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Preface

The International Conference on Cognitive Modeling (ICCM) is the premier conference 
for research on computational models and computation-based theories of human 
cognition. ICCM is a forum for presenting and discussing the complete spectrum of 
cognitive modelling approaches, including connectionism, symbolic modeling, 
dynamical systems, Bayesian modeling, and cognitive architectures. Research topics can 
range from low-level perception to high-level reasoning. In 2020, ICCM was jointly 
held with MathPsych – the annual meeting of the Society for Mathematical
Psychology.  While ICCM and MathPsych were originally to be held in Toronto, Canada 
from July 25th-28th,  the ongoing COVID-19 pandemic made this impossible.  Instead, 
the conference was held online from July 20th to July 31st, using a combination of pre-
recorded videos, live discussions, and custom software developed by the Society for 
Mathematical Psychology.
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 Joke Recommender System Using Humor Theory 

Soumya Agrawal (agraw105@purdue.edu) 
Julia Taylor Rayz (jtaylor1@purdue.edu) 

Purdue University 
West Lafayette, IN 47906 USA 

Abstract 

In this paper, we propose a methodology that aims to develop 
a recommendation system for jokes by analyzing its text. This 
exploratory study focuses mainly on the General Theory of 
Verbal Humor and implements the knowledge resources 
defined by it to annotate the jokes. These annotations contain 
the characteristics of the jokes and hence are used to determine 
how alike the jokes are. We use Lin’s similarity metric and 
Word2vec to calculate the similarity between different jokes. 
The jokes are then clustered hierarchically based on their 
similarity values for the recommendation. Finally, for multiple 
users, we compare our joke recommendations to those obtained 
by the Eigenstate algorithm which does not consider the 
content of the joke in its recommendation. 

Keywords: Computational humor; General theory of verbal 
humor; Clustering; Joke similarity 

Introduction 
Humor is an interesting phenomenon that can be identified 
most of the time but is very difficult to ‘define’ (McGhee & 
Pistolesi, 1979). Yet, its importance becomes more evident 
with humorless technological advances. Humor is much more 
than just a source of entertainment; it is an essential tool that 
aids communication. Various empirical findings have 
confirmed that stress and depressing thoughts can be 
regulated with the help of humor (Francis, Monahan, & 
Berger, 1999). Positive psychology, a field that examines 
what people do well, notes that humor can be used to reduce 
tension, make friends, make others feel good, or to help 
buffer stress (Lurie & Monahan, 2015) (Ruch & Heintz, 
2016). 

The need for humor in a computerized setup is often 
discussed and many researchers have presented their 
findings. Some of the applications of computational humor 
are human-computer interfaces (Morkes, Kernal, & Nass, 
1998), education (McKay, 2002), edutainment (Stock, 1996), 
understanding how human brain works (Binsted et al., 2006; 
Ritchie, 2001), etc.  

The advancements in AI have sowed the seeds of the idea 
that computers can understand the human language. Since 
humor is a ubiquitous aspect of the human experience, it is 
fair to expect the computers to take into consideration the 
humorous facet. Almost two decades ago, it was pointed out 
that if computer systems can incorporate humor mechanisms, 
then these systems would appear to be more user-friendly 
hence less alien and intimidating (Binsted, 1995). This 
statement still holds and to achieve this, one of the key things 
to consider is that different people find different things funny 

which makes research in this field both challenging and 
interesting. 

Verbally expressed or verbal humor is a common form of 
humor, and one of the subclasses of verbal humor is the joke. 
A joke can be defined as “a short humorous piece of literature 
in which the funniness culminates in the final sentence” 
(Hetzron, 1991). This paper focuses on verbally expressed 
humor with the help of jokes.     

The motivation for this research comes from the 
observation that the smart assistants like Alexa and Siri recite 
the same jokes to all the users without considering their 
humor preferences. The idea behind this research is to come 
closer to understand human humor preferences and 
recommend jokes based on it. We propose a framework to 
recommend jokes to the users by taking into account the text 
of the joke as well as the liking of the users. Our assumption 
is that individuals like certain categories or types of jokes. 
These types can be identified through the individual’s 
funniness ratings. 

