a “click” sound; then a ball launched
in a pre-specified direction.

Figure 1: Reproduction of graphs from Weller et al. (2020)
depicting mean raw estimations across three trial-types (top
panel). Re-plotting these estimates as bias (bottom panel) re-
veals a consistent regression pattern across intervals. Data
plotted here are from 27 participants. * p < 0.05, ** p < 0.01

At the end of each trial, regardless of which type, partic-
ipants were asked to recall and report their estimate of the
interval between two events (i.e., either the keypress and ball
launch in action trials, or the clicking sound and ball launch in
non-action and baseline trials) in milliseconds using a slider
on-screen. Three different time intervals were used between
events: 100ms, 400ms, and 700ms. The presentation of these
intervals was randomized across the different blocks of trials.

At the beginning of the experiment, participants completed
a series of 20 practice trials, 10 baseline and 10 operant. Prac-
tice trials included time intervals between 100ms and 1000ms
in steps of 100ms. Participants received feedback about the
accuracy of their estimation at the end of each trial. Data was
not collected or analyzed for practice trials. During the main
experiment, no feedback was given.

Weller et al. (2020) reported statistical results comparing
TB values across trial-type and delay (N=27), and reported
two significant results for experiment 3A: more binding (or
more compression) for actions compared to baseline at the
700ms interval and for non-actions compared to baseline at
the 400ms interval. No other comparisons were significant.
From these results, Weller et al. (2020) concluded that “tem-
poral binding ha[d] [also] emerged for non-actions” (p. 8).
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Figure 2: Visualization of TBM model processes.

Figure 1 reproduces the original visualization of Weller et
al.’s results (top) and the regression effect (bottom) when par-
ticipants’ raw estimates are re-plotted as bias, or the differ-
ence between the average estimates and the actual length of
each interval. When the estimates are re-plotted as bias, a
clear regression pattern is revealed on all three trial-types.

The Temporal Binding Memory (TBM) Model
We developed a cognitive model called the Temporal Binding
Memory (i.e., TBM) model based on the action trials from the
Weller et al. (2020) TB task. The model was implemented in
ACT-R, which is a hybrid cognitive architecture used to un-
derstand and simulate human cognition. ACT-R contains a set
of modules which perform distinct cognitive functions and
communicate via requests relayed through limited-capacity
buffers. The TBM model used the imaginal, goal, vision, mo-
tor, procedural, declarative memory, and temporal modules.

The imaginal module holds the problem representation,
and the goal module represents the model’s current task fo-
cus. The vision module represents a visual attention system
containing both a “what” and a “where” subsystem. The mo-
tor module represents two hands on a virtual keyboard. The
procedural module, or production system, is a pattern match-
ing system which constantly searches for productions match-
ing the current state of the buffers using conditional state-
ments (i.e., if-then rules). Only one production can be exe-
cuted at a time. When a production is executed, or “fired”, the
state of the system changes, progressing the model through
a task. Knowledge is represented in the form of chunks in
declarative memory, which each have an activation value cor-
responding to the recency and frequency of the chunk with
some noise. Chunks are retrieved via the retrieval buffer in the
declarative memory module which searches through declara-
tive memory to find a chunk with the highest activation value
to satisfy the current request.

The temporal module, created to represent subjective time
estimation between two events (Taatgen, Van Rijn, & An-
derson, 2007), models time perception as a pacemaker-
accumulator process. The pacemaker generates pulses, and
the accumulator counts them. Tick lengths are noisy and in-
crease in duration as time progresses, which means the tem-

poral module is more accurate for shorter compared to longer
time intervals. Tick lengths are based on the following equa-
tions for the nth tick.

t0 = start+ ε1 (1)

tn = a∗ tn−1 + ε2 (2)

The length of the first tick, t0, is controlled by the start pa-
rameter (default = .011) with some noise. The a parameter
(default = 1.1) affects the length of subsequent ticks. Noise
is added to tick lengths using the act-r-noise command, and
the s values for each are according to the following equations:

ε1,s = b∗5∗ start (3)

ε2,s = b∗a∗ tn−1 (4)

The b parameter is set to 0.015. The model recalls the inter-
vals on each trial by accessing the current pulse value in the
temporal buffer and reporting the tick count.

ACT-R models are cognitive models that specify mecha-
nisms at the algorithmic level (Marr, 1982) and therefore re-
quire simulation of both the task and cognitive processes. As
this is the first cognitive model of a TB task (to our knowl-
edge), we aimed to replicate the major components of the ex-
perimental design (i.e., interval lengths, outcome modality,
presence of feedback, and practice trials). However, we sim-
plified stimuli and simulated action trials first, as these are the
type of trial in which TB has been reported most frequently.

Figure 2 displays the steps the model completed to estimate
time in our modified task. Each rectangle represents a sepa-
rate production. Letters were used as cues for the beginning
and end of the interval that was timed by the model. During
both practice and test trials, the presentation of the first stim-
ulus, “A”, initiated the proceeding course of events. First, the
model looped through a standard find-attend-encode loop by
which the visual system located and then encoded the visual
information on the virtual screen. After encoding, the model
pressed the “A” key on the virtual keyboard, initiating the tim-
ing process by making a temporal buffer request to start tim-
ing in ticks. This triggered the presentation of another visual
stimulus, “Z”. The same find-attend-encode procedure was
completed in response to this second visual stimulus before
proceeding to the store-instance-feedback production. The
tick count was stopped once the letter “Z” was perceived.

During each run, the model completed two different types
of trials: 20 practice and 150 test. The key factor differenti-
ating practice and test trials is that during practice trials, the
model received feedback in the form of a real-time millisec-
ond interval value which was then paired with the tick count
from the temporal buffer and stored in declarative memory.
During test, no feedback was given, and the tick count value
on each trial was paired with a guess. This guess was in-
formed by the chunks in memory that were formed during
practice. We will now describe each trial type in detail.

Practice trials heavily influenced model performance as
they generated chunks that were later retrieved by the model
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and were the basis for the model’s responses during test tri-
als. During practice trials, feedback was provided after esti-
mations to mimic the participants’ experience in the original
study (Weller et al., 2020). This feedback was used to build
chunks which contained two slots: tick count (from the tem-
poral buffer) and real-time delay which stored the actual de-
lay given as feedback. Each chunk was encoded into declara-
tive memory, and the entire process was repeated. The length
of the interval between the action and outcome was manipu-
lated depending on the trial type. During practice trials, we
randomly presented twice each the intervals from 100ms to
1000ms in steps of 100ms, for a total of 20 practice trials.

During test trials, the process was similar except only three
intervals were used (100, 400, and 700ms), and there was
no feedback provided. The blending mechanism (Lebiere,
1999) was used to retrieve chunks from declarative memory.
The blending mechanism computes a weighted average over
chunks in memory learned during practice such that chunks
with a higher likelihood of retrieval, determined by activation,
carry more weight. The ACT-R activation equation,

Ai = Bi +Si +Pi + εi (5)

includes a: 1) base level term, Bi, for recency and frequency
of use, 2) spreading term, Si, for context effects, 3) partial
matching term, Pi, for degree of match with retrieval cues,
and 4) noise term, εi, for noise in memory. The blending
mechanism uses the equation,

V = argmin
V

∑
i

Pi(1− sim(V,Vi))
2 (6)

to produce a value that minimizes the sum of all squared dis-
similarities, ((1− sim(V,Vi))

2, of each chunk, i, between the
consensus value V and the chunk value Vi, and weights it by
its probability of retrieval,

Pi =
eAi/t

∑ j eA j/t . (7)

The probability of retrieval is a function of the activation for
a chunk, eAi/t , normalized by the activation of all retrieved
chunks, ∑ j eA j/t .

During recall, the current tick count at the time the second
stimulus appeared was used as a retrieval cue to find a match
in declarative memory in the retrieve-instance-feedback pro-
duction. We defined a linear similarity function for ticks
in the temporal buffer which impacted how chunks were
weighted during this retrieval process and how the blend-
ing average was computed. As ticks in the temporal buffer
operate according to a log-scale (to reflect the scalar prop-
erty of time estimations), we thought it appropriate to define
ticks as having a relationship such that tick values were most
similar to themselves with linearly decreasing similarity. At
the end of each trial, a new chunk was created pairing the
blended real-time value (i.e., the guess) and the tick count.
This process was repeated over 150 trials. The accumulation

Figure 3: Best fitting model from analysis testing mismatch
penalty (:mp) parameter values.

of chunks during the experimental trials resulted in a gradual
regression pattern in model estimates.

Before comparing model and human performance at the
aggregate level, we completed a series of simulations to es-
timate the mismatch penalty (:mp) parameter as there is no
default. The :mp parameter specifies the penalty, (Pi), in the
activation equation and calibrates the degree of regression to
the mean in the model. Lower values of :mp correspond to a
wider range of chunks taken into account during retrieval. We
tested values of :mp from 1 to 5 in steps of 0.5, keeping all
other parameter at their default values, and we simulated 10
model runs per parameter value for a total of 90 model runs.

Results
The results from the :mp estimation are shown in Figure 3,
where the best fitting model and human performance at the
aggregate (across trials and individuals) are plotted together.

To determine the model with the best quantitative fit, we
computed the root mean squared error (RMSE) for the differ-
ence between each model’s simulated estimates compared to
the human estimates. We also computed a Pearson correla-
tion between the human and model estimates across the three
interval lengths (r = 0.99, p = 0.04). The model with :mp =
4 produced the lowest RMSE = 67.02.

Though the adjustment of the :mp parameter improved the
fit at the aggregate level, there was still a substantial differ-
ence in variance between the human data and model fit. This
difference can be seen in Figure 4 which plots individual par-
ticipant and model run data at the trial level using the param-
eter settings from the first analysis. When comparing across
timing intervals (colored dots), it is clear that the variability
in the model is substantially less compared to the human data.
These results indicate that the model was not capturing indi-
vidual level behavior.

To investigate this, we explored one parameter that repre-
sents a plausible way to account for the individual variability:
blending temperature (:tmp). The :tmp parameter controls
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Figure 4: Individual variability and linear fits across human
(top) and model simulation (bottom) data. Data points repre-
sent an estimate on a given trial across the interval lengths.

the preference to blend chunks in memory. Higher values of
:tmp correspond to more blending over chunks and, therefore,
more regression to the mean of chunks. Lower values of :tmp
correspond to a retrieval process closer to the best match, or
“winner-take-all”. We tested 30 values of :tmp sampled from
a normal distribution (µ = 0.5, σ = 0.1). For this analysis, we
kept all other parameters at default, except for :mp = 4.

Figure 5 depicts the results from this analysis. We com-
puted the RMSE to evaluate quantitative fit of the model sim-
ulation to the human data. Here, the model with the lowest av-
erage difference (RMSE = 62.29) used a :tmp value of 0.453.
It produced only a marginal improvement from the first anal-
ysis (RMSE = 67.02) which did not set the :tmp parameter
and only adjusted :mp to 4. We computed a correlation be-
tween the human data and model fit across the three interval
lengths (r = 0.99, p< 0.001) which represented a good quan-
titative fit at the aggregate level. However, this value of :tmp
did not improve fit to the individuals. As this was the aim of
this analysis, these results indicate adjusting this parameter in
future simulations may not be necessary.1

Discussion
Here we have developed and implemented the first cognitive
model of a TB task. Using core components from the ACT-
R architecture and default settings for all but one parame-
ter (mismatch penalty), our model was able to simulate hu-
man time interval estimates in action trials from a TB dataset

1We conducted an additional analysis to investigate how varying
the amount of noise added between ticks, via the :time-noise pa-
rameter in the temporal buffer (b, in Equations 3 and 4), influenced
variance in timing estimates. We assessed values of 0.005 to 0.1 in
steps of 0.015 keeping all other parameters at default except :mp =
4. The best fitting value was :time-noise = 0.03, which is slightly
higher than the default value 0.015. The minimum RMSE = 51.11
improved model performance at aggregate, but not substantially
enough at the individual level to warrant adjusting the default set-
ting. This represents an interesting area of investigation for future
work. See https://osf.io/6bkjp/ for complete details.

Figure 5: Best fitting model from the blending temperature
(:tmp) parameter analysis.

(Weller et al., 2020).
After defining a similarity function to specify how chunks

were weighted during retrieval, our first aim was to estimate
the appropriate value for the :mp parameter. Using the min-
imum RMSE value as the primary metric for quantitative fit,
the simulations suggested only adjusting the :mp parameter to
4. This is relatively high in the range of values tested. Con-
ceptually, this means that to simulate participant estimations
in this task, the model needed a higher penalty against chunks
in memory which limited the number of chunks that are aver-
aged in memory during a single retrieval to those that were a
close match to the current retrieval request.

In our second analysis, we evaluated sources of individual
variability using another parameter affecting memory mech-
anisms, the :tmp parameter. The best fitting value provided
a marginal improvement of model fit at the aggregate across
three time intervals but did not improve variability compara-
ble to human performance. Future work could allow variation
in the :tmp parameter to represent individual differences in
humans regarding whether they use more (i.e., blending) or
fewer (i.e., single best match) previous instances in memory
to inform current estimates of time intervals.

In the TBM model, parameters affecting memory mech-
anisms within ACT-R were the primary influence on model
performance at the aggregate level. This provided some ad-
ditional evidence to suggest that memory mechanisms are
capable of capturing the patterns in human data from a TB
task. Surprisingly, our investigation of the timing mechanism
(:time-noise) did not appear to affect model performance at
the individual level as much as expected (see Footnote 1 for
more details). Increasing values of the :time-noise parame-
ter increased individual level variability but worsened the fit
at the aggregate level, indicating a trade-off. It may be the
case that conducting an analysis similar to the one we suggest
for blending temperature (i.e., altering :time-noise parameter
value to fit individuals) may represent a feasible way forward
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in investigating sources of noise at the individual level.
It is also possible other aspects of the temporal buffer may

affect model performance in this task. As mentioned in the
introduction, according to Fereday et al. (2019) one might
expect a slower clock rate when comparing action trials to
passive ones. In the ACT-R architecture, the :time-mult pa-
rameter, which controls a multiplier constant applied to each
tick, could be adjusted to formally investigate this hypothe-
sis. Specifically, one might test a range of values higher and
lower than the default value (1.1) to investigate whether this
can capture any observed differences between conditions.

It is important to note that so far the majority of the anal-
yses we describe here have been conducted at the aggregate
level. However, there is evidence to suggest that the TB ef-
fect is not consistently present at the individual level, and cur-
rently this variability is not captured by this model. There are
some reasons why this might be the case. For instance, one
can interpret the aggregate model fit to represent one partic-
ipant completing the experiment 10 times without variation.
The observed variability in the human data then would po-
tentially reflect an aggregation over different models using
different parameter values. Future work should aim to inves-
tigate sources of variability across individuals and possible
explanatory mechanisms.

Future work might also investigate the sources of individ-
ual variability in estimations. Currently the information in
declarative memory is created in the same way across indi-
vidual model runs (i.e., assuming no prior experience before
beginning the task). This is due to the fact that we did not
have access to practice trial data. Seeding each model run
with actual practice trial data may better simulate the individ-
ual variability in the human data. In lieu of practice data, it
may be useful to simulate a large number of practice trials at
sub-second interval lengths to build a more realistic declara-
tive memory store. Additionally, it may be useful to incor-
porate individual differences in the initial guesses the model
makes during the task (e.g., Cranford et al. (2021)). Partici-
pants’ initial guesses may be based on environmental priors
(i.e., we expect our button press to lead to an outcome af-
ter a very short interval, typically less than 100ms in length).
These expectations may vary across participants, which may
lead to some of the variability present at the individual level.

As mentioned in the introduction, due to the preliminary
nature of this work, our analysis did not include a simulation
of the comparison trial-type that is used to determine the pres-
ence of the TB effect. In experiment 3A Weller et al. (2020),
a baseline trial-type wherein participants passively observed
two events, was the comparison of interest for the action tri-
als. Baseline trials can be simulated by removing the initial
voluntary action in our current task, so that the model pas-
sively observes and times the interval length between the pre-
sentation of the two visual stimuli (e.g., the letters “A” and
“Z”). The estimations in this trial-type can then be compared
to the action trial-type that we have developed here to deter-
mine whether the TBM model can account for the entire TB

effect (i.e., more compression in the action trial-type com-
pared to the baseline trial-type). We suggest first simulating
both trial-types using the same core components and param-
eter values to evaluate whether additional specifications are
necessary to produce the TB effect.

In conclusion, we have successfully developed and imple-
mented the first cognitive model of a temporal binding task.
An ACT-R model, using declarative memory and time per-
ception mechanisms, provided a good qualitative fit to human
data. These results, while still preliminary, add to the grow-
ing evidence that memory mechanisms can account for results
from temporal binding studies. Future work should evaluate
whether specifying an agency mechanism is necessary to ac-
count for the temporal binding effect.
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Introduction 

In recent years, research on autonomously operating 

machines, such as self-driving cars, has progressively 

increased. When the social implications of such technologies 

are discussed, moral judgment by computers often becomes 

an issue. As autonomy increases to a high degree in the future, 

an in-depth understanding of human morality will become 

necessary in thinking systems. Even though individual 

human beings value morality, conflicts may arise. Therefore, 

it is necessary to examine how humans perceive complex 

society through morality and how humans make decisions 

based on morality.    

This research examines the mechanism of human moral 

judgment based on System 1 and System 2 (Kahneman, 

2012) as described by the dual-process theory (Evans and 

Stanovich, 2013). The Trolley Problem (Thomson, 1984), 

one of the famous thought experiments in moral judgment, is 

used as a task, and a model for making judgments based on 

memories by giving Japanese sentences of the problem is 

developed based on distributed language models and the 

cognitive architecture ACT-R (Anderson, 2007).  

We provide a discussion of dual-process theory and moral 

judgments as a background to this research, and present 

previous cognitive computational modeling work on this 

theory. We then describe previous research using ACT-R and 

connect it to the model proposed in this research. 

Related Work 

Dual-process theory explains that humans have two 

different modes of thinking: fast and slow thinking. Fast 

thinking is referred to as System 1 and slow thinking as 

System 2, with the former being unconscious, intuitive, and 

impulsive based on heuristics and the latter being deliberative 

which is more conscious and burdensome to process. It is said 

that System 1 is the main processor, with System 2 

intervening when necessary to make more complex decisions 

(Greene, 2015). System 1 and System 2 are not clearly 

distinct; rather, a spectrum exists between the two modes, 

with System 1 requiring less "effort" and System 2 requiring 

more (Conway-Smith and West, 2015). 

Studies of analogical reasoning also have found reasoning 

based on superficial similarities called availability heuristics. 

In the past, there have been several studies on decision-

making by analogy for issues where political judgment is at 

stake (Spellman and Holyoak, 1992). There is also a model 

for reasoning about social problems by retrieval of similar 

cases (Blanchette and Dunbar, 2001). 

These analogical models of political judgment do not 

consider the dynamic process of switching between System 1 

and System 2. The definitions of superficial and structural 

similarity are also based on hand-coding, which makes the 

generality of the models questionable. To overcome these 

concerns, an integrative model that includes a chronological 

process is needed. An integrative model of cognition is 

achieved through the concept of cognitive architecture, of 

which ACT-R is a representative example. 

In an example study on availability heuristics using ACT-

R, Schooler and Hertwig (2005) developed the model to 

judge the size of a city's population. However, their model 

does not explain the switching between System 1 and System 

2 in moral judgments. Therefore, in this research, we use 

ACT-R to construct a model that addresses moral decisions 

considering the dynamic changes of System 1 and System 2. 

Case Representation 

As in the related research of Schooler and Hertwig, a news 

corpus was used for the cases to be considered in the model. 

Our research uses news articles from the Livedoor News 

Corpus as the model's pre-stored cases in declarative memory. 

This corpus consists of several news sites having varied 

characteristics. We believe that these can be used to model 

the cultural background of individuals making moral 

judgments. 

In coding the cases, sentiment and similarity to the problem 

statement were given based on the availability heuristics. 

Sentiment and similarity were each calculated using a method 

with distributed language models. 

For the sentimental component, we used the Natural 

Language API by Google Cloud. The Natural Language API 

combines score, which indicates the positive and negative 

sentiments recognized from the sentence, and magnitude, 

which indicates the amount of sentimental content, to 

represent the sentimental elements of the entire sentence.  

Sentence BERT (Reimers and Gurevych, 2019) was used 

to calculate the similarity between problem sentences and 

Livedoor news article titles.  

Prototype Modeling 

The design of the prototype model constructed in this 

research is such that System 2 intervenes in the decision-

making process by System 1 as shown in Figure 1. The model 

repeatedly reads the given problem sentences in sequence, 

and for each sentence, it retrieves a memorized news article 
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that the sentence currently being read reminds it of. This 

retrieval process is governed by the chunk activation 

mechanism of ACT-R. The news articles are stored in the 

declarative memory module as chunks, and each chunk holds 

an activation. In ACT-R, the activation of a chunk is 

calculated as the summation of the relevance to the current 

situation (similarity) and the utilities estimated from 

experience (frequency of using the chunk). Thus, each time 

the model reads a sentence, it retrieves a story similar to the 

trolley problem, and the retrieved story is gradually 

converged until the model reaches the last sentence.  

When the last sentence is read, it makes decisions according 

to the acquired memory sentiment: if POSITIVE, it chooses 

to push the target; if NEGATIVE or NEUTRAL, it chooses 

not to push the target, and if MIXED, it chooses to rethink. 

We consider that the above process is generally consistent 

with the known characteristic of human availability heuristics. 

According to Kahneman (2012), the thought process based 

on System 1 is determined by easily recalled memory and 

substantially influenced by emotion. In contrast, we consider 

there is room for intervention by System 2 when the retrieved 

sentiment is MIXED at the last sentence. At that time, the 

model decides to read the sentences again. The number of 

steps in decision-making increases by rethinking, which can 

be explained as taking more effort.  

Results 

Simulations were performed on nine models with pre-

stored cases from multiple news sites using “Switch” and 

“Fat Man” as different expressions of the trolley problem. 

Greene (2015) pointed out that those expressions lead to 

different decision outcomes in human experiments. For both 

expressions, simulations were run 1000 times. From the 

obtained result, we found that the sentiments of pre-stored 

news noticeably influenced decision-making. A crucial 

difference between the two expressions was also found when 

the news articles were collected from a site named MOVIE-

ENTER (push choice in “Switch”: 0.463, push choice in “Fat 

Man”:  0.404). However, the effect of System 2 intervention 

could not be clearly observed. 

Conclusion 

In this research, we created a prototype model of the 

availability heuristic in moral judgments using distributed 

language models and ACT-R. Simulation of two simple 

trolley problem cases as tasks showed that the decision was 

strongly influenced by the sentiment of pre-stored cases in 

declarative memory. As the switch from System 1 to System 

2 in the prototype model was based on sentiment, a redesign 

to a more deliberative version of System 2 is necessary to 

match the tendency of human moral judgments. 
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Figure 1. Moral judgement model based on two systems 

(System 1: bule line, System 2: red line). Japanese text of 

“Fat Man,” example articles from livedoor news corpus, and 

the retrieved chunks during the process are presented. 
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Abstract
This study proposes a method of generating body gestures
from distributed representations of words. In the method, the
size image for words is computed based on the index whose
poles correspond to “small” and “large” word images. In ad-
dition, the size image of the words is physically implemented
as robot gestures. The proposed methods were evaluated by
two online surveys. Summarizing the results, the authors claim
the potential of developing artifacts exchanging qualitative and
quantitative aspects of word representations.
Keywords: Distributed representation of words; Gestures;
Robotics

Introduction
Communications are mediated by symbolic or quantitative
representations. Symbolic interfaces use discrete representa-
tions such as language and icons, while quantitative interfaces
use physical quantities such as speech and movement. The
two media are processed complementarily in human-human /
human-machine communications.

The mechanism of exchange for these representations
has been repeatedly discussed in the field of cognitive sci-
ence. According to the reference frames theory proposed by
Hawkins (2021), a continuous space exists behind each con-
cept that stores knowledge and generates behavior, and this
knowledge is recovered through language. Similar discus-
sions are also made by Tversky (2019) claiming human lan-
guage and thoughts that originally come from bodily experi-
ence made in a continuous time and space. In her discussion,
the meanings of words are essentially embedded in our liv-
ing physical world. Other similar discussions are also found
in literature in the field of cognitive linguistics (e.g., Pinker,
2007).

A computational model of word meaning is needed to im-
plement those mechanism. In natural language processing re-
search, statistical analyses (Bag of Words, co-occurrence fre-
quency, or principal component analysis from word vectors)
have been applied to corpora derived from human language
operations to capture the semantic relations between words.
More recently, vector representations (distributed word rep-
resentations) collapsed into the middle layer of a neural net-
work have become the mainstream method for understand-
ing words’ quantitative meanings (Bengio, Ducharme, & Vin-
cent, 2000).

Based on the above background, this study proposes a
method for generating body images using a conversion mech-

anism between discrete symbols and quantitative images.
This method extracts the spatial knowledge structure under-
neath words from distributed representations constructed on
a neural network. According to the aforementioned theoret-
ical background, it can be assumed that there exist various
quantitative images such as “size” and “speed” in the space
where words are positioned (Grand, Blank, Pereira, & Fe-
dorenko, 2018). In this study, we focus on “size images” to
obtain quantitative representations of words related to their
size; then, we generate iconic gestures (body images) for a
robot by converting the “size image” into body actions.

This research aims to test the following hypothesis.

1. The spatial knowledge structure contained in the dis-
tributed word representation contains a “size image.”

2. Body image generated by the “size image” can recover
human judgments.

As background leading to the purpose of this study, the
next section reviews research on the computational method
by extracting word meaning and gesture generation. Follow-
ing this, we describe the proposed methods for generating
body images of the concepts. The method contains two parts,
each of which corresponds to the above two hypotheses; these
two parts were verified by two experiments. The final section
presents a summary of this study and future prospects.

Related Studies
The meaning of a word or concept can be modeled by sev-
eral approaches. One approach is to write down the mean-
ings of concepts circulating in society manually. Large-scale
databases such as WordNet (Miller, 1995) and ConceptNet
(Speer, Chin, & Havasi, 2017) have been developed so far.
These databases define the normative knowledge structure in
society.

Meanwhile, in recent years, there have been many ap-
proaches to capture the meaning of concepts statistically
based on daily language use. Distributed representation of
words (Bengio et al., 2000) considers a word as a point em-
bedded in a vector space. In this framework, a word’s mean-
ing is considered to be the relationship (distance or similarity)
between words in the vector space. The underlying idea here
is the distributional hypothesis that “words which are similar

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

210



in meaning occur in similar contexts.” (Rubenstein & Good-
enough, 1965; Sahlgren, 2008)

Attempts have been made to extract words’ quantitative
images by using distributed word representations. For exam-
ple, Utsumi (2020) worked to reveal the internal knowledge
embedded in distributed word representations. Using mod-
els of word distributions, he classified words into attributes
and compared the results with word classifications obtained
from human data. The results suggest that the vector space
of distributed word representation captures important aspects
of human knowledge. In particular, it was shown that ab-
stract concepts are more deeply embedded in word distribu-
tions than in words with physical or bodily meanings associ-
ated with animate concepts.

In contrast, Grand et al. (2018) proposed a method for ex-
tracting context-dependent relations using distributed word
representations. Context-dependent relations mean that, for
example, the word “dog” has several different semantic fea-
tures such as “size,” “intelligence,” and “danger,” depending
on the context. This study shows that by projecting word
vectors onto axes representing characteristics such as “size,”
“intelligence,” and “danger,” it is possible to recover human
judgments about categories and characteristics of various ob-
jects. Thus, it is suggested that human quantitative images
of words are embedded in word-distributed representations.
In other words, the quantitative meanings of concepts that
humans have physically acquired are inherent in distributed
word representations created from our daily language use.

The remaining question is about how such quantitative
meanings work in communication settings. In this regard,
many psychologists claim that bodily gestures represent hu-
mans’ internal thoughts (Goldin-Meadow, 1999; Kita, Al-
ibali, & Chu, 2017). Other researchers have developed a
method to make robots perform gestures in accordance with
the emotions of the content of speech ((Lourens, Van Berkel,
& Barakova, 2010). More recently, several studies are trying
to generate co-speach gestures by end-to-end learning (Yoon
et al., 2019; Liu et al., 2022).

However, we have not found any studies that link the quan-
titative meanings of concepts acquired using distributed word
representations to the generation of iconic gestures (body im-
ages). Therefore, we propose a method for generating body
images by acquiring the quantitative meaning of “size” con-
cepts from the vector space of word distributions. Further-
more, by collecting human evaluations of generated body im-
ages, we verify the consistency with human perceptions.

Proposed method
Our proposed method includes the steps shown in Figure 1;
the framework of each step is as follows.

Generating “size image”
To generate a “size image” according to the hypothesis in the
first section, it is necessary to define an axis (index) of “size”
in the vector space. Below, we show the process of extracting

Figure 1: Flow of proposed method

a “size index” from the multidimensional vector space and
then extracting a “size image” for an arbitrary word.

1. Composition of “size index”
The method for constructing word “size index” from the
multidimensional vector space of distributed word repre-
sentations follows Grand et al. (2018)’s study. In this
method, the size index is taken to be a value on an axis
consisting of “large” and “small” poles. To define the
poles, we need to extract the coordinates of “large” and
“small” in the distributed representation. However, in ad-
dition to their size-related meanings, these two words have
extra meanings that derive from their adjectival status. To
exclude such meaning unrelated to “size,” Grand et al.
(2018) defined a set of synonyms that have the same role as
“large” and “small” in the distribution word representation.
Then, the polar coordinates are determined by computing
the mean vector of these synonyms.

However, the above method proposed by Grand et al.
(2018) has limitations in the arbitrariness of selecting the
synonyms; they didn’t provide criteria of selecting the syn-
onym. Our method overcomes this by automatically deter-
mining the set of synonyms for “large” and “small” with
reference to an existing thesaurus. Words are usually pol-
ysemous and have multiple meanings. In a thesaurus, a
set of synonyms for a word is defined as a synset for each
of their meanings. From these synsets, we seek the com-
bination of those that maximize the distance between the
“large” and “small” words obtained from the human sur-
vey in order to determine the polar coordinates consistent
with human perception.

In this step, we consider categories based on word abstrac-
tion. According to Tversky (2019) and others, the meaning
of a concept is originally composed of the human move-
ment. However, as shown by Utsumi (2020), physical
quantities are not expected to be strongly embedded in dis-
tributed word representations composed of socially pub-
lished documents. Therefore, the scale of the “size index”
has the possibility to be changed by the categories the word
belongs.

2. Composition of “size image”
The cosine similarity of the input word vectors is calcu-
lated from the “size index”, and the value is used as the
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“size image” of the input word. In our proposed method,
the larger this value is, the larger the word is assumed.

Physicalizing body images
In this step, the body image (iconic gesture) is generated ac-
cording to the “size image” calculated for each word. The
parameter scaling and the procedure are shown below.

1. Setting large and small postures
The “size index” is mapped to the postures composed of
body parts. For this purpose, we determine the body pos-
ture corresponding to the smallest and largest words rec-
ognized by humans. Using this posture as a reference (the
image of the smallest word is 0 and the image of the largest
word is 1), the “size image” of each word can be positioned
in the range of 0 to 1.

2. Calculation of parameters at each joint
The above scaling is applied to the joint angles of each joint
that constitutes the posture.

3. Generating the body image
A gesture is generated based on the values obtained by step
2. This gesture is assumed to be made simultaneously with
the utterance of the word.

Experiment 1: Generation of “size image”
We test the first hypothesis presented in the first section by
generating “size images” using the proposed method. A ques-
tionnaire survey was conducted to extract human perceptions
of word size, and to generate a “size index”.

Method
Models In this study, we used the Japanese Wikipedia En-
tity Vector (Suzuki, Matsuda, Sekine, Okada, & Inui, 2016),
which we call JWikiEntVec in this paper, as the distributed
representation model. This model is built by word2vec
(Mikolov, Chen, Corrado, & Dean, 2013). We consider that
word2vec is more suitable for this research than more re-
cently developed models such as BERT (Devlin, Chang, Lee,
& Toutanova, 2018) because it is a faster method that can be
applied in real-time settings.

In addition, we used the Japanese WordNet (Bond, Isahara,
Uchimoto, Kuribayashi, & Kanzaki, 2009) for synonym se-
lection. This thesaurus contains 28 synsets for “large” and 14
synsets for “small”. Words not included in JWikiEntVec and
synsets with no synonyms were excluded from the later anal-
ysis. As a result, we obtained 23 synsets for “large” and 13
synsets for “small.“ The “size index” was calculated for the
combinations of these synsets (23×13 = 299).

Survey To define a “size index” consistent with human per-
ception, we conducted an online survey to obtain the set of
“large” and “small” words recognized by humans. One hun-
dred respondents were recruited from Lancers, a Japanese
crowdsourcing site (reward: 55 yen). The participants were

Figure 2: Rank frequency of words obtained by the survey

Table 1: Responses obtained for each question (Top five
words)

(a) Animate

Large Small
Word Frequency Word Frequency

Elephant 85 Ant 74
Whale 68 Daphnia 33
Giraffe 60 Mosquito 31
Bear 25 Tick 30

Hippopotamus 19 Fleas 23
(b) Inanimate object

Large Small
Word Frequency Word Frequency

Tokyo Sky Tree 45 Sand 26
Mt. Fuji 35 Beads 20

Tokyo Tower 29 Needle 26
Everest 22 Microchip 15
Pyramid 18 Screw 14

(c) Intangible concept

Large Small
Word Frequency Word Frequency
Space 36 Mind 13
Love 18 Jealousy 9

Dream 17 Envy 7
Mind 16 Vanity 6
Sea 15 Point 5

*Words are translated from Japanese

asked to write down five “large” and “small” words for ani-
mate, inanimate, and intangible concepts. Thus, each partici-
pant provided totally 30 words (five words × two sizes [small
vs. large] × three categories [animate vs. inanimate vs. in-
tangible]) in this survey.

Results
Overview of responses The total number of words ob-
tained from this survey was 937, of which 828 were included
in JWikiEntVec. Of these words, 62, 117, and 188 were
large animate, inanimate, and intangible concepts, respec-
tively while 83, 150, and 228 were small animate, inanimate,
and intangible concepts, respectively. Figure 2 shows the rank
frequencies of these words as a two-tailed logarithmic graph.
Table 1 shows the top five words for each combination of size
and categories.

Extraction of “size index” From the 299 “size index” (cor-
responding to all combinations of synsets), we selected the
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Figure 3: Distribution of “size image” difference

Table 2: Top and bottom combinations of synsets ordered by
the “size image” difference

Rank “large” synset “small” synset
1 larger-than-life flyspeck
2 outstanding flyspeck
3 outstanding softend

297 sizable immature
298 large immature
299 sizable small

index that is most consistent with human image. In this selec-
tion, the average value of the “size image” of “large” words
and the average value of the “size image” of “small” words
were calculated for each category, and the difference between
them were obtained. Figure 3 shows the differences calcu-
lated for the 299 indicators. The horizontal axis of this figure
corresponds to the combination of synsets ordered by rank.
From this figure, it can be seen that the differences in the
“size image” of some of the combinations are large for all
categories. Overall, there are many combinations in which
the difference of “size image” is larger than 0 (the red dot-
ted line), indicating that the size index is calculated for more
than half of the synset combinations is consistent with human
image.

Table 2 shows the top three and the bottom three combina-
tions when the rankings of the three categories are summed.
From those lists, we can find several instances of “outstand-
ing” for “large” and “flyspeck” for “small” in the top com-
binations. Contrary in the bottom combination, “sizable” for
“large” and “immature” for “small” were appeared several
times. From those, we can see the tendencies in which the
synsets with abstract meanings tended to be placed higher,
while those with physical meanings tended to be placed
lower.

Table 3 shows synonyms included in the top synsets.
Among them, the words “tiny (ti-kko-i)” and “very small (go-
ku-ti-i-sa-i)” were unlearned in JWikiEntVec, so they were
excluded from the calculation of the “size index” in this study.

Validation of the “size image” We examine the “size im-
age” calculated by the “size index” using “larger-than-life”
and “flyspeck” extracted by the above analysis. Figure 4
shows the average “size image” of the words in each category
obtained from the survey. From the figure, it can be seen that

Table 3: Word list for “larger-than-life” and “flyspeck”.
Words in parentheses indicate original Japanese
words in Hepburn romanization

word “large” “small”
synset larger-than-life flyspeck
meaning very impressive very small
Synonym1 magnificent (so-da-i) tiny (ti-ppo-ke)
Synonym2 large scale (da-i-ki-bo) minute (b-i-syo)
Synonym3 tiny (ti-kko-i)
Synonym4 very small (go-ku-ti-i-sa-i)

Figure 4: Mean value of the cosine similarity (size image) be-
tween the word group and the “size index” obtained
from the questionnaire (error bars are standard er-
rors)

the “size image” of the “large” words exceeds the “size im-
age” of the “small” words in all categories. To confirm this
impression, we conducted a two-way [categories (animate vs.
inanimate vs. intangible) size (large vs. small)] analysis of
variance (ANOVA) with “size image (cosine similarity)” as
the dependent variable. The results showed the significant
interaction between the factors (F(2,824) = 8.84, p < .001)
with a simple main effect of the size for animate (F(1,824) =
65.60, p < .001), inanimate (F(1,824) = 122.14, p < .001)
and intangible (F(1,824) = 26.06, p < .001).

The above results confirm that the size image of “large”
words is larger than that of “small” words in all categories. In
other words, the size index calculated using “larger-than-life”
and “flyspeck” can discriminate the size of words consistent
with human perception.

Discussion
From the above, we were able to define an axis in the vec-
tor space of the distributed word representation that distin-
guishes between large and small words that are recognized
by humans. In other words, the first hypothesis of this study,
that a quantitative image of “size” is embedded in the vector
space of the distributed word representation, is supported.
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Figure 5: Examples of Sota gestures (left: “Tokyo Tower”,
right: “tick”)

However, this result is not surprising, since it only de-
fines the axis that maximizes the difference between large and
small words obtained from the questionnaire. An interesting
result is that synsets with abstract meanings were observed
at the top of Figure 3, while synsets with psychical mean-
ings were observed at the bottom. This result supports the
discussion that the vector space of word-distributed represen-
tations is biased toward abstract meanings (Utsumi, 2020).
This bias also seems to be consistent with another trend in
Figure 4 showing larger size images in intangible (abstract)
words compared with animate (physical) words.

Experiment 2: Physicalization of “body image”
A body image (iconic gesture) of the robot is generated in line
with the “size image” generated in the previous section and
evaluated. Through this examination, the second hypothesis
presented in the first section is verified.

Method
Equipment and Materials For the physicalization of the
body image (embodiment), we use Sota, a small communi-
cation robot manufactured by Vstone1. Sota’s body move-
ments are controlled by nine joints (one torso, three necks,
two shoulders, and two arms joint). By controlling the angle
and speed of these joints, Sota can generate various gestures.
In addition, Sota has a speech function and can speak any
words while simultaneously displaying gestures.

In this study, the parameters of the arm and shoulder joints
were instantiated by “size image” to generate gestures. Sota’s

1https://www.vstone.co.jp/english/index.html

Table 4: Maximum and minimum values of parameters for
“size image” and each joint

(a) Proposed embodiment

Maximum Minimum
Size image -0.490 0.310
Shoulder angle -70 27
Arm angle 20 -25

(b) Reversal embodiment

Maximum Minimum
Size image -0.490 0.310
Shoulder angle 27 -70
Arm angle -25 20

default posture is the one shown in the upper image in Figure
5, with the shoulders down and the arms slightly bent. From
this state, the parameters of the arm and shoulder joints are
changed to generate gestures that correspond to the size of
the word. When the “size image” of the word is large, the
shoulders are raised and the arms are extended, and when it
is small, neither the arm nor the shoulders move much.

The bottom images of Figure 5 shows examples of the gen-
erated body images. The lower-left image shows the gesture
when the user says “Tokyo Tower” (large inanimate concept),
and the lower-right image shows the gesture when the user
says “tick” (small animate concept).

Table 4 (a) shows the maximum and minimum values of
the “size image” calculated for all words obtained from the
survey and the matched parameters of the shoulder and arm
joints. These values were used to scale the “size image” in
the range 0 to 1.

Design and measures A body image was generated for the
30 words in Table 1, and generated gestures for each word
were recorded as movies (about 4 s videos). In this exper-
iment, the participants were asked to rate the naturalness of
the correspondence between the robot’s movements and the
words it spoke on a 5-point scale (1 = not at all natural; 5
= very natural). The “naturalness” here assume a situation
where the user is interacting with the robot. Specifically, the
user is asked to rate whether or not they feel that the robot
understands the meaning of the words as a human would.

The proposed method was evaluated by comparing the re-
versal embodiment condition, where the minimum value for
each joint is taken when the scaled value is 1, and the max-
imum value for each joint is taken when the scaled value is
0, as opposed to the scaling in the proposed condition (Table
4 (b)). This results in the arms and shoulders being moved
less when the “size image” value is large and the arms be-
ing raised and opened wider when the “size image” value is
small.

To prevent order effects, three question forms were pre-
pared with randomly sorted 60 videos. The survey partic-
ipants were equally assigned to these forms in the order in
which they accessed them. In between the evaluations of the
60 videos, two dummy questions were asked, in which the

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

214



Figure 6: Average rating value per category

participants were asked to answer a specified number verbal-
ized by the robots.

