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Preface 
 

The International Conference on Cognitive Modelling (ICCM) is the premier conference 
for research on computational models and computation-based theories of human 
cognition. ICCM is a forum for presenting and discussing the complete spectrum of 
cognitive modelling approaches, including connectionism, symbolic modeling, 
dynamical systems, Bayesian modeling, and cognitive architectures. Research topics can 
range from low-level perception to high-level reasoning. In 2021, ICCM was jointly 
held with MathPsych – the annual meeting of the Society for Mathematical Psychology. 
Due to the ongoing COVID-19 pandemic, the conference was held online from July 3rd 
to July 9th, using a combination of prerecorded videos, live discussions, and custom 
software developed by the Society for Mathematical Psychology. 
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Applications of Information Theory to Perceptual Independence and Separability 

Mikaela Akrenius (makreniu@indiana.edu) 
Cognitive Science Program, 1001 E. 10th Street, Bloomington, IN 47405 USA 

Abstract 

Despite of strong historical connections between information 
theory and the study of perceptual independence and 
separability, few modern approaches take advantage of these 
connections. We revive Garner and Morton’s (1969) classic 
Mutual Uncertainty Analysis (MUA), complement it with 
Partial Information Decomposition (PID, Williams & Beer, 
2010), and apply both to a sample of data from contemporary 
studies. While existing theories can dissociate between 
perceptual and decisional separability and identify 
dependencies at the level of individual stimuli, MUA and PID 
can provide diagnostics for identifying other types of 
perceptual dependencies, decompose them into their 
constituents, and provide a measure for their strength. 

Keywords: perceptual independence; perceptual separability; 
information theory; mutual uncertainty analysis; partial 
information decomposition; general recognition theory 

Introduction 

Originating in studies of selective attention (Stroop, 1935) 

and building on Garner’s (1974) speeded classification 
paradigm, the study of perceptual independence and 

separability has become a field of its own (see Algom & 

Fitousi, 2016, for a review). Over the recent decades, articles 

and book chapters on Garner interference have come to be 

dominated by roughly two kinds of modeling approaches: 

multidimensional, signal-detection-based theories, such as 

general recognition theory (GRT, Ashby & Townsend, 

1986), and similarity- or distance-based approaches, such as 

the similarity choice model (Luce, 1963; Shepard, 1957) and 

its further extensions (e.g. Nosofsky, 1985). 

    Regardless of the modeling approach used, assessments of 

perceptual independence are typically made based on 
confusion matrix data from identification experiments, and 

build on the assumption that the distribution of response 

errors is diagnostic of types of violations of perceptual 

independence. 

As Algom and Fitousi (2016) note, despite of the strong 

connections that Garner’s (1962) early work on perceptual 

independence has to information theory, and of the usefulness 

of information theory in quantifying types of dependencies, 

it has seldom been used in the field. 

To help cover this gap and to investigate whether and how 

information theory could be used, we will (1) re-introduce 
Garner & Morton’s (1969) classic mutual uncertainty 

analysis (MUA), along with information-theoretic 

preliminaries, (2) extend it with Partial Information 

Decomposition (PID, Williams & Beer, 2010), (3) apply both 

to identification experiment data from contemporary studies 

1 Unless otherwise noted, the definitions used in this chapter are 
borrowed from Garner (1962) and McGill (1954). 

and compare the results to existing, more commonly applied 

diagnostics (GRT), and (4) provide tentative psychological 

interpretations for the terms associated with PID. 

Throughout the paper, we will highlight some of the formal 

connections between MUA, PID, and GRT. Due to limited 

space, this analysis will be illustratory rather than axiomatic. 

Terminology 

In this paper, ‘perceptual independence’ will be used to refer 
to the existence of statistical independence between the 

perceptual effects of (orthogonal) stimulus components. This 

is in line with Garner and Morton’s (1969) use of the term 

and the definition of perceptual independence used in GRT. 

‘Perceptual separability’, on the other hand, will be used to 

refer to perceptual separability as defined by GRT. 

Preliminaries: Entropy, Conditional Entropy, 

and Mutual Information1 

As McGill (1954) and Garner (1962) note, mutual 

information is an efficient tool for assessing statistical 

independence between two or more random variables. Unlike 

uncorrelation, the lack of mutual information implies 

statistical independence, and mutual information can capture 

complex (e.g. nonlinear) dependencies between variables.  

    Let pi, i ∈ [1, …, n], and pj, j ∈ [1, …, m], denote the 
probability associated with each of n, m outcomes of a 

discrete random variable x, y, respectively. The Shannon 

(1948) entropy of x is  

𝑈(𝑥) = − ∑ 𝑝𝑖 𝑙𝑜𝑔2
𝑛
𝑖=1 (𝑝𝑖),  (1) 

the joint entropy of x and y is 

𝑈(𝑥, 𝑦) = − ∑ ∑ 𝑝𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 𝑙𝑜𝑔2(𝑝𝑖𝑗),  (2) 

and the conditional entropy of x given y is 

𝑈𝑦(𝑥) = 𝑈(𝑥, 𝑦) − 𝑈(𝑦).  (3) 

 The mutual information2 between x and y is 

𝑈(𝑥: 𝑦) = 𝑈(𝑥) + 𝑈(𝑦) − 𝑈(𝑥, 𝑦),  (4) 

the mutual information between x and two discrete random 
variables y, z, or three discrete random variables y, z, w, is 

𝑈(𝑥: 𝑦, 𝑧) = 𝑈(𝑥) + 𝑈(𝑦, 𝑧) − 𝑈(𝑥, 𝑦, 𝑧)  (5) 

𝑈(𝑥: 𝑦, 𝑧, 𝑤) = 𝑈(𝑥) + 𝑈(𝑦, 𝑧, 𝑤) − 𝑈(𝑥, 𝑦, 𝑧, 𝑤)  (6) 

2 Also referred to as partial contingent uncertainty (Garner, 1962; 
Garner & Morton, 1969) or transmitted information (McGill, 1954). 
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and the conditional mutual information between x and y given 

z, or given z and w, is  

𝑈𝑧(𝑥: 𝑦) = 𝑈(𝑥: 𝑦, 𝑧) − 𝑈(𝑥: 𝑧)   (7) 

𝑈𝑧𝑤(𝑥: 𝑦) = 𝑈(𝑥: 𝑦,  𝑧,  𝑤) − 𝑈(𝑥: 𝑧, 𝑤).  (8) 

    Mutual information is a symmetric measure of association: 

it is 0 if and only if x and y are statistically independent, and 

it can be expressed as the Kullback-Leibler (1961) 

divergence of the joint distribution (x, y) from the product of 
their marginal distributions 

𝑈(𝑥: 𝑦) = ∑ ∑ 𝑝𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 𝑙𝑜𝑔2 (

𝑝𝑖𝑗

𝑝𝑖𝑝𝑗
).  (9) 

    The mutual information between a target variable x and 

two source variables y, z can also be defined as 

𝑈(𝑥: 𝑦, 𝑧) = 𝑈(𝑥: 𝑦) + 𝑈(𝑥: 𝑧) + 𝑈(𝑥𝑦𝑧)  (10) 

where 𝑈(𝑥𝑦𝑧) denotes interaction information. Interaction 

information is a symmetric measure 

𝑈(𝑥𝑦𝑧) = 𝑈𝑥(𝑦: 𝑧) − 𝑈(𝑦: 𝑧)
        = 𝑈𝑦(𝑥: 𝑧) − 𝑈(𝑥: 𝑧)

= 𝑈𝑧(𝑦: 𝑧) − 𝑈(𝑦: 𝑧)   (11) 

and can be interpreted as a measure of effect size. 

Mutual Uncertainty Analysis (MUA) 

Garner and Morton (1969) decompose the mutual 

information between two stimulus components A, B (e.g. 

shape and color) and two response variables a, b into 

𝑈(𝑎,  𝑏: 𝐴,  𝐵) = 𝑈(𝑎: 𝑏: 𝐴: 𝐵) − 𝑈(𝑎: 𝑏)     (12) 

𝑈(𝑎: 𝑏: 𝐴: 𝐵) = 𝑈(𝐴: 𝐵) + 𝑈(𝑎: 𝐴) + 𝑈(𝑏: 𝐵) 
+𝑈𝐴(𝑎: 𝐵) + 𝑈𝐵(𝑏: 𝐴) + 𝑈𝐴𝐵(𝑎: 𝑏)  (13) 

where 𝑈(𝐴: 𝐵) = 0 for orthogonally varied components, 

𝑈(𝑎: 𝐴) and 𝑈(𝑏: 𝐵) measure the accuracy of responses on 

each component (𝑈(𝑎: 𝐴) = 𝑈(𝐴) and 𝑈(𝑏: 𝐵) = 𝑈(𝐵) for 
maximum accuracy), and perceptual independence is 

violated if 𝑈𝐴(𝑎: 𝐵) ≠ 0, 𝑈𝐵(𝑏: 𝐴) ≠ 0, or 𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0.

According to Garner and Morton, 𝑈𝐴(𝑎: 𝐵) ≠ 0 and

𝑈𝐵(𝑏: 𝐴) ≠ 0 reflect a crossing over from one perceptual

channel to the other, whereas 𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0 measures error

correlation, which can be due to perceptual or response 

processes. Error correlation can reflect state correlation, i.e. 

variation in responses across trials caused by changes in the 
state of the observer relative to the processing channels. 

𝑈(𝑎: 𝑏), on the other hand, reflects response correlation. 

These terms are illustrated in Figure 1. 

3 PID could also be applied to decompose the sole influence of A 

and B on a or b (𝑈(𝑎: 𝐴, 𝐵) and 𝑈(𝑏: 𝐴, 𝐵)), but this would yield 

Partial Information Decomposition (PID) 

Partial Information Decomposition (Williams & Beer, 2010) 

decomposes the interaction information between one target 

variable and two or more source variables into redundant and 

synergistic components, which, intuitively speaking, reflect 

the information shared by the sources for predicting the target 
(analogous to an AND gate), and unique combinations of the 

sources for predicting the target (analogous to a XOR gate). 

Formally, the information shared between target x and 

sources y, z can be broken into 

𝑈(𝑥: 𝑦, 𝑧) = 𝑈(𝑥: 𝑦) + 𝑈(𝑥: 𝑧) + 𝑈(𝑥𝑦𝑧) 

= 𝑈(𝑥: 𝑦) + 𝑈(𝑥: 𝑧) + 𝑈(𝑥: {𝑦𝑧}) − 𝑈(𝑥: {𝑦}{𝑧})  

= 𝑈(𝑥: {𝑦}) + 𝑈(𝑥: {𝑧}) + 𝑈(𝑥: {𝑦𝑧}) + 𝑈(𝑥: {𝑦}{𝑧}) (14) 

where 𝑈(𝑥: {𝑦}) and 𝑈(𝑥: {𝑧}) denote unique information 

contributed by each of the sources, 𝑈(𝑥: {𝑦}{𝑧}) denotes 

redundant information, and 𝑈(𝑥: {𝑦𝑧}) denotes synergistic 

information. 𝑈(𝑥: {𝑦}{𝑧}) = 𝑈𝑚𝑖𝑛(𝑥: {𝑦, 𝑧}), the minimum

amount of information shared by y and z for predicting x, and 

𝑈(𝑥: 𝑦) = 𝑈(𝑥: {𝑦}) + 𝑈(𝑥: {𝑦}{𝑧}). This partitioning is 

illustrated in Figure 2 and can be further extended to any 

number of source variables. Figure 3 illustrates the case for 

three source variables and one target variable. 

Figure 1: Illustration of the terms used by Garner and 

Morton (1969) in mutual uncertainty analysis. 

PID for Identification Experiment Data 

Identification experiment data typically involves as many 
response dimensions as stimulus dimensions, whereas PID 

has been developed to predict only one target. Due to this, 

PID needs to be applied separately to each response 

dimension. Because a majority of identification experiments 

consist of only two dimensions, this is relatively 

straightforward, and provides insight on asymmetric 

dependencies between the response dimensions. 

 Applying PID to predict response variable a yields3 

less information and neglect interactions between the response 
dimensions. 
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𝑈(𝑎: 𝑏, 𝐴, 𝐵) 

= 𝑈(𝑎: {𝑏}) + 𝑈(𝑎: {𝐴}) + 𝑈(𝑎: {𝐵}) + 

𝑈(𝑎: {𝑏}{𝐴}) + 𝑈(𝑎: {𝑏}{𝐵}) + 𝑈(𝑎: {𝐴}{𝐵}) +
𝑈(𝑎: {𝑏}{𝐴}{𝐵}) + 𝑈(𝑎: {𝑏𝐴}) + 𝑈(𝑎: {𝑏𝐵}) +
𝑈(𝑎: {𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐴𝐵}) + 𝑈(𝑎: {𝑏}{𝐴𝐵}) +

𝑈(𝑎: {𝑏𝐴}{𝐵}) + 𝑈(𝑎: {𝑏𝐵}{𝐴}) + 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}) +
𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐵}{𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}{𝐴𝐵}) 

(15) 

which consists of all possible combinations of unique, 

redundant, and synergistic information contributed by each 

source alone or together. Applying PID to predict response 

variable b yields an analogous partitioning with 𝑈(𝑏: 𝑎, 𝐴, 𝐵). 

Connection between MUA and PID 

Using PID, the terms of MUA can be decomposed into their 

constituents. 𝑈(𝑎: 𝐴) (or, analogously, 𝑈(𝑏: 𝐵)) can be 

decomposed into 

𝑈(𝑎: 𝐴) = 𝑈(𝑎: {𝐴}) + 𝑈(𝑎: {𝑏}{𝐴}) + 𝑈(𝑎: {𝐴}{𝐵}) + 

𝑈(𝑎: {𝑏}{𝐴}{𝐵}) + 𝑈(𝑎: {𝐴}{𝑏𝐵})        (16) 

where 𝑈(𝑎: {𝐴}) is indicative of unique information from A, 

and the remaining terms reflect the redundant information 

shared by A and different combinations of b and B. 
Psychologically, the unique information contributed by A 

can be interpreted as the direct and unique perceptual 

influence of A on a, i.e. the part of A that is accurately 

reflected in a responses, not influenced by B, and not shared 

with b. 𝑈(𝑎: {𝑏}{𝐴}) and 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) reflect correlation 

between a and b that is informed by A or A and B. 

𝑈(𝑎: {𝐴}{𝐵}) measures the redundant information in A and B 

that is reflected in response a, which should be 0 for 

orthogonal stimulus dimensions. Finally, 𝑈(𝑎: {𝐴}{𝑏𝐵}) 

reflects trials in which response a correlates with A and b is 
informed by an interaction of A and B. 

Decomposing 𝑈𝐴(𝑎: 𝐵) (or, analogously, 𝑈𝐵(𝑏: 𝐴)) yields

𝑈𝐴(𝑎: 𝐵) = 𝑈(𝑎: {𝐵}) + 𝑈(𝑎: {𝐴𝐵})
+ 𝑈(𝑎: {𝑏}{𝐵}) +  𝑈(𝑎: {𝑏}{𝐴𝐵}) +  𝑈(𝑎: {𝑏𝐴}{𝐵})

+ 𝑈(𝑎: {𝑏𝐵}{𝐴𝐵}) +  𝑈(𝑎: {𝑏𝐴}{𝐴𝐵})
+ 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}{𝐴𝐵})  (17) 

where 𝑈(𝑎: {𝐵}) is indicative of pure crossing over across 

perceptual channels, 𝑈(𝑎: {𝐴𝐵}) reflects the synergistic 

influence of A and B on a, 𝑈(𝑎: {𝑏}{𝐵}) reflects response 

correlation informed by B, 𝑈(𝑎: {𝑏}{𝐴𝐵}) reflects response 

correlation informed by synergistic combinations of A and B, 

and the remaining terms reflect types of state correlation. 

The decomposition of error correlation, 𝑈𝐴𝐵(𝑎: 𝑏), yields

𝑈𝐴𝐵(𝑎: 𝑏) = 𝑈(𝑎: {𝑏}) + 𝑈(𝑎: {𝑏𝐴}) +  𝑈(𝑎: {𝑏𝐵})
+ 𝑈(𝑎: {𝑏𝐴𝐵}) + 𝑈(𝑎: {𝑏𝐴}{𝑏𝐵})  (18) 

where 𝑈(𝑎: {𝑏}) reflects unique information shared by a and 

b (due to pure response correlation, e.g. bias), and the 

remaining terms reflect different types of state correlation: 

𝑈(𝑎: {𝑏𝐴}) reflects cases in which the perception of A is 

enhanced (or impaired) by a certain state relative to B, 

𝑈(𝑎: {𝑏𝐵}) reflects cases in which B leaks into the perception 

of a when the observer is in a certain state relative to B, 

𝑈(𝑎: {𝑏𝐴}{𝑏𝐵}) reflects the redundant information shared by 

these cases, and  𝑈(𝑎: {𝑏𝐴𝐵}) reflects cases in which 

synergistic information from A and B interacts with the state 

of the observer, producing error correlation. Hence, under 

PID, 𝑈(𝑎: {𝑏𝐴𝐵}) is the term that corresponds most closely 

to Garner and Morton’s interpretation of 𝑈𝐴𝐵(𝑎: 𝑏).

    Finally, response correlation, 𝑈(𝑎: 𝑏), can be decomposed 

into 

𝑈(𝑎: 𝑏) = 𝑈(𝑎: {𝑏}) + 𝑈(𝑎: {𝑏}{𝐴}) + 𝑈(𝑎: {𝑏}{𝐵}) 

+ 𝑈(𝑎: {𝑏}{𝐴𝐵}) + 𝑈(𝑎: {𝑏}{𝐴}{𝐵})         (19) 

where 𝑈(𝑎: {𝑏}) is shared with 𝑈𝐴𝐵(𝑎: 𝑏), 𝑈(𝑎: {𝑏}{𝐴}) and

𝑈(𝑎: {𝑏}{𝐴}{𝐵}) are shared with 𝑈(𝑎: 𝐴), and 𝑈(𝑎: {𝑏}{𝐵}) 

and 𝑈(𝑎: {𝑏}{𝐴𝐵}) are shared with 𝑈𝐴(𝑎: 𝐵).

Figure 2: Partial Information Decomposition for one 

target variable x and two source variables y, z. Based on 

Figure 1 in Williams & Beer (2010). 

Figure 3: Partial Information Decomposition for one 

target variable x and three source variables y, z, w. Based on 

Figure S2 in Williams & Beer (2010). 
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Example Application: GRT 

General Recognition Theory (GRT, Ashby & Townsend, 

1986) is a multidimensional extension of signal detection 

theory, which presumes that perceptions of the stimulus 

components are influenced by normally distributed noise, and 

that response probabilities are determined by the location of 
choice boundaries in the perceptual space. GRT dissociates 

between perceptual separability, decisional separability, and 

perceptual independence, summarized in Figure 4, and uses a 

combination of probabilistic diagnostic tests to assess 

whether they have been violated. 

    According to GRT, perceptual separability holds if the 

perceptual distribution of a stimulus component (e.g. A1) is 

uninfluenced by variation in the value of the other component 

(B1 or B2), decisional separability holds if the probability of 

responding e.g. a1 given the perceptual distributions of A1 and 

A2 is uninfluenced by the value of B (i.e. the decision 

boundary is parallel to the B-axis), perceptual independence 
holds at the stimulus level if the perceptual distribution of e.g. 

A1 in A1B1 is uncorrelated with the perceptual distribution of 

B1, and perceptual independence holds at the marginal level 

if it is not violated for any stimulus. 

Figure 4: Postulates of GRT.  Figure adapted from Ashby 

& Soto (2015). 

Figure 5: Some of the diagnostic tests of GRT. Figures 

adapted from Ashby & Soto (2015). 

4 McGill (1954) shows that if 𝑛𝑖𝑗𝑚 = (𝑛𝑖𝑗𝑛𝑖𝑚) 𝑛𝑖⁄  for the

observed frequencies ni, nj, and nm of the random variables u, v, and 

y, respectively, then 𝑈𝑢(𝑣: 𝑦) = 0. Similarly, if 𝑛𝑖𝑗𝑘𝑚 =

The diagnostic tests of GRT that are relevant for our 

purposes are marginal response invariance and sampling 

independence, summarized in Figure 5. In GRT, marginal 

response invariance is used as an indicator of a violation of 

perceptual or decisional separability, whereas sampling 

independence is used to assess violations of perceptual 

independence. GRT also employs various other statistical and 

signal-detection-based measures, which for the sake of space 

and relevance will not be reviewed here. An interested reader 

can consult Ashby & Soto (2015) for an illustrative review. 

Formal Connections: GRT and MUA 

Earlier on, it has been shown that if perceptual and decisional 

separability hold, marginal response invariance holds, and 

𝑈𝐴(𝑎: 𝐵) = 𝑈𝐵(𝑏: 𝐴) = 0 (Theorem 6, Ashby & Townsend,

1986). Conversely, if 𝑈𝐴(𝑎: 𝐵) ≠ 0 or 𝑈𝐵(𝑏: 𝐴) ≠ 0,

marginal response invariance is violated, and either 

perceptual or decisional separability is violated. 

Analogously, it can be shown4 that if sampling 

independence holds, 𝑈𝐴𝐵(𝑎: 𝑏) = 0 (and, conversely, if

𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0, sampling independence is violated).

Given that Ashby & Townsend (1986, Theorem 1) show 

that if (and only if) decisional separability holds, a violation 
of sampling independence implies a violation of perceptual 

independence (and vice versa), this means that if decisional 

separability holds, 𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0 indicates a violation of

perceptual independence at the stimulus level. 

Taken together, when 𝑈𝐴(𝑎: 𝐵) ≠ 0 or 𝑈𝐵(𝑏: 𝐴) ≠ 0,

perceptual or decisional separability is violated, and when 

𝑈𝐴𝐵(𝑎: 𝑏) ≠ 0 and decisional separability holds, perceptual

independence (in the GRT sense) is violated. Hence, MUA 

cannot dissociate between violations of perceptual and 

decisional separability or prove that perceptual independence 
(in the GRT sense) has been violated; however, MUA can 

provide diagnostics for other types of violations of perceptual 

independence. 

Empirical Results: GRT, MUA, and PID 

Figure 6 shows examples of GRT, MUA, and PID applied to 

three kinds of identification experiment data: data from one 

participant in a line perception study (Townsend, Hu, & 

Ashby, 1981), simulated data (Ashby & Soto, 2015), and data 
from four participants in a facial feature perception study 

(Thomas, 2001b). In each data set, A and B are varied in two 

levels, yielding a 4x4 confusion matrix of every possible 

combination of A and B and their respective responses. 

    As predicted by the formal results, when GRT indicates a 

violation of perceptual or decisional separability, the 

respective term in MUA (𝑈𝐴(𝑎: 𝐵) for A and 𝑈𝐵(𝑏: 𝐴) for B)

deviates significantly from zero in every case except for 

𝑈𝐴(𝑎: 𝐵) in the Townsend, Hu, and Ashby (1981) data, which

is only significant at the p < 0.10 or  p < 0.25 level (depending 
on the correction method used). Similarly, when GRT’s 

(𝑛𝑖𝑗𝑘𝑛𝑖𝑘𝑚) 𝑛𝑖𝑘⁄ , where nk refers to the observed frequencies of

another random variable x, then 𝑈𝑢𝑥(𝑣: 𝑦) = 0.
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perceptual independence is violated, 𝑈𝐴𝐵(𝑎: 𝑏) deviates

significantly from zero in all data sets, except for observer 4 

in Thomas (2001b) where a very high accuracy for A pulls 

almost all interactional terms to zero. In all cases, the 
magnitudes of the MUA terms reflect the severity and/or 

number (for perceptual independence) of GRT violations. 

    As for the results of PID, it appears that, throughout all data 

sets, certain components in the decompositions of MUA 

terms are present very often, whereas others are seldom or 

never present. For example, 𝑈(𝑎: 𝐴) (and conversely 

𝑈(𝑏: 𝐵)) is decomposed into a nonzero 𝑈(𝑎: {𝐴}) (or 

𝑈(𝑏: {𝐵})) and 𝑈(𝑎: {𝑏}{𝐴}) (𝑈(𝑏: {𝑎}{𝐵})) in nearly every 

data set, indicating a unique contribution from A to a (B to b) 

and a response correlation between a and b informed by A 

(B). The only data sets lacking 𝑈(𝑎: {𝐴}) (or 𝑈(𝑏: {𝐵})) are 
Ashby and Soto (2015), where the failure of perceptual 

separability in A drives 𝑈(𝑏: {𝐵}) into 𝑈(𝑏: {𝑎}{𝐵}) and 

𝑈(𝑏: {𝐵}{𝑎𝐴}), i.e. all information from B is also shared with 

a, and observer 1 in Thomas (2001b), where 𝑈(𝑎: {𝐴}) is zero 

due to a very low accuracy in A. 

    Some of the data sets include a nonzero 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) 

(or 𝑈(𝑎: {𝑏}{𝐴}{𝐵})), reflecting a crossing over in perceptual 

channels together with correlated responses. When both of 

these terms occur, the results of GRT are symmetric, whereas 

when only one of them occurs also GRT reflects an 

asymmetricity in processing. For instance, in the Ashby and 

Soto (2015) data, only 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) is nonzero and 

perceptual separability is violated for A (reflecting a 

difference in processing across levels of B), whereas for 

observer 1 in Thomas (2001b) only 𝑈(𝑎: {𝑏}{𝐴}{𝐵}) is again 

nonzero and perceptual independence fails at only one level 

of B. In addition, either 𝑈(𝑎: {𝐴}{𝑏𝐵}) or 𝑈(𝑏: {𝐵}{𝑎𝐴}) is 

nonzero in four of the six data sets, which would appear to 

reflect a violation of perceptual separability in the Ashby and 

Soto (2015) data set but is harder to explain in the Thomas 

(2001b, observers 2, 3, and 4) data sets. Finally, as expected 

with orthogonal stimulus components, 𝑈(𝑎: {𝐴}{𝐵}) (or 

𝑈(𝑏: {𝐴}{𝐵})) is always zero. 

As mentioned earlier, 𝑈𝐴(𝑎: 𝐵) and 𝑈𝐵(𝑏: 𝐴) deviate

significantly from zero only in data sets in which decisional 

or perceptual separability is violated. In the first case 

(Townsend, Hu, & Ashby, 1981), 𝑈𝐴(𝑎: 𝐵) and 𝑈𝐵(𝑏: 𝐴) are

decomposed into 𝑈(𝑎: {𝐴𝐵}) and 𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}), and 

𝑈(𝑏: {𝐴𝐵}) and 𝑈(𝑏: {𝑎𝐵}{𝐴𝐵})), whereas in the second 

case (Ashby & Soto, 2015), 𝑈𝐴(𝑎: 𝐵) consists of

𝑈(𝑎: {𝑏𝐴}{𝐴𝐵}) alone. This suggests that perceptual and 

decisional separability could have different signatures in 

PID; however, the sample of data sets used here is too small 

to draw further conclusions on this. 

In all data sets, 𝑈𝐴𝐵(𝑎: 𝑏) is decomposed into nonzero

𝑈(𝑎: {𝑏𝐴𝐵}) and 𝑈(𝑏: {𝑎𝐴𝐵}), four of the six data sets also 

have nonzero 𝑈(𝑎: {𝑏𝐴}) and 𝑈(𝑏: {𝑎𝐵}), and one of the data 

sets (Ashby & Soto, 2015) has a nonzero 𝑈(𝑏: {𝑎𝐴}{𝑎𝐵}). 

This matches with Garner and Morton’s error correlation 

𝑈𝐴𝐵(𝑎: 𝑏) being primarily reflected in 𝑈(𝑎: {𝑏𝐴𝐵}) and

𝑈(𝑏: {𝑎𝐴𝐵}). The additional terms found reflect the 

enhanced (or impaired) perception of one dimension 

depending on the state of the observer relative to the value on 

the other, which would (together with error correlation) 

appear to be reflected in GRT as a stimulus-level perceptual 

dependency. In one of the data sets (Thomas 2001b, observer 

1), the partitioning of 𝑈𝐴𝐵(𝑎: 𝑏) is asymmetric, with nonzero

𝑈(𝑎: {𝑏𝐵}) and 𝑈(𝑏: {𝑎𝐵}), possibly reflecting the fact that 

perceptual independence is only violated at one level of B. 

    Finally, as for 𝑈(𝑎: 𝑏), across all data sets only the terms 

shared with 𝑈(𝑎: 𝐴) or 𝑈(𝑏: 𝐵) are nonzero, indicating that 

response correlation always reflects information that is 

correct in one dimension (i.e. is never based on a relation 

between a and b alone, or informed by purely synergistic 

information from A and B). 

Conclusions 

To summarize, the purpose of this paper was to reintroduce 

MUA, to complement it with PID, to compare the results 

gained with MUA and PID to the results of GRT, and to 

provide tentative interpretations for the terms of PID. It was 

briefly noted that certain GRT diagnostics have MUA 

equivalents, and that these equivalents can be further 

decomposed using PID, which was illustrated in a small 

sample of simulated and experimental data. 

The results concerning MUA and GRT are mostly in line 
with earlier work by Fitousi (2013), who analyzed 

correlations between GRT parameters and MUA terms in a 

simulated data set, and reanalyzed three face perception data 

sets (Thomas, 2001a, 2001b, and Richler et al., 2008). The 

novel contribution of this paper, along with formal 

connections between sampling independence and 𝑈𝐴𝐵(𝑎: 𝑏),

is the extension of MUA with PID and its potential 

psychological implications. 

Suggestions for Future Work 

Analogously to this paper, the results of PID could be 

compared to other existing approaches and extended to data 

sets with non-orthogonal stimulus dimensions, or to stimuli 

that are known to be perceptually integral. The statistical 

foundations underlying connections between GRT and PID 

would also merit further elaboration, and, like GRT, PID 

could be used to analyze stimulus-level information. 

Methodological Notes 

The MUA terms reported in this paper were computed from 

identification experiment data using (1) – (13) implemented 

in a Python program, and the PID terms presented were 

computed using Timme et al.’s (2014) MATLAB package. 

Statistical significance tests for MUA terms were executed 

using a chi squared approximation method described in 

Attneave (1959) and McGill (1954), and a correction method 

described in Miller and Madow (1954). The results of GRT 

were borrowed from the respective papers. 
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Figure 6: Examples of data sets analyzed using GRT, MUA, and PID. The figures illustrating GRT are adapted from Kadlec and 

Townsend (1992), Ashby & Soto (2015), and Thomas (2001b), respectively. Statistically significant MUA terms (p < 0.05) and their 

PID constituents are in black, whereas nonsignificant terms and their PID constituents are in grey. Corresponding MUA and PID 

terms can differ slightly due to rounding. 
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Introduction
While it is widely accepted that children use distributional
information to acquire multiple components of language, the
underpinnings of these achievements are unclear. The goal of
the current work is to investigate the role of linguistic context
in the acquisition of nouns and verbs. In particular, we use
a Distributional Semantic Model (DSM) to predict the age of
acquisition of nouns and verbs, and we analyse the hyperpa-
rameters of the model to find out how much context is helpful
for the acquisition of these words.

DSMs have been extensively evaluated against human
adult ratings on semantic associations, but less so against
children’s emerging semantic representations. For reasons of
space, we limit our review of prior work to the most recent
study that is closest to our goals. In that study, Alhama et al.
(2020) propose two methods to evaluate DSMs for children’s
acquisition of nouns. Their results suggest that the Skipgram
version of word2vec (Mikolov et al., 2013) is most success-
ful in predicting the Age of Acquisition (AofA) of nouns. In
our work, we look more in-depth into the hyperparameters of
Skipgram that best predict AofA, to find out more about the
influence of context in acquisition. In addition, we extend the
study to verbs.

Data
We trained the model on transcriptions of child-directed
speech from CHILDES (MacWhinney, 2000), for all the En-
glish variants, for ages ranging from 0 to 60 months. To
evaluate the models on AofA, we used data collected with
the MacArthur-Bates Communicative Development Inven-
tory forms (CDI). These forms contain checklists of common
words that parents complete, according to whether their child
understands or produces each of those words. The forms
are collected at different ages, and thus can be used to esti-
mate the AofA of words. We used the English CDIs from the
Wordbank database (Frank et al., 2017) and estimate AofA
as the age at which at least 50% of the children in the sample
produced a given word.

How much context?
We trained Skipgram on the data described above, in order to
derive vector representations for the words. We experimented
with several hyperparameters of the model. We put our focus
on the following:

• Window size (win): defined as the number of context
words on each side of a target word (e.g. a window of size
1 includes a context word on each side of the target word).
We explore values 1, 2, 3, 5 and 10.

• Dynamic window size (dyn): when this hyperparameter
is enabled, the window size is dynamic, such that for each
occurrence of a target word, the window size is sampled
between 1 and win. This parameter has no practical effect
when win=1.

• Frequency threshold (thr): words with frequency of oc-
currence below this threshold were removed, and are as-
sumed to not be part of the vocabulary. Note that this is
done after determining which words are in the context of a
word, so words under the threshold are not replaced with
further words in the context.

We fixed the values of the rest of hyperparameters to com-
mon default values (vector size: 100, initial learning rate:
0.025, negative sampling: off, context distribution smooth-
ing: off, ‘dirty’ subsampling: off). Our code is available at:
https://github.com/rgalhama/public ICCM2021 .

We then computed semantic relations between words as the
cosine similarity between the corresponding vectors. As done
in Alhama et al. (2020), we established a threshold theta,
such that only words with cosine similarity larger than the
threshold are considered to be neighbours. We then compute
the neighbourhood density (ND) as the number of neighbours
of each word. For reasons of space, we report results for
θ = 0.7, which led to highest correlations.

Figure 1 shows the results. We first focus on nouns (left
graph). A very clear trend is evident for window size: given
the same value of dyn and thr, a smaller window size pre-
dicts a larger correlation. Not surprisingly, the use of dy-
namic windows increases the fit (relative to the same fixed
window size), as it decreases the amount of context available
to a number of words; nevertheless, the minimum window
size of 1 still performed better. We found that a small fre-
quency threshold (thr=10) improves performance, indicating
that even words with relatively small frequency have a role
in shaping the semantic connections. In addition, the positive
correlations indicate that words acquired earlier by children
(i.e. smaller AofA) are those that have more semantic neigh-
bours. This has interesting implications for language acqui-
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Figure 1: Correlation between AofA and ND in Skipgram, for nouns (left) and verbs (right). The hyperparameters window size
(win), thr and dyn are defined above (in the text).

sition, as we discuss later. Overall, the results suggest that
Skipgram holds promise for modelling word learning, with
the best model (win=1, thr=10) having a correlation indica-
tive of a medium effect size of 0.47. The results from these
simulations suggest that restricting the influence of context
to a very small window size consistently leads to a better fit,
and that words with low frequency shape the semantic space
in ways relevant to acquisition.

In order to see whether the good fit of Skipgram model
extends to other syntactic categories, we evaluated its perfor-
mance against AofA of verbs. As can be seen, the model
shows a similar trend as for nouns, but also notable differ-
ences. For lower window sizes, results are fairly similar to
nouns, albeit with smaller effect size. However, for the mod-
els with thr=10 (which overall performs better for verbs, as
it did with nouns) there is not such a strong tendency for per-
formance to decrease with window size, especially up to a
window of size 5. As in the case of nouns, the correlations
with greater effect size are positive (though this trend dis-
appears as window size increases, specially for models with
thr>10), indicating that having fewer semantic neighbours is
beneficial for learning.

Discussion
In the case of nouns, the window size that best fits the AofA
data is very small (win=1), suggesting that children attend
to very local context, at least at an early age. Such a result
makes intuitive sense in the context of children’s small ver-
bal memory spans, which only improve as they acquire more
language. The positive correlation between ND and AofA,
which very consistent in the case of nouns, indicates that
nouns with fewer semantic neighbours are learnt earlier. This
suggests that semantic neighbours may be acting as competi-
tors during the process of noun learning, and nouns with more

competitors are therefore less favoured.
Interestingly, we saw that the pattern of results of Skipgram

is to some extent replicated for verbs, although with relevant
differences. A dynamic window with a maximum size of 5
resulted in almost as good fit to the data as a window of 1
(provided thr=10). One potential interpretation is that larger
windows allow the model to reach distant content that may
include a verb’s arguments, which is likely a helpful source
of information about verb meaning (Gleitman, 1990). Thus,
one reason why verbs are acquired later than nouns may be
the need to learn to use more distant contexts, although more
simulations are needed to support this explanation (in partic-
ular, simulations with adaptive window size that depend on
age and/or syntactic category). We leave this to future work.
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Abstract

In behavioral economic experiments with randomized or un-
structured choice sets, trial-level sequential dependencies at
the level of choice behavior or reaction time are assumed to
be present only in motor or perceptual operations, but not in
the cognitive valuation processes themselves. Thus, these are
not explicitly accounted for. We present a flexible Bayesian
hierarchical model that allows us to test for the presence or ab-
sence of linear sequential effects on cognitive, perceptual, and
motor parameters of interest and subsequent choice. We apply
this model to two data sets: one intertemporal choice and one
risky decision making. We demonstrate sequential effects on
risk tolerance inference and on the deliberative evaluation of
discounted value, with many individual differences. Our re-
sults suggest that data collected in sequence cannot be treated
as if it were collected independently.
Keywords: sequential decision making; intertemporal choice;
risky decision making; hierarchical Bayesian modeling

Introduction
Behaviors like temporal discounting, how people discount
value over time, and risk tolerance, how individuals trade off
known uncertainty, are highly context dependent. While they
are precisely defined within behavioral economics, or other
niche fields, extant literature is rife with evidence suggest-
ing that human behavior does not necessarily correspond to
these delineations. Psychologists have demonstrated how in-
ferences of these parameters are sensitive to many other fac-
tors including development, arousal, and cognitive capacity
(Lempert & Phelps, 2015; Frey et al, 2017). Thus the ques-
tion of whether these parameters can even be treated as a sin-
gle (multidimensional) latent variable is a question of active
philosophical and empirical research.

Importantly, researchers have also demonstrated that these
inferred parameters are sensitive to the method with which
they are elicited (Lempert & Phelps, 2015; Frey et al, 2017;
Pedroni et al, 2017). In particular, much volatility has been
observed both within and across experiments (Frey et al,
2017).

While no measure is “pure,” we must examine whether
their measurement may be influenced by aspects of task struc-
ture that are unrelated, in principle, to the construct under
examination. In particular, we focus on the fact that most ex-
periments regarding intertemporal choice (ITC, infer discount
factor) and risky decision making (Risk, infer risk tolerance)
involve an individual making a sequence of choices, usually
in one sitting. Commonly in ITC and Risk tasks, there is no
ostensible structure and individuals are explicitly instructed
to treat each decision independently and as if it were the only
one that counts. Thus typical methods involve treating the

data as if it were independently acquired and not actually a
sequence of choices.

On the other hand, empirical data and analyses from
the working memory and psychophysics literature have for
decades demonstrated the effect of serial dependence: when
stimulus and choice information from previous trials influ-
ence current choice behavior and generate systematic patterns
in reaction time in the absence of explicit structure in the envi-
ronment or stimulus sequence (e.g., Lockhead & King, 1983;
Bertelson 1961). Further, theories of intertemporal choice
that involve prospection—simulating the future (Peters &
Buchel, 2010; Gabaix & Laibson 2017)—imply that already
computed future values could be cached and re-used, espe-
cially if an individual has to make similar choices in sequence
(Dasgupta et al, 2018). Studies have shown that episodic cues
within an experiment can also influence risky decisions, sug-
gesting a similar reliance on cognitive processes involved in
simulation (Ludvig, Madan & Spetch, 2015), which could
also lead to re-use.

In this paper, we develop a hierarchical Bayesian model
that allows us to test for trial-level sequential influences of
stimulus properties. We then apply this model to test for
short-term (one-trial-back) influences of cognitive and motor
perseveration in both choice behavior and response times.

Methods
Data
Inter-Temporal Choice (ITC) We model n = 482 adult
subjects (in-person data collection, from Hunter et al, 2018)
who made a sequence of 102 binary decisions between same-
day monetary reward (SS: smaller sooner, range: $1–$85)
and a larger reward in the future (LL: larger later, $10–$95).
Delay (also indicated as T for time) between the SS and LL
options ranged between 4 and 180 days. Stimuli were dis-
played numerically. SS and LL choices were counterbalanced
to occur equally often on the Left or Right side of the com-
puter screen. We model both choice behavior and reaction
time for this data set. For brevity, however, we present results
only for reaction time.

Risk We model n= 56 adult subjects (MTurk, from Guan et
al, 2020) who made a sequence of 40 binary choices between
gambles in the gain and loss domain separately, for a total
of 80 trials. Each gamble was associated with two rewards
and two probabilities summing to 1 (rewards range: Gain:
$1− $100, Loss: -$99− $0, probability range: 1% −99%).
Stimuli were displayed as pie charts with labels indicating
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reward amount and probability. We model and present only
choice behavior for this data set, as RT was unavailable.

Choice sets were randomized for both experiments, i.e.
there were no explicit trial- or task-level sequential dependen-
cies. No outcomes were realized during the tasks (no feed-
back). In the following sub-section, we develop a model that
tests for linear sequential effects of stimulus properties and
previous choices on current choice and reaction time.

Cognitive Models: Choice Behavior in Risky
Decision Making
For all models, we implement hierarchical Bayesian models
in JAGS (Plummer, 2003). Unless otherwise stated, all pa-
rameters are hierarchical Normals defined with hyperpriors:
µ∼ Normal(0,1) and σ∼ Normal(0,1)+. Thus a hierarchi-
cal parameter X is distributed: X ∼ Normal(µX ,σ

2
X ). We use

hierarchical specifications to better capture individual differ-
ences (Lee, 2018).

Subjective Value We model the Subjective Value (SV) of
a choice in accordance with Subjective Expected Utility The-
ory. For individuals i = 1, . . . ,n on trials j = 1, . . . ,J in con-
ditions c = 1,2:

SV(i, j,c) =

{
∑

2
m=1 pm(i, j) · vα

m(i, j) c = 1 (Gain)

∑
2
m=1 pm(i, j) ·−vα

m(i, j) c = 2 (Loss).

On a given trial, v is the dollar reward offered for each gam-
ble and p is the probability of reward. As each gamble is
associated with two separate rewards, to compute the SV, we
multiply each exponentiated reward (vα) and probability, and
then sum them. We do this separately for the left and right
gamble. The exponent α is interpreted as an individual’s risk
tolerance (the curvature of the utility function) and is inferred
at the individual, not trial, level. Note that v always refers to
the objective dollar reward and vα always refers to a subjec-
tive dollar reward. We use hyperprior µα ∼ Gamma(2,1) for
risk tolerance, with mode = 1 (risk neutrality). We further do
not assume the curvature of the utility function is the same in
both domains (i.e. infer α(i,c)).

Baseline. We implement a logistic choice rule to relate ob-
jective trial properties (e.g. dollar reward), subjective trial
properties (e.g. SV) and choice behavior. Our baseline model
includes no sequential effects. Specifically, the probability of
choosing choice A vs choice B, θA,B, is:

θA,B(i, j,c) =
1

1+ exp(γ(i,c)+β(i,c) ·SV D(i, j,c)+ ε(i, j,c))

Here, SV D(i, j,c) represents the difference in SV(i, j,c) between
the two options presented on any given trial. Then, γ(i,c) rep-
resents the shift, or bias, in a decision (towards Left or Right
gamble). β(i,c) represents response variability, and we use
hyperprior µβ ∼ Gamma(2,1), where the mode corresponds
to probability matching. Finally, ε(i, j,c) represents effects of
simple perseveration (repeat Left or Right choice). All pa-
rameters allow for variability at the individual and domain

(gain or loss) level. We pair these prior specifications with a
Bernoulli likelihood, as no two stimuli are presented together
more than once.

Sequential Effects: Properties Intuitively, we might
imagine that there would be more (less) of an effect on a
given parameter on sequential trials that present the subject
with similar (different) values for the decision problem: e.g.,
if on Risk trial j−1, a subject decides between a 81% chance
of winning $41 or a 55% chance of winning $39, and the next
trial j asks the subject to choose between a 80% chance of
winning $45 or a 55% chance of winning $37, there might be
little need to re-deliberate, which could thus yield an effect
on either choice or response time. We consider the influence
of previous (one-trial-back) and current stimulus properties
and choices on representation and subsequent decision on the
current trial. We compare stimulus properties by taking the
absolute difference between given properties on trial j and
j−1. In particular, we consider the cross-trial differences in
the following properties:

Property ITC Risk
Value (v) vLL− vSS vR− vL
Delay T
Entropy (H) (HR +HL)/2
Composite EVR−EVL
Heuristic (1) max/min(v or H)
Heuristic (2) v and T v and H

Table 1: Stimulus properties considered as indicator variables
for the presence of sequential effects.

H =−Σp log(p) is the Shannon Entropy of a gamble, and
EV = ∑l pl · vl is the Expected Value (assuming risk neutral-
ity) of a gamble.

Specifically, we define all these properties as indicator vari-
ables (π), using a median split to determine whether the prop-
erties being considered in a given model (x) are large or small
in difference (x′ = x j− x j−1). Then, for every individual i on
trial j and condition c:

πHigh(i, j,c) =

{
1, |x(i, j,c)− x(i, j−1,c)|> median(all x′)
0, otherwise,

and vice versa for πLow(i, j,c). For example, suppose we were
interested in ITC trials with large delay differences (DD).
Then, if T(i, j) = 100 and T(i, j−1) = 6, πHighDD(i, j) = |100−
6|> 86.5 = 1.

Sequential Effects: Model We augment our baseline
model by allowing the above-mentioned properties to exert
linear influences on parameters previously only inferred at
the individual level. Each model considers one trial prop-
erty from Table 1 (under the column Risk) at a time, but tests
simultaneously for its influence on the following parameters:
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Parameter
Logistic Bias γ(i,c)
Logistic Slope β(i,c)
Risk Tolerance α(i,c)
Perseveration ε(i, j,c)

Table 2: Parameters simultaneously tested for sequential ef-
fects in the Risk task.

For example, we use:

α
′
(i, j,c) = α(i,c)+δ(i,c) ·π(i, j,c)

instead of α(i,c) in our SV(i, j,c) computation, where δ(i,c) is a
continuous variable representing the weight of the sequential
effect. By this formulation, δ is actually a 4× n weighting
matrix. Thus, the new α(i,c) is the sequential effect adjusted
risk tolerance for individual i. Our primary question of inter-
est, then, centers around the posterior values the respective δ

parameters take (in particular, zero vs non-zero).

Latent Mixture Finally, we use a latent-mixture model to
allow for contaminant behavior. We assume that, for each
trial, every individual belongs to one of two groups, or mix-
tures: task compliant or non-compliant. Specifically, if for
any given trial the model infers that θ = 0.5 is more likely
(i.e., the subject is guessing) then that trial is considered to
be non-compliant and is not included in the regular analysis.
We use a Uni f orm(0,1) prior for the base-rate of each group,
paired with a Bernoulli likelihood.

Cognitive Models: Reaction Time in Intertemporal
Choice
Researchers have used response times (RT) to improve the
modeling of discount factors (Peters & D’Esposito, 2020).
Previous work has also related components of the Drift Dif-
fusion Model (DDM): both drift rate and bias to discount fac-
tor (Hunter et al., 2018). We therefore might expect that se-
quential effects which do not present themselves in choice
outcomes might still be observable in response times.

Thus we implement a modified hierarchical Bayesian ap-
proximation of the DDM as presented in Bogacz et al. (2006).
The approximation uses a shifted and scaled logistic function
(tanh), and we allow for trial level variability in both the bias
and drift rate terms. As with choice behavior, unless other-
wise specified, all parameters can be assumed to be hierar-
chical and Normally distributed with independent priors. We
use a Lognormal likelihood to fit RT.

Baseline. We present three different versions of the Bogacz
approximation before considering sequential effects. First,
we augment the formulation specified in the original paper
with an explicit bias term (1). We assume symmetric thresh-
olds z′(i) and use prior bias ∼ Normal(0,1)T (−z′(i),z

′
(i)),

where the bias is restricted to values that fall between
(−z(i, j),z(i, j)). A positive bias indicates a preference for LL,

while a negative bias for SS. We set µA ∼Uni f (−0.9,0.9) for
the drift rate hyperprior.

The other two models decompose the now deterministic
drift rate to incorporate stimulus properties explicitly into the
model. First, we implement a simple linear regression style
on decomposition modeling Subjective Value Difference (2).
Here, however, Subjective Value is defined using a non-linear
hyperbolic discount function, and k(i) is the discount factor.
We also fit a model that does not include an integrated value-
delay signal and instead trades off value difference and de-
lay separately as in Hunter et al. (2018) (3). All “regres-
sion” weights have Normal(0,1) prior distributions. Then,
for threshold z(i, j), drift rate A(i, j) and c2 = 1:

LL : z(i, j) = z′(i)−bias(i, j), SS : z(i, j) = z′(i)+bias(i, j)

DT(i, j) =
z(i, j)
A(i, j)

tanh
(

A(i, j)z(i, j)
c2

)
(1)

A(i, j) = β0(i)+β1(i)

(
vα

LL(i, j)

1+ k(i)T(i, j)
− vα

SS(i, j)

)
(2)

A(i, j) = β0(i)+β1(i)(vLL(i, j)−vSS(i, j))+β2(i) log−1(T(i, j)) (3)

RT ∼ logNormal(log(DT(i, j)),σ
2
RT (i))

Sequential Effects As in Choice Behavior, we augment our
baseline models by allowing the properties listed in Table 1
(under the column ITC) to exert linear influences on the pa-
rameters of interest: bias and drift. For example, we use:

β
′
0(i, j) = β0(i)+δ(i) ·π(i, j)

for the intercept term in the drift rate decomposition. Here,
δ becomes a 3 or 4× n matrix depending on which model
was fit. The sequential effect adjusted term is the newly in-
ferred β0(i). Again, our analysis centers around the posterior
estimates of δ.

Statistical Analysis
We quantify evidence in favor of either hypothesis by using
the Savage-Dickey ratio to approximate the Bayes factor as
we test the two hypotheses: H0: no sequential effect and the
alternative Ha: non-zero sequential effects. The Bayes Factor
(BF) quantifies the relative strength of evidence in the data:
where BF > 3 indicates moderate or greater evidence in fa-
vor of the hypothesis being considered (Lee & Wagenmakers,
2013). Values lower than 3 indicate that there is not enough
evidence in the data to make strong statements in favor of
either the null or the alternative. The Savage-Dickey ratio,
then, allows us to test nested models at a particular point in
the parameter space: namely 0, where there is no sequential
effect. In this paper, any “evidence in favor of” a particular
hypothesis reported means that the estimated Bayes Factor is
greater than 3. In our analyses of hierarchical parameters, we
also consider the “representative subject”, which is inferred
behavior for an individual that contains all the variability of
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previous experiment participants. This is distinct from the
group mean, and can be thought of as answering the question
“what might the next person who walks in to do the experi-
ment look like?”

Results
Choice Behavior in Risky Decision Making
For this task, we consider sequential effects on all parameters
listed in Table 2. We observed reliable sequential effects on
logistic slope and risk tolerance for 7% of individuals.

Critically, and consistent with these effects being cogni-
tively specific, these individuals only had non-zero sequen-
tial effects for specific sequences of trials: when a trial with
a high difference in Expected Value between the two options
Table 1: Composite) was followed by a trial with a low dif-
ference in EV — “easy” then “difficult” in sequence — 4
individuals showed moderate to strong evidence of a negative
sequential effect on risk tolerance, but only in the loss domain
(see Figure 1). A negative sequential effect implies that the
parameter, when inferred without sequential effects, has been
underestimated. The true value, then, is greater: for example,
for a specific subject, α = 1.043 updated to α = 1.205 when
adjusted for this sensitivity. Importantly, the magnitude of
α was not the only changing factor: the interpretation of the
individual’s risk tolerance changed from risk neutral to risk
averse in the loss domain.

Similarly, subjects demonstrated a sensitivity to sequences
that were low in entropy in both domains, where the sequen-
tially adjusted logistic slope was higher: reduced response
variability than originally inferred.

Figure 1: Sequential effects of high EV difference trials fol-
lowed by low EV difference trials in the Loss domain. The
dashed horizontal line is the posterior mean for the represen-
tative subject. The bold vertical line separates individuals
with BF > 3 (left of the line) in favor of sequential effects
from those with 1 < BF < 3 (right of the line). The corre-
sponding plot in the Gain domain not shown as there were no
sequential effects in this block of the task.

We also find evidence in favor of the null for an overall

effect of motor perseveration: individuals did not systemat-
ically “stay” or “switch” their choices in both the gain and
loss domain. Interestingly, this is the only result in this data
set that holds at the group level and the representative subject
level. All other tests for the presence of sequential effects
on any parameter involved substantial individual differences:
Bayes factors for representative subjects were consistently
between 1 and 2, which is interpreted as anecdotal evidence
in favor of the hypothesis being tested.

Finally, the model finds little evidence for guessing behav-
ior in the data: a total 12 trials were identified as contaminant
by the model (4 gain, 8 loss). This tells us that subjects were
largely compliant in the task.

Given the length of the task and the size of this data set, we
interpret the few subjects that do show sequential effects for
specific trials as a demonstration of the model’s capability in
identifying individual differences, rather than making more
general claims.

Reaction Time in Intertemporal Choice

Out of n= 482, subjects, n= 185 individuals missed between
1− 5 trials. These missed trials, and the completed trial that
immediately followed a missed trial were excluded from the
analysis (approximately 1% of total trials).
Baseline. We find that models that fit the deterministic
drift rate decomposition and incorporate trial properties, (2)
and (3), perform much better (DIC1 = 3967717;DIC2 =
466889.3;DIC3 = 365194.4) than the model with purely
stochastic drift rate (1). In particular, we find that the ag-
gregate posterior estimates for individuals in Models 2 and 3
are similar for the primary parameters of interest: threshold,
bias, and drift rate (see Table 3). Individuals in this data set,
on average, appear to have a slight bias towards the Smaller
Sooner option (see Table 3).

We further see that all β weights are close to zero, but with
considerable individual differences. These low parameter val-
ues, however, are to be expected given how small the average
inferred drift rate is.

Model 2 tests the hypothesis that as individuals accumulate
information, they are considering a unified signal of value and
delay which, in this case, is the difference in Subjective Value
between the two options presented on the screen. Model 3,
on the other hand, tests the hypothesis that individuals sepa-
rately consider these properties. Our posterior estimates sug-
gest that trading off value and delay independently may be
what the subjects are doing, as Model 3 infers a very low
number for the value difference parameter. On average, then,
individuals are faster to make up their minds the larger the
delay between the current and future options. All else held
constant, this translates to lower reaction times. As such, and
given superior performance in model comparison, we tested
for sequential effects using the Model 3 parameterization of
drift rate.
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M1 M2 M3
Parameter Mean (95) Mean (95) Mean (95)
Threshold 1.98 1.59 1.56

(1.38,2.63) (1.2,2.07) (1.17,2.09)
Bias - S -0.03 -0.027 -0.01

(-0.24,0.2) (-0.1,0.06) (-0.09,0.06)
Bias - T -0.03 -0.025 -0.01

(-0.3,0.27) (-0.2,0.14) (-0.18,0.17)
Drift Rate 0.15 -0.015 -0.009

(-0.9,1.18) (-0.82,0.86) (-0.89,0.79)
β0 -0.028 -0.015

(-0.97,0.90) (-0.95,0.84)
β1 -0.00245 -1.40e-05

(-0.45,0.4) (-0.01,0.01)
β2 0.008

(-0.5,0.56)
Drift Rate 0.015 -0.015 -0.009

(-0.5,0.56)
σRT 0.14 0.27 0.28

(0.04,0.3) (0.15,0.41) (0.14,0.4)

Table 3: Aggregate posterior estimates for DDM parameters.
Bias - S is inferred bias at the subject-level, while Bias - T is
the subject- and mean trial-level bias.

Sequential Effects. For the four parameters tested for se-
quential effects (drift rate β weights and trial-level bias), we
find that 134 subjects show evidence for non-zero sequential
effects on at at least one parameter. In particular, we present
inferences about sequential effects driven by value, delay, or
value and delay (see Table 1). This carves the stimulus space
into 8 “regions” (π(i, j)) of sequential effects (See Table 4).

High High Low Low
Value Delay Value Delay

Low X - X X
Delay
Low - X X
Value
High X X
Delay
High X
Value

Table 4: Specific stimulus properties that elicited sequential
effects in subjects. An ‘X’ indicates a trial property or combi-
nation we explicitly modeled, and ‘-’ is undefined or a com-
bination that has already been marked.

Of the 134, 69 subjects showed sequential effects on the
bias term, 76 on the β0 drift rate intercept term, 36 on the β1
drift rate value term and 11 on the β2 drift rate delay term. We
note that 41 subjects have more than one non-zero sequential

effect (30 subjects with 2, 10 subjects with 3 and 1 subject
with all 4 sequential terms non-zero), and again that this is
across all combinations of stimulus properties. Importantly,
these sequential effects were distributed roughly evenly be-
tween “main” effects driven only by differences in value or
delay (n= 83) and “interactions” (n= 89), with n= 38 show-
ing sequential effects for both. That is, unlike the results
from modeling choice behavior in the Risk task, DDM pa-
rameters seem more susceptible to a broad range of stimulus
sequences.

We also found that all 482 subjects showed evidence for no
sequential effects on at least one parameter for some π(i, j).
This suggests, again, that there are extensive individual dif-
ferences in both the presence or absence of sequential effects,
and in how and when they manifest.

Figure 2: Sequential effects of high delay and low value dif-
ference trials on the drift rate intercept parameter. Subjects
on the left and right side of the bold vertical have BF > 3 in
favor of sequential effects. The remainder of parameters and
sequential effects are not shown due to space considerations.

In sum, we find that 28% of subjects show evidence of se-
quential effects in DDM parameters as some function of stim-
ulus properties value and delay. We note that the absence and
presence of sequential effects are not the only conclusions we
reach from the data: each subject, for some combination of
stimulus properties, also had parameters where the strength
of evidence was not strong enough to favor either hypothesis.

Discussion
We have introduced a flexible, generative framework to test
for the presence of sequential effects on choice behavior and
reaction time in explicitly non-sequential, or unstructured, en-
vironments. Our model assumes linear influences of current
and previous (one-trial-back) stimulus properties on current
representations, Drift Diffusion Model (DDM) parameters,
and choice. Our results demonstrate evidence of stimulus-
driven short-term sequential effects in both choice behav-
ior and on reaction time related parameters in two different
economic decision-making tasks. Importantly, these sequen-
tial effects were restricted to specific stimulus properties for
choice behavior, but were much more widespread for param-
eters modeling reaction time.
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The presence of such effects reinforces the sequential pro-
cessing nature of the brain and adds to decades long re-
search showing that even if stimuli in an experiment are de-
correlated, they are implicitly related by time (Kiyonaga et
al., 2017). This corresponds to our results, that parametric in-
ferences even in higher order cognition can be influenced by
the linear passage of time and tells us that trials completed in
sequence should not be treated independently.

Finally, sequential effects in both choice behavior and reac-
tion time showed overwhelming individual differences, with
non-trivial changes in parameter magnitude and interpreta-
tion. For example, the interpretation of all subjects in the Risk
task that presented non-zero sequential effects when “easy”
trials preceded “hard” ones changed from risk neutral to risk
averse in the loss domain. For the DDM parameters in in-
tertemporal choice, we found similar changes on adjusted
bias and drift rate parameters. For example, a subject whose
bias term changed from positive to negative was initially in-
terpreted as generally preferring the delayed option (and thus
perhaps more patient), when, in actuality, that apparent pa-
tience was an artefact of the structure of the choice set. This
is particularly important because both the magnitudes of these
parameters and their resulting interpretations can be used to
explain and predict real world behavior in health and clinical
populations (Konova et al, 2020).

Our future directions include expanding the coding of stim-
ulus properties to a continuous kernel: moving beyond indi-
cator variables to continuous parameters and allowing for n-
trial-back analyses. We also plan to apply this framework to
larger data sets in order to establish the presence or absence
of consistent stimulus driven sequential influences across in-
dividuals in economic decision making.
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Abstract

In the field of syllogistic reasoning research, a significant num-
ber of models aiming at describing the human inference pro-
cesses were developed. There is profound work fitting the
model’s parameters and analyzing each model’s ability to ac-
count for the data in order to support or disprove the underly-
ing theories. However, the model parameters are rarely used
to extract explanations and hypotheses for phenomena that go
beyond the original scope of the models. In this work, we ap-
ply three state-of-the-art models, PHM, mReasoner, and Trans-
Set, to data from reasoning experiments where participants re-
ceived feedback for their conclusions. We derived hypotheses
based on the models’ explanations for the feedback effect and
putted these to test by conducting an experiment targeting the
hypotheses. The work contributes to the field in three ways:
(a) the feedback effect could be replicated and was shown to
be a robust effect; (b) we demonstrate the use of the model
parameters in order to derive new hypotheses; (c) we present
possible explanations for the feedback effect based on existing
theories.
Keywords: syllogistic reasoning; cognitive modeling; mRea-
soner; PHM; TransSet; feedback

Introduction
Routinely, psychological experiments are conducted to un-
cover robust effects and phenomena related to the latent pro-
cesses of the human mind. Assumptions to shed light on the
internals of the black box that constitutes the human mind are
compiled into theories that are then corroborated or falsified
based on comparison with experimental data.

Models, on the one hand, instantiate theories incorporat-
ing the knowledge about robust effects and phenomena that
were found through observations in experiments. By provid-
ing measures to quantify the capabilities of a model to ac-
count for real world processes, this ultimately allows to test
and verify the assumptions underlying the respective theo-
ries. On the other hand, models that have proven to be good
accounts for their respective processes can also be transferred
to different scenarios. In this way, models can be used to ex-
tract predictions even for hypothetical scenarios, which can
subsequently be used to derive new hypotheses that fuel fur-
ther investigations.

Consider for example the domain of human syllogistic rea-
soning, which will serve as the domain of interest throughout
this article. Traditionally, syllogisms consist of two premises
featuring one out of four quantifiers (“All”, “Some”, “No”,
“Some ... not”) and two out of three categorical terms (“A”,
“B”, and “C”):

All A are B.
Some B are C.

What, if anything, follows?
The goal of syllogistic reasoning is to interrelate the terms

in the premises via the common middle-term (“B”), and de-
rive information about the quantified relationship between the
other two end-terms (“A”, “C”) or conclude “No Valid Con-
clusion” (NVC) to state that no quantified conclusion can be
derived from the premises on logical grounds. For the sake of
space and clarity, syllogisms are often abbreviated based on
their structure. A syllogism is in one of four so-called figures,
which represent the arrangement of terms:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

Additionally, the quantifiers are encoded with A, E, I, O
for “All”, “No”, “Some”, “Some not”, respectively (nota-
tion adopted from Khemlani & Johnson-Laird, 2012). Put
together, the syllogism introduced before would be abbrevi-
ated with “AI1”.

Due to the structural restrictions (exactly two premises,
three terms, and four quantifiers), syllogistic reasoning is a
well-defined domain with a total of 64 distinct problems and
nine possible conclusion options. Because of this, syllogis-
tic reasoning is one of the prime domains to study human
deductive reasoning and explore hypotheses about the latent
inferential processes of the human mind.

To date there exist at least twelve theories that try to explain
the observable behavior of reasoners by drawing from a cen-
tury worth of empirical investigation (Khemlani & Johnson-
Laird, 2012). Models based on these theories provide sets
of comprehensive and explanatory parameters to fine-tune
the processes they assume to be operating the human mind.
These parameters, in essence, are responsible for the explana-
tory value of theories as they provide the necessary informa-
tion about the selection and strength of the processes that are
responsible for the observable behavior. There is consider-
able work fitting parameters to data (Khemlani & Johnson-
Laird, 2016; Riesterer, Brand, & Ragni, 2020a), which fo-
cuses on the ability of the models to account for the data.
However, very little work focuses on the second use-case for
these models, namely to go beyond the scope that they were
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originally created for and extract explanations for new phe-
nomena based on the interpretation of the parameters. This,
however, considerably undervalues the worth of theories and
models. Reflecting embodiments of insight, theories and
models are capable of providing novel insight and should do
so.

In this article, we attempt to use model implementations
of theories to provide insight in the syllogistic reasoning pro-
cess and the changes that feedback induces to these processes.
Relying on a recent dataset that introduced feedback about
the logical correctness of human responses as an experimen-
tal manipulation (Dames et al., 2020), we fit three prominent
models (mReasoner, PHM, and TransSet) to the data. By in-
vestigating the resulting parameter distributions, we extract
explanations for the effects of feedback from the theories. We
then derived hypotheses that allow to experimentally test the
theories explanations. At last, we conducted a study based on
a modified version of the experiment by Dames et al. (2020)
which featured additional questions targeting the derived hy-
potheses. This allowed us to replicate the feedback effect in
order to ensure its robustness and test the hypotheses derived
from the model’s explanations of the feedback effect.

The remainder of this paper is structured into four parts.
First, we present relevant background about the theories and
models for syllogistic reasoning. Second, we introduce our
method of extracting explanations from the models and derive
the hypotheses. Third, we describe the study and the dataset
derived from it. Fourth, we present our results and discuss
them with respect to the implications for the three models
and the feedback effect, as well as the general implications
for the field of syllogistic reasoning research.

Background
To date, syllogistic reasoning research has produced more
than twelve theories attempting to explain the cognitive foun-
dation of this form of reasoning (Khemlani & Johnson-Laird,
2012). Crucially, it was found that comparing these theories
based on their ability to predict the distinctive responses of
human reasoners to select an overall best explanation is dif-
ficult if possible at all (Khemlani & Johnson-Laird, 2012).
Recently, however, it was found that in addition to this dif-
ficulty, predictive performances might have been overesti-
mated due to a prevailing perspective on group analyses in
the field (Riesterer, Brand, & Ragni, 2020c). If subjected to
the task of predicting individual human responses instead of
only the most frequently selected ones, predictive accuracies
drop from above 84% (Khemlani & Johnson-Laird, 2012) to
below 50% (Riesterer, Brand, & Ragni, 2020a). To see if
this performance can notably be improved on—which would
be clear evidence of an improved understanding of reason-
ing processes—or remains stuck due to high levels of noise
in the data remains a crucial goal for future investigations in
reasoning research.

Regardless of the questions surrounding model selection,
recent results suggest that at least three accounts will play a

major role in future investigations for various reasons. First,
the Mental Models Theory (MMT; Johnson-Laird, 1983) with
its model implementation mReasoner (Khemlani & Johnson-
Laird, 2013) is one of the most comprehensive theoretical ac-
counts of reasoning spanning multiple domains (e.g., spatial
relational, conditional, modal) and persisting for almost half a
century. Second, the Probability Heuristics Model (Chater &
Oaksford, 1999) is an instance of the probabilistic paradigm
of cognitive science that adopts a stance discarding logical
validity in favor of probabilistic validity. Finally, TransSet
(Brand et al., 2020) is a recently proposed account that ap-
proaches syllogistic reasoning by focusing on a set-based in-
terpretation of quantifiers and transitivity as its core inference
rule. Currently, TransSet is the most successful model of
syllogistic reasoning when judged based on predictive accu-
racy alone (Brand et al., 2020). In the following, the func-
tional mechanisms of the three accounts will be introduced in
greater detail.

MMT & mReasoner MMT approaches syllogistic reason-
ing via a four-step procedure (e.g., Copeland, 2006). First,
a mental representation, the mental model, is created from
the first premise. This mental model consists of a number of
entities that reflect the information of the premise by being
associated to the categorical terms or not. Second, the sec-
ond premise is integrated into the mental model by extend-
ing the entities with information about the third term. Third,
the resulting mental model is inspected to extract a conclu-
sion candidate. In the final step, this candidate is probed by
constructing alternative mental model representations that are
consistent to the premises but inconsistent to the conclusion
candidate. If no counterexample can be found, the conclusion
is accepted as the conclusion to the syllogistic problem. Oth-
erwise a new conclusion candidate is generated and subjected
to the search for counterexamples or NVC is returned.

mReasoner is a LISP-based implementation of MMT for
syllogistic reasoning that follows the four-step procedure out-
lined above but includes four parameters to further specify de-
tails about the model’s behavior (e.g., Khemlani & Johnson-
Laird, 2016). First, λ specifies the maximum number of enti-
ties that are represented in the mental model. Second, ε speci-
fies the composition of the mental model. For high values, the
mental model is highly likely to exhaustively reflect the infor-
mation available in the premises. For low values, it only re-
flects a limited canonical set of information. Third, σ reflects
the propensity of the model to engage the search for coun-
terexamples. Finally, if a counterexample is found, ω denotes
the likelihood to continue the process with a weaker version
of the conclusion candidate or abort the reasoning process to
generate an NVC response.

PHM PHM approaches reasoning by adopting a perspec-
tive based on probabilistic validity or p-validity (Chater &
Oaksford, 1999). To accomplish this without requiring com-
putationally complex if feasible at all operations, the model is
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based on a set of three generation heuristics (G1-G3) and two
test heuristics (T1, T2) to approximate the p-valid behavior.
To generate a conclusion, the min-heuristic (G1) identifies the
premise with minimal informativeness (min-premise) based
on the order A > I > E > O and uses its quantifier as the con-
clusion quantifier. p-entailment (G2) proposes the quantifier
probabilistically following from the min-heuristic result as an
alternative conclusion quantifier candidate. The attachment-
heuristic then defines the direction of the conclusion. If the
min-premise begins with an end-term, it is used as the sub-
ject of the conclusion. Otherwise the end-term of the max-
premise, i.e., the most informative premise in accordance to
the above ranking, is used. After the conclusion is gener-
ated, the max-heuristic (T1) assesses a reasoner’s confidence
in it by evaluating the informativeness of the max-premise.
PHM assumes proportionality between confidence and max-
premise informativeness. If confidence is low, NVC may be
concluded instead (Copeland, 2006). Finally, the O-heuristic
postulates that ”Some ... not” conclusions should generally
be avoided due to their extreme uninformativeness.

In a recent implementation of PHM (Riesterer, Brand, &
Ragni, 2020a), a set of five binary parameters were used to
further specify the model’s behavior. p ent decides whether
to use the min-heuristic or p-entailment to generate the con-
clusion quantifier. In addition, A conf, I conf, E conf, O conf
are used to specify the confidence in the corresponding max
premise quantifier.

TransSet TransSet is based on two phases: direction se-
lection and quantifier selection (Brand et al., 2019, 2020). In
direction selection, TransSet attempts to construct a transitive
path from the premises. If this is not possible, the model re-
turns NVC. Otherwise, it enters the quantifier selection phase
in which the quantifier information is propagated along the
transitive path. This procedure fails and leads to NVC if the
first quantifier on the path is negative and the second quanti-
fier is not all. Otherwise, the conclusion quantifier is obtained
and can be combined with the direction to create the full con-
clusion.

TransSet uses four parameters to further specify its inferen-
tial mechanisms. First, nvc aversion defines its susceptibility
to the NVC aversion bias that might prevent reasoners from
acknowledging the importance of this conclusion (e.g., Brand
et al., 2020). In the direction selection phase, NVC aversion
forces the model to create a transitive path regardless of the
premises. anchor set determines which term to start the tran-
sitive path from in this case. Third and fourth, particularity
and negativity specify the availability of additional rules to di-
rectly derive NVC in the quantifier selection phase (Riesterer,
Brand, Dames, & Ragni, 2020).

Method
Objective
The goal of the analyses presented in the following is to lever-
age the current understanding of human reasoning in form of

available model implementations in order to investigate the
effects of feedback. By providing feedback about the logi-
cal correctness to reasoners, it is expected that the reasoning
behavior changes. These changes should be reflected by dif-
ferent parameterizations resulting from fitting the models to
the data. By interpreting the difference in parameter values,
the effects of feedback on reasoning behavior can be analyzed
and compared to the theoretical assumptions postulated previ-
ously (Dames et al., 2020; Riesterer, Brand, & Ragni, 2020b).

Dataset
To investigate the effects of feedback, we rely on the three
datasets collected by Dames et al. (2020). First, control
(N = 39) contains the control group of reasoners who were
not provided with feedback about the correctness of their re-
sponses. Second, 1s (N = 146) contains the group of rea-
soners who were presented with a feedback screen stating
either “correct” or “incorrect” after each given response. Fi-
nally, 10s (N = 29) contains the group of reasoners who were
presented with feedback for a duration of 10s after each re-
sponse. Regardless of the feedback condition, all participants
were presented with the full set of 64 distinct syllogistic prob-
lems and tasked to select which of the nine possible con-
clusion options (including “No Valid Conclusion”) followed
from the presented premises. There was a time limit for each
task, which forced participants to respond within 1.5 minutes.

Performing traditional statistical (Dames et al., 2020) and
data-driven modeling analyses (Riesterer, Brand, & Ragni,
2020b), feedback was shown to predominantly affect the
propensity of reasoners to conclude NVC, a conclusion op-
tion that has previously been hypothesized to elicit aversion
biases (Dickstein, 1976). Presenting feedback provides rea-
soners with the opportunity to realize the importance of the
NVC response (correct in 37 out of the 64 syllogistic prob-
lems, i.e., 58%). As such, we expect models to reflect this
increase in NVC usage in terms of their parameterizations.
As the overall differences between the 10s condition and
the 1s condition were rather small compared to the control
group, we combined both feedback conditions for the follow-
ing analysis.

Model Fitting
The analyses presented in the following rely on the Cogni-
tive Computation for Behavioral Reasoning Analysis (CCO-
BRA) framework1. CCOBRA facilitates the evaluation of
computational models in a well-defined and structural manner
and provides implementations for the three models consid-
ered in the analyses: mReasoner (Riesterer, Brand, & Ragni,
2020a), PHM (Riesterer, Brand, & Ragni, 2020a), and Trans-
Set (Brand et al., 2020). Each model was fitted to each indi-
vidual in the dataset separately. The resulting fits were then
aggregated and broken down by the feedback condition.

The core results of our analysis are summarized in Fig-
ure 1a. The figure contains separate plots for each of the mod-

1github.com/CognitiveComputationLab/ccobra
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Figure 1: Parameter value distributions resulting from fitting the models to individual reaoners based on data from the original
feedback study (left) and the study conducted in this work (right). Control and feedback are depicted in blue and orange,
respectively.

els’ parameters. Each plot visualizes the distribution of the
resulting values in terms of their proportions of occurrence
(TransSet and PHM due to the parameters being discrete) or
distribution (mReasoner due to being continuous). The differ-
ent feedback conditions are represented by color with control
and feedback in blue and orange, respectively.

On a high level, the plots reveal the obvious: the feedback
manipulation of the experimental setting has an influence on
human reasoning behavior that is reflected by differences in
the fit results. To work out the explanatory meanings from the
fits, the following sections inspect the results of each model
separately and derive a hypothesis from the possible explana-
tion.

TransSet TransSet shows distinct differences between con-
trol and the feedback condition for nvc aversion, particular-
ity, and negativity. The parameter anchor set is ignored in the
following due to its technical purpose and relative uniformity
between the different conditions.

The value of the nvc aversion parameter is substantially
higher for the control condition than for feedback. In the case
of particularity, control exhibits a strong skew in favor of
False with the feedback condition leaning slightly towards
True. For negativity, a similar skew can be observed but to a
minor degree, at least for control. The feedback condition are
skewed stronger towards True.

To summarize, TransSet attributes the effects of feedback
to NVC handling, which is not surprising as it is Trans-
Set’s main method of distinguishing individuals. The reduced
value of nvc aversion suggests that feedback incentivizes rea-
soners to accept NVC more leniently when compared to the
behavior of naive reasoners (control). A similar interpretation
is suggested by particularity and negativity, which control the
availability of rules to abort the reasoning process in favor of

NVC. With control leaning more towards False and the feed-
back conditions to True, TransSet suggests that feedback al-
lows reasoners to find and leverage heuristic rules to easily
derive NVC, the response that naive reasoners (control) try to
avoid.

As it is assumed that participants in the feedback condition
use fast detection methods allowing them to identify NVC re-
sponses early, it is expected that the difference between the
time needed for NVC responses and non-NVC responses is
lower for the feedback group compared to the control group
(H1.1). Although NVC is usually important in more difficult
tasks, the NVC-specific heuristics could outweigh the diffi-
culty and lead to overall lower times for NVC responses in
the feedback condition compared to the control group (H1.2).

mReasoner Interestingly, mReasoner’s parameter distribu-
tions are bimodal between control and the feedback condi-
tions. Perhaps most crucially, the σ parameter is substantially
affected by feedback. As the parameter controls the propen-
sity to engage in a search for counterexamples, which the pre-
requisite to derive NVC responses, this was to be expected.
Less distinctly, λ and ε show similar behavior with control
and feedback being skewed towards lower and higher values,
respectively. For ω, which only plays a role within the search
for counterexamples and therefore dependent on σ, feedback
is mainly skewed towards the lower spectrum, while the con-
trol condition yields higher values.

To summarize, mReasoner seems to attribute the effects
of feedback to a switch from a more intuitive reasoning to
a more thought-out process incorporating a search for coun-
terexamples. The propensity to rigorously evaluate the men-
tal model via the search for counterexamples is increased (σ),
and the likelihood to weaken the conclusion (which in turn
allows to avoid an NVC response) is reduced. Additionally, a
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Table 1: Syllogisms selected for the test phase of the study.
The encoding is in line with Khemlani & Johnson-Laird
(2012).

Valid AA4, AE2, AO3, EA1, EI1, IA4, IE4, OA3

Invalid EE2, EO3, II4, IO3, OA2, OE1, OI3, OO1

learning component can be identified: When confronted with
feedback, reasoners realize the importance of correctly inter-
preting the premise information resulting in more comprehen-
sive (λ) and complete (ε) mental models. However, it is im-
portant to note that the effects of λ and ε have shown to have
little impact on the general behavior of mReasoner in com-
parison to σ (Riesterer, Brand, & Ragni, 2020a). Due to the
expensive search for counterexamples, it is expected, that par-
ticipants in the feedback group should be substantially slower
when deriving NVC responses (H2).

PHM PHM’s parameterization is special because of the
dependencies between the confidence parameters A conf,
I conf, E conf, and O conf, which control the behavior of
the max-heuristic. Since this heuristic states that confidence
in the conclusion is proportional to the max-premise quanti-
fier’s informativeness (Chater & Oaksford, 1999), the corre-
sponding parameters are ordered. As soon as one parameter
is set to 0, all proceeding ones must necessarily be 0 as well,
indicating that confidences are so low that the conclusion is
abandoned in favor of NVC.

The order of confidences is reflected by the model parame-
ters with proportions of 1s decreasing from A conf through
O conf. Importantly, across the board, control elicits the
highest proportions of 1s with both feedback conditions elic-
iting similar results. p entailment, the only truly independent
parameter, is dominated by 0s regardless of the condition.

To summarize, PHM suggests that feedback results in
an overall decrease of confidence in conclusions potentially
caused by the importance of the NVC response. Therefore,
the confidence in non-NVC responses should be lower for the
feedback group (H3).

Study design
Based on the hypotheses described above, we conducted
an online-study via Prolific, in which participants were in-
structed to give conclusions to all 64 syllogistic problems.
The study had a single-choice design, where the participants
selected the conclusion by clicking on the respective button.
In order to avoid a bias due to content effects, hobbies and
professions were used as content for the syllogisms. The
order of the response options was randomized. Participants
were randomly assigned to the control condition or to the
feedback condition. The experiment was divided into two
parts: The first 48 syllogism (presented in random order)
were regarded as a training phase, where feedback was shown
for 1 second for the feedback condition. As in the original ex-

periment, the feedback only stated if the selected answer was
correct. After the first 48 syllogisms, both groups received
no feedback as we assumed that the feedback effect would be
apparent after training. In the second phase (test phase), the
participants were asked to not only select an answer, but also
to estimate their confidence in the selected option by choos-
ing values from 0% to 100% on a slider. A predefined set
of syllogism was used, which featured the 8 valid and 8 in-
valid syllogisms that had the most differences with respect to
the response behavior between feedback and non-feedback in
the dataset from Dames et al. (2020), with the constraint that
only unique quantifier-combinations were in the set. This was
done to increase the variability and to minimize the effect
of single strategies and biases (e.g., the Atmosphere effect
Wetherick & Gilhooly, 1995). The selected tasks are shown
in Table 1. We did not include a time limit, which allows us
to disentangle the effect of feedback from the effect that the
short time-frame might have had in the original study.

After excluding participants which did not take the experi-
ment seriously (i.e., needed less than 10 minutes for all tasks,
performed worse than chance, or interrupted the study for
more than 5 minutes; N = 6), there were N = 59 participants,
with N = 28 in the control group and N = 31 in the feedback
condition. The dataset, all materials and scripts are openly
available on GitHub2.

Analysis
First, we compared the dataset from our study with the dataset
by Dames et al. (2020). In particular, we investigated if, and
to which extend, the feedback effect is apparent without a
time limit. Second, we re-fitted the models to the new data
in order to verify that the main predictions still hold. Sub-
sequently, the hypotheses derived from the model’s explana-
tions were tested based on the results of the second phase of
the study. In the following section, the results are presented
and discussed.

Results
The feedback effect in the original study mainly manifested
in the number of NVC responses (Dames et al., 2020). This
effect was also apparent in our data, as the average percentage
of NVC responses (control: mean = 0.21, std = 0.17; feed-
back: mean = 0.41, std = 0.23) showed higher values for
the feedback condition. However, the correctness (control:
mean= 0.46, std = 0.50; feedback: mean= 0.48, std = 0.50)
was not affected, which differs from the results by Dames et
al.. This is likely the effect of the time limit, which caused
the control group to perform worse (0.326 without feedback;
0.434 with feedback), while they achieved a closer result in
our data.

Figure 1b shows the results of the model fits on the data
from our study. Overall, the model parameters still show the
same pattern, clearly showing the feedback effect. However,
the effect is not as dominant as in the original study, which is

2github.com/Shadownox/iccm-feedbackexplanation
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Table 2: Results of Mann-Whitney U tests (p-values and U
statistic) for the hypotheses H1.1, H1.2, H2, and H3. pcor
shows the Bonferroni-corrected p-values.

Hypothesis Median U p pcorControl Feedback

H1.1 0.92 -5.1 178.0 .006 .017

H1.2 / H2 21.26 12.06 228.0 .06 .18

H3 71.45 55.5 228.0 .001 .003

especially prominent for PHM the E conf parameter, where
the control condition is almost identical to the feedback con-
dition in our data, while there was still a substantial differ-
ence in the original study. This is likely due to the missing
time limit, which might have strengthened existing biases and
pushed participants more towards intuitive responses. For
mReasoner, this gets also apparent for the more subtle pa-
rameters λ and ε, which are differing substantially between
the datasets with control and feedback showing almost not
difference without a time limit while having distinct patterns
when a time limit is present. Despite these differences, the
parameter distributions between both experiments are com-
parable with respect to the extracted explanations, allowing
a evaluation of the derived hypotheses. In the following, we
compare the two conditions in order to test the hypotheses.
To correct for multiple comparisons, we use the Bonferroni
correction and also the corrected p-values. The results of the
comparisons between control and feedback conditions for the
hypotheses are shown in Table 2.

At first, we discuss the hypothesis of TransSet (H1.1). Ac-
cording to TransSet’s mechanism, NVC responses should be
derived faster compared to non-NVC responses. As the feed-
back effect is explained by participants being less hesitant to
derive NVC and also the utilization of NVC-specific rules, it
is expected that this time difference is higher in the feedback
condition compared to the control group. In fact, there is a
significantly bigger difference in the feedback condition com-
pared to the control group: participants in the feedback con-
dition are substantially faster when deriving NVC, while the
control group even needs more time for NVC responses. Ad-
ditionally, the overall time of participants for NVC responses
was lower in the feedback condition compared to the control
group (H1.2), although significance was not reached. The hy-
pothesis for mReasoner (H2) directly contradicts hypothesis
H1.1 by predicting participants in the feedback condition to
take more time, as they are more likely to engage in the ex-
pensive search for counterexamples. Since the data is even
leaning towards H1.1, it is not supported by the data.

Finally, the prediction of PHM is tested. PHM predicts the
confidence in non-NVC responses to be lower in the feed-
back group. This prediction was indeed supported by the
data, showing a significantly lower confidence in the feed-
back condition compared to the control group. This indicates

that NVC could in fact be an option that is selected if partici-
pants have low confidence in other response options.

Discussion
The present work has three main contributions: First, we
fitted three cognitive models that are state-of-the-art, PHM,
mReasoner and TransSet, to each individual participant and
used the resulting parameter distributions to extract explana-
tions based on the assumed processes of the respective model.
At last, these were used to derive new hypotheses that allowed
us to test the models’ explanatory capabilities. Second, the
feedback effect in syllogistic reasoning which was reported
by Dames et al. (2020), was replicated by our study without
the time limit imposed in the original study. This indicates
that the effect is in fact robust and not only an interaction
effect induced by the time limit. Third, by testing the hy-
potheses derived from the models, we were able to assess the
models’ capabilities to account for the feedback effect.

Regarding the feedback effect for syllogistic reasoning, the
explanations extracted from PHM and TransSet were sup-
ported by our study. Both explanations are also compatible,
as it is possible that feedback at first has the effect of low-
ering the confidence in non-NVC-responses and later helps
to develop fast and frugal detection strategies for NVC once
the importance of NVC responses is realized. In contrast,
the prediction of mReasoner was not supported and the data
seems to even contradict its explanation. Based on our find-
ings, we conclude that the feedback effect is best described
as a heuristic process, where participants learn that NVC is a
viable response option and therefore adapt their general judg-
ment of the other response options. An explanation based on
the assumption that feedback improves the reasoning process
(e.g., by shifting away from intuitive responses) could not be
supported. In summary, our findings indicate that PHM and
TransSet are more probable accounts for the feedback effect
in syllogistic reasoning. While they provide differing expla-
nations, they might describe different parts of the same pro-
cess.

Generally, our work successfully applied cognitive models
for syllogistic reasoning to a new phenomenon in order to
derive new hypotheses by interpreting the parameters, which
is rarely done in this field. Instead, it is often the other way
round: New findings were first integrated in theories and then
into the respective models. While this is a valid approach
to formalize the current knowledge about human reasoning
into models, it does not utilize the predictive capabilities of
the models. We hope that future modeling endeavors will
test models more based on predictions outside their original
scope, which will not only improve model selection, but also
advance the field as a whole by fueling further investigations
with new hypotheses.
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Abstract
Differential payoffs can bias simple perceptual decisions. Drift
Diffusion models (DDM) have been successfully used to si-
multaneously model for response times (RTs) and accuracy of
binary decisions. The DDM allows for identification of latent
parameters that represent psychological processes underlying
perceptual decisions. These parameters characterize decision
making as a noisy process that accumulates evidence towards
one of the two boundaries. Previous research in two alternative
forced choice (2AFC) experiments has found that asymmetric
payoffs result in a bias towards those decisions that result in
higher payoff. We manipulate the reward structure resulting
in symmetric and asymmetric payoffs for a simple orientation
discrimination task and test for the differences in parameters
of drift diffusion model that might relate to reward-induced
bias in perceptual decisions. To understand the mechanisms of
how reward information might be integrated with perceptual
decisions, we altered the relative timing i.e. processing order
of reward information and perceptual stimuli.Computational
modelling using a hierarchical DDM revealed starting point
bias towards stimuli oriented in the direction of higher rewards
in asymmetric as well as symmetric rewards.The drift rate re-
flected the average reward expectation when reward informa-
tion was presented before, but not after the perceptual stimulus.
Our results suggest that integration of rewards with perceptual
decisions is mediated by modulating motivation for evidence
accumulation over time and prior bias in starting point.

Introduction
Computational models for Perceptual decision making de-
scribe the dynamic evolution of preferences across time un-
til a decision is reached, rather than assuming a fixed state
of preference. The Decision field theory (Busemeyer &
Townsend, 1993) is a member of a general class of sequen-
tial sampling models. Models such as drift-diffusion model
(DDM: Ratcliff, 1978) suggest accumulation of varying sen-
sory evidence that leads to a choice beyond a certain thresh-
old. The DDM models decision-making in two-choice tasks
represented by two boundaries separated by distance (repre-
sented by threshold parameter a). Lower threshold makes re-
sponding faster in general but increases the influence of noise
on decision making and can hence lead to errors or impulsive
choice. Higher threshold leads to more cautious responding
(slower, more skewed RT distributions, but more accurate).
Different studies have shown that the parameter a is sensitive
to speed versus accuracy instructions (e.g., Voss et al., 2004).
Additionally, there is a large body of research showing that
age-related slowing in response time tasks can be partially ex-
plained by more emphasis on correct responses (e.g., Ratcliff
et al., 2000, 2006, 2010, 2011). A drift-process accumulates

evidence over time with certain speed (drift-rate parameter v)
until it crosses one of the two boundaries indicating the choice
made. Due to noise in each trial of the drift process, the time
taken to reach a particular boundary would vary across tri-
als. If such a consistent variation is observed over different
conditions the drift rate reflects task-difficulty with smaller
drift rates representing more difficult tasks. In the compari-
son of participants, drift is a measure for individual cognitive
or perceptual speed of information processing (Schmiedek et
al., 2007). The DDM model also includes bias parameter z
to account for starting point closer to one of the boundaries
and non-decision time parameter t that encodes processes un-
related to decision making such as stimulus perception and
movement (Smith & Ratcliff, 2004).

Previous research using the DDM has revealed that the
effects of payoff manipulations on a perceptual decision-
making task can be identified through various parameters.
Dunovan et al. (2014) made a distinction between a prior bias
in starting point parameter z and a dynamic bias in drift rate
parameter v. The former model suggests influence of the pay-
offs on perceptual decisions to be only during the initial stage,
while the latter suggests these influences to persist until reach
the decision boundary. Van Ravenzwaaij et al. (2012) found
that prior information influences starting point rather than the
drift rate. Bias parameter is responsible for the starting point
of response time distributions for each trial. Difference in
bias parameter across conditions can reflect choices encoun-
tered with different payoff matrices. For example, Voss et al.
(2004) showed that the starting point is moved toward a re-
sponse threshold when the corresponding response leads to
greater rewards (for a review see Voss et al., 2013). Similarly,
in the domain of motivated perception, it has been found that
the starting point is closer to the ”positive” threshold than
to the ”negative” threshold in an evaluation task, even when
expectancy values for both responses were symmetric (Voss
et al. 2008). Diederich and Busemeyer (2006) tested three
models (1) the Bound Change Model that results in maximis-
ing payoffs through a change in the decision threshold pa-
rameter, (2) the Drift - rate change model suggests a bias in
drift rate owing to difference in payoffs, and (3) the Two-
stage processing model proposed by Diederich (1997) where
the decision task is separated as two evidence accumulation
processes that occur sequentially. The first stage involves evi-
dence accumulation process for the reward structure followed
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by sensory evidence accumulation for the perceptual discrim-
ination task. In a recent study, Diederich (2016) manipulated
processing order of perceptual and payoff information and
found further evidence in support of their multi-stage pro-
cessing model. These prior studies establish a clear link for
integration of contextual bias of reward information with per-
ceptual decision making.

In the current study, we investigate how the temporal dy-
namics and structure of reward information bias perceptual
decisions. The reward structure consists of two types of infor-
mation - symmetric or asymmetric payoffs and is presented
during an orientation discrimination task. As in previous
studies, we presented reward information prior to the percep-
tual stimulus during the PreStim experiment. We conducted
a second experiment, PostStim where the reward information
was presented after the perceptual stimulus, but before requir-
ing a response. Using hierarchical drift diffusion modeling,
we tested separate models varying drift rate, decision thresh-
old, and bias parameter to explain the choice distributions
and response times. The models considered left and right re-
sponses as the two boundaries. Our results suggested that
reward modulates perceptual decision making for both sym-
metric and asymmetric rewards encoded by a bias in starting
point. Our results support the multistage model proposed by
Diederich (2016) integrating the reward information in per-
ceptual decisions.

Materials and Methods
Participants
PreStim experiment had 10 student volunteers (age range 19-
31 years) and the PostStim experiment had 11 student vol-
unteers (age range 19-31 years). All participants were right
handed and had normal or corrected to normal vision. All
participants gave written informed consent and were paid for
their participation.

Stimuli
Each stimulus was composed of Gabor patches which were
composed of a Gaussian envelope with a spatial frequency
of 0.01 cycles/pixel. Maximal Michelson contrast of grat-
ings was 0.9. Orientation of Gabor patches varied from -85
to 85 degrees with reference to vertical in step sizes of 5 de-
grees. A scrambled image was constructed by a combination
of left and right oriented images of 45 degrees and was used
for masking the gabor stimuli.

Design
The experiment was designed to test how reward information
influences perceptual decisions. We manipulated the timing
and the type of reward information presented that reflected
the outcome (payoff) of the perceptual decisions. Therefore,
reward Information presented was irrelevant for performance
of the perceptual task of detecting the orientation of gabor
stimuli. Two types of reward information were presented -
high reward magnitude (20 points) and low reward magnitude

Figure 1: Experimental settings:- A. Structure of a single trial
for both the PreStim and PostStim experiments. B. The four
experimental conditions indicating High(H) and Low (L) re-
wards associated with left and right responses. Symmetric
rewards are when both left and right responses would be as-
sociated with same reward. Asymmetric rewards conditions
differentially reward left and right responses. C. Sample per-
ceptual Gabor stimuli and mask stimulus. Participants were
required to indicate the orientation of the Gabor stimulus.
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(10 points). The reward information was displayed as the text
written inside a square box and further coded in distinct col-
ors. Reward information for the left and right oriented stimuli
was presented on two sides of the screen centered vertically.
The outcome of the trial was the reward displayed on the side
that matched the orientation of the gabor stimulus. The re-
ward information was manipulated in two ways - Symmet-
ric and Asymmetric rewards. Symmetric conditions could be
high rewards (HH) or low rewards (LL) in which both left
and right correctly identified orientations were high or low
rewarding, respectively. The Asymmetric conditions further
was one of HL or LH conditions. In the HL condition, cor-
rect identification of left oriented gabor stimuli was rewarded
with higher (20) points and the correct identification of right
oriented gabor stimuli was rewarded with lower points (10).
The LH condition was similar to the HL condition with the
high and low reward contingencies being flipped.

Hierarchical drift diffusion modeling
We used an open source python toolbox for the hierarchical
Bayesian estimation of the drift- diffusion model parameters
(Wiecki et al., 2013). The toolbox uses Markov chain monte-
carlo (MCMC) inference algorithm to estimate the joint pos-
terior distributions of the different model parameters. We
used Gelman-Rubin statistic to assess the convergence of the
Markov chains by comparing the inter-chain and intra-chain
variance of 5 different runs of the same model, resulting in
± 0.01 MC error suggesting 15000 samples were sufficient
for convergence. For each model we generated 15000 poste-
rior samples and discarded the first 5000 samples using burn
to allow the MCMC chains to stabilize. The models were
response coded with correct responses for right orientation
terminating at the upper boundary and the left responses at
the lower decision boundary.

To examine which model parameters are affected by the
different type of reward structures and their timings we ran
three different models allowing the parameters v, a and z to
vary across experimental conditions, one at a time (model-
V, model-A, model-Z), a composite model all three param-
eters to simultaneously vary between conditions, and a base
model in which non of the parameters were allowed to vary
across conditions. We then compared these different models
using deviance information criterion (DIC) and posterior pre-
dictive checks (PPC) to find the best fitting model. DIC is a
measure of relative goodness of fit for hierarchical Bayesian
models (Speiegelhalter et al., 2012). DIC uses the trade-off
between model fit and model complexity to compare relative
goodness of the models. The best model is regarded as the
one with the lowest DIC values. Difference of greater than
10 between different model DIC values is regarded as signif-
icant (Dunovan et al., 2014; Zhang & Rowe, 2014). Since, it
is known that DIC is sometimes biased towards models with
higher complexity we also ran Posterior Predictive Checks on
group and subject data to assess the best fitting model (Mich-
mizos & Krebs, 2014). We generated 500 simulated datasets
from posterior predictive distributions of parameters corre-

sponding to the Composite model that was best-fit to the data
based on lowest DIC value. We then compared the observed
data distribution (empirical values from our experiment) with
the simulated data generated which were found to be within
95% credible interval. Model goodness of fit is assessed using
the mean standard error (MSE). Comparatively lower values
of MSE for a model suggest that the model is able to repro-
duce observed data pattern distributions with less variability
and more accuracy (Michmizos & Krebs, 2014).

The model parameters a, v and z thus estimated from the
best fit model and their posterior distributions were used for
statistical analysis. Our primary goal of the current research
was to identify whether or not the different parameters var-
ied across different conditions. We use posterior compari-
son for significance testing by calculating the proportion of
overlap between the probability density of the two condi-
tions being compared (Wiecki et al., 2013; Michmizos &
Krebs, 2014). We also performed classical significance tests
on mean parameter estimates as described further in Results
section (Zhang & Rowe, 2014).

Results
Drift diffusion models
The drift diffusion models we considered were computed sys-
tematically allowing one parameter to vary across conditions
keeping the other parameters invariant. Three models were
formed to explore the modulations of parameters V, A, and
Z: model-V, model-A, and model-Z, respectively. Model-V
assessed for different drift-rates of evidence accumulation for
left and right oriented perceptual stimuli across symmetric
and asymmetric reward conditions. Similarly, model-A and
model-Z assessed for decision threshold and starting point,
respectively, for any biases in these parameters dependent
on the reward structure. These three models were compared
to a basic model in which all parameters remained invariant
across conditions (BASE) using Deviance Information Crite-
rion DIC. It was observed that all three models had lower DIC
(model-V: 3426.32, model-A: 2950.80, model-Z: 3650.63)
than BASE model indicating better fit to the data (3707.42).
We ran a composite model that allowed for the above three
parameters to vary across the four reward conditions that was
found to be the best fit model (2782.35). The parameters es-
timated from the composite model were comparable to the
independent models and future analysis are based on the esti-
mates from the composite model. We ran a composite model
including non-decision time (t) as a parameter. Mean esti-
mates of parameter ’t’ were close to zero across reward con-
ditions and hence are not discussed further.

Group parameter estimates from model fits of individual
subjects were estimated using the hierarchical DDM. Group
parameter estimates were tested for differences within the
symmetric (HH and LL) and asymmetric (HL and LH) condi-
tions using two complementary approaches (Zhang & Rowe,
2014). We compared mean parameter estimates across partic-
ipants using a classical frequentist approach (i.e. t-test). We

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

25



Figure 2: Group posterior estimates (y-axis) of the hierarchical drift-diffusion model parameters for the PreStim (dark gray
bars) and PostStim (light gray bars). a.) Boundary separation parameter a b.) Drift-rate variability v and c.) Bias in starting
point z. Error bars show standard error of mean from the posterior estimate samples.

Figure 3: Posterior estimates (y-axis) of bias parameter z for
a.) PreStim Symmetric conditions b.) PreStim Asymmetric
conditions c.) PostStim Symmetric conditions d.) PostStim
Asymmetric conditions.

compared the group posterior distributions obtained for each
parameter using Bayesian approach.
Drift rate In PreStim experiment, we found bias towards
high reward for drift rate corresponding to symmetric con-
ditions (HH > LL, t(9) = 2.47, p < 0.05;PBayes = 0.84) but
not for asymmetric conditions (HL > LH, t(9) =−0.32, p =
0.38;PBayes = 0.46). The drift rate for asymmetric conditions
(HL, LH) was found to be intermediate to the symmetric high
(HH) and low (LL) conditions possibly reflecting expecta-
tion of reward (Figure 2). In PostStim experiment we found
no difference within the two symmetric (HH > LL, t(10) =
−0.17, p = 0.43;PBayes = 0.43) and the two asymmetric re-
ward (HL> LH, t(10) =−1.24, p= 0.12;PBayes = 0.27) con-
ditions. Overall drift rates for the PostStim experiment were
higher compared to the PreStim Experiment reflecting faster

response times (Figure 2). This could be due to the process
of evidence accumulation being initiated during the reward
information period prior to making a response.

Decision Threshold The decision threshold parameter
showed no significant difference for both PreStim (HH >
LL, t(9) = −1.05, p = 0.16;PBayes = 0.18) and (HL >
LH, t(9) = 1.37, p = 0.10;PBayes = 0.79) and PostStim
(HH > LL, t(10) = 0.13, p = 0.45; PBayes = 0.51 and
(HL > LH, t(10) = −1.38, p = 0.09;PBayes = 0.19) experi-
ments across conditions. This reflects that the boundary sep-
aration between left and right choices was not significantly
different for the two symmetric and asymmetric reward con-
ditions. The decision threshold for PostStim was observed to
be greater than PreStim experiment (Figure 2) possibly due
to the accumulated evidence not being allowed to reach the
boundary (i.e. more conservative) while waiting for the ”go”
signal before the response execution.

Bias The posterior estimates of the response bias param-
eter for the PreStim experiment were found to be different
in both the symmetric and asymmetric reward conditions.
High reward condition showed relatively higher bias as com-
pared to the low reward condition (HH > LL, t(9) = 2.64, p<
0.05;PBayes = 0.93). The asymmetric reward conditions
had significant bias towards the boundary with high reward
compared to the low reward (HL > LH, t(9) = −2.08, p <
0.05;PBayes = 0.03). These results reflect a prior bias for the
starting point of the drift process towards the boundary with
higher reward (Figure 6). For the PostStim experiment, the
bias parameter was significantly different in symmetric re-
ward conditions (HH > LL, t(10) = 2.49, p < 0.05;PBayes =
0.96), but was not significantly different for asymmetric re-
wards (HL > LH, t(10) = −0.68, p = 0.25;PBayes = 0.36).
These results reflect absence of response bias when reward
information is presented after the stimulus. On average, the
bias parameters were similar for PreStim and PostStim exper-
iments (Figure 3).
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Discussion

Our results of bias parameter being dependent on re-
ward structure supports the two-stage model proposed by
Diederich and Busemeyer (2006). The timing of our exper-
iments allows us to explicitly test support towards the two-
stage model, specifically the mechanisms involved in integra-
tion of reward values during perceptual decisions. The model
proposes two accumulation processes. Payoffs influence the
starting point in the first stage by introducing a prior bias to-
wards the response with higher reward. Then in the second
stage, evidence accumulation is done for the perceptual stim-
ulus. By manipulating the relative timing of presentation of
reward information and the stimuli, we tested whether a dy-
namic bias can be induced by reward structure after the pro-
cess of evidence accumulation has already begun upon stim-
ulus presentation. Our results support the two-stage model as
we find a bias in starting point for asymmetric rewards when
the reward information is presented before but not after the
stimulus presentation (Figure 3). The differences in starting
point can therefore be attributed to the first stage of evidence
accumulation process initiated by reward structure. When the
reward information is presented after the stimulus, the two
stage model would correspond to the second stage alone, in
which evidence accumulation occurs for perceptual stimuli
(Diederich & Busemeyer, 2006). Hence, we do not observe
differences in starting point in PostStim experiment for asym-
metric rewards.

Bias parameter encodes both symmetric and asymmet-
ric rewards when reward information is presented before
the stimulus. Further, when the reward information is pre-
sented after the stimulus, the bias parameter no longer en-
codes starting-point bias, rather encodes a decision bias for
symmetric rewards. Similar proposal to distinguish between
response-execution bias from decision bias have been made
earlier (Voss et al., 2010). Reward conditions with high re-
wards (HH) have higher starting point relative to the reward
conditions with low rewards (LL). This could possibly be due
to greater motivation for perceptual discrimination in high re-
ward conditions. This motivation-induced decision bias in
decision needs to be interpreted differently from a response
bias. Response bias refers to the starting point of evidence
accumulation for the perceptual stimuli being biased towards
the boundary corresponding to higher reward. This response
bias was observed when the reward information was pre-
sented before, but not after the stimuli. The starting point
in an unbiased setting would be midway of the two decision
boundaries. Allowing the response bias to be estimated as a
free parameter, which in turn allows us to re-interpret the bias
parameter as a decision bias. Our results can be compared
to previous findings (Voss et al. 2008) of motivational influ-
ences for perceptual and judgmental bias in which starting
point parameter is biased towards the gain threshold. How-
ever, the current research does not explicitly dissociate the
specific interpretation of the bias parameter arising from a re-
sponse bias, or can be considered to be a decision bias.

The influence of reward structure on perceptual decisions
can be described by two kinds of bias. The starting point
reflects a prior bias, while the drift rate can encode for a dy-
namic bias (Dunovan et al., 2014). We found the drift rate en-
codes an average reward expectation for the PreStim Experi-
ment. Our computational models estimate a single drift rate
towards the two boundaries with complementary sign (v, -v).
Hence, the finding that higher drift rate for high compared
to low reward conditions (Figure 2) reflects a dynamic bias in
processing the perceptual stimuli, consistent with previous re-
search that claim that influence of payoffs persists over time,
rather than only changing the starting-point (Dunovan et al.,
2014; Voss et al., 2008). Together with other findings that do
not find encoding of a dynamic bias in drift rate (e.g.: Mulder
et al., 2012), and our manipulation of processing order, our
results suggest that the reward information is encoded differ-
ently by prior bias in starting parameter and average reward
expectation by dynamic bias i.e. drift rate parameter.

An intriguing result is that when the parameters from Post-
Stim Experiment are compared to the PreStim experiment, we
find higher drift rate and decision threshold (Figure 2). These
could reflect the fact that the evidence accumulation process
in support of the perceptual decision had already taken place
before the reward information, following which the cue for
indicating the response is given. Unlike previous studies that
investigated influence of payoffs on subsequently presented
perceptual stimuli, our study design separates the timing of
choice execution from the perceptual decision process. Thus,
we can dissociate whether the reward information influences
the choice execution or the evidence accumulation mecha-
nisms of the decision process. The results supports the notion
that when stimulus is presented prior to the payoffs, evidence
accumulation processes result in faster and more accurate re-
sponses, i.e. higher drift rate and more conservative decision
thresholds.

Our study contributes towards understanding the mecha-
nisms of integration of reward (value- based) information
with perceptual decisions. Previous research by Rorie and
colleagues (Rorie et al., 2010) demonstrated that perceptual
decisions by monkeys being influenced by asymmetric but
not symmetric rewards. Using computational model (DDM)
analysis in the current research, we are able to identify la-
tent parameters that correspond to influence of payoffs in
perceptual decision making. The reward information per-
tains to value-based computations, but is unrelated to perfor-
mance of the perceptual task. The reward information indi-
cates the payoff (outcome) arising after perceptual decision.
Our results demonstrated that parameters of the drift diffusion
model, a model of perceptual decisions are influenced by the
reward structure. This finding, though not completely novel,
is further corroborated with manipulation of processing order
(i.e. timing) to study the mechanisms of integration of re-
ward values with perceptual decisions. While the behavioral
results might simply suggest that it is crucial for reward in-
formation to be presented before, but not after the perceptual
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stimulus, the computational modeling approach has been use-
ful to understand the specific parameters that are encoded by
the timing and structure of reward information on perceptual
decisions.

In sum, our results show that symmetric and asymmetric
rewards bias the starting point towards stimuli oriented in the
direction of higher rewards, and also reflect the average re-
ward expectation by the drift rate. These results can be inter-
preted as integration of rewards with perceptual decisions is
mediated by modulating motivation for evidence accumula-
tion over time and prior bias in starting point.
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Abstract 
This paper presents a cognitive modelling approach to 
investigating student learning of computer programming 
concepts via self-explanation. Self-explanation involves 
explaining instructional material to oneself by generating 
inferences about the material. Here, we present a preliminary 
Python ACT-R model of novice and experienced students 
studying basic Python concepts and self-explaining. Our 
contributions include formalizing the self-explanation process 
and providing a framework that can be expanded to explore and 
simulate more aspects of this type of student study and learning 
in the domain of programming.  

Keywords: self-explanation; programming education; Python 
ACT-R; cognitive modelling 

Introduction 
Learning to program is difficult (Du Boulay, 1986; Duran, 
2020; Robins, 2019) with high drop out and failure rates in 
computer science classes relative to other courses. Research 
has shown that novices lack in-depth knowledge of computer 
science concepts and instead tend to approach programming 
activities in a superficial way (Robins, 2019). For instance, 
when aiming to comprehend programs, students tend to 
paraphrase the code in front of them rather than provide 
higher-level explanations of the program’s function (Biggs & 
Collis, 1982). 

Given these consistent difficulties, some research in 
computer science education has explored ways to help 
students learn more effectively. Some techniques are specific 
to topics of computer science while others draw inspiration 
from educational tools or approaches used in other domains. 
One general technique is self-explanation. 

Self-explanation is the process of generating explanations 
of instructional material to oneself (Chi et al., 1989). To 
illustrate, self-explanation can involve making inferences on 
the domain concepts needed to generate worked-out example 
solutions and/or by making connections between various 
concepts. Self-explanation is highly beneficial for learning, 
(Chi et al., 1989; Chi et al., 1994; Renkl, 1999). While not all 
students spontaneously self-explain, Chi et al. (1994) found 
that explanations can be elicited by simply prompting 
students to self-explain instructional text. This result has 
since been replicated in other studies (Conati & VanLehn, 
2000). 

To date, the utility of self-explanation has been mainly 
investigated in domains other than programming and so work 

is needed to identify the mechanisms of self-explanation for 
this domain. This paper presents a preliminary model of how 
students learn through self-explanation of a short 
instructional text about the programming language Python. 
Before we present the model and results, we provide some 
background research to contextualize our findings.  

Background 
Chi et al. (1989) identified the self-explanation effect through 
their seminal study examining how students learn from 
instructional materials. The goal was to identify why some 
students learned more than others from studying activities. 
The student participants read a physics textbook and then 
studied examples and worked on problems. While they 
studied examples, they verbalized their thoughts, providing 
access to their reasoning. Student utterances were analyzed 
using qualitative methods and this analysis revelated that 
some utterances contained self-explanations while others 
corresponded to mere paraphrases of the instructional 
materials. The results showed that students who learned more 
produced more self-explanations than paraphrases and that 
their self-explanations expanded on the material and/or 
linked concepts or examples. The self-explanation effect has 
been replicated through studies in diverse domains like 
biology (Chi et al., 1989), math (Renkl, 1997) and 
programming (Recker & Pirolli, 1995). The focus on 
experimental work, and particularly studies aimed at 
characterizing the self-explanation phenomena and/or 
interventions to encourage this activity has meant that there 
is less work computationally modeling self-explanation. 
There are, however, notable exceptions that we now describe. 

Cascade is a Prolog-based computational model of how 
students solve physics problems in the presence of examples 
(VanLehn, Jones, & Chi, 1992). Cascade can both study 
examples and solve problems. When studying, it “reads” an 
example and attempts to self-explain each solution step by 
deriving it using existing facts in its memory. If no 
appropriate rule can be found, Cascade self-explains the 
example using common sense and reasoning to derive a new 
rule. Good students modelled by Cascade use different 
strategies while studying examples than poor students do. 
Namely, good students self-explain examples that they are 
studying while poor students simply accept that the examples 
are correct without actively processing why that is the case. 
Running the model demonstrates the self-explanation effect. 
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That is, the results show that the number of simulated self-
explanations is positively correlated with the number of 
correct problems solved by the model. This makes sense 
since self-explanation increases the likelihood that a student 
will encounter new rules or uncover impasses or gaps in 
knowledge that act as learning opportunities. 

Jones and Fleischman (2002) investigated student learning 
about probability via faded examples (incomplete examples 
that require the students to fill in the missing material). The 
hypothesis was that more learning will take place if a student 
is challenged to complete faded examples as opposed to 
studying already fully worked out examples that can more 
easily be passively accepted as accurate. To test this 
hypothesis, they added a new knowledge base to Cascade to 
support computing probabilities. To evaluate the extended 
model, they conducted simulations of the model, and also 
compared the model actions related to learning probabilities 
from faded examples with a student learning from the same 
examples. The simulations revealed that faded examples 
resulted in more student self-explanations than completely 
worked-out examples and that faded examples exposed more 
impasses (knowledge gaps), thereby uncovering more 
learning opportunities. However, not all student learning was 
accurately modeled. For example, some students would learn 
the correct application of a rule over the course of several 
examples. Cascade was unable to capture that gradual 
progression.  

Other work has focused on modelling problem solving 
without including example studying or self-explanation 
behaviours. Braithwaite and Pyke (2017) created a 
computational model of learning fraction arithmetic and 
compared it to student learning data. The model simulated 
problem-solving via reinforcement learning of rules, initially 
including various correct and incorrect rules and then 
increasing activation of selected rules as it progressed 
through example study and problem solving. The model was 
implemented to reinforce strategies that lead to correct 
problem-solving actions when applied correctly by 
increasing the strategies’ activation. Because they were 
reinforced, those strategies became simultaneously more 
likely to be correctly selected to solve a problem and more 
likely to be incorrectly selected to solve a problem for which 
they were not appropriate. This reinforcement of strategies 
was implemented because the model assumed that the 
majority of student errors come from overgeneralizations of 
fraction arithmetic rules. Test runs revealed that the textbook-
trained model accurately reproduces student performance 
data and that model simulations trained on unbiased 
distributions of examples and problems performed better on 
problems that are underrepresented in popular textbooks. The 
model accurately simulated student difficulties while 
learning and provided some evidence in support of the 
assumption that unrelated statistical properties also have an 
impact on student learning. 

So far, we have described computational models that aim 
to simulate human problem solving and/or example studying. 
Other computational frameworks produce interventions to 

enhance learning. For example, Conati and VanLehn (2000) 
extended Andes, a tutoring system for the domain of 
Newtonian physics, to support example studying by 
encouraging self-explanation through prompts and feedback. 
The framework doesn’t simulate self-explanation but rather 
assesses its presence or absence using a model of the student. 
For example, if a student using this system spends enough 
time viewing an example, they will not be prompted to self-
explain because the model will deem that sufficient effort was 
spent on the example to result in learning. Results from an 
evaluation of the system showed that the tutor was a 
beneficial tool, specifically for increasing student learning in 
the early stages of example study. 

Recker and Pirolli (1995) also created a type of computer 
tutor, in this case for programming education. They 
investigated how students learned programming skills 
through self-explanation using an embedded hyper-text non-
linear environment to present the instructional materials and 
elaborations on the text versus a typical linear instructional 
text. They found that high ability students (labelled as high 
ability based on post-test scores) benefitted from the hyper-
text environment, suggesting that the self-directed learning 
skills of those students enabled them to use the embedded 
elaborations to their advantage. Conversely, low ability 
students did not benefit from the experimental environment, 
suggesting that it may have increased cognitive load for these 
students. Analysis of self-explanations demonstrated that 
good students most frequently made comments about the 
domain (showing that their focus was on the content) while 
poor students most frequently made comments related to 
navigation (showing that they were more focused on interface 
features than on the lesson content).  

The challenge of understanding how students learn and 
how to enhance student learning is one that has been 
approached in various ways. We contribute to this effort and 
introduce a preliminary model of learning via self-
explanation in the domain of programming education.  

Python Self-Explanation Model 
The goal of the Python self-explanation model is to simulate 
student learning through self-explanation in the domain of 
learning to program. It simulates the process of novice or 
experienced students self-explaining a short instructional text 
about Python. In its current state, the model randomly assigns 
a pre-test score, then self-explains each line of text by 
retrieving existing knowledge from memory and producing 
that knowledge as a self-explanation and then finally it 
calculates the post-test score based on the self-explanations 
produced. For this preliminary model, learning is simulated 
by an increase from pre-to post-test scores.  

Theoretical Foundation 
Muldner, Burleson and Chi (2014) investigated how self-
explanation helps students learn about emergent phenomena 
in a study where students were prompted to self-explain texts 
about diffusion. To investigate the impact of different kinds 
of self-explanations on learning, each utterance was labelled 
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as either a macro-level explanation, a micro-level 
explanation, an inter-level explanation, a paraphrase, or 
other. The results showed that some explanations were more 
strongly related to student learning than others. We extend 
this framework to the domain of programming, modifying the 
characterization of the explanations to make them suitable for 
the programming domain.   

In the present work, micro-, macro- and inter-level self-
explanations are defined for the domain of programming as 
follows. Micro-level self-explanations correspond to 
utterances about the directly visible elements in a program 
(such as programming syntax) or in the instructional text. 
Macro-level self-explanations are inferences about high-level 
programming concepts, such as the idea behind a given code 
segment. Inter-level self-explanations act as a bridge between 
micro-level and macro-level concepts and, as such, they 
explain the connection between the directly visible elements 
in the instructional text and their use or purpose. 

For example, the line of instructional text “It is necessary 
to update the condition in order to eventually break out of the 
loop.” could be explained in the following ways. A micro-
level self-explanation could be “This works using conditions 
that can change.” This is micro-level because it focuses 
uniquely on the words condition and update which are found 
in the line of text. A macro-level self-explanation of the same 
line could be “Just like if there is no stop sign, people will 
keep driving.” This self-explanation shows an understanding 
of the purpose and function of a while loop. An inter-level 
self-explanation connects micro- and macro-level ideas. 
“Just like you will wash one dish at a time until there are no 
more dirty dishes, this will repeat until some condition 
happens” is an example of an inter-level self-explanation for 
that same line of text. In this model, paraphrases are just 
restatements of the instructional text.  

As in Muldner, Burleson and Chi (2014), the present model 
defines learning as the increase from pre- to post-test scores. 
Based on the learning outcomes of Muldner, Burleson and 
Chi (2014), in the present work, the most learning occurs with 
inter-level self-explanations, followed by micro-level, then 
macro-level, and finally the least learning occurs with 
paraphrases. Since the model here has not yet been developed 
to acquire new rules and knowledge, it uses the experimental 
findings about the relationship between levels of self-
explanations and learning (from other domains) to calculate 
a post-test score, as we will describe in more detail shortly. 

Model Framework, Environment and Components 
Modeling Framework. ACT-R is a well-known theory of 
cognition which includes theories of declarative memory, 
procedural memory, and a chunk and buffer system 
(Anderson, 2007). The original computer architecture of 
ACT-R was implemented using Lisp. That implementation 
restricts modelling to directly reflect the theory, so 
implementing some features can implicitly have side effects 
on other parts of the model. To allow for flexibility, Stewart 
and West (2007) created Python ACT-R. This framework has 
the three main components from ACT-R (a chunk-based 

communication system, a chunk storage system, and a pattern 
matching production system), but is implemented in Python. 
The Python code is based on the theory itself rather than 
being a direct translation from the original Lisp. Stewart and 
West (2007) thus demonstrated that the theory is separable 
from the code.  Also, the simple module creation in of ACT-
R and the ability to manually adjust more components makes 
it more flexible than Lisp ACT-R and promotes more 
extensive exploration of ACT-R theory, claims, and 
components. For these reasons, we used Python ACT-R as 
the basis for the present model. The model includes an 
environment and modules, described below.  
Model Environment. The main component of the model 
environment is the instructional text. For the present work, 
the text describes the syntax and the concepts of “if 
statements” and “while loops” in Python. There are 13 lines 
of text in total.  Each line is stored as an element in the 
instructional text environment and has an associated state. 
The lines are initially in a state of “read” to indicate that the 
line has yet to be read (and subsequently self-explained by 
the model). Each line of the text is also labelled as belonging 
to one of the three levels of knowledge (macro-, micro- or 
inter-level). 

Other information stored in the environment includes a 
count of the number of macro-level, micro-level, and inter-
level self-explanations as well as a count of paraphrases. All 
of these are initially set to 0 since no self-explanations have 
been produced before the model runs. During model 
execution, the counts are updated as each line of the text has 
been self-explained to keep track of the type of self-
explanation produced. The environment also includes the 
pre-test score and the post-test score used to quantify 
learning. The calculation of these scores happens in the self-
explain module (described below). Finally, the environment 
includes the experience level of the student being simulated 
by the model, either “novice” or “experienced”. This 
experience level influences the model execution, reflecting 
that novices self-explain differently and have more to learn 
than experienced students.  
Model Modules. A key benefit of self-explanation is the 
integration of new and existing knowledge, meaning that 
students make connections between the text and what they 
already know. In order for the model to simulate existing 
knowledge, the Python ACT-R declarative memory module 
is initialized to model a student’s prior knowledge. 
Specifically, the model’s declarative memory is initialized 
with chunks of domain information. Each chunk specifies the 
knowledge itself (a piece of existing knowledge), the level of 
that knowledge (macro-level, micro-level, inter-level), and 
the topic of the knowledge (a label indicating the topic of the 
existing knowledge). When the model runs, the declarative 
memory buffer is used to retrieve existing knowledge chunks. 
Some noise is added to the declarative memory to account for 
the fact that which chunk of knowledge is retrieved is not 
always predictable.  

When the model self-explains a line of text, it attempts to 
retrieve a relevant chunk of existing knowledge from 
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declarative memory. The relevance of a chunk is influenced 
by its topic and its knowledge level. A chunk is most relevant 
to a line of text if they have the same topic and if their 
knowledge level (inter-, micro-, macro-level) is similar. 
Knowledge levels were defined as partially similar to one 
another as follows. Inter-level was set to be partially similar 
to both macro-level and micro-level while micro-level and 
macro-level are set to be dissimilar. This choice was made 
based on the assumption that an inter-level explanation for a 
topic is always suitable since it serves as a bridge between the 
other concept levels. Meanwhile, micro-level and macro-
level concepts are quite different and, therefore, it is less 
likely that a student would choose to produce a micro-level 
self-explanation for a macro-level line of text, for example.  

The model also includes a self-explanation module that 
contains a production to change the state of a line of text from 
“read” to “self-explain” (to indicate that the line has been 
read and self-explained), a production to update the count of 
the different levels of self-explanations produced, and 
productions for updating the pre-test and post-test scores. 
Since this is a preliminary model, it does not yet simulate the 
process of taking the pre-test and the post-test. Instead, the 
pre-test score is randomly determined from a range of values 
depending on the student experience level. Novice student 
pre-test scores arbitrarily range from 30% to 40% based on 
the assumption that novices will not have the knowledge 
required to pass a programming pre-test. Experienced 
students are assumed to only have minimally more 
experience than novice students and, as such, their randomly 
chosen pre-test score will fall within the range of 45%-60%. 
Given that previous research has demonstrated that inter-
level explanations are associated with the most learning, 
micro-level with slightly less learning and macro-level and 
paraphrases with the least learning (Muldner, Burleson & 
Chi, 2014), the following equation was used to determine a 
post-test score: 

Post-test score = S + ! !
!"
" •
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#
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" • P) • (100-S)

where S is the pre-test score, I is the number of inter-level 
self-explanations produced, M is the number of micro-level 
self-explanations produced, A is the number of macro-level 
self-explanations produced, and P is the number of 
paraphrases produced. With this formula, all simulated 
students will have post-test scores higher than their pre-test 
scores, which makes sense since it is assumed that students 
will not lose any programming knowledge by self-explaining 
the instructional text. Further, in order to match previous 
findings in other domains that show the most learning is 
associated with inter-level explanations, a perfect score in 
this model is possible if all self-explanations are inter-level. 
(Note this is based on an assumption that the findings in other 
domains hold in this domain which still needs to be verified 
experimentally.) All other possible scores are a function of 
the number of each level of self-explanation produced 
weighted by the relative amount of learning assumed to be 
associated with the given level of self-explanation. 

Model Execution 
A run of the preliminary model begins by manually setting 

the model parameter for experience level as either novice or 
experienced. While the same Python ACT-R parameters are 
used to produce self-explanations when simulating either 
type of student, the student type influences the levels of self-
explanations produced.  In the programming domain, novices 
have been shown to be more likely to provide micro-level 
self-explanations than any other level of self-explanation 
(Robins, 2019). So, if simulating a novice student, the model 
rehearses micro-level knowledge in memory, thereby 
making it more salient in memory and strengthening its 
activation. In other words, novice student simulations are 
more likely to retrieve micro-level knowledge when self-
explaining. If the experience parameter indicates previous 
programming experience, then the model will rehearse inter-
level knowledge since, unlike novices, experienced learners 
are known to have more complete schemas and can therefore 
connect different levels of ideas (Robins 2019). This is why 
inter-level knowledge is more likely to be retrieved during a 
simulation of an experienced student’s self-explanations. 
Like all other levels of knowledge, macro-level knowledge 
still is added to declarative memory for every type of student, 
it is just not rehearsed and therefore is less salient and less 
likely to be retrieved. This is because Muldner, Burleson and 
Chi (2014) reported than macro-level self-explanations are 
least frequently produced by all students. Next, the model 
fires the pre-test production to randomly assign a pre-test 
score to the student, influenced only by the experience level. 

The model then simulates self-explaining of the text. 
Specifically, it reads a line of instructional text and connects 
that text to existing knowledge. This is achieved by retrieving 
chunks of knowledge from declarative memory related to the 
topic and knowledge level of the text line (recall that all 
chunks in declarative memory are labelled with the topic and 
level). Figure 1 demonstrates a summary of the process of 
self-explaining a line of the instructional text. The model 
reads the line “The syntax of an if statement is: if [condition]: 
[do something] else: [do something else]”, retrieves a micro-
level chunk from memory, and produces the chunk’s 
knowledge as a self-explanation “So we have to write down 
the words ‘if’ and ‘else’”.   

Figure 1: Self-explaining a line of text. 

 As mentioned, knowledge levels have been assigned to 
lines of instructional text and to chunks in declarative 
memory. However, given the a priori specified similarity 
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between knowledge levels and the effect of noise in 
declarative memory, the retrieved knowledge may not 
correspond to the knowledge level or topic of the line of 
instructional text. This simulates the fact that students may 
not always be able to retrieve related knowledge when they 
want to self-explain. For this model, any topic-relevant 
knowledge that is retrieved will lead to successful self-
explanation since, for example, a macro-level line can be 
explained by inter-level knowledge. However, if the retrieved 
knowledge does not relate to the topic of the line of text, then 
that knowledge cannot be used to produce a self-explanation 
of the line resulting in the model disregarding the retrieved 
knowledge and, instead, just paraphrasing the line. Similarly, 
a failure to retrieve knowledge of any kind for a given line 
leads to a paraphrase of that line. After each line is self-
explained, the count of each level of self-explanation is 
increased accordingly.  

Finally, when the model has self-explained each line of the 
text, it calculates a post-test score using the post-test score 
formula previously described. The simulation displays the 
pre-test score, the number of self-explanations of each level 
produced, and the post-test score. 

Results 
Sample runs of the preliminary model were used to evaluate 
how it performed when modelling learning via self-
explanation in the domain of programming. Table 1 displays 
results of running the Python self-explanation model 5 times 
as a novice programming student, and 5 times as a more 
experienced programming student. The table displays the 
pre- and post-test percentage scores and the percentage of 
learning gains along with the count of each level of self-
explanation produced. 

The results indicate that the Python self-explanation model 
does accurately simulate some findings of learning via self-
explanation. Micro-level self-explanations were the most 
common type of explanation produced by novice student 
simulations and inter-level self-explanations were the most 

common type produced by experienced student simulations. 
The novice student simulation reflects experimental data 
showing that novice programmers focus on the line-by-line 
details rather than the overarching concepts or connections 
between the syntax and the concept (Robins, 2019). This 
model also accurately reflects prior findings that, with 
experience, more complete schemas exist connecting code to 
concepts thereby permitting inter-level self-explanations for 
experienced learners. The very low number of macro-level 
self-explanations as compared to inter-level or micro-level 
self-explanations matches the observations of Muldner, 
Burleson and Chi (2014) and is understandable in our 
simulations since the model rehearses micro-level or inter-
level knowledge (depending on student experience level) but 
not macro-level knowledge. So, while chunks of all three 
levels of knowledge exist in declarative memory, macro-level 
chunks have not been rehearsed for the reasons stated above 
and are therefore less salient and less likely to be retrieved for 
self-explanation.  

The relationship between learning gains and levels of self-
explanation matches the relationship described in the 
Muldner, Burleson and Chi (2014) data. This is built into the 
model as the post-test score is a weighted function of the 
levels of self-explanations produced. For example, the 
highest learning gains for a novice come from S1, and for an 
experienced simulation, S10, both of whom produced more 
inter-level self-explanations than any other simulations with 
their experience level. So, inter-level self-explanations 
resulted in the most learning.  

The results accurately indicate that there were learning 
gains for all simulated students. Further, novice runs of the 
model result in more learning than experienced runs. This 
seems reasonable since novice students simply have more to 
learn. However, since the pre-test scores are randomly 
selected and the post-test scores are simply calculated as a 
function of weighted level of self-explanations produced and 
the pre-test score, this result is hard coded into the model 
rather than being determined by simulating the pre-test and 
post-test in full, so these results are expected. 

Table 1: Results of 10 sample runs. 
Student Pre-test Micro Inter Macro Paraphrase Post-test Gains 
N S1 37 5 6 0 2 87 50 
N S2 36 6 1 0 6 72 36 
N S3 38 7 2 1 3 79 41 
N S4 36 5 4 0 4 80 44 
N S5 32 5 3 0 5 76 44 
Average 
(Novice) 

35.8 5.6 3.2 0.2 4 78.8 43 

E S6 51 3 4 1 5 82 32 
E S7 55 2 3 2 6 80 25 
E S8 51 3 5 1 4 85 34 
E S9 52 4 3 2 4 82 30 
E S10 49 1 7 0 5 85 36 
Average 
(Experienced) 

51.6 2.6 4.4 1.2 4.8 82.8 31.4 
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Discussion and Future Work 
As described in the background section, cognitive models 

can provide valuable insight into how students learn and can 
inform effective teaching strategies and interventions. Yet, 
due to the complexity and intricacies involved in learning, 
such as individual learner differences and differences in 
domains, a complete model of the learning process has yet to 
be created. The Python self-explanation model is a 
preliminary step for informing on learning via self-
explanation in the domain of programming. 

While the current model captures some aspects of self-
explanation such as drawing on existing knowledge, it does 
not yet simulate the acquisition of new knowledge. If the 
learning process were expanded to include the ability to learn 
new rules through commonsense and general reasoning, as is 
the case with models like Cascade (VanLehn, Jones, & Chi 
1992), then it would be possible to also simulate the pre- and 
post-test activities, as opposed to randomly producing a pre-
test score and then a post-test percentage calculated using 
weighted counts of levels of self-explanations. Supporting 
new rule acquisition and subsequently modelling the pre- and 
post-tests could provide insight into mechanisms used by 
students when they apply the knowledge gained from the self-
explanation exercise to a problem-solving test.  

There are various other avenues for future work. One 
extension would be to model more types of students. Robins 
(2019) describes that in the field of programming education, 
three distinct clusters of students emerge. There are 
“stoppers” who withdraw from or abandon the activity 
quickly when they encounter difficulties, “movers” who trace 
code and try to navigate to a correct solution when they notice 
an issue, and “tinkerers” who react to problems by trying 
different tweaks of the code somewhat haphazardly and 
without code tracing. These clusters all pertain to program 
generation and so work is needed to determine if these 
clusters also emerge in activities that involve reading and 
explaining programs and instructional materials. If similar 
clusters of student types exist when self-explaining, these 
student types’ self-explanation patterns could be modelled in 
addition to modelling differences in two experience levels. 
Alternatively, modelling the learning patterns of good and 
poor students as examined in Chi (1989) or of high and low 
ability students as in Recker and Pirolli (1995) could be an 
informative next step. A more sophisticated extension could 
include modelling individual differences on a continuum 
from novice to expert rather than modelling students as 
falling within specific experience or type categories. 

Another avenue for future work involves adding capability 
to model student emotion during the self-explanation process. 
We began work for this step. Specifically, although it was not 
described here, our model includes a preliminary emotion 
module. Currently, all simulations produce states 
corresponding to motivated and happy at times, but also 
individual runs of the model will produce either frustration or 
boredom while self-explaining each line of text, influenced 
only by the student experience level. That is, runs of the 

model representing experienced students produce reports of 
feeling bored more often than frustrated while novice runs 
more frequently produce frustration. This was a first step in 
modelling some basic emotions guided by the assumption 
that novice difficulties lead more often to frustration while 
experienced pre-existing programming knowledge makes 
reading a basic instructional text a more boring exercise. The 
model does not yet take into account text complexity (e.g., 
which may commonly elicit frustration across all experience 
levels). Also, the emotion is not yet related to the level of self-
explanation produced so, the fact that a student paraphrases 
because they cannot retrieve relevant knowledge, for 
example, does not make them any more likely to feel any 
frustration than if they, say, successfully self-explain a line 
with inter-level knowledge.  This leaves a lot of room for 
improvement in the emotion module of future versions of the 
model including modelling a wider range of emotions, the 
connection between lines of text and emotions, the 
relationship between successful self-explanations and 
emotions, or even the intricacies of the various emotions 
associated with more types of students (such as the stoppers, 
movers, tinkerers, or good and poor students suggested 
previously).  

Additionally, most existing data comes from self-
explanation studies in other domains. Confirming that the 
same patterns emerge within the topic of learning to program 
would better inform this and future models. 
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Abstract 
Research of mathematical models of learning and retention have 
focused on accounting for an individual’s performance across a 
variety of learning schedules (i.e., spaced and massed). The 
attempted goal of such research is to develop a model which can 
adequately predict human performance across a range of learning 
scenarios. However, little attention of this model development has 
focused on the interpretation of a model’s best fitting parameters 
given the structure of a model’s equations and its predicted 
performance values. The effect of this can lead to the 
development of models where the parameter values are correlated 
hindering a theoretical interpretation of performance. Here we 
examine the structure of the  Predictive Performance Equation 
(PPE) and highlight portions of PPE’s equations that lead to 
correlations across its free parameters. We propose a fix for these 
issues (Modified PPE) and conduct a formal model comparison 
showing the Modified PPE is simpler, has less parameter 
correlation and its best fitting parameters map on to identifiable 
aspects of an individual’s performance.  
Keywords: memory, learning, decay, spacing effect, 

mathematical modeling, model comparison, model 
identifiability  

Introduction 
Mathematical models of learning and retention are 
quantitative formulations of verbal psychological theories 
which attempt to account for and/or predict empirical data. 
One value of these mathematical formulations is the fact that 
all assumptions of a model are made explicit allowing for 
formal statistical evaluation. Furthermore, these 
mathematical models lend themselves to real-world 
applications, such as adaptive learning systems. Although the 
quantitative formulations of models have many benefits, care 
must be taken to ensure how these models are constructed, to 
ensure that a model accurately represents the assumptions of 
a given psychological theory. 
     In the domain of learning and retention, mathematical 
models are developed in order to represent how an individual 
retains knowledge based on the temporal aspects of a training 
schedule. Models often achieve this goal by representing 
three regularities of human memory: power law of learning, 
power law of decay, and the spacing effect. These three 
psychological phenomena have been represented in various 
mathematical models (Pavlik & Anderson, 2005; 
Raaijmakers, 2003; Walsh et al., 2018). The Predictive 
Performance Equation (PPE) is one particular mathematical 
model that has been found to account for a range of learning 
phenomena compared to other spacing effect models (Walsh, 
et al., 2018) and has been used to inform training applications 
. Each of these accomplishments was part of the explicit 

purpose of PPE’s development, being used as a prescriptive 
educational tool.  
     However, despite the PPE’s successful applications, its 
current formulation limits the estimation of psychological 
meaningful parameter estimates due to correlation across 
parameters. These limitations arise not because of the 
underlying psychological theory PPE represents or doubt of 
the empirical validity of the spacing phenomena, but because 
of PPE’s chosen mathematical representation. In this paper, I 
review the current formulation of the PPE, address its 
limitations, and offer an alternative formulation of how they 
might be overcome. 

Predictive Performance Equation 
The PPE is composed of six individual equations, containing 
4 free parameters. At the center of the PPE is the Activation 
term Mi (Eq. 1), which is a product of the learning term (Nc) 
and the forgetting term (T-d). The learning term is on the unit 
of trial exposures (N) raised to a constant learning rate (c, 
usually .1). While the decay term is on the scale of model 
time (T), raised to a decay rate (d). From Eq. 1 it can be seen 
that Mi is on the scale of number of exposures and model time 
(T).   

𝑀" = 𝑁"% ∗ 𝑇"()   (Eq .1) 

A novel aspect of PPE is that model time (T) is modeled as a 
weighted average (Eq. 2) of time since all previous 
presentations of an item (Eq. 3). Thus, model time (T) is on 
the scale of the weighted average of wall clock time (often 
seconds).  

𝑇" = ∑ 𝑤",(-
".- ∗ 𝑡"   (Eq .2) 

𝑤" = 𝑡"(𝑥/∑
-
23
45

,(-
6.-    (Eq. 3) 

Additionally, PPE’s decay rate (Eq. 5) dynamically changes 
over time, based on two free parameters, b and m, and the 
stability term. The stability term (Eq. 4) is a representation of 
the average natural logarithm of the lagi of an item’s history. 
Due to the fact that the natural log of the lag is taken, PPE’s 
decay parameter is an unitless metric. 

𝑆𝑡"		 = 	 9
1

𝑛−1
∗ 	∑ 1

𝑙𝑛	>𝑙𝑎𝑔𝑗+𝑒D	
𝑛−1
𝑗−1 E	 (Eq. 4) 

𝑑" = 𝑏 + 𝑚 ∗	𝑆𝑡"(𝐸𝑞. 5)	
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Finally, to generate a prediction of performance, PPE’s 
activation term (Mi) is nested within a logistic function (Eq. 
6), which is controlled by two additional free parameters, τ 
and s, controlling the slope and intercept of the performance 
value. This formulation of activation value has been used in 
other learning contexts (Anderson, 2007) 

𝑃" =
𝟏

𝟏Q𝒆𝒙𝒑(
𝝉4𝑴𝒊
𝒔 )

 (Eq. 6) 

Sources of correlation 
As discussed in the previous section, PPE is composed of 6 
equations with 4 free parameters. Equations 1 through 5 make 
up the PPE terms and Eq. 6 maps an unbounded  activation 
term (Mi )onto a performance value. The free  parameters are 
split such that they affect the PPE’s decay (Eq. 5) term and 
the properties of the logistic function (Eq. 6). An unintended 
effect of this mathematical formulation is a high correlation 
between PPE’s free parameters and an inability to compare 
best fitting parameters across individuals for psychometric 
evaluation (e.g., high versus low decay rates). The inability 
to compare parameters across participants is due to the fact 
that, since parameters correlate with each other these 
correlations must be taken into account before any parameter 
comparisons can be made across participants. Specifically, 
within the PPE this issue arises from two sources, (1) the PPE 
contains unbalanced units (i.e., Mi) and (2) the Mi term is 
nested within a logistic function. Each of these features have 
been shown in other psychological models to produce 
parameter correlation and issues with identifiability (Krefeld-
Schwalb, Pachur, & Scheibeheen, in press). Here, we address 
the origin of both these sources in the PPE and propose an 
alternative formulation to remedy these correlation issues. 

 Unbalanced Units Unbalanced units refers to instances 
when particular terms within an equation are combined 
together without the units of those terms canceling out. For 
example, in PPE this occurs when computing the activation 
term Mi (Eq. 1) when the learning term is multiplied by the 
decay term. PPE’s learning term is on the scale of instances 
of exposure (Ni), while PPE’s forgetting term is on the scale 
of model time (Ti). Combining these two terms together, 
leads to an activation term Mi that is on the scale of number 
of events and model time, which results in highly correlated 
parameters, due to the fact that the free parameter (di) within 
each term are dependent on that term’s scale. It is this 
correlation of parameters that hinders PPE‘s parameters 
being able to meaningfully represent  individual differences 
within a sample due to the fact that any parameter estimate is 
dependent on that term’s scale. The limitations of this 
formulation is not unique to PPE but has been found in other 
psychological models. Readers interested in a more thorough 
explanation should see Vincent and Steward (2020) and 
Stewart, Scheibehenne, and Pachur (2018). 

Nested Equations A second source of intercorrelation within 
the PPE is the activation value (Mi) nested within a logistic 
function (Eq. 6), which is manipulated by its own free 

parameters (i.e., 𝜏 and s). The nesting structure creates three 
difficulties with model interpretation. First, nesting the 
activation term within the logistic equation allows for 
different Mi values to have equivalent performance values. 
Consequently, two people with identical learning and decay 
terms could be predicted to exhibit different performance in 
the future, which suggests that PPE’s parameters (especially 
b and m) are difficult to interpret at face value (i.e., without 
also knowing the values of 𝜏 and s).. Second, within the 
logistic function, 𝜏 and s do not have independent effects on 
the activation term, allowing for multiple combinations of 𝜏 
and s to create equivalent performance values. Third, having 
free parameters outside of the learning and forgetting terms 
obscures the interpretation of the PPE. Again, this issue is not 
unique to the PPE but has been noted as an issue with other 
psychological models Krefeld-Schwalb, Pachur, and 
Scheibeheen (in press). 

Modified Predictive Performance Equation 
As discussed above, PPE consists of unbalanced units and a 
nested equation, each of which lead to correlation across 
parameters. Both issues can be fixed by making relatively 
minor modifications to PPE’s structure keeping the 
remaining assumptions of human performance intact. In the 
rest of the document We will refer to this new equation as the 
Modified PPE. In this section a proposed set of modifications 
to the PPE to reduce the correlation of parameters and 
improve the parsimony of the PPE are evaluated. 
      One cause of PPE’s intercorrelations across the model’s 
parameters is due to the Mi term being nested within a logistic 
equation (Eq. 5). This nesting step is required due to the fact 
that Mi is not bound between 0-1. However, this formulation 
is not required if both the learning and decay term are bound 
between 0-1, which would allow the learning and decay term 
to be combined together to estimate performance on a 0 - 1 
scale (Eq. 7). To achieve this formulation, slight 
modifications are made to both the learning and decay term 
which are outlined here. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒" = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑇𝑒𝑟𝑚" ∗ 𝐷𝑒𝑐𝑎𝑦𝑇𝑒𝑟𝑚" (Eq. 7) 

Learning term In the standard PPE the learning term is 
produced as a power law. However, the reformulated learning 
term is exponential. Though there is a debate over the form 
of learning or forgetting term, the exponential formulation 
has been shown to better account for learning at an individual 
level performance over a power law (Heathcote, Brown, & 
Mewhort 2000). In this formulation the Modified PPE 
learning term (Eq. 8) has a learning rate m, which controls the 
rate at which material is acquired. When m is low information 
is acquired quickly, while when m increases the rate that 
individuals acquire information decreases. The benefit of this 
modified learning term is twofold. First, compared to the 
previous learning term (Eq. 1), it is now on a scale of 0-1. 
Second, due to the fact that Ni and m are used as exponents, 
which are unitless, the learning term can now be combined 
with the forgetting term .  
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𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔		𝑇𝑒𝑟𝑚" = 1 − (𝑒(b∗(-(c)) (Eq. 8)   

Decay Parameter One novel component of the PPE is that 
its decay term dynamically changes over time based on the 
temporal spacing of practice. This is a result of the 
assumption that spacing is a result of attention moderating the 
spacing effect (Walsh et al. 2018). The Modified PPE retains 
the same assumption of the use of the stability term 
(Eq.4),which accounts for an item’s previous temporal 
history of presentations. The addition of the lag term -

def	(dgfh)
,

which represents the most recent lag between exposures was 
added to PPE’s decay parameter due to the fact that Mi is no 
longer nested in the logistics term and augmented by the τ 
and s parameter. The lag term is modified by the same 
learning rate (m) parameter as used in the learning term 
(Eq.8). When learning rate is low, the effect of the most 
recent lag is minimized, while when it is high the effect of the 
most recent lag is maximized. The stability term is 
manipulated according to the b parameter, which controls the 
effects that the previous temporal schedule (i.e, spaced 
practice) has on performance. This subtraction of the 
maximum value  is used to format the decay term serving as 
a decay intercept based on the largest decay within a set of 
practice items (Eq. 9). The benefit of this decay term is that 
it is now composed of two terms (lagi and Sti) that each 
represent separate aspects of the performance and each 
manipulated by their own free parameter. 