This framework is centered on the identification and 
quantification of similarity between jokes. The General 
Theory of Verbal Humor states that jokes can be represented 
and compared with the help of six knowledge resources 
(Attardo & Raskin, 1991). We use these knowledge recourses 
to find joke similarity in the Jester Dataset. Once similar 
jokes are identified, we explore whether subject ratings 
confirm the similarity. 

There exists a joke recommendation system, Jester, 
(Goldberg, Roeder, Gupta, & Perkins, 2001) but it considers 
the users and the text of the joke as a black box and relies 
solely on the user ratings for the recommendation. It works 
as a baseline model to our proposed model and we compare 
the joke recommendations to the same user by both the 
models. We also analyze the ratings given by the users to the 
jokes that are considered similar to our model. 

Humor Theories 
Humor studies date back to the era of Plato (Philebus) and 
Aristotle (Poetics). There are three major classes of humor 
theory: superiority theories, release/relief theories, and 
incongruity theories. The general idea behind superiority 
theories was that people laugh at other people's misfortunes 
since it makes them feel superior to them (Attardo, 1994) 
(Raskin, 1985). Release/relief theories assert that humor and 
laughter are a result of the release of nervous energy (Meyer, 
2000). The family of incongruity theories states that humor 
arises when something which was not anticipated happens 
(Raskin, 1985). There has been a debate among various 
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thinkers if incongruity alone can be considered to be 
sufficient enough to be able to mark something as funny 
(Suls, 1977). 

This gave birth to the Incongruity-Resolution theories 
which focused not only incongruity but also on its realization 
and resolution. Suls (1972) proposed a two-stage model that 
stated that when there is some incongruity in the text, if one 
can resolve it then it’s a joke otherwise the text leads to 
puzzlement and no laughter (Ritchie, 1999). Another model 
to resolve incongruity was summarized by Ritchie (1999) as 
the surprise disambiguation model which states that the setup 
of the joke has two different interpretations out of which one 
is more obvious than the other. The hidden meaning of the 
text is triggered once the punchline is reached.  

Raskin’s Script-based Semantic Theory of Humor (Raskin, 
1985) is the first linguistic theory of humor. It is regarded as 
neutral concerning the three classes of humor theories. SSTH 
states that a joke carrying text should be fully or partially 
compatible with two scripts and these scripts must oppose. 
Raskin introduced several types of script oppositions, such as 
real/unreal, actual/non-actual, good/bad, life/death, sex/non-
sex. The following joke is analyzed in Raskin (Raskin) with 
the scripts of Doctor and Lover1 being the two scripts that 
overlap and oppose.   

Joke1: ‘Is the doctor at home?’ the patient asked in his 
bronchial whisper. ‘No,’ the doctor’s young and pretty 
wife whispered in reply. ‘Come right in.’ (Raskin, 1985) 

The joke evokes the script of a Doctor due to the words 
“doctor”, “patient” and “bronchial”. The second script, 
Lover, is triggered by the words “no” as well as the 
description of the doctor’s wife.  The wife’s reply is 
incongruous to the first script, and thus the second script 
emerges, which makes the punchline, “come right in” 
explainable. The joke is said to have a partial script overlap 
between Doctor and Lover – both scripts contain a person that 
comes to the doctor’s house for a visit – and since these 
scripts are opposing each other based on sex/non-sex, the text 
is considered a joke (Attardo, 1994) (Raskin, 1985). 

Attardo and Raskin (1991) revised the SSTH into General 
Theory of Verbal Humor which stated that the jokes can be 
described using six knowledge resources 
(KRs) which are ordered hierarchically: script 
overlap/opposition (SO), logical mechanism (LM), situation 
(SI), target (TA), narrative strategy (NS), and language (LA). 
Upon empirical verification of the KR hierarchy, LM was 
found to behave differently than predicted (Ruch, Attardo, & 
Raskin, 1993). GTVH also made the comparison of jokes 
possible with the KRs. The higher the number of common 
parameters in jokes, the higher is joke similarity. 
Additionally, jokes that differ only in SO are less similar than 
the jokes that differ only in LM, than the jokes that differ only 
in SI and so on. For example, the following jokes are 

1 The naming of the scripts has been debated in various humor 
papers. The Ontological Semantic Theory of Humor (Raskin, 

introduced in Attardo & Raskin (1991) to illustrate the 
comparison: 

Joke2: “How many Irishmen does it take to screw in a light 
bulb? Five. One to hold the light bulb and four to turn 
the table he's standing on.” 