Participants and procedure Two hundred participants (62
females) who were contacted via Lancers evaluated the
videos after reading the instructions provided on the request
screen (reward: 110 yen). The instructions explained the
evaluation procedure, the definition of naturalness, and the
obligation to answer dummy questions. After agreeing to the
instructions, participants answered 62 questions on Google
Forms.

Results
Two participants with multiple responses and two participants
with incorrect answers to the dummy questions were deleted.
For each of the 196 participants, the six averages of the evalu-
ation values on body images (sizes × conditions) were calcu-
lated (Figure 6). This value was used as the dependent vari-
able in a three-factor [embodiment (proposed vs. reversal) ×
size (large vs. small) × category (animate vs. inanimate vs.
intangible)] ANOVA. The analysis showed a main effect of
embodiment (F(1,195) = 93.31, p < .001), confirming that
the proposed embodiment was evaluated more naturally than
the reverse condition overall. However, a second-order in-
teraction (F(2,390) = 86.97, p < .001) was also significant,
indicating that factors of size and categories influenced this
effect.

To examine the differences in the effects of embodiment
between each combination of size and categories, three two-
way [embodiment (proposed vs. reversal) × size (large vs.
small)] ANOVAs were conducted for the categories (ani-
mate, inanimate, intangible). The results showed signifi-
cant interactions between the factors in all analyses (animate:
F(1,195) = 32.01, p < .001), inanimate: F(1,195) = 89.14,
p < .001, intangible: F(1,195) = 103.74, p < .001).

Table 5 illustrates the simple main effects of embodiment
(proposed - reversal) for each combination of size and cate-
gories, showing that the naturalness of the proposed condi-
tion exceeded that of the reversal condition for small animate
words, large and small inanimate words, and large intangible
words. In particular, the large inanimate and the large in-
tangible words had a medium or large effect size, indicating
that the gestures were generated naturally in those conditions.

Table 5: Simple main effects of size image condition and re-
versal condition

Category Size Difference F p d

Animate Large
Small

-0.067
0.222

4.85
28.19

0.029
<.001

0.103
0.328

Inanimate Large
Small

1.031
0.219

157.61
15.80

<.001
<.001

1.107
0.299

Intangible Large
Small

0.466
-0.104

70.16
7.13

<.001
0.008

0.652
0.165

However, the naturalness of the reversal condition exceeded
the naturalness of the proposed condition for large animate
and small intangible words with small effect sizes.

Discussion
The above results show that the proposed embodiment out-
performed the reversal embodiment in the overall and sev-
eral categories’ naturalness evaluation. These results partially
support the second hypothesis of this study (that body images
generated by “size-images” can recover human judgments).
However, contrary to our hypothesis, several reversal embod-
iment conditions may have been evaluated as more natural
than the corresponding proposed conditions. This inconsis-
tency may be due to the aforementioned bias in the categories
of meanings embedded in the word-distributed representa-
tions. In particular, unbalanced distributions of “size images”
presented in Figure 4 seem to explain the inconsistent result
in the large animate and small intangible conditions.

Conclusion
In this study, we proposed a method for generating body im-
ages related to “size”. Through two experiments, we partially
confirmed that it is possible to generate “size images” con-
sistent with human perception from distributed word repre-
sentations, and that the body images generated from the “size
images” can recover human size images.

One limitation of our results is that we were unable to gen-
erate body images consistent with human perception in some
categories. According to Utsumi (2020), distributed represen-
tations constructed from corpus has a bias toward high gran-
ularity in abstract concepts rather than embodied or physical
concepts. Accommodating this property will require improv-
ing the normalization method by distinguishing categories of
word abstractness.

The other future work is setting other baselines. In this
study, the reversal condition was only set as a baseline. In the
future, it will be necessary to examine the effects compared
for conditions in each step of the method proposed in this
study by setting a contrast condition. For example, the body
image generated by the “size index” using the combination
of lower-level synsets in Figure 4 can be set as a baseline
condition.

In addition to the above issues, in the future, we will work
on the generation of body images using not only “size” but
also “sharpness,” “speed,” and various other index. We be-
lieve that this will contribute to both the understanding of our
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cognition and the development of “an advanced human inter-
face that realizes smooth interaction with humans, equipped
with a conversion mechanism between human symbols and
quantities.”
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Abstract
The human mind relies on similarity to organize the world
around it. A geometric approach to similarity, which assumes
that two objects’ similarity decreases with the sum of their fea-
ture value differences, has been particularly influential. Yet,
geometric similarities are claimed to ignore common features,
which is inconsistent with human similarity judgments that in-
crease the more common features the objects share (the com-
mon features effect). This paper shows that a relative attention
mechanism, as it is implemented in current cognitive models
based on geometric similarities, can naturally predict the com-
mon features effect by weighting each feature value difference
with the share of attention allocated to the feature. Additional
common features draw away attention from the already present
features, which entails that the objects’ differences with re-
spect to already present features receive less weight, resulting
in a higher similarity. The ability of the geometric similarity
theory with relative attention to predict the common features
effect is illustrated for data from Gati and Tversky (1984) and
for data from a new pairwise similarity judgment experiment.
Keywords: Similarity; Attention; Common features; Compu-
tational modeling

Introduction
The human mind organizes the world around it based on simi-
larity. People can group objects by similarity because objects
with similar features are likely to be similar in other variables
of interest as well (Goldstone & Son, 2012). For instance,
people can use the similarity of different animals in terms of
color, shape, and other features to classify them into species
or judge their toxicity. In other words, similarity is fun-
damental for inferences such as categorizations (Kruschke,
2008; Nosofsky, 1986) and judgments (Albrecht, Hoffmann,
Pleskac, Rieskamp, & von Helversen, 2020; Juslin, Jones,
Olsson, & Winman, 2003), and understanding psychological
similarity provides direct access to understanding the cogni-
tive system. This article counters a criticism of a widespread
psychological similarity theory—namely, that common fea-
tures do not affect the geometric similarity between objects—
by showing that current geometric similarity models can con-
sider common features due to a relative attention mechanism.

With decades of psychological research conducted, many
theories of how people compute similarity have emerged
(e.g., Tversky, 1977; for an overview, see Goldstone & Son,
2012). Particularly influential is the geometric similarity the-
ory, which assumes that people compute the similarity be-
tween objects as a function of their distance in a perceptual
space, in which each dimension corresponds to an object fea-
ture (Nosofsky, 1986; Shepard, 1987). Specifically, the geo-
metric similarity theory represents each object as a point in

Figure 1: Common Features. Shown are three stimulus pairs
differing in their outer shape. In stimulus pairs 2 and 3, there
is an additional common feature (a cross or a diamond), that
might increase the similarity of the two stimuli.

the perceptual space, with the object’s feature values corre-
sponding to the point’s coordinates. Objects with small dis-
tances in the perceptual space are assumed to be similar; ob-
jects with large distances are assumed to be dissimilar. In
line with this idea, past research has found that people’s sim-
ilarity judgments get smaller with larger feature value dif-
ferences between objects (Gati & Tversky, 1984; Navarro &
Lee, 2004; Ritov, Gati, & Tversky, 1990). For instance, in
Seitz, von Helversen, Albrecht, Rieskamp, and Jarecki (2023)
participants rated the pairwise similarity of objects with three
multivalued features on a visual slider ranging from “com-
pletely different” (coded as 0) to “identical” (coded as 1).
Compared to objects with one common and two minimally
differing features, participants’ similarity ratings decreased
by .11 when the objects also differed on the third feature, and
by .30 when the objects differed maximally on the two fea-
tures. This finding was well described by a geometric similar-
ity model (Seitz, von Helversen, et al., 2023), suggesting that
similarity can often be approached with geometric distances
(see also Lee & Navarro, 2002; Navarro & Lee, 2002b).

Often, objects differ from each other only on some features
but share the same value on the remaining features. Figure 1
illustrates this for geometric figures. In each stimulus pair, the
figures differ in their outer shape; in pairs 2 and 3, however,
there is an additional common feature in the form of a cross or
a diamond. Such common features increase the objects’ psy-
chological similarity (the common features effect; Falkowski,
Sidoruk, Olszewska, & Jabłońska, 2021; Ritov et al., 1990;
Tversky, 1977; Young & Wasserman, 2002). In turn, geo-
metric similarities are claimed to consider only the differing
features between objects, but not the common features (Kr-
uschke, 2008). The underlying intuition is that features that
do not differ between two objects do not affect the objects’
distance in perceptual space. Subsequently, it has been ar-
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gued that geometric similarities cannot account for the com-
mon features effect (Verguts, Ameel, & Storms, 2004; Young
& Wasserman, 2002), which is one reason for the emergence
of other theories of psychological similarity (e.g., Tversky,
1977). In this paper, I will show that geometric similarities
can predict the common features effect by means of a relative
attention mechanism, that is implemented in many current ge-
ometric similarity models (e.g., Nosofsky, 2011).

The Effect of Common and Differing Features
While differing features decrease psychological similarity,
common features typically increase it (Gati & Tversky, 1984;
Lee & Navarro, 2002; Ritov et al., 1990; Young & Wasser-
man, 2002). In Gati and Tversky (1984), participants rated
the pairwise similarity of verbal stimuli (e.g., descriptions of
people) or visual stimuli (e.g., schematic face drawings) vary-
ing on up to three binary features. The authors found that an
additional common feature increased the similarity ratings,
whereas an additional differing feature decreased them. For
verbal objects, adding a common feature affected similarity
more (M = .24 across studies) than adding a differing feature
(M = .09)1. For visual objects, in turn, the effect of adding
a differing feature (M = .20) exceeded the one of adding a
common feature (M = .08). The result that common features
affect similarity more than differing features for verbal ob-
jects but less for visual objects was replicated in Ritov et al.
(1990), who found that one reason for this discrepancy is the
higher cohesiveness of visual relative to verbal stimuli.

Navarro and Lee (2002b, 2004) showed that some features
can act as purely common features, in the sense that they in-
crease the similarity of objects that share the feature, but do
not affect the similarity of objects that do not share the fea-
ture (e.g., the presence of twinhood increases the similarity
of two people, while its absence may not decrease their sim-
ilarity). In contrast, other features can act as purely differing
features, decreasing the similarity of objects that do not share
the feature but not affecting the similarity of objects that share
the feature (e.g., a gender mismatch decreases two people’s
similarity, while a gender match might leave their similarity
unaffected). In line with this idea, the authors found that two
schematic faces that shared the feature of being unremarkable
had a similarity rating .10 higher than two faces that were not
both unremarkable—presumably, because unremarkableness
acts as a purely common feature that affects psychological
similarity only if it is present in both objects of comparison.

Common and differing features not only determine simi-
larity but may also have an effect on similarity-based cog-
nitive inferences. In Young and Wasserman (2002), partic-
ipants learned to predict the occurrence of an outcome for
objects with one or two features. Among the objects that dif-
fered in their outcome occurrence, there were pairs that dif-
fered on a single feature, pairs that differed on one feature

1The similarities in Gati and Tversky (1984) range from 1 to 20.
In this paper, all similarities are rescaled to lie between 0 and 1 for
better comparability.

and matched on the second feature, and pairs that differed on
two features. Participants learned to predict the outcome oc-
currence best for the pairs with one differing feature (80%
accuracy), followed by the pairs with two differing features
(63% accuracy) and the pairs with one differing and one com-
mon feature (57% accuracy). In other words, an additional
common feature between two objects lowered participants’
predictive accuracy substantially, probably by increasing the
objects’ similarity and thereby the difficulty of the predic-
tion task (for contrasting results, in which an additional com-
mon feature did not affect learning, see Thorwart, Glautier, &
Lachnit, 2010).

Explaining the Common Features Effect With
Geometric Similarity

The common features effect was considered evidence against
the geometric similarity theory (Tversky, 1977; Verguts et al.,
2004; Young & Wasserman, 2002). The geometric similarity
between objects depends on the objects’ distance in a percep-
tual space, which increases with larger feature value differ-
ences. A common feature between two objects entails a dif-
ference of 0 for this feature, which will leave the distance and
hence the similarity between the objects unaffected. Accord-
ingly, cognitive models based on geometric similarity (e.g.,
the generalized context model, Nosofsky, 1986) are in general
deemed to consider differing features only but to be insensi-
tive to feature matches (e.g., Kruschke, 2008, Table 9.1).

In the following, I will show how the geometric similar-
ity theory can account for the common features effect. Cen-
tral to the explanation is the concept of relative attention to
the object features, which describes that people distribute
their attention across features when computing the similar-
ity between objects (e.g., Nosofsky, 1986). Specifically, dur-
ing similarity computation each feature value difference is
weighted according to the share of attention allocated to the
feature. Additional features cannot increase the total amount
of attention available but draw attention away from other, al-
ready present features. In case the objects match on the addi-
tional feature, the additional difference of 0 does not affect the
objects’ distance nor similarity. However, if people attend to
the additional common feature, the preexisting feature value
differences are weighted with less attention, reducing the ob-
jects’ distance in space and increasing their similarity.

Figure 2 illustrates how relative attention can explain the
common features effect in a geometric similarity framework.
The x-axis and y-axis show the number of common and dif-
fering features, respectively, for object pairs with binary fea-
tures. A common feature is coded as a feature value differ-
ence of 0, and a differing feature as a feature value difference
of 1. For each combination of the number of common and
differing features, the predicted geometric similarity, result-
ing from a formal model detailed below, is shown. In the left
panel, the model predictions are made without relative atten-
tion; in the right panel, the model predictions are made by
weighting each feature value difference with the share of at-
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Figure 2: Effect of common and differing features on geo-
metric similarity. Each cell shows for an object pair with a
specific number of common features nc and differing features
nd the similarity predicted by a geometric similarity model
(see below for a formal description). Without relative atten-
tion (left), the common features do not affect similarity. With
relative attention (right; in the example, the same share of at-
tention wn = 1/N was allocated to each feature n∈ {1, ...,N},
with N = nc + nd), the similarity increases with the number
of common features as soon as there is one differing feature.
The predictions stem from Eq. 1 with c = 1, r = 1, and p = 1.

tention allocated to the feature. For the example in Figure 2,
the same share of attention is allocated to each feature. In
the case of one common and one differing feature, both fea-
tures are weighted with an attention weight of 1/2; in the
case of two common and one differing features, each feature
is weighted with an attention weight of 1/3. The figure shows
that with more common features the predicted geometric sim-
ilarity remains constant if relative attention is omitted (in line
with Kruschke, 2008), but increases when relative attention is
included (and when there is at least one differing feature).

The idea of relative attention is not new to geometric sim-
ilarities. Many formal models of geometric similarity weight
the feature value differences between objects by the share of
attention allocated to the feature to predict people’s similarity
judgments (e.g., Seitz, von Helversen, et al., 2023), numerical
judgments (e.g., Albrecht et al., 2020; Hoffmann, von Hel-
versen, & Rieskamp, 2016), and categorizations (e.g., Nosof-
sky, 1986; Seitz, Jarecki, & Rieskamp, 2023; Smith & Minda,
1998). The attention weights may reflect the features’ impor-
tance for an inference task, where more attention is devoted to
features that are more task-relevant (Nosofsky, 1986, 2011).

Formal Framework: Relative Attention in a
Geometric Similarity Model

A widespread formalization of the geometric similarity the-
ory, shown to describe people’s similarity-based inferences
well (e.g., Nosofsky, 1986; Seitz, von Helversen, et al.,
2023), computes the feature value differences between ob-
jects and transforms the weighted sum of these differences
(the distance) into a psychological similarity by means of
a negative exponential function (Shepard’s universal law of
generalization; Shepard, 1987). Given two objects I and J

with feature values I = (i1, i2, ..., iN) and J = ( j1, j2, ..., jN),
the objects’ geometric similarity sIJ is defined as

sIJ = exp

−c ·

[
N

∑
n=1

wn· | in − jn |r
] p

r
 , (1)

where | in − jn | is the absolute feature value difference on
feature n between objects I and J. For binary features, as are
typically used to assess the effect of common and differing
features on similarity (e.g., Gati & Tversky, 1984), | in− jn |=
0 in case of a common feature and | in − jn |= 1 in case of a
differing feature. The geometric similarity defined in Eq. 1
has four parameters, highlighted in red, that can be estimated
from (individual) participants’ data: Of particular importance
for this paper is the relative attention wn to feature n (with 0≤
wn ≤ 1 and ∑n wn = 1), which models how people distribute
their attention across features and which can thereby predict
that additional common features increase similarity.

The remaining three parameters are the sensitivity c to the
two objects’ distance (with c ≥ 0), the norm r of the distance
(with r ≥ 1, where r = 1 produces the city-block distance used
for objects with separable features, and r = 2 produces the
Euclidean distance used for objects with integral features),
and the exponent p relating distance to similarity (p = 1 pro-
duces an exponential relation used for well-discriminable ob-
jects, and p = 2 produces a Gaussian relation used for highly-
confusable objects); for more detailed explanation on these
parameters, see Nosofsky (2011).

The geometric similarity model of Eq. 1 implements rela-
tive attention by constraining the attention weights wn to sum
up to 1. Mathematically, this constraint is necessary to make
the model identifiable. To see why, transform

sIJ = exp

−c ·

[
N

∑
n=1

wn· | in − jn |r
] p

r


= exp

−c · x
x
·

[
N

∑
n=1

wn· | in − jn |r
] p

r


= exp

−c · x ·

[
N

∑
n=1

wn

x
r
p
· | in − jn |r

] p
r


= exp

−c′ ·

[
N

∑
n=1

w′
n· | in − jn |r

] p
r
 ,

where c′ = c · x and w′
n = wn/x

r
p for each n ∈ 1, ...,N. In

other words, different parametrizations of the geometric sim-
ilarity model can be observationally equivalent to each other.
In the case of r = p, multiplying c and dividing wn by the
same constant x lead to observationally equivalent model ver-
sions. Constraining the attention weights wn to sum up to 1 is
therefore necessary to make the model identifiable, because
if ∑n wn = 1, then ∑n wn/x

r
p ̸= 1 for any x ̸= 1.
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Given that studies investigating the common features ef-
fect typically use well-discriminable objects with separable
features (e.g., Gati & Tversky, 1984), I focus on the version
with r = 1 and p = 1. In this case, the formula reduces to

sIJ = exp

(
−c ·

[
N

∑
n=1

wn· | in − jn |

])
, (2)

with sensitivity c and attention weights wn as defined above.

An Illustrative Example
This section applies the geometric similarity model formal-
ized above to pairwise similarity judgment data and illustrates
how relative attention can predict the common features effect.
I used the data reported in Gati and Tversky (1984), Exper-
iment 10, Set B, in which participants judged the similarity
between pairs of landscape drawings, differing in up to three
features2. Feature 1 was the background in the form of hills
(denoted as p in Gati & Tversky, 1984) or mountains (q); this
feature was substitutive, meaning that one of its values was
present in each drawing. Features 2 and 3 were a cloud (x)
and a house (y), respectively; both these features were ad-
ditive, meaning that they could be present or absent in the
drawing, independently of each other. Participants rated the
similarity of various pairs of drawings, differing in the num-
ber of additive features included, on a 20-point Likert scale.

Table 1 shows the aggregate similarity judgments sIJ ,
rescaled to the range of 0 to 1. On average, participants rated
the similarity of two drawings that differed in their substitu-
tive feature and had no additional features (p-q in Table 1)
to be .16. Adding a common feature increased participants’
similarity judgments to .23 (px-qx and py-qy). Table 1 also
shows the predictions of the geometric similarity model de-
fined in Eq. 2, setting c = 1.78 and wn = .17 for each addi-
tive feature n ∈ {2,3} that is present in at least one of the
drawings3. In other words, in this model setup, each addi-
tive feature draws .17 of attention as soon as it appears in
one of the drawings, and the remaining attention is allocated
to the omnipresent substitutive feature. In the pair of draw-
ings in which no additive features are present (p-q), all at-
tention is allocated to the substitutive feature, w1 = 1, and
a similarity of ŝIJ = exp(−1.78 ·1) = .17 results. Adding
a common feature draws attention away from the substitu-
tive feature, leading to w1 = 1 − .17 = .83, w2 = .17, and
ŝIJ = exp(−1.78 · [.83 ·1+ .17 ·0]) = .23. Just as for the ob-
served similarity judgments, the additional common feature
increased the predicted geometric similarity. The remain-
ing rows in Table 1 show that this model also predicts the
other available aggregate similarity judgments well, suggest-
ing that participants in Gati and Tversky (1984) might have
based their similarity judgments on a geometric framework.

2Only the data aggregated across participants was available.
3These parameter values equal those resulting from fitting the

model with log likelihood, assuming that each additive feature that is
present in at least one of the two drawings draws a constant amount
of attention from the substitutive feature.

Table 1: Applying the weighted geometric similarity model
to Gati and Tversky (1984), Experiment 10, Set B.

Difference | in − jn | Similarity

Stimulus N n = 1 n = 2 n = 3 sIJ ŝIJ
p-q 1 1 - - .16 .17
px-qx 2 1 0 - .23 .23
py-qy 2 1 - 0 .23 .23
px-py 3 0 1 1 .54 .55
p-py 2 0 - 1 .74 .74
p-px 2 0 1 - .77 .74

Note. The similarities sIJ have been standardized to the range
of 0 to 1. sIJ = observed similarities; ŝIJ = predicted similar-
ities; N = number of features present in a stimulus pair.

Experiment
To further test the common features effect with the geometric
similarity model, I conducted a pairwise similarity judgment
study similar to Gati and Tversky (1984). The data, code, and
materials are available at https://osf.io/yu8vt/.

Method
Participants Sixty subjects (12 females, Mage = 31.93
years, SDage = 10.40 years, age range: 19-66 years), recruited
over Prolific Academic (www.prolific.co), participated in
a 15-minutes online study in exchange for a compensation of
£2.60. The study was approved by the ethics board of the psy-
chology department of the University of Basel (#025-18-9).

Materials Participants judged the similarity of geometric
figures on a visual slider ranging from “very dissimilar”
(coded as 0) to “very similar” (coded as 1). The figures varied
in their outer shape (a circle or a square), in the presence of
a diamond, and in the presence of a cross, resulting in 23 = 8
possible figures (see Figure 1 for visualizations).

Procedure Participants’ task was to judge the similarity of
pairs of stimuli with up to three features. After familiariz-
ing themselves with the eight stimuli and the visual slider,
participants judged all possible 82 = 64 stimulus pairs twice
in randomized order. In each trial, they saw two stimuli and
entered their similarity judgment on a visual slider below.

Results
Participants’ mean similarity judgments, split up for the num-
ber of common and differing features of a stimulus pair, can
be seen in Figure 3 (left side). The figure shows that the sim-
ilarity increased with the number of common features when-
ever there was at least one differing feature, replicating there-
fore the common features effect (e.g., Gati & Tversky, 1984).

To model the common features effect with the geometric
similarity model of Eq. 2 and gain more insight into how
additional features affect people’s relative attention alloca-
tion, computational cognitive modeling was applied. I mod-
eled participants’ similarity judgments as being sampled from
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Figure 3: Experiment, results. Shown are the mean similar-
ity judgments with in brackets the mean standard deviation
across participants (left) as well as the prediction of the geo-
metric similarity model with relative attention in Eq. 2 (right).

a normal distribution in which the mean equaled the pre-
dicted similarity as per Eq. 2 and the standard deviation σ

was a free parameter. The parameters were estimated with
maximum likelihood using individual participants’ similar-
ity judgments. Sensitivity c (with 0 ≤ c ≤ 10) and σ (with
0 ≤ σ) were estimated from all trials; the attention weights
wouter (denoting the attention to the feature “outer shape”),
wdiamond , and wcross were estimated separately for trials with
a different number of additional features. Specifically, one
set of attention weights wouter and wdiamond (summing to 1)
was estimated from trials in which only the cross was absent
from both figures; a second set of attention weights wouter and
wcross (also summing to 1) was estimated on trials in which
the diamond was absent from both figures; and a final set of
attention weights wouter, wdiamond , and wcross (also summing
to 1) was estimated on trials in which no feature was absent4.

Table 2 shows the resulting aggregate attention weight es-
timates5. In particular, it can be seen that the attention to
the omnipresent feature “outer shape” drops as the additive
features “diamond” and “cross” appear in at least one of the
two figures. This reallocation of attention away from already
present features to new, additional features provides the basis
for predicting the common features effect. As can be seen
in Figure 3 (right side), the geometric similarity model also
predicts that similarity increases with more common features,
and it provides an overall good description of subjects’ simi-
larity judgments, with a mean log likelihood M(ℓ) =−69.09
(Mdn(ℓ) = −69.37 and SD(ℓ) = 26.96), a root-mean-square
error RMSE = .14, and a mean absolute error MAE = .11.

Importantly, these analyses mainly serve as a first illustra-
tion of the ability of the geometric similarity theory to predict
the common features effect. Further research comparing the
geometric similarity model with other models of psychologi-
cal similarity (e.g, Tversky’s featural model; Navarro & Lee,
2004; Tversky, 1977), for instance by means of out-of-sample
model comparisons, will detail to what extent geometric sim-
ilarities can account for the common features effect.

4In case no additive feature is present, wouter = 1.
5The two remaining mean parameter estimates (with standard de-

viations in brackets) were c = 1.81 (0.45) and σ = .14 (.03).

Table 2: Parameter estimates for the attention weights.

N (additional feature) wouter wdiamond wcross
1 (none) 1 (0) - -
2 (diamond) .69 (.11) .31 (.11) -
2 (cross) .76 (.11) - .24 (.11)
3 (diamond & cross) .59 (.14) .22 (.07) .19 (.07)

Note. Shown are the mean attention weight estimates aggre-
gated across subjects (with standard deviations in brackets).
N = number of features present in a figure pair.

Discussion
This paper counters the claim that geometric similarities, by
computing the feature value differences between objects, are
insensitive to common features (e.g., Kruschke, 2008). I
showed that a formal geometric similarity model predicts the
similarity-increasing effect of common features by weighting
each feature value difference by the share of attention allo-
cated to the respective feature (e.g., as in Nosofsky, 1986).
An additional common feature draws away attention from the
already present features, whose differences will then receive
less weight, ultimately increasing similarity. I illustrated this
idea using data from Gati and Tversky (1984) and new data
from a pairwise similarity judgment experiment, in which
people judged the similarity of pairs of geometric figures. The
geometric similarity model described the aggregate data well,
with the exception of overestimating the similarity of objects
that share no common features (outer left column in Figure 3).

While this study investigated how common features affect
similarity across object pairs, the same principle might also
hold within trials. Specifically, with increasing time devoted
to an object pair, more features are included in the similarity
computation, meaning that similarity may depend on the time
course of attention (see also Lamberts, 1995). The same ob-
ject pair might get more similar with time as further common
features are attended to and included in the similarity com-
putation. This could be described by a geometric similarity
model that distributes attention to all features included in the
similarity computation at a given point in time.

It is important to bear in mind that, although geometric
similarities can be sensitive to common features, they rep-
resent psychological similarity in particular for continuous
features, whereas other approaches such as featural similar-
ities are adapted to process binary features (Lee & Navarro,
2002; Navarro & Lee, 2002a). Furthermore, geometric simi-
larities are associated with other limitations such as assuming
a symmetric similarity relation whereas empirical research
has shown that the similarity of object i to object j may differ
from the similarity of j to i (e.g., Tversky, 1977). Yet, also
asymmetric similarity relations can be explained by a geomet-
ric approach (e.g., Nosofsky, 1991), and this paper adds to the
evidence showing that, in many circumstances, the geometric
similarity theory may provide a comprehensive description of
psychological similarity.
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Abstract

Computational models of human memory have largely been
developed in laboratory settings, using data from tightly con-
trolled experiments that were designed to test specific assump-
tions of a small set of models. This approach has resulted in a
range of models that explain experimental data very well. Over
the last decade, more and more large-scale data sets from out-
side the laboratory have been made available and researchers
have been extending their model comparisons to include such
real-life data. We follow this example and conduct a simula-
tion study in which we compare a number of model variants
across a range of eight data sets that include both experimental
and naturalistic data. Specifically, we test the Predictive Per-
formance Equation (PPE)—a lab-grown model—and its abil-
ity to predict performance across the entire range of data sets
depending on whether one or both of its crucial components
are included in the model. These components were specifi-
cally designed to account for spacing effects in learning and are
theory-inspired summaries of the entire learning history for a
given user-item pair. By replacing these terms with simple lag
times (rather than full histories) or a single free parameter, we
reduce the PPE’s complexity. The results, broadly speaking,
suggest that the full PPE performs best in experimental data
but that not much predictive accuracy is lost if the terms are
omitted from the model when naturalistic data are concerned.
A possible reason is that spacing effects are not very important
in real-life data but very important in spacing experiments.

Keywords: Computational models of memory; Simulation
study; Learning and forgetting; Large-scale data.

Introduction
Learning and forgetting are core areas of study within the
computational modeling community. Snapshot performance
measures can serve as proxies of mastery at any given time
but fundamentally, both learning and forgetting are dynamic
processes that unfold over time. As a consequence, the vast
majority of experimental studies on learning and forgetting
focus on teasing apart the temporal dynamics for learning and
forgetting.

A century worth of experimental work has employed a
wide range of tools to illuminate various aspects human mem-
ory. Computational cognitive models constitute one such
tool. At their core, they formalize theoretical assumptions
about how a cognitive process should map onto empirical
data. Competing theoretical accounts thus formalized can be
pitched against data from a suitably designed experiment to
evaluate each model’s relative merit. The primary criterion to

evaluate competing models is traditionally their relative abil-
ity to fit data (Yarkoni & Westfall, 2017).

In many applied settings, however, what matters most is
a model’s ability to generalize from historical data to new
observations. In other words: prediction. In this context, a
key question is how learning histories should be used to make
predictions: Do we need to consider all previous interactions
to make good predictions? And if we do, how should those
be summarized or weighted (if at all)?

Here, we report findings from a simulation study in which
(variants of) computational models of forgetting are com-
pared across eight data sets from both lab experiments and
large-scale naturalistic data. Specifically, we will scruti-
nize the Predictive Performance Equation (PPE) since, by
default, it considers the entire learning history and imposes
theoretically-grounded constraints on how those histories
should be summarized. We compared this full model against
variants that relax those assumptions and find that the full
PPE generally makes the best predictions. Variants of it that
only consider the most recent history perform very well as
well, though, particularly in the noisier naturalistic data.

Methods
Data sets
We will evaluate the models of interests across eight data sets
(see Table 1). A detailed description of each data set is be-
yond the scope of the current paper and we refer the interested
reader to citations provided below for additional details. The
data sets come, broadly speaking, from two domains: exper-
imental studies and naturalistic data sets. The former imple-
ment specific manipulations and learners are tested in the lab-
oratory; the latter are data collected ‘in the wild’ and learn-
ers have much greater control over when they interact with
the materials and (usually) also which materials they study.
The naturalistic data all follow their own algorithms for se-
lecting/suggesting materials to present to students. The three
adaptive scheduling algorithms marked with an asterisk (*) in
Table 1 use the SlimStampen algorithm to handle the repeti-
tions of items within a learning session (Sense, van der Velde,
& van Rijn, 2021). The high-level criterion for a data set to
be included here is that multiple users studied multiple items
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Label Scheduling Instances Users Items Repetitions Accuracy
cbb21 adaptive*; experimental 62,382 291 60 6.30 0.792
Duolingo16 adaptive/curriculum; naturalistic 12,854,226 115,222 19,279 2.19 0.896
EdNet user-driven; naturalistic 496,503 410 11,868 3.64 0.707
jla21 adaptive*; naturalistic 468,617 267 1402 9.05 0.892
statscloze15 experimental 58,316 478 144 2.74 0.545
topics16 adaptive*; experimental 98,213 67 150 9.77 0.877
UDRI experimental 42,780 62 30 23 0.852
WSU experimental 77,010 72 136 21.0 0.801

Table 1: An overview with summary statistics of the data sets used.

and that timestamps and accuracy information are available
for each recorded instance/interaction. In the following, we
will provide a number of pertinent details for each data set.

cbb21 Participants in Experiment 1 of this study completed
two sessions in which they studied the locations of cities in
the US on a map. We used both the MTurk and lab samples.
For details, see van der Velde, Sense, Borst, and van Rijn
(2021); particularly their Fig. 2 for the experimental design
and Fig. 3 for the experimental design.

Duolingo These data were made available as part of the
Second Language Acquisition Modeling challenge, the re-
sults of which—along with the data—are reported in Settles,
Brust, Gustafson, Hagiwara, and Madnani (2018). A month
worth of data for a subset of Duolingo users across three
languages was made available and the challenge asked re-
searchers to submit predictive models of errors made in hold-
out data. We include here the complete data set.

EdNet The EdNet data stem from another community mod-
eling challenge, which is described nicely by Pavlik and
Eglington (2021). The data span two years of interactions
with the tutoring tool Santa and contain massive amounts of
nested data. More details are provided in Choi et al. (2019).
We only use the basic KT1 data structure that provides times-
tamps and accuracy for student interactions and we only use a
very small subset of users. Specifically, we used data from the
410 users that answered three or more unique questions and
whose average mean repetitions were more than three (com-
puted as instances for that user divided by number of ques-
tions). This is only 0.05% of the total data but constitutes
a disproportionate (but still small) subset of 0.5% of the total
data. We chose this small—and probably not representative—
subset because for the current comparison, we needed time
series of repetitions, which are sparse in these data.

jla21 These data come from a university course in which
students had access to the SlimStampen adaptive scheduling
tool to rehearse glossary items from the assigned text book.
Students chose whether and when to use the tool and which
chapter’s content they wanted to rehearse. The algorithm han-
dled within-session repetitions. See Sense, van der Velde, and
van Rijn (2021) for details.

statscloze15 This data set was downloaded from the Mem-
phis Data Shop (data set ID = 1465). Some background in-
formation is also provided in (Pavlik, Eglington, & Harrell-
Williams, 2021). MTurk workers learned about statistical
concepts by filling in missing words in sentences. The spac-
ing during learning and to the test were experimentally ma-
nipulated. The so-called cloze input format makes this data
set distinct from the others.
topics16 Participants in this experiment completed six
learning sessions across three days to study different ma-
terials. SlimStampen was used for within-session/-material
scheduling. Details are documented in Sense, Behrens, Mei-
jer, and van Rijn (2016).
UDRI These data come from a tightly controlled experi-
mental setup that manipulated both the inter-trial and inter-
session intervals across three session (all within-subject). We
included only the data from the digit-droodle learning task.
A complete description is provided by Collins, Sense, Krus-
mark, and Jastrzembski (2020).
WSU Participants in an experiment conducted in a sleep
laboratory at Washington State University learned paired-
associates over the course of 11 sessions spread across three
days. Three items each were assigned 17 repetition schedules
(within-subject) that all included exactly 22 repetitions. See
Walsh et al. (2022) for details.

Models

The primary goal is to compare the complete PPE model
against variants that have aspects stripped from it. Addi-
tionally, we will implement three additional models that will
serve as additional comparisons. These additional models are
deliberately very simple to provide a lower bound that the
PPE (variants) should outperform. Importantly, each model
was fit to each user’s data separately.
Benchmark models The control model (ctrl) serves as a
benchmark of the quality of predictions if the timing infor-
mation is discarded entirely. It simply computes the mean ac-
curacy of the user in the training data and uses the value as the
prediction for all instances of that user in the test data. Next,
a two-parameter exponential decay model (exp) that can cap-
ture memory decay and prior knowledge effects is used. The
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#P Brief description (see text for details) NLL rank
PPE 4 The full PPE using both the model time and stability term. 0.403 1.75
PPEnoMT 4 Using the raw lag time rather than model time but retaining the decay term. 0.406 2.50
PPEnoSt 3 Replacing the decay term with a single free parameter but retaining the model time. 0.403 2.88
PPEnMTnSt 3 Replacing model time with raw lag time and the decay term with a free parameter. 0.408 3.38
pwr 2 A two-parameter power decay model based on raw lag times. 0.430 5.50
exp 2 A two-parameter exponential decay model based on raw lag times. 0.428 5.62
ctrl 1 Uses mean accuracy in the training data as the predicted value in the test data. 0.453 6.38

Table 2: A brief overview of the models compared across the data sets listed in Table 1. Listed are the number of free parameters
(#P) for each model along with a brief description and the negative log loss (NLL) values and rank obtained by each model
(averaged across all data sets).

exact formulation is p̂ = A+(1−A) ·exp−α·∆, where p̂ is the
expected performance and ∆ is the lag time. An analogous
model assuming power-law decay (pwr) was implemented as
p̂=A+(1−A) ·∆−β. For an excellent discussion of this class
of models, see Heathcote, Brown, and Mewhort (2000).

PPE and lesioned variants

The Predictive Performance Equation (PPE) was initially de-
veloped to account for established findings in the experimen-
tal psychology literature that pertain to the temporal dynam-
ics of human learning and forgetting. Specifically, the power
laws of learning and forgetting and the spacing effect. A re-
cent and complete account is provided by Walsh, Gluck, Gun-
zelmann, Jastrzembski, Krusmark, Myung, et al. (2018). The
goal has always been to develop a theory-grounded cogni-
tive model that is applicable in applied settings and PPE has
shown great promise there (Oermann, Krusmark, Kardong-
Edgren, Jastrzembski, & Gluck, 2022). The primary ques-
tion here is whether the various components that constitute
the PPE are possibly too complex and whether comparable
predictive results could be achieved by omitting them. This
would both relax the theoretical assumptions made by the
model and the computational demands when applying the
model. We will briefly outline the model components that
make up the full PPE and then present the variants we will
compare.

At its core, the PPE features the product of a learning term
(N0.1, where N is the number of repetitions) and a forgetting
term (T−d). The latter accounts for the theoretical assump-
tions of the model by including two transformations of the
time series associated with repetitions of an item by a user.
The first transformation is the model time, MT , which is the
weighted cumulative sum of elapsed time,

MTi =
N

∑
i=1

wi · ti with wi =
t−x
i

∑
N
j=1 t−x

j
(1)

with x = 0.6 by convention. The model time’s decay rate,
d, is defined as d = b + m · stability and includes two free
parameters and the second transformation: the lagged, cumu-
lative mean of the inverse log lag times, ∆:

stability = St =
1

N −1
·

N−1

∑
i=1

1
ln(∆i + e)

(2)

The stability term accounts for spacing effects because
massed training schedules will result in steeper decay. The
model time’s motivation encapsulates “that the age of items
in memory should be skewed toward the most recent pre-
sentations, but that study history should not be entirely dis-
carded” (Walsh, Gluck, Gunzelmann, Jastrzembski, & Krus-
mark, 2018, p. 13; also see for more background informa-
tion), which is one of the ideas expressed in ACT-R as well.
Notably, both of these terms consider the entire training his-
tory for a given user-item pair and need to be recomputed
every time new observations are added.

Finally, the PPE includes two additional parameters that
stem from a logistic transformation, 1

1+exp( τ−M
s )

, which maps

the unbound ‘activation’, M = N0.1 ·T−d , onto the range [0,
1] such that the model’s output can be interpreted as the prob-
ability of a correct answer.

PPE variants The three variants of the PPE we will con-
sider here remove one or both of the transformations from the
full PPE—see Table 2. PPEnoSt, for example, replaces the
decay term, d, with a single free parameter, β, thus omitting
the stability term and reducing the number of free parameters
by one. The PPEnMTnSt includes neither the MT nor the St
term. None of these change the learning term and all retain
the logistic mapping function.

Procedure

The backbone of the simulation study was a five-fold cross-
validation approach. For each data set, instances were ran-
domly assigned to one of five folds. Each fold was desig-
nated in turn as the test set and the remaining folds used as
training data. Thus, each model was fit to 80% of each data
set’s instances five times. All models were fit using gradient
descent, minimizing the negative log loss. (Which is why we
also use the NLL as the main outcome metric to evaluate the
predictions in the Results section below.) The end result of
this approach is that each model made a prediction for each
instance in each data set.
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The first ‘repetition’ as a special case
Given the focus on the lag times in the current work, we omit-
ted the first repetition from the evaluation of the predictions
as well as Figure 2 since no lag time exists for those. We
argue that predicting performance on the first instance is a
separate prediction task than one that relies on learning histo-
ries. In most practical settings, it might make the most sense
to have two separate models. First, a model that predicts the
likelihood that a user will give a correct response on the initial
interaction with an item (i.e., before the user has a history of
interactions with a particular item). This is particularly im-
portant in naturalistic data sets in which learners should be
assumed to have varying degree of prior knowledge/exposure
to the study material (while experimental studies often choose
materials such that no prior knowledge is likely/possible).
A relatively simple model that takes into account item dif-
ficulty and user ability simultaneously (such as item response
theory–based models) would probably be well-suited to this
task. Second, a separate model that traces the learning and
forgetting process as it unfolds over repeated interactions of a
user with the same item can be implemented. This, really, is
the domain of the models compared here. Therefore, we will
restrict the following analyses to all interactions of an item
except the first.

Results
As a first step, we present a high-level comparison of the
models across the data sets as part of Table 2. Each model’s
negative log loss (NLL) value for the predictions made for
each data set were computed and, subsequently, models were
ranked within each data set. The table shows both the aver-
age rank across the data sets as well as the average NLL value
for each model. Ranks were computed because the NLL val-
ues vary substantially between data sets (see panel headings
in Figure 1), which influences the mean NLL value but not
the ranking. As the table shows, the complete PPE performs
best overall with the lowest average NLL value and rank. The
table also shows that—in the aggregate—all models outper-
form the ctrl model and that all variants of the PPE outper-
form the simple exp and pwr models.