𝑑 = ( -
def(dgfh)

∗ 𝑚 + 𝑆𝑡"		 ∗ 𝑏) − 𝑚𝑎𝑥( -
def(dgfh)

∗ 𝑚 + 𝑆𝑡"		 ∗ 𝑏))  (Eq. 9) 

Forgetting Term For the decay term, the standard power 
law formulation was retained from the PPE. However, the 
power law is expressed as a ratio which allows the 
forgetting term to be expressed as a unitless metric between 
0-1 (Eq. 10).

𝐹𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔	𝑇𝑒𝑟𝑚 =
kh
4lh

-Qkh
4lh

   (Eq.10) 

Summary of Changes to the PPE 
Here we reviewed the PPE, a model of learning and retention 
which has shown great promise in accounting for both 
laboratory and real world findings. However, features within 
the PPE lead to correlation across parameters and hinder it 
from being used to estimate psychological constructs (i.e., 
learning and decay rates). To correct these limitations, we 
have proposed a new formulation of the PPE, decreasing the 
number of free parameters while retaining PPE’s unique 
features: multiplicative performance, model time, and 
variable decay term.  

Method 

     To highlight a comparison between the standard and 
modified PPE, a model comparison was conducted, 

highlighting the correlation across  free parameters and the 
benefits of the PPE’ formulation. 
Participants Sixty-one participants were recruited from a 
midwestern university in this paired-associate learning study. 
All participants completed a total of three experimental 
sessions spanning a three-week period. 
Task Stimuli Over the course of the experiment participants 
memorized a set of 30 Japanese-English words. All of the 
words used in this study were taken from the Medical 
Research Council (MRC) Psycholinguistic Database manual 
and have been used in other previous memory studies (e.g., 
Pavlik & Anderson, 2005). 

Experimental Design and Procedure  During the 
experiment, an item’s training schedule was manipulated 
according to inter-session interval (ISI) and inter-trial 
interval (ITI) over the course of experimental sessions. The 
ISI controlled the amount of time between the 1st and 2nd 
experimental session, with a fixed 7 day ISI between the 2nd 
and 3rd session across all conditions.. The ISIs in this study 
were fixed at short (5 min), medium (7 days), and long (14 
days) delay. The ITI manipulated the number of trials 
between presentations of the same item within a session. Two 
ITIs consisting of a short (every 2 trials) and long (every 11 
trials) delay were embedded in each experimental session. 
During the study, participants, with no knowledge of the 
Japanese language, were given instructions for the paired 
associate learning task and had an opportunity to ask any 
questions. Once participants began the experiment, they were 
shown a Japanese word (e.g., “kanboku”) on the screen and 
asked to type the English translation (e.g., “bush”) to the 
Japanese word. Upon first presentation of a word, 
participants were shown the English translation and asked to 
type the correct answer to ensure the item was studied. 
During all subsequent presentations, participants were asked 
to recall and type the English translation from memory. 
Participants were given a maximum of 7 seconds to type their 
answer during each trial. If a participant could not generate a 
response within 7 seconds, then their answer was considered 
incorrect. At the end of each trial participants were given 
feedback (correct or incorrect) and given 2 seconds to study 
the correct answer. 

Bayesian Models 
To examine the two implementations of the PPE, Bayesian 

hierarchical models of both the Standard and Modified PPE 
were implemented in JAGS (Plummer, 2012). Each model 
was run with 3 MCMC chains, run for 9000 iterations, with a 
fixed burn in period of 1000 iterations. Each models priors 
were chosen so that the prior predictions from each model 
expressed the standard learning phenomena expected from 
the learning schedule (i.e., slower learning in the long vs short 
ITI condition with more decay between the sessions in the 
short compared to the long ITI). Each model was fit to each 
of the Japanese-English word pairs across the three 
experimental sessions.   

Results 
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To compare the Standard and Modified PPE equation, a 
comparison across three different metrics was performed. 
First, we examined how well each model fit to the 
performance of subjects across each of the learning 
schedules. Second, we compared the correlation between 
each model’s free parameters. Third, the relationship 
between the participants’ parameter estimates and learning 
retention were examined.  

Model Fit 
We first examined the average performance of participants 

and each model’s posterior performance estimates across the 
six different learning schedules. An examination of the 
models’ average fit to the participants performance reveals 
several interesting qualitative findings (Figure 1). First, the 
Modified PPE for the most part has much narrower 95% HDI 
compared to the Standard PPE. This difference in precision 
between the two models is the result of the difference in 
complexity. The Standard PPE has 4 free parameters, with 

the activation term (Mi) being nested within a logistic 
equation, which gives the model additional flexibility. 
An example of this additional flexibility can be seen in the 
relearning between in 2nd and 3rd experimental sessions: the 
Standard PPE shows quick but attenuated relearning across 
sessions, while the Modified PPE shows quick relearning 
between sessions.  

To evaluate the fit of both models to the participants’ 
performance across the three experimental sessions, the 
correlation (r) and root mean squared deviation (RMSD) 
between the average accuracy and each model’s posterior 
performance were calculated (Table 1).  Both models  fit the 
average performance of participants across all of the 
experimental conditions quite well, with the Standard PPE 
having a slightly higher correlation and lower RMSD 
compared to the Modified PPE. However, a Bayes factor 
found the the Modified PPE  to be strongly preferred to the 
Standard PPE (BF > 30)These results suggest strong evidence 
in favor of the  Modified over the Standard PPE, suggesting 
that the Modified PPE is a more parsimonious model 
compared to the Standard PPE in this context.  

Parameter Intercorrelation  
Next, we evaluated the intercorrelations between each of the 
models’ free parameters (Figure 2). A correlation between 
two parameters reveals a functional interdependence, which 
hinders theoretical interpretations of the parameters.  
Standard PPE To evaluate the comparison between the 
Standard PPE’s free parameters, the correlation between all 
free parameters (b, m, s, 𝜏) were calculated from the models 

Table 1. The correlation ( r ) and root mean 
squared deviation (RMSD) between the standard 
and modified PPE across each of the six learning 
schedules. 

Figure 1. The average +/- 95% HDI posterior model fit of the Standard (dashed red line and ribbon) and Modified (dashed 
blue line and ribbon) PPE to the participants’ performance (sold black line) six experimental conditions varying the three inter 
session interval ( 0, 7, and 14 days) and the two inter trial intervals (short and long).  
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fit for each of the Japanese – English word pairs studied by 
participants (Figure 2 – left panel). The results of the 
correlation between the Standard PPE’s free parameters are 
apparent and as expected from the analysis of the Standard 
PPE formulation. First, there was a moderate negative 
correlation between the b and m parameter in the standard 
PPE decay equation (Eq. 5). This correlation between the b 
and m parameters occurs due to the fact the decay parameter 
is structured as a linear regression with the  product of the 
stability term  and m being added to the b parameter. From 
this construction the same decay value can be achieved under 
a variety of b and m combinations. Second, the b parameter 
is seen to negatively  correlate with 𝜏		parameter  (Figure 2 – 
left panel).  This correlation is caused by nesting the Standard 
PPE’s activation term (Mi) within the logistic term (Eq. 6). 
Due to the fact that  𝜏 affects the Standard PPE’s performance 
estimation outside of the activation term additional variance 
in the participants performance can be explained by 
manipulating either the 𝜏	 or b parameter. Finally, a smaller 
negative correlation between the 𝜏 and s parameter was 
observed. This  correlation is the result of the structure of the 
logistic term and unbalanced units of the Standard PPE’s 
activation term subtracted by the 𝜏.  

Modified PPE  Compared to the standard PPE, the Modified 
PPE has only two parameters: b and m. Overall, the 
correlation between the b and m parameter is minimal 
compared to some of the correlations across parameters that 
were observed in the Standard PPE. This reduced correlation 
is the result of removing the logistic term from the equation, 
thus not having any nested terms within the equation and 
making sure the b and m parameters each affect only one term 
in the decay parameter, the stability term and the lag. The 
effect of each of these manipulations is that the Modified PPE 
is greatly simplified.  

Measuring Aspects of Performance 
In our final comparison between the Standard and 

Modified PPE, each model’s subject-level free parameters 
and specific aspects of the participants’ performance were 

examined. The two relevant aspects of the participants’ 
performance chosen for this paper were the participants’ 
overall accuracy and retention between sessions (i.e. 
accuracy on the 1st trial during the 2nd and 3rd session trials 11 
& 21). Ideally, a model’s free parameters should represent a 
latent theoretical construct, such as learning and decay, which 
then map on to particular measures of behavior.  

Standard PPE  As seen in Figure 3, the Standard PPE’s free 
subject-level parameters were seen to have a moderate 
correlation with both the participant’s overall average 
performance and their retention between sessions.  However, 
with both measures 𝜏	was found to have the highest 
correlation with both overall accuracy  and the retention 
between sessions, compared to both the b, m, and s parameter. 
This result highlights that the 𝜏 parameter has a 
disproportionate influence on the Standard PPE’s 
performance estimates. The predominant influence of 𝜏	can 
be seen as problematic due to the fact that 𝜏 modifies the 
activation term (Mi) and does not have any direct influence 
on either model time  (Ti) or the stability term (Sti). One 
potential cause for the limited influence of the b and m 
parameter on accounting for performance, is the correlation 
between each other (i.e., b & m ) and the 𝜏 parameter. 

Figure 2. A histogram of each the free parameters of the Standard (left panel) and the Modified PPE (right panel) 
correlation with each other for each item presented over the course of the experiment.  

Figure 3. Scatter plot between participants’ overall average 
performance (left plot)  and the average performance during 
the 1st trial during the 2nd and 3rd session and the free 
parameters (right plot) from the Standard PPE (left four 
columns). 

-

Standard PPE

r = -.36 r = .37 r = .07 r = -.68 r = -.46 r = .04 r = .32 r = -.52
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Modified PPE: In contrast to the Standard PPE, the free 
parameters in the Modified PPE are both seen to have a strong 
relationship with both the participants’ overall accuracy and 
retention between sessions (Figure 4 - Panel B). Further, the 
degree of each parameter’s relationship can be understood 
from a theoretical perspective. The m parameter is accounting 
for the participants’ ability to learn the Japanese – English 
word pairs during the experiment. This relationship is in line 
with the m parameter’s function within the Modified PPE, 
affecting the rate at which information is learned. The b 
parameter, on the other hand, which affects the model’s 
stability term, is seen to predominantly account for the 
participants’ retention between sessions. These results 
highlight another benefit of the Modified over the Standard 
PPE. The simplified structure of the Modified PPE allows for 
the parameters to better summarize and map on to particular 
aspects of the  participants’ performance.  

Discussion 
In this paper, the formulation of the Standard PPE was 

examined. Two aspects of the PPE’s structure were identified 
as contributing to the correlation between PPE’s free 
parameters. Correlation between parameters increases a 
model’s complexity and obscures the meaning that can be 
attributed to  particular parameter estimates. 
     To reduce this intercorrelation across parameters, several 
modifications were made to the Standard PPE’s structure, 
removing the activation term (Mi) from the logistic equation 
and modifying the forgetting and learning terms. Although 
these modifications to the Standard PPE changed the 
structure of the equations, the components unique to the PPE 
relative to other spacing models (i.e., variable decay rate, 
stability term, and model time) remained intact. A formal 
model comparison between the Standard and Modified PPE 
revealed that the Modified PPE was able to (1) account for 
the participants’ performance across the three experimental 
sessions, (2) greatly reduced the correlation across its two 
free parameters, and (3) parameter estimates mapped on to 
specific aspects of the participants’ performance. 

 It is important to note that the results reported in this paper 
do not invalidate any previous findings of the PPE, but simply 
address the meaning that can be attributed to its parameter 
estimates. PPE was initially developed as a predictive tool 
and to meet a set of applied criteria (i.e., assign prescriptive 

scheduling, calibrate quickly to prior performance, account 
for relearning of spaced items after a delay; see Walsh et al., 
2018 for full list). Along these criteria the Standard PPE has 
succeeded and has been used successfully as a predictive tool 
across different applied domains.  
     Attempting to explain data from a theoretical point of 
view and predicting new observations are opposing goals for 
scientific models (Shmueli, 2010) and neither one should be 
considered superior to the other. Instead, a balance between 
these two extremes should be found based on the pragmatic 
goals of the research question. If the goal is to  use the PPE 
as a method to predict future learning and retention behavior 
of an individual, then the Standard PPE’s formulation is 
acceptable. In contrast, if the goal is to summarize an 
individual’s performance in terms of psychologically latent 
values (i.e. decay, learning) or to compare the best-fitting 
parameters across individuals to evaluate individual 
differences, then the Modified PPE proposed here is a more 
appropriate tool.  
     Several limitations need to be addressed within this paper. 
First, additional research needs to be conducted to further 
explore how well the Modified PPE can account for 
performance across longer and more variable learning 
schedules relative to the Standard PPE. Here, the Standard 
and Modified PPE were compared across only six unique 
learning conditions. Future research should compare the two 
models along a variety of both spaced and non-spaced 
learning schedules to better find where these two models 
differ. Second, this paper focused on reducing the parameter 
correlation across the Modified PPE parameters, to simplify 
the model and reduce its dimensionality. Future research 
should explore using Modified PPE for psychometric 
purposes, evaluating if either of its parameters correlate with 
particular psychological constructs such as working memory 
or attention.   

Conclusion Mathematical models of psychological 
theories are useful tools for theory evaluation, development 
and applied technologies. For these goals to be met, care 
should be taken to ensure that a model’s formulation and 
representation are adequate and are in line with their verbal 
descriptions. By attending to how particular implementations 
of theories are represented, a balance between mathematical, 
statistical, and scientific validity can be found.  
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Figure 4. Scatter plot between participants’ overall average 
performance (left plot)  and the average performance during 
the 1st trial during the 2nd and 3rd session and the free 
parameters (right plot) Modified PPE. 
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Abstract 

Traditional anti-phishing training is often non-personalized 
and does not typically account for human experiential learning. 
However, to personalize training, one requires accurate models 
and predictions of individual susceptibility to phishing emails. 
The present research is a step toward this goal. We propose an 
Instance-Based Learning model of phishing detection decision-
making, constructed in the ACT-R cognitive architecture. We 
demonstrate the model’s ability to predict behavior in a 
frequency training study, and its generality by predicting 
behavior in another phishing detection study. The results shed 
additional light on human susceptibility to phishing emails and 
highlight the effectiveness of modeling phishing detection as 
decisions from experience. We discuss the implications of 
these results for personalized anti-phishing training. 

Keywords: phishing; cybersecurity; personalized training; 
decision making; instance-based learning theory; ACT-R 

Introduction 

Despite significant advances in security technologies, a large 

number of phishing emails continue to evade automated 

detection and are often successful because it is cognitively 

challenging for humans to distinguish the rare deceptive 

phishing message from benign emails. As such, phishing 

attacks remain the biggest, growing threat for cybersecurity 

(APWG Phishing report, 2020). While phishing attacks exploit 

human weaknesses using social engineering and psychological 

techniques (Jagatic et al., 2007), defenders typically employ 

technological solutions to defend against them, such as 

machine learning filtering of phishing emails, email 

authentication tools, and URL filtration/blacklisting (Prakash 

et al., 2010; Marchal et al., 2014; Peng, Harris, & Sawa, 2018). 

However, attackers are persistent and phishing emails continue 

to reach their victims. Since the success of phishing attacks 

relies on exploiting cognitive and psychological weaknesses, it 

becomes essential to understand the underlying decision-

making processes that influence end-user susceptibility to 

phishing emails (Canfield, Fischhoff, & Davis, 2016). 

Recent research has shown that end-user phishing 

detection decisions are similar to other kinds of decisions 

from experience (e.g., Hakim et al., 2020; Singh et al., 2019, 

2020). An individual’s personal history and experience with 

emails can have a large influence on phishing susceptibility. 

Specifically, phishing decisions are influenced by the 

recency, frequency, and similarity of past emails to the 

features of the current email. For example, Singh et al. (2019) 

manipulated the frequency of phishing emails in an anti-

phishing training study. The results showed that increasing 

the frequency of phishing emails during training increased 

the hit rate of detecting phishing emails. In other research, 

Singh et al. (2020) examined how the similarity of email 

features influenced detection accuracy. Their results showed 

that detection accuracy suffered the more similar the features 

of a phishing email were to the features of the benign emails. 

Lastly, Hakim et al. (2020) developed a regression model of 

end-user phishing susceptibility in an email rating task and 

revealed an effect of recency on detection decisions. In the 

task, end-users rated phishing and ham emails on a scale of 

suspiciousness. The regression model showed evidence of 

sequential effects of the emails, such that current ratings were 

positively affected by the previous rating. 

Although the evidence shows that phishing decisions are 

influenced by experiential learning with emails, current 

training procedures do not take these factors into account, nor 

have the effects been investigated. Organizations typically 
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use embedded-training methods that involve sending 

simulated phishing emails and only provide more traditional 

phishing training whenever one clicks on the link in the 

simulated phishing message (Kumaraguru et al., 2009; 

Kumaraguru et al., 2007). Traditional techniques have often 

focused on teaching end-users to understand and identify the 

relevant features that distinguish phishing emails from 

benign ones (Kumaraguru et al., 2009; Singh et al., 2020). 

However, there is a deficit of effective experiential phishing 

training methods that directly address important underlying 

human cognitive processes in context. Traditional phishing 

training is often generic and non-personalized. That is, all 

end-users receive the same set of training emails, the non-

phishing emails lack the familiar context that personal ham 

emails tend to have (e.g., from senders who are familiar to 

the end-user), and the phishing emails are sent without 

consideration of the individual’s history. Consequently, in 

many phishing-detection tasks, end-users have trouble 

distinguishing the phishing emails from the ham, and due to 

the generic nature of training, the effects of training vary 

considerably between individuals. In addition, different types 

of phishing emails have had varied effectiveness across 

individuals, further emphasizing the need to personalize anti-

phishing training (Lin et al., 2019; Oliveira et al., 2017). 

Personalized training interventions could prove immensely 

useful for improving anti-phishing detection, but such 

methods require models that can be tailored to individuals 

and that can make accurate decision predictions for a specific 

phishing email presented at a specific time. Therefore, as a 

first step toward this goal, we propose a cognitive model that 

leverages the influence of individual experience on phishing 

detection decisions, specifically turning to a memory-based 

theory of experiential learning called instance-based learning 

theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003). According 

to IBLT, decisions are made by generalizing across past 

experiences, or instances, that are similar to the current 

situation. Typically, instances represent the features of the 

decision, the action taken, and the outcome of that decision. 

However, for emails, there is usually a dissociation between 

the actions taken and feedback regarding whether the email 

was ultimately malicious. For a given email, IBLT suggests 

that end-users make decisions by retrieving a classification 

from memory based on the similarity of features of the 

current email to features of past emails. Thus, decisions are 

influenced by typical memory effects such as recency and 

frequency of past instances and are susceptible to cognitive 

biases that emerge from these memory processes (e.g., 

confirmation bias; Lebiere et al., 2013). 

General cognitive theories of decisions from experience 

indicate that the low frequency of phishing emails (compared 

to benign emails) could be a major issue in the success of 

detection decisions if end-users underweight the probability 

of these rare events (Gonzalez et al., 2003; Gonzalez & Dutt, 

2011). Additionally, phishing emails often mimic quite well 

the benign (i.e., ham) emails that regularly flood our inboxes. 

In other words, phishing emails are similar to the highly 

frequent and usually recent benign emails that we receive 

regularly, and phishing decisions are susceptible to effects of 

frequency, recency, and similarity of features. 

Our cognitive model builds upon that proposed by 

Cranford et al. (2019). In this paper, we first extend and 

improve upon that model to explore the effects of frequency 

on phishing detection training by modeling the Phishing 

Training Task (PTT) in Singh et al. (2019; 2020). We then 

demonstrate the model’s generality by running it through the 

task in Hakim et al. (2019), the Phishing Email Suspicion 

Test (PEST), which tests on a different database of emails. 

Finally, we discuss the implications of the model for future 

research towards personalized, adaptive anti-phishing 

training interventions. 

Modeling the Phishing Training Task 

The PTT (Singh et al., 2019) was designed to examine the 

impact of learning factors (e.g., frequency effects) on 

phishing detection decisions. The task is based on the design 

in Canfield et al. (2016) in which participants are presented a 

series of email messages and are requested to make 

classification decisions. In the PTT, participants make three 

responses to each email: a classification decision of whether 

the email was a phishing email or not, a confidence rating of 

their decision (from 50, “not confident at all”, to 100, “fully 

confident”), and the action they would take in response to 

each email (selected from a 6-point, Likert-type scale ranging 

from “Respond to this email” to “Report this Email”). For the 

present model, we focused on the first classification decision. 

The PTT consists of three phases: pre-test, training, and 

post-test. During the pre- and post-test phases, end-users are 

presented with 10 emails, two of which are phishing emails, 

and the remaining are benign, ham emails. During the 

training phase, end-users are presented 40 emails of which 10 

20, or 30 are phishing emails. End-users are randomly 

assigned to one of the three phishing frequency conditions. 

Feedback about decision accuracy is provided after each trial 

during the training phase but not during either testing phase. 

IBL Model Description 

The IBL model was adapted from Cranford et al. (2019) and 

constructed in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998). The modifications made to the model were 

few, but important, and provided substantial improvement to 

predicting human behavior in the PTT. These will be discussed 

below, after presenting the model results. 

The model performs the PTT in the same way as humans, 

processing one email at a time, judging whether each is 

phishing or ham. For each email, the model takes the content 

of the email as input and generates a classification by retrieving 

from similar past instances. For the PTT, the elements of an 

email include the sender’s email address, subject line, email 

body, link text, and underlying link URL. The classification 

(i.e., decision) is either phishing or ham. In ACT-R, the 

retrieval of past instances is based on the activation strength of 

the relevant chunk in memory and its similarity to each of the 

elements of the current situation. The activation Ai of a chunk 

i is determined by the following equation: 
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𝐴𝑖 =  ln ∑ 𝑡𝑗
−𝑑

𝑛

𝑗=1

+ 𝑀𝑃 ∗ ∑  𝑆𝑖𝑚(𝑣𝑘 , 𝑐𝑘)

𝑘

+ 𝜀𝑖 (1) 

The first term provides the power law of practice and 

forgetting, where tj is the time since the jth occurrence of chunk 

i and d is the decay rate of each occurrence. The second term 

reflects a partial matching process, where Sim(vk,ck) is the 

similarity between the actual memory value and the 

corresponding element for chunk slot k, and is scaled by the 

mismatch penalty (MP, which was set at 2.0; discussed below). 

The term εi represents transient noise, a random value from a 

logistic distribution with a mean of zero and variance 

parameter s of 0.25 (common ACT-R value, e.g., Lebiere, 

1999), and introduces stochasticity in retrieval. 

The probability of retrieving a particular instance is 

determined according to the SoftMax equation (i.e., the 

Boltzmann equation), reflecting the ratio of an instance’s 

activation Ai and the temperature t (which was set to the default 

value which scales to the noise parameter, √2 ∗ 𝑠): 

𝑃𝑖 =  
𝑒

𝐴𝑖
𝑡⁄

∑ 𝑒
𝐴𝑗

𝑡⁄
𝑗

(2) 

The model uses ACT-R’s blending mechanism (Lebiere, 

1999, Gonzalez et al., 2003) to generate a classification based 

on the similarity to past instances. Blending is a memory 

retrieval mechanism that returns a consensus value across all 

memories with similar elements, rather than from a specific 

memory, and is computed by the following equation: 

argmin
𝑉

∑ 𝑃𝑖 × (1 − 𝑆𝑖𝑚(𝑉, 𝑉𝑖))
2

𝑖

(3) 

The value V is the one that best satisfies the constraints among 

actual values 𝑉𝑖 in the matching chunks i weighted by their

probability of retrieval Pi. Satisficing is defined as minimizing 

the dissimilarity between the consensus value V and the actual 

answer Vi contained in chunk i. 

In summary, the model matches memories to the current 

email content and uses blending to generate the classification 

decision. After generating a classification, the experience 

(email content plus decision) is saved in declarative memory 

as a new instance, which affects future decisions. During the 

training phase, the classification slot is first updated to match 

the feedback prior to being saved to memory. 

While prior research has identified relevant features for 

detecting phishing emails (Kumaraguru et al., 2009; Singh et 

al., 2020), and training tools have attempted to teach end-users 

to identify such features, the current model relies solely on the 

semantic features of the email to make classifications. At the 

lowest level, an end-user that has not undergone training to 

identify expert features would likely rely on the semantics of 

an email to make a classification. An email that is semantically 

similar to past known phishing emails would more likely be 

classified as phishing. Additionally, by relying on only the 

semantics of the email, the model does not need to identify 

expert features in a body of text (which is a difficult task to 

automate by any natural language processing, NLP, standards). 

In contrast, current NLP techniques are quite efficient at 

computing the semantic similarity between texts and can 

therefore feasibly be used to generate the similarities between 

emails required for blending computations. 

A novel feature of the model, therefore, is how similarities 

are computed between slot values. Typically, similarities 

between numeric values are computed using a linear function 

scaled between 0 and 1.0, where 1.0 is a perfect match and 0 is 

maximally dissimilar. However, for non-numeric information, 

unless a value is specified for a relation, they are either 

maximally similar or maximally different. For emails, the 

content is non-numeric, often several words to paragraphs in 

length. Because two texts that are semantically similar should 

have higher similarity values (closer to 1.0) compared to texts 

that are semantically very dissimilar, it is possible to compute 

individual similarities between semantic content. 

To compute similarities between textual information, we 

used the University of Maryland Baltimore County’s semantic-

textual-similarity tool (UMBC; Han et al., 2013). The tool uses 

a combination of latent semantic analysis (LSA) and WordNet 

to produce semantic similarity values between two texts. The 

two input texts can be of any word-length and it produces a 

value between 0.0 and 1.0, with 1.0 being maximally similar in 

meaning. For example, the similarity between “happy dog” 

and “joyful puppy” is 0.65, whereas “happy dog” and “sad 

feline” is 0.34, and “happy dog” and “hot tea” is 0.0. This 

technique has proven useful for producing meaningful 

similarity values between textual content. 

Model Results 

To generate stable estimates of performance compared to that 

of humans, the model was run 10 times per participant and 

given the same sequence of emails presented to the 

participant. Therefore, in the analyses below, we compare 

2980 model runs to 298 humans. Before beginning the task, 

the model must first be initialized with a set of instances to 

be able to retrieve a classification. Therefore, the model was 

initialized with 10 instances that include the email content 

and ground-truth classification, five of which were phishing 

emails and five were ham. The initialized instances were 

sampled from the remaining emails that were not presented 

during the task. 

To examine the model performance compared to that of 

humans, we computed signal detection measures and plotted 

the receiver operating characteristic (ROC) curve for each 

phase and frequency condition of the task. We plotted the 

mean True Positive Rate (TPR; or Sensitivity) on the y-axis 

and the False Positive Rate (FPR; or 1-Specificity) on the x-

axis. The TPR is equivalent to the hit rate of classifying 

phishing emails as phishing. The FPR is equivalent to the 

false-alarm rate of classifying ham emails as phishing. 

Therefore, in ROC space, points closer to the top left of the 

graph indicate greater discriminability while points toward 

the middle indicate less discriminability. Meanwhile, points 

toward the top right or bottom left indicate greater overall 

bias toward responding phishing or ham, respectively. 

Figure 1 shows the mean ROC curves for the humans 

(black) compared to the model (gray). As can be seen, the 

model generates very accurate predictions of human behavior 
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across phases and frequency conditions. Like humans, the 

model does not perform perfectly, highlighting the difficulty 

of the task in discriminating phishing from ham emails. As 

observed in humans, the frequency of phishing emails 

observed during training (Phase 2) had a direct impact on 

discriminability in the post-test phase (Phase 3), such that 

greater increases in frequency during Phase 2 led to greater 

increases in TPR, but also FPR, in Phase 3 compared to Phase 

1. However, as can be observed, the model is slightly more

sensitive to frequency effects than are humans. When the

base rate is 25% (10 phishing, 30 ham) the model tends to

underpredict human performance at post-test and classifies

more of the phishing emails as ham. When the base rate is

50% phishing emails or more, then the model tends to more

accurately classify the phishing emails compared to humans.

The model demonstrates that a greater frequency of

experience with phishing emails leads to more cautious

decisions with future emails. This is because the greater

number of phishing instances in memory the greater

influence they have on retrieval (i.e., a greater probability of

retrieving a phishing classification from memory).

Figure 1: ROC curves of phishing decision accuracy across 

three phases of the PTT and three frequency conditions, for 

humans (black) compared to the model (gray). 

Discussion 

That the model generated highly accurate predictions of 

human behavior is good news towards developing 

personalized anti-phishing training interventions. The model 

is able to rely on experience, through interaction with the 

environment, and the dynamics of memory to generate a 

range of behavior. The modifications we made to the original 

Cranford et al (2019) model helped to provide a better 

understanding of end-user susceptibility to phishing emails. 

For the original model, the important parameter values for 

activation and blending were left at their default values. 

These include, decay rate d, mismatch penalty MP, transient 

noise s, and temperature t. For the decay rate, the default 

value is 0.5. Decay rate is related to forgetting and influences 

recency effects such that the higher the value the less of an 

impact older instances will have in retrieval, and thus more 

recent instances will have a greater impact. At the default 

value, the model tended classify emails as ham due to the 

greater frequency of ham emails during the pre-test phase. In 

the current model, we set this parameter to 0. This allowed all 

instances to play a more equal role in retrieval and reduced 

excessive recency effects. Studies have shown that the default 

decay rate of 0.5 is effective for modeling the typical 

laboratory task that is short in duration and involves novel 

stimuli, however, for longer duration tasks this value is less 

useful at representing retrieval effects (Pavlik & Anderson, 

2005). For the present task, reading emails is a task with 

which humans come to the experiment with vast amounts of 

prior experience. It is presumable then that these past 

experiences play a role in retrieval and have decayed to a 

steady level at experimentation. With such a vast memory 

base, spreading activation more evenly across new instances 

by setting decay to zero is a suitable solution for representing 

this memory phenomenon. 

Ideally, we would use a portion of the end-user’s actual 

history of emails to initialize the model, but using examples 

from the database was a reasonable alternative. Interestingly, 

the model was initialized with equal numbers of ham and 

phishing emails, whereas in reality, humans see many more 

ham emails than phishing. Initializing the model with 

comparatively more ham emails resulted in too many ham 

classifications. It could be that phishing emails are inherently 

more emotionally valent and thus more salient in memory. Or 

it could be an experimental effect of end-users expecting 

some of the emails to be phishing. In any case, these results 

reveal a bias to respond phishing in the task that was 

accounted for through initialization of instances. 

One issue with the original model was that the UMBC 

semantic similarity tool produces a compressed range of 

values, which in turn compresses the range of differences 

between emails and makes it more difficult to discriminate 

stimuli. During retrieval, the instances are more evenly 

weighted. To alleviate this constraint, we modified the 

temperature and mismatch penalty parameters. The noise s 

was left at its default value of 0.25 which provides a 

reasonable amount of stochasticity in retrieval. Increasing 

this value resulted in overly varied responses, and reduced 

discriminability. However, lowering this value did not 

produce enough stochasticity between model runs. The 

temperature on the other hand was reduced from a neutral 

value of 1.0 to the default value of √2 ∗ 𝑠, which equals 

approximately 0.35 given the current value of s. Temperatures 

of 1.0 reflect an unbiased retrieval given the historical 

frequency distribution of instances. This means that retrieval is 
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more evenly distributed across instances. Increasing this value 

tends toward randomness, making discrimination more 

difficult. Therefore, lowering the temperature by reverting to 

the default ACT-R value resulted in greater discriminability 

where more weight is given to instances with higher activation 

values. This in turn rewards those instances that are more 

semantically similar to the current instance. Finally, we 

increased the mismatch penalty MP, from 1.0 to 2.0. The 

mismatch penalty directly influences the model’s 

discriminability because it scales the dissimilarity between 

instances. Therefore, increasing this value enhanced the 

differences between different emails while simultaneously 

strengthening the similarities between similar emails, 

effectively decompressing the range of similarities produced 

by the UMBC semantic-similarity tool. The result was an 

increase in overall discriminability of the model. 

The current model predicts human performance well, but 

even still, there is room for improvement. We did not perform 

any detailed parameterization of the model, but instead 

settled on reasonable and justifiable values through strategic 

exploration. Therefore, the model has potential to be further 

refined. Additionally, relying on the semantic similarity of 

features of an email, generated through NLP techniques, 

instead of attempting to extract the presence of features 

within the email text, allowed us to create a model that can 

more easily generalize to novel environments (i.e., with 

different emails). Relying on the semantic content means we 

do not have to preprocess new emails, manually or through 

automated means, to identify relevant features. To test the 

generality of the model, we ran the model through another 

task that used a different database of emails, the Phishing 

Email Suspicion Test (Hakim et al., 2019). 

Modeling the Phishing Email Suspicion Test 

Hakim et al. (2019) used the PEST task to assess the 

relationship between real and simulated phishing and ham 

emails and to examine the efficacy of using the simulated 

phishing emails for anti-phishing training against real-world 

phishing attempts. In the PEST task, 97 participants rated a 

total of 160 emails each on a Likert-type suspiciousness scale 

from 1 “Definitely Safe” to 4 “Definitely Suspicious”. 

Participants were presented 40 of each type of email: real-

ham, simulated-ham, real-phishing, and simulated-phishing. 

The emails were presented in random order and selected 

randomly from the database of emails. 

The IBL model described above was tasked to perform the 

PEST. Because the PEST included four types of emails, the 

model was initialized with a total of 20 emails (five of each 

type). However, to model the individual differences observed 

in the human PEST data, we introduced stochasticity in the 

initialization. That is, the model was initialized with three to 

six ham emails of each type, randomly selected from a 

uniform distribution, and the remaining were phishing. This 

also introduced varied initial biases between model runs, 

where some runs were initially biased toward ham and other 

runs more biased toward phishing, thus resembling a human 

population, but with a skew toward phishing. However, as 

will be discussed in more detail below, to produce the 

following results, each run was initialized with an extra 2 

simulated-phishing emails. This is consistent with the finding 

of Hakim et al. (2019) that participants displayed a bias to 

respond phishing, and with the phishing bias observed in the 

PTT model. Increasing the number of phishing emails was 

required to drive such a bias in the PEST model. 

Since the PEST database of emails includes only 40 

examples of real-ham emails, to ensure no initialized real-

ham emails were presented during the test, we reduced the 

number of emails of each type presented during testing from 

40 to 30. Therefore, the model experiences 120 total emails 

per run, still allowing for ample observations. For the PEST, 

emails did not show the underlying link URL if hovered over 

with a mouse, so the URL feature was removed from the 

instance representation and only the link text was compared 

in retrievals. Instead of generating a classification, the model 

takes the semantic features of the email as input and 

generates, via blending, a rating score between 1 and 4. The 

retrieved value is a continuous value that is rounded to the 

nearest whole number to provide a discrete rating. The 

blended rating value is replaced with the discrete rating value 

before saving the instance to declarative memory at the end 

of each trial. Like humans, the model does not receive 

feedback regarding the accuracy of its decisions. 

Model Results 

To generate stable estimates of performance, the model ran 

through the task 200 times, with initialized and tested emails 

selected randomly for each run. Therefore, in the analyses 

below, we compare 200 model runs to 97 humans. 

Because the PEST requires a rating response as opposed to 

a classification response, to analyze the model performance 

compared to humans, we examined the mean suspicion scores 

per email type as well as the subject-level correlation between 

ratings for simulated and real emails, separately for phishing 

and ham emails. These combined measures provide accounts 

for the mean as well as the full range of human behavior. 

Figure 2 shows a boxplot of the mean suspicion score per 

email type. The results align very well with the human data, 

closely accounting for the mean behavior as well as the 

variance between individuals. The real-ham emails were 

rated the lowest at approximately 2, while the simulated- and 

real- phishing emails were rated highest at almost 3. 

Meanwhile, the simulated-ham emails were rated at near 2.5. 

Figure 3 shows the correlation between simulated and real 

emails for ham and phishing emails separately. These results 

highlight the model’s ability to account for both the within- 

and between-subject variances in performance. As will be 

discussed further, a key contributor to the model’s 

performance is the randomization of initial instances. 
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Figure 2: Boxplot of mean suspicion scores for each type of 

email in the PEST for humans compared to the model. 

Figure 3: Scatterplots showing the correlation between real 

emails and simulated emails for ham emails and phishing 

emails separately, comparing humans to the model. 

Discussion 

The IBL phishing susceptibility model was able to 

successfully generalize to other environmental conditions 

with a different pool of participants performing a slightly 

different task with different stimuli. To produce the level of 

accuracy in predicting human behavior in the PEST, the 

model required stochasticity in initialization and additional 

initialized phishing instances. The result was an increase in 

correlations between real and simulated emails and an overall 

bias toward rating emails more suspicious. In fact, using a 

static initialization considerably reduced the observed 

correlations in Figure 3. 

In exploring an appropriate initialization for the model, the 

results revealed a relationship between simulated-ham and -

phishing emails. For example, increases in simulated-

phishing emails had a positive impact on simulated-ham 

emails. These results suggest there is large semantic overlap 

between simulated emails, which is consistent with how the 

simulated-phishing and -ham emails were constructed. The 

simulated-ham emails were modified versions of simulated-

phishing emails made to seem less suspicious. The model 

picks up on this semantic overlap which results in simulated-

ham emails having a higher match to simulated-phishing 

emails, producing inflated ratings for simulated-ham emails. 

Conclusion 

Our IBL model highlights the role of experiential learning for 

end-user phishing detection decisions. The major influences 

in generating accurate predictions of human susceptibility to 

phishing emails were initialization of instances and similarity 

between email features. A phishing bias was accounted for 

by adding disproportionally more phishing emails than ham 

emails compared to real-world frequencies. Adding 

stochasticity in initialization accounted for individual 

differences in behavior. Humans have distinct experiences 

that influence decisions and capturing this background 

knowledge is essential to building models that not only 

predict a range of human behavior, but also that can predict a 

specific individual’s behavior. Because the model is expected 

to generate better predictions of an individual the more the 

model’s memory aligns with the human’s, model-tracing 

techniques should prove useful in developing personalized 

anti-phishing training interventions (Anderson et al., 1995). 

Future research is aimed at further exploring the effects of 

initialization, with an emphasis on generality and in exploring 

ways to decompress the range of semantic similarities or even 

representing alternative features. 

While the current model uses only the semantics of the 

email to make decisions, current training methods teach end-

users to identify so-called “expert” features (e.g., a request 

for personal information; Singh et al., 2020). Using only 

semantic features of an email produces human-like, albeit 

fairly poor discriminability in the experimental tasks. A goal 

for future research is developing a model that can learn to 

identify expert features so that we can use the model to help 

train end-users to detect such features. For now, the current 

model proved a successful first step toward personalized anti-

phishing training. 
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Abstract

In this paper we present the cognitive modeling library
txt2actr, which facilitates the specification of an ACT-R en-
vironment through simple text files and partially automates the
construction of certain components within a cognitive model.
Our general purpose goes beyond this library and aims at pro-
moting the modular construction and evaluation of cognitive
models. In particular, we suggest to establish benchmarks that
allow (i) the competition among models with respect to classi-
cal tasks in experimental psychology, and (ii) the evaluation of
possibly new or more applied tasks with respect to benchmark
models. Such benchmarking proposals can be found in various
other disciplines and usually serve as an incentive to improve
existing theories and eventually converge towards a common
language. Yet, txt2actr is far from providing a solution to the
associated challenges. It rather serves as a proof of concept
by illustrating how two model components for very specific
cognitive phenomena in situation awareness can be applied in
three different environments.

Introduction
After 50 years, Newell’s critism that the scientific commu-
nity does not seem in the experimental literature to put the
results of all the experiments together (Newell, 1973, p. 298)
still seems to hold. Interestingly, this problem persists in-
dependent of the bands of cognition (Newell, 1990), that is
the proposed models that deal with lower levels such as bi-
ological processes or the ones which address higher levels,
such as human reasoning and decision making. As Khemlani
and Johnson-Laird (2012) observed for the particular case of
modeling human syllogistic reasoning, the existence of 12
theories of any scientific domain is a small disaster. Or, as
Taatgen and Anderson (2010) put it, multiple possible models
is not just a problem for cognitive architectures but for any
scientific theory.
One bottleneck might be that most cognitive theories are not
formalized and therefore ambiguous: There is no commonly
accepted language which allows to compare and thus evaluate
their cognitive plausibility on a set of benchmark tasks. As
noted by Marewski and Mehlhorn (2011), this leads, among
others, to the specification problem (Lewandowsky, 1993),
how to translate an under-specified hypothesis into a detailed
model, and the identification problem (Anderson, 1976), what
to do with many different models which are equally capable
of reproducing and explaining data.
During the past decades, cognitive architectures (CA) have
been proposed (e.g. ACT-R (Anderson 2007), SOAR (Laird,

2012)) to address under-specified process hypotheses and
provide a falsifiable methodology (Thomson, Lebiere, Ander-
son, & Staszewski, 2015). These architectures contributed
largely to the development of the field and the comparability
of cognitive modeling. However, two main issues still per-
sist: Firstly, it requires substantial intellectual commitment
to learn, understand and construct models within these archi-
tectures (Taatgen & Anderson, 2010). Secondly, these archi-
tectures are highly parametrized, which on the one hand pro-
vides a great amount of modeling freedom, but on the other
hand leads to models which rather capture the intuitions of the
designers (Thomson et al., 2015). Laird, Lebiere, and Rosen-
bloom (2017) proposed a common model of cognition as an
abstracted framework depicting the best consensus given the
community’s current understanding of the mind on the archi-
tectural level. Such a standard model could then be used as a
common language for the community and guide researchers
by enabling them to include or extend other components and
evaluate or develop psychological experiments.
According to Taatgen and Anderson (2010), a good model is
characterized as being applicable to various tasks, as simple
as possible and able to predict outcomes of new tasks. That
means that the metric for a good model can then be spec-
ified by its generalizabillty (Thomson et al., 2015) and its
predictability, including predictions of yet untested cognitive
phenomena (Ragni, 2020). These models should be built out
of components (Taatgen & Anderson, 2010) and the applica-
ble strategies and heuristics should be rather selected by the
model than by the designer (Thomson et al., 2015).
According to Ragni (2020), another difficulty is how to iden-
tify the relevant problems (or tasks) that a model should ac-
count for. He suggests to establish generally accepted bench-
marks, similar to the PRECORE Challenge (Ragni, Riesterer,
& Khemlani, 2019) for human reasoning tasks. The eval-
uation of this challenge was done with the benchmarking
tool Cognitive COmputation for Behavioral Reasoning Anal-
ysis (CCOBRA) framework,1 which was thereafter again ap-
plied for new prediction mechanisms in individual human
syllogistic reasoning (Dietz Saldanha & Schambach, 2020).
The success of establishing benchmarks and developing com-
petitions can be observed in other disciplines (e.g. SAT,2

1https://github.com/CognitiveComputationLab/ccobra
2https://satcompetition.github.io/2021/
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Figure 1: Currently, a majority of model and environment
specifications in ACT-R are manually implemented.3

ASP (Gebser, Maratea, & Ricca, 2020)), which have the ben-
eficial side effect to improve existing approaches, and more
importantly, motivating the scientific community to agree
on a common language. Furthermore, contrasting cognitive
models with benchmark models (such as statistical baselines
or data-driven neural networks) will determine the current
empirical upper bound of the models’ performance (Riesterer,
Brand, & Ragni, 2020). At the same time these upper bounds
can serve as new incentives for future models to outperform
the benchmark models. However, the previously mentioned
criteria for good models should be the main focus. In par-
ticular even if machine learning techniques might have better
predictive overall performances, the generalization of mod-
els across a range of paradigms and conditions can be more
powerful. As (Lebiere et al., 2013) stated, approaches based
on cognitive modeling require less data and fewer domain-
specific assumptions to be parametrized as they can be guided
by cognitive constraints. Furthermore, they have the advan-
tage to combine symbolic structures and statistical parameters
Taking these proposals as a starting point, we suggest an en-
vironmental setting where cognitive models can be bench-
marked according to their performance with a set of tasks.
In the ideal case, if results are openly shared the ones who
have the experimental data but are missing the best predict-
ing models can benefit from the ones who have the cognitive
models and vice versa. In this paper, we present the software
library txt2actr in which the task, the environment, and the
model can partially be specified through text files. With this
library we aim at developing a modular task design through
an ACT-R interface and the parametrization of ACT-R models
by a modular and guided production and chunk engineering
process. txt2actr serves as a proof of concept to address some
of the challenges discussed above, and is far from providing
a solution or a complete benchmark of tasks or models.

Related Work
The approaches we briefly discuss here are related in the
sense that they emphasize the importance of generalizing or
benchmarking models, which we consider highly relevant for

3The image in the red box is from Anderson and Borst (2017).

the challenges we intend to address. Interestingly they all ad-
dress this issue on a different level of cognition.
Salvucci (2013) proposes a single model of cognitive skill
acquisition in ACT-R by reusing component skills across 7
different task domains. The results are a step towards a more
unified account of skill learning and demonstrate that a model
can reuse knowledge by transferring it to various tasks.
One of the goals suggested by Taatgen (2013) is to reuse cog-
nitive processes and structure them in a way so that they can
be applied in many different combinations, similarly to a con-
struction kit that should be deployable throughout all tasks.
As almost all cognitive models suffer from the problem of
prior knowledge, transfer in cognitive control, that is the pro-
cess by which goals or plans influence behavior, might be a a
promising approach to address this issue, where processes of
cognitive control are based on skills.
Marewski and Mehlhorn (2011) specify 39 different process
models, which should not only predict what decision a per-
son will make, but also how the information used to make
the decision will be processed. In particular, they focus on
a class of models that makes decisions by exploiting the ac-
cessibility of memory contents. For this purpose they choose
to model a task for recognition heuristic. These 39 models
either differ in very small aspects or very fundamental as-
sumptions about processing. The main purpose of Marewski
and Mehlhorn is not to advocate any particular process model
for the task in consideration but rather using the debate as a
case study to provide a methodological primer on how archi-
tectures like ACT-R can be used to lend precision to theorize
decision processes. By implementing models of different lev-
els of description and specificity in one architectural model-
ing framework, they make the models and their predictions
comparable providing a basis for future model tests.
GOMS (Card, Moran, & Newell, 1983) contains hierarchical
methods, visual and memory stores, and control constructs
and aims at explaining expert routine behaviors and reduce
the effort for detailed task analysis and cognitive modeling
techniques. Amant and Ritter (2004) provide an automatic
generation of GOMS models into ACT-R models. However,
it suffers from under-constraints in many areas, for example
visual processing (Amant, McBride, & Ritter, 2006). The ex-
tension SGOMS (West & Nagy, 2007; West & Somers, 2011)
assumes that cognitive modeling at the level of psychological
experiments (micro cognition) can scale up to higher level
task, such as dealing with task interruptions, by an additional
higher-level control structure and multi-tasking.

Cognitive Modeling with txt2actr
The python library text to ACT-R, abbreviated as txt2actr, pro-
vides (i) an interface between text files that describe and dy-
namically change the environment which the cognitive model
interacts with during the ACT-R simulation and (ii) a partial
and modular construction of the cognitive model. txt2actr is
publicly available on github.4

4https://github.com/eadietz/txt2actr
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Figure 2: Overview of the two main components in txt2actr.

Figure 2 shows the two main components of txt2actr in the
blue box (labeled txt2actr), where the ACT-R interface (on the
right) and the (partial) model generator (on the left) interact
and depend on each others specifications. The necessary envi-
ronment specifications and cognitive model specifications can
be defined in the respective text files that are in the blue box
below the labeled txt2actr box. The task descriptions or the
log files about the environment and the cognitive model file
replace the specifications of the individual environment and
tasks (on the lower right corner) and the individual human be-
havior (upper left corner). The decision to structure txt2actr
this way is driven by the idea that ideally, a set of cognitive
models could then be systematically evaluated with respect to
a set of various tasks. Whether such a generic parametrization
of tasks or models will eventually be possible needs to be fur-
ther investigated. Additionally, we aim at a lower inhibition
threshold for cognitive modeling, which should be usable by
the ones with simulation needs but with little or no experience
with cognitive modeling.
We chose the cognitive architecture ACT-R as basis our pur-
pose as it provides a wide range of functionality, it is well
established within the community and has a very well doc-
umented manual (Bothell, 2020) including an extensive tu-
torial. ACT-R (Anderson, 2007) is a theory about how hu-
man cognition works. It allows to get a better understanding
human cognition by simulating different cognitive functions.
Each function is represented by a particular (and indepen-
dent) module that communicates with other modules through
buffers. Knowledge in ACT-R is either encoded as declarative
memory or procedural rules. Cognitive architectures are also
used for tasks within the real world, such as aircraft cockpit
or car driving environments (Salvucci, 2006).
We heavily rely on the already existing and publicly avail-
able python module actr.py which allows a direct interaction
within the ACT-R environment in Lisp through python.5

ACT-R Environment Interface
We will briefly introduce the two most important aspects that
affect the dynamics of the (ACT-R) environment and can be

5The tutorial and actr.py can be found here
http://act-r.psy.cmu.edu/software/

Figure 3: The specifications in txt2actr for the positions
of the windows, the images and the buttons in ACT-R for a
driving environment use case. Further specifications such as
which items should appear when and where (depending on
the log files) are also possible.

modified by txt2actr during the simulation:

Visual Scene Everything that can be perceived by the cog-
nitive model through its vision module, such as numbers,
text, geometric figures, buttons or images from external
sources can be specified by their sizes, location and col-
ors (if applicable).

Audio Scene Everything that can be perceived by the cogni-
tive model through its audio module, such as tones, (spo-
ken) words or digits can be specified by their volume, type
of tone or duration.

In order to make sure that the information about the environ-
ment is displayed at the intended time, the ACT-R interface in
txt2actr uses the schedule time function provided by actr.py.
As illustration consider a cockpit environment in an aircraft:
In flight, some of the values shown in the cockpit displays
in the visual scene will permanently change according to the
specifications of a given log file. Additionally, some tone or
sound in the audio scene might occur as well. All of the above
described components can be specified within the respective
text files in txt2actr.
Figure 3 shows a screenshot of the environment specification
files from a very simplified car driving use case. The full
environment specification of this use case can be found in the
use-cases/driving-task folder in txt2actr.
So far we have not discussed how the model perceives its en-
vironment. Thus, possibly even when a tone appears in the
model’s acoustic scene or a value is shown in one of the win-
dows at a certain time, it might well be that the cognitive
model does not perceive it. The model behavior depends on
its specification which we will discuss in the next section.

Partial Model Generator
Before we lay out our understanding of the model generator,
we introduce the concept of cognitive principles, as they form
the foundation for the generation of models.

Cognitive Principles are cognitively plausible explana-
tions for some episodes of human behavior, which can be
anything from biases, heuristics, judgments or even decision
making and reasoning. In particular, cognitive principles are
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Figure 4: The environment specifications of Figure 3 reap-
pear as declarative knowledge in the cognitive model.

not necessarily in line with rational or (classical) logical rea-
soning, but rather demonstrate naturalistic thinking in every-
day life. To some extent, the identification of these psycho-
logical phenomena are one of the main motivators in the field
of Cognitive Science. As many decades of research show,
these psychological phenomena are very insightful for the
understanding of the human mind, but at the same time ex-
tremely difficult to specify unambiguously during the devel-
opment of the corresponding model. Cognitive principles are
modular and formalized approximations of these phenomena.
It is likely that a psychological phenomena can be formalized
in various ways, and that there is no agreement on their for-
mal representations. In this case, each of the formalization is
an instance of them. We intend to specify a catalogue of cog-
nitive principles, each of them as a module, such that they ap-
ply independently of each other. We are aware that it various
cognitive phenomena influence each other, or only have an
effect when applied together. However, for the goal of bench-
marking, i.e. construct a benchmark of cognitive models out
of these principles, it is helpful to consider them separately,
similarly has has been done for the case of human syllogistic
reasoning in (Dietz Saldanha & Schambach, 2020).
Different to the approaches from the previous section, we do
not try to identify new cognitive phenomena but rather better
understand, formalize and classify already well-established
ones. In the first step, cognitive principles are formalized as
abstracted and modular entities, and in the second step, dur-
ing the model construction, they are instantiated with respect
to a given task or environment. In the ideal case, a model can
be simply specified through the underlying cognitive princi-
ples that it assumes.

Modular chunk and production engineering takes place
in two steps:

1. Modular specification of the model’s properties through
cognitive principles.

2. Model construction by instantiating the specification with
respect to the environment and the task.

Fortunately, the ACT-R architecture itself consists of a set
of modules, which allow us to naturally specify the differ-
ent components in a modular way. As already mentioned,
knowledge can be either represented declaratively, by means

of chunks that belong to certain chunk types with a set of slot
configurations. For instance,

(chunk-type display-info name screen-x screen-y)

is a display-info that might have the slots name, screen-x, and
screen-y. A chunk can then be understood as an instantiation
thereof, such as

(ALTITUDE-info isa display-info
name ALTITUDE screen-x 389 screen-y 514)

tells us at which coordinates we can find the current altitude.
The automatic construction of the initial chunk types and
chunks is based on our assumption that the model has some
basic knowledge about the environment it interacts with. By
default, there will be four different chunk types: display-info,
button-info, image-info and sound-info. These chunks are de-
rived from the task specification and can be used to model
familiarity with a task environment such as knowledge about
positions and functions of buttons in an aircraft cockpit. Con-
sider again the environment specification files in Figure 3: If
not specified otherwise in the cognitive model specification
file, then txt2actr will automatically include these items and
their coordinates into the declarative knowledge of the cogni-
tive model.
Figure 4 shows a screenshot of the declarative knowledge
from the very simple car driving use case.

Two Cognitive Processes in three Environments

txt2actr also allows to specify initial procedural knowledge,
which in ACT-R is done by means of production rules. These
production rules can be read as conditional statements, where,
in case the condition holds, the consequence will be executed.
The automated construction of an initial set of production
rules is more complex, in particular if aiming at constructing
them independent of the task. Therefore, we will illustrate
the modularity of text2actr by implementing two cognitive
processes from information processing and test them in three
different environments.

Situation Awareness We will consider two essential pro-
cesses for modeling situation awareness (Freiman, Myers,
Caisse, Halverson, & Ball, 2019). Situation awareness de-
scribes to which extent someone has perceived and under-
stood vital elements of a situation for completing the task
at hand (Endsley, 2015). According to Endsley (2015) and
Freiman et al (2019), a good model of situation awareness
needs to account, among others, for the alternation between
data-driven and goal-driven information processing, which
both can be understood as two distinctive cognitive princi-
ples: In the case of data-driven information processing, vi-
sual attention should be guided by changes in the environ-
ment, while for goal-driven information processing the model
actively engages in search of specific information by means
of coordinates. In both cases, the model keeps an updated
representation of the values of the attended items. Figure 5
illustrates this idea by the cockpit environment: Goal driven
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Figure 5: A real cockpit (left), and two ways on how visual information could be attended (middle and right), where the red
squares and the arrows denote a possible sequence in which locations are attended.

Figure 6: The goal-driven (left) and the data-driven informa-
tion processing (right) components in ACT-R. Each box with
a black header represents a production rule.

information processing (middle) could be where the visual at-
tention alternates between two locations. An example of data-
driven (or event-driven) information processing (right) would
be where the visual attention is determined by any newly ap-
pearing item on the displays (the arrows denote a possible
sequence of attention).
Both cases of information processing are implemented as ab-
stracted modular components in txt2actr, each represented by
a set of general production rules. Additionally, for the goal-
driven case, the list of the items to be attended (based on the
text files) is automatically generated and added to the declar-
ative memory. An example of such a list for the car driving
environment is shown in the last two lines of Figure 4. In case
one or both components are chosen to be part of the model,
txt2actr will create a model with these component(s) instan-
tiated with respect to the specified environment.
The lisp files of both model components in ACT-R with the
respective names (data-driven.lisp and goal-driven.lisp) are
part of txt2actr.6 Figure 6 shows a description of the pro-
cesses: Initially, for the goal-driven information processing

6https://github.com/eadietz/txt2actr/tree/master/
benchmarks/model-components

(left), an item from the list is set into the retrieval buffer.
When the retrieval of the current item’s location (first pro-
duction rule) was successful, then this location is attended
and the next item on the list is retrieved. Finally, the current
item’s value is updated, and process starts again by retrieving
the location of the next item. In case of data-driven infor-
mation processing (right), the first rule only fires when the
scene changes, for example when new values appear in the
visicon. The new item is attended and based on its location,
its name is retrieved. Finally, similar to the previous case, this
item’s value is updated in the model’s memory. These model
components are not use case specific and thus generally ap-
plicable.
For testing whether both model components would behave
as intended, both individually and together, we have chosen
and specified three very simple but different environments.
These three environments were specified exclusively through
the provided text files in txt2actr (which are contained in the
folder environment-specification of each use case). The first
one is the paired associates task (Anderson, 1981) where the
environment and model specification are adapted from the
ACT-R tutorial.5 Note that we intentionally chose for a task
in which the model has a different purpose in order to observe
how the model behaves. The second and third examples are
about the simulation of real-world scenarios: A driving en-
vironment and a cockpit environment. Different than in the
first example, the values in their environment continuously
change according to the log files. Furthermore, the model
does not have any other task to accomplish except of updating
values in its own memory according to the two cases of the
above described visual information processing. The driving
environment is built on data from an empirical study origi-
nally by Haufe et al (2011) and takes processed extracts of
datasets from BNCI Horizon as log file input.7 The cockpit
environment takes as log files extracts from Dashlink.8,9

7The used dataset (VPae.mat) can be found here:
http://bnci-horizon-2020.eu/database/data-sets (30.4.21)

8https://c3.nasa.gov/dashlink/projects/85/ (30.4.21)
9The dataset can be found here https://c3.nasa.gov/
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Figure 7: Simulation of paired-associates task (left), driving environment (middle) and cockpit environment (right) in ACT-R.
The red dot in the middle and right image shows the model’s visual focus.

Observations Figure 7 shows a screenshot of the simula-
tion of each environment. In the driving environment, differ-
ent values change continuously, while in the paired-associates
task, only one value changes, and this happens only occasion-
ally. Therefore, naturally the data-driven information pro-
cessing is fired more often in the driving environment than
in the paired-associates task and even more often in the cock-
pit environment. Interestingly, in the compound model con-
sisting of both visual processing components the production
rules of the data-driven information processing do not apply
anymore. Only by the specification of high utilities for this
component the production rules of both components apply.
This leads us to the more general question of how such a
compound model of visual processing should behave. On the
one hand the model should be able to pursue goal-driven vi-
sual behavior while being sensitive to new stimuli that com-
pete for visual attention. When goal-driven behavior does not
occupy all buffers, these buffers are available to being used
by salient, not goal-related stimuli which can lead to distrac-
tions and mind wandering (Taatgen et al., 2021). While utility
functions can help modeling commitment to goals or suscep-
tibility to distraction, we believe that modeling of attentional
control should recognize the interplay of cognitive resources
and the environmental factors such as the salience of stimuli
(e.g., alert sounds in the cockpit).
It is very likely, that other (ACT-R) modelers would have
implemented the above components differently in ACT-R or
even diverge from the processes shown in Figure 6. The
novelty of our approach is not to demonstrate that the pro-
posed components are the most cognitively plausible ones,
but rather that we can build abstracted modular entities of
these components, which can be instantiated with respect to
different environments.

Conclusions
This paper proposes a possible path for benchmarking cog-
nitive models. Yet, we are far from providing a solution but
rather show how a very specific cognitive phenomenon might
be applicable to different environments. Already modeling
concrete aspects of visual information processing in ACT-R
leads to plenty of choice points on the implementation side
that are not specified in the theories of situation awareness.

dashlink/static/media/dataset/Tail 687 9.zip (30.4.21)

However, we believe that taking the effort to approximate the-
ories by implementing instances thereof as models could be
beneficial to identify under specifications that might not be
immediately obvious.
Our contributions with txt2actr are two-fold: First, the spec-
ification of an ACT-R environment can be done through text
files. Second, we have shown that it is possible to formulate
abstracted entities of cognitive phenomena from which model
components can be automatically generated. However, we
are very aware that this process needs to be built with care
and based on more objective criteria for cognitive plausibility
or consensus. Therefore, we also need to find a more acces-
sible way of individually assembling cognitive models, pos-
sibly guided by a catalog of cognitive principles usable for
modular and guided model construction. Currently, we only
consider the (partial) automation of initial chunk types, ini-
tial chunks and initial productions. The general parameter
settings, additional chunk types, chunks, productions or other
commands can be specified manually via a text file. For the
future, a systematic account on producing general parame-
ter settings might be considered as well. We also argue that
some choices (or strategies) do not need to be taken before
modeling a task, but can be taken at a later stage (e.g. evalu-
ation of different strategies by instantiating different models
for the same task), should be able to include different the-
ories and allow a systematic comparison between modeling
approaches.
Finally, we believe that establishing benchmarks will pro-
mote (i) the competition among models with respect to the
most typical tasks in cognitive psychology, and (ii) the evalu-
ation of (possibly new) tasks with respect to benchmark mod-
els. This might help the community to address the previously
mentioned issues and eventually unify the field.
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Abstract

In recent years, several models of human reinforcement learn-
ing have been proposed that balance rationality (maximizing
expected utility) against cognitive costs. Lai and Gershman
(2021) proposed a model in which the cognitive cost was as-
sumed to be the policy complexity, defined in terms of infor-
mation theory as the mutual information between the sensory
input and behavioral response. Here, using evidence from a
published data set (Collins & Frank, 2012), we show that this
model fails to account for the “set size effect” in learning: hu-
mans’ learning efficiency decreases when the number of the
presented stimuli increases. We therefore propose an alter-
native computational model, in which cognitive cost consti-
tutes not only the policy complexity, but also the representa-
tion complexity—the amount of information conveyed from
sensory inputs to internal representations. We quantify infor-
mation processing cost as the combination of representation
complexity and policy complexity. The resulting model cap-
tures the set size effect in an instrumental learning paradigm.
Keywords: Computationally rational; Reinforcement Learn-
ing; Information theory; Set size effect

Introduction
Human working memory is known to be capacity limited.
A well-established consequence of this is the set size ef-
fect–namely, humans’ memory performance systematically
decreases as the number of items to be stored in memory in-
creases (Ma, Husain, and Bays (2014)). Much existing work
has sought to quantify what is meant by working memory
capacity and explain the set size effect. One example is the
work by Sims (2016), who formalized working memory ca-
pacity as a limited pool of information quantity that enables
a cognitive function (e.g., store a stimulus) or process (e.g.
making decisions). The information resource can be subdi-
vided into portions, and more items to be stored implies less
resource allocated to encode each item, resulting in lower re-
call precision per item. Up until now, however, most research
on working memory has not examined how these limits might
impact other cognitive systems.

Collins and Frank (2012) and Collins, Brown, Gold, Waltz,
and Frank (2014) studied how working memory limits impact
humans’ reinforcement learning (RL). They reported an ana-
log of the set size effect in an instrumental learning paradigm,
and showed that a standard RL model (MRL model in this ar-
ticle) cannot capture this phenomenon.

Gershman and Lai (2020) reexamined Collins et al. (2014),
and proposed a computationally rational (Gershman, Horvitz,
& Tenenbaum, 2015) account of humans’ suboptimal learn-
ing performance. The mathematical framework they used is

known as rate distortion theory (Berger, 1971). This frame-
work provides the tools for predicting the highest achievable
performance under a given information capacity constraint,
and hence is directly applicable to explaining human learning
performance under a limited pool of (information-theoretic)
resource. They considered the capacity constraint as policy
complexity (Tishby & Polani, 2011; Still & Precup, 2012;
Lerch & Sims, 2018), which measures the rate of informa-
tion extracted from states and transmitted to actions. They
concluded that in general human participants optimized this
reward-policy complexity trade-off, and humans’ suboptimal
performance can be understood as a compromise to limited
policy complexity.

While interpreting humans’ suboptimal performance,
Gershman and Lai (2020) did not explicitly address how the
set size effect emerges in human learning. This article seeks
to fill this gap. Intuitively, one expects that when learn-
ing in larger set size conditions, the overall cognitive cost is
higher, and hence humans will rationally trade task perfor-
mance against rising cognitive costs. By analyzing the data
set in Collins and Frank (2012), we show that policy com-
plexity does not suffice as an explanation for human behav-
ior: the policy complexity to reach optimal performance does
not necessarily increase with the set size. This observation
also violates humans’ experience that the larger set size task
is more difficult. This implies that the policy complexity is
not sufficient for cognitive cost, other complementary consti-
tutions are needed. We then considered another information
notion, representation complexity (Tishby & Polani, 2011;
Genewein, Leibfried, Grau-Moya, & Braun, 2015; Zenon,
Solopchuk, & Pezzulo, 2019), measuring information trans-
mitted about environmental state to an agent’s internal repre-
sentation.

Directly measuring internal representations is a notoriously
difficult problem because they are latent constructs. In this
article, we resort to a model-based analysis to understand
how the set size impacts human learning performance. We
compare three classes of models: a standard RL model as a
benchmark, two RL models with policy complexity adopted
from Lai and Gershman (2021) to show the failure of policy
complexity, and another two that explains cognitive cost as
the summation of both representation complexity and policy
complexity to interpret the set size effect.
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Figure 1: Schematic of experimental task studied by Collins
and Frank (2012). On each trial, subjects were shown one
single stimulus and were instructed to choose one of three
actions. Each stimulus corresponded to one correct action
and the number of stimuli varied across blocks. Note that the
stimuli shown here are for illustrative purposes and are not
the actual stimuli used in the experiment.

Methods

Data set

We tested a series of models on the data set reported in Collins
and Frank (2012). This data set consists of 78 subjects’ learn-
ing performance in a multi-armed bandit task. On each trial,
subjects were shown one single visual stimulus (drawn from
categories such as sports, fruits, etc.) and were instructed to
quickly choose a key among three alternatives. Each response
was followed with a binary outcome, either 1 (reward) or 0
(no reward). For each stimulus, the reward was determinis-
tically associated with only one of the three responses. All
stimuli were repeated 9-15 times within a block, and did not
appear across blocks. The set size ns (the number of different
stimuli within a block) systematically varied across blocks,
ranging from 2 to 6 (Figure 1). Each subject completed 19
blocks, six in which with ns = 2, four with ns = 3, three
blocks each with ns= 4, 5, or 6. See Collins and Frank (2012)
for complete details.

Computational rationale of policy complexity

In the standard RL scenario, decision-making involves two
variables: environmental state S and the action A. In the lan-
guage of information theory, we can think of this cognitive
process as an information channel: a policy π(a|s) that maps
the environmental states S onto a probability distribution over
actions A. According to information theory, the average com-
putational demands necessary to convey information over this
‘policy channel’ is equal to the mutual information between

Figure 2: Schematic of cognition process. The biological
sensory signal of the input stimuli S are encoded to internal
mental representation X , and based on which human make
decisions A.

state and action, the general equation of which is:

I(Y ;Z) = ∑
i

py(yi)∑
j

pz|y(z j|yi) log
pz|y(z j|yi)

pz(z j)
(1)

where Y means the sender and Z, the receiver. The calculation
of mutual information requires us to know the marginal dis-
tribution of both variables, py and pz, as well as the channel
statistics, pz|y.

Gershman and Lai (2020) and Lai and Gershman (2021)
considered the mutual information Iπ(S;A) as policy com-
plexity. This is correct with the implicit assumptions that
humans have full access to the environmental state (Tishby
& Polani, 2011) and that they do not rely on internal rep-
resentations of stimuli. Under these two assumptions, hu-
man decision-making is much like the stimulus-response (S-
R) mapping in classic behaviorism.

Computational rationale of representation
complexity
Instead of considering humans’ decision-making as an S-R
process, we introduce a third construct: the encoded internal
representation of the state, X . Humans may now respond A to
the given representation X . We may now consider the whole
decision process as a cascade information channel (Figure 2):
a state encoder ψ(x|s) that maps the environmental states S
onto a probability distribution over internal representations
X , followed by a policy π(a|x) that maps the mental states
X to a distribution over actions A. The mutual information
Iψ(S;X) is considered as representation complexity and the
policy complexity is now Iπ(X ;A).

The advantage of introducing the representation is to allow
the emergence of abstractions, which is thought of as a hall-
mark of intelligence (Kemp, Perfors, & Tenenbaum, 2007;
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Gershman & Niv, 2010). When the environment is very com-
plicated with an unaffordable information cost, an adaptive
agent can cluster environmental states with a similar policy
to lower the information cost during the state encoding stage
(Genewein et al., 2015). However, the goal of this article is
to identify what constitutes the cognitive cost, and the forma-
tion of adaptive representations is beyond our focus. In the
present paper, we implemented a simple fixed state encoder
ψ (see Models section for details).

Models
RL baseline: MRL We use the RL baseline from Collins
and Frank (2012). The computational goal of the RL baseline
model is to find a policy that maximizes the expected total
reward over all trials within a block,

max
π

E[rt |ps,π] (2)

where ps represents the prior knowledge about the state dis-
tribution and it is a uniform distribution in this experiment,
in keeping with the experiment design where stimuli are uni-
formly sampled. rt is the reward subjects received at trial t.

To achieve this, the model learns a state-action value
Q(s,a) and a policy π(a|s) to guide action selection. Both
the Q function and the policy are updated after each trial t.
The update of the Q function follows:

Qt(st ,at) = Qt−1(st ,at)+αq[rt −Qt−1(st ,at)] (3)

where αq is the learning rate. The st and at are the observed
current state and action. We use the superscript t to note tem-
porally changing variables.

To balance exploration and exploitation in the RL baseline
model, the policy is formalized as the output of the softmax
function of the most recent Q value,

π
t(s,a) =

exp[βQt(s,a)]
∑ j exp[βQt(s,a j)]

(4)

where β ≥ 0 is the inverse temperature parameter that con-
trols the degree of stochasticity in the policy (Sutton & Barto,
2018).

The only parameters for the RL baseline are the learning
rate αq and the inverse temperature β for the policy. To ap-
ply the model to behavioral data, we fit both parameters via
maximum likelihood estimation.

Policy complexity: Mπ

(1) For the model that considers pol-
icy complexity, the computational goal is to maximize ex-
pected utility while ensuring that the policy complexity does
not exceed a fixed capacity limit:

max
π

E[rt |ps, pa,π] s.t. Iπ(S;A)≤C (5)

where pa is the marginal action distribution and C denotes the
channel capacity–the maximum available cognitive resource.
Equation 12 can be rewritten in a Lagrangian form:

max
π

βE[rt |ps, pa,π]− Iπ(S;A) (6)

where β ≥ 0 regulates the tradeoff between external reward
and policy complexity. When β→ ∞, the agent can be con-
sider fully rational; when β→ 0, the agent sticks with its prior
policy pa.

To solve equation 6, we use the gradient-based process
model developed in Lai and Gershman (2021). For more
details, see (Lai & Gershman, 2021, appendix). This is an
“actor-critic” model using the “policy gradient” algorithm
(Sutton & Barto, 2018) to incrementally update the param-
eterized policy πθ (the parameters of which are θ) and value
function Vw (the parameters of which are w). In the original
paper, all parameters are initialized as 0. while in this arti-
cle we initialized the value parameters w as 1 as it provided a
better fit to the data.

In each timestep t, the model first estimates the value of the
current state st and the current policy of the state:

V̂w(st) = wt−1 · I(st) (7)

and
π̂θ(a|st) = exp(βθ

t−1 · I(st)+ log pa(a)) (8)

where I(·) is the indicator function that returns an one-hot
encoding of the input. Note that π̂θ(a|st) is a distribution over
action a.

The model the update the critic using :

wt = wt−1 +αwI(st)δ (9)

where αw means the learning rate of the parameters of the

value function, and δ = βrt − log
π̂θ(at |st )

pt−1
a (at )

− V̂w(st) is the pre-
diction error.

The update of the critic is divided into two sub-steps. The
first step is to update the policy:

θ
t
at = θ

t−1
at +αθI(st)β[1− π̂θ(at |st)] (10)

where αθ is the learning rate of the policy parameter and θt
at

means the parameters for action at . The update of the policy
is followed by the update of the marginal action distribution:

pt
a(a) = pt−1

a (a)+αa[π̂θ(a|st)− pt−1
a (a)] (11)

To use this model, we need to fit four hyperparameters
{αw,αθ,αa,β}. Note this model is a general case of the RL
baseline. When αa = 0 and pa is an uniform distribution, this
model collapses to a policy gradient variant of RL baseline.

Policy complexity: Mπ

(2) As shown in the results section
below, the basic policy complexity model (Mπ

(1)) does not pre-
dict a set size effect in human learning. The limitation stems
from assuming a single tradeoff parameter (β) for all set sizes.
To avoid this limitation we can fit a specific β to set size ns.

Thus, Mπ

(2) is exactly the same as Mπ

(1) except it has
eight hyperparameters {αw,αθ,αa,β2,β3,β4,β5,β6}. The
subscript of the β represents the set size the β is fit to.
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Representation + policy complexity: Mψ+π

(1) This model
considers the cognitive cost as summation of both representa-
tion complexity and policy complexity, as illustrated in Fig-
ure 2. The resulting objective is

max
π

E[rt |ps, px, pa,ψ,π] s.t. Iψ(S;X)+ Iπ(X ;A)≤C (12)

and the corresponding Lagrangian form is,

max
π

βnsE[rt |ps, px, pa,ψ,π]− Iψ(S;X)− Iπ(X ;A) (13)

where px means the prior belief about the internal represen-
tations and is assumed as a uniform distribution. Representa-
tions X are generated probabilistically according to the state
encoder ψ(x|s). For example, ”apple” and ”orange” may
evoke very distinct sensory representations, but are mapped
to one latent representation because they both have the same
optimal response (and hence are functionally, if not percep-
tually, equivalent). In this paper, we implemented a simple
(non-adaptive) model for the state encoder ψ inspired by the
ε-greedy policy in RL (Sutton & Barto, 2018). An environ-
mental state s has 1− ε probability to be recognized as s and
has ε

|S|−1 probability be recognized as any of stimuli other
than s. Increasing ε increases the “noise” in the state encoder,
and hence reduces its information-theoretic channel capac-
ity. The motivation behind this design is that we need a noisy
categorical distribution (environmental state s is recorded as a
categorical variable in the data) that may collapse to a one-hot
encoding (the indicator function I(·) in equation 8, assum-
ing humans participants had full access to the environmental
state) if humans are really optimal state encoders. If the fit-
ted ε is 0, we may conclude humans develop perfect repre-
sentations for the external stimuli in this simple experiment
paradigm.

To implement a gradient-based RL model with a state en-
coder ψ, we only need to change the indicator function of
the state indicator function I(st) to ψ(x|st). The nine hyper-
parameters of this model are {αw,αθ,αa,ε,β2,β3,β4,β5,β6}.
When ε = 0, Mψ+π

(1) collapses to Mπ

(1).

Representation + policy complexity: Mψ+π

(2) The previ-
ous model utilized a gradient-based optimization procedure
to achieve the learning objective. We also tested a gradient-
free normative model based on Tishby and Polani (2011) and
Genewein et al. (2015). The model is built upon RL baseline
MRL with a same critic formulation and update rule.

The actor component of the model is conditional on the
internal representation x and action a. Since we have no ac-
cess to the latent representation in the observed data, we can
only infer the representation-action value function Qbel(x,a)
following (Genewein et al., 2015),

Qt
bel(x,a) = ∑

x
p(s|x)Qt(s,a) (14)

where p(s|x) = ps(s)ψ(x|s)/px(x) is the Bayesian posterior
over s given x and ψ follows the same design with Mψ+π

(1) .

With the representation-action function Qbel(x,a), we can
formulate the optimal update of the actor as,

π
t(a|x) =

exp[βnsQt
bel(x,a)+ log pt−1

a (a)]

∑ j exp[βnsQt
bel(x,a j)+ log pt−1

a (a j)]
(15)

This is the optimal policy update for a given value function
(Tishby & Polani, 2011). In contrast to the gradient-based
update of the previous model, this model would be expected
to learn more quickly.

The update of marginal policy pa follows equation 11. The
hyperparameters of Mψ+π

(2) are {αq,αa,ε,β2,β3,β4,β5,β6}.

Optimal policy As a benchmark for evaluating our models,
we also determined the optimal policy for a learning agent.
To achieve the optimal solution, we can simply use the RL
baseline model with αq = 1 (high learning rate) and 1

β
= 0

(no exploration). This is a consequence of the particular task
environment, as there is exactly one action that is determinis-
tically rewarded for each stimulus.

Results
Model fits and the set size effect
Figure 3 compares human and model learning curves. As ex-
pected, the RL baseline (MRL) does not reproduce the set
size effect. More surprisingly, a model incorporating policy
complexity (Mπ

(1)) also fails to account for this effect. This
model utilizes a fixed utility–complexity tradeoff parameter
(β) for all set sizes. Model Mπ

(2) fits separate parameters for
each set size, but offers no explanation as to why this parame-
ter should differ according to set size. The models that incor-
porate both policy complexity and representation complexity
were able to demonstrate the set size effect.

Table 1: Models’ goodness-of-fit.

- NLL SSE
MRL 28135.358 0.463
Mπ

(1) 26299.911 0.256
Mπ

(2) 25889.932 0.083
Mψ+π

(1) 25784.780 0.078
Mψ+π

(2) 26347.952 0.089

Table 1 summarizes the negative log-likelihood (NLL) and
sum-of-squared-error (SSE) for all models. NLL evaluates
how well the model accounts for the experimental data, and
SSE measures the degree of similarity between the model’s
predictive learning curves and that of humans. In terms of
these two criteria, Mψ+π

(1) accounts best for subjects’ behav-

iors. However, Mψ+π

(1) fails to capture one observation in hu-
man data: human follows a nearly optimal learning curve in
set size 2 and 3. This phenomenon is only captured by Mψ+π

(2) .
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Figure 3: Model results. Learning curves generated using the
fit parameters for each set size. Accuracy indicates proportion
of responses that were rewarded.

Policy complexity does not account for the set size
effect
The key assumption of our information-theoretic approach
is that humans behave rationally subject to a fixed cogni-
tive resource (the information constraint), and consequently
their suboptimal task performance is explainable via this con-
straint. In this sense, if we estimate the cognitive cost of the
optimal policy, the amount of information (measured in nats)
to encode this policy may increase monotonically with the set
size, whereas the cognitive cost for the empirical human pol-
icy should saturate to a certain value. We may consider this
asymptotic value as the effective constraint on cognitive cost
for human participants.

Figure 4 shows the model-based cognitive cost estimation.
Details for estimating policy complexity and representation
complexity are given in the Methods section above. The left
column shows the estimation of policy complexity reveal-

Figure 4: Cognitive cost estimation. The left column shows
the complexity of both models’ policy (blue shaded region)
and the optimal policy complexity (purple dashed line). The
right shows the total cognitive cost (red solid line), consti-
tuted of policy complexity (blue shaded region) and repre-
sentation complexity (red shaded region) for both models.
The working memory capacity (black dashed line) equals the
maximum of models’ cognitive cost. The blue dashed line
indicates the total cognitive cost for the optimal policy. All
quantities are measured in nats

ing two salient features: 1) the optimal policy complexity
Iopt(X ;A), calculated using equation 1, is almost constant
over set sizes instead of monotonically increasing (purple
dashed line), hence larger set sizes do not appear to be more
cognitively demanding according to this model; 2) the em-
pirical policy complexity monotonically decreases instead of
saturating at a fixed channel capacity (blue shaded region). A
problematic question therefore arises: if the tasks in all set
sizes are equally complex from an information-theoretic per-
spective, why do human participants adopt simpler policies
in a larger set size conditions?

Neither of these properties is readily explainable from the
perspective of computational rationality. We, therefore, con-
clude that policy complexity alone does not adequately ex-
plain human cognitive costs in this experiment.

Representation complexity plus policy complexity
captures the set size effect
The right column of figure 4 displays the estimation for both
policy complexity and representation complexity (cognitive
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cost). The number of nats required to encode the combined
representation and optimal policy (Iψ(S;X)+ Iopt(X ;A)) in-
creases monotonically with set size (blue dashed line). How-
ever, whereas the task demands for optimal performance
grow monotonically with set size, the empirically estimated
cognitive costs (red solid line) appear to grow much slower
in Mψ+π

(1) and reach an asymptote at ∼ 1.998 nats in Mψ+π

(2) .
Consistent with our expectation, both properties imply the
existence of an upper limit on the cognitive capacity that is
the sum of both representational complexity and policy com-
plexity.

This formulation of cognitive cost captures and quantifies
the subjective experience that increasing the set size increases
the cognitive difficulty of the task. In addition, while the esti-
mated policy complexity saturates (or tends to saturate), Fig-
ure 4 also shows that rising representation complexity (red
shaded region) imposes extra constraints on policy complex-
ity Iπ(X ;A) as the set size increases, answering the question
we asked in the last paragraph. According to this model, for
set size ns = 2,3 conditions, human decision-makers are able
to perform near-optimally because the total cognitive cost is
below the available capacity. However, when ns = 4,5,6, as
the state representation complexity grows, human decision
makers must resort to an increasingly suboptimal policy to
prevent total cognitive cost from exceeding a maximum limit.

Conclusions
In this article, we proposed a new model the optimizes the
resource-rational computational goal. Comparing with a sim-
ilar model published (Griffiths, Lieder, & Goodman, 2015), a
large improvement has been made in predicting a determin-
istic reinforcement learning task. The empirical results indi-
cated that the progress was made because of refining three
modeling assumptions: (i) constructing the cost as the sum of
representation and policy complexity, (ii) estimating the com-
plexities using a wrong prior, and (iii) updating the model in
terms of distribution.

Many suboptimal decisions can be explained as a trade-
off between maximizing utility and minimizing costs or con-
straints imposed by limited cognitive resources (Sims, 2016;
Lerch & Sims, 2018; Gershman, 2020). We contribute to this
line of thought by arguing that there are two separate sources
of cognitive demand in a reinforcement learning setting: rep-
resentation complexity, and policy complexity. Through a
model-based analysis, we showed that the total cognitive cost
incorporating both of these constructs appears to saturate to
an upper limit in human reinforcement learning. This tenta-
tively suggests the existence of a fixed cognitive resource that
can be allocated to a learning task.

Based on this conclusion, we made one further step to in-
terpret how the set size leads to humans’ suboptimal perfor-
mance in the (Collins & Frank, 2012) experiment. Although a
larger set size is not necessarily more complicated in terms of
policy complexity, it does requires the human subjects to hold
more representations of the world stimuli. Humans, thus,

have to seek a simpler policy to balance the rising cognitive
cost.

In future work, we seek to increase the quality of our
model-based analysis by developing more accurate models
that better describe humans’ learning and decision-making
under limited cognitive resources. We expect the following
properties from a better model: First, instead of fitting the
tradeoff parameters βns for each set size to describe humans’
policy, we can model the principle humans may follow in bal-
ancing the reward and the resource. Also, our models assume
that human sensory processing is fixed. However, substan-
tial evidence supports that human sensory channel might be
adaptive (see review Orhan, Sims, Jacobs, and Knill (2014)).
Perhaps, human subjects start with a less resource-efficient
sensory code but end up with more efficient coding, allowing
humans to learn a more rewarding but complicated policy.
This change might be observed only after extensive training
because the update of the sensory channel should follow an
extremely small learning rate due to it is hardwired in the hu-
man neural system.
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Abstract

Models based on classical probability theory have difficulty
accounting for order effects, which occur when the order of
question presentation affects response probabilities. Recently,
quantum models have garnered support as an account of order
effects. In particular, the pattern of order effects is consistent
with a critical property of the quantum model called the QQ
equality. We investigate whether the ACT-R cognitive archi-
tecture can produce order effects and satisfy the QQ equality
based on memory retrieval mechanisms. In the ACT-R model,
the answer to the first question creates a new context through
which spreading activation influences retrieval probabilities for
the second answer. Our analysis shows that spreading acti-
vation can produce order effects and satisfy the QQ equality,
depending on the composition of declarative memory. Across
a wide range of conditions, violations of the QQ equality are
typically small, but moderate to large in a smaller set of cases.

Keywords: ACT-R; Quantum cognition; Order effects

Introduction
An order effect occurs when a response depends on the order
in which stimuli are presented. In cognitive science, order
effects are commonly treated as a nuisance factor in exper-
imental design and data analysis. Typically, stimulus order
is counter-balanced, marginalized out, and subsequently ig-
nored. Recently, however, there has been growing interest in
developing theoretical accounts of order effects (Trueblood
& Busemeyer, 2011; Jones, Curran, Mozer, & Wilder, 2013;
Wang, Solloway, Shiffrin, & Busemeyer, 2014). What makes
order effects interesting is that they are difficult to account
for using models based explicitly or implicitly on the founda-
tion of classical probability theory. In particular, order effects
violate the commutative law of classical probability theory
according to which Pr(A∧B) = Pr(B∧A). Furthermore, or-
der effects are interesting because they highlight the context-
dependent nature of cognition.

One example of order effects comes from a national poll
asking respondents about the trustworthiness of former Pres-
ident Clinton and former Vice President Gore in two sep-
arate questions. One set of respondents judged “yes” or

“no” whether Clinton is generally trustworthy followed by
the same judgment about Gore, whereas the other set of re-
spondents made the same judgments in the opposite order. In
Table 1, the results for both question orders are transcribed
from (Wang et al., 2014). The third sub-table shows the or-
der effect, calculated as the difference between corresponding
cells of the Gore-Clinton table and the Clinton-Gore table. A
clear violation of the commutative law can be seen, as the
values differ from zero.

During the 20th century, quantum probability theory was
developed to account for order-dependence of measurement
in physics. More recently, it has been adopted in cogni-
tive science in response to similar violations of classical
probability theory found in human cognition (Busemeyer,
Pothos, Franco, & Trueblood, 2011; Atmanspacher, Römer,
& Walach, 2002). Quantum probability theory is based on an
alternative set of axioms which violate the commutative law
under specific conditions. Several lines of research provide
strong support for quantum probability account of order ef-
fects. For example, a quantum model provided a superior ac-
count of sequential belief updating compared to several com-
peting models (Trueblood & Busemeyer, 2011). Perhaps the
most compelling line of evidence is that the results from a
large corpus of surveys and several experiments were con-
sistent with a critical property of quantum probability the-
ory called the Quantum Question (QQ) equality (Wang et al.,
2014). The QQ equality is a structural property of the quan-
tum model that constrains the possible patterns of order ef-
fects.

Very few alternative accounts of order effects have been
proposed to date—perhaps reflecting the inherent challenge
of the task. From a purely mathematical perspective, a
Bayesian updating model can produce order effects with
the inclusion of order-dependent events (Trueblood & Buse-
meyer, 2011). However, such a model is problematic be-
cause it is saturated, and thus merely re-describes any pattern
of data without providing a principled way to assign values
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to its numerous terms. Recently, a multinomial processing
tree called the repeat-choice model was developed to account
for order effects and the QQ equality (Kellen, Singmann, &
Batchelder, 2018). Multinomial processing trees use a tree-
like structure of processing stages to describe choice behav-
ior. According to the repeat-choice model, there is a probabil-
ity distribution of over preference states, such as the prefer-
ence to respond yes to both questions. With some probability,
the responses will be made based only on the preference state.
However, additional information will be considered with the
complementary probability. If additional information is con-
sidered, there is some probability that the second response is
the same as the first (assimilation effect) and the complimen-
tary probability that the second response will differ from the
first (contrast effect). Some variations of the repeat-choice
model provided a similar fit to the data as the quantum model,
thus demonstrating that model based on classical probability
theory can account for the data.

One question that remains is whether a cognitive architec-
ture can account for order effects. A cognitive architecture is
a framework for simulating and developing unified theories of
cognition (Newell, 1990). The primary goal of cognitive ar-
chitectures is to provide a broad account of human cognition,
spanning areas such as memory, multi-tasking, and percep-
tion among others. For this reason, order effects provide a
new and important benchmark for testing cognitive architec-
tures. Our goal in the present paper is to develop a model
of order effects based on the ACT-R cognitive architecture
(Anderson et al., 2004) and outline its predictions. Order
effects present an interesting challenge for ACT-R because,
unlike the quantum model—which was developed in physics
to account for order dependence in measurement—it was not
developed specifically to account for order effects. Instead,
order effects must emerge from existing cognitive processes
and mechanisms postulated by ACT-R. In what follows, we
will demonstrate that ACT-R can produce order effects us-
ing memory retrieval mechanisms. In some cases, the model
satisfies the QQ equality, while in other cases it violates the
QQ-equality to varying degrees. The pattern of predictions
depends critically upon the composition of declarative mem-
ory.

Overview
The remainder of the paper is organized as follows. We will
begin with a brief overview of the quantum model and intro-
duce the QQ equality. Next, we will provide a formal descrip-
tion of the ACT-R model of order effects. In the following
section, we will describe its properties in terms of order ef-
fects and the QQ equality. Finally, we will discuss directions
for future research.

Quantum Model
Quantum probability theory is based on an alternative set of
axioms which allows non-commutative behavior (Busemeyer
et al., 2011). Unlike classical probability theory in which
events are subsets of a universal set, quantum probability

Table 1: Joint probability table for Clinton-Gore order, the
Gore-Clinton order, and the order effect. Column and row
labels C and G correspond to Clinton and Gore. Subscripts y
and n correspond to yes and no.

Clinton-Gore Gore-Clinton

Gy Gn Gy Gn
Cy 0.4899 0.0447 Cy 0.5625 0.0255
Cn 0.1767 0.2886 Cn 0.1991 0.213

Order Effect

Gy Gn
Cy −0.0726 0.0192
Cn −0.0224 0.0756

theory is based on a geometric representation of uncertainty.
Events are sub-spaces within an n dimensional vector space
called a Hilbert space. A cognitive state represented as a state
vector which is a linear combination of basis vectors that de-
fine the Hilbert space. In the quantum model, probabilities
are formed by projecting the state vector onto a target sub-
space and computing the squared magnitude of the projection.
A key distinction between classical and quantum probability
theory is the concept of compatibility. Compatible events can
be evaluated with respect to the same basis vectors, in which
case quantum and classical probability theory make the same
predictions. By contrast, incompatible events cannot be eval-
uated with respect to the same basis vectors. Instead, the basis
vectors are rotated to create new set of basis vectors for the in-
compatible events. In other words, incompatible events can-
not be evaluated simultaneously. Importantly, rotation leads
to non-commutative behavior and other violations of classi-
cal probability theory. At a psychological level, rotation of
the basis vectors represents a change of perspective.

Although rotation of the vector space provides the quan-
tum model with the flexibility to produce order effects, the
range of behavior is highly constrained by a critical prop-
erty known as the QQ equality (Wang et al., 2014). The QQ
equality imposes a symmetrical relationship on the order ef-
fects in which both the diagonal elements and off-diagonal
elements of the difference table must sum to zero. For ex-
ample, in the third sub-table of Table 1, the diagonal el-
ements −.0726 + .0756 ≈ 0 and the off-diagonal elements
−.0224+ .0192 ≈ 0. Importantly, the QQ equality holds re-
gardless of the initial state vector, the degree of rotation of
the basis vectors, and is preserved in aggregated data (Wang
et al., 2014). Formally, the QQ equality is defined by the fol-
lowing two statements:

q1 = Pr(Yc = yes∧Yg = yes)−Pr(Yg = yes∧Yc = yes)+
Pr(Yc = no∧Yg = no)−Pr(Yg = no∧Yc = no) = 0

(1)
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q2 = Pr(Yc = yes∧Yg = no)−Pr(Yg = no∧Yc = yes)+
Pr(Yc = no∧Yg = yes)−Pr(Yg = yes∧Yc = no) = 0

(2)

where Yp represents the response to question about person p∈
{c,g}, and c denotes Clinton and g denotes Gore. Through-
out, we will designate Yp as a random variable and yp as a
specific realization of Yp.

ACT-R Model
We developed a memory-based model of order effects within
the ACT-R cognitive architecture (Anderson et al., 2004).
ACT-R operates as a production system and is organized as
a set of specialized processing modules which includes mem-
ory, visual/auditory perception and motor execution. Each
module can process only one request at a given time and con-
tains a buffer that holds a maximum of one chunk of declar-
ative knowledge. For our present purposes, we will focus
primarily on the declarative memory module. Although we
will frame the model in terms of the Clinton-Gore example
above, the model is applicable to many other cases in which
responses are based on memory.

The model assumes that declarative memory contains
chunks which represent true or false statements made by Clin-
ton or Gore. When a question about a person is posed, a
retrieval request is issued to declarative memory where the
most active chunk about the target person is returned. The
answer to the question is yes if the chunk contains a true
statement. By contrast, the answer to the question is no if
the retrieved chunk contains a false statement. During the re-
trieval of the first answer, there is no influence of contextual
information. However, the answer to the first question creates
a new context for answering the second question. In partic-
ular, the chunk for the first answer is stored in the imaginal
buffer where activation spreads to chunks in declarative mem-
ory that share the same truth value, resulting in order effects
under specific conditions.

Declarative Memory
Within ACT-R, a chunk is a basic unit of declarative knowl-
edge given by a collection of slot-value pairs. For example
a memory chunk could contain the slot ‘name’ with value
‘Sigma’ and the slot ‘animal-type’ with value ‘dog‘. For the
remainder of the paper, we use the following notation for
chunks: We use cm to indicate a chunk in memory, where
m is an index that ranges over all of the chunks in memory.
We write the relationship between the slot s and value v for
chunk m as cm(s) = v. We will also need to reference the slots
in the chunk for which a value is defined, which we denote
Qm. Note that all chunks do not necessarily (and generally do
not) have the same slots, so to maintain the generality of the
notation, we assume cm(s) = /0 for any s that is not a slot in
chunk cm i.e., for all s /∈ Qm,cm(s) = /0.

Like chunks, retrieval requests in the ACT-R architecture
are collections of slot-value pairs, which we designate using
set notation, r = {(si,vi)}i∈I .

Knowledge Representation
Each chunk cm in declarative memory contains a name slot, a
statement slot, and a truth slot: Q = {name,statement, truth}.
The name slot contains the name of the person, the statement
slot contains the content of the statement and the truth slot
contains the truth value of the statement.

Activation
The probability of retrieving a chunk increases monotonically
with its activation value. Activation for chunk m is the sum
of the following three components:

am = β+Sm + εm (3)

where β is the base level constant, which scales activation up
or down, Sm is spreading activation, and εm ∼Normal(0,σ) is
normally distributed noise. Spreading activation reflects the
influence of context whereby active information in the archi-
tecture facilitates the retrieval of chunks containing the same
values. Spreading activation has been used to explain the fan
effect whereby concepts associated with more facts require
more time to retrieve (Anderson, 1974). In the model, acti-
vation can only spread from the truth value of the chunk in
the imaginal buffer to chunks in declarative memory. This
follows from the simplifying assumption that statements are
unique, and thus do not contribute to spreading activation.
Given these simplifications, we can express spreading activa-
tion as:

Sm(x) =
γ+ log

( 1
1+x

)
|Q|

where x is the number of chunks in declarative memory with
a same truth value as cr,imaginal(truth), γ is the maximum as-
sociation parameter, and |Q| is the number of slots in each
chunk, which is 3 in this case.

Retrieval Process
After the first question is encoded, a retrieval request r =
{(name,v1)} is submitted to declarative memory where a set
of matching chunks R = {cm ∈ M : (name,cm(name)) ∈ r}
compete for retrieval and the chunk with maximum activa-
tion cr ∈ R is retrieved. During the retrieval of the first an-
swer, there is no influence of spreading activation because the
imaginal buffer is empty. The retrieved chunk is placed into
the imaginal buffer and becomes cr,imaginal = cr where it will
influence memory retrieval for the second answer through
spreading activation.

Response Mapping
The mapping between the truth value of the retrieved chunk
and the response y for person p is given by:

yp =

{
yes cr(truth) = true
no cr(truth) = false
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Retrieval Probability
The retrieval probability is found by comparing the response
set Wx ⊂ R to the retrieval set R. The response set is the sub-
set of chunks in the retrieval set that map to the observed re-
sponse yp. The response set for yes and no are defined as:

Wyes = {cm ∈ R : cm(truth) = true}

Wno = {cm ∈ R : cm(truth) = false}

The probability of responding x on the first question is given
by the following softmax function:

Pr(Yp = x) =
∑

cm∈Wx

e
µm
σ

∑
ck∈R

e
µk
σ

=

e
β

σ ∑
cm∈Wx

e0

e
β

σ ∑
ck∈R

e0
=
|Wx|
|R|

where µ is mean activation, σ = s
√

2 controls activation noise
and s is the logistic scale parameter. The expression sim-
plifies to the ratio of chunks leading to response x over all
chunks that match the retrieval request because eβ/σ can be
factored out of each term. We can rewrite the expression in
terms of the number of true and false statements for Clinton
and Gore. Let T = Tc+Tg be the total number of chunks con-
taining a true statement and F = Fc +Fg be the total number
of chunks containing a false statement, where subscript c rep-
resents Clinton and subscript g represents Gore. For example,
the probability of responding yes to Clinton on the first ques-
tion is defined as

Pr(Yc = yes) =
Tc

Tc +Fc

which is simply the ratio true statements made by Clinton
compared to all statements made by Clinton. The expression
for the second question includes a term for spreading acti-
vation, which can be simplified as: z

( 1
x+1

)h
where h = 1

|Q|σ
and z = eγh. For example, the probability of responding yes
to Gore on the second question given a response of yes to
Clinton on the first question is defined as:

Pr(Yg = yes | Yc = yes) =
Tg · z ·

( 1
T+1

)h

Tg · z ·
( 1

T+1

)h
+Fg

In this example, spreading activation increases the probability
of responding yes to the question about Gore. The full set of
equations can be found in Table 2 for the Clinton-Gore order
and Table 3 for the Gore-Clinton order. Note that each joint
probability table sums to 1 as required by classical probability
theory. Under certain conditions, however, spreading activa-
tion causes the probability mass to shift to different cells in
each table, producing two different joint probability distribu-
tions. In some sense, this is similar to using a different set
of basis vectors to define events in the quantum model. In
the ACT-R model, the table for each order is consistent with
classical probability theory. Similarly, in the quantum model,

probabilities based on projection any of a set of orthonormal
basis vectors are consistent with classical probability theory.
However, just as the ACT-R model is not necessarily consis-
tent with classical probability theory across tables, the quan-
tum model is not necessarily consistent with classical proba-
bility theory across different rotations of the basis vectors.

Predictions
In what follows, we describe the predictions of the ACT-R
model for order effects and the QQ equality. Although we
have proved the following properties, the proofs are omitted
due to space limitations.

Table 2: Predictions of the ACT-R order model for the
Clinton-Gore order. Column and row labels C and G cor-
respond to Clinton and Gore. Subscripts y and n correspond
to yes and no.

Gy Gn

Cy
Tc

Tc+Fc
· Tg·z·( 1

T+1 )
h

Tg·z·( 1
T+1 )

h
+Fg

Tc
Tc+Fc

· Fg

Tg·z·( 1
T+1 )

h
+Fg

Cn
Fc

Tc+Fc
· Tg

Tg+Fg·z·( 1
F+1 )

h
Fc

Tc+Fc
· Fg·z·( 1

F+1 )
h

Tg+Fg·z·( 1
F+1 )

h

Table 3: Predictions of the ACT-R order model for the Gore-
Clinton order. Column and row labels C and G correspond to
Clinton and Gore. Subscripts y and n correspond to yes and
no.

Gy Gn

Cy
Tg

Tg+Fg
· Tc·z·( 1

T+1 )
h

Tc·z·( 1
T+1 )

h
+Fc

Fg
Tg+Fg

· Tc

Tc+Fc·z·( 1
F+1 )

h

Cn
Tg

Tg+Fg
· Fc

Tc·z·( 1
T+1 )

h
+Fc

Fg
Tg+Fg

· Fc·z·( 1
F+1 )

h

Tc+Fc·z·( 1
F+1 )

h

Order Effects
According to the model, order effects depend on the ratio of
true to false statements for each person. Four order effects can
be obtained by subtracting the corresponding cells of Gore-
Clinton and Clinton-Gore joint probability tables. Figure 1
shows that the predicted order effect depends on the ratio of
true to false statements for each person. For example, in the
top left panel, Tc is varied from 0 to 6 while Fc = Tg = Fg = 1.
The order effect is large when Tc = 0 and small to moder-
ate for all other values. Similar patterns can be found in the
remaining panels.

Equal Ratios The model predicts no order effects for
matching responses (e.g. yes, yes) when the ratios are equal.
However, the order effect for a yes, no response is the nega-
tive of the order effect for a no, yes response, which ranges
over negative and positive values. More formally, we de-
fine Oyc,yg as the order effect for response yc to the Clinton
question and yg to the Gore question. With this notation,
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we can write: Oyes,yes = Ono,no = 0 and Oyes,no = −Ono,yes
if Tc = v · Tg, Fc = v ·Fg. As a special case, if Tc = Fc and
Tg = Fg, then Oyes,no = Ono,yes = 0. Intuitively, this means
that the effects of spreading activation in both question or-
ders cancel out because the ratios are 50-50, thus eliminating
the order effect. This can be seen in Figure 1 where the values
on the x-axis equal 1.

0 1 2 3 4 5 6
Tc

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

0 1 2 3 4 5 6
Fc

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

0 1 2 3 4 5 6
Tg

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

0 1 2 3 4 5 6
Fg

0.0

0.1

0.2

0.3 Clinton Gore
no no
no yes
yes no
yes yes

Figure 1: Order effect predictions. Each plot shows the abso-
lute order effect along the y-axis for the number of chunks of
the type specified in the x-axis while the chunk types are hold
constant at a value of 1.

QQ Equality
The ACT-R model follows the basic mathematical constraint
whereby q1 =−q2, but satisfies the QQ equality (q1 = q2 = 0)
under specific conditions that depend on the ratio of true to
false statements for each person. Figure 2 shows the q values
as a function of the value on the x-axis while the other three
values are fixed at 1. When value on the x-axis is zero, a large
violation of the QQ equality is predicted. In other cases, the
predicted violation of the QQ equality is small or zero.

Equal Ratios ACT-R satisfies the QQ equality when the
ratios of true to false statements are equal for each person.
More formally, q1 = q2 = 0 if Tc = v ·Tg, and Fc = v ·Fg. This
occurs in Figure 2 where the value on the x-axis is equal to 1.

Complementary Ratios ACT-R satisfies the QQ equality
when the ratios of true to false statements are complementary
for each person, but the number of chunks for each person are
equal. More formally, q1 = q2 = 0 if Tc = Fg and Tg = Fc.

Q Distribution To investigate the extent to which the ACT-
R model violates the QQ equality, we computed q values
across all permutations of memory composition for values
from 0 to 6. As shown in Figure 3, most of the density is cen-

0 1 2 3 4 5 6
Tc

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

0 1 2 3 4 5 6
Fc

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

0 1 2 3 4 5 6
Tg

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

0 1 2 3 4 5 6
Fg

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3 q1

q2

Figure 2: q-value predictions. Each plot shows the q values
for the number of chunks of the type specified in the x-axis
while the other chunk types are hold constant at a value of 1.

tered near zero. In particular, approximately 77% of q val-
ues range between -.1 and .1 and approximately 68% range
between -.05 and .05. The remaining portion of the distribu-
tion extends towards -.4 and .4 in a roughly uniform manner.
Collectively, these results suggest that violations of the QQ
equality are typically small, but can be quite large under some
circumstances.

−0.4 −0.2 0.0 0.2 0.4
Q-value

0

10

20

30

40

De
ns

ity

Figure 3: Distribution of q values across all 74 = 2,401 per-
mutations of Tc, Fc, Tg, and Fg for values 0 to 6.

Discussion
In the present paper, we developed a memory-based model
of order effects within the ACT-R cognitive architecture and
outlined many of its predictions and properties. Our analy-
sis reveals that ACT-R can produce order effects and satisfy
the QQ equality depending on the composition of declarative
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memory. Across a large range of memory sets, the model
produces q values that either satisfy the QQ equality or vio-
late it only by a small degree. In other cases, there is a clear
divergence from the QQ equality.

Some points of similarity and difference between the quan-
tum model and the ACT-R model are worth noting. One point
of similarity is that context is an important determinant of or-
der effects in both models. In the quantum model, order ef-
fects arise from non-commutative evaluation processes when
events are incompatible. In the ACT-R model, the answer to
the first question creates a new context through which spread-
ing activation modulates the retrieval probabilities for the sec-
ond answer. The models differ in several important regards.
One difference is the distinction between memory-based vs.
online judgments (Hastie & Park, 1986). In ACT-R, judg-
ments are formed from a set of experienced events stored in
memory, whereas in the quantum model, judgments are con-
structed online through comparison processes and do not re-
quire a definite reference class. One direction for future re-
search is to determine whether ACT-R can perform online
judgments by comparing chunks in different buffers.

Although we have demonstrated as a proof of concept that
ACT-R can produce order effects and satisfy the QQ equal-
ity under specific conditions, the model has not been tested
against empirical data. For this reason, it remains unclear
how it compares to the quantum model in terms of empir-
ical support. As a memory-based model, ACT-R requires
a well-controlled experiment in which the composition of
declarative memory is manipulated to test the properties out-
lined above. Existing data sets are not suitable for testing
the ACT-R model because factors influencing memory were
not controlled or measured. For example, respondents in the
national survey likely differed in terms of political knowl-
edge and information sources, which, in turn, could intro-
duce heterogeneity in judgments about Clinton and Gore. Un-
certainty and heterogeneity in memory composition would
render the results uninterpretable from the standpoint of the
ACT-R model. In future research, we plan to design a mem-
ory based experiment to test the predictions outlined above.

Our analysis shows that the predictions hold for different
values of maximum associative strength and activation noise
so long as maximum association strength is sufficiently large
to produce a positive spreading activation term. One may
wonder how the predictions might change when certain as-
sumptions of the model are relaxed. For example, relaxing
the assumption that β is equal across chunks leads to a some-
what more complex model, but the predictions ultimately de-
pend on the ratio of activation of true and false statements for
each person rather than the ratio of chunks.

Conclusion
Order effects are an interesting benchmark for testing the
ACT-R cognitive architecture because it was not developed
to account for such effects. Nonetheless, we demonstrated
that ACT-R can produce order effects using existing memory

retrieval mechanisms and can satisfy the QQ equality under
some conditions. Although more work is required to test the
model, we regard this proof of concept as an important first
step towards stress testing the architecture against new bench-
mark phenomena.
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Abstract
Although cognitive models are primarily used to formalize the-
ories of cognition, they could be applied in artificial intel-
ligence (AI) systems, such as autonomous managers (AMs)
which optimize team performance through dynamic task allo-
cation. Cognitive models can be incorporated into the AM’s
decision system to understand the implications of alternative
task distributions. They can also be used as simulated agents
to stress test AMs under a wide range of conditions. In a
simulation study, we varied the cognitive model used in the
AM’s decision system and the cognitive model performing a
task to explore the design space of AMs. We found a trade-off
between optimality and robustness in which complex models
performed the best when assumptions were met, but were not
robust to violation of assumptions. These results highlight the
importance of considering simple models when assumptions
could be violated and showcase the utility of cognitive models
in AI systems.
Keywords: task allocation; cognitive agents;

Introduction
Cognitive models have a multitude of uses ranging from for-
malizing theories of cognition and sharpening research ques-
tions (McClelland, 2009), to measuring individual differ-
ences in cognition among clinical and non-clinical popula-
tions (Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002;
Yechiam, Busemeyer, Stout, & Bechara, 2005). One of the
promises of cognitive architectures—and perhaps cognitive
models more generally—is the ability to scale up to complex
tasks where the limits of theory and practical application can
be pushed (Newell, 1990). Some complex tasks in which
cognitive models have been applied include training teams
involving synthetic teammates (McNeese, Demir, Cooke, &
Myers, 2018) and driving (Salvucci, 2006).

One burgeoning area in which cognitive models could be
informative is artificial intelligence (AI). Deep learning in
particular is a remarkably flexible function learning algo-
rithm. According to the Universal Approximation Theorem,
a deep neural network containing a sufficient number of lay-
ers can approximate any continuous function with sufficient
training data (Zhou, 2020). However, this flexibility comes at
a high cost: copious amounts of data are required for training
in order to compensate for the lack of predefined structure.
In addition, deep learning and similar approaches have been
criticized for being opaque, brittle, and vulnerable to sabotage

(Nguyen, Yosinski, & Clune, 2015). One solution is to incor-
porate scientific models into AI systems in order to provide
a structure that reduces demanding data requirements. Cur-
rently, there are efforts to integrate neural networks with dif-
ferential equation models commonly used in physics, biology
and pharmacology (Rackauckas et al., 2020) to achieve a bet-
ter balance between flexibility and data requirements. Along
similar lines, cognitive models could be integrated into AI
systems in situations that require interacting with or reason-
ing about humans.

We argue that cognitive models can be integrated into
autonomous managers (AMs) designed to optimize perfor-
mance in team-based work environments. An AM monitors
performance of a team and dynamically allocates tasks be-
tween workers in order to improve performance of the team.
An autonomous task manager can draw upon several sources
of information and methods to inform a task allocation de-
cision, including performance history of workers, AI, and
mathematical optimization. Cognitive models can be inte-
grated into an AM in at least two ways. First, an AM could
use a cognitive model to predict and understand the implica-
tions of alternative task allocations. Second, a wide range of
cognitive models can perform a simulated task environment
in order to investigate the robustness of the design space of
AMs.

We performed a series of simulations to explore the design
space of AMs that incorporate different cognitive models into
the decision process. Our primary research goal was to iden-
tify trade-offs between optimality and robustness in the de-
sign space. For example, do some designs perform optimally
when model assumptions are satisfied, but perform poorly
when assumptions are violated? In our simulations, an AM
dynamically allocates sub-tasks of a larger, more complex
task to cognitive agents (i.e. instances of a cognitive model
that perform the task). We varied both the type of cognitive
agent that performed the task and the cognitive model that
the AM used to inform task allocation decisions. The cogni-
tive models/agents varied according to cognitive processing
constraints and the relationship between workload and per-
formance. In some cases, the cognitive agent and the model
used in the AM were the same; in other cases, they differed.
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Overview
The remainder of the paper is organized as follows. First, we
discuss the logic behind dynamic task allocation and the need
for automated task allocation systems. Next, we describe the
novel complex task environment used to test the effectiveness
of AMs. Then, we describe the cognitive agents and AMs
used in our simulation. Finally, we present and discuss the
results of the simulation study. To preview a key result, we
found a trade-off between optimality and robustness.

Dynamic Task Allocation
The performance of a team may vary according to numerous
factors, including differences in skill specialization, sensitiv-
ity to workload, and temporal dynamics associated with fa-
tigue. In some cases, team performance could be improved
simply by allocating tasks to workers with the appropriate
specialized skills. However, optimizing team performance is
rarely this simple. For example, a person who skillfully per-
forms two tasks in isolation may struggle to perform both to-
gether if she or he is sensitive to changes in workload level.
Performance may also vary randomly from day to day due to
unknown factors or could vary with fluctuations in task de-
mands or fatigue. Dynamic task allocation is necessary in
order to deal with uncertainty and to adapt to changes in per-
formance across time. Collectively, these factors present a
challenge for optimizing team performance.

Some work environments could benefit from an AM be-
cause it is difficult and costly for a human supervisor to man-
ually monitor and allocate tasks. In addition, some research
indicates that delegating work distribution decisions to work-
ers can be disruptive due to the additional workload imposed
by monitoring the performance oneself and others (Katidioti,
Borst, van Vugt, & Taatgen, 2016; Won, Condon, Landon,
Wang, & Hannon, 2011). One important research question
that remains unanswered is how to design an AM that can
adapt to dynamic situations and is robust to individual differ-
ences. For example, do more complex models provide a large
performance gain compared to simpler models? Are more
complex models less robust to violation of assumptions? We
attempt to address these questions in the present research.

ISR-MATB
We developed a complex task environment called the Intelli-
gence Surveillance and Reconnaissance Multi-Attribute Task
Battery (ISR-MATB) to induce task demands similar to what
is found in ISR operations. The ISR-MATB is a variation
of the Multi-task Attribute Task Battery (Santiago-Espada,
Myer, Latorella, & Comstock Jr, 2011) which was designed
to emulate task demands in aviation. Whereas the MATB
focuses on performing multiple tasks concurrently, the ISR-
MATB focuses on goal switching, information search, inter-
dependence between operational procedures, and synthesis of
information into actionable decisions. The ISR-MATB uses
variations of standard cognitive tasks to tap into each of these
cognitive demands. Although each sub-task is relatively sim-

ple in isolation, they combine into a more complex whole due
to inter-dependencies between sub-tasks. In what follows, we
will describe each sub-task and then explain how they fit into
an inter-dependent task flow.

Psychomotor Vigilance Task
The ISR-MATB uses a modified Psychomotor Vigilance Task
(PVT) (Dinges & Powell, 1985) to emulate unpredictable
changes in goals that may occur in ISR operations. The
PVT is commonly used to measure fatigue and sustained
attention. In a standard PVT, a millisecond counter ap-
pears after a uniformly distributed inter-stimulus interval of
2 to 10 seconds. Participants are instructed to respond as
quickly as possible when the stimulus is presented. Upon
responding, the millisecond counter stops and is displayed
for 1 second as feedback. In the modified PVT, a target
for the current trial is randomly selected from the stimulus
set {grey Q, grey O, black Q, black O} and presented. As ex-
plained further below, the target is used to complete the visual
and auditory search tasks.

Visual Search Task
The ISR-MATB uses the classic conjunctive visual search
task (Treisman & Gelade, 1980) to emulate visually demand-
ing search tasks in ISR, such as searching through a visually
dense video feed for a target. The conjunctive search task
requires participants to search for a target among an array
of scattered distractors. Each stimulus has two dimensions:
color and letter. A stimulus is considered a target if it matches
on both dimensions (e.g. black Q). A distractor matches on
one dimension but differs on the other (e.g. grey Q, black O).
On half of the trials the target is present and on the other half
of trials the target is absent.

Auditory Search Task
The ISR-MATB uses an auditory search task to emulate sim-
ilar search tasks in ISR operations. For example, an opera-
tor might be required to search for keywords and phrases in
communication channels and audio recordings where audio
signals can be degraded or embedded in background noise.
In the auditory search task, a participant is instructed to scan
up to four radio channels containing background white noise
for the search target (e.g. an audio recording of the words
”black Q”). Difficulty is manipulated by changing the num-
ber of radio channels and the signal to noise ratio.

Decision Task
In ISR operations, information from multiple sources must
be synthesized into a decision to act or refrain from taking
action. We capture this aspect of ISR operations with the a
multiple-cue decision task inspired by similar tasks in the lit-
erature (Sieck & Yates, 2001). As summarized in Table 1,
decisions are based on two binary cues: (1) whether the tar-
get state (i.e. present or absent) is the same or different in the
visual and auditory search sub-tasks, and (2) whether confi-
dence in the accuracy of the information is low or high. For
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example, if confidence is low and the target is present in the
visual and auditory search tasks, the correct action is to re-
frain. The base rate of cue values is 50-50, meaning it is not
possible to perform better than chance with incomplete infor-
mation.

Table 1: A decision matrix of four rules based on whether
the visual and auditory target states are the same (present in
both or absent in both) or different and the confidence in the
information accuracy.

Confidence Target State Correct Action
Low Same Refrain
Low Different Act
High Same Act
High Different Refrain

Task Flow
The ISR-MATB features an inter-dependent task flow in
which information must be acquired and integrated into a de-
cision to act or refrain. At the beginning of each trial, the tar-
get must be acquired in the PVT before other sub-tasks can
be performed. Once the target has been acquired, it is used
to perform the visual and auditory search tasks. Similarly,
the visual and auditory search tasks must be completed in or-
der to ascertain the the first binary cue for the decision task.
The second binary cue is acquired by clicking on a designated
button, which reveals whether confidence in the information
is low or high. Once the cues are acquired and the correct
rule is retrieved (see Table 1), the participant can decide the
correct course of action.

Cognitive Agents
As illustrated in Figure 1, we developed five types of cogni-
tive agents with performance profiles that differ as a function
of workload. Although the cognitive agents are not based on
high-fidelity cognitive models, they must operate with real-
istic cognitive constraints on performance. Importantly, this
set of cognitive models provides a wide range of performance
patterns against which the AMs can be stress tested.

Before proceeding, we note some common notation and
characteristics across agents: Define θs, j as the accuracy of
agent j on sub-task s ∈ S = {p,v,a,d}, which corresponds to
the PVT, the visual search task, the auditory search task and
the decision task, respectively. All cognitive agents guess on
the visual and auditory search task if no response is provided
to the PVT, which we denote as yp = 0.

Constant
As the name implies, the accuracy of the Constant agent does
not vary according to workload level. However, performance
can differ between sub-tasks. See (Frame, Lopez, & Boyd-
stun, 2019a) for a similar approach. Each parameter value
θs, j is randomly sampled from the following distribution:
Uniform(.50,1). Once a parameter is selected, it is fixed for

the duration of the simulation, making the expected accuracy
constant.

Random-Dynamic
As a stress test for the AM, we developed a Random-Dynamic
agent which changes on randomly selected sub-tasks after a
set of 30 trials have been completed. Initial parameter values
θs, j ∼ Uniform(.50,1). After a block of 30 trials has been
completed, a new value for each accuracy θs, j is re-sampled
with probability pchange = .20. Otherwise, the accuracy pa-
rameter remains the same for the next block.

Capacity-Limited
Performance of the Capacity-Limited Agent decreases as a
function of workload—defined here simply as the number of
tasks assigned to the cognitive agent. The probability of a
correct response on sub-task s is given by the following piece-
wise equation:

θs, j =


1

1+ e−(β0, j+β1, j×w)

.5 if yp = 0 and s ∈ {v,a}

where β0, j is the intercept and β1, j the slope for agent j, and
w is workload level. The slope β1, j represents the sensitiv-
ity of accuracy to changes in workload, such that negative
values of β1, j lead to a decrease in accuracy with increasing
levels of workload. The second piece of the equation above
indicates the model guesses on the visual and auditory search
tasks if no response on the PVT is provided within the re-
sponse deadline. Parameter values are initialized such that
β0, j ∼ Uniform(0,3) and β1, j ∼ Uniform(−1,0), subject to
the constraint that θs, j ≥ .5 under maximum workload to en-
sure that performance cannot drop below chance levels.

Yerkes-Dodson
Accuracy for the Yerkes-Dodson agent follows a parabolic
(e.g. inverse U-shaped) relationship with workload in which
optimal performance is achieved with moderate levels of
workload. Some evidence indicates that the relationship be-
tween arousal and performance might be parabolic under
some circumstances (Yerkes & Dodson, 1908). Following
this logic, if low levels of workload induce boredom or mind-
wandering, and high levels of workload are overwhelming,
then optimal performance for an agent might be achieved at a
moderate level of workload. We make one small modification
to the Capacity-Limited agent to incorporate this assumption:

θs, j =


1

1+ e−(β0, j+β1, j×(w−2.5)2)

.5 if yp = 0 and s ∈ {v,a}

The primary difference is that w is replaced with (w−2.5)2.
Subtracting 2.5 from w places the maximum at the midpoint
between one and four tasks and the exponent of 2 produces
the parabolic relationship. Parameter values are sampled
from the same distributions used for the Capacity-Limited
agent.
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Fatigue-Dynamic
The performance of the Fatigue-Dynamic agent is based on a
dynamical system composed of two opposing processes. See
(Patterson, Lochtefeld, Larson, & Christensen-Salem, 2019)
for a related model. One process represents the gradual deple-
tion of cognitive resources due to fatigue which is modulated
by the instantaneous level of workload. An opposing recov-
ery process replenishes the cognitive resource during periods
of sufficiently low workload. If the net effect of the opposing
processes is zero, the system achieves a state of equilibrium
in which no change occurs. We approximate this dynamical
process with the following logistic difference equation:

vt = vt−1 +∆× (β1, j×wt−1 +β2, j)× (vt−1− vmin)×(
1− vt−1− vmin

vmax, j− vmin

)
where vmin and vmax, j are the lower and upper asymptotes of
accuracy, respectively, t indexes the time step, ∆ = 1 (sec-
onds) is the change in time per time step, β1, j the slope the fa-
tigue decrement, wt−1 is the workload level at time step t−1,
and β2, j is the slope for the recovery process. Accuracy is
defined as:

θs, j =

{
vt

.5 if yp = 0 and s ∈ {v,a}

At the beginning of each simulation, parameters were
initialized as follows: vmax, j ∼ Uniform(.85,1) β1, j ∼
Uniform(−.0015,−.0005), and β2, j ∼ Uniform(|β1, j|,2 ×
|β1, j|). The purpose of constraining β2, j in terms of β1, j is
to ensure that the neither the fatigue nor the recovery process
are dominant at all levels of workload. We fixed vmin = .5
to ensure that performance cannot fall below chance. We set
initial accuracy to v0 = .9× vmax, j under the assumption that
initial accuracy is near the maximum.

Autonomous Managers
We developed five autonomous managers (AM) that base task
allocation decisions on different cognitive models 1. Each
AM has the following in common: First, each AM learns the
performance profile of each cognitive agent from observed
data. Second, each AM monitors ongoing performance and
may change the task allocation after each block of 10 trials.
Third, unless otherwise noted, sub-tasks are randomly allo-
cated to cognitive agents on the first block to avoid bias in
initial conditions.

Recent-Maximum
The Recent Maximum AM takes a data-driven approach, us-
ing the most recent block of trials as the best estimate of an
performance of a cognitive agent. In other words, it makes no

1We did not include an AM that uses a Fatigue-Dynamic agent
as a model because parameters could not be reliably estimated with
optimizers freely available in Java.
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Figure 1: An illustration performance for each agent type as
a function of workload. Black: agent performance on a single
sub-task. Red: Agent workload.

assumptions about the relationship between workload and ac-
curacy. After each block, the AM allocates the sub-task to the
cognitive agent whose most recent block of data for that sub-
task is the highest. In order to promote exploration in early
blocks, the AM initializes each agent’s performance history
with a high accuracy of .90 for each sub-task.

Constant
The Constant AM assumes that the performance of each cog-
nitive agent may differ by sub-task, but is otherwise constant
across time and does not vary according to workload level.
As such, the constant AM is similar to the Recent-Maximum
AM, except it use all blocks of trials to estimate accuracy of
each sub-task.

Capacity-Limited
The Capacity-Limited AM assumes that all cognitive agents
are Capacity-Limited agents. After each block of trials, the
Capacity-Limited AM estimates the parameters β0, j and β1, j
from each agent’s entire history of data. Using the maxi-
mum likelihood estimates, the Capacity-Limited AM iterates
through all possible sub-task allocations and selects the al-
location that maximizes expected accuracy on the decision
task. Rather than allocating sub-tasks to agents randomly, the
Capacity-Limited AM completes two exploration blocks to
improve parameter estimation. During the first exploration
block, one sub-task is allocated to the first agent, and three
sub-tasks are allocated to the other agent. On the next explo-
ration block, the sub-tasks are swapped between agents.
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Yerkes-Dodson
The Yerkes-Dodson AM is identical to the Capacity-Limited
AM, except it assumes the relationship between workload
and accuracy is parabolic (e.g. inverted U-shape) rather than
monotonically decreasing. After each block, the AM esti-
mates the parameters for each cognitive agent. Using the best
fitting parameter estimates, the AM selects the sub-task allo-
cation that maximizes the accuracy of the decision task.

Random
As a point of reference, we include a Random AM, which ran-
domly allocates sub-tasks to agents after each block. Thus,
an AM is minimally successful if it performs better than the
Random AM.

Simulation Design
We performed a set of simulations to assess the ability of dif-
ferent AMs to improve accuracy in the ISR-MATB by dy-
namically reallocating tasks to agents of different types. Each
team consisted of two cognitive agents of the same type. We
crossed cognitive agent type with each AM type to create a
total of (cognitive agent type: 5) X (AM type: 5) = 25 simu-
lation conditions.

All simulation conditions have several design parameters
in common: First, the duration of each simulation was 60
minutes in simulated time. Second, each AM made a deci-
sion to reallocate the tasks among the cognitive agents after
every block of 10 trials. Third, each simulation condition was
repeated 500 times in order to approximate the expected ac-
curacy for each AM.

Performance Evaluation
Our analysis focused on decision accuracy because that is the
most important criterion in ISR operations. We normalized
accuracy as a percentage of maximum possible performance
for each simulation using the following formula:

anorm =
aAM−amin

amax−amin

amin and, amax are the minimum and maximum possible
expected accuracy, and aAM is the expected accuracy of the
AM’s allocation. Using a normalized accuracy metric has
several benefits. First, it adjusts for differences in the range
of possible performance, which varies according to the type
of cognitive agent as well as the difference in performance
between the cognitive agents in a team. Second, it allows one
to identify whether further improvement is possible.

Results
The results of the simulation are summarized in Figure 2.
In most cases, AMs performed better than chance (i.e. the
Random AM). One exception to this finding is that AMs per-
formed similar to chance for Fatigue-Dynamic agents. An-
other finding was that the greatest performance was achieved
when the model of the AM matched the cognitive agent. For

example, the best AM for Yerkes-Dodson agents was the
Yerkes-Dodson AM (see first sub-plot in Figure 2). However,
the advantage of using a model that matches the agent was
not consistently large. Furthermore, complex models tended
to be less robust when their assumptions were violated. For
example, the Capacity-Limited and Yerkes-Dodson AMs per-
formed poorly for Constant and Random-Dynamic agents.
By contrast, the Constant AM, which uses a simple model of
cognitive agent performance, was more robust across differ-
ent types of cognitive agents. Although the Constant AM did
not always achieve the best performance, it performed mod-
erately well even when its internal model did not match the
cognitive agents.
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Figure 2: Sub-plots display % of maximum accuracy for each
AM (colored bars) for a given agent type labeled in the sub-
plot title. AM abbreviations: C: Constant, CL: Capacity-
Limited, R: Random, RM: Recent-Maximum, YD: Yerkes-
Dodson

Discussion
The goal of the present research was to explore how to in-
tegrate cognitive models into AMs to improve work produc-
tivity. AMs are designed to monitor performance of teams
and dynamically allocate tasks to workers to improve perfor-
mance. Cognitive models are an ideal candidate for augment-
ing the decision module of AMs because they can be used to
predict the performance implications of alternative task dis-
tributions. Furthermore, the data requirements for most cog-
nitive models are less onerous compared to deep neural net-
works and similar AI.

In our simulation study, we examined how AMs performed
across a wide variety of conditions on a relatively complex
ISR-themed task. We varied the type of cognitive agents that
performed tasks and the internal model of the cognitive agent
that the AM used to make task allocation decisions. One key
finding is that AMs based on simple models were more robust
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compared to those based on more complex models. The re-
lationship between complexity and robustness is due, in part,
to a well-known statistical phenomenon called variance-bias
trade-off (Brighton & Gigerenzer, 2015). Models with more
parameters—an indicator of complexity—produce more error
variance due to over-fitting. In fact, an AM with a sufficiently
complex internal model may perform at chance levels even if
the internal model matches the cognitive agent performing
the task. In addition, more complex models might be more
brittle due to the increased number of assumptions that could
be wrong.

One direction for future research is to investigate the use
of cognitive architectures, such as ACT-R (Anderson et al.,
2004). In the present research, we used simpler cognitive
models because they are tractable and generate a wide variety
of distinct performance profiles. However, cognitive archi-
tectures provide the opportunity to explore additional inter-
ventions, such as providing feedback to strengthen declara-
tive memory, or prescribing more effective strategies for task
completion.

Conclusion
Cognitive models have a wide range of applications. The
present research demonstrates how cognitive models can be
incorporated into technologies and the design process to im-
prove task performance.
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Introduction 

Psychometric modeling usually assumes that the observed 

behavior is caused by a set of metric latent variables. For 

instance, the Rasch model, one of the most traditional models 

from the Item Response Theory (Embretson & Reise, 2013), 

assumes that the probability of getting an answer right (or 

saying yes, or agreeing to the statement, or simply that X = 1) 

is equal to a logistic transformation of an additive interaction 

between the respondent’s true score θ and the item’s 

difficulty b. Formally, the model is represented as: 

𝑃(𝑋 = 1) =
1

1 + exp(𝜃 − 𝑏)
. 

(1) 

This type of model is used mainly to estimate and develop 

interval measures for θ and b. Perline et al. (1979) argued that 

this is possible because the Rasch model is a stochastic 

variant of the Additive Conjoint Measurement Theory (Luce 

& Tukey, 1964). The Additive Conjoint Measurement 

Theory is a formal theory of continuous quantities which 

allows for the derivation of interval scales from ordinal data, 

as long as some empirical relations are observed.  

However, some authors have disputed this view that the 

Rasch model is a stochastic variant of the Additive Conjoint 

Measurement Theory (e.g., Michell, 2008). More 

specifically, it has been argued that if the Rasch model is a 

probabilistic version of the Guttman scale (Guttman, 1944), 

which allows only for θ and b to be measured in the same 

ordinal scale, then the Rasch model provides an interval 

measure only because it is modeling response error. This 

apparent inconsistency is called the Rasch paradox. 

On the other hand, the Rasch paradox has also been 

disputed (e.g., Borsboom & Zand Scholten, 2008). 

Regardless of whether the Rasch paradox is real or not, it 

would be interesting for psychometric researchers if interval, 

or even ratio, (i.e., metric) scales could be derived from 

Guttman scales without reliance on response errors. The aim 

of the present study is to propose a procedure that combines 

the probabilistic Guttman scaling (Proctor, 1970) with 

Goode’s method (Coombs, 1964) to obtain metric scales 

from dichotomous psychometric data. We call this procedure 

the Guttman-Goode’s Scaling (GGS). 

Guttman-Goode’s Scaling 

The GGS procedure combines two methods for deriving 

interval and ratio scales from psychometric data. The first is 

the probabilistic Guttman scaling (Proctor, 1970). Guttman 

scales assume that the respondent will answer X = 1 if and 

only if θ > b. Otherwise, the respondent will answer X = 0. If 

this condition is exactly met, the matrix (or Guttman 

scalogram) of response patterns averaged by sum scores (for 

an instrument with 5 items) will be equal to the matrix 

represented in Table 1. It is possible to see that all cells are 

equal to 0 or 1, representing that all individuals with a 

specific ordinal θ level answered to the items in the same way 

(e.g., a correct answer, 1, or an incorrect answer, 0). 

Table 1: Perfect Guttman scalogram of response patterns 

averaged by sum scores for an instrument with 5 items. 

θ level Item 1 Item 2 Item 3 Item 4 Item 5 

0 0 0 0 0 0 

1 1 0 0 0 0 

2 1 1 0 0 0 

3 1 1 1 0 0 

4 1 1 1 1 0 

5 1 1 1 1 1 

However, real data seldomly result in a perfect Guttman 

scalogram, as represented in Table 2, which was calculated 

from a toy dataset with actual answers from respondents. 

Therefore, traditional Guttman scaling cannot be applied to 

this type of scenarios. The probabilistic Guttman scaling, 

then, estimates the probability of both the order of the items 

as well as the ordinal θ level by assuming that only the v + 1, 

where v is the number of items, levels of θ are 

distinguishable. This differs from the Rasch model, for 

instance, that allows for more than v + 1 values of θ to be 

estimated.  

Table 2: Empirical Guttman scalogram of response 

patterns averaged by sum scores for an instrument with 5 

items. 

θ level Item 1 Item 2 Item 3 Item 4 Item 5 

0 0 .253 .126 .149 .092 

1 1 0 .243 .216 .027 

2 1 1 0 .285 .228 

3 .727 1 1 0 0 

4 .760 .880 1 1 0 

5 .836 .873 .945 .727 1 

After estimating the ordinal θ level and the order of the 

items, our procedure uses Goode’s method to analytically 

derive an interval scale from an ordered metric scale of 

respondents and items. The ordered metric scale is a scale 

derived from the data dependent on empirical relations 
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regarding the distance between a respondent ordinal θ level 

and two items’ orders (i.e., b1 and b2), formally stated as: 

𝜃𝐼1̅̅ ̅̅ > 𝜃𝐼2̅̅ ̅̅ . (2)

Equation 2 is simply an order relation of order relations 

(i.e., order relation of distances). Research in measurement 

theory has shown that ordered metric scales impose 

constraints on the uniqueness of numerical representations 

that can be derived from simple ordinal data (Coombs, 1964, 

p. 359). We propose that, for Guttman scales, the order

relation of distances can be found by taking the average of

the rows and the complement (i.e., 1 minus) of the average of

the columns of the empirical Guttman scalogram. Because we

know that the ordinal θ level represented with 0 is the

smallest possible value and that the ordinal θ level

represented with 5 is the largest possible value, we can use

the aforementioned averages to create a dominance matrix,

such as the one represented in Table 3. This table is created

based on the distance between each point (i.e., a θ level or an

item) and the ordinal θ level represented with 0.

Table 3: Dominance matrix of θ levels and item orders. 

I4 θ1 I3 θ2 I1 θ3 I2 θ4 I5 θ5 

I4 0 1 1 1 1 1 1 1 1 1 

θ1 0 0 1 1 1 1 1 1 1 1 

I3 0 0 0 1 1 1 1 1 1 1 

θ2 0 0 0 0 0 1 1 1 1 1 

I1 0 0 0 1 0 1 1 1 1 1 

θ3 0 0 0 0 0 0 1 1 1 1 

I2 0 0 0 0 0 0 0 1 1 1 

θ4 0 0 0 0 0 0 0 0 1 1 

I5 0 0 0 0 0 0 0 0 0 1 

θ5 0 0 0 0 0 0 0 0 0 0 
Note. I is an acronym for “Item”. 

For the next step of Goode’s method, one must choose the 

value for the smallest distance (represented as Δ0) and then 

analytically derive the next distances, Δj, for each distance j. 

We adapt Goode’s original equation to the current scenario 

and propose the following equation for calculating Δj: 

∆𝑗= ∆0(𝐶𝑆(𝑗) + 1) + 𝐶𝑆(𝑗), (3)

where CS(·) is the sum of the column representing the 

distance j. For instance, CS(I4) is equal to 0 and CS(θ5) is 

equal to 9. Finally, the last step involves attributing values for 

each point. Arbitrarily, the smallest point θ0 may be set to 0. 

The other points can simply be attributed their Δj values, as 

these were calculated based on the points distance in relation 

to θ0. 

After analytically deriving all the scale values, which are 

measured in an interval level, one may wish to estimate how 

well this numeric approximation represents the data. One way 

of doing this is using a logistic or hyperbolic tangent function 

on the linearly transformed scale values and compare the 

results with the empirical Guttman scalogram. For the 

logistic function, we propose: 

𝐴𝑀(𝜃, 𝐼) =
1

1 + exp(𝜓𝜃 − 𝜓𝐼)
, 

(4) 

where 𝜓θ and 𝜓I are, respectively, the normalized interval 

level measure for the ordinal θ level and for the item. For the 

hyperbolic tangent function, we propose: 

𝐷𝑀(𝜃, 𝐼) = 2
1

1 + exp[−2(𝜑𝜃𝜑𝐼)]
− 1,

(5) 

where 𝜑𝑙 = exp(𝜓𝑙), as the exponential transform of the

normalized interval scale values results in a ratio scale 

(Fishburn, 1974). Applying this procedure to the data that 

generated Table 2 results in a RMSE of .015 to the logistic 

function approach and in a RMSE of .184 to the hyperbolic 

tangent function approach. This result suggests that an 

interval representation is better than a ratio representation of 

the points. 

Final Considerations 

The GGS procedure can be used with any data following a 

direct response design (such as attitude or performance 

psychometric scales). The main advantage of the GGS 

procedure is that, different from Item Response Theory 

models, the scales are derived from ordered metric 

information in the data and, therefore, should be less reliant 

on response error. However, it should be noted that this is an 

initial implementation of the GGS procedure and limitations 

abound. For instance, Table 3 presents an intransitivity for θ2 

which is not dealt with. We also do not estimate the distances 

between intermediary points such as 𝜃2𝐼1̅̅ ̅̅ ̅ > 𝜃1𝐼2̅̅ ̅̅ ̅, which

hides an implicit assumption that a unidimensional 

representation is the most appropriate (Coombs, 1964). 

Future studies should deal with these limitations to provide 

more robust metric scales for psychometric data. 
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Introduction 

Determining the criticality of a traffic situation is a basic 
task that has to be accomplished in driving. Several theories 

assume that human drivers’ evaluation of the criticality of a 

dynamic traffic situation is strongly determined by the time-

to-collision (TTC) that is the time until two objects will 

collide if they both maintain speed and course (e.g., Heesen 

et al., 2012; Tamke et al., 2011). The evaluation of the 

situation’s criticality strongly influences the drivers’ action 

decisions in these situations. One of such dynamic situations 

where the evaluation of criticality is mainly based on the TTC 

to other vehicles is a lane change scenario.  

Stoll et al. (2018) investigated in a video-based study the 
following lane change scenario where the criticality of the 

situation was systematically varied: Participants (Ego) drove 

on the left lane of a German 2-lane highway. They observed 

a passenger car (RU1) approaching a slow vehicle (RU2) on 

the right lane that might cut in to the participants’ left lane. 

They were asked (1) whether they would accelerate, 

decelerate or maintain speed in this situation and (2) to rate 

the criticality of the situation on a scale from 1 (not critical) 

to 5 (very critical). Stoll et al. (2018) varied the criticality of 

the situation by the TTC between participants and RU1 

(TTCEgo, either 2, 4 or 6 s) and TTC between RU1 and RU2 
(TTCRU1 either 2, 4 or 6 s) at the time participants had to make 

their decision. 

Even though findings suggest a relationship between 

perceived criticality and selecting the preferred action 

(maintaining speed was associated with rather low criticality 

ratings compared to decelerating and accelerating), the TTC 

values did not reliably trigger typically preferred actions, 

resulting in a large variance among participants. More 

importantly, this variance calls for more clarification on 

1 A PD can be considered as an intuitive decision (Thomson et 
al., 2015; or System 1 decision; Kahneman, 2011) 

exactly how critical vs. non-critical scenarios were perceived 

in the different TTC conditions.  

We are developing a cognitive model using ACT-R 
(Anderson, 2007) to shed light on the complex cognitive 

processes of situation awareness (SA: perception, 

comprehension, projection; Endsley, 1995) in the highly 

dynamic traffic scenario of Stoll et al. (2018), in order to 

determine how participants evaluate the different conditions 

as critical or not. 

Most importantly, we argue that not only the TTC, but the 

combination of perceived elements and the availability of 

memories containing them and which help build up a 

situation model (SM) are also part of the resulting perceptual 

decision (PD1) participants make about criticality. We 
assume that these elements do not merely consist in the 

perception from the driver’s own perspective, but the RU1’s 

viewpoint and intention are taken into account as well. With 

other words, we suggest that the driver’s SM includes the 

RU1’s SM to a certain extent. 

Method 

ACT-R (Adaptive Control of Thought—Rational, 

Anderson, 2007) is a cognitive architecture with basic 

assumptions about human knowledge and about how 

information in the declarative memory (chunks) are used 

(production rules) to solve everyday tasks.  
We are using ACT-R (Salvucci, 20062) to recreate the 

driving scenario and to model participants’ memory retrieval 

(MR) to build up SM and that leads to a PD about criticality. 

General Assumptions of the Model 

The ACT-R model assumes first of all that criticality 

perception does not mainly stem from perception, but from 

MR. Accordingly, even if the presented driving scenario was 

not familiar to participants, a “close enough” memory 

matching some of the perceived elements is retrieved to 

2 Since its features are more suitable for driving than the 
original LISP version, we are using the Java version of ACT-R. 
(see https://www.cs.drexel.edu/~salvucci/cog/act-r/) 
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create SM. Further assumptions are listed below and depicted 

on Figure 1.  

1. SMEgo is created through MR.

2. MR takes place regardless, but it is approximative and

resulting SMEgo might be incorrect.

3. SMEgo includes ProjectionEgo (i.e., how the situation is
going to develop) and IntentionRU1 (i.e., RU1’s action

plan).

4. ProjectionEgo gets periodically confirmed by monitoring

RUs. As long as ProjectionEgo is valid, no further MR

takes place.

5. If ProjectionEgo is not valid:

(1) The model establishes new SMEgo through MR and

(2) Makes PD (including a criticality decision [whether
there interference with RU1 can be expected or not]

and a certainty value [i.e., reliability of the SMEgo

based on how many times it needed updating]).

We expect the model to reliably reproduce participants’ 

subjective criticality ratings in the different TTC conditions 

in the study of Stoll et al. (2018).  
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Figure 1: Flowchart representation of the model’s main 

steps  
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Abstract

People are capable of learning diverse functional relationships
from data; nevertheless, they are most accurate when learn-
ing linear relationships, and deviate further from estimating
the true relationship when presented with non-linear functions.
We investigate whether, when given the opportunity to learn
actively, people choose samples in an efficient fashion, and
whether better sampling policies improve their ability to learn
linear and non-linear functions. We find that, across multiple
different function families, people make informative sampling
choices consistent with a simple, low-effort policy that min-
imizes uncertainty at extreme values without requiring adap-
tation to evidence. While participants were most accurate
at learning linear functions, those who more closely adhered
to the simple sampling strategy also made better predictions
across all non-linear functions. We discuss how the use of this
heuristic might reflect rational allocation of limited cognitive
resources.
Keywords: Function learning; active learning; sampling

Introduction
People must often learn and generalize from relationships be-
tween continuous quantities, where these relationships can
take diverse forms. Temperatures rise and fall with the chang-
ing of seasons, trees grow steadily from saplings until they are
fully mature, crops have a “sweet spot” of climatic constraints
such as humidity and cold, foraging for food rests on con-
textual variables such as animal populations and water sup-
ply, and diseases can exponentially increase in the absence of
constraints. In order to represent these relationships and use
them to make accurate predictions, we must learn the under-
lying function from sparse observations to be able to predict
unseen outcomes in a variety of new scenarios.

In addition to the general challenge of learning a func-
tion faithfully, most investigations of explicit function learn-
ing have focused on the human ability to use observed data
to interpolate between previously observed points and to ex-
trapolate beyond the limits of their experience. Given suf-
ficient evidence, people can learn a wide variety of func-
tional relationships (Bott & Heit, 2004; Lucas, Sterling, &
Kemp, 2012; Wilson, Dann, Lucas, & Xing, 2015), but their
inductive biases strongly favor linear relationships: people
tend to learn linear relationships better than non-linear ones
(Brehmer, 1974) and often extrapolate linearly even having
learned that a relationship is non-linear in the data they have
observed (DeLosh, McDaniel, & Busemeyer, 1997; Kalish,
2013).

Given this systematic bias towards linearity, learning non-
linear relationships may require more or better evidence to
overwhelm this strong a priori belief. Standard function
learning experiments—at least those that have revealed the
human ability to learn non-linear relationships—tend to rely
on providing overwhelming evidence, such as multiple pre-
sentations of the same data point, large numbers of train-
ing examples, or multiple blocks of training (e.g., DeLosh et
al., 1997; Kalish, Lewandowsky, & Kruschke, 2004; Kalish,
2013). This is at odds with the view that people are efficient
learners, able to make good use of sparse evidence.