Joke3: “How many Poles does it take to wash a car? Two. 
One to hold the sponge and one to move the car back and 
forth”. 

Joke4: "Do you think one Pole can screw in a light bulb?" 
"No." "Two?" "No." "Three?"   "No. Five. One to screw 
in a light bulb and four to turn the table he's standing 
on."  

The KRs representing these jokes are represented in Table 1: 
Table 1: Joke Comparison (Attardo & Raskin, 1991) 

KR Joke3 Joke4 Joke5
SO Dumbness Dumbness Dumbness 

LM Figure-Ground 
Reversal 

Figure-Ground 
Reversal 

Figure-Ground 
Reversal 

SI Light Bulb Car Wash Light Bulb 
TA Irish Poles Poles 
NS Riddle Riddle Ques -Ans 
LA LA 1 LA 1 LA2 

Here, jokes 3 and 4 differ in three of the parameters, 
namely, LA, NS, and SI; jokes 2 and 3 differ in two of them, 
namely TA and SI; and jokes 2 and 4 in three of them, namely 
LA, NS and TA. Jokes 2 and 3 are the most similar since they 
differ in only two knowledge resources. Since SI is placed at 
a higher level in the hierarchy, jokes 3 and 4 are the least 
similar even though they have the same number of different 
KRs as jokes 2 and 4. This paper will rely on this theory to 
process humor computationally. 

Methodology 
We assume that previously unseen jokes should be 
recommended to users as well as jokes that have been rated 
by others (and thus, have been seen by the system). This 
means that the content of the jokes, not just the user ratings, 
has to be taken into consideration. To do so, we develop a 
methodology to compare jokes based on their content, find 
their similarity, and then cluster them accordingly. The jokes 
which are clustered together -- and have at least one highly 
rated joke – serve as the recommendations for the users. 

Corpus 
This paper adopts jokes from the Jester dataset. We use 
version 32 of the dataset which is an updated dataset of the 
previous versions. Version 1 has rating values from -10 to 
+10 of 100 jokes collected between April 1999 to May 2003
and the version 2 has 50 more jokes with 115,000 new ratings
collected between November 2006 to May 2009. Overall, the
version 3 of the dataset has over 1.8 million continuous

Hempelmann, & Taylor, 2009) can be used to identify the scripts 
without committing to their naming.  
2 http://eigentaste.berkeley.edu/dataset/ 
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ratings of 150 jokes from 54,905 anonymous users which 
were collected from November 2006 to March 2015. It 
should be noted that many jokes in the dataset are no longer 
relevant (out of date), but they can nevertheless be used to 
test the methodology. The dataset consists of a set of 8 jokes 
termed as gauge set, as these jokes are rated by all the users. 
The remaining non-gauge jokes have a very sparse rating 
matrix since around 82% of the user ratings are null.  

All jokes from the dataset have been annotated with the six 
knowledge resources as defined by GTVH by the domain 
knowledge experts. We wish to point out that two pairs of 
jokes in the dataset are identical and we decide to remove the 
duplicate from measuring joke similarity. 

Baseline Model 
The joke recommendation system (Goldberg et al., 2001) is 
based on a constant-time collaborative filtering algorithm 
that recommends jokes to the users based on their rating of 
the gauge set jokes. To overcome the problem of the sparse 
rating matrix, the model is built on the ratings of gauge set 
jokes only. The algorithm uses Principal Component 
Analysis (Pearson, 1901) to optimally reduce the dimension 
of the data to two. Since the projected data had a high 
concentration around the origin, a clustering algorithm was 
developed which recursively bisected the data near the origin 
into rectangle-shaped clusters. Whenever a user enters the 
system the ratings of the gauge set are collected which helps 
the algorithm to determine which cluster to place the user in. 
For each cluster, the mean of the non-gauge jokes ratings is 
calculated which are sorted in the decreasing order and this 
yields a lookup table. The lookup table is referenced every 
time a joke is recommended to the user. 