A more nuanced and complete summary of the results is
given in Figure 1. Since the primary comparison is against
the full PPE, the NLL values for each model are shown rela-
tive to the PPE’s for each data set. The PPE’s NLL value is
noted in each panel’s heading. Next to each bar, the relative
change in NLL values from the full PPE model are denoted in
percent1 because a similarly sized bar can correspond to rel-
atively smaller or larger changes depending on the base NLL
value. There are a couple of high-level results that can be
gleaned from this figure.

First, the two experimental data sets (WSU and UDRI)
show the largest differentiation between models (i.e., larger

1For example, if the PPE model’s NLL value was 0.500 and a
competing model’s NLL value was 0.600, the bar in Figure 1 would
reach to 0.1 on the x-axis (the absolute difference) and the percent-
age next to the bar would indicate “+20%” (the relative difference).

relative and absolute differences between models). This
makes sense because these studies were explicitly designed
to tease apart the differences between computational models
of memory. Hence, the ctrl model does particularly poorly
on these data sets. The PPE’s advantage over the lesioned
variants is most pronounced in the WSU data. This is likely
because the study’s core manipulation is a within-subject as-
signment to 17 different presentation schedules. Since pa-
rameters were fit for each user (for all models), a single set of
parameters needs to account for the variance in performance
of each user across all 17 schedules. The ‘full’ PPE does the
best job but the three lesioned variants do not perform much
worse.

Conversely, the full PPE does poorly on the statscloze15
data set. The best-performing model is PPEnoSt, which does
better than the simple exp or pwr models. This suggests that
both learning and forgetting effects are at play in these data
(and Figure 2 suggests that the PPEnoSt model does particu-
larly well predicting performance up to repetition eight).

For the naturalistic data sets, the differentiation between
the models is much less clear and many variants perform es-
sentially equally well. The bars indicating the differences be-
tween the full PPE and the variants are barely visible for most
of those data sets and the percentages confirm that the rela-
tive differences between the models are rather small. This
suggests that the lesioned variants perform roughly equally
well to the full PPE on those data sets. Interestingly, in the
Duolingo16 data, it appears that all models perform fairly
similarly; the PPEnMTnSt model achieves the best results
but even the largest relative difference in NLL values is only
2.7%.

One exception to the overall pattern is the statscloze15 data
set. It is the only data set for which the PPE is out-performed
by all but the ctrl model. This data set is conceptually most
distinct from the others and it appears that the PPE is not
well-suited to account for these data.

To zoom in on the results in more detail, we will look at
how the predictive accuracy of the models changes over repe-
titions. One might expect that the model variants that include
cumulative terms do better once a number of repetitions are
available for an item. We will omit the exp and pwr models
since they are always outperformed. We will also omit the
ctrl model since its predictions do not change as a function of
either repetition or lag time.

The data sets vary substantially in how often items are re-
peated (not shown in the figure). In the Duolingo16 data,
for example, very few items are repeated five times, let alone
11+ times. In WSU data, on the other hand, all items are
repeated 22 times by everyone. This points to a general dif-
ference in the distribution of items that we observe between
experimental and naturalistic data sets. Not only are the tem-
poral dynamics of the repetitions of items tightly controlled
in experimental settings (and, almost by definition, not in nat-
uralistic data) but items tend to be repeated more frequently.

Figure 2 shows each model’s average predicted perfor-
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Figure 1: Each model’s NLL values in each data set relative to the PPE. Bars indicate absolute differences in NLL values;
percentages denote relative differences in NLL values. Note: Lower NLL values indicate better predictive performance.
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Figure 2: Mean accuracy (black) and each model’s average
predicted performance at each repetition. The repetition de-
noted ‘11+’ includes the eleventh and all subsequent repeti-
tions. Note that the y-axes differ between panels.

mance at each repetition. The most notable pattern that
emerges is not that—as we expected—the models differ sys-
tematically over repetitions but rather than the models are re-
markably similar to each other. In fact, on the SlimStampen
data sets in particular, the models are more similar to each
other than to the actual data.

Furthermore, the figure reveals that the pattern of perfor-
mance over repetitions differs substantially between data sets.
The EdNet data, for example, exhibits a marked zig-zag pat-
tern, while the Duolingo data shows very little changes in
performance over repetitions (note the scale of the y-axis).
The latter explains why the ctrl model performs quite well in
the Duolingo data: always predicting someone’s average ac-
curacy is a good strategy if accuracy is relatively invariant. In
the experimental data, on the other hand, it is much clearer
that performance starts at a lower level and increases with ad-
ditional repetitions.

Discussion

The results presented here are by no means simple and clear-
cut. Our ambition was to conduct the comparison across a
wide range of different data sets, which results in nuanced
findings. At a high level, however, we can conclude that the
full PPE generally makes the highest quality predictions. A
notable exception is the statscloze15 data set, on which it per-
forms poorly. The results also show, however, that while the
PPE and its variants outperform the benchmark models, they
do not differ from each other very much unless the compari-
son is made in a data set from an experiment designed to coax
out differences between computational models of memory.

While one obvious take-away from these findings is that
simpler versions of the PPE might be suitable for noisier, nat-
uralistic data set, we want to acknowledge that it is by no
means self-evident that a model predominantly developed on
experimental data would fare so well in naturalistic data. In
fact, there is no harm in using the maybe-too-complex PPE in
these tasks, it appears. At least as long as predictive accuracy
is all one cares about. If predictions need to be issued quickly
and computing the model time and stability terms poses the
main bottleneck, the current results suggest one might get
similar predictive performance with a simpler variant. Using
a simpler variant might open the door to one exciting area of
application in which computational requirements have been
prohibitive in earlier explorations: adaptive design optimiza-
tion (Myung, Cavagnaro, & Pitt, 2013).

Previous work has pointed at model identifiability issues
within the PPE’s formulation (Collins, Sense, Krusmark,
Fiechter, & Jastrzembski, 2021) and it should be noted that
these issues are not resolved by simply replacing the model
time or stability term as done here. Along these lines, it is
interesting to note that researchers working with the PPE reg-
ularly observe very low estimated values of the m (and b)
parameters. If the m parameter is near zero, the decay term
(d = b+m · stability) collapses to −b, which is the same as
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the PPEnoSt model.
We believe the current study is particularly interesting be-

cause the model comparison was conducted across a large
range of data sets. This ensures that the conclusions of a
comparison is not limited to the specifics of a single data set.
Admittedly, it does make the outcomes more difficult to inter-
pret and to extract simple take-home messages. The robust-
ness of the inference is well worth it, though. To facilitate
future across-data-set comparison, we are currently working
on documenting a large “test harness” of data sets that can be
used to this end. We encourage other researchers to contact us
with additional data sets that (a) include multiple users inter-
acting with multiple items/stimuli, (b) ideally across multiple
sessions, (c) includes timestamps (down to the second), and
(d) a performance metric associated with each instance.

Finally, the side-by-side comparison of the models’ perfor-
mance in both experimental and naturalistic data sets is par-
ticularly valuable. Here, for example, we see that the differ-
ences between the models were much less pronounced in the
naturalistic data sets. This is probably primarily because in
those, the exact time course of the practice events is not as im-
portant as other factors. And because maybe more factors are
under the learner’s control rather than controlled by the exper-
imenter. This certainly seems to be the case in the Duolingo
data—see, for example, Table 4 in Settles et al. (2018) and
Table 1 in Sense, Wood, et al. (2021), both list feature impor-
tance values and show that timing information is not as im-
portant as user-, item-, and environment-based features. It is
probably safe to assume the same pattern holds across many
naturalistic data sets. This poses a challenge to most cog-
nitive models developed in the lab, since they assume that
time series are the crucible of learning and forgetting and are
not readily extended to take into account additional features
(e.g., exercise format). Extending theory-based model’s ca-
pabilities to this end would be particularly valuable so we can
leverage insights from those models on large-scale data of
naturalistic learner behavior.
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Introduction 

Human memory is the basis of personal identity linking the 

past to the present and the present to the future. However, in 

our daily life, we frequently encounter memory errors, which 

include errors of commission (wrong item recollection) and 

omission (failures of recollection). It can be assumed that 

individual properties, such as age, self-confidence, mental 

and physical conditions, affect the tendency of occurring 

those errors. In other words, it is possible to infer those 

properties from the errors expressed in some memory tasks. 

In this study, the above hypothesis is tested from a cognitive 

modeling approach. To achieve this goal, we conducted an 

experiment to collect recall errors in a simple experiment and 

performed parameter fitting on the experimental data using a 

model built by the cognitive architecture called Adaptive 

Control of Thought-Rational (ACT-R: Anderson, 2007).  

Number sequences memory task 

In the experiment, participants were asked to memorize and 

report a 10-digit number sequence presented on a monitor. 

The number sequence was randomly generated and presented 

for a duration of two seconds. After viewing the sequences, 

the participants responded by typing the memorized 

sequences into a text box on the monitor using the keyboard 

for 20 seconds.  

Fifty participants recruited through crowdsourcing 

completed the task for 30 number sequences. After 

completing the task, they answered questionnaires asking 

about personal attributes, their self-confidence in memory 

ability, and any physical and mental conditions. Their mental 

condition was assessed using a Japanese version of PANAS 

(Positive and Negative Affect Schedule: Watson et al., 1988), 

which was translated by Kawahito et al. (2012).  

The obtained responses were evaluated by the similarity 

with the presented sequence. Among various similarity 

measures, we adopted the Levenshtein Distance (LD). The 

value of this distance is zero when the presented and 

answered sequences are an exact match. The histogram 

constructed from all participants’ responses is shown in 

Figure 1a. 

Model 

We used a modified grouped recall model included in the 

ACT-R Tutorial Unit5 (Bothell, 2022). The model simulates 

the recollection of a simple sequence of numbers, 

1234567890, by grouping adjacent numbers like (123) (456) 

(7890). Within each group, each number is associated with a 

position index (first to fourth) within the group. 

Figure 1. The results of the experiment and simulation 

In recalling a number sequence, the model reports the 

numbers in order, starting from the left of the sequence, 

shifting groups and position indices. That is, at the beginning 

of the task, the model attempts to retrieve the “first number” 

in the “first group” from the declarative memory. Next, the 

second and third numbers are retrieved and reported. If the 

memory of the number corresponding to the position cannot 

be retrieved, the model moves on to the numbers in the 

“second group.” This process is repeated until the fourth 

number in the “third group” is retrieved.  

In our model, the number i in the declarative memory is 

assigned an activation value (𝐴𝑖), defined as ∑ 𝑃𝑀𝑙𝑖 +𝑙 𝜀 𝑖 ,
where l and 𝑀𝑙𝑖  indicate the slots of the retrieval request and

the similarity between the slot content and the corresponding 

attribute of the number i, respectively. In this model, the 

maximum and minimum value of  𝑀𝑙𝑖  are set to 0 and -1,

respectively while -0.5 is set for  𝑀𝑙𝑖  of pairs of adjacent

groups (first group and second group, second group and third 

group) and for adjacent positions within a group (first 

position and second position, second position and third 

position, third position and fourth position). This similarity is 

weighted by P (mismatch penalty). As the name suggests, this 

parameter determines the degree of degradation when the 

number has low similarity with the retrieval request. 

Depending on those parameter values and random noise (ε), 

the activation of similar numbers sometimes exceed the 

activation of the originally requested number.  

Summarizing the above, a small P and large ε induce a high 

probability of commission errors, while the error of omission 

occurs when the activation values of all digits in the memory 

fall below a set threshold. In ACT-R, the threshold is set by 

the parameter RT (retrieval threshold).  

Simulation of overall data 

Figure 1b presents the histogram of LD obtained by 1000 

runs using the default parameters in the ACT-R grouped 
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model. Comparing the human histogram, the model achieved 

a better recollection of the presented sequences (distance 0). 

This is considered to be due to the differences in the coding 

phase for the number sequence. The model in this study did 

not include the processes of coding the sequence; rather the 

sequence was directly coded in the declarative memory. In 

contrast, participants needed to memorize the sequence from 

a brief period of two seconds. Despite these differences, there 

are some similarities between the participants and the model, 

especially in the middle range of LD. 

Following the above default simulation, the grid space 

consisting of P (0.2 to 2.0 in 0.2 increments) and RT (-3.0 to 

1.0 in 0.5 increments) was searched to obtain the best 

parameter set reproducing the overall human data (1308 

responses screened from 30 sequences by 50 participants). 

The parameter range was determined based on the 

preliminary simulation with the constraint of execution cost, 

and the fitting of the model was evaluated by histogram 

intersection. Figure 1c shows the best fit histograms whose 

intersection and correlation with the human data were 0.9811 

and 0.952, respectively. The parameter set obtained by this 

search consisted of 0.8 (P) and -0.5 (RT). 

Simulation of individual data 

We also performed the same parameter search for individual 

data. The histograms were constructed from the 30-number 

sequences reported by each participant. We then searched for 

the parameters of the model with the largest histogram 

1  Normalized histogram intersections between experimental 

data as maximum values 

intersections for each participant. Table 1 shows Spearman's 

rank correlation coefficients between the output from this 

process and the responses obtained from each individual 

through the questionnaire.  

The column titled HI indicates the correlation between the 

histogram intersections estimated for each individual and the 

questionnaire items. Thus, significant correlations in this 

column indicate that the individual property affected the 

degree of fitting to the model constructed in the range of the 

parameter set. From the table, we can see several attributes 

and mental state assessment are significantly correlated with 

this index. A negative correlation was obtained for HI with 

age, and a positive correlation was obtained for HI and the 

mental state “afraid.” This suggests that, within the range of 

the parameter settings in this study, the model fits well with 

the responses of participants who are younger and those who 

felt “afraid.”  

Concerning the estimated parameter, negative 

correlations were obtained between RT and the “irritated.”  

This can be interpreted as meaning that the more irritated the 

participants felt during the experiment, the more likely they 

were to make errors of omission. 

Summary 

In this study, we examined whether individual properties 

involved in memory errors can be estimated by fitting a 

cognitive model. We conducted systematic parameter fitting 

to the results of experiments in which memory errors were 

induced, both to the overall data and to individual-level data. 

Significant correlations were observed between some of the 

emotional evaluation items and the model parameters. This 

suggests that the present method can be used to estimate 

individual properties and internal states from memory errors 

in a specific task. However, the results obtained in this study 

have limitations in terms of parameter range. Therefore, we 

expect that the estimation possibility of the internal state will 

increase by improving the accuracy of the fitting and by 

modeling the data in a more individualized manner. 
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Table 1 Correlation between individual model and 

response obtained in the questionnaire. 
HI P RT 

Age -0.369* -0.019 -0.226 

Gender -0.092 0.300* -0.114 

Physical condition 0.069 -0.091 0.030 
Education -0.124 0.113 -0.081 

Memory confidence -0.001 -0.007 0.240 

Strong -0.171 0.192 0.030 
Inspired -0.079 -0.124 -0.100 

Active -0.066 -0.123 -0.048 

Enthusiastic -0.046 0.054 -0.055 
Interested -0.003 0.031 -0.093 

Excited 0.032 0.043 -0.036 

Proud -0.023 -0.043 -0.023 
Alert -0.027 0.024 -0.115 

Determined 0.038 0.048 -0.201 

Attentive 0.021 -0.135 0.059 
Positive Score -0.014 -0.003 -0.054 

Afraid 0.286* -0.036 0.108 

Scared 0.188 -0.070 0.023 

Upset 0.237 -0.066 -0.002 
Ashamed 0.097 -0.076 -0.060 

Guilty 0.049 0.023 -0.246 

Nervous 0.028 0.115 -0.003 
Distressed 0.174 0.185 -0.136 

Irritated 0.184 -0.021 -0.308* 

Jittery 0.123 -0.147 -0.168 
Hostile 0.043 0.036 -0.066 

Negative Score 0.186 -0.013 -0.098 
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Over the past decades, a vast amount of models and
architectures have been developed, looking at the large
scale organization of the human brain on different levels
of abstraction. In an attempt to synthesize the ideas
from some of the most established existing models of
cognitive processing, namely ACT-R, SOAR, and Sigma, the
Common Model of Cognition (CMC) has been proposed.
It identifies five different modules within the brain with
discrete functionalites and processing connections between
them, modules for Perception, Action, Long-Term Memory,
Procedural Memory, as well as Working Memory. These
are considered to be essential for cognition across different
domains and tasks, representing a generalized model of the
structuring and processing of the mind.

Previous work has connected the structure of the
CMC to activity in the specific brain regions, helping
to validate the model and compare it to other models
and architectures, like Hub-and-Spoke Architectures and
Hierarchical Architectures. The CMC was found to
outperform its alternatives, being a significantly better match
for the experimentally gained data. However, the results
also suggested that modifications to the original formulation
of the CMC would improve its fit. This is not surprising,
as the CMC has a rather basic structure, only incorporating
high level cognitive components. Other models consist of
larger networks of sub-components, representing real human
cognition more accurately. It further does not consider many
significant aspects of cognitive processing like metacognition
or emotional processing in the modularity and organization.

The large scale parcellation currently used to identify
signals associated with each cognitive component will not
be sufficient in the future, as the model grows in complexity
and additional cognitive components are incorporated. Better
methods are needed for identifying regions associated with
specific cognitive processes and modeling these and its
connections in the CMC.

To improve the identification of brain regions we can
use meta-analyses of brain data. Tools like Neurosynth
synthesize the results of many studies using neuroimaging,
allowing to perform connectivity analyses on them. This
makes it possible to relate specific brain regions to functions,

as well as investigate the interactions between the different
regions, which can be leveraged to inform the CMC about
its structure. Due to the large amount of data and the wide
variety of domains covered, meta-analyses of brain data are
significantly more powerful than single studies. To validate
our methods, we can use fMRI brain data from the Human
Connectome Project. It provides a wide range of brain
activity across multiple tasks allowing us to compare different
configurations of the CMC using methods of connectivity
analysis.

We propose leveraging the power of connectivity analyses
with both large-scale fMRI brain data and meta-analyses
of brain data to create expanded and more robust versions
of the CMC. The methodology used to research this is
defined as follows: First, look at shortcomings of the current
CMC structure and create expanded versions with additional
components integrated in a plausible way. Then identify
and isolate brain activity associated with those components
using the proposed combination of meta-analyses and fMRI
brain data. Finally, compare the resulting predictions with the
current CMC structure.
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Abstract

We present a unified model of how groups of neurons can
represent and learn probability distributions using a biologi-
cally plausible online learning rule. We first present this in the
context of insect olfaction, where we map our model onto a
well-known biological circuit with a single output neuron that
represents whether the current stimulus is novel or not. We
show that the model approximates a Bayesian inference pro-
cess, providing an explanation as to why the current flowing
into the output neuron is proportional to the expected proba-
bility of that stimulus. Finally, we extend this model to show
that the same circuit can detect deviations in temporal patterns,
like the expectation violations that elicit the EEG mismatch
negativity signal.
Keywords: novelty detection; insect olfaction; mismatch neg-
ativity; neural representation; hyperdimensional computing;
fractional binding; spatial semantic pointers; Bayesian infer-
ence

Introduction
It is critically important for any cognitive agent to recognize
their sensory stimuli as novel or unexpected. Different strate-
gies may be applicable, depending on whether one is in a
familiar situation (in which case one can safely rely on pre-
viously learned knowledge), or in a novel situation (in which
case a more careful and exploratory strategy may be appropri-
ate). In mammals, an example of this is seen in the Mismatch
Negativity signal, a strong EEG signal that appears approxi-
mately 200ms after a surprising stimulus (Pazo-Alvarez et al.,
2003). This seems to be an automatic process, occurring re-
gardless of whether the participant is paying attention to the
stimulus or not. This automaticity and the speed of the re-
sponse suggests that this novelty detection is a simple and
basic process that may be understood without involving the
entire brain.

Furthermore, a specific neural circuit for novelty detec-
tion has also been identified in the insect brain. The MBON
(Mushroom Body Output Neuron) α’3 neuron is consistently
active in the presence of novel odours, and is silent for odours
that have been previously encountered. The inputs to this neu-
ron come from Kenyon Cells, which form a very sparse repre-
sentation of the current odour, so each odour corresponds to a
different (sparse) pattern of activity in these neurons. In (Das-
gupta et al., 2018), this system is compared to the computer-
science idea of a Bloom Filter, a type of hashtable where in-
put data is converted into a sparse representation, and then

individual elements of that representation (i.e. the activity of
the Kenyon Cells) are used to quickly determine whether the
current input is likely to be novel or not. The core idea is to
do this without requiring a complete database of every odour
that has been previously observed; instead, use the overlap in
the sparse representation as a fast estimate as for the input’s
novelty.

In this paper, we present a simple model of this novelty
detection system that is compatible with the above idea, but
interprets the computation being performed by the neurons
in a slightly different way. In particular, we suggest that the
neurons (and the connection weights between them) are in
fact representing a probability distribution, and “novelty” is
detected if the current input is highly unlikely according to
that distribution. We show that a very simple learning rule,
combined with a particular method for encoding information
in neurons, results in a network that accurately estimates the
observed probability distribution of different inputs, and that
a single neuron (such as the MBON α′3 neuron) can use this
distribution to signal novelty.

Given this insect-based model, we then expand the sys-
tem to encode information over time, and show that the very
same model is capable of detecting the sort of temporal nov-
elty that is the hallmark of the Mismatch Negativity signal
in mammals. This expanded system makes use of Legendre
Memory Units (LMUs), a recurrent neural structure that has
been mapped to Time Cells (Voelker et al., 2019), tempo-
ral patterns in the cerebellum (Stöckel et al., 2021), and has
been shown to improve performance on Machine Learning
tasks over LSTMs (Voelker et al., 2019) and Transformers
(Chilkuri et al., 2021).

Vector Representation
Given the wide range of possible inputs for a novelty detec-
tion system, we define our inputs simply as vectors. These
can be of arbitrary dimensionality, and we do not constrain
their magnitude. In this way we can deal with inputs such
as odours (which in insects can be thought of as vectors in
a 50-dimensional space based on 50 different odour-sensing
neurons), or images, or numerical values in general. Interest-
ingly, the resulting model we define here will not need to be
changed in any way to handle different types of inputs, other
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than using our general-purpose input mapping.
When inputting a numerical vector into a neural network,

it is generally useful to transform it in some way. Typically,
this is some sort of normalization, ensuring that the input
has a mean of zero and a standard deviation of one, for ex-
ample. However, normalizing requires knowing the overall
range of possible input values. As an alternative, we adapt a
method used for encoding arbitrary-length lists into a fixed-
length vector.

In particular, Plate (1995) suggests using randomly chosen
high-dimensional unit vectors for representing structured in-
formation. The list [A,B,C] can be represented as the vector
A⊛X +B⊛X ⊛X +C⊛X ⊛X ⊛X , where ⊛ is circular con-
volution, A, B, C, and X are randomly chosen unit vectors
(and X is also unitary, ensuring that its magnitude stays 1
after repeated circular convolution). Since circular convolu-
tion is element-wise multiplication in the Fourier domain, the
repeated convolution X ⊛X ⊛X can be written as X3, lead-
ing naturally to a generalization where the exponent is a real
number instead of an integer.

In other words, we can represent the position x on the x-
axis as Xx, where X is a randomly chosen unitary vector,
and where the exponent means “take the Fourier transform,
then raise each element to the power x, then take the inverse
Fourier transform”. For a two-dimensional input < x,y > we
can compute Xx ⊛Y y, and so on for higher dimensions. Im-
portantly, the resulting vector is always a D-dimensional unit
vector (where D is the dimensionality of the base vectors X ,
Y , etc., which we set to be 1024 here). This is true regardless
of the number of actual inputs, meaning that we do not need
to change anything about the internals of our novelty detec-
tion model to deal with different inputs. Furthermore, since
the input is always a unit vector, we do not need to further
normalize the inputs.

While this approach to representation was mentioned in
(Plate, 1995), it is further analyzed in (Lu et al., 2019). In
particular, the Fourier transform of a unitary vector leads to a
vector with complex components [eiφ1 ,eiφ2 ,eiφ3 , ...]T, so rais-
ing this to a power x gives [eiφ1x,eiφ2x,eiφ3x, ...]T. This pro-
duces a series of oscillations, and as long as the φi values are
relatively prime, the exact pattern of oscillation will never re-
peat, no matter how much one varies x. Of course, for some
x values the resulting vectors will be very close to each other,
leading to the possibility of confusion between some points,
but in a high-dimensional space (D), this will be uncommon.

This idea of vectors being close to each other also provides
us with an important parameter for the model. In particular,
a small change in x will produce a small change in the vector
Xx. If we quantify this with the dot product, it can be shown
that, in the limit as D → ∞, the similarity between Xa and
Xa+x approaches the normalized sinc function, sin(πx)/(πx).
That is, for x = 1, the two vectors will be orthogonal (no sim-
ilarity), but for smaller values of x the vectors will be closer
and closer to each other. This gives the representation a par-
ticular scale. Depending on our inputs, we may want to con-

input
(any dimensionality)

SSP representation
(D=1024 dimensions)

fixed random 
unit vector weights

50000 LIF neurons
(Kenyon Cells)

1 LIF neuron
(    )

Figure 1: Our novelty detection model. Arbitrary input is converted
into an SSP and passed to LIF neurons via randomly chosen fixed
connection weights. Output weights are increased whenever a neu-
ron is active, and decayed over time. In the insect, the neurons cor-
respond to Kenyon Cells and the output is the MBON α′3 neuron.

trol this scale, and we do this by introducing a length scale
parameter λ, and encode information as Xx/λ ⊛Y y/λ. In this
way, values that are less than λ apart will yield vectors with
high similarity. For our novelty detection system, this gives
us a reference for how different an input needs to be from
other inputs to be considered novel.

We call this style of representation a Spatial Semantic
Pointer, or SSP, since it gives a compressed representation
of an infinitely large space, but maintains semantic informa-
tion in that it yields high similarity for nearby x values. This
approach to continuous representation is first found in (Plate,
1992), and more recently in (Frady et al., 2018), where it is
known as Fractional Power Encoding, or Fractional Binding,
since the ⊛ operator is thought of as a binding operator in
Vector Symbolic Architectures.

Computational Model
Our computational model is shown in Figure 1. The first
step is to convert the input into an SSP vector, using the
above approach. We use D = 1024 here. Next, we define
50,000 neurons, each with a separate randomly-chosen 1024-
dimensional vector for its input connection weights. That is,
each neuron receives as input the dot product between the
actual input and a randomly chosen “preferred stimulus” for
that neuron. This is a generalization of the standard finding
of preferred-direction-vectors in sensory and motor cortices
(Georgopoulos et al., 1982; Schwartz et al., 1988). Each neu-
ron also has a negative bias input that controls how similar the
input needs to be to its ideal stimulus in order for the neuron
to be active. This controls the sparsity of the neural represen-
tation. While any rectified neuron model can be used for this,
here we use spiking Leaky Integrate-and-Fire (LIF) neurons
with a bias of 0.9.

Given this input, the 50,000 neurons will form a sparse rep-
resentation of that input, corresponding to Kenyon Cells ob-
served the insect. In order to learn what stimuli are common
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Figure 2: Queried probability after exposure to four different distri-
butions of data. Blue line is the total current flowing into the output
neuron, linearly scaled to unit area. Black dashed line is the ideal
distribution. Four different distributions are shown. Note that even
though the x-axis is very different for each distribution, the model
itself is not changed in any way.

given this representation, we add a simple learning rule to the
output connection weights of the model. These weights are
initialized to zero, and each is increased proportional to the
normalized activity of its corresponding, pre-synaptic neuron.
Finally, we also decay the weights toward 0 over time, result-
ing in a weight learning rule of dωi

dt = ai
∑ j a j

− ωi
τ

, where ai is

the activity of the ith neuron, ωi is the connection weight, and
τ is a time constant for the decay.

The overall output from this system should be large for
familiar inputs and small for unfamiliar inputs. Surpris-
ingly, as shown in Figure 2, the output current is propor-
tional to the probability of the input! That is, rather than just
detecting novel vs familiar inputs, the system learns to di-
rectly represent the probability distribution of the input. Here
we present inputs sampled from four different distributions
(black dashed lines), and then measure the output current over
a range of values from across the input domain. Importantly,
this method automatically calibrates itself for whatever range
of input values it receives. For example, the triangular distri-
bution consists of values between 32 and 34, while the square
and bimodal distributions cover values in the smaller ranges
of -2 to 5). This is because the neurons have preferred in-
puts that cover the entire 1024-dimensional space, which it-
self covers the entire infinite range of possible inputs to the
model, thanks to the SSP representation.

However, the wide distribution (Figure 2, bottom-right) be-
tween 0 and 50 shows higher variance in the probability rep-
resentation. This is due to the length-scale parameter λ. The
effects of this parameter are explored in Figure 3, showing
that high variance can result from a value that is too small,
but a value that is too large can lead to reduced accuracy.
Thus, while this approach is robust to values anywhere on
the x-axis, it is sensitive to the overall scale of values being
represented.

We can also represent multidimensional probability repre-
sentations just by encoding samples as Xx ⊛Y y. Again, noth-
ing is changed about the neural aspect of the model; all that is
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Figure 3: Queried probability given exposure to a particular distri-
bution of data. Nine different versions of the model are shown, each
with a different length scale (λ). When λ is too small (< 0.05) or
too large (> 1), the representation is less accurate, but is fairly ro-
bust in-between.
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Figure 4: Queried probability given exposure to a two-dimensional
data sampled evenly from a unit circle. Four different versions of the
model are shown, each with a different length scale (λ). With larger
λ the model generalizes across a larger region, so points slightly off
the unit circle are not considered novel.

changed is the mapping into the 1024-dimensional SSP space.
Figure 4 shows the resulting probability distribution (the blue
curve in Figures 2 and 3) for two-dimensional input data that
is sampled evenly from the unit circle. Notice that the length
scale λ controls the resolution of the representation, control-
ling how far off the unit circle an input needs to be before it
is considered to be different enough from observed data to be
novel.

For a more detailed analysis of the accuracy of this model,
Figure 5 demonstrates the overall linearity of the representa-
tion, and Figure 6 shows the accuracy as the number of neu-
rons and length scale λ are varied.

Why This Works
To understand why this works, we have to consider the em-
bedding of the SSP representation. The dot product be-
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Figure 5: Characterization of relationship between sample probabil-
ity and output current. Left: Scatterplot depicting individual samples
of output current against observation probabilities given the distribu-
tion, with data merged across 10 runs of the model. Apparent is a
linear relationship (regression line shown in black) and uniform vari-
ance in the representation error as a function of probability. Results
shown are for N = 1000 neurons, length scale λ = 0.2. Right: His-
togram of residuals between true and estimated distribution pooled
across 10 runs of the model. The mean of errors is not different from
zero (P > 0.999, two-sided one-sample t-test).
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Figure 6: Representation error as a function of model parameters.
Left: Representation error falls with the number of neurons in the
model. Each gray dot represents one independent run of the model,
and the black markers indicate the mean error across runs for that
condition. Right: λ has a modest effect on representation error.
Representation error is higher for both small and large values of λ.
Intermediate values of λ result in more variable performance but
generally lower error, indicated by a larger vertical spread of perfor-
mance.

tween SSP representations, Xx and Xx′ , approximates a quasi-
kernel function, in this case the normalized sinc function,
Xx ·Xx′ ≈ sinc(∥x−x′∥) = sin(π∥x−x′∥)/(π∥x−x′∥). Since
the sinc function is an admissible kernel for kernel density es-
timation (Tsybakov, 2009, §1.3), we can view the dot product
between an SSP encoded-vector and other vectors as approx-
imating a probability. The argument is as follows:

Consider a randomly chosen unit vector, wi, of synaptic
weights feeding into the ith neuron of a network. The weights
wi will have some similarity with Xx, although for randomly
chosen wi, it is likely to be small. Consequently, we can con-
sider any synaptic weight matrix as being the sum of a vector
that is orthogonal to Xx, and one that is a sum of a (possi-
bly empty) set of points encoded using the SSPs. That is,
wi =

1
ni

∑
ni
k=1 Xxk +worthogonal.

We can then consider the input current of any given neu-
ron as being an approximation of the probability of the input

point, conditioned on a binary variable:

wi ·Xx =
1
ni

ni

∑
k=1

Xx ·Xxk +worthogonal ·Xx

≈ 1
ni

ni

∑
k=1

sinc(∥x− xk∥)

≈ P(X = x |Vi)

where the distribution conditioned on variable Vi is defined
by the sinc kernel and the points {x1, . . . ,xni}. If we assume a
rectified linear neuron, ai = ReLU(wi ·Xx − bi), with a bias,
bi chosen according to the method identified by Glad et al.
(2003), then the activity of a neuron is exactly a probability.
When we normalize the population’s activities, âi = ai/∑ j a j,
we see that this population is conducting Bayesian inference
on the variables, assuming a uniform prior over P(Vi), as
shown below.

P(Vi | X = x) =
P(X = x |Vi)P(Vi)

P(X = x)

=
P(X = x |Vi)P(Vi)

∑ j P(X = x |Vj)P(Vj)

If we let P(Vi) be a non-informative prior, then we can remove
it from the equation, yielding

P(Vi | X = x) =
P(X = x |Vi)

∑ j P(X = x |Vj)
≈ ai

∑ j a j
= âi

which is the normalized neuron activity.
While the above analysis assumes a ReLU neuron, we note

that LIF neurons, when averaged over time, produce an out-
put that is fairly similar to a ReLU, other than the saturation
behaviour. This saturation reduces the neuron output at high
similarity values, but since it is still monotonically increasing
(and non-negative), the LIF neuron’s overall firing rate will
still preserve the properties of the kernel function that make
them suitable for density estimation.

Once normalized, we know that their firing rates will al-
ways be scaled between 0 and 1. Consequently, the firing
rates of the neurons in the population can be used as the bases
in a reproducing kernel Hilbert space (for a good short intro-
duction see Ghojogh et al., 2021). Thus, they can approxi-
mate the probability density function over the points, encoded
in the activity of those neurons whose input weights are not
orthogonal to the manifold Xx,∀x ∈R. Our learning rule then
simply learns the appropriate weights, αi for the expression

P(X = x) =
n

∑
i

αik′(x,xi) (1)

where k′(x,xi) ≈ LIF(sinc(∥x− xi∥)− bi), and xi is a solu-
tion to argminx ∥1−wi ·Xx∥2

2. Appealing to the representer
theorem (Schölkopf et al., 2001), then there exists an optimal
approximation of the probability distribution being learned,
constrained by the kernel function induced by the SSP en-
coding, neural activation function, and the implicit collection
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of points in the domain sampled by the synaptic weights. De-
pending on how the synaptic weights are chosen, better or
worse approximations can be found.

Mismatch Negativity
The theoretical argument and simulations above establish that
this system is able to represent multi-dimensional probabil-
ity distributions, and then detect when a stimulus is a low-
probability event. However, this is all based on the instan-
taneous input to the model. What if we also want to detect
novel temporal patterns? This would be needed to, for exam-
ple, respond to a stimulus being presented for an unexpected
length of time, or at a different frequency. The well-known
Mismatch Negativity signal is observed for exactly these sorts
of novel stimuli. However, the model as presented so far, is
only producing output based on the current input, and so can-
not be sensitive to such temporal differences.

To address this problem, we need a way to take an in-
put value that changes over time and convert it into a multi-
dimensional value that represents the recent history of that
signal. Fortunately, a method for doing this already exists:
Voelker et al. (2019) presented a linear differential equation
( dm

dt = Am+Bx) that converts an input signal x into a vector
m which encodes the recent history of x as a set of coeffi-
cients of Legendre polynomials. This LMU (Legendre Mem-
ory Unit) and the associated LDN (Legendre Delay Network)
can be implemented in spiking neurons, resulting in neural
activity corresponding to Time Cells (Voelker et al., 2019),
and has also been shown to out-perform LSTMs, GRUs, and
Transformers on standard machine learning benchmarks that
require temporal information (Chilkuri et al., 2021; Voelker
et al., 2019).

With this in mind, we can construct a version of our model
that responds to temporal signals by passing input data into
an LDN to create the Legendre representation of the input,
and then feeding that representation into the same novelty de-
tection system defined above. As before, we do not need to
change anything about the model to handle the increased di-
mensionality of the input.

The results for an input pattern that starts as a 1Hz sig-
nal, then switches to a 2Hz signal, and then back again are
shown in Figure 7. We use a two-dimensional Legendre rep-
resentation to encode the previous 2 seconds of the input (sec-
ond graph). We also set the weight decay on the connection
weights to τ= 5 seconds. If we now feed the temporal pattern
into the novelty detection system, the probability estimate
(third graph) shows an increasing estimate of probability as
the 1Hz signal becomes more familiar, and then a sudden drop
in the probability estimate when it switches to a 2Hz signal,
and then another drop when it returns to 1Hz. If we connect
this probability estimate output as an inhibitory signal to a
single spiking Leaky Integrate-and-Fire neuron (correspond-
ing to the MBON α′3 neuron), then we can see this neuron
firing when the temporal pattern changes (fourth graph). Fig-
ure 8 shows the same result, but for a different input pattern
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Figure 7: Detection of temporal novelty with the same circuit. The
stimulus (first graph) is a regular pattern which changes frequency.
The previous 2 seconds of the temporal input pattern is encoded us-
ing Legendre coefficients (second graph), and then fed into the same
novelty detection model as before. When the output probability is
low (third graph), novelty is detected (fourth graph).

with occasional outlier values.

Conclusions
We have demonstrated a simple single-hidden-layer neural
network that learns to represent the probability distribution of
its recent inputs. The output from this network can be used to
detect novel inputs (the output is proportional to the learned
probability, so it will be small if the learned probability for
that input is low). Furthermore, the model works for differ-
ent input dimensionalities and ranges, as inputs are converted
into points on a D-dimensional sphere no matter what dimen-
sionality those inputs are originally. The main parameter af-
fecting performance is the chosen length scale λ, which does
need to be tuned (Figure 6). Increasing the number of neurons
improves performance, and the only other parameters are D
(the dimensionality of the SSP space) and the neuron bias
parameter, which controls the sparsity of the representation.
Characterizing the effects of these parameters is ongoing.