We hypothesize that difficulties with learning non-linear
relationships may be, at least in part, an artifact of using pas-
sive observational designs—that is, designs in which partici-
pants do not choose which points to learn about. The evidence
participants are presented with in these experiments is often
of limited utility, with the most informative observations pre-
sented alongside a large number of comparatively unhelpful
ones, increasing participants’ attentional and memory bur-
den, as well as fatigue. While active learning provides ben-
efits beyond efficient selection of samples (e.g., Markant &
Gureckis, 2014a; Markant, Ruggeri, Gureckis, & Xu, 2016),
we focus here on testing whether people tend to choose useful
samples, what policies may underlie the samples that people
choose, and whether their sampling strategies facilitate better
learning of linear as well as non-linear functions.

Previous work in active learning has suggested that people
can effectively learn linear functions by focusing their sam-
pling on regions of high uncertainty (Jones, Schulz, Meder, &
Ruggeri, 2018). An uncertainty-based sampling policy could
also be useful for non-linear functions, as maximizing infor-
mation gain about the extrema of a function eliminates the
need for extrapolation, which can otherwise be inaccurate
in non-linear functions (DeLosh et al., 1997; Kalish et al.,
2004). However, the computational demand of iteratively ad-
justing one’s sampling strategy could mean that, especially in
more complex non-linear domains, people trade off optimal
behaviour against the cognitive or temporal costs of doing
so (Gershman, Horvitz, & Tenenbaum, 2015). In these cir-
cumstances, using less accurate or flexible heuristics could
nonetheless be resource-rational, or optimal under constraint
(Gigerenzer, 2008; Lieder & Griffiths, 2020).

In the following sections, we first present a Gaussian
process-based framework for representing the task of func-
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tion learning, describing how a learner can use their existing
knowledge about a functional relationship to interpolate or
extrapolate to unknown function values. We then introduce
simple candidate strategies that an active learner might use to
select samples and an experimental task to assess humans’
sampling behaviour and predictions, and compare these to
simulated learning under different sampling policies.

Gaussian Process Model
We use a Gaussian process (GP) model (e.g., Griffiths, Lu-
cas, Williams, & Kalish, 2008; Lucas, Griffiths, Williams, &
Kalish, 2015) to provide a general framework for understand-
ing both rule-based and similarity-based function learning.
This model uses samples xn = (x1 . . .xn) to further approxi-
mate a learned function f by inducing a Gaussian distribution
on the observed yi = f (xi) values based on sampled xi values
(Rasmussen & Williams, 2006). For known function outputs
f and new unknown points f∗ the joint probability distribu-
tion is then defined as

(
f
f∗

)
= N

([
µ
µ∗

]
,

[
K K∗
KT
∗ K∗∗

])
In the above equation, we have K = k(x,x), K∗ = k(x,x∗)

and K∗∗ = k(x∗,x∗), where k denotes the generalized class of
Matérn kernel given by:

k(xi,x j) =
1

Γ(ν)2ν−1

(√
2ν

`
d(xi,x j)

)ν

Kν

(√
2ν

`
d(xi,x j)

)
where d denotes Euclidean distance, Kν is a modified Bessel
function, and Γ is the standard Gamma function. Throughout
this paper we use this model with smoothness ν = 1.5 and
length-scale `= 0.1 as these parameters provided consistent,
natural and realistic function interpolations for varied distri-
butions of known data and functional forms.

Sampling Strategies
Under this GP framework, as we get further from previously-
observed points, our uncertainty increases, which could lead
to more heterogeneous or inaccurate extrapolation if a func-
tion’s minimum and maximum values are not known. There-
fore, for a learner with limited opportunities to sample, we
expect that the most effective and informative strategies will
include sampling the extrema. We assess the informativeness
of three policies: uniform random sampling, an equidistant
sampling policy that selects the minimum and maximum val-
ues and interpolates equally between them, and uncertainty-
based sampling.

Random sampling One simple strategy to learn about a
function is to sample randomly from the possible domain of
values. While random sampling is straightforward, decision-
makers may display substantial sub-optimality in their sam-
pling choices if they happen to sample multiple points in

close proximity that are unlikely to be maximally informative.
Given human inductive biases towards linearity, this could
result in difficulty extrapolating or interpolating non-linear
functions where no samples have been drawn. We represent
this policy as drawing samples from a distribution where each
sample xi ∼ Uniform(0,1).

Equidistant sampling As mentioned previously, sampling
the minimum and maximum feasible values within the con-
fines of the problem to be solved minimizes the need for ex-
trapolation, and partitioning the remaining space among the
remaining samples likewise balances interpolation between
the remaining points, making it suitable for relatively ac-
curate prediction across many commonly-encountered func-
tions. While somewhat inflexible, this may represent a highly
tractable, efficient heuristic for sampling within a limited do-
main. We represent this sampling approach as taking the N
samples to be drawn and allotting them in such a way that the
points sampled roughly reflect N− 1 equal partitions of the
space to be sampled:

xi ∼Beta
(

1+
iρ

N−1
,1+

(N−1− i)ρ
N−1

)
(i ∈ {0 . . .N−1})

To reflect a moderate preference for sampling from the
peaks of the beta distributions while allowing for some sam-
ples to be drawn from nearby values, we chose a free param-
eter value of ρ = 10 that denotes the size of the peaks of the
sampling distribution.

Adaptive sampling The two above algorithms reflect sam-
pling procedures that do not dynamically update based on
new information. In order to choose the best samples, how-
ever, it may be effective to adapt one’s strategy to account
for already sampled points. Given that people preferentially
draw samples in regions that resolve current uncertainty, even
when this does not maximize information gain (Markant &
Gureckis, 2014b), we designed a sampling algorithm moti-
vated by a myopically ideal strategy that adapts to new infor-
mation by identifying the point of highest uncertainty.

This sampling procedure uses a GP model that greedily
chooses points from the domain-space by iteratively fitting
the model on the previously sampled points, and choosing
the next sample as the point on the posterior distribution of
GP functions with the highest variance.

To test the effectiveness of these algorithms and compare
their performance to human sampling strategies as well as the
learned functions, we designed an experimental task in which
participants must select a small number of samples to try to
optimize their performance in a prediction task.

Experimental Design
Recruitment and Procedure 98 adult participants (Mage =
31.8,SDage = 11.1) were recruited through Prolific and paid
£1.00 for completing an online learning task presented via a
web-based program.
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Familiarization and Exposure In the task, participants
were told that they would be playing the role of a scientist.
The scientist’s job was to learn about a number of possible
drugs, each being researched for their role in improving pa-
tients’ well-being. Ultimately, the goal of the participant was
to learn the relationship between the length of time that a drug
was provided to patients and the patient’s well-being scores.

Before participating in the experimental trials, participants
were familiarized with a warm-up trial where they were pre-
sented with two empty horizontal bars. The first bar was la-
belled orange juice consumed and the second bar was labelled
hours of sleep. Participants were told that they could drag the
first bar to change the amount of orange juice consumed. Af-
ter confirming their choice, they learned about the amount of
sleep of an individual who consumed the specified amount
of orange juice, which is displayed on the second bar. Next,
participants were shown a specified amount of orange juice
consumed, and asked to predict the amount of sleep on the
second bar by dragging the bar to the predicted amount.

Experimental Task After completing the familiarization
trial, participants completed the experimental task. Partici-
pants learned about four total drugs, presented in a random-
ized order of four blocks of trials. Each drug had a prede-
fined relationship to the well-being of the patient: positive
linear (y = 0.8x + 0.1), exponential (y = 100(x−1)), quadratic

(y = 0.95 − (x−0.5)2

0.3 ), or periodic (y = 0.5 sin(7x)+0.5). For
each drug, participants completed a block of trials with the
same format as the warm-up. They first sampled time points
since the patient began taking the drug, to learn about its ef-
fect on well-being at a given time point, by manipulating a
blue horizontal bar (Figure 1). After sampling 5 points to
learn about, participants were asked to predict the well-being
of a patient at 8 randomly presented pre-selected time points
(values of x ∈ {0.01,0.15,0.29,0.43,0.57,0.71,0.85,0.99}),
displayed on the blue bar. Participants were not given the ex-
act values of data points, so the domains of x and y presented
here are arbitrary.

Figure 1: Participants chose 5 points to learn about the drug’s
effect on well-being by changing the value of the blue bar
(top), and then made 8 predictions using the red bar (bottom).

Results
Simulations To analyze the effectiveness of the identified
sampling strategies and establish comparison baselines, we
generated synthetic data for 100 participants under each sam-
pling strategy: random, equidistant, and adaptive sampling,
and fitted Gaussian process models for each function (Figure
2) using the sklearn library in Python. The correlation coef-
ficient and the pooled and average mean squared error (MSE)
of the GP fits were then computed and compared (Table 1).

Sampling randomly (row 1) resulted in reasonably good
approximations of the true function at the centre but demon-
strated wider deviations at the minimum and maximum val-
ues. As a large number of the simulated participants failed
to sample from the extrema of the function, this led to more
inaccurate extrapolations in areas where no samples were
drawn. The pooled and average MSE of simulations of this
policy demonstrates a comparative disadvantage at approxi-
mating the functions when compared to equidistant and un-
certainty minimization sampling.

In contrast, the process of sampling approximately equidis-
tant x values (row 2) appeared to perform better at producing
an estimate for the true functions. A considerable improve-
ment in terms of the fit of the Gaussian process model can
be visibly noticed as compared to random sampling. Notably,
equidistant sampling generated the lowest pooled and average
individual MSE of the three sampling strategies.

Finally, similar to the equidistant heuristic strategy, the
adaptive sampling algorithm (row 3) frequently sampled from
regions in the neighbourhood of zero and one. Overall,
the adaptive sampling strategy yielded comparable, though
slightly higher, MSE values to the equidistant strategy.

Given the cognitive costs of adaptive sampling, even when
calculated approximately rather than through the representa-
tion of the full posterior distribution of candidate functions,
we do not expect people to utilize this strategy to draw sam-
ples. Nevertheless, the similarity of this adaptive strategy to
a simple heuristic strategy of sampling evenly spaced points
in addition to the minimum and maximum values, suggests
that if people use such a strategy, they will select comparably
informative points to learn about, improving their subsequent
predictions of the true function’s value.

Sampling Task Gaussian process models were also fitted
on samples for each of the 98 human participants across all
four functions. These models were then compared against
previously established baselines produced by fitting GP mod-
els on generated data from different sampling strategies.

As observed in Figure 2 (row 4), the models fitted on hu-
man samples were able to predict the true function and were
comparable to the equidistant or adaptive sampling strategies
in terms of pooled approximation error (MSE), although peo-
ple’s choices showed considerable variability and some in-
dividuals chose less informative points to learn about; for
example, 15 participants did not sample a value above 0.5
for at least one of the functions. As a result, the average
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Figure 2: Gaussian process best fits for random sampling (row 1), equidistant sampling (row 2), adaptive sampling (row 3),
human samples (row 4), and human predictions (row 5). Red lines represent individual GP fits for samples with a given
sampling strategy or fits for individual learned functions on the prediction task. The blue line represents the mean of all GP fits.

Function Sampling strategy Pooled MSE Average MSE r

Linear
Random 3.97 ·10−5 0.0001 > 0.999
Equidistant 1.63 ·10−7 6.88 ·10−6 > 0.999
Adaptive 4.87 ·10−6 2.23 ·10−5 > 0.999
Human 2.18 ·10−5 0.011 > 0.999

Exponential
Random 0.003 0.008 0.991
Equidistant 0.001 0.002 0.995
Adaptive 0.001 0.004 0.999
Human 0.001 0.044 0.998

Quadratic
Random 0.044 0.015 0.995
Equidistant 0.0004 0.002 0.997
Adaptive 0.002 0.005 0.989
Human 0.002 0.099 0.996

Periodic
Random 0.014 0.046 0.940
Equidistant 0.002 0.009 0.995
Adaptive 0.005 0.023 0.993
Human 0.006 0.154 0.980

Table 1: Pooled MSE, average individual MSE, and correlation coefficients for sampling strategies and human samples.
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Figure 3: (a) Histogram showing frequency of human sampled points across the x axis by function; participants’ sampling
behaviour was comparable across all four function families. (b) Estimated probability density functions for the random (blue),
equidistant heuristic (green), and adaptive (orange) sampling strategies. (c) Participants were most accurate in predicting values
for the linear function (light blue), followed by the exponential (dark blue), quadratic (red), and periodic (orange), in order, and
were more accurate when their choices closely matched the equidistant strategy.

Human sampling (vs.) Equidistant Random Adaptive
KL divergence (DKL) 0.052 0.077 0.103
Hellinger distance (H) 0.113 0.140 0.161

Table 2: Distance metrics for sampling strategies.

MSE for individual fits was relatively high. Nevertheless,
in aggregate, the probability density of participants’ sam-
pled choices showed the greatest similarity to the equidistant
heuristic model predictions, compared to the random sam-
pling and adaptive sampling strategies (Table 2), as mea-
sured by Kullback-Leibler divergence (a measure of differ-
ence between probability distributions) and Hellinger dis-
tance (a measure of similarity between distributions).

Prediction Task To measure participants’ prediction errors
as well as their sampling behaviour, we calculated the sum of
squared errors of participants’ predictions from the true func-
tion, as well as the deviation of their samples from the pre-
dictions of the equidistant heuristic strategy. As participants’
errors for both the prediction task and the samples were not
normally distributed, sum of squared error (SSE) scores were
scaled and log transformed before performing inference.

We first tested the hypothesis that prediction accuracy
would be correlated with adherence to the equidistant sam-
pling heuristic by running a Bayesian mixed-effects linear re-
gression, with function and sampling deviation as predictors
for prediction accuracy, and random intercepts for baseline
accuracy, using the brms package in R, with uninformative
priors of N (0,3) placed on coefficients and a zero-truncated
Cauchy(0,2) prior placed on the standard deviation.

Confirming prior findings on the difficulty of learning non-
linear relationships, participants were best at the linear, with
increasing error, in order, on predictions for the exponential
function (β = 0.87, 95% CI: [0.71, 1.04]), followed by the
quadratic function (β = 1.61, 95% CI: [1.45, 1.77]) and the
periodic function (β = 1.96, 95% CI: [1.81, 2.12]) relative
to baseline performance on the linear function (Figure 3c).

Across all functions, there was strong evidence that greater
deviation from sampling points consistent with the equidis-
tant heuristic was associated with greater prediction errors,
(β = 0.19, 95% CI: [0.12, 0.26]).

Further, while participants in the quadratic and periodic
conditions had greater errors on average, this did not appear
to be because participants were failing to infer high-level fea-
tures of the functions such as their non-monotonicity. To in-
vestigate this phenomenon, we calculated the standard devi-
ation of interpolated slopes between participants’ predicted
points as a measure of the variability of the predicted func-
tion. Higher slope variability reflects larger deviation from
a constant slope, such as a rising and falling function, while
lower slope variability reflects a constant slope, closer to a
flat or linear relationship. There was strong evidence that
participants had more slope variability in predicting periodic
(β = 1.38, 95% CI: [1.00, 1.75]) and quadratic (β = 0.93,
95% CI: [0.71, 1.15]) functions. Participants with lower vari-
ability made fewer errors in predicting the linear function
(β = 0.93, 95% CI: [0.68, 1.16]), but no such relationship
existed for the periodic (β = −0.38, 95% CI: [–0.73, 0.04])
or quadratic (β =−0.10, 95% CI: [–0.39, 0.19]) functions.

Participants making predictions for non-linear functions
may have learned broader features of the functions, such as
the fact that the function had both increases and decreases at
various points, while not necessarily encoding exact values
or appropriate parametrizations for the functions, confirming
prior findings that participants readily extrapolate non-linear
functions even in sparse environments (León-Villagrá, Preda,
& Lucas, 2018). Failure to encode exact values while retain-
ing some qualitative representation of the higher-order struc-
ture of the function might also explain why participants dis-
proportionately estimated the minimum x value of the func-
tion to likewise have a y value of zero, as participants may
have relied more heavily on inductive biases for an intercept
value of zero (Kwantes & Neal, 2006).
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General Discussion

Despite strong inductive biases towards positive linear rela-
tionships, people are able—at least in aggregate—to learn
a variety of functional relationships, even when given very
sparse evidence, and appear to be able to apply a relatively
simple heuristic strategy, sampling the minimum and max-
imum x values and evenly spaced points in between, that
requires little cognitive effort while providing a comparable
outcome, and comparable information gain, to a more com-
putationally expensive adaptive strategy. We also found that
those who made choices more in line with this policy were
more accurate in the prediction task.

Respondents showed vast variability in the informative-
ness of their samples and the accuracy of their predic-
tions; however, aggregated results showed that a recogniz-
able parametrization of the true function was learned, perhaps
the product of a “wisdom of crowds” effect (Steyvers, Miller,
Hemmer, & Lee, 2009) averaging out individual errors. Fig-
ure 2 shows the averages are compressed toward the center
of the range relative to the true function, which is expected if
some judgements are corrupted by additive zero-mean noise
that is truncated at the limits of the values participants can
select, or sometimes selected uniformly at random. Never-
theless, as Wilson et al. (2015) have pointed out, averaged
responses can eliminate important statistical structure in hu-
man predictions of functional relationships, and our analy-
sis revealed that even inaccurate individuals’ predictions sug-
gested that they had learned, for example, when a function
was non-monotonic.

While the proposed sampling strategy we introduced is rel-
atively inflexible, this policy could reflect the use of rational
metareasoning (Lieder & Griffiths, 2017), with participants
deploying a heuristic with a favourable trade-off between its
utility in giving relatively informative evidence for a variety
of common functional relationships (including the most a pri-
ori plausible, positive linear), while requiring little cognitive
effort to adapt to existing sampled points. This also coheres
with previous findings in active function learning, where par-
ticipants’ choices most closely fit a simpler linear regression
policy rather than a generalized GP policy when learning in
linear domains (Jones et al., 2018).

In this view, the equidistant heuristic may not be deter-
ministically employed in all situations in which people must
choose limited information to learn about a relationship, but
could perhaps be used situationally in a rational way. Future
research could place learners in a situation where use of a
similar heuristic would lead to less informative evidence; if
this heuristic is a rationally-adapted strategy trading off accu-
racy and efficiency, then we predict learners would adapt and
deploy a different strategy for learning on such a task. Nev-
ertheless, for limited domains, simple heuristics such as the
one we have outlined may be a valuable element of the human
cognitive toolkit to approximate optimal learning strategies.
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Abstract 

This project’s purpose was to simulate human periodic motor 
behavior in a simple self-paced tapping task that involved 
period error correction and feedback processing. When humans 
try to tap at a certain period, their inter-tap times are normally 
distributed with a standard deviation that is proportional to the 
period.  When they try to change the period of their tapping, 
they do so in a single tap instead of a progressive correction 
taking place over multiple taps. We calibrated ACT-R’s new 
periodic tapping motor extension based on human 
experimental results and showed that ACT-R can simulate 
human motor behavior. Future research can leverage these 
findings and ACT-R’s periodic tapping motor extension to 
simulate fast-paced skilled motor behavior in complex 
perceptual-motor environments. 

Keywords: ACT-R; modeling; motor; period; tapping; error; 
correction; skill; automaticity 

Introduction 
Cognitive scientists have recently shown a growing interest 
in video games and have started to uncover evidence 
supporting their potential cognitive benefits (Bediou et al., 
2018). From a psychological standpoint, video games can be 
useful as a way to investigate complex skill learning 
processes involving the integration of perceptual, cognitive, 
and motor information (Anderson et al., 2019). In terms of 
skill acquisition, it is generally acknowledged that skill 
learning involves a shift from high-level processing of task-
related declarative information to the progressive 
automatization of motor skills (Ackerman, 1988; Anderson, 
1982). Acquiring skill in a motor task often involves 
progressively lower levels of motor variability, potentially 
due to improved feedback control (Shmuelof, Krakauer & 
Mazzoni, 2012). In a motor timing video game specifically, 
skilled behavior was found to be predicted by decreased 
motor timing variability and increased rhythmicity in motor 
behavior (Gianferrara, Betts & Anderson, 2020). 

Another characteristic of video games is that they often 
require fast-paced actions which tend to be shorter than a 
second, and are characterized by more rhythmic motor 
actions than speeds slower than a second (Gianferrara, Betts 
& Anderson, 2020). In the brain, actions in the sub-second 
range are more likely to recruit sub-cortical structures 
implicated in the motor system such as the basal ganglia and 
the cerebellum whereas actions in the supra-second range are 
more likely to recruit cortical structures (Wiener, Turkeltaub 

& Coslett, 2010). From a modeling perspective, cognitive 
architectures ought to include suitable motor mechanisms 
that may account for skilled motor behavior at fast speeds. 

We augmented the motor module in the adaptive control of 
thought rational (ACT-R) architecture with a motor extension 
to enable ACT-R to engage in rhythmic motor behavior. The 
starting point for such motor extension is to model human 
behavior in a self-paced periodic tapping task. Most existing 
work on periodic tapping has commonly been presented in 
the context of sensorimotor synchronization studies. Such 
studies often investigate the process whereby participants 
first learn to align their taps to a periodic auditory stimulus 
(synchronization phase) and then continue to tap at that same 
period (continuation phase; Repp, 2005; Wing, 1980). 
Though synchronization-continuation paradigms are useful 
to model periodic tapping and error correction, they often do 
not provide an account of error correction based on external 
non-periodic feedback, in which case the adjustment of one’s 
tapping period does not rely on sensorimotor synchronization 
with a periodic sensory cue. 

The goal of this project was to calibrate ACT-R’s periodic 
tapping motor extension based on the human experimental 
results from a novel game called ChemLab, which involves 
self-paced tapping. In this task, participants learn to adjust 
their tap frequency based on external feedback that they need 
to attend to. We first present our results and choice of ACT-
R parameterization. We then conclude with some remarks 
and important implications for future cognitive models. 

ChemLab Periodic Tapping Video Game 
The goal of ChemLab is to fill as many rows of 8 beakers as 
possible by periodically pressing the space bar. Each beaker’s 
total capacity was set to 100 pixels and each tap within the 
right tapping interval resulted in an incremental increase of 
1/8 of the beaker capacity as well as a brief mid-pitched sine 
tone (625 Hz). Thus, 8 taps were required to completely fill a 
beaker. When participants did not press the space bar within 
the right tapping interval, one out of two possible outcomes 
could happen: 1) When taps were too fast, a panel with the 
message “too fast” immediately turned red and a brief high-
pitched sine tone (890 Hz) was triggered. Each too-fast tap 
was penalized by a loss of 5% of the max beaker capacity. 
The “too fast” light only turned off when taps were at least as 
slow as the lower (fast) bound of the prescribed tapping 
interval. 2) When taps were too slow, a panel with the 
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message “too slow” immediately turned blue and a brief low-
pitched sine tone (460 Hz) was triggered. Unlike “too fast” 
feedback, the beaker level progressively decreased at a 
constant rate of 0.125 % of the beaker’s max capacity every 
1/60 s. The “too slow” light turned off and the beaker level 
stopped shrinking when taps became at least as fast as the 
upper (slow) bound of the tapping interval. An illustration of 
the ChemLab interface is depicted in  Figure  1. One can play 
ChemLab by clicking on the following link: 
http://andersonlab.net/demos/chemlab-v1/ 

Figure 1: ChemLab video game interface. 

Experimental Methods 
Experimental Design 
In this experiment, players completed 9 ChemLab sessions of 
5 minutes each. In each session, players filled rows of beakers 
that were selected in a pseudorandom order. Rows of beakers, 
named trials, belonged to one out of 6 possible conditions that 
are introduced in Table 1. Each condition included two 
speeds with two consecutive tapping intervals. The four 
possible tapping intervals were [200-300 ms], [300-500 ms], 
[500-800 ms], and [800-1200 ms]. Tapping intervals were 
non-overlapping and had a range whose width increased at 
slower speeds. The serial order of trials within sessions was 
indicated at the top of the screen, along with the score.  

Table 1: Description of the 6 ChemLab conditions 

Each trial included 8 beakers that were divided into two 
phases: the pre-switch phase, and the post-switch phase. 
Beakers from the pre-switch phase and post-switch phase 
respectively shared the same tapping interval (“Speed 1” and 
“Speed 2” in Table 1). When the first post-switch beaker 
came up the subject would get feedback that they were too 
fast or too slow and they would have to adjust the period of 

their tapping accordingly.  The transition between the pre-
switch and post-switch phases was scheduled pseudo-
randomly and could either happen after the completion of 3, 
4, or 5 beakers. For each condition, points were earned 
proportionally to the width and speed of the tapping interval 
such that slower intervals led to a higher reward than faster 
intervals. The total reward per trial was computed prior to the 
start of that trial by computing the sum of points per beaker 
within each phase (see Table 1) and then adding up the sums 
from each phase respectively. The total number of points for 
a trial was then divided by 8 (since there are 8 beakers in each 
trial), and 1/8 of the total was earned after the completion of 
each beaker within trials regardless of phase.  

Measures 
In this experiment, periodic tapping skills were measured in 
terms of performance within sessions, and in terms of tap 
variability. One critical ChemLab measure related to skill and 
period error correction was tap feedback. 

Performance Score The main way of assessing subjects’ 
ChemLab performance was to compute each participant’s 
game score within 5-minute sessions using the scoring 
system described in Table 1. 

Motor Behavior & Tapping Variability We assessed motor 
behavior by measuring the time between consecutive 
keypresses’ onsets within beakers. This time interval is often 
referred to as inter-press interval (IPI) in the literature 
(Diedrichsen & Kornysheva, 2015). Using this measure, it is 
possible to compute the coefficient of variation (CV), which 
is the standard deviation divided by the mean of the IPIs. 
Following previous work on video games, we assessed a 
logarithmic transformation of CV which measures motor 
variability and has been shown to be linearly related to 
performance in a motor timing video game (Gianferrara, 
Betts & Anderson, 2020). 
   Finally, we estimated participants’ tap regularity levels 
across speeds by computing the autocorrelation of vectorized 
tap holds and releases following the methodology from 
previous work (Gianferrara, Betts & Anderson, 2020). In this 
computation, keypress holds and releases had a temporal 
resolution of 1/60 s and we measured the autocorrelation of 
100 lags of 1/60 s. We then extracted the correlation 
coefficient corresponding to the first non-zero positive peak 
of the autocorrelation function and used this as our tapping 
regularity estimate. 

Tap Feedback In ChemLab, skill learning and period error 
correction mostly happened via the online processing of 
feedback that followed each individual tap. As mentioned 
earlier, taps could be categorized as “OK”, “too fast”, or “too 
slow”. Recording the feedback type that resulted from 
individual taps is useful because that helps the researcher 
understand how period error correction happens as a result of 
exposure to feedback.  
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Human Participants 
A total of thirty-two human participants completed the 
ChemLab experiment. Out of these, one participant was 
excluded because of poor performance (less than 100 points 
per session in the last 7 ChemLab sessions). A second 
participant was excluded because their average performance 
was close to 3 SDs below the mean (z = - 2.9; M = 1034 
points; SD = 151 points), and their average tap variability 
level was 4 SDs above the mean in terms of the log CV of the 
IPIs (z = 4.0; M = - 1.35; SD = 0.55). 

The 30 remaining participants were aged 22 to 50 years-old 
(M = 32.8, SD = 7.1). Twenty were male and 10 were female. 
All participants were recruited on Amazon Mechanical Turk 
(mTurk). Subjects earned a base pay of $4 for completing the 
experiment, in addition to a bonus which was proportional to 
their performance (in points) as specified in Table 1. On 
average, participants earned a bonus of $5.50. 

Procedure 
To qualify for the experiment, participants needed to 
correctly answer at least 3 out of 4 multiple choice questions 
on an English comprehension quiz. The experiment then 
proceeded as follows: Participants first filled out short 
background questionnaires. They then read a quick 
description of ChemLab which included instructions on how 
to proceed. Once ready, participants completed 9 ChemLab 
sessions lasting 5 minutes each. Finally, they filled out some 
additional questionnaires where they provided feedback and 
wrote about strategies they found helpful. 

Human Results 
Behavioral Results 
We first present some general results pertaining to human 
performance and human behavior in the ChemLab 
experiment. Figure 2 provides an illustration of human 
performance. Figure 2a shows that humans’ average game 
score progressively increased in the 2 first sessions and 
eventually reached a learning plateau at game 3 onwards 

when the average game score was consistently greater than 
1000 points, which corresponded to more than 90 % of 
subjects’ max performance score in ChemLab. Since this 
study is mostly concerned with skilled motor behavior and 
the modeling of periodic tapping, we elected to focus on the 
last 7 sessions at which most of the task-specific skills have 
been acquired. These included a total of 1014 trials across all 
subjects and speeds. 

Figure 2: a) Mean game score (performance) over the 9 
ChemLab sessions. The shaded area indicates the standard 

error of the means b) Correlation between subjects’ average 
game score across sessions and tap variability as the 

logarithmic coefficient of variation. 

    Figure 2b compares individual subjects’ performance and 
motor behavior during the learning plateau (last 7 sessions). 
Subjects’ tap variability is measured in terms of the 
logarithmic CV and plotted against subjects’ average game 
score across sessions. The main result is that game score is 
negatively correlated with tap variability (r = - 0.88) meaning 
that the best performing subjects were also the ones with the 
lowest levels of tap variability. In terms of motor behavior, 
tap regularity levels defined with the autocorrelation ranged 
between r = 0.43 and r = 0.49 across the four different speeds. 
   With respect to subjects’ adaptation to the new tapping 
period after the switch point, we found that human 
participants successfully transitioned from speed to speed as 
can be seen on Figure 3a. Table 2 displays the taps’ categories 

Figure 3: Inter-press interval (IPI) boxplot across the 6 conditions in the pre-switch and post-switch phases. Each speed 
corresponds to a different color. Human IPIs are depicted to the left (a) and ACT-R model IPIs are depicted to the right (b). 
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Table 2: Human and ACT-R model tap category proportions across speeds and feedback types. 

in the assigned tapping interval in the last 2 beakers (stable 
behavior) of either phase, sorted according to speed and agent 
(humans vs. ACT-R model). Overall, human subjects 
executed taps that were in the correct tapping interval ~80% 
of the time or more. 

Feedback Processing 
We then investigated participants’ response to feedback at the 
time of the period switch. To reiterate, the tapping interval 
switched to a consecutive speed bracket after the completion 
of 3, 4, or 5 beakers (this number was generated 
pseudorandomly), and players then learned to execute taps at 
the new speed for the remainder of the trial beakers until they 
completed the final (8th) beaker. 

To explore the process of period error correction, we first 
computed the proportion of each tap category (“OK”, “too 
fast” and “too slow”) for the 8 first IPIs directly following the 
speed switch. Tap category proportions were computed 
across all trials from all subjects (see Figure 4). Figure 4’s top 
row illustrates cases in which the speed slowed down, thus 
resulting in “too fast” feedback, and Figure 4’s bottom row 
illustrates cases in which the speed sped up, thus resulting in 
“too slow” feedback. Overall, one can see that the majority 
of participants tended to persevere their taps at the old speed 
for 1 to 3 taps before adjusting their tap period, though most 
players needed at least 2 taps before initiating the correction. 

Figure 4: Evolution of tap category proportion as a function 
of post-switch IPI position following a period switch across 

the 6 ChemLab conditions. 

   Although Figure 4 suggests that participants may 
progressively correct their taps’ period, we found that this 
result was due to variation in when the period was corrected 
and was not indicative of continuous error correction with 
progressively smaller correcting steps. Instead, we found that 
period correction happened as a first-order process. Figure 5 
shows the difference in IPI as a percentage of the previous 
IPI at the time of error correction (Pos 0) and at the tap 
position directly before (Pos -1) and directly after (Pos +1), 
regardless of the tap serial order in the post-switch beaker. 

Figure 5: 1st order feedback processing in fast feedback 
conditions (a) and slow feedback conditions (b). Error bars 

correspond to the standard error of the means (SEM). 

   As can be seen on Figure 5, the IPI difference at Pos 0 was 
greater than at Pos -1 and Pos +1 in conditions in which the 
tapping interval got slower, but no significant difference 
relative to no difference (0 %) was found at Pos -1 and Pos 
+1 (standard deviations at these positions all included 0%).
Conversely, the IPI difference at Pos 0 was smaller than at
Pos -1 and Pos + 1 in conditions in which the tapping interval
got faster, but no significant difference relative to no
difference (0 %) was found at Pos -1 and Pos +1.
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ACT-R Model of Periodic Tapping 
The next step was to integrate into ACT-R a model of tapping 
and period correction that was consistent with these results. 
To reiterate, a goal of the project was to use human 
experimental results in a simple tapping paradigm to calibrate 
the parameterization of motor parameters in ACT-R. 

Periodic Tapping in ACT-R 
A motor extension was added to ACT-R, which includes a 
few basic actions. First, taps can be initiated by making a 
request to the manual module with information pertaining to 
the hand, finger, and specific tapping period. Once periodic 
tapping has been initiated, the manual buffer corresponding 
to the tapping hand (“manual-right” or “manual-left”) 
continues the tapping action repeatedly. Note that periodic 
tapping does not require ACT-R to issue specific motor 
commands for each individual tap, which would not be 
feasible at the fastest tapping rates. This process is assumed 
to carry on automatically due to basal ganglia neural activity 
(Wu, Hallett & Chan, 2015). To stop the period, another 
request to the manual module can be made in a subsequent 
production, and ACT-R will then stop periodic tapping once 
ready. During periodic tapping, upcoming taps are 
automatically scheduled relative to the previous ones at the 
time of key release, unless a stop request has been initiated. 
   The periodic tapping motor extension also includes an 
additional “tap” buffer which can be accessed to determine 
the current tap period (in seconds), and a count of the number 
of taps made at that period. ACT-R can request that the motor 
module adjust the period at which it is tapping. The “periodic-
tap” motor extension code has been created in the Lisp 
programming language and will be made available to users in 
an upcoming ACT-R release. We next review 
parameterization of the periodic tapping motor extension. 

ACT-R Periodic Tapping Parameterization 
In this paper, we are using the results from the ChemLab 
experiment to calibrate the ACT-R model of periodic tapping. 
This section is specifically focusing on the choice of noise 
parameter that governs the variability of taps across speeds. 
To address the variability in timing between individual taps, 
we investigated consecutive IPI % differences in an iterative 
fashion in the last 2 beakers of the pre-switch and post-switch 
phases. For each beaker, we recorded each tap’s IPI % 
difference relative to the IPI from the previous tap and sorted 
the IPI % tap differences according to speed. We thus 
obtained 4 IPI % tap difference frequency distributions which 
are displayed on Figure 6. As can be seen, the motor noise 
distribution is centered around 0 % and is normally 
distributed. One crucial finding was that variability in taps’ 
period across speeds can best be specified in terms of % IPI 
difference instead of a fixed IPI difference duration, which 
fits with past sensorimotor synchronization findings (Repp, 
2005; Wing, 1980) and may partially be due to fingers’ 
biomechanical constraints (Loehr & Palmer, 2009). 

 The noise on the tap timing was generated using the same 

Figure 6: Overlap between human and ACT-R model 
percent change in tap IPIs. Bins have a width of 7%. 

logistic distribution that is used for generating the noise in the 
ACT-R procedural and declarative systems1. The s value of 
the distribution that best fit the human data was found to be 
0.04 (see Figure 6). This corresponds to a standard deviation 
approximating 7% of the current tap period. The correlation 
between humans and ACT-R ranged between r = 0.96 and r 
= 0.98 across the four speeds. 

ACT-R Model of ChemLab 
Modeling performance in the ChemLab experiment not only 
required us to refine the parameterization of the periodic 
tapping motor extension in ACT-R, but it also necessitated 
identifying the key task-specific components of the 
experimental paradigm that were critical for learning. In this 
experiment, feedback was the most important experimental 
feature. Specifically, we needed to create a model that could 
simulate humans’ response to feedback, and error correction. 

Responding to Feedback Humans’ response to feedback in 
ChemLab was not uniform within subjects as suggested the 
results displayed in Figure 4. While most period corrections 
happened shortly after feedback detection and processing, 
some other corrections happened after a few more taps. In 
ACT-R, we decomposed this process into three steps 
represented as separate ACT-R productions: 1) feedback 
detection, 2) feedback processing, 3) response to feedback. 
   The first step was to simulate perceptual feedback 
detection. Our data suggest that there may be perceptual 
delay and feedback processing differences, which have been 
hypothesized to be a function of skill level and past exposure 
to video games (Bediou et al., 2018; Bejjanki et al., 2014). 
We used ACT-R’s visual-search buffer to model humans’ 
visual detection of color changes that indicated an error, 
although   auditory   “too fast”   and   “too slow”   feedbacks 

1 Note that ACT-R uses logistic instead of an actual normal for 
computational efficiency (Anderson & Lebiere, 1998) 
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may have played a facilitatory role in feedback detection 
(Repp & Penel, 2002, 2004). Upon detecting a color change, 
ACT-R put the interpretation (“too fast” or “too slow”) into 
the imaginal module. To fit human performance, we set the 
mean time for this action to 50 ms, and the imaginal module 
adds noise to that from a uniform distribution of +/- 16ms 
(1/3 of the action duration). 
   Finally, the last step was to respond to feedback, which was 
implemented as a first-order process in accordance with the 
results from Figure 5. Based on our experimental 
investigation of feedback response, we found that the 
participants’ response to feedback was a probabilistic event 
which could be simulated with competing productions 
(“correct” vs. “do-not-correct”) and fixed utilities in ACT-R. 
Utilities were tuned using probabilistic estimates of error 
correction for fast and slow feedback respectively. 

Error Correction Based on the subject data the model 
responded differently to “too-fast” and “too-slow” feedback. 
When exposed to “too-fast” feedback, the ACT-R model 
requested a period error correction from the manual module 
while maintaining the original tapping rate. When exposed to 
“too-slow” feedback, however, the model briefly stopped 
tapping to process the progressively decreasing beaker level 
caused by the slow taps (see ChemLab video game 
description), and it then made a request for a new tapping 
period.  
    The model attempted to correct errors and change the 
tapping period by adding or subtracting a correction from the 
period. This correction was expressed as a percentage of the 
original tapping period and was selected from a gamma 
distribution2 generated with a shape parameter k and a scale 
parameter θ.  To fit the subject data, we selected different 
gamma distributions for each speed.  
   One striking result was that the gamma distribution 
underlying “too fast” period corrections was closer to an 
exponential distribution than the gamma distribution 
underlying “too slow” corrections. Indeed, k estimates 
approximated 1 for “too fast” period corrections, regardless 
of speed (+/- 0.2). For “too slow” corrections, however, k 
estimates exceeded 2 across all speeds and increased as the 
tapping rate slowed down. These findings suggest that the 
shape of the period correction distribution may depend on 
task-specific feedback features, speed, and potentially 
feedback saliency. 

ACT-R Model Results 
We ran two hundred ACT-R model simulations of trials in 
each of the 6 conditions (1,200 model runs in total). All 
models were initialized with the same parameters. We then 
tested whether we could replicate human results from Figure 
3a and Table 2. Figure 3b illustrates the model transition from 

2 We utilized the “random-gamma-mt” function from the “cl-
randist” Lisp package:  
http://github.com/lvaruzza/cl-randist/tree/master 

speed to speed in each of the 6 ChemLab conditions. To 
reiterate, IPIs were measured in the last 2 beakers of the pre-
switch and post-switch phase, which reflect stable periodic 
tapping behavior. 
   We then computed the proportion of tap categories across 
speeds in either phase and reported these proportions in Table 
2 (see ACT-R results). As can be seen, similar tap category 
proportions were found in ACT-R. A Chi-squared 
contingency test summarizing within-speeds tap proportion 
comparisons between ACT-R and humans (df = 4*2 = 8) 
revealed that both proportions were of a similar magnitude 
(𝜒ଶ(𝑑𝑓 = 8,𝑁 = 24) = 5.59, p = 0.69). 

Conclusions 
The goal of this project was to simulate human motor 
behavior in a simple self-paced periodic tapping task in which 
period error correction was driven by visual and auditory 
feedback. By calibrating our novel periodic tapping motor 
extension in ACT-R, we showed that it is possible to replicate 
the general patterns of human behavior and periodic tapping. 
Some implications are worth noting. 
   In terms of motor behavior, we found two general 
mechanisms pertaining to human skill learning. First, we saw 
that the noise around periodic taps was proportional to the 
taps’ mean and could be simulated as a percentage of the 
period instead of a fixed time duration, which replicates 
results from the sensorimotor synchronization literature 
(Repp, 2005). Second, in the context of the ChemLab 
experiment, we also saw that feedback processing happened 
as a first-order process akin to reaction time processes.  
   Because the core periodic tapping code was built as a motor 
extension in the ACT-R architecture, it is possible for other 
modelers to use our code as a template of periodic tapping 
and build upon our work to model human behavior in fast-
paced video games involving repetitive motor actions. We 
look forward to expanding our understanding of skilled motor 
behavior in complex perceptual-motor environments. 
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Abstract

Prices, e.g., for flight tickets can change almost daily. To min-
imize the costs, we have to decide when to take an action, i.e.,
when to buy. Suchs decision tasks are called optimally stop-
ping problems. This paper reconsiders the strongest cogni-
tive models that are able to predict the average decision maker,
adapts them and investigate their predictive accuracy on the in-
dividual level, i.e., how good are models in predicting when a
participant decides for an action. To perform this analyses, sev-
eral steps are necessary: (i) Identify data sets that provide raw
data for an individual, (ii) develop an individual testing frame-
work to assess the models, (iii) implement and adapt existing
models for the individual, and (iv) consider baseline models
to assess the goodness-of-fit of the models for the individual.
The best and second-best models achieved an overall predic-
tion accuracy of 84.9% and 84.1% respectively. Five of the ten
examined models managed to beat a strong baseline, proving
that they did in fact managed to model the individual decision
process.

Introduction
The Optimal Stopping Problem is implicitly present in many
aspects of everyday life. When searching for the partner to
spend life with, buying airplane tickets for the next holiday
trip, or deciding when and with whom to fill an open job po-
sition. All tasks demand to decide whether to keep the current
option (partner/ticket price/applicant) or to keep on searching
for a better option. When declining an option, it is not known
if a better option will eventually present itself. It is also often
not possible to go back to one of the previous options, as pos-
sible partners might not be available anymore, ticket prices
change from day to day, and a once rejected applicant might
have started to work for another company.

Formally, the Optimal Stopping Problem is the task of find-
ing in a sequence of timepoints 1 ≤ i ≤ n with a possibly
unknown n for associated values (or options) (yi)i the time i
when to perform an action to maximize the desired potential
outcome, i.e., increase profits or minimize costs. The options
can change randomly and the quality of the future options
cannot be estimated. In some cases, the number of options
can be limited, e.g., one has to buy a plane ticket eventually
if the vacation is planned on a certain date. If the last option
is reached, it has to be chosen. The difficulty lies in evaluat-
ing if either the currently presented option is worth keeping,
given the knowledge about the previously seen options and
some domain knowledge (e.g., average plane ticket prices),
or if a better option will occur in the future.

Most current models are assessed by a “fitting”-analyses
of the response distribution and not on assessing the predic-
tive accuracy of the next decision before an individual makes
it (Guan & Lee, 2018; Lee & Wagenmakers, 2014; Seale
& Rapoport, 2000; von Helversen & Mata, 2012; Zwick,
Rapoport, Lo, & Muthukrishnan, 2003). The advantage of
the latter method is that it allows even to falsify models, i.e.,
if they do not predict the right decisions and it can identify
the underlying decision processes. Hence, we propose to as-
sess models in the predictive setting using CCOBRA (Brand,
Riesterer, & Ragni, 2020), a cognitive reasoning framework
that allows predicting and adapting to an individual reasoner
while evaluating a models performance. The data used stems
from Baumann, Singmann, Gershman, and von Helversen
(2020), which presents participants in an experiment with the
task to buy an item for the cheapest possible price. The data
includes artificially generated prices for fictional items with
a normal, left- and right-skewed price distribution, as well
as real prices for real items that can be used to evaluate the
real-life performance of the predictive models. As part of this
work, four models for human reasoning in Optimal Stopping
Problems were implemented and adapted to individual human
reasoning. The original models are presented in Baumann et
al. (2020) and are based on a threshold heuristic. For com-
parison of the performance of the adapted models, two base-
line models were implemented, one random one and one that
will follow the optimal strategy (Gilbert & Mosteller, 2006)
to find the best option. The models were fine-tuned on one of
the available data sets (= training data) and then evaluated on
the other data sets. The results were then compared to each
other and the similarities and differences between them were
examined. The findings were also compared to the findings
of previous studies, which showed similar results. An insight
into the prediction performance of each model on each indi-
vidual reasoner is also given as the final step to analyze the
models.

Related Work
Lee (2006) proposes a hierarchical Bayesian Model to pre-
dict human decisions. Participants in the experiment were
confronted with the problem of choosing the maximum out
of a sequence of few numbers. The participants knew the
generation principle of the numbers. The results supported a
threshold-based model to explain the decisions of the partici-
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pants, choosing the first maximal number that exceeds a cer-
tain threshold for each index. Since the overall performance
did not increase during the experiment, participants did not
learn from the previous problems.

An optimal strategy (that has the highest expected value) to
select the best (in this case highest) option out of a finite list
of options is described in Gilbert and Mosteller (2006). The
idea is to start with a high threshold and decrease it over time
based on the distribution the options were sampled from.

Guan, Lee, and Vandekerckhove (2015) considers the Opti-
mal Stopping Problem for a sequence length of both, 5 and 10.
In both cases, the reasoner had to find the highest option of the
sequence. The authors propose a threshold model for human
reasoning that takes into account how far the individual rea-
soner deviates from the optimal threshold at the current step.
The deviation is controlled by two parameters β and γ. β de-
termines how far above or below the threshold is from the op-
timal one and γ controls how fast the bias increases/decreases
as the sequence progresses. Their results show that reasoners
that set their initial threshold higher than the optimal, tend
to decrease it faster than optimal, and reasoners that set their
initial threshold too low, decrease it slower than optimal. Fur-
thermore, β and γ remains stable for participants in the se-
quence of length 5 and 10. That allows to transfer the ob-
served values in one tasks to this individual for other tasks.

The data used for this research and the models that set the
foundation for the adapted models are presented in Baumann
et al. (2020). The authors describe four models for predict-
ing human reasoning in an Optimal Stopping Problem where
the goal is to find (and buy) the cheapest price for an item in
a sequence of 10 prices. The four models are the Indepen-
dent Threshold Model, the Linear Threshold Model, the Bi-
ased Optimal Model, and the Cut-off Model. All of the mod-
els are based on the calculation of an acceptance probability
θi that implements a sigmoid choice function with sensitiv-
ity parameter β and the current item i with price xi and the
position-dependent threshold ti:

θi =
1

1+ exp{β(xi− ti)}

The goal of each model is to provide the threshold ti which
changes depending on the task and the position in the se-
quence.

The Independent Threshold Model (ITM) assumes no
dependence between the thresholds, it samples N indepen-
dent random thresholds (from a uniform distribution) t1, ..., tN
where at position N +1 the price must be accepted.

In the Linear Threshold Model (LTM), the thresholds are
constrained by a linear relation to each other and are defined
by the initial threshold t0 and the linear scaling factor δ:

ti+1 = ti +δ · i

The Biased Optimal Model (BOM) is based on the model
presented in Guan et al. (2015). It uses the optimal threshold
t∗i , a systematic bias parameter γ that reflects the divergence

from the optimal threshold, and the parameter α which de-
scribes how much the threshold decreases or increases as the
sequence progresses.

ti = t∗i + γ+α · i

The Cut-off Model (CoM) assumes that the reasoner has a
fixed cutoff value k that determines how long the sequence is
explored before the first value that is lower than the already
seen minimum is accepted.

Benchmark Data
The data used in this project stems from (Baumann et al.,
2020). It recreates a scenario in which the decision-maker is
planning a vacation and wants to buy the flight tickets online.
The prices vary randomly from day to day and the customer
wants to find the cheapest ticket. Each day the decision-
maker checks the price and can either buy the ticket or reject
the offer and wait for the next day. Since the vacation will
start in ten days, the decision maker has to accept the tenth
offer, no matter the price. Once a price is accepted the search
is also finished. A total of three experiments with different
price distributions are reported.

For the first experiment, 129 participants were set to answer
the described ticket-shopping task. The prices were sampled
from a normal distribution with a mean of 180 and a standard
deviation of 20. Each subject finished 200 trials of the ticket-
shopping task. In each trial, the participants searched through
a sequence of ten prices. The subjects were aware that they
could see up to ten prices and were always informed about
the number of remaining prices. However, they could only
see the price of the current product. It was not possible to go
back to an already rejected price. If the subjects reached the
tenth price they were forced to accept it.

For the second experiment, 172 participants were in the
ticket-shopping task but with changing distributions from
which the prices were sampled. Three different sample meth-
ods were used: Exp 2a – prices were sampled from a left-
skewed PERT distribution PERT(40, 195, 200) with a mean
of 170. Exp 2b – a normal PERT distribution PERT(90, 140,
190) with a mean of 140 was used. Exp 2c – a right-skewed
PERT distribution (PERT(120, 125, 400)) with a mean of 170
was used. Each participant was assigned to only one experi-
ment and had to select the lowest price out of a sequence of
10 prices for 200 trials.

The third experiment simulates an online shopping experi-
ence where the goal is to buy a certain product for the lowest
price possible with the prices being presented sequentially. A
total of 60 commodity products were selected and the prices
collected from an online shop. Only products with an approx-
imately normal distributed price range were chosen. For the
experiment, the prices were sampled from a normal distribu-
tion with the mean and standard deviation estimated from the
real prices. All 100 participants performed 120 trials divided
into two blocks containing the same sixty products. The sub-
jects were always aware of the number of remaining prices
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and were also informed about the mean price of the product.
Once a price was rejected it could not be chosen again and
the tenth price had to be chosen if no previous buy was per-
formed.

All models were evaluated using CCOBRA (Brand et al.,
2020). CCOBRA is a cognitive reasoning framework that se-
quentially presents per person data to the model that is cur-
rently evaluated. In each step of the evaluation sequence, the
model is presented with the current task, in this case the task
would be one price of the sequence of the ten prices out of a
problem the participant had to face. With the presented task,
the models have to predict the answer the current reasoner
gave for this task, which is then used to evaluate the models
performance. After predicting, CCOBRA provides an adap-
tion function in which not only the task had to be predicted
just now, but also the given answer is presented to the model.
This information can than be used to adapt the model to the
current reasoner. For the evaluation in this paper, the data was
prepared in a way that the available information for the task
is the price for the current ticket/item and the sequence of the
current task (how often a price was rejected in this iteration).
The reaction time (how long the individual took to make the
decision) and the mean price (180 for experiments 1, 170 for
the left- and right-skewed, 140 for the normal task in experi-
ment 2, and variable for the third experiment) are also given
as further information.

Adapting Models to Predict the Individual
The previously presented models from Baumann et al. (2020)
were adapted to work with variable price means by scaling the
individual parameters with the mean of the task. The models
were also able to adapt to the individual reasoner by updat-
ing the parameters during the prediction process which will
be presented in the following sections. A genetic algorithm
was used to search for the optimal parameters for every 30
questions asked. The current parameters were then updated
with new optimal values by setting the new parameters to be
70% current parameter + 30% searched parameter. For all
models, the previously presented β parameter was initialized
to 0.21 and the genetic algorithm searched in the interval of
[0,2].

Random Model (RM)

The Random Model represents the most simple decision
maker by randomly selecting one of the options. A model
that can’t beat the random baseline would probably be better
off just guessing the answer.

Independent Threshold Model (ITM)

The Independent Threshold Model samples its ten indepen-
dent thresholds from a uniform distribution between 60% and
120% of the mean value for the current task. During the adap-
tion to the individual reasoner, only β is searched with the
genetic algorithm.

Linear Threshold Model (LTM)
The Linear Threshold Model starts with an initial thresh-
old t0, which in this case is a percentage of the mean value
of the current task. It is defined as: t0 = meanvalue · t%.
The linear increase δ is also represented as a percentage
of the mean value of the current task. It is defined as:
δ = meanvalue ·δ%. The threshold calculation is then done
via: ti+1 = ti +meanvalue · δ% · i. For the basic version and
the adaption, the parameters are initialized with δ% = 0.005
and t% = 0.7. During the search for a better fitting value in
the adaption phase, δ% was limited to the interval of [0,0.1]
and t% searched between 0% and 100%.

Optimal Threshold Model (OTM)
The Optimal Threshold Model uses the mathematical optimal
threshold to determine whether to buy for the current price or
to wait for the next opportunity. A way to calculate the op-
timal thresholds to find the highest number in a sequence is
described in Gilbert and Mosteller (2006). In order to calcu-
late the thresholds for the lowest number in the sequence, the
threshold generation process was inversed. This results in a
list of optimal thresholds (percentage of the mean price):

Table 1: Optimal thresholds for each value in the se-
quence. At 10 there is a ‘must buy’. Any option below
the threshold is accepted.

Pos. 1 2 3 4 5 6 7 8 9

Opt. 72 78 84 91 99 109 121 137 160

At each option that is to be predicted, the Optimal Thresh-
old Model checks whether the current price is below the opti-
mal threshold and predicts the buy option. If the current price
is above the optimal threshold, it decides not to buy. Since
there are no free parameters that can be optimized for this
model, there is also no adaption variant for it.

Biased Optimal Model (BOM)
The Biased Optimal Model takes the optimal threshold for the
current position in the sequence and adds two parameters to it
(γ and α). Since those are also dependent on the magnitude of
the current prices, they are also represented by a percentage
of the optimal threshold t∗. The calculation for the Biased
Optimal Model is therefore done like the following:

ti = t∗i + γ · t∗i +α · i · t∗i
Both parameters γ and α are both initialized to 0, which
means that without any adaption, the BOM is equal to the
OTM. During the adaption to the individual reasoners, the
genetic algorithm searches for the optimal α value in the
range of [−0.2,0.1] and for the optimal γ value in the range
[−0.5,0.3].

Cut-off Model (CoM)
The Cut-off Model explores the sequence a fixed number of
steps (k) and then takes the next option that is lower than the
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previously seen lowest value. During the initialization of the
CoM k is set to 5. The genetic algorithm for the adaption part
of the model searches for k in the range of [1,10].

Results
All models were tested and tuned on the data of Exp 1. These
results were used to improve the models by adapting the pa-
rameters for better performance. The data of all other exper-
iments was not used in the training process, and only used
in the final evaluation, to avoid overfitting on the data. Ex-
periment 2 and its variant for skewnesses demonstrates the
models’ power to adapt, given different price distributions. A
model that performs well on a left-skewed distribution (more
cheap prices in the sequence) might in term perform worse on
a right-skewed distribution (more costly prices). The dataset
of Exp 3 (real prices) gives insight into the models’ ability
to adapt to real-life situations. During the evaluation, each
model was run five times on each dataset, to account for
the randomness of the genetic algorithm (Ritter, Schoelles,
Quigley, & Klein, 2011; Byrne, 2013). All later presented re-
sults are therefore the mean of five evaluation runs. Overall
the results show a good performance for most models on the
datasets of the first and second experiment. The best perform-
ing models were the Biased Optimal Model and the Linear
Threshold Model both with adaption. The best performing
model was the LTM with adaption, reaching an accuracy of
88.74%. On the third experiment, however, all models had a
significant drop in performance, with the Cut-off Model being
the best performing one. Overall the Independent Threshold
Model showed the worst performance.

Experiment 1
The evaluation results for this experiments can be found in
Table 2. The clear prediction performance winner is the Bi-
ased Optimal Model with adaption. It achieved an 86.7%
mean accuracy on the prediction. Next up is the Linear
Threshold Model with adaption which scored an 85.0% accu-
racy. The Cut-off Model with and without adaption as well
as the Linear Threshold Model without adaption scored at
around 81% accuracy. Due to the nature of how the data
is presented in the datasets, simply predicting that the cur-
rent reasoner will not buy for the current price will lead to
a high prediction performance (in this case 79.1%). This is
because once a reasoner accepted a certain price, the remain-
ing prices for this sequence were skipped. This leads to an
over-representation of don’t buy answers in the dataset. This
prediction performance can therefore be seen as the barrier
that shows if the model truly learned the reasoning process.
As to be expected, the Biased Optimal Model without adap-
tion and the Optimal Threshold Model, with 73.5% prediction
accuracy, share the same performance since the BOM with-
out adaption represents the OTM. The Independent Threshold
Model with and without adaption achieved around 68% accu-
racy with the adaption model even performing slightly worse.
The random model scored around 50% accuracy as it is to be
expected in an two possible outcomes random choice.

Experiment 2a: left skewed prices
The results for the second experiment’s first condition, with a
left-skewed distribution (more cheap prices), are presented in
Table 2. Interestingly, all models managed to improve their
performance in comparison to the first experiment. This time,
the Linear Threshold Model with adaption with 88.7% accu-
racy performed slightly better than the Biased Optimal Model
with adaption that reached 88.7% prediction performance.
With 87.2% accuracy, the LTM without adaption managed
to improve its performance drastically compared to the first
experiment.

Experiment 2b: normally distributed prices
In Table 2 the results for the second condition of the sec-
ond experiment (normal-distributed prices) are shown. Once
again, the BOM and LTM, both with adaption, are the best
performing models. This time, like in the first experiment
where the prices were also normal-distributed, the Biased
Optimal Model with adaption performed slightly better, with
88.0% accuracy, than the Linear Threshold Model with adap-
tion which reached 86.6% accuracy.

Experiment 2c: right skewed prices
The results for the second experiment’s third condition (left-
skewed distribution, more expensive prices) are presented in
Table 2. The Biased Optimal Model with adaption contin-
ued with the trend of being one of the strongest models and
showed the best performance of all models with 87.3%. How-
ever, compared to the other two conditions of the second ex-
periment, the BOM with adaption showed the worst perfor-
mance in this condition. With an accuracy of 86.1%, the
Linear Threshold Model with adaption also showed slightly
worse performance than under the previous two conditions of
the second experiment. Nevertheless, the LTM with adaption
proved to be a solid predictor of the decision-makers in the
second experiment. Both, the Cut-off Model with and with-
out prediction, showed constantly good results in the entirety
of the second experiment and always managed to beat the
never buy threshold. In this case, they achieved an accuracy
of 81.2% and 80.5% respectively. The BOM without adap-
tion and the Optimal Threshold Model consistently achieved
a performance of around 74% accuracy. The trend of both In-
dependent Threshold Models being the worst in the portfolio
also continued under this condition and with an accuracy of
68.8% both reached a performance as low as ever.

Experiment 3: real prices
In the third experiment, the performance of all models
dropped significantly in comparison to the first and second
experiment (cp. Table 2). None of the models managed
to beat the don’t buy threshold. Most notably the Cut-off
Model with and without adaption is now leading the score-
board with an accuracy of 77.8% and 76.1% respectively.
This represents a loss of roughly three percentage points
compared to the first and second experiments. The Linear
Threshold Model with adaption lost roughly thirteen percent-
age points compared to the previous experiments and dropped
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Table 2: The median predictive accuracy of the cognitive models for each experiment and all experiments, and the
random and don’t buy baseline models. In bold is the highest predictive performance. The median is calculated from
five evaluation runs.

Random dontbuy IT MA IT M OT M BOM LT M CoM CoMA LT MA BOMA

Exp. 1 49.8 79.1 67.9 68.1 73.5 73.5 81.0 81.1 81.4 85.0 86.7
Exp. 2 (left skew.) 50.0 81.1 69.7 69.8 73.9 73.9 87.2 81.5 82.9 88.7 88.5
Exp. 2 (normal) 50.1 79.2 70.0 70.0 74.7 74.7 82.1 81.2 81.7 86.6 88.0
Exp. 2 (right skew.) 50.0 78.7 68.8 68.8 74.1 74.1 83.7 80.5 81.2 86.1 87.2
Exp. 3 50.0 78.2 64.2 64.1 71.2 71.2 73.1 76.1 77.8 74.0 73.8

All 50.0 80.5 68.1 68.2 73.5 73.5 81.4 80.1 81.0 84.1 84.9

to an accuracy of 73.9%. Surprisingly, the LTM without
adaption scored only slightly lower with 73.1% accuracy,
showing that in this case, the adaption did not bring any
meaningful advantage. Overall the LTM without adaption
dropped about ten percentage points in performance com-
pared to the previous experiments. A similar observation can
be done with the Biased Optimal Model. The adaption-based
model scored 73.8% accuracy while the non-adapting one
scored only slightly lower with 71.2% prediction accuracy.
The adaption-based BOM loses roughly fourteen percentage
points of prediction performance compared to experiments
one and two, while the non-adaption model loses only around
three percentage points, which is of course the same develop-
ment as the Optimal Threshold Model. Once again, the Inde-
pendent Threshold Model, with and without adaption, showed
the worse performance of all models with only around 64%
accuracy. Compared to the other experiments this represents
a loss of around four to five percentage points.

Individual Prediction Performance
Fig. 1 shows the individual participant performance for all
models on the third experiment. The COM model and its
adaption show no meaningfull difference in the overall dis-
tribution of the individual prediction performance other than
that the adaption manages to score slightly higher on almost
all participants showing a better fit to the individual. The
adaption of the LTM clearly reduces the overall spread of the
individuals, while also the outliers both at the bottom and at
the top are clearly reduced by the adaption.

For the Biased Optimal Models, the non-adapting model
shows a wider spread of the individual performances. How-
ever, there are no real outliers to the bottom of the perfor-
mance so the basic model manages to fit all participants at
least to a certain amount. The model with adaption clearly
shows how the performance is improving by shrinking the
spread between the individuals and bringing them all to
higher accuracy. Nevertheless, there are some participants
the adaption model does not quite manage to fit and there-
fore there are also more outliers to the bottom. The ITM and
its adaption did not show any improvements. It is therefore
most likely, that the β value does not yield any performance
increase in a setting with random thresholds.

Discussion

The overall bad performance of the Independent Threshold
Model with and without adaption reinforces the previous find-
ings (Baumann et al., 2020; Guan & Lee, 2018; Guan et al.,
2015) that human reasoners change their thresholds following
a certain strategy (e.g. linear). A random (bounded) thresh-
old for each step in the sequence would mean that a decision-
maker could refuse a cheap price in the current step only to
accept a way to high price in the next step. This behavior
is not typical for a human reasoner, which is shown by the
bad performance of the models. The below-average perfor-
mance of the Optimal Threshold Model and the Biased Op-
timal Model without adaption, which are the same, confirms
the findings of Guan et al. (2015) that human reasoners in
Optimal Stopping Problems tend to set their initial thresh-
old too low or too high, and then either decrease them to
slow or increase them to fast. The Cut-off Model showed a
solid performance and managed to beat the don’t buy thresh-
old consistently. This shows that the reasoners tend to at
least somewhat try to explore the sequence rather than mak-
ing a hasty decision. This effect has already been mentioned
in Baumann et al. (2020). The outstanding performance of
the Linear Threshold Model with and without adaption once
again strengthens the assumption that human reasoners tend
to use linear threshold in Optimal Stopping Problems. The
good performance of the LTM shows that most reasoners, at
least to a certain extend, choose a linear threshold to guide
their decision. However, some outliers might apply a dif-
ferent technique and an in-depth evaluation of those outliers
could help to further increase the ability to predict the indi-
vidual reasoner. The Biased Optimal Model with adaption
shows a similar prediction accuracy to the LTM with adap-
tion. This behavior is to some extent understandable since the
optimal thresholds for the first ten options in the sequence are
roughly linear as well. Additionally, the parameters for γ and
α found by the genetic algorithm during the adaption were
mostly negative meaning they also counteracted the nonlin-
ear effect of the optimal threshold.

Both the BOM and LTM show a strong performance over
all experiments (cp. Table 2). Only in the third experiment,
both did not outperform the don’t buy baseline. There might
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Figure 1: Prediction results of the models on each participant in the third experiment. Random model omitted for space
reasons, BOM/OTM are the same with no adaption. Red and blue circle mark the same participants respectively.

be several reasons for this drop in performance: One reason
for the change in performance could lie in the participants
themselves. The fact that they had to deal with real items that
they know and have an understanding of the price develop-
ments, could have nudged a behavior change compared to the
fictional price setting of the first and second experiment. An-
other reason might be that the reasoners just did not behave as
predictable as in the other tasks. Since the prices varied quite
a lot in their magnitude, a reasoner that previously accepted
a costly product at a 20% discount could not accept the same
20% discount for a cheaper item since the absolute discount
of the cheap item does not appear as high.

Consider two types of participants in Fig. 1 and 2, depicted
by a red and blue circle accordingly. The blue participant is
predicted adequately by almost all models in contrast to the
low predictive accuracy for the red participant across mod-
els. This indicates that either the red-marked participant gave
more random answers and is less predictable by any meaning-
ful models or the reasoner developed a strategy that is beyond
what the implemented models can cover. The well-predicted
blue reasoner, however, seems to use a strategy that is covered
by almost all models.

In conclusion, this paper adapted and evaluated core deci-
sion making models for Optimal Stopping Problems to pre-
dict decisions performed by individuals. Using genetic algo-
rithms allowed the models to find the optimal parameters for
each individual. The findings support previous research that
showed that human reasoners tend to use a linear threshold
in Optimal Stopping Problems to rate the current option. The
analysis shows that thresholds are variable among decision
makers and that adapting to the individual can bring a vast
improvement in the prediction capabilities of the models.

Acknowledgements
Support to MR by the Danish Institute of Advanced Studies
and the DFG (RA 1934/4-1, RA1934/8-1) is gratefully ac-
knowledged.

References
Baumann, C., Singmann, H., Gershman, S. J., & von Hel-

versen, B. (2020). A linear threshold model for optimal

stopping behavior. Proceedings of the National Academy
of Sciences, 117(23), 12750–12755.

Brand, D., Riesterer, N., & Ragni, M. (2020).
Ccobra-framework. https://github.com/
CognitiveComputationLab/ccobra. GitHub.

Byrne, M. D. (2013). How many times should a stochas-
tic model be run? an approach based on confidence inter-
vals. In Proceedings of the 12th International Conference
on Cognitive Modeling, Ottawa.

Gilbert, J. P., & Mosteller, F. (2006). Recognizing the
maximum of a sequence. In Selected Papers of Frederick
Mosteller (pp. 355–398). Springer.

Guan, M., & Lee, M. D. (2018). The effect of goals and
environments on human performance in optimal stopping
problems. Decision, 5(4), 339.

Guan, M., Lee, M. D., & Vandekerckhove, J. (2015). A
hierarchical cognitive threshold model of human decision
making on different length optimal stopping problems. In
CogSci.

Lee, M. D. (2006). A hierarchical bayesian model of human
decision-making on an optimal stopping problem. Cogni-
tive Science, 30(3), 1–26.

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cogni-
tive modeling: A practical course. Cambridge University
Press.

Ritter, F. E., Schoelles, M. J., Quigley, K. S., & Klein, L. C.
(2011). Determining the number of simulation runs: Treat-
ing simulations as theories by not sampling their behavior.
In Human-in-the-loop simulations (pp. 97–116). Springer.

Seale, D. A., & Rapoport, A. (2000). Optimal stopping
behavior with relative ranks: The secretary problem with
unknown population size. Journal of Behavioral Decision
Making, 13(4), 391–411.

von Helversen, B., & Mata, R. (2012). Losing a dime with
a satisfied mind: Positive affect predicts less search in se-
quential decision making. Psychology and Aging, 27(4),
825.

Zwick, R., Rapoport, A., Lo, A. K. C., & Muthukrishnan, A.
(2003). Consumer sequential search: Not enough or too
much? Marketing Science, 22(4), 503–519.

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

99

https://github.com/CognitiveComputationLab/ccobra
https://github.com/CognitiveComputationLab/ccobra


Inferring a Cognitive Architecture from Multi-Task Neuroimaging Data: A
Data-Driven Test of the Common Model of Cognition Using Granger Causality

Holly S. Hake (hakehs@uw.edu)
Department of Psychology, University of Washington, Seattle, WA 98195 USA

Catherine Sibert (sibert@uw.edu)
Department of Psychology, University of Washington, Seattle, WA 98195 USA

Andrea Stocco (stocco@uw.edu)
Department of Psychology, University of Washington, Seattle, WA 98195 USA

Abstract
A common complaint levied at analyses based on cognitive
architectures is their lack of connection to observed
functional neuroimaging data, particularly for architectural
models that rely on high level, theoretical components of
cognition. Previous work has connected task-based
functional MRI data to the Common Model of Cognition
(CMC), using a top-down modeling approach. Here, a
bottom-up method, Granger Causality Modeling (GCM), is
applied to the same task-based data to infer a network of
causal connections between brain regions based on their
functional connectivity. The resulting network shares many
connections with those proposed by the Common Model,
and also suggests important additions to the Common
Model, likely related to the role of episodic memory in
control.
Keywords: Cognitive Modeling, Cognitive Architecture,
Granger Causality, Functional Connectivity

Introduction
In the field of cognitive architectures, an important topic of
discussion is the relationship between the components of
an architecture and their relationship to the brain. Some
architectures, like SPAUN (Eliasmith et al., 2012), LISA
(Hummel & Holyoak, 2005), and Leabra (O’Reilly et al.,
2016), are designed to mimic the brain’s biological circuits
and rely on artificial neurons as their building blocks.
These systems take a circuit-level approach to cognitive
modeling, based on the notion that function arises from
form. An alternate, functional approach forms the basis of
another class of architectures, such as Soar (Laird, 2019),
or ACT-R (Anderson, 2007), whose building blocks are
more abstract and high-level cognitive components such as
perceptual systems and memory that have been then
mapped post-hoc to particular brain regions (e.g.,
Anderson, Fincham, Qin, & Stocco, 2008).

Ultimately, the success of both bottom-up and top-down
approaches depends on one fundamental aspect, that is, the
exact nature of the functional connections between the
assumed components, or the underlying brain’s
architecture. Surprisingly, the fields of systems-level
neuroscience and the fields of cognitive architectures have
rarely interacted in this domain. In this paper, we attempt
to resolve some of the tensions between the competing
methodologies by using Granger Causality Modeling

(GCM) of low-level functional brain activity to find causal
connections between brain regions associated with
high-level cognitive components. The networks produced
by these connections are then compared to existing
frameworks of theoretical architectures.

Functional Connectivity
Most research aimed at understanding brain architecture
has been done through the analysis of functional
connectivity, a data-driven and bottom-up method of
determining the degree of connection between brain
regions through statistical dependencies--typically, the
Pearson correlation between times series in different brain
regions (e.g., Fox et al., 2005). Through this method,
network neuroscientists have identified several distinct
networks of brain regions, such as the Default Mode
Network (Raichle et al., 2001). However, while functional
connectivity analysis can detect the presence of such
networks, it can be difficult to characterize the specific
function or role that they play in higher level cognition.
Furthermore, correlation coefficients have no directionality
attached to them, which makes it impossible to draw causal
conclusions about the role of different regions and the flow
of information along a network.

The Common Model of Cognition
A number of recent studies have tried to connect
architecture frameworks to functional brain activity in a
top-down fashion, by imposing architectural constraints on
a network of connected brain regions. In particular, these
studies have capitalized on the Common Model of
Cognition (CMC), an abstract description of the principles
common to multiple architectures (Laird, Lebiere, &
Rosenbloom, 2017). The CMC proposes that, at the highest
level, cognition arises from the interaction of five cognitive
components, corresponding to Perception, Action,
Long-Term Memory, Procedural Memory, and Working
Memory. These components can be associated with five
corresponding large-scale brain circuits, and a network of
directional connections can be drawn between them. Most
recently, Stocco et al. (2021) showed that the CMC
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outperforms a selection of six other architectures in fitting
data across six different task paradigms spanning seven
different domains, suggesting that it provides a reasonably
accurate system-level description of the brain’s
architecture.

Unfortunately, all of the previous tests of the CMC
(Stocco et al., 2018; Steine-Hanson et al., 2018; Stocco et
al., 2021, have employed a top-down approach, comparing
the relative fit of different possible architectures. This
approach was partially constrained by the choice of one
particular method of the analysis of effective connectivity,
Dynamic Causal Modeling (DCM: Friston, Harrison, &
Penny, 2003). The authors justified the choice of DCM
because it allows for the distinguishing of the directionality
of connections, while the most commonly used functional
connectivity measures are based on partial correlations and
are non-directional. While DCM allows for directional
estimates, it relies on the top-down implementation of a
plausible architecture, and it also limits the use of a
bottom-up, data-driven approach. Because the space of
possible architectures, even when only five components are
considered, is extremely large, it is possible that a better
candidate architecture exists, but was simply not included
among those examined by Stocco et al. (2021).

Figure 1: (A) The Common Model of Cognition (CMC);
(B) Proposed associations between components and
anatomical brain regions.

Granger Causality Modeling
In this paper, we re-analyze the data from the Stocco et al
(2021) paper using Granger Causality Modeling. In GCM,
the existence of a causal effect between two time series x
and y is established by comparing two models (Granger,
1969), one auto-regressive linear model in which the value
of y at times t depends only on its past value at time t-1:

y(t) =  β0 + β1 y(t -1)

and an alternative model that includes the effect of the past
state of x:

y(t) =  β0 + β1 y(t -1) + β2 x(t - 1)

If the second model is significantly better than the first,
then x is said to Granger-cause y. Although it was
originally developed and applied in the field of economics,
Granger causality has been successfully applied to

neuroimaging data (Roebreck et al., 2005; Deshpande et
al., 2008) and offers similar advantages and comparable
performance to DCM (Friston et al., 2012). In this paper,
we apply this method to test the existence of all possible
causal connections between the five components proposed
by the CMC.

Materials and Methods

Participants
The study presented herein consists of an extensive
analysis of a large sample (N = 200) of neuroimaging data
from the Human Connectome Project (HCP), the largest
existing repository of healthy young adult neuroimaging
data.

Task fMRI Data
The HCP task-fMRI data encompasses seven different
paradigms designed to capture a wide range of cognitive
capabilities. Of these paradigms, six were included in our
analysis (the seventh was a motor localization task). A full
description of these tasks and the rationale for their
selection can be found in the original HCP papers (Barch et
al., 2013; Van Essen et al., 2013).

Data Processing and Analysis
Image Acquisition and Preprocessing. MRI images were
acquired and minimally preprocessed according to HCP
guidelines (Barch et al., 2013; Van Essen et al., 2013).
Scans were taken on a 3T Siemens Skyra using a
32-channel head coil with acquisition parameters set at TR
= 720 ms, TE = 33.1 ms, FA = 52°, FOV = 208 × 180 mm.
Each image contained 72 2.0mm oblique slices with an
in-plane 2.0 x 2.0 mm resolution. Images were acquired
with a multi-band acceleration factor of 8X. These raw
images then underwent minimal preprocessing including
unwarping, motion realignment, and normalization to the
standard MNI template. From there, the images were then
smoothed with an isotropic 8.0 mm full-width half
maximum Gaussian kernel.
Regions of Interest Definition. Regions of Interest (ROIs)
for each task and participant were defined using the
method described in Stocco et al. (2021) and available on
the paper’s online repository. For each CMC component, a
group-level centroid was first identified by running a
canonical GLM analysis that compared the stimuli against
their task-specific baseline and then locating the peak of a
statistical parametric map within the general areas
associated with that CMC component (Figure 1). Because
all tasks show stronger activation in the left hemisphere
than in the right, all the group-level centroids were located
in the left hemisphere.

To account for individual-level variability in functional
neuroanatomy, the group-level coordinates were then used
as the starting point to search in 3D space for the closest
activation peak within each individual statistical parameter
map. Figure 2 illustrates the distribution of the individual
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coordinates of each region for each task, overlaid over a
corresponding group-level statistical map of task-related
activity (as in Stocco et al., 2021). Each individual
coordinate is represented by a point; the ≈200 points for
each region form a cloud that captures the spatial
variability in the distribution of the individual coordinates
for that region. Next, the individualized ROI coordinates
were used as the center of a spherical ROI with an 8mm
radius. All voxels within the sphere whose response was
significant at a minimal threshold of p < .50 (that is, a 50%
probability of showing a response) were included as part of
the ROI.

Finally, for each ROI of every participant in every task, a
representative time course of the BOLD signal was
extracted as the first principal component of the time series
of all of the voxels within the sphere. The resulting time
series, one per component, were then entered into a
Granger causality model.

Figure 2: Location of ROI centroids across the six tasks of
the Human Connectome Project; variations account for
individual differences in functional anatomy.

Granger Causality Model
A multivariate Granger causality model was then set up, in
which the BOLD response at time t across all regions, x(t),
was modeled as the contribution of all of the regions
(including itself) at lags 1, 2, … k:

x(t) = β0 + β1 x(t-1) + … + βk x(t-k) (1)

To determine the optimal lag value, ten models were
created by varying k from k = 1 to k = 10, and the value of
k that gave rise to the model with the lowest Bayesian
Information Criterion was selected. Across all participants
and tasks, the maximum lag that was observed was k = 6,
and the modal was k = 2. Note that, when k > 1, there are
multiple different parameter estimates that quantify the
directional effect of a region on another region, one for
each lag. To reduce the dimensionality of these estimates,
only the most significant lag (i.e., the one with the smallest
p-value) was selected.

For each participant, a subject-level inferred architecture
was then created by discretizing the matrix of connections
and maintaining only directed links with p < .05. To infer a
group-level architecture from the individual-level
architectures, the most likely directed links between
regions need to be inferred from the frequency of their
distribution in the sample of participants. To determine the
probability that each directed connection c is part of the
group-level architecture, we modeled the probability of it
appearing across all participants as a binomial distribution,
with a prior probability of P = .50.

Results
Group level connection maps for each of the six tasks used
in the HCP dataset are shown in Figure 3. The figures
show a connectivity matrix representation of the inferred
architectures for each task, where the brightness of each
matrix cell reflects the probability that the corresponding
directional connection should be included in the
architecture.

Figure 3: Task-specific connection grids for each of the six
HCP task paradigms. Each grid square represents a
potential causal connection between two regions, and the
brightness of the square reflects the probability of that link
at a group level.
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The figure highlights the different connections utilized in
each task domain, as well as some commonalities shared
by all tasks (i.e., the preponderance of connections to and
from the WM component, corresponding to the PFC).

As pointed out by Stocco et al. (2021), however, an
efficient architecture should be stable and maintain its
functional characteristics across different tasks. Therefore,
to derive a general architecture from these six task-specific
ones, we considered each task as an independent
experiment to test these connections, and we used Fisher’s
(1932) method to combine the p-values from each task.
According to this method, the distribution of the log of
p-values from independent tests follows a χ2 distribution
with 2N degrees of freedom, and the p-value of each
connection can be calculated from the χ2 cumulative
distribution function as follows:

pglobal = p( χ2
2N > ∑task log ptask)

The results are shown in Figure 4, which represents the
connectivity matrix of an architecture inferred across
participants and domains.

Figure 4: The connection grid for a general architecture
incorporating all six HCP tasks. Each grid square
represents a potential causal connection between regions,
and the brightness of the square reflects the probability of
that connection being present.

Figure 5: (A) A visual representation of the architecture
inferred from the Granger causality model; (B) Proposed
associations between components and anatomical brain
regions. Arrows: dark blue, connections present in both
CMC and GM; red, connections unique to Granger model.

The results support an architecture that is similar, but not
exactly identical, to the CMC. If a strict 95% threshold is
applied to the map of connections inferred from the GCM
analysis, 22 of the possible 25 connections are shared
between the human-derived network and the CMC (Fig. 5).

Comparing the Other Architectures
In the previous DCM based analysis of architecture
structures, Stocco et al. (2021) were not able to incorporate
data-driven inferences about connections. Instead, the
plausibility of the CMC was evaluated by comparing its
predictions against a set of representative alternative
architectures across tasks (Fig. 6). These architectures,
divided into two categories, or “families”, represent the
possible organizational structures of general purpose
architectures. All consist of the same five regions or
components present in the Common Model, but provide
differing accounts of the connections between them.

Figure 6: (A) Three variations of Hub-and-Spoke (HUB)
models, and of (B) Hierarchical (HIER) models. Arrows:
dark blue, connections present in both CMC and alternate
models; red, connections unique to alternate models; and
dotted, connections present in CMC and absent in alternate
models.

The “Hub and Spoke” model family designates a single
region as the “Hub” of model activity, with bidirectional
connections between it and all other regions. These
“Spoke” regions, however, do not connect to one another,
and activity passing from one spoke region to another must
also pass through the hub. Of the five CMC components,
arguments can be made for each of the three memory
modules serving in the capacity of a hub: working memory
could drive activity from the prefrontal cortex (Hub PFC),
long term memory could drive activity from temporal

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

103

https://www.zotero.org/google-docs/?Esb5ZG
https://www.zotero.org/google-docs/?53s8pL


regions (Hub Temporal), or procedural memory could
drive activity from the basal ganglia (Hub Procedural).

An alternate account of model structure is posed by
members of the “Hierarchical” family. In this account, the
architecture serves as a feed-forward system where activity
originates in the perception region, travels through the
successive memory regions, and culminates in the action
region. With the limited number of regions and the fixed
position of the perception and action regions, the potential
models in this family vary only in the order of the three
memory modules. An additional constraint, the assumption
that long term memory (LTM) will proceed working
memory (WM), leaves the position of procedural memory
as the only degree of freedom. It is either the first of the
three memory modules (Hierarchical 1), the middle module
(Hierarchical 2), or the final module before action
(Hierarchical 3).

To test whether the results of our Granger causality
model converge with those previously reported with DCM
(a test of convergent validity), we performed the same
comparison of architectures done by Stocco et. al (2021).
To do so, we first derived the theoretical network
architectures of the six alternate architectures examined in
that study for comparison against the network architecture
derived using GCM. These networks are represented in the
form of connectivity matrices in Figure 7.

Figure 7: Connectivity matrix representations of the six
alternative architectures (Figure 6) and the CMC.

For each alternate architecture, as well as the CMC, we
examined the degree of similarity between the network of
connections suggested by the GCM analysis and the
connections theorized by the architecture. We considered
three metrics. The first is the correlation between the
predicted and observed directed connections in the vector
of 25 possible edges in the networks. The second is the
proportion of overlap between the two vectors, defined as
the proportion of exactly matched connectivity predictions
or, equivalently, the complement of the proportional
Hamming distance between the two vectors of connections.
The third and final metric is likelihood, defined as the
Z-scores of predicted vs. expected number of successes in a
binomial distribution of 25 connections. The results of each
of the three metrics are compared in Figure 8. For all
criteria, the CMC reflects the greatest similarity to the
network architecture uncovered by the GCM analysis.

Figure 8: Comparison of the CMC (in red) and six
alternate architectures in terms of three measures of
similarity to the GCM network.

Discussion
In this paper, we have presented an analysis of Human
Connectome Data using the same ROIs as in Stocco et al
(2021), but employing  Granger causality instead of DCM,
to analyze fMRI data. A replication of the original
comparison (Stocco et al., 2021) between the Common
Model of Cognition and six alternative architectures
largely confirmed the previous study’s findings, namely,
that the CMC performs better than the alternative
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architectures at explaining effective connectivity within
and across all tasks.

Granger causality modeling, however, offers the unique
opportunity of deriving a new architecture from data. The
new architecture, represented in Figure 5, is a modified
version of the CMC with the addition of projections from
Perception and Action regions to the LTM component.

It is interesting to note that both connections are
unidirectional, i.e., Perception and Action feed to LTM but
do not receive projections back. Instead, bidirectional
connections exist between LTM and WM. This particular
connectivity structure seems to be best adapted to
implement a form of instance-based learning, whereby
successful episodic memories are formed by encoding
previous stimuli, and actions and outcomes are stored to be
later retrieved and guide behavior. In this case, direct
connections from Perception and Action to LTM would
support the encoding of stimuli and actions, respectively,
while the connectivity from WM to LTM could support the
encoding of evaluation of the outcome (performed by the
WM component). Previous episodes could be later
retrieved through the directed connection between LTM
and WM. Moreover, the existence of additional functional
links to LTM suggests that the large-scale brain
organization seems to contain multiple hubs of different
importance.

Limitations
However, these findings should be considered in light of

a number of potential limitations. The first is that, while we
ultimately aggregated the results into a single
task-independent network, a significant amount of
variability exists between the network architectures that
can be inferred from the specific tasks. While DCM is
intrinsically top-down and limited to examining the fit of
specific network models, GCM does not suffer such
limitation. Thus, the degree to which an task-independent
architecture could be derived from individual tasks is
debatable, and reflects the underlying assumption that, at a
very high level, brain activity showcases a common
invariant architecture. This hypothesis, of course, is not
universally accepted and should be examined
independently in future studies.

A second limitation is that the estimates of connectivity
obtained through Granger causality might change when a
larger set of component regions are included; thus, these
results cannot be considered stable until the exact number
of ROIs is considered canonical. It should be noted that,
however, this limitation is also common to DCM and thus
similarly affects previous work in this area (e.g.,
Steine-Hanson et al., 2019; Stocco et al., 2021).

Finally, it should be noted that, although these results do
suggest that a better architecture (depicted in Figure 5)
might outperform the original Common Model architecture
and the others tested by Stocco et al. (2021), they do not
necessarily imply so. This is because GCM is a different
method than DCM, it is entirely possible that the

architecture of Figure 5 would not perform as well when its
effective connectivity is measured within the DCM
framework. Therefore, possible future studies should
re-investigate the superiority of this new architecture using
the DCM-based comparison, as done in Stocco et al
(2021).

Implications for the Common Model of Cognition
These limitations notwithstanding, these results do

support credibility to the principles of the CMC. The
architecture that was identified through GCM differs only
minimally from the CMC, and the CMC remains the
architecture that most closely matches our results across
the set of potential architectures tested by Stocco et al.
(2021). Our new findings, however, suggest important
modifications to its structure. We consider these results as
an exciting starting point for the future examination of
large scale-connectivity of the brain.
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Abstract

Most computational theories of cognition lack a representa-
tion of physiology. Understanding the effects of compounds
present in the environment on cognition is important for ex-
plaining and predicting changes in cognition and behavior
given exposure to toxins, pharmaceuticals, or the deprivation
of critical compounds like oxygen. This research integrates
physiologically-based pharmacokinetic (PBPK) model predic-
tions with ACT-R’s fatigue module to predict the effects of caf-
feine on fatigue. Parameter mapping between PBPK model pa-
rameters and ACT-R are informed by neurophysiological liter-
ature and established mappings between ACT-R modules and
brain regions. Predicted caffeine concentrations in the brain
are used to modulate a parameter in the fatigue module to ex-
plain caffeine’s effects on multiple performance metrics.
Keywords: caffeine; fatigue; ACT-R; physiologically based
pharmacokinetic modeling; computational modeling

Introduction
Human cognition is intimately tied to the environment. In-
deed, there have been decades of research and discovery on
how subtle differences in interactive tasks impact cognitive
performance (Anderson, 1990; Gray & Boehm-Davis, 2000).
Cognitive performance can also be altered through the de-
liberate or accidental exposure to compounds in the envi-
ronment, such as pharmaceuticals, nutriceuticals, and toxins.
For example, most countries limit alcohol consumption to
avoid accidents that stem from alcohol-induced impairments
to cognitive processing (Japan’s blood alcohol concentration
is 0.03; Canada’s is 0.08). In the current paper, an approach
toward integrating models of physiology with models of cog-
nition to explain and predict the impacts of chemical com-
pounds on cognitive performance is described and evaluated.

Caffeine is one of the most widely used chemical com-
pounds (Barone & Roberts, 1996), and its effects on perfor-
mance (Aidman et al., 2021) and fatigue mitigation (Lorist
& Tops, 2003) are well documented. Fatigue negatively af-
fects many cognitive functions, including attention, memory,
learning, and executive function (Jackson & Van Dongen,
2011). A moderate use of caffeine seemingly reverses some
of fatigue’s negative effects (Bonnet & Arand, 2012), but too
much caffeine decreases those benefits and increases negative
subjective experiences (Kaplan et al., 1997).

Integrating the effects of caffeine and fatigue into cognitive
architectures through the integration of models of physiology
will provide a broader and more detailed understanding of
cognition. Even with the wide variety of studies related to

caffeine, it is difficult to accurately account for the effects
of caffeine on cognition (Lorist & Tops, 2003). The accrual
and integration of theories into a single framework to better
understand cognition is precisely the promise of cognitive ar-
chitectures (Newell, 1973).

The objective of the presented research was to develop a
task-independent mechanism within a cognitive architecture
to account for the fatigue mitigating effects of caffeine. In the
following sections we review the literature on caffeine, phys-
iological and cognitive modeling, and an earlier approach to
integrating the modeling approaches. We then present ob-
served data of fatigue mitigation through caffeine and present
a model that accounts for the data.

Related Literature
Research has been conducted across constituent facets of
physio-cognitive modeling. In the following sections we first
provide background on our target compound, caffeine. Next,
models of physiology are described. Finally, prior attempts to
integrate computational models of physiology and cognition
are provided.

Caffeine
Caffeine is a widely used stimulant known to provide benefits
to cognitive performance (Kamimori et al., 2015). Caffeine
and its metabolites (e.g., paraxanthine) act as adenosine an-
tagonists (inhibitors) on two types of receptors: A1 and A2A
(Kaplan et al., 1997). A1 receptors are distributed throughout
the brain, but are most concentrated in the thalamus, cerebral
cortex, and hippocampus. A2A receptors are less widely dis-
tributed, existing in dopamine rich regions like the striatum,
but are more central to caffeine’s stimulatory effects on cog-
nition (Lorist & Tops, 2003).

Physiologically-based Pharmacokinetic Models
A physiologically-based pharmacokinetic (PBPK) model is
an in silico representation of the movement of chemicals in
the arterial blood, flowing to each major organ or lumped
tissue compartment(s), including the brain. They provide
the time-course of compounds via ordinary differential equa-
tions to account for absorption, distribution, metabolism,
and excretion processes (Pearce, Setzer, Strope, Sipes, &
Wambaugh, 2017). Thus, PBPK models enable predictions
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of the amount and time course of a compound in the brain
and enable dose-response predictions.

There are three components to PBPK models: 1) species-
specific physiological parameters, 2) chemical-specific pa-
rameters, and 3) experiment-specific details for the studies
to be simulated. Species-specific physiological parameters
are the organ weights and blood flow rates for the defined
organs in the PBPK model and are derived from the closest
like species when not available. Chemical-specific parame-
ters that are unique for each chemical are the tissue solubility
(partition coefficient), metabolism of the parent compound,
and plasma and tissue binding characteristics.

Atomic Components of Thought–Rational (ACT-R)
ACT-R is a cognitive architecture that specifies how cogni-
tive processes interact to produce cognition and overt behav-
ior (Anderson, 2009). Models developed within ACT-R posit
a common set of processes and mechanisms, which are in-
stantiated as a computer simulation. Independent modules
operate in parallel and include declarative memory, vision, at-
tention, and motor modules. Procedural memory coordinates
the behavior of the architecture through a set of production
rules. Production rules follow an ”if-then” structure that en-
codes the conditions under which specific actions are taken.

Prior research in ACT-R has related the striatum and
the thalamus to the architecture’s action-selection system
(Anderson, 2009). Both of these regions are associated with
adenosine receptors, which would suggest ACT-R’s action-
selection system is likely to be affected by caffeine.

Including Physiology within Cognitive Modeling
A few previous research efforts have integrated physiological
mechanisms into computational cognitive modeling. Some
cognitive architectures include physiological constraints from
the brain (e.g., spiking neural networks in Spaun; Eliasmith
et al., 2012), but the vast majority of architectures tend not
to include physiological constraints. A few efforts have inte-
grated simplified aspects of non-brain physiology into com-
putational cognitive models, like Ritter, Kase, Klein, Bennett,
and Schoelles (2009) that explored how ACT-R parameters
could be varied to explain effects of stress and caffeine. Work
by Dancy, Ritter, Berry, and Klein (2015) used a more com-
plete model of human physiology to affect behavior within
ACT-R (i.e., HumMod; Hester et al. 2011).

The research of Dancy and colleagues inspired the devel-
opment of a similar, yet novel, approach to integrating models
of physiology with models of cognition. This novel approach
provided compound blood concentrations to ACT-R mech-
anisms through PBPK models. The result was a cognitive
model capable of predicting cognitive performance effects of
a common volatile organic compound, toluene (Fisher et al.,
2017). The present research extends the research by Fisher et
al. in three ways: (1) another compound, caffeine, is explored,
(2) the mapping of PBPK predictions to ACT-R parameters
is informed by neurophysiological literature, and (3) the re-
search is focused on how caffeine mitigates fatigue, and so

ACT-R’s fatigue module is used (Walsh, Gunzelmann, & Van
Dongen, 2017).

Observed Data
Sleep deprivation data were collected and analyzed by
McIntire, McKinley, Goodyear, and Nelson (2014). All par-
ticipants were kept awake for 30 hours, and some were given
caffeine. A summary of the study and data are provided here
(additional details can be found in the original paper).

Thirty active-duty military personnel (22 male) partici-
pated in the study and were compensated for their time. Par-
ticipants were randomly assigned to one of three conditions:
transcranial direct current stimulation (tDCS) active stimu-
lation with placebo caffeine, caffeine with sham tDCS, and
sham tDCS and placebo caffeine. Data from the active stim-
ulation condition was omitted from the present study. Two
participants’ data were excluded from data presented here as
those two were non-compliant.

The psychomotor vigilance task (PVT) was used to as-
sess alertness. On each trial, digits were presented that show
the number of milliseconds since the stimulus was presented.
Each trial lasts for a minute, or until the participant responds
by pressing a button. The interstimulus interval varied ran-
domly from 2 to 12 s. The total task duration was 10 minutes.

Participants were instructed to sleep for at least 7 hours for
the two nights prior to the study. Participants awoke at 6 a.m.
and were awake for 30 continuous hours. One session of PVT
was administered every two hours starting at 6 p.m. Partic-
ipants in the caffeine condition received 200mg of caffeine
chewing gum at 3:15 a.m. Participants in the control group
received gum without caffeine.

All data were normalized to 2 a.m. values, just prior to
caffeine administration. McIntire et al. (2014) found a sig-
nificant difference in mean response times, and a marginal
difference in lapses, between caffeinated and control partici-
pants (see Figure 1, solid lines). No mention is made of false
starts, but Figure 1 shows little to no difference in false starts.
Lapses are responses that occur 500 ms after stimulus presen-
tation or later. False starts are responses that occur 150 ms
after stimulus presentation or earlier. Both are common PVT
metrics used in the sleep literature to understand the effects
of fatigue (Lim & Dinges, 2008).

Model
In this section, the constituent parts of the model are dis-
cussed. The ACT-R model is described first, followed by the
PBPK model. Finally, variants of the model are discussed
along with the strengths and weaknesses of each.

ACT-R Model
This modeling builds on previous research that integrates
ACT-R with biomathematical models (BMM) of fatigue
(Walsh et al., 2017), and PBPK models (Fisher et al., 2017).
The initial ACT-R model was identical to that in previous re-
search investigating sleep loss and vigilance with the PVT
(Veksler & Gunzelmann, 2018). Initial parameters of the
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Figure 1: Predictions of the best fitting models for the EGS, UTMBC, and FPBMC variants. Error bars indicate ±1 standard
deviation of participant means.

model were set to the mean of individual participants’ pa-
rameter estimates from Walsh et al. (2017; Table 5).

The PVT model contains only three productions: wait, at-
tend, and respond. False starts, which are responses before
or within 150ms of stimulus onset, can occur due to partial
matching between the wait and attend goals. Additional de-
tails on the model can be found in Veksler and Gunzelmann
(2018).

The fatigue module accounts for the effects of sleep home-
ostasis and circadian rhythms. The module consists of a the-
ory of microlapses and a BMM of fatigue. The BMM pre-
dicts alertness levels based on sleep schedule and the time
of day. Lower levels of alertness increase the likelihood of
microlapses, a brief interruption of cognitive processing. Mi-
crolapses affect ACT-R’s production utility mechanism by re-
ducing the utility of all productions. The production utility
decrement caused by microlapses is determined by the fa-
tigue module’s FPBMC parameter. Microlapses also impact
a fatigue compensatory mechanism that decreases ACT-R’s
utility threshold. The degree of compensation by this mecha-
nism is determined by the fatigue module’s UTBMC parame-
ter. Additional details on the fatigue module can be found in
Walsh et al. (2017).

The model was initially fit to the control data. Solid lines
in Figures 1 and 3, and Table 1, show the fit of this baseline
model. The same parameters were varied as in Walsh et al.
(2017), and the best fitting values were very near the mean
parameters found in that study:

• Initial utility (IU) = 5.1
• Utility threshold (UT) = 4.62
• Production utility noise (EGS) = 0.43
• Default action time (DAT) = 0.04
• Fatigue production utility BMM constant (FPBMC) =

0.025
• Utility threshold BMM constant (UTBMC) = 0.0155
• Fatigue procedural decrement (FPDEC) = 0.99

PBPK Model
The blood pharmacokinetics of caffeine after oral consump-
tion of a 200 mg caffeine gum by a 70 kg individual (i.e. 2.86
mg/kg), was simulated using the R package “high throughput
toxicokinetics” (httk; Pearce et al., 2017). In addition to the
default tissue compartments in the PBPK model structure se-
lection of the httk platform (lung, G.I. tract, liver, kidney, rest
of body), we added a brain and an adipose tissue compartment
(fat), in order to address the main pharmacodynamic target
tissue for caffeine, that of the central nervous system (CNS)
and other peripheral tissue concentrations (fat). This allows
mapping of the pharmacokinetics of caffeine in the CNS in
addition to the plasma compartment.

The blood plasma concentration time-course from the con-
trolled human pharmacokinetic study of Syed, Kamimori,
Kelly, and Eddington (2005) after an acute oral chewing gum
dosage is plotted in Figure 2, with the PBPK model results
overlayed on the data. An excellent match to the data con-
firms the ability to predict accurately the concentration of caf-
feine in plasma after this unique dosing route.
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Figure 2: PBPK model results (solid line) of human caffeine
plasma (dots) concentration time-course after an acute caf-
feine dose (200 mg) in chewing gum (n=1 human subject).

Model Variants

Table 1 shows a list of the model variants and their fit to the
observed data. Each model variant explored the use of a sin-
gle parameter affecting production selection. Production se-
lection was the focus of this research for two reasons. First,
the effects of alertness in previous modeling of the PVT have
been explained with procedural effects (Walsh et al., 2017).
Second, pharmacological research has noted that a primary
mechanism for stimulation by caffeine is as an antagonist of
A2A receptors in regions of the basal ganglia, most notably
in the striatopallidal and striatonigral pathways (Fredholm,
Bättig, Holmén, Nehlig, & Zvartau, 1999). The striatopalli-
dal pathway in the basal ganglia has been mapped to ACT-R
procedural processor, with the striatum more directly linked
to production matching and the pallidum more directly linked
to production selection (Anderson, 2009).

Production Noise Parameter (EGS). In the fatigue mod-
ule, as alertness decreases, noise plays a larger role in produc-
tion selection. Our initial hypothesis was that caffeine may
offset some of the effects of noise as alertness decreases.

The left plot in Figure 1 shows the best fitting predictions
of the model with EGS varied as a function of caffeine pres-
ence. Noise was increased to 0.5 (from the baseline model’s
0.43) in the caffeinated condition. As shown in the first row
of Table 1, the fit is not good. An increase in noise increases
false starts, just as a decrease in noise (not shown) decreases
false starts. In the observed data, the presence of caffeine has
no effect on false starts.

Utility threshold compensatory mechanism (UTBMC).
The next parameter explored was UTBMC. This parame-
ter determines how utility threshold is affected by the fa-
tigue module. Alertness predictions are scaled by UTMBC
and summed with the utility threshold. Changes to UTBMC
affects the complex interaction between activation of the

Table 1: Model fits for the baseline model and four variants.

Variant Mean RT Lapses False Starts

RMSE R2 RMSE R2 RMSE R2

Baseline 146 .95 5.1 .89 0.3 .80

EGS 68 .88 7.6 .65 3.5 .91

UTBMC 44 .82 3.2 .98 1.3 .76

FPBMC 77 .91 3.8 .79 0.5 .80

with
PBPK 55 .93 2.7 .73 0.5 .99

model’s response production, “misfiring” of the model’s re-
sponse production (due to partial matching), and microlapses.

Previous research has associated ACT-R action selection,
of which production utility threshold is a part, with the pal-
lidum in the brain (Anderson, 2009). Other research has
identified regions rich in dopamine receptors, especially stri-
atopallidal regions, as playing pivotal roles in caffeine’s effect
on behavior (Lorist & Tops, 2003). Therefore, caffeine could
modulate production utility thresholds, with greater caffeine
concentrations making it more likely that a production will
fire and therefore less likely that a micro-lapse will occur.

The center plot in Figure 1 shows the best fitting predic-
tions for the model with a UTBMC value of 0.018 when caf-
feine is present. These predictions are a substantial improve-
ment over the previous mechanisms. Mean response time
predictions remain good, and a differentiation of lapses as a
function of caffeine presence is predicted. However, there is
a slight, but substantial, increase in the number of false starts,
which is not present in the observed data.

Fatigue production utility decrement (FPBMC). The fi-
nal parameter explored was FPBMC. This parameter deter-
mines how production utilities are affected by the fatigue
module. Alertness predictions are scaled by FPBMC, and
then production utilities are scaled by one minus the scaled
alertness predictions. A decrease in FPBMC results in higher
utilities, and an increase results in lower utilities.

Just as with UTMBC, the literature suggests a link between
FPBMC and caffeine effects. Production utilities are as much
a part of action selection in ACT-R as utility threshold, and so
are also associated with the pallidum (Anderson, 2009) and
could also be modulated by caffeine (Lorist & Tops, 2003).

The right plot in Figure 1 shows the best fitting predictions
for the model with a FPBMC value of 0.02 with caffeine and
0.025 without caffeine (control). As with the UTBMC model,
this variant predicts a differentiation of lapses as a function
of caffeine. As shown in Table 1, the fits to the false starts
is better than with the UTBMC, and the fits to the response
times and lapses are comparable to those with the UTMBC
model.
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Scaled by caffeine predictions. Once we had a good can-
didate parameter that could account for changes in perfor-
mance due to caffeine, the fatigue module (Walsh et al., 2017)
was modified to allow caffeine concentration predictions to
modify the FPBMC parameter similar to the method used
by Fisher et al. (2017). The modified FPBMC parameter,
FPBMCp, is:

FPBMCp(t) = FPBMC−βPBPK(t)

where PBPK is the predicted concentration of caffeine in the
brain tissue at time t, FPBMC is the fatigue module’s produc-
tion utility decrement parameter, and β determines the de-
gree to which the PBPK predictions modulate FPBMC. The
PBPK values used were the mean caffeine concentrations dur-
ing each task presentation in the McIntire et al. (2014) proto-
col. The concentrations varied little during the ten minutes
of task presentation. The scaling parameter was varied a few
times until the ACT-R predictions approximated the observed
performance.

Figure 3 and Table 1 show the results for the best fitting β

parameter, which was 0.0045. The model continues to do
a good job of predicting most of the trends that the static
FPBMC model did, with most metrics improving slightly and
the R2 for false starts improving substantially.

Figure 3: Predictions of the best fitting model varying
FPBMC modulated by PBPK predictions. Error bars indicate
±1 standard deviation of participant means.

Discussion
This work investigated the effects of caffeine on fatigued peo-
ple. While the effects of caffeine have been studied exten-

sively in psychology and physiology, few formal models have
been used to study these effects; exceptions include Ritter et
al. (2009) and Ramakrishnan et al. (2016). Ritter et al. inves-
tigated the effects of 200 or 400 mg of caffeine on the serial
subtraction task without sleep restriction on three ACT-R pa-
rameters related to vocalization and memory retrieval (SYL,
BLC, and ANS). Ramakrishnan et al. present a mathemati-
cal model that predicts human performance on the PVT from
a large number of protocols, with different sleep restrictions
and caffeine administration. While both models explain the
data well, neither model seems to be informed by the under-
lying physiological processes.

The mapping of physiological to cognitive processes is not
trivial. In both formal physiological and cognitive models,
there are many variables that could potentially interact to pro-
duce behavior (Dancy et al., 2015). In this work, we lim-
ited our parameter space to those parameters associated with
ACT-R’s action selection mechanism, as the PVT is largely
procedural. In addition, the caffeine literature suggests a crit-
ical connection between caffeine and action selection, with
caffeine affecting A2A receptors concentrated in dopamine
rich areas like the basal ganglia (Lorist & Tops, 2003). Still,
future research will need to employ other tasks that recruit
other cognitive processes, as caffeine has also been shown
to affect memory (Loke, 1988) and motor processes (Loke,
1988).

Walsh et al. (2017) integrated a mathematical model of
alertness with a theory of microlapses to create the ACT-R
fatigue module. The work presented here builds on that to ex-
plain how caffeine mitigates the effects of fatigue. The mod-
eling revealed that caffeine may effectively “reverse” some
of the decrement in production utility that result from fatigue.
This reversal is supported by the physiology literature. Caf-
feine is an adenosine inhibitor and adenosine plays a role in
sleep homeostasis (Landolt, 2008). This inhibition was im-
plemented by scaling the fatigue production utility decrement
(FPBMC) parameter as a function of predicted caffeine con-
centration in the brain. This one parameter captured the three
substantial trends in the observed data without the need to
vary other parameters explored in this research, namely the
fatigue module’s compensatory mechanism (UTBMC) and
production utility noise (EGS).

This research requires validation of the link function be-
tween the PBPK caffeine level predictions and the fatigue
module’s FPBMC parameter. While the use of the PBPK
model gives us some confidence that our mechanism will ac-
count for variations in caffeine, data from additional studies
that include multiple administrations and dosages of caffeine
will be required. Correspondingly, the mechanism does not
currently account for potential negative effects of too much
caffeine or individual differences (Kaplan et al., 1997). Fu-
ture research will include extending the PBPK-to-FPBMC
link function to account for known, physiological processes
like paraxanthine (a metabolite of caffeine) and adenosine
pharmacodynamics.
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Conclusion
This research explains the effects of caffeine as a modera-
tion of fatigue’s effects on procedural utility. This is done by
extending previous research that integrated biomathematical
models of alertness (Walsh et al., 2017) and PBPK models
(Fisher et al., 2017). Utilizing physiologically-valid predic-
tions of compound levels in the brain, such as caffeine, to vary
parameters of cognitive modules mapped to relevant neural
mechanisms has the potential to increase the fidelity and ac-
curacy of cognitive models of human performance.
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Abstract

The weak completion semantics is a three-valued, non-
monotonic theory which has been shown to adequately model
various cognitive reasoning tasks. In this paper we extend the
weak completion semantics to model disjunctions and exclu-
sive disjunctions. Such disjunctions are encoded by integrity
constraints and skeptical abduction is applied to compute logi-
cal consequences. We discuss various examples and relate the
approach to the elimination of disjunctions in the calculus of
natural deduction.
Keywords: logic programming; human reasoning; disjunc-
tions; weak completion semantics; natural deduction.

Introduction
Logic programs are universal in that they can compute any
computable function (Sebelik & Stepanek, 1982). Hence, if
high-level cognitive processes like reasoning are computable,
then – from a functional point of view – they can be com-
puted by logic programs. Although originally developed in
the context of classical binary logic, modern logic program-
ming approaches are richer: they cover non-monotonicity
(Clark, 1978), they can be learned (Muggleton, 1992), they
can be interpreted over multi-valued logics (Fitting, 1985),
and they can be mapped onto artificial neural or connection-
ist networks (Hölldobler & Kalinke, 1994).

The weak completion semantics (WCS) is a logic pro-
gramming approach to model human reasoning. Based on
ideas originally developed by Stenning and van Lambalgen
(2008), it is a three-valued, non-monotonic theory which is
knowledge-rich, can handle inconsistent background knowl-
edge, and has been shown to adequately model the average
case in various human reasoning tasks like the suppression
task (Dietz, Hölldobler, & Ragni, 2012), human syllogis-
tic reasoning (Oliviera da Costa, Dietz Saldanha, Hölldobler,
& Ragni, 2017), and human conditional reasoning (Cramer,
Hölldobler, & Ragni, 2021). Thus, the WCS offers solutions
for the five fundamental problems attributed to the classi-
cal binary logic approach in the psychology of reasoning by
Oaksford and Chater (2020).

The WCS differs significantly from mental logic (Rips,
1994) and the mental model theory (Johnson-Laird, 1983).
Mental logic is based on syntactic rules which are valid in
classical binary logic. However, as pointed out by López-
Astorga (2015) they are not a complete system like, for ex-

1The authors are mentioned in alphabetical order.

ample, the calculus of natural deduction of Gentzen (1935);
some problematic rules like the introduction of disjunction
are omitted and other rules like the introduction of implica-
tion have certain restrictions. The WCS generates models
much like the mental model theory. But, whereas the mod-
els in the mental model theory are classical binary models,
the models in WCS are ternary. Moreover, the computation
of WCS’s models is rigorously defined by means of a fixed
point construction and skeptical abduction.

The semantics of logic programs is usually defined model-
theoretically, fixpoint-theoretically, and operationally. This
applies to WCS as well. It has an operational semantics
given by implementations in PROLOG, PYTHON, and ASP.
Hölldobler and Kencana Ramli (2009) have shown that each
program and its weak completion2 admits a least model un-
der the three-valued Łukasiewicz (1920) logic, which can
be computed as the least fixed point of a semantic operator
specified by Stenning and van Lambalgen (2008). In other
words, in the WCS a least model is constructed and reason-
ing is with respect to this model. Moreover, the least model
can be computed by a connectionist network (Dietz Saldanha,
Hölldobler, Kencana Ramli, & Palacios Medinacelli, 2018).

As an example consider the conditional sentence if Ella
is studying, then she will be hungry. Following Stenning
and van Lambalgen (2008) this sentence is represented by
the logic program P = {h← s∧¬abs, abs ← ⊥}, where h
and s denote that Ella will be hungry and Ella is studying, re-
specively, and abs is an abnormality predicate. abs encapsu-
lates everything that could prevent the conditional from hold-
ing and is assumed to be false initially.3 If the conditional
sentence is given as first premise, then a three-valued model
is constructed, where abs is mapped to false and h and s are
mapped to unknown. This initial model is represented by
〈 /0,{abs}〉. If the sentence Ella is studying is given as sec-
ond premise, then the mapping of s is updated to true. Con-
sequently, s∧¬abs is true and, hence, h must be true as well.
This second model is represented by 〈{s,h},{abs}〉. In fact,
it is the least model of the weak completion of P . Reason-
ing is performed with respect to this model and, hence, we
conclude Ella will be hungry.

2See next section for a formal definition.
3In this paper the abnormalities will always be false. However,

in other applications like the suppression task they are important to
model exceptional cases and enabling relations (Dietz et al., 2012).
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The WCS is a rigorously defined formal theory. But is
it also a cognitive or psychological theory? Are the models
constructed by the WCS mental models in the sense of Craik
(1945) or Johnson-Laird (1983)? Is it plausible from a cog-
nitive or psychological point of view that humans construct
models in a similar way as the WCS? Is it plausible from a
biological point of view that a human brain constructs mod-
els in a similar way as the connectionist encoding of WCS?

These are challenging questions. So far, we have ap-
proached them by considering human reasoning tasks and ex-
perimental data from the literature as well as conducting own
experiments. But, the WCS cannot deal with disjunctions
like Ella is studying or Ella is running, or both, or Ella is
studying or Ella is running, but not both. It is the aim of this
paper to overcome this limitation. To this end, we propose
to represent disjunctions by sets of integrity constraints like
{⊥←¬s∧¬r} or {⊥←¬s∧¬r, ⊥← s∧ r}, where the for-
mer represents the disjunction s∨r and the latter the exclusive
disjunction s⊕r. Furthermore, we require that models satisfy
the integrity constraints. If this does not hold, then abduction
(e.g. (Kakas, Kowalski, & Toni, 1992)) is applied and if sev-
eral (minimal) explanations can be found, then their conse-
quences are combined skeptically. We will demonstrate that
this not only solves various human reasoning tasks involving
(exclusive) disjunctions but that there is also a striking simi-
larity to the elimination of disjunctions in the calculus of nat-
ural deduction as defined by Gentzen (1935). But, the WCS
avoids some of the drawbacks of natural deduction like the
usage of the logical law ex falso quodlibet (or falsum). The
paper demonstrates that logic programming and the WCS can
also model human disjunctive reasoning.

The Weak Completion Semantics
We assume the reader to be familiar with classical binary
logic (e.g. (van Dalen, 1997)). Let >, ⊥, and U be truth
constants denoting true, false, and unknown, respectively. A
literal is an atom or the negation of an atom. A (logic) pro-
gram is a finite set of clauses of the form B← Body, where B
is an atom and Body is either >, or ⊥, or a finite, non-empty
conjunction of literals. Clauses of the form B←>, B←⊥,
and B← L1∧ . . .∧Ln are called facts, assumptions, and rules,
respectively, where Li, 1≤ i≤ n, are literals.

In this paper, P denotes a program. An atom B is defined
in P if and only if P contains a clause of the form B← Body.
In the program P = {h← s∧¬abs, abs ←⊥} presented in
the introduction the atoms h and abs are defined, whereas s is
undefined. We restrict our attention to propositional programs
although the WCS extends to first-order programs as well (see
e.g. (Hölldobler, 2015) and the conclusion).

Consider the following transformation: (1) For all de-
fined atoms B occurring in P , replace all clauses of the form
B← Body1, B← Body2, . . . by B← Body1 ∨Body2 ∨ . . . .
(2) Replace all occurrences of← by↔. The resulting set of
equivalences is called the weak completion of P . It differs
from the completion defined by Clark (1978) in that unde-

fined atoms are not mapped to false, but to unknown instead.
As shown by Hölldobler and Kencana Ramli (2009), each

weakly completed program admits a least model under the
three-valued Łukasiewicz (1920) logic (see Table 1). This
model will be denoted by MP . It can be computed as the least
fixed point of a semantic operator introduced by Stenning and
van Lambalgen (2008). Let P be a program and I a three-
valued interpretation represented by the pair 〈I>, I⊥〉, where
I> and I⊥ are the sets of atoms mapped to true and false by I,
respectively, and atoms which are not listed in either set are
mapped to unknown by I. We define ΦP I = 〈J>,J⊥〉,4 where

J> = {B | there is B← Body ∈ P and I Body =>},
J⊥ = {B | there is B← Body ∈ P and

for all B← Body ∈ P we find I Body =⊥}.

Following Kakas et al. (1992) we consider abductive frame-
works 〈P ,AP ,IC , |=wcs〉, where P is a program,

AP = {B←> | B is undefined in P}
∪ {B←⊥ | B is undefined in P}

is the set of abducibles, IC is a finite set of integrity con-
straints of the form ⊥← Body, where Body is a non-empty
and finite conjunction of literals, and MP |=wcs L if and
only if MP maps the literal L to true. Let O be an ob-
servation, i.e., a finite set of literals. O is explainable in
the abductive framework 〈P ,AP ,IC , |=wcs〉 if and only if
there exists a non-empty X ⊆ AP called an explanation such
that (1) MP∪X |=wcs L for all L ∈ O and (2) MP∪X satis-
fies IC . The literal L follows credulously from P and O if
and only if there exists an explanation X for O such that
MP∪X |=wcs L. L follows skeptically from P and O if and
only if O can be explained and for all explanations X for O we
find MP∪X |=wcs L. One should observe that if an observa-
tion O cannot be explained, then nothing follows credulously
as well as skeptically. In case of skeptical consequences this
is an application of the Gricean implicature of an existential
statement from a universal one (Grice, 1975): humans nor-
mally do not quantify over things which do not exist.

Given premises, general knowledge, and observations, rea-
soning in the WCS is modeled in five steps:

1. Reasoning towards a program P following Stenning and
van Lambalgen (2008).

2. Weakly completing the program.

3. Computing the least model MP of the weak completion
of P under the three-valued Łukasiewicz logic.

4. Reasoning with respect to MP .

5. If observations cannot be explained or integrity constraints
are violated, then applying skeptical abduction.

4Whenever we apply a unary operator like ΦP to an argument
like I, then we omit parenthesis and write ΦP I instead.
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F ¬F

> ⊥
⊥ >
U U

∧ > U ⊥

> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥

> > > >
U > U U
⊥ > U ⊥

← > U ⊥

> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥

> > U ⊥
U U > U
⊥ ⊥ U >

Table 1: The truth tables for the Łukasiewicz logic. One should observe that U← U= U↔ U=> as shown in the grey cells.

Models and Integrity Constraints
Consider the following scenario: John is playing basketball.
If John is playing basketball, then his shirt is not clean any-
more. What follows? Let b and c denote that John is playing
basketball and John’s shirt is clean, respectively. This sce-
nario can be represented by

{b←>, ¬c← b∧¬abb, abb←⊥},

where abb is an abnormality predicate which is assumed to
be false. Unfortunately, this set of formulas is not a pro-
gram because ¬c is not an atom. However, by introducing
the antonym dirty and specifying that if a shirt is not dirty,
then it is clean we can represent the scenario by the program

{b←>, d← b∧¬abb, abb←⊥, c←¬d∧¬abd , abd←⊥},

where d denotes that John’s shirt is dirty and abd is another
abnormality predicate which is also assumed to be false. Its
weak completion is

{b↔>, d↔ b∧¬abb, abb↔⊥, c↔¬d∧¬abd , abd↔⊥}

and admits the least model 〈{b,d},{c,abb,abd}〉 under
Łukasiewicz logic. We conclude that John’s shirt is not clean.
But in order to complete the specification we must add the in-
tegrity constraint ⊥← d ∧ c because a shirt cannot be clean
and dirty at the same time. Luckily, the least model satisfies
the integrity constraint. This idea was applied several times
by Oliviera da Costa et al. (2017) in modeling human syllo-
gistic reasoning using the WCS.

Although each weakly completed program admits a least
model under Łukasiewicz logic, this model does not have to
satisfy integrity constraints. As an example consider a sce-
nario where a judge has ordered Peter not to come near lo-
cation `, which can be expressed by the integrity constraints
⊥← `. This integrity constraint is satisfied if and only if `
is mapped to ⊥. Now suppose that somebody has seen Pe-
ter at the location `, which can be expressed by the program
P = {`← >}. Weakly completing P we obtain {`↔ >}
whose least model MP = 〈{`}, /0〉 maps ` to >. In this case,
the conflict can not be resolved. One should observe that
interpretations can be partially ordered with respect to the
subset relation ⊆, where for interpretations I and J we de-
fine I = 〈I>, I⊥〉 ⊆ 〈J>,J⊥〉 = J if and only if I> ⊆ J> and
I⊥ ⊆ J⊥. The partially ordered set of interpretations for the
example discussed in this paragraph is shown in Figure 1.

〈 /0, /0〉

〈{`}, /0〉 〈 /0,{`}〉

Figure 1: The partially ordered set of interpretations for the
weak completion {`↔>} of the program P = {`←>} and
the set IC = {⊥ ← `}, where ` is the only atom and each
arrow denotes ⊇. The least model of the weak completion
of P is shown with a black border. All interpretations map
the union of {`↔>} and IC to either false or unknown; this
set of formulas has no model.

In classical binary logic anything follows from a set of for-
mulas for which there is no model. For example, in the cal-
culus of natural deduction there is the falsum rule which al-
lows to deduce any formula from a contradiction (Gentzen,
1935). It is quite unlikely that humans do this as well and
in the mental model theory (Johnson-Laird & Byrne, 1991)
nothing follows from an empty set of models. Likewise, in
the WCS, programs always have a least model and reasoning
is with respect to this model. Furthermore, if skeptical abduc-
tion is applied, then there must be at least one explanation to
conclude a formula from a program and an observation.

Consider a scenario where it is known that if Linda is in
Amsterdam, then she visits her most favorite club. Ignor-
ing abnormalities for the moment this can be encoded by
the program P = {c← a}, where c and a denote that Linda
visits her most favorite club and Linda is in Amsterdem, re-
spectively. Weakly completing the program yields {c↔ a},
whose least model MP is 〈 /0, /0〉. This model does not satisfy
the integrity constraint ⊥ ← c as c is mapped to unknown.
But ⊥ ← c is satisfied by the non-least model 〈 /0,{a,c}〉 of
{c↔ a}. This model can be computed. One should observe
that a is undefined in P and, hence, the set AP of abducibles
is {a←>, a←⊥}. The empty observation O = /0 can be ex-
plained by the minimal explanation X = {a←⊥}. Adding X
to the program P and weakly completing the extended pro-
gram yields {c↔ a, a↔ ⊥} whose least model MP∪X is
〈 /0,{a,c}〉 (see Figure 2).

As another example consider a scenario discussed by
Khemlani, Byrne, and Johnson-Laird (2018), where it is
known that Lisa is in Cambridge or Ben is in Dublin, or both.
This can be encoded by the integrity constraint⊥←¬c∧¬d,
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〈 /0, /0〉

〈{a}, /0〉 〈{c}, /0〉 〈 /0,{c}〉 〈 /0,{a}〉

〈{a,c}, /0〉 〈{a},{c}〉 〈{c},{a}〉 〈 /0,{a,c}〉

Figure 2: The partially ordered set of interpretations for the
weak completion {c↔ a} of the program P = {c← a} and
the set IC = {⊥ ← c}, where a and c are the only atoms.
The least model of the weak completion of P is shown with a
black border. The model for the union of the weak completion
of P ∪{a←⊥} and IC is shown in grey.

where c and d denote that Lisa is in Cambridge and Ben is
in Dublin, respectively. This integrity constraint is satisfied if
either c is mapped to true, or d is mapped to true, or both.
Now suppose that the program P is empty, i.e., we know
nothing about Lisa and Ben except the above-mentioned dis-
junction. The empty interpretation 〈 /0, /0〉 is the least model of
the weak completion of the empty program and maps c and d
to unknown. Thus, the least model violates the integrity con-
straint. In this case, we find two minimal models 〈{c}, /0〉
and 〈{d}, /0〉 of the weak completion of P which satisfy the
integrity constraint. There are more models satisfying the in-
tegrity constraint like 〈{c,d}, /0〉 or 〈{c},{d}〉, but they are
larger than at least one of the two minimal models. The min-
imal models can be computed by considering the empty ob-
servation O = /0. As neither c nor d are defined in the empty
program P we find AP = {c←>, c←⊥, d←>, d←⊥}.
The sets Xc = {c← >} and Xd = {d ← >} are the mini-
mal explanations for O. We obtain MP∪Xc = 〈{c}, /0〉 and
MP∪Xd = 〈{d}, /0〉. They are the minimal models for the weak
completion of the program and the integrity constraint (see
Figure 3). One should observe that the non-minimal models
can be computed by non-minimal explanations for the empty
observation.

The models shown in Figure 3 are the three-valued models
for the disjunction c∨ d. Moreover, if we want to compute
logical consequences then it suffices to consider the minimal
models and to compute their skeptical consequences.

Finally, if we modify the last example and consider the ex-
clusive disjunction c⊕ d, then we obtain Figure 4. The two
models {c,¬d} and {d,¬c} can be computed by explaining
the empty observation. They are the three-valued models for
the exclusive disjunction c⊕d.

Short Summary

If integrity constraints are not satisfied by the least model of
the weak completion of a program, then we try to explain
the empty observation. In doing so, we may find no expla-

〈 /0, /0〉

〈{c}, /0〉 〈{d}, /0〉 〈 /0,{d}〉 〈 /0,{c}〉

〈{c,d}, /0〉 〈{c},{d}〉 〈{d},{c}〉 〈 /0,{c,d}〉

Figure 3: The partially ordered set of interpretations for the
weakly completed program P = /0 and the set of integrity con-
straints IC = {⊥ ← ¬c∧¬d}, where c and d are the only
atoms. The least model of the weak completion of P is shown
with a black border. Models for the union of the weak com-
pletion of P and IC are shown in grey.

〈 /0, /0〉

〈{c}, /0〉 〈{d}, /0〉 〈 /0,{d}〉 〈 /0,{c}〉

〈{c,d}, /0〉 〈{c},{d}〉 〈{d},{c}〉 〈 /0,{c,d}〉

Figure 4: The partially ordered set of interpretations for the
weakly completed program P = /0 and the set of integrity con-
straints IC = {⊥←¬c∧¬d, ⊥← c∧d}, where c and d are
the only atoms. The least model of the weak completion of P
is shown with a black border. Models for the union of the
weak completion of P and IC are shown in grey.

nation, or a single minimal explanation, or several minimal
explanations. Each explanation leads to a model of the weak
completion of the program and the integrity constraints.

Disjunctions
In this paper we want to extend the WCS by disjunctions.
Let P be a program and D a set containing disjunctions and
exclusive disjunctions of literals. If D contains the disjunc-
tion L1∨L2, where L1 and L2 are literals, then this is encoded
by the integrity constraint⊥←¬L1∧¬L2, where we asssume
that double negations are eliminated, i.e. ¬¬A is replaced by
the semantically equivalent A for each atom A. If D contains
the exclusive disjunction L1⊕L2, then this is encoded by the
integrity constraints ⊥←¬L1∧¬L2 and ⊥← L1∧L2.

Example 1
Consider the following scenario discussed by Johnson-Laird,
Byrne, and Schaeken (1992): Lisa is in Cambridge or Ben is
in Dublin, or both. Lisa is not in Cambridge. What follows?
Let c and d denote that Lisa is in Cambridge and Ben is in
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Dublin, respectively. The disjunction is encoded by the set
D = {c∨d} and, hence, by IC = {⊥← ¬c∧¬d}. The neg-
ative sentence is represented by the program P = {c←⊥}.
As d is undefined in P we obtain the set of abducibles AP =
{d←>, d←⊥}. P is weakly completed to {c↔⊥}, whose
least model MP is 〈 /0,{c}〉. This model does not satisfy IC
as it maps c to false, d to unknown, and ¬c∧¬d to unknown.
But the empty observation can be explained by the minimal
explanation X = {d ←>}. We obtain MP∪X = 〈{d},{c}〉.
We do not need to consider any other explanation as X is the
only minimal one. MP∪X satisfies IC . We conclude that Ben
is in Dublin and Lisa is not in Cambridge.

Example 2

Consider a variant of the previous example: Lisa is in Cam-
bridge or Ben is in Dublin, or both. Lisa is in Cambridge.
What follows? This scenario is modeled as Example 1 except
that the program P is {c←>}. The program is weakly com-
pleted to {c↔>}, whose least model MP is 〈{c}, /0〉. This
model satisfies IC = {⊥←¬c∧¬d} as it maps c to true and
¬c as well as ¬c∧¬d to false. MP satisfies IC and we con-
clude that Lisa is in Cambridge. But we have no idea where
Ben is.

Example 3

Consider the following scenario which has also been dis-
cussed by Johnson-Laird et al. (1992): Linda is in Amsterdam
or Cathy is in Majorca, but not both. Cathy is not in Majorca.
What follows? Let a and m denote that Linda is in Amster-
dam and Cathy is in Majorca, respectively. The exclusive
disjunction is encoded by the set D = {a⊕m} and, hence,
IC = {⊥← ¬a∧¬m, ⊥← a∧m}. The negated sentence is
represented by the program P = {m←⊥}. As a is undefined
in P we obtain the set of abducibles AP = {a←>, a←⊥}.
Program P is weakly completed to {m↔ ⊥}, whose least
model MP is 〈 /0,{m}〉. This model does not satisfy the first
element of IC as it maps a, ¬a, and ¬a∧¬m to unknown. But
the empty observation can be explained by the minimal ex-
planation X = {a←>} and we obtain MP∪X = 〈{a},{m}〉.
MP∪X satisfies IC and we conclude Linda is in Amsterdam
and Cathy is not in Majorca.

Example 4

Consider a variant of the previous example: Linda is in Am-
sterdam or Cathy is in Majorca, but not both. Cathy is in
Majorca. What follows? The scenario is modeled as Ex-
ample 3 except that the program P is {m← >}. The pro-
gram is weakly completed to {m↔ >}, whose least model
MP is 〈{m}, /0〉. This model satisfies the first integrity con-
straint but violates the second one as it maps a and a∧m
to unknown. But the empty observation can be explained
by the minimal explanation X = {a ← ⊥} and we obtain
MP∪X = 〈{m},{a}〉. MP∪X satisfies IC and we conclude
Cathy is in Majorca and Linda is not in Amsterdam.

Example 5
Consider the following scenario: It is late in the afternoon.
Ella wants to study or to go running, or both. If she is study-
ing, she will be hungry. If she is running, she will be hungry.
What follows? Let s, r, and h denote that Ella is studying, Ella
is running, and Ella is hungry, respectively. The disjunction
is encoded by D = {s∨ r} and, hence, IC = {⊥←¬s∧¬r}.
The two conditionals are represented by the program

P = {h← s∧¬abs, h← r∧¬abr, abs←⊥, abr←⊥},

where abs and abr are two abnormality predicates which are
assumed to be false. As s and r are undefined in P we obtain
AP = {s←>, s←⊥, r←>, r←⊥}. The weak completion
of P is {h↔ (s∧¬abs)∨ (r∧¬abr), abs ↔⊥, abr ↔⊥}.
Its least model MP is 〈 /0,{abs,abr}〉. MP does not satisfy
IC as it maps s and r to unknown. The empty observation
can be explained by Xs = {s ← >} and Xr = {r ← >}.
We find MP∪Xs = 〈{s,h},{abs,abr}〉 and MP∪Xr =
〈{r,h},{abs,abr}〉. Both models satisfy IC . We do not
need to consider any other explanation as Xs and Xr are
the only minimal ones. Comparing MP∪Xs and MP∪Xr we
skeptically conclude that Ella will be hungry, but we can
neither skeptically conclude that Ella is studying nor that
Ella is running.

Example 6
We can modify the previous example by assuming that the
disjunction is exclusive. Hence, the integrity constraints are
{⊥ ← ¬s∧¬r, ⊥ ← s∧ r}. This will lead to the explana-
tions X1 = {s ← >, r ← ⊥} and X2 = {r ← >, s ← ⊥}
and the models MP∪X1 = 〈{s,h},{abs,abr,r}〉 and MP∪X2 =
〈{r,h},{abs,abr,s}〉. Again, we skeptically conclude that
Ella will be hungry, but we have no idea whether she was
studying or she was running.

Natural Deduction
Considering Example 5, there is a striking similarity to the
elimination of a disjunction in the calculus of natural deduc-
tion. A disjunction like s∨ r can be eliminated and a for-
mula like h can be derived if (i) h can be derived assuming s
and (ii) h can be derived assuming r. (i) and (ii) hold in the
given scenario: Assuming s and knowing that ¬abs holds, we
can derive s∧¬abs by the introduction rule for conjunction;
knowing that h← s∧¬abs holds we can derive h by the elim-
ination rule for implication (see the subproof shown in light
gray in Figure 5). Likewise, we can derive h assuming r by
utilizing that ¬abr and h← r∧¬abr hold (see the subproof
shown in dark gray in Figure 5). The subproof shown in light
gray corresponds to the computation of MP∪Xs by iterating
the ΦP operator as detailed in the introduction, whereas the
subproof shown in dark grey corresponds to the computation
of MP∪Xr . The final application of the elimination rule for
implication corresponds to the computation of skeptical con-
clusions given MP∪Xs and MP∪Xr .
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s∨ r

bsc ¬abs
(∧ I)

s∧¬abs h← s∧¬abs
(←E)

h

brc ¬abr
(∧ I)

r∧¬abr h← r∧¬abr
(←E)

h
(∨E)

h

Figure 5: A natural deduction proof of {s∨ r, h← (s∧¬abs), h← (r∧¬abr), ¬abs, ¬abr} ` h in the notation of Hölldobler
(2009), where (∧ I), (←E), and (∨E) denote the rules introduction of conjunction, elimination of implication, and elimination
of disjunction, respectively. bc denotes that the enclosed hypothesis has been cancelled.

c∨d

bcc ¬c
(¬E)

⊥
( f )

d bdc
(∨E)

d

Figure 6: A natural deduction proof of {c∨d,¬c} ` d, where
(¬E) and ( f ) denote the rules elimination of negation and
falsum, respectively.

A similar observation can be made for the other examples
discussed previously. E.g., Figure 6 depicts a natural deduc-
tion proof of {c∨d,¬c} ` d corresponding to Example 1. In
this proof the falsum rule is applied. This rule is problematic
in human reasoning as well as in proof search irrespective of
whether it is applied top-down or bottom-up. Such an appli-
cation – and, in fact, the whole subproof shown in light grey
– is avoided in the search for explanations for the empty ob-
servation in the WCS, where we simply need to consider the
possible explanations {d ← >} and {d ← ⊥}. This is be-
cause we know that c is defined in the program P = {c←⊥}
and is mapped to ⊥ by the ΦP operator.

Conclusion
In this paper we have extended the WCS by disjunctions. Al-
though we have only discussed examples with a single dis-
junction, the approach can handle finite sets of disjunctions.
Each disjunction is represented by integrity constraints and
skeptical abduction is applied to satisfy them. The extension
is implemented in PYTHON and ASP. We are unaware of any
benchmark sets for disjunctions, but have tested the discussed
and related examples.

In a three-valued logic, exclusive disjunctions can also be
used to assign true or false to an unknown atom. As an exam-
ple consider the following puzzle which was published in the
German weekly newspaper DIE ZEIT on July 26, 2020: An-
tonia is looking at Berta while Berta is looking at Cleopatra.
Antonia is wearing a red hat, Cleopatra is not wearing a hat,
and it is unknown whether Berta is wearing a red hat. Is a
person with a red hat looking at a person without a red hat?

This puzzle can be solved by the techniques presented in this
paper. Let a, b, and c denote Antonia, Berta, and Cleopatra,
respectively, r X that X is wearing a red hat, `(X ,Y ) that X is
looking at Y and goal that somebody with a red hat is looking
at a person without a red hat. The scenario can be formalized
as a program P consisting of the following clauses:

`(a,b) ← >,
`(b,c) ← >,

r a ← >,
r c ← ⊥,

goal ← `(X ,Y )∧ r X ∧¬rY.

This is a first-order program. It can be turned into a propo-
sitional one by replacing the variables X and Y consistently
by (all combinations of) the constants a, b, and c. The weak
completion of this program admits the least model

MP = 〈{`(a,b), `(b,c),r a},{r c}〉.

The fact that it is unknown whether Berta is wearing a red hat
can be represented by the the exclusive disjunction r b⊕¬r b
and, hence, by the set IC = {⊥← r b∧¬r b} of integrity con-
straints. This set is not satisfied by MP because MP maps r b
to unknown. As r b is undefined in P , the set AP of abducibles
contains r b←> and r b←⊥. The empty observation can be
explained by either X1 = {r b←>} or X2 = {r b←⊥}. We
obtain

MP∪X1 = 〈{`(a,b), `(b,c),r a,r b,goal},{r c}〉,
MP∪X2 = 〈{`(a,b), `(b,c),r a,goal},{r c,r b}〉.

Reasoning skeptically we conclude that goal is true: there is a
person with a red hat looking at a person without a red hat. If
r b holds, then Berta is the person in question; if r b does not
hold, then it is Antonia. One should observe that reasoning
skeptically we can neither conclude that Berta is wearing a
red hat nor that Berta is not wearing a red hat.

We have not yet considered nested disjunctions and dis-
junctive illusory inferences as discussed by Khemlani and
Johnson-Laird (2009). This is one of the next goals in the
development of the WCS.
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Abstract

In patch leaving problems, foragers must decide between en-
gaging with a currently available, but depleting, patch of re-
sources or foregoing it to search for another, potentially bet-
ter patch. Overharvesting, or staying in the patch longer than
what is optimally prescribed, is widely observed in these prob-
lems. Most previous explanations for this phenomenon focus
on how foragers’ mis-estimations of the environment could
produce overharvesting. They suggest that if the forager cor-
rectly learned the environment’s quality, then they would be-
have according to Marginal Value Theorem (MVT). However,
this proposal rests on the assumption that the forager has full
knowledge of the environment’s structure. Rarely does this
occur in the real world. Instead, foragers must learn the struc-
ture of their environment. Here, we model foragers as pairing
an optimal decision rule with an optimal learning procedure
that allows for the possibility of heterogeneously-structured
(i.e. multimodal) reward distributions. We then show that this
model can appear to produce overharvesting, as measured by
the common optimality criterion, when applied to the usual
tasks, which employ homogeneous reward distributions. This
model accounts for behavior in a previous serial stay/leave
task, and generates novel predictions regarding sequential ef-
fects that agree with participant behavior. Taken together, these
results are consistent with overharvesting reflecting optimal-
ity with respect to a different set of conditions than MVT and
suggests that MVT’s definition of optimality may need to be
adjusted to account for behavior in more naturalistic contexts.
Keywords: foraging; structure learning; reinforcement learn-
ing; decision-making;

Introduction
Marginal Value Theorem (MVT; Charnov, 1976) provides
the optimal decision rule for maximizing reward in patch-
foraging tasks: leave the current patch of resources when the
estimated reward rate drops below the average reward rate of
the global environment. The rule sets aside the question of
how the environment is learned - it is assumed that the for-
ager has full knowledge of the environment: overall quality
and any structure (states) to the distribution of rewards.

Foragers, including rodents, primates, and humans, how-
ever, demonstrate a consistent bias towards staying too long
in the current patch, or “overharvesting” it. Several expla-
nations have been proposed. Some accounts accept that the
forager has full knowledge of the environment and attribute
overharvesting to different biases and goals irrespective of
the environment. These include sunk costs (Wikenheiser
et al, 2013), impatient time preferences (Kane et al, 2019),
and maximizing marginal utility over reward (Constantino &
Daw, 2015). However, rarely is a forager fully certain of their

environment. Given this broken assumption, previous work
has focused on adapting MVT to include learning of the en-
vironment’s quality (e.g. average richness) and explored er-
rors in this learning as a potential mechanism of overharvest-
ing. For instance, biased updating of beliefs can explain over-
harvesting in non-stationary environments (Garrett & Daw,
2020). Uncertainty over environment quality from insuffi-
cient experience can also explain patterns of over and under
harvesting (Kilpatrick, Davidson, & El Hady, 2021). How-
ever, this work suggests that with sufficient experience devi-
ations from MVT optimality should diminish.

In previously proposed mechanisms of overharvesting, less
focus has been placed on how the environment’s structure (i.e.
distribution of rewards) is learned relative to how its quality
has been learned. Most prior work assumes that the forager
knows the different patch types within the environment (e.g.
richer or poorer). However, in naturalistic settings, foragers
are not given this information, they must infer it from expe-
rience alone. Here, we question this assumption and propose
that the structure learning process can itself explain the ap-
pearance of overharvesting. We developed a computational
model of how foragers might learn the structure of the envi-
ronment’s reward distribution (the number of modes). First,
we show in simulation that the model can generate overhar-
vesting in a single patch-type environment. Then, we ex-
amine if the model can explain behavior in a previous serial
stay/leave decision task. Finally, we test a novel prediction
of the model — that harvesting behavior depends on the or-
der of shifts in volatility — and show that human behavior
agrees with the model’s predictions. Taken together, these re-
sults demonstrate a novel mechanism for overharvesting and,
more broadly, brings into question whether MVT is the right
optimum to compare behavior to as its assumptions fail to
meet the conditions of natural environments.

Methods
Model
Structure learning model We apply rational models of cat-
egorization (Anderson, 1991; Sanborn, Griffiths, & Navarro,
2006) to capture how foragers learn the latent structure of the
environment. The model (adapted from Harhen, Hartley, &
Bornstein, 2021) allows for the possibility that patches be-
long to different categories varying in richness. The num-

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

121



ber of patch categories is not pre-specified and is instead in-
ferred from experience. The forager begins with assumptions
of how their observations were generated. They assume that:
1. Rewards exponentially deplete with each harvest; 2. Each
patch belongs to a category; 3. Each category is characterized
by a unique distribution over depletion rates; 4. A new patch
is more likely to belong to a popular category (i.e. many cate-
gory members); 5. There is some probability that a new patch
will belong to a new, previously unobserved category.

Foragers combine these prior beliefs with observed data
(depletion rates) to generate new beliefs. The forager then
compares the expected reward from harvesting the current
patch, vstay, to a reference point, vleave. Vstay is estimated as
the last received reward multiplied by the expected depletion
rate. Having categorized the patch, the forager can better pre-
dict the upcoming depletion rate.

MVT’s reference point averages overall all previous
patches as it assumes homogeneous reward distribution. Our
model allows for the possibility that the environment is het-
erogeneous (e.g. has multiple patch types or multiple modes),
so the reward rate of one patch may not be predictive of all
other patches’ reward rate. Consequently, our model’s ref-
erence point uses patch experiences integrated over a much
shorter time-scale. The reference point for the current patch
depends only on the reward rate of the last encountered patch
of a different type/category.
Generative model. At trial t, ct−1 reflects the assignment of
all patches up until the current trial. Each new patch can be
assigned to an existing category or a new category. The prior
probability of it belonging to an existing category, k, is pro-
portional to the number of patches already assigned to that
category, Nk, at trial t. The prior probability of it belonging to
a new category is proportional to the parameter α which re-
flects how densely distributed patches are across categories.

P(ct = k|ct−1) =

{
Nk

t−1+α
if k is an old cluster

α

t−1+α
if k is a new cluster

(1)

Each category is associated with its own normal distribu-
tion over depletion rates, parameterized by µc and σ2

c . When
a patch is assigned to an existing category, depletion rates ob-
served in that patch update the category-specific distribution.
Inference model. Given a set of observed depletion rates up
to trial t, Dt , the forager’s posterior beliefs over patch assign-
ments to categories, ct , are described by:

P(ct |Dt) =
P(Dt |ct)P(ct)

p(Dt)
(2)

Exact computation of the posterior is computationally in-
tractable, so we use particle filtering as an approximate in-
ference algorithm (Gershman, Niv, & Blei, 2010; Sanborn,
Griffiths, & Navarro, 2006). The posterior is represented with
a set of m particles. Each particle represents a possible as-
signment of patches to categories. Some particles will have
the same category assignments. The posterior probability of a

category assignment is proportional to the number of particles
within the set which contain that assignment. To approximate
the posterior distribution, we can average over the particles:

P(ct |Dt)≈
1
M

M

∑
m=1

δ(ct − c(m)
t ) (3)

where δ(·) is 1 when its input is 0, and 0 otherwise.
We can then approximate the prior distribution over cate-

gory assignments for t+1 trials with

P(ct+1|Dt) = ∑
ct

P(ct+1|ct)P(ct |Dt)

≈ ∑
ct

P(ct+1|ct)
1
M

M

∑
m=1

δ(ct − c(m)
t )

=
1
M

M

∑
m=1

P(ct+1|c
(m)
t+1) (4)

We can then approximate the posterior for trial t +1 with:

P(ct+1|Dt+1) ∝ ∑
ct

P(dt+1|ct+1,Dt)P(ct+1|Dt)

≈ 1
M

M

∑
m=1

P(dt+1|ct+1,Dt)P(ct+1|c
(m)
t+1) (5)

M samples are drawn from this distribution to create a new
particle set. 50 particles were used for all simulations. An in-
termediate number of particles allows for fairly accurate pre-
diction while being psychologically plausible and capable of
capturing the variability and order sensitivity people display
(Sanborn, Griffiths, & Navarro, 2006).

Prediction To predict how much the harvest will deplete
next, possible depletion rates are sampled from the forager’s
inferred generative model of the environment, and these sam-
ples are averaged over. Depletion rates are sampled in the
following way: first, a category is drawn with probability pro-
portional to its posterior probability, and then, a depletion rate
is drawn from the category-specific normal distribution over
depletion rates. In our simulations, we used 1000 samples.

Single Patch Type Learning model Patches are assumed
to all belong to the same category. This is equivalent to setting
alpha to 0. This should generate behavior similar to what
MVT would produce, with the additional ability to account
for the variance of observed rewards.