GTVH-based Framework for Joke Similarity 
We analyze the text of the jokes based on the GTVH 
knowledge resource (KR) annotations done by the domain 
knowledge experts. We focused on SO, LM, SI and TA, as 
LA value should differ for every joke and most jokes in the 
dataset have the same NS value. To find the pairwise 
similarity of the jokes we compare the instances of the 
corresponding KRs. Attardo and Raskin (1991) do not define 
the hierarchy of each of the KRs, however, a sketch of SO 
hierarchy can be reconstructed from Raskin (Raskin), and a 
partial hierarchy of LMs can be found in (Attardo, 
Hempelmann, & Di Maio, 2002). We extended the 
hierarchies of SOs, LMs, and SIs based on the information 
from the jokes, using the methodology for ontology 
construction from the Ontological Semantic Technology – a 
foundation of the Ontological Semantic Theory of Humor. 

To construct a hierarchy, each of the entities are 
described by their properties. The properties and their values 
serve the guiding principle for hierarchy construction (Taylor 
& Raskin). Each of the children differ from the parent by a 
property, and the siblings should differ from each other only 
by the values of the chosen property. Once the hierarchy is 

3 https://upjoke.com/liberal-art-jokes 

constructed, all descendants that do not have siblings are 
collapsed into a single node. In other words, no non-leaf node 
can have less than two children.  

Joke Similarity 
The joke similarity metric for each of the resources is 
motivated by Resnik (1995) model, that proposed to estimate 
the common amount of information by the information 
content of the least common subsumer of the two nodes. Lin 
(1998) extended this concept by adding that the similarity 
metric must also take into account the differences between 
the two entities. To compare each instance of SO, LM and SI, 
the following function is used: 

Similarity	(𝑘𝑟!, 𝑘𝑟") = 0
1
0

𝑠𝑖𝑚#$%	(𝑘𝑟!, 𝑘𝑟")

	𝑖𝑓	𝑘𝑟! = 𝑘𝑟"
				𝑖𝑓𝑘𝑟!	𝑜𝑟𝑘𝑟"𝑖𝑠	𝑛𝑢𝑙𝑙
𝑎𝑙𝑙	𝑜𝑡ℎ𝑒𝑟	𝑐𝑎𝑠𝑒𝑠

 

where kra and krb are the instances of the same KRs and simLin

is Lin’s similarity measure (Lin, 1998), adapted from 
Jurafsky and Martin (2018) used for word similarity: 

𝑠𝑖𝑚!"#	(𝑐%, 𝑐&) =
2 ∗ 𝑙𝑜𝑔𝑃(𝐿𝐶𝑆(𝑐%, 𝑐&))
𝑙𝑜𝑔𝑃(𝑐%) + 𝑙𝑜𝑔𝑃(𝑐&)

where P(c) is defined by as the probability that a random 
word selected in a corpus is an instance of concept c and 
LCS(c1, c2) is the lowest node in the hierarchy that subsumes 
both c1 and c2. In our case, c1 and c2 are instances of a 
hierarchy of SO, LM, or SI.  

To compare TA instances, we use word embeddings. 
Recent advancements in NLP research has seen the 
popularity of word embedding models which represent the 
words as vectors in a predefined vector space. One such word 
embedding model is word2vec (Mikolov, Chen, Corrado, & 
Dean, 2013) which is a shallow neural network that takes a 
text corpus as input and returns the vector representations of 
the words. To compare TAs, we used a pre-trained 
googlenews model which has word vectors for 3 million 
words, obtained by training on a google news dataset of 
around 100 billion words. There were some TA annotations 
in our dataset that were not present in the word2vec-based 
model. To overcome this problem, we made appropriate 
replacements of those annotations, ensuring that the new 
annotations preserve the context. 

Joke5 and Joke6 illustrate joke annotation and calculation 
of joke similarity. We provide a modified version of the Joke5 
in this paper due to a potentially offensive nature of the 
original and replace Joke6 with a very close joke taken from 
another source: 

 Joke5: A guys walks into a bar and tells the bartender that he 
has the best Polish joke. “I am Polish,” responds the 
bartender. “Don’t worry, I will tell it slowly.” 