Furthermore, we have extended this model to detecting
temporal novelty as well, by exploiting a separate neural sys-
tem (the LMU) to convert an input signal into a vector that
represents the recent history of that signal. This gives a po-
tential mechanism for detecting novelty that could trigger the
observed Mismatch Negativity signal. This is somewhat sur-
prising, in that our original model was inspired by the insect
mushroom body system, while Mismatch Negativity is ob-
served in mammals. Our ongoing work is to further investi-
gate parallels between these two systems. However, it should
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Figure 8: Detection of temporal novelty with the same circuit. The
stimulus (first graph) is a regular pattern with occasional rare inputs
(e.g. auditory tones of one frequency with occasional tones of a
different frequency). The previous 2 seconds of the temporal input
pattern is encoded using Legendre coefficients (second graph), and
then fed into the same novelty dection model as before. When the
output probability is low (third graph), novelty is detected (fourth
graph).

be noted that the current model cannot directly explain the
Mismatch Negativity signal, since nothing in the current sys-
tem would generate a large and coherent EEG signal. That
said, we do believe our model could act as a trigger telling
the brain that a novel stimulus has occurred, which then leads
to some other brain mechanism coming online which does
generate the large change in electric field that is detected as
Mismatch Negativity.
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Abstract
The relationship between hippocampal volume and memory
function has produced mixed results in neuroscience research.
However, an experience-dependent efficient encoding
mechanism underlies these varied observations. We present a
model that utilizes an autoencoder to prioritize sparseness and
transforms the recurrent loop between the cortex and
hippocampus into a deep neural network. We trained our
model with the Fashion MNIST database and a loss function
to modify synapses via backpropagation of mean squared
recall error. The model exhibited experience-dependent
efficient encoding, representing frequently repeated objects
with fewer neurons and smaller loss penalties and similar
representations for objects repeated equally. Our findings
clarify perplexing results from neurodevelopment studies:
linking increased hippocampus size and memory impairments
in ASD to decreased sparseness, and explaining dementia
symptoms of forgetting with varied neuronal integrity. Our
findings propose a novel model that connects observed
relationships between hippocampus size and memory,
contributing to the development of a larger theory on
experience-dependent encoding and storage and its failure.
Keywords: Memory; Hippocampus; Autoencoder; Autism
Spectrum Disorder; Alzheimer’s Disease; Computational
models; ACT-R

The hippocampus is a region of the medial temporal lobe
that is critical for long-term memory storage and retrieval.
The size of the hippocampus can vary significantly between
individuals and these variations in size have been associated
with corresponding differences in memory function
(Pohlack et al. 2014; Hardcastle et al. 2020; Botdorf,
Canada, & Riggins 2022). The relationship between
hippocampus size and memory function, however, is
complex and not always straightforward. On one hand, there
is evidence that greater hippocampus volume is associated
with better memory function. For example, greater
hippocampus volume is associated with better spatial
memory performance in a laboratory task (Erickson et al.
2011; Guderian et al. 2015). Conversely, reduced
hippocampus size is associated with significant impairments
in long-term memory. For example, in frontotemporal
dementia and Alzheimer’s disease, neuronal loss results in
markedly reduced hippocampal volume, and the degree of

volume loss positively correlates with the severity of
amnestic symptoms (Dickerson et al. 2009).
The relationship between hippocampus size and memory

performance is also, at least partially, mediated by
experience. A notable case is the fact that London taxi-cab
drivers have larger hippocampi than the normal population,
likely due to the amount of information that cab drivers
need to memorize (“The Knowledge”) to pass the license
test (Maguire et al. 2000). In fact, a follow-up study
revealed that changes in hippocampus size follow, and do
not precede, the amount of studying necessary to pass the
test (Maguire, Woollett, & Spiers 2006). Similarly, changes
in hippocampus size correlate with an individual’s years of
education (Nobis et al. 2019).
An intuitively appealing explanation for these effects

might be that the hippocampus grows with the amount of
data it needs to, or can, store. Thus, pressure to store more
information results in the growth of the hippocampus, and a
reduction in hippocampal size results in loss of memory.
This simple explanation, however, is complicated by a
number of other findings. Reductions in hippocampus size
are observed in a variety of mental disorders, including
post-traumatic stress disorder (PTSD) and anxiety. In these
cases, significant reductions in hippocampal size are not
accompanied by corresponding changes in long-term
memory function (Karl et al. 2006). Conversely, larger
hippocampal volume has been observed in autism spectrum
disorder (ASD), where a corresponding increase in memory
function was not observed (Varghese et al., 2017). In fact,
evidence suggests that the prevalence of amnestic forms of
dementia in ASD is up to four times higher than the
neurotypical average, despite the fact that greater
hippocampus size could have represented a buffering factor
against neuronal loss (Fyfe, 2021). Thus, while it has been
shown that experience drives changes in hippocampus size,
changes have also been observed in clinical conditions
without corresponding changes in memory.
At least three possible explanations can be proposed to

reconcile these findings. The first and most mundane is that
changes in hippocampus size might not always reflect
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underlying changes in the number of hippocampal cells or
synapses. Virtually all of the studies assess hippocampal
size through anatomical MRI, and the sheer volume of a
region in an MRI scan can be affected by a variety of other
factors, such as greater water density (Bansal et al. 2013).
A second explanation is that two or more biological

mechanisms might be at play. Thus, while
experience-dependent growth following intense memory
training and dementia-related loss of memory function are
connected to the number of cells and synapses, changes in
other clinical domains might be related to other processes.
For example, prolonged stress exposure causes neuronal
death through the accumulation of cortisol. Thus, it is
possible that the volume loss in PTSD and anxiety are due
to cortisol-related pruning, which does not play a role in
dementia or ASD (Kim, Pellman, & Kim 2015).
The third and last explanation is that these varied

phenomena are indeed connected by experience-dependent
efficient allocation of hippocampal cells and synapses to
varying memory demands, but that this relationship is
complex and non-linear.
In this paper, we put forward a neurocomputational

framework that provides a possible account for the latter
hypothesis. According to this framework, the need to store
and retrieve memories demands an efficient allocation of
neural resources, and the principles underlying this
allocation can be understood in terms of information theory.
The remainder of the paper is structured as follows. First,

we review previous computational attempts to model the
relationship between memory function and hippocampus
size. Specifically, we review a model that explicitly links
resource allocation in the hippocampus to the information
entropy of its memories, and how entropy is altered in
PTSD. Second, we propose a possible neural network model
of how such changes could happen. The model, based on the
autoencoder architecture, shows that, under realistic
conditions, the hippocampus can spontaneously learn to
allocate neurons adaptively according to the demands.
Finally, we speculate on the implications of this mechanism
for two important memory-related phenomena, sleep, and
spontaneous brain activity,

Previous Models
To the best of our knowledge, the first computational

account of the relationship between memory demands and
hippocampus size was put forward by Smith et al (2021).
The authors proposed a mathematical model of memory
storage and retrieval based on information entropy.
The model is based on the framework originally proposed

by Anderson and Schooler (1991) and currently
implemented in the ACT-R architecture (Anderson, 2009).
According to this framework, each memory is a collection
of traces, each corresponding to a specific episode in which
the memory’s contents were encoded. This makes the model
broadly consistent with the Multiple Trace Theory of
memory (Moscovitch et al. 2005). The strength of each trace
decays over time according to a power function. The
memory’s total strength, or activation, is the log of the sum

of its traces. Thus, if a memory m is made of n traces
encoded at times t1, t2 … tn, its activation at time t is:

A(m,t) = log ∑i (t – ti)-d

where d is an individual-specific decay rate (Sense et al.,
2016; Zhou et al, 2021). Note that Equation 1 naturally
captures the effects of recency (through the decay term d)
and frequency (through the accumulation of traces). The
probability P(m) of retrieving a memory can be computed as
a function of its activation, relative to all other memories:

P(m) = e–A(m, t) / ∑j e–A(j, t) (1)
Smith et al. (2021) proposed that the distribution of

probabilities across memories could be used to predict
changes in hippocampus volume. The authors assumed that
the hippocampus would use efficient coding, and allocate
fewer resources to store information that is most likely to be
retrieved. This is a common principle in lossless
compression algorithms (Huffman, 1952). Consider, for
example, the problem of efficiently encoding the quote “All
those moments will be lost in time like tears in rain”. Using
standard ASCII coding, each character in the string would
be represented by 8 bits and the entire string would take a
total of 456 bits. To efficiently encode the string, however,
one would first count the occurrence of each character in the
string and then proceed to assign the shortest possible code
to the most common character, the second shortest to the
second, and so on. In this case, the letter “e”, “i”, and “l”,
which appeared six times each, would be assigned the
three-bit codes 001, 010, and 011, while the letter “k”,
which appears only once, would be given the six-bit code
101001. This would result in the entire string being encoded
with only 206 bits.
We currently do not know with sufficient precision how

information is encoded in the hippocampus. However,
independently of the specific code, the degree of
compression allowed by any adaptive scheme of this sort is
functionally related to the information entropy H of the data:

H = –∑i p(i) log p(i) (2)
Smith et al. (2021) showed that the reduced hippocampus

size in individuals suffering from PTSD could be predicted
by calculating the entropy of the retrieval probabilities
(Equation 2) associated with every memory in the model.
Specifically, when the model was modified to simulate
emotional trauma, the persistence of intrusive memories had
a significant effect on the probability distribution of the
memories that could be retrieved. The more likely the
intrusive memory was to be retrieved, the lower the entropy
of the model’s memory system, and as a correlate, the lower
the volume of the hippocampus.

Limits of the Model
The original model by Smith et al (2021) was noteworthy

but did not address a number of limitations. First, it
provided no biological mechanisms by which neurons could
be efficiently allocated to different representations. In fact, it
could not solve the problem of how the hippocampus could
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form an efficient engram without knowing in advance its
future activation level.
A second limitation of the original model was its scope: it

only addressed changes in hippocampal volume due to
PTSD. The same framework can be arguably applied to
anxiety, which shares with PTSD the transdiagnostic
symptom of intrusive thoughts that are ruminated upon. It
could be possibly extended to include experience-dependent
changes as well (such as the effects of education). It does
not address, however, other findings, such as the greater
hippocampus volume in ASD and the association between
smaller hippocampus size and memory loss in dementia.

A Neural Network Model of the Hippocampus
To address these limitations, we examined the behavior of

a neural network model of the hippocampus and conducted
a series of simulations to test whether (a) Efficient coding
spontaneously emerges in more biological models, and (b)
Whether the model can account for the diversity of findings
relating hippocampus size and memory function.1
The connections between the cortex and the hippocampus

form a recurrent loop. The exact set of synapses varies
slightly across regions; as an example, this paper will
consider the connectivity between the inferior temporal lobe
and the hippocampus. This specific circuit is well
understood and underlies memory for higher-level visual
objects, which will be used as experimental stimuli.
Projections from the inferior temporal cortex pass through
the entorhinal cortex and the dentate gyrus before reaching
area CA3 of the hippocampus, which is considered the
initial seat of an engram (Tonegawa et al., 2015).
During recall, memories are then reactivated in the cortex

(Danker and Anderson, 2010) through a series of
connections that originate in CA3 and progress through area
CA1, the entorhinal cortex again, and finally return to the
temporal cortex.

Figure 1: Architecture of the neural network model

1 All data and code are available at https://osf.io/wxh2r/

For convenience, this recurrent loop can be “unrolled”
and transformed into a feedforward deep neural network
with multiple layers. The first half of the model corresponds
to the neural populations encountered from the cortex to the
hippocampus, and the second half to the neurons
encountered from the hippocampus back to the cortex. In
this design, the cortex is both the input and the output of the
network, and the hippocampus is the central bottleneck.
This architecture is technically known as an autoencoder
(Kramer, 1991) and is used, in deep-learning applications, to
learn a set of features that would efficiently compress the
original input so that its output is minimally different from
its input. To a large extent, the application of autoencoders
can be construed as exactly the function of episodic memory
and, by extension, of the hippocampus.
The model’s final architecture is shown in Figure 1. Its

input is a 28×28 matrix that contains a visual representation
of an object. This representation is then flattened to a layer
of 784 neurons, which represents the object as encoded in
the inferior temporal cortex. This representation is passed
through a smaller layer of 512 neurons, representing the
entorhinal cortex, and an even smaller one of 384 neurons,
representing the dentate gyrus. It finally reaches a layer of
256 neurons that hold a compression representation of the
original content and stands for the hippocampus’ CA3 field.
The output of the hippocampus is then passed through a
mirror series of layers representing CA1, the entorhinal
cortex, and the temporal cortex again (784 neurons),
generating a reconstructed version of the original stimulus.
All of the neurons in the model are Rectified Linear Units
(ReLUs), with the exception of the very last layer, which
uses a sigmoid function to ensure that all of the predicted
pixel values are, like the inputs, between 0 and 1.
The model was used in five different simulations, each of

which addresses a different facet of the relationship between
hippocampus size and memory function.

Materials and Methods
Model Implementation
The model was implemented in Keras with an underlying

TensorFlow engine. In addition to those of Figure 1, the
model contains four additional layers that perform purely
technical operations such as reshaping inputs and outputs
and computing penalty terms for the cost functions (see
below); although necessary, these layers are not functionally
relevant. Altogether, the model has a total of 1,347,282
trainable parameters.

Training and Testing Data
The model was trained on a selection of objects from the

Fashion MNIST database (Xiao, Rasul, & Vollcraf, 2017), a
collection of 70,000 28×28 black-and-white images from 10
clothing categories. A subset of 1,111 images was randomly
selected at every run. The images were repeated with
varying frequencies across simulations (see below) but
always formed a training set of 4,000 stimuli.
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Model Training and Loss Function
In all simulations, the model was trained on all of the

training set items for five consecutive epochs using
stochastic gradient descent with adaptive moment
estimation (Adam: Kingma & Ba, 2014). We used a
combined loss function L that included two terms:

L = ∑i,o
N (yi – yo)2/N + λ∑ h∈CA3 |yh|

The first term is the accuracy cost of the network’s recall
function, and is the mean squared difference between the
activations yi and yo of each input neuron i and
corresponding output neuron o. The second term is the
resource cost and is the sum of the activation yh of each
hippocampal neuron h in the CA3 layer. (Note that the
penalty cost only interests the CA3 neurons). The
hyperparameter λ regulates the weight of the penalty and
was set to 0.00001 throughout these simulations; pilot tests
showed that the results did not qualitatively change for
different λ values, as long as λ was below a critical threshold
of 0.0001, above which the penalty became too severe.
Note that the resource cost penalty is equivalent to the L1

penalty used in regularization methods, such as LASSO
(Tibishirani, 1996). Unlike other penalties, the L1 penalty
can force its terms to zero, thus reducing the number of
active neurons within a representation.

Dependent Variables
For each of the 1,111 objects in the training set, four

dependent variables were computed. Two variables
measured the sparseness of the hippocampus representation:
the value of the resource cost L1 penalty and the total
number of active neurons (that is, with activation yh ≠ 0) in
the hippocampus The other two variables measured the
model’s recall accuracy, and they were the value of the error
penalty, i.e. the squared sum of differences between target
and predicted activations in the output layer, ∑i,o (yi – yo)2,
and the Pearson correlation coefficient between the encoded
and recalled image. Because of their constrained range,
correlation coefficients were normalized using Fisher’s
r-to-Z transform: Z = [log(1 + r) - log(1 – r)] / 2.

Results
Simulation 1: Emergence of Efficient Coding
In the first simulations, the set of 1,111 objects was used

to create a 4,000-item training set in which different objects
were repeated with different frequencies. Specifically, 1,000
objects occurred only once; 100 objects occurred 10 times,
10 objects occurred 100 times, and a single image occurred
1,000 times. If the model is learning a form of efficient
coding, the internal hippocampal representation of an object
should depend on its frequency in the training set, and,
therefore, objects that are repeated the most should have
representations with fewer neurons and smaller L1 penalties
than objects that are repeated the least.
Figure 2 illustrates the results of one such simulation. The

top row shows four example objects from one specific
simulation, chosen from the sets of stimuli repeated 1, 10,

100, or 1,000 times, respectively. The middle row represents
the corresponding responses of the simulated CA3 layer,
with the activations of its 256 neurons arranged in a 16x16
grid. The dependent variables for hippocampus sparseness
(L1 penalty and number of neurons) are also reported.
Finally, the bottom row depicts the recalled memory.

Figure 2: (Top) Four example stimuli that were repeated 1,
10, 100, or 1,000 times in the training set. (Middle)
Corresponding CA3 representations of the stimuli; (Bottom)
Recalled stimuli reconstructed by the decoder from the CA3
representations.

Although representative, Figure 2 only illustrates four
examples from a single run. A complete overview of all
simulations is instead reported in Figure 3, where the mean
L1 penalty and the mean number of neurons are reported as
the blue lines in the two panels. As the figure shows, higher
frequency results in a dramatic reduction in the number of
neurons needed to represent an object.
This change in representation has no consequences for the

model, which has a fixed and immutable structure in which
all synapses exist all the time, even when they are connected
to silenced neurons. In a biological hippocampus, however,
synapses and neurons change over time: synapses with a
value of zero are non-existent, and those connected to mute
cells would simply be pruned. Thus, the sparser
representation in Figures 2 and 3 could be associated with
changes in hippocampus size.
But how closely does the reduction in the CA3

representations match the predictions of information theory?
According to Huffmann (1952), efficient codes are such that
the length of a code for an object x matches its information
content I(x), which is the negative log of its probability: I(x)
= –log2 p(x). The value of p(x) can be calculated from the
number of occurrences of stimulus x in the training set.
Figure 4 compares the relationship between the number of
neurons used to encode an object in the CA3 layer and its
corresponding information content. As the figure shows, the
number of neurons closely mirrors (r = .97) the information
content, a hallmark of efficient coding.
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Figure 3: A summary overview of sparseness metrics (left:
L1 penalty; Right: Number of neurons) across stimuli of
different frequencies, averaged over 50 simulations. Colors
represent different model conditions (Blue = Sparse; Red =
Non-Sparse; Green = sparse with an unbiased training set).
Lines and ribbons represent means +/- SD.

Figure 4: Relationship between the number of neurons that
encode a stimulus (blue line and ribbon, representing mean
+/- SD) and its information content (red line).

Simulation 2: Frequency Drives Efficient Coding
To ensure that the effect is driven by frequency and not by

other confounding factors, a second series of simulations
were run. In these series, the model was trained with a
dataset of identical size (4,000 items) and containing the
same 1,111 objects but with an unbiased number of
repetitions per object, i.e., with each object being repeated 3
or 4 times.The results of these simulations are shown as the
green line in Figure 3. Under these conditions, both the L1
penalty and the number of neurons remain invariant and
equal to the values of the least-frequent memories in
Simulation 1. Note that, for the unbiased training model, the
frequencies on the x-axis do not actually reflect the
frequencies of the simulation training set; instead, they are
used to identify the corresponding group of objects in
Simulation 1.
The results of this simulation could be used to explain the

increased hippocampal volume in London taxi cab drivers
compared to bus drivers (Maguire et al., 2006): as noted by
Smith et al. (2021), taxi cab drivers, unlike bus drivers, have

to rehearse the streets of London with comparable frequency
to prepare for the license test.

Simulation 3: Enlarged Hippocampus in ASD
In the model, sparseness is achieved by adding a penalty

to the loss function. In a biological network, however,
sparseness must be achieved through some neural
mechanism. The most straightforward candidate is lateral
inhibition, that is, inhibitory synapses between neurons
belonging to the same region. Inhibitory synapses typically
express GABA receptors, and abnormally low expression of
GABA receptors is a key characteristic of ASD (Cellot &
Cherubini, 2014), one of the disorders also characterized by
abnormalities in hippocampus size. Recent studies estimate
that individuals with ASD express as much as 40% fewer
GABA receptors than healthy controls. Thus, we
hypothesized that the reduced availability of GABA
receptors in ASD may lead to a decrease in lateral
inhibition, resulting in less efficient coding and thus the
larger hippocampus observed in ASD.
To test this hypothesis, a series of simulations were

carried out using the biased training set but with the λ
parameter set to λ=0, allowing for a minimum amount of
sparseness based solely on the thresholds of the ReLU units.
The results of the simulations with such as Non-Sparse
model are shown in the red lines of Figure 2. As it can be
seen, without the resource cost penalty, the model now uses
a disproportionately large number of neurons and incurs in
large L1 penalties. Furthermore, both measures remain
remarkably stable even when encoding extremely
high-frequency stimuli, indicating that the hippocampus is
not using efficient coding.

Simulation 4: Hippocampal Damage in Dementia
As noted in the introduction, some reductions in

hippocampus size are associated with distinctive deficits in
memory. This is the case, for example, of neurodegenerative
diseases such as Alzheimer’s Disease. In these cases,
neuronal loss afflicts long-term memory by harming the
engram associated with a specific memory.
To simulate the effects of dementia, we ran a fourth series

of simulations, identical in nature to Simulation 1 but with
an additional manipulation. After completing the training
phase, the model’s hippocampus was artificially damaged
by applying a binary mask to the activation of its units.
Binary masks were generated by creating a null vector of
256 elements, and randomly setting a percentage of its
elements to 1. The proportion of units set to 1 represents the
neuronal integrity of the hippocampus and was
parametrically varied from 0.1 to 0.9. After every simulated
lesion, the model’s recall was tested again, and the two
accuracy measures (squared recall error and recall
correlation) were recorded. Figure 5 illustrates these results.
Interestingly, and consistent with the observed symptoms

of dementias, less frequent memories are more affected,
even at higher levels of neuronal integrity, than the more
frequent ones, which remain comparatively well preserved
even at lower levels of neuronal integrity.
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Figure 5: Effects of neural damage on recall accuracy. Lines
and ribbons indicate means +/ SD.

Simulation 5: Interactions Between ASD and
Neurodegenerative Disorders
Although ASD per se is not associated with notable

changes in long-term memory function, it has been noted
that dementia has a higher prevalence in individuals with
ASD than in neurotypical controls (Fyfe, 2021). The results
of Simulations 3 and 4 suggest that an additional advantage
of efficient coding of memories is to buffer against neuronal
death. Conversely, the less sparse memory representations in
ASD might be more susceptible to damage from neuronal
loss, thus explaining the greater prevalence of dementia in
ASD. To test this hypothesis, we conducted a second series
of lesion simulations, identical to the ones in Simulation 4
but with the model’s λ parameter set to λ = 0. Because we
are especially interested in the earlier stages of
neurodegenerative disease, only the neuronal integrity
values from 0.5 to 0.9 were examined. The results are
summarized in Figure 6. As the figure shows, the
Non-Sparse model is consistently more affected than the
sparse model by damage, across all levels of stimulus
frequency and neuronal integrity.

Discussion
This paper has dealt with the relationship between

hippocampus size and memory functions across clinical and
neurotypical populations. Specifically, it has shown that
some puzzling findings in the literature can be reconciled
when one analyzes the behavior of a neural network model
of the hippocampus whose loss function includes a resource
cost. The resource cost penalty induces sparseness in a form
that is consistent with the principles of efficient coding and
with the idea, first proposed by Smith et al. (2021), the
hippocampus size reflects the information content of the
stored memories. These contributions notwithstanding, a
number of limitations must be acknowledged. First and
foremost, the model uses an autoencoder architecture, while
hippocampus models are more commonly implemented as
autoassociators (e.g., Treves & Rolls, 1994).

Figure 6. The Z-scored recall correlation coefficients of
Sparse (blue) and Non-Sparse (red) models. Line and
ribbons indicate means +/- SD.

As a consequence, the model requires error-driven
methods to learn properly and is incapable of “one-shot”
Hebbian learning. Autoencoders were chosen because they
make it easier to capture the dynamics of encoding and
recall and the relationship between cortical areas and the
hippocampus. A proper model, however, should attempt to
combine both architectures and include principles of
auto-associative Hebbian learning with the hippocampus.
Second, a number of factors that affect the model’s

memory recall and performance are left unexplored. Among
those, perhaps the most important is the role played by the
number of epochs used in training. It is possible, for
example, that sparse models would require longer epochs to
achieve the same recall accuracy. The combined use of
error-driven learning and multiple training epochs highlights
another aspect of the model, namely, its need for multiple
learning passes to discover efficient representations. As
noted in the introduction, the hippocampus cannot assign
efficient memory codes right away, as they require
knowledge of an object’s frequency. In the autoencoder, it is
the presence of multiple learning passes and gradient
descent that pushes for sparser and more efficient coding. It
is possible that spontaneous brain activity, which is
prominently displayed in the hippocampus at rest and during
sleep (Pfeiffer, 2020), provides a biological surrogate for
the necessary re-experience of memories that are needed for
efficient coding.
Lastly, the model is silent about the nature of forgetting,

another prominent feature of memory that might be
connected to the spontaneous replay of memories at rest
(Zhou et al., 2021). Future research will be needed to further
explore the nature of these processes within the model.
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Abstract

Understanding how individuals deploy attention in multitasking
environments helps us develop models that more accurately cap-
ture human performance and variability. Here, we implemented
a method of measuring subjective workload in an ACT-R model
and constrained the model’s ability to use bottom-up capture
for stimuli outside of a peripheral window (i.e., perceptual
span). Stimuli outside of the perceptual span window could
thus only be detected via top-down attention. Our subjective
workload metric was based on event-frequency and was com-
pared to NASA-TLX reports from multitasking data using the
AF-MATB in Bowers, Christensen, and Eggemeier (2014). The
metric successfully differentiated between Easy and Hard task
demands. We then evaluated performance and eye movements
of an ACT-R model with different fixed levels of perceptual
span. As expected, when the model was limited to mostly top-
down visual attention, performance declined because the model
could not directly attend to malfunctions in peripheral vision.
Similarly, saccade amplitude decreased and eye movements
became more systematic. Interestingly, when comparing the
model’s simulation to behavioral data, the size of the perceptual
span window increased as task demands increased, suggesting
that participants were using less systematic scans when subjec-
tive workload increased. We then implemented this transition
in the ACT-R model.
Keywords: Workload, Perceptual Span, ACT-R, AF-MATB

Introduction
Bottom-up (stimulus driven) and top-down (internal) factors
affect visual attention (Carrasco, 2011). Implementing these
factors in cognitive architectures, such as Adaptive Control
of Thought – Rational (ACT-R; Anderson et al., 2004), is
worthwhile because it enables simulations to more accurately
capture human variability and performance. For example, the
Pre-attentive and Attentive Vision (PAAV) module for ACT-R
added pre-attentive bottom-up mechanisms to better emulate
the cognitive processes that result in differing search slopes
in simple and conjunction vision search tasks (Nyamsuren &
Taatgen, 2013). Here, we are interested in modeling how task
demands change how individuals deploy visual attention given
the importance of performance in high workload situations.

Generally, as the experienced level of subjective workload
increases, there are changes to the deployment of visual at-
tention. The amount of information that can be perceived
in a single fixation, coined as perceptual span or useful field
of view, decreases as workload increases (Bertera & Rayner,

2000; Young & Hulleman, 2013). This could contribute to the
increased bias for attentional control to use systematic search
strategies in high workload situations (Carrasco, Evert, Chang,
& Katz, 1995; Carrasco & Yeshurun, 1998; Pomplun, Garaas,
& Carrasco, 2013) and related to the phenomenon of cognitive
tunneling (Thomas & Wickens, 2001).

Here, we are interested in modeling how changes in task
demands affect the visual attention of a cognitive model in
a complex multitasking environment, the Air Force Multi-
Attribute Task Battery (AF-MATB, Miller, Schmidt, Estepp,
Bowers, and Davis 2014). We first implemented a mecha-
nism for restricting perceptual span in an ACT-R model by
constraining which stimuli can cause bottom-up attentional
capture. Then, we developed a method for measuring sub-
jective workload continuously in the ACT-R model. We ran
simulations of the model with different sized perceptual span
windows and compared the performance of those models to
behavioral data to determine how much the perceptual span
window should change as a function of subjective workload.
We predicted that the best fitting change to perceptual span
would be a narrowing of the perceptual span window when
task demands increased. Instead, we found that the best fitting
model had a perceptual span window that increased with task
demands, suggesting participants were using less strategic
visual search behaviors as the task became more difficult.

Method
Participants
Model simulations utilized event lists consisting of malfunc-
tion information in the AF-MATB from Bowers et al. (2014).
Sixteen participants (11 male, 5 female, ages 18 to 28) from
neighboring universities (Air Force Institute of Technology,
Wright State University, University of Dayton, and Wright Site
Junior Force Council) participated in that study. Participants
were unfamiliar with the task and completed informed consent
prior to participation. The study was approved by Air Force
Research Laboratory Institutional Review Board.

AF-MATB Task Description
The AF-MATB is a laboratory environment that replicates
multitasking behaviors similar to those encountered by aircraft
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pilots. Full details regarding the AF-MATB can be found in
Miller et al. (2014). Participants monitored and responded to
scripted events that occurred concurrently and were distributed
pseudorandomly throughout the trial. Difficulty in Bowers
et al. (2014) was determined by increasing the frequency of
events resulting in greater overlap between events for the Hard
difficulty compared to the Easy difficulty and by increasing
the variability and movement speed of the Tracking subtask.

In Bowers et al. (2014), the AF-MATB included all of the
subtasks (System Monitoring, Tracking, Communications, and
Resource Management). In the System Monitoring subtasks,
participants pressed a key when a Light (color change) or
Gauge (exceeding a y-axis threshold) malfunctioned within a
limited time (3 and 6 seconds, respectively). In the Tracking
subtask, participants used a joystick to center the position of
a randomly moving reticle. In the Communications subtask,
participants listened for audio commands and adjusted and
submitted the frequency and channel if the audio matched the
participant’s callsign. In the Resource Management subtask,
participants monitored fluid levels in two tanks and adjusted
the state of 8 pumps to maintain fluid levels within a threshold.

ACT-R Model
The ACT-R cognitive architecture consists of discrete modules
for distinct types of perceptual and cognitive processing (e.g.,
visual, auditory, declarative memory). Cognition manifests as
information moves between the different modules via produc-
tion rules (if-then statements) that control the behavior of the
model.

Our model was designed to detect and respond to events in
the AF-MATB task environment. The model interacted with a
custom built version of the AF-MATB in Python, which had
reduced visual fidelity but the same event timing and spatial
layout as the AF-MATB that participants experienced. The
Scheduling and Pump Status panels typically present in the
AF-MATB were omitted. We designed the simplest model
that was similar to human behavior, given that a more complex
model designed specifically to fit the data would theoretically
be less generalizable. The structure described below is the
core version of the model used in all of the simulations. We
first describe how the model operated in the AF-MATB envi-
ronment, and then how the model deployed visual attention to
detect different stimuli. Next, we describe how we constrained
attention with a perceptual span, estimated subjective work-
load in the ACT-R model, and then how subjective workload
affected the size of the model’s perceptual span.

Core Model
The core model has been previously described (Swan, Stevens,
Fisher, & Klosterman, 2022). In short, the model serially
attended each stimulus and utilized ACT-R productions to de-
termine how to respond to the stimuli. If a keyboard response
was necessary, the model waited until a response concluded
before moving attention. For the Lights and Gauges subtasks
in the System Monitoring panel, the model responded with a
key press. For the Resource Management subtask, the model

modulated the level of Tank A and B by turning on or off Pump
2 and 4 while the model kept Pumps 1, 3, 5, and 6 always
on. For the Tracking subtask, the model moved the joystick
maximally in the direction of the reticle, tracked the stimulus
as it moved towards the center position, and then once the stim-
ulus had reached a sufficient distance (37.5 pixels), the model
moved the joystick back to a neutral position. The model com-
pleted events in the Communication subtask separately. The
model shifted attention to a channel in the Communication
subtask panel after the channel and frequency information had
been aurally received. The model first selected the appropriate
channel, adjusted the frequency, and then pressed the enter
key to submit the request.

Visual Attention The model’s attention was brought to stim-
uli in two ways: top-down or bottom-up visual attention.
When there was not currently a stimulus in the visual-location
buffer, top-down control utilized a find production to search
the display clockwise for a stimulus that had not been recently
attended. Once the model had a visual location, then visual
attention (i.e., focus of attention) was brought to that stimulus.
This process was therefore systematic and exhaustive, given
that it would cycle through all of the stimuli in an ordered
fashion.

On the other hand, unrequested stimuli could be in the
visual-location buffer through “buffer stuffing”, which is an
ACT-R property whereby suddenly appearing stimuli are au-
tomatically placed in the visual-location buffer. The model’s
visual attention could then move to that stimulus without the
find production. This second method reflected task-driven
bottom-attention, which was how salient information (e.g., a
stimulus malfunctioning via a color change) in peripheral vi-
sion could grab attention. Unlike the model described in Swan
et al. (2022), all subtasks could capture bottom-up attention
via buffer stuffing. Buffer stuffing occurred when: any Light
malfunctioned, any Gauge exceeded 65 pixels from center
(i.e., 15 pixels beyond the vertical threshold), the Tracking
reticle exceeded 62.5 pixels from center, Tank A or Tank B
exceeded 200 units from center, and Pumps 1, 3, 5, or 6 were
off.

Perceptual Span We developed a novel approach to incor-
porating perceptual span in an ACT-R model. Each time the
display was refreshed (100ms), we used the location of the
model’s focus of attention to determine whether a given stimu-
lus could trigger buffer stuffing. In other words, stimuli within
this radius that malfunctioned or exceeded a threshold for
triggering buffer stuffing could cause buffer stuffing, whereas
stimuli outside of the threshold could not cause buffer stuffing
regardless of their status. In this initial implementation, we
varied the size of the perceptual span radius to see which size
best fit behavioral data (Figure 1). Later, we use subjective
workload to alter the radius continuously.

Subjective Workload Previous research has established
metrics for measuring subjective workload in ACT-R, such as
using weighing ACT-R module activity over time (Jo, Myung,
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Figure 1: The AF-MATB environment for the ACT-R model.
The circles represent the size of the perceptual span window
for different fixed thresholds.

& Yoon, 2012; Stevens, Morris, Fisher, & Myers, 2022). Here,
we were interested specifically in the relationship between vi-
sual attention to events and subjective workload. Thus, we de-
veloped a method to capture continuous moment-by-moment
changes in subjective workload based on event frequency.
Each time an event occurred within the perceptual span win-
dow that could capture attention (i.e., the same criteria that
caused buffer stuffing described in subsection Visual Atten-
tion), workload increased by 2 units. Workload decreased
by 0.03% each time the display refreshed (100ms). Thus,
workload increased as more events occurred closer in tempo-
ral proximity, but decreased if events occurred further apart
in time (Figure 2). These values were selected because they
produced a range of subjective workload values across the
different perceptual span window sizes.

Figure 2: Averaged subjective workload when perceptual span
was fixed (colors represent pixel radii) across Easy to Hard
trial simulations.

Model Parameters The majority of the ACT-R model pa-
rameters were kept at their default level. We enabled subsym-
bolic (:esc = t) and full base level learning computations (:ol
= nil). Malfunctions maintained their visual state until cor-
rected or the malfunction timed-out after a period of time and
returned to a normal function state. We therefore set the visual-
onset-span parameter to 3.0 seconds, which was the minimum

time-out time and represented the ability to detect the malfunc-
tion after it had occurred in the model’s peripheral vision. We
set base-level learning (bll) to the recommended level (0.5).
Only the Communications subtasks utilized declarative mem-
ory retrieval (i.e., storing and retrieving the frequency and
channel information), which involved setting the base-level-
constant (blc) to 2 and retrieval threshold to 2.9.

Performance Measures
Trial Simulation We simulated the same event lists gen-
erated from the participants in Bowers et al. (2014). Each
trial was 6 minutes and had a transition from Easy to Hard
(6 trials) or Hard to Easy (6 trials) half way through the trial.
The order of the transition was counterbalanced by transition
block. Two of the participants did not fully complete a trial, so
there were a total of 190 trials per simulation. For validating
our subjective workload metric, we utilized the full 190 trials.
For evaluating the effect of perceptual span on performance
and eye movements, we focused on Easy to Hard transition
trial (i.e., 96 trials).

For the simulations, we varied the size perceptual span
window radius and ran the full set of events lists (190 or 96
trials) for each radius. The simulations included a condition
where only top-down attention was used (1 pixel), a condition
where bottom-up attention could be used for any eccentricity
(750 pixels), and gradations (100, 175, 250, 275, 325, and 400
pixels).

Dependent Measures Performance of the model was deter-
mined by accuracy (accuracy = correct / total) and reaction
time (RT) for correct responses in the System Monitoring and
Communications subtasks. For the Tracking subtask, we aver-
aged the Euclidean distance of the reticle with respect to the
center. For the Resource Management subtask, we averaged
the deviations of both tank fluid levels with respect the target
tank fluid level.

We also measured eye movements of the model to determine
if the perceptual size implementation was successfully impact-
ing how the model deployed visual attention. We recorded the
position of the ACT-R model’s gaze using the model’s focus
of attention 1. We calculated two measures of directness, or
scanning efficiency (Moacdieh, Devlin, Jundi, & Riggs, 2020),
to capture how the model’s search changed as a function of
perceptual span window size: (1) saccade magnitude and
(2) transition entropy (Krejtz, Szmidt, Duchowski, & Krejtz,
2014). Saccade magnitude was measured as the line distance
between the starting and ending position of an eye movement.
We calculated transition entropy by first defining the possible
stimuli as areas of interest (AOI). For each AOI, we calculated
the transitional probability to the other AOIs, then summed
each probability multiplied by log2 of that probability. That
sum was then weighted by the proportion of saccades originat-

1While there are methods for approximating eye movements in
ACT-R (EMMA; Salvucci 2001), including EMMA resulted in im-
plausibly slower response times. However, integrating modules like
EMMA are a worthwhile direction for future research.
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ing from that AOI. Larger saccade magnitude and transition
entropy correspond to less efficient and more random and
complex scanning, respectively.

Results
Validating Workload
Participants in Bowers et al. (2014) completed the NASA-TLX
(Hart & Staveland, 1988), which is a subjective workload met-
ric, at the end of each trial based on what they experienced
during the second half of the trial. Given that our subjective
workload metric utilized event information, we could compute
continuous subjective workload for each participant in Bowers
et al. (2014). We compared the NASA-TLX scores to our
subjective workload metric2 to determine how our metric com-
pared to their reported experiment of workload. We found that
our subjective workload metric was highly correlated with the
overall NASA-TLX score (Spearman’s ρ = 0.77, p < 0.001)
(Figure 3 Top). It is also clear from the figure that our work-
load metric differentiated between task demands. Interestingly,
within condition correlations were significant for the Easy (ρ =
0.26, p = 0.01) but not Hard (ρ = 0.07, p = 0.5) task demands.

Next, we measured subjective workload in the ACT-R
model without perceptual span and compared those values
to the NASA-TLX scores to see if there was a similar rela-
tionship between the model’s experience of workload and the
participants reported workload (Figure 3 Bottom). Subjective
workload from the model should be similar to the workload
from the event lists, given that the model used those same
event lists, but differences would arise from randomness in
the Tracking subtask and different strategies for the Resource
Management subtask. Similar to the previous correlations,
there was a strong relationship when including both workload
conditions (ρ = 0.71, p = < 0.001) indicating agreement that
the Harder difficulty had higher subjective workload. As can
also be seen, the model strongly differentiates workload levels
between Easy and Hard. Neither Easy (ρ = 0.003, p = 0.98)
nor Hard ( ρ = -0.02, p = 0.88) were significantly correlated.

Validating Perceptual Span
To determine how well the implementation of perceptual span
worked, we looked at the proportion of stimuli that could
cause buffer stuffing as a function of the size of the perceptual
span window. As intended, smaller perceptual span windows
had fewer stimuli that could capture attention via bottom-up
attention (1 pixel: 0.04, 100: 0.15, 175: 0.34, 250: 0.50, 288:
0.64, 325: 0.76, 400: 0.91, 750: 1.0).

We next measured the effect perceptual span had on the
eye movements of the model given that increasing the size of
the perceptual span window should allow the model to make
larger and less predictable eye movements.

2We averaged the last 90s of the subjective workload metric for
each trial to approximately emulate the information participants were
using when submitting their NASA-TLX scores. Note that this ap-
proach was used for subsequent analyses using the subjective work-
load metric.

Figure 3: (Top) Subjective workload calculated from partic-
ipant event lists compared to NASA-TLX reports from the
participant data Bowers et al. (2014). (Bottom) Subjective
workload from the model compared to NASA-TLX reports
from the participant data.

We first looked at the transition entropy. As expected, there
was overall more transition entropy for the Hard difficulty
(mean = 2.1, standard deviation = 0.4) than the Easy difficulty
(mean = 1.3, standard deviation = 0.1). Transition entropy also
increased as the size of the perceptual span window increased
and increased more rapidly in the Hard than Easy condition,
as can be seen (Figure 4). This was expected given that there
were more events to grab bottom-up attention in the Hard
condition relative to the Easy condition.

Figure 4: Transition entropy as a function of task difficulty
and the size of the perceptual span window.

We next looked at the saccade amplitude. Saccades were
larger in the Hard (mean = 162.5 pixels, standard deviation =
17.8) than Easy condition (mean = 141.6, standard deviation
= 3.7). Saccade amplitude also increased more rapidly in the
Hard than Easy condition, as can be seen by comparing the
average Easy and Hard task difficulty saccade amplitudes (e.g.,
1 pixel: 136.6 Easy vs 143.0 Hard, 250: 142.2 vs 155.9, 750:
145.0 vs 189.4), mimicking the results of transition entropy.

Changes in Performance
We examined how performance in the AF-MATB ACT-R
model changed as a function of the different perceptual span
window sizes. Generally, model performance improved when
transition entropy increased, as can be summarized by look-
ing at performance for perceptual window sizes 1, 250, and
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750 in table 1. The exceptions were in [1] the Communi-
cation subtask, which we did not expect to the affected by
our implementations given that the Communication subtask
was completed separately without buffer stuffing, [2] Gauge
subtask accuracy, which was relatively stable given the long
period of time to respond before the malfunction returned to a
functioning state (6 seconds), and [3] Resource Management
subtask, which was at floor for Easy task demands and the
Hard task demands required too much intervention to prevent
the tank level from deviating too far from the center.

Table 1: Dependent variables (DV) for the different perfor-
mance metrics across different perceptual span window sizes
(1, 250, and 750) for Easy (E.) and Hard (H.) conditions.

DV 1 (m, sd) 250 (m, sd) 750 (m, sd)
Light Rt. E. 1.67(0.2) 1.21(0.2) 1.0(.1)
Light Rt. H. 1.64(0.2) 1.4(0.2) 1.4(.1)

Light Acc. E. 0.83(0.1) 0.94(0.1) 0.97(.1)
Light Acc. H. 0.4(0.1) 0.54(0.1) 0.62(.1)
Gauge Rt. E. 2.3(0.3) 2.1(0.2) 1.8(.2)
Gauge Rt. H. 3.1(0.2) 2.8(0.2) 2.7(.2)

Gauge Acc. E. 0.98(0.0) 0.98(0.0) 0.98(.0)
Gauge Acc. H. 0.67(0.1) 0.67(0.1) 0.70(.1)
Comm. Rt. E. 8.9(0.5) 8.9(0.4) 8.9(.4)
Comm. Rt. H. 9.4(0.3) 9.4(0.3) 9.4(.3)

Comm. Acc. E. 0.96(0.1) 0.96(0.1) 0.97(.1)
Comm. Acc. H. 0.95(0.1) 0.93(0.1) 0.94(.1)

Res. Man. E. 66(7) 65(10) 66(9)
Res. Man. H. 260(123) 336(208) 333(147)
Tracking E. 43(3) 41(3) 41(3)
Tracking H. 134(13) 133(30) 129 (20)

Comparing Model to Bowers et al. (2014)
We next compared model performance to Bowers et al. (2014).
We were interested in the perceptual span window size closest
to the behavioral data separately for the different task demand
conditions (Easy and Hard) to determine if participant’s visual
attention changed as a function of task demand. For example,
if the same perceptual window size best fit both the Easy and
Hard task conditions, then that would suggest that perceptual
span was not affected by task demands. Alternatively, find-
ing that Easy and Hard were best fit by different windows
suggests that task demand did change the size of the percep-
tual span window. We used normalized root mean square
error (NRMSE) to compare the model’s performance to the
behavioral data. We normalized using the average participant
performance, given that the subtasks have different scales, and
averaged across dependent variables to determine the overall
closest performance of the model to the behavioral data.