Making a choice
To make a decision, the forager compares the value of stay-
ing with the value of leaving. The value of staying, vstay, is
the reward received from the last harvest multiplied by the
predicted depletion rate. The value of leaving, vleave, is cal-
culated as the average reward rate in the last visited patch of a
different category multiplied by the time that would be spent
harvesting it. This serves as a more dynamic, shorter time
scale reference point than MVT’s.
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Experiment 1: Simulating the structure learning
model in single patch type environments
We propose that overharvesting may emerge from infer-
ring more structure in the environment than what is actually
present. In particular, inferring that the environment has mul-
tiple patch types when it is, in fact, a single highly variable
patch type. Simulated agents visited patches to harvest for
resources. They decided between harvesting the current ex-
ponentially depleting patch or spending more time to travel
to a new, unharvested patch (harvest time = 3.5, travel time
= 15.5 sec). Depletion rates were drawn from a Beta dis-
tribution parameterized by a = 1.5 and b = 1.5 . The mean
depletion rate was 0.5 with a SD of 0.25.

Experiment 2: Reanalysis of Constantino & Daw
(2015)
We fit our model to data from Constantino & Daw (2015).
Participants harvested trees for apples. After each harvest,
they could decide between harvesting again or traveling to a
new tree and incurring a time delay. The number of apples
gained per harvest depleted exponentially. Participants for-
aged in four different environments that varied in their mean
depletion rate and travel time delay. These two features con-
trolled the overall richness of the environment (i.e. higher
depletion rate → richer, shorter travel time → richer). Criti-
cally, in this experiment, participants were told when (though
not how) the environment changed.

Experiment 3: Novel task
Participants We recruited 82 participants from Amazon
Mechanical Turk (ages 23 - 63, Mean= 38, SD=10). Partici-
pation was restricted to workers who had completed at least
100 prior studies with at least 99% approval rate. Participants
were paid $6 as a base payment and a bonus contingent on
performance ($0-$4). We excluded 7 participants for failing
at least one catch trial or having average patch residence time
2 standard deviations above or below the group mean.

Procedure We adapted from Harhen et al (2021) a novel
variant of the Constantino & Daw (2015). The task was
framed as a space mining game where participants were told
to collect as many space gems as possible. On each trial, par-
ticipants had to decide if they wanted to continue digging for
gems on the current planet or travel to a new planet. If they
stayed and harvested, they watched a short animation of an
astronaut digging and then the reward would be displayed. If
they chose to travel to a new planet, they watched an anima-
tion of a flying rocket ship and then an image of a trial-unique
alien was displayed for 5 seconds. Participants had 2 seconds
to make their choice. If they did not make a decision, they had
to wait another 2 seconds before making another choice. To
ensure participants’ reaction times did not affect their reward
rate, the reaction time (RT) was subtracted from the ensuing
dig or travel animation display time.

Participants completed 6 blocks lasting 5 minutes each.
Blocks varied in the spread of depletion rates experienced.

Depletion rates in highly volatile blocks were sampled from
a Beta distribution with parameters a = 1 and b = 1. The mean
depletion rate was 0.5 with a SD of 0.29. Depletion rates in
the least volatile blocks were sampled from a Beta distribu-
tion with a = 20 and b = 20 (Mean = 0.5, SD = 0.078). In the
medium volatility block, depletion rates were sampled from
a Beta distribution parameterized by a = 4 and b = 4 (Mean
= 0.5, SD = 0.17). Participants were told when a new block
began, but were not told if and how it changed. Participants
were placed in one of two conditions that differed in the order
of blocks encountered. In the high early volatility condition
the first two blocks were the most volatile, and the third and
fourth blocks were the least volatile. In the other condition
(low early volatility), the order of the blocks first four blocks
were reversed. In both conditions, the last two blocks were of
medium volatility. By matching the last two blocks on volatil-
ity, we were able to directly compare behavior between the
conditions.

Model fitting procedure
The MVT learning model’s free parameters were beta (soft-
max temperature), c (stay/leave bias), alpha (learning rate),
and ρ0 (initial global reward rate). For both the tasks, the free
parameters for the structure learning model were the prior
over cluster dispersion (alpha), and prior over environment
richness. For the Constantino & Daw (2015) task, partici-
pant data was characterized by the mean patch residence time
(PRT) in each of the blocks. For the novel variant of the
task, participant data was characterized by the mean patch
residence time (PRT) relative to MVT optimal in each of the
blocks. We compared this to the same measures predicted
by the model. The loss for a parameter set was calculated as
the sum of squared error between the participant’s data and
the model’s simulated data averaged across 10 simulations.
500 sets of parameters were sampled from a Sobol Sequence,
and the set of parameters that produced the lowest sum of
squared error was chosen. Generating candidate parameter
sets from a Sobol Sequence rather than a grid, can provide
superior fits, particularly, when there are more than two pa-
rameters (Bergstra & Bengio, 2012).

Model comparison
To compare models, we used cross validation. We held out
one test block and then fit the model using the PRTs for the
remaining blocks. The model error was then measured by
taking the absolute difference between the model prediction
for the held-out block and the participant’s measure for that
block. We repeated this procedure for every possible combi-
nation of fit blocks and test block and then averaged over the
errors to compute the cross validation score.

Results
Experiment 1: Simulating the structure learning
model in single patch type environments
We first simulated variants of the model which differed in
whether they allowed for the possibility of multiple patch
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Figure 1: Task Designs. A. Participants sequentially decide whether to dig or travel to a new planet. B. Novel task volatility
structure The experiment is broken up into six blocks. Blocks differ in the distribution from which depletion rates are sampled.
Some have high variance, others have low variance, and some fall in between. The two conditions, high early volatility and low
early volatility, differ only in the order of blocks.

Figure 2: Results from Experiment 1 Overharvesting and
under harvesting behavior depends on both the prior over en-
vironment complexity, alpha, and the prior over environment
richness. Error bars are 95% CI.

types in highly variable a single patch environment. When
allowing for multiple patch types to be inferred (alpha > 0),
simulated agents did so. Consistent with our prediction, ratio-
nal behavior that began with this mismatch between environ-
ment type and assumptions resulted in overharvesting when
the environment was initially believed to be poor (Figure 2).
However, when the true environment structure was assumed
(single patch type, alpha = 0), behavior was MVT-optimal.
Underharvesting behavior emerged from an initial belief that
the environment was rich regardless of assumptions about the
environment’s structure.

Experiment 2: Reanalysis of Constantino & Daw
(2015)
Constantino & Daw found that Marginal Value Theorem
(MVT) with an error-driven learning rule better explained

participants’ data than a temporal-difference learning model.
The MVT learning model had four free parameters: learn-
ing rate (α), softmax temperature (β), initial global reward
rate (ρ0), and stay-leave bias (c). C captured an individual’s
bias to stay in the current patch. We reasoned that this bias
parameter would be instrumental in capturing behavior that
deviated from MVT optimality. To test this hypothesis, we fit
the data with the MVT model with and without c. We found
that c was indeed critical to capturing participant’s overhar-
vesting behavior (Figure 3, t(24) = -6.04, p < 0.0001). Given
the importance of this parameter, how does this bias emerge?

When comparing both the MVT and the structure learn-
ing model with a stay/leave bias, neither was superior to the
other (t(24) = -1.23, p = 0.23). However, when comparing
the MVT and structure learning model without the stay/leave
bias, the structure learning model was superior (Figure 3, Ta-
ble 1, t(24) = 3.63, p = 0.001). Taken together, these results
suggest that the (nonstandard) stay/leave bias added to the
MVT model in Constantino & Daw (2015) — added to place
it on par with the temporal-difference learning model used as
an alternative hypothesis in that study — was a primary fac-
tor in the fit quality of that model, perhaps due to the fact that
the long blocks in that experiment allowed learning to reach a
steady state. Here, we show that the optimal structure learn-
ing procedure can account for much if not all of the variance
that this parameter adds, while rooting the behavior in a prin-
cipled, rational learning approach.

Experiment 3: Novel Task
We next tested whether human behavior reflected a novel pre-
diction of the structure learning model, namely sensitivity to
the order in which patch volatility is experienced (Figure 1b).
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Figure 3: Results from Experiment 2. Each bar reflects
the difference in cross-validation scores between the MVT
learning model without c, the stay-leave bias parameter, and
the structure learning model, also without a c, for an individ-
ual participant. Positive values indicate the structure learning
model provides a better fit to the participant’s data. Overall,
22 out of 25 participants were better fit by the structure learn-
ing model than by MVT.

Model predictions & participant behavior Our model
predicts that the order of volatility shifts in the environ-
ment will affect how patch categories are inferred and con-
sequently, stay/leave decisions. When prior beliefs about en-
vironment structure and/or richness do not align with experi-
ence in the environment, the model infers more patches than
there really are, leading to overharvesting. The pattern of ex-
perience in an initially predictable environment discourages
inferring multiple patch types such that there is less of an in-
fluence of a prior bias towards complexity on foraging behav-
ior.

Across the population, participants in both conditions over-
harvested roughly equally (t(73)=0.21 p = 0.83). We next ex-
amined the fit parameters to identify heterogeneity the popu-
lation. Most participants were better fit with alpha as a free
parameter (Figure 4a, t (74) = 2.90, p = 0.004). Participants
in both conditions had a similar range of fit alpha parameters
(Figure 4b, t(73) = -0.73, p = 0.47). However, matching the
simulation results in Experiment 1, the inferred prior over en-
vironment richness differed between conditions. Participants
in the high early volatility condition had lower prior estimates
of environment richness or quality (Figure 4c, t(73) = -3.30,
p = 0.001). Participants were split into high and low parame-
ter groups (alpha and prior over environment richness) based
the median value of the parameter. Behavior was simulated
with the structure learning model using the best fitting pa-
rameters for each participant. We then the compared model
generated behavior between the two groups. There were no
differences in behavior between the high and low alpha group
in either condition (Figure 4d, high early volatility - t(36) =
0.32, p = 0.75; low early volatility - t(34) = 0.54, p = 0.59).
However, when splitting by prior over environment richness,

those in the low group overharvested more than those in the
high group in both conditions (Figure 4e, high early volatility
- t(35) = -3.82, p < 0.001; low early volatility - t(35) = -4.105,
p < 0.001).

Discussion
We asked if the process of learning the environment’s struc-
ture could explain overharvesting behavior in certain con-
texts. To address this question, we developed a computa-
tional model of how foragers could learn environment struc-
ture and leverage it during decision making. First, in sim-
ulation, we showed that allowing the possibility of inferring
multiple patch types results in overharvesting in highly vari-
able single patch type environments. Next, we showed that
our structure learning model could capture behavior in a pre-
viously collected stay/leave task. In this prior work, a model
with error-driven learning of environment quality and a MVT
decision rule was found to replicate participant’s behavior.
However, its success in fitting the data critically depended
on a stay-leave bias parameter to account for overharvesting.
Our model, on the other hand, provided a superior fit to par-
ticipants’ overharvesting relative to the MVT model without
a stay-leave bias parameter. A possibility is that some of the
variance explained by the stay-leave bias parameter emerged
from the learning process formalized in our model. Finally,
we tested a novel prediction of the structure learning model.
Namely, that participant responses should be sensitive to the
order of shifts in volatility. Participant behavior was consis-
tent with this prediction, providing further evidence in favor
of the model.

Taken together, these results suggest that seemingly sub-
optimal behavior like overharvesting can be explained with
statistically optimal learning of environment structure and
a prior expectation of heterogeneous environments. This is
consistent with previous work demonstrating that people will
infer structure or observe non-existent patterns even when
there is no incentive to do so (Yu & Cohen, 2009) and even
when it’s disadvantageous (Collins & Frank, 2013; Gaiss-
maier & Schooler, 2008). This prior bias towards structure
possibly emerges from it being frequently incentivized in the
real world.

Potentially, MVT’s definition of optimality may need to be
expanded. In particular, foraging has been suggested to pro-
vide a decision context that we were evolutionarily adapted to
and consequently, likely to yield normative behavior. How-
ever, MVT assumes an environment that does not concord
with naturalistic environments which tend to be heteroge-
neous, non-stationary, and exhibit multiple scales of spatio-
temporal regularities. Prior work demonstrates that foragers
do consider this multi-scale information in adapting their
search strategies in naturalistic settings (Fagan et al., 2013).
Future work could explore extending the model to include
multiple scales of reference points — one integrating over a
longer time scale like MVT and another integrating over a
shorter time scale as presented here. The present work and
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Figure 4: Results from Experiment 3. A. Each bar reflects the difference in cross-validation scores between the structure
learning model with alpha fixed at 0 and the same model when alpha is a free parameter. Positive values indicate the structure
learning model with free alpha provides a better fit to the participant’s data. Overall, 49 out of 75 participants were better fit by
the structure learning model with free alpha than the alpha fixed at 0 model. B-C. Participants’ fit parameters for the structure
learning model. D-E. Model simulated overharvesting/underharvesting behavior separated by a median split on fit parameters
from the structure learning model. Error bars are 95% CI.

potential future work could suggest optimality in foraging
may need to be redefined to incorporate dealing with the mul-
tiple scales of uncertainty that natural environments present
foragers with.
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Abstract

Often we find ourselves in unknown situations where we have
to make a decision based on reasoning upon experiences.
However, it is still unclear how people choose which pieces of
information to take into account to achieve well-informed de-
cisions. Answering this question requires an understanding of
human metacognitive learning, that is how do people learn how
to think. In this study, we focus on a special kind of metacog-
nitive learning, namely how people learn how to plan and how
their mechanisms of metacognitive learning adapt the plan-
ning strategies to the structures of the environment. We first
measured people’s adaptation to different environments via a
process-tracing paradigm that externalises planning. Then we
introduced and fitted novel metacognitive reinforcement learn-
ing algorithms to model the underlying learning mechanisms,
which enabled us insights into the learning behaviour. Model-
based analysis suggested two sources of maladaptation: no
learning and reluctance to explore new alternatives.

Keywords: decision-making; planning; metacognitive learn-
ing; reinforcement learning; cognitive modelling

Introduction
In real life, we often have to make decisions in new situations.
Often our decisions and actions result from learned experi-
ences and reasoning upon them. However, it is still unknown
how we learn which pieces of information we should take
into account to efficiently make a well-informed decision.
Answering this question requires understanding how people
learn how to think (metacognitive learning). While direct
decision-making has been studied extensively from the per-
spective of cognitive science (Wang & Ruhe, 2007) and ma-
chine learning (Niv, 2009), our contemporary understanding
of how people learn how to decide remains shallow. There is
some work on modelling how people learn to select between
the decision-making strategies they already know (Lieder &
Griffiths, 2017; Rieskamp & Otto, 2006; Erev & Barron,
2005) but there is little work on how people discover those
decision strategies in the first place. In this study, we focus
on a special kind of metacognitive learning, namely how peo-
ple learn how to plan.

Our work is structured in two parts - measuring and then
modelling metacognitive learning in terms of reinforcement
learning algorithms. For this, we set up an experiment that
utilises a process-tracing paradigm that makes planning ob-
servable. The resulting process-tracing data is then analysed
by a recently developed computational method for inferring
people’s planning strategies and their changes over time. To

model how people learn how to plan, we formalised and
tested three competing hypotheses about how people learn
how to plan using three novel computational models. We
tested our models against each other. The resulting best
model was used to draw conclusions for different groups of
participants.

By advancing our understanding of human metacognitive
learning, this line of work may contribute to laying the foun-
dations for improving metacognitive learning and helping
people overcome maladaptive ways of decision-making.

Background
Mouselab MDP paradigm
A major obstacle to studying metacognitive learning is that
we cannot directly observe people’s cognitive strategies and
how they change over time. To overcome this hurdle, we
utilise a process-tracing paradigm that renders people’s be-
haviour highly diagnostic of their planning strategies, namely
the Mouselab Markov Decision Process (MDP) paradigm
(Callaway, Lieder, Krueger, & Griffiths, 2017). In this
paradigm, participants plan the route of a spider through a
maze with the goal to maximise their score (see Figure 1)
with the given number of trials. The score is the sum of the
values of the nodes (the gray circle) on the path they choose
to traverse. Each node harbours a gain or a loss, which are
initially hidden but can be revealed by clicking on it. This ex-
plicit clicking action corresponds to evaluating the quality of
a potential future state, which is a fundamental cognitive op-
eration in planning. The cognitive cost of this operation is ex-
ternalised by charging a fee of −1 for each node they reveal.
Participants are thus encouraged to not immediately click ev-
ery location, but instead, reveal information as necessary. In
this way, the paradigm externalises the mental representation
that people use for planning in terms of which nodes have
been clicked and what their revealed values are.

Measuring metacognitive learning
The Mouselab-MDP paradigm can be used to measure the
changes in people’s strategy sequence. For this, we have
previously developed a computational method that infers
which planning strategy a participant used on each trial
based on their clicks (Jain, Callaway, & Lieder, 2019; Jain
et al., 2021). This method returns which of 79 prede-
fined planning strategies a participant is most likely to have
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Figure 1: Example of the Mouselab paradigm for the constant
variance condition with five nodes revealed

used. For detailed documentation of all 79 strategies please
see https://osf.io/zgshx/. We can therefore measure
metacognitive learning in terms of how the inferred strategy
changed from each trial to the next.

Modelling metacognitive learning
To model metacognitive learning we will apply reinforcement
learning algorithms to the problem of deciding how to decide
(meta-decision-making). We will briefly introduce these two
frameworks and how they can be combined.

Reinforcement learning Research suggests that human
learning is partly driven by rewards and punishments, which
they receive through trial and error (Niv, 2009). This learning
mechanism has inspired reinforcement learning algorithms,
which learn to estimate how much reward can be expected to
receive from a certain action (a) in a given state (s). This
estimate is updated according to the differences between re-
ceived and predicted rewards δ:

Q(s,a)← Q(s,a)−α ·δ (1)

where α is the learning rate. To balance exploitation and ex-
ploration, the agent can choose its actions probabilistically,
maximising the predicted action value, for example using the
softmax rule (see for example Equation 3).

Meta-decision-making Previous work suggests that the
brain is equipped with multiple decision systems that interact
in numerous ways (Dolan & Dayan, 2013; Daw, 2018). In
contrast to the Pavlovian and model-free systems, the model-
based system supports flexible reasoning about which action
might be best given available information, goals and prefer-
ences. To efficiently balance decision quality and decision
time given enormous amount of information, the model-based
system’s flexibility necessitates a mechanism for selecting
only relevant information, that is deciding how to decide,
which is formally known as meta-decision-making (Boureau,
Sokol-Hessner, & Daw, 2015). Recent work has formalised
the problem of meta-decision-making as a meta-level MDP
(Krueger, Lieder, & Griffiths, 2017; Griffiths et al., 2019):

Mmeta = (B,C ∪{⊥},Tmeta,rmeta) , (2)

where belief states bt ∈ B encode the model-based deci-
sion system’s beliefs about the values of alternative courses

of actions. The temporal evolution of those belief states
(b1,b2, · · · ) is driven by the decision system’s computations
c1,c2, · · · according to the meta-level transition probabili-
ties T (bt ,ct ,ct+1). Finally, the meta-level reward function
rmeta(bt ,ct) encodes the cost of performing the planning oper-
ation ct ∈ C and the expected return of terminating planning
(ct =⊥) and acting based on the current belief state bt .

Metacognitive reinforcement learning Planning strate-
gies can be thought of as policies for solving metalevel
MDPs. We can therefore formalise the problem of discover-
ing effective planning strategies as solving a metalevel MDP
for the optimal metalevel policy (Griffiths et al., 2019). Solv-
ing meta-decision-making problems optimally is often com-
putationally intractable but the optimal solution can be ap-
proximated through reinforcement learning (Russell & We-
fald, 1991; Callaway, Gul, Krueger, Griffiths, & Lieder,
2018). Hence, we assume that the brain approximates opti-
mal meta-decision-making via reinforcement learning mech-
anisms that seek to approximate the optimal solution of the
meta-level MDP defined in Equation 2 by either learning to
approximate the optimal policy directly or by learning an ap-
proximation to its value function. Previous work has applied
this idea to model how people learn to select between alterna-
tive cognitive strategies (Erev & Barron, 2005; Rieskamp &
Otto, 2006; Lieder & Griffiths, 2017), learn how many steps
to plan ahead (Krueger et al., 2017), and learn when to exert
how much cognitive control (Lieder, Shenhav, Musslick, &
Griffiths, 2018). However, this approach has yet to be applied
to investigate how people discover and refine their cognitive
strategies.

Experiment
To investigate metacognitive learning, we designed an ex-
periment with three conditions using the Mouselab-MDP
paradigm to measure how people adapt their planning strate-
gies to different environments.

Methods

Each participant was randomly allocated to one of three con-
ditions. Each condition presented the participants with a dif-
ferent environment. In the increasing variance environment,
the range of possible rewards is larger at locations that are
further away from the starting point at the centre of the maze.
In the decreasing variance environment, the variance between
possible node values decreases the further away from the
starting point, that is the nodes that are closest to the centre
have the largest range of possible values. In the constant vari-
ance environment, the variance between possible node values
remains the same. The possible value of each node at any
given step can be seen in table 1. Step 1 corresponds to the
three nodes that are closest to the starting point in the middle,
step 2 is the next node, step 3 is the last set of nodes that are
furthest away from the starting point.
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Environment Step 1 Step 2 Step 3
Increasing -4, -2, 2, 4 -8, -4, 4, 8 -48, -24, 24, 48
Decreasing -48, -24, 24, 48 -8, -4, 4, 8 -4, -2, 2, 4
Constant -10, -5, 5, 10 -10, -5, 5, 10 -10, -5, 5, 10

Table 1: Possible reward values for the three environments

Participants We recruited 174 participants, 58 for each
condition, on CloudResearch. The recruitment was limited
to participants who had completed 100+ HITS, had a score
> 90, and were located in the United States. Each participants
received a base-pay of $1.50 and a bonus up to $5 based on
their performance. They received minimal instructions and
had to pass a quiz to demonstrate correct comprehension of
the setup before starting the first trial.

Procedure Each participant was assigned to one condi-
tion was asked to complete 35 trials. The scores are dis-
played on the screen and are updated after each action (click,
move). Planning is encouraged by a performance-depend
bonus, which is 0.2 cents for each point of their final score
after completion of all trials.

Results
To investigate whether people learn to adapt their planning
strategies to the structure of the environment, the strategy se-
quences were analysed. To classify our participants’ planning
strategies into adaptive and maladaptive ones, we first created
a list of planning strategies that were used by the participants
and then determined the expected score of the strategies in the
list using computer simulations. For each environment, the
five strategies with the highest score are labelled as adaptive,
while the five low scoring strategies are labelled as maladap-
tive strategies. We illustrated (see Figure 2) and tested the
aggregated proportion of the five adaptive and five maladap-
tive strategies for trends using Mann Kendall tests. The tests
confirmed an increasing trend for the aggregated proportion
of adaptive strategies in all environments (S > 367, p < .001
in all environments). In addition, the tests suggest a de-
creasing trend for the maladaptive strategies in the increas-
ing (S = −429, p < .001) and decreasing variance environ-
ments (S =−295, p < .001) and no trend in the constant vari-
ance environment (S = −83, p = .176). This means that in
all three environments the proportion of people who adopted
using adaptive strategies gradually increased while the pro-
portion using maladaptive strategies gradually decreased in
all but one environment. Furthermore, for each of those five
adaptive and five maladaptive strategies, we tested whether
the proportion of people using that strategy increased or de-
creased across trials using a series of Mann Kendall tests (see
https://osf.io/zgshx/ for detailed results of the tests).
Overall, the tests suggested an increasing trend or no trend
for the adaptive strategies, while the data indicated decreas-
ing trend or no trend for the maladaptive strategies (see Fig-
ure 3). For instance, for the increasing variance condition, we
found that the frequency of the adaptive strategy to search the

final destinations for the best possible outcome (Strategy 21)
steadily increased (Mann Kendall test: S = 535, p < .001),
while the frequency of the maladaptive strategy to act with-
out planning (Strategy 30) steadily decreased (Mann Kendall
test: S =−414, p < .001).

These results suggest that people discover and learn to use
adaptive strategies in all three environments. The effect is
most prominent in the increasing variance condition and least
prominent in the constant variance condition. This might be
because discovering adaptive strategies is easiest when the
environment has a clear structure that adaptive strategies can
exploit.

Modelling metacognitive learning
Having empirically demonstrated that people discover and
learn to use adaptive planning strategies, we now model the
underlying computational mechanisms in terms of metacog-
nitive reinforcement learning using two novel models:
Learned value of computation (LVOC), direct adjustment of
decision- making policy via gradient ascent (REINFORCE)
and its non-learning variant, which postulates that people do
not update their planning strategy. Each of these three models
hypothesise a different learning mechanism.

Models of metacognitive reinforcement learning
Representations of the strategies The strategies people
use in the Mouselab-MDP can be described in terms of
a weighted combination of neuroscience-informed features.
One example of a group of features are pruning features,
which are related to assigning a negative value to thinking
about a path whose expected value is below a certain thresh-
old. Therefore, the learning trajectory can be expressed by
how the weights of those features evolve over time. We have
defined 52 different features (see https://osf.io/zgshx/
for a detailed description).

The REINFORCE model The REINFORCE model as-
sumes that people adjust their planning strategy directly by
following its performance gradient ascent through the strat-
egy space using a softmax policy (Williams, 1992):

πθ(c|b) =
exp

( 1
τ
·∑52

k=1 θk · fk(b,c)
)

∑c∈Cb
exp

( 1
τ
·∑52

k=1 θk · fk(b,c)
) (3)

where b is the belief state, c is the click being considered and
Cb is the set of clicks available in the belief state b. τ is the
inverse temperature parameter and fk are the neuroscience-
informed features values described above. The larger the
value of τ is, the more deterministically the highest value ac-
tion is chosen. The parameters of the policy (θ) are updated
once after each trial according to the learning rule:

θ← θ+α ·
O

∑
t=1

γ
t−1 · rmeta(bt ,ct) ·∇θ lnπθ(ct |bt) (4)

where α is the learning rate, γ is the discount factor and O is
the number of planning operations the model performed on
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(a) Increasing variance environment (b) Decreasing variance environment (c) Constant variance environment

Figure 2: Proportion of aggregated strategy development throughout the trials for each environment.

(a) Increasing variance environment (b) Decreasing variance environment (c) Constant variance environment

Figure 3: Trial-wise proportion of adaptive and maladaptive strategy for each environment. The first 5 strategies are adaptive
strategies, the last 5 strategies are maladaptive strategies

that trial, that is the number of clicks plus one, which repre-
sents the termination of planning operation. The learning rate
α was optimised using ADAM (Kingma & Ba, 2014). Both
α and γ are treated as free parameter that are fit separately
for each participant. In addition to the vanilla REINFORCE,
a pseudo-reward (Ng, Harada, & Russell, 1999) is used to
speed up learning. The value of the pseudo-reward on per-
forming computation ct in belief state bt and transitioning to
belief state bt+1 is given by

PR(bt ,c,bt+1) = E[Rπbt+1
|bt+1]−E[Rπbt

|bt+1] (5)

which is the difference between the expected value of the best
path in belief state bt+1 according to the policy πbt+1 and the
expected value of the best path in belief state bt+1 according
to the policy πbt .

The LVOC model According to the LVOC model, people
discover and change their strategy continuously by learning to
predict the values of alternative planning operations (Krueger
et al., 2017). The model assumes that people learn a linear
approximation to the meta-level Q-function:

Qmeta(bt ,ct)≈
52

∑
k=1

wk · fk(bt ,ct), (6)

using the fk and corresponding weights wk The LVOC model
learns the weights wk of those features by Bayesian linear
regression of the bootstrap estimate Q̂(bt ,ct) of the meta-level
value function onto the features fk. The bootstrap estimate

Q̂(bt ,ct) = rmeta(bt ,ct)+
52

∑
k=1

µk,h · fk(bt+1,ct+1) (7)

is the sum of the immediate meta-level reward and the pre-
dicted value of the next belief state bt+1 under the current
meta-level policy. The predicted value of bt+1 is the scalar
product of the posterior mean µk,h of the weights wk, given
the observations from all h preceding planning operations and
the features fk(bt+1,ct+1) of bt+1 and the cognitive opera-
tion ct+1 that the current policy selects given state. Given the
posterior on the feature weights w = (w1, ...,w52), the next
planning operation ct+1 is selected by a generalised version
of Thompson sampling. That means, to make the kth meta-
decision, n weight vectors w̃(1), · · · , w̃(n) are sampled from
the posterior distribution of the weights given the series of
meta-level states, selected planning operations, and resulting
value estimates experienced so far. That is,

w̃(1)
t , · · · , w̃(n)

t ∼ P(w|Et), (8)

where the set Ek = {e1, · · · ,et} contains the meta-decision-
maker’s experience from the first t meta-decisions. To
be precise, each meta-level experience e j ∈ Ek is a tuple(
b j,h j, Q̂(b j,c j;µ j)

)
containing a meta-level state, the com-

putation selected in it, and the bootstrap estimates of its Q-
value. The arithmetic mean of the sampled weight vectors
w̃(1), · · · , w̃(n) is then used to predict the Q-values of each
possible planning operation c ∈ C according to Equation 6.
The planning operation with the highest predicted Q-value is
used for decision-making. For a fair comparison, the LVOC
model also utilises the metacognitive pseudo rewards defined
in Equation 5. The LVOC model has three free parame-
ters: the mean vector µµµprior and variance σ2

prior of its prior
N (w;µµµprior,σ

2 · I) on the weights w and the number of sam-
ples n.
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Model fitting methods
To assess how well each model can capture how people learn
how to plan, we fitted each model’s free parameters and priors
on feature weights to the participant’s data and applied each
model to the series of problems the participant had to solve.

The parameters of the models were fit by maximising a
Multivariate-Normal pseudo-likelihood function defined in
terms of the probability that the model would generate the
participant’s trial wise scores as a function of its parameters.
For a given participant i, the pseudo-likelihood function un-
der model m is given by:

L ((θi,m,σi,m)|ri) = φ(ri; r̂i,m(θ),σi,mI) (9)

where θi,m is the parameter vector used to fit the data from
participant i with model m, ri is the vector of scores that the
ith participant obtained on trials 1 through 35, σ is the stan-
dard deviation of the errors between the observed scores and
the model’s predictions r̂i,m(θi,m), and φ(x;µ,Σ) is the den-
sity function of the multivariate normal distribution. We esti-
mate the parameters θi,m and σi,m by maximising the pseudo-
likelihood function in Equation 9 using Bayesian Optimisa-
tion (Bergstra, Yamins, & Cox, 2013). All selected models
are then fit to the participant data using 400 iterations. In each
iteration, the model’s prediction is estimated by averaging the
model’s scores across 30 simulations.

Model selection
After the model-fitting, we performed individual-level and
group-level model selection using the Akaike Information
Criterion (AIC) (Akaike, 1998). On the level of individual
participants, both learning models, LVOC and REINFORCE,
seem to explain the learning behaviour reasonably better than
the non-learning model (see Table 2). The number of par-
ticipants whose data was best explained was the same for
both learning models (71). To investigate the differences in

Environment Model Count
Increasing variance non-learning 11

REINFORCE 24
LVOC 23

Decreasing variance non-learning 10
REINFORCE 28
LVOC 20

Constant variance non-learning 11
REINFORCE 19
LVOC 28

Table 2: Count of individual participants’ best fitted model.

which model explains a participant’s data best, we divided the
participants into three groups: participants who were not us-
ing adaptive strategies in the beginning but learned to do so
were classified as highly adaptive learners, participants us-
ing maladaptive strategies in the last trial were classified as
maladaptive participants, and the other participants are la-
belled as moderately adaptive participants. The group-level
model comparison provided strong evidence in favour of the
REINFORCE model (average AIC = 308.31) over the LVOC

model (average AIC= 315.94) and over its non-learning vari-
ant (average AIC = 341.43). As shown in Figure 4, the RE-
INFORCE model was able to capture how the participants’
performance throughout the experiment in all three condi-
tions. Most importantly, the REINFORCE model was able
to capture the improvement in people’s performance as they
adapt their planning strategies to the structure of the increas-
ing variance environment (Figure 4a).

Increasing (n=58) non-learning REINFORCE LVOC
Highly adaptive (n=21) 387.44 343.54 346.97

Maladaptive (n=11) 184.42 174.68 205.36
Mod. adaptive(n=26) 375.56 341.55 351.25

Decreasing (n=58) non-learning REINFORCE LVOC
Highly adaptive (n=16) 369.84 326.66 320.53

Maladaptive (n=3) 202.95 198.94 197.86
Mod. adaptive (n=39) 370.27 306.39 324.88

Constant (n=58) non-learning REINFORCE LVOC
Highly adaptive (n=11) 349.30 330.33 334.64

Maladaptive (n=7) 326.66 316.72 309.72
Mod. adaptive (n=40) 307.08 290.15 294.28

Table 3: Averaged AIC for each model grouped by partici-
pants. Best performance is marked in bold.

Model-based analysis
Due to its superior performance, REINFORCE was chosen to
perform model-based analysis to gain insights into the learn-
ing behaviour and more specifically how they differ among
groups of participants.

We hypothesised that maladaptive participants would have
lower learning rates than the other two groups and tested our
hypothesis using Wilcoxon rank-sum tests on the fitted learn-
ing rates. In addition, exploratory Wilcoxon rank-sum tests
were conducted on the other parameters γ, which quantifies
the influence of immediate meta-level rewards as opposed
to the reward received later during the trial, and τ, which
describes to which extent the participant explores different
strategies (see Table 4). For the increasing variance envi-
ronment, the tests imply that the distribution of inverse tem-
perature parameters differs significantly between maladaptive
(M = 233.94,SD = 380.68) and moderately adaptive partici-
pants (M = 37.89,SD = 88.61). This suggests that maladap-
tive participants might choose their planning operations more
deterministic and thereby perform less cognitive exploration
of alternative planning strategies. Participant-level analyses
confirmed that 9 out of the 11 maladaptive participants started
with a maladaptive strategy and either did not change their
strategy or only changed it once. This suggests that the reason
why some people find it difficult to steer away from maladap-
tive decision strategies is that they fail to explore alternative
decision strategies. In the decreasing variance environment,
the learning rate also differed significantly between maladap-
tive participants (M < 0.0001,SD < 0.0001) and the other
two groups (highly adaptive: M = 0.007,SD = 0.018; mod-
erately adaptive: M = 0.009,SD = 0.026). The small learn-
ing rate suggests that maladaptive participants did not learn
at all. In the constant variance environment, the significant
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(a) Increasing variance environment (b) Decreasing variance environment (c) Constant variance environment

Figure 4: Averaged REINFORCE model performance visualised against participants’ performance

difference in inverse temperature implies that highly adaptive
learners (M = 9.12,SD = 26.51) explore more than the mal-
adaptive ones (M = 32.46,SD = 54), which aligns with the
adaptive strategy for this environment.

Parameter Comparison T p
Inverse temperature

(increasing variance) Malad. vs. Mod. ad. 2.79 .005
Inverse temperature
(constant variance) Malad. vs. Highly. ad. 2.22 .026

Learning rate
(decreasing variance) Malad. vs. Highly. ad. -2.01 .044

Malad. vs. Mod. ad. -1.98 .048

Table 4: Results of Wilcoxon rank sum test on the fitted pa-
rameters

Conclusion and further work
We first measured how people adapt their planning strate-
gies to different environments and then modelled the underly-
ing learning mechanisms in terms of metacognitive reinforce-
ment learning. Using a process-tracing method, we found
that participants discovered different types of planning strate-
gies depending on what was adaptive for the environment
they were in. Concretely, the proportion of adaptive strategies
significantly increased in all environments, while the propor-
tion of maladaptive strategies significantly decreased in al-
most all environments. After having confirmed that people
adapt to all three environments, we proceeded to develop and
test two new models of metacognitive reinforcement learning.
Our models extend previous models of metacognitive learn-
ing (Lieder & Griffiths, 2017; Krueger et al., 2017; Lieder et
al., 2018) to the problem of strategy discovery. They achieve
this by learning a policy for selecting individual planning op-
erations. In additional, innovation of our models is that they
learn not only from external rewards but also from intrinsi-
cally generated pseudo-rewards for gaining valuable infor-
mation. Model selection suggested that the REINFORCE
model best describes how people learn how to plan. Our
model-based analysis of individual differences in metacog-
nitive learning highlighted two potential causes of maladap-
tative planning: no learning and reluctance to explore. Fur-
ther work could look into how to motivate learning and ex-
ploration - for example by gamification.
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Introduction
Autonomous  driving  is  an  area  which  has  seen  rapid

growth in recent years A long-held belief in this field is that
more automation will equate more safety. However,  some
researchers  continue  to  challenge  this  conviction  in  an
argument for adaptive automation (Hancock et al., 2013).

In  the  context  of  driving  man-machine  systems
implementing  adaptive  automation  are  envisioned  to
continuously engage the driver in the driving task and at the
same time dynamically adapt the task-load depending on the
driver’s  momentary  cognitive  ability.  A key step towards
this approach is to continuously monitor the driver’s mental
state and predict when the automation system should take
more responsibilities and when to give them back to prevent
drivers from mentally disengaging in the driving task. 

Predicting  mental  workload  has  been  done  in  recent
studies using neuroimaging data (e.g., fNIRS; Unni et  al.,
2017;  Scheunemann  et  al.,  2019)  but  has  come  with
limitations  as  different  types  of  cognitive  workload  were
interacting instead of adding at the brain level, which led to
a decrease in prediction accuracy for two cognitive concepts
relevant to driving: working memory load and visuospatial
attention. In this study, we developed a cognitive model in
the cognitive architecture ACT-R that integrates these two
cognitive concepts to provide insights into how, when and
where these concepts interact. 

Methods
The model used in this study was a modification of the

Java  ACT-R  driving  model1,  which  itself  was  a  re-
implementation of the Lisp ACT-R model (Salvucci, 2006).
The  model  performed  two  tasks  simultaneously  using
threaded cognition (Salvucci  & Taatgen,  2011):  a  driving
task and an n-back task based on Unni et al. (2017). 

In  the  driving  task,  the  model  must  maintain  a  safe
position  on  the  road  while  driving  along  a  three-lane
highway with some concurring traffic. 

To manipulate visuospatial demands, the road alternates
between a regular highway with standard lane width (3.5m)
and a construction site with narrower lanes (2.5m), where
the leftmost lane is blocked by red-white pylons. 

1 https://www.cs.drexel.edu/~salvucci/cog/act-r/

The second task consists of a modified n-back task. As
the model is driving along the highway, speed signs appear
on the right side of the road every 20s, indicating a speed.
The model must always drive according to the speed n signs
back. Thus, upon encounter of a speed sign, the model has
to memorize the sign, update a mental list of task-relevant
signs, recall the appropriate sign depending on the n-back
level and drive according to its speed. The difficulty in the
n-back task ranges from 0-back to 4-back.

Driving model
The driving model is an adaptation of the model presented

by  Salvucci  (2006).  As  the  control  loop  of  this  driving
model  is  independent  of  lane-width  and  it  can  thus  not
account for the effect of narrower lanes, we added a ‘low-
control  loop’ to the model. When the car  is at least  0.7m
away  from  either  lane  edge,  the  model  enters  this  low-
control  loop.  During  this  loop,  the  model  can  only  fire
productions from the low-control loop, as can be observed
in  Figure  1.  This  loop  does  not  involve  steering-control.
When the position of the car becomes too close to the lane-
edges,  the  model  re-enters  the  high-control  loop  to  steer
back to the center. After re-entering the high-control loop,

Figure 1: Model production system. Box titles indicate
goal types and names below indicate production rules.
Asterisks indicate production rules that allow the model
to return to parent goal.
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the model cannot switch back to the low-control loop for a
short  period  to  avoid  drifting  outside  the  safe-zone
immediately after entering. 

 As the construction site has a narrower lane-width, the
car does not enter the low-control loop in the construction
site as it will never be sufficiently far away from the lane
edge.

If  other  cars  need  to  be  overtaken,  lane-changes  are
initiated after the model checks the appropriate mirror and
lane. If the model is not in the right-most lane, it attempts to
change lanes after making checks in a similar manner. 

N-back model
The  n-back  model  works  by  a  sequential  memorizing

mechanism. Each sign is stored in declarative memory with
a  unique  ID  when  encountered.  To  successfully  recall  a
sign, the model sequentially goes through the speed signs
back in time to remember the desired speed. Importantly,
the number of backward steps is dependent on the n-back
level,  e.g.,  in a  3-back, the model goes back three times.
Errors are modeled by partial matching.

The model rehearses the task-relevant sequence of signs
up to three times or until the rehearsal process is interrupted
by the encounter of the next sign (cf. Salvucci & Taatgen,
2011). 

Results
As can be seen in Figure 2, n-back performance decreased

with  increasing  n-back  level,  showing a  similar  effect  as
human participants (Scheunemann et al., 2019). There was
no difference in n-back performance between lane-widths.
This effect can be explained by the fact that the model must
perform  a  higher  number  of  retrievals  in  higher  n-back
levels. This leads to a higher chance of a mismatch when
compared to lower n-back levels.

Analysis  of  steering  reversal  rates  revealed  increased
steering reversals in the construction condition across all n-
back levels, indicating an increase in driving difficulty (Fig.

3).  Additionally,  steering  reversal  rates  decrease  with
increased n-back difficulty.

As the difficulty in the driving task increases, the model
spends more time in the high-control loop, which leads to
increased steering movements and thus reversals. Moreover,
the increase in n-back difficulty requires a higher number of
productions to successfully accomplish this task, which has
the opposite effect  on steering reversals.  As more time is
spent on the n-back task, less time is available for driving.

Discussion
The  ACT-R  model  is  able  to  show  how  both  tasks

compete  for  available  resources:  driving  behavior  is
influenced  by  n-back  level  because  of  a  competition  for
access to procedural and declarative memory. These results
indicate an interaction at common task-unspecific level.

Because  there  is  limited  behavioral  data  available
regarding driving behavior with varying lane-widths, some
model parameters had to be estimated when developing the
model  (e.g.,  overtaking  distance).  We  are  currently
conducting a behavioral  study with human participants  to
remedy these factors and further validate the model.
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Figure 2: Average error rates in the n-back task. Human 
Data is taken from Scheunemann et al. (2019)

Figure 3: Average steering reversal rates.
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Abstract

We describe a new approach for developing and validating cog-
nitive process models. In our methodology, graphical models
(specifically, hidden Markov models) are developed both from
human empirical data on a task, as well as from synthetic data
traces generated by a cognitive process model of human behav-
ior on the task. Differences between the two graphical models
can then be used to drive model refinement. We show that iter-
atively using this methodology can unveil substantive and nu-
anced imperfections of cognitive process models that can then
be addressed to increase their fidelity to empirical data.

Introduction
Building cognitive process models of human behavior is a
challenging task that has rich rewards. Such models can be
used for many purposes, including to better understand where
people make errors (Hiatt & Trafton, 2015), to better under-
stand how to effectively teach people new skills (Lee, Ander-
son, Betts, & Anderson, 2011), and to design effective com-
puter interfaces (Cao, Ho, & He, 2018).

Because human thought processes can be only observed in-
directly, such as by recording external behavior (e.g., reaction
times, responses to questions, etc.), each cognitive process
model serves as a de facto theory of human behavior on the
task being modeled. To validate those theories, the simulated
behavior of the models on the task can be compared to the be-
havior of human participants on the task using measures such
as statistical goodness-of-fit measures (e.g., R2, RMSE, etc.).
A strong fit indicates that the model is a good theoretical can-
didate for how humans complete the task.

However, there are two related issues with this develop-
ment methodology that we address in this paper, both of
which stem from the fact that a strong or weak statistical fit
does not necessarily indicate which parts of the model may
fit human behavior better than others. First, a weak statisti-
cal fit does not necessarily give any actionable information
for which part of the model to modify to improve it. Second,
a strong statistical fit for part of the model’s task may mask
issues with another area.

Here, we use hidden Markov models (HMMs), a type of
probabilistic graphical model, as an new analysis tool for val-
idating the efficacy of a cognitive model on a human behav-
ioral task. First, we use the cognitive model to generate syn-
thetic data of human behavior on a task. Then, we train two
HMMs using two datasets: (1) human empirical behavior on

the task, and (2) the generated synthetic data. By comparing
these HMMs both qualitatively and quantitatively, we can not
only measure how similar the datasets (and thus the underly-
ing behaviors, or models of behavior) are, but also, because
HMMs are a form of graphical model, visually see ways in
which the datasets differ. We show that using this process can
improve cognitive model fidelity by both of these qualitative
and quantitative metrics, as well as improve the predictive
accuracy of the cognitive model when predicting a human’s
next action on a task.

In the following sections, we describe: the task; the em-
pirical data that was collected; the initial model of the task;
the graphical model approach; and the revision of the cogni-
tive model. Finally, we discuss the resulting improvement in
predictive performance.

Task Description
In order to study how cognitive models of complex behavior
can leverage machine learning as a tool for improvement, we
turn to a supervisory control task. Specifically, we consid-
ered how people performed while interacting with the Re-
search Environment for Supervisory Control of Heteroge-
neous Unmanned Vehicles (RESCHU) (Boussemart & Cum-
mings, 2008) simulator. RESCHU is an interactive super-
visory control task that requires complex decision making,
problem solving, and reasoning.

Figure 1 shows the simulation, which has three panels:
a map panel, a status panel, and a payload panel. The
map panel (Figure 1, right) displays unmanned aerial vehi-
cles (UAVs) (blue/red half ovals), targets (orange/green dia-
monds) towards which UAVs are moving, and hazard areas
(yellow circles) which should be avoided by UAVs and can
change location over time. The status panel (Figure 1, bottom
left) shows the status of the UAVs and includes information
on vehicle damage, time until the vehicle reaches a waypoint
or target, and time remaining in the simulation. The payload
panel (Figure 1, top left) is used by the operator to perform a
manual visual acquisition task once the UAV has reached the
target. It is not critical to this work so we largely omit its con-
sideration; it is more fully described in (Breslow, Gartenberg,
McCurry, & Trafton, 2014).

The goal for an operator’s session in RESCHU was to mon-
itor and guide the five UAVs to reach as many targets as pos-
sible, and complete the corresponding payload tasks, while
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Figure 1: A screenshot of the RESCHU environment simula-
tor used in this experiment.

avoiding damaging the UAVs in the hazard areas.
At the start of the simulation, the UAVs were randomly

assigned to targets; thus, the UAVs might not be directed to-
wards the optimal target. After a target was reached and the
visual acquisition payload task was complete, the target “re-
set”, and the UAV was randomly assigned to a new currently-
unassigned target, which again might not be optimal.

Because of this suboptimal automation, as well as the
changing location of the hazard areas, a critical subtask of
RESCHU was changing the target of a UAV. Operators could
do this at any time by using the mouse to click on the UAV
and then clicking on the UAV’s new target. We focus on this
subtask here because of its import as well as because, as we
will see, even in this “simple” subtask there is variation in
how operators perform it, making it an ideal subtask to test
our proposed methodology. The end goal of the modeling ef-
fort is to be able to predict an operator’s final selected target,
so the interface can better assist with the selection process
(e.g., pre-selecting the target, highlighting the target, etc.).

Empirical data
The empirical data we consider was based on ten participants
using RESCHU. Participants were provided extensive train-
ing on the RESCHU system, through an online tutorial, in-
person instruction, and walk-throughs. Participants also had
as much time as they wanted to use the entire system until
they were well-versed in the intricacies of RESCHU. Partic-
ipants were all volunteers (no incentives), healthy, with age
less than 30 years. Details on the methodology of the study
are available in (Breslow et al., 2014).

After a participant was fully trained on RESCHU, they
were seated approximately 66 cm from the computer mon-
itor and were calibrated on an SMI RED eye tracker oper-
ating at 250 Hz, which collected eye tracking data once the
experiment began. A fixation was defined using the disper-
sion method based on a minimum of 15 eye samples within
60 ms and within 50 pixels (approximately 3◦ of visual an-
gle) of each other, calculated in Euclidian distance. Fixations
on specific objects were automatically identified after all data

collection was completed. The simulation also logged all op-
erator actions, i.e. mouse clicks, indicating what object was
clicked on (i.e., selected) at different times.

All instances of changing a UAV’s target were manually
extracted from the simulation. A total of 200 sequential pro-
cess traces, with eye fixations and mouse clicks listed in
chronological sequence, were created by these participants.
For this subtask, a process trace contained sequences of the
set of possible observations of the operator’s behavior, {uav1,
uav2, ..., haz1, haz2, ... tar1, tar2, ..., Action-SelectUAV1,
Action-SelectUAV2, ..., Action-SelectTar1, Action-SelectTar2,
...}. Note that if the observation corresponds to a mouse click,
it is designated specifically as an “Action-Select”; otherwise,
it is an eye gaze fixation.

We were able to create a simple coding scheme for the em-
pirical data to categorize different strategies people used (e.g.,
a planning strategy needed to fixate on both the UAV and
the target before selecting the UAV; an opportunistic strategy
picked and selected a UAV before looking for a target). The
coding scheme was implemented computationally and run on
all the empirical data to provide preliminary evidence of dif-
ferent strategies.

Hidden Markov Models for Comparing
Datasets

A hidden Markov model (HMM) is a graphical model that
stochastically transitions between states using the Markov as-
sumption (i.e., transitions depend on only the current state).
The hidden term refers to how states are not directly observ-
able; instead, states stochastically emit observations that give
clues to what state the model is currently in. Figure 3 shows
example HMMs that we will discuss later in our analysis.

A typical hidden Markov model (HMM) is formally de-
fined by the tuple 〈S,Z,A,B,π〉:
• S is the set of states.
• Z is the set of observations.
• A is an |S|× |S| matrix defining transition probabilities be-

tween states ai, j = p(xt = s j|xt−1 = si).
• B is an |S| × |Z| matrix defining observation probabilities

of the states bi,k = p(ot = zk|xt = si).
• π is a vector with initial state probabilities πi = p(x0 = si).
In this definition, xt and ot represent the true state and emitted
observation at time t, respectively.

Learning HMMs
In order to create an HMM that models a dataset, existing
techniques for learning HMMs can be used. Learning for
HMMs can refer to both learning the topology of the HMM
(i.e., learning what states connect to others; Singer & Os-
tendorf, 1996; Siddiqi, Gordon, & Moore, 2007), as well
as learning the parameters of it (i.e., learning the values of
A and B; Rabiner, 1989). Here, we adapt the basic strat-
egy from (Singer & Ostendorf, 1996) for learning the HMM
topology using repeated “state splitting,” followed by stan-
dard Baum-Welch parameter learning (Rabiner, 1989). The
Baum-Welch algorithm uses successive iterations of forward
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and backward passes through all available data traces to it-
erate toward the transition and observation probabilities that
maximize the probability of the observed data. Repeating
these two steps of state splitting and Baum-Welch parame-
ter learning results in joint learning of both the topology and
parameters of the HMM.

The training procedure begins by reading in a set of obser-
vation sequences. We prepend each sequence with a START
observation and append each with an END observation to de-
note the fixed beginning and end of the sequence.

Then, an HMM is initialized with a start state that emits
only START, a middle state that emits all observations other
than START and END, and an end state that emits only END.
The start state transitions only to the mid state, the middle
state transitions to itself and the end state, and the end state
terminates the sequence.

From this point, state-splitting is used to expand the HMM
topology, one new state at a time. At every expansion step, a
new possible HMM is created and trained for each candidate
split, with every state (other than the specialized start and end
states) considered a candidate for splitting.

For each new candidate HMM, both of the newly split
states are initialized with the same transitions as the origi-
nal state. The new HMM’s parameters are then trained using
Baum-Welch learning. After all possible HMMs for the cur-
rent expansion step have been created and trained, the can-
didate HMM that maximizes the likelihood of the dataset is
selected for use or as the basis of the next expansion step; the
rest are discarded. This procedure can end once either a fixed
number of states is reached, or some measure of fit (such as
the likelihood of a validation set) stops improving.

HMMs as Dataset Representations
Learning the HMM directly from a dataset produces a graph-
ical model that represents some underlying structure in the
data. In particular, if two HMMs are created from datasets
generated by two different sources, the learned HMMs can
provide a graphical representation of the differences in the
sources underlying the two datasets. This provides a novel
way to analyze and validate cognitive process models: com-
paring HMMs learned from synthetic data from a cognitive
model with those learned from human empirical data.

Intuitively, we should be able to learn HMMs that do not
depend on the specific label of current action (i.e., looking at
tar1 vs. tar2), but instead consider its meaning (i.e., look-
ing at a target of interest vs. looking at a target not of inter-
est). There is an additional consideration, therefore, to using
HMMs as an analysis tool for cognitive process models on
tasks where a “template”-style process is applied to various
versions of a task. As an example, in the UAV re-routing sub-
task, the same processes are followed no matter which UAV
is being rerouted to which target. But because the specific tar-
gets of interest differ across observation sequences, learning
a single standard HMM on a dataset for this subtask would
essentially meaningless for understanding the process gener-
ating the data: the HMM will not be able to meaningfully

differentiate between targets of and not of interest.
To address this need, we next describe how we collapse

observations into composite observation sets in order to train
effective HMMs on these types of “template” tasks.

Composite Observations for HMMs

The first step in collapsing observations is to divide all pos-
sible raw observations into classes (e.g., group together all
hazard observations into a haz class, etc.). For each class,
we represent it using either one or two composite observa-
tions. For classes like hazard, all observations can generally
be collapsed into one composite observation haz. For classes
like target, however, they cannot: that would meaningfully
impact an HMM’s ability to understand the operator’s obser-
vations and actions. Such classes have two composite obser-
vations: tar+ which indicates the target of interest for a given
sequence, and tar- which indicates targets not of interest.

It is straightforward to convert raw observation traces into
composite observation traces. Each raw observation is re-
placed with either its single composite symbol, or with the
appropriate dual composite (i.e., if the raw observation is tar2
and tar2 is the selected target, it is replaced with tar+; other-
wise, it is replaced with tar-). The resulting composite dataset
can then be used to train an HMM as described above1.

HMM Comparison Measures

With two HMMs in hand, we can compare them to find
structural or other similarities or differences in the underly-
ing data. We consider two ways to compare HMMs: one
quantitative, and one qualitative. Quantitatively, comparing
HMM topology and parameters involves calculating the sim-
ilarity of the expected outputs produced by two HMMs. A
classic approach to do so, described by Juang and Rabiner
(1985), is to estimate the Kullback-Leibler divergence be-
tween the probability distributions of observation sequences
generated by the two HMMs. This estimation is done through
a Monte Carlo approach by repeatedly generating observation
sequences from one HMM, calculating the probability of each
of these sequences being emitted from both HMMs, and com-
paring the two probability values. Although this measure is
asymmetric, we transform it to a symmetric measure by cal-
culating it in both directions and averaging them. As the num-
ber of observations goes to infinity, the estimate approaches
the true Kullback-Leibler divergence of the two HMMs.

Qualitatively, a comparison of HMMs can be done by visu-
ally viewing them, and comparing transitions between states
as well as observation probabilities. For example, if one
HMM always begins by entering a state where it looks at a
UAV, while another always begins by entering the state where
it looks at a hazard, that can be viewed as a meaningful qual-
itative difference between the models.

1An additional, subtle, benefit of an HMM that reasons over
composite UAVs, hazards, targets, etc., is that it allows for adding or
removing additional items (such as more targets) at run time without
going through training again.
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Cognitive Model Development Cycle
Our cognitive model development cycle began by one of the
authors of this paper hand-writing a cognitive model in ACT-
R/E (Trafton et al., 2013) to capture human performance on
the UAV re-routing subtask. The original models are identical
to that described in (Trafton, Hiatt, Brumback, & McCurry,
2020); we describe them generally here, but interested readers
can refer to that work for their specifics.

Original Model Description
While performing the re-routing subtask, people could use a
variety of cognitive strategies; here, we focused on modeling
two strategies introduced when discussing the empirical data:
a planning strategy and an opportunistic strategy.

The planning strategy captures the insight that people
sometimes plan a few actions ahead, or search for the best
action to do, when performing a task. Here, the strategy first
searches for a UAV whose target needs to be changed (be-
cause it is on a collision course with a threat or is far away
from its target, etc.), by using its perception to see the inter-
face, and its memory to interpret what it sees. It then holds
the UAV in working memory while searching for a better tar-
get (e.g., one that does not intersect a hazard or that is closer).
After identifying the UAV and the new target of interest, the
model executes the actions to change the UAV’s target (i.e.,
clicking on the UAV, then clicking on the new target).

The opportunistic strategy occurs when people may not
have time, resources or inclination to plan ahead. The model
of this strategy sequences its actions differently. It first
searches for a UAV whose target needs to be changed, and
then immediately clicks to select the UAV without a specific
target yet in mind. Next, the model searches for a target where
the UAV could be sent. After an appropriate target is found,
it clicks on it to change the UAV to go to that target.

Note that while the differences in strategies are subtle, they
are different in their actions (i.e., mouse clicks) as well as pat-
terns of eye-movements. Also, the planning strategy clearly
requires greater utilization of working memory (e.g., needing
to hold the UAV in mind while searching for an appropriate
target); however, we note that even though the RESCHU task
is dynamic, there seems to be enough time to execute both
strategies within the constraints of the subtask.

Analysis Set-Up
There are two steps to setting up the analysis of the cognitive
models: acquiring the right data, and training the HMMs.

Data Evaluating the cognitive process models using ma-
chine learning techniques requires both empirical as well as
synthetic data stemming from the cognitive models. The em-
pirical data was described when introducing the RESCHU
task. For the synthetic data, we used the developed cognitive
models to generate observation traces indicating the model’s
theory of how people perform the task. Critically, these mod-
els generate traces of observational data that were identical in
form to the traces that were generated from the human par-

ticipants, including eye fixations and mouse clicks listed in
chronological order. All together, both the planning model
and the opportunistic model were each run 20,000 times to
generate 20,000 individual, distinct traces of synthetic human
performance for each strategy.

HMM Training HMMs can then be trained using each
data source: empirical planning, empirical opportunistic, syn-
thetic planning, and synthetic opportunistic. Before training,
each dataset was converted into its composite dataset as de-
scribed above. Each HMM was limited to 5 splits while learn-
ing the topography, resulting in a total of 8 states per HMM
(six “split” states plus the start and end states). For each can-
didate split, parameters were learned using 500 Baum-Welch
iterations. Figure 3a shows one such trained HMM.

Analysis
The trained HMMs can next be compared both quantitatively
and qualitatively. Quantitatively, the HMM distance measure,
described above, calculates how related the different HMMs
are. The first columns of Table 1, show these values for the
original cognitive process models (PlanSynOrig, OppSyn-
Orig) compared to the empirical data (PlanEmp, OppEmp).
While there is not an exact “ideal” target for these values,
lower values indicate that the data generated by the two mod-
els overlap more and, as such, lower values are better. These
values show that the cognitive model of the planning strategy
is closer to that of the empirical data than the model for the
opportunistic strategy. These values do not, however, offer
any insight into why this is the case.

In contrast, Figures 3a and 3b show a qualitative compar-
ison of the empirical planning HMM and the synthetic plan-
ning HMM. As they show, there are several qualitative ways
in which the HMMs differently characterize the behavior of
their respective data. Notably, as we will discuss in the fol-
lowing section, there are several differences in what observa-
tions occur directly before and after actions (mouse clicks).

Revision
The HMM analysis highlighted several differences between
the cognitive models and the empirical data. These differ-
ences suggested changes in the models that potentially could
lead to not only a greater theoretical understanding of dy-
namic tasks but also improved fits and better prediction. Two
changes were made to both strategy models based on the re-
vealed differences between them and the empirical data.

Looking at the target of interest before selecting it Be-
fore clicking the target of interest, the original cognitive mod-
els looked directly at it and then selected it very consistently.
However, the empirical data did not show such a strong re-
lationship. One possible explanation for this is that people
used a sort of embodied cognition by focusing on a target,
moving their mouse to that target, looking around more, and
then simply clicking the mouse to finalize the selection. We
implemented this aspect in the models by providing a 50%
chance that people would use a form of embodied cognition.
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PlanSynOrig PlanSynRev OppSynOrig OppSynRev
PlanEmp 0.209 0.181 OppEmp 0.312 0.181

Table 1: Distances between the empirical-based HMMs and original and revised process model-based HMMs for the planning
and opportunistic strategies. Lower scores indicate greater similarity between the HMMs.

Looking at the UAV immediately after selecting it The
empirical data suggested that people frequently (50%) looked
at the target of interest immediately after selecting the UAV.
In contrast, the original cognitive model used a GOMS-style
approach, generally looking at the UAV immediately after se-
lecting it to confirm that it was selected. To address this,
instead of increasing the probability that the target was fo-
cused on immediately after selection, we instead decreased
the probability that the model confirmed the UAV was se-
lected. By verifying that the UAV had been selected less of-
ten, we expected that the target would be examined sooner.

Note that for both of these changes, we did not perform
any sort of parameter-space search; we simply changed the
aforementioned probabilities to 50%. We assume that if we
had performed additional parameter-space search, the model
fit would be better, perhaps at the cost of over-generalization.

Results
We first look at the HMM measures to evaluate whether
the model fit to the empirical data has improved after revi-
sion. Table 1 shows that the quantitative fit did, in fact, im-
prove. The planning strategy showed a moderate improve-
ment, while the opportunistic strategy showed a large im-
provement. Qualitatively, as Figure 3 shows, the new plan-
ning cognitive model shows a stronger topological and pa-
rameter similarity to the empirical HMM; the opportunistic
shows a similar improvement.

As an additional measure, we have suggested that an effec-
tive way to evaluate a cognitive model is by predicting spe-
cific steps during task execution (Breslow et al., 2014; Trafton
et al., 2020; Ratwani & Trafton, 2011). In (Trafton et al.,
2020), we showed that we could predict what target a UAV
would be directed to by using synthetic data generated by a
cognitive model to train a CNN. If the HMM analysis added
value by improving the cognitive model, we should see an
improvement to the predictive capabilities of the CNN: the
cognitive model should capture the patterns in the data better,
allowing better prediction of the specific target selection.

Thus, we trained CNNs using synthetic data from the orig-
inal and revised cognitive models to see whether the revision
resulted in better predictive performance. For each CNN, 10-
fold cross validation was used to divide the empirical data
into training and testing data. All conditions used the same
folds for training and testing, and all models were evalu-
ated on the empirical data. In addition to training CNNs for
the planning and opportunistic strategies, we also trained a
combined strategy CNN that used half of each. As Figure 2
shows, in all cases, the revision improved the predictive per-
formance, showing that not only did our proposed process
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Figure 2: Original model predictive accuracy (bar) and up-
dated model predictive accuracy (red rectangle). The black
horizontal line is chance.

improve HMM-based metrics, but it improved the models’
eventual predictive power as well.

Discussion
In this paper, we have described a new methodology that cog-
nitive modelers can use to develop, analyze and verify cogni-
tive process models. In it, we learn hidden Markov models
from data from empirical experimentation, as well as from
synthetic data generated by candidate cognitive models. By
comparing those HMMs both qualitatively and quantitatively,
we can see the cognitive models’ goodness of fit, as well as
determine concrete ways in which the cognitive model can
be improved. This is different than validating models with
statistical goodness-of-fit measures, which do not offer con-
crete pointers for improving cognitive models. We also show
that this process can lead to increased predictive performance
by the cognitive model. In future work, we plan to expand
this methodology to demonstrate it for models in additional
cognitive architectures and of additional tasks.

Interestingly, this methodology revealed an issue with how
visual-based actions are typically done in cognitive mod-
els; namely, look at, encode, prep to act, then act upon it.
The HMM built for the empirical data suggests a different
paradigm for dynamic tasks: look at, encode, prep to act,
and then possibly look elsewhere before acting. This type
of insight is not possible to glean from summary statistics or
other typical measures of cognitive process models; a graph-
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Figure 3: HMMs of the planning strategy built from different datasets. The numbers of the states indicate the order in which
they were created. The meaning of the states can be derived from the observations they emit, which are shown in the figures.
Bolded observations occur with greater than 20% likelihood; italicized observations occur with less than 10% likelihood.

ical model allowed us to find this approach.
Another key insight is that, perhaps surprisingly, the im-

provements in HMM similarity and in predictive performance
did not mirror one another. For the HMM measure, the oppor-
tunistic model saw the greater improvement after its revision.
Considering predictive performance, the planning model saw
the greater improvement. This is because the different rep-
resentations of the HMM and the CNN lead them to capture
different aspects of the data: the HMM focuses on underly-
ing structure; the CNN focuses on non-linear patterns. This
subtlety only highlights the need for more diverse tools for
cognitive model analysis like the one that is proposed here.
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Abstract 

It has been shown that in hand-written transcription tasks 
temporal micro-behavioral chunk signals hold promise as 
measures of competence in various domains (e.g., Cheng, 
2014). But data capture under that an approach requires the 
use of graphics tablets which are relatively uncommon. In this 
paper we propose and explore an alternative method – 
Competence Assessment by Stimulus Matching (CASM). 
This new method uses simple mouse-driven interfaces to 
produce temporal chunk signals as measures of learner’s 
ability. However, it is not obvious what features of CASM 
will produce effective competence measures and the design 
space of CASM tasks is large. Thus, this paper uses GOMS 
modelling in order to explore the design space to find factors 
that will maximize the discrimination of chunk measures of 
competence. Results of a pilot experiment show that CASM 
has potential in using chunk signals to measure competence in 
the domain of English language. 

Keywords: chunking; GOMS; language competence; pause 
analysis; stimulus matching  

Introduction 

This paper concerns the assessment of learners’ competence 

in knowledge rich domains, using the analysis of computer 

logs of micro-behaviors in task activities. Moss, Kotovsky, 

and Cagan (2006), in the domain of engineering, and 

Arslan, Keehner, Gong, Katz, & Yan (2020), in the domain 

of mathematics, used drag and drop tasks to examine the 

underlying cognitive processes in either replicating subject-

related diagrams or solving mathematical problems, 

respectively. Another study analyzed pauses during text 

composition by means of key-stroke logging (Schilperoord, 

2002). These methods were successful in extracting and 

associating behavioral signals with cognitive processes, by 

logging actions at a time scale of ≈10 seconds.  

An alternative approach that holds some promise is to log 

and analyze micro-behaviors at a time scale of 1 second and 

less. Machine learning was used to analyze large amounts of 

data logged during freehand writing (Stahovich & Lin, 

2016) and drawing (Oviatt, Hang, Zhou, Yu, & Chen, 2018) 

during problem-solving tasks. Their findings revealed 

significant correlations between pause durations and 

proficiency levels.  

In contrast, Cheng and colleagues have used cognitive 

chunking theory to develop methods that require less data 

using short transcription tasks. According to Cowan (2001) 

and Miller (1956), “chunking” is a process by which 

perceived information are grouped and stored in working 

memory (WM), and since information is presented as units, 

people tend to group these units into “chunks” of 

meaningful information. The number of “chunks” stored is 

constrained by one’s mental capacity, however Cowan 

(2001) also points out that the capacity is also affected by 

the amount of prior knowledge one holds in long term 

memory in the expert domain. So, in the experiments carried 

out by Cheng and colleagues, they examined differences in 

pause behavior of novices and experts whilst engaging in 

transcription tasks to probe chunk structures in memory. 

Cheng and Rojas-Anaya (2007) observed individuals 

copying mathematical equations freehand and could 

distinguish level of experience. However, their sample size 

was small and participants had large differences in their 

mathematical expertise. Extending the approach Cheng 

(2014) showed strong correlations between competence and 

the third quartile (Q3) pauses. Similarly, Zulkifli (2013) 

asked learners of English as a second language to transcribe 

English sentences freehand and found Q3 to be an effective 

measure of competence. Albehaijan and Cheng (2019) show 

the possibility of measuring programming competency 

using the same method. Overall, it seems that pause based 

measures in transcription tasks have some potential for 

assessing competence in various domains.  

Despite the promise of freehand transcription, one 

limitation is the need for a graphics tablet, an uncommon IT 

equipment. Thus, it would be desirable to combine mouse 

driven tasks (Arslan et al., 2020; Moss et al., 2006) with the 

benefits of capturing micro-behaviors. Cheng (2015) used a 

mouse and a response grid on a screen to measure temporal 

chunk signals related to mathematical competency. 

Participants copied the stimuli by clicking on the matching 

symbols that appeared on the grid. Results showed that 

clicking to select symbols has potential as a means to 

measure mathematical competence.  

In this paper we propose an alternative approach to the 

assessment of competence administered on a standard 

computer by means of mouse clicking: Competence 

Assessment by Stimulus Matching (CASM). A preliminary 

CASM task design has been created (Fig. 1), that takes into 

consideration the different factors that would encourage the 
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use of chunking. The task is presented as a split screen with 

the stimulus at the top and the response area at the bottom. 

The response area includes words that either match or differ 

from the stimulus. Participants are expected to verify the 

match or mismatch and use the mouse to mark their 

responses as quickly and as accurately as possible. The time 

course of clicks in the check boxes will reflect certain 

aspects of the test takers language competence, so measures 

of competence may be devised for the task.  

A key problem is how to design CASM tasks to produce 

behaviors that maximally differentiate high and low 

competence. Will the micro-behaviors of experts and 

novices differ substantially on the task in Fig.1, and so 

potentially provide effective temporal chunks measures of 

competence? This paper considers the possibilities, but the 

possible space of design is large. Some of the factors 

influencing this task include: the large spatial distance, the 

deliberate misalignment of words, the use of low frequency 

words and multi-syllabic words. So, how can we effectively 

yet efficiently explore the space? A task analysis approach 

is adopted, in particular a somewhat novel approach to the 

application of GOMS modeling is used to assess chunks in 

memory in order to further determine how the different 

design factors impact the task environment. 

Task Design Space 

The aim is to develop chunk-based Competence Assessment 

by Stimulus Matching (CASM) tasks that rely on mouse 

clicking, in contrast to Cheng and colleagues pen-on-paper 

transcription approach. The key issue is the design space, 

where many variables provide us with a plethora of design 

choices, from which we must choose those that impact the 

distribution of pauses that maximally differentiate experts 

from novices.  

Screen Layout and Stimulus Positioning: The layout may 

encourage the use of chunking to provide experts with an 

advantage over novices. Firstly, the spatial distance between 

the stimulus and the response areas may be made 

deliberately large to impose a task load on individuals, who 

must shift their gaze vertically. In turn this may encourage 

them to chunk as much as possible. Cheng (2014, 2015) 

used distant positioning to improve the Q3 pause measures 

of competence. Secondly, the misalignment of the stimulus 

and the response is assumed to encourage experts to use 

chunks to save the effort of switch gaze, and place some 

difficulty on the novices who, because of their limited 

language knowledge, might take longer to locate the point 

where they last left as they shift their gaze. 

Presentation Mode: In presenting the stimuli, one approach 

is to have it visible throughout the duration of the task; 

“constant display” (Cheng & Rojas-Anaya, 2007; Cheng, 

2014; Zulkifli, 2013). The second is “voluntary view”, 

where the appearance of the stimuli requires an action by 

the individual (Albehaijan and Cheng, 2019). 

Stimulus and Response Composition: The general 

approach here is to play with effects of stimulus and 

response composition or decomposition. This applies at the 

whole stimulus (sentence), word (compound words) and 

part word (syllable) levels. If working at the word level, one 

option is to present stimuli words in a way that, if two were 

combined, they would make up a compound word which 

may differentially benefit the expert by increasing their 

chunk size by treating the two words as one unit rather than 

two for a novice (e.g., “counter measure”). We would 

expect the benefit to be reflected in the pauses in the task 

and hence in measures of competence.  

Stimulus Content:  Content manipulations include word 

frequency (high and low), word length, sentence structure 

(simple, complex, incorrect), semantic meaning, etc. Zulkifli 

(2013) shows that such manipulations can be applied in 

ways that benefit experts to use their knowledge which may 

be revealed in chunking measures.   

Method 

The steps taken to carry out the task analysis are: (1) Design 

a number of task variations. (2) Use GOMS to develop flow 

charts that predict the processes employed by experts and 

novices. (3) Calculate the durations for each process, to 

predict differences in pause distributions and lengths. (4) 

Run a pilot study to evaluate the modeling results.  

GOMS, is a well-established systematic approach to 

cognitive task analysis that is usually applied during system 

design to test for usability aspects, choose between 

candidate designs and understand user behavior (Card, 

Moran & Newell, 1983). However, our motivation is not to 

understand user performance, per se, but rather to find 

designs that constrain their behavior so that micro-

behavioral signals of competence are as robust as possible.  

While the GOMS models are usually applied to 

understand how the external task environment affects the 

individual’s behavior, we on the other hand apply the 

analysis in a way to understand the internal processing of 

chunks, leading to how that impacts the design of the task. 

So, within the framework of GOMS, in our approach, goals 

are related to the size of the chunk an individual can hold in 

memory. Not only this is affected by the layout of the 

interface (externally) but its largely constrained by their 

level of familiarity with the words presented (internally). 

Among the operators of particular interest to us are those 

classified as cognitive operators. Those that deal with the 

Figure 1: Preliminary CASM Task Design 
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decomposition of a chunk are decisional processes 

concerned with whether certain elements makeup a chunk or 

not. Others are related to retrieving chunks from memory, 

comparing and verifying. The methods are the internal loop 

processing by which the sequence of operators to achieve a 

certain sub-goal. Selection rules are choices that test takers 

will make to choose between alternative methods based on 

the chunks they possess, which will be manifest as different 

micro-behaviors and that chunk measures will attempt to 

measure. 

Allocating Time Durations 

All operators are allocated specific time durations that were 

mostly extracted from past GOMS studies. 

1. Word/syllable recognition: The time for recognizing a

six-letter word, a syllable or a letter is 340ms (John &

Newell, 1989).

2. Cognitive operators: Cognitive operators include

those processes that involve holding a chunk in

memory, decision making, verifying, and comparing.

According to the literature, the average duration for

mental processes is between 50 and 70ms (Gray &

Boehm-Davis, 2000; Olson & Olson, 1990; John &

Newell, 1989). The proposed tasks involve low-level 

cognitive processing, so 50ms is chosen.  

3. Chunk retrieval: This process was allocated a duration

of 50ms, following similar studies involving immediate

copying (John, 1988, as cited in Olson & Olson, 1990).

4. Mouse move: A quick pilot experiment was conducted

on the author and an additional participant. The average

time for moving between response items was 500ms,

and 700ms for moving from the top screen to the

bottom. The second was used as the duration of the

action to reveal stimuli in voluntary display tasks.

5. Eye movement: The time for a saccade is 30ms

(Russo, 1978, cited in Card et al.,1983).

Analysis 

Task Analysis: Flowcharts 

Since the design space is large it is impossible to examine 

all combinations of variables here, so we focus on the 

design in Fig. 1 as an exemplar. The main features of the 

design are the layout, use of low frequency words, inclusion 

of disyllabic and trisyllabic words, and presenting the 

stimulus in constant display mode. The flowcharts in Fig. 2 

   Figure 2: Expert Flowchart Figure3: Novice Flowchart 
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and Fig. 3 are high-level representations that conceptualize 

how an ideal expert and an ideal novice, in the English 

language, would approach the indicated task. For the 

purpose of this study, our definition of an expert is someone 

who possess a vocabulary that enables them to fluently read 

a piece of text while simultaneously processing its meaning. 

A novice, on the other hand, is someone with a small 

vocabulary size, and therefore their reading is much slower 

as they exert much of their cognitive effort in phonetically 

processing presented words.     

In general, the processing of chunks suggested in both 

flowcharts act in nested loops. This is similar to Crump and 

Logan’s (2010) inner-outer loop theory of typing, where the 

outer loop receives words from reading that are then 

individually passed to an inner loop that translates the word 

into letters for keystrokes. In our case, there are different 

loops that work together in a nested fashion for grouping 

bits of a chunk, decomposing them, transferring them 

individually to be compared, and then back again to process 

the next chunk. 

Expert Flowchart, Fig. 2: For the sake of analysis the 

expert is assumed to chunk three words at a time, so they are 

predicted to have the following pattern of steps: 

1. Begin by viewing stimulus, looping three times around

ELP1 to create a chunk of three words. By the third

loop, the WM is assumed to have reached its capacity

and therefore a decision is made to end WM loading.

Time elapsed to this point totals 1380ms (3 × (340 +
50 + 50) + (2 × 30)).

2. The eyes shift to the response area (time duration

30ms). With this movement, the second loop of

processes (ELP2) is triggered, which includes reading

the word displayed, selecting target word from WM,

comparing the words, deciding and finally moving the

mouse to click. Accordingly, the step duration is

990ms. The total time, from the start to the first mouse

click, the initial pause, is 2400ms.

3. The clicking action of the first word takes 250ms.

4. The expert would then continue to loop through ELP2

to make their second and third response for the words

“meringue” and “aardvark” respectively (Fig 4). Pauses

for these two responses are both 1070ms each.

5. Once the first three-word chunk is complete, they loop

up to the stimulus to gather the next chunk of three

words (ELP3). The process of deciding to do this and

looking up takes 160ms. This duration is the first part

of the pause that precedes the first click in the next

group of words.

This analysis is depicted on the solid blue line in Fig 4, 

which shows pause duration for successive words. The first 

point is the pause before “indict”, comprised of steps 1 and 

2. The second and third points are the result of step 4. The

fourth point, the pause prior to “ingenue”, is comprised of

step 5 and 1 again. Hence, experts are expected to exhibit

long pauses for grouping words into chunks, with short

pauses between responses from within the chunks.

Novice Flowchart, Fig. 3: A novice is assumed to process

unfamiliar words by breaking them into parts and then

regrouping them to form a chunk. Therefore, for modeling

purposes a novice would process a word by the number of

syllables it contains. In Fig. 4, the first half of the words are

disyllabic while the others are trisyllabic. Hence, a novice’s

steps for processing are assumed as follows:

1. Begin by looping through NLP1 twice taking 910ms

(2 × (340 + 50 + 50) + 30). They then move their

eyes to the response area (30ms) to process the

presented word and make a move to click (990ms). So,

prior to making their first click their total pause would

be 1930ms.

2. Next, they click to make a response (250ms).

3. Finally, they would loop up for the next word, NLP2,

with the duration for deciding, gazing up and locating

the next item is 110ms. This will be calculated as part

of the pause that precedes the next response click.

These pause durations are represented on the solid

orange line in Fig 4. While the first point is comprised

of process 1, the rest are composed of processes 1 and

3. The small rise in the duration of the final three points

to 3440ms is the result of processing trisyllabic words,

where the number of times they loop through NLP1 (in

step 1) would increase to three. Accordingly, a novice

is predicted to experience long pauses between all

clicks, and slightly longer pauses when the number of

syllables in a word increases. Overall, the predicted

profiles of the expert and novice are substantially

different.

 Effects of Various Factors 

Other factors and their potential effects were analyzed in the 

same manner. By changing the display of the stimuli from 

constant display to voluntary view, the stimulus is now 

concealed and may only be revealed by hovering the mouse 

over it in the top area. As a result, extra processes are added 

to the expert’s and novice’s models for the hover actions. 

This increases the lengths of long pauses, so further 

increases the difference in profiles between experts and 

novices in Fig. 4 for the voluntary view condition, with two 

of the expert’s pauses increasing, whereas all the novice’s 

pauses are higher. The first half of rows in Table 1 

summarizes all of the separate pieces of analysis for the 

Figure 4: Predicted pattern of pauses for experts and novices in the constant display and voluntary view conditions 
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Figure 5: Pause pattern in matching 

parts of words with parts of words 

Figure 6: Pause pattern in matching 

parts of words with words 
Figure 7: Pause pattern in matching 

words with parts of words 

presentation factor, showing higher discrimination among 

individuals under the voluntary view mode. The median was 

chosen to represent the data, however in calculating the 

mean, a similar pattern of data existed; showing no 

difference in the overall results.  

Models were created to analyze the effect of pairing 

different types of stimuli with responses, the range of data 

between the first row and last row of the first half of Table 1 

summarizes these modelling results. In addition to matching 

words with words, we looked at the possibility of pairing 

parts of word in the stimuli with parts of words in the 

response (i.e., syllables with syllables). Such presentation 

alters the expert’s model to include two additional loops, 

one at the start to group syllables into words, and one at the 

end to decompose the chunked words back to their syllables. 

This in turn affects the shape of their pause pattern (Fig. 5). 

A novice on the other hand, is predicted to treat each 

syllable as a separate chunk, processing each syllable in one 

large loop causing them to shift their gaze frequently 

between syllables. Accordingly, their pause pattern is a 

straight line (Fig. 5).  

The other possibility is to pair parts of words in the 

stimuli with words in the response, for example matching 

the syllables “in” “dict” with the word “indict”. As with the 

previous task, experts are expected to chunk syllables and 

form words in their WM and then matching them directly 

with whole words in the response. The graph, Fig. 6, for this 

model predicts that an expert’s pause pattern would be 

similar to that found in Fig. 4, however with an increase in 

the long pauses, in particular, prior to chunking trisyllabic 

words. If novices were assumed to treat each syllable as a 

separate chunk, the model predicts that they would be 

shifting their gaze many times prior to clicking a response 

causing their overall pause durations to be higher than 

previously seen (Fig. 6). The difference in pause measures is 

the highest for this task design (Table 1). 

Finally matching words in the stimuli with parts of words 

(opposed to the above task) was tested. The expert’s pattern 

of pauses is similar to those found in Fig.5 however, with a 

decrease in the overall duration (Fig.7). On the other hand, a 

novice’s pause pattern differs from those depicted in Figs. 4, 

5 and 6 with long pauses prior to matching the first part of a 

word followed by shorter pauses for each subsequent part of 

that particular word (Fig. 7). The reason behind the change 

in pattern is due to the number of loops experienced by the 

novice. While their processing was always composed of 

either one or two loops, in this task a third loop appears at 

the bottom of the model for decomposing the chunk, and 

comparing parts. This design has the least effect on the 

pause measures (Table 1).  

Evaluating Model Results 

To test the model, a pilot study was conducted with two 

participants. The participants were picked and classified 

after assessing their vocabulary size using a standard 

vocabulary size test (Nation & Beglar, 2007), with the high 

competent (HC) individual scoring at the 16,800-word level 

and the less competent (LC) at the 8,100-word level.  

Based on the predictions in pause measures, the pilot was 

developed to include four blocks of twelve trials under the 

conditions of matching word for word and part to word in 

both constant display and voluntary view. Although, the 

number of participants was limited, the amount of data was 

substantial; 48 pause measures were extracted from 384 

mouse clicks per individual. The mean of median pauses 

was calculated for each block separately (Table 1).  Overall, 

findings reveal that patterns between the model and 

observations are consistent, with the LC experiencing higher 

pause durations than the HC across all types of tasks. 

Specifically, out of the 48 trials, only two of the LC trials 

scored better, i.e., having shorter pauses. It is worth noting 

however that the value of those measures were small 

Table 1: The effects of design variables on pause durations 

Model vs. Pilot Type of Display S-R Composition
Median 

Novice Expert Differ. 

Modelling Results 

Constant Display 

(CD) 

Word to word 2275 1070 1205 

Part to word 3175 1120 2055 

Part to part 1520 1020 500 

Word to part 1070 1020 50 

Voluntary View 

(VV) 
Word to word 3205 1070 2135 

Type of Display S-R  composition
Mean of Medians 

Novice Expert Differ. 

Pilot Experiment 

Results 

Constant Display 

(CD) 

Word to word 2269 1287 982 

Part to word 3856 2502 1354 

Voluntary View 

(VV) 

Word to word 2116 942 1174 

Part to word 4235 1569 2666 
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(≈150msc), occurring on items that contained low frequency 

words and would not be expected to distinguish participants 

well. Furthermore, confirming our predictions, higher 

discriminations were observed under voluntary view, 

especially when combined with part to word tasks.   

Discussion 

The aim of the present study was twofold. Firstly, to 

introduce the method of Competence Assessment by 

Stimulus Matching. CASM attempts to combine the benefits 

of mouse driven tasks for assessing chunking behavior (c.f., 

Arslan et al., 2020; Moss et al., 2006) with the benefits of 

temporal chunk measures for micro-behavior analysis (c.f., 

Albehaijan & Cheng, 2019; Cheng, 2014; Zulkifli, 2013). In 

other words, CASM aims to obtain measures of competence 

based on rich chunk level data at a time scale of 1s with the 

convenience of standard IT interface devices. From the 

preliminary results it appears that CASM has potential to 

compete with the freehand transcription approach and also 

Cheng’s (2015) method that used a mouse and a selection 

grid. The magnitudes of predicted differences of pauses 

between the expert and novice are comparable to the 

magnitudes observed in our pilot as well as the empirical 

evaluation of those previous approaches.   

The second aim was to explore some of the large design 

space of CASM tasks by using GOMS models to examine 

the effects of different factors on the processes of chunks. A 

reason for using GOMS and not a sophisticated cognitive 

model such as ACT-R (Anderson, 1998), is that we were 

looking at an efficient method for finding effective designs 

without all of the detail and effort required to build a full 

cognitive model.  The aim is not to explain in precise detail 

all of the cognitive steps associated with doing the task, 

therefore what we needed was an engineering tool and not a 

scientific one. The produced models provided us with useful 

guides for designing CASM tasks, as they represent general 

differences in the processes of an ideal expert and an ideal 

novice. In between these two models would exist various 

intermediate levels. Someone who is gradually learning the 

language may behave according to a mixture of the models. 

Their decomposition of words may vary depending on their 

level of familiarity with the words presented, so their 

looping structure would differ. Variations at the level of 

individual loop structures would not affect the overall 

results as these differences would be reflected on the 

expert’s and novice’s models, however the number of each 

type of loop that exist within a model determines the 

difference.   

In using GOMS to analyze the tasks, it was possible to 

assess chunks in memory and predict pause behaviors. The 

modelling results show how different patterns of nested 

loops affect the shape of pause distributions. In the task of 

matching words with words (Fig 4), an expert’s pattern 

included few long pauses separated by successive short 

pauses, while novices were shown to have long pauses 

between clicks. This is explained by how their language 

knowledge affects the process of chunking. Experts are 

expected to recognize words in a fluent manner, providing 

them with the advantage of loading into their memory as 

many words as possible (see ELP1 in Fig. 2), explaining the 

few long pauses. The short pauses however, are due to the 

transfer of words in memory from ELP1 to ELP2. Novices, 

on the other hand, spend time in processing a word, by 

breaking it apart into syllables and then regrouping them 

(see NLP1 in Fig. 3). This lengthy process is expected to 

load their WM, limiting their ability to hold one word in a 

chunk and causing frequent gaze shifting between 

responses. This indicates that behaviors are very much 

determined by the chunking structure of the participants.  

In terms of the design space what task factors are 

predicted to mostly distinguish between different 

competence levels? First, the spatial distance between the 

stimulus and response plays a role in encouraging the use of 

chunks (Cheng, 2014). If they were close, then experts and 

novices might rely on quick gazes rather than chunking, 

causing both to exhibit similar patterns.  

Second, for the presentation mode, the analysis showed 

no effect on the pattern of pauses but a greater difference 

between pause measures was identified under voluntary 

view (Table 1). Confirmed by the pilot study, this mode 

seems potentially more effective than constant display.  

Third, with respect to stimulus and response composition, 

pairing syllables in the stimuli with words in the response 

seems to be the most effective option. According to GOMS, 

constructing the stimulus in this way makes it easier for 

novices to recognize a syllable and move to the response for 

comparison. However, the complexity of having multi-

syllabic words in the response forces novices to shift their 

gaze as many times as required to have all parts of the word 

matched. Predictions were confirmed by the results of the 

pilot study showing longer pauses for novices in these types 

of tasks, making it seem most effective in exploiting the 

difference between experts and novices (Table 1).  

Fourth, the difference between the model and pilot results 

are reasonably close, which drives us to conclude that there 

is potential for such approach. However, one explanation for 

the absolute difference between the model and each 

participant being relatively large may be due to variations in 

strategies within each participant. To control for that, task 

instructions are being tightened.  

GOMS has helped in visualizing the kind of designs most 

suitable for developing CASM tasks that use temporal 

chunk measures to assess competency in natural language. 

We are planning on carrying out further empirical studies.  
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Abstract

Bilingual speakers are more likely to use a syntactic struc-
ture in one language if they have recently encountered that
same structure in another language. This cross-language struc-
tural priming effect is predicted to be positively modulated by
second language proficiency according to a developmental ac-
count by Hartsuiker and Bernolet (2017). We propose to ex-
tend this account from sequential bilinguals to simultaneous
bilinguals. In this latter group, syntactic structures develop in
parallel and can integrate from the onset. Therefore, we do
not expect proficiency or other measures of development, such
as exposure, to modulate cross-language structural priming in
these bilinguals. In simulated cross-language structural prim-
ing experiments, we explored how proficiency affects prim-
ing of transitives. We use an implicit learning model of sen-
tence production to model the simultaneous English-Spanish
bilinguals in these simulations. Furthermore, we investigated
whether the priming effect is modulated by exposure to the
non-dominant language, which only Kutasi et al. (2018) also
analyzed. We found no evidence for any modulating effects for
either proficiency or exposure, which is in line with the previ-
ously reported behavioral result of Kutasi et al. (2018). To-
gether, our modeling results and Kutasi et al.’s (2018) behav-
ioral results support an extended version of the developmen-
tal account of cross-language structural priming that predicts
a modulating effect of proficiency in sequential bilinguals, but
not in simultaneous bilinguals.
Keywords: cross-language structural priming; multilingual-
ism; proficiency; syntax; error-driven implicit learning

Introduction
Structural priming is the tendency of speakers to reuse syn-
tactic structures that they have recently encountered. It
occurs in real life discourse and it is a phenomenon that
can give insight in how syntax is represented in the human
mind. Structural priming has been demonstrated to occur be-
tween different languages. In a study on priming of transi-
tives in Spanish-English bilinguals (Hartsuiker, Pickering, &
Veltkamp, 2004), for example, participants were more likely
to use a passive target sentence in English (e.g., “The bottle
is hit by the bullet”) after hearing a passive Spanish sentence
(“El camión es perseguido por el taxi”) than after hearing an

active Spanish sentence (“El taxi persigue el camión”). This
shows that syntactic representations can be shared between
languages. Cross-language structural priming has been in-
vestigated in pairs of relatively similar languages such as En-
glish and Spanish, but also in languages from different fami-
lies such as English and Korean (Shin & Christianson, 2009).
Cross-language priming has been demonstrated for different
syntactic structures such as transitives, datives (Loebell &
Bock, 2003) and genitives (Bernolet, Hartsuiker, & Picker-
ing, 2013). It has been shown to occur not only in adults but
also in children (Vasilyeva et al., 2010).

Different accounts of structural priming have been pro-
posed. One account explains it as the result of residual ac-
tivation of syntactic representations and combinatorial nodes
(Pickering & Branigan, 1998). Another account explains it
as the result of error-driven implicit learning (Chang, Dell, &
Bock, 2006; Chang, Dell, Bock, & Griffin, 2000). In this ac-
count, prediction error leads to strengthening of connections
between representations that support the use of a syntactic
structure, which in turn leads to increased production of that
structure, which is measurable in behavioral experiments as a
priming effect.

Different models of within-language structural priming
have been implemented. Specifically, the Dual-path model
(Chang, 2002) was used to simulate monolingual priming of
transitives in English (Chang et al., 2006) and of datives in
German (Chang, Baumann, Pappert, & Fitz, 2015). It has also
been extended to a bilingual model, which was used to study
cross-linguistic transfer (Tsoukala, Frank, Van Den Bosch,
Kroff, & Broersma, 2021) and code-switching (Tsoukala,
Broersma, Van Den Bosch, & Frank, 2021), and it is the only
model in which cross-language structural priming has been
demonstrated (Khoe, Tsoukala, Kootstra, & Frank, 2020). A
hybrid model by Reitter, Keller, and Moore (2011), in which
priming is primarily activation-based, has been used to sim-
ulate priming in one language but not between different lan-
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Figure 1: Bilingual Dual-path. The model is a next-word prediction network that converts messages into sentences. It is an simple
recurrent network-based model (the lower path, via the ‘compress’ layers) that is augmented with a semantic stream (upper path) that contains
information about concepts, thematic roles, event semantics, and the target language. The number of units per layer is shown in parentheses.
The numbers of units for the hidden and compress layers vary across simulations. (Figure adapted from Tsoukala et al., 2017)

guages.
It is still an open question how second language (L2) pro-

ficiency affects cross-language structural priming. Hartsuiker
and Bernolet (2017) have hypothesized that as L2 learners be-
come more proficient, their L2 syntactic representations be-
come more integrated with the representations that they al-
ready have for their native language (L1). In this develop-
mental account, the increased integration will then result in
increased cross-language structural priming.

In a number of cross-language structural priming studies,
proficiency or amount of exposure to the L2 were investi-
gated as predictors of the strength of the priming effect. In
four cases, increased cross-language structural priming was
found for more proficient participants. The results presented
by Bernolet et al. (2013) revealed a positive effect of profi-
ciency on the strength of priming between Dutch and English
genitives. A reanalysis by Hartsuiker and Bernolet (2017)
of an experiment performed by Schoonbaert, Hartsuiker, and
Pickering (2007) also revealed that cross-language priming
of datives in Dutch-English bilinguals was stronger for par-
ticipants who were more proficient in their L2. Similarly,
Favier, Wright, Meyer, and Huettig (2019) found that pro-
ficiency positively modulated priming of datives and pas-
sives from Irish to English. In their investigation of prim-
ing between Korean and English transitives, Hwang, Shin,
and Hartsuiker (2018) found a priming effect that increased
in magnitude as participants were more proficient in their L2,
English. In contrast, three other studies did not yield evidence
that proficiency modulates priming. The results reported by
Hartsuiker, Beerts, Loncke, Desmet, and Bernolet (2016) for
priming of relative clause attachment and of datives in mul-
tilingual speakers of Dutch (L1), French (L2), English (L2),
and German (L2) did not reveal such an effect. Similarly, the
results reported by Kutasi et al. (2018) for English and Gaelic
transitives did not reveal any effect of either proficiency or
exposure. Huang et al. (2019) also found no correlation be-
tween self-rated proficiency and the priming effect of datives
in trilingual speakers of Mandarin, Cantonese, and English.

These conflicting results might be partly explained by con-
sidering the type of bilinguals that were involved in the stud-
ies. Whereas all but one of the participants in Kutasi et al.’s
(2018) study were simultaneous bilinguals, the participants
in the other studies were all or in majority sequential bilin-
guals. In our interpretation of the developmental account by
Hartsuiker and Bernolet (2017), proficiency is expected to
affect cross-language structural priming in sequential bilin-
guals, who start learning a second language after they have
acquired their L1, but not in simultaneous bilinguals, who
acquire their two languages at the same time. These simulta-
neous bilinguals would develop syntactic representations for
both languages at the same time, which could integrate from
the onset. The results of the study by Kutasi et al. (2018) is
in line with this extended account, as they did not reveal an
effect of either proficiency or exposure in the non-dominant
language on cross-language structural priming.

While the number of behavioral studies on the effect of
proficiency on cross-language structural priming is growing,
proficiency differences have not been studied using imple-
mented models of cross-language structural priming. In the
above mentioned study by Khoe et al. (2020), the aim was
to model balanced simultaneous bilinguals, and the models
were therefore trained using approximately equal numbers of
sentences in the two languages, that varied only minimally.

In the present work we explore the effect of proficiency and
exposure in the non-dominant language on cross-language
structural priming in simultaneous bilinguals, whom we
model using an implicit learning model of sentence produc-
tion. We do this by varying the amount of input in the two
different languages that the model receives during training.
We then perform cross-language structural priming experi-
ments with these model instances as participants. We analyse
the results of these experiments to determine whether profi-
ciency or exposure in the non-dominant language modulate
cross-language structural priming in the model.
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Method
Model
We trained instances of the Bilingual Dual-path model1 of
sentence production (Figure 1) on miniature versions of En-
glish and Spanish to serve as simulated participants in cross-
language priming experiments. The Bilingual Dual-path
model extends the meaning path of the original Dual-path
model (Chang, 2002) with a target language layer that indi-
cates the intended output language.

The training input to the model consists of sentences in
two artificial languages that are paired with messages that
encode their meaning (see examples below, under: Artifi-
cal languages). The model instances receive input in both
languages from the start of training to simulate simultaneous
English-Spanish bilinguals, who start acquiring both English
and Spanish from infancy. The model learns to convert a mes-
sage into a sentence by predicting sentences word by word
and adjusting its connection weights based on prediction er-
ror using back-propagation. A difference between the Dual-
path architecture and other Recurrent Neural Networks is that
the network has connections with fixed weights between con-
cepts and roles of the message to be expressed.

Artificial languages The artificial versions of English and
Spanish2 that we used include the same nine sentence types
for each language: Animate intransitive, Animate with-
intransitive, Inanimate intransitive, Locative, Transitive (in
active or passive form), Cause-motion, Benefactive transitive,
State-change, and Locative alternation3. The two languages
together have 275 unique lexical items. In addition to nouns,
verbs, adjectives, determiners, and prepositions, these lexi-
cal items include inflectional morphemes such as a past tense
marker (Spanish: ‘-pas’; English: ‘-pst’) and a past partici-
ple marker (Spanish: ‘-prf’; English: ‘-par’). The message
semantics contain 121 concepts and 7 thematic roles. Only
singular verbs, pronouns, nouns, and adjectives were used.
Verbs and pronouns were always in third person form.

Of the transitives in our artificial languages, 75% were ac-
tives and 25% were passives. This skew in favor of actives
is more in line with the frequencies of these constructions in
natural language than the balanced frequencies of actives and
passives that was used by Khoe et al. (2020).

In the training and test input, any message that can be ex-
pressed using two different syntactic structures has a strong
bias towards one of those structures. This was implemented
by creating differences in activation of thematic roles based
on how each structure emphasizes those roles in the sentence.
Biasing towards an active sentence (1, 2), for example, was

1The Bilingual Dual-path model can be downloaded from:
https://gitlab.com/yhkhoe/bilingual-dual-path/-/tree/
ICCM2021

2The files that the model requires to generate the artifi-
cial language input, and the input for the priming experiment
can be found here: https://github.com/khoe-yh/cross-lang
-struct-priming

3Examples for these sentence types can be found in Chang et al.
(2006)

done by giving the agent a higher activation (X:1) than the
patient (Y:0.5 or Y:0.75). In the same way, a bias towards a
passive sentence (3, 4) was achieved with a higher activation
for the patient (Y:1), than for the agent (X:0.5 or X:0.75). In
the priming experiment, we gave the de-emphasized roles in
target messages an activation of 0.75.

1. Spanish Active: el padre romper -pas la botella .
X = def, FATHER, M;
ACTION-LINKING = BREAK;
Y = def, BOTTLE;
EVENT-SEM = X:1, Y:0.5, PAST,
SIMPLE, ACTION-LINKING;
TARGET-LANG = es

2. English Active: the father break -pst the bottle .
[...];
EVENT-SEM = X:1, Y:0.5, [...];
TARGET-LANG = en

3. Spanish Passive: la botella es romper -prf por el padre .
[...];
EVENT-SEM = X:0.5, Y:1, [...];
TARGET-LANG = es

4. English Passive: the bottle is break -par by the father .
[...];
EVENT-SEM = X:0.5, Y:1, [...];
TARGET-LANG = en

Model training and testing We trained 120 model in-
stances that function as simulated participants in our exper-
iments. To simulate proficiency differences in the English-
Spanish models, we trained the models with a percentage of
sentences in Spanish, the non-dominant language, sampled
from a truncated normal distribution (lower bound: 0%, up-
per bound: 50%) with a mean of 35%, and a standard devia-
tion of 15, and the rest was in English. A set of 8,000 unique
message-sentence pairs was generated for each model partic-
ipant. 80% of these sentences were used for training, while
20% were set aside for testing the accuracy of the model. Fol-
lowing Chang et al. (2006), the message was excluded from
25% of training pairs. The models iterated over their training
sets 16 times. After each of these 16 epochs, model accuracy
was tested using the test set. The training set was shuffled at
the beginning of each epoch.

Model configuration Differences between individual sim-
ulated participants were also created through small varia-
tion in model parameters. The number of hidden-layer units
was sampled from a uniform distribution between 58 and 62,
while the number of compress layer units was sampled from
a uniform distribution between 38 and 42. The fixed weight
value for concept–role connections was sampled from a uni-
form distribution between 13 and 17.

Priming experiment
Simulated participants Table 1 gives an overview of mea-
sures of proficiency and exposure for the non-dominant lan-
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Table 1: Meaning accuracy, syntactic accuracy, and input in
the non-dominant language (Spanish) for the 120 simulated
participants in our experiment.

Mean Standard Deviation
Meaning accuracy 59.8% 20.0
Syntactic accuracy 95.1% 8.7
Input 29.8% 11.3

guage (Spanish) of the 120 simulated participants in our
experiment. We operationalized proficiency in the non-
dominant language as either syntactic accuracy or meaning
accuracy in that language. Syntactic accuracy was measured
as the percentage of sentences out of all test sentences for
which all the words had the correct part of speech. Meaning
accuracy was measured as the percentage of syntactically ac-
curate sentences that convey the target message without any
additions. Exposure to the non-dominant language was oper-
ationalized as the percentage of sentences in the training input
in that language.

The standard deviations of these measures suggest that the
heterogeneity in our sample of simulated participants is com-
parable to that in the participant samples of Kutasi et al.
(2018) and Favier et al. (2019). Both studies report self-rated
proficiency measures on a 7-point scale. The standard devia-
tions for these measures ranged from 0.51 to 1.00 in the study
by Kutasi et al. (2018), and from 0.61 to 1.12 in the study by
Favier et al. (2019).
Experimental trials In addition to the training and test sets,
we generated a single set of experimental trials that was used
to perform the priming experiment on all of the model partici-
pants. Each trial consisted of a combination of a unique prime
sentence and a unique target message that did not have any se-
mantic overlap in terms of their verb, agent, and patient. Fol-
lowing Kutasi et al. (2018), we only use prime sentences in
the non-dominant language, which in our case is Spanish. We
had equal numbers of trials with active and passive primes,
and equal numbers of trials with active- and passive-bias tar-
get messages.We had 50 prime-target combinations that all
occurred as each of the 4 different trial types. Each experi-
ment thus consisted of 200 trials.
Procedure The priming experiment was performed on the
models after 16 training epochs. As was done by Chang et
al. (2006) and Chang et al. (2015), we presented the models
with prime sentences without a message, while learning was
turned on in the model. After each prime, a response was
elicited from the model by presenting it with a target message.

We aimed to simulate a cross-language structural priming
effect that is similar in strength to what is found experimen-
tally. Since the strength of the effect is largely determined by
the learning rate, we used a range of different learning rates.
In Khoe et al. (2020), a learning rate of 0.2 was used dur-
ing the experiment. This resulted in priming effects that were

Table 2: Percentage of included responses, and percentage of
passive sentences produced after a passive prime or after an
active prime, at learning rates of 0.02, 0.04 or 0.06.

Learning rate
0.02 0.04 0.06

Responses included 61.0% 60.8% 60.4%
Passives after passive prime 37.6% 38.0% 38.5%
Passives after active prime 37.4% 37.5% 37.4%

stronger than such effects found in behavioral experiments.
For the present study, we therefore used learning rates be-
tween 0.02 (the learning rate at the end of training) and 0.06
(the average of the learning rates at the start and the end of
training).

After each trial, the connection weights were reset to the
values they had before starting the priming experiment. The
state in which the model encounters each trial was thus the
same for all of the trials, hence, there was no between-trial
priming or any other learning effect during the experiment.
This means that we did not need to (pseudo-)randomize the
order of the trials across model participants.

Results
Descriptive results
Our analyses only included responses that correctly expressed
the target message, with either an active or a passive struc-
ture. However, we disregarded errors involving definiteness
of articles or missing periods. Table 2 shows the percentage
of responses that was included on the basis of these criteria
for each of the three learning rates at which the experiment
was run. The table also shows the percentage of these re-
sponses that were passives after a passive prime or after an
active prime.

Bayes Factor analyses
We analyzed the data from our experiment with Bayesian lo-
gistic mixed-effects models, with a logit link function, us-
ing the function brm from the package brms (Bürkner et al.,
2017; Bürkner, 2018, version 2.12.0) in R (R Core Team,
2013, version 3.5.1). These analyses were not pre-registered
and should therefore be considered exploratory.

The models predicted a binary dependent variable, IS PAS-
SIVE, that indicated whether the sentence that the model
produced was passive (1), or not (0). The null model in-
cluded three centered continuous predictors: MEANING AC-
CURACY, SYNTACTIC ACCURACY, and INPUT, and two
contrast-coded predictors PRIME STRUCTURE (Active =
−0.5, Passive = 0.5), and TARGET-MESSAGE BIAS (Ac-
tive = −0.5, Passive = 0.5). We fit random intercepts for
model participants and items, as well as by-participant ran-
dom slopes for PRIME STRUCTURE. The alternative models
only differed from the null model in including an interaction
between PRIME STRUCTURE and either MEANING ACCU-
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Table 3: Bayes Factors that compare models including inter-
actions between each of the three predictors of interest and
Prime Type with a null model without any such interaction,
for priming experiments with a learning rate of 0.02, 0.04,
or 0.06, where the prior for the interaction had a standard
deviation of either 0.5 or 1. A Bayes Factor smaller than 1
favors the null model whereas a Bayes Factor larger than 1
favors the alternative model that includes an interaction.

Learning Rate Standard Deviation
0.25 0.5 0.75 1

Meaning accuracy
0.02 0.111 0.052 0.035 0.025
0.04 0.091 0.046 0.032 0.027
0.06 0.124 0.051 0.035 0.025

Syntactic accuracy
0.02 0.377 0.175 0.136 0.118
0.04 0.273 0.160 0.105 0.077
0.06 0.329 0.179 0.103 0.077

Input
0.02 0.237 0.105 0.075 0.058
0.04 0.169 0.094 0.056 0.044
0.06 0.212 0.079 0.057 0.044

RACY, SYNTACTIC ACCURACY, or INPUT. We computed
Bayes Factors that compare the null model to these alterna-
tive models.

We calculated Bayes Factors using bridge sampling
(Bennett, 1976; Meng & Wong, 1996; Gronau et al., 2017),
with four chains and 8000 iterations, including a warm-up
phase of 2000 iterations. Because an uninformative prior for
the predictor of interest can make a Bayes Factor biased to-
wards the null model (Lee & Wagenmakers, 2014), we report
Bayes Factors across four different values of the standard de-
viation (σ) for the prior of the interaction of interest (Nor-
mal(0, σ)), ranging from a value appropriate for an informa-
tive prior (i.e., σ = 0.25) to a value appropriate for a regu-
larizing prior (i.e., σ = 1). Regularizing priors (Normal(0,1))
were used for all other predictors in our models. These pri-
ors give a minimal amount of information with the objective
of yielding stable inferences. Prior means were 0, and did
thus not bias towards specific effects. The only exception to
this was the TARGET-MESSAGE BIAS predictor for which we
excluded negative values by using a prior with a Gamma dis-
tribution (Gamma(1, 0.5)).

Table 3 shows that the Bayes Factors are all smaller than 1,
and thus provide evidence in favor of the null model. Based
on the scale proposed by Jeffreys (1998), we interpret this evi-
dence as ranging from anecdotal to very strong. As expected,
when a smaller standard deviation is used for the prior, the
Bayes Factors are mostly closer to 1, and thus provide less

conclusive evidence for the null model. The Bayes Factors
do not suggest a clear effect of learning rate on the strength
of the evidence for the null model.

Null model estimates
Because our exploratory analysis does not yield any evidence
for modulating effects of proficiency or exposure on priming,
we do not report estimates from the analyses that included in-
teractions between PRIME STRUCTURE and any of our three
predictors of interest. Instead, we provide a summary of the
results from the null models for priming experiments with
three different learning rates in Table 4. In line with our ex-
pectations, the estimates for the PRIME STRUCTURE predic-
tor are higher for higher learning rates. The credible inter-
vals for the PRIME STRUCTURE predictor contain only posi-
tive values at learning rates of 0.04 and 0.06, which indicates
strong evidence for a priming effect. At a learning rate of
0.02, the credible interval that includes some negative values
indicates weaker evidence for a priming effect.

Discussion
In the present work, we explored whether proficiency or
exposure modulate cross-language structural priming in si-
multaneous bilinguals, simulated using an implicit learning
model of sentence production. Our results indicate anecdo-
tal to strong evidence against such modulating effects in the
model. This is in line with the results reported by Kutasi et
al. (2018). Taken together, those behavioral results and our
modeling results provide support for an extended version of
the developmental account of cross-language structural prim-
ing (Hartsuiker & Bernolet, 2017) that not only predicts a
modulating effect of proficiency in sequential bilinguals, but
that also explicitly predicts the absence of such an effect in
simultaneous bilinguals.

Limitations and further work
One limitation of our simulations lies in a difference between
the languages and syntactic structures involved in our sim-
ulated experiments and those in the experiments that Kutasi
et al. (2018) conducted. The main question that Kutasi et al.
(2018) addressed in their study, was whether cross-language
priming can occur for structures with different word order be-
tween languages. For this reason, they studied bilinguals who
spoke English and Scottish Gaelic, for which active as well as
passive word order is different. In contrast, the English and
Spanish transitives in our experiments have the same word or-
der between the two languages for both actives and passives.
We could therefore come closer to simulating the results from
Kutasi et al. (2018) by using the English-Dutch model re-
ported on by Khoe et al. (2020) in which English passives
are verb-medial, while Dutch passives are verb-final.

The participants that were involved in the other studies that
investigated the possible modulating effect of proficiency on
cross-language structural priming were sequential bilinguals.
An obvious follow up to the present study is to simulate

154

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

154



Table 4: Summary of the fixed effects in the Bayesian logistic mixed-effects null models with different learning rates (N =
14,633, 14,594, and 14,491, for experiments with learning rates of 0.02, 0.04, and 0.06 respectively).

Predictor Estimate 95% CrI P(Est. > 0)
Learning rate 0.02 0.04 0.06 0.02 0.04 0.06 0.02 0.04 0.06

INTERCEPT 1.04 1.02 0.83 [−0.29, 2.62] [−0.14, 2.39] [−0.16, 1.99] 0.93 0.96 0.95
PRIME STRUCTURE 0.52 1.08 1.30 [−0.38, 1.45] [0.29, 1.91] [0.49, 2.12] 0.87 1.00 1.00
TARGET-MESSAGE BIAS 27.59 25.16 22.98 [21.91, 34.83] [20.36, 31.41] [18.98, 28.03] 1.00 1.00 1.00
MEANING ACCURACY 0.05 0.09 0.08 [−0.06, 0.17] [−0.00, 0.20] [0.00, 0.17] 0.81 0.97 0.97
SYNTACTIC ACCURACY 0.01 −0.08 −0.08 [−0.26, 0.29] [−0.31, 0.15] [−0.29, 0.13] 0.54 0.26 0.23
INPUT −0.12 −0.09 −0.07 [−0.27, 0.02] [−0.22, 0.03] [−0.18, 0.03] 0.05 0.07 0.09

cross-language structural priming in these sequential bilin-
guals, and to determine whether proficiency or exposure does
modulate priming in these simulations, as predicted by the
developmental account of Hartsuiker and Bernolet (2017).
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Abstract
Autonomous systems are a new frontier for pushing sociotech-
nical advancement. Such systems will eventually become per-
vasive, involved in everything from manufacturing, healthcare,
defense, and even research itself. However, proliferation is sti-
fled by the high development costs and the resulting inflexibil-
ity of the produced systems. The current time needed to create
and integrate state of the art autonomous systems that operate
as team members in complex situations is a 3-15 year develop-
ment period, often requiring humans to adapt to limitations in
the resulting systems. A new research thrust in interactive task
learning (ITL: Laird et al., 2017) has begun, calling for natu-
ral human-autonomy interaction to facilitate system flexibility
and minimize users’ complexity in providing autonomous sys-
tems with new tasks. We discuss the development of an un-
differentiated agent with a modular framework as a method of
approaching that goal.
Keywords: cognitive model; cognitive agent; instruction fol-
lowing; learning

Introduction
Autonomous systems are a new frontier for socio-technical
advancement. Such systems will be required to team with
humans, potentially operating at the level of peers and not
just subordinates. One such autonomous synthetic team-
mate (AST) demonstrated that they can be included in teams
without detriment to teams’ or team members’ performance
(McNeese, Demir, Cooke, & Myers, 2017; Myers et al.,
2019). Nonetheless, there remain two significant obstacles
to the wider adoption of synthetic agents operating as peers
or subordinates in complex environments: 1) their develop-
ment and evaluation time and 2) their limited scope of transfer
once developed. The AST took approximately nine years to
develop plus an additional year to evaluate (Ball et al., 2010;
Rodgers, Myers, Ball, & Freiman, 2013), and yet it would
require further research and development to adapt it to per-
form a different task within the same domain and even more
to adapt it to an entirely new domain.

Instructions are a ubiquitous part of the human experience.
They provide guidance through a space of potential states to
a solution (i.e., the problem space; Newell and Simon 1972).
Without instruction, one is free to roam about the problem
space freely in an attempt to find, or discover, the solution.
Instruction also plays a critical role in our ability to advance
as a civilization: calculus, laws of physics, and other ad-
vanced domains do not need to be re-discovered by each gen-
eration, but are taught through instruction. Although learn-
ing is sometimes characterized as the acquisition of all skills

needed for a given task, in fact, the learning of complex tasks
more typically reflects the integration of already-known pro-
cesses (e.g., interactive routines; Gray 2008) in novel ways
(Gray, Sims, Fu, & Schoelles, 2006) – of which one way is
through instruction (Salvucci, 2013).

Recent advances have demonstrated the ability to turn a set
of instructions into declarative knowledge that is then used
to enable performance across paradigms of different com-
plexity: ranging from those typically used by experimental
psychology to dialing while driving an automobile (Salvucci,
2013). In a similar vein, Kirk, Mininger, & Laird (2016)
have successfully demonstrated the ability to train robots on
novel tasks through direct interaction. The objective associ-
ated with the presented research is to leverage past work on
instruction learning to address the development and transfer
issues, simultaneously. Specifically, we propose a general-
izable, undifferentiated agent (uAgent) that can learn a new
task relatively independently through written instruction and
be trained to a desired level of proficiency with reduced de-
veloper intervention.

To achieve these goals, the uAgent was developed with a
modular architecture, to allow for expansion into other tasks
and fields with minimal burden to other researchers. The
components of the architecture are instruction parsing, an on-
tology of instruction, declarative memory representation, and
procedures for accomplishing the instructed tasks. Each of
the uAgent components are discussed in the following sec-
tions, followed by their integration as a single system. Fi-
nally, a case study on development times relative to current
approaches to model development times is presented.

In the following sections, we will discuss this development
in each of the discretized modules that together represent the
uAgent, along with the general specifications for said mod-
ules to allow for future revision and expansion. Second, the
uAgent will be specialized to desired levels of proficiency us-
ing AFRL’s Autonomous Research System (ARES; Nikolaev
et al., 2016).

Toward Undifferentiated Cognitive Models
The undifferentiated agent, or uAgent, is a system capable
of learning new tasks through instruction. The process in-
volves: (1) parsing the instructions in to a structure that can
be (2) integrated with prior information within a declarative
memory system through an ontology of instruction. Given
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an integrated declarative system, the uAgent (3) associates it
newly acquired knowledge with existing interactive routines
through a controlled vocabulary. Finally, the uAgent is ready
to (4) perform the task based on its knowledge of instructions.
Components associated with each step will be discussed in
detail, below.

Instruction Parsing
Though many advances have been made in the field of natu-
ral language processing (NLP), it still remains a challenging
problem to extract complex rules and meanings out of text.
To make the problem of parsing text more tractable, we use
a controlled natural language - Attempto Controlled English
(ACE; Fuchs, Kaljurand, & Kuhn, 2008).

A controlled natural language is a language that permits
only a subset of grammatical constructions available in natu-
ral language (in this case, only present perfect tense, no use
of second person, and a very specific syntax for commands).
These restrictions make it possible for software (e.g., the At-
tempto Parsing Engine, APE; Fuchs et al., 2008) to automat-
ically parse sentences written in the controlled language into
logical statements called discourse representation structures
(DRS). These structures approximate first-order logic.

The requirements of the Instruction Parsing module are
as follows. First, the language requirements of incoming
instructions must be specified (here, we use the ACE
controlled language). Second, these instructions must be
processed into a form compatible with the target declarative
memory system structure to be used by the acting uA-

In the current system, we begin with plain English instruc-
tions of a task of interest. Two types of tasks we are currently
working with include basic experimental psychology tasks -
psychomotor vigilance (Dinges & Powell, 1985) and visual
search (Treisman & Gelade, 1980) - and a material engineer-
ing task in which an individual guides a set of experiments
with a 3D printer (Nikolaev et al., 2016). In both cases, in-
structions are re-written by hand into sentences that follow
the rules of the ACE language. Then, the instructions are
provided to APE 1 to translate the ACE sentences into DRS
structures, which are then integrated into a declarative mem-
ory structure based on an ontology of instruction.

Ontology of Instruction
The primary function of the Ontology module is to directly
formalize the structure of information necessary to complete
the desired tasks and goals of the uAgent. This furthers the
goal of the uAgent as a whole, as it provides the founda-
tion for the structure and relationships within the declarative
memory system used by the uAgent (see Figure 1).

In order to create a system that is both generalizable and
able to correctly handle diverse types of instructions, an on-
tology was created that is capable of representing instructions
for a cognitive agent task. This instruction ontology can be

1http://attempto.ifi.uzh.ch/site/resources

English:
You will be seated in front of a computer screen.
A letter will appear in the middle of the screen.
When you see the letter, press the spacebar.

ACE:
p:psychomotorVigilance is a task.
There is a screen.
There is a letter.
There is a subject.
The n:spacebar is a button.
If the task is active then the subject v:watchesFor the letter
and the letter v:appearsOn the screen.
If the letter v:appearsOn the screen then the subject presses
the n:spacebar. The task is active.

Table 1: PVT instructions in English and ACE.

used to directly inform relationships among tokens of knowl-
edge within a cognitive agent performing tasks. Further, it
can be leveraged to derive a semantically-anchored declar-
ative memory system for long-term storage for knowledge,
such as a knowledge graph (Noy et al., 2019). It can also
support experiment design, irrespective of any agent, by pro-
viding a structured basis for evaluating the content and design
of similar tasks. Additionally, because an ontology contains
a precise axiomatization of the knowledge it is supposed to
represent, deductive reasoning techniques can be applied to
detect possible gaps or errors in instructions. Further infor-
mation regarding the ontology can be found in (Eberhart et
al., 2020).

The ontology was developed to represent the relationships
between steps, items, actions, instructions associated with
tasks relying on a graphical user interface. To ensure a po-
tentially high degree of complexity in instructions, the multi-
stage Intelligence, Surveillance, & Reconnaissance Mutli-
Attribute Task Battery (ISR-MATB) task (Frame et al., 2019)
was used as an example task when developing the ontology.
Because it has multiple interconnected cognitive tasks, us-
ing the ISR-MATB aids in the development of a undiffer-
entiated representation of instruction knowledge. The on-
tology was produced by following the Modular Ontology
Modeling (MOMo) methodology, outlined in (Krisnadhi &
Hitzler, 2016; Hitzler & Krisnadhi, 2018; Shimizu, Ham-
mar, & Hitzler, 2021), and is designed to ensure high quality
and reusability of the ontology. The adaptability required to
model the ISR-MATB task, together with the modular tech-
niques used to create it, mean that the ontology can very eas-
ily be adapted for use in new tasks.

Currently, DRS items from instruction are obtained as
input to the ontology whenever an agent begins learning
through instruction (see Figure 1). The DRS structured in-
formation is then available to an agent during a task, and ad-
ditional knowledge that the agent acquires can be added to
supplement this. As new tasks are implemented and tested
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Figure 1: Architectural components of the undifferentiated cognitive agent (uAgent).

this process is simple to extend to encompass new types of
knowledge, since the structure of the ontology and the format
of input data is agnostic to the actual content of the knowl-
edge represented.

To summarize, the Ontology leverages information theory
and formal logical structures to ensure that pertinent infor-
mation is assimilated in the most reasonable, orderly fash-
ion possible from a theoretical standpoint. Importantly, this
ensures that any future expansions of the uAgent into addi-
tional research fields and tasks will be expedited, as any addi-
tional pertinent information can be distilled directly into the
most useful form through the ontology and into the uAgent’s
declarative memory system.

Declarative Memory System

The declarative memory system of the uAgent contains infor-
mation associated with parsed instructions, prior knowledge,
and a controlled vocabulary connecting verbs to known pro-
cedures in the procedural system. The approach taken to rep-
resent the declarative memory system was a knowledge graph
(Noy et al., 2019), which describes facts, actions, objects of
interest, and the relationships between them.

The uAgent here stores a knowledge graph built from
declarative chunks. Specifically, it incorporates chunks that,

using ACT-R-like slot-value pairs (Anderson, 2007), links
knowledge together in a graph by having one chunk’s slots
include other chunks as values for those slots. As such, the
representation is flexible enough to incorporate all the declar-
ative knowledge needed in the instructions for our purposes,
including not only basic actions but also conditionals and se-
quences of actions.

A declarative memory system structured as a knowledge
graph requires connections to real action/observable behav-
ior to ground the information in the actions available within
the instructed task. Without grounding, the agent can have
all of the available information about the task but no way to
observe or interact with its task environment. To this end, a
controlled vocabulary (CV) was introduced to map verbs onto
concepts or actions. For example, a CV entry for ”search”
could map onto an interactive routine (Gray, 2008) instruct-
ing the agent to attend a location, locate an item there, and
encode it. Within the ACT-R paradigm, this led to creating a
new class of chunks for CV entries. These chunks contain the
CV term and map to a production or set of procedures built
into the agent prior to instruction, thereby grounding that term
onto a known set of actions (Ji, van Rij, & Taatgen, 2019).

Novel task strategies can be constructed using these
grounded interactive routines, thereby allowing the agent to
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interact with an environment for which it was not specifically
designed and perform tasks without needing to have a whole
set of bespoke procedures and knowledge built into it.

Altogether, the CV defines the set of verbs which are al-
ready grounded to behavior(s); in essence, it represents the
agent’s knowledge of general behaviors a priori. Accord-
ingly, by relating the CV to task appropriate interactive rou-
tines, we ensure the knowledge is inherently grounded to the
environment.

As a module, the knowledge graph serves as the basis of
the uAgent memory: it contains information pertinent to the
instructions given, but processed through the lens of overall
task knowledge it should have before hand (i.e. the Ontol-
ogy). It must follow the format of the structures provided
within the formal ontology, and further, should use a defined
controlled vocabulary to map those terms onto active agent
behaviors where appropriate.

Procedural Memory System
Given the above declarative memory structures for repre-
senting instructions, the system needs to ground concepts to
simulated actions via interactive routines (i.e., embedded or
learned procedural knowledge). Models developed in cogni-
tive architectures such as ACT-R (Anderson, 2007) or Soar
(Laird, 2012) typically use production systems to represent
this procedural knowledge. Here, we take a different ap-
proach, using cognitive code (Salvucci, 2016) to maintain and
execute procedural knowledge. Cognitive code embeds pro-
cedural knowledge into a common programming language,
facilitating the development of model code while maintain-
ing the most important properties of human-like abilities and
limitations inherent to any cognitive architecture. Specifi-
cally, we are using the Think architecture 2, which incor-
porates declarative and procedural concepts taken primarily
from ACT-R and provides them for easy use via the Python
programming language.

Several components of this project have led to important
extensions of Think’s code base. One extension involves
the integration of traditional declarative memory with Think
execution. The default Think code base includes a declar-
ative memory module that embodies ACT-R’s core theory
of memory (Anderson, 2007). For this project, we bypass
this traditional memory module, and instead use the ontol-
ogy and knowledge graph described earlier as the model’s
primary long-term declarative storage. The Think procedures
still maintain short-term declarative items, namely those that
comprise the current ”context” during execution (i.e., infor-
mation that would traditionally be stored in ACT-R’s imagi-
nal buffer).

Besides this integration of a new type of declarative mem-
ory, the other critical extension of Think’s code base relates
to the realization of procedural learning. Although cognitive
code can often be made to operate in ways very similar to tra-
ditional production systems, a critical difference is that cogni-

2https://github.com/salvucci/think

tive code cannot (in most cases) be constructed during simu-
lation as some architectures have done with procedural learn-
ing. For example, ACT-R’s production compilation mecha-
nism (Taatgen & Lee, 2003)) transforms declarative instruc-
tions into procedural form which eventually leads to grad-
ual learn of new procedures; the most critical aspect of this
learning is that, at first, a model must perform a declarative
retrieval to remember the learned instruction before execut-
ing it, but later, the compiled instruction (in the form of a
production rule) skips the retrieval and simply executes the
associated action. Although Think does not create new code
on the fly in the same way, we have augmented its capabili-
ties by adding procedural learning that captures the essence of
ACT-R’s production compilation—specifically, in perform-
ing declarative retrievals early in learning (which take addi-
tional time and may fail), and then skipping these retrievals
later in learning (leading to gradual speedup and eventually
fast performance).

As a module, the cognitive code contained with Think
serves as the ”actual” uAgent, so to speak – it represents the
system which is deciding and acting upon the best course of
behavior during any task. In theory, this could be replaced
with any number of cognitive architectures, provided they are
capable of using the prespecified knowledge graph structures
to serve as the basis of memory, and further, have a correctly
specified controlled vocabulary to map that knowledge graph
onto the behaviors known to the system a-priori.

System Integration
To develop the uAgent with an adaptable framework going
forward, we used a modular design approach (Bryson, 2000).
In particular, this capitalizes on the interdisciplinary nature
of the researchers involved while simultaneously minimizing
the overall burden of coordination. To that end, during devel-
opment the fundamental uAgent capabilities were segregated
into discrete modules. Overall integration of these modules
was then assigned to a few individuals, with the entire re-
search team meeting to discuss overall design strategies as
appropriate. Of note, this approach also allowed for a de-
gree of asynchronous development across the research teams
involved, thereby reducing the project coordination burden
significantly. In addition, the modular approach ensures that
the uAgent will be adaptable to other fields of research and
task performance, as future research can adapt the uAgent by
focusing on a specific uAgent module where appropriate. We
now move on to discuss the primary modules of interest in
the uAgent.

Given the interdiscipinary nature of this research, we first
settled on the use of the open source Python as the primary
programming language, integrating each individaul uAgent
module into one coherent system. In particular, this allows us
to utilize the Think system (Salvucci, 2021) in order to simu-
late both the uAgent behavior, and the enviroment in which is
it actively behaving. Further, whenever these separate mod-
ules are expected to interact directly, we worked to determine
the best overall form of interface and information exchange
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to facilitate ease of integration and future expansion. To that
end, we now note the primary interface decisions we made
during said development.

First, we concluded that the Ontology of instruction should
serve as a form of blueprint for the knowledge graph. This en-
sures that the Instruction Parsing module will produce struc-
tures that can be assigned to knowledge graph structures
where appropriate. Effectively we are leveraging the relations
inherent to the Ontology in order to improve the capabilities
of the instruction interpretation; in essence, the uAgent can
make informed assumptions about the informational structure
while processing any incoming instructions.

Similarly, to ensure the agent is capable of acting on those
instructions, we concluded that the knowledge graph module
should also consider a controlled vocabulary representing the
behaviors found within the Think cognitive agent. This con-
trolled vocabulary is essentially the actions that the think uA-
gent is capable of performing in the current environment. In
essence, we ensure that the knowledge graph structures which
serve as the basis of the Think agent memory also have a di-
rect mapping onto Think behaviors where appropriate.

Altogether, we integrate each of the uAgent modules into
a coherent end-to-end system, and explicitly define the in-
terface requirements necessary to ensure the system can take
instructions as input, and produce human behavior with high
fidelity.

Case Study
As a proof-of-concept for the approach, we built an end-to-
end system that takes ACE instructions of cognitive tasks
commonly used in basic research - psychomotor vigilance
and visual search - converts the instructions into a knowledge
representation capable of performing the task, and then per-
forms the task in a simulated environment.

As an exercise to determine if the current approach could
save time with respect to building a traditional ACT-R model,
we compared the amount of time it took to build a model of a
set of cognitive tasks with the amount of time it took to write
ACE instructions of the same task. The task we used was a
novel task battery that includes a set of commonly used ex-
perimental psychology tasks (Frame et al., 2019; Eberhart et
al., 2020). This battery includes four subtasks - psychomo-
tor vigilance, visual search, auditory search, and multi-cue
decision-making. We a built model of the task in a Java im-
plementation of ACT-R 6 and wrote a set of ACE instructions
for it.

It took approximately 120 hours to build the ACT-R model,
but only approximately 30 hours to write the ACE instruc-
tions. This exercise suggests that the present method could
potentially save a substantial amount of time in developing
new models and agents. Moreover, writing the ACE instruc-
tions required only a brief reading of publicly available tuto-
rials on the ACE language, and not training and experience
in writing ACT-R models, the latter of which can be substan-
tial. In our proof-of-concept system, we showed that the ACE

instructions of the PVT and Visual Search subtasks could be 
successfully integrated into the ontology and the agent could 
use this resulting knowledge to perform the task. We are 
working toward end-to-end demonstrations of the other two 
subtasks.

Conclusions and Future Work
Progress toward a modeling framework capable of being 
taught new tasks through written instruction was presented. 
As evidenced in the uAgent case study, such an approach 
will likely significantly reduce model and agent development 
times. Further, the modular-based approached toward uAgent 
development will facilitate the integration of other cognitive 
architectures by using the uAgent declarative memory as its 
knowledge repository.

While the uAgent shows promise as a means for teach-
ing models how to perform new tasks, multiple challenges 
remain. For example, it is unreasonable to assume that the 
union of instruction and prior knowledge is sufficient for 
completing an instructed task. As a result, we have begun 
developing approaches for detecting and resolving gaps in a 
uAgents knowledge base. This work will require multidisci-
plinary approaches to model development coupled with em-
pirical investigations into when and how humans detect and 
resolve knowledge gaps.

In order to better understand how humans form representa-
tions from instructions and identify and resolve gaps in un-
derstanding from those instructions, we plan to conduct a 
human-subjects experiment using the task battery described 
above. We plan to teach participants to perform the tasks in 
the battery using either a complete set of instructions, or a 
set with ambiguities with respect to certain types of knowl-
edge. We plan to use think-aloud protocols to track how par-
ticipants extract knowledge from these instructions and how 
they detect and resolve uncertainty. We believe this will pro-
vide insights in how to improve the undifferentiated model’s 
knowledge acquisition.
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Abstract

Inspired by Masip et al.’s (2016) test of ADCAT model’s deci-
sion component, we wanted to see if we could replicate their
findings using different data from a similar scenario-based
study. They found that expected value of telling the truth pre-
dicted the decisions to lie or tell the truth more accurately than
the expected value of lying, and even better than the motivation
to lie, which they defined as a difference between these two
expected values. In contrast, in our modeling study the moti-
vation to lie was the best predictor of choices for both actual
liars and truth tellers in conditions involving gains and large
losses, whereas only in the condition involving large losses the
expected value of telling the truth outperformed the expected
value of lying. We conclude that whether the participants could
gain something or avoid losing something by deceiving deter-
mined if they focused on benefits of lying or costs of telling
the truth.
Keywords: Deception; Motivation; Social cognition; Social-
cognitive theory; Risk taking; Lie aversion

Introduction
Not all deception is bad or reprehensible, or socially unac-
ceptable; people lie in various ways and for various reasons
which can be pro-social (e.g., to avoid conflict or help some-
one), or selfish but do not hurt others (e.g., saving face or
making an impression) (dePaulo, Kashy, Kirkendol, & Wyer,
1996; Erat & Gneezy, 2012; Gupta, Sakamoto, & Ortony,
2013). At the same time, the costs and benefits that drive de-
cisions to lie in everyday life may reside in different domains,
for instance they can be financial, material, reputational, or
psychological (Sakamoto, Laine, & Farber, 2013). Alterna-
tively, they may lie in the same domain and even carry the
same absolute (objective) value, but differ in psychological
(subjective) value. For example, getting an undeserved dis-
count on a purchase and avoiding paying for damages one
has caused may both carry an equal (monetary) value, but
most people may choose to deceive in one situation but not
in the other; they may be able to justify that deceiving for the
discount is only fair (“The product is overpriced, anyway”),
but feel good about admitting the guilt of accidentally break-
ing something and paying for the damages.

Standard economic theories of rational behavior approach
decisions to lie as cost-benefit analysis. They posit that when-
ever the expected benefit from lying exceeds the outcome
of being honest a selfish individual, a “homo economicus,”
should lie, and the decision should be determined solely by
the trade-off between the gain from lying and the penalty

incurred if detected (Abeler, Becker, & Falk, 2014). Along
these lines, Levine, Kim, and Hamel (2010) posit that peo-
ple “lie for a reason”; they tell the truth if it does not prevent
them from attaining their goals, and only when it does they
may consider deception. In other words, people lie only when
it is more beneficial or less harmful with respect to their goal
attainment than truth. Relatively recently economists have
started to acknowledge that the act of lying may have an in-
trinsic cost that deters people from lying even if it would be
beneficial (Gneezy, Rockenbach, & Serra-Garcia, 2013).

However, even for social goals people lie a lot less than
the economic models predict, and the discrepancy cannot be
solely explained by unusually strong risk aversion or pure lie
aversion (Dhami & al-Nowaihi, 2007; Gneezy et al., 2013;
López-Pérez & Spiegelman, 2012). Cappelen, Sørensen, and
Tungodden (2013) showed that non-economic aspects of a
choice situation have role in decisions to lie. For instance, in
the context of taxes, emotions have been found to influence
the propensity to take risk and evade, so that the act of tax
reporting may elicit anticipated emotions of how one would
feel if audited and punished, and consequently these emotions
drive behavior and future tax compliance (Coricelli, Rusconi,
& Villeval, 2014). Furthermore, Maciejovsky, Schwarzen-
berger, and Kirchler (2012) have argued that emotions can
moderate the relative effectiveness of economic variables
such as audit probabilities and fines in tax ethics.

Walczyk, Harris, Duck, and Mulay (2014) have proposed
a quasi-rational model of deceptive decision making, called
Activation-Decision-Construction-Action Theory (ADCAT),
that combines costs and benefits from different domains, such
as material outcomes, and affective responses ranging from
apprehension of being detected to thrill of successfully de-
ceiving. According to the model, after considering utilities
and probabilities of the most important consequences of all
choice options, a decision maker chooses the option that best
achieves her goal.

Using everyday scenarios to test ADCAT model’s decision
component, Masip, Blandón-Gitlin, de la Riva, and Herrero
(2016) showed that the decision to lie vs. tell the truth was
associated with expected consequences of stating the truth,
but not with expected consequences of deceiving. Cassidy,
Wyman, Talwar, and Akehurst (2019) studied the relation-
ships between Walczyk’s model variables (expectations from
lying and truth telling) and decisions to lie vs. tell the truth
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varying motives for lying (either benefit to oneself or another
person) and potential costs (either to oneself or another per-
son). Contrary to Masip et al. (2016), they found no relation
between the expected value of truth telling and decision to lie
in self-oriented lies,1 whether or not there was a cost to an-
other, whereas they found a significant negative relationships
between the expected value of truth telling and decision to
lie, when the lie was other-oriented. Overall, when there was
an additional cost of lying — implicating the other person of
wrongdoing that self had conducted, or implicating self for
wrongdoing the other had conducted — the participants were
less prone to lie.

Building on this previous research, using the data from the
scenario-based study by Sakamoto et al. (2013), which var-
ied riskiness, domains of costs and benefits, severity of loss
when detected, and motives for deceiving, we wanted to test
if ADCAT model would make the same predictions as their
results suggested, namely that the potential outcomes from
(successfully or unsuccessfully) deceiving do matter in deci-
sions to deceive. Indeed, we found that in most conditions the
expected value of lying both correlated with and predicted de-
cisions to lie better than the expected value of telling the truth.

The rest of the paper is organized as follows. We start by
briefly discussing Walczyk’s ADCAT model and its empirical
test by Masip et al. (2016). Then we review the experimental
settings and the data of the Sakamoto et al. (2013) study. We
continue by describing our modeling approach and presenting
the results. We conclude with a discussion of possible reasons
why our findings differ from those of Masip et al. (2016).

The ADCAT model
The Activation-Decision-Construction-Action Theory (AD-
CAT) by Walczyk et al. (2014) is a cognitive model of de-
ception (with high stakes) specifying the roles of cognitive,
emotional, motivational, and social processes in the decisions
to deceive, explicitly accounting for constructs such as work-
ing memory and theory of mind. The theory is more elabo-
rate than is required for the current purposes, so it is presented
here only to the extent that it applies to “quasi-rational” (Wal-
czyk’s term) decision making in deception context, omitting
for instance discussion on cognitive load or lie construction.

Quasi-rational decision component
According to the model the decision to deceive is influenced
by both the emotional reaction to the choice options and the
social context, and the decision maker chooses an option that
best achieves her goal given her estimates of utilities and
likelihoods of the outcomes, i.e., expected costs and benefits
of choosing a particular option. She estimates the expected
value of action a (either lying or telling the truth) based on
action’s na different possible outcomes using the equation:

EV (a) =
na

∑
i=1

pi(a)vi(a),

1Masip et al. (2016) used mostly self-oriented lies in their sce-
narios.

where vi(a) is the value of ith outcome (gain or loss) of action
a, and pi(a) its probability. She then chooses the action with
the highest expected value. Finally, she uses these estimates
to assess an overall level of motivation to lie, M. This is done
as if she were intuitively following the equation:

M = EVlying −EVtruthtelling.

The higher the value of M, the more likely she will lie, and
spend cognitive resources in constructing the lie. Basically,
M determines which particular lie she will tell; for instance,
whether she chooses to fabricate a story rather than just omit
a crucial piece of information, the latter consuming less re-
sources (Walczyk et al., 2014).

Walczyk et al. (2014) emphasizes that cognitive processes
underlying deception and truth telling do not differ, but mem-
ory processes, decision making, and problem solving are es-
sential in both. Particularly, in lying, the truth, goals, and the
social context are activated in the working memory, which
in turn bring in relevant life memories of previous deci-
sions, which then control the motivation for dishonesty, while
means-end problem solving is used by the liar to move from
the current state to the desired goal state.

Masip et al. (2016)’s study
To empirically test the ADCAT model’s decision component,
Masip et al. (2016) administered two separate questionnaires.
In Questionnaire 1, the participants read ten scenarios and
made binary choices between lying and telling the truth in
those scenarios. The authors correlated these choices with the
expected values M, EVlying, and EVtruthtelling calculated from
the participants’ responses in Questionnaire 2, in which they
read again the same ten scenarios, and for each scenario gen-
erated a possible consequence of telling the truth, probability
of that consequence, and how good or bad it would be. They
were also asked to come up with an alternative consequence
of telling the truth and indicate its valence. Finally, they were
asked to think about what kind of lie they would tell to avoid
the negative consequences of disclosing the truth, and how
likely they expected it to go undetected, and the consequence
of not getting detected.

They classified the participants into liars and truth tellers
based on the expected values, and tested how well the classi-
fication matched the actual choices in Questionnaire 1. Their
results showed that for both actual liars and truth tellers (in
Questionnaire 1) the expected value of telling the truth was a
better predictor of their choices than the expected value of ly-
ing, and it was even slightly better predictor than the motiva-
tion score M. From this they concluded that the expected out-
come of successfully or unsuccessfully lying may not play a
role in decisions to lie but what matters are the consequences
of revealing the truth.

Current experiment
Based on their findings, Masip et al. (2016) suggested that
Walczyk’s model could be made more parsimonious by omit-
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ting the expected value of lying from the equation, and equat-
ing motivation to lie with expected value of telling the truth.
They supported their argument with Levine et al. (2010)’s
veracity principle, namely that people usually tell the truth
unless it interferes with their goal attainment, and studies
on pure lie aversion (Gneezy et al., 2013; López-Pérez &
Spiegelman, 2012). According to the former, lying requires
justification whereas telling the truth does not, and accord-
ing to the latter, the act of lying has a cost regardless of its
consequences. However, Sakamoto et al. (2013) showed that
the perceived benefit of successfully deceiving predicted the
deceptive choices, but only in loss-facing scenarios.2 On the
other hand, tax payers have been found to refrain from cheat-
ing in their taxes for fear of being audited and penalized (Alm,
2012; Slemrod, 2007). Using another dataset we wanted to
study if Walczyk’s model will support Masip et al. (2016)’s
conclusion or if it would replicate findings of Sakamoto et al.
(2013), deeming Masip et al’s suggestion of dismissing the
expected value of lying premature.

Method
Participants In the online study conducted by Sakamoto
et al. (2013) on Amazon Mechanical Turk 492 participants
(276 men, 214 women, 2 unknown, median age 29, age range
18-77 years) read a single scenario of a common everyday
life situation, and answered several questions pertaining to
the scenario. They were also asked demographic information
including age, income, and education.

Data Data comprises of participants’ responses to eight
questions about potential communicative messages — either
deceptive or truthful — that could be exchanged in the sce-
nario they read. The participants were asked to imagine them-
selves as the protagonist in the scenario situation, and indicate
the likelihood with which they would choose the deceptive
message over the honest one, and to evaluate several aspects
of the scenario. They gave responses on a continuous Likert
type scale with only the end points labeled (e.g., very unlikely
- very likely, very bad - very good): for questions Q1, and Q3
- Q8 the scale ranged from -5 to 5, and for question Q2 from
0 to 1. The questions were (with simplified wording): Q1.
How likely would you lie rather than tell the truth in this sit-
uation? Q2. How likely would your lie be detected? Q3. If it
was detected, how good or bad would the result be for you?
Q4. If it was not detected, how good or bad would the result
be for you? Q5. If you told the truth, how good or bad would
the result be for you? Q6. How would telling the truth make
you feel? Q7. How would lying make you feel? Q8. How
truthful is the deceptive message in this situation? The ques-
tion Q1 was asked first and then the remaining questions Q2
- Q8 were presented in a random order.

Material The study used both gain and loss facing scenar-
ios depicting a situation in which the speaker had an incen-
tive to deceive the hearer or hearers. The two loss conditions

2Most scenarios used by Masip et al. (2016) were loss-facing.

varied the magnitude of loss the speaker could expect to in-
cur if getting detected (large vs. small). This was done by
adding some extra context to scenarios. Example scenarios
are shown in Figure 1.

In both gain and loss facing scenarios a deceptive commu-
nication option was paired with an honest option. In gain-
facing scenarios — situations in which making the hearer be-
lieve something false benefited either the speaker or hearer —
the deceptive choice was associated with probabilistic gain,
whereas the honest choice was associated with certain no-
gain. In contrast, in loss-facing scenarios — situations in
which telling the truth harmed either the speaker, hearer, or
someone else — the honest choice was associated with cer-
tain loss, whereas the deceptive choice was associated with
probabilistic no-loss.

In addition to asymmetric outcome structures, there were
other differences; in gain scenarios the non-deceptive mes-
sage was formulated as an act of omission (i.e., “say nothing”
as no response was required from the speaker), but in loss sce-
narios as an act of commission (i.e., as a truthful message that
was sufficiently informative, clear, and appropriate (Grice,
1975)). This was necessary in order to keep the gain sce-
narios in the domain of pure gain, since for instance overtly
stating the harmful truth would have introduced an outcome
in the domain of losses.

Although both Sakamoto et al. (2013) and Masip et al.
(2016) used quite similar scenarios their protocols had some
important differences:

• While Masip et al. (2016) administered two separate ques-
tionnaires for the participants to decide between deceiv-
ing and telling the truth, and to evaluate the potential out-
comes, Sakamoto et al. (2013) asked the participants to
complete these two tasks in a single questionnaire.