Joke6: “What did the liberal arts major say to the engineering 
grad?” “Do you want fries with that?”3 
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The GTVH-based annotations for Joke5 and Joke6 are 
shown below: 

𝐒𝐎
𝐋𝐌
𝐒𝐈
𝐓𝐀

G

𝐚𝐜𝐭𝐮𝐚𝐥/𝐧𝐨𝐧 − 𝐚𝐜𝐭𝐮𝐚𝐥
𝐟𝐚𝐮𝐥𝐭𝐲	𝐫𝐞𝐚𝐬𝐨𝐧𝐢𝐧𝐠
𝐠𝐨𝐢𝐧𝐠	𝐭𝐨	𝐛𝐚𝐫
𝐩𝐨𝐥𝐞𝐬

ZG

𝐚𝐜𝐭𝐮𝐚𝐥/𝐧𝐨𝐧 − 𝐚𝐜𝐭𝐮𝐚𝐥
𝐟𝐚𝐮𝐥𝐭𝐲	𝐫𝐞𝐚𝐬𝐨𝐧𝐢𝐧𝐠
𝐢𝐧𝐭𝐞𝐥𝐥𝐞𝐜𝐭𝐮𝐚𝐥	𝐝𝐢𝐬𝐜𝐮𝐬𝐬𝐢𝐨𝐧
𝐠𝐫𝐚𝐝𝐮𝐚𝐭𝐞𝐬4

Z 

Since the instances of SO and LM are the same for both jokes, 
their corresponding similarity is 1. For TA, the word2vec 
similarity between poles and graduates is 0.046 using the 
methods defined by the Gensim library (version 3.8.1) on the 
pre-trained model. For SI, we look at the fragment of the SI 
hierarchy along with the P(c), as depicted in Figure 1. The 
nodes of interest are highlighted. This results in the 
following: 
𝑠𝑖𝑚#$%	\𝑆𝐼'($%'	)(	!	"!* , 𝑆𝐼$%)+,,+-).!,	/$0-.00$(%	_

= 	
2 ∗ log	(1)

log(0.0066) + log	(0.0066) = 0 

Figure 1: SI hierarchy fragment 

To take into consideration the hierarchy of KRs 
themselves, as proposed by SSTH, we assign a weight, wSO, 
wLM, wSI, and wTA, to each of the KRs such that wSO < wLM < 
wSI < wTA:  

sim(jokei, jokej)=

[("# ($% (&'		(()]

⎣
⎢
⎢
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-./(89*#+,-,	89*#+,*) ⎦

⎥
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⎥
⎤
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For this paper, the following values are assigned: wSO=5, 
wLM=4, wSI=3 and wTA=2.  

𝐬𝐢𝐦(𝐣𝐨𝐤𝐞𝟓, 𝐣𝐨𝐤𝐞𝟔) =

[𝟓	𝟒	𝟑	𝟐	] p

	𝟏	
𝟏
𝟎

𝟎. 𝟎𝟒𝟔

t

𝟓 + 𝟒 + 𝟑 + 𝟐 =	
𝟎. 𝟎𝟗𝟐
𝟏𝟓 = 𝟎. 𝟔𝟒𝟗 

The value calculated after the weighted average is 0.649 
which quantifies how similar Joke5 and Joke6 are.  

4 Annotation has been changed from liberal arts graduate to 
graduates since the former was not in word2vec-based-model 

Joke Clustering 
We aim to cluster the jokes so that the most similar ones are 
close to each other. To achieve this, we implement the 
hierarchical clustering algorithm in which we use the joke 
similarity values for the distance calculation. Figure 2 shows 
the dendrogram of the jokes after clustering. 

Joke Recommendations 
To recommend jokes to a user, we would identify the user’s 
favorite joke with the help of the user ratings of the corpus. 
The joke which is the immediate sibling of the favorite joke 
in the dendrogram is recommended first. To recommend 
more jokes, we move up in the hierarchy and if there are 
multiple jokes available on the same level of the hierarchy, 
then a random selection of the jokes is done for that level.  