In the Easy condition, there was a u-shaped pattern whereby
NRMSE decreased from 0.268 (1 pixel) to 0.223 (175) to the
minimum NRMSE 0.211 (288) until rising to 0.221 (750). The
model overperformed relative to the participant’s data when

the perceptual span window was broad, hence worse fit to the
data.

In the Hard condition, there was increased variability as a
function of the Tracking and Resource Management subtask.
The worst performing spans were 0.309 (1), 0.298 (100), and
0.286 (325) and the best were 0.262 (288), 0.268 (400), and
0.246 (750), which generally suggests participants utilized a
broad perceptual span window.

We used the best perceptual span window sizes for Easy
(288) and Hard (750) conditions and our subjective work-
load metric to come up with an method whereby the model
would increase the perceptual span window as task demands
increased. We used the following equation such that the Easy
and Hard conditions approximated the same percentage of cap-
ture as the 288 and 750 sizes, respectfully: span = 190.1*Work-
load + 184.6. When comparing across conditions (i.e., the
NRMSE for the entire trial), this version of the model where
subjective workload affected the size of the perceptual mod-
estly outperformed the versions of the model where perceptual
span was constant (model with varying span: 0.19 vs. 0.2 for
static spans of 250, 288, 325, and 750).

Discussion
We implemented a visual attention mechanism in an ACT-R
model that could vary in real-time the perceptual span of the
model as a function of subjective workload. We believe im-
plementations like these provide theoretical constraints that
improve simulations of human behavior and provide new av-
enues for interesting predictions.

Our workload metric differentiated Easy and Hard levels
of workload. This suggests that this metric may be useful in
capturing subjective workload continuously. Interestingly, the
metric was not strongly associated within condition, which
was surprising given that our metric was based on the number
of concurrent events. There are two likely interpretations of
this outcome. One is that the within condition rankings were
driven by individual variability not captured by the model. For
example, other work has revealed that subjective reports of
workload can be subject to bias under certain circumstances,
such as individuals having different perceptions of workload
(Hart & Staveland, 1988). Another is that the criteria for
incrementing the workload metric did not capture some aspect
of the event sequences that drove the workload ratings. Both
of these possibilities can be investigated with further modeling
and exploration.

Similar to PAAV (Nyamsuren & Taatgen, 2013), this work
provided a mechanism for incorporating eccentricity effects
into the visual processing of ACT-R models. Our implementa-
tion of perceptual span successfully constrained visual atten-
tion, such that stimuli within the window could grab attention
via bottom-up attention and stimuli outside the window could
only be attended through other mechanisms, such as a find pro-
duction through top-down attention. Larger perceptual span
windows thus resulted in larger saccade amplitudes and less
predictable eye movements and better performance because
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the model was able to directly attend and respond to distal
malfunctions.

We predicted that the perceptual span window would de-
crease in size as task demands increased. Instead, we found
the opposite in this dataset. The best fitting models involved
perceptual span sizes that increased from Easy to Hard diffi-
culty. A couple of factors likely drove finding. First, when
the model was able to use bottom-up capture to detect mal-
functions, the model outperforms participants when the task
demands were Easy. Fewer events in the Easy condition also
meant the model could detect and respond to malfunctions
through top-down attention. Conversely, there were signifi-
cantly more events when the task demands were Hard and the
model was delayed when top-down attention brought attention
to non-malfunctioned stimuli. It is possible that participants
did utilize more systematic search strategies, given that indi-
vidual do search differently (Boot, Becic, & Kramer, 2009),
but that these strategies were washed out in the aggregate.
Without eye tracking data to examine scan paths and/or more
behavioral data, it is difficult to determine if this was the case.

We designed and implemented subjective workload and
visual attention mechanisms in an ACT-R model to more accu-
rately capture behavior in complex multitasking environments.
Our implementations produced expected changes in eye move-
ments and performance. This work thus provides a mechanism
whereby visual attention could shift from broad to focal, or
vice versa, as a function of subjective workload.
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Abstract

Inspired from previous research in the spatial reasoning do-
main, in this paper, we address the varying interpretations of
premises of syllogistic problems among individuals and the
differences in their resulting mental models. We conducted
an experiment whose results show that model building is a rel-
atively easy task for humans to do correctly and they do in fact
have preferred models for most syllogisms, yet, without a re-
lation to their responses. We report in-depth analysis of the
models’ canonicality in order to compare the model building
behavior in humans to the processes implemented in mRea-
soner, a cognitive model that implements the Mental Model
Theory.

Keywords: Syllogistic Reasoning; Preferred Mental Models;
mReasoner

Introduction
With over a century of research history (Störring, 1908), syl-
logisms are one of the core domains of examining human
reasoning abilities. A syllogism consists of two quantified
premises describing the relationships between three terms
through a common middle term. In a world of colourful
shapes, consider the following syllogism:

All red shapes are circles.
Some red shapes are marked with a star.

What, if anything, follows?

The task at hand is to determine what kind of relation, if
any, exists between the two end-terms, circles and (marked
with a) star, also called subject and predicate, respectively.

There exist at least twelve theories that aim to explain and
model the processes behind human syllogistic reasoning (for
an overview, see Khemlani & Johnson-Laird, 2012). One of
the most prominent theories among them is the Mental Model
Theory (MMT; e.g., Johnson-Laird, 1975, 2010). MMT pos-
tulates that given some observations, individuals create iconic
representations – mental models – of possibilities. They cre-
ate their own subjective mental representation of the informa-
tion presented in a reasoning task. Considering the example
above, one possible representation would be:

circles [red] [star]
circles

The square brackets around an instance denote that the set
of entities described by it is exhaustively represented. An-
other possible mental model representation is:

circles
circles red [star]

¬circles ¬red

where ¬ denotes negation. Both mental representations sup-
port the conclusion “Some circles are marked with a star” -
the logically valid conclusion to this syllogism. However, in
order to confirm the validity, an individual should think of all
possible premise interpretations and check if they hold. The
expansion of the interpretation search space can make solving
such problems difficult for humans (Johnson-Laird, 2006).

In the spatial relational reasoning domain researchers have
repeatedly shown that individuals have preferred mental mod-
els, namely that they prefer creating some models while
struggling with others (e.g., Ragni & Knauff, 2013; Jahn,
Knauff, & Johnson-Laird, 2007; Rauh et al., 2005). Interest-
ingly, experimental setups for the syllogistic domain do not
typically address the model building process of reasoning.
Namely, they do not involve examinations of which models
the individuals create, if they are correct, or if they even have
preferred models at all. To this end, we conducted an ex-
periment where participants had to provide visual responses
showing their representation of the given syllogistic premises,
and with that we tackle our first research question:

[RQ1] Can we examine what kind of models do individuals
create from the premises of syllogistic tasks and do they have
preferred mental models?

In mathematical and computer sciences, the minimal, sim-
plest representation of an expression is referred to as its
canonical form. This concept is also discussed in the
context of mental models in the syllogistic reasoning do-
main (Khemlani, Lotstein, Trafton, & Johnson-Laird, 2015).
Namely, it denotes which entities form a canonical set for
a given syllogism and which non-canonical instances do not
have to be present in an individual’s model but are still con-
sistent with the premises. For example, in the representa-
tions above “circles red” is a canonical instance for the first
syllogistic premise (“All red shapes are circles”), whereas
“¬circles ¬red” is not. Thereby, canonicality can be inter-
preted as a mean to assess the “incompleteness” of the model
in the sense of the coverage of all possible interpretations of
the premises.

From the perspective of cognitive modeling, it is espe-
cially interesting if the canonicality of the models provided
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(a) Selection box (b) Placeholder objects (c) Possible representation

Figure 1: Experimental design – Participants used the selection box to pick out their desired attributes that they can assign to
placeholder objects in order to share their mental representation of a given syllogism.

by participants align with the assumptions made by MMT.
The most prominent implementation of MMT for syllogistic
reasoning is the LISP-based model mReasoner1 (Khemlani &
Johnson-Laird, 2013), which will therefore serve as a foun-
dation of our analysis. Distinguishing between three sys-
tems, mReasoner creates intensional representations of the
premises (System 0), builds and interprets an initial model
(System 1) and performs a search for counterexamples (Sys-
tem 2) (Khemlani & Johnson-Laird, 2013). System 1 param-
eterizes the number of entities in a model and their canonical-
ity - the likelihood whether they are drawn from a canonical
set of typical entities or the full set of entities consistent with
the premises (Khemlani et al., 2015). We analyze our partic-
ipants’ built models further and contrast them to the output
of mReasoner’s model building stage to address our bipartite
second research question:

[RQ2.1] How influential is the canonicality of mental mod-
els that individuals build for syllogistic premises on the cor-
rectness of derived conclusions?

[RQ2.2] Is the model building behavior observed in hu-
mans in line with the model building processes of mRea-
soner?

Our paper is structured as follows – we first provide the
necessary theoretical background regarding reasoning with
syllogisms and mReasoner, followed by an in-depth expla-
nation of our experiment. Afterwards, we analyze the ex-
perimental data and the participants’ models (RQ1) and the
correspondence of mReasoner’s canonicality approach to the
data (RQ2). We then conclude the article with a discussion of
our findings.

Theoretical Background
Syllogisms
The two syllogistic premises and conclusion are characterized
by their quantifiers and term order. We take into consideration
the four first-order logic quantifiers All, Some, No and Some
not, abbreviated by A, I, E and O, respectively. The order
of the subject, predicate and middle terms in the premises
determine the figure of the syllogism. We use the following

1https://github.com/skhemlani/mReasoner

notation (adopted from Khemlani & Johnson-Laird, 2012):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Using the abbreviations and figures, the example syllogism
introduced above is denoted by AI4. Similarly, the conclu-
sions are denoted by using the quantifier’s abbreviation and
take into consideration the direction of the end-terms – ac or
ca, e.g. Oca indicates that Some C are not A. Finally, ‘No
valid conclusion’ is abbreviated by NVC.

mReasoner
According to MMT, given syllogistic premises, individuals
represent the entities described by the quantifiers using men-
tal models and aim to derive a conclusion based on that. Be-
fore accepting a certain conclusion, they engage in a search
for counterexamples, which, if successful, can lead to reject-
ing and correcting the original conclusion or concluding that
there is no valid conclusion.

These processes are implemented within the cognitive
model mReasoner (Khemlani & Johnson-Laird, 2013, 2016).
Using the following four parameters it builds models and
searches for counterexamples: λ determines the size, i.e. the
number of entities as drawn from a Poisson distribution; ε de-
termines the canonicality, i.e. how complete is the set of rep-
resented possibilities, given the premises; σ describes how
likely is it to engage in a search for counterexamples and
ω decides what happens when a counterexample is found –
whether the conclusion is weakened or NVC is reported.

Experiment
The main objective of the experiment was to obtain a visual
representation of the participants’ (preferred) mental repre-
sentation of given syllogisms. In order to achieve that, they
were presented with a syllogism, whose terms are descrip-
tions of objects and were asked to demonstrate what they
imagined ten objects look like when taking into consideration
the syllogistic premises.

An object is described using its shape (square, hexagon,
triangle, circle), color (red, blue, green, yellow) and mark
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Figure 2: Mean correctness of the constructed models by syllogism.

(cross, plus, star, diamond). The presented syllogisms had the
shapes as subjects, the colors as middle terms and the marks
as predicates. For example, the syllogism AE3 with content
‘triangles’, ‘green’ and ‘diamond’ is as follows:

All triangles are green.
No shapes that are marked with a diamond are green.

The object attributes were randomized among syllogisms.
Once presented with a syllogism, participants see a selection
box and placeholder objects (Fig. 1a, 1b). By clicking on
any shape, color and mark they select their desired object at-
tributes that they can apply on a placeholder object by click-
ing on it. Once they are done defining the properties of each
object, they end up with a visual representation of their men-
tal model of the syllogism, i.e. what they imagine the 10
objects to look like based on information provided in the syl-
logism. For example, Fig. 1c depicts a possible mental repre-
sentation of the syllogism AE3 presented above.

In a second part of the experiment, participants are once
again presented with the same syllogisms and are prompted
to select which of the 9 possible responses follow (e.g. Brand,
Riesterer, & Ragni, 2022).

Participants are divided in eight groups based on the pre-
sented syllogisms. In order to maintain a similar experience
among participants, we used the Ragni-2016 dataset ob-
tained from the Cognitive Computation for Behavioral Rea-
soning Analysis (CCOBRA) Framework2, to determine the
difficulty of syllogisms based on the amount of correct re-
sponses. The Ragni-2016 experimental data provides re-
sponses from 139 participants for all 64 syllogisms. We di-
vided all syllogisms in eight difficulty groups and created the
final sets of presented syllogisms by selecting one from each
group.

Participants
We obtained data from 200 participants (age 19-76, 42%
female) recruited on Prolific3 and the experiment was per-
formed online as a web-experiment. After completing the ex-
periment, the participants received compensation of 3 GBP.
All of them were native English speakers.

Procedure
Participants were first introduced to all possible attribute op-
tions in terms of shapes, colors and marks that an object can

2https://orca.informatik.uni-freiburg.de/ccobra/
3https://www.prolific.co/

have. Following is an explanation on how to select and apply
the desired object attributes on the placeholder objects. It was
emphasized that they must select an option for each attribute
and the appearance of all ten objects has to be specified. Then
the experiment started and they had to show what they imag-
ine the objects look like, using the introduced selection-box
and placeholder objects, for 8 syllogisms. Once these tasks
were completed, participants started the second portion of the
experiment – the single choice tasks for the same 8 syllo-
gisms.

Analysis
General Experimental Data Analysis
Since the object attribute descriptions were randomized
among tasks, throughout our analysis and model comparisons
we focus on whether the attributes in the responses corre-
spond to the attributes presented in premises or not. That
means, for example the model instance “square red” for the
syllogistic premise “All squares are red” is treated equally
with the model instance “circle green” for the premise “All
circles are green”.

We analyzed the correctness of the provided representa-
tions. Given a syllogistic premise with terms X and Y, we
distinguish the following scenarios in which the representa-
tions are correct, based on the quantifier. For All, there must
be no X¬Y instances. In the case of No, there must be no
XY instances. Finally, for Some and Some not, there should
be at least one XY or X¬Y instance, respectively. Out of
1600 observations, participants provided a correct represen-
tation in 1314 of them (82.12%). The mean correctness of
the models by syllogism is visually represented in Figure 2.
In 497 cases (31.06%) the participants gave a logically correct
response and for only 408 (25.50%) they provided a correct
representation and a logically correct response. Despite sub-
stantial differences in the model correctness between differ-
ent syllogisms, it does not appear to be related to the difficulty
of the syllogism: The correctness of the representations and
responses do not have a significant correlation (Spearman’s
r = −.0005, p = .9819). Besides no apparent connection to
task difficulty, a comparison between the best and worst 32
tasks also indicates that the model correctness seem to not
be affected by negativity of quantifiers (24/24 in best/worst,
respectively), particularity (25/23) or validity (17/20 invalid
syllogisms). The only peculiarity is related to the figure of
the syllogism, with figure 2 leading to more incorrect models

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

254



Aac
Aca
Iac
Ica

Eac
Eca
Oac
Oca
NVC

PM
M

 E
xp

AA
1

AI
1

AE
1

AO
1

IA
1 II1 IE
1

IO
1

EA
1

EI
1

EE
1

EO
1

OA
1

OI
1

OE
1

OO
1

Aac
Aca
Iac
Ica

Eac
Eca
Oac
Oca
NVC

Co
nt

ro
l

Figure 3: Response distributions for all syllogisms in the conducted experiment and the Ragni-2016 control dataset. Higher
percentage of given response is depicted with a darker color and the most frequently selected response for each syllogism is
denoted with a white dot.

(12/4) and figure 4 seemingly being easier for model con-
struction (3/13). Overall, the correctness of the models re-
mains arbitrary with respect to typical structural properties
of syllogisms commonly known to affect syllogistic reason-
ing performance. The response distribution among all partic-
ipants is illustrated in Figure 3. We contrast the obtained re-
sponses to neutral, control data – the Ragni-2016 data from
CCOBRA, as introduced above. It can be immediately ob-
served there is a tendency for participants to not choose NVC
answers as often as in the control data and to avoid the ca
direction in their responses. This implies that there was a
belief bias effect among participants, namely that some su-
perficial beliefs and background knowledge were induced by
introducing a world with a discrete amount of possible object
attributes.

Preferred Mental Models
Similarly to above, in the following analysis we focus solely
on the presence and absence of the attributes in the partic-
ipants’ responses, without considering the specific contents.
That narrows down the instance space to 8 different entities,
for a syllogism with terms X, Y and Z:

X Y Z X Y ¬Z X ¬Y Z X ¬Y ¬Z
¬X Y Z ¬X Y ¬Z ¬X ¬Y Z ¬X ¬Y ¬Z

For each representation, we created a binary vector of size
8 that indicates whether an instance was present in the model
(= 1) or not (0) denoting an individual’s preferred model pat-
tern. We then counted among all participants, how many
times each pattern occurred for each syllogism. The one pat-
tern with the most occurrences is then the preferred mental
model for a given syllogism. Figure 4 shows a visual repre-
sentation of the participants’ preferred mental models. Note
that not all 64 syllogisms are represented, only those that have
only one preferred model and more than 2 individuals have
given them as responses (binomial test with likelihood 28).

Honorable Mentions Here, we briefly report on interest-
ing findings among the other syllogisms that did not have a

clearly preferred mental model. Starting with AA1, which
had a tie for a preferred model - 24% of participants created
an “XYZ” representation, and another 24% added the entity
“¬X¬Y¬Z” to it. In other words, one part of the population
represented only the terms they were presented with, whereas
the other part made a point to include terms not mentioned at
all, as an offset. For EA4, 21% of the participants created an
“¬XYZ” representation and other 21% added the instances
“X¬Y¬Z” and “¬X¬Y¬Z” to it. Namely, the second group
explicitly represented that “No Y are X”, but both X and Y
can exist without the other one. For the rest of the syllogisms,
no particularly interesting patterns were found – there are no
preferred mental models for them.

mReasoner
When building a model, two of mReasoner’s parameters are
relevant: λ - which controls the number of instances in the
model and ε - which determines the likelihood that the model
representation is constructed with instances from the full set
in contrast to only canonical ones (Khemlani et al., 2015). In
Table 1 we show the canonical and noncanonical instances
that can be drawn from the sets, according to the LISP imple-
mentation of mReasoner.

First, we looked into the instances of the participants’ rep-
resentations in terms of canonicality. Based on the amount
of noncanonical models, we derived which ε value would be
used according to mReasoner’s postulates. For example, for
the premise “All circles are red”, if we have 8 instances of
“circles red” and 2 instances of “diamonds red”, following
Table 1, we have 8 canonical and 2 noncanonical entities, out
of 10. That means that the assigned4 ε value would be 0.2.
The distribution of obtained ε values is shown in the left-most
barplot in Figure 5. We did not find any correlation between
the assigned ε values and the correctness of responses (Spear-
man’s r =−.0343, p = .1702).

4Please note that mReasoner’s ε value is a likelihood - what we
assign is a value based on the proportion of noncanonical instances
we observe in one specific individual outcome, not in terms of prob-
abilities.
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Afterwards, we fit mReasoner to all task response pairs us-
ing a grid-search to determine the parameters. For ε, we used
values in the range of 0 to 0.9 with steps of 0.1. While the
maximum value for ε is 1.0, it was omitted since mReasoner
frequently fails the model creation phase. The parameters as-
sociated with the search for counterexamples (σ and ω) had
a less fine-grained stepsize of 0.25. With respect to λ, which
controls the size of the constructed model, we used two dif-
ferent approaches:

XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ
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Figure 4: Preferred models provided by the participants for
different syllogisms. Only syllogisms with a unique preferred
model are shown. The columns denote possible instances
present in the provided model. Shading illustrates the propor-
tion of participants creating a model containing the respective
instances.

First, we bypassed the λ-parameter and instead “forced”
mReasoner to create exactly 10 instances to reflect the exper-
imental setup. Furthermore, we ensured that the constructed
instances precisely reflect the value of ε-parameter (i.e., in-

stead of using ε as the probability to draw from the full set in-
cluding non-canonical interpretations, it now defines the pro-
portion of non-canonical instances). This provides an oppor-
tunity for a direct comparison between the participants’ rep-
resentations and mReasoner’s created models, especially in
terms of parameter values. The distribution of the proportion
of non-canonical instances in the models created by partici-
pants as well as the distributions of ε is shown in the first and
second barplot of Figure 5, respectively. Visually, the distri-
butions seem to differ substantially with little common trends
observable. This is supported statistically, since no significant
correlation between the distributions was found (Spearman’s
r = .0058, p = .0694).

Quantifier Canonical Noncanonical

All X Y ¬X Y
¬X ¬Y

Some X Y ¬X Y
X ¬Y ¬X ¬Y

No ¬X Y ¬X ¬YX ¬Y

Some not
X Y

¬X ¬YX ¬Y
¬X Y

Table 1: Canonical and noncanonical instances for a syllo-
gistic premise with terms X and Y according to mReasoner
(Khemlani et al., 2015)

Second, we fitted mReasoner with an active λ parameter
fitting, obtaining results with the intended configuration and
thereby eliminates potentially introduced problems due to our
manipulation. Additionally, participants might not use all 10
instances to reason about the conclusion, even if the scenario
suggests it. Here we report the distribution of the best-fitting
ε values (for any λ) in the third plot of Figure 5, followed
by the distribution with “estimated” ε values based on the ac-
tual proportion of noncanonical instances (εest ). Thereby, εest
resembles the same interpretation as the ε-values in the pre-
vious scenario with a fixed size. Note that in same cases,
εest can still have the value 1.0, since it reflects the actually
created model and not the likelihood. We did not find correla-
tion neither between our assigned ε values and mReasoner’s ε

(Spearman’s r = .0330, p = .2980) nor with εest (Spearman’s
r = .0576, p = .0720). We ensure that forcing mReasoner to
work with exactly 10 instances does not influence the ε dis-
tributions (Spearman’s r = .7564, p < .0001). It is important
to note however that there are multiple potential ε values that
could be used for fitting to a task response pair. In the case
of a fixed model size, there were on average 6.1 values lead-
ing to the same response, while there are 6.6. for the regular
approach (out of 10 possible values for ε in the grid-search).
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Discussion

In this paper we investigate two research questions regard-
ing the mental model building process in syllogistic reason-
ing. For RQ1 we examined what kind of mental models indi-
viduals create when presented with syllogistic premises. To-
wards that we designed and conducted an experiment cen-
tered around an imaginary world of colourful shapes with
marks, where participants had to provide their visual repre-
sentation of syllogisms first, and afterwards gave their con-
clusions. We noted a tendency for a belief bias effect in their
conclusions. Namely, this suggests that an individual might
be hesitant to conclude NVC, when some background knowl-
edge regarding the existence other shapes might go against
it. This is of interest for potential investigations of belief
bias effect in a controlled content environment. Regarding
the mental models, 82% of them were correctly representing
what is stated in the syllogistic premises, indicating a general
ability to correctly interpret them, and no particular syllogis-
tic property was found to affect the correctness. We found
preferred mental models for 46 out of 64 syllogisms, some
occurring within a larger proportion of participants than oth-
ers. There is a noticeable tendency among syllogisms with an
A-premise to include noncanonical instances with terms that
were not presented at all, likely due to them being an easy
addition without introducing errors. We note a weakness in
the PMMs for syllogisms with particular quantifiers (I, O) –
though a preferred model was found, it was a smaller propor-
tion of participants, i.e. their interpretation is rather varying.
This could be associated with the quantifier’s low informa-
tiveness allowing for more possible models without a clear
preference. This in turn might be a reason for a lower confi-
dence in an individual’s interpretation, which is a proposition
by another prominent syllogistic reasoning model - the Prob-
ability Heuristics Model (PHM; Chater & Oaksford, 1999;
Oaksford & Chater, 2001).

For RQ2 we looked into the canonicality of the individu-
als’ mental models, whether that ties into their responses and
ultimately whether the observed behavior is in line with the
model building process of mReasoner. In order to quantita-
tively analyze the canonicality of the models, we leaned on
mReasoner’s canonicality parameter, ε. We contrast correla-
tion analyses between response correctness and a) ε values
assigned based on observed noncanonicality proportions; b)
fitted mReasoner ε values on task responses, with “forced” 10
instances and with the regular intended configuration. We did
not find any significant correlation in any scenario, pointing to
a potential lack of relevance of the models for the responses.
On the other hand, another reason might be that we cannot
confirm with confidence that the built models in the exper-
iment were indeed used for the reasoning portion of it. In
MMT, the model building process is rather important, how-
ever in the mReasoner implementation (and our grid-search
when fitting), we have more than 6 values out of 10 that can
be used on average. This leads to the question if having two
parameters for the model building process is really neces-
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Figure 5: Distribution of ε (proportion of noncanonical in-
stances) of the instances directly provided by participants and
fits of mReasoner to their responses. For mReasoner, distinc-
tions between a fit with 10 instances and a variable number
of instances are made. In the case of a variable number of
instances, the ε-parameters used by mReasoner and the esti-
mated ε based on the resulting models is shown.

sary, from a complexity perspective. However, one of mRea-
soner’s assumptions is that humans build correct representa-
tions, which is mostly in line with our observations. In case
of errors, a potential source can be incomplete representation,
which is also in line with our observations. As an example,
we take the syllogism AA4 and its preferred mental model
that consists solely of “XYZ” and “¬X¬Y¬Z” meaning that
no instance supports the logically correct conclusions, Iac and
Ica. In order for an individual to conclude NVC, only one
single model is not sufficient in order to deduce that there is a
contradiction. There are two possibilities, we either use some
additional processes (e.g. heuristics, search for counterexam-
ples) or we create and test multiple models. By definition,
mReasoner does not build two models for NVC. In the ini-
tial phase of model building, it assumes a correct construc-
tion and then uses epsilon to draw the exact instances. Later
on, the initial representation is manipulated to e.g. add coun-
terexamples and enable the conclusion of other responses.

To summarize, we can conclude that while individuals do
have preferred mental models for a large portion of syllo-
gisms, the initially built mental models are not substantial
for finding conclusions. It is very likely that this is due to
syllogisms being generally imbalanced in terms of validity,
meaning that the majority of them can not be solved straight-
forwardly with an initial model anyway. It is, however, im-
portant to know that even when a final representation might
be incomplete, its instances are still appropriately chosen in
line with the premises. In contrast to manipulation of an exist-
ing model, as proposed and implemented by mReasoner, the
model building phase seems to be a rather easy task for hu-
mans, so certainly, a plausible way to solve the tasks would
in fact be a repeated construction of models.
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Abstract 

Relational reasoning is a core cognitive ability 
necessary for intelligent behaviour as it evaluates 
relationships between mental representations. 
Laboratory-based tasks of relational reasoning 
problems have long been used to investigate how 
individuals make inferences about such problems, with 
theories of mental models arguing that to solve such 
problems, individuals construct an integrated mental 
model based on the provided premises to generate or 
verify conclusions. Computational models of relational 
reasoning offer insights into how individuals generate 
such mental models and why some cognitive strategies 
may be preferred over others. However, many of these 
models do not directly account for what is often cited 
as a primary reason for the difficulty of different 
problems: the effects of increased working memory 
demand. In this paper, we present four ACT-R models 
that simulate the negative relationship between 
accuracy rates and relational problem complexity and 
demonstrate how different memory errors of omission 
and commission can account for qualitatively different 
reasoning processes. Our cognitive models demonstrate 
the importance of future work to consider individual 
differences in working memory processing, micro-
strategy preferences, and the effects of different 
memory errors on the reasoning process. 

Keywords: cognitive models; ACT-R; mental models; 
working memory; relational reasoning 

Introduction 

Relational reasoning is the cognitive ability to 

identify and evaluate relations between mental 

representations. Relational reasoning has long been of 

interest to cognitive scientists as it is crucial for 

problem-solving and fluid intelligence (Crone et al., 

2009; Krawczyk, 2012). An effective method for 

investigating how reasoning about different relations 

occurs is examining how inferences are made from 

syllogistic deductions (Byrne & Johnson-Laird, 1989). 

These relational reasoning problems are laboratory-

based tasks that require participants to evaluate a set of 

given premises and then generate or verify a logical 

conclusion. Consider, for example, the three premises 

below.  

The apple is above the banana. 

The banana is above the orange. 

The lemon is below the orange. 

Once presented with these three premises, one could 

confirm or produce a logical conclusion such as "the 

apple is above the lemon". These relational reasoning 

tasks are not restricted to spatial relations but can also 

include visual descriptions like "dirtier-cleaner" or 

abstract relations such as "better-worse", which can 

affect the reasoning process itself (Knauff & Johnson-

Laird, 2002; Sima et al., 2013). 

Mental Models and Relational Reasoning 

Mental Model Theory is one of the most favoured 

frameworks for understanding how humans can make 

inferences to solve such relational reasoning problems 

(Johnson-Laird, 2010). Mental Model Theory 

proposes that when people reason about a problem, 

they do not hold onto information as separate pieces of 

information but rather leverage their visuospatial 

faculties to construct an integrated representation, i.e., 

a mental model, in working memory, which may be 

used to infer conclusions.  

According to Mental Model Theory, the reasoning 

process is comprised of three stages: model 

comprehension, description, and validation (Johnson-

Laird & Byrne, 1991). These are also referred to as 

model construction, inspection, and variation stages 

(Ragni & Knauff, 2013). During the model 

comprehension stage, a mental model integrates 

information from the premises using relevant general 

knowledge to represent the problem space. The 

constructed model is then inspected in the second stage 

of model description to evaluate a putative conclusion 

or relations that may not have been explicitly stated. 

Finally, a conclusion is generated or verified in the 

validation stage based on the constructed model. This 

final stage of reasoning also allows for the generation 

of variations of the mental model, should the premises 

permit it. 

According to Mental Model Theory, the difficulty of 

the relational reasoning question is determined by the 

number of possible alternative models the reasoner 

constructs. It is argued that reasoners attempt to find 

alternative models of the presented premises, which 

may contradict the conclusion as false. Reasoners will 

iterate through each phase until all possible models are 

generated and examined. A conclusion is considered 

true if such a contradictory alternative model cannot 

be found (Johnson-Laird & Bryne, 1991). However, 
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this interpretation of difficulty has been challenged by 

theories such as the Preferred Model Theory (Ragni & 

Knauff, 2013), which argues that individuals only 

construct a single mental model in most situations and 

remain almost blind to other interpretations unless 

explicitly told to acknowledge alternatives. According 

to the Preferred Model Theory, the difficulty of a 

relational reasoning problem can be measured by the 

number of necessary operations the theoretical spatial 

focus system uses to solve a problem.  

Research on relational reasoning problems has 

collectively found several factors that affect the 

difficulty between problem variations as measured by 

accuracy rates and reaction times. Core findings 

include the continuity effect, the figural effect, 

premise phrasing effects, and the difficulty of 

indeterminate problems (Byrne & Johnson-Laird, 

1989; Johnson-Laird & Bara, 1984; Knauff et al., 

1998). Indeterminate problems are those for which 

different mental models may be constructed based on 

the same premises. For example, the premises "A is to 

the left of B" and "C is to the right of A" lead to two 

possible figures: "A-B-C" or the equally valid model 

of "A-C-B". The difference between these two models 

demonstrates two separate micro-strategies of what 

Preferred Model Theory argues individuals may differ 

on. 

Surprisingly, only recently has a study investigated 

the relationship between properties that affect 

relational reasoning. The Multidimensional Relational 

Reasoning Task (MRRT), developed by Cortes et al. 

(2021), consists of 90 problems that systematically 

vary on the following stimulus properties: number of 

premises (2 or 3), number of dimensions (1 or 2), 

relation type (spatial or non-spatial), solution (true, 

false, and indeterminate), premise order (continuous or 

discontinuous), conclusion phrasing (“A first” or “A 

second”). Cortes et al. (2021) demonstrated that 

reasoning problems containing more premises and 

multi-dimensional relations increased the difficulty of 

validating a conclusion (Figure 1). This was reflected 

in a decrease in accuracy rates and an increase in 

response times, and is credited to an increase in 

working memory demands due to additional premises 

and the number of relational dimensions per premise 

necessitating the construction of more complex mental 

models to be reasoned over (Cortes et al., 2021; 

Goodwin, & Johnson-Laird, 2005). Data provided by 

Cortes et al. (2021) and specific questions from the 

MRRT will be used to construct and compare our 

cognitive models in this paper and can be found at 

(https://osf.io/qfvp2/).  

Figure 1: Predicted marginal means of Dimension x 

Premise interaction taken from Cortes et al. (2021). 

Results of the mixed effects model indicate lower 

accuracy rates for more complex problems, with three 

premise two-dimension relational reasoning problems 

being associated with the lowest accuracy.  

Computational Models of Relational 

Reasoning

Although psychological theories of mental models 

have received considerable support, their application 

to computational models of mental processing is often 

underspecified. Computational accounts of relational 

reasoning are preferable as they allow for a formal 

presentation of a theory with fully specified operations 

to process necessary information. Spatial and visual 

properties are often intertwined in mental 

representations, so computational imagery is often 

conceptualised as incorporating both properties 

through the ability to represent, retrieve, and reason 

about such information (Glasgow & Papadias, 1992). 

Therefore, many representations can be used to model 

different types of relational reasoning problems. Using 

the Cognitive Computation for Behavioural Reasoning 

Analysis (CCOBRA) framework, Ragni et al. (2021) 

illustrated that despite differences in information 

processing assumptions, different spatial reasoning 

models can yield several predictions consistent with 

each other.  

Interestingly, despite working memory being 

recognised as a key factor contributing to the 

heightened difficulty of relational reasoning problems, 

many computational models of spatial relational 

reasoning do not specify how this occurs. One 

approach to investigating the impact of working 

memory demands on reasoning with mental models is 

using cognitive architectures (Kostseruba & Tsotsos, 

2020). 

Preferred Inferences in Reasoning with 

Spatial Mental Models (PRISM) 

One theory that has modelled in ACT-R (Anderson & 

Lebiere, 1998; Ritter et al., 2019), is the Preferred 
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Inferences in Reasoning with Spatial Mental Models 

(PRISM) theory (Ragni & Knauff, 2013). The 

Preferred Model Theory argues that individuals prefer 

to reason over a single mental model constructed with 

a specific layout. PRISM is intended to simulate and 

explain how individuals construct, inspect, and vary 

preferred mental models during the spatial relational 

reasoning process. ACT-R implementations of PRISM 

have successfully demonstrated order effects 

(Boeddinghaus et al., 2006) and predicted BOLD-

responses of brain regions (Ragni et al., 2010).  
PRISM operates on a spatial working memory 

representation that is operationalised as a spatial array 

structure and a spatial focus. The spatial focus can 

move forward, backward, right, and left, as well as 

insert or remove token objects into this spatial array 

and, in doing so, construct a mental model to reason 

over. PRISM reasons via binary relations provided by 

premises defined as a triple (X, r, Y) in which X is the 

to be located object (LO), r is the binary relation, and 

Y is the relatum, or reference object (RO). An example 

might be (Apple, above, Banana). At the beginning of 

the construction phase of a reasoning problem, 

PRISM's spatial focus begins at the coordinate 

position (0,0). As the premises are integrated, token 

insertion or deletion operations in the spatial model 

will be facilitated by the spatial focus until a mental 

model is generated. 

One of the abilities of PRISM is that it can 

demonstrate and explain differences in model 

constructions of different individual strategies. In the 

fff-strategy (first free fit), the focus inserts a token at 

the first free position that fits, compared to the ff-

strategy (first fit) in which the focus inserts the token 

at the first cell that fulfils the premise, squeezing it in 

between others that may occupy the space and 

relocating the other tokens. Experiments in Ragni and 

Knauff (2013) showed that despite both strategies 

being suitable for reasoning, individuals construct 

models according the fff-strategy significantly more 

than the ff-strategy. Studies have also demonstrated 

that non-spatial relations are often conceptually 

mapped onto spatial relations (Gattis & Holyoak, 

1996; Tversky, et al., 1991). Therefore, PRISM is not 

limited to only reasoning about spatial relations, but 

can also demonstrate the previously mentioned 

strategy preferences in reasoning about non-spatial 

relations as well. 

 An attractive feature for facilitating PRISM is that, 

unlike many other theories of spatial relations, it 

provides a unit of difficulty measure through 

operations of its spatial focus so that problems that 

require more operations are theorised as being 

predicted to be more difficult and, subsequently, have 

lower accuracy rates of correct responses, along with 

lengthier response times. This can be used as a 

theoretical basis for systematically raising the ACT-R 

threshold parameter to simulate working memory 

demand during the relational reasoning process. By 

working memory demand, we specifically mean the 

demands placed on the ACT-R conceptualization of 

working memory as information held in module 

buffers.  

Two common memory errors studied in 

experimental psychology are errors of omission, a 

failure to remember, and errors of commission, in 

which a participant performs an incorrect or additional 

action.  ACT-R allows us to model both types of errors 

(Kelly et al., 2000; Lebiere et al., 1994). 

ACT-R Models of Working Memory Demands 

The following describes our ACT-R models, which 

demonstrate how the effects of working memory 

demand may impact accuracy rates and the reasoning 

process through memory errors of omission and 

commission. To do this, we created four ACT-R 

models of four problems taken from the MRRT, which 

vary in the number of premises and dimensions but are 

all spatial relational reasoning problems of 

determinate and continuous premise orders. 

ACT-R is often considered a hybrid cognitive 

architecture in that it incorporates symbolic and sub-

symbolic operations. A full description of ACT-R is 

beyond the scope of this paper, but in every ACT-R 

model, there are generally two implicit theoretical 

commitments. The first commitment is to the theory of 

the cognitive architecture itself; in our case, this is 

Python ACT-R (Stewart & West, 2007). The second 

commitment is how knowledge is represented within 

this architecture that drives the agent - who may or 

may not be able to alter this knowledge over time 

through different learning.  

Although other computational theories could have 

been used, PRISM was chosen as the primary theory 

of knowledge representation for our ACT-R models 

because it provides a metric of difficulty through 

accumulated operations of its spatial focus. PRISM 

does not set a decay parameter to its models and can, 

therefore, maintain a model in the spatial array forever. 

To address this, we modelled the increase in working 

memory demands in a principled way by manipulating 

ACT-R declarative memory threshold parameters 

based on each operation of the spatial focus in 

accordance with PRISM theory. Each operation of the 

spatial focus increasing ACT-R’s threshold parameter 

therefore decreases the probability of a successful 

chunk recall. This threshold increase is intended to 

account for the increased demand on the memory 

system of the cognitive agent; we are not committed to 

what this is would mean on a mechanistic level apart 

from the ACT-R theory of declarative and working 

memory systems. Errors of omission in our models 
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occur when a chunk in long-term declarative memory 

cannot gather enough activation to be retrieved. Errors 

of commission are facilitated by ACT-R’s partial 

matching system so that names and locations of 

objects within the mental model may be incorrectly 

retrieved for one another. 

Processing example of the ACT-R Models 

All ACT-R models begin their construction phase at 

default parameter settings, and mental models are 

constructed based on information found in premises. 

Consider question six of the MRRT, a two premise one 

dimension question. 

MRRT Question: six (Two Premise, One Dimension) 

P1) Edward is to the left of Derek. 

P2) Derek is to the left of Travis. 

C) Edward is to the left of Travis (solution: True)

The model beings by firing a production to read the 

first premise, "Edward is to the left of Derek". The 

spatial focus, which has been implemented as an ACT-

R buffer, begins by inserting Edward at coordinates 

(0,0), moves a cell to the right, and inserts Derek at 

coordinates (0,1), with each new operation increasing 

the threshold parameter. For each new token object 

inserted into the mental model, a chunk is added to the 

ACT-R declarative memory module with the slot-pair 

values of the individual’s name and the coordinates 

they reside. Now that Edward and Derek have been 

inserted into the mental model, the next premise is 

read, "Derek is to the left of Travis". Since Derek was 

the last object inserted into the mental model, the 

agent’s spatial focus buffer is already on Derek, so the 

agent need only move one cell to the right to insert 

Travis at coordinate (0,2). Finally, the conclusion is 

read, and the agent must now enter the second stage of 

verification of the model: Edward - Derek - Travis.  

The conclusion to be verified in this case is "Edward 

is to the left of Travis", but since the spatial focus 

buffer is already on Travis, the model must recall the 

location of Edward and fire a declarative memory 

request production. In our models, every declarative 

memory request introduces a branching of logic to 

select the next possible production to be fired. In these 

ACT-R models, three possibilities exist after a 

declarative memory request is made. The first 

possibility is that Edward's location is correctly 

recalled. The second possibility is that a memory error 

of omission occurs in which Edward's location cannot 

be remembered. The third possibility is a memory 

error of commission in which Edward's location is 

misremembered for another - in this case, it would be 

Derek's since the spatial focus is still on Trevor. 

Because the spatial focus must move left from Trevor's 

position (2,0), all objects within the array left of the 

spatial focus are candidates for declarative memory 

retrieval.  

If the declarative memory request is successful, a 

production fires, printing Edwards location of (0,0). 

The spatial focus moves toward coordinate (0,0), and 

once it is on Edward, a production validates the 

conclusion as "True, Edward is Left of Travis!". The 

second possibility of an error of omission occurs when 

a declarative memory chunk cannot reach the 

threshold for successful retrieval, so the agent realises 

they cannot remember the object's location within the 

mental model. It is difficult to ascertain what occurs at 

this moment as individuals may rely on a wide variety 

of strategies to overcome such an error of omission. 