• Sakamoto et al. (2013) used predefined consequences, and
asked participants to evaluate their valences, in addition to
estimating the detection probability. This design assumed
that truth telling resulted in one certain (non-positive) out-
come and telling a lie had two potential outcomes, one non-
negative when going undetected (with probability 1− p)
and one negative when detected (with probability p) (the
payoff structure is presented in Table 1). Masip et al.
(2016) in turn asked the participants to generate the pos-
sible consequences of both telling the truth and success-
fully lying in addition to indicating their probabilities and
valences. These differences are summarized in Table 2.

• Finally, while Masip et al. (2016) asked each participant to
respond to several scenarios, Sakamoto et al. (2013) pre-
sented each participant a single scenario randomly picked
from a pool of 48 scenarios. The former also analyzed their
data scenario-wise, whereas the latter pooled the responses
within each condition into one set for the analyses.
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Gain scenario. Harry is in a job interview. He is
not familiar with the field, and only moderately in-
terested in it. Unsurprisingly, the job is beyond his
skills. He is currently unemployed and desperately
needs to find a job so he can support his family.
When the interviewers offer Harry an opportunity
to provide any additional information, he can’t ad-
mit he would take any job he gets. If the interview-
ers find out that Harry deceived them, they won’t
hire him. Imagine yourself as Harry.

[Honest option] Say nothing.

[Deceptive option] “I think I am the right person
to meet the challenges of this position, for which I
am highly qualified.”

Loss scenario. Stephanie belongs to a “popular”
group in her high school. One day, she happens to
chat with Nancy, who is associated with the “nerd”
group. They discover that they share an interest
in ancient South American cultures. Nancy invites
Stephanie to come over on Saturday to see her col-
lection of books and collectibles, and Stephanie
agrees. However, the popular kids are also plan-
ning to meet on Saturday. When asked why she is
not planning to join them, Stephanie is reluctant to
admit that she is meeting one of the nerds. (Low
loss) The popular group’s unwritten rules allow
some interaction with the nerds for things like get-
ting help with homework, but it’s still seen as not a
very cool thing to do. If the other group members
find out that Stephanie deceived them, Stephanie
will be mildly embarrassed. (High loss) The pop-
ular group’s unwritten rules forbid any interaction
with the nerds. If the group members find out that
Stephanie deceived them, she will be expelled from
the group. Imagine yourself as Stephanie when one
popular group member asks, “Why aren’t you join-
ing us this Saturday?”

[Honest option] “I’m meeting Nancy on Satur-
day.”

[Deceptive option] “Guess what? We’re getting a
new dog on Saturday. I’m so excited!”

Figure 1: Examples of scenarios and response options.

Table 1: Payoff valences of telling the truth and lying for
gains and losses in the Sakamoto et al. (2013) study.

Condition Telling truth Successful lie Detected lie
Gain No gain (0) Gain (+) Loss (−)
Loss Loss (−) No loss (0) Loss (−)

Table 2: Outcome structure of telling the truth and lying in
the studies by Masip et al. (2016) and Sakamoto et al. (2013).

Study Telling truth Lying
Masip et al. Outcome 1 (−) p Outcome (+) 1− pd
(2016) Outcome 2 (+) 1− p
Sakamoto Outcome (0/−) p = 1 Outcome 1 (+/0) 1− pd
et al.(2013) Outcome 2 (−) pd
p is the probability of the outcome, and pd is the detection
probability. (+/0/−) marks the valence of the outcome.

Procedure In the study by Sakamoto et al. (2013) the par-
ticipants indicated their likelihood of lying vs. telling the
truth using a continuous scale with the ends marked with the
honest message at the left end and the dishonest message at
the right end of the scale. This scale was interpreted such that
any choice to the right of the mid-point of the scale (indiffer-
ence) meant that they would more likely lie than be honest,
and the choice at the extreme right end of the scale meant that
they would definitely lie (i.e., with 100% probability). For the
current analysis purposes these continuous choices were dis-
cretized so that values above zero were coded as 1 (lie), and
values at zero and below, were marked as 0 (tell truth).3

We calculated the expected values of lying and telling the
truth using the utilities and probabilities of the outcomes (as-
sessed in questions Q2-Q5) with the following equations:

EVlying = (1− pd)vno d(lie)+ pdvd(lie),

EVtruthtelling = v(truth),

where pd is the detection probability, and vd() and vno d()
values of outcomes when detected and not detected. For the
sake of simplicity, like Walczyk et al. (2014) and Masip et al.
(2016), we assumed that any affective reactions (e.g., guilty
feeling) were included in the outcome utility, instead of in-
corporating them explicitly in the equations (with values ob-
tained from questions Q6 and Q7).

In order to test how well each of the three expected val-
ues could tell apart liars from truth tellers (i.e., predict the
actual lying decisions from the expected values and M) we
first dichotomized these values following the methodology
used by Masip et al. (2016). Briefly, we first calculated the
proportion (say X%) of participants who chose to lie based
on earlier discretized choice values. In our predictions, we

3Basically, we coded as liars those participants who indicated
that they will more likely lie than tell the truth.
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then matched this true proportion by predicting X% of par-
ticipants with lowest EVtruthtelling (and with highest EVlying
and M) to be liars. Finally, in each condition, we compared
these predictions to the actual choices, and calculated how
many predictions were correct. Like Masip, we also com-
puted this prediction accuracy separately for actual liars and
truth tellers.

Results
For the data analysis we pooled all participants’ responses
together by the three scenario conditions: gain (N=161), large
loss (N=162), and small loss (N=169).4

We started by correlating the participants’ decisions to de-
ceive with the motivation to deceive, and expected values of
successfully deceiving and telling the truth. These correla-
tions are shown in Table 3. While expected value of truth
telling had the weakest correlation with the decisions to lie,
M had the strongest in all three conditions, expected value of
lying being in between.

Table 3: Correlations between decisions to lie and the ex-
pected values calculated from ratings in questions Q2-Q5.

Condition EVtruthtelling EVlying M
Gain -0.3760 0.4684 0.5360
Large loss -0.3127 0.3268 0.4128
Small loss -0.3271 0.5236 0.5733

The percentages of correctly identified liars and truth
tellers, using the dichotomized expected values as described
above, are shown in Table 4. Just like Masip et al. (2016),
we did not achieve perfect identification: all individuals who
indicated that they would lie (tell the truth) were not coded
as liars (truth tellers) by their dichotomized expected values.
However, even if the scenarios and conditions were not ex-
actly similar in these two studies, the overall identification
accuracies were quite close: the identification rates averaged
over their four scenarios retained for analyses were 67.11%,
62.40%, and 68.07%, for M, EVlying, and EVtruthtelling, respec-
tively, whereas our rates, averaged over the three conditions
in Sakamoto et al. (2013)’s data, were 75.59%, 69.83%, and
66.06%, respectively.

For both the actual liars and truth tellers, and overall, the
motivation to lie was the best predictor of their choices in the
conditions involving gains and large losses. For small losses,
the expected value of lying was the best predictor. While the
motivation to lie predicted the choices best in large losses,
that was the only condition in which the expected value of
truth telling was more accurate than the expected value of
lying, although the differences were not large.

Interestingly, while regression analysis run by Sakamoto et
al. (2013) indicated that the outcome of successful deception

4We could have analyzed the data per given scenario, but this
would have resulted quite small sample sizes, with about ten data-
points per scenario.

Table 4: Correct identification rates of liars and truth tellers.

Predictor Condition Percentile Identification %
for cutoff Liars Truth tellers Overall

M Gain P50 = -0.37 77.78 77.50 77.64
Large loss P51 = 0.02 68.75 69.51 69.14
Small loss P60 = 0.49 67.16 78.43 74.00

EVlying Gain P50 = -0.38 71.60 71.25 71.43
Large loss P51 = -0.96 61.25 62.20 61.73
Small loss P60 = -0.47 70.15 80.39 76.33

EVtruth Gain P50 = 0 63.00 73.75 68.32
Large loss P49 = -1.25 62.50 63.41 63.00
Small loss P40 = -1.54 56.72 73.53 66.86

Table 5: Comparison of logistic regression models

Condition βL βT
∆ BIC LLR p-values

EVL EVT M EVL EVT M

Gain 1.9 -1.8 13 26 -5 2×10−5 3×10−8 0.8
Large loss 1.3 -1.1 8 12 -5 2×10−4 4×10−5 0.6
Small loss 2.9 -1.6 15 62 4 7×10−6 3×10−16 0.003

predicted the decisions to lie in losses, but not in gains, our
results indicated the opposite; the expected value of decep-
tion — incorporating outcomes of both successful and failed
deception — predicted the decisions to lie and tell the truth
more accurately in gains than in losses. Also the expected
value of truth telling was slightly better predictor of both de-
cisions in gains than in losses.

Since M is the difference between EVlying and EVtruthtelling,
one might argue that it constitutes a more complex model.
We therefore also conducted logistic regression analyses and
used the Bayesian Information Criterion (BIC) to compare
the evidence for a model with two predictors,

PβL,βT (lying) ∝ eβLEVL+βT EVT ,

against the models using only one of these predictors, i.e.,
models in which one of the β-coefficients was forced to be
zero, or in case of M, forcing βT = −βL. Models being
nested, we also computed the statistical significance of the
difference of log-likelihoods of the models.

Our model selection analysis (Table 5) clearly favors using
both the value of lying and the value of truth telling in ex-
plaining decisions to lie. The BIC difference (∆ BIC) greater
than 6 is generally seen as a strong evidence against simpler
hypothesis and the difference more than 10 as very strong,
while negative values of BIC favor simpler hypotheses. The
likelihood ratio test (LLR) for comparing logistic regression
models show that the differences in model fits are statistically
very significant (see Table 5).

The β coefficients in fitted two-predictor models also auto-
matically recovered the structure highlighting the role of the
difference EVlying −EVtruthtelling. In the gain and large loss
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conditions these two predictors are almost equally weighted,
while in the small loss condition the expected value of lying
is twice as important as the value of telling the truth. This
is also highlighted in Table 5 where the negative ∆ BIC sug-
gests using M instead of PβL,βT in the gain and large loss con-
ditions. The small loss condition is better modeled using sep-
arate weights for EVlying and EVtruthtelling.

Our findings are somewhat contrary to what Masip et al.
(2016) found, and it may be because the negative outcomes
from truth telling that we gave our participants were not
judged severe enough to lie, but instead the lying behavior
was driven by the expected positive outcome from success-
fully deceiving. In turn, Masip et al. (2016)’s participants
either may not have been optimistic about their lie succeed-
ing and being helpful, or did not find the outcome from ly-
ing (that they themselves gave in Questionnaire 2) attractive
enough, and therefore were driven by the very bad outcome
from telling the truth, which they wanted to avoid.

Discussion
Decisions to deceive may be driven by two “opposite” mo-
tives: an attempt to avoid a loss from harmful truth or an
attempt to gain something by lying. These two perspec-
tives may explain the asymmetries between the two studies
by Masip et al. (2016) and us. They started with the con-
sequences of being honest by asking what are the possible
outcomes if the harmful truth is revealed, contrasting them to
potential consequences of successfully deceiving. In contrast,
Sakamoto et al. (2013) focused on the risky aspect of deci-
sions to deceive, and asked participants to evaluate benefits
of successfully deceiving and costs of getting caught, while
assuming that telling the truth only had bad consequences.
In fact, in their scenarios truth telling and detection shared
the same outcome (e.g., not being hired), which the decision
maker tried to avoid by lying. In both cases the truth got re-
vealed, which resulted in either a loss (loss scenarios) or no
gain (gain scenarios), but in case of detection there was an ad-
ditional (implicit) cost of being stigmatized as a liar. In turn
in gain scenarios status quo always persisted (e.g., the hearer
still felt bad about her looks), but the liar incurred a cost of
getting caught.

Furthermore, since Masip et al. (2016) asked their partici-
pants to focus on truth and its consequences, they may have
judged its harmfulness more severely than benefits of unde-
tected deception. In turn, Sakamoto et al. (2013) gave the out-
comes and their valences to their participants, focusing on the
benefits of deception as opposed to cost of telling the truth,
which may have lead the participants to judge benefit of suc-
cessful deception more extremely than harmfulness of truth
(or failed deception). This could be the reason why in our
study the motivation to lie (difference between value of lying
and value of telling the truth) predicted participants’ choices
the most accurately. While both studies contrasted the out-
come from telling the truth (bad or very bad) to successful
deception, in Masip et al. (2016)’s study the outcome from

undetected deception could still have been somewhat bad,
whereas in Sakamoto et al. (2013)’s study it was assumed
to be very good. Finally, it seems that it also mattered if by
deceiving the participants could gain something or avoid los-
ing something, and that determined whether they focused on
benefits of lying or costs of telling the truth, in other words,
the reference point they adopted, as suggested by the prospect
theory (Kahneman & Tversky, 1979).
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Abstract 

Updating people about the actions of others—social 
communication—is a powerful means by which humans learn 
about the world and maintain stable societies. However, how 
the mind/brain achieves this ability computationally remains 
unclear. Our goal is to model when, how, and why people 
choose to communicate information about others to others. 
Here we present current progress. We first describe our social 
communication framework, the test paradigm for model 
development and assessment, and an empirical experiment we 
conducted to obtain novel data to test model predictions. We 
then present our model, and compare it with two others. Our 
model outperformed the others, capturing the main patterns of 
the empirical data and matching the specific results most 
closely (i.e., percent of cases deciding to communicate about a 
target individual). Thus, our model successfully simulates 
human social decision-making, helping to understand how it is 
achieved by the human mind/brain.  

Keywords: evolution of social cognition; theory of mind; 
communication; decision-making; computational model 

Introduction 

Observing the actions of others is a principal means by which 

humans learn and update knowledge—both about the world 

as well as the person performing the act—greatly extending 

our reach beyond our own individual experiences. Moreover, 

learning from and about others ratchets up even further with 

communication, not only from the performer to the observer, 

but in turn from the observer to someone else, and so on. In 

this way, information quickly disseminates across the social 

network (in turn enabling social networks to scale). 

Additionally, the ability to influence a person’s future actions 

increases dramatically (e.g., via social influence or appeals to 

authority when someone’s actions are in question). 

Communication about the action of others, then, provides 

extraordinary value to social groups, and likely played a 

leading role in the evolution of the human brain (Dunbar, 

Marriott & Duncan, 1997; Dunbar, 2004). To date, however, 

how we achieve this capacity at a computational level 

remains unclear. 

 This is because the ability is deceptively elaborate and 

complex. For example, focusing on the observer as the 

central agent, there are multiple critical factors that 

determine whether to transmit information about the actions 

of a target individual to someone else, i.e., a receiver. In 

general, it requires assessing the significance of the target’s 

action, and whether a receiver would be interested in learning 

of it (and/or whether the information could likely feedback to 

the target person and influence future behavior). On first 

order, the significance of the action can be measured in terms 

of potential benefits and costs to self and others. Making this 

evaluation requires the central agent to have an internal value 

scale that assigns the degree of significance to particular 

target actions. In other words, the central agent must possess 

a minimal affective apparatus (Gazzaniga, Ivry & Mangun, 

2013). In assigning value, a target’s actions can again be 

categorized in two general categories: whether significant as 

world knowledge independent of the target, or valuable 

knowledge about the target him/herself. For the latter, given 

that social interactions comprise such a significant portion of 

our daily lives (whether at home, workplace, or almost 

anywhere else), information about others (i.e., their locally 

stable traits and behaviors) is critical. Indeed, Dunbar and 

colleagues (1997) found that over 60% of conversations 

involve discussing others. Because of this significance, and 

the general lack of development to date, our model currently 

focuses on this social knowledge. 

 Intriguingly, this type of social communication—telling 

others about someone else—has normally been defined as 

gossip. Although gossip may seem superficial, it is in fact an 

important mechanism underpinning society (Dunbar, 

Marriott & Duncan, 1997; Dunbar, 2004; Foster, 2004). For 

shorthand, we thus also use the term “gossip” to refer to this 

form of social communication: in which one informs another 

individual about events involving someone else not present.  

 In fact, disseminating knowledge about an individual’s 

actions across a social network (boot-strapping culture and 

societies) belies a formidable affective-sociocognitive engine 
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under the hood: one that includes not only the affective 

valuation assessment, but also mind-reading (i.e., interpreting 

intentions underlying someone’s actions and whether others 

know or would care about it), and social accounting (i.e., a 

social currency, based on the value the information provides 

to others) (Cosmides & Tooby, 1992; Gazzaniga, Ivry & 

Mangun, 2013; Lee, Kralik, & Jeong, 2018; 2019). Our goal, 

then, is to model when, how, and why people choose to 

communicate social information to others.  

  The current paper presents our progress, by first 

describing our overall social communication framework, as 

well as the test paradigm for model development, and the 

empirical experiment we conducted in our cognitive 

neuroscience laboratory to obtain novel data to test model 

predictions (Anonymous, submitted). We then present the 

computational development of our main model, together with 

two alternative models. We then compare the models on how 

well they fit the empirical findings. 

Framework, Methods, and Models 

In this section we describe the framework and test paradigm 

used for the empirical experiment and model development. 

We then describe our main computational model, and then 

two others based on simpler versions of the main model. 

Framework for Social Communication 

We developed the general framework to capture the 

fundamental components of social intelligence and 

communication (Figure 1) (Aronson, Wilson, Akert & 

Sommers, 2016; Cosmides & Tooby, 1992; Dunbar, Marriott 

& Duncan, 1997; Dunbar, 2004; Foster, 2004; Gazzaniga, 

Ivry & Mangun, 2013; Haidt, 2007; Kralik, 2017; Kralik et 

al., 2018; Lee, Kralik, & Jeong, 2018; 2019). It is based on a 

target individual being involved in some event, such as 

hitting a coworker, caught cheating on an exam, helping 

people escape a burning building, or going to the movies. The 

Central Agent then learns of the event, and subsequently 

processes it via a series of subprocesses (black boxes in 

Figure 1) that also utilize specific knowledge stores (green 

boxes).  

 The overall process begins with the initial sensory input 

passed from sensation to perception to initial cognitive 

processing, in which for example, auditory input is 

transformed to sentences, and initial meaning is ascertained, 

including the event content evoking an initial affective (i.e., 

emotional) response, such as cheating on an exam being bad. 

Although we have been developing these early modules, the 

current model simply begins with a three-element vector 

representing the event involving a target individual, which 

then is mapped to an affect score (described further below). 

The affect score reflects the level of initial interest or concern 

the target’s action evokes, with the overall affect assignment 

process being the affective/emotion center of our framework 

and model (Gazzaniga, Ivry & Mangun, 2013). Next, if the 

affect value is sufficiently high, the shift detector activates 

the problem-solving controller, which in turn activates 

individual subprocesses by closing the corresponding affect 

gates.  

The subprocesses include determining the reliability of the 

information source, updating the model of the target’s mind, 

determining the specific problem(s) at hand, generating the 

relevant action set (such as whether or not to communicate to 

another person as receiver), valuation of the possible actions 

Figure 1. The complete framework of internal process regarding social information and gossip decision. The central agent 

goes through a series of internal processes (black boxes) managed by higher metacognitive processes (double-lined boxes) 

by accessing the knowledge (green rounded boxes). See text for details (Lee, Kralik, & Jeong, 2018; 2019). 
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(i.e., assessing the benefits versus costs), action selection 

based on these action valuations, action execution, and then 

monitoring of the action outcome for potential learning 

(though learning is not yet explicitly modeled) (see Figure 1). 

Computational development has thus far focused on 

valuation, the central process that determines whether to take 

action based on the event, described next.  

Test Paradigm and Behavioral Experiment 

Input to the system is an event or scenario involving 

someone, such as someone caught cheating on an exam or 

verbally abusing a coworker. Each event is then represented 

by three fundamental factors: the target individual, the event 

content, and the valence of the content, that is, whether 

positive or negative. Each independent variable (i.e., our 

three event factors) is then further divided into a number of 

fundamental categories. As stated, content valence is 

subdivided into positive and negative events. For target, we 

examined ingroup versus outgroup versus celebrity, in order 

to test the important social factors of contact, caring, and 

status (described further below). Finally, for content, our 

intention was to produce a comprehensive set of social events 

that occur in daily life (either rarely or frequently). Based on 

theoretical considerations and literature review, this resulted 

in eight content domains that can be roughly aligned 

according to how much we care about them, that is, how 

much affect or emotion they evoke, represented by an affect 

score, listed in Table 1 (Aronson et al., 2016; Cosmides & 

Tooby, 1992; Dunbar, Marriott & Duncan, 1997; Dunbar 

2004; Foster, 2004; Gazzaniga, Ivry & Mangun, 2013; Haidt, 

2007; Kralik, 2017; Lee, Kralik & Jeong, 2018; 2019). Based 

on all combinations of these factors, we developed 48 

different scenarios (3 target  2 valence  8 content). Using 

this comprehensive set of scenarios, we developed our main 

computational model and generated a set of predictions of 

how the three independent variables (target, content, and 

valence) influence gossip spreading.  

Table 1.  Eight content domains and their affect score 

(where m signifies morality domain: Haidt, 2007). 

To collect the empirical data, we recruited 102 participants 

(59 females and 43 males, mean age 23.8 years, range 20-32), 

and each participant was shown a gossip scenario and asked 

if they wanted to spread it to other people (i.e., receivers) 

(Lee, Kralik & Jeong, submitted). The 48 scenario types were 

replicated three times. As a result, 144 different gossip 

scenarios were used per participant in the experiment. Gossip 

rates of the scenarios were calculated by taking the mean 

across replications and participants. 

Test Paradigm and Behavioral Experiment 

We now describe the computational models, developed and 

tested using Matlab (The Mathworks, Natick, MA, USA). For 

all three models, on every trial, that is, when one of the 48 

scenario events occurs, the given event’s content is converted 

into (a) an affect score (Table 1) and (b) a valence flag (i.e., 

0 for positive, 1 for negative), which occurs in the Initial 

Cognitive Process module in Figure 1. The target for the 

given event is then identified as ingroup, outgroup, or 

celebrity in the Social Information Processing module and 

then converted to contact, caring, and status values shown in 

Table 2. 

Table 2. Parameter values of the best fits of the three 

components of target (contact, caring, and status) for 

ingroup, outgroup, and celebrity for the three models. 

This content, valence, and target information are all then 

sent to the valuation module, the critical subprocess in which 

the central agent decides whether or not to take a particular 

action (in our case, gossip) among a set of possible choices. 

To maximize expected outcome, the central agent needs to 

carefully consider all the pros and cons of the possible 

actions. We next describe this valuation process (and then 

action selection) further.  

Our Main Model: Model 1 To decide which action to take, 

the central agent needs to estimate the outcome of every 

possible action based on benefits and costs. Because our 

current focus is the conditions under which one would or 

would not communicate to someone (a receiver) about 

someone else (the target), our model considers two actions: 

(1) gossiping or (2) not gossiping. In this case, the costs of

Content Affect Score 

Prosociality (care/harm)m 7 

Fairness (fair/cheating)m 6 

Competition (positive/negative) 5 

Social-oriented (altruism/selfishness) 5 

Community (loyalty/betrayal)m 4 

Respect (authority/subversion)m 4 

Purity (sanctity/degradation)m 3 

General social affairs (positive/negative) 1 

Model 1 

tcontact tcare tstat 

Ingroup 1 0.9 0.2 

Outgroup 0.1 0.1 0.1 

Celebrity 0.1 0.3 1 

Model 2 

tcontact tcare tstat 

Ingroup X 0.8 X 

Outgroup X 0.05 X 

Celebrity X 0.5 X 

Model 3 

tcontact tcare tstat 

Ingroup X 0.8 X 

Outgroup X 0.05 X 

Celebrity X 0.5 X 
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gossiping become the benefits of not gossiping. The 

equations, then, are the following:  

ValueGossip = A  BTotal (1) 
ValueNot Gossip = A  CTotal (2) 

where A is the affect score of the given information (listed in 

Table 1), such that the given action value increases with the 

affective response. 

Based on literature review and our own theoretical 

development, Table 2 shows the list of potential benefits and 

costs involved in gossip (Aronson et al., 2016; Cosmides & 

Tooby, 1992; Dunbar, Marriott & Duncan, 1996; Dunbar 

2004; Foster, 2004; Gazzaniga, Ivry & Mangun, 2013; Haidt, 

2007; Kralik, 2017; Kralik et al., 2018; Lee, Kralik, & Jeong, 

2018; 2019). The most obvious benefit of gossip is that one 

can avoid facing the target directly (B1), especially if an 

unfavorable outcome is expected (e.g., the target becoming 

upset). Additionally, the central agent may obtain further 

information from the receiver about the incident or target 

(B2). Third, and especially critical, the information provided 

to receivers can update their ‘broken’ models about the target 

and the world (B3). Fourth, gossip can also promote fairness 

balance and societal stability by rewarding positive actions 

and punishing negative ones. This can potentially be 

accomplished by influencing the social status of the target, 

via affecting their reputation (B4). Additionally, fifth, 

receivers may be in better position to directly contact the 

target to reward or punish the behavior (B5). Finally, the 

target and receivers may enjoy entertaining target activities 

and learn from them (B6). 

Although this indirect form of communication has many 

benefits, there are obvious costs. Although gossip allows 

avoiding direct contact with the target (B1), the target might 

yet ascertain the source of the gossip (i.e., the central agent) 

and retaliate (C1). Moreover, there is a risk that event 

information (and thus, about the target) is incorrect (C2), 

resulting in deleterious effects such as altering the target’s 

social status. Because maintaining accurate models of others’ 

minds is critical within a multi-agent society, sharing false 

information sows confusion. Third, the central agent may 

also earn a bad reputation as a gossiper (C3). Fourth, related 

to B2, additional information from receivers may be wrong 

or misleading (C4). Fifth, because of its indirectness, 

influencing the target via gossip may not match what the 

central agent intended (C5). Finally, choosing to gossip, like 

any action, requires both cognitive and behavioral effort, both 

to take the action and monitor its effects (C6) (Lee, Kralik & 

Jeong, 2019).  

Total benefits and costs (BTotal and CTotal in the equations) 

are the summation of all potential benefits and costs. That is: 

BTotal = B1 + B2 + … (3) 
CTotal = C1 + C2 + … (4) 

where each benefit Bi and cost Ci are then calculated as a 

function of the target factors T (i.e., contact, care, and status), 

valence V, and benefit-cost weighting factor w thus: 

Bi = Tcontact,Bi  (Tcare,Bi + Tstatus,Bi)  VBi  wBi (5) 

Ci = Tcontact,Ci  (Tcare,Ci + Tstatus,Ci)  VCi  wCi (6) 

The benefit-cost weighting factors w are listed in Table 3, 

and are again based on theoretical considerations, literature 

review, and adjusting for model fitting (with yet maintaining 

the general relative positions among them). 

To calculate target and valence factors (i.e., Tcontact, Tcare, 

Tstatus, and V), we combine the target and valence values input 

to valuation — i.e., those in Table 2 and the valence 1 

(positive) or 0 (negative) flag — with gating values, g, as 0 

(irrelevant) or 1 (relevant), based on whether each factor is 

relevant to the given benefit or cost. The gate values are listed 

in Table 3.  

Table 3. Table 3. Benefits and costs of gossiping. Cells 

contain weighting (w) and gating values. The gates are 

social or valence filters and used in the valuation equation. 

Contact is based on whether the target can actually reach 

the central agent; care indicates how much the central agent 

cares about the target, such that the parameter is high if the 

Valuation Categories w 
Target (T) 

Valence 

(V) 

gcontact gcore gstatus v 

B1: Avoid direct contact with the 

target 
1 1 0 0 1 

B2: Feedback to the gossiper from 

receiver 
0.4 0 1 0 0 

B3: Update receiver’s knowledge 1 0 1 0 0 

B4: Influence target's social status 0.9 0 0 1 1 

B5: Receiver influences target's 

behavior 
0.8 0 1 0 1 

B6: Entertainment and social 

learning 
0.4 0 1 0 1 

C1: Potential direct contact from 

the target 
0.6 1 1 0 1 

C2: Risk of spreading wrong 

information 
0.4 0 0 1 1 

C3: Earn bad reputation as a 

gossiper 
0.7 0 0 0 1 

C4: Get wrong/misleading 

information from receivers 
0.9 0 0 0 0 

C5: Influence target improperly 0.8 0 1 0 1 

C6: Cost effort both cognitively 

and behaviorally 
0.6 0 1 0 1 
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central agent is invested in the outcome; and status represents 

the target’s position within the social hierarchy, such that 

celebrities are high, ingroup low, and outgroup the lowest. 

The input values and gates are then combined thus: 

Tcontact = 1+gcontact  (tcontact-1) (7) 

Tcare = gcare  tcare + (1- gcare) ave-tcare (8) 

Tstatus = gstatus  tstatus (9) 

V = [(1- vdefault)  gvalence  v] + vdefault (10) 

In general, for contact, if the central agent and target cannot 

directly contact each other (i.e., contact gate is 0), then the 

particular benefit or cost has no effect for the given scenario; 

for care, if caring is relevant for the given benefit or cost 

(gate=1), then it becomes the value for the target group in 

Table 2, otherwise (gate=0) it is the average of the three target 

group values. Finally, for valence, some benefits and costs 

would be expected to have a greater impact for negative 

events (such as directly contacting the target when they’ve 

done something egregious), and we represented this by 

having a default value for positive valence which increases 

for negative valence if the gate is 1. 

Model 2 Although we believe the factors and values for our 

main model are well justified, it nonetheless is important to 

test their significance in the model. We thus developed two 

competing models that simplified prominent factors. For 

Model 2, gating values for the contact and status components 

of the target were all set to 0 while the gates for care were all 

set to 1. That is, here we collapsed the target components of 

contact, care, and status into one general factor that 

represented the difference among the three target categories 

of ingroup, outgroup, and celebrity. Table 2 shows the best 

fit values for this vector.  

For valence, Model 2 does not consider cases where 

negative events may be more impactful than positive ones, 

and thus sets all valence gates to 0, using only the default 

value for all events. The best fit vdefault was 0.7.  

As gcontact, gstatus, and gvalence are all set to 0, the valuation 

equations for Model 2 become: 

Bi = Tcare,Bi  vdefault  wBi (11) 
Ci = Tcare,Ci  vdefault  wCi (12) 

This equation in turn means that the individual benefits and 

costs are considered as one total value for each. To best fit 

these benefit and cost weights, then, one parameter was used 

for benefits (gossip) and one for costs (not-gossip). For Model 

2, the best fit values were gossip=1.05; and not-gossip=1.  

Model 3 The second competing model, Model 3, was the 

same as Model 2 except for valence. For this model, for all 

benefits and costs, all negative events were considered more 

impactful than positive ones; and thus, all valence gates were 

set to 1. The Model 3 valuation equations then are expressed 

as: 

Bi = Tcare,Bi  [(1- vdefault)  v + vdefault]  wBi (13) 

Ci = Tcare,Ci  [(1- vdefault)  v + vdefault]  wCi (14) 

Table 3 shows the best fit weights for the singular target 

effect. The best fit values for the relative benefit to cost 

effects were again gossip=1.05; and not-gossip=1. 

Results 

We first examine the main effects for content valence and 

target. We then examine the target by valence interactions. 

Figure 2 shows how the three competing models compare 

to the empirical findings for percent gossip for the valence 

and target main effects. For valence, percent gossip in the 

empirical data was significantly higher for negative than for 

positive content. All three models obtained the same pattern. 

Additionally, Model 1 had a gossip percentage closer to the 

empirical results than Models 2 and 3. 

For target, percent gossip in the empirical data was 

significantly higher for celebrities, followed by ingroup, then 

outgroup. The same pattern was obtained by Model 1, 

whereas Models 2 and 3 showed a different pattern, with 

ingroup the highest. Thus, our main model provided better 

fits, showing that the target effects indeed appear to be a 

function of contact, care, and status, and both target and 

valence have distinct relevance to different benefits and costs. 

We next examined the target by valence interactions. 

Figure 3 shows the results of the three competing models 

compared to the empirical data for percent gossip for ingroup, 

outgroup, and celebrity targets, broken down by positive and 

negative valence. For ingroup targets, as opposed to the 

general main effect finding of more gossiping about negative 

events, we have the opposite: percent gossip for positively 

valenced events was significantly higher than for negatively 

valenced ones in the empirical data. Indeed, Model 1 obtained 

the same pattern, whereas Model 2 and 3 showed the opposite 

pattern, similar to the main effect result. 

Figure 2. Results of the three models compared to the 
empirical data for gossiping with respect to (A) valence and 

(B) target main effects.
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For outgroup and celebrity targets, the empirical data 

showed higher percent gossiping for the negatively valenced 

events than for the positive ones (as for the main effect). In 

these two cases, all three models obtained the same pattern. 

Thus, Models 2 and 3 were unable to obtain different patterns 

across the three target groups, while Model 1 was able to 

explain the flipped relationship for ingroup targets. 

The main effect in the results, captured by Model 1, is that 

both the relative benefits of gossiping positively and costs of 

gossiping negatively are heightened for ingroup members. At 

the same time the relative lower cost and higher interest in 

justifying status led to increased negative gossiping about 

celebrities (Foster, 2004). For outgroup, a relative lack of 

interest dominated the findings, although the relative lower 

cost in negative gossiping was also observed.  

We next examine the results for the target by valence 

interaction by examining positive and negative events for the 

three different target groups. For positively valenced events, 

Figure 4A shows that the percent gossiping in the empirical 

data was highest for ingroup targets, followed by celebrity, 

and finally outgroup. All three models obtained the same 

pattern, however, Model 1 obtained values closer to the 

empirical data. In contrast, for negative events, Figure 4B 

shows that percent gossiping in the empirical data was 

highest for celebrity targets, followed by ingroup, then 

outgroup. Model 1 again obtained the same pattern, whereas 

percent gossip about ingroup targets was higher than for 

celebrities for both Models 2 and 3. Thus, once again Models 

2 and 3 showed the same patterns for positive and negative 

events, while Model 1 found different patterns for the two 

valences, matching the empirical data. 

In sum, our main model, Model 1, was superior in not only 

the level of gossiping predicted, but in importantly capturing 

the general patterns in the findings, especially flipping the 

prediction for ingroup, with an increase in positive gossiping 

and decrease in negative for ingroup members. 

Discussion 

To understand how the human mind/brain has harnessed 

the ratcheting power of social information exchange, it is 

important to model how people process social events, and 

when, how, and why they choose to communicate the 

information to others. To this end, we have developed a 

general framework for human social intelligence and 

communication based on literature across the social sciences, 

and have begun developing a computational model detailing 

the processes. Here we presented a significantly elaborated 

computational version of our model, based on this literature 

and our own evolutionary and affective-sociopsychological 

theoretical considerations of why people should choose to 

communicate this information (Aronson et al., 2016; 

Cosmides & Tooby, 1992; Dunbar, Marriott & Duncan, 

1997; Dunbar, 2004; Foster, 2004; Gazzaniga, Ivry & 

Mangun, 2013; Haidt, 2007; Kralik, 2017; Kralik et al., 2018; 

Lee, Kralik, & Jeong, 2018; 2019). We have also conducted 

an experiment in the laboratory in which we collected data on 

whether people would choose to communicate to others in 

order to test the predictions of our model (Lee, Kralik, & 

Jeong, submitted). Indeed, our model predictions were 

supported, successfully capturing the main patterns of results.  

There are, of course, multiple avenues for future 

development. These include a more detailed consideration by 

the central agent of why the target acted as he/she did. The 

answers to “why” will require a richer set of social factors 

(beyond contact, care, and status), which will in turn be 

compared against the central agent’s own model of the 

target’s mind. For possible responses, we also plan to include 

communicating directly to the target (rather than to others 

about them). Eventually, more action detail also needs to be 

included, to carry out, for example, an extended conversation 

with the target and/or receiver. For event content, more 

activities are needed. We also intend to add learning to our 

Figure 3. Results of the three models compared to the 

empirical data for gossiping about (A) ingroup, (B) 

outgroup, and (C) celebrity targets for different valence. 

Figure 4. Results of the three models for (A) positive and 
(B) negative valence with respect to the different targets.
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model, including the need for active monitoring of outcomes 

to assess actual action effectiveness, especially with indirect 

communication. Learning can also potentially capture 

cultural influences on moral dimension weightings. 

Evidence shows that social intelligence and 

communication are comprised of relatively hard-wired 

components (and thus to some extent expert-like), together 

with more malleable ones, with their combination enabling 

general social intelligence across multiple content domains. 

Moreover, a comprehensive integration of the relevant 

literature across multiple fields of study shows that human 

social ability is indeed elaborate and complex. We thus 

believe that approaches such as ours that face this challenge 

head-on are necessary to ultimately understand human social 

processing, and endow artificial systems with the affective-

sociocognitive processing machinery that truly leverages the 

power of sociality. 

References 

Aronson, E., Wilson, T. D., Akert, R. M., and Sommers, S. 

R. (2016). Social Psychology. Pearson: NYC.

Cosmides, L., & Tooby, J. (1992). Cognitive adaptations for 

social exchange. In: J. H. Barkow, L. Cosmides, J. Tooby 

(Eds.). The Adapted Mind. 

Dunbar, R. I. M. (2004). Gossip in evolutionary perspective. 

Review of General Psychology, 8(2), 100–110. 

Dunbar, R. I. M., Marriott, A., and Duncan, N. D. C. (1997). 

Human conversational behavior. Human Nature, 8(3), 

231–246. 

Foster, E. K. (2004). Research on gossip: taxonomy, methods, 

and future directions. Review of General Psych. 8, 78–99. 

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2013). 

Cognitive neuroscience: the biology of the mind. WW 

Norton & Company. 

Haidt, J. (2007). The new synthesis in moral psychology. 

Science, 316(5827), 998–1002. 

Kralik, J. D. (2017). Architectural design of mind & brain 

from an evolutionary perspective. Proc. AAAI 2017 Fall 

Symposium: A Standard Model of the Mind. 

Kralik, J. D., Lee, J. H., Rosenbloom, P. S., Jackson, Jr., P. 

C., Epstein, S. L., Romero, O. J., Sanz, R., Larue, O., 

Schmidtke, H. R., Lee, S. W., McGreggor, K. (2018). 

Metacognition for a Common Model of Cognition. 

Procedia Computer Science: 145, 730–739. 

Lee, J., Kralik, J. D., & Jeong, J. (2018). A Sociocognitive-

Neuroeconomic Model of Social Information 

Communication: To Speak Directly or To Gossip. 

Proceedings of the Annual Meeting of the Cognitive 

Science Society (CogSci). 

Lee, J., Kralik, J. D., & Jeong, J. (2018). A General 

Architecture for Social Intelligence in the Human Mind 

and Brain. Procedia Computer Science: 145, 747–756. 

Lee, J., Kralik, J. D., & Jeong, J., Submitted. 

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

176



Modelling Visual Decision Making
Using a Variational Autoencoder

Tyler Malloy (mallot@rpi.edu)
Department of Cognitive Science
110 8th Street, Troy, NY 12180

Chris R. Sims (simsc3@rpi.edu)
Department of Cognitive Science
110 8th Street, Troy, NY 12180

Abstract

Due to information processing constraints and cognitive lim-
itations, humans necessarily form limited representations of
complex visual stimuli when making utility-based decisions.
However, it remains unclear what mechanisms humans use to
generate representations of visual stimuli that allow them to
make predictions of utility. In this paper, we develop a model
that seeks to account for the formation of representations in
utility-based economic decision making. This model takes the
form of a β-variational autoencoder (β-VAE) trained with a
novel utility-based learning objective. The proposed model
forms representations of visual stimuli that can be used to
make utility predictions, and are also constrained in their infor-
mational complexity. This representation modelling approach
shares common features with related methods, but is unique
in its connection to utility in economic decision making. We
show through simulation that this approach can account for
several phenomena in human economic decision making and
learning tasks, including risk-averse behaviour and distortion
in the calculation of expected utility.
Keywords: Cognitive Modelling, Decision Making, Informa-
tion Theory

Introduction
In the context of decision making, a representation refers to
the internal mental state of an agent, encompassing features
from the external environment that are relevant to the deci-
sion task and the agent’s objectives. The mechanisms of this
representation formation must depend on the task being per-
formed, as decision makers should seek to efficiently repre-
sent task-relevant information while ignoring or abstracting
across irrelevant information. One important class of tasks
which we study in this paper is that of economic decision-
making based on visual stimulus.

Neuroeconomics has sought to further the understanding
of the neurological underpinnings of economic decision mak-
ing, though relatively little work in this area has focused on
the mechanisms behind representation formation from visual
stimuli. One potential mechanism for modelling this cogni-
tive process is the variational autoencoder (VAE), a method
that learns informationally limited representations of input
that can be used to form lossy reconstructions (Pu et al.,
2016). In this paper, we present an extension of the VAE
framework that produces task-relevant representations of eco-
nomic decision tasks, and predicts human-like decision mak-
ing.

Traditional variational autoencoder models incorporate an
information constraint based on the structure of the neural

network that implements them (e.g., limiting the number of
nodes in a hidden layer), but the capacity of the autoencoder
is not easily controlled. β-VAEs are a variant incorporating
an additional parameter that controls this information bottle-
neck, encouraging the model to learn more informationally
compact representations. The novelty of our work lies in the
application of β-VAEs onto economic decision making. Our
model also differs from related methods in machine learning
through the use of a novel loss function that balances stimulus
reconstruction error and loss in expected utility. The model
predicts at a qualitative level the decision making of an indi-
vidual who has limited information processing capacity, but
is otherwise rational in seeking to maximize expected utility.

The main feature of β-VAEs in limiting the amount of in-
formation used to form internal representations shares a con-
nection to other information theoretic methods such as the
information bottleneck approach and rate-distortion theory
(Burgess et al., 2017). The latter has been used to conceptual-
ize human perception as optimizing task performance subject
to a constraint on channel capacity (C. R. Sims, 2016).

Rate-distortion theory has also been used to model gen-
eralization of perception as resulting from the encoding of
perceptual information in a efficient way that can then be
used to generalize over novel experience (C. R. Sims, 2018).
This effect has been shown to produce biases in statistical
and categorical learning from visual features that mimic ef-
fects present in human perception (C. J. Bates, Lerch, Sims,
& Jacobs, 2019). The model described in this paper seeks
to achieve the same goals as these previous methods while
also producing an internal representation of a perceived stim-
ulus and a method of explicitly estimating task-relevant utility
based on these representations.

Related Methods
β-VAEs have previously been used to model the formation
of task-relevant representations in visual categorization and
change detection tasks (C. Bates & Jacobs, 2019). In the work
of Bates et al., the model consisted of a β-VAE which formed
internal representations of stimulus, and a decision module
that completed the task being performed based on these rep-
resentations. Results from this experimentation demonstrated
a categorical bias in reconstruction depending on which task
is being modelled. This supports the use of the β-VAE frame-
work in modelling the formation of task-relevant visual stim-
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ulus representations.
The model and experimentation presented in this paper is

an extension of this method onto the domain of economic de-
cision modelling from visual stimulus, which requires adjust-
ments in model structure and training. This is an important
extension, as utility is the basis of economic decision making
in cases where agents have access to utilities and probabili-
ties required to determine optimal actions. Utility can also
serve as the basis for models of human reinforcement learn-
ing used to make predictions of human decisions in learning
tasks (Niv, 2009; Niv et al., 2015; Collins & Frank, 2012).
The ability of extending the proposed model into the domain
of reinforcement learning modelling will be further investi-
gated in the discussion section.

The function and motivation behind β-VAE models shares
a close connection with the information bottleneck approach
(Burgess et al., 2017; Alemi, Fischer, Dillon, & Murphy,
2017). This method has been applied to modelling cogni-
tive mechanisms that share similarities with economic deci-
sion making, such as predictive inference (Still, 2014) and
information-constrained behaviour (Lai & Gershman, 2021;
Malloy & Sims, 2020). One key feature of our proposed
model is that it makes predictions on the formation of task-
relevant representations under information constraints. Pre-
vious methods applying the information bottleneck approach
to decision modelling have either not included representation
formation, or done so in a task that did not involve utility pre-
dictions.

Within the field of economic decision modelling, sub-
optimality in human decision making is understood within the
frameworks of bounded rationality (Simon, 1990; Camerer,
1998) and rational inattention (C. A. Sims, 2003; Mackowiak,
Matejka, Wiederholt, et al., 2020). Models developed under
these frameworks can be used to predict how humans make
decisions relative to their information processing limitations.
As with previously discussed methods, these too do not ex-
plicitly model the formation of task-relevant representations
of stimuli.

In this paper we present experimentation utilizing our pro-
posed model resulting in similar predictions of sub-optimality
in decision making as these related methods, while addition-
ally modelling visual representation formation. As with all
cognitive models based in neural networks, these represen-
tations are a metaphor for the contents of human cognition.
However, through its novel structure and training method our
model makes implications for how constrained representation
formation can lead to sub-optimal performance.

Modeling Representations using β-VAEs
β-Variational Autoencoders
Variational autoencoders consist of a neural network which
compresses an input into a lower dimensional representation
that is then expanded back into a reconstruction of the input.
The first half of this network structure is referred to as the
encoder, while the second half is referred to as the decoder.

Both portions of the network are trained simultaneously as
the network takes in some input and produces an output, and
through training learns to reconstruct the input as faithfully
as possible.

The closeness of this reconstruction is defined by a loss
function which determines how similar the reconstruction is
to the original input. Typically in VAEs the loss function is an
error between the model input and output, such as the mean-
squared-error.

In β-VAEs, an additional parameter (β) is introduced to
control the information capacity of the lower dimensional
representation, which results in an adjustable information
bottleneck (Higgins et al., 2017; Mathieu, Rainforth, Sid-
dharth, & Teh, 2019). The loss function used to train a β-VAE
is as follows:

L(θ,φ;x,z,β) = Eqφ(z|x)[log pθ(x|z)]−βDKL
(
qφ(z|x)||p(z)

)
(1)

In the above, φ represents the parameters of the encoder
qφ(z|x), which defines the probability distribution over la-
tent representations z given the stimulus x. Additionally,
pθ(x|z) can be understood analogously with the decoder, as
it defines the probability that a stimuli x can be produced
from the latent representation z. The desired decoder is one
where p(x|z) ≈ p(x|v,w) where v are the conditionally inde-
pendent generative factors responsible for producing the stim-
ulus, and w are the conditionally dependent factors. When
p(x|z) ≈ p(x|v,w) the latent representation z is an adequate
representation of the generative factors responsible for pro-
ducing the stimuli x, as the probability of observing the orig-
inal data given the latent representation is maximized. For a
more complete description, see (Higgins et al., 2017).

The first term in this loss function represents the recon-
struction error between the model input and output. The
second term DKL

(
qφ(z|x)||p(z)

)
represents the informational

complexity of the internal representations that the model gen-
erates. When β = 0 the model seeks only to minimize recon-
struction error, and as β increases the amount of information
used in internal representations decreases. The loss-function
used in VAEs corresponds to β = 1 and as β increases a more
constrained information bottleneck is applied.

The usefulness of the β-VAE method in modeling human
decision making over the traditional VAE approach is in its
ability to adjust the information constraint on the latent rep-
resentation. For modeling human decision making, it should
be possible to determine an individual participant’s informa-
tion processing constraint and fit the β parameter to match
that. This suggests that the proposed β-VAE model might
better capture the way that individuals form representations
of decision making tasks given their individual capacity for
storing and processing information.

In our proposed model, the β-VAE represents a Working
Memory Module (WMM) of an agent when they are mak-
ing a decision based on visual stimulus. However, because
stimulus representations should be domain specific due to in-
formation processing constraints, we must train this model
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Figure 1: The Working Memory Module is a β-VAE structure
that learns to reconstruct the stimulus ground truth and Util-
ity Module prediction accuracy. Colors highlight the stimulus
ground truth presented to a decision maker (blue), the inter-
nal representation that they use as working memory of the
decision making problem (purple), the reconstructed stimu-
lus (red), and the predicted utility of the stimulus (green).

to not only make accurate reconstructions, but also to allow
for accurate utility predictions. This is done through the addi-
tion of a utility prediction module that allows for utility based
training of the WMM.

Utility Based Training
As we are interested in modeling task-relevant representation
formation and decision making, the training method of the
proposed β-VAE model is adjusted to incorporate the utility
of the learned representation. An additional Utility Module
learns to predict the utility associated with a stimulus based
on the internal representation of a stimulus that is learned by
the WMM (Fig 1).

This utility module consists of a neural network that takes
as input a copy of the psychological representation of a stim-
ulus, and outputs a prediction of the utility associated with
that stimulus. The network is fully connected with 2 layers of
64 units, and the output is trained based on a mean squared
error loss between the prediction and the ground truth util-
ity. This utility module is trained alongside the WMM on the
same data, with the additional ground truth utilities. The util-
ity predicted estimate is then fed into the loss function of the
WMM which is trained to balance the accuracy of the stimu-
lus reconstruction and the utility prediction as follows:

L(r,S) = L(θ,φ;x,z,β)+υ
(
r(Z)−E[S]

)2 (2)

Where r(Z) is the utility prediction output of the Utility Mod-
ule, and E[S] is the ground truth expected utility associated
with the stimulus input to the WMM. Using this altered train-

ing method, the WMM learns to reconstruct the stimulus ac-
curately, while reducing the squared error between the utility
prediction and the stimulus ground truth utility. This structure
is similar to the β-VAE based method described in (C. Bates
& Jacobs, 2019), though our model explicitly predicts ex-
pected utility associated with a stimulus and uses that predic-
tion within the WMM learning objective. These alterations
allow for both predictions of utility, as well as working mem-
ory representation formation to take utility into account.

Adjusting the utility-loss weight parameter υ controls the
relevance of the expected utility in calculating the loss of the
model’s reconstruction. For example, when the υ parame-
ter is 0, the model learns to reconstruct stimulus as faithfully
as possible without accounting for the accuracy of the utility
module prediction. As υ increases, the model learns to pre-
fer representations that allow for more accurate utility predic-
tions. Comparing the predicted decisions of the β-VAE model
with human selections in economic decision making tasks can
allow for a better understanding of how humans balance task-
relevance and memory reconstruction accuracy to the original
stimulus when forming representations.

Economic Decision Making
Maximum Expected Utility
Expected utility is defined for a decision alternative x based
on the different outcomes that can occur as a result of se-
lecting that alternative [x1,x2, . . . ,xi], the utility of those out-
comes [u(x1), . . . ,u(xi)] and the probability of those outcomes
occurring [p(x1), . . . , p(xi)] given the option that was selected
by the agent. This results in the following equation for ex-
pected utility:

E[u(x)] =
n

∑
i=1

p(xi)u(xi) (3)

The proposed model takes as input a single option within
in a decision problem X , corresponding to outcomes and out-
come probabilities, and reconstructs that input as faithfully
as possible given the information constraint. However some
features of the stimulus are more relevant for maximizing util-
ity than others, so the utility-loss method is introduced to in-
corporate the difference between the predicted utility and the
ground truth.

The utility value of the original stimulus E[S] in the utility-
based loss function in Eq.2 is equal to the true expected util-
ity of the original stimulus. This differs from the expected
utility of the reconstruction stimulus r(Z) due to the informa-
tion constraint applied to the internal representation of stim-
uli. The calculation of these ground-truth utilities are specific
to the task being performed which will be fully detailed in the
experimentation section.

Sub-optimal Decision Making
A well-studied form of sub-optimality in human economic
decision making is risk-aversion, which is characterized by
the undervaluing of risky prospects and overvaluing of safe
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prospects, relative to their true expected utility (Pratt, 1978;
Holt & Laury, 2002). Traditionally, this phenomenon is ac-
counted for by introducing an adjusted utility function that
treats outcomes differently based on their value or probabil-
ity (Rabin & Thaler, 2001). An example of this approach is
Cumulative Prospect Theory (CPT) (Kahneman & Tversky,
1979) which has been used to model risk-aversion like effects
in economic decision making (Schmidt & Zank, 2008). CPT
can account for the effect of risk-aversion by weighting the
utility of an outcome based on its value or probability, such
as reducing the weight for outcomes that are unlikely and in-
creasing it for likely outcomes (Schmidt & Zank, 2008).

In the following section on experimentation, we will
demonstrate that our proposed model makes similar predic-
tions of risk-averse behaviour in an economic decision mak-
ing task. Importantly, the input to this model will be a vi-
sual stimulus representation of a decision making task. This
makes it unique from related methods like CPT which take in
as input the probabilities and outcomes associated with dif-
ferent options in a decision making task. Additionally, the
β-VAE module within our model allows for the formation of
psychological representations and stimuli reconstructions of
these input that are not present in previous models of risk-
aversion in economic decision making.

Experimentation
Previous methods have shown that β-VAEs can be used to
produce task-relevant biases in representation formation sim-
ilar to what can be expected from humans based on their
behaviour (C. Bates & Jacobs, 2019). Through experimen-
tation, we show similarly human-like behaviour when mod-
elling visual stimulus representation formation in a utility-
based economic decision making task. This is done by show-
ing a risk-aversion effect present in the utility predictions of
our model that correspond to expectations of human decision
making in similar tasks. For all β-VAE models described in
this paper, the model structure, hyper-parameters, and train-
ing procedure follow the original implementation described
in (Higgins et al., 2017), apart from the β information con-
straint which is adjusted to compare different information
processing constraints as described in the following sections.

Decision Making Task
We examine the behavior of our model in a “marble jar” se-
lection task. In this task, the agent is presented with a choice
between two jars of 16 marbles, where the contents of each
jar are fully visible. After selecting a jar, one marble is ran-
domly sampled from the chosen jar, and the agent receives a
reward based on the color of the (randomly) selected marble.

To compare the impact of information constraints and
utility-weight parameters on choice behavior, we vary these
parameters and report the utility prediction and reconstruc-
tion accuracy of models at the end of training. All models
are trained on 1K epochs of 1K stimuli and utility values.
Marble jar stimuli are generated using a Dirichlet distribution

Figure 2: An example of the marble jar selection task. The
decision maker chooses one of the marble jars and a single
marble chosen at random will be given to the agent with the
goal of maximizing their observed utility. Each color marble
has a different utility and each marble jar has an expected
utility and utility variance which are the mean and variance of
the marble utilities. Marble ratios are defined by a Dirichlet
distribution Dir([2,4,6,8]) for grey, green, red, blue.

Dir([2,4,6,8]) for grey, green, red and blue colored marbles,
which have utilities 8, 4, 2, 1 respectively.

The task described in Figure 2 will be used to demonstrate
how our model predicts human-like decision making, specif-
ically risk-aversion, through the use of our β-VAE model
trained with the utility-based learning objective.

Modelling Results
Using the example decision task shown in Figure 2 we can
see how risk-aversion could be demonstrated by a decision
maker. The first and second options have total utilities of 46
and 48 and variances of 5.26 and 6.66 respectively. While
the second option has a slightly higher expected utility, it also
has a higher variance which may impact the choice of the
decision maker. In this example, a bias in choosing option
1 over option 2 would reflect an instance of risk-aversion, as
the decision maker is preferring certainty in outcome over a
increase in expected utility.

risk-aversion: We can use this decision making task to in-
vestigate how the utility weight parameter υ and information
constraint parameter β impact the decisions of our model. We
additionally include for comparison MEU and CPT calcula-
tions for these probabilities. Because of the flexibility of CPT,
a wide range of possible values for predicted utility are pos-
sible, and these values are selected to reflect the risk-averse
effect observed in human decision making.

Model Utility Predictions Recon. Error

MEU (normative) (46, 48) N/A
β-VAE + Utility (48.2, 42.1) 1611.4736

β-VAE (45.6, 47.8) 1089.0422
VAE + Utility (46.6, 47.8) 2810.2334

VAE (41.3, 44.8) 1803.3821
CPT (47, 45) N/A

The results shown in the table above indicate that the β-
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Figure 3: Utility prediction error based on marble jar utility
variance of an ablation of β-VAE and VAE models with and
without utility based training. Points represent mean utility
predictions of all marble jars with the same utility variance.
Lines represent a linear regression of all predicted utilities,
calculated with the Seaborn Python library (Waskom, 2021).
VAE models have β = 1, β-VAE models have β = 100, utility
models have υ = 1000 and non-utility models have υ = 0.

VAE + Utility model demonstrates a risk-aversion effect for
the example stimulus in Figure 2. Although the second jar
has higher expected utility, the model values the first jar more
highly. This effect can also be observed using a cumulative
prospect theory model, as it has decision weight parameters
that can be adjusted to produce a similar effect. However,
it is important to note that the CPT model would need to fit
an individual parameter for each possible outcome, whereas
our proposed model is parameterized only with the utility-
weight and information constraint. Additionally, CPT func-
tions by altering the utility maximization method, whereas
our approach assumes decision makers maximize utility, but
doing so with limited information processing ability.

Comparing the reconstruction errors for each model
demonstrates the improved generalizability to out of training
stimuli afforded by the β-VAE models, which is one main
justification for their use (Burgess et al., 2017). Additionally,
each model trained with the utility prediction method has a
lowered reconstruction accuracy. This corresponds with the
expectation of a model with limited information processing,
as information used to represent utility can lower the amount
of information available to accurately reconstruct the original
stimulus. An interesting result is that the loss-aversion like
effect is observed as a result of the differences between dif-
ferently colored marble proportions and utilities, as opposed
to an imposed preference as is the case with the CPT model.

Note that the difference in predicted utility is exaggerated
from what a human would likely determine for this task,
as the information constraint (β = 100) and utility weight
(υ = 1000) are larger than values that would better reflect
human behaviour. In practice, it is possible to fit these pa-
rameters based on observations from individuals, as has been

Figure 4: Comparisons of original stimulus and reconstruc-
tion for an example marble jar with the same ablation of dif-
ferent model types as described in Figure 3. Marble jar orig-
inal stimulus is from the constructed set of marble jars with
utility 42 that were not part of the original training data set.

done in related methods (Malloy & Sims, 2020; Niv et al.,
2015; Collins & Frank, 2012). This could result in utility
predictions matching the behaviour of individual participants,
though this is outside of the scope of the present work.

Utility Estimate Bias: In order to understand the basis for
the risk-aversion effect, we examined how the utility training
method and information constraint impact utility predictions
as the risk associated with a stimulus changes. Additionally,
we sought to examine the generalizability of our utility pre-
diction module to stimuli that have not been seen previously.
To allow for this, we constructed a new data set consisting
of every possible marble jar with the same total utility (42)
but with different variances. The following figure compares
the bias in predicted utility for models with and without an
information constraint and utility-based training.

These results show that the β-VAE model alone demon-
strates a risk-aversion like effect, shown by a positive utility
error for low variance marble jars, and a negative utility error
for higher variance jars. This corresponds with our under-
standing of the risk-aversion effect which increases the dis-
tortion of preference as outcomes become more or less prob-
able.

Generalization: These utility prediction error results ad-
ditionally demonstrate the high generalizability of utility pre-
diction in models trained using the utility-based learning ob-
jective (blue). Models trained without utility included in their
learning objective (red) have a wider range of prediction er-
rors above and below the regression trend. This reflects the
similarly high generalizability of human economic decision
making in these types of utility-based tasks.

The final comparison of different model types is in the re-
construction accuracy of a new stimulus not used on training.
Figure 4 shows a stimulus not used during training. The right
hand side compares stimulus reconstructions of the same 4
model ablation described previously, with and without an in-
formation constraint and utility-based training.

These reconstruction examples demonstrate the impact that
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information constraints and utility-based training have on
generalized stimulus reconstruction. Models trained with the
utility-based learning objective are better able to reconstruct
the higher utility grey marbles. Interestingly, these grey mar-
bles are not necessarily in the same location, as this is not
relevant to the expected utility of a marble jar. The model
thus demonstrates that its latent representations have acquired
a useful invariance (the exact position of a marble in the jar).
This corresponds to intuition from human perceptual memory
in this type of task, as the location of marbles is irrelevant to
predicting utility.

Discussion
Risk-Averse Representations
Results from utility prediction errors of our proposed model
demonstrated a risk-aversion like effect. These results sug-
gest that one aspect of risk-aversion is the formation of in-
formationally compressed representations of visual stimulus
in economic decision making tasks. However, alone these re-
sults do not fully explain the source of risk-averse representa-
tion formation. This can be better understood by considering
the relative abundance of marbles and their utilities.

Marble piles with more grey marbles have higher variance,
and one possible interpretation of underestimating these util-
ities would be a decision maker determining the utility of a
stimuli with grey marbles by counting only the utility of those
grey marbles and nothing else, leading to an under estimate.
However, this is one possible explanation and additional com-
parisons would need to be made to more fully understand the
precise ways in which these utility estimates are risk-averse.
Generally the risk-averse behaviour should be understood as
resulting from different probabilities and utilities of marbles,
and how the information constraints and utility-weights im-
pact representations of these stimuli.

An important implication of this explanation is that it
would be unlikely to observe the same risk-averse behaviour
in an alternate version of the marble task that is very uniform
in marble probability or utility. While this is a slight weak-
ness to our proposed model, these types of stimuli would also
likely result in only a slight risk-averse behaviour in humans,
since marble piles would on average have utilities much
closer together. Additionally, the proposed model seeks to ac-
count for one source of risk-aversion, though others are likely
to exist. It is possible that the type of risk-averse behaviour
that results from forming informationally-compressed and
utility-based representations only occurs when there is a con-
siderable difference between stimuli utility.

Human Representation Formation
The modeling experiments presented in this paper sought to
examine the properties of stimulus representations learned
when facing constraints on the ability to encode and repre-
sent task features. To do this, we represented visual decision
making in a similar manner as previous approaches, with a
β variational autoencoder trained to learn internal representa-

tions, and a separate module trained to perform a task based
on those representations. The novelty of our method is in its
learning to explicitly predict utility based on task-relevant vi-
sual representations in an economic decision task.

Our results demonstrate that when agents face constraints
on the ability to encode information veridically, systematic
distortions are introduced in the representation of the proba-
bility and utility of decision alternatives. In particular, stim-
uli with a higher utility variance have a lower predicted utility,
with the opposite being true for stimuli with a low utility vari-
ance. This corresponds to observations of human behaviour
in economic decision making tasks. Importantly, our model
makes similar predictions as existing methods while taking
the input to be the visual task stimuli, and producing a psy-
chological representation that can be used to reconstruct the
original stimulus and make utility predictions.

Modelling Human Learning
As mentioned previously, the inclusion of utility predic-
tions and a utility-based training method within our proposed
model can allow for the modelling of reinforcement learn-
ing in humans. This can be done by adjusting the training
method of the utility prediction module. In our experiments,
decision makers were assumed to have knowledge of outcome
probabilities and utilities. In the learning setting, these values
would not be known and instead learned by making decisions
and observing outcomes. Thus our utility prediction model
would make a prediction and observe an outcome after the
decision has been made, and update their prediction based on
this observed outcome. This can be done using the standard
temporal difference equation used in reinforcement learning,
which is motivated by human biological processes implicit in
learning (Niv, 2009; Niv et al., 2015).
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Abstract

Spatial relational descriptions in everyday life sometimes need to
be revised in the light of new information. While there are cognitive
models for reasoning about spatial descriptions, there are currently
no models for belief revision for the spatial domain. This paper
approaches this need by (i) revisiting existing models such as verbal
model (Krumnack et al., 2010) and PRISM (Ragni and Knauff,
2013) and adapt them to deal with belief revision tasks, (ii) evaluate
these models by testing the predictive accuracy for the individual
reasoner on a previously conducted experiment by Bucher et al.
(2013), (iii) provide baseline models and machine learning models,
provide user-based collaborative filtering and content-based
filtering methods, and provide an analysis on the individual level.
Implications for predicting the individual and identifying strategies
and shared similar reasoning patterns are discussed.

Introduction
Belief revision refers to the cognitive ability of reasoners to
change existing beliefs to eliminate contradicting beliefs. Imagine
you believe “London lies further north than Berlin. Berlin is
north of Krakow”. As you are in Krakow, you assume that it is
no detour to first head towards Berlin. An expert in geography,
however, tells you “Berlin actually lies north of London”. How
do you revise your beliefs, given that you trust the expert? In
what way do you change your previous assumption? Do you
try to preserve as much of your preexisting beliefs as possible?
You can assume that there are differences between individuals
in doing so. What are the underlying cognitive mechanisms? Is
it possible to predict what different reasoners will do?

Human spatial relational reasoning has been well-studied from
a neuro-cognitive, computational, and experimental perspective
(Knauff, 2013; Ragni and Knauff, 2013). Since it is a field with
a lot of practical relevance, it is well suited for the exploration of
belief revision, and by modeling, it should be possible to identify
the factors influencing it. While for spatial relational reasoning
there exists a vast literature, there are only a handful of studies on
belief revision (Knauff et al., 2013; Krumnack et al., 2010). Still,
these studies have identified systematic and surprising effects
on revision preferences, including aspects such as plausibility
and the properties of relations such as visualizability (Bucher
et al., 2013). This provides enough variation to possibly explain
individual variation.

The paper is structured as follows: In the next section, we will
introduce the experiment, its results, and the resulting data set. In
section 3 we will introduce existing models for spatial relational
reasoning and how they have been adapted for belief revision. This

will be accompanied by models from machine learning such as
recommender systems. We will present the evaluation in section 4
and finally discuss the results and their implications in Section 5.

The Data
The experimental data stems from Bucher et al. (2013). To
determine the visualizability of the problems, a pilot study
was carried out. 30 volunteers (14 male; aged from 19 to 55)
evaluated 72 binary spatial and non-spatial statements related to
their visualizability. Based on the results, a total of 192 problems
were selected, 64 each for the categories visual, neutral, and
spatial. Examples can be seen in Table 1.

Table 1: Examples for the three task categories.

Category Examples

visual The cucumber is thinner than the pumpkin.
The asparagus is thinner than the cucumber.

neutral The bird is weaker than the dog.
The dog is weaker than the polar bear.

spatial Russia is further east than Poland.
Poland is further east than Germany.

The procedure of the experiment by Bucher et al. (2013) is now
briefly described. Twenty volunteers (8 male; age 20-35; German
as native language) were tested individually on 192 problems.
Each participant was first presented with two statements (called
premises), e.g.

Asparagus is thinner than cucumber
Pumpkin is thinner than asparagus

Each premise consisted of a reference object (RO) and a located
object (LO). With the premise “asparagus is thinner than
cucumber”, asparagus serves as the LO and cucumber as the RO.
The distinction between LO and RO is common in this field of
research and was proposed by Landau and Jackendoff (1993),
among others.

The subject was then presented with two arrangements of the
three presented objects, so-called “models”, e.g.,

Pumpkin-Asparagus-Cucumber
Cucumber-Asparagus-Pumpkin

one on each side of the monitor. Out of those two choices, only
one was “correct”, meaning that it was in accordance with the
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relation that the two premises established between the three
objects. The task only continued if the correct model, Pumpkin-
Asparagus-Cucumber, in this case, was recognized. Now each
subject was confronted with a new premise, a counterfact, e.g.

Cucumber is thinner than pumpkin
Subjects were advised to treat this counterfact as indisputable.
In half the cases, it was in accordance with the initial correct
model, in the other half it wasn’t. Only if the subject recognized
an inconsistent fact as such, the experiment continued. Otherwise,
the next problem started. In case the subject detected the inconsis-
tency, the stage of belief revision followed. This stage was only
reached if the subject identified the correct model in phase three
and the counterfact from the last phase to be inconsistent with
it. The subject was now presented with two new models, e.g.

Cucumber-Pumpkin-Asparagus
Asparagus-Cucumber-Pumpkin

one on each side of the monitor. Both of these models were
created out of the correct model from phase three by the inclusion
of the counterfact. One of these models was always plausible
and the other one always implausible. In half of the cases,
the plausible model was created by relocating the LO of the
counterfact and the implausible model was created by relocating
the RO. In the other half, it was reversed.

For plausibility, Bucher et al. (2013) relied on common
knowledge. A premise such as “the tree is bigger than the flower”
would generally be considered to be plausible, the premise
“feather heavier than nail” to be implausible. The mental model
“Feather-Nail-Hammer” is plausible with regard to the attribute
weight. The mental model “Father-Son-Grandpa” is implausible
with regard to the attribute age.

Now the participants had to choose the model that matched
their expectation about the inclusion of the counterfact into the
initial model. The experimental procedure included the stage of
inconsistency detection because, as stated by Bucher et al. (2011),
inconsistency detection is a prerequisite for belief revision. For
revising one’s assumptions, one, first of all, needs to recognize
an inconsistency between initial assumptions and newly learned
information. That’s why the first phases of the experiment were
conducted - to ensure that a participant was able to conclude from
the two premises and then recognizes an inconsistency with that
conclusion. This is when the process of belief revision happens.
The approaches presented here aim to understand how preferences
for a revised model are composed by comparing different model-
ing approaches in their accuracy of prediction. Different cognitive
models were implemented/adapted and compared, including
many simple models e.g. LO-preference, relocation of the object
added last to the mental model, preference for the plausible model,
etc., just to name a few. Also, the more advanced cognitive models
PRISM (Ragni and Knauff, 2013) and the verbal model (Krum-
nack et al., 2010) were adapted. Following the cognitive models,
four models from the machine learning area were implemented
- content-based filtering (CBF), user-based collaborative filtering (
UBCF), a multilayer perceptron (MLP), and an ensemble model.

In the data set used for modeling, the objects, e.g. cucumber,
asparagus, etc., were replaced with A, B, and C. Also the

premises have been reformulated, e.g. “A is to the left of C” was
changed to “Left;A;C”. A problem as it was presented in the data
set is shown in Table 2.

Table 2: Structure of an experimental test problem.

Sequence Task Choices

1 Premises Left;A;B/Right;C;B CBA|ABC
2 Model ABC Left;C;A
3 Decision ABC/Left;C;A CAB|BCA

It consisted of three sequences, one for each time the
participants had to make a decision. The first two sequences were
largely ignored since we focused on modeling the sequence of
belief revision. Predicting the first two sequences of constructing
a model and detecting the inconsistency did not add any value
since they only served as preliminary work for the last - the belief
revision - sequence. Predicting the logically correct answer was
in any case the most common one. All models did achieve the
same accuracy for them, namely 0.927 for sequence one and
0.892 for sequence two.

Methods
Before presenting the cognitive and machine learning models,
let’s quickly compare both approaches. Cognitive models are
trying to predict human behaviour by recreating the underlying
cognitive process as best as possible. They are useful because
they provide an accurate indication of the quality of a cognitive
theory. Compared to machine learning models, however, which
solely rely on statistical data, they are much less accurate in
their prediction. While the big advantage of machine learning
models is their great accuracy, for our purpose they have two
big disadvantages. Firstly, machine learning models are often
black boxes, meaning that it is not visible from the outside
which patterns have been learned. This holds true especially for
neural networks, but even with recommender approaches such
as CBF, great effort is needed to find out exactly what has been
learned. This is irrelevant for many applications, but since our
use case is not only about high predictive power, but also about
an understanding of the underlying cognitive processes, this is
a core problem of the machine learning models. In addition, large
amounts of data are required for training. Very large data sets with
a large number of participants are rarely available in cognitive
science since such extensive experiments are difficult to conduct.

To compare the performance of all models, we used CCO-
BRA1, a python framework specifically created for behavioural
reasoning analysis. This framework proposes few constraints
to how the models need to be implemented, all that matters is
the prediction. Accuracy is simply determined by dividing the
number of correct predictions by the number of all predictions.
This is done for each subject individually. For this purpose,
CCOBRA provides different benchmark types. With “adaption”,
the model gets the know the correct answer after each prediction

1github.com/CognitiveComputationLab/ccobra
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in order to gradually adapt to the current subject. With “coverage”,
a model gets to know all answers of the subject before prediction
starts. This can be used to find out how well a model is generally
able to represent an individual.

Simple Theories
To give an introduction to how a cognitive theory might be
established and implemented, the following simple theories were
instantiated and compared. These were also the models used for
the ensemble model explained in the machine learning chapter.

LO-Preference: There exists a strong cognitive effect called
LO-preference described by Bucher et al. (2011), where it was
discovered that participants relocate the LO of the counterfact
87.78% of the time. It followed that the way the counterfact is
formulated strongly influences the model revision process.

Relocation of the object added last to the model: The last in-
serted object was, in our case, the object introduced newly by the
second premise (therefore always the right object C). According to
Payne et al. (1993), the way the model is constructed plays a cru-
cial role in the way the model is saved in the reasoner’s mind and
therefore has an influence on the way the model is revised when
contradictory information is obtained. The hypothesis that the ob-
ject added last to the model is the most likely one to be relocated is
based on the assumption that it is the starting point for inspection
of the mental model (Bucher et al., 2011; Knauff et al., 1998).

Preference for the plausible model: As explained in the exper-
iment chapter, one of the revised models from sequence three
was plausible while the other one was implausible. This theory
states that there exists a preference for the plausible model. While
Bucher et al. (2013) did find out that the preference for the plausi-
ble model was almost completely overwritten by LO-preference,
it might still exist, especially without a strong contradicting effect.

Preference for the mental model presented on the left/right side
of the monitor: In sequence three, the subjects were, as explained
in the experiment chapter, presented with a choice for a model,
one on the right side and one on the left side of the monitor.
Perhaps some subjects, out of various reasons, did not construct
the revised mental model in their mind before being presented
with the choices but instead made a decision only after being
shown both possibilities. This might possibly lead to either a left
model or a right model preference.

First/Second premise rejection: Subjects had to reject one of the
premises to include the counterfact. The question is if participants
had a preference regarding the premise they wish to reject.

Verbal Model
Following Polk and Newell (1995) reasoning does not necessarily
depend on domain-specific cognitive processes but on more
general cognitive mechanisms. The authors introduced an
approach which they called verbal reasoning that makes use of
the cognitive mechanisms underlying verbal language (language
comprehension) to draw conclusions from premises. The way
in which an inference is made therefore depends to a large extent
on the decoding of the verbal information. According to Polk
and Newell (1995), this decoding of verbal information plays a
crucial role in reasoning rather than domain-specific events in the

brain. To instantiate the assumptions from the verbal model into a
cognitive model that can be tested and evaluated, Krumnack et al.
(2010) introduced a queue in which the objects of the premises
are inserted. This queue displays an implicit direction that is,
according to Maass and Russo (2003), determined by the cultural
left/right difference, e.g. the direction in which scripture is read.
In addition, there seems to be a natural tendency for a left-to-right
direction when imagining spatial events since a right hemisphere
dominance for attention often leads to slightly pronounced
processing of objects in the – contralateral – left visual hemi-field
(de Schotten et al., 2011). The verbal model implementation from
Ragni et al. (2019) dealt with this personal preference by provid-
ing a compare-function, that tests the outcome of both possible
implicit directions and matches the result with the actual subject’s
answer. For the purpose presented here, this implementation was
adapted to fit belief revision in the following way: Inclusion of
the counterfact happens by moving forward through the queue
until the first object contained in the counterfact is found. It is
then moved to the end of the queue. Following this process, the
counterfact is included in any case. With the following example:

A*→B→C

where the star marks the beginning of the queue and the arrows
show the implicit direction, the counterfact “C is to the left of
A” results in the model B-C-A, while with the queue

A←B←C*

the same counterfact results in the model C-A-B. The preferred
implicit direction of the current subject was determined before
prediction started. This was possible with the CCOBRA
benchmark type coverage.

PRISM
PRISM stands for “preferred inferences in reasoning with spatial
mental models”. It is a computational model that is based on the
assumptions of the theory of preferred mental models, put forward
by Ragni and Knauff (2013). The premises “Asparagus is thinner
than cucumber” and “Pumpkin is thicker than cucumber” are
ubiquitous, meaning that they only induce a single model, namely
Asparagus-Cucumber-Pumpkin. When premises lead to multiple
possible models like in the case of “Asparagus is thinner than
Pumpkin” and “Pumpkin is thicker than cucumber”, for which
the two possible models are Asparagus-Cucumber-Pumpkin and
Cucumber-Asparagus-Pumpkin, these problems are described
as indeterminate. The theory of preferred mental models suggests
that reasoners have a preference when deciding for one out of
multiple possible models. The cognitive model that emerged from
this theory was implemented in 2013 and then re-implemented
in 2019 for Ragni et al. (2019). It is the later implementation
the model presented here is based upon. The similarity between
different models is determined by the number of swap operations
needed to create one from the other. This approach was not
applicable to our task, since both revised models required two
swap-operations to get back to the initial model. The following,
adaptive approach was used: in one of the variations, the relation
of the two left objects to each other has remained the same, in
the other the relation of the two right objects. Perhaps different
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participants had preferences with regard to which revised model
”feels” more similar to the initial model.

ABC+Le ft;C;A/Right;A;C

CAB BCA

For some people, keeping the relation of the two left objects as
it is (B is to the right of A) might feel more similar to the initial
model than keeping the relation of the two right objects (C is to
the right of B). For other people, the opposite might hold. This
theory was implemented through an adaptive approach, in which
PRISM gradually learned which of the two similarity-functions
fit best to the current subject.

Machine Learning Models
To achieve the best possible prediction, various machine learning
models were tested on the data set, namely CBF, UBCF, an MLP,
and an ensemble model. Additionally, another simple data-driven
model that is used as a baseline is the most-frequent-answer
model (MFA) which relies on predicting the most commonly
selected response for each task. Generally, MFA can be
considered to be an upper bound for models that are not able to
adapt to individual participants.

Both CBF and UBCF are so-called recommender systems.
While these approaches are usually used to suggest videos,
products, images or other content to a user, they are used here
to suggest/predict the most appropriate response based on the
previous user’s behaviour.

CBF (content-based filtering) is about making a decision in a
situation in the same way a subject responded to a previously expe-
rienced, similar situation. For an online shop, CBF would suggest
products similar to previously bought products. For a video portal,
CBF would suggest videos similar to previously watched videos.
To use CBF for our purpose, similarity between different tasks
had to be determined. Since all objects of the premises/models
were replaced with A, B, and C, the same tasks were repeated
over and over again e.g. all tasks that looked like ABC/Left;C;A
with the choices CAB/BCA (in that order) were treated as similar
to one another, no matter the original objects behind A, B, and C
(boxer, car, tree, etc.). Similarity in content between the different
problems was therefore determined solely by the relations, by the
side on the monitor on which both choices were located, and by
the side on which the plausible model was located. CBF was
tested with the benchmark types adaption and coverage.

UBCF (used-based collaborative filtering) is about finding sim-
ilar users to the current user, and then take the behaviour of those
users for prediction. For an online shop, UBCF would suggest
those products that are bought by users who generally buy the
same products as the current user. For a video portal, UBCF
would suggest those videos that are watched by users who gener-
ally watch the same videos as the current user. For our purpose, the
similarity of all subjects to the current subject was determined to
form a subject neighborhood. Then, for prediction, the answers of
the similar subjects were weighted more heavily than the answers
of the not-so-similar subjects. This resulted in a so-called similar-

ity matrix, in which pairwise similarity was determined between
all participants. Simply put, UBCF worked similarly to MFA with
the difference that the responses of participants who had previ-
ously behaved similarly as the current participant were weighted
more heavily. This approach was interesting to find out to what
extend different users shared similar reasoning patterns when
confronted with the same tasks. UBCF was tested with the bench-
mark types adaption and coverage. In the first case, the subject-
neighborhood gradually formed. In the second case, the subject-
neighborhood was fully formed before the prediction started.

An MLP (multilayer perceptron) is a basic feed-forward neural
network. Riesterer et al. (2020) compared multiple methods for
predictive modeling. This comparison included, amongst various
cognitive and statistical modeling approaches, a multilayer percep-
tron, which achieved the highest accuracy, outperforming MFA
and an auto-encoder model. Although this comparison was done
in the syllogistic domain, testing this MLP in our domain seemed
promising. The MLP featured a topology of 10-256-256-4. The
10-dimensional input-layer one-hot-encoded the task presented
in sequence three. The 4- dimensional output-layer encoded the
response as a one-hot-encoded vector. Fig. 1 shows the topology
of the neural network together with an example task.

Figure 1: Neural network with the example task ABC/Left;C;A,
encoded as a one-hot-encoded vector.

Before prediction, the MLP was trained on all 19 subjects for
30 epochs with a batch size of eight. Once prediction started,
the MLP, in order to adapt to the current subject, trained for two
epochs after every given answer.

Ensemble modeling is a machine learning technique about
combining multiple models by aggregating all predictions into
a single prediction. This can be done via multiple methods e.g.
averaging/weighting the different predictions. For this purpose,
all cognitive theories described in the simple theories section
were adaptively combined by taking the model for prediction that
so far performed best for the current subject. This approach was
chosen to find out exactly which strategies underlie the reasoning
process for every individual reasoner. The ensemble model was
also tested with the benchmark type coverage, in which case the
most fitting strategy was determined before prediction started.
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Figure 2: Accuracies of models for belief revision. Only sequence three is considered. Included are MFA (corresponds to LO-relocation),
relocation of the object added first/last to the model (FAO, LAO), preference for the left/right choice (LC, RC), preference for the
plausible model (Pl), PRISM (PR), the verbal model (V, coverage), MFA, CBF, UBCF, the MLP and the ensemble model (Ens).UB-C,
Ens-C, and CBF-C are the same models as UBCF, Ens and CBF, but with the CCOBRA benchmark type coverage.

Evaluation
Fig. 2 shows the accuracies of all presented models. The orange
boxes show the models with the benchmark type coverage,
meaning that those models didn’t gradually adapt to the current
subject after every answer, but before the prediction started,
which of course results in a higher accuracy since the model
doesn’t need to adapt over time. The machine learning models
did surpass the cognitive models. LO-relocation performed just
as well as MFA. Both models were, in any case, identical in their
prediction, which is why only MFA is shown in Fig. 2. It stood
out that while the simple cognitive theories did achieve accuracies
not much higher than the random model, they had a high variance.
Single few subjects were predicted very well, or very bad, by
them, as can be seen by the few outliers. PRISM and the Verbal
model lie between the simple theories and MFA. However, out
of all cognitive models, they were the only adaptive ones.

All machine learning models were able to outperform MFA,
but did also differ greatly from one another in their accuracies.
With an accuracy of 0.8 (0.853 with coverage) , CBF did perform
best out of all featured models. The ensemble model was a close
second. With much distance to the ensemble model/CBF, but still
significantly better than MFA, UBCF and the MLP did achieve
similar accuracies of 0.79 (0.826 with coverage) and 0.788.

The small difference between the performance of the ensemble
model and CBF leads to the assumption that it was possible to
extract the main strategies CBF was able to leverage. Therefore,
the dominant individual strategies for most subjects could be
extracted, shown in Tab. 3.

It can be questioned whether the left model preference and the
right model preference were actual strategies since they did solely
depend on the way the task was presented on the screen. They
did not add value to understanding the cognitive processes related
to belief revision. Rather, they showed that two participants
were probably not able to integrate the counterfact into the initial

Table 3: Dominant strategy for each subject.

Strategy Test Subjects

LO-relocation 1,3,4,5,6,7,8,9,11,12,15,16,18,20
Last added object 14,17
First added object 2
Plausible model 13
Left model preference 10
Right model preference 19

model according to their own preferences, perhaps due to an
unwillingness towards expending cognitive effort.

Effect of Task Category on Dominant Strategy

While LO-relocation was the dominant strategy for subjects 16
and 20, CBF was able to predict them even better than MFA,
which indicates that both subjects used different revision tactics
for different tasks. To find out whether task characteristics had an
effect on the dominating strategy, the effect of the task categories
regarding LO-preference was investigated. As described in the ex-
periment section, each task was assigned to one of three categories
- visual, spatial, and neutral. We examined the effect of those
categories on the dominating strategy, namely LO-preference.
The results are shown in Fig. 3. Although there was wide variation
among the subjects in terms of the dominant tactic with respect to
the task category, no clear pattern could be discerned that would
have applied to all subjects. Therefore, no clear statement could
be made about the influence of the categories on the dominant
strategy. However, it seemed that subjects 16 and 20 pursued dif-
ferent strategies for different tasks. Whether the category or other
task characteristics played a greater role was not investigated.
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Figure 3: Effect of task category on accuracy of MFA.

Discussion
Various approaches from the fields of cognitive modelling and ma-
chine learning were adapted/implemented to test their applicability
for belief revision. In addition, the behaviour of all test participants
was analyzed individually. Comparing the accuracies of all models
on the data set to an experiment conducted by Bucher et al. (2013)
provided interesting results. PRISM and the verbal model were
overshadowed not only by the statistical recommender approaches,
but also by LO-relocation, which delivered the same accuracy as
the upper bound MFA, making it the dominant strategy for counter-
factual model variation. Adaptive approaches outperforming MFA
shows that individual belief revision preferences follow individual
reasoning strategies and that those strategies can be gradually
learned and leveraged to enhance the quality of prediction.

Subject 12 did relocate the LO in 97.8%, subject 1 in 95.3%
of the cases, which made them the most predictable participants.
CBF-C reached an accuracy of 0.747 for subject 10, 0.75 for
subject 11, and 0.753 for subject 19, which made them the
most unpredictable participants. Fig. 4 shows the strengths
and limitations of the machine learning models and provides
interesting insights into their inner workings.

Figure 4: Accuracies of models for belief revision per subject.
Only those subjects are presented for which there was a big
difference in the accuracy of prediction.

CBF and the MLP performed better than UBCF, which shows
that individual subjects were in fact very individual in their
behaviour on the task - twenty test-subjects were too few to create
a fitting user-neighborhood for each subject. The fact that some
subjects were predicted very well by UBCF (2, 14 and 17) while
other were not (8, 11, 13), reinforces this assumption.

As can be seen in Fig. 4, subject 11 was better predicted by
MFA than by the ensemble model and UBCF. From this one can

conclude that either the dominant strategy for subject 11 changed
over the course of the experiment, meaning that the adaptive
models learned something that was no longer true after a certain
time, or that the main strategy used by subject 11 wasn’t included
in the ensemble model (and wasn’t used by another subject). No
clear pattern could be extracted according to which subject 11
acted. Subject 13 was better predicted by the ensemble model
and CBF than by the other models. This was because those two
models were the only ones that could, due to the way they were
implemented, learn the preference for the plausible model.

The overall findings lead to the conclusion that it might be im-
possible to break down behavioural patterns to a single cognitive
theory, at least on this domain, no matter how advanced and all-
inclusive it might be. This was nicely shown with the ensemble
model. Six different strategies were needed to achieve an accuracy
close to CBF. Some test subjects deviated from the usual, domi-
nant strategies and pursued their own tactics, which has led to four
out of the six strategies representing only a single subject best.

A limitation lies in the underlying experiment and different
approaches leading to the same result. The experiment was
originally designed with the goal to investigate the effect of
visualizability, of LO-preference and to see if it can be overwritten
by plausibility - and not for differentiation between different
cognitive models. Hence, left object relocation directly corre-
sponded to first premise rejection and in some cases also to the
verbal model and PRISM, while right object relocation directly
corresponded to second premise rejection, relocation of the last
added object, and, again, in some cases also to the verbal model
and PRISM. This made it impossible to differentiate between the
tactics the subjects used whose responses were better predicted
by models other than LO-preference/MFA. Therefore little could
be said about the applicability of PRISM and the verbal model
to belief revision. While both models did perform well the way
they were adapted to fit counterfactual model variation, they
essentially did the same what much simpler and less polished
models did and could not leverage their strengths. It would
therefore be necessary to put the results of this work to the test
in an experiment carried out differently e.g. with more than three
different objects, three or more premises to form the initial model,
more than two choices for the integration of the counterfact, more
than 20 subjects, etc., to see whether the results still hold.

In conclusion, there exists no model complex enough that it’s
parameters are able to fully represent an individual, not least be-
cause of the inconsistencies inherent in human nature. Human
spatial relational reasoning is sometimes illogical, contradictory,
and subject to strong fluctuations. Nevertheless, the results of this
work show that it’s possible, at least within the presented domain,
to extract many of the underlying behavioural patterns. Cognitive
theories and the models derived from them provide interesting
insights into what is normally taken for granted and provide a con-
tribution to understanding human cognition, even if the findings,
like it is the case with this work, only represent a constricted and
clearly defined domain like spatial-relational reasoning.

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

189



References
Bucher, L., Krumnack, A., Nejasmic, J., and Knauff, M.

(2011). Cognitive processes underlying spatial belief revision.
Proceedings of the 33rd CogSci, pages 3477–3482.

Bucher, L., Nejasmic, J., Bertleff, S., and Knauff, M. (2013).
Plausibility and visualizability in relational belief revision.
Proceedings of the 35th Annual Conference of the Cognitive
Science Society, pages 1946–1951.

de Schotten, M. T., Dell’Acqua, F., Forkel, S. J., Simmons, A.,
Vergani, F., Murphy, D. G. M., and Catani, M. (2011). A
lateralized brain network for visuospatial attention. Nature
Neuroscience, 14(10):1245–1246.

Knauff, M. (2013). Space to reason: A spatial theory of human
thought. MIT Press.

Knauff, M., Bucher, L., Krumnack, A., and Nejasmic, J. (2013).
Spatial belief revision. Journal of Cognitive Psychology,
25(2):147–156.

Knauff, M., Rauh, R., Schlieder, C., and Strube, G. (1998).
Continuity effect and figural bias in spatial relational inference.
In Proceedings of the Twentieth Annual Conference of the
Cognitive Science Society, pages 573–578, Mahwah, NJ.
Mahwah, NJ: Erlbaum.

Krumnack, A., Bucher, L., Nejasmic, J., and Knauff, M. (2010).
Spatial reasoning as verbal reasoning. Proceedings of the 32th
Cognitive Science Society, pages 1002–1007.

Landau, B. and Jackendoff, R. (1993). “what” and “where” in
spatial language and spatial cognition. Behavioral and Brain
Sciences, 16(2):217–238.

Maass, A. and Russo, A. (2003). Directional bias in the
mental representation of spatial events nature or culture?
Psychological Science, 14:296–301.

Payne, J. W., Bettman, J. R., and Johnson, E. J. (1993). The Adap-
tive Decision Maker. Cambridge University Press, Cambridge.

Polk, T. A. and Newell, A. (1995). Deduction as verbal reasoning.
Psychological Review, 102:533–566.

Ragni, M., Friemann, P., Bakija, E., Habibie, N., Leinhos, Y.,
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Abstract

In dynamic decision tasks, the situations we confront are never
the same: the world is constantly changing. Generally, our
ability to generalize learned skills depends on the similarity be-
tween the learned skills and the situations in which we will ap-
ply those skills. However, in dynamic tasks, the situations we
are trained in will most likely be different from the situations
in which we need to apply skills. For example, in the face of
emergencies, one could be trained to handle hypothetical disas-
ter scenarios, but remain unprepared for the emergency that is
actually experienced. This raises an important question: how
can we best prepare for the unexpected? Cognitive science
research suggests that heterogeneity during training helps peo-
ple adaptat to unexpected situations. However, evidence for
a general diversity hypothesis is limited. In this research, we
investigate this Diversity Hypothesis using a cognitive model
of learning and decisions from experience based on Instance-
Based Learning (IBL) Theory. We focus on the concept of
decision complexity to investigate whether confronting deci-
sions of diverse complexities results in improved adaptation to
unexpected decision complexities, compared to situations of
constant decision complexity. We conduct a simulation exper-
iment using an IBL model in a Gridworld task, and expose
agents to various degrees of diversity as they learn; we then
observe how these agents transfer their acquired knowledge to
a situation of novel decision complexity. Our results support
the Diversity Hypothesis and the benefits of diversity on adap-
tation.
Keywords: transfer of learning; diversity hypothesis;
instance-based learning; adaptation; gridworld tasks

Introduction
Most decisions we make in life are dynamic: we evaluate
potential alternatives sequentially, determine the values of
the options as they develop over time, and select our op-
tions in the presence of environmental uncertainties and time
constraints (Gonzalez, Lerch, & Lebiere, 2003; Gonzalez,
Fakhari, & Busemeyer, 2017). Unfortunately, most research
on decision making today involves static situations: decisions
are often studied in one-shot choice environments, with no

time constraints or high workload and where most informa-
tion is provided to the decision maker (Gonzalez et al., 2003;
Gonzalez, 2013). Notably, research on heuristics and biases
has dominated behavioral decision research. For example,
while demonstrating the explanatory power of Prospect The-
ory, one of the best known theories of risk, researchers often
use monetary gambles (i.e., “prospects”) that explicitly state
outcomes and associated probabilities. People are presented
with a description of the alternatives and are asked to make a
choice based on the conditions described (Tversky & Kahne-
man, 1974).

In dynamic situations, decision making is considered as
a learning process, in which individuals must rely on their
experience to make decisions (Gonzalez et al., 2003). Im-
portantly, by definition, dynamic situations are unique and
constantly evolving. Thus, in dynamic situations, a decision
maker never confronts the same exact decision situation more
than once—“you cannot step twice into the same stream”
(Burnet, 1930). An important research question is therefore:
how can decision makers prepare for unexpected and novel
situations? This question has been addressed in the learning,
skill acquisition, and transfer of skills literatures. For exam-
ple, it is clear that decision makers can successfully transfer
learning when the skills learned during training can be rein-
stated at transfer, or more generally, when transfer situations
share some similarity of the procedures and skills learned dur-
ing training (Healy, Wohldmann, Parker, & Bourne, 2005;
Healy, Wohldmann, Sutton, & Bourne Jr, 2006). While these
conditions might be possible in less dynamic situations, they
might be more difficult to meet in dynamic conditions of
choice.

Schmidt and Bjork (1992) argued that what works best
for improving performance during training will not necessar-
ily work well in new conditions of transfer; they suggested
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that diverse training might be beneficial. This idea has been
tested in some studies in which diverse training appears to
be particularly important for adaptation to unexpected situa-
tions (Brunstein & Gonzalez, 2011; Gonzalez & Madhavan,
2011). For example, Brunstein and Gonzalez (2011) studied
effects of diverse training in a luggage screening task. They
prepared targets of various categories (e.g., knifes, guns, etc.)
and tested conditions in which people were trained in only
one category of objects (e.g., guns) or in diverse categories
(e.g., guns, knives, etc.). They observed that those individuals
who were trained with diverse categories were able to classify
novel items as potentially dangerous in a transfer condition,
while those trained with consistent categories of weapons ex-
hibited poor adaptation. Their conclusions suggest a general
Diversity Hypothesis: Acquiring diverse experiences during
learning will result in better adaptation to unexpected situa-
tions.

Here, we test the Diversity Hypothesis and investigate the
adaptation to novel levels of decision complexity. Decision
complexity is defined as in Nguyen and Gonzalez (2020): the
trade-off between low-cost, low-value and high-cost, high-
value alternatives. When we make decisions, we often have to
handle such cost-benefit trade-offs to determine what actions
to take. To test this idea, we rely on a Gridworld task devel-
oped by Nguyen and Gonzalez (2020), where agents perform
a goal-seeking task under uncertainty by navigating a grid. In
this situation, we test how the diversity of experienced lev-
els of decision complexity during learning affects adaptation
to unexpected levels of decision complexity. This is carried
out using a cognitive model based on Instance-Based Learn-
ing Theory (IBLT; Gonzalez et al. (2003)), and we discuss the
resulting predictions for human adaptation to novel decision
situations.

Instance-Based Learning Theory
IBLT is a theory of decisions from experience, derived from
the mechanisms proposed in the ACT-R cognitive architec-
ture (Anderson & Lebiere, 1998), developed to explain hu-
man learning in dynamic decision environments (Gonzalez et
al., 2003). IBLT provides a decision making algorithm and
a set of cognitive mechanisms that can be used to implement
computational models of human decision making and learn-
ing processes. The algorithm involves the recognition and re-
trieval of past experiences (i.e., instances) according to their
relevancy to a current decision situation, the generation of ex-
pected utility of the various decision alternatives, and a choice
rule that generalizes from experience. An “instance” in IBLT
is a memory unit that results from the potential alternatives
evaluated. These are memory representations consisting of
three elements: a situation (a set of attributes that give a con-
text to the decision, or state S); a decision (the action taken
corresponding to an alternative in state S, or action A); and a
utility (expected utility or experienced outcome x of the ac-
tion taken in a state).

An option k = (S,A) is defined by taking action A in state

S. At time t, assume that there are nk,t different generated in-
stances (k,xi,k,t) for i= 1, ...,nk,t , corresponding to selecting k
and achieving outcome xi,k,t . Each instance i in memory has
an Activation value, which represents how readily available
that information is in memory, and it is determined by similar-
ity to past situations, recency, frequency, and noise (Anderson
& Lebiere, 2014).

Here we consider a simplified version of the Activation
equation which only captures how recently and frequently in-
stances are activated:

Acti,k,t = ln

(
∑

t ′∈Ti,k,t

(t− t ′)−d

)
+σ ln 1−ξi,k,t

ξi,k,t
(1)

where d and σ are the decay and noise parameters, respec-
tively, and Ti,k,t ⊂{0, ..., t−1} is the set of the previous times-
tamps in which the instance i was observed. The rightmost
term represents the Gaussian noise for capturing individual
variation in activation, and ξi,k,t is a random number drawn
from a uniform distribution U(0,1) at each time step and for
each instance and option.

The probability of retrieving an instance i from memory is
a function of its activation Acti,k,t relative to the activation of
all instances:

pi,k,t =
exp(

Acti,k,t
τ

)

∑
nk,t
j=1 exp(

Act j,k,t
τ

)
(2)

where τ is the Boltzmann constant (i.e., the “temperature”) in
the Boltzmann distribution. For simplicity, τ is often defined
as a function of the same σ used in the activation equation
τ = σ

√
2. Importantly, the noise and temperature values add

stochasticity to the model, ensuring that action selection is
non-deterministic. The nature of the model allows for ex-
ploration of the option space to reduce over time, and to treat
the “explore-exploit tradeoff” without hard coded exploration
(e.g., as in ε-greedy reinforcement learning methods (Sutton
& Barto, 2018)).

The expected utility of option k is calculated based on
a mechanism called blending (Lebiere, 1999), using the
past experienced outcomes stored in each instance. Here
we employ the blending calculation as defined for choice
tasks (Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez,
2012):

Vk,t = ∑
nk,t
i=1 pi,k,txi,k,t . (3)

The blending operation (Eq. 3) is the sum of all past expe-
rienced outcomes weighted by their probability of retrieval.
The choice rule is to select the option that maximizes the
blended value.

Experiment: Knowledge Transfer Across
Decision Complexities

Gridworld Goal-Seeking Task
We use the goal-seeking Gridworld environments developed
by Nguyen and Gonzalez (2020), implemented in the OpenAI
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Gym framework (Brockman et al., 2016). The goal-seeking
task is formalized as a Markov Decision Process (MDP),
which consists of a set of states S , a set of actions A and a re-
ward function R : S →R. We consider a solution to a MDP
to be a policy π : S → A . In the goal-seeking task at hand,
each state S ∈ S is a (row, column) coordinate in an 11× 11
grid. At each time step l ∈ {1, ...,T}, an agent first observes
the current state Sl , takes action Al ∈ A corresponding to one
of four cardinal directions in the grid, then transitions to Sl+1
and receives reward Rl .

In the task at hand, an agent must learn to navigate a grid
environment to find one of the four outcome goals. The val-
ues of the goals are drawn from a Dirichlet distribution such
that one goal, which we refer to as the preferred goal, is val-
ued higher than the rest of the goals—the distractor goals.
Interactions with the environment are broken into episodes.
Each episode is a set of at most 31 steps, and we denote a tra-
jectory T = {(Sl ,Al)}T

l=1 to be the sequence of state-action
pairs in an episode, with T ≤ 31 being the terminal step. The
episode ends when the step limit is reached or the agent finds
one of the four goals. Agents receive a penalty of -0.01 for
each step taken, -0.05 for walking into walls or obstacles, and
the reward of the target if they reach a goal. The optimal pol-
icy π∗ is always to take the shortest path to the preferred goal.
An example of a full grid is shown in Figure 1.

IBL Model in the Goal-Seeking Task

An IBL agent in the Gridworld task stores in memory in-
stances, which take the form of a triplet (S,A,x), where x
the value assigned to taking action A in state S. Both action
and states follow from the definition of the task: the agent ob-
serves their state S as their coordinate in the grid and selects
actions from the set of four cardinal directions. As previ-
ously described, the action selection mechanism dictates that
the agents select the action with the highest blended value
(Equation 3).

Finally, IBLT suggests a feedback process that uses deci-
sion outcomes to update and refine the utility estimates of
past options, such that updated instances inform future deci-
sions (Gonzalez et al., 2003). The present task involves re-
wards that are earned at the end of a task, so we must ad-
dress the problem of temporal credit assignment (Minsky,
1961); that is, how will the agents assign delayed outcomes to
their actions over the course of a trajectory T ? Here, we use
a relatively simple notion of credit assignment, inspired by
(Nguyen & Gonzalez, 2020), that disseminates equal credit
amongst candidate actions in a sequence if a positive reward
is attained, and assign the step-level reward otherwise. For-
mally, we have that, ∀l ∈ 1, ...,T ,

xl =

{
RT RT > 0
Rl otherwise

(4)

In the context of this task, an agent will update all of its in-
stances in a trajectory with the value of the goal reached RT .

Figure 1: An example Gridworld with a randomized spawn
location. The optimal policy is for the agent to reach the pre-
ferred goal via the shortest path, avoiding walls and distractor
goals.

If a goal is not reached, it will simply update with the step-
level cost Rl .

Experimental Simulation Methods
We investigate the diversity hypothesis by looking at within-
task adaptation between levels of decision complexity.

Decision complexity is defined as in Nguyen and Gonza-
lez (2020): the difference between the distance to the nearest
distractor dd and the distance to the highest value goal dp,
formally defined as ∆d = dp− dd . Intuitively, this measure
captures the tension between navigating to or discovering the
preferred goal versus reaching the distractor: high values of
∆d correspond to more complex decisions.

We separate an agent’s interaction with the environment
into two within-task phases: learning and adaptation. In the
learning phase, each agent spawns in a specified location in
a Gridworld with a predetermined level of decision complex-
ity. The agent then executes the task over 60 episodes. In the
adaptation phase, the agent remains in the same grid config-
uration (the same Gridworld); however, their spawn location
is changed to create a different level of decision complexity.
The agent then continues for another set of 60 episodes un-
der the new level of complexity. Broadly, the agent carries
over the experience from the learning phase to apply it to the
adaptation phase.

We defined three decision complexity conditions:

1. High, where the agents’ learning phase is in decision com-
plexity ∆d = 5;

2. Low, with learning decision complexity ∆d = 1; and

3. Mixed, where the spawn location is randomized at each
episode in the learning phase to generate various levels of
complexity. The spawn position during learning is never
the same as the one in the adaptation phase.
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In all three conditions, the agents are required to perform un-
der a new spawn position with decision complexity ∆d = 3,
unexpectedly, after their 60th episode.

We hypothesize that the agents with the most diverse
experiences—the agents in the Mixed condition—will per-
form better during adaptation than the agents in the Low and
High complexity conditions. We expect that the agents who
have been exposed to more diversity in decision complexity
during learning will be able to adapt to a new decision com-
plexity more effectively than those that learned with a consis-
tent level of decision complexity. We also expect that agents
in the Low Condition will perform better during learning than
agents in the Mixed and High conditions. This is due to the
variation in spawn location for the Mixed condition and in-
creased decision complexity for the High condition.

We simulate 100 distinct grid configurations with different
goal locations and obstacles. Spawn locations corresponding
to the desired levels of decision complexity are generated for
each distinct grid.

Our primary dependent measure is accuracy, defined as the
proportion of episodes where the agent obtains the preferred
(i.e., maximum value) goal. Using this metric, we examine
agents’ performance in the learning and adaptation phases in
aggregate, over time, and at the transition between phases.

Results
Overall Accuracy
The average accuracy across 60 learning episodes and 60
adaptation episodes in each condition is shown in Figure 2.
The results are aggregated across all 100 grid configurations,
with three independent trials in each. We observe that dur-
ing learning, agents in the Low decision complexity condition
perform significantly better than the agents in the High com-
plexity and Mixed complexity conditions. During the adap-
tation phase, however, agents in the Low complexity condi-
tion experience only a slight improvement compared to the
learning phase, while agents in the Mixed complexity condi-
tion show the largest improvement from the learning phase.
Agents in the Mixed condition agent are able to use the di-
verse experiences acquired in the learning phase to, on av-
erage, adapt more successfully than the agents in the other
conditions.

Accuracy Over Time
In addition to overall average accuracy, we plotted the learn-
ing curves of the agents, which show the average accuracy
per episode, grouped by the experimental condition. The re-
sults are presented in Figure 3. We observe that although the
agents in the Low complexity condition learn to perform ac-
curately very rapidly compared to the High complexity and
Mixed conditions, this is the condition where agents appear
to have the most difficulty adapting immediately to the new
level of complexity (more discussion on this “surprise” effect
in the next section). Perhaps the most interesting observation
is that agents in the Mixed condition are the only ones that

Figure 2: Average accuracy during the learning and adapta-
tion phase for each condition.

Figure 3: The learning curve for each condition. Agents
transfer to the unseen decision complexity ∆d = 3 at the 60th
episode, remaining there until the 120th episode.

continue to improve their performance, without an initial de-
crease during adaptation. During the 60 adaptation episodes,
the Low complexity agents are able to match the performance
of the Mixed condition agents. This contrasts with the High
complexity agents, which are unable to achieve comparable
levels of accuracy.

Surprise Effect
Following on the previous analysis, here we focus on the “sur-
prise” effect per condition, characterized by both the accuracy
in the first adaptation episode alone (i.e., Episode 61), as well
as by the change in accuracy from the last episode of learning
and the first episode of adaptation (i.e., Episodes 60 and 61).
Figure 4 presents both of these measures. We observe that
the agents in the Mixed complexity condition have the high-
est average accuracy in Episode 61. Furthermore, the differ-
ence in accuracy between Episodes 60 and 61 for the Mixed
complexity agents is near zero. That is, their surprise effect
is low.

In contrast, the Low complexity condition has a lower per-
formance than the Mixed condition, but has the highest sur-
prise effect, where the accuracy decreased more than in any
of the other conditions in Episode 61. The High complexity
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Figure 4: The accuracy in the transfer episode and the dif-
ference in accuracy between the first adaptation (Episode 61)
episode and final episode of training (Episode 60).

condition has the lowest accuracy in the first episode of adap-
tation and a small surprise effect as it transitions to a lower
decision complexity.

Explanations for the Benefits of Diversity
In this section, we dive into the mechanisms that may lead to
the benefits of diversity for adaptation. A primary explanation
is that the likelihood that agents will experience states dur-
ing learning that are similar—or equivalent—to the states that
they will experience in the adaptation phase changes across
conditions.

Due to both the nature of the task and the definition of de-
cision complexity, an agent in the High complexity condition
is more likely to end up on a shorter path and fail to gain
sufficient exposure to the environment to facilitate transfer.
To demonstrate this, we simulate a random agent in the same
training phase for the Low and High conditions and measure
the average number of steps per episode. The High condi-
tion with a random agent has, on average, significantly (two-
sided T -test, p < 0.01) shorter episodes (20.57±0.74 steps)
than the Low complexity condition (24.37±0.59 steps). This
shows that an agent is more likely to reach a goal earlier (e.g.,
the nearest distractor) in the High complexity condition, and
thus be less exposed to the environment. This lack of ex-
posure during the learning phase makes it more difficult for
an agent to apply the instances stored in memory to new sit-
uations successfully. The memory instances will be biased
towards the previously learned behavior.

As discussed, the Low complexity condition dictates a
spawn location that has an increased relative distance to the
nearest distractor target. The longer expected episode length
in the Low condition—the same value presented above—
allows agents an increased opportunity to gather diverse ex-
periences in the environment.

Finally, the Mixed complexity condition results in a higher
likelihood of experiencing states that are similar to the com-

Figure 5: The proportion of times an agent in each condi-
tion visited a particular grid cell throughout the learning and
adaptation phases. Each condition pictured here represents
the same grid configuration.

plexity experienced during the adaptation phase. In contrast
to the above cases, this is because diversity is built into the
learning phase. The agent in the Mixed condition has, by def-
inition, a diverse set of experiences. The relative levels of di-
versity correspond to the relative performance in adaptation.

An illustrative example of the differences in the diversity
of experiences during the learning and adaptation phases for
each condition is shown in Figure 5. Considering the learn-
ing phase, the Mixed complexity condition depicts the high-
est level of diversity in state visitations, followed by the Low
complexity condition; whereas the High complexity condi-
tion has a small and focused set of highly visited states.

The behavior in the adaptation phase demonstrates how the
behavior during learning translates to the unexpected situ-
ation during adaptation phase: in both the Low and Mixed
conditions, the agent is able to discover a roughly equivalent
policy, whereas the High condition agent fails to learn the lo-
cation of the preferred goal and a policy that will allow it to
reach that position.

Discussion
In past research, the notion of diversity has been applied to
motor tasks (Wulf, 1991), visual discrimination tasks (Wolfe,
Friedman-Hill, Stewart, & O’Connell, 1992) and classifica-
tion decisions (Brunstein & Gonzalez, 2011; Gonzalez &
Madhavan, 2011). Here, we expand this line of research to
demonstrate the diversity of training in the context of deci-
sion complexity. We find that agents who learn in consistent
decision complexity environments have poorer adaptation to
novel and unexpected situations than those that learn with di-
verse decision complexity.
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An interesting observation is that agents that learned in the
Low complexity condition performed closely to agents in the
Mixed condition during adaptation, while agents that learned
in the High complexity condition are very far from reaching
the level of performance of the Mixed complexity agents. An
explanation we offer in our analyses is that the experiences
of the agents in the Low complexity condition are quite di-
verse during the learning phase. By definition, a Low com-
plexity decision would encourage the agents to navigate the
Gridworld to find the target of higher value, because the deci-
sion trade-off is easy to resolve (Nguyen & Gonzalez, 2020).
In other words, it is a “no brainer” to ignore the temptation
of a distractor, because a larger value target is also close to
the spawn location. These diverse experiences are thus appli-
cable to a novel level of complexity at transfer, as shown in
Figure 5.

In our immediate future work, we plan test both the robust-
ness of the results to changes in environmental parameters, as
well as the predictions of these simulations in human exper-
iments. Are humans with diverse experiences in the Grid-
world able to adapt more successfully to novel situations?
Given that IBL models have been shown to emulate human
behavior very closely in many tasks including the Gridworld
(Nguyen & Gonzalez, 2021), we expect that the predictions
of this paper will hold in human experiments. How far can we
stretch the Diversity Hypothesis? That is, how different can
the transfer conditions be to take advantage of the diversity of
training? Answers to these questions can help us craft diverse
training conditions and predict the way these conditions can
result in robust decisions under changing and dynamic situa-
tions.
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Abstract

Many studies have been conducted concerning curiosity, a type
of intrinsic motivation in humans and artificial agents. How-
ever, the specifics of the correspondence between curiosity in
humans and artificial agents have not yet been fully explained.
This study examines this correspondence on the Adaptive Con-
trol of Thought–Rational (ACT-R) cognitive architecture by
exploring situations in which curiosity effectively promotes
learning. We prepared three models of path planning, rep-
resenting different levels of thinking, and had them learn in
multiple-breadth maze environments while manipulating the
curiosity strength. The results showed that curiosity in learn-
ing an environment negatively affected the model with a shal-
low level of thinking. However, it positively affected the model
with a deliberative level of thinking. We consider that the re-
sults show some commonalities with human learning.
Keywords: cognitive modeling; intrinsic motivation; curios-
ity; ACT-R

Introduction
Although curiosity is assumed to be an effective source of
motivation that encourages humans to engage in long-term
learning, it does not always work effectively. To explore the
conditions in which intrinsic motivation works well, we ex-
amine the influence of the levels of the thinking process that
many cognitive scientists have discussed (e.g., Brooks, 1986;
Kahneman, 2011). This study does not go into the details
and differences of such theories but assumes broad distinc-
tions between the shallow automatic level in which a person
does not think carefully (fast process) and the deep delibera-
tive level in which a person takes time to think carefully (slow
process).

This study aims to clarify the role of intrinsic motiva-
tion in such levels of thinking. To accomplish this, we pre-
pared models that instantiate the information processing of
each thinking level. The prepared models were constructed
based on a cognitive architecture, which is a structure en-
abling cognitive functions in various tasks by various indi-
viduals (Anderson, 2007). By assuming a common structure,
differences in the thinking levels are represented as combina-
tions of primitive processes provided by the architecture.

Of the several cognitive architectures developed to date,
this study uses Adaptive Control of Thought–Rational (ACT-
R; Anderson, 2007) because this architecture has the most
publications showing the details of the models for various
tasks (see Kotseruba & Tsotsos (2018) for a quantitative re-
view). By referring to these models, we can implement sev-
eral thinking levels with the validation made by the previous

studies. Furthermore, ACT-R has two types of knowledge
(declarative and procedural), which seem useful to represent
different levels of thinking.

As a representation of curiosity in ACT-R, this study uses
a mechanism proposed in our previous study (Nagashima,
Morita, & Takeuchi, 2020). Although there are other op-
tions for motivation theory in ACT-R (e.g., Juvina, Larue,
& Hough, 2018), our previous proposal has the advantage
of implementing curiosity as rewards accompanied by pat-
tern matching. We consider this characteristic effective to
examine the complex relations between curiosity and levels
of thinking. However, our previous study failed to demon-
strate that the mechanism relates to human learning. There-
fore, the current study newly implements models of different
processing levels and tries to find common features with hu-
man learning by examining the relation between those levels
and the mechanism of intrinsic motivation.

In order to clearly present the goal of this study, the follow-
ing section shows previous studies concerning intrinsic mo-
tivation and ACT-R. Following this, we briefly introduce a
curiosity mechanism proposed by Nagashima et al. (2020).
We then discuss this mechanism’s implementation and run
simulations of a specific task. Finally, we summarize the im-
plications of the study and indicate future directions.

Related Works
As noted above, curiosity is regarded as a type of intrinsic
motivation. Therefore, this section introduces studies con-
cerning intrinsic motivation to explore situations in which cu-
riosity works effectively. Following this, a brief introduction
of ACT-R is presented, focusing on the relationship with lev-
els of thinking.

Intrinsic Motivation in Humans and Artificial
Intelligence
To date, a large body of studies has been created concerning
learning as facilitated by intrinsic human motivation. For ex-
ample, Malone (1981) categorized intrinsic motivation into
three types: “challenge,” which comes from goals of appro-
priate difficulty; “fantasy,” which leads to the imagination of
unrealistic experiences; and “curiosity,” which is stimulated
by something surprising, interesting, or fun. These types are
not independent but interrelated. Therefore, reviewing the
categories other than curiosity can also help to place the study
in a broader context.
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Malone’s classification of motivation as challenge has been
related to the discussion of the optimal level of intrinsic mo-
tivation (Csikszentmihalyi, 1990; Yerkes & Dodson, 1908).
In humans, there are appropriate levels of task difficulty at
which intrinsic motivation is stimulated. Based on this idea,
Baranes, Oudeyer, and Gottlieb (2014) found through exper-
iments that intrinsic motivation that is neither too high nor
too low for a task is effective. Furthermore, the appropriate
level of difficulty for an individual depends on the individ-
ual’s preferred level of thinking. Based on this discussion, we
assumed the dependency of the appropriateness of the chal-
lenge on an individual’s level of thinking. In other words, in-
trinsic motivation can be enhanced by providing tasks that are
suitable for the level of thinking that the individual prefers.

We consider that the above discussion of challenge cannot
be separated from a discussion of curiosity. Rather, we treat
curiosity as a mechanism of intrinsic motivation evoked by
the appropriate difficulty of a task. Various studies of ar-
tificial agents have addressed the mechanisms of curiosity.
The key principle of modeling curiosity can be obtained from
the theory of prediction error (Friston, 2010). The emotions
of surprise, interest, and enjoyment that trigger curiosity are
caused by discrepancies between perceptions of the external
world and predictions derived from experience. Based on this
theory, autonomous agents have been constructed to learn an
environment based on curiosity (Aubret, Matignon, & Has-
sas, 2019; Schmidhuber, 2010; Singh, Barto, & Chentanez,
2005). In contrast to conventional reinforcement learning, in
which one receives a reward directly from the external envi-
ronment (Sutton & Barto, 1998), the rewards generated from
intrinsic motivation fluctuate depending on the state of the
internal environment.

In recent years, this topic has progressed remarkably with
a framework for deep reinforcement learning through an end-
to-end approach (Burda et al., 2018; Mnih et al., 2015;
Pathak, Agrawal, Efros, & Darrell, 2017). In particular,
Burda et al. (2018) have shown that agents with curiosity can
learn a wide range of environments and improve their game
scores without explicit extrinsic rewards.

Levels of Thinking in ACT-R
The studies presented in the previous section implemented
curiosity-based agents using a reinforcement-learning frame-
work. However, with the framework alone, it is difficult to
explore situations in which intrinsic motivation functions ef-
fectively. Thus, a framework that seamlessly connects the
learning algorithms and the process of inference in a task is
needed.

As noted previously, we use ACT-R as such a framework to
connect multiple levels of thinking and curiosity-based learn-
ing. ACT-R has modules corresponding to brain regions. For
example, the declarative module (prefrontal cortex) retains
experience and knowledge, and the goal module (anterior cin-
gulate cortex) manages states in tasks. The production rules
stored in the production module (basal ganglia) are selected
based on the status of such modules, and they send commands

Figure 1: Flowchart of the task continuation framework pre-
sented in (Nagashima et al., 2020). A positive reward is gen-
erated by “pattern matching” accompanied by memory re-
trieval.

to the modules as actions (e.g., they search for knowledge that
meets the conditions and update the current state of the task).
These rules include variables that realize flexible correspon-
dence (pattern matching) with module states. According to
the ACT-R theory, pattern matching is realized in the cerebral
cortex, specifically the prefrontal cortex. If knowledge re-
trieval from the declarative module becomes unnecessary in
the task, the role of the basal ganglia becomes dominant in the
process of proceduralizing the task. Therefore, we consider
pattern matching accompanied by memory retrieval the crite-
rion that distinguishes a deliberative level of thinking from a
shallow level of thinking in ACT-R. In other words, the shal-
low level of thinking involves little pattern matching, while
the deliberative level of thinking involves extensive pattern
matching.

Mechanism of Curiosity in ACT-R
This section presents the mechanism of intrinsic motivation
proposed by Nagashima et al. (2020). According to their ba-
sic idea, curiosity, especially that involving a higher cognitive
function, is connected with pattern matching. Several authors
have stated that enjoyment, a source of curiosity (Friston,
2010), is related to discovering novel patterns in the envi-
ronment (Caillois, 1958; Csikszentmihalyi, 1990; Huizinga,
1939; Koster, 2004; Schmidhuber, 2010). Following such
discussion, Nagashima et al. (2020) focused on a mechanism
of pattern matching by computers as a concept that corre-
sponds to pattern discovery by humans.

Moreover, based on the correspondence between human
curiosity and pattern matching, Nagashima et al. (2020) pro-
posed a framework for task continuation in a general envi-
ronment (Figure 1). This framework assumes a task that con-
sists of several rounds. At the start of each round, the model
decides whether to continue or stop the task by selecting pro-
duction rules corresponding to each option. After it decides to
continue the task, the model proceeds with the round. When
the model encounters a condition that ends the round, a new
round begins.

The selection of production rules is controlled by utility
learning in ACT-R (Wai-Tat & Anderson, 2006). In the above
process, the initial utility value of the continue rule is consid-
ered higher than that of the stop rule. The process of becom-
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ing bored from this initial state can be modeled by assigning
a trigger of a negative reward to the rule that recognizes the
end of each round.

To prevent boredom and consider the conditions that result
in positive rewards and continued learning, curiosity is re-
quired. In this mechanism, rules that trigger positive rewards
are defined as rules that fire as a result of the successful re-
trieval of declarative knowledge in the task. The search for
declarative knowledge requires pattern matching between the
conditional clauses of the rule (the current situation) and the
memory in declarative knowledge. However, this rule gradu-
ally becomes used for repeated executions; that is, “produc-
tion compilation” in ACT-R integrates the two rules and gen-
erates a compressed hierarchical rule. After integration oc-
curs, it becomes routine and cannot be related to a reward.
Then, the utility value of the continue rule decreases, and the
stop rule fires.

Therefore, the framework represents the decrease in cu-
riosity that comes from the discrepancy between the model’s
predictions (routine compiled knowledge) and the results of
the action. In short, long-term task continuation is achieved
by keeping the model engaged in pattern matching between
the conditional clauses of production rules and declarative
knowledge. Thus, the mechanism is consistent with the key
principle of curiosity (Friston, 2010), while it utilizes the
distinction between declarative and procedural knowledge in
ACT-R.

Simulation
To examine the conditions in which curiosity functions effec-
tively, we conducted a simulation study using the mechanism
presented above. In this section, we first clarify the purpose
of the simulation. Following this, the actual manipulations of
the simulation are defined, and the results are presented.

Aims and Indicators
The purpose of the simulation was to address the following
two successive questions:

1. What kinds of factors stimulate curiosity?
2. How does stimulated curiosity affect task learning?

To address the first question, this simulation manipulated
the learning factors from both the internal and external view-
points. The external factor can be considered the breadth of
the learning environment (difficulty of the task), while the
internal factor corresponds to the cognitive strategies (levels
of thinking) implemented in which the model can be used.
The influence of these internal/external factors on curiosity is
measured as (a) the number of continuations of a task (num-
ber of firings of the continue rule in Figure 1).

The second question is explored because task continuation
does not always contribute to task learning. To assess the ef-
fects of intrinsic motivation on task learning, we examined
(b) the goal achievement rate, (c) the behavior pattern of the
environment search, and (d) the number of newly generated

rules. The index (b) is the outcome of task learning, and the
index (d) indicates the internal changes in the model caused
by task continuation. Regarding the connection between out-
comes and internal changes, the present study computed the
behavioral index (c) as the information entropy of the envi-
ronment search:

Hr =
−∑i∈n p(xi) log p(xi)

logn
(1)

where xi and n indicate each location and the number of lo-
cations in the map, respectively. This index increases if the
model explores the environment extensively but decreases if
the model insists on the same behavioral pattern during the
task.

Simulation Conditions
We used maze searching as a task and manipulated the exter-
nal factor by changing the size of the map; the internal factor
was searching strategies as the model’s level of thinking. Fig-
ure 2 shows the overview of the manipulations.

Figure 2: Manipulations of external and internal factors.

Manipulation of the External Factor Figure 2a depicts
several maze maps, which were automatically created in a
grid world using a maze generation algorithm that randomly
changed wall positions with the constraint of avoiding a loop
structure. As a parameter for the algorithm, we varied the
map sizes between 5×5, 7×7 and 9×9. Ten maps were pre-
pared for each size. These maps were given a start and a goal
by choosing two positions having the largest number of in-
tersections to traverse. The map was included in the model
as location information that uses declarative knowledge to
construct a topological map (Reitter & Lebiere, 2010). The
model’s current location is maintained as a slot content of the
goal buffer. In each round, the model was first located at the
start position and moved to the next location by retrieving the
path from the declarative module. When the current location
matched the goal, a new round began. The model repeated
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this for each map until it became bored (fired the stop rule in
Figure 1).

Manipulation of the Internal Factor To manipulate the
internal factor, we prepared three models corresponding to
the different levels of thinking in the above environment. Fig-
ure 2b illustrates the abstract flow of the models, presenting
the shallowest model (the left model), the most deliberative
model (the right model), and the intermediate model (the mid-
dle model). Because these models were developed based on
Nagashima et al. (2020), please refer to the original literature
for the details of the base model. Brief descriptions of each
model are as follows.

1. Random model (random)
At each point in the movement, the model stochastically
fires a rule representing the next direction (east, west,
south, or north). Based on the direction and current posi-
tion, the model searches for a path from declarative knowl-
edge. If the model succeeds in finding a path, it moves to
the location according to the direction searched (changing
the state of the goal buffer). If the model fails to find a path,
it repeats the same procedure. As the rounds proceed, the
model compiles such retrieved declarative knowledge into
procedural rules.

2. Stochastic DFS model (DFS)
This model uses a stochastic depth-first search (DFS), as
presented in Reitter and Lebiere (2010). This strategy de-
termines a path by backtracking with the stack structure
implemented by ACT-R’s declarative and imaginal mod-
ules. As with the random model, this model first stochas-
tically determines the direction of movement. After suc-
cessfully retrieving a path linking the current location to
the directed location, the model creates a new chunk link-
ing the two locations as “already searched” and stores it
in the declarative module. The model repeats this process
until it reaches a goal or fails to retrieve a path. When
the model fails to retrieve a path (reaches a dead end), it
reverts to the previous location using a memorized chunk
(already searched). Like the random model, the stochas-
tic DFS model learns new rules by compiling declarative
knowledge on paths, but it can repeat more rounds because
it has internal resources that allow it to reach a goal effec-
tively.

3. Stochastic DFS and IBL model (DFS+IBL)
This model is the same as that presented in Nagashima et
al. (2020). The model performs a combination of the prob-
abilistic DFS (Reitter & Lebiere, 2010) and instance-based
learning (IBL: Gonzalez, Lerch, & Lebiere, 2003).1 At the
beginning of the task, the model uses the stochastic DFS to
explore the maze. Each time the model reaches a goal, it
labels all the chunks used in the current round as the “cor-
rect path.” In the next rounds, if the model can retrieve the

1Although the original IBL used a blending mechanism, the cur-
rent model does not use the mechanism; it only utilizes the learning
in declarative memory.

knowledge, it uses it. If it cannot retrieve it, the model uses
a probabilistic DFS to reach the goal from the current po-
sition. Among the three models, this model has the most
deliberative and costly strategy. It always tries to memo-
rize chunks and retrieve correct paths from its memory. As
the round proceeds, however, the model accumulates the
“correct path” and eventually compiles it into procedural
knowledge, which leads to the most effective goal achieve-
ment behavior.

Parameters The simulation used the default ACT-R 7.14.
The initial utility value of the continue rule was set to 10, and
the initial utility value of the stop rule was set to 5.2 We also
assigned negative reward triggers (r = 0), which were lower
than the initial utility value of the stop rule, to rules that rec-
ognized the end of the round (reaching a goal or recognizing
that the time limit of each round had passed) and assigned
positive reward triggers to rules that included pattern match-
ing as curiosity. In this study, we selected the path finding
rule accompanied by the pattern matching to the declarative
memory as a positive reward trigger and varied the value from
1 to 20 as the simulation conditions (strength of curiosity).
For each condition of the positive reward value, the model
ran the task 1000 times at a maximum of 80 rounds each time.
In addition, we set the time limit for each round to 100 s in
ACT-R simulation time. When the time limit was reached,
the model was forced to move to the next round.

Results
Figure 3 displays the results of the simulation as a function of
the reward values for path finding. Each point in the graphs
indicates the average scores of the four indices (n = 10000).
The effects of the external factor (the map sizes) are shown
in the difference of the three lines in each graph, and the in-
fluence of the internal factor can be seen by comparing the
three graphs vertically aligned in the figure. The horizon-
tal alignment of the graphs corresponds to the four indices
presented at the beginning of this section, and the rightmost
figures are correlation matrices of the indices and the two de-
pendent variables (rewards and map size). In the following
section, we examine the details of the results according to the
two questions presented as the aims of this simulation.

Factors Stimulating Curiosity The left three graphs in
Figure 3-a indicate the number of continued rounds. The
strong effects of the internal factor on this index are clearly
seen. In the upper two models (DFS+IBL and DFS), greater
intrinsic rewards increased the number of task continuations
(DFS+IBL: r = .94; DFS: r = .97). In contrast, the random
model indicated a weaker correlation between the rewards
and the number of rounds (r = .67), exhibiting an inverted
U shape. Greater intrinsic rewards promoted task continua-
tion until approximately 14 and then decreased task contin-
uation. This inverted U shape suggests the existence of an

2Following Anderson et al. (2004), noise parameters were set as
follows: ans (activation noise level) = 0.4 and egs (production noise
level) = 0.5.
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Figure 3: Results of simulation. The panels distinguish models vertically and indicators horizontally. The error bars in each
graph represent the standard deviation scaled by 10.3 The vertical axes of the graphs show the titles of the graphs. a: number of
rounds continued, b: goal rates, c: entropy, and d: number of new rules generated by the production compilation. The rightmost
graphs show e: correlation matrices between each variable.

optimal level, which is frequently pointed out in theories of
intrinsic motivation. For example, according to Yerkes and
Dodson (1908)’s classical theory, as a learner’s arousal level
increases, performance increases to a certain point and de-
creases beyond that point.

The effects of manipulating the external factor also var-
ied between the three models (DFS+IBL: r = −.17, DFS:
r = −.09, random: r = .08). In the upper two models, we
observed the negative effects of the size of the external fac-
tor, especially in high-reward conditions. Greater intrinsic re-
wards were more effective in smaller maps, where the model
could more easily reach a goal. In other words, it suggested
that applying DFS to a wide range of environments was not
effective in obtaining internal rewards. The DFS strategy
needed to backtrack to find a path, but the time cost of back-
tracking increased with the size of the map, which can be
interpreted as decreasing the chances of finding a path within
a limited time period.

Effects of Task Continuation on Learning The remain-
ing of the indices in Figure 3 indicate how the stimulated in-
trinsic motivation affected task learning. As can be seen in
the upper two models, larger rewards increased the entropy
(IBL+DFS: r = .47, DFS: r = .51) and the number of learned
rules (IBL+DFS: r = .98, DFS: r = .88), indicating that the
deliberative strategy made use of intrinsic rewards to expand
the search of the environments. Furthermore, the learning
outcome results reveal the effects of IBL. The model with
IBL (the upper model) showed the positive effects of intrin-

sic rewards (r = .16), especially in the smaller maps (5×5:
r = .97, 7×7: r = .97, 9×9: r =−.17). However, the intrin-
sic rewards in the model without IBL had no effect on goal
achievement (r =−.00).

Note that the IBL itself did not always work effectively
in terms of goal rates. In the smaller-reward conditions, the
IBL model had lower goal rates than the DFS-only model.
However, when greater intrinsic rewards were given, the per-
formance of the model with IBL exceeded that of the model
without IBL. As described previously, IBL is a costly and
slow strategy that always tries to retrieve a correct path.
Therefore, it takes time to make use of such experiences to
improve performance. However, it can be assumed that it is
difficult to learn to reach a goal without labels of the cor-
rect paths. As the flat pattern of the goal rates in the DFS
model without IBL (Figure 3-2-b) indicates, the lack of ex-
plicit correct labels led to disoriented wandering behaviors in
the environment.

Unlike the other two models, the random model with a
shallow strategy had a different overall trend. Like the re-
sults of the number of rounds, the number of skills (corre-
lation with the reward: r = −.88) and goal rates (correla-
tion with the reward: r = −.46) exhibited inverted U-shaped
trends. Furthermore, in Figure 3-3-a, the peaks of the in-
verted U shapes in these two indices are smaller than that
in the number of rounds, reflecting negative correlations of
the two indices with the intrinsic rewards. More critically,

3The standard deviation rather than the standard error, which
varies with n, is used to indicate the variability in the data.
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in Figure 3-3-c, intrinsic reward has a negative effect on en-
tropy (r = −.16). These results suggest that higher intrinsic
rewards triggered by path finding strengthen irrational low-
level behaviors (repetitive visits of the same locations with-
out expanding the search) rather than leading to the creation
of additional rules to achieve the goal. The compiled rule in
the random model can be found in the appendix.

Conclusion
The purpose of this study was to examine the conditions in
which intrinsic motivation affects learning. To achieve this
purpose, we modified the previous model for intrinsic motiva-
tion in ACT-R (Nagashima et al., 2020) to represent different
levels of thinking. Unlike the conventional methods for rein-
forcement learning (Aubret et al., 2019; Schmidhuber, 2010;
Singh et al., 2005), the ACT-R architecture makes it possible
to represent a detailed strategy for different thinking levels
with realistic time constraints. We consider those features
of ACT-R (different knowledge representations and assump-
tions of simulating reaction time) useful for representing the
distinctions of levels of thinking and examining complex in-
teractions with curiosity.

In the simulation, we manipulated the external and inter-
nal factors. As a result, the deliberative models showed the
positive effects of intrinsic motivation on task continuation,
learning skills, and searching behaviors. Regarding the out-
comes of learning, however, only the slowest and most costly
model benefited from intrinsic motivation. The model that did
not evaluate the correctness of retrieval exhibited disoriented
wandering through the environment. Moreover, the model
that did not memorize the environment was negatively influ-
enced by intrinsic motivation.

Summarizing these findings, we were able to character-
ize the effects of curiosity on behaviors in different levels of
thinking. There are claims that intrinsic motivation works
well with deliberative thinking, which requires “autonomy,”
“mastery,” and “purpose,” and that extrinsic motivation works
well with shallow thinking, which is usually used in routine
work (Pink, 2011). Our model’s behaviors follow this idea,
thereby corresponding to the human learning process.

In the future, we will analyze the causal relationship be-
tween each variable in detail to disentangle the complexities
of the results presented in Figure 3. In addition, we will ar-
range the task setting to include the process of obtaining ini-
tial motivation. In the present study, we assumed that humans
start with high motivation for a task. However, in reality, a
person’s motivation for a task is likely to vary depending on
the difficulty and contents of the task (Malone, 1981), as pre-
sented in the DFS and IBL model in the 9×9 condition. We
considered that those results indicating the relative ineffec-
tiveness of curiosity in difficult tasks were caused by the time
limit. Therefore, we also need to examine the effect of time
limits on the relation between the level of thinking and the
strength of curiosity. By conducting studies addressing such
limitations, we can explore more detailed conditions of task

continuation, especially those before a model reaches optimal
levels.

Appendix
Listing 1 presents rules relating the movement of locations
in the random model (Check-Path and Check-Goal) and a
rule that was generated through the production compilation
of those rules (Check-Path-And-Check-Goal).

Listing 1: Productions rules in the random model. Strings in
brackets indicates variables.

Check−Path
If

The current task status is ‘confirming’
The current location is <location1>
The retrieved path has <location2>

Then
Change the current task status to ‘check−goal’
Change the current location to <location2>

Check−Goal
If

The current task state is ‘check−goal’
The current location is <location>
The goal is not <location>

Then
Change the current task status to ‘check−goal’

Check−Path−And−Check−Goal
If

The current task status is ‘confirming’
The current location is the <location1>
The retrieved path has the <location2>
The goal is not <location2>

Then
Change the current location to <location2>
Change the current task status to ‘check−goal’

Check-Path moves the current location in the goal buffer
to the location described in the retrieved path. Check-Goal
confirms that the moved location is not the goal in order to
continue searching for the goal location. The compiled rule
integrates those rules, having the condition that checks the
retrieved destination is not the goal location and the action
that leads to non-goal locations. This production is further
integrated with rules retrieving the path with specific desti-
nations and becomes a rule conflicting with the rule leading
to the goal location. It can be considered that the inverted U
shape presented in the random model of Figure 3 occurs as a
result of generating such goal-avoiding rules.
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While modern machine learning techniques based on deep
artificial neural networks (ANNs) have an impressive ability
to process data to uncover patterns, they do not typically
model high-level cognition or more than a single task. If an
ANN is trained on a series of tasks, catastrophic interference
occurs, with each new task causing the ANN to forget
all previously learned tasks (McCloskey & Cohen, 1989).
Conversely, symbolic cognitive architectures can capture the
complexities of high-level cognition but scale poorly to the
naturalistic, non-symbolic data of sensory perception (e.g.,
images) or to big datasets necessary for modelling learning
over a lifetime (e.g., corpora with hundreds of millions of
words). Is it possible to provide a theory that bridges ANNs
and symbolic models, a reduction of the symbolic to the
neural, while retaining the strengths and capabilities of each?

We propose a cognitive architecture that is built on two
biologically plausible, neural models: neural generative
coding (NGC; Ororbia, Mali, Giles, & Kifer, 2020) and
holographic memory (Kelly, Arora, West, & Reitter, 2020).
By combining the two, we create a model of cognition
that has the power of modern machine learning techniques
while retaining long-term memory, single-trial learning,
transfer-learning, and other cognitive capacities associated
with high-level cognition. Our intent is to advance
towards a cognitive architecture capable of capturing human
performance at all scales of learning, from the half-hour lab
experiment to skills acquired gradually over a lifetime.

Since Newell (1973) first argued that good empirical work
and piecemeal theoretical work are insufficient to understand
the mind, researchers in cognitive science have sought to
develop functional, testable theories of cognition as a whole.
Cognitive architectures serve as both unified theories of
cognition and as computational frameworks for implementing
models of specific experimental tasks. Forty years of research
has developed hundreds of cognitive architectures with strong
commonalities to each other (Kotseruba & Tsotsos, 2018)
suggesting an emerging consensus on the basic principles of
cognition, on the basis of which Laird et al. (2017) propose
a Common Model of Cognition, a high-level theory of the
modules of the mind and how they interact (see Fig. 1).

The Common Model of Cognition consists of perceptual

Perception
sensory cortices

Neural Generative Coding

Working Memory
frontoparietal network
Holographic Buffers

Procedural Memory
basal ganglia

Neural Generative Coding

Declarative / Long Term Memory
hippocampus, temporal lobe

Holographic Declarative Memory

Action
motor cortex

 Neural Generative Coding

Figure 1: Common Model of Cognition (Laird et al., 2017),
associated brain areas (Stocco et al., 2021), and our approach
to modelling each module. Solid arrows are data passing.
Dashed arrows indicate modulation of a data passing path.

and motor modules that interact with the agent’s environment,
working memory to hold the active data in the agent’s mind, a
declarative memory that holds the agent’s world knowledge,
and a procedural memory that controls information and
evaluates possible actions. An evaluation of fMRI data from
200 participants across tasks found correlations in patterns
of activity across brain areas consistent with the Common
Model of Cognition’s modules (Stocco et al., 2021).

Proposed Architecture
Neural Generative Coding (NGC) is a scalable
instantiation of predictive processing brain theory
(Clark, 2015) yielding an efficient, robust form of
predict-then-correct learning.

Neural Generative Sensory Cortices use NGC for
processing a specific modality of data. In Ororbia et al.
(2020), we show that NGC learns a good density estimator
of data (from which new samples can be sampled or
“fantasized”), in conjunction with desired target functionality
(e.g., classification, regression), in not only the cases of static
input but also in cases of time-varying data series.

Neural Generative Motor Cortex In Ororbia and Mali
(2021), we generalize NGC to the case of action-driven tasks,
i.e., active NGC (ANGC), common in reinforcement learning
(RL), providing evidence that NGC can be used to build a
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coupled generative model and controller system that solves
RL problems, particularly those when the reward signal is
sparse or non-existent. ANGC will serve as the motor cortex.

Neural Generative Basal Ganglia In Ororbia, Mali, Kifer,
and Giles (2019), we model the functionality of the basal
ganglia in suppressing/inhibiting neural activity for the
purpose of action selection and task switching (Cameron,
Watanabe, Pari, & Munoz, 2010), a behavior we argue is
critical in facilitating effective continual learning without
catastrophic interference. This task selection model, which
learns through competitive Hebbian learning, will serve as the
basis for part of the basal ganglia in our architecture, acting to
coordinate the exchange of information between the working
memory and the sensory and long-term memory cortices.

Holographic memory (Plate, 1995) is a formalism for
capturing the capacity for humans to learn and recall
arbitrarily complex associations between stimuli in the
environment. Holographic memory is immune to the
catastrophic interference typical of more conventional ANNs
(Mannering & Jones, 2021), allowing it to be used to
construct models that handle multiple, unrelated tasks
(Cheung, Terekhov, Chen, Agrawal, & Olshausen, 2019).

Working Memory Each buffer in working memory is a
holographic vector. Holographic memory vectors have an
established ability to account for memory phenomena such
as serial and free recall of lists (Franklin & Mewhort, 2015).

Declarative Memory is the composition of many
individual holographic vectors (each representing a distinct
concept). Our model accounts for human performance in
recall, probability judgement, decision-making (Kelly, Arora,
et al., 2020), and learning the meaning and part-of-speech of
words (Kelly, Ghafurian, West, & Reitter, 2020).

Conclusions and Future Research

Humans are capable of continual learning, deep expertise,
single-trial learning and agile adaptation to dynamic
environments, and transfer learning across multiple tasks.
Conventional ANNs struggle to replicate these abilities.
Solving the problem of lifelong learning will aid us both
in understanding the human mind and in the development
of intelligent agents that are better able to generalize to
real world environments. Our proposed implementation
of the Common Model of Cognition is composed of
neuro-cognitively plausible components, i.e., holographic
memory, predictive processing circuits, and competitive
learning. A promising research direction is the application
of our architecture to where the challenge of catastrophic
interference is most prevalent: reinforcement learning across
lengthy, diverse streams of tasks where knowledge retrieval,
transfer, and composition are absolutely critical.
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Abstract 

Polarization of attitudes is an important, and often troubling 
or disruptive, effect of interest in many fields. We seek to shed 
some light on how polarization arises by applying cognitive 
architectures to the problem. We created a novel embedding 
of individual cognitive agents, using ACT-R’s declarative 
memory model, into social networks, simulated them 
communicating over time, and observed the evolution of the 
agents’ attitudes, both collectively and individually. The 
primary measures we use are both Shannon entropies, of the 
distribution of attitudes in the final configuration of the whole 
social network, and of the distributions of memory traces in 
the individual agents at the end of the simulation. Simulations 
were run over ten different network topologies, using three 
different distributions of narrative valences, and five different 
values of the agents’ memory decay parameter. These 
simulations demonstrated that polarization can be understood 
from a social and cognitive perspective simultaneously, each 
providing insights into the system’s behavior.  

Keywords: Cognitive Modeling; Long-Term Memory; 
Resting-state fMRI; Functional Network, Attitudes, 
Polarization, Social Networks. 

Introduction 

Attitudinal polarization has a long history in political 

science, sociology, and social psychology.  It is no less 

relevant today than it was 50 years ago.  A seemingly 

obvious scientific question is to ask to what extent we can 

understand attitudinal polarization from the perspective of 

cognitive architectures.  This question has interest beyond 

the purely scientific.  Understanding the structure of 

attitudes (as relations among beliefs) and the dynamics of 

attitude change can yield actionable insight for applications 

in, for example, public health (Orr, Thrush & Plaut, 2013).  

Yet, our understanding of attitudinal polarization, from a 

cognitive perspective, relies nearly exclusively on work in 

social psychology, a discipline with little intersection with 

cognitive architectures.   

Polarization in attitudes, typically, is a valenced affair, in 

which an object of contention is evaluated with respect to its 

goodness/badness, desirability/repulsiveness, 

approachability/avoidability.  It is typically described as a 

distribution across individuals (humans, bots, agents, or 

even models).  It is also naturally described as a networked 

phenomenon, where clusters of individuals can develop 

solidarity or polarization or other variants on a theme.  

Important questions include:   What aspects of cognitive 

functioning are implicated by polarization?  Do polarized 

minds lead to polarized social spaces (or vice versa)?  Are 

there interesting threshold effects or other non-linear 

relations between mental and social scales? 

If the answers to these kinds of questions seem obvious to 

you, then consider this.  The famous Shelling segregation 

model (Shelling, 1971) provided somewhat shocking insight 

into the relation between mental states and social structure -

- low degrees of individual-level preferences for segregation 

generated strong system-level segregation.  We use this 

example to illustrate that the relation between levels of scale 

is not obvious.  It must be investigated rigorously.  Using 

the perspective of cognitive architectures, as a 

computational, mechanistic lens, should yield a set of novel 

insights into polarization and other social phenomena of 

interest to those working on public health, security, human 

rights and environmental issues. 

The goal of this paper is to describe an approach for 

studying attitudinal polarization using cognitive 

architectures and to show its potential value.  We do this in 

a stylized way, with an abstract social space and the co-

opting, in a highly formal way, of a specification of attitudes 

from social psychology.  The central question we pose, but 

do not yet answer, is this:  Can we describe the conditions, 

initial or otherwise, of the mental and social systems that 

guarantee stability in both (or either) the mental or social 

systems. Stability is well-understood in real-valued or 

binary networked systems (e.g., Bhat and Redner, 2019).  

But these networks are a poor abstraction for human 

cognitive complexity and their organization in social 

structures. What about socio-cognitive systems? 

Toward this end, we provide a study of the relation among 

the distribution of attitudes and beliefs in a population and 

the social network structure of that population with respect 

to two outcomes, one in terms of external behavior and the 
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other in terms of internal mental representation.  The former 

is derived from the distribution of beliefs in the population 

and the latter is derived from the distribution of beliefs 

within individuals.  Thus, we capture both the mental and 

the social in equal, symmetrical measures. In the results 

section, we will tie our work to future directions in the 

contexts of cognitive architectures, social psychology and 

sociology. 

Simulating Social Networks 

The spread of information across social networks is 

difficult to study experimentally. For this reason, 

researchers frequently make use of either large-scale, quasi-

experimental data, such as analysis of large corpora of 

Twitter messages, or multi-agent simulations. Such 

techniques also are routinely used by social media 

companies. 

In social network simulations, agents are modeled as 

nodes in a network whose edges are communication 

channels. Agents exchange information across these 

channels. The spreading of information is then studied as a 

function of factors such as network geometry (e.g., small 

world networks), agent goals (e.g., reaching consensus), and 

communication intent. 

Simulating Plausible Cognitive-Social Agents 

To reduce the complexity of the simulations, most 

computational social science efforts use relatively simple 

agents, often with little or no cognitive ability. This is 

sufficient to capture some network-level dynamics, such as 

those that lead to consensus within a group (Romero & 

Lebiere, 2014) or the production of original ideas in science. 

When the goal is to understand the interplay between social 

interactions (at the network level) and psychological 

constructs (at the agent level), it is warranted to imbue the 

agents with cognitively plausible assumptions about their 

thought processes. For example, Lindstrom et al. (2019) 

augmented social agents with reinforcement learning 

capabilities to successfully capture the addictive qualities of 

social media behavior.  

Because we are interested in the interaction between 

network dynamics and internal beliefs, we endowed our 

agents with a realistic model of declarative memory. 

Specifically, we used Anderson’s model of memory, 

reflecting the rational analysis of our environment reflected 

in our memory mechanisms (Anderson & Schooler, 1991). 

Those regularities, such as the power law of practice and 

forgetting, have also been observed in recently developed 

information environments such as social networks (e.g., 

Hubermann et al, 1998; Stanley & Byrne, 2016). In this 

model, the availability of memory m is related to its base-

level activation function B(m). Every time m is retrieved or 

re-encoded, a new trace is created. The final activation of m 

is the sum of the decaying activations of all its traces, with 

stochastic noise added to make the retrieval process 

stochastic: 

B(m) = log ∑i ti
-d 

where ti is the time elapsed since the creation of the i-th 

trace and d is the characteristic decay rate of an agent 

memory. 

Connecting Memory and Social Behavior 

In addition to receiving and internalizing information, an 

agent in a social network also sends messages across the 

network. The choice of which messages to spread is, 

ultimately, a problem of decision-making (Hackel et al., 

2020.). To connect an agent’s decisions to its memory, we 

used  Gonzalez et al.’s (2003) instance-based learning 

framework (IBL). In IBL, agents select their next action by 

generating expectations reflecting previous experiences in 

memory that match the current context. This framework is 

particularly appealing because it meshes well with the ACT-

R declarative model and has a long history of successful 

applications in decision-making (e.g., Erev et al, 2010). 

Furthermore, while rooted in declarative memory models, 

IBL gives predictions that are largely consistent with 

reinforcement learning (Chelian et al., 2015), another 

framework that has been successfully applied to social 

networks.  

In IBL previous memories are aggregated through a 

mechanism called blending, which combines different 

outcomes in a weighted average, based on the probability 𝑃𝑖 
of retrieval of each memory reflecting its activation and 

similarities between the contents of the memories: 

𝑉 = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝑃𝑖 ⋅ (1 − 𝑆𝑖𝑚(𝑉𝑖 , 𝑣𝑖))
2

Our model represented narratives and their associated 

valence (defined in a [-1, 1] interval) as chunks in memory. 

At each iteration, the model representing a node in the 

network would store in memory all the narratives received 

from its neighbors. It would then compute the node’s 

attitude by performing a blended retrieval over all narrative 

chunks in memory, extracting a consensus valence. The 

model would then generate a narrative to spread to its 

neighbors by matching the node’s attitude against the 

valence of the narrative chunks in memory. The resulting 

output reflects a combination of attitude of the node and 

popularity of narratives in its ego network. 

Information Entropy as a Common Measure of 

Cognitive and Behavioral Dynamics  

Because our goal is to measure changes in social behavior 

and in agent cognition at the same time, it is useful to have 

a common metric that applies to both.   

To do so, we used Shannon’s information entropy H 

(Shannon, 1948), which can be defined over the set of 

beliefs S (pairs of narrative and valence): 

H = −∑i ∊ S P(i) log P(i) 
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where P(i) is the probability of encountering the i-th  

belief, Although the definition of H is the same, the 

interpretation is different within a social context (between 

agents) and a cognitive context (within a single agent’s 

memory). 

Social Entropy. Social entropy is a measure of uncertainty 

or consensus of the narratives that were propagated by all 

agents in the network during the final time step of a 

simulation. The probability P(i) of the i-th belief is defined 

as the proportion of times it is propagated over the network 

in a given interval time. Thus, social entropy reflects the 

order or disorder of each simulation's final state.  Roughly 

speaking, 0 bits of social entropy indicates consensus, i.e. 

all agents propagating the same narrative with the same 

valence, whereas fragmentation (a diversity of opinions) is 

indicated by 2 or more bits of social entropy.  One bit of 

social entropy indicates polarization. 

Cognitive Entropy. Within a single agent, entropy is 

defined by the activation of beliefs in memory. Because the 

combination of narrative/valence pairs are encoded as 

chunks in ACT-R, entropy is calculated from the probability 

that a given chunk in declarative memory (DM) will be 

retrieved and spread over the network. In turn, the retrieval 

probability of a chunk i is related to a memory’s base-level 

activation by the function: 

P(i) = eB(i)  /  ∑j ∊ DM eB(j) 

Thus defined, Shannon’s entropy captures the degree of 

the internal organization of memories in a given agent and 

captures the agent's need to allocate cognitive resources to 

the different narratives. In this sense, information entropy 

has been previously used, for example, to derive predictions 

about the size of the hippocampus in humans (Smith et al., 

in press).  

 Materials and Methods 

We conducted a 5 (Memory Decay Rate) x 10 (Network 

Topology) x 3 (Narrative Valence) simulation-based 

experiment with 10 replications per cell.  The Memory 

Decay Rate manipulation varied the architectural decay rate 

parameter to address the general question of whether 

memory matters for simulations of information diffusion. 

The Network Topology and Narrative Valence 

manipulations addressed general questions about the effects 

of social context and the types of messages exchanged.   

During each of the 1500 simulations, a connected social 

network of 200 cognitive agents exchanged a set of 10 

narratives over a period of 100 ticks.  During each tick, an 

agent encoded the narratives conveyed by all alters in its 

ego-network, decided on a narrative to convey, and then 

conveyed that narrative to all neighbors in its ego-network 

at the next tick.  Agent behavior thus arose from a 

combination of neighbors' opinions and ego's evolving 

attitude in a closed-loop system defined by a simulation’s 

initial state. 

Initialization of social structure and cognitive agents 

proceeded as follows.   

Network Topology: Agents were embedded in one of 10 

network structures, all of which were based on a classic 

“caveman” graph (e.g., Watts, 1999).  In our caveman 

networks, agents are divided into 10 “caves” of 20 agents 

each.  All agents within each cave are fully connected with 

each other, except for two agents, each of which 

communicates with one other cave (see Figure 1).  

Figure 1: Different network topologies used in this study. 

We manipulated the dense clustering of social interactions 

within caves by randomly replacing in-cave connections 

with new between-cave connections with probability prewire. 

Ten levels of  prewire were used to transition from regularity 

to randomness:  0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 

and 1.0.  

Agent Initialization. As described above, an agent’s 

attitude is a consensus valence produced by blended 

retrievals of belief chunks from declarative memory.  Each 

belief is a combination of a narrative with an associated 

valence, a number representing the extremity of the belief 

conveyed by the narrative.  For instance, a neutral narrative 

would have a value close to zero, while extreme narratives 

would have values close to +1.0 or -1.0 (e.g., Eagly & 

Chaiken, 1993).   

To establish an initial attitude for each agent, we seeded 

declarative memory with 100 belief chunks.  The procedure 

to generate and allocate these agent belief histories involved 

three steps.  First, we generated a population of notional 

attitudes by drawing 200 values from a truncated normal 

distribution (mean = 0, standard deviation = 0.25, minimum 

= -1, maximum = +1).   

Each notional attitude was then combined with the 

valences associated with 10 narratives to determine the 

probability that a belief chunk would appear in an agent’s 

history.  Specifically, each agent’s history was generated by 

drawing 100 samples from a discrete, truncated normal 

distribution (mean = notional attitude, standard deviation = 

0.8, minimum = -1, maximum = +1).    

For our experiment, we created three types of narrative-

valence associations: polarized, centrist, and linear.  
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Polarized narrative valences represent strong, extremist 

message content (5 narratives with valences of -1 and 5 with 

valences of +1).  Centrist narrative valences represent the 

use of moderate language, where valences for narratives 

were drawn from the same truncated normal distribution 

used to generate the notional attitudes.  Linear narrative 

valences represent well-defined narratives that convey 

attitudes which span the valence spectrum (-1, -0.8, -0.6, -

0.4, -0.2, 0.2, 0.4, 0.6, 0.8, 1). 

Finally, we randomly allocated notional attitudes and 

their histories to agents in the network.  The red and blue 

node colors in Figure 1 illustrate the distribution of negative 

and positive notional attitudes, respectively.    

Results 

Social networks have an inherent duality.  They can be 

described by focusing on (a) global properties at a network 

Level Of Analysis (LOA), or (b) local properties at a node 

LOA.  Our initial analyses, reported below, reflect this 

duality in separate ANOVAs: one concerned with entropy 

at a network (i.e., social) LOA, the other concerned with 

entropy at a node (i.e., cognitive) LOA. 

A Memory Decay Rate x Rewiring Probability x Narrative 

Valence ANOVA of social entropy yielded a 3-way 

interaction, F(72, 1350) = 1.37, p < .05.  Figure 2 shows the 

means and 95% confidence intervals for each experimental 

condition in the Decay x Rewiring x Valence interaction. 

Figure 2: Effects of network topology on social entropy. 

1 One bit of entropy is an indication that two narratives 

dominate a network, not necessarily that narratives 

representing two opposing attitudes dominate the network. 

The pattern of interaction indicates that networks tend 

toward consensus (i.e., social entropy near 0) at rewiring 

probabilities of 0.4 and greater, independently of memory 

decay rate and narrative valence.  Thus, in networks that are 

poor imitations of real-world social networks (i.e., those 

lacking local coherence), memory and message content have 

minimal effects on social entropy.  This tendency toward 

consensus replicates agent-based simulation studies 

demonstrating assimilation with simplified agent models.   

At rewiring probabilities that produce networks more 

similar to real-world social networks (i.e., those exhibiting 

dense clusters of peers), the networks tend toward 

polarization (i.e., entropy near 11) or fragmentation (i.e., 

entropy near 2 or more bits), depending on memory and 

narrative valence.  In the context of messages with a linear 

valence distribution, polarization is more likely to occur at 

reasonable values of memory decay (i.e., near the default 

ACT-R value of 0.25 for the transient activation noise 

parameter).  As decay rate increases toward unrealistic 

values, social entropy increases and the networks tend 

toward fragmentation (narrative diversity) as patterns of 

narratives fluctuate across the network without the damping 

effect of memory to stabilize them.  Messages with 

polarized and centrist valence distributions tend to produce 

fragmentation regardless of memory decay rate. 

Generally, these results indicate that polarization is a 

relatively infrequent phenomenon that arises when 

narratives of a particular type are exchanged in realistic 

social networks by agents who act in a manner that is 

congruent with memory (e.g., strong, stable attitudes).  The 

narratives that lead to polarization are distinct from one 

another (linear).  Narratives that are more easily confused 

with one another (polarized, centrist) lead to a diversity of 

opinions.   

Furthermore, it was puzzling that polarization, when 

viewed across the complete network, was rare even when 

we tried to force the issue by using extreme values of belief 

valence for the initial conditions (e.g., in the polarized 

condition).  This may seem paradoxical, but what may 

explain it is that, within each cave, there existed low social 

entropy, due to the strong effect of the polarized initial 

condition.  When aggregating across caves, however, the 

entropy is naturally larger as each cave has settled on a local 

set of beliefs that are uncorrelated with other caves and this 

is reflected as more equal probabilities for each of the 10 

narrative beliefs (this would be especially true of the zero-

rewire condition).  A prediction, for cognitive entropy 

(which we explore next), is that the differences across the 

three valence distribution conditions will be much less than 

we see in social entropy, especially when the rewiring 

probability is zero or low. 
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To study cognitive entropy, we conducted a 5 (memory 

decay rate) x 3 (narrative valence distribution) x 10 

(rewiring probability) ANOVA yielded 3 2-way interactions 

of p < .05: Decay x Rewire, F(36, 1350) = 1.86; Decay x 

Valence, F(8, 1350) = 2.15; Rewire x Valence, F(18, 1350) 

= 15.99. 

Figure 3 shows how cognitive entropy changes as a function 

of social context and the memory decay rate.  Cognitive 

Entropy (and variance in cognitive entropy) generally 

increases (up to a certain level) as the local coherence of 

networks decreases (i.e., as rewiring probability increases).  

The relatively homogeneous social contexts provided by 

locally coherent networks minimize the effect of decay rate 

on entropy.  As local coherence decreases, the decay-rate 

effect grows more pronounced.  Thus, networks that tend 

toward a social consensus produce more cognitive entropy 

than do networks tend toward polarization or fragmentation. 

Our memories help reduce the degree of cognitive entropy 

experienced from social pressures to conform in contexts 

that lack the redundancy of cliquish peers.  

Figure 3: Effects of network topology and decay rate on 

cognitive entropy.  

Our memories also help reduce the entropy experienced 

from narratives we encounter in social environments -- if the 

narratives can be distinguished from another.  As can be 

seen in the left panel of Figure 4, the degree of cognitive 

entropy generally increases as the distinctiveness of 

narratives decreases.  Thus a linear valence distribution 

(with clearly differentiable narratives) generally produces 

less entropy than a centrist valence distribution (with 

narratives that are more similar to one another), and centrist 

narratives produce less entropy than a polarized distribution 

in which everyone is using strong language which 

essentially conveys attitudes for or against some issue.   

Interestingly, as shown in the right panel of Figure 4, 

heterogeneous social environments maintain the general 

effects of narratives on cognitive entropy:  polarized > 

centrist > linear.  In more cliquish environments, the effects 

of narrative valences on entropy are very similar (especially 

for zero rewiring probability), with the difference between 

polarized and centrist narratives being the most similar.  

Figure 4: Effects of memory decay (left) and network 

topology (right) on memory entropy, divided by the 

distribute of narrative valence. 

Discussion 

We set out to show the potential value in exploring social 

kinds of phenomena from the perspective of cognitive 

architecture.  At a high-level, this meant developing an 

understanding of the relation between internal mental 

representations and social structure using a single construct, 

information entropy.  We demonstrated the ability to 

manipulate both cognitive and social entropy via both 

distribution of valence as an initial condition and network 

structure as a static condition.   

Relations Between Cognitive & Social Entropy 

According to our definition, the distribution of activation of 

the  chunks in declarative memory determines cognitive 

entropy.  If we imagine the hippocampus (a wetware 

component of declarative memory) as a communication 

channel between stimulus environment and response, the 

interpretation of cognitive entropy seems straightforward.  

Cognitive entropy describes the resources (i.e., channel 

capacity, aka attention) required to encode future events 

(which is compatible with the biological interpretation of 

Smith et al., in press). 
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In our simulations, agents with low cognitive entropy 

exist in predictable (orderly) social environments.  Opinions 

from the neighbors of such agents provide little information 

for responding (i.e., propagating particular narratives).  

Responses of these agents thus may be driven more by 

expectations (cf. attitudes) than by social environments.  

When cognitive entropy is less than 1 bit, for example, 

agents "could" choose to propagate narratives that are 

"socially appropriate" without bothering to encode 

narratives received from their neighbors.  

High cognitive entropy, on the other hand, indicates that 

social context requires responses that are more data-driven 

than conceptually driven.  This implies that attitude strength, 

in some sense, should decrease as cognitive entropy 

increases.  It also implies that agents with high cognitive 

entropy can be more easily influenced than those with low 

entropy.  Furthermore, it implies that agents with low 

cognitive entropy may be difficult to influence, not because 

they harbor strong attitudes, but because experience limits 

their capacity for effectively encoding more complex 

messages; they simply do not have the bandwidth required 

to carry the information in complex messages that is relevant 

for accurate comprehension.  They overgeneralize (and 

communication fails) because they have learned to attend to 

a non-discriminating subset of the features of meaning 

underlying the narratives of their neighbors.   

Limitations 

A number of limitations need to be acknowledged. This 

work used a highly-stylized social system to explore 

polarization. These results were not designed to provide 

insight into real-world social network dynamics, but to 

illustrate the approach.   Another limitation is that the 

attitude  of each belief was simulated at a purely symbolic 

level, without any connection to the possible effects of 

valence in cognition. These effects, instead, are well 

documented in the literature and have been incorporated into 

ACT-R agents in the past (Juvina et al., 2018; Smith et al., 

2021). Future studies should aim to remove these limitations 

and test our findings in simulations with a greater degree of 

realism. 

Implication for Polarization 

These limitations notwithstanding, we believe that our 

results entail a number of interesting implications. First, 

these results  might also shed light on a related, but different, 

problem in the social sciences: the fact  that individuals who 

hold one extreme belief tend to harbor other  extreme ones 

(Wood et al., 2012). In a striking example, individuals who 

believe in one conspiracy theory (i.e., “Princess Diana faked 

her own death to escape the Crown”) were  also found to 

believe in other, incompatible ones (i.e., “Princess Diana 

was murdered by the Crown”).  

It is highly unlikely that multiple radical  beliefs 

spontaneously arise within a single person, as individuals 

Instead, extreme beliefs likely spread from person to person 

across social networks. This hypothesis is confirmed by the 

fact that the widespread use of social media in first-world 

countries, which amplify the reach and exposure of 

information, has been linked to increased partisanship, 

radicalization, and the spreading of fake news (Bail et al., 

2018). In our results, entropy within a single agent likely 

tracks entropy in belief systems, and the rise of entropy in 

proportion to the polarization of narratives is consistent with 

such findings.  

Finally, the finding that the network structure affects the 

inconsistency of beliefs has important applications for 

balancing policy and regulation of social media.  The 

cognitive perspective may yield insights that are hard-gotten 

otherwise--understanding the micro-structure of the 

dynamics of social change, e.g., information operation 

campaigns and public health messaging, may provide the 

levers needed for beneficial social change. 
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Abstract

We propose a retrieval interference-based explanation of a
prediction advantage effect observed in Stone et al. (2021).
They reported two dual-task eye-tracking experiments in
which participants listened to instructions involving German
possessive pronouns, e.g. ‘Click on his blue button’, and
were asked to select the correct object from a set of objects
displayed on screen. Participants’ eye movements showed
predictive processing, such that the target object was fixated
before its name was heard. Moreover, when the target and
the antecedent of the pronoun matched in gender, predictions
arose earlier than when the two genders mismatched — a pre-
diction advantage. We propose that the prediction advantage
arises due to similarity-based interference during antecedent
retrieval, such that the overlap of gender features between
the antecedent and possessum boosts the activation level of
the latter and helps predict it faster. We report an ACT-R
model supporting this hypothesis. Our model also provides a
computational implementation of the idea that prediction can
be thought of as memory retrieval. In addition, we provide a
preliminary ACT-R model of how linguistic processes could
drive changes in visual attention.

Keywords: pronoun resolution; prediction; retrieval interfer-
ence; ACT-R; possessive pronouns

Introduction
In a sentence such as “Peter wanted to go jogging with Paula,
but his sneakers were torn out”, finding out the referent of the
pronoun his involves: (i) using the linguistic knowledge that
the referent should prototypically have a masculine gender,
(ii) maintaining the memory representation of all the referents
encountered so far, i.e. Peter and Paula, and (iii) retrieving
the correct antecedent, Peter, and co-referring it with his. The
task of finding an appropriate antecedent is partly facilitated
by the gender feature of the pronoun, at least in languages
where gender is reflected in the surface form of words.

Pronoun resolution as cue-based retrieval
The psycholinguistic processes involved in pronoun resolu-
tion can be modeled well in the cue-based retrieval (hence-
forth CBR) theory of sentence processing (Lewis & Vasishth,
2005; Lewis, Vasishth, & Van Dyke, 2006). The CBR the-
ory, implemented in ACT-R (Anderson, Byrne, Douglass,
Lebiere, & Qin, 2004), describes sentence processing as a
series of activation-based skilled memory retrievals. Lexical
knowledge and a current partial representation of the input

(the parse) are maintained in declarative memory (chunks)
and psycholinguistic processes are represented in procedural
memory (production rules). Incremental sentence processing
occurs through the selection of production rules, which re-
trieve chunks from declarative memory and operate on them
to update the representation of the sentence. In a CBR model
of pronoun resolution, antecedent retrieval is achieved by us-
ing features such as the gender of the pronoun (Patil, Va-
sishth, & Lewis, 2016; Parker & Phillips, 2017; Engelmann,
Jäger, & Vasishth, 2019). The CBR theory has also been
used to model retrieval processes with other linguistic depen-
dencies such as subject-verb agreement and negative polarity
items (Vasishth, Brüssow, Lewis, & Drenhaus, 2008; Dillon,
Mishler, Sloggett, & Phillips, 2013).

Pronoun resolution and prediction

In addition to the backward-looking processes implemented
through memory retrieval, some types of pronouns also in-
volve forward-looking processes, i.e., expectations about the
identity of upcoming words. Predictions about upcoming ma-
terial are an integral part of sentence processing (Huettig,
2015; Kuperberg & Jaeger, 2016). Comprehenders can gener-
ate these expectations based on the dependencies between the
predicted words and previously processed ones. For example,
in languages where articles and determiners need to agree
in gender with a following noun, an article with masculine
gender allows comprehenders to predict an upcoming noun,
e.g., in the German phrase “der Knopf” (‘the.MASC but-
ton.MASC’). These agreement-based predictions are not re-
stricted to gender, but extend to different kinds of morphosyn-
tactic features, such as number, person and case (Dahan,
Swingley, Tanenhaus, & Magnuson, 2000; Kamide, Scheep-
ers, & Altmann, 2003; Lew-Williams & Fernald, 2010; Hopp,
2012; Zhang & Knoeferle, 2012; Grüter, Lau, & Ling, 2020).

In previous work, predictions have mostly been studied in
words that solely encode forward-looking agreement, such
articles and determiners. However, there are linguistic cat-
egories that simultaneously encode backward- and forward-
looking dependencies, such as linking elements (e.g. “how-
ever” or “despite of”), verbs and possessive pronouns. The
current study focuses on possessive pronouns (e.g. “his” or
“her”) because they are useful to investigate the interaction
between antecedent retrieval and word predictions.
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German possessive pronouns
Our study models the comprehension of German possessive
pronouns. A German possessive pronoun such as “seinen”
(‘his’) shows a bi-directional pattern of agreement: The stem
“sein-” indicates a preceding masculine possessor (like “his”
in English) but additionally, the suffix “-en” indicates an up-
coming masculine possessum noun. These backward- and
forward-looking agreement relationships mean that German
comprehenders can use the two gender features of the pos-
sessive to retrieve a preceding antecedent and to predict an
upcoming possessum. Thus, German possessives provide a
good test case to examine whether retrieval and prediction
mechanisms interact during sentence processing.

Stone et al. (2021) addressed this question in a visual world
eye-tracking study and reported an interaction between these
mechanisms: Participants predicted the upcoming possessum
noun faster when the possessum and possessor matched in
gender than when they mismatched, i.e., a prediction advan-
tage. Here, we provide an explanation of this prediction ad-
vantage by modeling the eye-tracking experiments of Stone
et al. (2021). Our model uses the sentence processing mecha-
nism in the CBR theory and the principles of ACT-R. By do-
ing this, the model extends the CBR architecture and further
proposes that the prediction advantage is due to similarity-
based interference during the antecedent retrieval process.

Data: Stone et al. (2021), Experiment 2
Stone et al. (2021) reported two visual world eye tracking
studies. We first describe and model the second experiment
(Experiment 2), and then extend the model to the first ex-
periment (Experiment 1). We proceed in this order because
Experiment 2 had a simpler experimental design and a larger
sample size than Experiment 1, which likely yielded more
precise estimates. Experiment 2 was performed by seventy-
four German native speakers. At the beginning of the experi-
ment, participants were introduced to two characters, Martin
and Sarah, whose faces were displayed on screen. Partici-
pants’ task was to help Martin and Sarah tidy up their house
by finding their belongings before their parents arrived. They
were told that they would see images and hear instructions,
and that their task was to click on the object mentioned in the
instruction as quickly and accurately as possible.

During the experimental trials, participants heard an audi-
tory instruction and saw a visual display with a target object
(e.g. a blue button.MASC) and a color competitor of differ-
ent gender (e.g. a blue bottle.FEM). Each object had one of
four colors: red, green, blue, or yellow. There were 96 items
distributed across two conditions. In the MATCH condition,
shown in (1a), the possessor and target noun in the auditory
instruction had the same gender, i.e, both were masculine or
both were feminine. In the MISMATCH condition, show in
(1b), the possessor mismatched in gender with the target ob-
ject but matched with the competitor.

(1) a. MATCH condition
Klicke auf seinen blauen Knopf!
Click on his.MASC blue.MASC button.MASC

b. MISMATCH condition
Klicke auf ihren blauen Knopf!
Click on her.MASC blue.MASC button.MASC

Stone et al. (2021) used a Bayesian bootstrapping proce-
dure to estimate the earliest point in time at which partic-
ipants’ fixations to the target object increased compared to
those to the color competitor. This point, together with a 95%
credible interval was taken as the prediction effect onset. The
comparison of the predictive onset in the MATCH vs. MIS-
MATCH condition showed that predictions were 307 [262,
352] ms earlier in the MATCH condition (Figure 1, top row).
This difference indicates that predictions arose earlier when
the antecedent of the possessive matched in gender with its
target object, despite the fact that the antecedent gender was
syntactically irrelevant for the target noun prediction.

Prediction advantage as retrieval interference

We propose that the prediction advantage observed in Exper-
iment 2 is a consequence of interference due to a partial-
cue match during retrieval, a kind of similarity-based inter-
ference (Vasishth et al., 2008). Interference occurs during
the antecedent retrieval triggered by the possessive pronoun
— the gender cue used in the retrieval of the antecedent in
the MATCH condition boosts the activation of the gender-
matching target object, but the gender cue in the MISMATCH
condition boosts the activation of the competitor object. Dur-
ing the prediction stage, this higher activation of the target
object compared to the competitor object in the MATCH con-
dition enables a faster prediction of the target. By contrast,
the higher activation of the competitor in the MISMATCH
condition delays the prediction of the target object.

Next, we illustrate a model of the two experiments de-
scribed in Stone et al. (2021). The model is an extension of
the sentence processing mechanism from CBR that is tailored
to the task of selecting the target object on screen after pro-
cessing an input sentence. We use the ACT-R architecture to
model non-linguistic processes. Note that we do not explic-
itly model eye movement processes or visual search processes
as, for example, in EMMA (Salvucci, 2001) or other aspects
of the visual system as, for example, in PAAV (Nyamsuren &
Taatgen, 2013). The goal here is to provides an explicit pro-
posal of how top-down psycholinguistic processes, such as
antecedent retrieval and prediction, could influence the acti-
vation of elements in memory and how these activation levels
could impact visual attention and fixation probabilities. We
are able to model fixation patterns as they unfold in real-time,
thus going beyond previous CBR models on pronoun reso-
lution, which have solely focused on average reading time
effects (Patil, Vasishth, & Lewis, 2016; Parker & Phillips,
2017; Engelmann et al., 2019).
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Model of Experiment 2 from Stone et al. (2021)
The model combines the cue-based retrieval model of an-
tecedent retrieval (Patil, Vasishth, & Lewis, 2016) and the
ACT-R model for predicting the target picture matching the
sentence (Patil, Hanne, Burchert, De Bleser, & Vasishth,
2016). To model the dual-task in Experiment 2, we modified
the values of three ACT-R parameters (Table 1) and made the
following new assumptions.

Model assumptions
(1) At each input word, the model tries to predict the target
object (the possessum) based on the information in the sen-
tence encountered up to that point in time. This configuration
seeks to replicate participants’ goal during the experiment,
since their task was to click on the target object as quickly as
possible. Thus, we assume that they would try to predict the
target object with each new bit of linguistic information.
(2) We assume that the objects on screen are stored as refer-
ents in declarative memory. This means that the memory rep-
resentations of, for example, Martin, Sara, button and bottle
are referents that are accessible during sentence processing.
(3) The prediction of the target object is implemented as a re-
trieval of the memory representation of its referent. This is
motivated based on the model of sentence-picture matching
task in Patil, Hanne, et al. (2016). Additionally, the predic-
tion steps weight color cues higher than linguistic cues (see
Parker, Shvartsman, & Dyke, 2017 for similar cue-weighting
proposals). This was done to model the saliency of visual fea-
tures over linguistic features in a visual world task (Coco &
Keller, 2015).
(4) When processing the possessive pronoun, the antecedent
retrieval precedes the target prediction. This reflects the lin-
ear order of the two agreement morphemes in the possessive.
(5) The probability of fixating an object is modeled through
the activation of the memory representations of the object —
higher activation means higher probability of fixation. This is
also based on the model in Patil, Hanne, et al. (2016).

Table 1: List of ACT-R parameter values that were modified
during model fitting in Model 1. The parameters were mod-
ified to improve model fit. All other parameters had their
default values or values used in earlier CBR model.

ACT-R parameter Default New
Activation noise (ANS) 0.2 0.15
Maximum associative strength (MAS) 1 3
Match Scale (MP) 1 0.2

Results and discussion
The model predictions for the MATCH and MISMATCH
conditions are illustrated in Figure 1 (bottom row). The ob-
ject with higher activation is predicted to be the object that
is fixated. The activation values for objects are sampled af-
ter every temporal event, such as production firing or mem-

ory retrieval. This is done because the increment of time and
memory retrievals cause the activation to change which in-
fluences the decision to fixate an object (see assumption (5)
in ’Model assumptions’). The predicted fixation curves are
smooth because they are binned averaged fixation probabil-
ities (bin size = 200 ms) across 10000 simulations. Vertical
red bars denote the divergence points between the two curves
predicted by the model. The divergence onset was predicted
to be 400 ms earlier in the MATCH conditions compared to
the MISMATCH.

The predicted fixation probabilities capture the two key ef-
fects in the empirical data. First, the prediction of the target
object before hearing its name, which in the empirical data
emerged as a 66 [64, 68]% target-over-competitor advantage
over the entire predictive window. The model captures this
effect by using the gender and color features of the posses-
sive and the adjective to retrieve the target object (e.g. “mas-
culine” and “blue”). Second, the model captures the earlier
prediction onset in the MATCH than MISMATCH condition,
which was on average 307 [262, 352] ms in the empirical
data. The model captures this effect through an interaction
between retrieval and prediction processes, on the one hand,
and similarity-based interference, on the other. Specifically,
the gender cue (masculine for the stem “sein-”) in the an-
tecedent retrieval in the MATCH condition boosts the ac-
tivation of gender-matching objects in memory, which in-
cludes the memory representation of the target object (the but-
ton, “Knopf.MASC”). Meanwhile, the gender cue in the an-
tecedent retrieval in the MISMATCH condition (feminine for
the stem “ihr-”) boosts the activation of the memory represen-
tation of the competitor object (the bottle, “Flasche.FEM”)
relative to the target object. This difference in the activa-
tion of the target and the competitor during the antecedent
retrieval process leads to a faster prediction of the target in
the MATCH condition.

Model of Experiment 1 from Stone et al. (2021)
The goal of this model is to test the predictions made by the
previous model with new data, without making any new as-
sumptions. With this goal, we modeled the data from Exper-
iment 1 in Stone et al. (2021). Experiment 1 was also per-
formed by seventy-four German native speakers and it was
similar to Experiment 2, with a couple of exceptions. First,
Experiment 1 featured four objects on screen: in addition to
the target and color competitor (‘button’ and ‘bottle’, as in
Experiment 2) there were two additional objects: a “gender
competitor”, which matched the target object in gender but
not in color (e.g., ‘the balloon.MASC’), and a “distractor”,
which mismatched the target in both color and gender (‘the
flower.FEM’). Due to the presence of these differently col-
ored objects on screen, the target object was only predictable
after the onset of the color adjective (e.g., ‘blue’), because
both color and gender were necessary to identify the target.

Experiment 1 had only 24 experimental trials, a smaller
number than the 96 trials of Experiment 2. The experimen-
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Figure 1: Top row (behavioral data): Fixation curves to the two objects averaged across items and participants in Experiment 2.
The predictive window extended from the onset of the possessive to the onset of the noun, adding 200 ms for saccade planning
(Salverda et al., 2014). The x-axis is time-locked to the possessive. Estimated prediction onsets and their 95% credible intervals
are overlaid on the fixation curves in each condition. Bottom row (model): Predictions of the model for fixation probabilities to
the target and competitor object (the button and bottle, respectively). Red bars denote the predicted divergence points between
the two curves.

tal conditions were identical to Experiment 1 and featured
a MATCH and a MISMATCH condition. The results were
consistent with those of Experiment 1 (Figure 2, top row).
First, a 59 [53, 66]% target-over-competitor advantage was
observed across the whole predictive window. Second, the
onset of the prediction effect was 106 ms [-56, 268] ms ear-
lier in the MATCH than in the MISMATCH conditions. The
direction of the effect suggested earlier predictions when the
antecedent of the possessive matched in gender with the target
object, despite the fact that the antecedent gender was syntac-
tically irrelevant for prediction purposes. However, the mag-
nitude of the between-condition difference was smaller than
in Experiment 2 (106 vs. 307 ms on average).

The assumptions of our model were kept constant in terms
of modeling the task. We also generate the predicted fixation
probabilities in the same manner. The only difference is that
declarative memory in the current model includes two extra
referents corresponding to the two additional objects shown
on screen: one for the gender competitor object (e.g. the bal-
loon) and one for the distractor object (e.g. the flower). We

examined whether the model was able to predict the effects
observed in Experiment 1 without additional assumptions.

Results and discussion

The model predictions are illustrated in Figure 2 (bottom
row). The predictions are generated using the same proce-
dure as in the previous model, with the only difference being
that here the predictions are generated also for the two ad-
ditional objects. The predicted fixation probabilities for the
two conditions show patterns comparable to those in the data.
The model partially captures the prediction advantage effect
in the data: the earlier onset of the target prediction between
the MATCH and MISMATCH conditions only when the pre-
diction of target vs. the color competitor is considered. The
model captures the other key effect in the data: the predic-
tion of the target object before hearing its name. However,
some predictions of the model do not correspond well to the
empirical patterns. First, the model predicts similar fixation
proportions to the target and gender competitor after the pro-
cessing of the pronoun. This was not observed in the em-
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Figure 2: Top row (behavioral data): Fixation curves to the four objects averaged across items and participants in Experiment
1. The predictive window extended from the onset of the adjective to the onset of the noun, shifted 200 ms to the right. The
x-axis is time-locked to the adjective. Estimated predictive onsets and their 95% credible intervals are overlaid on the fixation
curves in each condition. Bottom row (model): Predictions of the model for fixation probabilities to the target (the button),
the color competitor (the bottle), the gender competitor (the balloon) and the distractor object (the flower). Red bars denote the
predicted divergence points between the curve for the target and the color competitor.

pirical data, in which fixations to the gender competitor were
very infrequent and patterned with the fixations to the distrac-
tor object. Moreover, the magnitude of the prediction advan-
tage (between the target and the color competitor) predicted
by the model was higher than in the data. The model pre-
dicted a prediction advantage of 400 ms, however, in the data
it was only 106 [-56, 268] ms. We discuss these issues in the
general discussion.

General discussion
This paper reports two modeling experiments that test the hy-
pothesis that the prediction advantage observed in Stone et al.
(2021) is due to similarity-based interference during the an-
tecedent retrieval of a possessive pronoun. Stone et al. (2021)
reported two dual-task experiments involving sentence pro-
cessing in the visual world paradigm. Participants listened to
German sentences with possessive pronouns and were asked
to select an appropriate object on a screen. German posses-
sive pronouns have a bi-directional pattern of gender agree-
ment: their stem encodes agreement with a previously men-

tioned antecedent but their suffix encodes agreement with a
following possessum. Stone et al. (2021) found that partic-
ipants predicted the target object faster when the possessum
and possessor matched in gender (MATCH condition) than
when they mismatched (MISMATCH condition).

We hypothesized that the prediction advantage in the
MATCH condition was due to the interaction between the
antecedent retrieval and the possessum prediction at the pro-
noun. We tested this hypothesis by modeling the dual-task
from Stone et al. (2021). The model is an extension of the
cue-based retrieval model of sentence processing in ACT-R.
The model captures the key effect of the prediction advan-
tage in MATCH condition in both the experiments. The pre-
diction advantage arises due to retrieval interference during
antecedent retrieval at the possessive pronoun — the overlap
of the gender feature between the antecedent and the posses-
sum boosts the activation level of the possessum which later
helps in predicting it faster.

Stone et al. (2021) also observed that the prediction advan-
tage is smaller and happens at a later stage when the visual
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scene contains two extra objects, a gender competitor and a
distractor object as in Experiment 1. The model only partially
captures this effect — it captures the prediction advantage ef-
fect between the target and color competitor, but not between
the target and the gender competitor. The model uses all the
information present in the input immediately but sequentially
to predict the target: first, the gender information encoded
in the suffix of the possessive pronoun to rule out the color
competitor, and then, the color information encoded in the
adjective to rule out the gender competitor. By contrast, in
Experiment 1, participants seem to delay the prediction deci-
sion until after they have heard the adjective. We acknowl-
edge that this is a limitation of the model and needs to be
investigated further. One possible way to improve the predic-
tions of the model for Experiment 1 could be using different
combinations of weights for linguistic and visual cues. How-
ever, since the size of the data in Experiment 1 was substan-
tially smaller than in Experiment 2, we also consider that the
process of adjusting parameters should be deferred until the
effects in Experiment 1 are replicated using a larger sample
size.

By modeling the prediction advantage in Stone et al. (2021)
data, we have also created a preliminary working model
of: (1) prediction in terms of retrieval, and, (2) how psy-
cholinguistic processes might influence visual attention. This
is supported by the effect that the model captures across
the MATCH and MISMATCH conditions: the prediction of
the target object before hearing its name. Since this effect
emerged due to interactions between linguistic, visual and
predictive processing, we suggest that our model is a good
starting point for implementing a full-fledged model of sen-
tence processing in the visual world paradigm. A next step
towards such a full-fledged model would be to combine our
model with a model that can relate higher level cognitive pro-
cesses with lower-level eye movement processes and visual
search, such as EMMA (Salvucci, 2001) which is an exten-
sion of ACT-R’s vision module. Such an extension should
also be useful for studying how the visual system could influ-
ence declarative memory and, in effect, language processing.

It has been proposed that prediction can be conceived of as
a memory retrieval, but without any implemented model of
this proposal (Chow, Momma, Smith, Lau, & Phillips, 2016).
The current model fills this gap by demonstrating that predic-
tion and memory retrieval do not have to be thought of as two
separate or encapsulated cognitive processes. If this were the
case, then interference at retrieval should not have affected
prediction speed. Instead, our results show that prediction and
retrieval processes interact in comprehension, either because
they act on the same memory representations, or because they
draw from a shared set of resources. Our model captures the
prediction effect without having to posit any special predic-
tion mechanism.

Our model converges with psycholinguistic accounts that
view prediction as a memory retrieval problem, in which the
linguistic and non-linguistic context are used to access rep-

resentations in working memory, with the goal of inferring
which words are likely to come next (Chow et al., 2016).
In this account, previously encountered words and predicted
words are held in the same working memory space, with their
activation levels being modulated by factors such as recency
and frequency of use. Within the larger framework of cog-
nitive science, such an account is more compatible with uni-
fied models of memory (e.g., Cowan, 1988; McElree, 2000;
Oberauer, 2002) than with multistore models (e.g., Baddeley,
2000) or models that posit a specialized memory system for
the storage of predictions (“prospective memory”, e.g., Zogg
et al., 2012).
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Abstract
Bespoke cognitive models of mental spatial transformation,
like those used in mental rotation tasks, can generate a very
close fit to human data. However these models usually lack
grounding to a common spatial theory. In turn, this makes
it difficult to assess their validity and impedes research in-
sights that go beyond task-specific limitations. We introduce
a spatial module for the cognitive architecture ACT-R, serving
as a framework offering unified mechanisms for mental spa-
tial transformation to try and alleviate those problems. This
module combines symbolic and spatial information processing
for three-dimensional objects, while suggesting constraints on
this processing to ensure high theoretical validity and cognitive
plausibility. A mental rotation model was created to make use
of this module, avoiding custom-made mechanisms in favor
of a generalizable approach. Results of a mental rotation ex-
periment are reproduced well by the model, including effects
of rotation disparity and improvement over time on reaction
times. Based on this, the spatial module might serve as a step-
ping stone towards unified, application-oriented research into
mental spatial transformation.
Keywords: spatial cognition; mental spatial transformation;
mental rotation; ACT-R

Introduction
The ability to imagine physical interaction with arbitrary ob-
jects in a physically existing space and to assess objects and
their attributes based on this mental representation is a funda-
mental aspect of human life. Forming such a mental represen-
tation is possible through the interplay of multiple cognitive
processes. These processes of mental spatial transformation
are governed by common criteria that directly influence the
complexity, perceived difficulty and feasibility of altering the
representation (Harris, Hirsh-Pasek, & Newcombe, 2013).

Mental rotation research, as a subfield of research into
those processes, has established itself as a mainstay paradigm
of experimental psychology. Mental rotation refers to the
mental examination of real or simulated objects so that state-
ments about their attributes can be made beyond their initial
presentation, most often their similarity to other objects. Pro-
cesses of mental rotation are, on one hand, ubiquitous in ev-
eryday life: they contribute greatly to our understanding of
environments by helping us assess objects and possible in-
teractions with them. On the other hand, the phenomenon is
usually studied with the use of stripped-down, abstract ob-
jects; facilitating testing in laboratory conditions but remov-
ing real-world meaning.

Performance in mental rotation tasks is heavily influenced
by task difficulty and experience (Shepard & Feng, 1972).

Individual traits like reference frame proclivity (Gramann,
2013), additional workload or time pressure additionally in-
fluence mental spatial transformation. An understanding of
processes underlying mental rotation has great potential, es-
pecially for economic applications, like improved product er-
gonomics (e.g. improving ease of use and perceptibility of
features), but also for accessibility (e.g. identifying [dis-]ad-
vantages of individual traits). Cognitive modeling bases its
predictions of task performance on postulated process mod-
els, which are in turn embedded into the framework of a
cognitive architecture. This architecture combines multiple
theories of mental processing to a holistic system that al-
lows researchers to make general and plausible statements
on cognitive processes. In the cognitive architecture ACT-
R (Anderson et al., 2004), this is achieved through so-called
cognitive modules which represent abstract processing stages
set between neurophysiological activity and psychological
correlates. Therefore, the action and interaction of these mod-
ules correspond to mental processing of declarative informa-
tion and procedural action knowledge. Process models are
quantified and encoded into production rules, i.e. assump-
tions about mental processes, that are subsequently validated
with experimental data and, if necessary, engineered towards
a closer fit to these data. While cognitive models encode
assumptions about mental processes for specific tasks, more
general mental mechanisms are implemented in the form of
aforementioned modules. Hence, to model mental spatial
transformation validly, the architecture needs to support a
plausible implementation of it. This would then allow cog-
nitive models of similar modalities to make use of a com-
mon, unified processing framework. By mitigating the re-
liance on highly task-specific assumptions and tailor-made
process models in favor of a general framework, models of
spatial cognition could offer higher validity and broader gen-
eralizability of their predictions.

Prior Research
Shepard and Metzler (1971) introduced an experimental
paradigm for mental rotation. Their work examined the influ-
ence of rotation between two same or mirrored objects on the
time needed by participants to decide if the presented objects
match. They found a linear relationship of rotation discrep-
ancy on reaction times. A follow-up study on mental folding
(Shepard & Feng, 1972) showed similar results. Here, a fold-
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ing pattern was required to be assembled into a cube shape to
decide if it was a copy of a reference cube that was also pre-
sented. A linear effect of task difficulty on reaction times was
found. Interestingly, the experiment also showed what the
researchers perceived to be an upper limit on mental spatial
transformation ability –above a certain threshold of required
folds, reaction times increased considerably and non-linearly.
Consequently, this result could be a pointer towards a gen-
eral limitation on the amount of transformations that can be
applied on an internal spatial representation.

Just and Carpenter (1976) used eye tracking during a men-
tal rotation study to determine the existence of distinct cogni-
tive stages. Based on their results, they proposed three gen-
eral stages of cognitive processing: initial search, transfor-
mation and comparison, and confirmation. These stages can
serve as an approximation for spatial cognition in general: a
visual encoding phase, a transformation phase and a compar-
ison or matching phase.

Eye tracking was also used during a mental folding exper-
iment to try and find correlates for cognitive stage switching
(Preuss, Hilton, & Russwinkel, 2020). Differences in gaze
position switches and gaze durations were found that corre-
lated with task difficulty. This was interpreted as signifiers of
stage switching and stage duration, respectively.

To further differentiate processes during mental rotation
and investigate possible solving strategies, Yuille and Steiger
(1982) presented a study on objects with different complex-
ities. While showing that object complexity has a direct in-
fluence on solving time, they introduced their theory of two
distinct solving strategies: if an object is “familiar” enough,
it can be transformed holistically, meaning as a whole; if the
object is not recalled, it must be transformed in a piecemeal
fashion, meaning it is separated into several parts or features
which are then processed in sequence. This distinction proved
to be a popular explanation for learning effects in mental ro-
tation and mental spatial transformations in general.

Harris et al. (2013) reviewed differences and similarities
between mental rotation and mental folding as the most com-
mon paradigms in mental spatial transformation research.
While the tasks differentiate in the specific way a stimulus is
processed, Harris et al. identified several attributes that under-
lie both processes, for instance physical analogy, malleability
and predictiveness of success in Science, Technology, Engi-
neering & Mathematics (STEM) fields. This work points to
spatial cognition as a technical, trainable skill. Similar results
were obtained by Wright, Thompson, Ganis, Newcombe, and
Kosslyn (2008), who also compared skill development in a
mental rotation and a mental folding task, in addition to a
verbal analogy task. Learning one spatial task improved pro-
ficiency in the other tasks, but not as pronounced for the non-
spatial task. Notably, the researchers argue that improvement
comes mostly from improved encoding and transformation
preparation processes, less from transformations per se, im-
plying learning to stem largely from non-spatial mechanisms.

A cognitive model for a mental rotation task was previ-

ously introduced by Peebles (2019a). Peebles implemented
both piecemeal and wholesale strategies on a simplified visual
representation. Different to the approach presented here, the
model was mostly self-contained and relied on default ACT-R
mechanisms, with only slight changes to the architecture.

Gunzelmann and Lyon (2007) first proposed the concept of
a cognitive module dedicated to spatial transformations. They
presented a relatively complex mechanism, making use of
several smaller information processing units. Unfortunately
this approach has not yet been implemented into a cognitive
architecture.

Several other approaches for mental transformations not
relying on internal, three-dimensional representations exist:
arguments for reliance on mental imagery (Peebles, 2019b;
Lovett & Forbus, 2013), purely physical reasoning (Forbus,
1984; De Kleer & Brown, 1984) or syllogistic representations
(Barkowsky, Knauff, Ligozat, & Montello, 2007) have been
made for mental spatial transformations. The cognitive archi-
tecture SOAR offers a mechanism (Spatial and Visual System,
SVS) that combines symbolic and spatial information (Laird,
2008).

This paper presents a cognitive task model for a mental
rotation task that incorporates such a spatial framework for
ACT-R, proving the usefulness of an additional module ded-
icated to spatial processing. This module is proposed as an
extension to the cognitive architecture, integrating seamlessly
into its existing structures and allowing multiple modalities of
mental spatial processing to be simulated in a unified manner.
It serves as an interface for the mathematically correct com-
putation of three-dimensional space while processing it in a
cognitively plausible way, without having to rely on overly
task-specific assumptions about spatial processing. The spa-
tial module presented in this paper shows a similar concept
to the one suggested by Gunzelmann and Lyon (2007), but
foregoes many of their proposed mechanisms in favor of a
seamless integration into ACT-R’s existing architecture. De-
fault ACT-R modules are used for memory retrieval and for
comparison purposes. Additionally, by integrating the pro-
posed module into existing methods for simulating module
activity and, by extension, brain activity, model predictions
can be compared by brain-imaging data of participants in the
actual experiment (Prezenski & Russwinkel, 2016).

The module’s validity is pending on further assessment of
its ability to predict mental spatial transformation processes
for several modalities beyond mental rotation. As multiple
design decisions are as of now made intuitively, open ques-
tions on structure, function and cortical localization of the
module are tended to by current and upcoming research.

Methods
Spatial Module
The mental rotation model uses a dedicated spatial module
added to ACT-R’s default architecture, facilitating the pro-
cessing of mental spatial transformations. Based on work by
Gunzelmann and Lyon (2007), the idea is to offer seamless
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functionality for three-dimensional data in ACT-R in a cog-
nitively plausible fashion. In contrast to the aforementioned
work, the framework presented herein avoids episodic and al-
locentric buffers and relies instead on standard ACT-R mech-
anisms.

The spatial module aims to offer better explainability, ap-
plicability and validity for cognitive models of spatial cogni-
tion by offering a common theoretical ground for frequently
shown effects such as differences in spatial strategies or in-
fluence of higher task difficulties on task solving. A uni-
fied mechanism for simulating mental spatial transformations
would offer modelers both the ability and the constraints nec-
essary to do so with high reliability and high validity, re-
spectively. Effectively this would create a general framework
spanning multiple paradigms of mental spatial cognition re-
search, such as mental rotation or mental folding. In con-
sequence, to the best of our knowledge it would be the first
cognitive modeling approach to explain both paradigms in a
satisfactory manner.

Spatial objects are encoded in standard chunks, ACT-R’s
basic unit of information, extended by information represent-
ing the object in 3D space in the form of so-called point
clouds. This additional information is predefined for each
spatial object, either implicitly by the model’s environment or
the modeler themselves. Point clouds were chosen for their
versatility, scalability and relative ease of computation. They
are able to represent objects in arbitrary detail, allowing mod-
elers to focus on features relevant to their model. Extending
chunks in this manner allows for full compatibility with all
default ACT-R mechanisms such as vision or memory mod-
ules, while at the same time allowing algebraic manipulation
of objects defined in this manner, i.e. being translated, ro-
tated and rescaled in three-dimensional space. Furthermore,
spatial objects can be compared and angles between objects
can be measured. In practice, this extends the symbolic ca-
pabilities of ACT-R with the ability to perceive and interact
with geometric properties. Analogous to how visual informa-
tion is processed in ACT-R, the transition between geometric
and symbolic information of perceived features is handled by
the models themselves, in contrast to e.g. SOAR’s similar
mechanism (Laird, 2008).

Cognitive operations on spatial objects are handled by two
buffers: a storage buffer for maintaining mental spatial repre-
sentations (the spatial buffer) and an action buffer for apply-
ing transformation intention to said representation (the spa-
tial action buffer). Spatial chunks contain point clouds and
optionally additional spatial information like separable parts,
angles for internal transformation or other features. Transfor-
mations on the representation are requested through the ac-
tion buffer and, if within limits set by architectural and modu-
lar constraints, applied to the spatial object. The core function
of the module is calculating a time delay for operations con-
ducted through it. It does this through a transformation cost
function which draws from currently available information to
calculate an appropriate time frame for a transformation pro-

cess to take place. Currently the following simple formula is
used:

Trans f ormation delay = F ∗M ∗ x

including a delay factor (F) which can be set as a parame-
ter with a default value of 0.005s, an optional modality fac-
tor (M) to assign weights to different transformation modal-
ities, such as mental rotation or mental folding (if required
for model adjustments) and the raw input value of the trans-
formation (x). This formula is an attempt to find a common
denominator underlying mental spatial transformations. By
combining symbolic processing with three-dimensional spa-
tial information, several limitations by aforementioned prior
research could be alleviated or overcome. Contrary to task-
specific approaches, this framework constrains models to ad-
here to established mechanisms of cognitive spatial process-
ing which facilitates explainability, validity and generaliz-
ability in model creation. Additionally, compared to meth-
ods relying on default mechanisms of ACT-R (e.g. using the
imaginal module to store and process simplified spatial infor-
mation as in Peebles, 2019a), the presented module enables
symbolic calculations with true three-dimensional data. Fi-
nally, this module serves as a solid foundation for more com-
plex models orientated away from lab conditions and towards
real-world applications.

Figure 1: An example picture of 3D mental rotation stimuli
as presented to the model. For simplicity, each cube is drawn
around a single 3D coordinate. Multiple coordinates make
up the point clouds of the whole figure and its features (i.e.
straight sections orthogonal to each other), respectively.

Experiment
Participant data was collected during a mental rotation ex-
periment as part of a Bachelor’s thesis (Raddatz, 2014). The
experiment was based on the classic mental rotation paradigm
by Shepard and Metzler (1971). In a trial, one out of 16 fig-
ures is presented to the participant without any rotation. After
1 second, either the original figure or a mirrored version of it
is presented and rotated by either 0, 50, 100 or 150 degrees
on the picture plane. The participant must decide whether the
presented objects are equal or mirrored variants of each other.
To this end, the participants are instructed to mentally rotate
one of the objects clockwise until an informed decision can
be made if the objects match or mismatch. 6 Blocks of each

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

222



1

2

3

4

5

1 2 3 4 5 6
Experiment Block

R
ea

ct
io

n 
T

im
e

Data Source

Human

Model

Figure 2: Aggregated human (leftmost, solid outline) and
model reaction times (rightmost, dashed outline) for each ex-
periment block.

possible trial combination (16 figures * 4 degrees of rotation
* 2 types of mirroring = 128 combinations) take place, result-
ing in 768 trials overall. The cognitive model was designed
to solve a simulated version of this experiment.

Mental Rotation Model
By making use of the spatial module’s ability for both sym-
bolic and spatial information, the mental rotation task model
implements a cognitively plausible approach for human-like
solving. The cognitive model follows the process model orig-
inally proposed in Just and Carpenter (1976), and follows
their proposal of three rough stages –initial search, transfor-
mation and comparison, and confirmation. The model offers
two strategies, first differentiated by Yuille and Steiger (1982)
as ”holistic” comparison (also referred to as ”wholesale”) and
”piecemeal” comparison: if the presented figure is ”known”,
meaning the object is sufficiently familiar, the object can be
transformed and compared as a whole. On the other hand, if
the presented figure is unknown to the solver, meaning it was
not seen before or forgotten, it has to be sequentially trans-
formed and compared by its individual features or pieces. In
the case of mental rotation stimuli, pieces are the respective
straight sections formed by multiple cubes, of which each fig-
ure has either 3 or 4. Thus, use of a piecemeal strategy ex-
plains longer reaction times for “unknown” figures in human
trials.

At the start of each trial, the current reference stimulus is
presented: both its individual features and the complete ob-
ject are placed in the environment as visual features visible
to the model. First, the model encodes the whole object and
attempts a declarative memory query, testing for object fa-
miliarity –if successful, the wholesale strategy is initiated. If
the presented object can not be remembered, the model waits
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Figure 3: Aggregated human (leftmost, solid outline) and
model reaction times (rightmost, dashed outline) for each ro-
tation angle.

for the appearance of the target stimulus, which happens one
second after the reference stimulus appears. Then, either the
whole target object is visually encoded and prepared for the
wholesale strategy, or its separate features are visually en-
coded and considered for the piecemeal strategy.

While solving the mental rotation task, the model rotates
the object or parts of the object –depending on the strategy –
by a fixed amount of 45 degrees, chosen to be close but avoid
equality to the experiment’s rotation conditions. After each
rotation, a comparison process measures the mean euclidean
distance between paired points of the point clouds of the tar-
get object with its reference counterpart, resulting in a simi-
larity value. If this comparison results in a similarity higher
than a preset threshold, but lower than the last value com-
puted (or is the first comparison for this trial), an additional
rotation is planned and executed. If the comparison yields
a value higher than the threshold but also a value higher than
the last similarity value, the model assumes that a low enough
similarity value cannot be reached and gives a ”mismatch”
answer. If the similarity value is lower than the threshold, a
match of objects is assumed. In the wholesale strategy, the
trial is then directly confirmed as a “match”. In the piecemeal
strategy, the degrees of rotation necessary to reach this simi-
larity are remembered and applied to subsequent pieces. If all
pieces yield similarity values under the threshold, the object
is considered a match and a ”match” answer is given. For this
experiment, a threshold value of 20 and 45 degrees of rotation
per transformation yielded the best results. Additionally, the
following parameters were adjusted as follows:

• Latency factor: 0.3 (default: 1.0)

• Retrieval threshold: -1.0 (default: 0.0)

• Activation noise: 0.5 (default: none)
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Figure 4: Human reaction times (leftmost per color, solid black outline) and model-predicted reaction times (rightmost per
color, dashed red outline), grouped by rotation condition and experiment block.

• Utility noise: 2 (default: none)

• Spatial delay: 0.005 (default: n/a)

The aforementioned strategy choice is integrated in the
form of a memory retrieval to mimic object familiarity –if the
reference stimulus was presented often and recently enough,
the model can proceed with the wholesale strategy, otherwise
the piecemeal strategy is chosen. Reinforcement learning is
implemented in the form of utility learning: model decisions
that consistently result in fast and correct task solving will be
reinforced and chosen more frequently in subsequent trials.

Results
Both datasets were prepared by Median Absolute Deviation
outlier correction. Figure 4 shows reaction times from partic-
ipant data and model predictions.

Model Data
The model predictions correlate nicely with behavioral data.
A strong overall correlation with little deviation to human
data was achieved (r(22) = .92, p < .001; RMSE = .23).
More specifically, the influence of rotation disparity on model
and human reaction times aggregated over all blocks reached
a very strong correlation (r(2) = .97, p < .05, RMSE = .139)
(see also Figure 3), while comparing the influence of experi-
ment block aggregated over all rotations shows a strong cor-
relation (r(4) = .84, p < .05, RMSE = .22) (see also Fig-
ure 2). Overall standard deviation of model-predicted re-
action times is close to the original data, but slightly lower
(SDH = 1.953,SDM = 1.421).

Regression Analysis
A linear model was created, gauging the influence of exper-
iment block, rotation disparity and data source (human or
model) on reaction times. The three predictors explained
53.9% of the variance (R2 = 0.539, F47,840 = 23.04, p <

.001). Rotation angle significantly predicted reaction times
(β = 0.66, p < 0.001), as did the interaction between experi-
ment block and angle (β =−0.29, p < 0.05). Data source has
no influence on reaction times (β = 0.02, p = 0.43), implying
no significant differences between human and model results.
As shown in Figure 4, a linear effect is visible, with increased
rotations leading to increased reaction times. Over blocks, re-
action times are generally lowered, with a more pronounced
effect for higher rotations.

Discussion
Interpretation of Results
The behavioral data collected shows a linear effect of diffi-
culty typically reported in mental rotation studies (Shepard
& Metzler, 1971). A decrease of reaction time over the ex-
periment blocks suggests a learning effect that is more pro-
nounced for higher task difficulty, which mirrors results pre-
viously reported for a mental folding task (Preuss, Raddatz,
& Russwinkel, 2019). The model results show a promising
fit to the behavioral experiment data. Aside from a strong
general correlation, it accurately models learning over experi-
ment blocks, which validates the implemented strategy choice
mechanism based on object familiarity.

Correlation between the two datasets is comparable to re-
sults from similar modeling approaches to mental rotation
(e.g. Peebles, 2019a). Of note is that our results stem from
the reliance on generalized spatial processes instead of mech-
anisms tailored to the task at hand, giving strong support for
the validity of a unified approach.

Open Questions and Known Issues
The spatial module for ACT-R enqueues itself into a line of
similar theoretical approaches and implementations. Mental
imagery (Peebles, 2019b; Lovett & Forbus, 2013), qualita-
tive reasoning (Forbus, 1984; De Kleer & Brown, 1984), syl-
logistic representations (Barkowsky et al., 2007), or spatial-
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visual integration (Laird, 2008) offer alternatives to tackle
open questions in spatial research. As of now, our common
spatial framework does not challenge these theories, as in-
sight into the nature of the cognitive mechanisms underlying
spatial processes is still vague. Further research could in-
crease support for our approach, or dismiss it altogether.

Most design decisions for the spatial module are made un-
der consideration of prior research as outlined above. Still,
many of its mechanisms are currently in need of verifica-
tion. For now, the mental rotation model is the only cogni-
tive model fully realized using this framework. While this
model proved successful, additional work on cognitive mod-
els for other spatial paradigms is necessary to validate the
framework further.

The underlying experimental data was originally collected
for an EEG study –therefore, the experimental design was
kept simple to reduce unwanted artifacts (i.e. stimuli were
only rotated on the picture plane, low overall task difficulty).
This restricts the use of these data for several interesting ques-
tions in the modeling domain: does mental spatial transfor-
mation happen statically and stepwise, or is it dynamic? Is
there a number of maximal transformations applicable on a
mental spatial object? These issues will be addressed in fu-
ture study designs.

Outlook
Since ACT-R simulates cognitive functions in a modular fash-
ion, it lends itself to modeling effects beyond behavioral
data: a method proposed by Prezenski and Russwinkel (2016)
would allow a comparison of ACT-R module activity to EEG
data of experiment participants. To this end, components are
calculated from EEG data, i.e. clusters of neurons that are
frequently active in parallel. In the case of independent com-
ponent analysis (ICA), components with the highest degree of
independence from one another are generated, meaning that
in theory, cortex areas fulfilling distinct functions are mapped
for each participant during task solving. These independent
components can then each be associated to ACT-R’s modules
by correlating brain activity with predicted module activity.
This could help verify or falsify the existence and/or location
of one or several dedicated spatial area(s). Another promis-
ing approach lies in computing principal components of EEG
signals for comparison with module activity produced by the
cognitive models. A principal component analysis (PCA)
ranks components by variance explained which then can be
associated with activity of specific modules during specific
times during task solving (Borst & Anderson, 2015; Tenison,
Fincham, & Anderson, 2016). While ICA matching helps lo-
calizing specific brain activity, PCA matching allows for tem-
poral correlation. Both methods are currently being tested on
data sets created by the mental rotation model.

[Mention of related project omitted for anonymity] In ad-
dition to a study on mental rotation, an experiment on a men-
tal folding paradigm (Shepard & Feng, 1972) was conducted
and simulated in a cognitive model using the spatial module
(Preuss et al., 2019). Applying the spatial module to a re-

lated mental spatial paradigm allows for further verification
or falsification of its validity and should lead to adjustments
necessary for its further generalization. To arrive at a module
representing universal spatial cognition, it will be important
to follow the constraints dictated by both cognitive architec-
ture and neurobiological plausibility to avoid parameter over-
fitting.

As the effects of several factors on spatial processing time
are yet to be gauged and additional spatial paradigms yet to
be implemented on the basis of the spatial module, it cur-
rently computes the time necessary for mental spatial trans-
formations on the basis of an admittedly simple multiplica-
tion. Other variables influencing the outcome are in consid-
eration to be included in later versions of the spatial module,
for instance added noise to reduce the formula’s deterministic
behavior, increased processing time depending on the number
of transformations already applied to the object in the spatial
buffer or an upper limit to the transformations applicable in a
row.

A follow-up experiment will combine both mental rotation
and mental folding into one experimental paradigm. By forc-
ing the use of cognitive folding and rotation processes at the
same time, this study and further upcoming work will rely
less on lab conditions and move towards real-world applica-
tions. Requiring both spatial modalities for problem solving
will allow further evaluation of the proposed module’s valid-
ity.
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Abstract

Simple laboratory tasks typically allow one or a few methods
of task performance. In contrast, moderately complex tasks,
such as video games, provide many methods of task perfor-
mance which, in essence, provide many ways of completing
the task without necessarily completing all possible compo-
nents. Although performance on complex tasks improves with
practice, the improvements do not represent the simple effects
of power-law learning but, rather, they tend to reflect the dis-
covery and practice of a diverse set of methods. Understanding
what we see during complex task learning, requires us to eval-
uate individual performance against benchmarks of optimality.
In this report, we use the game of Space Fortress (SF) as a com-
plex experimental paradigm in which we demonstrate two al-
ternative measures that reveal scopes of individual differences
in the discovery and implementation of an optimal method that
would be missed by traditional measures of the game.
Keywords: Complex Task Learning; Individual Learning;
Plateaus; Dips; Leaps; PDL; SpotLight

Introduction
General laws which explain human learning as a function
of practice (e.g., the power law or the exponential law) im-
plicitly assume that practice alone is sufficient to reach the
asymptote of performance. Although such assumptions may
be reasonable for simple tasks that afford few alternative
methods, they do not hold for more complex tasks, such as
video games, which afford many alternative methods. A
growing body of work (e.g., Siegler, 1987; Rickard, 1997;
Delaney, Reder, Staszewski, & Ritter, 1998; Towne, Boot,
& Ericsson, 2016; Thompson, McColeman, Blair, & Hen-
rey, 2019; Rahman & Gray, 2020; van der Mijn & van Rijn,
2021) shows that individuals demonstrate both inter- and
intra-individual differences of task execution methods during
learning and also that the practice benefits are largely local-
ized to the specific methods practiced. Indeed, even for seem-
ingly simple video games (e.g., Pacman or Tetris), it may be
difficult to identify the optimal method from amongst its nu-
merous alternative possibilities.

The difficulty in finding the best or even an appropriate
method can be observed in many real-world tasks; for exam-
ple, finding the fastest route in traffic, finding a sure-win for-
mula for Chess or Football, solving mathematical problems,
even choosing the tasks to learn in a lifetime. How do humans
search for and find the optimal method(s) in such tasks? To
reach the asymptote, optimal methods must be discovered or
invented. Therefore, theories of complex task learning must

include an account of how the individuals’ task execution
methods evolve with learning to reach the optimal one(s) at
the asymptote of performance.

Until now, we portrayed the complexity of complex tasks
from a performer’s perspective. But similar difficulties also
persist for the researchers of complex skill learning in decid-
ing where to look for measurable changes and which mea-
sures to use (Gray & Lindstedt, 2017). Looking at the wrong
or imprecise measures can easily lead to false negatives of
learning or training benefits, as underlying improvements
may remain undiscovered (Gray, 2017). Moreover, if the
asymptote(s) of performance and the corresponding optimal
method(s) are both unknown, it is difficult to ensure that in-
crements in performance measures are indeed steps towards
the asymptote. The reason is that individuals may be using
suboptimal methods that would lead to plateaus instead of the
asymptote (Gray, 2017; Rahman & Gray, 2020).

An approach that has been useful in evaluating complex
task performance is comparing performance against bench-
marks of optimality. For example, Anderson, Kleinberg, and
Mullainathan (2017) recently investigated the predictors of
blunders in chess endgames, by comparing each move against
known optimal moves. Relevantly, they found that the players
are more likely to err in positions with fewer optimal or near-
optimal moves within very large pools of possible moves.
This relationship was consistent across all skill levels, even
for the best human players with ELO ratings above 2300. In
cases where optimal performance is not known, expert perfor-
mance may serve as a substitute. For example, van Meeuwen
et al. (2014) compared performance of novice air-traffic con-
trollers against experts’ performance to investigate how effec-
tive strategies are formed in solving complex visual problems
(e.g., finding the optimal landing order for incoming planes).

In this work, we explore the benefits of evaluating indi-
vidual performance against benchmarks of optimality in a
historic experimental paradigm – the complex game of SF
(Mané & Donchin, 1989). Since its development, SF has been
used in many studies of complex skill learning to enrich our
understanding of human learning process. However, several
studies observed that two very important measures of SF –
Velocity and Control – that represent the most fundamental
skill needed in the game (flying in the game universe), are
prone to ceiling effects; consequently, the measures asymp-
tote before humans do (Boot et al., 2010; Destefano, 2010;
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Gray, 2017). Here, we use two alternative measures – (1) an-
gular velocity of player ship and (2) approximations of Pi (π)
from ship paths – both tailored to capture progress towards
optimal flight strategy of moving in slow, small circles around
the enemy (i.e., the Fortress). These measures depict a much
clearer picture of individuals’ route to optimality and reveal
scopes of changes in individuals’ performance that would be
missed by the traditional measures of SF.

The Game of Space Fortress
The game of SF was developed by Mané and Donchin (1989)
as a common complex task for different research groups to
study complex skill acquisition. The goal was to create an
experimental task representative of real-world complex tasks
incorporating dimensions of complexity based on existing re-
search. Complexity of SF stems from both the multiplicity
of tasks to be performed and the specificity of the ways they
need to performed. In each game of SF, the player flies a ship
(yellow plane in Figure 1) equipped with a limited number of
missiles to engage in a five-minute battle against the Fortress
(located at the center of the screen). The Fortress needs to be
destroyed in two steps: (1) make it vulnerable by 10 or more
hits (at intervals > 400ms), then (2) a double shot with an in-
terval within 250-400ms to destroy it – any deviation results
in instant recovery of the Fortress. The Fortress fights back
by shooting shells at the ship; in addition, its minions (the
mines, Figure 1) spawn periodically at random locations to
chase the ship. There are two types of mines, each of which
requires identification by letter-codes shown at start screen
and specific handling. The player must also protect the ship
from getting hit by enemies, as four hits would result in ship
destruction. Both the ship and the Fortress respawn upon de-
struction and the battle resumes. Finally, the player needs to
manage the ship’s arsenal. Each game starts with a full ar-

Figure 1: Screenshot of Pygame Space Fortress 4 (Destefano,
2010). The Fortress is at the center; the player’s ship (yellow)
have recently fired a missile (red) at a mine (blue diamond).

senal and the player receives several bonus opportunities to
replenish the arsenal. The player can still shoot missiles with
depleted arsenal, but sacrificing points per missile.

Game-generated Scores as Performance Measures
The objective of the game is to maximize the Total score,
which is the sum of four subscores – Points, Speed, Con-
trol and Velocity – capturing performance in different sub-
tasks. The Points score serves as a measure of several skills
together; such as, skills in fighting the Fortress and the mines,
defending own ship, managing resources. The Speed score
rewards speed of killing mines and penalizes if mines escape.

The rest of the two scores are both measures of ship ma-
neuvering skills. The Control score measures the performers’
control over OS’ spatial location; the player is rewarded at
a higher rate for staying within the large hexagon than out-
side (Figure 1). The Velocity score measures the performers’
control over OS’ velocity; the player is rewarded for flying
the ship within a speed limit and penalized for any violations.
As mentioned previously, these two measures are prone to
ceiling effects and do not consistently reflect improvements
in associated skills. In the next section, we briefly review
findings of optimal/expert flight behavior, before discussing
alternative measures.

Review of Optimal (Flight) Strategies in SF
As mentioned earlier, SF was developed as a common
paradigm to compare different training regimens (Mané &
Donchin, 1989). The original game included only the Points
score. The other three scores were added by Gopher, Weil,
and Siegel (1989) for their Emphasis Change study. In their
experiment, players practiced in the whole task, but were in-
structed to prioritize different parts at different points during
practice. In contrast, Frederiksen and White (1989) adopted a
part-task training approach by discretizing the gameplay into
sub-tasks and trained the players by building up from small
to more integrated subtasks. The purpose was to develop
a better understanding of the dynamics of the SF universe.
The researchers first identified the gameplay variables that
affect task execution methods and the high-level goals of the
game, after verbal protocol analysis of expert players’ meth-
ods; then, decided on an optimal method as the foundation of
a hierarchical training regimen.

Frederiksen and White observed that the optimal methods
in low-level subtasks of Space Fortress are regulated by three
high-level goals: (1) Hit Fortress without getting hit (2) Han-
dle mines with the least possible disruption to the first goal
(3) Allocate resources to maximize the Points score. For the
two first goals, they suggested that players should fly around
the Fortress in circles constructed by a series of pre-planned,
linear trajectories at low speeds, and when a mine appears,
players should wait until mines move to locations which re-
quire minimum deviation from the circles.

Recent works confirm that the flight paths of expert play-
ers indeed converge to circles around the Fortress (Destefano,
2010; Towne et al., 2016; Rahman & Gray, 2020). The need
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to construct circles with small lines stems from the constraints
imposed in SF’s input system: a player can either move the
ship along straight lines (using Thrust key) or rotate (using
Rotate key) to change ship direction, but cannot simultane-
ously use both to move at angles. To obtain a circular path
(and to attack the enemies), a player needs to periodically re-
peat a sequence of keypresses throughout the game: Thrust-
Rotate -(Shoot). This way, movement constraints force play-
ers to construct the circles with numerous straight lines. Sim-
ilar constraints also exist for joystick-based input systems.
The need to precisely synchronize actions indicates that even
if a high-level description of the optimal method is known, it
cannot be implemented without understanding the mechanics
of the SF universe and mastering the low-level action compo-
nents. Confirming this view, Rahman and Gray (2020) found
that players demonstrate both inter- and intra-individual dif-
ferences of flight paths during learning, even when explicitly
instructed on the optimal choice of slow circles.

Recent works also fine-tune Frederiksen and White’s sug-
gestions for optimal flight control. For example, Destefano
(2010) observed that although low velocities are optimal for
the Velocity score, players would benefit in defending against
the Fortress by flying the ship faster. The reason is: the
Fortress only fires at the ship if it can locate the ship for more
than 1 second, in one of 36 equally divided segments around
the Fortress (Destefano, 2010, pp. 34, Figure 14). Hence,
by moving at an angular velocity faster than 360/36 = 10 de-
grees/second, a player can prevent the fortress from shooting
at the ship. Therefore, the upper limit of velocity is the speed
limit for Velocity score, whereas the lower limit of velocity is
determined by the minimum angular velocity. In the next sec-
tion, we knit these pieces of information together for a more
precise description of optimal flight control in SF.

Methodology
Dataset used
We use the dataset from Destefano (2010). This dataset is
publicly available (osf.io/v5mzx/) and has been used in
several previous studies (Destefano & Gray, 2016; Gray,
2017; Rahman & Gray, 2020). We chose this dataset as it
contains millisecond-level performance records of nine indi-
viduals over 31 hours of gameplay. Each individual played
8 games in each 1-hr session (one session per day), resulting
in total 248 games per player. As the players needed time to
familiarize themselves with the complex rules of SF, we ex-
clude the data from the first day. Therefore, the final dataset
contains 240 games for each player.

To provide a glimpse of the richness of information,
the dataset contains about 40 game-aggregated measures to
capture performance in different subtasks (e.g., number of
Fortress kills, ship deaths, missiles bought). More impor-
tantly for our work, 9000 datapoints were collected at 30 Hz
frequency from each 5-minute game, documenting each key-
press by the player, each tiny movement by the Fortress or
the mines and many more. The detailed records at the lowest-

level performance mean that a researcher can develop per-
formance measures tailored to answer specific research ques-
tions, at any level of the complex task.

Description of Optimal Flight Performance
To maximize the Control score, a player must fly the ship in
the area between the large and small hexagons; using specifi-
cations of the hexagons, this statement can be written as:

50 < Ship distance from Fortress (in pixels) < 182

To maximize the Velocity score, a player only needs to
maintain linear velocities below a specified limit. But mov-
ing at a fast enough angular velocity in circles would prevent
the Fortress from firing at the ship. Therefore:

limit from ang. vel. < Linear velocity (pixels/sec) < 120
10 < Angular velocity (degrees/sec) < limit from lin. vel.

Measures of Flight Control
To demonstrate the reasons for ceiling effects of Control and
Velocity scores, we examine their main constituents – respec-
tively, distance from the Fortress and ship velocity. As exam-
ples of alternative measures, we demonstrate two measures:
(1) angular velocity of the OS and (2) approximations of π

using Archimedes’ method.
We chose angular velocity because, in circular motions,

the radius of the circle (i.e., the distance from Fortress) and
the linear velocities on the circles follow this mechanistic re-
lation: linear velocity = angular velocity ∗ radius (Beer et
al., 1972). Previously, it has been noted that the Control
and Velocity scores are correlated (Boot et al., 2010; Gray,
2017); the aforementioned relation indicates that this correla-
tion would exist only when the optimal method of moving in
circles is adopted.

Finally, as a measure of goodness of the circles, we use
approximations of π from the individuals’ flight paths us-
ing Archimedes’ method. The method of constructing cir-
cles with many lines, closely resembles Archimedes’ method
of calculating π by approximating circumferences of circles
from perimeters of polygons. In both cases, with increasing
number of sides, the polygons converge to the circles, result-
ing in better approximations of π.

Results and Discussions
Discrepancies between the Stories Revealed by the
Control Score and its Constituents
As mentioned earlier, several previous works noted that the
Control and the Velocity scores asymptote before humans
reach the limit of performance and thereby hide underlying
improvements in low-level constituents of the scores. In Fig-
ure 2, we show the game-averages of the Control score’s
main low-level constituent – ship distance from the Fortress
– which confirms that the players improved in flying close to
the Fortress deep into practice. However, the Control score
would stop showing these improvements beyond the red-
dashed line. The reason is, to max out the score, a player only
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Figure 2: Mean distance for all players, almost none of whom
seem to have reached the limit of performance even at the end
of practice.

needs to stay within the large hexagon which corresponds to
the ship distance denoted by the horizontal red-dashed line.
However, as can be observed, players continue to improve
beyond this threshold and gradually approach the minimum
safe distance from the Fortress (green-dashed line).

The asymptote of the Control score is clearly false, but
what about the score’s ability to depict changes in individu-
als’ performance with learning? Figure 3 demonstrates the
Control score (red line) along with the game averages of
the distance from Fortress (blue line), for our best player
(Player 7) alone. Previously, it has been demonstrated that
Player 7 went through a period (games 50-80) of extensive ex-
plorations of optimal flight paths before permanently adopt-
ing the optimal flight paths of circles around the Fortress
(Rahman & Gray, 2020, samples of within-game trajectories
in Figure 3, pp. 981). But the player’s Control score in Fig-
ure 3 shows hardly any signs of these explorations. Rather,
the player seemed to have suddenly leapt from a plateau to
the asymptote. The mean distance (blue line) shows the im-
provement to be much more gradual than the Control score
does, with no obvious plateau in the preceding period.

Although we discuss only the Control score here, the same
discrepancies were also observed for the Velocity score and
its only low-level constituent, ship velocity. To find the rea-
sons behind these discrepancies, we next look at how these
scores are constructed.

Discontinuous Reward Functions⇒
Disproportionate Rewards with Performance
The step functions for rewards in Equations 1 and 2 explain
why we see a stepwise progression of the scores despite con-
tinuous improvement of players in associated low-level per-
formance, as step functions convert continuous input to step-
wise, discontinuous outputs. To elaborate, these two scores
are largely insensitive to any intermediate improvements in
flying skills apart from right at the transition point of the func-
tion. For example, Velocity score rewards would be the same
for flying OS at 10x, 2x and 1.01x of the speed limit, but dif-

Figure 3: Control score vs its main constituent (mean distance
from Fortress) for Player 7.

ferent at 0.99x. The situation is analogous to having a digital
watch showing only the hours of time; as the changes of min-
utes or seconds would not be observable, progression of time
would seem to follow a step function to uninformed eyes.

Control score reward=

{
+6 per second; Inside large hexagon
+3 per second; Out of large hexagon

(1)

Velocity score reward=

{
+7 per second; within speed limit
−7 per second; above speed limit

(2)
In summary, the disproportionate relation between reward

and performance level leads to (i) the asymptotes of the game-
generated scores not being equal to the asymptotes of players
skills, and may lead to (ii) false plateaus in individual perfor-
mance hiding underlying improvement and (iii) false leaps by
rewarding long-term improvement in one burst.

Exploiting Knowledge of Optimal Methods to
Capture Progress towards Optimality
Spurious plateaus and asymptotes are likely to lead re-
searchers to false conclusions about learning patterns and
training effects, especially when the performance records are
not as detailed as ours and are studied only at a high level.
Therefore, the step-wise reward functions of the Control and
the Velocity scores should be replaced with more continu-
ous functions to develop measures sensitive to fine-grained
changes in performance. One option is to adopt a reductionist
view and deconstruct elements of performance to investigate
progress towards optimality in each element. However, as all
subtasks within a whole complex task are not independent,
the true asymptote of performance in the whole task would
inevitably be lower than the one estimated from parts. A more
practical approach is to use the knowledge of optimal meth-
ods from previous works to identify or develop measures that
would unambiguously reflect progress towards optimality.

For example, as for flight paths in SF, we know that the op-
timal method is to move in circles around the Fortress. To
investigate progress towards this optimal method, we may
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Figure 4: Instantaneous angular velocity (positive in the
clockwise direction) in three sample games for Player 7

simply investigate how these circles improve with learning.
The circles are implemented by controlling the ship’s angular
velocity, which we use as our first measure. Next, to inves-
tigate the goodness of end results (i.e., the circles), we use
approximations of π from ship’s paths.

Angular Velocity: The Velocity score aims to capture
players’ control over the ship based on its linear velocity (i.e.,
the rate of change of linear position) of OS; but for circular
motions, angular velocity (i.e., the rate of change of angular
position) is a more appropriate determinant of control. To
create a perfect circle, the player needs to maintain a constant
angular velocity throughout. This requirement, due to the in-
put constraints of SF, needs to be approximated by consis-
tently oscillating about steady reference values. In addition,
the Fortress can be prevented from shooting by maintaining
an angular velocity greater than 10 degrees/second within the
circles. Therefore, instantaneous angular velocity provides an
excellent measure to investigate within-game flight control.

Figure 4 shows the instantaneous angular velocities in three
example games (at 100-game intervals) played by Player 7.
As can be seen, from as early as the 20th game (shown in red),
the player demonstrates remarkable consistency in maintain-
ing a wave-like angular velocity about steady reference val-
ues. In the 120th game (blue), the player shows marked im-
provements in controlling the angular velocity and in staying
away from the Fortress’ firing range (marked in figure 4), and
then shows comparatively smaller improvements in the 220th

game (green). As mentioned earlier, Player 7 extensively ex-
plored and practiced different flight paths within games 50-80
before permanently adopting the circles, providing a specific
explanation for the diminished returns from practice. Finally,
based on the patterns observed in angular velocity, we can
safely conclude that the player indeed progressed towards op-
timal flight performance with practice.

Approximations of π using Archimedes’ Method:
Archimedes had observed that, with increasing number of

Figure 5: Approximations of π using Archimedes’ method,
for our best player (Player 7) and the worst (Player 2).

sides (n), regular n-sided polygons become increasingly bet-
ter approximations of circles. This simple observation led
him to develop one of the earliest methods to calculate π

as the ratio between the perimeter of the n-polygon and its
largest diagonal. Although the flight paths taken by our play-
ers are not regular polygons, this ratio can still be used to
approximate π for each full circle around the Fortress.

Figure 5 demonstrates the game averages of these π values
for two players: Players 7 and 2, respectively the best and
the worst performing players according to the Total scores
achieved in the last 50 games. As mentioned earlier, Player 7
experimented with different flight paths (e.g., moving along
lines or half-circles) within games 50-80. The impact of these
experimentations are clearly observable, as either π could not
be calculated (13 games) or were very inaccurate during this
period. To facilitate comparison between the players, we limit
the y-axis to show only values below 10, which occludes 11
games for Player 7 and one for Player 2.

Although these players demonstrate opposing trends early
in practice, both players can be observed to be approaching
the asymptote (i.e, the true value of π), yielding increasingly
better approximations of π with more practice. To illustrate
the level of accuracy reached at the end of practice, average
π in the last 50 games is 3.3 (SD = 0.09) for Player 2 and 3.4
(SD = 0.14) for Player 7.

To note, the approximations of π from each circle around
the Fortress can also be used as a within-game measure of
performance in maintaining the circles. We skip this demon-
stration due to space constraints, but the within-game approx-
imations fluctuate a lot more than the game-averages do, in-
dicating substantial detours from the circles. Therefore, even
though the game-averages suggest that the players are ap-
proaching the asymptote of performance, ample room for im-
provement may still remain.
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Conclusions
In this work, we highlight the need to evaluate individual per-
formance in complex tasks against benchmarks of optimality.
Individuals demonstrate ample differences of task execution
methods in complex tasks, therefore, looking in the wrong
scopes of improvement may lead to false negatives regard-
ing individuals’ training or practice benefits. In such cases,
measures tailored to capture performance within scopes of
optimality, provides a commonground to compare different
individuals and search for general patterns underneath the in-
dividual differences.

For our demonstrations, we use the complex game of SF
and investigate individuals’ acquisition of one fundamental
skill – flying the ship – using two measures tailored to cap-
ture progress towards the optimal flight strategy. We chose
angular velocity as our first measure, as the optimal path of
circles needs to be implemented by controlling the angular
velocity. Second, we use approximations of π as a measure
of goodness of the circles created.

These measures – directed to capture performance within
scopes of optimality – are able to reveal scopes of consis-
tency and changes in individuals’ performance that would be
missed by undirected measures. For example, our results in-
dicate that the individuals did realize that the circular paths
need to be achieved by maintaining a consistent (optimally,
constant) angular velocity and improved in doing so with
practice. Excellent approximations of π towards the end of
practice show that these players attained near-asymptotic skill
levels in executing the optimal flight strategy. Importantly, as
the asymptotes are known for both measures (i.e., constant
angular velocity and the true value of π), improvements in
these measures can be unambiguously interpreted as progress
towards optimal performance. The known asymptotes also al-
low us to reliably investigate within-game performance of in-
dividuals with the same measures and identify both the scopes
of current expertise and for further improvements.

Although our demonstrations are in one game only, the
game of SF represents real-world complex tasks that present
performers with the general difficulty to identify optimal
methods among many alternatives. Evaluating performance
against benchmarks of optimality would help us find gen-
eral explanations for how individuals’ different routes con-
verge towards the same optimal methods and when do they
diverge towards plateaus of stable, suboptimal performance.
This way, by helping to uncover the evolution of individuals’
task execution methods, precise measurement and evaluation
of individuals’ performance can help us progress towards the
general laws of individual learning.
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Abstract

A computational framework for modelling storage and re-
trieval of information in human working memory is proposed.
The aim is to analyse the corresponding algebra alone, espe-
cially with regard to its congruence with empirical findings in-
cluding the serial position curve. That algebra builds on the
high-dimensional holographic representation of information
together with two operations for computation: multiplication
for binding and addition for bundling. Unlike other models,
the bundling operation defined is not associative and preserves
serial order information in terms of activation gradients. Con-
sequently, the cognitive states representing a memorised list
exhibit a primacy as well as a recency effect generically. The
typical concave-up and asymmetrically shaped serial position
curve is derived as a linear combination of those gradients. The
serial position curve for cued recall, including similar items, is
derived within this formalism. Quantitative implications of the
algebra are shown to agree well with empirical data from basic
cognitive tasks.
Keywords: human working memory; activation gradi-
ents; serial position curve; holographic representation; high-
dimensional computing

Introduction
Human Working Memory is commonly regarded as a func-
tional subsystem of memory, whose goal is to hold and to
organise information for some short period of time in order
to make it available for higher cognitive processes (Cowan,
2017). Experiments in this field rely on the subtle construc-
tion of input data such as memory lists and produce output
data such as recall probabilities or response times (Murdock,
1974; Kahana, 2012; Oberauer et al., 2018). Among these,
the most prominent finding is the serial-position curve, which
shows the accuracy of item retrieval varying as a function
of serial position in a memory list, averaged over a sample
of participants. As observed across (probably all) immediate
memory tasks, it has a concave-up shape and is asymmetric.
Its particular shape depends on the particular cognitive task.
For example in recognition and in cued (probed) recall the
serial position curve shows a strong recency effect, while the
primacy effect is weak. Strong primacy effects are seen in
forward recall, while recency effects are strong in backward
or in free recall.

To describe particular aspects of the functioning of the
human working memory, models with different characteris-
tics have been used, differing both in terms of the medium
in which the information is stored and the storage opera-
tions used. Models include local code models such as REM

Figure 1: Primacy effect and recency effects: Data are
for immediate forward and backward serial recall (Oberauer
et al., 2018), but are similarly in other immediate tasks
(Murdock, 1974; Kahana, 2012)

(Shiffrin & Steyvers, 1997), distributed models of memory
such as SOB (Farrell & Lewandowsky, 2002) and TCM
(Howard & Kahana, 2002), as well as holographic models
such as TODAM (Murdock, 1982, 1993) which uses high-
dimensional probabilistic encoding for the holographic repre-
sentation of information (Plate, 1991). Holographic models
gain from the properties, which are implied by high dimen-
sionality together with randomness, see (Kanerva, 2009) for
an overview about the framework of high-dimensional com-
puting.

The holographic approach appears as a natural candidate
to model the functioning of cognitive processes. Input items
evoke activity patterns in the respective neural field; The fact
that these representations are sparse and the consequences
thereof are not explicitly considered in this note. Compu-
tation consists in transforming those patterns according to
two elementary operations: The additive-like superposition
realises the bundling of item information, while multiplica-
tion realises binding of items. The high-dimensional space
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of binary patterns together with these two operations form a
high-dimensional algebra governing storage and computation
in this system.

Before giving an outline of the paper, a remark seems
worthwhile: The aim is not to provide a full-blown model
rather than to propose an elementary computational structure,
an algebra, on top of which a model could be constructed.
The main question is, how much of experimental findings can
already been described on the basis of that algebra alone.

The outline of this paper is briefly as follows: Firstly, the
state-space is defined as a high-dimensional Hamming space
(eq 1) equipped with some distance on it. A similarity mea-
sure is proposed which is derived from that distance. It al-
lows both, to judge about the familiarity of two states as well
as about their distinctiveness (eq 2). Computing is by ma-
nipulating states according to two operations on that space:
multiplication for binding and a not associative addition for
bundling. This completes the definition of the algebra (eq
4) to be considered. Non-associativity is an essential fea-
ture of that bundling since it implies that the sum of compo-
nents depends on their sequential ordering (eq 5). As a conse-
quence, information about the order of sequentially presented
list items is conserved. The corresponding left-associative
sum and the right- associative sum of list items correspond
to states exhibiting a recency and a primacy gradient, respec-
tively (Fig 4). As applications basic cognitive tasks such as
item recognition and probed recall are considered. The typi-
cal concave-up and asymmetrical shape of the serial-position
curve is derived as a mixture of these two activation gradients
(Fig 9).

The algebra of cognitive states (X,+p,∗)
The state-space In the course of perceiving a physical item,
the corresponding sensory input invokes an activity pattern in
the neuronal field it is projected to. That way, each physical
item can be represented by a binary pattern, in which 1′s in-
dicate active neurons, while 0′s indicate inactive ones. Due
to the size and structural complexity of the neuronal corre-
late, patterns are described by high-dimensional random bi-
nary vectors. These patterns are the states of the cognitive
system. The state-space therefore is

X=
(
XN

q ,d
)
. (1)

N > 100 is its dimension, q is the degree of sparseness, i.e.
the mean activity of a state, and d is some metric on XN

q .
The state-space is a (metric) Hamming space allowing for

some similarity measure derived from the distance d. This
measure should respect both: the closeness of two states
as well as their distinctiveness as points in the state-space.
A cosine-similarity only reveals information about closeness
since it is locally defined. In a probabilistic setting, two points
are the more difficult to distinguish, the less likely it is to find
another state at random which is ’in between’ the two. To
capture this, the definition of similarity must contain global
information about the state space.

Definition (Similarity). The similarity of two states having
distance d from each other is

S(d) := e−κFX(d), κ > 1 (2)

where FX(d) = PX[D≤ d] is the distribution function for dis-
tances on X.

Different items are represented by uncorrelated states,
while similar items will be represented by similar states.
κ > 1 is chosen to have highest sensitivity with respect to
almost identical or near-by states.

The operations The two operations to be defined on the
state space correspond to binding and bundling. Two items
are (associatively) bound to each other, if one can be retrieved
by cueing with the other item. The corresponding formal op-
eration is multiplication ∗, which is defined in eq 3. Binding
of items happens by simultaneously activated components in
the neural pattern. This similarity measure directly relates to
a recall probability or accuracy of retrieval.

Bundling means collecting items by adding their respective
states. Assume that two neurons X and Y converge on a third
neuron Z. If both are inactive, i.e. x = y = 0, neuron Z will
also be, z= 0, while if both are active, Z will be active, i.e. 1+
1 = 1. If only X or Y is active, it depends on some threshold,
whether Z is active. If the activation threshold is low, p ≈ 0,
Z is likely to be active, while if if the activation threshold is
high, p≈ 1, Z will remain inactive. Addition xp is defined in
eq 3.

∗ 0 1
0 1 0
1 0 1

+p 0 1
0 0 ζ

1 ζ 1
(3)

where ζ ∈ {0,+1} is random with P[ζ = 0] = p. This com-
pletes the definition of the algebra used to calculating with
cognitive states. (

X,+p,∗
)

(4)

In the following, its elementary properties are further investi-
gated. What properties are already implied by this elementary
algebra and how much of empirical findings can be already
described by those?

Bundling preserves sequential information in the
memory list
Usually, bundling is realised by vector-addition (Schlegel,
Neubert, & Protzel, 2020), which is commutative and asso-
ciative, so that x+(y+ z) = (x+ y)+ z = z+(y+ z), i.e. the
order of components doesn’t matter. That is: If addition is
associative, sequential order information is lost!

Observation. For 0 < p < 1, addition +p is not associative.

x+p (y+p z) 6= z+p (y+p x) (5)

Note that, if p = 1, addition equals component-wise AND,
while for p = 0, addition is component-wise OR. These op-
erations are associative.
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In the following, the state resulting from left-associative
addition is denoted by L, i.e. L = (x +p y) + z, while the
state resulting from right-associative addition is denoted by
R = x+p (y+p z). For the sake for readability, I will write
+=+p in the following, while assuming that p = 1

2 .

Figure 2: In right-associative R addition, early items are kept
prominent, while in left-associative L addition, later items are
superposed on earlier ones.

The states representing a memory list L and R states can
be constructed for a list of any length. Construction starts
from a pre-experimental state η and proceeds by iteratively
adding items to the memory states L and R according to left-
associative addition and right-associative addition to the re-
spective branch as follows: For the L-state

L0 = η

La = η+a)

Lb = η+a)+b)
...

LΛ =
((

((η+a)+b)+ c)+ . . .)+ f
)
+g

)
,

while for the R-state

R0 = η

Ra = η+(a

Rb = η+(a+(b
...

RΛ =
(

η+
(
a+(b+(c+(. . .+( f +g)))

))
After its sequential presentation, the memory list Λ =

(A,B,C, . . .) is thus represented by the two states

L =
((

((η+a)+b)+ c
)
+d)+ f )+g

)
(6)

R =
(

η+
(
a+(b+(c+(d +( f +g)))

))
, (7)

In (Murdock, 1982) η is assumed to be empty, while
in (Franklin & Mewhort, 2015) it comprises a holographic
collection of items and item-item associations. a,b,c, . . .
are the cognitive states representing the physical list items
A,B,C, . . .. These states preserve the serial order of items in

the memory list in that distances change monotonously along
subsequent items, see Fig. 3

d(η,R) < d(η,L) (8)
d(a,L) > d(b,L)> d(c,L)> .. . (9)
d(a,R) < d(b,R)< d(c,R)< .. . (10)

Correspondingly, both states inherit serial order in that item
distances increase along R, while they decrease along L, see
Fig 3. These distance gradients directly translate into activa-
tion gradients.

Figure 3: Distance profiles of the two states L and R as in eq
8 ff. L has smallest distances to the most recent items, while
R is closest to the early list items.

Implied activity gradients
From the concept of similarity, two other concepts can be im-
mediately derived: activation and memory strength. The in-
tuition is closely related to the idea of a projection. Given
that the memory state M represents a memorised list, and
that a cue item is presented. The cue item activates the mem-
ory state more, the more similar it is to that memory state
(Hintzman, 1984). Conversely, the more the corresponding
memory element is engraved in the memory state, the more
the memory state is activated by the cue state.

Definition (Activation). Let M be a memory state con-
structed during representing some memory list. A cue state
x activates the memory state M according to their similarity,
see eq 2

αM(x) := S
(
d(x,M)

)
. (11)

The activation gradient of M is the vector αM with compo-
nents αM(x), where x is a state representing a list item.

In terms of strength theory, αM(x) is the strength by which
x is memorised in M. One might also call αM(x) the famil-
iarity of x given M.

Consequently, the distance gradients in eq 8 ff directly
translate into activity gradients, see Fig. 4. Since activation
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Figure 4: Primacy and recency gradients implied by the
two states L and R are αR and αL.

as well as strength are increasing functions of similarity and
hence decreasing functions of distance, L implies a recency
gradient αL , while R implies a primacy gradient αR.

Activation gradients are nowadays widely accepted to play
an important role in working memory. Various mecha-
nisms have been discussed as sources of these gradients, see
(Oberauer, 2003). In many models including TODAM, TCM
and SOB, these gradients are separately modelled and super-
imposed on top of the model. In contrast, these gradients
directly result from the bundling operation defined in eq 4
and its non-associativity: While non-associativity preserves
information about serial order, right-associative addition and
left-associative addition imply the primacy and the recency
gradient, respectively.

The response function for recognition and recall
After presentation of a memory list, the participant has to ful-
fil some task. Most cognitive tasks involve cues such as cued
item recognition or cued recall, associative or serial. The an-
swer the participant gives is the result of a decision process
which depends on both, the memory state as well as the cue.
The response function in recognition only depends on famil-
iarity, while the response function in recall additionally de-
pends on distinctiveness (Murdock, 1982). Thus it is reason-
able to make the response function a function of activation as
defined in eq 11.

Definition (Response function). The response function given
a cue x facing the memory state M is an increasing function
of induced similarity, e.g.

Φ(x |M) = αM(x) (12)

Accordingly an activation gradient directly translates into a
serial position curve. Particularly, the recency effect refers to
the activation gradient of the L-state, while the primacy effect
corresponds to the activation gradient of the R- state.

Experimental data indicate that the recency effect does not
depend on list length and shows a slightly sigmoid curve
shape, see Fig 5 (left). Both empirical observations are well
captured by the modelling algebra proposed, see Fig 5 (right).

Figure 5: The recency effect does not depend on list length.
Left: Experimental data from Murdock (Murdock, 1982),
Right: Simulated data from the model for various list length’.

Application to some basic cognitive tasks
In this section some examples are presented to demonstrate
how the formalism works, i.e. how to describe tasks such as
cued recall in this formalism. Results are direct consequences
of the algebra defined, i.e. no further assumptions are made.
In the following only the R-state is concerned, i.e. states are
bundled according to right-associative addition, while corre-
sponding brackets are skipped for the sake of readability.

Repetition increases strength
It is intuitively expected that a repeated occurrence of an el-
ement in a list will increase its coding strength. This effect
is indeed observed in the model. As a benchmark, consider
the list Λ = (A,B,C,D, . . .), in which all items are different.
In Λ(1) a neighbouring pair is similar, e.g., B ∼ C. In Λ(2),
B∼ D and so forth. k can be regarded as the lag from B until
the similar item. Fig 6 shows the serial position curves for
lists Λ, Λ(1), and Λ(2). Note that the coding strength of B is
increased by any other item which is similar to B, while the
strengthening is greater, the smaller the lag is, i.e. the effect
of C ∼ B on the coding strength of B is larger than the effect
of D∼ B.

Cued recall
Cued associative recall In this task, the participant is pre-
sented a paired memory list

(
A−X ,B−Y,C−Z, . . .

)
. After

memorizing this list, a memory item, i.e. a member of some
pair, is presented as a cue, and the participant is asked to iden-
tify the memory item, which was bound to that cue item. The
memory state corresponding to the paired list is

R = η+a∗ x+b∗ y+ c∗ z+ . . . , (13)

where a∗x is the state representing the binding between items
X and A in the list.
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Figure 6: The effect of similar items on activation The solid
black curve is the activation profile of state R for the list Λ in
which all items are different. Doted lines are the profiles if
that list contains one item, e.g. C or D, which is similar to
item B.

When a memory item X is presented as a cue and the task
is to retrieve the item which is bound to X in the list, consider
the activation of

x∗R = x∗η+ a+ a∗b∗ y+a∗ c∗ z+ . . . . (14)

The activation αx∗R attains its maximal value for αx∗R(a), see
Fig. 7. Thus the cue X activates the A component most, so
that the participant will answer ” X is bound to A.” , with
some probability. Analogously, if the cue is Y , the activation
αy∗R attains it maximum in B, so that B is retrieved, and so
forth. These maximal points form a curve, which is identical
to the activation gradient αR.

Retrieval from similar contexts Assume that the paired
list

(
A−X ,B−Y,C− X̃ ,D−Z, . . .

)
is given, in which items

A and C are bound to similar contexts X and X̃ . The corre-
sponding state yields

R = η+a∗ x+b∗ y+ c∗ x̃+ . . . . (15)

Cueing with X will not only retrieve A but also C, just to a
lesser extend. The effect of cueing with x is displayed when
considering the activation gradient αx∗R, see Fig. 8. The gra-
dient has two peaks, one at a and a weaker one at c, saying
that cueing with X reveals two items, A and C. Cueing with
Y uncovers only one, which is B.

In the recall task, the participant has to make a choice be-
tween the two alternative items bound to X . Thus invoking
Luce’s choice axiom, the probability to recall X yields

P(a|x) = αx∗R(a)
αx∗R(a)+αx∗R(c)

(16)

which is less than the probability to recall a without an alter-
native. The existence of an item similar to the cue impairs the
corresponding recall.

Figure 7: Cued Recall: Given cues such as x, y, z, the corre-
sponding activations αx∗R,αy∗R,αz∗R are plotted, see eq 14.
The cue x causes the activation αx∗R to have a peak at the cor-
responding item, which is a. αR is the activation profile of
the R-state.

Figure 8: Recall of items: Activation profiles of αx∗R (∗), and
αy∗R (◦). The activation profile αR of the R state by distinct
list items is shown as a reference.

Putting things together: The serial position curve
During memorizing a list, the two states R and L are con-
structed. Since there is no a priori reason to favour one over
the other, I assume that both cognitive states L and R coexist
and are the components of a memory state M,

M =

(
L
R

)
. (17)

A single cue thus activates both components. The total acti-
vation of the memory state M is a linear combination of the
activation gradients of its two components.

αM = ρ R+ `L (18)

where ρ and ` are non-negative parameters governing the
mixture of respective activations. The response function to a
cue is Φ(x|αM), so that the serial position curve is the graph
Φ(x|αM), where x is a state representing a list item, see Fig.
9.
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Figure 9: The Serial Position Curve is simulated for differ-
ent pairs of parameters according to eq. 18. It shows a strong
recency effect and a weak primacy effect for ρ = 0.4,λ = 0.9,
while for ρ = 0.9,λ = 0.4 there is a strong primacy effect and
a weak recency effect.

The serial position curve thus results from the linear com-
bination of the primacy gradient αR and the recency gradient
αL. As seen in Fig 9, a large ρ together with a small ` makes
the recency effect, while a small ρ together with a large `
leads to a prominent primacy effect. The relative strength of
the primacy and the recency effect will generally depend on
the experimental set-up, including the task to be performed.
For example in recognition and in cued (probed) recall the
serial position curve shows a strong recency effect, while the
primacy effect is weak. Strong primacy effects are seen in
forward recall, while recency effects are strong in backward
or in free recall.

Conclusion and out-look
In the previous sections, an elementary algebra ( eq. 4 ) for
storage and retrieval of information in basic cognitive tasks
was proposed. The aim was not to present a full-blown model
but to investigate how far one can get with the algebra alone.

Item information and associative information are repre-
sented by two operations, bundling and binding, respectively.
If bundling is realised by an associative operation such as
ordinary (vector-) addition, information about sequential or-
der is lost. On the other hand, tasks such as serial recall re-
quire that order information. Consequently in corresponding
models order information has be has to be implemented sep-
arately. This can be achieved by postulating serial position
markers, chaining by associative mechanisms between con-
secutive items, or weight functions varying over serial posi-
tion governing the recency and the primacy effect.

This is different in the approach presented: Information
about sequential ordering is preserved. This is due to the
non-associativity of the addition operation by which item in-

formation is bundled into a memory state. Reading from that
state thus reveals order information necessary to related tasks,
which is represented by corresponding gradients. Activation
gradients are implied rather than postulated separately. The
serial position curve comes as a linear combination of both.
Its shape is concave-up and asymmetric as observed as a typ-
ical experimental finding, see Fig 1 for experimental data and
Fig 9 for simulations of our model.

As already mentioned, the aim was not to present a full-
blown model but to investigate how far one can get with the
algebra alone. So it does not come as a surprise that sev-
eral experimental observations were not captured. For exam-
ple, while the recency effect does not depend on list length,
the primacy effect does. This robust finding cannot be ex-
plained by our algebra alone but needs an additional assump-
tion about attention, which then imposes an additional con-
straint on den attention gradient. Furthermore, serial recall
can not be described by our algebra alone but needs an addi-
tional assumption such as output-suppression, as supposed in
many models, or an other feedback mechanism, see (Franklin
& Mewhort, 2015).

The cognitive algebra proposed appears to provide a rea-
sonable basis for modelling since it generically implies sev-
eral features that fit empirical observations quite well, in a
qualitative sense in that no attempt was made to fit data. Mod-
elling then could consist in carefully adding assumptions on
top of the cognitive algebra such as discussed above.
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Abstract
A complete and holistic understanding of human cognition
should be able to relate idiographic parameters representing
cognitive functioning to interactions between connected
brain networks identified by neuroimaging methods. Here,
using the ACT-R cognitive architecture, we examine the
possibility of producing idiographic parameterizations of
cognitive functioning in a task environment and show that
these parameterizations produce reasonable predictions of
individual behavior. We then demonstrate a method of
determining a subset of parameters that are adequate for
prediction of behavior before confirming that the most
critical of these task-based parameters is related to functional
connectivity measures in individual resting-state fMRI data.
Keywords: Cognitive Modeling; Long-Term Memory;
Resting-state fMRI; Functional Network

Introduction
One of the advantages of the utilization of computational

models in the study of cognition is the possibility to
estimate parameters that characterize behavior and/or
cognitive performance on a per-individual, or idiographic,
level. For example, reinforcement learning (RL) models
can be fit to behavioral data, and the resulting parameter
estimates can be used to make inferences about individual
differences in dopamine function or to distinguish between
healthy and pathological groups (Frank et al. 2004).
Similar work has been performed with drift diffusion
models (DDM), which model decision-making through a
noisy information accumulation process that “drift”
towards one of two decision boundaries. In addition to
being more clearly interpretable than raw behavioral data,
parameters inferred through DDM are often more reliable
in detecting individual differences than behavioral metrics
(White et al. 2016). In the past, ACT-R models have been
used to make such inferences as well. For example, Daily
et al. (2001) estimated goal spreading activation from
behavioral data, used it as a proxy for working memory,
and successfully predicted performance on a different task.

This individual-difference approach, however, has not
been applied consistently - instead, the majority of
modeling efforts have focused on fitting parameter values
that are descriptive at the group level. Furthermore, ACT-R
is a far more complex computational framework than RL
or DDM, and it encompasses dozens of parameters. While
this complexity makes it possible to capture complex tasks

that lay outside the scope of RL or DDM models, it also
poses some significant challenges: is it possible to identify
idiographic parameter values that reliably characterize the
behavior of a given individual? How many parameters are
needed to characterize individual differences within a
group? How can each parameter’s contribution to
predicting these differences between individuals be
determined?

Here, we provide an empirical answer to this question.
We created a model of the zero-back condition of the
standard n-back working memory task, and then fit the
model to behavioral data from ~150 participants. We show
it is possible to use convex optimization techniques to
identify points in multidimensional parameter space that
accurately capture an individual’s performance. We then
provide a method to determine which estimated parameters
contribute most meaningfully to the prediction of
individual performance. Furthermore, we demonstrate that
these idiographic parameterizations are predicted by the
individual’s resting-state functional connectivity, indicating
that the parameterization captures fundamental aspects of
individual cognitive function.

Materials and Methods
The study presented herein consists of an analysis of N =

178 individuals from the Human Connectome Project, the
largest existing repository of young adult neuroimaging
data. The analysis was restricted to the resting fMRI subset
in conjunction with the zero-back condition of the
“Working Memory” (WM) task component. The resting
fMRI data collection consisted of two 30-min recording
sessions, performed 24 hours apart; the task fMRI data
collection consisted of two 30-min task sessions performed
directly after each resting-state acquisition session. During
each task session, participants performed six other tasks in
addition to the WM component, per the HCP protocol. All
subject recruitment procedures and informed consent forms
were approved by the Washington University in St. Louis’
Institutional Review Board. The present study met criteria
for exemption at the University of Washington’s
Institutional Review Board.
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Task Data
Each working memory task session consisted of four

0-back blocks, with each block containing 10 trials. Each
block begins with a 2.5 s cue that informs the participant of
the target stimulus for the proceeding block of trials. Each
trial presents a single image centered on the screen, and
participants are required to indicate if the trial’s stimulus is
identical to the cue stimulus by pressing one of two
buttons. The stimuli belong to one of four possible
categories: faces, places, tools, and body parts. These
categories were presented in a block-wise fashion such that
two of the eight blocks presented a given category. Each
trial stimulus is presented for 2 s with a 500 ms ITI, for a
total duration of 27.5 s per block. Additionally, 15 s
fixation blocks were presented after the second and fourth
task blocks within a session. This paradigm produces
stimuli of three conditions: targets (match to the block
cue); lures (non-targets that have been presented at least
once before within the block); and non-target, non-lures
(non-targets that are presented for the first time within a
block).

fMRI Image Acquisition and Preprocessing
Functional neuroimages were acquired with a 32-channel

head coil on a 3T Siemens Skyra with TR = 720 ms, TE =
33.1 ms, FA = 52°, FOV = 208 × 180 mm. Each image
consisted of 72 2.0 mm oblique slices with 0-mm gap
in-between. Each slice had an in-plane resolution of 2.0 ×
2.0 mm. Images were acquired with a multi-band
acceleration factor of 8X.

Images were acquired in the “minimally preprocessed”
format (Van Essen et al., 2013), which includes unwarping
to correct for magnetic field distortion, motion
realignment, and normalization to the MNI template. The
images were then smoothed with an isotropic 8.0 mm
FWHM Gaussian kernel.

ACT-R Modeling of WM Task Data
An ACT-R task device and model were developed in

order to characterize individual behavior in the zero-back
task. The task device implements the zero-back task by
updating the ACT-R visicon with a representation of the
task elements in the form of three strings: one that
identifies the category of the stimulus, a second
representing the stimulus itself, and a third indicating the
“kind” of the stimulus - either a block-cue or a
trial-stimulus. The model automatically attends to this
information before transferring the chunk representation of
the display to the imaginal buffer. In the case of a cue, the
model updates the goal buffer to represent that the target of
future retrieval requests is the block-cue “kind”, and then
waits until a new visual display - automatic buffer
harvesting ensures that the chunk representing the cue is
entered into declarative memory. In the case of a stimulus,
after the chunk representation is loaded into the imaginal
buffer, the model attempts to retrieve a chunk to compare
against the stimulus by making a retrieval request

specifying the category of the stimulus and the block-cue
“kind”. If retrieval is successful, the model proceeds to
determine if the stimulus identity represented by the
chunks in the imaginal and retrieval buffers are matched. If
so, it responds that the current stimulus is a target;
otherwise, nontarget. In some cases, the retrieval process
may not complete before the trial ends. If so, the model
detects the presentation of the ITI and interrupts the
ongoing retrieval attempt through a secondary retrieval
request. A flowchart depicting the strategy of the model
can be found in Figure 1.

The behavior of the model in Figure 1 ultimately
depends on the parameters that influence memory retrieval.
In ACT-R, retrieval is affected by a memory’s activation,
A(m), which is the sum of a base-level term B(m) and a
contextual spreading activation S(m). B(m) is the log sum
of the decaying traces of previous uses of m:

B(m) = log ∑i ti
-d

where ti is the time elapsed from the i-th time m was used
and d is the decay rate. The spreading activation is defined
as an additional boost coming from the information stored
in a buffer:

S(m) = ∑b∑ j (Wb/N) si,m

where Wb is the amount of activation spreading from buffer
b and si,m is the association between slot i in buffer b and
memory m. In our model, two such sources of activation
exist, one for the goal buffer Wg and one for the imaginal
buffer Wi. The strength of association si,m is computed
through a function which returns a scalar integer value
equal to the number of source chunks j contained in chunk
i; 1 if chunks j and i are identical; and 0 otherwise. Task
accuracy depends on both the availability of a memory and
the probability of unintentionally retrieving a wrong item;
the latter is controlled by a partial matching similarity
parameter c that determines the penalty between two slots.
Thus, chunks that do not match the retrieval specification
are penalized, but can still be retrieved.

Figure 1. Flowchart of the ACT-R model strategy for
performing the zero-back condition of the n-back task.
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Finally, the relationship between the activation of a
memory and the time RT it takes to retrieve is given by the
equation:

RT(m) = FeA(m)

In summary, the dynamics of the model depend on five
parameters: d, Wi, Wg, F, and c.

Individual-specific Estimation of ACT-R Parameters
Five model parameters were fit to individual participant

behavior on an idiographic basis: d, Wi, Wg, F, and c. These
parameters were chosen as they each have a strong effect
on the model’s response time or accuracy, the two
participant measures that the model was fit against. The
parameters d, Wi, Wg, and c all influence the likelihood that
the correct cue-chunk is retrieved to be compared against
(with additional minor influence on the RT due to changes
in the activation level of the retrieved chunk), while the F
parameter largely affects the retrieval time of the retrieved
chunk (and therefore, the response time of the model).
Parameters were only estimated for participants who
demonstrated greater-than-chance performance on the
target, lure, and non-target/non-lure conditions. To perform
the fitting process, the optimize.minimize() method of the
Python scipy package was utilized to minimize the RMSE
between a set of participant measures and the
commensurate model measures through the minimization
function’s Powell method. Bounds were placed on the five
parameters (c: (-1,1); Wg: (0,2); Wi: (0,2); F: (1,3.5); d:
(0.2,0.8)) to ensure that the minimization function
remained within either reasonable or required ranges for
these parameters. To compute a single RMSE across both
RT and accuracy, these measures were placed on the same
scale by dividing the trial-by-trial model and participant
response times by 2 (as the maximum allowable RT by the
task was 2 s). Missing RTs for both model and participant
were replaced with the corresponding nan-meaned RT.
Additionally, as the binary trial-by-trial accuracy outcomes
had the potential to be exceedingly punishing to the
model-fitting process, the aggregate block-wise and
condition-wise (target/lure/non-target, non-lure) accuracies
were used instead. Model and participant trial-by-trial
scaled RTs and block-wise/condition-wise accuracies were
then vectorized in order to compute the RMSE. Once the
minimization algorithm converged to parameter estimates
for each participant, model predictions were produced by
running the model 100 times for each set of participant
parameters, and then first taking the trial-by-trial average
of the predicted RTs and accuracies over these runs before
determining the average RT and accuracy for each
participant.

Evaluation of Parameter Estimates
To evaluate the relative importance of each of the

estimated parameters to the predictive efficacy of the
model, a “decremental leave-one-out” (dLOO) procedure

was applied. In this procedure, a set of models utilizing a
subset of the estimated parameters are first produced from
the full parameter set n by applying n choose k, where k =
n-1. For each participant and each model in this set, the k
chosen parameters are set to the participant’s estimated
values, while the “left out” parameter is set to the mean of
that parameter’s estimates (across participants). Model
predictions are produced for each of the models in this set
(as described above), and the R2 between model predictions
and participant measures are determined for both RTs and
accuracies. The model with the largest mean R2 (across RTs
and accuracies) is determined to be the “best-fitting” model
in this set, and the parameter that was “left out” of this
model is “decremented” from the set of parameters. This
procedure is then repeated for the remaining parameters,
with both the “left-out” parameters and the “decremented”
parameters set to the mean of that parameter’s estimates,
until only a single parameter remains.

Brain Parcellation
To calculate functional connectivity, each participant's

brain was divided into discrete regions using a parcellation
proposed by Power et al (2011). Although other
parcellations have been proposed, this parcellation is
notable for including both cortical and subcortical regions
(see also Cole et al., 2016).

Statistical Learning Model
To identify the optimal combination of functional

connectivity measures that reliably predicts individual
parameters, resting-state functional connectivity was
analyzed using a Lasso regression, a statistical learning
method that combines feature selection and parameter
fitting (Tibishirani, 1996). As a variant of linear regression,
Lasso results remain interpretable in terms of beta weights
that linearly scale a set of regressors. Unlike linear
regression, Lasso reduces the complexity of the model by
adding a penalty term that reduces to zero the weight of
unnecessary variables, dramatically reducing the number of
regressors provided. This feature is crucial for
high-dimensional data such as the set of connectomes
associated with a group of participants.

While in canonical linear regression the weights β are
obtained by minimizing the quantity ||y - βX||2 (where the
notation ||v||n represents the L(n) norm of a vector v), in
Lasso the quantity to minimize includes a penalty term:

β = argmin( ||y - βX||2 + λ||β||1)

The value of λ represents the tradeoff between model
simplicity (captured by the first-order ||β||1 penalty) and
accuracy (captured by ordinary least squares minimization
term ||y - βX||2). When λ = 0, the model reduces to
canonical linear regression. As λ grows, however, more
and more regressors are eliminated to satisfy the
constraints.
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Results
Participant Task Performance

Participants who did not achieve greater-than-chance
performance (binomial test) on the target, lure, or
non-target/non-lure condition were not included in the
analysis. This resulted in the exclusion of 36 out of 178
participants. Mean response times and accuracies were
calculated for each participant for whom parameters were
estimated. Mean RT was 0.78 ± 0.10 s, while mean
accuracy was 0.94 ± 0.06. The distribution of RTs and
accuracies across participants can be seen in Figure 2.

Idiographic Parameter Estimation and Prediction
For each participant, the set of parameter values that

minimized the RMSE between trial-by-trial RTs and
block-wise/condition-wise accuracies were estimated. The
estimated cue-stimulus similarities c had a mean value of
-0.43 ± 0.22, with a range of (-0.88, 0.19). While the
majority of participants were found to have a negative c
value, the c value for 2% of participants was estimated as
slightly positive. The goal buffer spreading activation
value Wg estimates had a mean of 0.93 ± 0.33 and a range
of (0.18, 1.74), while the imaginal buffer spreading
activation value Wi had a mean of 0.68 ± 0.34 and a range
of (0.06, 1.71). As Wg and Wi provide a complementary but
opposing influence on the retrieval process in this model
(except in the case of target stimuli, for which they both
promote the retrieval of the correct cue chunk), the
difference between these two parameter estimates (Wg - Wi)
was examined. The mean difference was 0.24 ± 0.51, with
a range of (-0.85, 1.38). Over 70% of participants were
estimated to have a Wg value greater than their Wi value,
indicating that overall, information in the goal buffer drove
the retrieval process. The mean of the latency factor F
estimates was 2.49 ± 0.42, with a range of (1.31, 3.29).

Figure 2. Histograms of accuracies and response times
across participants in the zero-back condition of the HCP
n-back task.

While F linearly affects retrieval times (and, by
extension, response time) and the mean of the estimates
was greater than the maximum allowable response time,
the magnitude of this parameter compensates for retrieval
time speeding caused by the influence of spreading
activation and partial matching. Finally, for the decay-rate
parameter d, the mean estimated value was 0.53 ± 0.10,
and the range was (0.29, 0.71).

Once parameters for each participant were estimated,
model predictions of participant performance were
produced. Across predicted participants, the model’s mean
RT was 0.64 ± 0.09, and the model’s mean accuracy was
0.89 ± 0.08. Individual participant RTs and predicted RTs
were strongly correlated (r = 0.56, p < 0.001), while
participant accuracies and predicted accuracies were
moderately correlated (r = 0.23, p < 0.01). Scatterplots of
participant measures versus predicted measures can be seen
in Figure 3.

Figure 3. Scatterplots of participant mean RTs/accuracies
versus model-predicted mean RTs/accuracies. Pearson’s r
between participant measures and model predictions shown
in the upper left.
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Decremental Leave-one-out Procedure
To determine which parameters contributed most

strongly to the model’s ability to predict individual
participant RTs and accuracies, the parameter set was
subjected to a “decremental leave-one-out” procedure. In
the first round (five sets of four out of five parameters
included, one parameter in each set assigned to the mean
estimated value), it was found that the model containing
the individual predictions of Wg, Wi, F, and d parameters
had the largest mean R2 (mean R2 = 0.21; RT R2 = 0.32;
accuracy R2 = 0.11); consequently, the c parameter was
“decremented”. In the second round, the model containing
the Wg, Wi, and F parameters was the strongest predictor of
participant behavior (mean R2 = 0.21; RT R2 = 0.33;
accuracy R2 = 0.09); the d parameter was dropped. In the
third round, the model that included the Wg and Wi
parameters was the most successful (mean R2 = 0.18; RT R2

= 0.27; accuracy R2 = 0.09), and in the final round, the
model including only the Wg parameter was the most
predictive (mean R2 = 0.18; RT R2 = 0.24; accuracy R2 =
0.11).

rs-fMRI Prediction of Individual-specific Wg

For each individual, we extracted a matrix of functional
connectivity by calculating the Pearson correlation
coefficient of each pair of the 264 x 264 regions in the
Power (2011) parcellation. The group-level average of the
individual correlation matrices, known as the connectome,
was then visually inspected for comparison with similar
functional connectivity studies. The connectome was found
to be consistent with previous findings using the same
parcellation scheme (compare, for example, to Cole et al.
2016). Because correlations between pairs of regions tend
to be partially driven by common, unobserved factors
(such as motion and physiological noise), the matrices
were re-calculated using partial correlations (Cole et al.,
2016), so that correlations between each region in the pair
and the remaining 262 regions were partialled out. The
resulting mean connectome is a much more sparse matrix
(Figure 4B) and includes both negative and positive
correlations (as expected from the spontaneous dynamics
of brain activity: Fox et al., 2005).

Figure 4: (A) Raw correlations between each of the 264
regions ; (B) Partial correlations between the same regions.
In each matrix, rows and columns are ordered by network.

Each participant’s sparse correlation matrix was then
reshaped into a row vector of (264 x 263) / 2 - 264 =
34,452 elements. The number of possible regressors was
further reduced by excluding connectivity measures related
to three irrelevant networks (the Auditory, Cerebellar, and
“Uncertain” networks in Power et al., 2011).

Lasso Fit and Cross-Validation
A cross-validation procedure was used to find the

optimal value of λ. A sequence of possible λ values was
generated, and, for each value, the performance of the
Lasso algorithm in predicting the parameter Wg on a
per-participant basis was measured using leave-one-out
validation (LOOV). In LOOV, the algorithm is run 142
times, each time leaving out a different participant as the
test set while the β values are fit to the remaining 141
participants as the training set. The mean error in
predicting the parameter Wg for the left-out participant was
then measured for all values of λ, and the value of λ that
produced the smallest cross-validation error across all
participants was chosen.

Resulting Connectivity
At the optimal level of λ, only 19 functional connections

were left with a β > 0, involving a total of 36 brain regions
from eight different functional networks. These
connections and their regions are shown in Figure 5.

Notably, this list of regions includes the four ROIs in the
Power parcellation that span the anterior cingulate cortex
(ACC), corresponding to ACT-R’s goal buffer (Anderson,
et al. 2008). The list also includes five regions in the
salience network, a set of regions involved, like the ACC,
in the top-down control of attention. The functional
connectivity values that best predict individual values of
the Wg parameter include connections between the salience
network and the default mode network, which is known to
correlate with long-term memory function, and the
sensorimotor network, including motor regions
corresponding to the right hand.

Figure 5: Functional brain connections predictive of
individual rates of forgetting. Colored edges between
nodes represent functional connectivity between the
connected regions, while colors of nodes represent the
network each region belongs to, using the Power et al
(2011) scheme.
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Together, connectivity between a group of networks
including the salience network, the default mode network,
and the sensorimotor network comprised a majority of the
identified connections (16 out of 19, χ2(1) = 15.474 p <
0.001) and regions (24 out of 36, χ2(1) = 10.667, p <
0.005), significantly greater that what could be expected by
chance.

As a final examination of this connectivity, we
determined how well the parameter Wg can be recovered
from functional connectivity alone. To do so, we multiplied
each individual-specific set of functional connectivity
values by the beta weights produced by Lasso, and
compared them to the values inferred from the behavioral
data by the ACT-R model. The predicted and observed
values had a correlation of r(142) = 0.775, p < 0.001
(Figure 6).

Discussion
In the present study, idiographic parameterization of

working memory function was investigated through the
application of an ACT-R model. Values of five different
parameters capturing various aspects of cognitive
functioning were estimated for each participant through
minimization of the RMSE between participant behavior
and parameterized model predictions. A rank-ordering of
the importance of these five parameters to the predictive
efficacy of the model was determined through a
“decremental leave-one-out” procedure, demonstrating that
the goal-buffer spreading activation parameter Wg was
critical to the model’s predictive ability. Furthermore, it
was shown that this essential parameter is predicted by an
individual’s resting-state functional connectivity.

This work makes it clear that ACT-R parameter
estimates are capable of producing quality predictions
regarding individual-level behavior. The correlation
between participant RTs and model-predicted RTs was
strong; while the predictions of accuracy were somewhat
weaker, this can be partially attributed to the fact that the
model was fit to the block-wise and condition-wise
accuracies, instead of trial-by-trial accuracies (as RTs
were). While this approach avoids the overly-punishing
nature of RMSEs computed on binary outcomes, it reduces
the amount of information the minimization algorithm has
to fit the participant accuracy, relative to the participant RT.
This effect was also apparent in the “decremental
leave-one-out” procedure; the RT R2 measures were overall
larger than the accuracy R2 measures across the iterations
of the procedure. This procedure rank-ordered the
“importance” of the five parameters to the model’s
predictive efficacy (c < d < F < Wi < Wg), and made it clear
that Wg was by far the most valuable parameter for this
model to predict individual differences in behavior, as both
RT and accuracy R2 measures changed negligibly as the
other parameters were set to the mean values. As Wg was
indicated to be the most crucial for individual prediction, it
was chosen to be examined in relation to the participant’s
resting-state fMRI data.

Figure 6: Correlation between observed values of the Wg
parameter and the values of Wg predicted from functional
connectivity (Figure 5).

A functional connectome for each participant was
generated and subsequently used as the set of predictors for
Wg in a Lasso regression. This resulted in the identification
of a set of functional connections between regions
inclusive of the salience, default mode, and sensorimotor
networks as being maximally predictive of individual
values of Wg. Moreover, this particular set of functional
connections is entirely compatible with the putative role
played by the goal buffer’s spreading activation in the
model, where it is used to assist in the retrieval of the
correct cue from long-term memory (compatible with the
salience-default mode connections). The result of this work
would allow for the prediction of individual-specific Wg
parameter values on individuals for whom resting-state
measures exist, and through the ACT-R model, prediction
of their behavior in a task environment.

In conclusion, this work exemplifies the potential of
utilizing ACT-R modeling in conjunction with
neuroimaging measures for the identification and
prediction of signatures of cognitive functioning on an
individual basis. Potential future efforts in this area of
work include identification of a maximally predictive
subset of parameters for each individual, as well as
determination of resting-state nodes and functional
connections that allow for the prediction of these
parameters.
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Abstract
The study of knowledge representations and reasoning prob-
lems faced by a cognitive agent interacting with a dynamic and
incompletely known world is relevant to cognitive robotics and
understanding complex cognition and related fields. The paper
introduces four cognitive agents that were modeled in a stu-
dent project with specific requirements. The cognitive archi-
tecture ACT-R was used to model flexible agents that interact
with objects in a grid field with only a limited field of view.
Long-term planning is not possible here: the meaning of ob-
jects needs to be discovered and the field explored to find the
goal as quickly as possible. The project demonstrates how the
four agents learn from interactions and what information needs
to be kept available to flexibly decide in unpredictably occur-
ring situations. All four agents are shortly described in more
detail. The project covers on a small scale some aspects that
are crucial for autonomous agents in a simple game environ-
ment. The four agents are faced with 15 challenge environ-
ments that need to be explored and managed. The challenge
performance results show that a higher number of productions
does not necessarily lead to better performance.
Keywords: mental representation; situated cognition; embod-
ied cognition; situated agent; interactive learning

Introduction
Everyday we cope with new challenges, experience time pres-
sure when we try to complete our tasks and need to flexibly
react to changes and new information. Normally we do not
have time to evaluate different options, but have to instantly
find a good solution and act accordingly. Therefore, in such
situations our cognitive system not just relies on independent,
well-elaborated rational processes, but often depends on the
situation and context in which cognition occurs. Embodied
cognition holds that cognitive processes are deeply rooted in
the body’s interactions with the world (e.g. Wilson, 2002).
The research field of embodied cognition is still widely het-
erogeneous, but there are some distinct characteristics of
embodied cognition most researchers agree upon. Embod-
ied cognition is situated, cognition is time-constrained, and
whenever possible we offload cognitive work onto the en-
vironment. According to Levesque and Reiter (1998), cog-
nitive robotics is the study of knowledge representation and
reasoning problems faced by an autonomous robot (or agent)
in a dynamic and incompletely known world. This leads to
the research question what cognitive mechanisms are cen-
tral to build a cognitive agent that is able to cope with such
an environment and is still to accomplish its goals. Situated
agents in dynamic environments are good test beds to investi-
gate different implementations of such mechanisms because

of their required abilities to flexibly manage changes in the
environment, explore unknown objects and to handle novel
challenges. In the long run this kind of research is relevant to
learn more about complex cognition. According to (Funke,
2010) complex cognition deals with all mental processes that
are used by an individual for deriving new out of given infor-
mation, with the intention to make decisions, solve problems,
and plan actions. This assumes an active and goal-directed
information processing by an agent that is able to perceive its
environment and to use its memory. In a complex situation,
the result is more than the sum of perceptual, learning, and
memory processes. In this sense perception can be seen as
part of a higher structure. The context delivers the meaning
which is not only given by itself but in combination with other
events and objects. In addition this kind of research has the
potential to develop good solutions for cognitive robotics or
human-robot collaboration.

The aim of this paper is to explore these questions within
a simple task environment. We want to show four differ-
ent realizations of such an agent for the same requirements
and task environments within the cognitive architecture ACT-
R (Anderson, 2000). These examples can support other
researchers faced with similar task requirements to reason
about ways to build such an agent. Usually each modeler
starts with their own idea, therefore such model challenges
are useful to explore a wider field of possible implementa-
tions and an evaluation thereof. Furthermore, we hope to
contribute information to the question of how situated cog-
nition can be realized with a cognitive architecture and what
possible architectural developments are promising in order to
address such research fields. In a student project of about 2
months, the given task was to develop a situated agent that
should use mainly cognitive plausible mechanisms to deal
with several challenges.

Agent requirements
The game (a grid field with several colored object on its tiles,
see Figure 1) required the interactive agent to

1. find out what object on the grid represents the agent and
the color it has

2. search for the goal that has to be approached. The goal is
not visible at the beginning
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3. find out what object with what color shows what kind of
effect on contact (obstacle, add points, deduct points), in
other words to explore the environment and infer the best
way towards the goal

4. cope with constantly appearing and disappearing objects
(due to a fog of war mechanism, only objects in immediate
surroundings are shown) and make decisions based on a
mental representation of the environment.

The goal is to move onto the goal tile as fast as possible,
preferably with a high score. At the end of the course, 15
novel challenge fields were provided and the agents were
tested in order to explore and evaluate their respective perfor-
mance and flexibility in unknown environments. Prior knowl-
edge for all agents was:

• the color of the goal is green,

• the agent starts on the top row (color is unknown),

• the goal is below the agent, in the lower half of the grid,

• possible movements are left, right, up, down; these are re-
strained by a yellow bounding box ,

• movements towards a colored tile can have three differ-
ent consequences (blocked movement, pass and win points,
and lose points),

• the effect of object colors are randomized each trial, except
for the green goal object.

The main cognitive skills required are therefore to learn about
the environment through interactions, to explore the grid in
order to find the goal, to draw inferences, to gather informa-
tion and hold this information in mental representations and
to make decisions based on available information. In the fol-
lowing sections, the different cognitive agents will be intro-
duced, and for each agent it will be explained how and where
different aspects of information are gathered and represented
(for instance by chunk representations in some buffer, e.g.
goal or imaginal; or production rules) and how this knowl-
edge is used in specific situations. Then it will be sketched
out how the four requirements mentioned above are realized
for the different agents. Lastly the main benefits and weak-
nesses of each agent are discussed and performance in some
situations is described.

Some requirements are realized similarly across the agents,
such as identifying itself through an action and checking for
the object that moved. Since it is known that the agent starts
in the top row, all visible objects are encoded and movement
is initiated. When a change is registered by the visual module,
the color of the moved object is stored as a mental representa-
tion in either the goal or imaginal buffer. Most agents also ini-
tiate object tracking via the visual module to keep their agent
representations in focus. To facilitate self-localization and an
understanding of the grid’s dimensions, the agents make use

of geometric data of the objects and borders for simple heuris-
tics, such as moving towards the center of the grid. This data
is also stored as part of the agent’s mental representation of
the task.

Models

Speedy

Orients itself according to sub-goals. Bonus points are col-
lected when close. Acts pre-attentively and therefore quickly.
Relevant information for the agent is stored in the imaginal
buffer including its current position, movement intention as
well as its specific color. At a later point, the colors of ad-
ditional tiles are stored in the imaginal buffer according to
their meaning. After successful self-identification the agent
starts searching for the goal. To reach the goal tile as quickly
as possible, a strategy of subgoals is pursued. Subgoals rep-
resent specific waypoints the agent tries to reach. Informa-
tion regarding the agent’s current subgoal is stored in the goal
buffer. The goal buffer also contains the minimal and max-
imal x and y coordinates of the grid field, representing the
borders and the distance to the subgoal. Since the goal object
is located in the lower part of the grid field, the agents tries to
reach its first subgoal, which is directly in the middle of the
grid field in order to explore the space where the goal could
be located.

Searching the environment First, the agent routine
searches its visible field for the green goal and follows its
subgoal. The adjacent tile in the agents movement direction
is checked. In case of an object of unknown color, the object
gets evaluated. Otherwise a movement according to the ob-
ject’s meaning is executed. An unknown object is tested by
the agent moving onto it. Object meanings are evaluated by
using the visual-location module that searches for an appear-
ing text (score). In case a red text appears, it is examined for
“+” and ”-” signs and accordingly the bonus or malus chunk
stored in the imaginal buffer is filled. In case no text appears,
the color is inferred to be an obstacle. For obstacles or malus
objects, movement direction is changed. Bonus tiles are col-
lected whenever in the vicinity.

Locating the goal As soon as the agent gets close to a sub-
goal location, the subgoal chunk gets updated. Further sub-
goals in order to find the goal are pursued, namely reaching
the bottom-left corner and reaching the right grid border at
three quarters of the grid’s height. The green goal object is
detected with a pop-out effect due to the high utility of the
search production. As soon as the goal is recognized, its lo-
cation is stored as the new subgoal.

Decision making and problem solving Even if the agent’s
heuristic is to move directly towards its subgoal, the walking
path is not implemented as a straight line. Steps are chosen
randomly, whereas the movement in subgoal direction is pri-
oritized. If there are obstacles or malus objects on the path,
they are avoided. In case the movement direction is changed
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Figure 1: Examples of two situations in the same environment. The area in the proximity of the agent is ”visible” to it, anything
beyond is invisible, i.e. covered by a fog of war. On the left, the agent is in a starting position, with 4 objects in 2 colors, but
not the goal directly visible. Black tiles are obstacles while yellow tiles are bonus fields, although in the beginning the meaning
of these colors is unknown to the agent. On the right, the agent advanced to a point where the goal tile is now visible. Note that
exploration revealed ”traps” to the agent, enticing it to enter a dead end of obstacles.

the blocked location is stored in the imaginal to prevent the
agent approaching the same object again. This mechanism
is helpful to free the agent from triangular ”traps” or to walk
around obstacles blocking the path.

Strengths and weaknesses Since the agent perceives all
objects only pre-attentively, the speed to reach the goal tile
is maximized. This is supported by the fact that it does not
take bonus points into consideration unless they are located
directly on the path. Therefore, the resulting score is low
compared to the other agents. If the goal tile is spotted but not
reachable, the agent will be stuck at an obstacle and cannot
free itself due to its goal-directed heuristics (with a total of 41
productions). During testing, the agent was able to complete
12 out of 15 challenges. This represents an overall satisfying
performance with special regard to the enormous speed with
which Speedy solves the challenges. However there is still
room for improvement, including priority collection of bonus
objects for higher scores as well as the ability to recover from
entrapment. As soon as the agent spotted the goal object with
its path blocked, the agent gets stuck. Therefore, a possible
option would be to change the subgoal in case the distance to
this subgoal is not reduced within several steps.

Forest
Represents the current goal by separate state, intention and
searching slots in the goal chunk. Unknown tiles are sought
to be identified.
This agent attends a random tile with an object in the top
row of the grid. When an object is located pre-attentively
the agent will try to exercise a movement. After the move-
ment the agent is attending the same location again to check
whether the color of the tile has changed. In case of a color
change - the agent was found. In the other case a different
color will be perceived and the same process is repeated. This
color information is stored in the goal-chunk in order to have
a sustained awareness of itself.

Searching the environment Before executing a move the
agent checks whether the next targeted tile is blocked by an-
other object. If the object is unknown the agent will try to
move on that tile. By that the classification will start. If the
color of the desired field changes to the color of the agent the
object will be classified as a bonus or malus tile. If the color
of the desired fields does not match - the object is classified
as an obstacle. When the agent encounters an object, it will
retrieve a chunk from the declarative memory. In case of an
obstacle or malus tile it will try to avoid that tile and in case
of a bonus tile it will try to move onto it.

Locating the goal With the analyzed and calculated grid
the agent has a good starting point and orientation to use its
first heuristic - make your way to the middle of the grid. Since
the agent is aware that the main goal will be in the lower half
of the grid. After reaching it desired location the agent will
use another heuristic. This heuristic is based on a waypoint
system by exploring the left and the right side, making its
way to the bottom of the grid. In the routine a high utility
production ensures that a visible green tile will be prioritized
as the new main goal.

Decision making and problem solving In general the
agent’s processes are organized in routines as visualised in
Figure 2A. Inside of the main routine a hierarchic structure
is used to ensure that distinct routines are available at certain
times. For example the agent checks before every movement
whether the green main-goal is visible or the adjacent field
is an unknown or known object. A wide variety of 53 pro-
ductions were used to solve other problems on its way to the
green tile. That included several escape mechanisms inside
the decide-action routine to get around the obstacles. A spe-
cific goal-chunk is used to hold slots of the actual state, an
intention and a searching slot. Each slot had a distinct assign-
ment: the state-slot was used to guide the agent through the
heuristics, the intention-slot was used to remember the loca-
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Figure 2: Flowcharts of the goal-finding routines of the agents
named “Forest” (A) and “Intell-agent” (B) after self- and
board-detection.

tion the agent was moving to and the searching-slot gave it
the actual state of the routine.

Strengths and weaknesses Our agent was comparatively
fast when moving through the presented environments. The
approach was to keep it simple and to process everything pre-
attentively. This meant less costs in terms of time. On the
other hand the agent was not able to solve neither complex nor
medium difficulty levels, because avoiding movements were
not context sensitive. A key aspect for improvement would
be the agent’s capacity to remember where it is coming from.

Ms. Captain Curious

Explores the environment randomly. Actively seeks out novel
tile colors. Identifying all encountered tiles is prioritized over
reaching the goal.
Ms. Captain Curious was developed to be a lightweight
model employing only a few heuristics that are generally use-
ful, instead of specialized strategies for different cases. The
model does not build up a lot of permanent knowledge. Most
of the relevant information is retrieved from the visual mod-
ule when needed and then temporarily stored in the goal or
imaginal buffer. In the following, some of the heuristics, or
routines, are described followed by a brief look at the overall
performance of the model.

Searching the environment The localization of the agent
relative to the grid was necessary to determine a suitable di-
rection for the next moves - instead of steering the agent
against the border, an unexplored direction was preferred.
The heuristic was to find the borders of the field and move in
the direction of those borders that are away the farthest. Since
only the eight fields adjacent to the spaceship were visible
at any given time, movements were necessary to explore the
grid. The agent then started moving from the current quad-
rant to the one diametrically opposite. Only when touching
borders or unknown objects, the direction was reversed or re-

evaluated. On an empty grid, the movement pattern would
thus resemble a billiard ball rolling unchecked from edge to
edge across a billiard table.

Locating the goal In order to find out the meaning of the
different colored objects, the agent had to be steered on un-
known object tiles to then memorize the consequence (point
gain, point deduction or obstacle) and subsequently deal with
the tile types differently (seek, avoid). This curious, minimal
learning behavior can be described as ”Whenever you see a
novel object, check it out and remember the consequence”.
This primacy of curiosity was eponymous for the agent. In
case the colors of obstacles or malus fields have already been
determined they were avoided. Whenever there was a known
object on a field in the intended direction, a new direction of
movement was selected randomly. This is no long term plan-
ning strategy, only a consideration of the next step.

Decision making and problem solving After each single
movement, the agent checks whether the goal or any known
or unknown object is in sight, and if there is a contact with
the border. The checks have different priorities: Identifying
the color of bonus tiles has the highest priority. Once the
color of the bonus tile has been identified, approaching the
target is set above the tile identification. Finally it is eval-
uated whether the spaceship is at a border, if necessary the
direction of movement is reversed. Additionally, further ab-
stract procedural patterns were identified and made explicit,
which, for example, governed the handling of obstacles and
malus fields or determined the hierarchy of routines.

Strengths and weaknesses Overall, the agent performed
comparatively well, solving most of the challenges within the
given time constraints with a total of 83 productions. Yet,
since an initial decision was to design an agent that moves
around a lot rather than thoughtfully weighing each of its de-
cisions, wall-like rows of obstacles posed serious problems:
When an unknown object or the goal was situated behind a
row of obstacles, the agent would move towards it, result-
ing sometimes in the agent getting irresolvably stuck. It was
serendipity, provoked by the random selection of movement
directions, that sometimes helped the agent to circumvent
those problem situations nonetheless.

Intell-Agent

Uses a 12 tile diamond-shaped visual representation for rea-
soning. Intentions determine goal pursuit behaviour. Prefer-
ence to collect visible bonus points followed by reaching the
goal.
The Intell-agent represents its environment as a diamond-
shaped field consisting of 12 tiles (see Figure 3). This in-
formation, the agent’s current x- and y-position as well as
its last move, are saved in a “vision”-chunk in the imaginal
buffer consisting of 15 slots. Consequently it is able to detect
and avoid immediately adjacent triangular traps, which are
token (malus and obstacles) in an disadvantaged formation.