When such memory errors occur in our models, all 

productions involving conclusions have a random 

equal chance of selecting a true or false verification. 

Finally, the third possibility that may occur instead of 

a successful memory request or memory error of 

omission is a memory error of commission in which 

the ACT-R agent would believe that Edward's location 

is incorrectly Derek’s, at coordinate (1,0). Notice, 

however, that this interestingly would result in a true 

conclusion verification despite the incorrect location 

of the to-be-located object. The occurrence of a 

memory error of commission, yet still inferring a 

correct conclusion, highlights an overlooked problem 

in the literature of how different memory errors may 

result in different responses or solutions but still be 

reasoned as true. In the case of our example, this issue 

is especially pertinent and possibly problematic, as our 

models also predict that current accuracy rates of 

spatial relational reasoning problems may be 

overinflated due to false positive declarative memory 

recalls due to errors of commission. 

ACT-R Model Results 

Four ACT-R models of relational reasoning were 

created to simulate the findings in Cortes et al. (2021) 

of decreased accuracy rates for more complex 

conditions of increased premises and dimension 

problems (2P1D, 3P1D, 2P2D, 3P2D). All models 

began the construction phase with the same default 

parameter values and facilitated using PRISM to 

model the knowledge representations by which the 

ACT-R agent reasons. For each focus buffer operation, 

ACT-R’s threshold parameter increases by an 

equivalent rate to model working memory demands in 

a principled way, and to be in accordance with 

PRISMS accumulated number of focus operations as a 

measurement of difficulty. In doing so, our models can 

simulate memory errors of omission and commission, 

which subsequently have a qualitative impact on the 

reasoning process itself, and a quantitative effect on 

accuracy rates of each complexity condition.  
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To test the ACT-R models, all four were run 

equivalent to the number of participants in Cortes et 

al.’s (2021) X condition (n=310) to receive an average 

proportion of accuracy per model. This was then 

repeated for a total of (n=30) accuracy rate measures 

per complexity condition. Although our ACT-R 

models were based only on four spatial relational 

reason questions of the MRRT (questions 6, 36, 21, 

and 66), the results replicated the negative trend in 

accuracy rates decreasing with each complexity 

condition in both spatial and non-spatial questions 

alike. The output of our ACT-R models was: 2P1D 

(M=83.76, SD=2.29), 3P1D (M=80.93, SD=1.96), 

2P2D (M=75.19, SD=2.59), 3P2D (M=66.34, 

SD=2.36), which closely matches the results of human 

participant data provided by Cortes et al. (2021)., see 

Figure 2.  

To examine correlations between our ACT-R models 

and participant data, both spatial and non-spatial, we 

drew 100 samples from separate Gaussian 

distributions of each category. Again, even with our 

ACT-R models only modelling four spatial relational 

reasoning questions, this was sufficient for a strong 

positive correlation between distributions of both 

spatial relations (n=100, r =0.62) as well as non-spatial 

relations (n=100, r=0.64), as predicted. A regression 

analysis revealed a negative correlation between 

accuracy rates and the accumulated number of focus 

operators, with the total number of accumulated 

operations accounting for a larger proportion of the 

variance in accuracy rates in the ACT-R models (R2 = 

0.85) compared to the simulated human data of spatial 

problems (R2=0.48), as well as non-spatial (R2=0.42). 

Figure 2: Results of the four ACT-R models 

compared to participant data from Cortes et al. (2021) 

for spatial and non-spatial problems. The results are 

depicted with standard deviations and ordered 

according to complexity conditions based on the 

accumulated number of focus operations per problem 

for a correct response. 

Discussion 

This paper sought to investigate how different types 

of memory errors due to increased working memory 

demand may be modelled to simulate the accuracy 

rates of relational reasoning problems of varying 

complexity. Four ACT-R models were created, each 

based on a different question of complexity from the 

Multidimensional Relational Reasoning Task (MRRT) 

(Cortes et al., 2021). Preferred Inference in Reasoning 

with Spatial Mental Models (PRISM) (Ragni & 

Knauff, 2013) was implemented in our ACT-R models 

to simulate the reasoning process of the agent, the 

chunk value representation of knowledge used by the 

ACT-R models, and the accumulated number of focus 

operations allowed for a systematic increase of the 

ACT-R threshold parameter. Since indeterminate 

question phrasing was found to be a factor for lower 

accuracy by Cortes et al. (2021), we opted to 

exemplify the effects of our models through 

determinate questions only and to leave indeterminate 

problems for future work.    

Our ACT-R models successfully demonstrated that 

the effects of working memory demand, as 

conceptualized by ACT-R theory, could be simulated 

to model accuracy rates of various relational reasoning 

problems, and in doing so, our models provide several 

motivations for future work. Even though our ACT-R 

models were based on spatial relational reasoning 

questions from the MRRT, they were still found to be 

satisfactory models of determinate non-spatial 

relational reasoning problems. When controlling for 

all other stimulus properties, Cortes et al. (2021) did 

find a main effect of relation type of problem 

difficulty, something other studies have often found 

null relationship-type effects (Carreiras & Santamaria, 

1997). More often, however, the effects of visual 

imagery hindering the reasoning process, as argued by 

the visual impedance hypothesis, are judged by 

reaction times (Knauff & Johnson-Laird, 2002). 

Individual differences have been found regarding the 

degree to which mental imagery may play in the 

reasoning process by means of the degree of individual 

mental imagery vividness (Gazzo Castaneda & 

Knauff, 2013; Knauff & May, 2006). The impact of 

mental imagery vividness may be a future avenue to 

pursue in modelling individual reasoners, however, 

there is some disagreement on how this might be done 

(Albrecht et al., 2015). PRISM is largely motivated to 

model individual strategy preferences, and so is well 

poised for future modelling of individual differences, 

especially within cognitive architectures. 

 A limitation of our ACT-R models is that the only 

way an incorrect conclusion may be provided is 

through occurrences of memory errors of omission, at 

which point there is an equivalent chance of the ACT-
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R agent providing a correct or incorrect response. 

There may be differences in how individuals recover 

from a memory error of omission, and because Cortes 

et al. (2021) desired to collect normative reaction time 

data, they elected not to impose time constraints, 

which provides even more possible individual 

strategies, especially when motivated to ease the 

cognitive burden of increased working memory load. 

Only errors of omission could provide incorrect 

conclusions because of the way spatial determinate 

relational reasoning questions are structured in the 

MRRT. The spatial relational reasoning problems of 

the MRRT always have the reference object be the last 

object inserted in the mental model, such as: A-B-C-

(D). This holds true even if one represents the non-

spatial reasoning problems in a spatial format. With 

the PRISM spatial focus being on this last object, any 

to-be-located object is always in the same direction of 

all other possible objects to be recalled. Therefore, our 

models support the idea that any error of commission 

will result in the same conclusion even if the wrong to-

be-located object is recalled. Current psychological 

measures of relational reasoning do not account for 

these differences in reasoning.  

Future work should seek to construct models which 

consider individual differences in varying domains 

such as working memory capacity, imagery vividness, 

micro-strategies, how memory errors affect the 

reasoning process, and how individuals handle such 

memory error occurrences. 
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Introduction
Adaptive learning systems enable any learner to study at a
level that is appropriately challenging to them. The adaptive
nature of such a system is typically realised through learner- and
material-specific parameters within the system’s internal model,
describing the knowledge state or ability of the learner and the
difficulty of the material. The success of an adaptive learning
system hinges on the accuracy of these parameter estimates—a
poorly calibrated system may present material that is too easy or
too hard, or give excessive or insufficient feedback and support.

The cold start problem occurs whenever an adaptive system
has not yet had the opportunity to adapt to its user or
content. The current study focuses on the cold start problem
in SlimStampen, an adaptive learning system for acquiring
and rehearsing declarative knowledge through spaced retrieval
practice (see Sense, Behrens, Meijer, & van Rijn, 2016, for a
description). In this system, trials are scheduled on the basis
of an ACT-R model of the learner’s memory (Anderson, 2007):
facts are rehearsed when their simulated activation is about
to drop below the retrieval threshold (Fig. 1A). SlimStampen
adapts to the learner and study material by maintaining an
individual estimate of the rate of forgetting (α) of each fact for
that learner. The value of α influences how quickly a fact’s
activation decays and thereby how soon it is repeated. When
a learner first starts studying a new set of facts, the rate of
forgetting of each of these facts for this specific learner is still
unknown. The system therefore uses a default starting estimate,
which it continually revises based on the accuracy and speed
of the learner’s responses. Over time, it identifies which facts
are difficult to memorise for the learner (facts with a high α)
and which facts are easy (low α). If there is an initial mismatch
between the system’s estimates and reality, facts are repeated
sooner than they need to be—not an efficient use of study
time—or too late—frustrating and detrimental to learning.

The current study evaluates four different methods for
alleviating the cold start problem. These methods all use prior
learning data to predict rate of forgetting in future learning
sessions, but they do so using different subsets of the data:
all prior data (Domain), other learners studying the same
fact (Fact), the same learner studying other facts (Learner),

and a combination of the latter two (Fact & Learner). In a
previous lab-based study, we found that using the predicted
values as starting estimates for α resulted in better learning,
as the system allocated study time more effectively from
the start (van der Velde, Sense, Borst, & van Rijn, 2021).
Here, we test the same principle at a much larger scale in a
real-world scenario: secondary school students practising
foreign-language vocabulary.

Methods
We performed a post-hoc simulation study on a large set of
retrieval practice data from the SlimStampen adaptive fact
learning system, containing over 98 million trials from about
140 thousand secondary school students in the Netherlands.
The data were highly varied, covering a range of year groups
(years 1–4; ages 12–16) and education levels (pre-vocational
vmbo, general secondary havo, and pre-university vwo), and
vocabulary in two different languages (English and French).

We grouped the data into learning sequences (Fig. 1B),
each containing the complete set of trials in which a particular
learner studied a particular fact. We then created an 80%/20%
train-test split, allocating learning sequences in their entirety
to one of the two sets. Rate of forgetting predictions were made
for the 4.6 million sequences in the test set by feeding different
subsets of the training data (see above) into a Bayesian model
that estimates α∼N (µ,λ−1); the estimated mean (µ) becoming
the predicted value. This process is illustrated in Fig. 1C and
described in detail in van der Velde et al. (2021). The quality
of the predictions was assessed in two ways (Fig. 1D). Firstly,
we compared predicted to observed α. Secondly, we simulated
the effect of using predicted α values as starting estimates in
the learning session, looking specifically at the accuracy of the
ACT-R model’s behavioural predictions on the first delayed
repetition of a fact within a learning session.

Results
Fig. 2 confirms that predicting α using prior learning data leads
to more accurate estimates than using the default prediction.
It also shows that the largest gains in predictive accuracy
come from taking individual differences in difficulty between
facts into account, more so than accounting for individual
differences in ability between learners. As Fig. 3 shows, the
behavioural predictions made by the ACT-R model when using
predicted α values as starting estimates tell a similar story: the
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Figure 1: Visual summary of the current study. A. The learning system completes a three-step practice loop in each trial. B. Each learning
sequence contains all trials of a learner L studying a fact F at times t0,...,tn and yields a final rate of forgetting estimate α̂. 80% of these estimates
are used for training. C. Rate of forgetting predictions are made for the remaining 20% of learning sequences using different subsets of the
training data. D. Predictions are evaluated by (1) comparing final rate of forgetting estimates to predicted values (where α /0 is the default value
of 0.3), and (2) simulating the model’s behavioural predictions when using predicted rates of forgetting as starting estimates.

default prediction is outperformed by all data-based prediction
methods, and methods that involve fact-specific predictions
perform best.

Conclusion
It is possible to predict rates of forgetting from prior learning
data, and to use these predictions to improve item scheduling in
an adaptive fact learning system. The observed improvements
in prediction accuracy are similar in magnitude to those in our
earlier lab study, where we found that using predicted α values
as starting estimates in a learning session increased posttest
retention by 6.8 percentage points. We expect that comparable
retention gains can be achieved in real-world educational
practice.
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Abstract

Event-related potentials (ERPs) are used to study how language
is processed in the brain, including differences between na-
tive (L1) and second-language (L2) comprehension. In low-
proficiency L2 learners, syntactic violations give rise to an
N400, but this changes into a P600 as their L2 proficiency in-
creases. The precise functional interpretation of ERPs, however,
remains a matter of debate. Fitz and Chang (2019) proposed a
theory where ERPs reflect learning signals that arise from mis-
matches in predictive processing. These signals are propagated
across the language system to make future predictions more ac-
curate. We test if this theory can account for the N400-to-P600
switch in late bilinguals, by implementing a model capable of
simulating the N400 and P600. We perform an experiment
designed to elicit a P600 effect in simulated L2 learners pro-
gressing through learning stages. Simulated Spanish-English
participants showed similar ERP effects in their L2 (English)
as human participants did in ERP studies. Over the course of
L2 learning, simulated N400 size decreased while P600 size
increased, as it does in humans. Our findings support the via-
bility of error propagation as an account of ERP effects, and
specifically of how these can change over L2 learning.
Keywords: Event-related potential; N400; P600; prediction
error; bilingualism.

Introduction
Psycholinguistic studies investigating neural mechanisms un-
derlying adult second-language (L2) learning and process-
ing often use electroencephalography (EEG), a technique for
recording electrical voltage potentials produced by neural ac-
tivity. Recorded potentials can be analyzed in relation to
cognitive events, and can yield interpretable patterns called
event-related potentials (ERPs) (Morgan-Short, 2014). ERP
effects have been observed in response to syntactic violations
in first language (L1) processing, as an increased positivity in
the ERP waveform that starts around 600 ms after observing
an anomalous word, as compared to its correct counterpart
(Osterhout and Mobley, 1995). This effect is called a P600.
Another ERP effect is reliably elicited in response to a lexico-
semantic violation. This effect, called an N400, is a negative
voltage deflection around 400 ms after an anomalous word,

as compared to a semantically appropriate word (Kutas and
Hillyard, 1980).

ERP research has been done to find out if L2 learners show
similar ERP effects as native speakers for morpho-syntactic
and lexico-semantic processing. Research has shown that L2
learners can show native-like ERP waveforms for L2 grammat-
ical features that are present in their L1 as well as for features
unique to their L2 (Morgan-Short, 2014). ERPs of L2 learners
differing in proficiency indicate that some learners progress
through stages of syntactic learning, suggesting that there is
an intermediate stage of learning between no L2 grammatical
knowledge and grammaticalization (McLaughlin et al., 2010).
The observed ERP effects differ between studies. Some L2
learning studies that investigated syntactic processing found
an N400 for learners with low proficiency and a P600 for
learners with high proficiency, suggesting that L2 learners
might rely more on lexical processing at early learning stages
(Alemán Bañón et al., 2014; Antonicelli and Rastelli, 2022;
Dı́az et al., 2016; Esfandiari et al., 2021; Grey, 2022; Mickan
and Lemhöfer, 2020; Nichols and Joanisse, 2019; Osterhout
et al., 2008; Tanner et al., 2013, 2014). Other related studies
found a similar effect for proficiency but ERPs were bipha-
sic at low proficiency levels, resembling an N400 followed
by a P600. With increasing proficiency, the amplitude of the
N400 decreased and the P600 amplitude increased but ERP
waveforms remained biphasic to a degree (Bian et al., 2021;
Bowden et al., 2013; Caffarra et al., 2015; Esfandiari et al.,
2020; Grey et al., 2018; McLaughlin et al., 2010; Morgan-
Short et al., 2012; Morgan-Short, 2014; Pélissier et al., 2015).
In the majority of studies, L2 proficiency was the most impor-
tant factor determining ERP profiles (Antonicelli and Rastelli,
2022; Caffarra et al., 2015; McLaughlin et al., 2010; Morgan-
Short, 2014).

Here we are interested in whether L2 learning stages reflect
on the ERPs in simulated participants like in human partic-
ipants. We do so by taking a monolingual computational
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cognitive model of sentence production that has been used to
explain ERPs, and extending it to the bilingual case.

Computational models of ERP effects
Several connectionist cognitive models have been proposed
to explain the N400 ERP effect in sentence comprehension
(see Eddine et al., 2022, for a review). Some of these take
the magnitude of change in neural activation as a predictor
of the N400 (Rabovsky et al., 2018) while others take the
network’s prediction error to account for N400 size (Brouwer
et al., 2017; Fitz and Chang, 2019; Frank et al., 2015).

While a number of models can potentially explain the N400,
the models by Brouwer et al. (2017) and Fitz and Chang
(2019) are in addition able to model the P600. Specifically,
Fitz and Chang (2019) used Chang’s (2002) Dual-path model
to show that prediction error corresponds to N400 size and
backpropagated error corresponds to P600 size across a wide
range of studies, providing support for the hypothesis that
ERPs might reflect learning signals. This account of the N400
and P600 is known as the Error Propagation account.

The Dual-path model is a connectionist model of sentence
production and syntactic development. The model has two
pathways. The first pathway is the sequencing system that
learns how words are ordered in a sentence and is based on
the Simple Recurrent Network (Elman, 1990). The second
pathway is a meaning system that learns how to map messages
onto sentences in a target language. Previously, the Dual-path
model was used to explain a wide range of sentence production
phenomena in a number of different languages (Chang et al.,
2006, 2015; Janciauskas and Chang, 2018; Tsoukala et al.,
2017, 2021). For our studies, we used a bilingual extension of
the Dual-path model (Tsoukala et al., 2021).1

The present study
We perform a computational modelling experiment to investi-
gate whether simulated L2 learners progress through stages of
syntactic learning, and further test the viability of Error Prop-
agation as an account of ERPs. We do this by ascertaining
whether a P600 effect can be simulated by the Bilingual Dual-
path model, and whether the magnitude of this effect increases
in later L2 learning stages. We simulate native speakers of
Spanish (L1) who start learning English (L2) from a later age.
At every L2 learning stage, we run a subject-verb number
agreement experiment similar to one of the experiments in
Fitz and Chang (2019), presenting simulated participants with
stimuli containing syntactic violations that elicit a P600 in
native speakers (Osterhout et al., 2008; Tanner et al., 2013,
2014), and with control sentences without such violations.

We expect to find a simulated P600 effect in the Bilingual
Dual-path model, since Fitz and Chang (2019) were able to
have the monolingual Dual-path model reproduce N400 and
P600 effects for stimuli used in a number of human EEG
studies. We further expect N400 and P600 effects to occur and

1https://gitlab.com/yhkhoe/bilingual-dual-path/-
/tree/ICCM2023

their magnitude to decrease and increase, respectively, through
learning stages, because ERP effects and their magnitude in
L2 learners have been shown to be primarily determined by
proficiency (Antonicelli and Rastelli, 2022; Caffarra et al.,
2015; McLaughlin et al., 2010; Morgan-Short, 2014). We
specifically expect the P600 effect to be more pronounced at
later learning stages since advanced L2 learners show native-
like ERP waveforms for L2 grammatical features (Morgan-
Short, 2014). Additionally, we specifically expect the N400
effect to decrease in magnitude at later learning stages, because
lexical learning precedes syntactic learning in L2 learners and
L2 learners seem to rely on lexical processing early on because
of this (McLaughlin et al., 2010).

Methods
To simulate late Spanish-English bilinguals, we trained the
Bilingual Dual-path model (Figure 1) to learn Spanish from
“infancy” and English as L2 at a later stage. The training input
to the model consisted of sentences from two artificial lan-
guages (modelled on Spanish and English) that were paired
with messages that encoded their meaning. The model learned
to express messages as sentences of the target language (Span-
ish or English) by predicting the next word.

Artificial languages Table 1 shows the different construc-
tions in the artificial languages. Constructions were distributed
uniformly in the training input. Taken together, the two ar-
tificial languages consisted of 258 lexical items: 121 nouns,
11 adjectives, 6 pronouns, 6 determiners, 12 prepositions, 87
verbs, 7 auxiliary verbs, 6 verb inflectional morphemes, 1 plu-
ral noun marker, and the period. The inflectional morphemes
were used to generate verbs with simple, progressive and per-
fect aspect in present or past tense. The plural noun marker
was used to generate plural nouns.

The meaning space had 116 concepts and 7 thematic
roles. Thematic roles are similar to those from Chang et al.
(2006). To provide a simple example, the meaning of “the
old lady carves a cake” would be represented as AGENT:
LADY; ACTION-LINKING: CARVE; PATIENT: CAKE; AGENT-
MODIFIER: OLD. This is implemented by introducing fixed-
weight connections between role units and concept units (see
Figure 1).

Model configuration and training For our simulations, we
modified the Bilingual Dual-path model to resemble the archi-
tecture used in Fitz and Chang (2019): Previous word-history
and role-history layers were added to the model which kept a
running average of the activation of the input layer and role
layer, respectively, and were connected to the hidden layer.

As pre-registered2, all models used 50 hidden-layer units
and 30 compress-layer units. Internal layer units used the
logistic activation function; the output layer units used a soft-
max activation function. Weights were initialized randomly,
uniformly between ±1. Fixed weights for concept-to-role

2The pre-registration can be accessed here: https://
aspredicted.org/blind.php?x=CGL_X3R
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Figure 1: Architecture of the Bilingual Dual-path model. The model learns to map messages onto sentences in different languages
by predicting the next word in its input. The sequencing system (lower path) maps from the input through a hidden layer to
the output via a compression layer. The meaning system (upper path) uses information about thematic roles, concepts, and
the realization of concept (e.g., by a pronoun or with an (in)definite determiner). The number of units per layer are shown in
parentheses. Figure adapted from Tsoukala et al. (2021).

connections and realization-to-role connections were set to a
value of 6. The concept layer had a set bias of −3.

As pre-registered, for each of 60 model subjects and for
Spanish and English combined, we generated 10,000 unique
message-sentence pairs for training and a novel set of 200
message-sentence pairs for testing. The sentences are approx-
imately equally divided over the two languages, where the
percentage of Spanish sentences was sampled from a uniform
distribution between 48% and 52% and the rest was English.
Following Fitz and Chang (2019), the message was excluded
from 70% of the training items. Each model first iterated five
times over its monolingual Spanish training set, followed by 75
epochs over its bilingual training set. The training set’s order
was randomized at the beginning of each of these 80 epochs.
The model learned by steepest descent backpropagation, with
momentum set to 0.9. Initially, the learning rate was set to 0.1,
it decreased linearly to 0.02 over the 5 epochs of monolingual
training, and then stayed constant during bilingual training.

Model evaluation After each epoch, model accuracy was
tested using a 200-sentence test set. The model’s L2 English
proficiency was evaluated with two measures. First, syntactic
accuracy was measured as the percentage of sentences for
which all words had the correct part of speech. Second, mean-
ing accuracy was measured as the percentage of syntactically
correct sentences that also conveyed the target message with-
out additions. As pre-registered, we excluded the 20 subjects
with the lowest meaning accuracy, leaving data from 40 model
subjects.

Experimental trials To elicit ERPs, we generated 30 En-
glish sentence pairs, each consisting of a control and a vi-
olation item. The control was an active transitive sentence

where the verb form agreed with the subject in number. In
the violation item, the verb did not agree with subject number.
Violations were created by adding or omitting the inflectional
marker for singular verbs (-ss), see Table 2.

Model subject differences Weights are initialized randomly,
and differed between subjects. The percentage of Spanish
versus English (training and testing) sentences varied between
subjects, ranging from 48/52 to 52/48. The distribution of
constructions is the same for all subjects. Training, testing
and experimental trial sentences in the same language with
the same constructions can differ between subjects in two
ways. Firstly, sentences can differ in content-words resulting
in different meaning of sentences. Secondly, singular nouns
can differ in definiteness of the article.

Measuring model ERPs After every training epoch, the
model was tested on the experimental sentence pairs. As in
Fitz and Chang (2019), learning was turned on in the model
during processing, but connection weights were reset to the
weights of the respective training epoch after each test sentence
in order to exclude learning effects during the experiment. The
state in which the model encountered each trial was thus the
same for all of the sentences.

We measured the prediction error at the output layer and
the hidden layer (see Fitz and Chang, 2019, for details). The
prediction error of output unit j is the difference between its
activation y j and the target activation t j, or: δ j = y j − t j, with
y j ∈ [0,1] and t j ∈ {0,1}. This error was backpropagated in
the network, as happens during training, to generate error at
deeper layers. Error for units connected to the output layer
was calculated as shown in Eq. 1, where k indexes the units
connected to the output layer with weight wk j, and j references
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Table 1: Constructions with English example sentences. In
the artificial language modelled on English, inflectional mor-
phemes -prg, -prf and -ss are used for verb conjugations in
progressive, perfect, and 3rd-person present simple tense, re-
spectively.

Construction Example sentence
Animate intransitive The woman is play -prg
Animate with intransitive The woman is play -prg

with a dog
Inanimate intransitive The apple is fall -prg
Locative The boy is walk -prg

around the school
Theme-experiencer (active) The uncle surprise -ss

the grandfather
Theme-experiencer (passive) The grandfather is

surprise -prf by the uncle
Transitive (active) The girl bake -ss a cake
Transitive (passive) The cake is bake -prf

by the girl
Cause-motion The hostess is put -prg

a cactus into the office
Benefactive transitive The grandmother repair -ss

the cup for the girl
State-change The waiter is fill -prg

the cup with water
Locative alternation The man spray -ss

the sink with water

the units that are backpropagating error.

δk = yk(1− yk)
n

∑
j=1

δ jwk j yk ∈ [0,1] (1)

Error was calculated the same for other layers backpropa-
gating error into the network. The error was collected after
the transitive verb where the third-person singular morpheme
was present or absent. The simulated N400 and P600 sizes
are the sums over |δ| of the output- and hidden-layer units,
respectively. Note that the scales of these two measures are
not comparable because the output units, unlike the hidden
units, use the softmax activation function and therefore their
activations always sum to 1.

Table 2: Example sentences for the experimental trials. The
bold morphemes indicate the sentence position where predic-
tion error was measured.

Example sentence Subject Nr Agreement
the old lady carve -ss a cake Singular Control
the old lady carve a cake Singular Violation
the old lady -s carve a cake Plural Control
the old lady -s carve -ss a cake Plural Violation

Results
Figure 2 displays the proficiency of the model at the start and
the end of bilingual training.
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Figure 2: Mean proficiency of model. The syntactic and
meaning accuracy are displayed for the first and last epoch of
bilingual training. The error bars show the 95% confidence
interval.

The mean prediction error over L2 learning stages at the
hidden layer and the output layer are displayed in Figure 3,
respectively. At the output layer, the mean error (simulating
N400) for the VIOLATION items, was 1.89 at the start of bilin-
gual training and increased to 1.93 at epoch 19, whereafter it
decreased to 1.33 over the learning epochs. The mean error at
the hidden layer (simulating P600) for the VIOLATION condi-
tion was 3.30 at the start of bilingual training, and increased
over the learning epochs to 12.52. For the CONTROL items,
error at both layers was high initially, but decreased to values
close to 0 during L2 learning.

Pre-registered analysis
As pre-registered, we analyzed the data from our experiment
with a linear mixed-effects model, using the lmer function
from the package lme4 (Bates et al., 2015) in R (R Core
Team, 2013). The model fits the prediction error from the
Bilingual Dual-path model, a numerical value. The regres-
sion model3 included the predictors of interest: AGREEMENT,
LAYER, LEARNING STAGE and their interactions. AGREE-
MENT and LAYER were sum-coded. AGREEMENT levels Con-
trol and Violation were coded −1 and +1, respectively. Levels
Hidden and Output of LAYER were coded +1 and −1, respec-
tively. The number of L2 training epochs is indicated by the
LEARNING STAGE predictor, which was standardized. We fit
random intercepts for model participants, and by-participant
random slopes for the three predictors of interest and their in-
teractions. Table 3 reports estimates, 95% confidence intervals,

3The script for the mixed-effects model can be ac-
cessed here: https://osf.io/yprjk/?view_only=
aae2b8a52819475eb127721931de19ba
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Figure 3: Mean prediction error (averaged over all model subjects) as a function of learning stage, in the output layer (left panel)
and in the hidden layer (right panel), for number agreement violation and control items,. Shaded areas represent the 95% CI.

Table 3: Summary of the fixed effects in the linear mixed-effects models.

Predictor Est. 95% CI SE df t-value Pr(> |t|)
Intercept 3.54 [3.32,3.75] 0.11 40.00 33.84 <0.001
AGREEMENT 3.00 [2.81,3.20] 0.10 40.05 30.76 <0.001
LAYER 2.61 [2.41,2.82] 0.10 40.00 26.17 <0.001
LEARNING STAGE 0.10 [−0.04,0.24] 0.07 40.17 1.41 0.165
AGREEMENT:LAYER 2.28 [2.10,2.46] 0.09 40.04 25.49 <0.001
AGREEMENT:LEARNING STAGE 0.50 [0.36,0.63] 0.07 40.15 7.31 <0.001
LAYER: LEARNING STAGE 0.31 [0.19,0.43] 0.06 40.18 5.08 <0.001
AGREEMENT:LAYER: LEARNING STAGE 0.49 [0.37,0.61] 0.06 40.16 8.34 <0.001

standard errors, degrees of freedom, t-values and p-values.
The positive estimate for the interaction between the predic-

tors AGREEMENT, LAYER and LEARNING STAGE (Estimate =
0.49, 95% CI = [0.37, 0.61]) indicates that the learning stages
affect the two layers’ sensitivity to violated sentences differ-
ently. The estimate has a confidence interval not including
zero, thus there was an effect of the three-way interaction
between these predictors. As Figure 3 clearly shows, this in-
teraction is driven by an increasing effect of violation in the
hidden layer combined with a decreasing effect of violation in
the output layer.

Discussion
In the present work, we investigated whether simulated L2
learners progress through stages of syntactic learning. We used
a connectionist model of syntactic development (Chang, 2002)
to simulate Spanish-English bilinguals and exposed the model
to L2 number-agreement violations at different points in time.
Similar to the account in Fitz and Chang (2019), we recorded
ERPs in response to these syntactically anomalous sentences
from the model. On this account, ERPs are summary signals
of brain activity that index the propagation of prediction error
during comprehension whose functional role is to support

learning. Prediction error at the output layer was used to
model the N400 and the backpropagated prediction error at
the hidden layer was used to model the P600. The results of
our simulations revealed a clear P600 effect for syntactically
anomalous sentences in the L2, as well as a clear N400 effect
early in acquisition. We also found that over time the P600
increased as the model became more proficient in the L2 and
the N400 decreased over time. These findings are similar
to human L2 learners as reported in several ERP studies on
second language acquisition (Antonicelli and Rastelli, 2022;
Caffarra et al., 2015; McLaughlin et al., 2010; Morgan-Short,
2014). Thus, our results support a theory of stages of syntactic
learning in L2 learners where the magnitude of different ERP
components changes during acquisition.

In our simulations, monolingual training resulted in opti-
mal network weights for the L1, after which new L2 learning
required a considerable amount of further training. At the
beginning of L2 learning, the model does not know the En-
glish syntax for noun-verb number agreement. Consequently,
after seeing the verb, the model activates a variety of candi-
date words and morphemes, which leads to large prediction
error at the lexical output layer, and thus a large-amplitude
N400 prediction for both violations and control sentences.
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Prediction error at the hidden layer indexing the P600, in con-
trast, is relatively small because the model has not yet learned
the syntax of agreement. As the model gradually acquires
agreement, word predictions after the verb become increas-
ingly more accurate because they are more and more driven
by learned syntactic knowledge in the hidden layer. When the
model is presented with a number agreement violation item,
there is now a larger mismatch between the observed violation
and the correct word predictions made by the model at this
sentence position. Because the correct prediction is due to
syntactic knowledge at the hidden layer, the hidden layer gets
the majority of the blame when such a mismatch occurs. Thus,
the size of the P600 effect increases during syntactic learning.
The lexical output layer, on the other hand, gradually receives
less blame as the syntax of agreement is acquired deeper in
the network, which leads to a decrease in the N400 effect over
time.

The error propagation account explains why ERPs elicited
by lexical violations (N400) precede ERPs in response to syn-
tactic violations (P600) and this account has been able to repro-
duce key findings from a considerable number of monolingual
ERP studies (Fitz and Chang, 2019). The results presented
here on bilingual ERPs, and how they change over develop-
ment, adds further support for this account. Apart from the
error propagation account, the model of Brouwer et al. (2017)
can also explain monolingual N400 and P600 effects but it
remains to be tested whether this model would be able to sim-
ulate ERP effects in bilinguals and the change in size of these
effects during second language acquisition. What is unique
about the error propagation account is that it can naturally
model and explain ERPs in development because on this ac-
count ERPs are directly linked to learning. Therefore, the
magnitude of ERP effects is expected to change as different
pieces of linguistic knowledge are acquired. One limitation of
the model is that it currently does not account for differences
in the precise onset of the N400 or P600 and that it does not
model earlier ERP components such as the early left-anterior
negativity (eLAN) which has been elicited in some bilingual
studies (Caffarra et al., 2015).

At present, it is unclear to what extent L1–L2 language sim-
ilarity affects ERP effects in bilinguals. Some studies showed
reduced P600 effects, or no P600 effect, for syntactic features
that are instantiated differently between languages (Antoni-
celli and Rastelli, 2022; Liu et al., 2017; Morgan-Short, 2014),
while other studies have shown P600 effects for syntactic L2
features regardless of L1–L2 similarity (Caffarra et al., 2015;
McLaughlin et al., 2010; Morgan-Short, 2014). In future work,
the proposed model will be used to shed more light on the role
of language similarity in simulated bilinguals.
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Alemán Bañón, J., Fiorentino, R., and Gabriele, A. (2014).

Morphosyntactic processing in advanced second language
(L2) learners: An event-related potential investigation of the
effects of L1–L2 similarity and structural distance. Second

Language Research, 30(3):275–306.
Antonicelli, G. and Rastelli, S. (2022). Event-related potentials

in the study of L2 sentence processing: A scoping review of
the decade 2010-2020. Language Acquisition, pages 1–38.
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Introduction 
We present an example of how to model errors. We first 
analyze error patterns in a large dataset from a previous study 
(Ritter et al., 2022), then choose an appropriate error type, 
and build the corresponding error model.  

   The task, shown in Figure 1, is to find a single broken 
component in the BenFranklin Radar system (Ritter et al., 
2022). The system is organized into five subsystems.  It is 
implemented as a simulator (MENDS) with two levels of 
fidelity in Unity. We used the simpler version in this study. 
For each task, one of the components in the circuit, excluding 
the power supply, was broken. Participants were asked to find 
the broken component based on the light and switch 
conditions. However, participants can make mistakes and 
replaced the wrong one that is not broken. As an example, for 
task S2M (red solid squared), participant (PID) 413 ignored 
switch information and chose S1M (red dotted squared) that 
had switch off (green circled). This is also the error that we 
will model in this paper.  

Figure 1: Upper: The BenFranklin Radar schematic. 
Lower: The MENDS interface.  

Participants in the study (N=111) were taught with an online 
tutor about the troubleshooting task and about the device and 
its interface (Ritter et al., 2022). Our definition of errors does 
not include variations of the strategies nor repetitive or extra 
steps. Those extra or wrong steps, corrected by participants 
or not, as long as those do not lead to an incorrect final 
replacement with feedback from the simulator interface, are 
not considered as errors, but just part of the problem-solving. 
We have come up with some strategies that participants may 
use (Wang & Ritter, 2023), but none of those strategies model 
errors while we know that participants make errors.  

   We dig deeper into errors, provides categorization, 
individual analyses, and an error generation and correction 
model. The errors here are extracted from the test session 
from the 111 participants. These are errors not corrected by 
the participants. Some actions during the fault-finding 
process can be hard to identify as errors because some actions 
may be errors or extra steps that are self-corrected, while 
some may be part of the strategies they use (e.g., a more 
thorough search that opens unnecessary subsystems). We 
start understanding human errors in this task as components 
that were not broken but were replaced.  

The all-trays strategy (AllTrays) was developed based on 
participant P347. Their strategy walks across all trays while 
deciding the fault, then directly goes to a certain tray to locate 
the broken component.  Components were assigned a number 
based on their distance from the power supply. The smaller 
the number, the closer the component to the power supply. 
The one that has the smallest number among the grey 
components is the broken one. This strategy ignores front 
panel information and uses both schematic knowledge and 
interface information, shown in Figure 2. 

Modeling Human Errors  
We present an example here. PID 421 matches with All-
Trays strategy with trained learning in the test session. With 
current information, we only know that PID 421 in round 18 
of the test session made an error of choosing a grey 
component that is not in the active path (with the switch off). 
PID 421 did not check the switches as they were supposed to; 
this behavior is obvious and can be modeled. To better model 
the error of participant 421, we examined their mouse clicks 
on the interface that were recorded using RUI (Kukreja et al., 
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2006). We edited our All-Trays strategy model to include 
error and error correction—ignoring switch information 
once. This would be better for models to explain where time 
goes, but those behaviors are not yet carefully explored. 

Comparison 
We compare the response times of the 20 tasks in the test 
session to the old All-Tray strategy model, the error model, 
and the participant 421’s performance (Figure 3). The Error 
model is more of a “glove and hand” shape than the old model 
for observed time and it also takes more time due to 
additional steps. The error model may get better if we adjust 
the parameters. The error model also shows a better power 
law of learning and correlation with the participant data. The 
error model (0.65) has higher R2 than the old model (0.60), 
showing that our error model indeed catches more of 
participants’ behaviors. 

Figure 3:  Comparison of response times. 

Discussion and Conclusion 
The patterns and trends of the errors tell us more about partic-
ipants’ learning and performance improvement. Before 

reaching correction and success, from many perspectives and 
not just in this fault-finding task, it is an unavoidable journey 
that we all need to be friends with the errors we make and 
learn from them. Adding error generation and correction into 
a strategy model indeed increased correlation with human 
data, but led to a difference in total time.  

The errors categorized and modeled are only those not 
corrected by participants themselves. More errors, as well as 
more types of errors, exist if we expand and explore the errors 
that are corrected by participants themselves during the fault-
finding process. Further analysis of where time goes can be 
done with those expanded analysis of errors in the process. 
Understanding and showing participants’ learning and 
improvements through the analysis is also another exciting 
further analysis.  
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Introduction 
We used a complex electrical troubleshooting task shown in 
Figure 1 to study problem solving with learning, the 
BenFranklin Radar System that consists of 36 components, 
versus 7 components in the Klingon Laser Bank task used in 
several previous studies (Friedrich & Ritter, 2020; Ritter & 
Bibby, 2021). MENDS is a simulator created by Charles 
River Analytics for the BenFranklin Radar system, shown in 
the lower figure, used under license.  The participants’ task is 
to find the broken component in the circuit. In MENDS, 
participants can click and open the subsystem (trays) to see 
the components in each subsystem. They can decide and click 
the component that they think is the broken component, based 
on their schematic knowledge, the light and switch 
conditions. Components without power are in grey.  

Figure 1: Upper: Schematic for the BenFranklin Radar. 
Blue lines are power; red lines are signal; purple lines are 
both. Lower: the MENDS simulator’s front panel and one 
subsystem. 

We collected participants’ mouse moves and clicks for our 
modeling and data analysis using the RUI logger (Kukreja et 
al., 2006). To gather data, a user study was run (Ritter et al., 
2022). The goal was to identify strategies and learning with a 
larger number of participants. After data cleaning, we had 
111 participants’ data in the test session, where they were 
asked to finish 20 problems. We collected the component and 
times the participants clicked on. From the mouse clicks of 

the top 6 participants in the test session, we developed and 
implemented four strategies in the BenFranklin Radar task. 
Here we present one, the Grey Upstream strategy. The 
observed time for participants’ performance was compared 
with the predicted time of our strategy models, without and 
with learning.  

Modeling 
Figure 2 shows how we built a simple task model for MENDS 
in Python, also described in (Ritter et al., 2022).  The simple 
task model used a Panda data frame to store and reflect the 
components’ broken status (1: component is fine; 0: broken), 
light status (1: component has light on; 0: light off), 
downstream components to give power, upstream 
components to receive power, switch condition before them 
(1: switch on; 2: switch off), the number of times the required 
schematic knowledge have applied by participants. 

Figure 2. A flowchart for the simple task model and the 
grey-upstream strategy model. An active path refers to 
the components receiving power and that are supposed to 
have lights on.  

The Grey Upstream Strategy 
The Grey Upstream strategy is one of the four strategies that 
may be used to identify the broken component. Here we 
define the strategy in the scope of a task. Those strategies are 
categorized by four features: their starting point, how the 
front panel information was used, degree of schematic 
knowledge used, and degree of interface information used. 
Variations within one strategy are also possible. All strategies 
find the correct fault. The grey upstream strategy (GreyUp), 
shown in Figure 3, is based on participants P324, 420, 451, 
& 453. The strategy involves two major steps, finding a grey 
component as a starting point and tracing upstream in the 
schematic till finding the broken component. To locate the 
starting point, users click into the first grey tray using light 
information from the front panel and identify the first grey 
component by interface order from left to right and up to 
down within the clicked tray. Starting from the first grey 
component, participants use their schematic knowledge to 
trace up until they identify the broken component, which is 
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the only one with its light off but all its upstream components 
in the active path are with their lights on. 

Figure 3. A flowchart of the Grey Upstream strategy, as a 
technical detail example. 