The goal buffer is relevant for representing the agents’
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states and intentions. States describe the various stages the
agent passes through as part of its goal-finding routine as de-
tailed below. Intentions specify the overall tactic of approach-
ing the set goal. The minimal and maximal x and y coordi-
nates of the grid field are also contained in the goal buffer and
represent the borders of the grid field. Lastly, the goal is re-
sponsible for upholding information about kind and position
of the current goal. The Intell-agents goal-finding routine is
structured in five stages shown in Figure 2B.

Searching the environment The visual representation is
updated based on the agents current position and its last mo-
tion. The visual-location module is used to check for tiles on
which the agent does not have any information yet. Tiles out-
side of the grid field are marked so that they won’t be moved
on.

Locating the goal The agent checks if the green goal object
is visible. If so, its location is stored in the declarative mem-
ory. In case a chunk with the goal’s location can be retrieved,
the agent directly proceeds to the next stage. The agent’s cur-
rent position and the goal position are then compared to de-
termine if the agent is next to the current goal. Based on its
intention at that stage, it will then either skip the next stage
and move directly towards the current goal (intention: reach)
or enter the goal setting stage (intention: explore).

During goal setting, the agent sequentially goes through a
list of priorities, only moving onto the next one in case the
previous one does not apply.

1. The agent’s top priority is to find out which color repre-
sents the bonus field. Therefore, if a tile with an unknown
color is detected and the bonus color is unknown its po-
sition is set as the current goal and its intention is set to
“reach”.

2. If however, the bonus color is known, reaching bonus tiles
becomes the highest priority. The agent tries to find the
visual-location of the nearest tile with the bonus color. If
successful, the bonus tile becomes the current goal and its
intention is set to “reach”.

3. If the bonus color is known but no bonus object is visible,
the agent looks for the green goal object. In case the green
goal object is not visible, the agent tries to retrieve the goal
position from the declarative memory. If successful, the
green object’s position will be set as the current goal and
the intention is set to “explore”.

4. If the green tile is neither visible nor retrievable, the agent
applies a searching heuristic. Depending on current posi-
tion of the agent relative to the grid field boundaries, the
agent will set its current goal to the center of the play-
ing field (if in the top half of the playing field), the lower
left corner (after the middle was successfully reached) and
eventually the lower right corner (after the left corner was
successfully reached).

Decision making and problem solving The agent tries to
reduce either its vertical or horizontal distance to the current
goal. If this is not possible, it will move onto an object that it
has not yet visited. This behaviour is facilitated using ‘bread-
crumbs’ which are placed on tiles’ representations within the
imaginal buffer that were previously visited. Such tiles are
avoided by the agent. All breadcrumbs are removed when-
ever any goal is reached.

When the agent seeks to identify the meaning of different
colors, it does so by moving on to a tile with unknown color
and checking for a visual location with red text. If none is
detected the tile color is saved as the obstacle color. If red
text is perceived, the agent’s movement is evaluated. Given
the agent has not moved, the color of the current goal is saved
as malus color. Otherwise the agent has successfully found
out the bonus color.

Strengths and weaknesses The strategy resulting from this
cycle is to maximize the score during level completion. This
can lead to prolonged run times and sometimes even unex-
pected behaviour, for example when the agent moves away
from the goal just to collect another bonus. Overall the per-
formance of the agent was satisfactory, but due to its tendency
to collect every bonus and the fairly high complexity of the
model (with a total of 226 productions) the agent is some-
times quite slow and exceeds the time limit of some chal-
lenges.

Figure 3: Intell-Agent’s
twelve tile representation
of the agent’s environment.
Each tile was indexed and
could carry the values
”empty”, ”breadcrumb”,
”out of bounds” and the
various object colors.

Performance Review
All four agents tried to cope with a partly unknown envi-
ronment and tried to apply complex cognition as defined by
(Funke, 2010). Thus the agents used mental processes for
deriving new information out of given information, with the
intention to make decisions, solve problems, and plan actions.
They had to perceive their environment and use their memory.
Not all mechanisms are cognitively plausible and are some-
times oversimplified, yet the agents were able to flexibly han-
dle new environments and settings and find their way to the
goal. Although the task was the same and required the same
cognitive skills for fulfilling the four requirements, the imple-
mentation of the individual agents varied a lot. The number
of productions is a first indication for this, with a range from
41 to 226 productions - with the lowest production agent still
performing fairly well.
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Table 1: Aggregated Agent Model Results

Agent # of productions Completed (out of 15) Avg. # of Moves Avg. Time (s) Avg. Score
Speedy 41 12 26.75 14.184 1145
Forest 53 4 24.10 29.50 80
Ms. Cap. Curious 83 13 39.46 39.78 1180
Intell-agent 226 13 26.61 62.04 1177.2

In Table 1 the different performances are listed and it be-
comes apparent that most agents were able to manage most
of the challenges - some of which were quite complex and
difficult to solve. Most importantly lessons were learned on
what was helpful to model such an agent having to cope with
a dynamic and incompletely known world, i.e. what kind of
knowledge representations were crucial and how reasoning
problems were solved.

The following insights were gained from modelling sit-
uated cognitive agents interacting with the introduced dy-
namic environment. First, relevant information about the
agent (self representation such as colour, once identified) and
non-changing information about the environment such as its
size are held available, usually in the goal buffer. Further rele-
vant information about the current context, acquired informa-
tion about the meaning of objects and information about the
goal location are also stored, usually in the imaginal buffer.
Second, sub-goals or identifying different phases of the task
are helpful to find flexible ways to solve specific problems
or to have access to specific productions. Third, as speed is
important, it is essential to identify what information is rel-
evant and would take too much time to retrieve often. This
information should be available in one of the buffers. Infor-
mation that is only necessary infrequently can be retrieved
from memory. Also pre-attentive visual processes were used
whenever possible and cognitively plausible, such as for self-
localization or when searching for specific information, con-
sequently saving time. Forth, strategies that are too rigid usu-
ally lead to situations where agents get stuck and have diffi-
culties to free themselves. Furthermore, keeping information
about past movement of the agent or what areas have already
been searched are greatly helpful.

Discussion

The main lessons learned by the students were (1) to develop
a better understanding of what cognitive plausible mecha-
nisms really are, where difficulties lie and how to change the
usual approach to this kind of task. Still, parts of the agents
show computational aspects rather than cognitive, but time
was restricted for the project. (2) The second lesson learned
was to realize how important it is to use detailed task anal-
ysis and visualizations of model structure for group commu-
nication while modelling. (3) The third point was that pre-
attentive visual processes are sometimes sufficient for simple
localization and checking purposes of the agent.

Lessons learned regarding the architecture used

ACT-R offers a lot of structures that are helpful to model flex-
ible and learning agents in task environment such as these.
Debugging and handling its output was a challenge some-
times. Visual grouping or perception of a ”field” and iden-
tifying borders was difficult to realize in a cognitively plau-
sible way. Additional visual support would be a very helpful
component for research on self-sufficient agents.

The project nicely showed the aspects and requirements
that Kurup and Lebiere (2012) listed for high-level cognition
in robotics. (1) Represent, integrate and use large amounts of
knowledge: it needs to be carefully considered what informa-
tion really needs to be stored and where. Storing the whole
grid field in our example would have slowed down the agents,
so this was not done. Rather, the students tried to find ways
to solve the most important problems with as little stored in-
formation as possible, since human participants would also
not store all tiles in the grid. (2) Learning patterns: in this
project, the agents learned the meaning of objects by interact-
ing with them and adjusted their planning accordingly. There
was not enough time to learn from difficult situations and ob-
stacle patterns, which would be highly interesting and poten-
tially address (3) Problem solving and reasoning. (4) Flexi-
ble, adaptive, dynamic, and real-time behavior was shown by
the agents. Explicit encoding of visual objects was prevented
as much as possible in order to not lose valuable time. The
agents were also able to flexibly cope with newly appearing
objects, an unseen goal and different environments - therefore
long-term planning was not possible. The last requirement,
(5) Interact with humans in a natural way, would require a
more refined approach.

This type of challenges for cognitive agents, as men-
tioned earlier, offers intriguing test beds to explore how flex-
ible models based on a cognitive architecture really are and
how much such approaches could add to existing agent ap-
proaches. Especially the topic of mental representations (e.g.
Clark & Grush, 1999) is crucial in such unpredictable envi-
ronments and for adaptive and complex behavior. This poten-
tial should be explored in more detail.
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Introduction
This work investigates people’s sensitivity to within-category
feature correlations in perceptual categorization by testing
two types of psychological similarity against each other.

Similarity is a central component of many psychological
categorization theories. Exemplar theories, for instance,
assume that people categorize new objects based on their
similarity to previously seen category members (Nosofsky,
1986, 1989). Traditionally, the underlying psychological
similarity between a pair of objects is modeled as the sum
of the objects’ squared feature value differences (Euclidean
similarity; e.g., Goldstone, 1994). The Euclidean similarity,
however, ignores the distribution of objects by assuming
uncorrelated features within categories. In turn, the
Mahalanobis similarity extends the Euclidean similarity by
accounting for within-category feature correlations. Results
from machine learning have shown that the Mahalanobis
similarity can outperform the Euclidean similarity in
categorization problems involving correlated features within
categories (Mao & Jain, 1996; Weinberger & Saul,
2009). Yet, in the psychological categorization literature,
there are mixed results regarding the extent to which
people take within-category feature correlations into account
(Chin-Parker & Ross, 2002; Ell, Smith, Peralta, & Hélie,
2017; Lancaster, Shelhamer, & Homa, 2013).

Therefore, the present work investigated if people use
within-category feature correlations for categorization.
Our work rigorously compared the correlation-insensitive
Euclidean similarity against the correlation-sensitive
Mahalanobis similarity by means of mathematical modeling
on data from an optimized category learning task.

Methods
We designed a standard trial-by-trial supervised, binary
category learning task (e.g., Nosofsky, 1989) with two
strongly correlated features within each category (r = .98).
In the task, participants learned to categorize a set of
stimuli from feedback and then categorized new test stimuli

without feedback. The category structure was selected using
simulation-based optimal experimental design (Myung &
Pitt, 2009). Our formal modeling framework were two
versions of the exemplar model of Nosofsky (1986, i.e., the
generalized context model); one version used the Euclidean
similarity, the other used the Mahalanobis similarity.

To optimize the experimental design, we searched for
a category structure that both model versions can learn
accurately and that maximizes the classification prediction
differences between the two model versions for the test
stimuli. Figure 1 shows that in the resulting optimal design
the Euclidean similarity assigns the test stimuli into the
category with lower straight-line distances, whereas the
Mahalanobis similarity assigns them into the category with
the matching correlational structure.

Figure 1: Category structure of the task involving a high
within-category feature correlation. Shown are the 20
learning stimuli with their true category (black and white
circles) and the 8 test stimuli presented after learning without
feedback (circles with question mark). EUCL = predictions
of the model using the Euclidean similarity; MAHA =
predictions of the model using the Mahalanobis similarity.

In the experiment, participants (N = 43; 14 females, Mage
= 25.56 years, SDage = 6.81 years) learned to classify 20
stimuli with feedback until they were more than 90% accurate
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across the last 100 trials; then, they classified 8 new test
stimuli without feedback. The stimuli were geometric figures
consisting of a circle of varying size and a line of varying
orientation (as in Nosofsky, 1989); category labels and visual
feature assignments were randomized across participants.

Results
The free parameters of both model versions were estimated
for each participant based on their classification learning
data using maximum likelihood. The resulting individual
parameter values were used to predict the respective
participant’s classification behavior for the test stimuli.

The results clearly show that most participants ignored
the within-category correlations. Specifically, participants
tended to classify stimuli ”T1-4” into category 1 and
stimuli ”T5-8” into category 0, in line with the predictions
of the Euclidean similarity, see Figure 2. Mathematical
modeling showed that, in the aggregate, the Euclidean
similarity predicted participants’ categorizations better
than the Mahalanobis similarity, median log-likelihood
across participants: Euclidean similarity model = -7.21,
Mahalanobis similarity model = -21.63, random-choice
model (predicting category probabilities of .50) = -16.64.

Figure 2: Responses and predictions for the test stimuli.
Bars and whiskers show the mean and the standard deviation,
respectively, across participants’ mean category responses for
a given test stimulus. The model predictions are aggregated
over participants with the mean. EUCL = Euclidean
similarity model; MAHA = Mahalanobis similarity model.

At the individual level, a participant was assigned to a
model if the model’s Akaike weight exceeded .67 for this
participant. The results show most participants were best
described by the Euclidean similarity (n = 33 of 43) with
strong evidence, see Figure 3. The remaining participants
were described by the Mahalanobis similarity (n = 4), the
random-choice model (n = 2), or unclassifiable (n = 4).

Conclusion
Our findings indicate that people do not include
within-category feature correlations in their representation
of similarity during categorization. Instead, people treat
every object as stemming from a category with uncorrelated
features, even if the true classification environment has
strong within-category feature correlations.

Figure 3: Model evidence strengths for each participant. For
each participant, the Akaike weights of the different models
are stacked upon each other and sum up to 1. EUCL =
Euclidean similarity model; MAHA = Mahalanobis similarity
model; RAND = random-choice model.
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Abstract
The Common Model of Cognition (CMC) has been
proposed as a high level framework through which
functional neuroimaging data can be predicted and
interpreted. Previous work has found the CMC is capable
of predicting brain activity across a variety of tasks, but it
has not been tested on resting state data. This paper adapts
a previously used method for comparing theoretical
models of brain structure, Dynamic Causal Modeling
(DCM), for the task-free environment of resting state, and
compares the CMC against six alternate architectural
frameworks. For a large sample of subjects from the
Human Connectome Project (HCP), the CMC provides the
best account of resting state brain activity, suggesting the
presence of a general purpose structure of connections in
the brain that drives activity when at rest and when
performing directed task behavior.

Keywords: Brain architecture, Cognitive Architecture,
Computational models, Dynamic Causal Modeling, fMRI,
Resting state.

Introduction
Despite a shared goal of understanding the underlying
mechanisms of the brain, research that focuses on
high-level structural models of cognition remains largely
isolated from efforts to interpret direct measurements of
brain activity. Many neuroscientists are reluctant to rely
on the results and conclusions from cognitive
architectures because, while the behavior of the models
often closely matches observed human data, the
mechanisms driving that behavior are rooted in the
principles of computer science and information theory.
Efforts have been made to connect components of
cognitive architectures to corresponding brain regions,
but direct biological brain functions are rarely well
captured by the more conceptual architecture modules,
and architectures often make incompatible assumptions
about the basic functional components that are needed to
support cognition.

The Common Model of Cognition
One successful attempt to achieve consensus is
represented by the so-called Common Model of
Cognition (CMC; Laird et al., 2017). The CMC is a
computational framework that can serve as a blueprint to
understand the organization of a human-like mind.

Abstract computations are categorized into five
functional components (long-term memory, working
memory, procedural memory, perception systems, and
action systems) with specific directional relationships
(Fig. 1A) between them.

Although it was not proposed specifically as a brain
architecture, a number of studies have found that the
CMC is surprisingly effective at modeling brain activity
across tasks and individuals (Steine-Hanson et al., 2018;
Stocco et al., 2018, 2021). In this interpretation, the
CMC’s functional components are mapped onto
large-scale brain regions (Fig. 1B) and their relations are
translated into predicted patterns of functional
connectivity. In other words, the neural counterparts of
the functional components and their connections serve as
a simplified architecture for the human brain, not only the
human mind.

Resting State Brain Activity
A secondary problem with cognitive architecture models
is their focus on the brain at work. Virtually all mappings
between cognitive architectures and brain activity have
been carried out based on neural responses to specific
tasks (Anderson et al., 2008; Eliasmith et al., 2012). This
bias was inherited from the brain imaging analyses
carried out to test the CMC, which, so far, have similarly
focused on task-based activity.

In contrast, while many analyses of fMRI data compare
differences in activity while subjects perform a variety of
tasks, a lot of recent work has instead focused on the
connectivity of the brain at rest. This line of research was
spawned by the observation that even spontaneous brain
activity shows a high degree of structure (Fox et al.,
2005; Sherzhad et al., 2008), which is revealed in terms
of correlations between the time courses of the activity of
different brain regions. These patterns of correlations are
fairly stable across individuals (Gratton et al., 2018) , to
the point that variations in the patterns of correlations
can be used to reliably predict abnormal neurological
conditions (Hohenfeld, Werner, & Reetz, 2018) and can
even be used to successfully predict the patterns of brain
activity during tasks (Cole et al., 2016; Yeo et al., 2011).
These findings suggest the possibility of an underlying
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structure to the brain that can be adapted to tasks as
needed, but is still present even when resting.

This paper extends the work of Stocco et al. (2021) by
testing the Common Model of Cognition on brain activity
at rest using a pre-defined network of brain regions.
Specifically, this paper adapts the framework of Dynamic
Causal Modeling (DCM) and compares the Common
Model of Cognition (CMC), against six other exemplar
network structures that could capture the underlying
structure of the mind.

Dynamic Causal Modeling
The DCM framework aims to identify the causal
influences of neuronal systems by quantifying the
dynamic fluctuations in brain activity (Friston et al.,
2003).

dy/dt = Ay + Cx (1)

In this equation, hemodynamic brain activity,
represented by vector y, is multiplied by matrix A, which
contains a set of parameters constituting a proposed
structure of connectivity between regions. Thus, the
structure of matrix A can be adapted to test alternative
connectivity architectures. C is a matrix of the
parameters that specify how external or driving inputs
elicit changes in brain activity, and x defines the matrix
of task inputs. Since there are not any external inputs
driving activity in the resting state data, the C matrix was
adapted to model low frequency fluctuations seen in this
state using deterministic inputs as task conditions (see
Materials and Methods, below).

Alternate Model Architectures
As pointed out in Stocco et al. (2021), DCM is a strictly
top-down, theory-driven method, and cannot be used to
infer an architecture from the data. Instead, to evaluate
the CMC as an architecture, its predictions were
compared against a collection of alternative networks that
consist of the same components, but different connection
patterns (Stocco et al., 2021). These alternate models are
not exact implementations of other cognitive architecture
systems, like ACT-R or SPAUN, but instead represent the
space of possible theoretical neural architectures.

The alternate architectures fall into two broad
categories, or families. In the “Hub-and-Spoke” family
(Fig. 1C), a single ROI is designated as the central
“Hub”, and is bidirectionally connected to all other ROIs.
However, none of the “Spoke” ROIs are connected to any
other - all activity must travel through the “Hub”. Three
different Hub-and-Spoke models are considered, based
on whether the role of the hub is played by the Prefrontal
Cortex, mapped to Working Memory (as proposed by
Cole at al., 2012), the basal ganglia, mapped to
Procedural Memory (as proposed by Anderson, 2007), or
the temporal lobe, mapped to Long Term Memory (as
proposed by Visser et al., 2012).

The “Hierarchical” family of models proposes an
alternate structure, wherein brain connectivity
implements hierarchical levels of processing that initiate
with Perception and culminate with Action (Fig. 1D).
Networks in this family conceptualize the brain as a
feedforward neural network model in which different
regions perform progressively greater levels of
representational abstraction (Huntenburg et al., 2018).
Three different hierarchical architectures are generated
based on the relative position of the basal ganglia
(mapped to Procedural Memory) in the hierarchy.
Specifically, the basal ganglia can be placed between
perception and long-term memory (as in models of
procedural categorization: Kotz et al., 2009; Seger et al.,
2008), between long-term memory and working memory
(as in models of memory retrieval: Scimeca & Badre,
2012), or between working memory and action (as in
models of action selection: Houk et al., 2007).

Broadly speaking, the CMC can be considered as a
“Hub-and-Spoke” structure, using Working Memory
(mapped to the Prefrontal Cortex) as the “Hub” ROI,
with an additional direct connection between Perception
and Action.

Figure 1: (A) The Common Model of Cognition (CMC);
(B) Proposed associations between components and
anatomical brain regions. (C) Three variations of
Hub-and-Spoke (HUB) models, and of (D) Hierarchical
(HIER) models. Arrows: dark blue, connections present
in both CMC and candidate models; red, connections
unique to candidate models; and dotted, connections
present in CMC and absent in candidate models.

Materials and Methods

The Human Connectome Project Dataset
The data used in this analysis was drawn from the Human
Connectome Project (HCP), a large scale effort to collect
neuroimaging data from healthy young adults. This study
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in particular analyzed a subset (N=168) of rsfMRI data
exclusively. For each subject, 14 minutes of rest data
(eyes open with fixation) were recorded prior to a run of
task data collection. A second rest run was recorded after
the task battery, and was not included in this analysis.
Between the two collection days, each subject had a total
of 28 minutes of data. Each day’s data was modeled
separately, and then combined in the final analysis.

Data Processing and Analysis
Image Acquisition and Preprocessing. MRI images
were acquired and minimally preprocessed according to
HCP guidelines (Barch et al., 2013; Van Essen et al.,
2013). Scans were taken on a 3T Siemens Skyra using a
32-channel head coil with acquisition parameters set at
TR = 720 ms, TE = 33.1 ms, FA = 52°, FOV = 208 × 180
mm. Each image contained 72 2.0mm oblique slices with
an in-plane 2.0 x 2.0 mm resolution. Images were
acquired with a multi-band acceleration factor of 8X.
These raw images then underwent minimal preprocessing
including unwarping, motion realignment, and
normalization to the standard MNI template. From there,
the images were then smoothed with an isotropic 8.0 mm
full-width half maximum Gaussian kernel.
Simulated Task Events Both general linear modeling
(GLM) and DCM analysis require a design matrix that
specifies the timing of external events that drive brain
activity. Traditionally, these events are task related; the
onset or absence of some stimuli. Rest data, by contrast,
is collected without any specific task structure, and the
recorded activity must be driven by internal and
unobservable patterns. Following Di and Biswal’s
method (2014), a series of slow oscillatory waves of
different frequencies were created as input “events” that
simulate background brain activity (Fig. 2A).
Specifically, eight different driving waves were generated
as sine and cosine waves with frequencies of 0.01, 0.02,
0.04, and 0.08 Hz, respectively. The frequencies of these
oscillations capture the canonical frequency range (0.1 -
0.01 Hz) of spontaneous fluctuations in brain activity
(Fox et al., 2005). An event is considered to be occurring
during the positive cycle of the wave. A second
assumption concerns how different events affect the
different regions. In task-based DCM analysis, it is
possible to make reasonable assumptions about which
regions are affected by which events, such as the
presentation of visual stimuli affecting a perceptual
region. Di and Biswal (2014) explored a subset of
possible regressor-by-region combinations to determine
the most appropriate. Here, we followed the procedure of
Ketola et al (2020) and let each region be potentially
affected by each oscillatory regressor (Fig. 2B). Note
that, while being the most general approach, this method
goes against our hypotheses that spontaneous brain
activity would follow a structured architecture, as it gives
every region the greatest opportunity to have its time

series modeled by external inputs rather than by the
network effects of other regions.

Figure 2: (A) Oscillatory waves (dotted lines) translated
into “box-car” plots of events (solid lines). (B) Each
event used as drivers for activity in all ROIs.

GLM. A GLM analysis was carried out to define the
event matrix x that is used in the DCM equation (Eq. 1).
In task based DCM, events were differentiated by type
and served as input to specific regions of interest. Since
the resting state does not have any tasks, and the
artificial events were used to capture background activity
patterns, all “events” were used as direct inputs to all
regions of interest (Fig. 2).
Regions of Interest Definition. Previous DCM analyses
relied on task-based activity to define specific regions for
each model component, but in the absence of a task
structure for rest data, an alternate method was needed to
determine regions of expected activity. Initial region
masks were created using NeuroSynth
(www.neurosynth.org), a platform that combines the
results of thousands of published fMRI results and
produces meta-analysis images of activity associated with
various higher level conceptual category terms. For each
of the five model components of the CMC model, a
corresponding term was chosen from NeuroSynth’s
database, and a summary statistical mask was produced
for each term, with each voxel having an associated Z
value representing the probability that the voxel would
show up a study associated with the term. These
individual masks, however, were large and produced
significant overlap when combined, meaning that activity
in a particular voxel could belong to more than one
region. To solve this problem, two thresholds were
applied to the original masks, one height threshold
applied to each individual voxel statistic and a minimal
extent threshold applied to each cluster size. Both
thresholds were calculated proportionally for each
region, i.e. as a proportion of the highest Z-score and of
the largest cluster within an image, respectively. The
proportional adjustment was done to prevent regions
with large clusters and high statistics, like perception,
from overtaking regions with comparatively low Z score
levels, like procedural memory. The Nelder-Mead (1965)
optimization algorithm was then applied to find
thresholds in the two-parameter space that would produce
the largest possible regions without any overlapping
voxels. The final values identified by the Nelder-Mead
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algorithm were a proportional height threshold of 0.5359,
and a proportional extent threshold of 0.4164. The final
masks are shown in Figure 3.

Figure 3: Final regions of interest derived from
Neurosynth activity masks. Individual ROIs were
selected from most active voxels within these areas for
each subject.

Model Fitting. Once the time-series for each ROI was
extracted, different networks were created by connecting
all of the individually-defined ROIs according to the
specifications of each model (Fig. 1). The predicted
neural activity for each model was then calculated using
Equation 1, and the predicted time course of BOLD
signal was then generated by applying a
biologically-plausible model of neurovascular coupling
to the simulated neural activity of each region. All of the
model parameters were estimated through an
expectation-maximization procedure (Friston et al., 2003)
to reduce the difference between the predicted and
observed time course of the BOLD signal in each ROI.
Model Comparison. The models were compared on the
basis of their likelihood function L(m | x). A model’s
likelihood is the probability of it producing the observed
data x; that is, L(m | x) = P(x | m). Group-level likelihood
values for a model m can then be expressed as the
product of the likelihood of that model fitting each
participant p, i.e., ∏pL(m | xp) . The log-likelihood is the
sum of all of the individual log-likelihoods: ∑p log L(m |
xp). Although more sophisticated model comparison
procedures have been proposed (e.g., Stephan et al.,
2009), the log-likelihood based metric used here is not
only the most easily interpretable, but also the most
relevant, as it specifically applies to cases in which it is
assumed that the model is constant or architectural across
individuals (Kasess et al., 2010).

Results

Regressor Quality Analysis
We first conducted a GLM analysis to ensure that our
oscillatory regressors successfully captured brain activity.
To do so, we calculated an omnibus ANOVA across all
oscillatory regressors at the participant level. This test
captures any variance that can be accounted for by any of
the oscillatory regressors. The resulting F-statistic map
was then log-transformed, yielding a measure of the

difference between the variance explained by regressors
and the residual variance (i.e., noise). Finally, a
group-level T-test was performed on the
individual-specific log-transformed F-maps. The result of
this analysis is a statistical test of whether the variance
captured by the regressors was significantly greater than
the variance of the residuals. The results are shown in
Figure 4, thresholded at a value of t(160) > 5.212, which
corresponds to p < 0.05 when corrected for multiple
comparisons through the Family Wise Error correction
procedure.

As Figure 4 shows, most of the grey matter voxels
exhibit oscillatory activity that was captured by our
regressors. Importantly, the significant voxels encompass
regions in all of our predefined ROIs, including the
medial temporal lobes (long-term memory ROI in Figure
3, visible in the coronal section of Figure 4) and the
subcortical basal ganglia (procedural memory ROI in
Figure 3, visible in the axial and sagittal sections of
Figure 4), which are notoriously affected by lower
signal-to-noise ratios in high-density neuroimaging
protocols.

Figure 4: T-test showing voxels whose brain activity was
significantly captured by the oscillatory regressors.

Comparison of Architectures
Each subject had two sessions of rsfMRI data, collected
on two separate days. Each session was modeled
individually, and then both sessions were combined on a
subject level for the comparison analysis. Figure 5
illustrates the group-level log-likelihoods of the models
in the rest condition. The figure presents relative
log-likelihoods: the lowest log-likelihood is subtracted
from all the others. As a result, the worst-fitting model
always has a relative log-likelihood value of zero, with
the best fitting model having the highest positive value.

Across both sessions, the CMC provides the best
account of resting state brain activity, when compared
against each of the six alternate structures. Because
log-likelihood is not sensitive to model complexity, it is
common to compute log likelihood in some penalized
form. For example, the common Akaike Information
Criterion (AIC) and Bayesian Information Criterion
(BIC) penalize likelihood by the number of parameters.
Both measures assume, however, that parameter values
are independently distributed, which is not the case for
DCM models (for example, connectivity values for the
same node tend to be correlated). For this reason, it is
common to use a different, penalized form of likelihood
known as Free Energy (Penny et al., 2012), which
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accounts for non-independent parameters. The values
reported in Figure 5 depict this penalized form of
likelihood, and thus already account for varying model
complexity.

Figure 5: The log-likelihood of the CMC architecture
compared to six alternate architectures across both
sessions of rsfMRI data.

Analysis of Bayes Factors
Although the evidence in favor of the CMC is apparent,
one might wonder exactly how significant the difference
in log-likelihood is. To express log-likelihood in an
interpretable form, we will use Bayes Factors (BF). The
BF1,2 between two models m1 and m2 is defined as:

BF1,2 = P(m1 | x) / P(m2 | x)

In other words, the value of BF1,2 represents the odds of
model 1 fitting the data better than model 2. Given the
definition of likelihood as L(m|x) = P(x|m), BF1,2 can be
expressed as

BF1,2 = eΔL

where ΔL = log L(m1 | x) - log L(m2 | x) is the difference
in log-likelihoods between model 1 and model 2. As a
guideline, Kass and Raftery (1995) suggest that values of
BF > 20 correspond to a value of p < .05 in a canonical
null-hypothesis test and provide “strong” evidence in
favor of model 1 over model 2, while values of BF > 150
provide “very strong” evidence. All of the BF values for
the comparisons of the CMC against all the other models
exceeded 10250, indicating that the evidence in favor of
the CMC is, in fact, overwhelming.

Random-Effects Analysis
Although the results provide strong evidence in favor of
the CMC, it should be noted that they are not directly

comparable with the model comparison approach
reported by Stocco et al. (2021). In the original paper, the
authors compared the different architectures by
measuring the relative probabilities that each architecture
would fit any given participant (Stephan et al., 2009).
This approach is conceptually different from the
log-likelihood approach because it is based on relative,
rather than absolute, fit to the data and because
participants are considered as a random factor, thus
giving different architectures the opportunity to fit
different subgroups of participants.

To provide a better comparison to the original
findings, we replicate the analysis method of Stocco et al.
(2021) with the current resting-state data. The results are
reported in Figure 6. In the figure, the curves represent
the densities of the relative probabilities that each
architecture would fit a participant. The superiority of the
CMC is shown by the fact that its probability density
function lies to the right of all other architectures.
Architectures can be quantitatively compared in terms of
exceedance probabilities, i.e. the probability that a point
randomly sampled from their density distributions would
have a higher probability than any other architectures. In
this case, the Common Model had an exceedance
probability of 96.4%, further confirming its superiority.

Figure 6. Probability densities that each architecture
would best fit the data from a participant in our sample.

Discussion
The major finding of this paper is the apparent presence
of an underlying structure of brain connectivity that
predicts activity even during undirected and task free
behavior. The implications of these results are broad.

First, they demonstrate the success in adapting a
traditional DCM analysis to resting state through the use
of simulated task events and externally generated ROIs,
paving the way for future explorations of resting state
data. In particular, the use of summarized fMRI data to
determine ROIs presents the opportunity to explore
increasingly complex model structures involving more
specific brain areas. While the CMC provides the best
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account of underlying connectivity, it remains only the
best model of those that we have tested so far, and is
deliberately composed of a few, high level components.
The use of more localized ROIs opens the door to
examining each component in greater detail; separating
visual perception from auditory perception, for example,
or decomposing the long term memory component into
semantic and episodic memory. The DCM framework
also allows models to account for modulatory
connections between regions, which, while not used in
this paper, provide further opportunities to define and
specify a general purpose framework of cognition.

While specific ROIs will always differ slightly across
subjects and tasks, the localized ROIs used in the present
study represent a much smaller search space than the
broad parcellation used to define ROIs in the original
CMC study. The data from the original study should be
reanalyzed using the more specific maps to ensure that
the findings still hold, with the ultimate aim of defining
more exact regions that can be used in future analyses.

The goal behind this study was to test large-scale
architectures in a task-free paradigm, using only signals
originating from spontaneous neural activity that would
capture the intrinsic organization of the brain (Fox et al.,
2005). Although this procedure has become the accepted
standard in neuroimaging research, the extent to which
resting state activity is truly spontaneous remains
debated: even at rest, participants do typically engage in
some form of thought, such as daydreaming or mind
wandering. A recent computational model of mind
wandering (Taatgen et al., 2021), for instance, argues
that mind-wandering is generated by the occasional
intrusion of task-unrelated goals and that, when activated,
it triggers a cascade of mental processes, such as memory
retrieval, that are similar to those required by canonical
tasks. The fact that the same architecture that was found
to best capture brain activity across multiple cognitive
tasks (Stocco et al., 2021) also explains brain activity at
rest supports the assumptions of this model and the idea
that spontaneous thought follows the same patterns as
task-directed thought.

The implications of a general framework for cognition
that remains persistent in the resting state will
significantly increase its applicability to other domains,
such as computational psychiatry and neurology.
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Abstract

Intelligence is fundamentally the ability for an agent to infer
causal dependencies in its environment. However, the pre-
cise conceptualization across systems and scales is a polemical
question. The concept of “Intelligence” may as well refer to a
quantitative measure of formal cognitive ability than to a quali-
tative property of skilled agency. This difficulty in understand-
ing the concept compounds when we try to scale to descriptive
and predictive models of collective behavior. While it is self-
evident that groups may leverage pairwise interactions or their
collective resources to tackle complex problems, is that pro-
cess only the sum of individual intelligence or is the group in-
telligent in its own right? If the latter, what does it mean for the
classical internalist conception of intelligence and agency? If
the former, then what is the proper scale of analysis in systems
of nested organization, such as human societies? This question
can be approach rigorously through a non-reductive account of
the physical processes underlying intelligence. Here I propose
that the latent model framework(with active inference as in-
trinsic reward mechanism) framework is a promising approach
that could live up to the multiple dimensions of adeptness re-
quired by any framework that would attempt to generalize cog-
nition across scales. A statistical state model for mathematical
state transitions can be built and can be used to further define
cognitive model.
Keywords: Collective cognition; Mathematical modeling;
Active Inference; Sate spaces; Latent spaces

Introduction
The view of mind as an experience generating machine or a
generative model goes further back than just recent Machine
learning breakthroughs (like Variational Autoencoders). This
paper takes a similar route. Starting out with explaining pos-
sible state-space configurations, a world-model (World Mod-
els, Ha and Schmidhuber) is mapped in the latent space. This
could be enough framework to explain individual actions in
an environment, just like it does with many model-based ap-
proaches to Reinforcement Learning. But, in contrast to most
RL approaches where reward is extrinsic and task structure
changes with it which works well in specific RL environ-
ments, where rewards are intrinsic in the complex environ-
ment itself (Reward is enough, Silver et. al) It fails to explains
intelligence at the collective level where the agents apart from
the environment, have formed a dynamic between themselves
too. This dynamic is represented through a collective latent
which can be traversed in an abstract space by the agents of
the collective for inference to eventually reach cognition as a
collective.

Towards a Free Energy Agent Cognitive Model
Agent’s configuration at an instant is defined by its state with
parameters interacting to form state variables. To establish a
stable ground I invoke the Free-Energy principle. While we
can argue about all derivations of intelligence, we can come to

standstill that the system exists. This is the basic formulation
of the Free Energy principle and everything is deduced from
this assumption with agent and environment in the frame.
The Active inference principle can be framed as the minimi-
sation of surprise (Friston, 2009) by perception and action.
Here, in discrete state models - agents select from different
possible courses of action (i.e., policies and their gradient of
preferences) in order to realise the preferences and thus min-
imise the surprise that they expect to encounter in the future.
This enables a Bayesian formulation of the perception–action
cycle (Fuster, 1990): agents perceive the world by minimis-
ing variational free energy, ensuring their model is consistent
with past observations, and act by minimising expected free
energy, to make future sensations consistent with their model.

Active inference describes the dynamics of systems that
persist (i.e., do not dissipate), and that can be statistically seg-
regated from their environment—conditions which are satis-
fied by biological systems. Mathematically, the first condition
means that the system is at non-equilibrium steady-state. This
implies the existence of a steady-state probability density to
which the system self-organises and returns to after perturba-
tion (i.e., the agent’s preferences). The statistical segregation
condition is the presence of a Markov blanket, where a set
of variables through which states internal and external to the
system interact (e.g., the skin is a Markov blanket for the hu-
man body).

Above is an example of a discrete state-space generative
model which is how the agent represents the world. The gen-
erative model is a joint probability distribution over (hidden)
states, outcomes and other variables that cause outcomes. In
this representation, states unfold in time causing an observa-
tion at each time-step. The likelihood matrix [A] encodes the
probabilities of state–outcome pairs. The policy (Pi) spec-
ifies which action to perform at each time-step. Note that
the agent’s preferences may be specified either in terms of
states or outcomes. It is important to distinguish between
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states (resp. outcomes) that are random variables, and the
possible values that they can take in S (resp. in O), which
we refer to as possible states (resp. possible outcomes).
Note that this type of representation comprises a finite num-
ber of timesteps, actions, policies, states, outcomes, possible
states and possible outcomes. The arrows represent causal
relationships (i.e., conditional probability distributions). The
variables highlighted in grey can be observed by the agent,
while the remaining variables are inferred through approxi-
mate Bayesian inference and called hidden or latent variables.
The Markov blanket of a random variable in a probabilistic
graphical model are those variables that share a common fac-
tor.

Concept of an Unsupervised Loss function and
Intrinsic Motivation

Since, most behaviour in individuals is directed or supervised
by a goal, agents seem conformity and don’t actually build
on cognitive structures. Here, the agents is set to traverse in
the abstract space without any prior goal or anything such, it
forms a geometrical projection on its own manifold, as the
process repeats, we can see what the function is being opti-
mised for intrinsically over the timesteps.

Convergence on the Latent
Letting the agents interact with the environment unsupervised
and intrinsically, they map out common latent abstract ge-
ometric manifolds (shown below). This is the moment of
Cognitive Convergence on abstract space. The energy-based
modeling view would be how a collective converges to a man-
ifold of equivalent energy.

Results and further research directions
The Convergent latent can later manifest itself at common
playground of lingual abstractions through language, implicit
demographic knowledge through culture or any common cog-
nitive structure that developed intrinsically within the collec-
tive. The framework can also be used to describe any process
where goal(s) is(are) not explicit and system is set to evolve
with random initial configurations.
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A cognitive computational model of collective search with social information

Sabina J. Sloman, Robert L. Goldstone and Cleotilde Gonzalez

For many if not most of the decisions we make in day-to-day life, such as picking a restaurant for dinner
when traveling in a new city or choosing a university to attend or a job offer to accept, our knowledge about
the valuations of possible outcomes is incomplete. However, many current decision theories specify how to
make decisions when the possible outcomes and their valuations are fully specified.

When information is incomplete, the quality of that information and how we use it to inform our decisions
is especially important. Social information is a critical source of information that we use to assess the costs
and benefits of our actions: Usually, we extrapolate from not only our own experiences, but also from the
experiences of others, e.g., anecdotes told by friends or reviews read online. The structure of the social
environments in which we receive information from others—our social networks—can vary in important
ways. While a friend’s anecdote may only be told to a few in a tight-knit social network, online reviews are
available to everyone who cares to look. It turns out the structure of our social networks can have dramatic
effects on our ability to identify and make the best decision possible.

In a 2008 experiment, Mason, Jones, and Goldstone explored the effect of participants’ social network
structure on their abilities to identify the best decision given incomplete information. Mason, Jones, and
Goldstone (2008) designed a spatial search task where participants selected integers on a number line and
received points as a function of the number they guessed. Participants had access to not only their own
outcome information, but also to the outcome information of their network neighbors. Mason et al. (2008)
found that when the payoff function was smooth with an obvious global maximum—when extrapolating
from a relatively small amount of information was usually sufficient to identify the best decision—members
of more interconnected networks more frequently guessed within the global maximum. By contrast, for
jagged problems with more than one local maximum—complex problems for which identifying the best
decision usually required exploration—members of more dispersed networks more frequently guessed within
the global maximum.1

Our work builds on this result. We synthesize work from various areas of cognitive science into a compu-
tational cognitive model of search in a social context: the Social Interpolation Model (SIM). We then explore
the implications of our model by running simulations of interacting agents whose behavior is determined by
the SIM. By embedding these agents in the same task structure as the one designed by Mason et al. (2008),
we explore how these dynamics are affected by the structure of the agents’ social networks.

All of our simulations were run with groups of 15 agents, arranged in the same four network structures as
the participants in Mason et al. (2008)’s studies. On each of 15 consecutive rounds, these agents “guessed”
integers between 0 and 100. On a given round, an agent’s guess was informed by the outcome information
generated by their own previous guesses and the guesses of their network neighbors.2

The SIM posits that agents rely on similarity-based generalization (Shepard, 1987) to integrate the
outcome information they’ve already seen in order to infer the number of points they are likely to receive
from decisions whose payoffs are as-yet unknown. An agent’s probability of selecting a particular number is
proportional to the number of points they think that decision is most likely to confer. The SIM has three
free parameters, or avenues for individual difference: 1) the breadth of the agent’s generalization gradient,
2) the quality of the agent’s uninformed prior about unseen options, and 3) the degree to which the agent
weights their own experiences more heavily than the experiences of others.

Like Mason et al. (2008), we find that network structure matters: Interconnected networks perform well
when the best decision is easy to identify, but comparatively worse when the payoff function is more complex.
We find that the most effective parameter settings also depend on the complexity of the problem: Agents who
generalize broadly or attach a high value to unobserved options do well on more complex landscapes—and

1The most interconnected network configuration was a fully-connected network, in which every agent had access to the
outcome information for every other agent. The most dispersed network configuration was a regular lattice, in which group
members were arranged in a circle and had access to the outcome information of only their two nearest neighbors (with some
members also connected to others two steps away). Two other network structures were characterized by average path lengths
that fall between the extremes defined by the fully-connected and regular lattice networks. See Mason et al. (2008) for complete
details.

2While the full version of the SIM allows for retention and aggregation of outcome information from multiple rounds, agents
in the simulations reported here retain and aggregate information from only the most recent round.

1
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Figure 1: Percentage of simulated agents’ guesses that were within one unit of variance of the payoff functions’
global maximum.

worse on simpler landscapes (see Figure 1).3 Taken together, our results show that the effect of reducing
the flow of social information by putting agents in a more dispersed social network can have similar effects
to inducing the same agents to generalize more broadly or to be more optimistic about unseen options.

In summary, our main contributions are 1) the development of a computational cognitive model of search
in a social context, 2) an exploration of the effects of the values of the SIM’s free parameters, 3) the
deployment of our theory in an agent-based model, and 4) an exploration of the effect of different social and
reward environments on the SIM’s dynamics. Our work has important practical and theoretical implications.
Practically, our agent-based framework can allow exploration of the effects of different interventions in
different contexts. Theoretically, we synthesize various areas of cognitive science into a single model that can
make predictions about individual- and group-level behavior in decision-making environments characterized
by incomplete information and the availability of social information.
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Abstract

In this paper I present a model of aperture passage judgment
(judgment of whether an agent can walk through an aper-
ture, rotating shoulders as needed) and performance (initiation
and termination of shoulder rotation while walking through an
aperture) in ACT-R 3D. The model is adapted from Somers
(2016) and represents a first attempt to unify findings across
multiple experiments with a single model. The cognitive
model is embodied in a robotics simulator, with motor control
operated directly by the ACT-R model. The model exhibits an
improved fit as compared to Somers (2016), in the same ex-
periment, and a reasonable fit in an additional experiment, in
exaggerated conditions.
Keywords: ACT-R; embodied cognition; motor control; cog-
nitive modeling; affordances;

Introduction
Walking through narrow apertures, such as a narrow door-
way, may require a shoulder rotation in order to reduce the
frontal width of the body to afford passage. From an eco-
logical psychology perspective, an ‘affordance’ is a property
or set of properties (or relations, depending on author) in the
environment that specify to an agent what actions are avail-
able (Chemero & Turvey, 2007; Chemero, 2003; Stoffregen,
2000; Şahin, Cakmak, Doğar, Uğur, & Üçoluk, 2007; Tur-
vey, 1992). Research in support of affordances has come
from a range of domains including stair-climbing (Warren,
1984), aperture passage (Warren & Whang, 1987), reach-
ing (Carello, Grosofsky, Reichel, Solomon, & Turvey, 1989),
grasping (Tucker & Ellis, 1998), and a number of sports abil-
ities (Fajen, Riley, & Turvey, 2008).

A common theme in affordance research is to identify π-
numbers that relate some dimension of the environment (E)
with some dimension of body (A) as a ratio: π = E/A. These
π-numbers are typically presented as support for Gibson’s no-
tion of direct perception (Gibson, 1986). Direct perception is
the claim that our actions are not mediated by strong, internal,
semantically-laden represenations of the environment. Affor-
dances are, instead, presented to us when the properties of the
environment match the action capabilities of the agent.

Aperture passage was first studied by Warren and Whang
(1987). In their series of experiments they attempted to
identify the π-number that modulates shoulder rotation when
walking through apertures. Since Warren and Whang’s clas-
sical paper, there have been a number of follow-up experi-
ments that either support or extend their findings. Fath and

Fajen (2011), for example, modify visual properties in a vir-
tual environment, in aperture passage experiments, to iden-
tify a set of visual properties that contribute to the aperture
passage affordance. A number of studies have investigated
the aperture passage affordance for participants carrying ob-
jects (Wagman & Taylor, 2005; Wagman & Malek, 2007;
Higuchi, Cinelli, Greig, & Patla, 2006; Higuchi, Seya, &
Imanaka, 2012). Higuchi, Takada, Matsuura, and Imanaka
(2004) studied passability judgments and aperture passage
performance for novel wheelchair users. Finally, Chang,
Wade, and Stoffregen (2009) studied passability judgments
of people grouped in a dyad. In most cases these authors sub-
scribe, to varying degrees of commitment, to Gibson’s theory
of direct perception, and therefore offer very little with re-
spect to an information processing description.

In recent work by Somers (2016, 2017), a processing de-
scription and accompanying computational cognitive model
of the first experiment in Warren and Whang (1987) is pro-
vided. Introduced as proof-of-concept for the simulation en-
vironment, ACT-R 3D, the aperture-passage model proposes
that aperture-passage judgments and aperture-passage perfor-
mance rely on a comparison of the geometric properties of
body schema and the geometric properties of the environ-
ment (Somers, 2017). While their model has a reasonable
fit to the data in Warren and Whang (1987), given the results
in Higuchi et al. (2012) (discussed below), one can anticipate
that their model cannot account for aperture passage perfor-
mance in exaggerated conditions. In this work we adapt their
model to account for experiments by both Warren and Whang
(1987) and Higuchi et al. (2012).

Aperture Passage Research
Warren and Whang (1987) performed a series of experiments
aimed at showing that aperture passage is directly perceived.
In their first experiment they had participants walk through
apertures of various sizes, rotating their shoulders as needed.
Participants were grouped according to size: large or small.
Larger participants rotated their shoulders more than smaller
participants when passing through apertures of equal width.
When expressed as an aperture-width to shoulder-width ra-
tio, however, group differences were eliminated, suggesting
that shoulder rotation is modulated by the ratio between aper-
ture width and shoulder width. This experiment established a
critical ratio (π-number) of 1.3 at which participants, regard-
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less of their size, would change from a forward posture to a
posture that included a shoulder rotation. This π-ratio, they
maintain, is a constant, used by an agent to determine when
shoulder rotation is required.

The second and third experiments in Warren and Whang
(1987) are aimed at establishing the source of optical infor-
mation contributing to the passability affordance judgment.
In these experiments the authors modify binocular/monocular
vision, movement and non-movement conditions, as well as
introduce an Ames-room-like illusion. These experiments are
meant to establish that the perception of passability is scaled
to body units as opposed to absolute size judgments (in some
extrinsic dimensions). While these experiments are out of
the scope of the models developed for this work, it is worth
noting that the conclusions of these two experiments are not
entirely incommensurate with the model as the model is ag-
nostic with respect to the source of optical information con-
tributing to the geometric comparison process.

Higuchi et al. (2012) had participants walk through aper-
tures while carrying bars of varying lengths in order to ex-
aggerate the frontal width of participants. While the au-
thors align themselves theoretically with Warren and Whang
(1987), with respect to direct perceptions, they also some-
what diverge, offering some insight about the control of rota-
tion. They propose that the central nervous system controls
rotation by maintaining a constant safety margin between the
agent and the edges of the aperture. By exaggerating the
length of the bar they are able to test whether rotation is ex-
tremely exaggerated (as would be the case if the π-ratio of 1.3
was used). Their reasoning is as follows:

Consider an agent, 40 cm in width. From Warren and
Whang (1987) we know that an agent would rotate their
shoulders at a π-ratio of 1.3, leaving a 6 cm safety margin.
If that same person was carrying a bar 100 cm in length and
rotated based upon the same ratio, then they would create a
15 cm safety margin ((100 * 1.3 - 100) / 2 = 15). This over-
rotation would be markedly inefficient (Higuchi et al., 2012)

Instead, Higuchi et al. (2012) propose that the central ner-
vous system controls rotation to maintain a consistent safety
margin. Assuming a safety margin of 6cm, a π-ratio of 1.12
((100 * 1.12 - 100)/2 = 6) should only be required for safe
passage. That is, participants should only begin rotation their
shoulders when the ratio between the aperture and themselves
(including a bar) is 1.12, and should only continue rotation
until they have established a 6cm gap between themselves (or
the bar) and the edge of the aperture. Their hypothesis pre-
dicts: 1) that the amplitude of rotation should become smaller
as width increases and π-ratio is maintained; and 2) that spa-
tial margins should remain constant regardless of absolute
size or π-ratio.

In their experiment they manipulated aperture ratio and
agent widths by having the participants carry bars that mod-
ify their frontal width by either a factor of 1.5 or 2.5 (as well
as a control condition, bar length 30cm). Aperture widths are
set to create ratios of 0.9, 1.0, and 1.1 to encourage large ro-

tation. Authors found a main effect of bar length, such that
the angle of rotation was smaller as bar length increased (ad-
dressing 1). With respect to spatial margin, they found a main
effect of bar length.

ACT-R 3D
ACT-R 3D (Somers, 2016) is a time-synchronized simula-
tion environment for the Python variant of ACT-R (Stewart &
West, 2006) that consists of a middleware, a camera class, vi-
sion module, motor module, as well as a humanoid robot. The
ACT-R 3D middleware is time-synchronized with the Mobile
OpenRobots Simulation Engine (MORSE) (Echeverria, Lass-
abe, Degroote, & Lemaignan, 2011; Echeverria et al., 2012).

Vision ACT-R 3D adds a new camera class to MORSE, Ge-
ometric Camera, that provides a single, structured, retinotopic
geometric description of the scene from the perspective of the
agent. On the ACT-R side, an updated vision module, in-
spired by the SOS Vision System (West & Emond, 2002) in
Python ACT-R, which makes accessible ‘features’ of the en-
vironment to the agent (the agent has no access to object la-
bels). Currently the vision module has algorithms for detect-
ing obstacles and openings. Requests to the vision module
from the ACT-R production system are parameterized in or-
der to filter information top-down. For example, when given
a request for an opening, chunks that describe the minimum
size of the opening are used as parameters for the request.
If multiple features match the request (e.g. there are multiple
openings), the returned chunk is selected based on a weighted
random choice, weighted by a salience factor, as described by
West and Emond (2002).

Motor Control The motor module in ACT-R 3D maintains
a hierarchical, symbolic and numerical representation of body
parts (currently only the ones being modelled). Each body
part has degrees of freedom represented by minimum and
maximum values on axes of rotation. As the agent moves
its body, the minimum and maximum values achieved are
stored in declarative memory, functioning as body schema.
(Schwoebel, Branch Coslett, & Buxbaum, 2001; Schwoebel
& Coslett, 2005; Coslett, Buxbaum, & Schwoebel, 2008).
The motor module also includes functionality to provide pro-
prioceptive feedback to estimate 3D body dimensions in a
given posture. How the representations are achieved are cur-
rently beyond the scope of the module and is implemented
with a measure of the agent’s bounding box. The bounding
box values are stored with the body schema in declarative
memory.

Further details about the time synchronous middleware, the
Geometric Camera, vision module, motor module, as well as
the simulated robot are available in (Somers, 2016).

Geometry-Based Affordances Theory
Presumably due to the theoretical commitments of ecolog-
ical psychology, research into aperture passage (Warren &
Whang, 1987; Wagman & Taylor, 2005; Higuchi et al.,
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2012; Fath & Fajen, 2011) is generally sparse with respect
to an overall information processing description. Warren and
Whang (1987), for example, discuss optical information that
might contribute to a passability judgment but miss critical
details about cognitive control of the overal amplitude of ro-
tation. Alternatively, Higuchi et al. (2012), suggest that the
central nervous system maintains a safety margin between the
shoulders and the edges of the aperture (which is a theory ex-
plored here), but do not offer a theory about the processes or
representation involved.

The model presented in this work represents an instanti-
ation of geometry-based affordances presented in (Somers,
2017). At a functional level, the theory proposes that a cer-
tain class of affordances are realized by an agent as a result
of a comparison process that compares the geometric prop-
erties (width, depth, height) of some feature in the environ-
ment and the geometric properties of a current or stored body
schema. For more details regarding geometry-based affor-
dances and evidence of the role of body schema, see the work
by (Somers, 2017).

The theory/model proposes four phases: 1) a
body schema encoding phase, 2) passability judg-
ment phase, 3) rotation initiation, and 4) rotation
completion. The four phases are described below.

Body Schema Encoding Phase The body schema en-
coding phase occurs pre-experiment as part of the agents
life. As instantiated in ACT-R 3D, body schemas are
stored when a rotated joint reaches its minimum or max-
imum rotation along the principle axes of rotation. In
the simulations, once a simulated robot is generated (ac-
cording to the size constraints for the experiment), the
robot performs shoulders rotations in each direction mul-
tiple times to encode the body schema in declarative memory.

Judgment Phase One of the processes not discussed in
aperture passage literature is that passability judgments rely
not only on the current frontal width but also, potentially
some future frontal width, after the shoulders have been ro-
tated. A π-ratio simply cannot account for passability judg-
ments without also introducing either a representation, asso-
ciation process, or simulation process. The judgment phase
in this theory/model results from two possible cases. In the
first case, body geometry is estimated from a body schema of
the current posture, and is used top-down in a visual search
for an aperture of appropriate size. If the vision system is
able to return a feature in the environment that meets those
constraints, the returned aperture is deemed ‘passable’. If no
environment feature is returned by the vision system, the sec-
ond case proceeds.

In the second case, a (potential) series of memory requests
are made for stored body schema that closely match the cur-
rent body posture (e.g. standing, no shoulder rotation) and
the current action capabilities (e.g. walking) but relaxed in

an increasing number of postural details. In the case of aper-
ture passage, memory requests would be for a posture that
affords walking, allowing for variation in torso posture (such
as shoulder rotation). If a suitable schema is returned, the ge-
ometric properties of that schema are used top-down to filter
the visual results in the manner described above.

Rotation Initiation Another aspect of performing aperture
passage not discussed in the literature is how the rotation is
initiated. In this phase, the agent is already walking towards
the aperture, and in the model, rotation is initiated when the
bottom-up vision system is triggered by the proximity to the
aperture. When the edges of the aperture are within a mul-
tiple of the agent’s rotation radius, the vision system pushes
information into the visual buffer, and the agent responds by
carrying out a motor plan. The body schema retrieved in the
judgment phase is maintained in working memory, and used
at this point as the motor plan.

Rotation Completion The theory proposes that rotation
completion is the result of a moment-to-moment comparison
between body schema and optical information about the aper-
ture. This is, to some degree, similar to the theory in Higuchi
et al. (2012). The moment-to-moment comparison continues
until frontal width of the agent is less than the width of the
aperture. Although the body schema retrieved in the judg-
ment phase, of fully rotated shoulders, was used as a goal
state for the motor module, the agent need not always ro-
tate the shoulders maximally. In other words, the goal state
of the motor system was to fully rotate the shoulders, but a
moment-to-moment visual update limits the rotation as a re-
sult of the comparison process. It is in this process that the
current model differs from that of Somers (2016). In partic-
ular, the model presented by Somers, inspired by (Warren &
Whang, 1987), multiplies the current body schema by a con-
stant to overestimate body width. The model presented in
this work favors a comparison process that maintains a safety
margin, following the findings and theory of Higuchi et al.
(2012).

Model and Experiments
In Somers (2016), the author used the same metric for pass-
ability judgment as for rotation completion. That is, their
model ended rotation when it was determined that the the
agent’s frontal width, multiplied by a constant (1.139), was
less than the width of the aperture. Given the experimental
findings in (Higuchi et al., 2012), however, one can fully ex-
pect that the model would over rotate in exaggerated agent-
width conditions, especially considering their model exhib-
ited a mild over-rotation in large aperture conditions. In the
following we present changes to the model in Somers (2016)
and run experiments to for both Warren and Whang (1987)
and Higuchi et al. (2012).

Model
The model described in this section goes through the four
steps described above: body schema encoding, judgment, ro-
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tation intitation, and rotation completion. One of the main
factors in producing measurable behavior (rotation degree)
is the temporal dynamics of the model. The temporal con-
straints imposed on the model due to the production sys-
tem, motor module, and the vision module affect, in partic-
ular, when the model will initiate or terminate rotation, cre-
ating a source of variability. That said, the kinematics of the
simulated-robot agents also has a major affect on degree of
rotation.

One of the main assumptions across all models is that they
rotate with a constant, instantaneous velocity of 120°per sec-
ond. The only known aperture-passage study to report on
the kinematics of shoulder rotation is from Fath and Fajen
(2011), where participants are immersed in virtual environ-
ments. Fath and Fajen reported participants initiating rotation
between 0.5 and 0.7s before reaching the aperture with rota-
tion degree varying from approximately 20°and 60°. A pa-
rameter search was conducted with approximate values (from
literature) and a rotation rate of 120°per second (the upper
bound as described in Fath and Fajen) was used in all models.
This is the same rotation rate used in the model by Somers
(2016).

The other kinematic assumption in the model that has a ma-
jor impact on the rotation prediction is walking rate. Warren
and Whang (1987) provide a set of average walking rates in
the four condition of their first experiment of: 1.29 m/s and
1.28 m/s (small vs. large) normal speed conditions and 1.61
m/s and 1.77 m/s (small vs large) in the fast speed conditions.
The simulated robots moved at the average speeds reported in
Warren and Whang (1987), according to size and speed, for
all experiments.

There are three main parameters that affect the rotation in
the model. RadiusMultiplier is used by the model to affect
when to initiate rotation, bottom-up. The RadiusMultiplier
parameter was set the same value as in the model in Somers
(2016) (3.0). A new parameter was introduced for the pur-
poses of this study: VisionConstant. The VisionConstant pa-
rameter represents the safety margin in Higuchi et al. (2012)
and is set to 3cm accordingly (3x2 = 6cm). Given those pa-
rameters as constants, a parameter search for the parameter
VisionMultiplier was run. In the model by Somers (2016) the
VisionMultiplier parameter was used both in the judgment
phase and in the rotation completion phase, as a means of
over-estimating body width. In this model, the parameter is
only used in the judgment phase (to detect apertures) and after
a coarse parameter search, for apertures of 40cm and 55cm,
VisionMultiplier parameter was set to (1.36). Note, this value
is similar to the π-ratio of 1.3 found by Warren and Whang
(1987).

Experiment 1
We re-ran the experimental conditions from Somers (2016),
a simulated version of the first experiment in Warren and
Whang (1987). Warren and Whang had participants (group:
small vs. large) walk through aperture of different sizes in
two speed condition (normal vs fast). They found that par-

Figure 1: Human vs. Model, rotation angle by aperture width,
normal speed. Black and gray line represent small and large
human rotation (respectively). Blue and red lines represent
small and large model (respectively).

ticipants rotated more in response to smaller apertures, that
larger participants rotated more than smaller participants, and
faster speed resulted in higher degrees of shoulder rotation.

Because there is a floor effect in human data, the models
were only run through apertures up to maximum width of
70cm. All other experimental conditions in Warren and
Whang (1987) were re-created as accurately as possible
within the simulation environment. In the simulation there
were 5 agents per group condition and agent sizes were
chosen from a normal distribution centered around the
mean human sizes for each group (40.4cm for small and
48.4cm for large) with a standard deviation as reported
(SD = 2.0cm for small and SD = 0.7cm for large). Agents
walked at the average speeds per group reported in Warren
and Whang, as described above. There were a total of 20
agents, 10 per size group (large and small). Each agent
walked through the apertures 15 times for a total of 15 *
20 (agents) * 2 (speed) * 5 (apertures) = 3000 simulation runs.

Results (Ex 1) Because the original data from Warren and
Whang (1987) was not available, limited analysis of fit is pro-
vided. A visual comparison between the results in Warren and
Whang and the simulation runs are presented in Figure 1 for
the slow condition and Figure 2 in the fast condition. A Pear-
son’s correlation on the means (as all data was not available)
indicate a fit of 0.98 and 0.91 for the small and large agents in
the normal speed condition; and 0.98 and 0.92 for small and
large agents in the fast speed condition. A combined RMSE
for large and small agents was 8.78°in the normal speed con-
dition and 8.27°in the fast speed condition. In addition to
comparative statistics, an ANOVA was run on the model data
to see if the same main effects were present in the model as
in the human data. Large participants had larger degrees of
rotation than smaller participants. Participants rotated more
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Figure 2: Human vs. Model, rotation angle by aperture width,
fast speed. Black and gray line represent small and large
human rotation (respectively). Blue and red lines represent
small and large model (respectively).

for narrower apertures. These results are similar to Warren
and Whang (1987). Unlike the human data, the model rotated
less in fast speed conditions than in slow conditions.

Discussion (Ex 1) Visually the model has a reasonable fit
to human data in both the normal and fast conditions. There
is evident an over-rotation for large agents (red) at apertures
55cm, 60cm, and 65cm before no longer rotating at an aper-
ture of 70cm. Two potential factors (and their combination)
could account for this over rotation. First, delays caused by
the constraints of the productions system can very easily lead
quick rotation inaccuracy. Second, the rotation rate (120°per
second) is the high-end of that reported by Fath and Fajen
(2011). A more thorough fit for ration rate could have been
done but would not have been informative and would have
been a parameter fitting exercise without rotation rate data.
This model exhibits a better fit to the data than the model pre-
sented in Somers (2016).

Experiment 2
The model for the second experiment is the exact same
model, with the exact same parameters as in experiment one.
The only differences between them are the differences in
the simulated robot which reflect the size of participants in
Higuchi et al. (2012) and, as described above, the addition
of a bar at agent-width ratios of 1.5, 2.5, as well as a control
condition (30cm). There were a total of 10 agents, who each
performed 15 trials of each aperture * bar combination.

Results (Ex 2) Figures 3 and 4 illustrate the mean angle of
rotation and mean safety margins for both human and model
data. Agents rotated less with larger bars, and rotated less
at higher aperture ratios. The effect of bar and aperture ratio
are both significant for the model (ps < 0.01). A Pearson’s
correlation indicates a fit of 0.80 for rotation angle and 0.21
for safety margin. Note, however, that the model exhibits a

Figure 3: Human (grayscale) vs Model (color) rotation angle
for bar ratios: control, 1.5, 2.5 and aperture ratios: 0.9, 1.0,
and 1.1.

large over rotation at the 2.5 times bar condition. Excluding
that condition, the Pearson’s correlation is 0.84 for absolute
rotation and 0.89 with respect to safety margin. For the con-
trol and the 1.5 bar ratio condition, mean absolute rotation is
comparable to human participants.

As shown in Figure 4, the model has a reasonable fit for
mean spatial margin in both the control and 1.5 times con-
dition. Agents leave greater spatial margins when carrying
larger bars. All effects are significant (ps < 0.01).

RMSE, excluding the 2.5 bar condition was approximately
9 degrees of absolute rotation and approximately 2cm with
respect to safety margin.

Figure 4: Human (grayscale) vs Model (color) safety margin
for bar ratios: control, 1.5, 2.5 and aperture ratios: 0.9, 1.0,
and 1.1.

Overall Discussion
Importantly, by implementing this research in a cognitive
model, interesting questions are raised about the overall in-
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formation processing involved in the task. Previous litera-
ture has largely overlooked the need to explain how aper-
tures are judged as passable in some future posture. While
body schema is one possible answer, and the one explored
here, there could be other explanations worth investigating.
Proposing body schema also requires a means of storage, a
means of retrieval, detail on the representational content, and
requisite processes provided in the present work.

Over-rotation is evident in the model across both experi-
ments. It is very likely that the high rotation rate of 120°per
second is a large contributor to the over rotation. For exam-
ple, in the 2.5 times bar condition of experiment 2, human par-
ticipants may be exhibiting more caution by either rotating or
walking more slowly, and attending to the rotation more thor-
oughly. The qualitative change in patter in the human data in
Figure 4, at the 2.5 condition is at least suggestive that there
may be an alternate strategy as compared to the other condi-
tions. It is perfectly plausible that a more thorough parameter
search could have resulted in a better model fit, however, to do
so would not be well motivated, as the model is constrained
by the physical and kinematic properties involved the exper-
iment. Alternatively, there may be low-level implementation
details in the in processing for the camera, due to calculations
at such an obtuse angle, which could account for both the in-
crease in variance and the higher means in Figure 4. Finally,
of course, it could be that the theory in the model is wrong,
and an alternate theory and set of processes is required for a
unified explanation of the experiments.

The purpose of the research presented here is not to present
an absolutely correct model but, rather, to motivate empirical
research that could falsify it and, in turn, lead to refinements,
or alternatives. Given the reliance on the temporal dynamics
of the model, and the relationship to the physical and kine-
matic properties of rotation, this model motivates a more thor-
ough account of the physical responses of participants, par-
ticularly rotation rate, as discussed above. There are, further,
more qualitative observations from the model such as rotation
initiation that could benefit from empirical measures. From
a cognitive perspective, an alternate account of the bottom-
up process for initiating rotation as proposed here, could in-
clude a more thorough motor plan, or some form of simula-
tion that allows the agent to program the rotation initiation,
rotation speed, and, possibly, the rotation termination, with-
out moment-to-moment monitoring.

Finally the role of body schema in a cognitive model
presents an interesting research direction. The implementa-
tion of body schema for this project, as body configurations
stored in memory, is undoubtedly crude, however, it would
be interesting to see the development of stronger motor con-
trol mechanisms in an architecture such as ACT-R. This is
especially true with respect to modeling complex tasks, in
complex environments, where processes such as aperture pas-
sage judgments enhance agents with capacities to make au-
tonomous action decisions without requiring pre-labeling or
apriori knowledge of simulation environments.
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Abstract

Reasoning about conditional statements is relevant in science,
culture, and our everyday life. It has been shown that humans
do deviate from a classical logical interpretation of condition-
als. Consequently, in the past years a number of cognitive
models based on Bayesian or mental model approaches have
been developed, whose performance is normally judged based
on their ability to fit aggregate data of participants. Here, we
diverge by focusing on the individual instead. Moreover, we
propose a different model testing paradigm by analyzing on an
existing large data set, how good current models are in predict-
ing an endorsement of an individual reasoner on a scale from
0 to 100%. Towards this goal we reanalyze the data by rig-
orously distinguishing between test and training data set, by
making existing models for conditional reasoning predictable
such as the Dual Source Model (Singmann, Klauer, & Beller,
2016) and a model by Oaksford, Chater, and Larkin (2000).
We also implement a modeling idea of Pearl based on possi-
ble worlds. We can show that all three models perform equally
good in predicting an individual reasoner’s endorsement and
that they meet an empirical baseline (the median of the most
frequent answer). A discussion on the gained insights in un-
derstanding conditional reasoning concludes the paper.
Keywords: Predictive modeling; cognitive modeling; condi-
tional reasoning

Introduction
In order to understand how human cognition works, a va-
riety of cognitive models have been developed throughout
the years and fitted to various experimental data. For exam-
ple, consider the following reasoning task about a conditional
statement (c.f., Singmann et al., 2016):

If a balloon is pricked with a needle, then it will pop.
A balloon is pricked with a needle.

How likely is it that it will pop?

Your task would be to provide an answer between 0 and
100%. Now, imagine that a cognitive model is provided with
the same task and makes a prediction of your response. Given
experimental data, we propose that cognitive models are ap-
plied in such a predictive setting to each individual, as illus-
trated in Fig. 1. Comparing the true response and the predic-
tion for all participants leads to a novel approach of cognitive
model performance evaluation.

Motivated by the idea of Feynman that in order to fully
understand something, one needs to be able to re-create it,
Riesterer, Brand, and Ragni (2020) introduce a predictive
modeling task in the syllogistic reasoning domain. They eval-
uated the predictive performance of syllogistic theories using

Figure 1: Predictive modeling task for endorsement rates

a modeling framework1 called CCOBRA. Riesterer et al.’s
(2020) focus is on the syllogistic domain, where a reasoner
has only 9 answer options, meaning that a model either pre-
dicts the correct answer out of the possible 9 or not. This is
where the scenario differs in our case. Here, we are dealing
with a more complicated predictive task – one for endorse-
ments that can be any value in the range 0-100. To understand
the complexity of this task, consider the previously given rea-
soning task example once again. Since you are provided with
the rule that if a balloon is pricked, it will pop, you would
most likely gravitate towards answering with a 100%. But
what happens, if:

The balloon is without air, i.e., empty.

Then the balloon would not pop and you might give an an-
swer that is less than 100%. Such aspects are called disablers.
If an individual is aware of many disablers, their conclusion
endorsement might be lower. On the other hand, there can be
additional cases, called alternatives:

A balloon can also pop, when it is pricked with
something else than a needle.

Hence, depending on the cases different reasoners have in
their minds, the given responses might differ. This introduces
challenges when trying to predict how much a specific rea-
soner endorses a possible conclusion.

Existing models and their comparison
In this paper we focus on the conditional reasoning domain.
Conditionals are statements of the form “If X then Y” (also
written as X→Y, where X is called the antecedent and Y the

1https://orca.informatik.uni-freiburg.de/ccobra/
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consequent), often used to describe a causal relationship be-
tween two propositions X and Y. Given a conditional (called
major premise) and a current state of a proposition (called mi-
nor premise), a conclusion can be inferred about the state of
the other proposition. There are four inference forms: modus
ponens (MP), modus tollens (MT), affirming the consequent
(AC) and denying the antecedent (DA), as shown in Table 1.

Table 1: Inference Forms

Name MP AC DA MT

Premise 1 X→Y X→Y X→Y X→Y
Premise 2 X Y ¬X ¬Y
Conclusion Y X ¬Y ¬X

Singmann et al. (2016) studied the endorsements of the
respective conclusions for the four inference forms in four
experiments. Three of them focus on contents with varying
amounts of disablers and alternatives. The fourth experiment
introduces speaker expertise. We want uniform data, so we
do not consider it. The authors also present a performance
comparison of Bayesian modeling approaches for conditional
reasoning. They are built upon the idea that a conditional “If
X then Y” is understood by a conditional probability P(Y|X).

Oaksford et al. (2000) proposed that reasoning about a con-
ditional rule can be modeled by the three parameters P(X),
P(Y) and P(¬Y|X), the last one allowing for exceptions. Two
extended versions using one and two additional exception pa-
rameters (Oaksford & Chater, 2007) and a model based on
the Kullback-Leibler-Distance, have been statistically com-
pared to a newly developed model – the Dual-Source-Model
(DSM) – that assumes that individuals integrate two differ-
ent kinds of processes: A knowledge-based component where
they take Oaksford et al.’s (2000) approach and extend it with
an additional form-based component, integrating both with a
weight λ. We will present and explain the technicalities of
these models in a following section.

While explicitly stating that model comparison should take
model fit and model flexibility into account, due to the lack
of Maximum Likelihood Estimation abilities for AIC/BIC,
only a model fit using R2 has been computed (Singmann et
al., 2016). The R2 goodness-of-fit values for the four mod-
els were used in a Linear Mixed Model (LMM) with random
effects. Overall the DSM had the highest R2, meaning that
it was able to account for the highest percentage of variance,
i.e., it had the best performance. So far the models have been
evaluated on a statistical level given the analysis approach
based on the R2 and the LMM. In the following, however,
we will focus on process aspects and – we will analyze if a
model queried for a yet untested person is even able to predict
an endorsement of a conclusion from 0 to a 100%.

Our goal: Evaluating the predictive power of models
The current state of analysis does not convey yet, if the de-
scribed models are predictive. When provided with observa-

tions on other participants’ endorsement answers to a set of
reasoning problems (= training data set), a cognitive model
is called predictive for a (untested) reasoner, if it can correctly
predict the inference endorsements (between 0 and 100%) for
those problems (= test data set). This is rather easy for a
yes/no question, as we only have two answer options for the
model’s prediction. However, it is much more challenging to
develop a predictive setting for endorsement rates that range
in the interval 0 - 100. Hence, this paper’s first research ques-
tion is: How can we develop a predictive task setting and
evaluate the predictions and how can we adapt and evaluate
the existing models to provide this prediction?

Our second research question – as current models are prob-
abilistic – is it possible to have a cognitive model based on
mental models? This is often questioned, as endorsement
problems are usually considered new paradigm. Pearl has
suggested approaches that combine a model structure with
probabilities, which we will implement and compare too.

The paper is structured as follows: First, we present ex-
isting experimental data and Bayesian cognitive models for
conditional reasoning. Second, we present an idea of Pearl,
which we adapt to represent inference form endorsements.
Third, we elaborate on how the benchmark was implemented.
To conclude the paper, we present its predictive results, fol-
lowed by a discussion.

Data and Cognitive Models for Conditionals
We consider the experimental data provided in Singmann et
al. (2016)2, specifically the Experiments 1, 3a and 3b with
199 participants. In Exp. 3a and 3b, participants are divided
in three groups. In two groups, participants are provided ad-
ditional information in the form of alternatives and disablers,
whereas the participants in the last group are provided only
with the conditional task. All three experiments use the same
four contents that have a varying amount of disablers and al-
ternatives, both quantified with ‘Few’ and ‘Many’, shown in
Table 2. The participants’ task was to provide endorsement
rates for the four inference forms as a probability in the range
0 - 100%. Each content is presented as a full conditional in-
ference and as a reduced inference, i.e., no major premise,
e.g., MP:

A balloon is pricked with a needle.

How likely is it that it will pop?

Bayesian Cognitive Models
In the 60s a deductive path of cognitive modeling was fol-
lowed, based on the assumption that logic is the basis for rea-
soning (Evans & Over, 2004). However, with time it has been
shown that humans deviate from logic when given deductive
reasoning tasks, and therefore, their responses are deemed
false. That motivated the development of a new, Bayesian
paradigm, where the models are based on probabilities and
allow for background knowledge to be integrated when rea-
soning (Oaksford & Chater, 2020).

2The data can be found at https://osf.io/zcdfq.
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Table 2: Contents used in Singmann et al. (2016) experiments.

Keyword Content Disablers Alternatives

Predator If a predator is hungry, then it will search for prey. Few Few
Balloon If a balloon is pricked with a needle, then it will pop. Few Many
Girl If a girl has sexual intercourse, then she will be pregnant. Many Few
Coke If a person drinks a lot of coke, then the person will gain weight. Many Many

Oaksford et al.’s (2000) model (OC) Oaksford et al.
(2000); Oaksford and Chater (2020) propose a probabilistic
model for conditional reasoning. By using a 2 × 2 contin-
gency table, as in Table 3, they represent conditional rules,
where a = P(X) and b = P(Y), probabilities of the antecedent
and consequent, respectively and ε = P(¬Y|X) is the excep-
tion parameter.

Table 3: Contingency table for a conditional rule “If X then
Y” Oaksford et al. (2000). There are three parameters: the
probability of the antecedent P(X) denoted by a; the proba-
bility of the consequent P(Y) denoted by b; and a third pa-
rameter ε for the probability of the exception P(¬Y|X).

Y ¬Y

X a(1− ε) aε

¬X b−a(1− ε) (1−b)−aε

Derived from Table 3, this model uses the following equa-
tions for inference endorsement:

MP: P(Y|X) = 1 - ε DA: P(¬Y|¬X) =
1−b−a · ε

1−a

AC: P(X|Y) =
a(1− ε)

b
MT: P(¬X|¬Y) =

1−b−a · ε
1−b

As already mentioned, Oaksford and Chater (2007) present
a more sophisticated version of this model. We decide to still
take the original 2000 variant into consideration as the DSM
builds up on it, as explained in the following.

Dual-Source Model (DSM) The DSM (Singmann et al.,
2016) is an extension of Oaksford et al.’s (2000) model. It
assumes that individuals integrate two different kinds of in-
formation: background knowledge about the content and in-
formation related to the logical form of the inference. It uses
three types of parameters:

ξ(C,x) – knowledge-based component, depending on the
content C and inference x, i.e. how much does an individ-
ual endorse an inference solely based on their background
knowledge about the content

τ(x) – form-based component, reflecting the subjective
probability of the inference form x, i.e. how much does an
individual believe in the validity of an inference regardless
of the content

λ – a weight given to the form-based component (integrat-
ing ξ(C,x) and τ(x) using Bayesian model averaging)

Applying the DSM to experimental data requires that partici-
pants have given endorsements to both a reduced inference

and a full conditional inference. The model expresses the
reduced inference endorsement through its knowledge-based
component for content C and inference x:

Er(C,x) = ξ(C,x)

The ξ(C,x) parameters are obtained by using Oaksford et
al.’s (2000) equations, as shown above. Then, the endorse-
ment of the full inference x with content C is given by:

E f (C,x) = λ · {τ(x)+(1− τ(x)) ·ξ(C,x)}+(1−λ) ·ξ(C,x)

The λ parameter determines how much do individuals rely
on form validity versus their background knowledge. τ(x) is
the degree of belief in the full inference form. In case of un-
certainties concerning the inference, the individual falls back
to their background knowledge, through the weight (1 - τ(x))
given to the knowledge-based component.

Models and Probabilities: Applying an Idea of Pearl
ε-semantics Pearl (1991) introduced ε-semantics, a ‘formal
framework for belief revision’, where belief statements are
interpreted as statements of high probability and belief revi-
sion shapes current beliefs on newly available evidence. This
approach seems to be most fruitful in our case, because dis-
ablers or alternatives can be such ‘updates’. The idea of Pearl
is based on the idea of possible worlds (or models) that can
be assigned a probabilistic assignment (Pearl, 1991, p. 5):

“Let L be the language of propositional formulas, and let
a truth-valuation for L be a function t, that maps the sen-
tences in L to the set {1, 0}, (1 for ‘true’, 0 for ‘false’).
To define a probability assignment over the sentences
in L, we regard each truth valuation t as a world w and
define P(w) such that ∑w P(w) = 1. This assigns a prob-
ability measure to each sentence l of L.”

Before diving into our application of Pearl’s idea, we will
briefly touch upon mental models. A mental model consists
of the truth states of the premise’s propositions. Given a con-
ditional premise “If X then Y”, the initial mental model that
an individual would construct is the one where both proposi-
tions are true, i.e. XY.

The Mental Model Theory (MMT) (Johnson-Laird &
Byrne, 1991, 2002; Johnson-Laird, Khemlani, & Goodwin,
2015) assumes that once the initial model is created it trig-
gers the recollection of relevant facts and knowledge. Those
facts can either serve as evidence that the initial model is cor-
rect or will stimulate a search for alternatives leading to a
second process where an extended mental model representa-
tion is obtained, also called a fleshed-out representation. It
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Figure 2: Boxplot depicting individual performance through the absolute difference between the predicted value and the true
response. Overall mean absolute difference beneath the model’s name. The comparable performance between OC, DSM and
ε-MMT points to (a partial) functional equivalence.

contains models where X is false (¬X), as shown in Table
4a. This representation consists of all possible combinations
of truth-values for X and Y for which the conditional “If X
then Y” is true, which Johnson-Laird and Byrne (2002) call
the principle of truth. This coincides with the material impli-
cation definition which is the leading interpretation of condi-
tionals in the deductive paradigm.

The ε-MMT
ε-MMT takes the mental model representation of all the con-
ditional’s propositions’ truth state combinations, which we
will refer to as possible worlds. In contrast to MMT, it also
allows for the world X¬Y to exist, thus abandoning the ma-
terial implication interpretation. Given a premise containing
two propositions, X and Y, all possible worlds described by
the premise along with the corresponding probability values
are shown in Table 4b. Given a conditional “If a balloon is
pricked with a needle then it pops”, the probability of the
world ω2, where the balloon is not pricked with a needle (X
= 0) and it pops (Y = 1) is p2.

Table 4: Representations of a conditional premise “If X then
Y” with mental models and as possible worlds.

Mental M. Fleshed-out M.
X Y X Y

... ¬X ¬Y
¬X Y

(a) Johnson-Laird and Byrne
(2002)

World X Y P
ω1 0 0 p1
ω2 0 1 p2
ω3 1 0 p3
ω4 1 1 p4

(b) Possible worlds, probabil-
ity distribution P and values
pi, i ∈ (1,2,3,4)

ε-MMT follows the same approach of previous accounts in
the Bayesian paradigm, e.g. Oaksford et al. (2000), assuming
that an individual’s inference form endorsement can be ex-
pressed as a conditional probability of the conclusion given
the minor premise.

P(β|α) = P(α∧β)

P(α)
(1)

Following the definition of conditional probability, as
shown in Eq.1 the four expressions shown below are ob-

tained. They describe the endorsement of the four inference
forms through the probability distribution P of the condi-
tional’s worlds (Table 4b):

MP: P(Y|X) =
p4

p3 + p4
DA: P(¬Y|¬X) =

p1

p1 + p2

AC: P(X|Y) =
p4

p2 + p4
MT: P(¬X|¬Y) =

p1

p1 + p3

The parameters are bound by their sum, ∑i pi = 1, meaning
that the number of free parameters for modeling one task is
three. Total number of parameters to model an individual
hence depends on the number of tasks they have to complete.

Benchmark
In order to evaluate the three presented cognitive models, we
implemented a benchmark within the framework CCOBRA,
following Riesterer et al.’s (2020) approach. As already men-
tioned, their focus is on the syllogistic domain, where a model
either predicts the correct answer out of the possible 9 or not,
whereas our goal is to predict a value in the range 0-100.
This poses a difficulty in adopting the same idea of judg-
ing a model based on whether it predicted the exactly cor-
rect answer or not. Instead, we are interested in how close
the model’s prediction is to the true reasoner’s answer. The
framework was extended to calculate the absolute difference
between answers and predictions, rather than check for ac-
curacy. In their benchmark, a theory is considered to have a
good performance if it has a high accuracy rate. In our case,
a cognitive model aims for a low absolute difference.

Generally, in order for the cognitive model to be able to
predict a response as accurately as possible, it needs to be ex-
posed to already existing data, i.e. a training set, from which
it can learn. Here, we used Singmann et al.’s (2016) exper-
imental data which we presented earlier. Since all three ex-
periments have the same contents, we combined their data
into one set, as the authors did in their original study. When
provided with the same data for both training and testing, as
in our case, the CCOBRA framework uses a leave-one-out
cross-validation method – models are fitted on every partici-
pant, except the one whose answers are to be predicted. The
same process is repeated for each participant.

In the training phase, we fit the models to the participants’
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Table 5: Medians of the models’ parameters per task and conditional presentation form. Values discussed below are in bold.

Form Task ε-MMT1 Oaksford-Chater2 Dual-Source Model3
p1 p2 p3 p4 a b ε ξ(C,MP) ξ(C,AC) ξ(C,DA) ξ(C,MT)

Reduced Inference
Predator .44 .06 .03 .59 .56 .60 .10 .90 .85 .80 .86
Balloon .48 .12 .05 .38 .38 .48 .12 .88 .70 .77 .91
Girl .23 .06 .42 .13 .63 .23 .68 .33 .87 .92 .45
Coke .27 .20 .14 .29 .47 .53 .37 .63 .56 .55 .63

Conditional Inference
Predator .46 .05 .02 .62 .56 .59 .08
Balloon .49 .07 .02 .53 .46 .53 .08

As aboveGirl .32 .06 .22 .35 .60 .41 .39
Coke .33 .15 .06 .40 .47 .55 .23

1 Probabilities of possible worlds ωi, see Table 4b, we have p1 = P(ω1), p2 = P(ω2), p3 = P(ω3), p4 = P(ω4), note that only 3 parameters
are necessary because of ∑i pi = 1; 2 The three parameter values are: a = P(X), b = P(Y), ε = P(¬Y|X); 3 Knowledge-based parameters
ξ(C,x) for content C and inference x. The same values are used in the conditional case.

answers by optimizing the models’ parameter values such that
the absolute difference between the predicted answer and the
reasoner’s response is minimized. In order to do that we used
Python’s scipy.optimize.minimize3 with the method Se-
quential Least Squares Programming (SLSQP). This method
was chosen because it allows for constrained minimization.

Following Riesterer et al. (2020), we included a Random
model as a lower bound, which in our case gives a random
value in the range 0-100 as a prediction. Our models do not
adapt to the individual, so we also included a Most Frequent
Answer (MFA) model as an upper bound. In old paradigm
experiments such a model would count the number of times
an inference has been accepted or rejected and would predict
the outcome that was most frequent. However, now we have
a far more complex situation, dealing with a big range of val-
ues, to which we had to adapt this idea by having the MFA
model give the median of the responses as a prediction.

Predictive Modeling Results
We judge a model’s performance by the mean of the absolute
differences between the model’s predictions and the individ-
uals’ answers. A lower absolute difference indicates more
accurate predictions and therefore, better performance.

Figure 2 illustrates the model performance for each indi-
vidual. The probabilistic models have similar results, all three
greatly outperforming the Random model, while being com-
parable to the MFA model, but not better. OC and the DSM,
both established models in the current Bayesian paradigm
give an impressive performance. But, now we can also see
that ε-MMT, a model-based approach is a valuable competi-
tor in this probabilistic paradigm.

Having a predictive performance that is as good as an em-
pirical model is an accomplishment for the probabilistic cog-
nitive models. However, if we compare only the three of
them – their performance is not very different. So, we pro-
ceed with the analysis by investigating the models’ parameter
values and how they aid in explaining the individuals’ con-
ditional interpretations. The median values of the models’

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html

parameters are shown in Table 5. In the reduced inference
case participants are not provided with a rule, so their back-
ground knowledge is more prominent and that is reflected in
the parameter values. We use now X for the antecedent of a
conditional, and Y for its consequent (“If X then Y”). In the
case of ε-MMT, the parameter p2 describes the probability
of the world ω2 where Y happens even if X does not and its
values are higher for tasks with ‘Many’ alternatives, in con-
trast to ‘Few’. The parameter p3, on the other hand, is the
probability of the world ω3 where X is true, however Y is
not and through higher values shows the presence of ‘Many’
disablers. It can be seen how when a conditional has been
provided, the belief in these two worlds diminishes. For OC,
the most noticeable impact is on the ε parameter which is
the probability of the exception P(¬Y|X). Its values are ex-
ceptionally higher for tasks with ‘Many’ disablers. A lower
value for a = P(X) is present in the case of ‘Many’ alterna-
tives, showing that X does not need to be true for Y to happen.
Likewise, b = P(Y) reflects the presence of ‘Many’ disablers
which would prevent Y from occurring. The influence of al-
ternatives and disablers is reflected in the conditional case as
well, though at a smaller scale due to the conditional rule re-
stricting the integration of background knowledge, similarly
to ε-MMT. For the DSM, we have the four knowledge-based
parameters ξ(C,x) for each content C and inference form x.
Their values correspond to the inference form endorsements
in the reduced inference case. Alternatives suppress the logi-
cally invalid forms, AC and DA, which is shown through ξ’s
values for the tasks with ‘Many’ alternatives. Similarly, as
disablers suppress the logically valid MP and MT, the corre-
sponding ξ values for tasks with ‘Many’ disablers are notice-
ably lower. The other parameters have the following median
values: τ(MP) = 1.00, τ(AC) = 0.40, τ(DA) = 0.49, τ(MT) =
0.88 and λ = 0.78. Larger values of τ for MP and MT show
higher beliefs in the logically valid forms MP, MT.

Considering each individual from 199 participants, 81
were best predicted by OC, another 81 by the DSM and 37
by ε-MMT. That lead us to the conclusion that among these
three models, there is not a single one that “dominates” the
others. Therefore, in order to support the idea that one sin-
gle model can not capture every individual, we combined all
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three models into what we call an ensemble model, using for
each individual the model that made the best prediction. This
model consists of the best that these cognitive models can of-
fer and it outperformed the MFA Model by reaching a mean
deviation of ca. 16%. The purpose of this ensemble approach
is to show that integrating strategies captures individuals best.

Discussion and Conclusion

Our first research question was if it is possible to predict a
conclusion endorsement varying in the range between 0 and
100, and not a dichotomous “yes” or “no” response. Yes – our
results show that two Bayesian models exposed to a training
data set can generate predictions on unseen data with a mean
deviation of 17%. With this, we are establishing a new test-
ing paradigm by not asking how good are the models in ex-
plaining existing data, but rather how good can they predict a
reasoner’s answers? By doing that we can elicit new insights.
E.g., Singmann et al. (2016) showed that the DSM outper-
forms other probabilistic models when comparing their fits.
However, evaluating the predictive power, the DSM does not
perform better than the model it is built upon, the Oaksford et
al.’s (2000) original probabilistic model, meaning that in this
task only that one source is enough. We posed the question
whether it would be possible that a model-based approach
could compete with Bayesian models. Elqayam and Over
(2013) discuss how old paradigm theories, like the MMT, fo-
cus on truth preservation from assumptions and cannot ac-
count for irrationality in human decision making. Here we
took MMT’s conditional representation and adapted it such
that it does not follow the old paradigm’s material implica-
tion interpretation and extended it with probabilities based on
Pearl’s (1991) ε-semantics. With that, we showed that – yes,
a model-based approach can indeed compete with established
Bayesian models. The comparable performance of the 3 cog-
nitive models indicate a functional equivalence and similar
processes, but, they do differ in their representation. None of
the single models predictive performance was better than the
MFA. This has been regarded in other domains such as syllo-
gistic reasoning as an empirical upper bound for static models
(Riesterer et al., 2020). By combining them into a ensem-
ble model and introducing a better representation flexibility
we showed that this performance upper bound can be sur-
passed while still having the tools to give insight into individ-
uals’ conditional reasoning, capturing individual differences.
By looking into the models’ parameter values we learn how
disablers and alternatives influence the reasoners’ representa-
tion of the conditional from different perspectives. Consider
a task with ‘Many’ disablers, through ε-MMT’s p3 param-
eter we understand that the individual’s belief in the world
ω3, where the antecedent has happened but the consequent
has not, is stronger. OC shows us that individuals assign a
high probability to the conditional’s exception, P(¬Y|X). The
DSM shows through its ξ parameters how disablers suppress
the logically valid MP and MT, which is a reasoning effect
that has been long recognized in this field (Byrne, 1989). We

took into consideration experiments that deal with meaning-
ful contents. Data is (still) quite scarce, as the focus in exper-
iments has largely been on reasoning about abstract material.
Our interest is in how humans reason in their everyday life,
where most of our reasoning takes place. Hence we use such
material. Nonetheless, the methods can be applied to abstract
problems too.

This work opens future research lines in comparing how
parts of models can be translated into each other. It not only
allows to ground some of the functional equivalence we have
already identified, but it would additionally help recognize
where models deviate and what reasoning strategies might
be missing when modeling an individual. With that, pre-
dictions of the reasoner’s conclusion endorsement would im-
prove, which would lead to a better understanding of the rea-
soning processes, making this path of not only fitting models,
but also challenging their predictive capabilities an exciting
one, opening many doors to a new way of adaptive modeling.
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Abstract

In order to gain insight into how people acquire certain refer-
ence biases in language and how those biases influence online
language processing, we constructed a cognitive model and
presented it with a dataset containing reference asymmetries.
Via prediction and reinforcement learning, the model was able
to pick up on the asymmetries in the input. The model pre-
dictions have implications for various accounts of reference
processing and demonstrate that seemingly complex behavior
can be explained by simple learning mechanisms.
Keywords: implicit causality; reference; cognitive modelling

Introduction
If you congratulate someone, most often it is because of
something they did, whereas if you apologize to someone,
most often it is because of something you did. This pref-
erence to attribute the cause of an event to a particular en-
tity is known as the implicit causality (IC) bias and as such,
verbs like apologize and congratulate are known as IC verbs.
These verbs can be further separated depending on whether
causality is attributed to the grammatical subject or object.
For example, when asked, participants consistently attribute
the cause in (1a) to Kaitlyn and the cause in (1b) to Marie
(e.g., Brown & Fish, 1983; Rudolph & Forsterling, 1997).

(1) a. Kaitlyn angered Marie.
b. Kaitlyn comforted Marie.

Implicit causality has mainly been applied to investi-
gate reference processing, in particular pronoun resolution
(e.g., Garnham, Traxler, Oakhill, & Gernsbacher, 1996;
Järvikivi, Van Gompel, Hyönä, & Bertram, 2005; Koornneef
& Van Berkum, 2006). In a self-paced reading study Koorn-
neef and Van Berkum (2006) had participants read sentences
like those in (2) and found significantly slower reading times
for sentences like (2b), where the pronoun was inconsistent
with the bias set-up by the verb, compared to sentences like
(2a), where the pronoun was consistent with the bias set-up

by the verb. Furthermore, the effect was significant immedi-
ately following the pronoun, suggesting that IC information
is used proactively, influencing comprehenders’ expectations
about subsequent reference.

(2) a. Linda praised David because he had been able to
complete the difficult assignment with very little
help.

b. David praised Linda because he had been able to
complete the difficult assignment with her help
only.

Other studies have investigated implicit causality in cases
where the pronoun cannot ultimately be disambiguated by
gender information. When participants are presented with
sentences like those in (3), continuations for (3a) are pre-
dominantly about Molly, the subject, whereas continuations
for (3b) are more evenly distributed between the subject and
object referents (e.g., Kehler, Kertz, Rohde, & Elman, 2008;
Stevenson, Crawley, & Kleinman, 1994). This has been taken
as evidence that IC can modulate well established structural
biases, such as the first mention and/or subject bias, which
reflect the typical pattern of people interpreting ambiguous
pronouns as referring back to first-mentioned and/or subject
referent, which in English are most often confounded (e.g.,
Gernsbacher, 1989; Järvikivi et al., 2005). Eye-tracking stud-
ies have also shown that implicit causality affects the on-
line processing of pronouns (e.g., Järvikivi, Van Gompel, &
Hyönä, 2017).

(3) a. Molly apologized to Sophie. She .
b. Molly congratulated Sophie. She .

It is not exactly clear how knowledge about certain in-
terpersonal exchanges, like congratulating and apologizing,
ends up influencing language processing. One possibility is
that when language users encounter an IC verb (and are not
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already privy to the causal information), they naturally gen-
erate an expectation about which referent will be referred to
subsequently. In the case of subject-biased IC verbs, this ex-
pectation manifests as a continuation, such that the listener
expects to continue to hear about the subject referent. In
the case of object-biased IC verbs, the expectation instead
manifests as a shift, such that the listener expects attention
to shift from the (grammatically prominent) subject to the
(less grammatically prominent) object. These expectations,
about which referent will be referred to subsequently, can in
turn interact with expectations about the form of the refer-
ence (i.e., whether a name or a pronoun will be used). For
instance, there is evidence that subject pronouns like she are
more likely to be used to refer back to preceding subjects,
whereas names are more likely to be used to refer back to
preceding objects (e.g., Arnold, 1998; Kehler et al., 2008;
Stevenson et al., 1994). Thus, in the case of subject-biased
IC verbs, listeners may not only expect to hear about the sub-
ject referent, but also that a pronoun will be used.

Not only is it unclear how knowledge of implicit causal-
ity ends up influencing language processing, it is also unclear
how such knowledge is acquired. One possibility is that over
time language learners pick up on asymmetries present in the
input (and then make use of this knowledge when process-
ing language). Unfortunately it is quite difficult to assess
the relative frequency of the different reference possibilities
in one’s actual language input (see Sukthanker, Poria, Cam-
bria, & Thirunavukarasu, 2020). To our knowledge no cor-
pus study has been conducted to investigate the frequency of
referring to the subject versus the object following implicit
causality verbs. Similarly, it is difficult to assess how often
pronouns like she actually refer back to the preceding sub-
ject. In a corpus of children’s books, Arnold (1998) found
that third person subject pronouns co-referred with the previ-
ous sentence’s subject in 64% of cases. However, it is unclear
if this would hold in a larger and more diverse corpus that also
includes natural spoken language. Most of what we know ac-
tually comes from sentence completion studies (e.g., Ferstl,
Garnham, & Manouilidou, 2011), which are limited in the
sense that participants have to switch from being the compre-
hender to the producer. This can result in task demands that
do not reflect natural language processing.

Present Study
The aim of the present study was to gain insight into how
certain reference biases come to exert their influence on lan-
guage processing. Specifically we explored whether simple
learning mechanisms, such as prediction and reinforcement
learning, could help explain why people display certain refer-
ence biases. We had a naive cognitive model learn reference
biases from an input dataset containing reference asymme-
tries. The model was presented with simple transitive sen-
tences and had to predict the subsequent referent (subject vs.
object), as well as the form of reference (name vs. pronoun).
When the model predicted correctly, it was issued a reward.

We wanted to determine if the model could pick up on the
asymmetries present in the input, as well as investigate how
predictions changed as the model was presented with more
input.

Methods
Input Data
Our input dataset consisted of 1000 unique items. All items
consisted of a simple sentence, containing a transitive verb
with its subject and object arguments, followed by a critical
referring expression. An example of the four possibilities for
a single verb can be seen in (4) below. The information in
brackets indicates the referent of the referring expression.

(4) a. Kaitlyn angered Marie. Kaitlyn (Kaitlyn)
b. Kaitlyn angered Marie. Marie (Marie)
c. Kaitlyn angered Marie. She (Kaitlyn)
d. Kaitlyn angered Marie. She (Marie)

All items were created by sampling a verb from a list of
10 verbs that differed with respect to their associated implicit
causality: 5 subject-biased verbs (apologized, repulsed, an-
gered, fascinated, disappointed), 3 object-biased verbs (con-
gratulated, feared, comforted), and 2 non-IC verbs (filmed,
interrupted). We used an unequal number of each verb type
because of our critical assumption that real-world asymme-
tries in the input are what cause people to display biases.
The subject and object referents of each item were randomly
sampled from a list of 40 unique female names. The second
sentence was determined based on two unique probabilities.
The first probability determined which referent would be re-
ferred to subsequently (i.e., subject or object), for which we
used probabilities from Ferstl et al. (2011)’s implicit causal-
ity sentence completion corpus. For example, in their study,
participants’ continuations following an anger sentence were
about the subject 85% of the time. Therefore, for all of our
anger items the sampling probability of the referent being the
subject versus object was 0.85/0.15. The second probabil-
ity determined the form of reference (i.e., name or pronoun).
Across all verb types, we opted for a general pronoun bias
when referring to subjects (with a pronoun sampling proba-
bility of 0.75) and a general name bias when referring to ob-
jects (with a name sampling probability of 0.75). Given the
lack of corpus data, these values were inspired by sentence
completion literature.

PRIMs Cognitive Model
Our model was implemented using the cognitive architecture
PRIMs (Primitive Information Processing Elements, Taatgen,
2013, 2014), which evolved from the ACT-R cognitive archi-
tecture (Anderson, Bothell, Lebiere, & Matessa, 1998; An-
derson, 2007). Like other cognitive architectures, PRIMs
serves as a unified theory of cognition, as well as an interface
for implementing models. Like ACT- R, PRIMs assumes that
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Table 1: Operators responsible for processing input.

Operator PRIMs Description
retrieve-V1 V1<>nil slot 1 of the input buffer (V) is not empty

RT1=nil slot 1 of the retrieval buffer (RT) is empty
WM1=nil slot 1 of the working memory buffer (WM) is empty
==>
lexical-entry->RT1 retrieve a ‘lexical-entry’ chunk from the declarative-
V1->RT2 where slot 2 of the chunk matches the information currently in V1

store-V1 V1=RT2 slot 1 of the input buffer is the same as slot 2 of the retrieval buffer
WM1=nil slot 1 of working memory is empty
==>
RT2->WM1 store the information in slot 2 of the retrieval buffer in slot 1 of working memory

the cognitive system is modular and thus has different mod-
ules for specific cognitive functions (e.g., vision, motor con-
trol, working memory, declarative memory, etc.). The dif-
ferent modules communicate with each other through their
respective buffers. Each buffer has a number of slots that
can each hold a single piece of information. Together all the
buffers comprise the global workspace of the system. Instead
of production rules (as in ACT-R), the exchange of informa-
tion within the workspace is achieved through the use of oper-
ators, which reside as chunks in declarative memory. All op-
erators consist of condition ‘PRIMs’ and action ‘PRIMs’ and
are retrieved on the basis of their activation. If the conditions
of the retrieved operator are met, the actions are carried out; if
not, the operator with the next highest activation is retrieved.
We will begin by describing how a single trial unfolds within
the model. For the current model it is useful to distinguish
between operators responsible for processing input (i.e., the
sentences the model is presented with) and operators respon-
sible for making predictions.

The model is first presented with a complete sentence (e.g.,
‘Kaitlyn angered Marie’) and then processes each word by re-
trieving an associated lexical chunk from declarative memory
and storing the results in working memory. The two opera-
tors responsible for processing the first word are presented
with descriptive detail in Table 1 above. The ==> arrow sep-
arates condition ‘PRIMs’ from action ‘PRIMs’. The process-

ing of the entire first sentence ultimately results in a com-
pleted event representation being held in working memory. It
should be noted that because the buffer slots in PRIMs do not
have names, the order matters. For example, in our model
WM1 is always used to store information about the subject
and WM3 is always used to store information about the ob-
ject.

Next the model predicts the subsequent referent (subject
vs. object). The two operators responsible for this are pre-
sented in Table 2 below. These operators have the exact same
conditional PRIMs and thus in a completely naive model have
an equal chance of firing. The crucial difference is which in-
formation gets copied into WM5 (the slot reserved for hold-
ing information about the subsequent referent). Next the
model makes a prediction about the form of reference (name
vs. pronoun). The operators responsible for this are presented
in Table 3 on the next page. The first three operators again
have equal conditional PRIMs and thus an equal chance of
firing. The final operator in Table 3 (retrieve-PRO) fires in
cases where the model predicts a pronoun in order to account
for the fact that different pronouns would be needed to refer
to referents depending on their gender and number. However,
in the current model the correct pronoun is always she. After
the model predicts the form of reference, a ‘read-next’ action
fires and the model is presented with the critical referring ex-
pression and information about the referent. In cases where

Table 2: Operators responsible for predicting referent.

Operator PRIMs Description
predict-subj WM3<>nil slot 3 of working memory is not empty

WM4=nil slot 4 of working memory is empty
WM5=nil slot 5 of working memory is empty
==>
WM1->WM5 copy the information in slot 1 of working memory into slot 5 of working memory

(Note: information about the subject is stored in WM1)
predict-obj WM3<>nil slot 3 of working memory is not empty

WM4=nil slot 4 of working memory is empty
WM5=nil slot 5 of working memory is empty
==>
WM3->WM5 copy the information in slot 3 of working memory into slot 5 of working memory

(Note: information about the object is stored in WM3)
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Table 3: Operators responsible for predicting reference form.

Operator PRIMs Description
predict-subj-name WM4=nil slot 4 of working memory is empty

WM1=WM5 slot 1 and slot 5 of working memory are the same
RT1=nil the retrieval buffer is empty
==>
WM5->WM4 copy the information in slot 5 of working memory into slot 4 of working memory
read-next->AC1 perform ’read-next’ action

predict-obj-name WM4=nil slot 4 of working memory is empty
WM3=WM5 slot 3 and slot 5 of working memory are the same
RT1=nil the retrieval buffer is empty
==>
WM5->WM4 copy the information in slot 5 of working memory into slot 4 of working memory
read-next->AC1 perform ’read-next’ action

predict-PRO WM4=nil slot 4 of working memory is empty
WM5<>nil slot 5 of working memory is not empty
RT1=nil the retrieval buffer is empty
==>
lexical-entry->RT1 retrieve a ‘lexical-entry’ chunk from the declarative-
pronoun->RT3 where slot 3 of the chunk is ’pronoun’

retrieve-PRO WM4=nil slot 4 of working memory is empty
WM5<>nil slot 5 of working memory is not empty
RT1<>nil the retrieval buffer is not empty
==>
RT2->WM4 store the information in slot 2 of the retrieval into slot 4 of working memory
read-next -> AC1 perform ’read-next’ action

this information matches the model’s predictions, a reward is
issued.

During the initial trials, when the model is naive, various
operators are just as likely to fire. For example, predicting
an subject versus object continuation is just likely even for
items containing a subject-biased IC verb. However, by uti-
lizing PRIMs’ context-operator learning, the model is able to
learn which combination of operators is most likely to lead
to a reward given the current context. As mentioned, opera-
tors are retrieved based on their activation, which is primarily
influenced by spreading activation. The associated strengths
for spreading activation to operators are learned via reinforce-
ment learning. Thus, whenever the model is issued a reward,
it increases the association between the current context and
all of the operators that lead to the reward being issued. In
PRIMs ‘context’ can be used to refer to the entire global
workspace (i.e., all the buffers), however, for this particular
model we were only interested in spreading activation from
the WM buffer. Thus, when certain information is held in
working memory (e.g., ‘angered’), specific operators (e.g.,
predict-subj) are more likely to fire given their increased acti-
vation. We also utilized PRIMs’ operator compilation, which
allows the model to create new operators by combining pairs
of operators that resulted in a reward being issued. In our
model predicting the 1) referent and 2) form of reference is
initially a two-step process. However, we expect the model
to compile the operators responsible for predicting the ref-
erent (e.g., predict-subj-continuation) and form of reference

(e.g., predict-PRO), given that in the input data subjects are
most often referred to using a pronoun and objects are most
often referred to using a name, which the model should pick
up on. We ran the model 100 times, where a single run con-
sisted of the model being presented all 1000 items from the
input dataset in a completely randomized order. This elimi-
nates any order effects and allows for us to analyze ‘average’
behavior.

Results
With respect to the continued referent asymmetry, Figure
1 shows the proportion of subject (dark gray) versus ob-
ject (light gray) continuations across the three different verb

Figure 1: Referent continuations (subject vs. object) by verb
type.
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types. The left panel is the actual input data and the right
panel is the model predictions. As can be seen, the model
predictions mirror the input data, primarily predicting sub-
ject continuations for items with a subject-biased IC verb and
object continuations for items with an object-biased IC verb.
With respect to the form of reference asymmetry, Figure 2
shows the proportion of using a name (dark gray) versus pro-
noun (light gray) when referring to subjects (top panels) and
objects (bottom panels) across the three different verb types.
The left panels are again the input data and the right panels
are the model predictions. When the continued referent was
predicted to be the subject, the model largely predicted that
the reference would be in the form of a pronoun. When the
continued referent was predicted to be the object, the model
was more likely to predict the reference would be in the form
of a name (except in the case of subject-biased verbs, where it
was 50/50 for names and pronouns). These form of reference
predictions are in line with the input data (i.e., subjects pri-
marily get referred to with pronouns and objects primarily get
referred to with names), however, the model overpredicted
pronouns for both subjects and objects.

Figure 2: Form of reference continuations (name vs.
pronoun) by referent and verb type.

We were also interested in examining learning over trials.
Figure 3 illustrates how referent predictions developed across
trials (averaged over the 100 model runs). The y-axis rep-
resents the proportion of predicting a subject continuation for
each of the three verb types. During the initial trials the model
predicted subject continuations at chance level across all three
verb types. However, as trials unfolded the proportion of pre-
dicting a subject continuation increased for items containing

a subject-biased IC verb and decreased for items containing
an object-biased IC verb. For the non-IC verbs a gradual in-
crease in subject predictions is seen.

Figure 4 illustrates how form of reference predictions de-
veloped across trials. The y-axis represents the proportion of
pronoun predictions, for both predicted subject continuations
(dark gray) and predicted object continuations (light gray).
Here we collapsed over verb type, as the verb itself does not
influence the form of reference. During the initial trials the
model predicted a pronoun at chance level for both subject
and object continuations. However, as trials unfolded the pro-
portion of predicting a pronoun increased in cases where the
model predicted a subject continuation and decreased in cases
where the model predicted an object continuation. The pro-
portion of predicting a name can be calculated by subtracting
the pronoun proportion from 1.

Figure 3: Proportion of subject continuation predictions
across trials by verb type.

Figure 4: Proportion of pronoun continuation predictions
across trials by predicted referent type.

With respect to operator compilation, we expected the
model to compile the operators responsible for predicting
the referent (e.g., predict-subj) and form of reference (e.g.,
predict-PRO). However, the model instead combined the op-
erators responsible for predicting the referent (predict-subj
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and predict-object), with the previous operator that stores lex-
ical information about the object in working memory (i.e.,
store-v3). So rather than processing the object of the first
sentence (i.e., the Marie in ‘Kaitlyn angered Marie’) and then
predicting the subsequent referent, the model combined the
two steps. Although this is not what we expected, it also
makes sense given that as soon as the verb is stored in work-
ing memory, the model can already predict which referent
will be referred to next.

Discussion
We constructed a model in the cognitive architecture PRIMs
(Taatgen, 2013, 2014) and presented it with input data that
contained reference asymmetries. More specifically, in the
input dataset we manipulated the proportion of subject ver-
sus object continuations by using verbs differing in their as-
sociated implicit causality (subject-biased, object-biased and
non-IC). Furthermore, we manipulated the likelihood that
names versus pronouns would be used to refer to the differ-
ent referents, such that there was a greater likelihood of using
a pronoun when referring back to subjects and a name when
referring back to objects. Initially the model was unaware
of the asymmetries present in the input. However, by utiliz-
ing PRIMs’ context-operator learning (reinforcement learn-
ing) the model was able to pick up on the asymmetries present
in the data, as reflected by its predictions about subsequent
reference.

Our model processed sentences like ‘Kaitlyn angered
Marie’ and then made predictions about the subsequent ref-
erent, as well as the form of reference. With respect to refer-
ent predictions, during the initial trials the model equally pre-
dicted subject and object continuations across the three verb
conditions. However, as the model was presented with more
input this pattern uniquely changed across the three verb con-
ditions, as to mirror the input data. With respect to form of
reference predictions, the model initially predicted an equal
number of names and pronoun for both subjects and objects.
However, as the model was presented with more input, the
proportion of predicting a pronoun increased for subjects and
decreased for objects (mirroring the input data). Assuming
that humans make such predictions of course is not trivial.
However, predictive processing is widely assumed to be a
core aspect of cognition, especially when it comes to the pro-
cessing of serial order information, such as language. Fur-
thermore, it is assumed that the reason humans make predic-
tions is to save future processing costs (see Bubic, Von Cra-
mon, & Schubotz, 2010, for a review of predicition). The
primary evidence of predictive language processing comes
from ERP and visual world eye-tracking studies, which show
that people anticipate upcoming arguments following specific
verbs, for example, anticipating to hear about something ed-
ible, following the verb ate (e.g., Altmann & Kamide, 1999;
Nieuwland & Van Berkum, 2006).

Our model’s predictions can help explain Koornneef and
Van Berkum (2006)’s finding that reading times are slower

when a pronoun is inconsistent with the bias setup by the
verb preceding it. For example, following an object-biased
IC verb our model most often predicted an object continua-
tion. However, when the continuation ended up being about
the subject (i.e., inconsistent with the prediction), the model
had to revise the contents of working memory to accurately
represent the second sentence, which took additional time. It
is difficult to say how exactly the reward issued to our model
relates to a reward in the real world. However, one possibility
is that the reward in the real world is a successful saving of
processing time (or effort).

Similarly, our findings provide insight into why visual
world eye-tracking studies find an immediate effect of im-
plicit causality on pronoun resolution (e.g., Järvikivi et al.,
2017). One possibility is that following a sentence containing
an IC verb, listeners expect to hear about a specific referent.
In cases where listeners expected to hear about the subject,
they may have also expected a pronoun, whereas in cases they
expected to hear about the object, expecting a pronoun would
be less likely. Nevertheless, in both cases listeners are pre-
sented with an ambiguous pronoun and have no choice but to
incorporate it into their discourse representation, which leads
to the different gaze patterns. Unfortunately, studies specif-
ically interested in pronoun resolution only report on time
windows starting at the pronoun onset. Looking at earlier
times (e.g., starting at the verb onset) may actually be crucial
for understanding previously reported ‘pronoun’ effects. An
empirical prediction of our model, is that that the previous
findings are not necessarily about pronouns and how to inter-
pret them, but about how verb biases affect predictions about
next referents and their forms.

With respect to future directions, our model was always
given enough time to make predictions about upcoming ref-
erents and their forms. This is not ideal given that in the real
world there is a continuous stream of input that cannot be con-
trolled by the comprehender. This will be addressed in future
studies so that the model will only make predictions when it
has enough time to do so. Furthermore, we determined our
input frequencies based on reasonable assumptions given the
current lack of an annotated corpus. In the future it would
be informative to explore various relative frequencies and see
what effect it has on the model’s predictions. One way to
address this would be to include a wide range of verbs, as
evidence suggests that implicit causality actually lies on a
continuum. Investigating how a continuous measure of IC
influences the type of predictions may be fruitful for under-
standing people’s behavior in previous experimental studies.
Finally, although our model predictions can provide insight
into some of the previous experimental findings, in none of
those studies were participants asked to make explicit pre-
dictions. It would be informative to carry out a prediction
study so that we could directly compare the model to human
prediction data. Although our approach was quite simple, it
highlights the fact that seemingly complex behavior can often
be explained by simple learning mechanisms.
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Abstract 

The development of automated vehicles is accompanied by the 

question of how this technology will interact with vulnerable road 

users (VRUs; e.g. pedestrians, cyclists). Especially in shared spaces, 

implicit communication signals, such as vehicle deceleration, 

proved to be crucial. However, previous studies on the 

parameterization of vehicle deceleration indicated that human 

detection of vehicle deceleration may depend on various situational 

and individual factors. This research has two aims: (1) We want to 

investigate how the detection and perceptual decision-making on 

vehicle deceleration can be formally described using a 

computational model. For this, we discuss the applicability of a 

drift-diffusion model (DDM). (2) Further, we will follow up on 

previous research regarding the influence of different situational and 

individual factors on the detection performance and examine how 

these factors could be related to the DDM parameters. With this 

research, we would like to contribute to a better understanding and 

a consistent, formal description of different factors influencing the 

detection of vehicle deceleration. This could be associated with 

improved interaction between automated vehicles and VRUs.  

Keywords: Automated vehicles; Vulnerable road users; Implicit 
communication; Deceleration detection; Drift-Diffusion Model 

Introduction 

The development of automated vehicles is accompanied by 

challenging issues in the field of human factors (Kyriakidis 

et al., 2019). One of these issues concerns the communication 

between automated vehicles (AVs) and vulnerable road users 

(VRUs, e.g. pedestrians, cyclists; Rasouli et al., 2017). There 

is a lot of research effort to design an adequate implicit (e.g., 

vehicle speed adaption) and explicit (e.g., light signals) 

communication (Markkula et al., 2020). Due to findings 

which show that the majority of communication in road 

traffic is realized in an implicit way, especially in the low-

speed area (e.g. parking spaces), we take a closer look on this 

communication approach (Lee et al., 2021). 

Deceleration maneuvers are a common implicit 

communication signal, for example, to indicate the intention 

of car drivers to give priority to a VRU. However, the 

implementation in automated vehicles seems to be non-

trivial. On the one hand, the deceleration rate must be strong 

enough to be perceived by VRUs (Markkula et al., 2018). On 

the other hand, it should not be too strong to avoid a 

discomfort for vehicle passengers or a congestion of the road 

(Markkula et al., 2018). 

In this paper, we aim to further investigate the pedestrians 

detection of vehicle deceleration. First, we summarize 

empirical results on factors influencing the detection 

performance of vehicle deceleration. Then, we describe the 

drift-diffusion model and its previous applications in the 

transportation context. Next, we present assumptions on how 

determinants of detection performance may be related to the 

DDM parameters. Finally, we show preliminary results from 

an analysis of empirical data. 

Background 

Factors influencing the detection performance of 

vehicle deceleration  

Ackermann et al. (2019) investigated the relationship of 

different variables with the detection performance of a 

vehicle deceleration. In video studies, participants saw the 

approaching vehicle from the perspective of a pedestrian at 

the curb. The independent variables included the deceleration 

rate, vehicle size, different daylight conditions, initial vehicle 

speed and the onset of the deceleration (early or late onset). 

The reaction time between the start of the deceleration and 

the response of the participants was measured as dependent 

variable. 

The results showed no significant effect of daylight 

conditions on reaction times, in contrast to another study 

regarding gap acceptance (Beggiato et al., 2017). For the low 

speed conditions (i.e. 20 km/h), the authors found significant 

effects for deceleration rate and onset of deceleration. For 

higher deceleration rate and later onset, participants showed 

faster reaction times. In addition, the authors found a 

significant interaction between these main factors. In 
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particular, the onset of deceleration influenced the detection 

of the lowest deceleration rate. For the lower and faster speed 

conditions, the authors found a significant effect of vehicle 

speed and deceleration rate, as well as a significant 

interaction of both factors. This means that the higher the 

vehicle speed and the lower the deceleration rate, the higher 

the reaction time. However, it was found that there were a 

high number of missing reaction times (i.e. deceleration was 

not detected) for conditions with higher speed (40 km/h), low 

deceleration rate and later onset of deceleration. The 

influence of vehicle size remained ambiguous. At early onset 

of deceleration, participants tended to react faster for vehicles 

with medium size. At late onset of deceleration, participants 

tended to respond more faster for vehicles with large size. 

However, the results also varied depending on the 

deceleration rate. 

In their discussion, the authors assume several ways the 

different variables could influence the detection of vehicle 

deceleration. They consider the changes in the retinal image 

size of the approaching, decelerating vehicle as a bottom-up 

process of information processing. Furthermore, top-down 

processes such as expectations are discussed. 

This view is, among others, consistent with research on 

collision perception, which also assumes that different 

sources of information are used for these perceptual decisions 

(DeLucia, 2015). A possible further influencing factor could 

be varying risk behaviour under different conditions (e.g. 

different vehicle sizes). Finally, it might be useful to look at 

the whole process in which a pedestrian observes a vehicle 

and not just the time from the onset of deceleration. 

Drift-diffusion models in transportation and traffic 

research 

An established model for perceptual decision-making in 

signal detection tasks or two-alternative forced-choice tasks 

is represented by the drift-diffusion model (DDM; Ratcliff & 

McKoon, 2008). The most famous of the evidence 

accumulation models decomposes behavioral data (i.e., 

response times and response accuracies) into the underlying 

cognitive processes and their characteristics. The DDM 

assumes that humans accumulate (noisy) evidence 

(information) in the direction of one of two boundaries. This 

process can be described with a few parameters: The most 

relevant parameters for our research are drift rate (v), bound 

height (a), starting point (z) and non-decision time (NDT). 

The drift rate describes the rate of evidence accumulation 

which is influenced by the quality of evidence. Thus, the drift 

rate is associated with the stimulus difficulty. The lower the 

quality, the lower the drift rate and the higher the difficulty. 

Evidence is accumulated until it reaches the upper or lower 

bound representing the two choice alternatives (criteria). The 

bound height influences the required amount of evidence 

which is necessary for a decision. A larger bound height is 

associated with more response caution and more accuracy in 

decision-making. The starting point defines the position 

where the accumulation starts. This point can be influenced 

by expectations or prior knowledge. In this case, the 

accumulation starts closer to one of the two boundaries. The 

non-decision time summarizes the duration for all non-

decisional components of response time (i.e. all components 

except of evidence accumulation), such as stimulus encoding 

or motor execution (Ratcliff & McKoon, 2008). 

While the DDM became increasingly established in the 

cognitive psychology and cognitive neurosciences (Ratcliff 

et al., 2016), it was initially unclear to what extent the model 

could be transferred to the transportation and traffic domain. 

However, recent studies provide very encouraging 

indications that the model is also suitable in this context and 

thus can make valuable contributions to the further 

development of automated driving. For example, the 

willingness of pedestrians to cross the road (Giles et al., 2019; 

Markkula et al., 2018; Tian et al., 2020), car driver reactions 

to a braking lead vehicle (Engstrom et al., 2017; Xue et al., 

2018) or the decision-making of car drivers during 

unprotected left turns (Zgonnikov et al., 2020) have been 

successfully modeled so far using the drift-diffusion model.  

However, there are also some open questions. Among 

others, there is limited knowledge about the influence of 

various situational and individual variables on the DDM 

parameters in the context of traffic and transportation. 

Present work 

It seems obvious that the DDM is applicable to the scenario 

described in Ackermann et al. (2019). A pedestrian at the 

curb has to make the perceptual decision on a signal detection 

task, i.e. whether an approaching vehicle is decelerating or 

not. Furthermore, the DDM seems to be particularly well 

suitable for our use case because it takes into account both 

bottom-up (e.g., visual information) and top-down processes 

(e.g., expectations, cautiousness) of information processing. 

Therefore, we would like to follow up on this research and 

investigate how the detection of a vehicle deceleration can be 

described using a DDM. In particular, we aim investigate the 

influence of different variables investigated in Ackermann et 

al. (2019) on the DDM parameters. As a result, we would like 

to contribute to a better understanding of the cognitive 

processes involved in the detection of a vehicle deceleration. 

Drift-diffusion model for the detection of a vehicle 

deceleration 

In this section, we will discuss our assumptions on the 

relationship between the variables investigated in Ackermann 

et al. (2019) and the DDM parameters. We take a closer look 

on four main parameters of the DDM: Drift rate, bound 

height, starting point and non-decision time. 

Drift rate The drift rate describes the rate of evidence 

accumulation and is influenced by the quality of evidence 

(Ratcliff & McKoon, 2008). 

We assume that the drift rate results from the pedestrians’ 

speed (change) perception of the vehicle. However, it is 

questionable which visual information are used. Current 

research suggests that different cues like looming or 

distance/duration cues can be used for this task (Lee et al., 
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2020). In previous research (e.g. Xue et al., 2018), the use of 

looming proved to be successful. Therefore, we focus on this 

visual information. 

Looming refers to the change rate of the retinal image size 

and visual angle related to an object (Lee, 1976). The retinal 

image and the visual angle becomes larger as a vehicle 

approaches. The faster the vehicle approaches, the greater the 

looming. The looming becomes smaller while decelerating. 

So far, the general looming theory (Lee, 1976) was defined 

only for frontally approaching objects with constant speed 

and a small visual angle. Therefore, it is questionable to what 

extent the looming can be applied to our use case. In an 

important article by Tian et al. (2020), the looming theory 

was adapted to the perspective of a pedestrian in a crossing 

scenario. This shows that looming is a time dependent 

function depending on speed, distance between vehicle and 

pedestrian, vehicle size and the pedestrian's distance from the 

lane. A deceleration would influence the looming via a 

change in speed. 

In addition, we assume that lightness influences the 

perception of the vehicle. With better daylight, a better vision 

is possible and a vehicle can be observed more easily. 

Therefore, we assume that the daylight conditions influence 

the drift rate with lower drift rates for dusk or in the evening. 

Bound height The bound height describes the amount of 

evidence which is necessary for a decision. This parameter is 

influenced by the response caution (Ratcliff & McKoon, 

2008).  

We assume that the bound height is related to the vehicle 

size. Here, we consider the findings that pedestrians tend to 

accept a larger gap for larger vehicles (Yannis, 

Papadimitriou, & Theofilatos, 2013). We assume that 

pedestrians may be more cautious in decision-making when 

facing with a larger vehicle which can be associated with a 

larger bound height. 

The same is assumed for daylight conditions. We assume 

that pedestrians might behave more cautiously in poor light 

conditions, which could be associated with a larger bound 

height. 

In addition, gender and age might be related to the bound 

height. Findings indicated that women behave more 

cautiously and less risky in road traffic than men (Yannis, 

Papadimitriou, & Theofilatos, 2013). Further, studies 

indicated that older people are in general more conservative 

in signal detection tasks than younger people (Ratcliff et al., 

2001). Therefore, we assume a larger bound height among 

women and older people. 

Starting point The starting point describes a bias in the 

evidence accumulation toward one of the two boundaries, for 

example, due to expectations or prior knowledge (Ratcliff & 

McKoon, 2008). 

We assume that pedestrians tend to not expect a deceleration 

for faster vehicles. Thus, the starting point would be closer to 

the corresponding boundary. It is possible that the opposite 

effect occurs for slower vehicles, i.e. that pedestrians expect 

a deceleration. 

Non-decision time The non-decision time summarizes the 

duration of nondecisional components of the response time, 

such as time for stimulus encoding and motor execution 

pressing a response button (Ratcliff & McKoon, 2008).  

Previous studies showed longer non-decision times for older 

participants (Ratcliff et al., 2001). Consequently, we 

hypothesize that non-decision time is related to the age of 

participants. 

Preliminary results 

To begin examining our assumptions for the first variables, 

we conducted an online study using jsPsych (de Leeuw, 

2015) following the experiments by Ackermann et al. (2019). 

N = 62 participants (n = 19 male, n = 43 female) saw videos 

of approaching vehicles. The initial speed (20 and 40 km/h) 

and deceleration rate (no deceleration; slight deceleration, i.e. 

-1.5 m/s²; strong deceleration, i.e. -3.5 m/s²) were varied as

independent variables. Participants were instructed to press a

button when they decided whether the vehicle decelerated or

not. If there was a deceleration, it started immediately after

the video's onset. Reaction times and responses were

recorded.

Figure 1 and 2 show the mean reaction times and the 

response accuracy depending on the deceleration rate and the 

initial vehicle speed.  

This shows that the reaction times were always higher for 

vehicles with higher than for lower initial speed. 

Furthermore, there are differences in the response accuracy. 

While the detection of no deceleration was more accurate for 

vehicles with higher speed, the accuracy for slight and strong 

decelerations was higher for vehicles with lower speed. The 

poor detection performance of slight deceleration of vehicles 

with higher speed confirms the findings of Ackermann et al. 

(2019) 

We conducted a preliminary parameter estimation for a 

drift-diffusion model using PyDDM (Shinn et al., 2020). 

Table 1 shows the results for the drift rate (depending on time 

and deceleration rate), the bound height (depending on 

gender and age), the non-decision time (depending on age) 

and the starting points for vehicles with lower and higher 

speed. To investigate age effects, we divided the participants 

into two age groups. Participants with an age under 30 years 

were classified to “young participants”. Participants with an 

age of 30 years and older were classified to "middle-aged 

participants". This classification was chosen in order to 

investigate two groups of approximately equal size. 

The results show that the drift rate varied with deceleration 

rate. Here, the values for the slight deceleration were lowest 

for vehicles with lower as well as higher speed. 

The bound height varied slightly depending on gender and 

age. However, no consistent pattern can be observed. For 

vehicles with lower speed, the bound height for men were 

slightly higher than those for women. The opposite direction 

was observed for vehicles with higher speed. Similarly, the 
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results for the age groups were contrary. Younger participants 

showed a lower bound height for vehicles with lower speed 

and a higher bound height for vehicles with higher speed 

compared to middle-aged participants. Furthermore, it can be 

seen that the bound height is generally higher for vehicles 

with higher speed. 

Figure 1: Mean reaction times depending on deceleration 

rate and initial speed. 

Figure 2: Response accuracy depending on deceleration 

rate and initial speed. 

Furthermore, younger participants showed a lower non-

decision time for both vehicles with lower and higher speed 

compared to middle-aged participants. 

Finally, a slightly negative value for the starting point for 

vehicles with higher speed can be observed. 

Table 1: Results from the parameter estimation for a drift-

diffusion model. 

Vehicle speed 

20 km/h 40 km/h 

Drift 

rate 

No Dec. 2.303 3.310 

Slight Dec. 1.708 -1.433

Strong Dec. 2.775 1.804 

Bound 

height 

Male 1.999 2.029 

Female 1.898 2.101 

Young 

participants 
1.855 2.389 

Middle-aged 

participants 
1.917 2.227 

NDT 

Young 

participants 
0.575 0.611 

Middle-aged 

participants 
0.616 0.711 

Starting 

point 
0.026 -0.100

Discussion and further work 

In this paper, we presented a model for the detection of a 

vehicle deceleration from the perspective of pedestrians. For 

this purpose, we used a drift-diffusion model. Previous 

research showed that several variables can affect the 

detection performance of a vehicle deceleration. We 

proposed assumptions on how these variables might be 

related to the DDM parameters with the aim to formally 

describe and better understand this cognitive process. 

Further, we presented a study to examine first variables and 

their relation with the DDM parameters. The results revealed 

a strong relation between the deceleration rate and the drift 

rate and thus the process of decision-making. No and strong 

decelerations were related to higher drift rates, while slight 

decelerations were related to lower drift rates. This shows 

that the deceleration rate represents an important variable 

regarding the quality of evidence. 

Gender and age only slightly affected the bound height and 

non-decision time. However, it can be emphasized that the 

bound height were slightly larger for vehicles with higher 

speed compared to vehicles with lower speed. Here, 

participants were more cautious in their decision-making. 

Finally, a negative value for the starting point for vehicles 

with higher speed indicates a slight bias, i.e. participants 

rather expected no deceleration in this speed condition. For 

vehicles with lower speed, there was no bias observable. 

This study, with preliminary estimation of DDM 

parameters for different conditions represents a first step. In 

further studies, it seems important to confirm the results 

within standardized laboratory settings and to investigate 

further influencing factors on the DDM parameters. These 

include, among others, the effect of vehicle size, different 
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daylight conditions and the onset of deceleration on the drift 

rate and the bound height. 

Furthermore, it is necessary to investigate the importance 

of individual characteristics (gender, age) in the decision 

making process in more detail using a more balanced sample 

and a broader range of participants’ age. 

In addition, a validity study is crucial to check the fit 

between the model and empirically observed reaction times 

and response accuracies. 

The results extend our understanding of VRUs' perception 

of vehicle deceleration and, in particular, the effects of 

bottom-up (evidence) as well as top-down processes (e.g., 

expectation, cautiousness) in information processing due to 

various situational (e.g., time of day) and individual (e.g., 

age) variables. This has several advantages: First, vehicle 

deceleration can be designed more context-sensitive, which 

could lead to higher acceptance and user-friendliness both for 

VRUs and vehicle passengers. Second, a more detailed 

understanding of human perception and decision-making can 

be used to derive implications on how to use the 

communication signals appropriately, for example, through a 

specific enhancement of implicit communication signals by 

explicit signals (i.e., external HMI) in case of a low drift rate 

(Markkula et al., 2018). And third, the findings can be used 

to improve the feasibility of driving simulations. Currently, 

developers are focusing on a highly realistic physics for 

vehicle simulations. Another important focus could be a more 

realistic behavior of virtual VRUs by modeling their 

perceptions (Markkula et al., 2018). This would allow a more 

precise investigation of interactions between (human) drivers 

and VRUs. 
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Abstract

The parameters governing our behaviour are in constant flux.
Accurately capturing these dynamics in cognitive models poses
a challenge to modellers. Here, we demonstrate a mapping
of ACT-R’s declarative memory onto the linear ballistic
accumulator, a mathematical model describing a competition
between evidence accumulation processes. We show that this
mapping provides a method for inferring individual ACT-R
parameters without requiring the modeller to build and fit an
entire ACT-R model. We conduct a parameter recovery study
to confirm that the LBA can recover ACT-R parameters from
simulated data. Then, as a proof of concept, we use the LBA
to estimate ACT-R parameters from an empirical data set. The
resulting parameter estimates provide a cognitively meaningful
explanation for observed differences in behaviour over time
and between individuals.
Keywords: Memory; dynamic performance; individual
differences; ACT-R; linear ballistic accumulator.

Introduction
Cognitive architectures such as ACT-R (Anderson, 2007)
provide a framework for developing models of cognition.
A challenge commonly faced by modellers is to accurately
capture changes in cognitive performance over time, as well
as individual differences between people, in the parameters
of such models. Current approaches tend to rely on compu-
tationally expensive and statistically sub-optimal methods like
parameter sweeps to identify the best-fitting parameter values.
Mathematical modelling methods can serve as a more efficient
and rigorous alternative (Fisher, Houpt & Gunzelmann, 2020).
In this paper, we contribute to previous efforts to connect
cognitive architectures and mathematical modelling by using
the linear ballistic accumulator (Brown & Heathcote, 2008)
to infer ACT-R parameters governing memory retrieval.

Retrieval of information from memory can be viewed as
a process of evidence accumulation, in which internal and
external cues contribute evidence to candidates in memory
that are competing for retrieval (Ratcliff, 1978; Anderson,
2007). The first candidate to accumulate enough evidence to
cross a boundary wins the race and is retrieved. The dynamics
of this process are determined by the amount of evidence each
candidate needs to accumulate to cross the boundary, and the
rate at which this evidence accumulates.

While such evidence accumulation models have seen most
use in the domain of decision making (e.g., Ratcliff, Smith,
Brown & McKoon, 2016; Smith & Ratcliff, 2004; Usher &
McClelland, 2001; Brown & Heathcote, 2008), there have

been some applications in the domain of memory retrieval.
Van Maanen et al. showed that a leaky competing accumulator
model could explain performance in picture-word interference
tasks (van Maanen & van Rijn, 2007; van Maanen, van Rijn
& Taatgen, 2012). In this model, memory chunks accumulate
activation by receiving positive and negative spreading
activation from other chunks. More recently, Nicenboim and
Vasishth (2018) and Fisher et al. (2020) implemented the
ACT-R model of declarative memory in a lognormal race
model (LNR; Rouder, Province, Morey, Gomez & Heathcote,
2015), in which the rate at which evidence for a chunk
accumulates depends on its activation.

Here, we extend this formalisation of ACT-R memory re-
trieval as an LNR to a more flexible linear ballistic accumulator
model (LBA; Brown & Heathcote, 2008). Unlike the LNR,
the LBA is able to estimate the rate of accumulation separately
from the distance accumulators need to travel to reach the
decision boundary. This is useful, because both accumulation
rate and distance to the boundary have natural counterparts in
ACT-R: the accumulation rate corresponds to the activation of
the chunk, while the distance can be linked to the latency factor
(F) parameter. As such, the LBA provides a cognitively mean-
ingful interpretation of ACT-R’s F parameter as a measure of
response caution—the larger the distance, the more evidence
needs to collected before a response is made—and offers a
method by which it can be estimated from response data.

In the following sections, we first describe the formal
link between ACT-R and the LBA. We then demonstrate
how the LBA can be used to recover ACT-R parameters in
a simulation study. Finally, we fitted the LBA to an empirical
data set, showing how it can offer insight in the mechanisms
underlying changes in retrieval performance over time.

Casting ACT-R’s Declarative
Memory as a Linear Ballistic Accumulator

The linear ballistic accumulator model (Brown & Heathcote,
2008) proposes that response behaviour can be explained
through a race between accumulators. Each accumulator has a
certain amount of starting evidence k that increments linearly
at a drift rate v until it reaches a decision boundary d. The first
accumulator to reach the boundary determines the response
choice and latency. A constant non-decision time t0 is also
added, representing the time required for other components of
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Figure 1: Casting ACT-R memory retrieval as a linear ballistic accumulator. A: ACT-R retrieval with two competing chunks
visualised as an LBA, with marginal RT distributions shown at the top. See the main text for details. B: RT distributions of
an ACT-R model (histogram) and the equivalent LBA model (orange curve). Error responses are shown as negative RTs.

the response process, such as perceptual and motor functions.
There are two sources of variability between trials: the
starting point k ∼ U(0,A), and drift rate vi ∼ N(µi,σi) for
each response option i. The LBA assumes a constant rate of
evidence accumulation over a trial, so the time required for an
accumulator to reach its boundary on a trial j is the distance
d − k j divided by the drift rate, plus non-decision time:

RTj =
d − k j

v j
+ t0 (1)

Across trials, the average starting point is A/2 and the
average drift rate is µi, so the expected finishing time for an
accumulator is:

E(RT ) =
d −A/2

µi
+ t0 (2)

We can map the LBA parameters onto ACT-R memory
parameters. ACT-R models declarative memory as a set of
symbolic chunks, each with a sub-symbolic activation that de-
cays over time and is subject to noise (Anderson, 2007). The
time required to retrieve a chunk depends on its activation: the
more active the chunk, the faster its retrieval will be, but like
the LBA, the time course of memory retrieval is deterministic
once the starting values are known. If multiple chunks match
a retrieval request, the chunk with the highest activation—and
therefore the lowest retrieval time—at the time of the request
wins. A full response also involves non-memory operations,
such as stimulus encoding and response execution, which can
be captured by adding a term ter to the retrieval time.

ACT-R defines the full time required to retrieve a chunk i
with an activation A and respond accordingly by the following
equation, in which F is the latency factor, a positive scaling

parameter1:
RTi = F ∗ e−Ai + ter (3)

We can rewrite this equation in a similar form to (2):

RTi =
F
eAi

+ ter (4)

The mapping between ACT-R’s parameters (left) and those
of the LBA (right) then becomes straightforward:

F = d −A/2 (5)
Ai = ln(µi) (6)
ter = t0 (7)

With this mapping, ACT-R’s latency factor (F) is equivalent
to the average distance between starting point and boundary in
the accumulator model, often conceptualised as the response
caution: given a constant activation, a higher value of F means
that more evidence is required to complete a retrieval. The
mapping relates the activation Ai of a chunk to its drift rate µi,
meaning that a highly activated chunk can be seen as accumu-
lating evidence more rapidly than one with a lower activation.
Put differently, the drift rate µi is equivalent to eAi , the odds
of needing the chunk. Finally, there is a direct equivalency
between the non-retrieval time (ter and t0) in both models.

Figure 1A visualises the ACT-R retrieval process in the
style of an accumulator model. It shows two chunks, c (blue)
and f (red), competing for retrieval over multiple trials.
In each trial, both accumulators race to cover the vertical
distance F to the boundary. The winner gets retrieved in
the time it takes to reach the boundary. There is normally
distributed trial-to-trial variability, or noise, in the activation
of the chunks, and therefore in the rate at which each chunk

1An additional parameter f may be used to scale the activation:
RT = F ∗ e− f∗Ai + ter. This parameter is typically held constant at
1, and we make the same simplification here as it has no bearing on
the outcomes.
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accumulates evidence: Ai ∼ N(µi,σi). As such, drift rates
follow a lognormal distribution. The resulting RT distributions
can be shown to be lognormal too:

RTi ∼ LN(µi + ln(F),σi)+ ter (8)

Figure 1B demonstrates that ACT-R and the LBA gen-
erate identical response time distributions for a given
set of parameters when using the mapping in equations
(5)–(7). Interactive versions of these figures, in which the
model parameters can be freely adjusted, are available at
https://cogmod.shinyapps.io/actr-lba/.

Simulation: Recovering ACT-R Parameters
Given this mapping, it should be possible to identify ACT-R
memory parameters from response data (RT and choice) using
existing methods for fitting the LBA. Therefore, we performed
a simulation study with two goals: to investigate whether the
LBA can recover ACT-R memory parameters from a typical
participant sample completing a reasonable number of trials,
and to ensure that parameter recovery works regardless of
specific parameter values. The code required to reproduce this
simulation study is available at https://osf.io/wpvj7/.

Data
ACT-R was used to simulate 25 distinct model participants,
each performing a sequence of retrieval trials. Retrieval was
modelled as a competition between two chunks, c and f ,
representing a correct and incorrect response to a retrieval cue,
respectively. For each model participant, ACT-R parameters
were sampled randomly from plausible distributions, listed
in Table 1. To ensure that parameters recovered by the LBA
would all be on the same scale, we fixed the standard deviation
of the activation of the correct response (σc) to 1, both in
ACT-R and in the LBA2.

We repeated the process with differently sized data sets,
ranging from 25 to 50,000 trials per participant, to gauge the
effect of data set size on recovery accuracy.

Model fitting
The LBA was fitted separately to each model participant’s re-
sponses using the nlminb optimiser in R (version 3.6.3; R Core
Team, 2020). We ran this optimiser 250 times with randomly
generated starting values, and kept only the parameter values
that yielded the highest summed log-likelihood across all runs.
The dLBA density function from the rtdists package (version
0.11-2; Singmann, Brown, Gretton & Heathcote, 2020) served
as the objective function. For each model participant, we
derived individual ACT-R parameters from the best-fitting
LBA using the mapping in equations (5)–(7).

Results
The results of the parameter recovery process are shown in
Figure 2. As Figure 2A indicates, original parameter values

2See Brown and Heathcote (2008) for alternative solutions to the
scaling problem in accumulator models.

Table 1: ACT-R parameters used in the simulation study.
Description Distribution

µc Mean activation of correct answer µc ∼ N−(−.5, .5)
µ f Mean activation of incorrect answer µ f ∼ N−(−1.5, .5)
σc SD of activation of correct answer σc = 1
σ f SD of activation of incorrect answer σ f ∼ N+(1.5, .5)
F Latency factor F ∼ N+(1, .5)
ter Non-retrieval time ter ∼ N+(.75, .5)

Note: N+ and N− are truncated normal distributions, limited to
positive and negative values, respectively.

could already be recovered with reasonable accuracy from
a data set with 100 trials per participant. Some parameters
(e.g., σ f and ter) appear easier to recover than others, but even
the larger errors do not appear to show systematic over- or
underestimation.

Figure 2B shows how recovery accuracy changed as a
function of data set size. Recovery accuracy, measured as the
absolute error of recovered parameter values relative to the
original values, is shown separately per parameter (coloured
points) as well as across parameters (black points). Unsurpris-
ingly, recovery accuracy improved when there were more trials
constraining the fit, though the current fitting method reached
a plateau once there were at least 250 trials per participant.

Example Application: Modelling Changing
Retrieval Performance in Empirical Data

To demonstrate how the method may be used to explain
dynamic memory performance in terms of cognitively
meaningful constructs, we fitted the LBA to empirical data
from a multi-session retrieval practice task.

Data
We use data from a retrieval practice task completed by recruits
of the Commando Corps, Royal Netherlands Army (Korps
Commandotroepen), in which participants learned the names
of ficticious safehouses on a map. On first presentation, a safe-
house was shown with its name, while subsequent repetitions
required participants to select the correct name themselves
from a set of four answer options. Participants completed three
8-minute sessions over the course of a week. They studied a
different map in every session, and maps were counterbalanced
between participants. The task was presented within an adapt-
ive learning system that schedules each item to be repeated
whenever its activation is expected to hit a threshold (van Rijn,
van Maanen & van Woudenberg, 2009; van der Velde, Sense,
Borst & van Rijn, 2021). As such, we could expect the activ-
ation of the chunks being retrieved to be fairly stable across
trials, despite the novelty of the materials. Response accuracy
and response time were recorded in every trial.

Session 1 was scheduled on the first day of the week,
while the second and third sessions took place several days
later and were scheduled immediately before and after a
high-intensity loaded speed march of about 40 minutes. We
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Figure 2: Recovery of ACT-R parameters using the LBA. A: Original versus recovered parameter values for a data set with
100 trials per participant. Parameter descriptions are given in Table 1. B: Recovery accuracy (absolute error) for data sets with
different numbers of trials per participant. Light coloured points show individual errors, dark coloured points show the mean
error per parameter, and black points show the mean error across parameters.

expected performance to change for two reasons: increased
familiarity with the task might lead to better performance
after the first session, and the physical exertion of the speed
march might affect performance in the third session.