The models take steps to solve the task based on each 
strategy, and time is added with each type of action. The time 
for each step depends on the learning level. Under the learn-
ing condition, we assume that knowledge is transferred to 
later tasks and the participants solve the later tasks faster 
based on the repetitive application of the same knowledge. 
Time parameters used in the models include visual coding, 
0.4 (s); mouse move, 1.1; mouse click, 0.2; mental operation, 
1.35; learning rate, 0.4.  The learning follows ACT-R and the 
power law, and the base times are KLM times.  

Models learn by modifying the mental operation time. We 
do this by having mental operation time as a function and not 
a constant. The function mental(type, var2) gives different 
times for different types of mental operation and learning lev-
els. The type variable includes type 1 and type 0. Type 1 refers 
to the mental operation time retrieving a component by using 
schematic knowledge. Type 0 refers to any other mental pro-
cessing not related to schematic knowledge. Type 1, retriev-
ing a component, can be faster with learnings which indicated 
by var2. For type 0, var2 is a random number because the 
time is assumed to be fixed, and no learning happens. For sit-
uations that assume no learning, the mental operation 
function in models uses a constant 1.35 s. When learning, the 
mental operation time is 𝟏. 𝟑𝟓 · 	𝒏!𝒍, 𝐰here n is the number 
of times the component has been checked or the number of 
times the required circuit knowledge has being used. The 
value of l represents the learning rate, 0.4. 

Comparison 
We trained the models with the previous sessions that partic-
ipants experienced before we ran the models for tasks in the 
test session. We compared the predicted time to the observed 
times of the participants. We consider that participants fit 
well to a strategy if they have R2 with a p-value < .05. 14 
participants’ behaviors match a strategy (p < .05; R2 varied) 
without learning in the test session. 69 participants’ behaviors 
match a strategy with learning in the test session.  
    Figure 4 shows the match of PID 413 as an example.  PID 
413 has R2 of .498, without learning and an R2 of .518, with 
learning. The red dotted line is the observed time from human 
data; the blue solid line is the predicted time without learning; 

the black solid line is predicted time with learning and was 
trained with previous sessions’ faults.  

Figure 4: An example of PID 413 as one of the best 
matches. A comparison of human data, our Grey Upstream 

Strategy model with learning, and without learning. 

Discussion and Conclusion 
The strategy that includes learning indeed does better at 
performance prediction. Also, more strategy models could 
have been presented. Variations within strategies and strategy 
switch are not yet modeled. The current strategy models are 
from the top 6 well-performed participants, while the other 
participants made much more errors during the fault-finding 
process. We have not modeled errors, lapses, or changes of 
strategies within the same session. Modeling those can be our 
future steps. If our strategy models consider errors, the match 
between participants and strategies may increase.  
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Background
Cognitive models of memory retrieval aim to capture human
learning and forgetting over time. Such models have been ap-
plied in learning systems that aid in memorizing information
by adapting to the needs of individual learners (e.g., Lindsey,
Shroyer, Pashler, & Mozer, 2014). Adaptive learning systems
track learning performance to provide personalized feedback
or optimize item repetition schedules. The effectiveness of
such learning systems critically depends on their ability to
use behavioral proxies to estimate the extent to which learn-
ers have successfully memorized the materials. The present
study examines cognitive and meta-cognitive indicators of
memory strength that are present in the learners’ recorded
speech signal while studying vocabulary items by vocally re-
sponding to cues.

In most model-based learning systems, predictions of
memory retrieval rely on the accuracy and response latency
of retrieval attempts. In this project, we will focus on spo-
ken responses to visually-presented retrieval cues, which con-
tain prosodic speech features (PSFs). PSFs are high-level
properties of units of speech such as syllables, words or sen-
tences, and include intonation (pitch variations), loudness and
speaking speed. PSFs can carry information that is not con-
veyed by grammar or vocabulary, such as the emotional state
of the speaker, emphasis, or the form of the utterance (e.g.,
question versus statement/command) (Xu, 2011). A recent
study by Goupil and Aucouturier (2021) demonstrated that
both the objective accuracy of a response, and a speaker’s
meta-cognitive confidence in the response are deferentially
reflected in speech. In their study, participants were in-
structed to complete a visual detection task, where they had
to verbally choose which word they saw before from a num-
ber of alternatives and rate their confidence in the response.
The results showed that some of the PSFs (speaking speed
and pitch) were associated with the subjective confidence in
a response, whereas the other PSF (loudness) was associated
with objective accuracy.

In a recent study, Wilschut and colleagues (Wilschut,
Sense, Scharenborg, & van Rijn, 2022), demonstrated that
the above results generalize to a memory retrieval paradigm,
and found that using PSFs on the current trial could increase
the prediction accuracy for memory retrieval success on fu-
ture learning trials. In the current project, we extend their
work by further investigating the exact way in which PSFs
are associated with both cognitive and meta-cognitive aspects
of memory retrieval. Examining this question is important,
as information about cognitive and meta-cognitive indices of

memory performance—extracted from speech in real time—
may be used to effectively inform models of memory retrieval
and improve adaptive learning systems.

Methods
A total of 40 participants studied 30 Lithuanian-English vo-
cabulary items. The first presentation of an item involved the
visual presentation of both Lithuanian cue and the visual pre-
sentation of the English translation. Subsequent presentations
of the item just showed the visual Lithuanian cue, and the par-
ticipant was asked to utter the English translation. After this
response was recorded, the participant was asked to rate their
subjective confidence in the accuracy of the response using a
slider-response scale, followed by corrective feedback. Par-
ticipants cycled through the total list 4 times. At the start
of a new cycle, the 30 items where split in to subsets of the
first 15 and last 15 items, and both subsets where were shuf-
fled. Speech features were extracted from the recorded data
after the experiment, and all speech features were standard-
ized within participants.

Figure 1: Structural equation models showing alternative possi-
ble relationships between latent factors memory strength and meta-
cognitive beliefs as measured by accuracy, response times, confi-
dence ratings, and PSFs. A shows the hypothesised model, B and C
are alternative models.

To examine the relationship between PSFs and cognitive
and meta-cognitive aspects of memory retrieval, we con-
trasted a hypothesized model to two alternative, compet-
ing models using structural equation modeling (Ullman &
Bentler, 2012, (SEM)). All three models assume a relation-
ship between latent variables memory strength and a learn-
ers’ meta-cognitive beliefs about performance, with memory

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

279



−1

0

1

0 5 10 15
Speech segment

In
te

ns
ity

 (
z)

Accuracy

Incorrect

Correct

A

−1

0

1

0 5 10 15
Speech segment

P
itc

h 
(z

)

Confidence

Low

High

B

−1

0

1

Low High
Confidence

S
pe

ak
in

g 
S

pe
ed

 (
z)

C

Figure 2: PSFs as a signature of memory retrieval performance. A
shows that the average loudness over spoken retrieval attempts was
higher for correct than for incorrect responses. B shows that average
pitch slopes were higher for low versus high confidence responses,
and C shows that speaking speed was lower for low than for high
confidence responses. Shaded area’s represent 95% confidence in-
tervals.

strength measured by accuracy (ACC) and response times
(RT), and meta-cognitive beliefs measured by subjective con-
fidence judgements (CONF; see Figure 1). The hypoth-
esized SEM is shown in Figure 1A, with two alternative
models shown in Figure 1B and 1C. In the hypothesized
model (A), in line with earlier research, meta-cognitive be-
liefs are measured by intonation and speaking speed, whereas
memory strength is measured by loudness. The alternative
models reflect two different underlying relationships: In the
first alternative model (B), all PSFs directly reflect memory
strength, and not meta-cognitive beliefs. In the second alter-
native model (C), all PSFs only indirectly measure memory
strength, via a speaker’s meta-cognitive beliefs about memory
performance. We used Vuong’s likelihood ratio test (Merkle,
You, & Preacher, 2016) to compare the three models.

Results
The correctness of the responses was determined by Google’s
speech-to-text API, yielding sufficiently high transcription
accuracy for the subsequent analyses. Figure 2A shows the
average standardized loudness (intensity) over the duration
of each utterance, for both correct and incorrect spoken re-
trieval attempts. Responses were, on average, louder for cor-
rect compared to incorrect responses. Figure 2B shows the
average standardized pitch, separated for high subjective con-
fidence scores (confidence scores above average for that par-
ticipant), and low subjective confidence scores (below aver-
age for that participant). The figure shows a less negative
averaged pitch slope for responses with low confidence than
for responses with high confidence. Finally, Figure 2C shows
that the average standardized speaking speed for high confi-
dence retrieval attempts was higher than the average standard-
ized speaking speed for low confidence retrieval attempts.
These results underline and extend earlier findings, (Goupil &
Aucouturier, 2021) and (Wilschut et al., 2022) by demonstrat-
ing that both cognitive (accuracy) and meta-cognitive (confi-
dence) markers of memory performance are present in spoken
word learning.

To compare the fit of the three SEM models outlined above,
we used Vuong’s likelihood ratio test. The hypothesised SEM
model (A) fits the experimental data significantly better than
both alternative models B and C (z = 7.177, p < 0.001; z =
2.980, p = 0.001, respectively). This supports the idea that
meta-cognitive beliefs about memory retrieval are captured
in different PSFs than the objective accuracy of a response.

Conclusion
This study examined which cognitive and meta-cognitive
proxies of memory strength are present in the speech sig-
nal during spoken retrieval attempts. Participants studied vo-
cabulary items using spoken retrieval practice. The results
of the study are twofold. First, we demonstrate that it is
possible to extract information about (1) the accuracy of a
response and (2) a speaker’s subjective confidence in a re-
sponse from the speech signal. Second, we show that meta-
cognitive beliefs about memory performance are measured
mainly by variations in pitch and speaking speed, whereas
the objective accuracy of a response is mainly measured by
its loudness. The results of this study have theoretical and
practical relevance. They contribute to a better understand-
ing of the relationship between prosodic speech variations
and (meta)memory processes and could facilitate the develop-
ment of speech analyses as a new tool to explore open ques-
tions in learning research (e.g., about a learner’s confidence in
their responses. Second, as they demonstrate that the speech
signal contains relevant information about memory retrieval
performance, they may have important implications for the
further development of models of memory retrieval used in
adaptive learning systems. For example, extracting informa-
tion about a speaker’s confidence from the speech signal in
real time may allow for improvement of predictions of future
retrieval success—without the learner having to make explicit
confidence judgments after each learning trial.

References
Goupil, L., & Aucouturier, J.-J. (2021). Distinct signatures

of subjective confidence and objective accuracy in speech
prosody. Cognition, 212, 104661.

Lindsey, R. V., Shroyer, J. D., Pashler, H., & Mozer, M. C.
(2014). Improving students’ long-term knowledge reten-
tion through personalized review. Psychological science,
25(3), 639–647.

Merkle, E. C., You, D., & Preacher, K. J. (2016). Testing
nonnested structural equation models. Psychological Meth-
ods, 21(2), 151.

Ullman, J. B., & Bentler, P. M. (2012). Structural equation
modeling. Handbook of Psychology, Second Edition, 2.

Wilschut, T., Sense, F., Scharenborg, O., & van Rijn, H.
(2022). Beyond responding fast or slow: Improving cog-
nitive models of memory retrieval using prosodic speech
features. Paper presented at In-Person MathPsych/ICCM
2022, Via mathpsych.org/presentation/858.

Xu, Y. (2011). Speech prosody: A methodological review.
Journal of Speech Sciences, 1(1), 85–115.

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

280



Long Road Ahead: Lessons Learned from the (Soon to Be) 
Longest Running Cognitive Model 

Siyu Wu (sfw5621@psu.edu)1, Amir Bagherzadeh (abb6024@psu.edu)2,  
Frank E. Ritter (frank.ritter@psu.edu)1, and Farnaz Tehranchi (farnaz.tehranchi@psu.edu)3 

1 College of Information Sciences and Technology  
2 Department of Industrial and Manufacturing Engineering 

3  School of Engineering Design and Innovation 
Penn State, University Park, PA, 16802, USA 

Abstract 
We present a cognitive model that plays a video game of 
driving a bus for a long time. The model was built using the 
ACT-R cognitive architecture and an extension to support 
perceptual-motor knowledge of how to interact with the 
environment (VisiTor and ACT-R. Our extension includes 
bitmap-level eyes and robot hands. We ran the model for a 
long time, over 4 hours on the way from Tucson to Las 
Vegas. We employed a design approach based on the 
ADDIE model to create different knowledge representations 
and actions; the model’s predictions can be matched to some 
aspects of human behavior on the fine details regarding the 
number of course corrections and average speed and learning 
rate.  However, it does not exhibit the same level of fatigue 
as human behavior. This contrasts with the way humans typ-
ically perform such long tasks. This model shows that (a) 
perception opens up new interfaces and provides a very 
accessible testbed for examining further aspects of behavior 
and (b) adding components of human behavior that remain 
missing from ACT-R can now be included. 

Keywords: Cognition Computational Modeling; ACT-R; 
Driver Model 

Introduction 
Cognitive architectures can be used to develop cognitive 
models of various psychological phenomena and tasks 
(Newell, 1990). In addition, cognitive architectures afford 
procedures and structures that align with human behavior, 
such as reaction times, error rates, and fMRI results 
(Anderson, 2007; Laird, 2019). 

ACT-R is one kind of cognitive architecture realized 
as software, through which we can construct models that 
can store, retrieve, and process knowledge, as well as 
explain and predict performance (Anderson, 1996; Bothell, 
2017).  Modelers and researchers have used ACT-R to cre-
ate a variety of models, from models that only contain cog-
nition-level activities (e.g., Tower of Hanoi) to models that 
contain comprehensive perception and motor behaviors 
(e.g., Fleetwood & Byrne, 2002; Tehranchi & Ritter, 2018). 

In particular, ways to implement perceptual and motor 
behaviors can be classified into several categories based on 

how directly they interact with a task (Ritter et al., 2000). 
Perhaps the most commonly seen approach is models that 
interact with modified interfaces (e.g., Anderson & 
Douglass, 2001; Byrne et al., 2010).   

Another important approach is to have models interact 
with unmodified tasks that users can see, using simulated 
eyes and hands (e.g., Bagherzade & Tehranchi, 2022; 
Ritter et al., 2006). Previous studies used ACT-R to build 
cognitive models and compare the model behavior with 
human behavior, finding that ACT-R's model behavior at 
the cognition level is more consistent with human behavior 
than at the perceptual motor level (e.g., Ritter et al., 2006; 
Schwartz, Tehranchi, & Ritter, 2020). However, extending 
ACT-R to model further aspects of vision and motor 
behavior on uninstrumented interfaces can be an important 
future direction (Ritter et al., 2019; Laird, 2019; Pew & 
Mavor, 2007).  

For example, Schwartz et al., (2020) built a model 
using ACT-R in conjunction with an extended vision and 
motor management tool (JSegMan) to play Penn and 
Teller’s Desert Bus video game (e.g., https://desertbus.org/; 
Parkin, 2013). However, the model’s behavior shows dis-
crepancies with human behavior, and one of them is that 
the model can only run the bus for less than 20 minutes, 
which is a much shorter time than a human can. Table 1 
lists some of the discrepancies between their model and 
human behavior.  

Table 1. Limitations of the Schwartz et al. (2020) model. 

1. Did not start the simulation
2. Did not drive for more than 20 min.
3. Did not make the first turn around
4. Did not make the second turn around

(which might be different, after 16
hours of driving)

Our research expands upon the work of Schwartz et al. 
(2020) by using the previous ACT-R model and revising 
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its perceptual motor components to enable real-time con-
trol of a driving task. Our study presents a model that 
possesses two relatively novel capabilities for cognitive 
models: it can perform long-term tasks lasting up to 4 hours, 
and it can do so while interacting with an interface that was 
not specifically designed for models. Ultimately, the mod-
els will be able to play the video game Desert Bus for a 
much longer period of time, essentially, indefinitely.  

Using the ADDIE (Morrison et al., 2010) framework 
as our design approach, we improved the knowledge rep-
resentation and actions of the model. We also added a new 
function for the extended hand. Although the model suc-
cessfully completed the task longer, its behavior on this 
task revealed limitations in the ACT-R model, which we 
identify and attempt to address. 

Components and Theoretical Foundations 
We now explain our architecture and the perceptual inter-
face to interact with the interface.  We then describe the 
simulation that the model interacts with.   

The Architecture of Cognition 
ACT-R is a cognitive architecture and a theory of simulat-
ing and understanding human cognition (Anderson, 2007; 
Ritter, Tehranchi, & Oury, 2019). Its theory is embodied in 
the ACT-R software, through which we can construct mod-
els that can store, retrieve, and process knowledge, as well 
as explain and predict performance (Bothell, 2017).  

There are currently two kinds of knowledge represen-
tations in ACT-R, declarative and procedural knowledge. 
Declarative knowledge consists of chunks of memory (e.g., 
apple is a kind of fruit), while procedural knowledge per-
forms basic operations, moves data among buffers, and 
identifies the next instructions to be executed (e.g., to sub-
mit your answer, you have to click the submit bottom). 
When the model is driving a bus in a first-person perspec-
tive, these pieces of information will contain information 
such as what visual items presented to look at and what 
tasks to do next.  

ACT-R is not complete, like all models.  In this work 
we extend it to include new types of interaction knowledge 
and the capability to interact with all tasks that have a com-
puter interface that is represented with a screen and that can 
be interacted with a keyboard and a mouse.  

The Architecture of Interaction 
Models interact with the world through their visual and 
motor systems. The interaction includes processing visual 
items presented (visual systems), pressing keys, and mov-
ing and clicking the mouse (motor systems).   

Specifically, the visual system holds chunks of infor-
mation about an object's location in the "where" buffer and 
chunks of information about objects in the visual scene in 
the "what" buffer. A central production system can reason 
about and lead to behavior based on these chunks. For 

example, the driving model may move forward or steer 
based on the position data retrieved from the visual buffer 
(Ritter et al., 2019). 

Models can interact with the simulation, but the 
approach we will use is to use the screen’s bitmap directly 
to find objects. Motor output can be put on the USB bus 
and appear as if a user at the keyboard typed characters or 
moved the mouse. In Table 2, we list previous models’ his-
tory of interaction using this approach. 

Table 2: Previous models history of interaction. 

Name of 
model 

Interaction 
tool 

Reference 

Eyes and 
Hands 

ESegman (Tehranchi & Ritter, 
2017) 

Biased coin JSegman (Tehranchi & Ritter, 
2020) 

Spreadsheet JSegman (Tehranchi, 2020) 
Desert Bus 1 JSegman (Schwartz et al., 2020) 
Heads and 
Tails 

VisiTor (Bagherzadeh & 
Tehranchi, 2022) 

Desert Bus 2 VisiTor (this paper) 

VisiTor (Bagherzadeh & Tehranchi, 2022) is a Python 
software package stored on a public GitHub that has been 
developed to provide simulated hands and eyes. It is com-
prised of two types of functions—motor and visual.  The 
visual functions include “whatIsOnScreen”, which checks 
if certain visual patterns are present in the environment, 
"whereIs", which locates a pattern within a defined module, 
and "getMouseLocation", which retrieves the mouse's 
location.  The motor functions consist of "click", which 
imitates a single mouse click, "Keypress," which replicates 
the pressing a key, "moveCursorTo", which emulates 
mouse movement to a specific screen location, and 
"moveCursorToPattern", which replicates mouse move-
ment to a specific visual pattern. 

The Simulation 
Penn and Teller created the video game Desert Bus with 
the intention of making a statement about video games. The 
game is deliberately monotonous and lengthy, with the 
player driving a bus in real-time at a maximum speed of 45 
mph from Tucson, AZ to Las Vegas, NV.  Each leg takes 
at least eight hours, and the bus continuously drifts to the 
right. If the player swerves off the road, the engine will stall, 
and they will need to start over from Tucson. The game has 
no virtual passengers or other cars on the road. Once the 
player completes the eight-hour journey, the screen fades 
to black, and they return to the starting point to play again 
indefinitely. At night, the road is dark. Figure 1 provides a 
screenshot of the game available through Steam (there are 
other versions available now). 
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Figure 1: A Screenshot of the driver’s view at 
approximately 10 min. into the game, oversteered. 

This game offers the player a first-person view as they 
carry out tasks, and the surroundings change dynamically 
based on their actions. The specific edition that we use was 
created by Dinosaur Games and released by Gearbox 
Software, based on the unreleased "Smoke and Mirrors" 
Sega CD game. The game's driving environment, Desert 
Bus, was obtained from Steam 
(https://store.steampowered.com/app/638110/Desert_Bus
_VR/) and can be downloaded for free on Windows 
machines. There were no alterations made to the game to 
support the model. 

Desert Bus Model 
To extend the amount of time the models could drive the 
bus, we created a more sophisticated model than Schwartz 
et al. (2020). We also explain the extensions to ACT-R’s 
perceptual-motor system (VisiTor) to support this model, 
and then explain the details of the model.   

Extending ACT-R 7 With VisiTor 
This model is built in the latest version of ACT-R, ACT-R 
7. It includes a Perceptual-Motor module (Bothell, 2011)
that provides models with direct access to interfaces built
in Macintosh Common Lisp (MCL). Therefore, by modi-
fying modules, researchers can refine ACT-R 7 models to
produce more complex behavior with neurologically com-
patible mechanisms. However, the current ACT-R PM
module enabled models to interact only with MCL inter-
faces built with a window type provided with ACT-R,
which limits their ability to interact with interfaces not
created in that tool, such as Desert Bus.

To allow ACT-R 7 to access uninstrumented interfaces, 
a potential solution is to use VisiTor (Bagherzadeh & 
Tehranchi, 2022). It can simulate the user's visual attention 
(vision) as well as their use of a mouse and keyboard 
(motor). VisiTor functions as a vision manager tool that 
receives motor commands from the ACT-R PM module 
and sends them to the environment through an Emacs/slime 
link. By using this tool, ACT-R can engage with any envi-
ronment while maintaining operations that are as similar as 

possible to those of the user. Additionally, VisiTor's capa-
bilities can be expanded by incorporating modules into the 
tool. 

ACT-R instructs VisiTor to scan the screen for partic-
ular pixel patterns that activate a production rule to initiate 
the program. Once VisiTor detects the start pattern, it sends 
a signal to ACT-R to begin running. Subsequently, ACT-R 
activates an "if-then" production rule that directs VisiTor 
to hold down the "W" key which starts the bus and accel-
erates when the start pattern is located in the visual envi-
ronment. ACT-R then requests VisiTor to use the simu-
lated hands to maintain pressure on the "W" key, effec-
tively holding the bus’s accelerator down. When VisiTor 
observes that the "right border of the road" objects deviate 
more than 200 pixels from the center of the road (approx. 
5 degrees for someone 1.5 feet from the display), it signals 
to execute the steering production rule that specifies to hold 
down the “W” and "A" key until the car returns to the cen-
ter of the road when the right edge of the road appears in 
the designated environment.  

To undertake this task, VisiTor required a few minor 
extensions. It needed to simplify the process of describing 
visual objects and incorporate a range of visual objects. 
Furthermore, it had to transfer motor commands with a var-
iable duration to maintain a keystroke. To support the novel 
task of driving a desert bus indefinitely, we implemented 
the "longpresskey" feature to VisiTor. This functionality 
enables the simulation of key-pressing actions, with the 
option of defining a duration of time to hold the key. (There 
are numerous other ways to implement this motor output, 
and we are also exploring those.) 

The Driving Task 
The tasks in Drive the Bus can be seen as occurring over 
three sections.  (a) The player starts the game and starts 
driving the bus. (b) The player drives the bus from Tucson 
to Las Vegas. (c) After arriving in Las Vegas, the bus 
appears again at the end of an eight-hour stretch of road 
and starts again in an endless way.  

This study reports the work of having the model do 
task (b), drive the bus from Tucson to Las Vegas. Tasks (a), 
and (c) will be reported later. 

Driver model 
Our objective was to redesign the model to make it do the 
long hours of driving. We employed the ADDIE (Morrison 
et al., 2010) framework for developing tutors (which we 
are familiar with) to create the model.  ADDIE is a popular 
instructional design framework that can be adapted to 
create cognitive computational models. The ADDIE model 
consists of five stages: analysis, design, development, 
implementation, and evaluation.  
In our analysis phase, the modeler gathers information 
about the target simulation environment, task objectives, 
and constraints. Based on the analysis, the modeler creates 
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a plan for the model in the design phase, which includes 
the overall structure, content, and development strategies.  

The development phase involves creating and refining 
the knowledge components and extended eyes and hands 
functions, such as declarative memories, production rules, 
visual patterns, and functions that will be utilized in 
VisiTor. Once the components analyzed are complete, the 
implementation phase involves delivering the model to the 
intended simulation environment.  

Finally, in the evaluation phase, the modeler collects 
feedback and data to assess the effectiveness of the model 
and make improvements as needed. Using the ADDIE 
framework can help ensure that the computational cogni-
tion model is designed with the task in mind and are effec-
tive in achieving the desired simulation outcomes. It also 
encourages more intermediate products and buy-in from 
stakeholders and reflection, similar to the risk-driven spiral 
model (Pew & Mavor, 2007)  

We consider two important pieces in the models’ 
design. The first is how to represent the necessary 
knowledge for the model to be able to perform the task, and 
the other is the steps the model will perform to complete 
the task.  

To start the model creation process, the task and sim-
ulation environment is analyzed by examining the game 
interface, 2 human subjects’ keystrokes, and interkey inter-
vals, as well as the visual cues and triggered actions. A list 
of declarative knowledge chunks representing visual cues 
and keypresses is formulated, such as "push the key to 
move forward," and a set of production rules representing 
the sequential actions that are triggered, such as "if the 
deviation of the bus exceeds 200 pixels, steer left". For 
example, we had two research assistants one Saturday 
afternoon literally drive the bus from Tucson to Las Vegas 
and attempt to record their behavior.   

Additionally, supportive functions in VisiTor are 
developed by including a long-key-press operator. Then, 
the model is tested in the simulation, and necessary imple-
mentations are made, such as redefining visual cues. 

Finally, the ACT-R output data are analyzed, and the 
model's performance is evaluated. The information 
collected from this evaluation is used to guide the iterative 
development of the model. 

Below we describe the model we have written for this 
task. The following is a detailed explanation of how the 
model control loop is built, as well as the model’s 
knowledge representations, actions to perform, and capa-
bilities and functions used via the interaction architecture 
and VisiTor. 

Control Loop 
Figure 2 shows a flowchart of the mechanism underlying 
the model's control loop. It uses the visual buffer and sim-
ulated eyes to attend to and harvest the two visual objects, 
and then use the “whereis” function of VisiTor to encode 

the screen-x locations of the two objects. The model will 
then subtract the value of screen-x, and decide to steer left 
if the deviation is over 200 pixels. 

Figure 2: The control loop of the model. 

Knowledge Representation 
The model has two types of chunks, and a total of 12 
declarative memories, which are working memories that 
tells the model to make the action based on the visual cues 
it saw. The first chunk is named “drive” and has two slots, 
“strategy” and “state”, with state having parameters as 
object items. Another chunk type is “encoding”, which has 
slots for the screen-x locations of the two visual cues and a 
deviation slot.  
Actions to Perform 
This model uses an explicit goal state to control the model. 
It contains 13 production rules. Table 3 list the high-level 
descriptions of the steps the model performs and the corre-
sponding production rules. 

Table 3 indicates that the model begins by investigat-
ing the simulation environment to locate and collect the 
visual cue necessary to initiate gameplay. It then utilizes 
the manual buffer to maintain forward motion by holding 
down the key. While doing so, the model continuously 
evaluates the environment to identify and gather visual 
cues related to the bus's location. It then breaks down the 
x-axis of the center line and bus location and computes the
difference between the two values. If this difference is
above 200 pixels, the model will hold down the key to turn
the bus left; otherwise, it will just continue moving forward.
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Table 3: High level description of the steps and the 
production rules that have been used in the model X. 

High level descriptions of 
steps 

Corresponding 
production rules 

1. When it detects a start
visual cue, attend it, and
press the “W” key using the
manual buffer

Go 
PerceiveEnvironment 
Move-attention 
Ahead 

2. Clear the visual buffer and
attend to the bus location

Recheck-environment 
Danger 
Finding-danger 
Move-attention-  
   danger 

3. Calculate the bus
deviation from the center
lane

Where-is-danger 
Where-is-center 
Calculate-deviation 

4. Use the manual buffer by
pressing “w” if the deviation
is less than 200 pixels

Consider-ahead 

5. Clear the manual buffer if
the deviation > 200 pixels.
Using the manual buffer,
align the bus by pressing the
key for 6 seconds.

Consider-steer 

6. After that, clear the visual
buffer, Repeat steps 1,2,3,4,5

Loop back to 
perceive-environment 

Demonstration Observations 
The experiment involved running a model to assess its per-
formance and collect ACT-R output data. The model was 
found to be capable of running for hours in the long term. 
The declarative memories and production rules that were 
developed proved to be successful in meeting the needs of 
the simulation. Additionally, a new feature was incorpo-
rated into VisiTor, enabling the bus to accelerate with “w” 
held down. 

However, if the driving speed exceeded the game set-
ting, the ACT-R perceptual motor module in conjunction 
with simulated eyes and hands may not be able to identify, 
harvest, and process the location deviation as quickly as 
required. 

As seen in Table 4, The ACT-R output data revealed 
that the model had an average time of 0.235 s to find a visu-
al cue using the Visicon in conjunction with simulated eyes, 
an average time of 0.05 s to move attention to the visual 
cue, and an average time of 0.2 s to decompose the visual 
cue location and place it into the imaginal buffer. The total 
decision-making time of the model in gauging the devia-
tion and making the next action decision of punching the 
keys was 0.9 s. This reflection time would be efficient for 
the model to identify danger cues and steer back to the road 

when the bus was driving at a maximum speed of 45 mph. 
One the order of minutes, this behavior can be compared to 
human behavior. On the order of hours we will see the 
model will outperform humans. This allows the model to 
accomplish a task in driving the bus that surpasses human 
capability, as it does not experience fatigue or mistakes 
(Gunzelmann, Moore, Salvucci, & Gluck, 2011). 

Table 4: The output script of the ACT-R model that 
shows buffers, fired productions, and VisiTor commands 

with time stamps. 
CL-USER>  (run 10)

0.000  GOAL SET-BUFFER-CHUNK GOAL GOER NIL 
0.000  VISION     SET-BUFFER-CHUNK VISUAL-LOCATION CHUNKO NIL 
0.050  PROCEDURAL     PRODUCTION-FIRED GO 
Ready to go 
0.100  PROCEDURAL     PRODUCTION-FIRED PERCEIVE-ENVIRONMENT 
0.150  PROCEDURAL     PRODUCTION-FIRED MOVE-ATTENTION 
0.150  VISION     SET-BUFFER-CHUNK VISUAL-LOCATION CHUNKO 
0.200  PROCEDURAL     PRODUCTION-FIRED AHEAD 
hiii 
continuouspress a key! 
0.200  MOTOR     PUNCH HAND RIGHT FINGER INDEX 
0.235  VISION     SET-BUFFER-CHUNK VISUAL CHUNK2 
0.250  PROCEDURAL     PRODUCTION-FIRED RECHECK-ENVIRONMENT 
0.285  VISION     SET-BUFFER-CHUNK VISUAL CHUNK3 
0.300  PROCEDURAL     PRODUCTION-FIRED DANGER 
0.350  PROCEDURAL     PRODUCTION-FIRED FINDING-DANGER 
0.350  VISION     SET-BUFFER-CHUNK VISUAL-LOCATION CHUNK! 
0.485  VISION     SET-BUFFER-CHUNK VISUAL CHUNK4 
0.535  PROCEDURAL     PRODUCTION-FIRED MOVE-ATTENTION-DANGER 
0.585  PROCEDURAL     PRODUCTION-FIRED WHEREISDANGER 
0.620  VISION     SET-BUFFER-CHUNK VISUAL CHUNKS 
0.185  IMAGINAL     SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL 
0.835  PROCEDURAL     PRODUCTION-FIRED WHEREISCENTER 
1.035  IMAGINAL     SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL 
1.085  PROCEDURAL     PRODUCTION-FIRED CALCULATE-DEVIATION 
1.135  PROCEDURAL     PRODUCTION-FIRED CONSIDER-STEER 

In comparison to the driving the bus model created by 
Schwartz et al. (2020), there was a significant improvement 
in the accuracy of identifying visual cues in our model, as 
well as the ability to drive for a longer period of time. This 
model's better performance can be attributed to the follow-
ing reasons.   

To begin with, the ADDIE framework is a suitable 
choice for building the model for the current task because 
it helps in creating declarative memories, production rules, 
and control loop mechanism that closely resemble human 
driving behavior. It is important to distinguish between 
human driving behavior and human behavior. Human driv-
ing behavior pertains to how drivers use visual cues, such 
as the center line and bus location, to gauge deviation and 
make steering decisions. Human behavior is also deter-
mined by other psychophysiological factors, such as 
fatigue and decreasing correction rate, which are not 
included in this model yet and will be discussed separately. 
In this model, a superior control mechanism was imple-
mented that replicates human driving behavior and allows 
for better long-term bus driving performance.  

Furthermore, the integration of VisiTor into ACT-R 7 
leads to enhanced coordination between perceptual and 
motor behavior. The entire process of ACT-R sending a 
request to prompt VisiTor to search the screen for the bus 
location visual cue, extract the location of the bus and cen-
ter line, calculate the deviation, and decide on the next 
action can be completed in just 0.9 s. This time represents 
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a significant improvement compared to the previous model, 
where JSegman was used in combination with ACT-R 6. 
According to Schwartz et al. (2020), the average time 
required to just match the visual template was already 
6.01 s. Additionally, VisiTor's extensibility allows for the 
creation of new functions that support the specific require-
ments of the task, thereby considerably enhancing the mod-
el's performance. The long key press function, which is 
incorporated in this model, effectively enables the model 
to complete long-term tasks successfully by preventing 
ACT-R key presses from being interpreted as immediate 
press and release actions.   

Nevertheless, a key factor that affects the model's per-
formance is its limited ability to simulate activities in a 
dynamically changing environment. During gameplay, the 
environment undergoes dynamic changes, and at the near 
four-hour mark, the game environment shifts from a day-
time mode to a nighttime mode, accompanied by a com-
plete alteration in the visual pattern of the visual display. 
Although the PM module with simulated eyes can adapt to 
minor environmental changes, such as changes in road 
position or decorations along the roadside, the Visicon and 
VisiTor are not yet equipped to recognize an entirely dif-
ferent environment. 

Discussion and Conclusion 
The aim of this study was to employ ACT-R 7.X and its 
architecture of interaction to successfully complete a 
demanding cognitive modeling task of driving. The aver-
age run time for the model was one hour, with the longest 
run time lasting four hours until the gaming environment 
transitioned into night mode.  
        Instead of altering the game environment to accom-
modate ACT-R's MCL interfaces, we utilized the percep-
tual motor module of ACT-R 7 along with the vision and 
motor management software VisiTor to enable the model 
to play on the uninstrumented game interface.  

We captured the model's gameplay and examined the 
ACT-R output, which demonstrated that the coordination 

between motor and vision using ACT-R 7 and VisiTor was 
highly effective, taking less than one second to steer the 
bus back into the safe range of the road. This was only fea-
sible if the car's speed was not more than 45 mph (The 
speed limit in this game is 45 mph). We anticipate that if 
the bus speed is higher, then a shorter transport signal will 
be necessary for communication between ACT-R and 
VisiTor. 

We have found that the superior human behavior 
model has implied limitations in the ACT-R perceptual-
motor modules.  

There are also limitations in the central modules (pro-
duction rules). These limitations include the lack of con-
sideration for physiological factors such as fatigue or 
decreasing correction rates over time. In a study by 
Schwartz et al. (2020), it was suggested that incorporating 
physiology with ACT-R could make the model more real-
istic. We agree with this point and plan to add that in our 
future work. This new approach can help with testing the 
compound effects of fatigue and learning rate on our model. 

ACT-R + VisiTor playing Drive the Bus provides an 
excellent platform for studying the interaction of vision, 
attention, errors, and fatigue. It is a more naturalistic task 
than the PsychoMotor Vigilance task (PVT, Dinges & 
Powell, 1985).  We can now explore an existing fatigue 
model (Gunzelmann, Gross, Gluck, & Dinges, 2009), and 
examine fatigued driving (e.g., Gunzelmann, Moore, 
Salvucci, & Gluck, 2011), visual attention, the need for 
micuration, and modeling the details of interaction.  

We could gain understanding about how long-term 
and repetitive physical activities, like driving a bus for an 
extended period, affect human performance. It remains to 
be seen if this task is more like the PVT or like motor con-
trol (Bolkhovsky, Ritter, Chon, Qin, 2018). This task 
would also allow us to determine whether psychological 
factors could potentially harm or the increasing of learning 
rate due to the practice would enhance driving skills. We 
could also introduce additional variables, such as caffeine, 
to examine their combined impact.  
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Abstract
Understanding the fundamental cognitive process of
decision-making is crucial for developing appropriate
cognitive models. Two main planning-based approaches have
been used to investigate learning in complex decision-making
tasks: one using model-based (MB) reinforcement learning,
an extension of reinforcement learning that includes
high-level planning, and the other using instance-based
learning (IBL), based on episodic memories of previous
interactions. In this paper, we attempt to reconcile the two
approaches by using ACT-R to implement a cognitively
plausible substrate for the planning component of MB-RL.
We review the MF and MB learning approaches in
reinforcement learning and discuss their roles in
decision-making strategies. Within the ACT-R framework, we
propose a promising model that incorporates memory
retrieval in MB planning, offering a cognitively plausible
approach to the planning component of MB-RL. Our
combined model successfully replicates well-known findings
in the literature, including developmental reliance on memory
and response time variations between common and rare
options. Finally, our model naturally accounts for the balance
of memory and RL depending on the relative cost of each. We
argue for the superiority of our cognitive model and address
the significance of this study for understanding the brain and
computational processes underpinning decision-making
strategies, as well as for applications in artificial intelligence
and decision-making modeling.

Keywords: Decision-making, Reinforcement Learning,
Model-Based Learning, Instance-Based Learning, Cognitive
architecture

Introduction
Decision making is a fundamental ability of human

cognition. Extensive research has been conducted on the
mechanisms of experiential decision making in humans and
animals. The predominant view is that, under simple
circumstances, decisions are well characterized by
model-free (MF) reinforcement learning (RL). In MF RL,
the decision maker is an agent, and the available options are
actions that the agent can apply to an environment. The
agent typically uses temporal difference (TD) methods, such
as Q-learning, to improve the estimates of future rewards
associated with each action.
The MF paradigm has been extremely successful at

explaining both behavioral and neural data in animal and
human experiments (Niv, 2009). Most decisions, however,
are not made within the simplified boundaries of laboratory
experiments. This is particularly true in the case of humans,
who interact with complex, non-stationary environments.
To deal with more complex situations, researchers have

borrowed the concept of model-based RL (MBRL), an
extension of RL that includes additional memory structures
to explicitly store changes in the environment following an

action from the agent. The MB approach involves the
construction and use of an internal representation of the
environment, which allows for flexible and goal-directed
decision-making. MBRL is a heterogeneous collection of
methods, some of which include explicit replay of previous
experiences (Sutton, 1991) while others are purely planning
algorithms (Glascher et al, 2008).

Cognitive Substrates of MB
Despite much research, it is still unclear what cognitive

processes underlie MB learning; some authors refer to it as
"planning," while others link it to memory. Additionally,
there is evidence that the MB and MF strategies are
frequently combined, but there are no established standards
for figuring out the best combination of these two
approaches, especially in the context of cognitive literature.
Doll et al. (2015) provide critical insights into the

interplay between MB and MF reinforcement learning
approaches in decision-making strategies. They pointed out
that the brain's multiple memory systems, specifically the
declarative and procedural memory systems, serve as crucial
substrates for distinct decision systems. Declarative
memory, which involves conscious recollection of facts and
events, is associated with MB learning as it enables the
construction of mental models of the environment and the
planning of actions based on simulating potential action
outcomes. In contrast, procedural memory, which entails
learning habits and skills, is linked to MF learning, where
decisions are guided by learned associations between
actions and outcomes. Doll et al.'s findings further provide
insights into how these two memory systems are dependent
on each other in learning decision-making strategies,
highlighting the complex and adaptive nature of human
cognition.

Instance-Based Learning
When dealing with decisions in complex tasks, a radical

alternative to MB is the hypothesis that humans only rely on
memories of previous interactions. Perhaps the most
promising part of this framework is the Instance-Based
Learning (IBL) theory. Gonzalez, Lerch, and Lebiere (2003)
pioneered this line of inquiry with their IBL framework,
which integrates elements of both MB and MF learning
approaches. They present a cognitive model within ACT-R
to explain how people make decisions in dynamic
environments. They proposed that humans memorize
specific instances of their interactions, such as the action
taken and the associated outcomes, and use these memories
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to inform future decisions. When confronted with a new
decision, individuals retrieve the most typical instance from
memory and use this instance’s actions and outcomes to
guide their current choice. This process is influenced by the
perceived utility of past actions and the similarity between
the current situation and stored instances. As individuals
accumulate more experiences from the environment, their
decision-making processes become more refined and better
aligned with the changing environment.
MF RL, IBL both rely on associations between actions

and outcomes without explicitly constructing a model of the
environment. On the other hand, IBL can also be connected
to MB in RL, particularly in the context of the ACT-R
framework. In MB learning, agents plan actions by
simulating the consequences of different choices. While IBL
does not explicitly build a complete model of the
environment, it relies on memory retrieval and the
evaluation of previously encountered situations to inform
decision-making. This aspect of IBL aligns with the
cognitive processes in the MB approach, such as working
memory and planning. Unlike MBRL, IBL makes specific
predictions about which cognitive and neural resources are
used. For instance, while RL traditionally forecasts reward
processing and relies on procedural brain networks, IBL
explicitly associates with memory circuits."