For the analysis, we removed the first trial for each item
(in which the answer was shown on screen), trials in which
participants did not respond within 30 s, and trials in which the
recorded response time was lower than 300 ms. Since the simu-
lation study showed that recovery was worse in small data sets,
participants had to have completed at least 50 practice trials
per session to be included. In addition, we required that parti-
cipants made at least 5 error responses per session, to give the
model a chance of fitting the error response distribution. These
criteria struck a balance between ensuring a sufficient number
of observations per participant and including as many parti-
cipants as possible. They yielded a data set with 12,568 usable
observations (out of 29,441) from 50 (out of 127) participants.

Model fitting
We fitted the LBA separately to each of the three retrieval
practice sessions for each participant. The fitting procedure
was the same as in the simulation study. The analysis code
is available at https://osf.io/wpvj7/.

Results
Figure 3 shows participants’ performance on the task over the
three sessions. Despite the task difficulty being the same in
all three sessions, performance improved in two ways. Firstly,
response accuracy increased and then plateaued: a logistic

mixed-effects model with a main effect of session and random
intercepts for participants showed that accuracy increased
from the first to the second session (z=−4.680, p< .001), but
found no evidence for a change from the second to the third ses-
sion (z =−0.253, p = .8). Secondly, responses became faster:
a generalised mixed-effects model with a Gamma link func-
tion and with a main effect of session and random intercepts
for participants found a decrease in response times on correct
trials from session 1 to session 2 (t = 2.250, p = .0244), and
from session 2 to session 3 (t =−7.182, p < .001).

40%

60%
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1 2 3

Session

AccuracyA

2
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1 2 3
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RT (s)B

Figure 3: Performance on the retrieval practice task by
participant. A: percentage correct responses per session. B:
median response time on correct responses per session.
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Figure 5: ACT-R memory parameters inferred from the data. Coloured points show individual estimates; large black points
indicate the median value across participants. Parameter descriptions are given in Table 1. Note: Y-axes differ between plots.

Figure 4 shows the best fit of the LBA to the response time
distributions of four randomly selected participants. These
examples suggest that the model captured the shape of the data
quite well, although the low number of trials and high response
accuracy did make it challenging to fit the error responses.

The inferred ACT-R parameters are shown in Figure 5.
There is substantial variation in the parameter values for
individual participants, but they are nonetheless clustered
quite neatly around the sample averages. As one would expect,
the activation of the correct answer (µc) tended to exceed the
activation of the incorrect answer (µ f ), reflecting participants’

better-than-chance performance. To explore possible changes
in parameter values over time, we fitted separate linear mixed-
effects models to each parameter, testing whether there was a
session effect on the parameter value, with random intercepts
for participants. These models suggested that the parameters
generally remained fairly constant between sessions3.

3Aside from the reported effects, there was some evidence for a
decrease in the F parameter from session 2 to session 3, though the
corresponding model failed to converge. More generally, these results
should be interpreted with a degree of caution, as repeated LBA fits
yield slightly different parameter estimates due to random variation.
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However, the activation of the correct answer (µc) did appear
to increase from session 1 to session 2 (t(98) = −2.050,
p = .043). Furthermore, since the outcome of the retrieval
depends on which of the two candidate chunks has the highest
activation, rather than on the individual activation of either
chunk, we also fitted a linear mixed-effects model with the
difference in activation µc − µ f as the dependent variable.
This model similarly suggested that the activation difference
was higher in session 2 than in session 1 (t(98) = −3.133,
p = .00228), indicating that, on average, participants’ chances
of retrieving the correct answer improved. Finally, the non-
retrieval time ter showed a significant decrease from session
2 to session 3 in particular (t(98) = −2.351, p = .0207),
reflecting a speed-up in perceptual and/or motor functions.

In conclusion, exploratory analysis of the inferred ACT-R
parameter estimates suggests that the observed increase in
accuracy and response speed from session 1 to session 2 could
be the result of a higher mean activation of the correct answer
and a greater difference in activation between the correct
and incorrect answer, while the drop in response times from
session 2 to session 3 may be attributable to a decrease in
non-retrieval time ter.

Discussion
We have demonstrated a mapping of the parameters of
the linear ballistic accumulator onto parameters governing
declarative memory retrieval in ACT-R. By fitting the LBA to
retrieval data and mapping the inferred LBA parameters onto
ACT-R memory parameters, we can arrive at a mechanistic ex-
planation for observed performance changes, without needing
to build and fit an ACT-R model directly. The resulting ACT-R
parameters—activation of chunks, duration of non-retrieval
processes, and latency factor—have cognitively meaningful
interpretations within the wider context of the architecture,
enhancing the interpretation that could be given by the LBA
alone. The mapping extends upon an earlier mapping between
the lognormal race model and ACT-R (Nicenboim & Vasishth,
2018), by adding the ability to fit the latency factor. From a
theoretical standpoint, ACT-R benefits from this connection
to the LBA too: the latency factor is given a more concrete
meaning, namely as a measure of response caution.

The method described here allows one to disentangle
several factors contributing to memory retrieval performance.
In many settings, inside and outside the laboratory, the
parameters governing our behaviour are inevitably in flux: we
learn and forget, we become tired or impatient, our goals and
desires change, we let our minds wander. There is clear ex-
planatory power in being able to capture such changes within
a mathematical model. Linking the terms of that mathematical
model to constructs defined in a cognitive architecture can
further aid the interpretation of observed behaviour.

An important limitation of this method is that it assumes
that the distribution of drift rates—and therefore the activation
of memory chunks—remains constant across a block of trials.
This assumption is most likely to be met when information

is so ingrained that there is no appreciable decay in its
activation (e.g., sentence processing; Nicenboim & Vasishth,
2018), or when retrieval attempts are timed such that they
occur whenever a particular activation is reached (e.g.,
adaptive scheduling, as used in our empirical example).

We used a relatively simple procedure for fitting the
LBA. Extending this approach to a hierarchical Bayesian
LBA may be beneficial (e.g., Nicenboim, 2018). It would
enable modelling multiple participants and sessions simul-
taneously, improving the ability to estimate and compare
participant-level and group-level effects, while also capturing
the uncertainty in those estimates (Fisher et al., 2020). This
could be particularly valuable in smaller data sets, where our
current approach still struggles.

In summary, we have demonstrated how a mapping between
the linear ballistic accumulator and the ACT-R cognitive
architecture can aid in capturing dynamic performance in a
cognitive model, thereby contributing to growing efforts to
integrate formal modelling approaches.
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Abstract

Self-report as a tool to understand different cognitive process-
ing strategies has been criticised for decades, but to date there
have not been many alternatives. To remedy this hiatus, we
propose to apply a recently developed method for processing
stage analysis (Hidden semi-Markov Model Multivariate Pat-
tern Analysis, HsMM-MVPA) to a cognitive strategy predic-
tion task. HsMM-MVPA uses specific patterns in EEG data
to determine the most likely number of sequential processing
stages. Under the assumption that cognitive processing strate-
gies differ in the number of stages, we constructed a classifier
using fitted HsMM-MVPA to try and differentiate between two
cognitive strategies in unseen data. The method is applied to
data from a multiplication verification task, in which partici-
pants are asked to verify the truth of a solution to a multipli-
cation problem (3× 9). We asked participants to indicate via
self-report whether they knew the answer by heart (Strategy 1,
Retrieval) or needed to compute the answer (Strategy 2, Proce-
dural). The classifier could predict the self report labels above
chance, suggesting that the number of processing stages iden-
tified using EEG can be used to track the cognitive processing
strategy that are in use throughout a task.

Keywords: cognitive strategies; cognitive processing stages;
classification; HsMM-MVPA; EEG

Introduction
When different people apply different cognitive strategies to
solve the same problem, a question arises: if people use dif-
ferent strategies, how do these strategies differ? It seems that
we could differentiate between cognitive strategies by way of
the underlying processing stages. A robust method for de-
composing a trial into processing stages should then be able
to do a differentiation by strategy. To test this hypothesis,
we constructed an EEG classifier based on a novel modelling
method with which we will try to predict what strategy is used
in unseen EEG data.

Processing Stage Decomposition
A recently proposed framework for detecting cognitive pro-
cessing stages by Anderson et al. (2016), called Hidden
semi-Markov Model multivariate pattern analysis (HsMM-
MVPA), has been suggested to give nuanced insight into pro-
cessing stages that might be present in EEG, MEG, or fMRI
data. Within this framework, processing stages are modelled
as a hidden Markov chain using distributed peaks in activity.
By additionally modelling the cognitive processing stages as
a semi-Markov chain, we can get insight into the temporal
on- and offset as well as the durations of processing stages.

Such nuanced insight into the characteristics of processing
stages allows for differentiation between strategies, under the
assumption that these characteristics differ between strate-
gies. The HsMM-MVPA framework has been shown to be
a versatile method for detecting processing stages in a vari-
ety of conditions and tasks (Anderson et al., 2018; Berberyan
et al., 2021; Borst & Anderson, 2015; Portoles et al., 2018;
van Maanen et al., 2021; Walsh et al., 2017; Zhang, van Vugt,
et al., 2018; Zhang, Walsh, & Anderson, 2017, 2018; Zhang,
Borst, et al., 2017).

In many implementations, HsMM-MVPA has fitted mod-
els that explain EEG data from multiple participants very
well. This suggests that there could be some commonality
between participants in how the HsMM-MVPA method rep-
resents these processing stages. Therefore, it stands to rea-
son that there is overlap in cognitive processing stages be-
tween participants employing the same cognitive strategy for
the same task. In the current paper, we aim to understand
whether an HsMM-MVPA model can be used to distinguish
between cognitive strategies in EEG data from unseen partic-
ipants. Concretely, we collected EEG data from people per-
forming a multiplication task, while we also collected self-
reports of the strategies that people use during the task. Then,
we estimated the optimal HsMM-MVPA model for the self-
reported strategies. We hypothesise that a classifier based on
these HsMM-MVPA models predicts which strategy unseen
participants used on a particular multiplication problem. If
this prediction is above chance, this will support the hypothe-
sis that processing stages can be used to differentiate between
strategies.

Hidden semi-Markov Model Multivariate Pattern Anal-
ysis Standard Hidden Markov Models consist of two
stochastic finite-time chains. One is a hidden Markov chain
X and the other is an observable chain Y whose behaviour de-
pends on X . For every pair (x,y) where x ∈ X , y ∈ Y there is
a probability that x happens when y is observed (Visser et al.,
2009). In a HMM, the duration of a state corresponds to the
duration of a single observation. In contrast, in a hidden semi-
Markov model, it is possible to have multiple observations per
hidden state, which allows for variable state durations (Yu,
2010). Since processing stages are not assumed to have the
same duration, HsMMs are best suited for this analysis (An-
derson et al., 2016). In this study, extracted components from
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EEG data are the observations Y , with the underlying pro-
cessing stages being modelled by the most likely sequence of
hidden states X .

To discover different processing stages, HsMM-MVPA re-
lies on the assumption that a processing stage onset is signi-
fied by a cognitive event that can be discovered in the EEG
signal by looking for positive or negative peaks, distributed
across different brain regions. This assumption is shared by
two main theories explaining the generation of event-related
potential (ERP); the classical theory (Shah et al., 2004) and
the synchronised oscillations theory (Makeig et al., 2002).
These theories agree that a cognitive event is signified by a
positive or negative peak in the EEG signal, although they
disagree on the exact origin of this peak (see Anderson et al.
(2016) for a more extensive discussion).

HsMM-MVPA searches for positive or negative peaks in
the EEG signal (called bumps), with the subsequent flats
denoting a processing stage. The HsMM-MVPA model
consists of a number of bumps, as well as a set of gamma
distributions of stage durations across trials. The algorithm
first attempts to find bumps that represent the onset of a cog-
nitive stage and the flats that separate these bumps. The goal
of HsMM-MVPA is to identify the topography and temporal
location of each bump on each trial. The method allows
for variability within the duration of cognitive processes for
each trial, so bumps can occur at different time points per
trial. The trials are analysed individually, but all trials of all
participants are taken into account simultaneously. A model
is then fitted to various participants simultaneously.

Classification
A challenge with classifying EEG data is that there is a high
degree of variability from participant to participant (Saha &
Baumert, 2020). Implementations of HsMM-MVPA as de-
scribed above are able to discover good-fitting models across
multiple participants, as long as the participants’ EEG sig-
nal is collected under the same conditions. This suggests
that the number of processing stages is equal across partici-
pants using the same strategy, yielding the hypothesis that the
EEG signal of different participants performing a task under
the same condition can be modelled with the same HsMM-
MVPA model. These models will be used to distinguish be-
tween the same strategies in unseen EEG data, making clas-
sification possible.

We will fit models to EEG data collected from partici-
pants verifying single-digit multiplication problems, differ-
entiating between two self-reported strategies: retrieval for
memory retrieval and procedural for procedural strategies.
Using these models, we will attempt to classify these same
strategies in unseen participants. We determine the sensitiv-
ity and specificity of the models to self-reported trials using
an receiver operating characteristic (ROC) curve based on the
likelihood of the Retrieval strategy. If the area under that
curve is larger than 0.5, the model is correctly identifying
self-reported Retrieval-trials higher than chance.

We chose to focus our analysis on the retrieval strategy,
since previous work suggested that what people interpret as
a simple memory retrieval is much more homogenous (Ar-
chambeau et al., unpublished). In fact, there are many differ-
ent solution strategies that all can be described as a procedural
strategy (LeFevre et al., 1996; Ashcraft, 1992). For example,
to calculate that 6× 4 is equal to 24, one can retrieve from
memory the related fact that 6× 5 = 30, and then subtract
6. An alternative procedural strategy involves consecutively
adding 6 while simultaneously counting the number of addi-
tions. When this number reaches 4, you have arrived at the
answer.

Method
We collected EEG, accuracy, and response times from in-
dividuals verifying single-digit multiplication problems (Ar-
chambeau et al., 2019). Participants were shown a single-
digit multiplication problem with an answer and asked to ver-
ify whether the given answer was correct. Next, they were
asked to self-report whether they knew the answer from mem-
ory (i.e., the retrieval strategy) or computed the answer an-
other way (Procedural).

Design & Procedure
Forty-two undergraduate students from the Université Li-
bre de Bruxelles (ULB) between the ages of 17 and 52
(m = 22.24) took part in the multiplication experiment. The
study was approved by the local Ethical Review Board of the
ULB, Faculty of Psychological and Educational Sciences. All
participants provided informed consent and received course
credit for their participation. Each trial started with the pre-
sentation of a fixation point of 500 ms. A multiplication prob-
lem containing two operands in Arabic format and the multi-
plication operator ”x” (e.g., 6×4) was displayed in the centre
of the screen for 200 ms, followed by a blank screen of 120
ms. Then, an answer was shown (24) until a response was
provided. The participants were asked to indicate via but-
ton press whether the proposed solution of the problem was
correct or not. Participants were asked to be as fast and as
accurate as possible. When a response is given, a 300 ms in-
terval occurred, after which participants were prompted to re-
port what strategy they used to verify the multiplication prob-
lem; ”memory” or ”calculation strategy”. Then, the next trial
was initiated with an inter-trial interval of 1000ms. The task
consisted of 4 blocks of 248 trials, for a total of 992 trials.
There were three trial types. Besides trials where the given
solution was correct (positive or P), there were trials two trial
types where the given solution was incorrect: interfering so-
lutions (I) and non-interfering solutions (NI). With an inter-
fering solution, the answer given is table-related to one of the
operands. The given interfering solution of a problem a× b
could be the correct solution of (a± 1)× b or a× (b± 1).
Multiplication problems with a single digit as the correct so-
lution were removed, as well as 9× 9. Half of both I and
NI were smaller and half were larger than the correct solu-
tion. Although the I and NI split is not relevant for the cur-
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rent study, the impact interference has on ERP is accounted
for in this analysis. There were 496 positive trials and 496
negative trials with 248 interfering solution trials and 248 un-
related solution trials. Each multiplication problem was re-
peated 32 times. On 16 of these repetitions the provided so-
lution was correct, on 8 it was an I solution, and on 8 it was an
NI solution. The multiplication problems were presented in a
pseudo-randomised order, ensuring that successive problems
never had the same operands. The multiplication task was
run on a 17-inch laptop computer, using the Psychophysics
Toolbox extension (Brainard, 1997) in MATLAB (version
R2013a, The Mathworks Inc., Natick, Massachusetts, USA).
EEG data was collected using a BioSemi interface with 72
channels, at a sampling rate of 2048 Hz. EMG activity was
also recorded for other purposes, beyond the scope of the cur-
rent study.

Behavioural Analysis
Four data subsets were created. Three of these based on the
three experimental conditions positive (P), related (I), and un-
related (NI). For the fourth subset, we collapsed all data under
the assumption that the two self-report strategies would be
shared across the three experimental conditions, increasing
the sample size. Participants 32-42 were split off as a test set,
making participants 1-31 the training set. For this analysis,
incorrect responses were removed (6.5% of trials). Addition-
ally, we removed response time outliers from all subsets of
the data to remove any trials where the participant may have
been confused or distracted. When matching the behavioural
data to the EEG data for epoching, four participants from the
training set were removed due to incorrect event numberings
in the EEG data. In total, 15% of the data was removed in this
step.

After cleaning our data sets, class imbalance was com-
puted. As seen in Table 1, in all subsets the majority of trials
is labelled as ’retrieval’. These numbers will be considered as
a baseline for classification accuracy. Although the standard
deviation in RT in the test data subsets is much lower (poten-
tially due to some participants having generally slower RTs
in the training set), HsMM-MVPA can account for variations
in the temporal offset and stage durations (Anderson et al.,
2016).

Data Preprocessing
The data was processed in MATLAB (version 2020a, The
Mathworks Inc., Natick, Massachusetts, USA) using the open
source EEGLab plugin (Delorme & Makeig, 2004). First, the
data was re-referenced to all-electrode average and high-pass
filtered at 1 Hz and low-pass filtered at 40 Hz, as oscillations
outside of this range are not commonly associated with brain
activity (Henry, 2006). The data was resampled to 512 Hz
and flatlines and overly noisy sections of data were removed
automatically using built-in EEGlab functions, before apply-
ing Independent Component Analysis (ICA) using the Fas-
tICA algorithm (Hyvarinen, 1999). Next, the ICLabel plugin
was used to automatically flag non-brain related components

Condition % Retrieval Mean RTs (ms) SD RTs (ms)

Training data

All 87.1% 1398 2211
P 88.5% 1312 2051
I 83.4% 1628 2101

NI 87.9% 1339 2581

Test data

All 88.4% 1110 874
P 91.9% 1040 819
I 81.3% 1280 998

NI 84.0% 1099 837

Table 1: Overview of trials labelled ’retrieval’ after error and
outlier removal. Standard deviation is computed within every
subset (Positive (P), Interfering (I), and non-interfering (NI),
across participants.

from the data (Pion-Tonachini et al., 2019). These flagged
components were then removed from the data. In total about
10% of the data was removed in this step.

Fitting HsMM-MVPA
To fit the HsMM-MVPA models, the data were resampled
to 100 Hz and then epoched between stimulus onset and the
participants’ response. Spatial principal component analysis
(PCA) was applied to all datasets to extract the 10 principal
components from the data channels. In all subsets, the 10
principal components account for more than 97% of variance
in the data.

We consider our bumps to have a duration of 50 ms, as this
duration produces robust results even if the actual durations
are slightly longer or shorter (Anderson et al., 2016). The
duration of the subsequent flats was modeled with a gamma
distribution with a shape parameter of 2. The results are not
sensitive to the exact choice of shape parameter, except that
it simplifies the estimation of flat distributions (Anderson et
al., 2016). In a model, n bumps results in n+1 flats (or n+1
processing stages), since the first stage starts with a flat when
the stimulus is applied.

We constructed different HsMM-MVPA models for every
subset of the data and for both self-reported strategies, re-
sulting in eight different models. Model estimation begins
with a 1-bump model and creates models for an increasing
number of bumps until a number of bumps nmax is reached,
with nmax being the maximum number of 50 ms bumps that
fit in the duration of the shortest epoch. During estimation,
two parameters of each hidden state are obtained: (1) the am-
plitudes of the bumps that mark the onsets of the processing
stages and (2) the scale parameter of a gamma distribution
describing the stage durations. Data from all trials and all
participants in a training set were taken into account simulta-
neously. The match between the EEG data and the model was
maximised using a standard expectation-maximisation (EM)
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algorithm (Moon, 1996).
The fitting process begins by defining initial amplitudes for

both the bumps and the gamma distributions for stage dura-
tions. Since the convergence of the EM algorithm can be sen-
sitive to the choice of starting point, ending up in a local maxi-
mum (Wu, 1983), we used a process based on work by Zhang,
Walsh, & Anderson (2018). Per subset, we first fit separate
HsMM-MVPA models for each condition on nmax bumps, ob-
taining bump amplitudes and gamma distributions. Next, we
used those parameters for models with nmax − 1 bumps, it-
eratively leaving out each of the bumps in nmax, selecting the
model with best fit. These bumps become the new nmax before
the above process is repeated until only a one-bump model n1
is left. This way, we can find all potential bump topologies
while avoiding local maxima.

We used a leave-one-out cross-validation (LOOCV) pro-
cedure to prevent overfitting. For every training subset, we
estimate an HsMM-MVPA model on all participants minus
one and then test the fit of this model on the omitted partic-
ipant. This process is repeated for all participants. Finally,
we used a sign test to test for how many participants the log-
likelihoods of the models with n+1 bumps increased signif-
icantly compared to an n-bump model. If a model with one
additional bump outperforms the previous model for a suffi-
ciently large number of participants, we can say that the ad-
ditional complexity of that model is warranted. This step is
crucial for fitting models that generalise well across partici-
pants (Anderson & Fincham, 2014). To select the best mod-
els, sign tests were used on every n-bump model to see for
how many participants its fit improved compared to the n−1
bump model. The best model is one that improves signifi-
cantly for more than half of the training participants. For a
more detailed mathematical description and code for HsMM-
MVPA we refer to Anderson et al. (2016) and Berberyan et
al. (2021).

Classification
After estimating the most likely parameters for all models,
we used our preprocessed test data to estimate the likelihood
of every trial per subset under the models. We also estimated
the likelihoods of all test trials per subset under models of dif-
ferent subsets to further test how well the models generalise.
As this is a binary classification task, we compute true pos-
itive rates (TPR) and false positive rates (FPR) to plot ROC
curves. Then, we determine the area under the curve (AUC),
where 0.5 denotes the model classifying according to chance.
We also report classification accuracy (the proportion of trials
classified as their corresponding self-reports) and F1-values
(computed as F1 =

T PR
T PR+(FPR+FNR)/2 ) for all test trials classi-

fied under all models.

Results
Model Selection
As can be seen in Figure 1, Retrieval models are consistent. In
all four subsets, the models fit to the Retrieval strategy show

Figure 1: Model selection curves for both strategies. The
numbers beside the points denote for how many out of 27
participants the log-likelihood of an n-bump model signifi-
cantly increases over n− 1 bumps. The arrows highlight the
optimal models according to a sign-test for each subset of the
data (see the section Fitting HsMM-MVPA for details).

that the 2-bumps model improves significantly over the 1-
bump model in more than half of participants. As this result is
consistent across all four subsets, the assumption seems justi-
fied that the Retrieval-strategy is generally well described by
a 2-bump, 3-stage Hidden semi-Markov model. As there is no
significant improvement going to a 3-bump, 4-stage model, 2-
bump 3-stage models were selected. In the Procedural strat-
egy, results are far less consistent. As a different number of
bumps seems to perform best in all four subsets, we classify
using the Retrieval-model only.

Classification Results
After estimating log-likelihood of every trial in the test set un-
der all four Retrieval-models, we constructed Receiver Oper-
ating Characteristic-curves with an increasing discrimination
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Figure 2: ROC curves for all test sets predictions under all
models

threshold (Figure 2. Accuracies and F1 values can be seen in
Table 2. The highest accuracy and F1 score per subset were
selected. We see that all classifiers perform better than ran-
dom (curve above the grey dashed line, AUC > 0.5), with
P-trials in the test set performing best overall, averaging at
0.61. AUC’s were computed per test participant for signifi-
cance testing, showing that under all models All and P-trials
are significantly higher than chance. We also see that F1-
scores tend to be higher than accuracies, denoting that the
classifiers are better at correctly identifying Retrieval-trials
as Retrieval than they are at identifying non-Retrieval trials
as non-Retrieval.

Discussion
The goal of the current study was to discover whether cog-
nitive strategies can be differentiated between based on the
number of processing stages. In general we can say with con-
fidence that HsMM-MVPA when applied to EEG data can do
so in a way that finds processing stages across participants. In
other words, an HsMM-MVPA model fit to a specific cogni-
tive strategy can recognise most unseen trials of that same
strategy, even when that unseen trial is from a participant
whose EEG data the model has not seen at all. This implies
that, when different people report using the same cognitive
strategy under the same experimental condition, their EEG
patterns and consequently the processing stages are similar
as well. There is also consistency between the models fit to
the four experimental conditions with respect to their classi-
fication on the test data subsets, but almost everywhere this
consistency is proportional to the variation in the class im-

Subset AUC Max F1 Max acc

Model trained on All

All 0.584‡ 0.943 89.3%
P 0.612‡ 0.974 94.9%
I 0.597† 0.902 82.4%

NI 0.527 0.916 84.5%

Model trained on P

All 0.603‡ 0.944 89.4%
P 0.653‡ 0.974 95.0%
I 0.618 0.902 82.6%

NI 0.550 0.917 84.7%

Model trained on I

All 0.548‡ 0.942 89.1%
P 0.557‡ 0.974 94.9%
I 0.577† 0.902 82.2%

NI 0.568 0.943 89.3%

Model trained on NI

All 0.586† 0.943 89.3%
P 0.610‡ 0.974 95.0%
I 0.598† 0.902 82.4%

NI 0.529 0.916 84.7%

Table 2: Area Under Curve (AUC) of the ROC curves, as well
as the highest F1 scores and accuracies for every test set.
†: significant below p=0.05
‡: significant below p=0.01

balance of our data. F1 scores everywhere tend to be higher
than classification accuracy, which is closer to random per-
formance. This means that a retrieval-based classifier is ac-
curate at identifying trials that were self-reported as retrieval,
but less accurate with respect to trials that were self-reported
as procedural.

In our data, the retrieval strategy is the more consistent one.
All 2-bumps, 3-stage models were well fitting on all four data
subsets. This means that it is highly likely that participants
used 3 processing stages when using the retrieval strategy. In
contrast, the procedural-strategy seems to be much less co-
hesive. A first possible explanation is that participants can
calculate the answer to a problem in different ways, which
could lead to a different number of processing stages. This
means that ”procedural” encompasses a number of strategies
(LeFevre et al., 1996; Ashcraft, 1992). Some of these strate-
gies might be closer in number of stages to our 3 memory
retrieval stages, which could partially account for the number
of false positives our retrieval-classifier finds. For instance, a
procedural strategy to verify 6×7 could involve memory re-
trieval of 6×6 as part of the strategy, leading this hypothetical
trial to fit well with our retrieval models.

To complicate matters further, there is the potential of noise
or biases to be introduced when using self-reports as a tool for
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setting our ground-truth (Kirk & Ashcraft, 2001). This means
that wrongly labeled trials might be present. Alternative ways
of ascertaining cognitive strategies, like a mixture modelling
approach could be considered for this purpose (Archambeau
et al., unpublished; Thevenot et al., 2007; van Maanen et al.,
2014, 2016). There is also a discrepancy in the means and
standard deviations of our response times between our train-
ing and test sets. HsMM-MVPA is able to account for vari-
ance in temporal onset and duration of processing stages (An-
derson et al., 2016), so in theory this is no problem. However,
this is a variable that could be corrected for in future.

Future work might encompass cross-validating this analy-
sis with different train-test data splits. In addition, a compar-
ison between scalp topographies of the best models and both
correctly-labeled and mislabeled test set trials could give in-
sight into trials that might have been incorrectly self-reported.
Another avenue would be to apply this analysis to a different
experimental task, such as a division task instead of multipli-
cation. Finally, further insight into using model-based classi-
fiers instead of more traditional machine learning approaches
could improve the explainability of cognitive data classifiers.
HsMM-MVPA provides a nuanced understanding of process-
ing stages that other machine learning methods often do not.

In conclusion, this first investigation into using HsMM-
MVPA as a tool for classification of cognitive strategies
shows promise. The next step would be to investigate how
far this promise can lead.
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Abstract

Fatigue is a problematic factor in many workplace environments,
resulting in safety and health risks that require monitoring and
management. One means to monitor and manage fatigue is
through the use of tools implementing biomathematical fatigue
models to create assessment and predictions of operator fatigue
based on sleep habits. Unfortunately, these models tend to
provide assessments and predictions for an “average” operator
given work schedules, lacking individualization. One way in
which these models can be individualized is through the use of
at-the-moment performance data that can modulate the model
estimates. In the current effort, we describe an initial attempt at
developing an algorithm to individualize fatigue assessments and
predictions from a widely-used biomathematical fatigue model
with performance data from a common attention task. We discuss
the sleep datasets used for the effort, scaling procedure, and
model fitting using a genetic algorithm. We then discuss future
directions we will take to further increase the effectiveness and
efficiency of the individualization capability and its implications.

Keywords: Psychomotor Vigilance Test; Genetic Algorithm

Fatigue is a problematic factor in several workplace
environments such as aviation (Caldwell & Caldwell, 2016),
commercial motor vehicle (National Academies of Sciences,
Engineering, and Medicine, 2016), railroad (Gertler,
DiFiore, & Raslear, 2013), and medical (Kancherla et al.,
2020) operations. Given the resulting safety and health risks
associated with fatigue, it is crucial that organizations
implement fatigue risk management (FRM) programs,
policies, and other mitigation efforts to combat fatigue.
Traditionally, organizations have commonly implemented
policy limits regarding work/duty hour limits and rest
breaks to allay fatigue. Increasingly, organizations have
implemented various types of FRM programs that provide
resources and tools to help mitigate fatigue, document
fatigue, and examine incidents involving fatigue (Gander et
al., 2011). One tool found within some high-risk operational
setting programs is the use of biomathematical fatigue

models to create assessments and predictions of operator
fatigue. Biomathematical fatigue models include
homeostatic regulation and circadian rhythm processes,
among other factors, to create predictions of fatigue for
operators (Mallis et al., 2004).

One particular model that is used by organizations such as
the United States Air Force (USAF) Air Mobility Command
(AMC), the U.S. Federal Railroad Administration, among
others, is the Sleep, Activity, Fatigue, and Task
Effectiveness biomathematical fatigue model (SAFTE;
Hursh, Redmond, et al., 2004). This model is typically used
as the basis of the Fatigue Avoidance Scheduling Tool
(FAST; Hursh, Balkin, et al., 2004), a tool that provides
fatigue predictions based on prescriptive sleep schedules
given work and rest times. One issue with the SAFTE model
and other similar biomathematical models is that the model
provides predictions for an “average” operator, lacking
individualization. Some researchers have had success
individualizing predictions of biomathematical fatigue
models. Recently, Liu et al. (2017) had success in
individualizing the Unified Model of Performance (UPM;
Rajdev et al., 2013) with Psychomotor Vigilance Test (PVT;
Dinges & Powell, 1985) reaction times. Since the SAFTE
model is the basis of several FRM programs and research
has provided support of its effectiveness (Hursh, Redmond,
et al., 2004; Van Dongen, 2004), we believe it is
advantageous to implement a similar technique as Liu et al.
(2017). In the current effort, we develop an algorithm to
modulate the SAFTE model fatigue estimates with PVT
data. This will provide more valid fatigue assessments from
the biomathematical model through individualization gained
from use of PVT data.

SAFTE Model
The SAFTE model is a three process model that includes
homeostatic regulation, circadian rhythm, and sleep inertia
processes to calculate general performance effectiveness
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(fatigue) predictions. The model also includes a process to
account for chronic sleep deprivation. The SAFTE model
embedded in FAST is proprietary and includes additional
features to take time zone changes and light into account. In
the current effort we utilize the non-proprietary version of
the SAFTE model (Hursh, Redmond, et al., 2004). The
SAFTE model includes 16 parameters. These are listed in
Table 1, along with their general mechanism within the
model and effects on the output of the model when
modified.

Psychomotor Vigilance Test
The PVT is one of the most widely used tasks to assess
fatigue due to its sensitivity to sleep decrements and
robustness to learning effects (Arsintescu et al., 2017;
Balkin et al., 2000; Basner & Dinges, 2011). In the PVT,
participants wait for a rolling reaction time indicator in
milliseconds to appear on a computer screen in a known
location. When this indicator appears, the participant must
respond as fast as possible. The PVT is traditionally 10
minutes in length and has a random inter-stimulus interval
(ISI) of 2 to 10 seconds. Mean and median reaction time
and number of lapses (reaction times greater than 500 ms)
are the most common metrics examined to assess alertness
or fatigue, but there are several other metrics that are also
sensitive to fatigue (e.g., mean 1/RT, slowest 10% 1/RT,
etc.) (Basner & Dinges, 2011).

Current Effort
In the remainder of the paper, we will describe our process
for individualizing the SAFTE biomathematical fatigue
model using PVT data. First, we will describe the archival
sleep deprivation dataset used to develop and test the
algorithm. We will then describe the process to scale model
outputs to the PVT outcomes and how specific SAFTE
parameters were chosen. We will then demonstrate the
predictive capability of fitting the chosen parameters to
individuals. Lastly, we will discuss implications of this work
and future plans.

Table 1: SAFTE Model Parameters
Par Rep Effects DV RE
p 24h acrophase Shifts

effectiveness
curve left and

right

18 [1,24]

pp 12h acrophase Changes shape of
effectiveness

curve

3 [1,12]

beta Relative
amplitude of
12h rhythm

If both circadian
peaks are at the

same height

0.5 [0,1]

m Sleep
propensity

mesor

Positive values
increase sleep

inertia

0 [-5,10]

as Sleep
propensity
amplitude

Higher values
increase

effectiveness

.55 [-5,5]

a1 Performance
rhythm

amplitude
(fixed %)

Height of peak of
circadian

component

7 [0,20]

a2 Performance
rhythm

amplitude
(variable %)

Height of peak of
circadian

component

5 [0,20]

f Feedback
amplitude

How gradually
sleep increases

reservoir

.00262
43

[0,1]

k Performance
use rate

Depletion rate
while awake

.5 [0,1]

k1 Down-regulati
on time
constant

Only during sleep .22 [0,5]

k2 Reference
level for SI
regulation

Only during sleep 0.5 [.01,5]

k3 Recovery time
constant

Only during sleep .0015 [0,5]

SI
max

Max sleep
accumulation

per minute

Only effect when
sleep <=3 hours

3.4

I Sleep inertia
time constant

Only effect 2
hours following

awakening

.04

I
max

Max inertia
following
awakening

Only effect 2
hours following

awakening

5

RC Reservoir
capacity

Kept constant
across

participants

2880

Note. Par = Parameter; Rep = Represents; DV = Default
Value; RE = Range Explored
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Method
Dataset
To test fits from the model we utilized PVT data from two
62-hour sleep deprivation studies run at Washington State
University (Tucker, Whitney, Belenky, Hinson, & Van
Dongen, 2009; Whitney, Hinson, Jackson, & Van Dongen,
2015). The first dataset (Whitney, Hinson, Jackson, & Van
Dongen, 2015) included 26 participants (Mage = 25.92, SDage

= 4.05, Rangeage = 22-37, 16 males and 10 females) from the
surrounding Washington State University community.
Participants were randomly assigned to a sleep deprivation
(n = 13) or control group (n = 13). The second dataset
(Tucker, Whitney, Belenky, Hinson, & Van Dongen, 2009)
included 23 participants (Rangeage = 22-38, 12 males and 11
females) also from the surrounding Washington State
University community. Participants were randomly assigned
to a sleep deprivation (n = 12) or control group (n = 11).

The following description of the protocol was common
to both studies, except where noted. Participants spent 6
consecutive days (7 in the first study) and 6 nights in the
lab. The first two days were a baseline period where
participants had 10 hours time in bed from 22:00 to 08:00
each night. The control group continued this sleep schedule
in the following days, but the sleep deprivation group was
deprived of sleep for 62 continuous hours. The last two days
were a recovery period where both groups had 10 hours
time in bed each night. Participants completed several
different tasks during the studies, but we only focus on the
PVT task in the current effort. The PVT task was 10
minutes in length with a random ISI of 2 to 10 seconds.
PVT bouts were collected about every 2 hours during
scheduled time awake. This resulted in 8 baseline bouts for
both groups, 24 bouts for the sleep deprivation group and 14
bouts for the control group during the sleep deprivation
period, and 10 recovery bouts for both groups. We
specifically focused on the sleep deprivation groups from
both studies for this modeling effort. For fitting the model to
the human data, we aggregated each participant’s median
RT by bout.

Scaling Model Outputs to PVT
Sleep schedule input into SAFTE followed the protocol
described above. Output from the SAFTE model produces
an effectiveness value on a scale of 0 to 1. As is the case in
many biomathematical models, the output requires scaling
and inversion to reflect the dependent measure of interest (in
this case, the median RT per bout) (Van Dongen, 2004). We
linearly transformed this value using the following formula:
Model = scale + scale * (1-EV), where scale is determined
for each participant and is the minimum median RT from all

the bouts that went into fitting the model, EV is the
effectiveness value output from SAFTE.

Finalizing Parameters to Modulate
After reviewing the effects of each SAFTE parameter on
model output, we found that 12 of the parameters were good
potential candidates for the individualization of model
output. The culling of the original 16 parameters to 12 was
done by visually inspecting the effects of each parameter
independently with respect to a 62h sleep deprivation sleep
schedule. We found that SImax, i, and Imax all had minimal
effects on the Effectiveness values output by the model
during periods of wakefulness. We chose to also keep the
Reservoir Capacity (RC) constant across all participants as
its magnitude is directly related to the k parameter which
controls the rate at which the reservoir is depleted during
wakefulness. Rather than vary both parameters, we chose
the k parameter to vary. Table 1 also lists the ranges we
used in exploring parameter effects.

The parameter space we wanted to explore in this work
was fairly large (as seen in Table 1) and rather than try to
run a brute force exhaustive search for each participant, we
turned to genetic algorithms. Genetic algorithms have been
used in many domains in order to find sets of parameters
that minimize some fitness functions fairly efficiently
(Fogel, 2006). We used the GA package in R to run a genetic
algorithm with a population size of 50 and convergence
determined by 50 generations with no change in fitness
(Scrucca, 2013, 2017). The fitness function used in the GA
was the root mean squared error (RMSE) between the
human data and model output after scaling of the median
RT. This initial parameter exploration was done using all of
the bouts of data for each participant.

Although there are likely significant interactions between
the various parameters, as a first pass at determining how
much each parameter contributes to individually fitting the
human data, we ran the genetic algorithm while varying 11
parameters and keeping the 12th constant. As a control, we
used a model with default SAFTE parameters (green dotted
line in all figures). Figure 1 shows the resultant average
error across all participants when each parameter was held
constant at its default value while the rest were explored.
The red line in the figures indicates the error when all 12
parameters were varied. As the figure suggests, maintaining
the k parameter at default had a considerable effect on the
model’s error. Using the results derived here, we compared
the average error to the 12 parameter model and
conservatively culled any parameters whose exclusion
(keeping them at default values) either resulted in better
performance than the 12 parameter model or were within .5
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error units. From this point forward we kept the p, pp, m, f,
and k3 parameters at default values.

Figure 1: Average RMSE across all participants when fitting
by keeping each parameter constant while the other 11 are
varied.

Figure 2: Average RMSE across all participants when fitting
by keeping each parameter constant while the other 6 are
varied.

We then repeated the above procedure with the 7
remaining parameters and ran the genetic algorithm while
varying 6 parameters and keeping the 7th at default. The
results are shown in Figure 2. Given these results, we found
that we can further keep as default the parameters a1 and
beta. In an attempt to further reduce the number of
parameters, we ran the GA only varying the a2, as, and k
parameters as those seemed to provide the largest
improvement to fit, as well as only varying the k parameter.
Figure 3 shows the average error based on the number of
parameters compared to the fully default model (green line)
and the 12 parameter model (red line). Based on these
results, the 5 parameter model which varies a2, as, k, k1,
and k2 produces the best individual fits to our dataset. These
parameters correspond to how high the peak of the circadian
component is (a2), the amplitude of sleep propensity with
higher values resulting in higher effectiveness values (as),

how quickly the reservoir is depleted (k), and how quickly
the reservoir is refilled (k1 and k2).

There was a statistically significant difference in error in
the number of parameters in the model as determined by a
linear mixed effects model, (F(5, 836) = 224.68, p < .001).
Post-hoc tests indicated that both the 5-parameter model and
the 7-parameter models have significantly less error than the
12-parameter or default models (p < .05). In the interest of
simplicity, we used the 5-parameter model for predicting
performance for each PVT bout based on all preceding
bouts.

Figure 3: Average RMSE across all participants of the best
fitting models by number of free parameters.

Results
Having settled on the 5 parameters we found to be the most
appropriate for capturing individual differences in our
dataset, we subsequently ran the genetic algorithm to find
the best fitting parameters for each participant up to each
bout time in order to predict the next bout’s performance.
Since the goal of the current work is to be able to adjust
parameters in real-time to predict future performance, this
approach should establish the validity of using the 5
parameters to fit individuals. Figure 4 depicts the average
error across all participants during each bout based on the
parameter set which minimizes the error of all previous
bouts. For comparison, we also used the SAFTE model with
default parameters and scaled each individual’s performance
as before. There was a statistically significant interaction
between model type and hour on the error between the
model’s predicted median RT and the human data as
determined by a linear mixed effects model, (F(33, 1611) =
6.03, p < .001) as well as both the main effect of type (F(1,
1611) = 167.54, p < .001) and hour (F(33, 1611) = 20.28, p
< .001). Post-hoc tests indicated that there were significant
differences between the default model and the 5-parameter
individualized model in all hours between 105 and 141 into
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the study (p < .01). These hours corresponded to being
awake for 25 to 61 hours.

It should be noted that there was considerable variability
between participants in terms of how accurately the
individualized model was capable of predicting
performance. In particular, the majority of participants (n =
19) had an average error of 30 ms or less across all bouts.
However, in some participants the later bouts which
occurred during the sleep deprivation period were not as
well fit by the model, as shown in Figure 4 in which bouts
occurring during hours 120-140 have high variability and
higher error. After inspecting the poorer fitting participants,
we found that there was a difference in goodness of fit
between the participants from the first study and those of the
second. It was unclear why this would be the case as both
studies used the same protocol. However, after filtering out
the participants from the second study, we found a reduction
in prediction error which mimicked that of the error we see
when fitting the entire data set, see Figure 5. We again
found a significant interaction between the model type and
hour, (F(33, 795) = 12.27, p < .001) as well as both the main
effect of type (F(1, 795) = 318.88, p < .001) and hour (F(33,
795) = 20.68, p < .001). As in the above analysis, post-hoc
tests revealed significant differences between the two
models for hours 105 to 141.

Taken together, our initial individualized modeling effort
resulted in much better predictions of next bout performance
than the default parameter model despite the large
variability inherent during sleep deprivation bouts.

Figure 4: Predicted bout’s median RT error based on all
previous bout data, includes 25 participants in the sleep
deprivation condition. Green lines are day boundaries.

Figure 5: Predicted bout’s median RT error based on all
previous bout data, includes only the 13 participants from
the first 62-h study who were in the sleep deprivation
condition.

Discussion
In the current effort, we have demonstrated an initial attempt
to develop an algorithm to individualize SAFTE
biomathematical fatigue model estimates with PVT
performance data. Although SAFTE includes 16 parameters
which could theoretically all be manipulated in order to fit
individual performance data, we attempted to cull the
number of parameters down, both to avoid overfitting and to
more efficiently find best fits, while still maintaining the
ability to both fit the data and predict future performance.
Out of the 16 parameters, 3 were negligible in their
contribution to effectiveness values while awake and a 4th
highly correlated with another parameter. Further
exploration of the remaining 12 parameters found that 5
more could be culled without appreciably affecting the
individual fits. Furthermore, a 5-parameter model was
capable of fitting individual data as well as a 7-parameter
model. Further reducing the number of parameters,
however, produced worse fits. This suggests that these five
parameters are associated with important individual
differences regarding fatigue. The a2 parameter is likely
associated with differences in circadian typology, the as
parameter is associated with how quickly individuals fall
asleep and their ability to stay asleep, and k, k1, and k2
parameters are likely associated with differences in sleep
need.

We then used the 5-parameter model to fit individual
performance up to a particular bout and predict performance
on the subsequent bout. The error between the model’s
predicted median RT and that of each individual
participant’s was within a range commensurate with using
the entire data set to fit the parameters, suggesting that this
approach may allow us to update parameter estimates with

Proceedings of the 19th International Conference on Cognitive Modelling (ICCM 2021)

313



limited data and provide a more individualized model of
performance than the default SAFTE model. Although the
individualized predicted fits get somewhat worse during the
sleep deprivation period, they are still much better than
using the default parameters.

The traditional PVT implementation is not practical in
operational contexts due to the length of the task (10
minutes) and the hardware used to collect the reaction times
(e.g., desktop computer or laptop) (Lamond et al., 2005). As
a result, researchers have examined the validity of shorter
PVT implementations (e.g., 5 or 3 minutes) on handheld
devices (e.g., Basner et al., 2011, Grant et al., 2017; Lamond
et al., 2005). Overall, these studies have found these
implementations to be valid assessments of fatigue when the
traditional PVT implementation is not possible. Three
minute smart-phone based PVTs are an especially attractive
alternative for operational environments as they are short in
duration and operators commonly carry these devices on
their person. As a result, real-time performance from a
smartphone PVT can be used to individualize
biomathematical fatigue models within FRM programs. The
current effort is a first step in allowing us to use the output
from these shorter duration PVT implementations to
individualize predictions.

We will continue to improve upon the algorithm by
testing with additional sleep deprivation, restricted sleep,
and shift-work datasets to demonstrate performance in
various sleep impairment-related contexts. Future work will
also explore other scaling mechanisms as well as different
dependent measures such as number of lapses and false
alarms as those have also typically been used to evaluate
PVT performance. We will also work toward being able to
predict performance further than one bout in the future.
Finally, the ultimate goal of this work is to provide efficient
real-time parameter estimation on an individual basis
allowing us to predict future performance.
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Abstract

Most cognitive models for human syllogistic reasoning aim to
explain an average reasoner, i.e., the responses given by ag-
gregating the response of the majority of reasoners. Studies
show that individuals can deviate a lot from this average rea-
soner. So far, there have been very few models to explain and
predict the responses of individual reasoner. In empirical stud-
ies, it can be observed that participants often rely on heuristic
strategies (System 1 processes) to solve syllogistic problems
but participants switch to analytical strategies (System 2 pro-
cesses) occasionally. The study by Tse et al. (2014) demon-
strated that inhibition of the matching heuristic is necessary to
switch to the analytical processes in conflict problems that the
output from the heuristic does not agree with that from analyt-
ical processes. This paper presents four mechanisms to incor-
porate individual differences in reasoning strategies and effect
induced by problem type of the syllogism in predictive com-
putational models built according to the mental model theory,
mReasoner, and verbal models theory. Among these models,
the composite model, which takes the highest accuracy model
for individual reasoner, can reach a median accuracy of 86% in
predicting the conclusions given by individual reasoner in the
study.

Keywords: predictive cognitive modeling; syllogistic reason-
ing; strategy changes; dual process theory; System 1 and 2

Introduction
Consider the following syllogistic reasoning example:

All snakes are reptiles. [Premise 1]
No rabbit is a snake. [Premise 2]

Therefore, no rabbit is a reptile. [Conclusion]

For the example above, 93% of the 107 participants re-
sponded that the conclusion follows logically, which is
termed “the conclusion is valid” (Tse, Rı́os, Garcı́a-Madruga,
& Bajo-Molina, 2014). This example denotes a traditional
syllogistic deduction consisting of two premises, featuring
one of the four categorical quantifiers each (All, Some, No,
or Some ... not, which are usually abbreviated as A, I, E,
and O, respectively). Together, the two premises provide in-
formation about three terms (reptile, snake, rabbit), two of
which only occur in one of the premises – the so-called end-
terms, or the major terms (reptiles and rabbit). The goal of
syllogistic reasoning is to connect the information conveyed
by the premises, i.e. the categorical relationship between the
two end-terms and the middle term (i.e. the term which oc-
cur in both premises), to deduce the relationship between the
two end-terms. The middle term (also known as the minor

term) does not appear in the conclusion. In the example, in
addition to the premises, a conclusion candidate is presented
below the horizontal line for the reasoner to verify. The term
”mood” is used to describe the combination of the quantifiers
in the premises and conclusion. The example above is of the
mood AE-E for using the abbreviations above. A syllogism
can be not only by using the four quantifiers for each premise
and conclusion, the terms itself in the premises can be organ-
ised in four different ways, called figures:

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 A-B B-A A-B B-A
Premise 2 B-C C-B C-B B-C

By replacing reptiles with A (or a), snakes with B (or b)
and rabbits with C (or c), the example above is a syllogism of
figure 2, and can be denoted by AE-E2 and the premises and
conclusion can be denoted by Aba, Ecb and Eca respectively.
There are 256 possible syllogisms (64 different mood times 4
different figures) but only 27 of them have at least one valid
conclusion.

Like many other common daily reasoning processes, hu-
mans tend to employ some heuristics when they want to solve
a syllogistic problem, unless under certain circumstances. As
proposed by Evans and his colleagues in the dual process-
ing theory (Wason & Evans, 1974; Evans, 2006, 2008, 2011;
Evans & Over, 2013), humans use the unconscious, intu-
itive, cognitive-resources-undemanding and rapid System 1
processes by default. The use of heuristics is among these
processes. The output from these processes can be prone to
biases arise from common sense, beliefs and previous expe-
rience. A classic example in human syllogistic reasoning is
the belief bias effect that humans tend to accept more (in-
valid) conclusions which agree with their own beliefs and
prior knowledge than otherwise (Morley, Evans, & Handley,
2004). However, humans can switch to the System 2 pro-
cesses which are conscious, analytical, cognitive-demanding
and rule-based under specific conditions, such as when they
are told to solve the problems carefully (Evans, 2007).

Another example to illustrate dual processing processes in
reasoning is the use of the matching heuristic to solve syllo-
gistic problems. Humans choose the conclusion quantifier
which matches the quantifier of the premise with a lower
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number of entities, i.e. the more ”conservative” premise,
favouring the order E > O = I >> A. Therefore, the con-
clusion quantifier is the same as (matches) at least one of the
premise’ quantifiers. Therefore, for the AE example above,
humans tend to accept or produce the E-conclusion (No A-
C or No C-A conclusion). As mentioned, 93% of the par-
ticipants accepted that the conclusion followed from the two
premises but the conclusion is indeed invalid. That means,
only 7% of the participants made the correct response – to
reject the conclusion. The matching heuristic is syntactic in
nature as it involves merely “matching” the conclusion quan-
tifier with quantifiers of the two premises. Unlike the belief
bias effect that the heuristic depends on the semantic of the
conclusion, reasoners do not have to process the semantic in-
formation (i.e., reptiles, snakes, rabbits) in the premises and
the conclusion when using the matching heuristic.

The matching heuristic is one out of 12 cognitive theo-
ries that aim to explain the aggregated response of partici-
pants in syllogistic reasoning and many of the 12 theories
can cover a large number of responses given (Khemlani &
Johnson-Laird, 2012). In this paper, we will extend a previ-
ous analysis conducted by Riesterer, Brand, and Ragni (2020)
and Bischofberger and Ragni (2020) that focused on predict-
ing individual reasoner, to test if incorporating individual rea-
soner’s strategy change from system 1 to system 2 processes
during reasoning can yield an adapted model of these theories
with better predictive power.

The paper is structured as follows: In the next section we
will introduce the data from the study by Tse et al. (2014)
cognitive models on syllogistic reasoning. We will introduce
how we adapted the models in Section 3 and report the re-
sults in Section 4, followed by a discussion (Section 5) which
concludes the paper.

The Data
The data are from the study by Tse et al. (2014). 107 students
from the University of Granada (mean age = 22.34 years, SD
= 4.43; 89 females and 18 males) participated in the experi-
ment. They were rewarded with course credits. The exper-
iment was conducted in Spanish. The participants were all
native speakers of Spanish and did not have any training in
logic before.

Each participant had to judge the validity of 16 syllogisms,
with each followed by a lexical decision task. The syllo-
gisms were chosen to test the interplay between the use of
matching heuristics (system 1 processes) and analytical strat-
egy (system 2 processes). Therefore, conflict problems which
are either match-invalid (the conclusion quantifier matches
with the quantifier of the more conservative premise but it
is logically invalid) or mismatch-valid (the conclusion does
not agree with the matching heuristic but it is logically valid)
and no-conflict problems which are either match-valid and
mismatch-invalid were constructed. That means, participants
can reach the same conclusion (accepting the conclusion) for
no-conflict problems using both the matching heuristic or the

analytical strategy; but for the conflict problems, participants
have to inhibit the use of the matching heuristic (System 1
non-analytical default approach) and switch to the analytical
strategy (System 2). Due to the aforementioned constraint,
the only possible options are AE, EA and AA problems which
allow the construction of conflict and no-conflict problems.
AA problems were not chosen as the two premises have the
same quantifier and the matching heuristic is based on match-
ing the conclusion qualifier with the premise quantifiers. The
syllogisms with the E conclusion were used as the matched
syllogisms (AE-E and EA-E) while syllogisms with the O
conclusion were used as the mismatched syllogisms (AE-O
and EA-O). In order to prevent participants from guessing
the experimental manipulation and as only one of the AE-O2
and EA-O1 syllogisms are invalid (it is not possible to have
two mismatch-invalid AE-O and EA-O syllogisms), the AE-
A1 and EA-A2 syllogisms were included as fillers to replace
a AE-O and EA-O syllogism respectively. There were eight
conflict problems, six no-conflict problems and two fillers,
see Table 1. Half of the syllogisms (i.e. eight) had a valid
conclusion while the other half were invalid.

Table 1: Types of problem used in the experiment Tse et al.
(2014).

Problem Type Conclusion Type Syllogism

8 Conflict Problems 4 Match-invalid 2 AE–E2
(multiple-model) 2 EA–E1

4 Mismatch-valid 2 AE–O1
2 EA–O2

6 No-conflict Problems 4 Match-valid 2 AE–E1
(single-model) 2 EA–E2

2 Mismatch-invalid AE–O2
EA–O1

2 fillers invalid AE–A1
EA–A2

In the lexical decision task (LDT) after each syllogistic
problem, participants were asked to judge whether 24 letter
strings were real words in Spanish or not one by one. Half of
them (i.e. twelve) were non-words while the other half were
words in Spanish, with six of them related to the two terms in
the conclusion while the other six were unrelated to the terms
in the syllogisms.

The Predictive Model Task & Individualization
We use the CCOBRA-framework1 to ensure a modeling eval-
uation standard as proposed by Riesterer et al. (2020). The
model has then to predict the conclusion which should be
drawn by the individual participant, before the he/she re-
sponds. In a predictive analysis, cognitive models need to
be able to adapt to the individual they need to predict. This is
in most cases done by a parameter optimization process.

1https://github.com/CognitiveComputationLab/ccobra
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CCOBRA uses a leave-one-out cross validation method
and each test run generates automatically both the test- and
training data. The output (the predicted response) from the
model is then compared with participant’s response.

Figure 1: CCOBRA a system to evaluate the predictive accu-
racy of models.

To capture individual differences, the parameters of the im-
plemented models have to be fitted to an individual. The
best fit is determined by iterating over the prediction-response
pairs and performing a grid search over the parameter space
of the individual models. The parameter optimization for
each individual is done before the actual prediction of the an-
swers and therefore evaluate the overall ability of the model
to account for individual data.

Cognitive Models
For an in-depth presentation of the existing cognitive models
see (Khemlani & Johnson-Laird, 2012). We will present here
briefly 3 core theories for System 2 (mental model theory,
mReasoner, verbal models theory) that our models are based
on.

Mental Model Theory
The mental model theory (MMT) (Johnson-Laird & Philip,
1983) postulates that people draw inferences with the help of
mental models. A mental model consists of abstract tokens
that reflect the situation asserted by the premises. For exam-
ple, a (or an initial) mental model of the syllogism All A are
B. No B are C can be:

a b
a b

¬ b c
¬ b c

A conclusion is either drawn based on the initial mental
model or refuted with a search of alternative models. This im-
plementation is based on a formalization of the classical the-
ory of mental models (Sugimoto, Sato, & Nakayama, 2013)
with some parameter adjustments (Bischofberger & Ragni,

2020). A parameter determines how likely certain individu-
als search for alternative models (i.e. search for counterex-
amples). Thus, the implementation can distinguish between
people who consider alternative models and those who do not.

mReasoner
mReasoner (Khemlani & Johnson-Laird, 2013) is a more
powerful model that follows the assumptions of the mental
model theory. The construction of the initial mental model
is individualized by two parameters. The size of the initial
model is controlled through the parameter λ and the com-
pleteness of the encoded information is determined with the
parameter ε. Conclusions are generated with heuristics and
validated by the mental model. The parameter σ specifies the
probability that individuals seek counterexamples after for-
mulating a tentative conclusion. Furthermore, a parameter ω

determines if falsified conclusions are weakened. Weakened
conclusions are also validated with a search for counterexam-
ples.

Verbal Models Theory
The verbal models theory (Polk & Newell, 1995) assumes
that syllogistic reasoning is fundamentally verbal. The model
implements multiple parameters that allow high adaptability
to an individual. The relations of the premises are encoded
into a mental model. Identifying tokens mark more easily ac-
cessible information that are derived from the subject of the
premises. A conclusion is formulated from the marked to-
kens. If the program cannot formulate a conclusion, the men-
tal model is reencoded. For this purpose, additional infor-
mation is extracted from non-identifying tokens. Depending
on the type of premise, internal parametrization, and refer-
ence token, a new premise is formulated to extend the mental
model. The process is repeated until a conclusion can be for-
mulated or reencoding fails. In the latter case, the program
returns no valid conclusion (NVC).

Making Cognitive Models Adaptive
The cognitive models we just presented need to be made
adaptive to predict individual reasoner in the aforementioned
CCOBRA-framework. In the following, we describe four
mechanisms on how the three models were made adaptive to
the response of individual participant.

Probability for searching for counterexamples is
adjusted individually
The first set of models are adjusted to model individual rea-
soning behaviour. To achieve this, parameter settings of the
three theories (MMT, mReasoner, Verbal Models) were fitted
to individual responses using CCOBRA. The flow structure
is shown in Figure 2. In this adaption process, the possible
effect of matching bias on reasoning, effect of problem type
(conflict vs. no-conflict) and individual reasoning strategy
(System 1 vs. System 2 processes) were not implemented.
Therefore, these models adjust their internal parameterization
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according to the response(s) of individual participant. The pa-
rameters are updated according to whether a participant just
accept the initial conclusion or try to search for counterexam-
ples. The probability for searching for counterexamples (i.e.
the System 2 processing) of a participant would be higher if
that particular participant gave more System 2 responses, i.e.
a higher likelihood of System 2 responses.

Syllogism

Initial 
conclusion 
(System 1)

Verbal 
Reasoner

MMT

mReasoner

Search for 
counterexamples 

(System 2)

Respond

Figure 2: System 2 through individually adjusted probabili-
ties

Probability for searching for counterexamples
according to the selective processing model

The critical difference between conflict and no-conflict prob-
lems in the (Tse et al., 2014) study is that for no-conflict
problems, participants can get the correct responses by either
System 1 or System 2 processes (as the conclusions are con-
gruent with the output from the matching heuristic); while
for the conflict problems, participants must switch to Sys-
tem 2 processes in order to get the correct responses (as the
conclusions are incongruent with the output from the match-
ing heuristic). To resolve conflicts between the outputs from
System 1 and System 2 processes in conflict-problems, the
selective processing model (Evans, 2000) is generalized so
that a conclusion is accepted as soon as there is at least one
mental model (initial or alternative) that supports it. Origi-
nally selective processing is used in belief bias study to for
the conflict between the belief bias and validity of the con-
clusion; while we have adapted it for the conflict resolution
between the matching bias and validity of the conclusion. For
match-invalid and match-valid syllogisms alternative models
are not searched because the initial model (System 1) already
support the given conclusion. In mismatch-problems alterna-
tive models (considered as the analytical System 2 processes)
are searched. These set of models do not take into account
individual differences, it focused on the property of the syllo-
gisms.

Probability for searching for counterexamples is
adjusted according to individual strategy and the
selective processing model
These models take into account the response time of the par-
ticipants to the syllogistic tasks and the results of the subse-
quent lexical decision task when predicting whether the par-
ticipant would search for alternative models for MMT and
mReasoner or reencode the mental models for verbal models.
After an initial mental model is constructed by the respec-
tive cognitive model, the tentative conclusion is returned or
refuted depending on the individual. If the response time of
a particular trial is above a specified threshold (9000 ms in
the implementation) and the semantic priming effect is di-
minished (the difference between the response times of the
unrelated words and related words is smaller than 15 ms in
the lexical decision task) the model tends to refute the ini-
tial conclusion (System 2 processes). For switching to Sys-
tem 2 processes, a longer response time is expected as Sys-
tem 2 processes are cognitive resources demanding and it also
takes time to inhibit the output from System 1 processes. The
missing of semantic priming effect indicates the inhibition of
the heuristic (bias) processes (Tse et al., 2014; De Neys &
Franssens, 2009). The threshold values were chosen based
on evaluation results after a few tests.

The parameters of the respective theories are adjusted ac-
cording to the behavioral information (response time and
priming effect) to implement switches between System 1 and
System 2. Additionally, the parameter settings are individu-
alized (see ”Probability for searching for counterexamples is
adjusted individually” section) to ensure high predictive ac-
curacy outside the threshold conditions.

The search for alternative models in the MMT and mRea-
soner models incorporated also the aforementioned selective
processing model method. An overview over the reasoning
process is shown in Figure 3.

Additive probability model
Another model that can describe the conflict between heuris-
tic and analytic processes is the additive probability model
(Evans, 2007). In this model, the underlying cognitive pro-
cess is separated by an heuristic process and an analytical
one. This implementation uses individual strategy (as men-
tioned in the previous paragraph) to determine from which
process the predictions are computed. If the response time of
the syllogistic task was low or the semantic priming effect oc-
curred (in the LDT), a heuristic process computes the answer.
In this case, a parameter determines if an answer consistent
with the matching hypothesis is returned or the conclusion
is blindly accepted. The analytical process is modeled using
the mReasoner. Depending on the internal parameters of an
individual, a conclusion can be either accepted or rejected.
The selective processing model is not implemented here. For
instance, selective processing always predicts acceptance of
the conclusion in match-invalid syllogisms. That is because
System 1 processes support the given conclusion. Without
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Figure 3: Alternative model search with individual strategy
and selective processing.

selective processing there is an individual chance for System
2 processes for those syllogisms in this mechanism.

Composite Model
The previous models each describe individual strategies and
theories of how people resolve conflicts between analytic and
heuristic responses. While the previous models and exten-
sions already implement individual differences, some models
represent an individual’s reasoning process better than others.
To take advantage of the strengths of each model, a composite
model was implemented. The composite model predicts the
participants’ responses based on the model that could achieve
the highest accuracy for that person.

Evaluation and Discussion
Adaptive processes described in the last section were imple-
mented in the three cognitive models built according to the
mental model theory, mReasoner, and verbal models theory
and were then evaluated in CCOBRA. To compare the over-
all performance, state-of-the-art models, inclduing PSYCOP,
Matching, Conversion, and PHM; and two benchmark mod-
els, Uniform and Most Frequent Answer (MFA), were added.
The Uniform Model assumes a uniform distribution over the
set of responses. Any cognitive model should recognize basic
patterns in the data set and outperform this model. Due to the
noise in the data, it is unrealistic to assume that the models
can perfectly predict participants’ responses. Therefore, the
MFA model serves as an empirical upper bound for models
that do not implement inter-individual differences. The MFA
returns the most frequent response given by the participants
for each syllogism. A higher predictive power than MFA in-
dicates that the specific models are able to capture different

strategies of individuals (Riesterer et al., 2020).
Figure 4 shows the predictive power of the models. All

models, except PSYCOP, make more accurate predictions
than the uniform model and are therefore able to capture some
properties of the data set. The low performance of PSY-
COP is due to the high number of possible predictions for
the syllogisms and the lack of adaptation to individuals in
the implementation. The heuristic models PHM and Conver-
sion achieve prediction accuracies of about 55%. The mental
model theory and verbal models theory can predict 62% and
66% of the responses, respectively. Without individual strate-
gies, the search for alternative models (counterexamples) is
randomly determined and this leads to comparatively poor re-
sults. The matching heuristic, as well as atmosphere, achieve
a prediction accuracy of 79%. Since many participants rarely
considered alternative models, the accuracy of these heuris-
tics is comparatively high. Moreover, these heuristics can
perfectly replicate the answers for some participants as the
experimental materials were designed to test the matching
heuristic. Matching hypothesis is a modified version of the at-
mosphere hypothesis and thus the results of these two heuris-
tics were expected to be similar.

The adaptive models all achieve higher accuracies than
their static implementations. While the adaptive implemen-
tation of the verbal models is able to predict 68% of the data
correctly, the adaptive version of mental model theory can
achieve 77% accuracy. However, both of them cannot outper-
form the matching heuristic model. The adaptive implemen-
tation of mReasoner (80%) is able to outperform that of at-
mosphere and matching heuristics, and almost achieves MFA
benchmark accuracy (81%).

The selective processing model achieves the same accu-
racy as the MFA benchmark. Although individual differences
was not implemented in this model, it is able to predict most
responses in the dataset, as well as the most frequent an-
swers for a syllogism. The verbal models theory with indi-
vidual strategy implemented (58%) performs worse than the
static implementation. Although the re-encoding process of
this theory relies on semantic processes, the participants’ re-
sponse times, as well as the results of the lexical decision
task, cannot improve the predictive accuracy. The adaptive
implementation of mReasoner and MMT with selective pro-
cessing can outperform the results of the MFA. mReasoner
with adaptive parameters and selective processing achieves
84% accuracy and MMT 81%. Thus, parameters of these
models be adapted with individual strategies of the partici-
pants to obtain a better predictive power. They can capture
individual responses and do not merely predict the majority
response (average reasoner).

The additive probability model (80%) has about the same
predictive power as the MFA model. Although the overall
performance is worse compared to the other models, the per-
formance of fewer participants can be improved. The com-
posite model achieves a median accuracy of about 86%. The
verbal models performs worse than MMT and mReasoner, in-
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Figure 4: The predictive accuracies of the adjusted models and state-of-the-art models as given in Khemlani and Johnson-Laird
(2012)

cluding the adaptive version. The mReasoner obtains the best
performance in general. Comparing the four mechanisms, the
cognitive models with individual strategy and selective pro-
cessing implemented obtain the best results. Also, the mod-
els with individual strategy (based on the LDT and response
times of the syllogisms) perform almost the same as those
with the selective processing model.

In summary, the results demonstrate that incorporating in-
dividual strategies and effect of problem types can improve
the performance of cognitive models to predict the responses
of individual reasoners. This shows that the integration can
improve state-of-the-art models to predict the responses of in-
dividual reasoner substantially and surpasses the MFA bench-
mark. Finding more optimized ways to integrate individual
properties of a participant such as using results from the LDT
and the response times to estimate individual strategy in rea-
soning, and to identify more individual differences can push
the models to predict individual reasoners even further.
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Abstract

The similarity-based interference paradigm has been widely
used to investigate the factors subserving subject-verb agree-
ment processing. A consistent finding is facilitatory interfer-
ence effects in ungrammatical sentences but inconclusive re-
sults in grammatical sentences. Existing models propose that
interference is caused either by misrepresentation of the input
(representation distortion-based models) or by mis-retrieval of
the interfering noun phrase based on cues at the verb (retrieval-
based models). These models fail to fully capture the observed
interference patterns in the experimental data. We implement
two new models under the assumption that a comprehender uti-
lizes a lossy memory representation of the intended message
when processing subject-verb agreement dependencies. Our
models outperform the existing cue-based retrieval model in
capturing the observed patterns in the data for both grammati-
cal and ungrammatical sentences. Lossy compression models
under different constraints can be useful in understanding the
role of representation distortion in sentence comprehension.

Keywords: Similarity-based interference; lossy memory rep-
resentation; cue-based retrieval

Introduction
Similarity-based interference in subject-verb agreement de-
pendencies has played an important role in understanding the
mechanisms underlying sentence comprehension (Wagers,
Lau, & Phillips, 2009; Lago, Shalom, Sigman, Lau, &
Phillips, 2015). In this paradigm, a noun phrase matching
in agreement features with the verb—called a distractor—is
presented along with the subject noun. For example, in the
following sentences (a) and (c), the distractor noun phrase the
cabinet(s) matches the number feature of the verb in contrast
to conditions (b) and (d), where it does not.

(a) Grammatical, interference condition
The key to the cabinet unsurprisingly was rusty.

(b) Grammatical, no-interference condition
The key to the cabinets unsurprisingly was rusty.

(c) Ungrammatical, interference condition
* The key to the cabinets unsurprisingly were rusty.

(d) Ungrammatical, no-interference condition
* The key to the cabinet unsurprisingly were rusty.

A consistent finding is that of facilitation in ungrammat-
ical conditions: reading times at the verb ‘were’ in condi-
tion (c) are, on average, faster than in condition (d) (Jäger,
Engelmann, & Vasishth, 2017; Wagers et al., 2009; Lago et
al., 2015; Dillon, Mishler, Sloggett, & Phillips, 2013; Jäger,
Mertzen, Van Dyke, & Vasishth, 2020). By contrast, the
results are inconclusive in grammatical conditions: reading
times at the verb in condition (a) can be faster, slower, or
comparable to condition (b). Figure 1 shows the observed in-
terference effects in the grammatical and ungrammatical con-
ditions from 11 published datasets.

Several models have been proposed to explain the facilita-
tory interference effect in the ungrammatical conditions, but
these models cannot explain the range of effects in the gram-
matical conditions. Most of these models can be placed into
one of two categories, cue-based retrieval accounts, and rep-
resentation distortion-based accounts.

The cue-based retrieval account (Lewis & Vasishth, 2005)
assumes that dependency completion between the subject and
the verb is driven by a cue-based retrieval process: encoun-
tering a verb triggers a content-addressable search in mem-
ory using feature specifications such as [+subject] or [+plu-
ral], called retrieval cues. The cue-based retrieval model cor-
rectly predicts the facilitatory effect in ungrammatical condi-
tions. But the model predicts an inhibitory effect in gram-
matical conditions: a slowdown in condition (a) compared to
(b). This prediction is not supported by the interference effect
data in the grammatical conditions shown in Fig. 1.

Representation distortion-based accounts assume that the
representation of the pre-verbal sentence material—subject
noun and/or distractor noun—undergoes distortion with time.
One of the representation distortion-based accounts—the
encoding-based model (Bock & Eberhard, 1993; Eberhard,
1997)—maintains that the plural feature of the distractor
noun percolates up to the subject noun phrase causing a
misrepresentation of the subject in a proportion of trials.
The encoding-based model predicts facilitatory effect in both
grammatical and ungrammatical conditions, which is not sup-
ported by the observed pattern of effects (see Fig. 1).
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Figure 1: The pattern of interference effects in subject-verb agreement dependencies. Here, “interference effect” means the
difference in reading times at the verb between the interference and no-interference conditions.

Another class of representation distortion-based models
are based on lossy compression of the linguistic input
(Futrell, Gibson, & Levy, 2020). These models assume
that a comprehender obtains a distorted representation of the
true intended message due to lossy memory encoding, and
they reconstruct a set of possible true representations us-
ing their prior linguistic knowledge. A well-tested model of
this type is the lossy-context suprisal model of Futrell et al.
(2020). The model captures working memory effects within
an expectation-based framework. It assumes that after read-
ing or hearing a series of words, the words can be corrupted
by deleting content words (e.g., nouns or verbs) at a con-
stant rate. Processing difficulty at a new word is the ex-
pected surprisal of the word given this lossy memory repre-
sentation of its preceding context. Futrell et al. (2020) show
that the model explains structural forgetting effects (Vasishth,
Suckow, Lewis, & Kern, 2010), and Futrell (2019) explain in-
formation locality across languages using the lossy compres-
sion model.

An important limitation of the literature on similarity-
based interference effects is that researchers either invoke
cue-based retrieval or some kind of lossy compression model
to explain the data. Moreover, the two classes of model
have never been pitted against each other in any systematic
quantitative evaluation, even though a considerable amount of
benchmark data are available on interference effects. A fur-
ther intriguing possibility, which needs to be quantitatively
evaluated, is that both lossy compression and cue-based re-
trieval could play a role in a hybrid model.

We address these open issues by implementing two lossy
compression models of similarity-based interference to try to
capture the observed effects in both grammatical and ungram-
matical conditions in subject-verb agreement dependencies.
We compare the performance of our models against the cue-
based retrieval model of Lewis and Vasishth (2005); Vasishth,
Nicenboim, Engelmann, and Burchert (2019) on interference

effect data from the 11 publicly available datasets shown in
figure 1.

A lossy compression model of interference
effects

We implement a lossy-context surprisal model as described
in Futrell et al. (2020) with some additional assumptions to
model interference effects in subject-verb agreement depen-
dencies.

Assumptions
Consider the sentence “The key to the cabinets unsurprisingly
was rusty”. The observed pre-verbal noun phrase in this sen-
tence is the key to the cabinets. We call this input I. The lossy
compression model assumes the following:

1. The linguistic input received by the comprehender has un-
dergone lossy compression: there was some true represen-
tation r; due to lossy memory encoding, the true represen-
tation r distorts to the observed input I such that the plural
marker on the nouns can either be deleted or inserted or left
unchanged at constant rates

2. The comprehender reconstructs a set of possible true repre-
sentations from input I conditioned on their prior linguistic
knowledge and the rates of deletion/insertion in the system

3. The processing difficulty at the verb is the expected (aver-
age) surprisal of encountering the verb given all possible
true representations of the input I

Next, we derive the processing difficulty and reading times
at the verb in subject-verb agreement dependencies.

Calculating processing difficulty and reading times
at the verb
In the sentence “The key to the cabinets unsurprisingly was
rusty”, the input is
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I = N P N.pl
where N represents a noun, P represents a preposition, and
.pl represents a plural marker on a noun.

The possible true representations, ri, that can lead to input
I due to lossy compression are,

r1 = N.pl P N.pl r2 = N.pl P N
r3 = N P N.pl r4 = N P N

The processing difficulty for the upcoming verb will be
proportional to the expected suprisal of the verb given all pos-
sible true representations r1,r2, ..,rN :

D(V |I) ∝

N

∑
i=1

− logP(V |ri) ·P(ri|I) (1)

where − logP(V |ri) is the surprisal — negative log condi-
tional probability — of seeing a plural/singular verb after
the context ri; we compute conditional probabilities from the
COW corpora (Schäfer, 2015; Schäfer & Bildhauer, 2012).
And, P(ri|I) is the probability density of reconstructing a rep-
resentation ri from the given input, I. We can derive P(ri|I)
using Bayes’ rule,

P(ri|I) ∝ P(I|ri)P(ri) (2)

where P(ri) is the prior probability density of a possible
true representation ri and can be estimated from corpus data.
P(I|ri) represents the lossy memory encoding function: the
likelihood that a representation ri distorts to I given a con-
stant deletion rate d and constant insertion rate a:

I|ri ∼ Memory(ri,d,a) (3)

where d is the rate of deleting a plural marker and a is the
rate of inserting a plural marker. Table 1 shows the likelihood
of obtaining I from each possible representation ri. Finally,
we transform processing difficulty into reading times using a
linear linking function. Reading times in jth trial, RTj, will
be:

RTj = S ·D(V |I)+ ε j (4)

where S is a scaling parameter and ε j is the random noise in
the jth trial such that ε j ∼Normal(0,20). The model has thus
3 free parameters: deletion rate d, insertion rate a and scaling
parameter S.

Possible true representation Likelihood of generating I from ri
ri P(I|ri)
N.pl P N.pl d(1−d)
N.pl P N da
N P N.pl (1−a)(1−d)
N P N (1−a)a

Table 1: The lossy memory encoding function: the likelihood
of obtaining the observed input I (N P N.pl) from lossy com-
pression of a possible true representation ri

Prior predictions
We use the model equations stated in the previous section and
generate prior predictions from the model. This allows us to
determine the range of effects the model can generate and
compare them against the observed interference effect data.
The joint distribution of interference effects in grammatical
and ungrammatical conditions — {Egram,Eungram} — is as-
sumed to come from the lossy compression model conditional
on its free parameters, the deletion rate d, the insertion rate a,
and the scaling parameter S

{Egram,Eungram} ∼ Model(d,a,S) (5)

We specified the priors as follows. For deletion rate d and
insertion rate a, we choose a weakly informative prior be-
cause we do not want to make any strong assumptions about
these parameters:

d ∼ Normallb=0,ub=1(0,0.25) (6)

a ∼ Normallb=0,ub=1(0,0.25) (7)
where lb = 0 and ub = 1 indicate a lower bound of 0 and up-
per bound of 1 respectively. For the scaling parameter S, we
choose a Gaussian prior centered at 25 and with standard de-
viation of 5; this range was chosen so that the model does not
generate unreasonably large or small reading times (see Jäger
et al., 2017, for meta-analysis estimates of reading times):

S ∼ Normallb=0(25,5)

Figure 2 shows the prediction space of the lossy compres-
sion model against the observed interference effect data. The
model is able to predict a facilitatory effect in ungrammatical
conditions and positive, zero or negative effects in grammat-
ical conditions. Thus, the prior predictions of the model are
consistent with qualitative pattern of the observed interfer-
ence effects, but the magnitudes of predicted effects do not
often align with the human data.

The lossy compression model, presented here, assumes
that the link between the lossy memory representations and
reading time effects is the average surprisal of the upcom-
ing word. However, one is free to choose a different linking
function. In the next section, we introduce a hybrid model
that integrates the lossy compression and cue-based retrieval
mechanisms in order to predict reading times at the verb.

Lossy-compression-plus-retrieval model
Recent work has shown that a model unifying representation
distortion- and retrieval-based mechanisms shows a better fit
to interference effect data from subject-verb agreement de-
pendencies (Yadav, Smith, & Vasishth, 2021). Given this
modeling evidence, it is interesting to explore a model com-
bining lossy compression and cue-based retrieval in a single
set of processes. We implement the lossy compression-plus-
retrieval model with the idea that the cue-based retrieval at
the verb is preceded by lossy memory representation of the
intended message. Here, reading times are determined by the
cue-based retrieval mechanisms, but the retrieval process op-
erates on a noisy version of the intended input.
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Figure 2: The prior predictive interference effect (in millisec-
onds) generated by the lossy compression model is shown as
a contour of the joint distribution of effects in the grammati-
cal and ungrammatical conditions. The red triangular points
and errors bars around them represent the observed interfer-
ence effects and their 95% credible intervals obtained from
published datasets. The predictions differ across experimen-
tal designs because prior density of possible true representa-
tions p(ri) is estimated to be different for each design. Design
1: English subject relative clause constructions; Dillon et al.
(2013), Exp 1 and Jäger et al. (2020). Design 2: English ob-
ject relative clause constructions; Wagers et al. (2009) Exp
2, Exp 3, and Lago et al. (2015) Exp 2. Design 3: English
prepositional phrase constructions; Wagers et al. (2009) Exp
4, Exp 5. Design 4: Spanish relative clause constructions;
Lago et al. (2015) Exp1, Exp 3a, and Exp 3b.

Assumptions
The lossy compression-plus-retrieval model assumes that

1. Dependency completion between the subject and the verb
is driven by a cue-based retrieval process

2. Cue-based retrieval is affected by changes in representaton
of the subject and the distractor nouns due to lossy com-
pression of the intended message (as described in the pre-
vious section)

Next, we derive the updated retrieval time equation to ac-
count for representation change due to lossy compression.

Calculating retrieval times
The retrieval time at the verb in the jth trial, RTj, is an expo-
nential function of the activation of the retrieved chunk,

RTj = Fe−A j,retrieved (8)

where F is a scaling parameter called the latency factor which
reflects overall processing speed.

Under cue-based retrieval, the chunk with the highest acti-
vation gets retrieved in each trial. The activation of the chunk

retrieved in jth trial would be the maximum of the activation
of the subject and the distractor noun:

A j,retrieved = max{A j,sub ject ,A j,distractor} (9)

The activation of the subject and the distractor in a trial is
determined by the amount of activation they receive via cue-
feature match. The noun phrase that matches more cues re-
ceives a higher activation. Thus, activation of the subject and
the distractor in jth trial is a function of their representation,

{A j,sub ject ,A j,distractor} ∼ Activation(r j) (10)

where r j is the representation of subject and distractor noun
in the jth trial. The lossy compression-plus-retrieval model
assumes that the representation in the jth trial is sampled from
probability density of reconstructing r from input I,

r j ∼ P(r|I,a,d) (11)

where a and d are the insertion and deletion rates, respec-
tively. The probability density function P(r|I,a,d) can be de-
rived in the same way as in equation 2. Using these equations,
the lossy compression-plus-retrieval model allows us to make
reading time predictions at the verb, which we now compare
to reading time data from 11 experiments.

Prior predictions
We generate prior predictions from the lossy compression-
plus-retrieval model conditional on its three free parameters,
the deletion rate d, the insertion rate a, and the latency factor
F . For the deletion rate and the insertion rate, we specify the
same priors as in equation 6 and 7. For the latency factor, we
used a truncated normal distribution:

F ∼ Normallb=0.1(0.15,0.03)

where lb = 0.1 indicates a lower bound of 0.1 on latency factor
values. We choose this lower bound because a latency factor
of less than 0.1 generates unreasonably fast reading times.

Figure 3 shows the prediction space of the lossy
compression-plus-retrieval model against observed interfer-
ence effect data. The model predictions are consistent with
the facilitatory effect in ungrammatical conditions, but incon-
sistent with the range of effects in grammatical conditions.

Model comparison
We compare the performance of the lossy compression mod-
els (which assume that representation undergoes distortion
due to information loss) against the cue-based retrieval model
(which assumes that representation is intact and a retrieval
process drives processing) on 11 published datasets. We use
stratified k-fold cross-validation for model comparison: (1)
We split each dataset into 6 folds (subsets) such that each
fold contained observations from all participants for all con-
ditions, (2) we prepared 6 sets of training and test data by
leaving out one fold as test data and taking other 5 as training
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Figure 3: The prior predictive interference effect (in mil-
liseconds) generated by the lossy compression-plus-retrieval
model is shown as a contour of joint distribution of effects
in the grammatical and ungrammatical conditions. The red
triangular points and errors bars around them represent ob-
served interference effects.

data, (3) in each iteration, we fit the models on training data
using Approximate Bayesian Computation1 (Sisson, Fan, &
Beaumont, 2018) and computed the predictive accuracy of
the fitted model on the test data in terms of log pointwise pre-
dictive density. Figure 4 shows the comparison of estimated
log pointwise predictive density (êl pd) of the models on 11
datasets. We find that:

1. The êl pd values for the lossy compression model are
larger than the cue-based retrieval model for 6 out of 11
datasets suggesting stronger evidence in the favor of lossy-
compression model. The models are indistinguishable for
the remaining five datasets.

2. The lossy-compression-plus-retrieval model shows higher
predictive accuracy than the cue-based retrieval model for
six out of 11 datasets.

3. The lossy-compression-plus-retrieval model and the lossy
compression model show comparable performance.

Overall, the results suggest that a lossy compression model
or a lossy compression-plus-retrieval model can explain the
data better than the standard cue-based retrieval model.

Discussion
We have implemented two models—a lossy compression
model and a lossy compression-plus-retrieval model—and
investigated whether they can outperform the cue-based re-
trieval model. More specifically, we investigated whether,

1Approximate Bayesian Computation (ABC) allows us to fit
complex models when the likelihood of a model cannot be expressed
mathematically. We use a particle filtering-based ABC algorithm to
estimate posterior distributions of free parameters in the models.

compared to the cue-based retrieval model, these two models
can furnish a better account for the pattern of interference ef-
fects in grammatical and ungrammatical subject-verb agree-
ment dependencies. Both models are based on the idea of
lossy memory representations of the intended message. The
lossy compression model assumes that the linguistic input re-
ceived by a comprehender is subject to information loss, and
that the comprehender infers a set of possible true representa-
tions from the given input using their prior linguistic knowl-
edge. Reading times are then predicted to be proportional
to the expected surprisal of the next word given the set of
possible true representations. By contrast, the hybrid lossy
compression-plus-retrieval model assumes that dependency
completion is driven by a cue-based retrieval process which is
affected by a change in the representation of memory chunks
due to lossy compression. Reading time predictions here are
derived from the assumptions of cue-based retrieval (Lewis &
Vasishth, 2005).

The evaluation of the three models’ predictive performance
shows that both lossy compression and lossy compression-
plus-retrieval models are better at explaining the interference
effect data than the cue-based retrieval model of Lewis and
Vasishth (2005). An important implication of the modeling
results is that the cognitive processes underlying dependency
completion in sentence comprehension might involve repre-
sentation distortion due to lossy compression of the intended
message.

An interesting open question is whether the deletion and in-
sertion rates assumed in the lossy memory encoding function
are sensitive to factors like the syntactic position of the nouns
and the distance between the nouns and the verb. For exam-
ple, a noun that appears earlier in the sentence may enjoy a
primacy advantage (Häussler & Bader, 2015), and therefore
be less likely to be distorted by deletion/insertion noise. Sim-
ilarly, there could be a subject advantage in memory such that
the representation of subject nouns is distorted at slower rates
than other noun phrases (Futrell et al., 2020). Another rea-
sonable assumption can be that the memory representation of
nouns is susceptible to only deletion noise and not insertion
noise. Our model is currently agnostic to these factors. But
they can be explored by developing constraints on deletion
and insertion rate for different noun phrases in our model.
We plan to take this up in future work.

In sum, the modeling presented here demonstrates, for
the first time, that a prominent and well-accepted explana-
tion for interference effects—cue-based retrieval—is outper-
formed by models that assume lossy compression. The fact
that the two lossy compression models (the one with and
without cue-based retrieval) show comparable fits raises an
interesting question: is the cue-based retrieval assumption
needed at all to explain interference effects? This is an impor-
tant open question that should be addressed in future work.
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Figure 4: Estimated log pointwise predictive density for each model for each dataset based on stratified k-fold cross validation.
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IQGLYLGXDO DLIIHUHQFHV LQ DHFLVLRQ MDNLQJ SWUDWHJLHV CDQ EH PUHGLFWHG
E\ RHVWLQJ-SWDWH FXQFWLRQDO CRQQHFWLYLW\

YX[XH CKHU YDQJ (FKHU\@XZ.HGX)
DeSaUWPeQW Rf PV\chRORg\, UQiYeUViW\ Rf WaVhiQgWRQ, SeaWWOe, WA 98195 USA

CDWKHULQH SLEHUW (VLEHUW@XZ.HGX)
DeSaUWPeQW Rf PV\chRORg\, UQiYeUViW\ Rf WaVhiQgWRQ, SeaWWOe, WA 98195 USA

AQGUHD SWRFFR (VWRFFR@XZ.HGX)
DeSaUWPeQW Rf PV\chRORg\, UQiYeUViW\ Rf WaVhiQgWRQ, SeaWWOe, WA 98195 USA

AEVWUDFW
AV Whe VWXd\ Rf iQdiYidXaO diffeUeQceV becRPeV PRUe
ZideVSUead, TXeVWiRQV aUiVe abRXW Whe UeaVRQV WhaW a SaUWicXOaU
iQdiYidXaO PighW adRSW a SaUWicXOaU VWUaWeg\. UViQg bRWh Whe
behaYiRUaO aQd fXQcWiRQaO QeXURiPagiQg daWa Rf heaOWh\ adXOWV
fURP HXPaQ CRQQecWRPe PURjecW (HCP) Ze e[aPiQed
deciViRQ PakiQg iQ aQ iQceQWiYe SURceVViQg WaVk (DeOgadR eW
aO. 2000). A SaiU Rf diVWiQcW ACT-R PRdeOV, UeSUeVeQWiQg a
DecOaUaWiYe VWUaWeg\ aQd a PURcedXUaO VWUaWeg\, ZeUe XVed WR
cOaVVif\ VXbjecWV aV eiWheU DecOaUaWiYe RU PURcedXUaO deciViRQ
PakeUV baVed RQ WheiU behaYiRUaO daWa. A PachiQe OeaUQiQg
LaVVR aQaO\ViV ZaV SeUfRUPed RQ each VXbjecW¶V UeVWiQg VWaWe
fXQcWiRQaO cRQQecWiYiW\, aQd ZaV abOe WR PaWch Whe ACT-R
PRdeO cOaVVificaWiRQV WR a high degUee Rf accXUac\. ThiV
VXggeVWV WhaW Whe VWUeQgWh Rf cRQQecWiRQV beWZeeQ bUaiQ
UegiRQV Pa\ SOa\ aQ iPSRUWaQW UROe iQ VhaSiQg Whe deciViRQ
PakiQg SURceVV Rf a giYeQ iQdiYidXaO.

KH\ZRUGV: DeciViRQ MakiQg; SWUaWeg\; CRPSXWaWiRQaO
PRdeOiQg; FXQcWiRQaO cRQQecWiYiW\; PURcedXUaO MePRU\;
DecOaUaWiYe MePRU\; ACT-R

IQWURGXFWLRQ
IW haV beeQ aUgXed WhaW, WR be effecWiYe, cRPSXWaWiRQaO

cRgQiWiYe PRdeOV Qeed WR VZiWch fURP QRPRWheWic,
gURXS-OeYeO deVcUiSWiRQV WR idiRgUaShic, iQdiYidXaO-OeYeO
RQeV (ZhRX eW aO., 2021). A SURPiViQg fUaPeZRUk iQ WhiV
VeQVe ZaV SURSRVed b\ RiWWeU aQd GRbeW (2000), ZhR aUgXed
WhaW aQ aUchiWecWXUe caQ be XVed WR VXcceVVfXOO\ caSWXUe Whe
iQYaUiaQW SaUW Rf Whe PiQd, ZhiOe diffeUeQW SaUaPeWeU YaOXeV
caQ be XVed WR PRdeO YaUiaWiRQV acURVV iQdiYidXaOV. ThiV
aSSURach ZaV WeVWed VXcceVVfXOO\ b\ DaiO\ aQd LRYeWW
(2001), ZhR VXcceeded iQ caSWXUiQg iQdiYidXaO diffeUeQceV iQ
ZRUkiQg PePRU\ WhURXgh a ViQgOe SaUaPeWeU iQ Whe ACT-R
aUchiWecWXUe (VSUeadiQg acWiYaWiRQ W), aQd PRUe UeceQWO\, b\
XX aQd SWRccR (2021) XViQg behaYiRUaO daWa. ReceQW ZRUk
haV aOVR VhRZQ WhaW iQdiYidXaO SaUaPeWeU YaOXeV aUe
aVVRciaWed ZiWh diffeUeQW VigQaWXUeV Rf QeXUaO acWiYiW\ iQ
EEG daWa (ZhRX eW aO., 2021) aQd fMRI (Rice & SWRccR, iQ
SUeVV). TheVe QeXUaO VigQaWXUeV ZeUe ideQWified fURP
³UeVWiQg-VWaWe´ UecRUdiQgV, WhaW iV, WaVk-fUee VeVViRQV iQ
Zhich SaUWiciSaQWV aUe QRW aVked WR dR aQ\WhiQg iQ SaUWicXOaU,
aQd Zhich RffeU Whe RSSRUWXQiW\ WR RbVeUYe VSRQWaQeRXV bXW
highO\ RUgaQi]ed bUaiQ acWiYiW\ (FR[ eW aO., 2005). The facW
WhaW SaUaPeWeU YaOXeV WhaW caSWXUe iQdiYidXaO diffeUeQceV aUe

UefOecWed iQ UeVWiQg VWaWe iPagiQg daWa VXggeVWV a biRORgicaO
XQdeUSiQQiQg fRU WheVe SaUaPeWeUV.

DeVSiWe iWV VXcceVVeV, Whe aSSURach Rf ideQWif\iQg
iQdiYidXaO diffeUeQceV ZiWh SaUaPeWeU YaOXeV VWiOO UXQV iQWR
cRQceSWXaO URadbORckV. WhiOe a cRgQiWiYe aUchiWecWXUe caQ
be aVVXPed WR UefOecW aQ iQYaUiaQW, iQQaWe bOXeSUiQW (TaaWgeQ,
2020), SaUWiciSaQWV aUe W\SicaOO\ PeaVXUed ZheQ SeUfRUPiQg
a specific task, aQd, eYeQ ZiWh Whe VaPe aUchiWecWXUe,
SaUWiciSaQWV PighW SeUfRUP Whe VaPe WaVkV iQ Whe VaPe Za\.
FRU e[aPSOe, ViPSOe aVVRciaWiRQ OeaUQiQg WaVkV caQ be
PRdeOed XViQg WZR VWUaWegieV, a SURcedXUaO-baVed
UeiQfRUcePeQW OeaUQiQg VWUaWeg\ aQd a PePRU\-baVed,
deciViRQ-b\-VaPSOiQg RU iQVWaQce-baVed OeaUQiQg VWUaWeg\.
HaiOe eW aO. (2020) VhRZed WhaW diffeUeQW SaUWiciSaQWV aUe beVW
fiW b\ diffeUeQW VWUaWegieV. ThiV iPSOieV WhaW aWWePSWV WR
PeaVXUe ViQgOe SaUaPeWeUV acURVV SaUWiciSaQWV iV XOWiPaWeO\
dRRPed WR faiO: iW dReV QRW Pake VeQVe WR eVWiPaWe OeaUQiQg
UaWe (a UeiQfRUcePeQW OeaUQiQg SaUaPeWeU) fURP SaUWiciSaQWV
ZhR UeO\ RQ PePRU\, aQd iW dReV QRW Pake VeQVe WR PeaVXUe
UaWe Rf fRUgeWWiQg (a VXcceVVfXOO\ decRdabOe SaUaPeWeU) fURP
iQdiYidXaOV ZhR fROORZ a PePRU\-OeVV, SURcedXUaO OeaUQiQg
VWUaWeg\.

ThURXgh cRPSXWaWiRQaO PRdeOV, iW iV SRVVibOe WR Pake
iQfeUeQceV abRXW Zhich VWUaWeg\ a SaUWiciSaQW iV XViQg (HaiOe
eW aO., 2020). BXW ZhaW PakeV SaUWiciSaQWV prefer a VWUaWeg\
RYeU aQRWheU? IQ SUiQciSOe, VWUaWeg\ VeOecWiRQ cRXOd be a
fXQcWiRQ Rf SeUVRQaO SUefeUeQce, habiW, RU cRVW-beQefiW
aQaO\ViV (Pa\Qe, BeWWPaQ, & JRhQVRQ, 1993). OQe eQWiciQg
SRVVibiOiW\ iV WhaW VWUaWeg\ VeOecWiRQ PighW UefOecW bRXQded
UaWiRQaOiW\ (LeZiV eW aO., 2014): iQdiYidXaOV chRRVe Whe
VWUaWeg\ WhaW SOa\V WR WheiU VWUeQgWhV, \ieOdiQg Whe beVW UeVXOWV
giYeQ Whe cRPSXWaWiRQaO cRVWV iQYROYed. If WhiV iV Whe caVe,
WheQ iW fROORZV WhaW SUefeUeQce fRU a VWUaWeg\ RYeU aQRWheU
ZRXOd aOVR XOWiPaWeO\ deSeQd RQ ideQWifiabOe VWabOe
chaUacWeUiVWicV Rf WheiU bUaiQ acWiYiW\.

TR WeVW WhiV h\SRWheViV, Ze aQaO\]ed a daWaVeW iQcOXdiQg
aOPRVW 200 SaUWiciSaQWV fRU ZhRP SeUfRUPaQce RQ a ViPSOe
deciViRQ-PakiQg WaVk aQd UeVWiQg-VWaWe fMRI daWa ZeUe
aYaiOabOe. CRPSXWaWiRQaO PRdeOV iPSOePeQWiQg aOWeUQaWiYe
VWUaWegieV ZeUe fiW WR iQdiYidXaO behaYiRUaO daWa WR deWeUPiQe
Whe PRVW OikeO\ VWUaWeg\ XVed b\ each SaUWiciSaQW. MachiQe
OeaUQiQg WechQiTXeV ZeUe WheQ ePSOR\ed WR ideQWif\ Whe
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faceWV Rf VSRQWaQeRXV QeXUaO acWiYiW\ WhaW beVW SUedicW Zhich
VWUaWeg\ ZiOO be XVed b\ each iQdiYidXaO. We e[SecWed WR
fiQd WhaW deciViRQ-PakiQg VWUaWegieV aVVRciaWed ZiWh Whe XVe
Rf PePRU\ UeVRXUceV (VXch aV UeWUieYiQg Whe SUeYiRXV
VXcceVV hiVWRU\ Rf aQ RSWiRQ) ZRXOd be aVVRciaWed ZiWh
iQcUeaVed fXQcWiRQaO cRQQecWiYiW\ iQ fURQWR-SaUieWaO UegiRQV
UeVSRQVibOe fRU cRgQiWiYe cRQWURO. CRQYeUVeO\, Ze e[SecWed
WhaW deciViRQ-PakiQg VWUaWegieV aVVRciaWed ZiWh habiWXaO aQd
UeZaUd-baVed OeaUQiQg ZRXOd be aVVRciaWed ZiWh iQcUeaVed
fXQcWiRQaO cRQQecWiYiW\ iQ VeQVRUiPRWRU cRUWiceV UeVSRQVibOe
fRU aXWRPaWic VWiPXOXV-UeVSRQVe behaYiRUV aQd ZiWh Whe
baVaO gaQgOia ciUcXiW UeVSRQVibOe fRU feedback-dUiYeQ
OeaUQiQg (YiQ & KQRZOWRQ, 2006).

MHWKRGV
ThiV VWXd\ aQaO\]ed bRWh behaYiRUaO aQd QeXURiPagiQg

daWa RbWaiQed fURP Whe HXPaQ CRQQecWRPe PURjecW (HCP)
daWaVeW (VaQ EVVeQ eW aO., 2013). A WRWaO Rf 199 SaUWiciSaQWV
(111 fePaOeV, 85 PaOeV, aQd 3 did QRW diVcORVe) ZhR
cRPSOeWed bRWh VeVViRQV Rf Whe WaVk-baVed fMRI gaPbOiQg
gaPe ZeUe iQcOXded iQ WhiV VWXd\. AOO SaUWiciSaQWV ZeUe
heaOWh\ adXOWV ZiWh QR QeXURdeYeORSPeQWaO RU
QeXURSV\chiaWUic diVRUdeUV. The e[SeUiPeQWaO SURWRcRO,
VXbjecW UecUXiWPeQW SURcedXUeV, aQd cRQVeQW WR VhaUe
de-ideQWified iQfRUPaWiRQ ZeUe aSSURYed b\ Whe IQVWiWXWiRQaO
ReYieZ BRaUd aW WaVhiQgWRQ UQiYeUViW\.

TKH IQFHQWLYH PURFHVVLQJ TDVN LQ WKH HCP
ThiV iQceQWiYe deciViRQ PakiQg WaVk ZaV adaSWed fURP Whe

gaPbOiQg SaUadigP deYeORSed b\ DeOgadR aQd Fie] (2000).
PaUWiciSaQWV ZeUe aVked WR gXeVV if Whe QXPbeU RQ a P\VWeU\
caUd (UeSUeVeQWed b\ a ³?´, aQd UaQgiQg fURP 1-9) ZaV PRUe
RU OeVV WhaQ 5. AfWeU PakiQg a gXeVV, SaUWiciSaQWV ZeUe giYeQ
feedback, Zhich cRXOd Wake RQe Rf WhUee fRUPV, Reward (a
gUeeQ XS aUURZ aQd $1), Loss (a Ued dRZQ aUURZ aQd
-$0.50), RU Neutral (a gUa\ dRXbOe headed aUURZ aQd Whe
QXPbeU 5). The feedback did QRW deSeQd RQ Whe VXbjecW¶V
UeVSRQVe, bXW ZaV deWeUPiQed iQ adYaQce; Whe VeTXeQce Rf
SUe-defiQed feedback ZaV ideQWicaO fRU aOO SaUWiciSaQWV. The
WaVk ZaV SUeVeQWed iQ WZR UXQV, each Rf Zhich cRQWaiQV 64
WUiaOV diYided iQWR eighW bORckV. BORckV cRXOd be Mostly Loss
(6 ORVV WUiaOV SVeXdR-UaQdRPO\ iQWeUOeaYed ZiWh eiWheU 1
QeXWUaO aQd 1 UeZaUd WUiaO, 2 QeXWUaO WUiaOV, RU 2 UeZaUd WUiaOV)
RU Mostly Reward (6 UeZaUd WUiaOV SVeXdR UaQdRPO\
iQWeUOeaYed ZiWh eiWheU 1 QeXWUaO aQd 1 ORVV WUiaO, 2 QeXWUaO
WUiaOV, RU 2 ORVV WUiaOV). IQ each Rf Whe WZR UXQV, WheUe ZeUe
WZR MRVWO\ ReZaUd aQd WZR MRVWO\ LRVV bORckV,
iQWeUOeaYed ZiWh 4 fi[aWiRQ bORckV (15 VecRQdV each).

RHVWLQJ-SWDWH IMRI AQDO\VLV
ThiV VWXd\ ePSOR\ed Whe ³PiQiPaOO\ SUeSURceVVed´

YeUViRQ Rf UeVWiQg-VWaWe fMRI daWa, Zhich haV aOUead\
XQdeUgRQe a PiQiPaO QXPbeU Rf VWaQdaUd SUeSURceVViQg
VWeSV iQcOXdiQg aUWifacW UePRYaO, PRWiRQ cRUUecWiRQ,
QRUPaOi]aWiRQ, aQd UegiVWUaWiRQ WR Whe VWaQdaUd MNI
ICBM152 WePSOaWe. AddiWiRQaO SUeSURceVViQg VWeSV ZeUe
SeUfRUPed XViQg Whe AFNI VRfWZaUe (CR[ RW, 1996),

iQcOXdiQg deVSikiQg, VSaWiaO VPRRWhiQg ZiWh aQ iVRWURSic
GaXVViaQ 3D fiOWeU FWHM Rf 8 PP, aQd UePRYaO Rf OiQeaU
cRPSRQeQWV UeOaWed WR Whe Vi[ PRWiRQ SaUaPeWeUV aQd WheiU
fiUVW-RUdeU deUiYaWiYeV.

FXQcWiRQaO cRQQecWiYiW\ PeaVXUeV ZeUe cRQVWUXcWed fURP
Whe HCP UeVWiQg-VWaWe daWa XViQg PRZeU eW aO. (2011)¶V ZhROe
bUaiQ SaUceOOaWiRQ. ThiV SaUceOOaWiRQ ZaV XVed WR cRQVWUXcW a
264 RegiRQ Rf IQWeUeVW (ROI) fXQcWiRQaO aWOaV, ZiWh each
ROI cRQWaiQiQg 81 YR[eOV. ThiV SaUceOOaWiRQ aWOaV iV defiQed
iQ Whe MNI VSace aQd ZaV aSSOied WR aOO SaUWiciSaQWV iQ HCP
daWaVeW. The e[WUacWiRQ Rf Whe WiPe VeUieV aQd caOcXOaWiRQ Rf
Whe cRQQecWiYiW\ PaWUiceV ZaV SeUfRUPed XViQg R (RSWXdiR
TeaP, 2016) aQd P\WhRQ. PeaUVRQ cRUUeOaWiRQ cRefficieQWV
aQd SaUWiaO cRUUeOaWiRQ cRefficieQWV beWZeeQ Whe WiPe VeUieV
Rf each bUaiQ UegiRQ ZeUe caOcXOaWed fRU each SaUWiciSaQW,
UeVXOWiQg iQ a 264 î 264 V\PPeWUic cRQQecWiYiW\ PaWUi[ fRU
each VeVViRQ fRU each VXbjecW. The aYeUaged cRUUeOaWiRQ
cRefficieQWV acURVV VXbjecWV ZeUe caOcXOaWed b\ fiUVW
WUaQVfRUPiQg each r YaOXe iQWR a ]-YaOXe, aQd WheQ
UeWUaQVfRUPiQg Whe aYeUage ] YaOXe back iQWR aQ eTXiYaOeQW U
YaOXe XViQg Whe h\SeUbROic WaQgeQW WUaQVfRUPaWiRQ (SiOYeU &
DXQOaS, 1987).

RHVSRQVH SZLWFK AQDO\VLV
BecaXVe iQ Whe IQceQWiYe PURceVViQg WaVk Whe feedback iV

VchedXOed iQ adYaQce aQd dReV QRW deSeQd RQ acWiRQV WakeQ
b\ SaUWiciSaQWV, iW iV iPSRVVibOe WR defiQe SaUWiciSaQW¶V
SeUfRUPaQce iQ WeUPV Rf eiWheU accXUac\ RU OeaUQiQg. ThiV
SRVeV a chaOOeQge ZheQ WU\iQg WR deWeUPiQe if SaUWiciSaQWV
aUe UeVSRQdiQg WR feedback. The PRVW PeaQiQgfXO Za\ WR
check ZheWheU SaUWiciSaQWV chaQge WheiU behaYiRU iQ
UeVSRQVe WR feedback iV WhURXgh aQaO\]iQg WheiU WiQ-SWa\,
LRVe-ShifW (WSLS) SURbabiOiWieV. ThXV, RXU PaiQ deSeQdeQW
YaUiabOe ZaV Whe WeQdeQc\ WR VZiWch UeVSRQVeV afWeU a LRVV
feedback aQd afWeU a ReZaUd feedback. ThiV UeVSRQVe VZiWch
iV cRded aV 0 if Whe cXUUeQW UeVSRQVe iV Whe VaPe aV Whe Qe[W
UeVSRQVe, aQd cRded aV 1 if Whe cXUUeQW UeVSRQVe iV QRW Whe
VaPe aV Whe Qe[W UeVSRQVe. BecaXVe Whe UeVSRQVe VZiWch iV a
biQaU\ YaUiabOe, Whe aQaO\ViV ZaV cRQdXcWed ZiWh ORgiVWic
Pi[ed-effecWV PRdeOV XViQg RUWhRgRQaO cRQWUaVW cRdiQg aV
iPSOePeQWed iQ Whe ³OPe4´ Sackage iQ R. GiYeQ WhaW NeXWUaO
WUiaOV Pake XS RQO\ a VPaOO SURSRUWiRQ Rf WRWaO WUiaOV, Whe\
ZeUe e[cOXded iQ VWaWiVWicaO WeVWV. IQ Whe Pi[ed-effecW PRdeO,
BORck T\Se (ReZaUd RU LRVV) aQd TUiaO T\Se (ReZaUd RU
LRVV) ZeUe WUeaWed aV fi[ed effecWV, aQd iQdiYidXaO
SaUWiciSaQWV ZeUe WUeaWed aV UaQdRP effecWV. The SaUaPeWeUV
ZeUe eVWiPaWed baVed RQ Whe Pa[iPXP OikeOihRRd.

OQ Whe gURXS-OeYeO, WheUe iV QR VigQificaQW effecW Rf
feedback QRU BORck T\Se RQ Whe SURbabiOiW\ Rf VZiWchiQg
UeVSRQVeV. HRZeYeU, aQd cUiWicaOO\ fRU WhiV VWXd\, RQ aQ
iQdiYidXaO-OeYeO, iQdiYidXaOV dR e[hibiW diffeUeQW behaYiRUaO
UeVSRQVe SURfiOeV. FigXUe 1 dePRQVWUaWeV Whe PeaQ
SURbabiOiW\ Rf UeVSRQVe VZiWchiQg aV a fXQcWiRQ Rf TUiaO T\Se
(feedback UeceiYed) aQd BORck T\Se.
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FLJXUH 1: The PeaQ SURbabiOiW\ Rf UeVSRQVe VZiWchiQg aV
a fXQcWiRQ Rf feedback aQd bORck W\Se. Each cRORU dRW aQd
gUe\ OiQe UeSUeVeQWV Whe PeaQ SURbabiOiW\ Rf UeVSRQVe
VZiWchiQg Rf a ViQgOe SaUWiciSaQW, aQd Whe bOack dRW
UeSUeVeQWV Whe PeaQ aQd 95% cRQfideQce iQWeUYaO acURVV
SaUWiciSaQWV.

We aOVR e[aPiQed ZheWheU Whe UeVSRQVe WiPeV chaQge aV a
fXQcWiRQ Rf SUeYiRXV feedback (Whe TUiaO T\Se Rf Whe
SUeYiRXV WUiaO) aQd BORck T\Se. E[cOXdiQg QeXWUaO WUiaOV iQ
Whe VWaWiVWicaO aQaO\ViV, RQ aYeUage, SaUWiciSaQWV WeQd WR Wake
ORQgeU ZheQ PakiQg deciViRQV iQ MRVWO\ ReZaUd bORckV
WhaQ iQ MRVWO\ LRVV bORckV ( = 15.21, SE = 6.39, p =β
0.017), UegaUdOeVV Rf SUeYiRXV feedback. FigXUe 2 VhRZV Whe
PeaQ UeVSRQVe WiPe (RT) aV a fXQcWiRQ Rf PUeYiRXV
Feedback aQd BORck T\Se. CRPSaUed WR Whe SURbabiOiW\ Rf
UeVSRQVe VZiWchiQg, hRZeYeU, Whe SaWWeUQ Rf RTV ZaV fRXQd
WR be QRiVieU aQd OeVV cRQViVWeQW acURVV iQdiYidXaOV, aQd ZaV
WheUefRUe QRW iQcOXded iQ Whe fROORZiQg PRdeOiQg aQaO\ViV.

FLJXUH 2: MeaQ UeVSRQVe WiPe aV a fXQcWiRQ Rf SUeYiRXV
WUiaO feedback aQd bORck W\Se. Each cRORUed dRW aQd
gUe\ OiQe UeSUeVeQWV Whe RT Rf aQ iQdiYidXaO, aQd Whe
bOack dRW UeSUeVeQWV Whe PeaQ aQd cRQfideQce iQWeUYaO
(95%) Rf RT acURVV SaUWiciSaQWV.

ACT-R MRGHO DHVLJQ
WhiOe Whe behaYiRUaO daWa dReV QRW UeYeaO PajRU effecWV

acURVV VXbjecWV, iW RffeUV aQ e[ciWiQg RSSRUWXQiW\ fURP a
PRdeOiQg SeUVSecWiYe. TheUe e[iVW WZR cRPSeWiQg
e[SOaQaWiRQV Rf hRZ deciViRQ PakiQg RccXUV iQ a UeSeaWed
chRice SaUadigP, RQe baVed RQ eSiVRdic PePRU\ Rf SUeYiRXV
chRiceV (GRQ]aOe] eW aO., 2003) aQd RQe baVed RQ
UeiQfRUcePeQW OeaUQiQg (DaZ eW aO., 2011). Each e[SOaQaWiRQ

iV deSeQdeQW RQ diffeUeQW PechaQiVPV, aQd, XOWiPaWeO\,
UeOiaQW RQ diffeUeQW VWUaWegieV. BRWh e[SOaQaWiRQV ZeUe
iPSOePeQWed aV WZR cRPSXWaWiRQaO PRdeOV iQ Whe ACT-R
cRgQiWiYe aUchiWecWXUe (AQdeUVRQ, 2007): aV a Declarative
MRdeO, UeOiaQW RQ PePRU\ UeWUieYaO, aQd a Procedural
MRdeO, Zhich PakeV XVe Rf UeiQfRUcePeQW OeaUQiQg.

DHFODUDWLYH MRGHO The DecOaUaWiYe MRdeO UeOieV RQ Whe
decOaUaWiYe PRdXOe WR UeWUieYe a PePRU\ Rf SUiRU acWiRQV aQd
WheiU cRUUeVSRQdiQg feedback. WheQ SUeVeQWed ZiWh a
P\VWeU\ caUd, Whe PRdeO VeOecWV aQ acWiRQ, LESS RU MORE,
fRU eYaOXaWiRQ, aQd PakeV a UeWUieYaO Rf Whe SUiRU hiVWRU\ Rf
feedback aVVRciaWed ZiWh WhaW acWiRQ. If Whe UeWUieYed hiVWRU\
cRQWaiQV a WIN UeVXOW Rf Whe chRVeQ acWiRQ, iW ZiOO e[ecXWe
WhaW acWiRQ, bXW if Whe hiVWRU\ cRQWaiQV a LOSE RU
NEUTRAL UeVXOW, Whe PRdeO ZiOO e[ecXWe Whe aOWeUQaWe
acWiRQ. If QR hiVWRU\ iV UeWUieYed, aQ acWiRQ ZiOO be e[ecXWed
aW UaQdRP. AfWeU PakiQg a gXeVV, Whe PRdeO iV SUeVeQWed
ZiWh feedback, Zhich iV eQcRded aV a QeZ PePRU\ chXQk
aVVRciaWed ZiWh Whe VeOecWed acWiRQ. IQ ACT-R, PePRU\
chXQkV aUe UeWUieYed baVed RQ WheiU acWiYaWiRQ, caOcXOaWed
ZiWh a baVe-OeYeO OeaUQiQg fXQcWiRQ WhaW UefOecWV Whe degUee WR
Zhich a chXQk PaWcheV Whe cRQWe[W Rf Whe UeWUieYaO UeTXeVW,
aQd Whe UeceQc\ Rf SUiRU UeWUieYaOV (ET 1). If Whe acWiYaWiRQ
VXUSaVVeV a VSecified WhUeVhROd, Whe chXQk iV SRVVibOe WR
UeWUieYe aQd if PXOWiSOe chXQkV PeeW WhiV WhUeVhROd, Whe
chXQk ZiWh Whe gUeaWeVW acWiYaWiRQ ZiOO be VeOecWed. The
PRdeO fXQcWiRQV b\ UePePbeUiQg Whe UeVXOWV Rf SUeYiRXV
acWiRQV WR gXide fXWXUe acWiRQV.

(1)𝐴
𝑖

ࡧ  lnഉ
𝑗1ࡧ

𝑛

∑ 𝑡
𝑗
ࡠ 𝑑ഊࡡ  ϵ

PURFHGXUDO MRGHO B\ cRQWUaVW, Whe PURcedXUaO MRdeO
UeSUeVeQWV Whe SRVVibOe acWiRQV Rf Whe deciViRQ-PakiQg
SURceVVeV aV cRPSeWiQg UXOeV, aQd UeiQfRUcePeQW OeaUQiQg iV
XVed WR iQcUeaVe Whe XVe Rf Whe UXOe WhaW OeadV WR Whe beVW
RXWcRPeV. IQVWead Rf eQcRdiQg each WUiaO aV a PePRU\ Rf aQ
acWiRQ aQd aVVRciaWed feedback, Whe PRdeO haV WZR
cRPSeWiQg SURdXcWiRQ UXOeV WhaW e[ecXWe Whe MORE aQd
LESS acWiRQV.WheQ SUeVeQWed ZiWh Whe P\VWeU\ caUd, Whe
PRdeO ZiOO chRRVe RQe Rf Whe UXOeV WR e[ecXWe baVed RQ WheiU
XWiOiW\. IQiWiaOO\, bRWh UXOeV haYe eTXaO XWiOiW\, aQd RQe ZiOO be
chRVeQ aW UaQdRP. AfWeU PakiQg a gXeVV, Whe PRdeO iV
SUeVeQWed ZiWh a WIN, LOSE, RU NEUTRAL UeVSRQVe, aQd
WhiV feedback iV eQcRded aV aQ adjXVWPeQW WR Whe XWiOiW\ Rf
Whe VeOecWed SURdXcWiRQ UXOe (+1 fRU a WIN UeVXOW, -1 fRU a
LOSE UeVXOW, aQd QR chaQge fRU a NEUTRAL UeVXOW). AW aQ\
WiPe SRiQW t, Whe XWiOiW\ U Rf SURdXcWiRQ p iV caOcXOaWed XViQg
ET 2, ZheUe 𝛼 iQdicaWeV Whe OeaUQiQg UaWe, iV Whe UeZaUd𝑅

𝑡
Whe SURdXcWiRQ UeceiYed fRU aW WiPe 𝑡. PUeYiRXV UeZaUdV ZiOO
eQcRXUage Whe PRdeO WR UeSeaW Whe aVVRciaWed acWiRQ, ZhiOe a
SaWWeUQ Rf ORVVeV ZiOO decUeaVe Whe XWiOiW\ Rf Whe acWiRQ aQd
eQcRXUage Whe VeOecWiRQ Rf Whe aOWeUQaWe acWiRQ.

(2)𝑈
𝑡

ࡧ 𝑈
𝑡1ࡡ

ࡠ  αഉ𝑅
𝑡
ࡡ  𝑈

𝑡1ࡡ
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IQGLYLGXDO FLW DQG MRGHO EYDOXDWLRQ
TR e[aPiQe Whe SUedicWiRQV Rf RXU PRdeO, Ze XVed a

gUid-VeaUch aSSURach WR fiQd Whe beVW SRVVibOe SaUaPeWeUV
ZiWhiQ Whe SaUaPeWeU VSace VhRZQ iQ TabOe 1. Each PRdeO
ViPXOaWeV 64 WUiaOV, Whe VaPe aV Whe e[SeUiPeQWaO SaUadigP
fRU SaUWiciSaQWV, UeSeaWed RYeU 50 UXQV. The ViPXOaWed
VWiPXOi ZeUe SUeVeQWed iQ Whe VaPe RUdeU aV Whe UeaO
e[SeUiPeQWaO VWiPXOi WR aYRid aQ\ SRWeQWiaO QRiVe fURP
VeTXeQce effecWV iQ Whe ViPXOaWiRQ. FROORZiQg Whe Vi[
cRQdiWiRQV (ReZaUd, LRVV, NeXWUaO WUiaOV iQ MRVWO\ ReZaUd
BORck aQd ReZaUd, LRVV, NeXWUaO WUiaOV iQ MRVWO\ LRVV
BORck), Whe PeaQ SURbabiOiW\ Rf UeVSRQVe VZiWchiQg,
P(SZiWch), aQd iWV VWaQdaUd deYiaWiRQ aUe cRPSXWed.

TDEOH 1: MRGHO SDUDPHWHU VSDFH LQ WKH VLPXODWLRQV.
MRGHOV PDUDPHWHU VDOXH MHDQLQJ

DecOaUaWiYe ϵ 0 - 0.5 acWiYaWiRQ
QRiVe

d 0.2 - 0.85 PePRU\
deca\

PURcedXUaO s 0 - 0.5 XWiOiW\ QRiVe
Į 0.05 - 0.5 OeaUQiQg UaWe

IQ RUdeU WR eYaOXaWe Whe gRRdQeVV-Rf-fiW fRU iQdiYidXaO
fiWWiQg, Ze eVWiPaWed Pa[iPXP LRg-LikeOihRRd acURVV Whe
SaUaPeWeU VSace. The OikeOihRRd fXQcWiRQ Rf a SaUWicXOaU
PRdeO ZiWh SaUaPeWeUV , , iV Whe SURbabiOiW\ WhaW,θ 𝐿ഉ𝑚,  θ| 𝑥ഊ
giYeQ Whe SaUaPeWeUi]ed PRdeO aQd VeW Rf RbVeUYed daWa WR
fiW, Whe PRdeO ZRXOd SURdXce WhaW daWa:= =𝐿ഉ𝑚,  θ| 𝑥ഊ 

. HeUe, aQd UefeUV WR Whe PRdeO aQd iWV𝑃ഉ𝑥|𝑚,  θഊ 𝑚 θ
SaUaPeWeUV, aQd UefeUV WR Whe RbVeUYaWiRQV. CRPPRQ𝑥
cRPSaUiVRQ PeWUicV, VXch aV Whe Akaike IQfRUPaWiRQ
CUiWeUiRQ (AIC) aQd Whe Ba\eViaQ IQfRUPaWiRQ CUiWeUiRQ
(BIC), aUe bRWh baVed RQ OikeOihRRd, bXW UeO\ RQ cORVed-fRUP
OikeOihRRd fXQcWiRQV. WhiOe iW iV SRVVibOe WR deUiYe VXch
fXQcWiRQV fRU ViPSOe PRdeOV (VXch aV ORgiVWic PRdeOV RU
OiQeaU PRdeOV), Whe\ caQ be iQcUedibO\ difficXOW WR deUiYe fRU
PRUe cRPSOe[ PRdeOV aQd iPSRVVibOe fRU aUbiWUaUiO\
cRPSOe[ PRdeOV baVed RQ ACT-R aQd RWheU high OeYeO
aUchiWecWXUeV. SRPe aWWePSWV haYe beeQ Pade WR eYaOXaWe
cRPSOe[ PRdeOV ZiWh baVic OikeOihRRd PeWUicV: SWRccR aQd
HaiOe (2018), PUaW aQd SWRccR (2020), aQd YaQg aQd SWRccR
(2019) haYe aOO XVed BIC WR cRPSaUe cRPSeWiQg ACT-R
PRdeOV. HRZeYeU, Whe eTXaWiRQ XVed WR eVWiPaWe BIC iV a
cORVed-fRUP aSSUR[iPaWiRQ WhaW iV baVed RQ ReVidXaO SXP Rf
STXaUeV aQd ZaV RUigiQaOO\ deUiYed fRU OiQeaU PRdeOV; aV
VXch, iW dReV QRW QeceVVaUiO\ hROd fRU ACT-R.

IQ WhiV SaSeU, Ze fROORZed Whe cRPSXWaWiRQaOO\ e[SeQViYe
bXW PRUe accXUaWe VROXWiRQ Rf ePSiUicaOO\ caOcXOaWiQg Whe
OikeOihRRd fXQcWiRQ b\ ViPXOaWiQg each PRdeO aQd VeW Rf
SaUaPeWeUV PXOWiSOe WiPeV, aQd caOcXOaWiQg Whe ePSiUicaO
SURbabiOiW\ diVWUibXWiRQ Rf each VeW Rf UeVXOWV (YaQg, KaUPRO,
SWRccR, iQ SUeVV). KQRZiQg Whe PeaQ aQd VWaQdaUd deYiaWiRQ
Rf WhiV diVWUibXWiRQ, Whe YaOXe Rf P(x_ m, ș) caQ WheQ be
caOcXOaWed diUecWO\. If a PRdeO iV deVigQed WR SUedicW n daWa
SRiQWV (cRUUeVSRQdiQg, fRU iQVWaQce, WR diffeUeQW
e[SeUiPeQWaO cRQdiWiRQV), iWV OikeOihRRd caQ be e[SUeVVed aV

Whe jRiQW SURbabiOiW\ WhaW aQ\ Rf WhRVe daWa SRiQWV caQ be
SURdXced. FRU ViPSOiciW\, aQd aVVXPiQg iQdeSeQdeQce, WhiV
caQ be e[SUeVVed aV Whe SURdXcW Rf Whe SURbabiOiW\ Rf
RbVeUYiQg each iQdiYidXaO daWa SRiQW iQ Whe ePSiUicaO daWa,
i.e., L(m, ș _ x1, x2, « xn) = �i L(m, ș _ xi ). FiQaOO\, WR aYRid
cRPSXWaWiRQaO SURbOePV ZiWh YaQiVhiQg VPaOO SURbabiOiWieV,
iW iV cRPPRQ Whe e[SUeVV WhiV YaOXe iQ WeUPV Rf log
OikeOihRRd:

ORg L = ORg = ORg (3)𝑃ഉ𝑥 | 𝑚,  θഊ
𝑖

∑ գഉ𝑥
𝑖
ࡡ   𝑥

𝑖,𝑚
ഊ /σ

𝑖,𝑚
എ

RHVXOWV

DHFLVLRQ-MDNLQJ SWUDWHJ\ IGHQWLILFDWLRQ
B\ e[cOXdiQg SaUWiciSaQWV ZhR did QRW cRPSOeWe Whe

gaPbOiQg WaVk aQd WZR VeVViRQV Rf UeVWiQg VWaWe fMRI
VcaQQiQg, a WRWaO Rf 199 SaUWiciSaQWV ZeUe fiW b\ ACT-R
PRdeOV. Of WheVe, 127 (63.82%) ZeUe beVW fiW b\ Whe
DecOaUaWiYe MRdeO, aQd WhXV ZeUe ideQWified aV DecOaUaWiYe
deciViRQ PakeUV. The UePaiQiQg 72 (36.18%) iQdiYidXaOV
ZeUe beVW fiW b\ Whe PURcedXUaO MRdeO, aQd ideQWified aV
PURcedXUaO deciViRQ PakeUV. The ORgiVWic Pi[ed-effecWV
PRdeO ZaV cRQdXcWed XViQg RUWhRgRQaO cRQWUaVW cRdiQg aV
iPSOePeQWed iQ Whe OPe4 Sackage iQ R. ACT-R MRdeO T\Se
(DecOaUaWiYe YV. PURcedXUaO), BORck T\Se (MRVWO\ ReZaUd
YV. MRVWO\ LRVV), aQd Feedback (ReZaUd YV. LRVV) ZeUe
WUeaWed aV fi[ed effecWV, aQd iQdiYidXaO VXbjecWV ZeUe WUeaWed
aV UaQdRP effecWV. FXOO VWaWiVWicaO UeVXOWV aUe VhRZQ iQ TabOe
2. IQ cRQWUaVW WR Whe Oack Rf VigQificaQW effecWV acURVV Whe
behaYiRUaO daWa, Whe SURbabiOiW\ Rf UeVSRQVe VZiWchiQg ZaV
fRXQd WR be VWaWiVWicaOO\ diffeUeQW beWZeeQ Whe WZR gURXSV
ideQWified aV eiWheU DecOaUaWiYe deciViRQ PakeUV RU
PURcedXUaO deciViRQ PakeUV (] = -6.11, p < 0.001),
VXSSRUWiQg Whe YaOidiW\ Rf Whe ACT-R PRdeO ideQWificaWiRQ.

TDEOH 2: RHVXOWV RI WKH LRJLVWLF ML[HG EIIHFWV MRGHO RI
WKH PUREDELOLW\ RI RHVSRQVH SZLWFK

SWaWisWical TesW RGGV
UDWLR

𝑠𝑒 գ 𝑝

(Intercept) 0.88* 0.05 -2.30 0.022
Model Group 0.71*** 0.04 -6.11 <0.001
Block Type 0.98 0.03 -0.80 0.423
Trial Type 1.08** 0.03 2.84 0.005
Model Group by
Block Type

1.07* 0.03 2.46 0.014

Model Group by
Trial Type

0.8*** 0.02 -8.10 <0.001

Block Type by
Trial Type

1.02 0.03 0.78 0.434

Model Group by
Block Type by
Trial Type

1.10*** 0.03 3.47 0.001

Random EffecW
σ2 3.29
ICC 0.12
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N HCPID 199
observation 9746
Marginal 𝑅2

/Conditional 𝑅2

0.030/0.144

Log-Likelihood -4010.323
* p<0.05   ** p<0.01   *** p<0.001

FLJXUH 3. (TRS) CRXQWV Rf iQdiYidXaOV ideQWified b\ ACT-R
PRdeOV. The Ued baU UeSUeVeQWV Whe QXPbeU Rf SaUWiciSaQWV
beVW fiW b\ Whe DecOaUaWiYe PRdeO; Whe bOXe baU UeSUeVeQWV Whe
QXPbeU Rf SaUWiciSaQWV beVW fiW b\ Whe PURcedXUaO MRdeO.
(BRWWRP) The SURbabiOiW\ Rf UeVSRQVe VZiWchiQg b\ WZR
gURXSV Rf iQdiYidXaOV ideQWified aV eiWheU DecOaUaWiYe RU
PURcedXUaO deciViRQ PakeUV.

SXSHUYLVHG CODVVLILFDWLRQ ZLWK LRJLVWLF MRGHO
TR e[SORUe if Whe behaYiRUaO diffeUeQceV beWZeeQ

DecOaUaWiYe aQd PURcedXUaO deciViRQ PakeUV aUe iQdicaWed b\
aQ iQdiYidXaO¶V XQdeUO\iQg bUaiQ VWUXcWXUe, Ze WUaiQed a
LRgiVWic RegUeVViRQ PRdeO XViQg UeVWiQg VWaWe fXQcWiRQaO
cRQQecWiYiW\ aV iWV YaUiabOe, aQd SUedicWed Whe SURbabiOiW\ Rf
a SaUWiciSaQW beiQg OabeOed aV eiWheU DecOaUaWiYe-baVed RU
PURcedXUaO-baVed deciViRQ PakeU b\ Whe ACT-R PRdeO
cOaVVificaWiRQ. IQ RUdeU WR haQdOe aQ iPbaOaQced daWaVeW ZiWh
XQeTXaO WaUgeW OabeOV, XSVaPSOiQg ZaV aSSOied b\ UaQdRPO\
addiQg daWa fURP Whe PiQRUiW\ cOaVV. HaYiQg 69,696 (264
ROI 264 ROI) cRQQecWiRQV, Ze ZaQW WR VeOecW RQO\ Wheࡣ
PRVW iPSRUWaQW cRQQecWiRQV cRQWUibXWiQg WR Whe SUedicWiRQ,
WheUefRUe, LaVVR UegXOaUi]aWiRQ ZaV aSSOied WR Whe LRgiVWic
MRdeO. LaVVR iV a PachiQe OeaUQiQg UegUeVViRQ aQaO\ViV
WechQiTXe WhaW SeUfRUPV bRWh YaUiabOe VeOecWiRQ aQd
UegXOaUi]aWiRQ iQ RUdeU WR iPSURYe Whe SUedicWiRQ accXUac\
aQd iQWeUSUeWabiOiW\ Rf Whe cRPSXWaWiRQaO PRdeO. IW caQ
UedXce PRdeO cRPSOe[iW\ b\ SeQaOi]iQg OaUge QXPbeUV Rf
cRefficieQWV aQd aOVR SUeYeQWV RYeUfiWWiQg Zhich Pa\ UeVXOW
fURP ViPSOe OiQeaU UegUeVViRQ. LaVVR PiQiPi]aWiRQ iV
caOcXOaWed XViQg ET 4, ZheUe Whe WXQiQg SaUaPeWeU cRQWUROVλ
Whe degUee Rf SeQaOW\: fRU gUeaWeU YaOXeV Rf , PRUeλ
cRefficieQWV aUe fRUced WR becRPe  0.

(4)
𝑖1ࡧ
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𝑖
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𝑖𝑗
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𝑗
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𝑝

∑ |β
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TR accRXQW fRU Whe OaUge diVSaUiW\ beWZeeQ Whe QXPbeU Rf
SaUWiciSaQWV aQd Whe QXPbeU Rf SUedicWRUV, Ze SeUfRUPed a
GUid VeaUch iQ VkOeaUQ (PedUegRVa eW aO., 2011) ZiWh 20-fROd
cURVV-YaOidaWiRQ WR deWeUPiQe Whe beVW fiW h\SeU-SaUaPeWeU λ
(6.73). TR Pa[iPi]e Whe SeQaOW\ WR cRefficieQWV, Whe higheVW
YaOXe Rf ZiWh YaOidaWiRQ accXUac\ ZiWh RQe VWaQdaUd eUURUλ
Rf Whe Pa[iPXP accXUac\ ZaV chRVeQ (aV UecRPPeQded b\
KUVWajic eW aO (2014). IQVWead Rf VSOiWWiQg Whe eQWiUe daWaVeW
iQWR WUaiQiQg aQd WeVWiQg VeWV, Ze UefiW Whe PRdeO XViQg
LeaYe-RQe-RXW (LOO) cURVV YaOidaWiRQ. The PRdeO iV WUaiQed
RQ aOO VaPSOeV e[ceSW RQe aQd Whe SUedicWiRQ iV Pade RQ WhaW
RQe VaPSOe, WheQ Whe SURceVV iV UeSeaWed acURVV Whe fXOO
daWaVeW. The PeaQ VcRUe (accXUac\), WUXe SRViWiYe UaWe(TPR),
WUXe QegaWiYe UaWe (TNR), faOVe SRViWiYe UaWe (FPR), faOVe
QegaWiYe UaWe (FNR) aUe caOcXOaWed acURVV aOO fROdV WR
eYaOXaWe Whe SeUfRUPaQce Rf Whe PRdeO. B\ defiQiWiRQ, Whe
UeceiYeU RSeUaWiQg chaUacWeUiVWic cXUYe (ROC) dePRQVWUaWeV
Whe SeUfRUPaQce Rf a cOaVVificaWiRQ PRdeO b\ SORWWiQg Whe
UeOaWiRQVhiS beWZeeQ TPR YV. FPR aW diffeUeQW cOaVVificaWiRQ
WhUeVhROdV. We caOcXOaWed Whe AUC (AUea XQdeU Whe cXUYe),
Zhich iV RQe Rf Whe PRVW iPSRUWaQW PeWUicV fRU eYaOXaWiQg a
cOaVVificaWiRQ PRdeO¶V SeUfRUPaQce; aV Whe AUC Rf a PRdeO
aSSURacheV 1, Whe PRdeO aSSUR[iPaWeV aQ ideaO, SeUfecW
cOaVVifieU. IW SURYideV iQfRUPaWiRQ abRXW hRZ ZeOO a
cOaVVificaWiRQ PRdeO iV caSabOe Rf diVWiQgXiVhiQg beWZeeQ
cOaVVeV. The RYeUaOO cOaVVificaWiRQ accXUac\ iV 0.88 aQd Whe
ROC-AUC iV 0.94, iQdicaWiQg WhaW SUedicWiQg fURP aQ
iQdiYidXaO'V UeVWiQg VWaWe fXQcWiRQaO cRQQecWiYiW\, Whe LaVVR
LRgiVWic PRdeO iV caSabOe Rf PaWchiQg ACT-R¶V SUedicWiRQ
abRXW ZheWheU aQ iQdiYidXaO iV a DecOaUaWiYe-baVed RU
PURcedXUaO-baVed deciViRQ PakeU.

CRQQHFWLYLW\ MDS
WiWh LaVVR UegXOaUi]aWiRQ, aSSUR[iPaWeO\ 1.4% Rf β

eVWiPaWeV iQ Whe LRgiVWic PRdeO aUe QRW ]eUR, VXggeVWiQg a
UeOaWiYeO\ VSaUVe QeXUR fXQcWiRQaO cRQQecWiYiW\ Rf Whe UeVWiQg
bUaiQ. IQ a 264 264 ȕ cRefficieQWV PaWUi[, Whe YaOXeࡣ β

𝑖𝑗
iQdicaWeV Whe ZeighW Rf cRQQecWiYiW\ beWZeeQ Whe i-Wh aQd Whe
j-Wh UegiRQ iQ cOaVVif\iQg ZheWheU Whe hXPaQ VXbjecW iV a
DecOaUaWiYe deciViRQ PakeU RU a PURcedXUaO deciViRQ PakeU
fURP Whe UeVWiQg VWaWe fXQcWiRQaO cRQQecWiYiW\. The XOWiPaWe
effecW Rf ȕ RQ Whe SUedicWed gURXS aVVigQPeQW deSeQdV RQ
Whe SROaUiW\ Rf Whe XQdeUO\iQg fXQcWiRQaO cRQQecWiYiW\. A
SRViWiYe ȕ YaOXe haV diffeUeQW iPSOicaWiRQV if aSSOied WR a
SRViWiYe RU QegaWiYe SaUWiaO cRUUeOaWiRQ beWZeeQ WZR UegiRQV.
TR Pake Whe iQWeUSUeWaWiRQ Rf Whe YaOXeV XQaPbigXRXV, Ze
PXOWiSOied Whe PaWUi[ ZiWh Whe aYeUaged SaUWiaO cRUUeOaWiRQβ
cRefficieQW PaWUi[ , RbWaiQiQg a gURXS-OeYeO ZeighWed𝐴
aYeUaged cRUUeOaWiRQ PaWUi[ . FigXUe 4 dePRQVWUaWeV Whe𝑊
bUaiQ cRQQecWiYiW\ PaS Rf W, WhUeVhROded VR WhaW RQO\ Whe
PRVW SUedicWiYe 68 cRQQecWiRQV (cRUUeVSRQdiQg WR 0.01% Rf
Whe iQiWiaO SRRO Rf UegUeVVRUV) aUe VhRZQ. IQ WhiV figXUe, Ued
OiQeV UeSUeVeQW fXQcWiRQaO cRQQecWiRQV WhaW aUe SUedicWiYe Rf
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a DecOaUaWiYe deciViRQ PakeU, aQd bOXe OiQeV UeSUeVeQW
fXQcWiRQaO cRQQecWiRQV WhaW aUe SUedicWiYe Rf a PURcedXUaO
deciViRQ PakeU. CRORU VhadeV VXggeVW Whe VWUeQgWh Rf
SUedicWabiOiW\.

FLJXUH 4. The gURXS-OeYeO ZeighWed aYeUaged bUaiQ
cRQQecWiYiW\ SORW.

AV Ze aQWiciSaWed, Whe UeVXOWV VhRZ a diVVRciaWiRQ
beWZeeQ Whe W\SeV Rf cRQQecWiYiW\ aVVRciaWed ZiWh
DecOaUaWiYe RU PURcedXUaO VWUaWegieV. UViQg Whe PRZeU eW aO
(2011) fXQcWiRQaO cOaVVificaWiRQ Rf WheVe UegiRQV aV a
gXideOiQe, Whe UeVXOWV VhRZ WhaW Whe XVe Rf a DecOaUaWiYe
VWUaWeg\ ZaV PRVWO\ aVVRciaWed ZiWh iQcUeaVed fXQcWiRQaO
cRQQecWiYiW\ iQ Whe QeWZRUkV Rf UegiRQV aVVRciaWed ZiWh WaVk
cRQWURO (fURQWR-SaUieWaO QeWZRUkV aQd aWWeQWiRQ QeWZRUkV)
aQd eSiVRdic PePRU\ (defaXOW PRde QeWZRUk aQd PePRU\
UeWUieYaO QeWZRUk), ZhiOe Whe XVe Rf PURcedXUaO VWUaWeg\ ZaV
PRVWO\ OiQked WR iQcUeaVed fXQcWiRQaO cRQQecWiYiW\ iQ
VeQVRUiPRWRU aQd VXbcRUWicaO QeWZRUkV.

DLVFXVVLRQ
ThiV SaSeU VhRZV WhaW iQdiYidXaO SUefeUeQceV fRU XViQg a
decOaUaWiYe RU a SURcedXUaO VWUaWeg\ caQ be decRded fURP
SaWWeUQV Rf UeVWiQg VWaWe fXQcWiRQaO cRQQecWiYiW\ daWa. The
VSecific cRQQecWiYiW\ YaOXeV VXggeVW WhaW aQ iQdiYidXaO¶V
SUefeUeQce fRU a SaUWicXOaU VWUaWeg\ PighW be adaSWiYe aQd
UaWiRQaO. SSecificaOO\, iQdiYidXaOV e[hibiWiQg a VWURQgeU
fURQWR-SaUieWaO cRQQecWiYiW\ SOa\ WR WheiU VWUeQgWhV, aQd WeQd
WR XVe decOaUaWiYe VWUaWegieV WhaW aUe PRUe UeOiaQW RQ
cRQWUROOed PePRU\ UeWUieYaO, ZhiOe iQdiYidXaOV ZiWh VWURQgeU
VeQVRUiPRWRU cRQQecWiYiW\ WeQd WR XVe SURcedXUaO VWUaWegieV.
IQ geQeUaO, Whe SaWWeUQV Rf fXQcWiRQaO cRQQecWiYiW\ aUe
cRPSaWibOe ZiWh ACT-R¶V UegiRQV.

AOWhRXgh RXU UeVXOWV aUe eQcRXUagiQg, a QXPbeU Rf
OiPiWaWiRQV PXVW be ackQRZOedged. FiUVW, Whe DecOaUaWiYe YV.
PURcedXUaO cOaVVificaWiRQ Rf iQdiYidXaOV¶ SURbabiOiW\ Rf
VZiWchiQg iV baVed RQ a ORg-OikeOihRRd PRdeO fiWWiQg
SURcedXUe, aQd WhXV, QR gURXQd-WUXWh OabeOV ZeUe aYaiOabOe.
MRUeRYeU, Whe RSWiPaO SaUaPeWeU ZaV VeaUched fURP a fiQiWe
gUid, aQd deWeUPiQed b\ Whe higheVW ORg-OikeOihRRd YaOXe
cRPSaUed WR ePSiUicaO daWa. SecRQd, Whe WaVk iV highO\
XQXVXaO, iQ WhaW iW SURYideV QR UeaO RSSRUWXQiW\ fRU OeaUQiQg
fURP feedback. FXUWheU VWXd\ cRXOd PRdeO Whe OeaUQiQg
effecW aQd iQYeVWigaWe ZheWheU diffeUeQW OeaUQiQg
PechaQiVPV cRXOd aOVR be SUedicWed b\ Whe QeXUR-fXQcWiRQaO
cRQQecWiYiW\.

TheVe OiPiWaWiRQV QRWZiWhVWaQdiQg, Ze beOieYe WhaW RXU
UeVXOWV haYe VRPe iPSRUWaQW iPSOicaWiRQV. FiUVW, Whe\
SURYide a QeZ aQd deeSeU Za\ WR cRQQecW iQdiYidXaO
diffeUeQceV iQ WaVk SeUfRUPaQce ZiWh iQdiYidXaO

QeXURbiRORg\, VhRZiQg hRZ Whe OaWWeU PighW SURYide
cRQVWUaiQWV RQ Whe VSecific VWUaWegieV WhaW aUe VeOecWed.

SecRQd, Whe\ haYe iPSOicaWiRQV fRU ACT-R. PURcedXUaO
kQRZOedge haV beeQ WUadiWiRQaOO\ aVVRciaWed, iQ ACT-R,
ZiWh Whe fXQcWiRQ Rf Whe baVaO gaQgOia. WhiOe Whe UROe Rf Whe
baVaO gaQgOia iQ OeaUQiQg SURcedXUaO kQRZOedge iV ZeOO
VXSSRUWed (KQRZOWRQ eW aO., 2006 eWc.), iW iV QRW cOeaU WhaW Whe
baVaO gaQgOia aUe aOVR Whe XOWiPaWe VeaW Rf SURcedXUaO
kQRZOedge. IQ facW, bRWh PRdeOiQg ZRUk (SWRccR, LebieUe, &
AQdeUVRQ, 2010) aQd e[SeUiPeQWaO ZRUk XViQg
QeXURVWiPXOaWiRQ (Rice & SWRccR, 2019) SRiQW WR SURcedXUaO
kQRZOedge beiQg XOWiPaWeO\ eQcRded iQ a VeW Rf
cRUWicR-cRUWicaO cRQQecWiRQV WhaW diUecWO\ OiQk
VWiPXOXV-UeVSRQVe aVVRciaWiRQV. ThiV iQWeUSUeWaWiRQ iV
cRPSaWibOe ZiWh RXU fiQdiQgV WhaW fiQd gUeaWeU OikeOihRRd Rf
XViQg SURcedXUaO VWUaWegieV iQ iQdiYidXaOV ZiWh VWURQgeU
SeUceSWXR-PRWRU cRQQecWiYiW\.

AFNQRZOHGJHPHQWV
ThiV UeVeaUch ZaV VXSSRUWed b\ gUaQW FA9550-19-1-0299

fURP Whe AiU FRUce Office Rf ScieQWific ReVeaUch WR AS.
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