Present Study
In this paper, we aim to integrate the classical approach to

MB with the insights gathered from the IBL use of
long-term memory to guide decision-making. We propose
an integrated cognitive model that relies on declarative
long-term memory to implement MB learning, and uses
ACT-R’s declarative model to give cognitively plausible
implementation of these operations. We argue for the
superiority of our cognitive model over the traditional RL
model and discuss the implications of this research for
understanding the neural and computational mechanisms
related to cost-benefit evaluation underlying
decision-making strategies, as well as for applications in
areas such as artificial intelligence and decision-making
modeling.

Methods

Dataset
Nussenbaum et al. (2020) conducted an online experiment

using the Markov two-stage task paradigm to replicate the
main findings from Potter et al. (2017) and Decker et al.
(2016) that MB learning increased as age increased. The
de-identified behavioral data is obtained from the Open
Science Framework by Nussenbaum et al., 2021:
https://osf.io/we89v/. A total of 151 participants (fifty
children; fifty adolescents, and fifty-one adults) were
included in this study. The computational model in ACT-R
was developed using a similar paradigm, but with abstract
stimuli (A1, B1, B2, etc.) rather than a spaceship and alien
stimuli. All participants were healthy adults with no

neurodevelopmental or neuropsychiatric disorders. The
experimental protocol, subject recruitment procedures, and
consent to share de-identified information were approved by
the Institutional Review Board at Washington University.

The Two-Stage Task
In the Markov two-stage task (Figure 1), participants are

presented with a series of trial screens, referred to as "states"
and indicated as A, B, and C. Each state contains two
options, indicated as A1 and A2; B1 and B2; C1 and C2.
Participants are asked to select one of the two options using
the keyboard left or right. They always start in state A and,
depending on the option they choose, will transition to state
B or C. Once arriving at the end state D, participants would
receive feedback informing whether they obtained a reward
or not. Their choices in the second state determine their
chance of receiving a reward. As the experiment progresses,
participants learn the probabilistic nature of the transitions
and rewards, updating their decision-making strategies
accordingly. This learning process is one of the key aspects
that researchers examine in the two-stage Markov decision
task.

Fig 1: Markov Two-Stage Task Paradigm. Black arrows indicate
the state transition probability, the thick line is 70% and the thin
line is 30%. One of the final states is associated with a reward, and
the probability of receiving a reward changes slowly across the
experiment following a random walk with a mean of 0 and a
standard deviation of 0.025.

The probability of a state transition from selecting one
option in the first state to a specific second-stage state is
predetermined, according to 70% of the time, and this state
transition probability remained consistent throughout the
entire experiment. For example, selecting A1 has a 70%
chance of resulting in the B state, referred to as the common
state frequency, and a 30% chance of resulting in the C
state, referred to as the rare state frequency. Similarly,
selecting A2 will have a 70% chance of resulting in the C
state (common) and a 30% chance of resulting in the B state
(rare). To promote continuous learning, the probability of
receiving a reward for selecting the sequence of options
slowly changes on each trial following Gaussian random
walks (M = 0, SD = 0.025).
The task consists of two phases: a learning phase and a

choice phase. Each stage is divided into three blocks. In the
first two blocks of the learning phase (N = 20), participants
are free to explore the transition probability between states
by randomly selecting one of the two options, but no reward
is given in the end. After a short break, participants are able
to collect rewards at the end state with a slowly changing
probability. This block is designed to allow participants to
potentially learn the relative value of a sequence of choices
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by experiencing the outcomes. The first two blocks of the
choice phase are identical to the learning phase, but the last
reward block consists of N = 201 trials. Participants must
rely on the information they learned during the learning
phase to make their selections.

MB and MF Patterns in the Two Stage Task
The two-stage task was developed to separate the

contributions of MB and MF learning to decision-making.
To understand how this is possible, one must consider two
factors. The first is that, after feedback is delivered, the
values of the actions that led to it would be updated
accordingly. This means that the probability of repeating the
same initial action in the same trial, indicated as the Stay
Probability, would change. The second consideration is that
MF and MB would update the values of the actions in
different, and sometimes opposite ways. MF learning is
blind to the circumstances that lead to the reward and would
simply increase the value of the preceding actions. The MB
learning system, by contrast, has access to information
about the state transition probabilities and can update the
values of actions based on them.
Specifically, if a reward was delivered after a first-stage

action that led to a rare state transition (that is, one with a
30% chance of happening), the MB system would prefer to
increase the value of the opposite action, since that has a
greater likelihood of leading to the rewarded state. This, in
turn, would lead to a decrease, rather than an increase, in the
stay probability. In other words, while the stay probability is
only affected by reward in MF, the stay probability shows
an interaction of reward and transition frequency in MB,
with the reward having opposite effects on actions that lead
to common or rare transitions. Figure 2 illustrates the
prototypical behavior of three RL models in this task.
Multiple empirical studies revealed that human

participants demonstrated a mixture of MF and MB that
combined elements of both MF and MB strategies (Gläscher
et al., 2008; Daw et al., 2011; Otto et al., 2013). By
analyzing the probability of staying with the same first-stage
option as a function of reward and transition frequency,
researchers can infer the extent to which participants rely on
MF, MB, or hybrid learning strategies in the two-stage task.

Fig 2. The canonical RL prediction of the probability of staying
as a function of reward and transition frequency. (Left)
Model-Free (Middle) Model-Based (Right) Hybrid

Computational Models
In the next section, we will illustrate two different model

implementations capable of performing this task. The first is
a “pure” RL model that combines MF and MB components

and includes no specific substrate for the MB component.
This is the de-facto implementation that is commonly used
across multiple research papers that have used this task
(Daw et al., 2011; Doll et al., 2015; Kool et al., 2016;
Gershman & Daw, 2017; Weissengruber et al., 2019). The
second is a hybrid model that integrates ACT-R's declarative
model within the MB component. The latter implementation
aims to develop a more cognitively plausible and robust
framework that can better simulate human cognitive
processes in a dynamic and noisy environment.

Pure RL Model
MF Component. The central idea of MF learning is to

gradually update the value of actions by calculating the
difference between expected and actual rewards gained from
the environment. The expected value of state-action is
calculated based on the SARSA temporal difference
algorithm using Eq 1 (Daw et al., 2011), where 𝛼 denotes
the learning rate, r denotes the immediate reward received
after taking action a in state s; the discount factor, denoted
by gamma (γ), determines the importance of future rewards
compared to immediate rewards; and (s, a) refers to
state-action at current state, (s'，a') refers to state-action at
the next state.

𝑄(𝑠',  𝑎') = 𝑄(𝑠,  𝑎) +  αδ
𝑖, 𝑡

Where (1)δ
𝑖, 𝑡

=  𝑟 +  γ𝑄(𝑠'
𝑡
,  𝑎'

𝑡
) −  𝑄(𝑠

𝑡
,  𝑎

𝑡
)]

MB Component. Unlike MF, which learns by
trial-and-error, MB Learning is based on the idea that agents
could create a mental representation of the environment and
plan accordingly. Here, "planning" means simulating
various future trajectories. This is achieved by predicting the
consequences of possible actions and then using these
predictions to select optimal actions.
The Q-value in MBRL is calculated and updated based on

the Bellman equation (Eq 2). Similarly, the parameter r
denotes the immediate reward received after taking action in
state s; the discount factor, denoted by gamma (γ),
determines the importance of future rewards compared to
immediate rewards. is a sum over all possible nextΣ𝑠'
states, and max[Q] represents the maximum Q-value over
all possible actions a in the next state s'. P(s'|s,a) is the
transition probability that agents have knowledge about the
dynamics of the environment. In this formulation, the
transition probabilities are fixed (0.3/0.7) and directly
provided as part of the model’s knowledge
Using this equation, the Q values are gradually updated,

converging to the optimal Q which is the expected reward
for all states and all action pairs under the best policy.

(2)𝑄(𝑠,  𝑎) =  𝑟 + γ 
𝑠'

∑ 𝑃(𝑠' | 𝑠,  𝑎)⋅𝑚𝑎𝑥[𝑄(𝑠',  𝑎)] 

Combination of MF and MB Components. Empirical
findings suggest that human subjects tend to adopt hybrid
approaches rather than pure MF or MB learning (Daw et al.,
2011; Decker et al., 2016; Otto et al., 2013). They also
imply that the interaction between these learning strategies
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is crucial in determining decision-making behavior, with the
balance between the two being influenced by the task's state
and transition structures.
One common approach to combining MF and MB

learning approaches is to use the weighted sum of the MB
and MF value estimates to make decisions. A weight
parameter w determines the relative importance of the MB
and MF estimates. In these models, the agent starts by using
a MB strategy to plan its actions, but as it gathers more
information about the environment, it shifts towards a MF
strategy. This allows the agent to quickly adapt to changes
in the environment while still being able to plan its actions
efficiently.
In pure MF learning, the weight parameter is set to 0,

while in pure MB learning, it is set to 1. In a hybrid model,
the weight parameter can be set to a value between 0 and 1,
depending on the task and the available information. The
weight parameter can be learned through a process called
"weight adjustment," where the agent adjusts the weight
based on the performance of the current strategy. This
allows the agent to adapt to the changes in the environment
and find the optimal balance between exploration and
exploitation. However, the neurobiological meaning of this
parameter is less clear, especially from the perspective of
decision-making and its underlying cognitive processes.

Hybrid ACT-R RL Model
MF Component. The MF component of the hybrid

model is identical to the MF component of the pure RL
model. In turn, this component is also broadly consistent
with ACT-R’s procedural knowledge module, which also
uses RL to learn stimulus-response associations in the form
of procedural rules. Thus, we employed the SARSA MF
framework mentioned above as a substitute for ACT-R's
procedural module.
MB Component. RL-MB learning is creating a model of

the environment, which allows the agent to plan its actions
by simulating the consequences of different choices.
Critically, it depends on the knowledge about transition
probability, that is, how likely it is to move from the initial
state to the next, given a particular action. In the pure RL
model, these probabilities are directly provided to the
model. However, this assumption may not fully capture the
nature of learning and cognitive processes in the task. This
knowledge is not simply given, but actively updated and
accumulated by agents from the environment through their
interactions with the external world.
Thus, in the hybrid model, the MB component encodes its

knowledge of the environment as episodic long-term
memories. Much like in the IBL approach, the model
retrieves and inspects these traces as part of its planning
process. The model’s long-term memory was developed
using PyACTUp (Morrison, 2019), a Python
implementation of ACT-R’s declarative system. We argue
that our ACT-R model performs as well as RL models in
simulating canonical MB behavioral patterns, and even
more importantly, it provides a plausible cognitive

framework to understand how our brain represents the
planning process.
Specifically, as the agent observes the two options, a

two-step process of planning begins. The agent tends to
retrieve the most likely (most frequent and recent)
subsequent states given two possible actions (‘f’ and ‘k’)
from the declarative memories. Based on the retrieved next
state s’, the MB Q value of two possible state 2 actions is
calculated based on the Eq 3.

(3)𝑄(𝑠,  𝑎) = 𝑃(𝑠'
1
|𝑠,  𝑎)𝑚𝑎𝑥[𝑄(𝑠'

1
,  𝑎)] + 𝑃(𝑠'

2
|𝑠,  𝑎)𝑚𝑎𝑥[𝑄(𝑠'

2
,  𝑎)]  

Additionally, unlike RL, our declarative model estimates
the transition frequency based on prior memories of trials. It
samples the memories about state transitions and calculates
the probability of state1-state2 given an action. That is,
among the retrieved chunk samples, the estimated transition
probability, P(s'|s, a), is calculated by the number of first
state (A) to second state (e.g. B or C) divided by the total
number of sampled memories given a particular action a.
Here, the number of sampling times is fixed at an arbitrary
number of 20. Although we did not investigate further how
the number of sampling counts affects decision-making, it is
reasonable to hypothesize that a larger n suggests a more
accurate assessment of transition frequency and may
indicate a greater effort in cognitive control planning or an
individual’s greater working memory (WM) capacity. After
estimating P(s'|s, a), the Q-values are computed as in Eq 3.
This method has a significant advantage in approximating

realistic transition frequencies for decision-making
processes because it uses declarative memory to make
educated estimates about the frequency of state-action pairs.
In contrast to conventional MBRL algorithms, which
typically assume a fixed 0.3/0.7 transition frequency as the
basis for Q-value calculations, our ACT-R model
incorporating declarative memory provides a more realistic
representation of human cognitive processes. Because it is
built upon a reliable model of memory, the estimates made
by the agent reflect some of the distortions and fallacies of
humans.
At the end of each trial, the agent forms a new episodic

memory of the interaction, containing the states and actions
taken. A new chunk, consisting of 5 slots: ‘stage’,
‘current_state’, ‘next_state’, ‘response’, and ‘reward’ is
created and merged into existing Long-Term memory.
This two-step planning at stage 1 allows the agent to

retrieve the most rewarding action sequence based on prior
learning experience, taking reward and state transition
frequency into account. The probability of a sequence being
retrieved depends on the corresponding memory’s base level
activation Bi, which is computed as shown in Eq. 4:

where (4)𝐴
𝑖 

=  𝐵
𝑖
 +  ε 𝐵

𝑖
= 𝑙𝑛(

𝑗 =1

𝑛

∑ 𝑡
𝑗
−𝑑)

This equation describes the activation of chunks
calculated with a base-level learning function (Bi) and
random noise (દ), which reflects the recency of previous
retrievals. The base level activation Bi captures the history of
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use of a particular chunk, taking into account both the
frequency and the recency of a particular memory i being
retrieved at time t. The calculation is based on the idea of
time decay, where more recent uses contribute more to
activation than less recent ones. The decay rate is an
individual-level parameter (Sense et al 2016) that
determines how quickly the contribution of past memories
diminishes over time. A higher decay rate leads to more
rapid forgetting, emphasizing the role of recent interactions,
while a lower decay rate allows the influence of older
interactions to persist longer.
In addition to base-level activation, noise plays a pivotal

role in the ACT-R’s declarative memory framework. Noise,
denoted by દ, adds a level of randomness to the activation
formula, which lets brain processes be different and hard to
predict. This lets the model better represent the wide range
of actions seen in actual data. When noise is added, chunks
with less activity are more likely to be chosen. This
encourages exploration and could lead to the discovery of
better tactics.
Moreover, ACT-R provides a way to connect a memory’s

activation with the time it takes to remember it, thus making
predictions in the response time domain as well as the
accuracy domain (shown in Eq 5), where Ai represents the
activation of the memory item, and F is the latency factor
parameter in ACT-R (:lf) reflecting the speed of retrieving
processes. A fixed cognitive temporal cost is applied in
addition to memory retrieval time. This model thus
encapsulates the dynamics of memory retrieval, indicating
that items with higher activation levels (i.e., more frequently
or recently accessed) tend to be retrieved more quickly.

(5)𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒
𝑖

= 𝐹𝑒
−𝐴

𝑖 +  𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡
The state2 planning is simpler than state1, since it consists

of only one-step planning, with more restricted information.
After attending to and encoding the state2 stimuli into the
working memory, the agent sends a retrieval request asking
for a state2-stimulus chunk that matches the state1 slot
value. For example, if an agent chose to leave at state 1 and
end up at state B. The state2 plan is searching any chunk
that contains the current state and is equal to B. If the
retrieved memory has a reward greater than 0, then choose
this action as the state 2 response, otherwise, choose the
alternative action.
Similarly, the most frequent and recent state2-stimulus is

retrieved based on the activation calculation, allowing the
agent to choose the most available memories (s', a') by
observing action-outcome associations from prior trials. It’s
worth pointing out that our model doesn’t depend on the
blending mechanism typically associated with the IBL
module. Instead, it leverages more general memory
mechanisms, similar to those found in ACT-R's declarative
system.

Optimization with Maximum Log-Likelihood
Both of the models were fitted to each individual using

maximum log-likelihood approach, which is a standard

method used to estimate individual subjects' data in
cognitive modeling research (Yang & Stocco 2021). This
method involves calculating the log-likelihood function,
which measures the goodness of fit between the observed
data and the hypothesized probability distribution. Using the
softmax choice equation, as shown in Eq 6, we calculated
the probability of selecting a specific response (either left or
right) given the model parameters to estimate individual
subjects' data using the log-likelihood approach.

(6)𝑃 (𝑎 | 𝑠) = 𝑒β⋅𝑄(𝑠, 𝑎)

𝑎'
∑𝑒β⋅𝑄(𝑠', 𝑎')

We adopted a simpler parameter estimation pipeline, as in
Decker et al. 2016; Potter et al. 2017; Nussenbaum et al.,
2021. Three Q-learning parameters (ɑ, β and , w), and twoλ
memory relevant parameters (temperature and decay) are fit
to each individual subject. ɑ is the learning rate in
Q-Learning, β is the free-parameter fit to each subject’s
choice that scales the Q-value. is the reward discountλ
parameter. Higher values of w indicate greater recruitment
of a MF, while higher values of w indicate more use of a
MB learning strategy. Temperature and decay parameters
are two memory relevant parameters that describe how
noisy a memory is, and how fast a memory is forgotten
across time.
Then, the log-likelihood function is calculated for each

individual subject using the observed data. Finally, the
maximum likelihood estimation technique is used to
estimate the parameters of the distribution that best fit the
individual subject's data.
To estimate the optimized parameter for each individual

subject, we computed the probability of the two states'
responses and calculated the log-likelihood of each subject’s
performance using the SciPy library (Virtanen et al., 2020).
This process is repeated for each subject 10 times in the
sample, resulting in estimates of individual subjects' data
based on the highest log-likelihood value among 10
optimizations.

Results
As shown in Figure 3, our ACT-R hybrid model is able to

replicate the canonical response switch patterns in MF, MB
and hybrid in RL. Furthermore, our ACT-R model is
capable of predicting response time, whereas most RL
models fail to do so.

Fig 3. ACT-R simulation: The averaged probability of stay by
previous reward and transition frequency, with various degrees
of MB Learning (w = 0, 0.5, 1). = .8, = 5, = 0.6,α β λ
temperature = 0.2, decay = 0.5, and each agent simulated 201 trials
100 times. The blue bar denotes common transitions of previous
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trials, while the red bar denotes rare transitions of previous trials;
x-axis represents the outcome of previous trial, reward or
non-reward; y-axis is the simulated mean stay probability; error
bar represents the standard error of means.

When it comes to parameter estimation, our ACT-R
model largely agrees with the RL models. We found a
significant positive correlation between RL and ACT-R
Hybrid optimized parameters (α: r = 0.24, p = 0.0025; β: r =
0.27, p < 0.001, λ: r = 0.31, p < 0.001) and, moreover, the
maximum log-likelihood value is positively correlated (r =
0.86, p < 0.001) between two models.
We also examined the effect of the decay and temperature

parameters of the ACT-R Hybrid Model on the probability
of staying. Figure 4 demonstrates how the mean probability
of staying changes as a function of decay, and temperature.
As we expect, with lower decay, the agent is better at
recalling the state-action association, and in turn, such an
accurate estimation of state-action frequency encourages the
usage of the MB learning strategy. On the other hand, high
decay suggests worse memory recall, leaving agents no
choice but to rely on the MF learning strategy.

Effects of Long-Term Memory on Decision Times
According to empirical data from Nussenbaum et al.,

(2020), it takes longer for participants to respond if a
previous trial is rarer than common, as shown in Figure 5
(Left). Figure 5(Right) illustrates the simulated mean
response time of common vs. rare trials in the hybrid model.
This result is explained by the memory mechanisms in
ACT-R, whereby the memory of a more common event has
higher activation, which makes it easier and faster to recall.
In contrast, this effect is not immediately predicted by the
classic, pure RL model, primarily because RL doesn’t
incorporate any mechanisms to forecast response times.

Fig 4. The simulated (ACT-R Hybrid Model) mean probability
of stay as a function of two parameters: temperature (left) and
decay (right). The temperature parameter ranges from 0.01 to
1.75, simulating 200 trials 100 times. The decay parameter ranges
from 0.01 to 1.4, simulating 200 trials 100 times. Blue denotes
previous common transition frequency trials, and red color denotes
rare ones. The shades of color denote parameter magnitude, where
small value is in shallow shade, and large value in dark shade.
x-axis represents the outcome of previous trial, reward or
non-reward; y-axis is the simulated mean stay probability; error
bar represents the standard error of means.

Fig 5. (Left) Empirical data of response time (ms) by transition
type for three age groups from Nussenbaum et al., (2020).
(Right) Simulated response time (ms) of ACT-R Hybrid Model
by state transition frequency. = .8, = 5, = 0.6, temperatureα β λ
= 0.2, decay = 0.5, lf = 0.63 and simulated 201 trials 100 times.
The black line represents the standard error of the mean. Blue
denotes previous common transition frequency trials, and red color
denotes rare ones; y-axis is the simulated mean response time in
ms; error bar represents the standard error of means

Capturing Individual Developmental Differences
The individually-fitted parameters also provide insight

into the developmental data observed in Nussenbaum et al.
(2020). Specifically, the authors showed that the use of the
MB component increases with age. In the pure RL model,
this effect can only be explained by altering the weight
parameter according to age. When examining the individual
parameters of the hybrid models, however, we found a
significant negative correlation between the optimized
decay rate d (Eq 4) and the age of each subject (r = -0.21, p
< 0.01), as shown in Figure 6, suggesting that younger
subjects have a higher decay rate than older subjects. This is
in line with the development of cognitive abilities in
children, and provides an explanation for why, as people get
older, they tend to rely more on declarative memory (MB
strategy) in recreating a mental model of the environment.

Fig 6. The correlation of age and optimized memory relevant
parameters from the ACT-R Hybrid Model fit to each subject
(N = 151) is shown above. Each subject was optimized 10 times
with random initial parameter seeds. There is a negative correlation
between age and the memory decay parameter (r = -0.21, p <
0.01), but no correlation between age and temperature. X-axis
represents subject’s age, and y-axis denotes the optimized
parameter values for both temperature and decay, extracted from
ACT-R model

Discussion
In this paper, we have explored the cognitive

underpinnings of decision-making and learning in complex
environments, focusing on the interplay between
model-based (MB) and model-free (MF) reinforcement
learning (RL) strategies.
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The declarative framework in ACT-R provides a cognitive
representation of how individuals adapt to unstable
environments by leveraging memory sampling and
incorporating this inherent uncertainty into human
decision-making. We propose that MBRL is closely tied to
declarative memory, with individuals relying on memory for
previous episodic traces when making plans. To test this
idea, we implemented an ACT-R model that incorporates
declarative memory and procedural Q learning in the
decision-making process. Our results provide compelling
evidence for the relationship between memory resources and
the mixture of MB and MF strategies.
By establishing this connection between our results and

the developmental data from Nussenbaum et al. (2020), we
provide further evidence for the importance of declarative
memory in the decision-making process and highlight the
developmental changes that occur in the balance between
MB and MF strategies. These findings contribute to a more
comprehensive understanding of the cognitive foundations
of MBRL and the factors that influence the balance between
MB and MF strategies across different age groups.
Ultimately, this knowledge may inform the development of
age-appropriate interventions and strategies to improve
decision-making outcomes throughout the lifespan.
We offer a unique perspective on decision-making in

dynamic environments, incorporating elements of both the
MF and MB RL approaches and, most importantly,
providing a plausible cognitive framework for planning.
This synthesis of reinforcement learning principles within
the ACT-R framework provides valuable insights into the
cognitive mechanisms underlying human decision-making
and adaptation. Our work underscores the necessity of
considering the contributions of multiple memory systems
when investigating the balance between MB and MF
approaches to decision-making.
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Abstract

Mechanisms of number processing have been of interest to
cognitive psychologists for many years. There are multiple
competing theories to explain how people form mental rep-
resenations of two-digit numbers. Nuerk et al. (2001) pro-
posed a decomposed representation, where the decade and unit
digits are processed separately. Primary evidence came from
the unit-decade compatibility effect, where comparisons when
both unit and decade digits obey the same order relation (e.g.,
23 versus 55, where both 2 < 5 and 3 < 5) are faster than trials
where the order of digit relations is opposite (e.g., 27 versus 55,
where 2 < 5 but 7 > 5). In this study, we used mathematical
modeling to perform a decomposition of the unit-decade com-
patibility effect. We analyzed data from 53 adult observers,
each of whom completed a two-digit number comparison task.
Each observer’s distribution of RTs (split by compatibility con-
dition) was fit to a diffusion model. We used the EZ-diffusion
method (Wagenmakers et al., 2007) to obtain estimates of drift
rate and nondecision time for each design cell. The estimates
were then compared with a Bayesian paired samples t-test. As
expected, compatible trials were faster than incompatible tri-
als. This mean effect manifested almost entirely in the drift
rate, which was smaller for incompatible trials than for com-
patible trials. Critically, the nondecision time did not differ
between conditions. This implies that the unit-decade com-
patibility effect is due entirely to decision-related processes
(e.g., stimulus information uptake) but not auxiliary nondeci-
sion processes (e.g., encoding, motor preparation, etc.). This
work helps to shed light on the locus of the unit decade compat-
ibility effect, and more broadly, on the nature of decomposed
processing in numerical cognition.

Keywords: Number comparison; diffusion modeling; EZ-
diffusion; Bayesian hypothesis testing.

Introduction
Mental representations of numbers are studied by investi-
gating the various behavioral patterns obtained in cognitive
tasks. In the case of symbolic numbers, one popular task is
a numerical comparison task, where participants complete a
number of trials on which they they quickly judge whether
each presented number is greater than (or less than) a fixed
comparison standard (e.g., 5). A classic finding (Moyer &
Landauer, 1967) is the numerical distance effect, where the
response time increases as the numerical distance between
the stimulus number and the comparison standard decreases.
For example, people typically respond “larger” faster when 9
is presented than when 6 is presented; one classic explanation
for this is that the internal magnitude representation is inher-
ently imprecise and variable (i.e., “fuzzy”), and increasing the
distance between to-be-compared numbers reduces their rep-

resentational overlap, resulting in a faster decision (Verguts,
Fias, & Stevens, 2005).

In the context of two-digit numbers, we observe similar
phenomena. Indeed, Hinrichs, Yurko, and Hu (1981) found
a numerical distance effect for two-digit number compari-
son; participants’ response times decreased as the numeri-
cal distance from the to-be-compared number increased from
the comparison standard 55. Dehaene, Dupoux, and Mehler
(1990) observed a similar result. In both cases, the observed
numerical distance effect was taken as evidence of a holistic
representation of two-digit numbers, where the two separate
digits (the decade and unit digits) in the two-digit number
stimulus are merged into a single representational unit.

Despite this simple explanation for the observed numerical
comparison behavior, increasing evidence has pointed to a de-
composed representation of two-digit numbers. Primary evi-
dence for the decomposed account comes from Nuerk, Weger,
and Willmes (2001), who observed a unit-decade compatibil-
ity effect in two-digit number comparison. That is, when the
decade and unit digits of one number were both smaller (or
both larger) than both digits of the other number (i.e., unit-
decade compatible), response times were faster than if the
digits were unit-decade incompatible with each other. For
example, the comparison 23 versus 55 would be considered
unit-decade compatible, whereas the comparison 27 versus
55 would be considered unit-decade incompatible (see Fig-
ure 1). In the former, the individual comparisons for each
digit are in the same ordinal relationship to the digits in the
comparison standard. That is, both the decade (2) and unit (3)
are less than the corresponding digits from the standard 55.
In the latter, the comparisons are reversed; in this case, the
decade comparison is less than (i.e., 2 < 5), but the unit com-
parison is greater than (i.e., 7 > 5). The presence of the unit-
decade compatibility effect indicates that people make oblig-
atory comparisons of the both decade and unit digits when
comparing two-digit numbers, even though (remarkably) the
decision can be made entirely by comparing the decade digits
alone.

Since the original discovery of the unit-decade compat-
ibility effect, a number of studies have further confirmed
the presence of decomposed processing in two-digit num-
ber comparison. For example, while Nuerk et al. (2001)
based their conclusion on a comparison task where pairs of
two-digit numbers were presented to be compared, Moeller,

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

295



Figure 1: An illustration of unit-decade compabitility (com-
patible versus incompatible) in two-digit number comparison.

Nuerk, and Willmes (2009) observed a unit-decade compat-
ibility effect for a comparison task using fixed standards (53
and 57). In such trials, the decision can be made entirely
by comparing the decade digits alone, but Moeller et al.
(2009) demonstrated that parallel and separate comparisons
of the decade and unit digits occur still. Further probing of
these decomposed processing signatures has indicated that
the size and nature of the unit-decade compatibility effect can
be manipulated by introducing variations in stimulus proper-
ties (Macizo & Herrera, 2011) or task instructions (Reynvoet,
Notebaert, & Van den Bussche, 2011; Faulkenberry, Cruise,
& Shaki, 2017, 2018).

Additionally, several researchers have investigated the
unit-decade compatibility effect in the context of a general
theory of numerical cognition (Verguts et al., 2005; Verguts
& De Moor, 2005), which proposes that such compatibility
effects occur due to competition between parallel and par-
tially active responses. This response-competition account
has been successful in explaining a variety of phenomena
in numerical cognition, including the numerical distance ef-
fect (Erb, Moher, Song, & Sobel, 2018; Faulkenberry, 2016),
SNARC effect (Gevers, Verguts, Reynvoet, Caessens, & Fias,
2006; Faulkenberry, 2014), decomposed process in fraction
comparisons (Faulkenberry, Montgomery, & Tennes, 2015),
and the size-congruity effect (Faulkenberry, Cruise, Lavro, &
Shaki, 2016; Sobel, Puri, & Faulkenberry, 2016; Sobel, Puri,
Faulkenberry, & Dague, 2017). One common thread between
these studies is that they provide converging evidence that
the timecourse of numerical compatibility effects tends to re-
flect late interaction (i.e., decision-related effects) rather than
early interaction (i.e., encoding/perceptual effects).

In the present study, we employed diffusion modeling
(Ratcliff, Smith, Brown, & McKoon, 2016) to decompose
participants’ response times into components which can pro-
vide separate measures of early and late processes in two-
digit number comparison. Most of the past studies cited
above have relied on the common technique of collapsing the
distribution of response times observed in each design cell of
an experiment (usually using the mean). Given that response
times typically exhibit a positive skew, collapsing each cell to

a single mean results in a loss of information about the shape
of each participant’s distribution of response times. Addition-
ally, information about errors is typically lost, because anal-
yses of mean response times is typically performed only on
the correct trials.

Diffusion modeling
To account for both response speed and response accuracy,
Ratcliff (1978) proposed the diffusion model, which math-
ematically characterizes a distribution of observed response
times as the collection of stopping times for a noisy random
walk with drift toward a fixed boundary. Though the full dif-
fusion model has seven parameters, for the purposes of this
paper we will focus on three: drift rate ν, boundary separa-
tion a, and nondecision time Ter. The drift rate ν is the rate
at which stimulus information is accumulated toward either
the upper or lower response boundary; as an index of cogni-
tive processing, it represents task difficulty. Boundary separa-
tion a represents the separation between the lower and upper
response boundaries and indexes the amount of information
required to be accumulated before triggering a response. Fi-
nally, the nondecision time Ter is the part of the total response
time that is not related to the accumulation of noisy informa-
tion; that is, it represents other non-cognitive processes, such
as perceptual and/or encoding processes, as well as motor re-
sponses. Variations in these parameters can index individual
differences, task demands, or instructions. For example, vari-
ations in boundary separation a can describe the impulsivity
of a participant. Smaller values of a would represent spo-
radic or impulsive decision makers, whereas larger values of
a would represent more conservative or careful decision mak-
ers.

Though various methods exist to fit full diffusion models
to observed data (Wabersich & Vandekerckhove, 2014), we
elected to use the EZ diffusion model of Wagenmakers, Van
Der Maas, and Grasman (2007). The EZ diffusion model pro-
vides a series of closed-form equations to estimate ν, a, and
Ter directly from the descriptive statistics of a set of observed
response times. To use the EZ diffusion model, one needs to
provide the mean response time (MRT ), the variance of the
response times (V RT ), and the proportion of trials which rep-
resent a correct response (Pc). The first step is to input the
V RT and Pc into the following equation to estimate drift rate:

ν=
sign

(
Pc − 1

2

)
10

[
logit(Pc)

(
P2

c logit(Pc)−Pclogit(Pc)+Pc − 1
2

)
V RT

] 1
4

.

Note that in cases where no errors were made (i.e., Pc = 1,
which produces the undefined term logit(1)), we applied an
edge correction

Pc = 1− 1
2n

,

where n is the number of trials. Next, boundary separation a
is calculated directly from the obtained drift rate ν and Pc:

a =
0.01 · logit(Pc)

ν
.
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Finally, nondecision time Ter is calcualted by subtracting
from the mean response time:

Ter = MRT −

(
a

2ν

)
· 1− exp(−100νa)

1+ exp(−100νa)
.

The present study
In the present study, we applied the EZ diffusion model to
a set of response time from a two-digit number comparison
task. Our primary goal was to investigate the effect of unit-
decade compatibility on the diffusion model parameters. If
the locus of the unit-decade compatibility effect is in late,
response-related stages, then the primary diffusion parame-
ter impacted by compatility should be the drift rate ν. On
the other hand, if the locus of the unit-decade compatibility
effect is early in nature, then the primary diffusion parame-
ter impacted by compatibility should be the nondecision time
Ter.

Because we may possibly observe null effects on one or
more diffusion model parameters, we employed Bayesian hy-
pothesis testing (Wagenmakers, 2007; Faulkenberry, Ly, &
Wagenmakers, 2020), which allowed us to assess the evi-
dence for either the alternative hypothesis H1 or the null hy-
pothesis H0. Instead of relying solely on the p-value, which
gives the likelihood of the observed data (or more extreme)
under H0 only, we also computed the Bayes factor

BF10 =
p(data | H1)

p(data | H0)
,

which provides a continuous index of the ability of each
model to predict the observed data. Additionally, we com-
puted posterior probability of the winning model. Assuming
prior odds of 1:1, the posterior probability of H1 can be com-
puted directly from the Bayes factor as

Pr(H1 | data) =
BF10

1+BF10
.

In cases where H0 is the winning model, the calculation of
Pr(H0 | data) proceeds by replacing BF10 with BF01.

Method
Participants
For this study we used an existing unpublished dataset
from Cipora et al. (2022), which we downloaded from
https://osf.io/pm4zt. The dataset includes 53 students from
Loughborough University (43 females, mean age = 23.2
years, age range 18 to 29 years) who completed a two-digit
number comparison task in a single session.

Design and procedure
The design and procedure were fully described in the
dataset’s metadata, available at https://osf.io/dpjm2. We de-
scribe it briefly here for convenience. During the task, two-
digit number pairs were presented with vertical separation

around a centrally presented fixation cross. The stimuli were
presented in 24-point white bolded Courier New font on a
black background. Stimuli remained on the screen until a re-
sponse was recorded or a maximum of 3000 ms elapsed. Each
trial was followed by an intertrial interval of 500 ms. Partic-
ipants that were assigned to groups of 6 where they worked
individually on assigned laptops. Before the task began, each
participant was given 12 practice trials, where they were in-
structed on the basic guidelines of the task as well as given the
instruction to press T for an upper number stimulus response
and V for lower number stimulus response. All participants
used a standard QWERTY keyboard. After the practice trials,
there were 4 blocks of 60 trials per participant, and partici-
pants were given the option to rest after each block. The trial
order was completely randomized for each participant with
compatible and incompatible trials mixed randomly through-
out each block.

Results
Participants completed a total of 12,720 trials. We then re-
moved 17 trials that were less than 200 ms and an additional
76 trials that exceeded 3000 ms, leaving a total of 12,627 tri-
als for analysis (retaining 99.3% of the original trials). There
were a total of 587 error trials (total error rate = 4.6%). Now
we will describe the general data processing workflow, which
consisted of the following steps:

1. First, we separated the observed responses into 106 design
cells, formed by crossing 53 participants by 2 trial types
(compatible, incompatible);

2. Next, we extracted summaries of the distributions of re-
sponse times in each cell in two different ways. First, we
used the traditional method of collapsing each distribution
to a mean response time. Next, we used the EZ diffusion
equations to transform the observed response times and
proportions correct in each of the design cells into 3 diffu-
sion model parameter estimates: drift rate ν, boundary sep-
aration a, and nondecision time Ter. Because each partici-
pant completed trials in both the compatible and incompat-
ible conditions, this resulted in 6 parameter estimates for
each participant: 3 for the compatible trials and 3 for the
incompatible trials. In total, this yielded 6× 53 = 318 EZ
diffusion parameter estimates. Note that since instructions
did not vary between compatible and incompatible trials,
we assumed that boundary separation a remained constant
between conditions. Thus, once we estimated a for com-
patible trials, we subsequently used that value of a in our
computation of nondecision time Ter for incompatible tri-
als.

3. Finally, we submitted the mean response times and the col-
lection of diffusion model parameters to a Bayesian paired
samples t-test (Rouder, Speckman, Sun, Morey, & Iverson,
2009). For each test, we assessed the predictive adequacy
of two competing models on the unit-decade compatibilty
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effect δ: a null model H0 : δ = 0 versus a two-sided alter-
native model H1 : δ ∼ Cauchy(1/

√
2).

All raw data processing was done with R version 4.3.0 (R
Core Team, 2023), and all hypothesis tests were performed
using JASP version 0.17.1 (JASP Team, 2023).

Mean response times

As expected, we observed the typical unit-decade compati-
bility effect on mean response times. Response times were
longer for incompatible trials (M = 720 ms, SD = 142 ms)
than for compatible trials (M = 674 ms, SD = 131 ms),
t(52) = 10.2, p < 0.001, BF10 = 1.5×1011, Pr(H1 | data)>
0.999 (see Figure 2).
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Figure 2: A raincloud plot illustrating the effect of unit-
decade compatibility on mean response time (sec.).

In Figure 3, we see the distribution of response time dif-
ferences between compatible trials and incompatible trials.
The mean difference was observed to be 46 ms; in terms of
standardized effect size δ, this was a large effect, with a 95%
credible interval of (0.99, 1.76).
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Figure 3: A raincloud difference plot illustrating the distribu-
tion of observed differences in mean response times between
compatible and incompatible trials.

Drift rate ν

We observed a smaller drift rate ν for incompatible tri-
als (M = 0.219, SD = 0.058) compared to compatible tri-
als (M = 0.269, SD = 0.058), t(52) = −9.5, p < 0.001,
BF10 = 1.2×1010, Pr(H1 | data)> 0.999 (see Figure 4).
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Figure 4: A raincloud plot illustrating the effect of unit-
decade compatibility on drift rate ν.

In Figure 5, we see the distribution of raw drift rate dif-
ferences between compatible trials and incompatible trials.
The mean difference was observed to be -0.050; in terms of
standardized effect size δ, this was a very large negative ef-
fect, with a 95% credible interval of (−1.637, −0.899). Thus,
the rate of information accumulation was greatly reduced on
incompatible trials, implying that the effect of unit-decade
compatibility persists in the decision time component.
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Figure 5: A raincloud difference plot illustrating the distribu-
tion of observed differences in drift rate ν between compati-
ble and incompatible trials.

Nondecision time Ter

Critically, there was no difference in nondecision time Ter be-
tween compatible trials (M = 392 ms, SD = 71 ms) and in-
compatible trials (M = 394 ms, SD = 81 ms), t(52) = 0.4,
p = 0.703, BF01 = 6.2, Pr(H0 | data) = 0.861 (see Figure 6).
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Figure 6: A raincloud plot illustrating the effect of unit-
decade compatibility on nondecision time Ter.

In Figure 7, we see the distribution of raw drift rate dif-
ferences between compatible trials and incompatible trials.
However, as H0 : δ = 0 is the best fitting model, there is no
need to compute a credible interval for δ. While there is a
large effect of unit-decade compatibility on drift rates, there
is no such effect on nondecision time. Thus, we can con-
clude that the unit-decade compatibility effect is isolated to
decision processes, not encoding or response processes.
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Figure 7: A raincloud difference plot illustrating the distribu-
tion of observed differences in nondecision time Ter between
compatible and incompatible trials.

Discussion
In the present study, we performed a diffusion model decom-
position of the response times observed in a two-digit number
comparison task. As expected, we found a reliable increase in
mean response times on unit-decade incompatible trials. Ap-
plying the EZ diffusion model to our observed response times
and accuracies, we found that this increase in mean response
time was driven completely by a large decrease in drift rate
ν. Remarkably, we found positive evidence for a null effect
on nondecision time Ter. These results imply that the unit-
decade compatibility effect is isolated completely to the de-
cision component of the response times. Thus, it appears that
the unit-decade compatibility effect is due to decision-level
competition between parallel and partially active representa-
tions of the individual digits, not early perceptual processing.
This gives initial support for a late-interaction account of the
unit-decade compatibility effect, which is in line with a recent
computational model for numerical cognition (Verguts et al.,
2005; Gevers et al., 2006).
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