Results 
A qualitative evaluation was performed on the GTVH-based 
model. A user was randomly selected for comparison of the 
recommendations made by the baseline and the GTVH-based 
model. To compute the top recommend jokes from the 
GTVH-based model, we use the selected user’s top-rated joke 
from the dataset which is known to our system as the favorite 
joke. The same user’s ratings of the recommended jokes from 
both the models were used to compare them. Table 2 shows 
the results for five randomly selected users. 

We are restricted in selecting the users due to the sparsity 
of the rating dataset which sheds light on one of the 
difficulties with working with this dataset. We meticulously 
select report results on the users who have rated the jokes in 
both the baseline and the GTVH, to ensure that the 
comparison of the two models is possible. The results for 
randomly selected 5 users are shown in Table 2. The highest-
rated joke for user 1, as well as recommended jokes by the 
baseline and the GTVH-based model are presented as well. 
For user 1 in Table 2, we observe that the top joke 
recommended by the GTVH-based model (Joke 87) has a 
better rating than the top joke recommended by the baseline 
model (Joke 89). We can see by the text of the jokes that the 
favorite joke of user 1 and Joke 87 are very similar whereas 
Joke 89 is very different from these jokes. We provide the 
modified versions of some of jokes from the dataset for the 
analysis.  

User1’s favorite joke: An artist has been displaying his 
paintings at an art gallery and he asked the owner if 
there had been any interest in his paintings. "I've got 
good news and bad news," says the owner. "The good 
news is that a gentleman inquired about your work and 
wondered if it would be worth more after your death. 
When I told him it would, he bought all ten of your 
paintings." "That's wonderful!" the artist says. "What's 
the bad news?" With concern, the gallery owner replied: 
"The man was your doctor." 
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Figure 2: Hierarchical clustering of jokes 

Table 2: Comparison of Recommended Jokes 
Baseline Model GTVH-based Model 

Top Recommended Joke Rating Top Recommended Joke Rating 
User 1 Joke 89 8.18 Joke 87 9.37 
User 2 Joke 73 -1 Joke 42 5.71 
User 3 Joke 53 3.56 Joke 72 3.46 
User 4 Joke 5 9.87 Joke 112 0.93 
User 5 Joke 89 4.56 Joke 126 5.62 

Table 3: Cluster Analysis for the five selected users 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

Joke Id 92 119 106 121 38 65 31 85 133 143 138 139 110 63 
User 6 3.02 2.88 3.39 2.91 3.10 3.58 4.29 3.22 2.66 3.46 2.86 3.05 3.13 3.64 
User 7 2.45 4.22 3.45 4.66 4.91 3.13 1.02 4.14 0.88 0.87 4.68 4.14 0.99 0.95 
User 8 1.40 4.31 4.53 3.30 4.25 3.36 3.65 3.45 2.94 4.17 3.16 3.29 3.83 4.22 
User 9 3.63 4.12 4.80 4.96 4.79 1.35 2.68 1.75 4.28 3.13 3.13 3.19 2.82 2.77 
User 10 0.19 4.31 3.85 4.34 3.90 1.21 4.31 0.13 4.41 3.81 1.64 1.07 1.85 2.90 

Joke 87: A man after undergoing a routine physical 
examination receives a phone call from his doctor. The 
doctor says, "I have some good news and some bad 
news." The man says, "I want to hear the good news 
first." The doctor says, "The good news is, you have 24 
hours to live." The man replies, “If this is good news then 
what's the bad news?" The doctor says, "The bad news 
is, I forgot to call you yesterday." 

Joke 89: A radio conversation between a US naval ship and 
Canadian authorities... Americans: Please divert your 
course 15 degrees to the North to avoid a collision. 
Canadians: Recommend you divert YOUR course 15 
degrees to the South to avoid a collision. Americans: You 
divert YOUR course. Canadians: No. You divert YOUR 
course. Americans: This is the second largest ship in the 
United States; Atlantic Fleet. We are accompanied by 
three destroyers, three cruisers and numerous support 
vessels. I demand that you change your course…., or 

countermeasures will be undertaken to ensure the safety 
of this ship. Canadians: This is a lighthouse. Your call. 

The proposed model works better than the baseline for 
users 1, 2 and 5, works moderately well for user 3, and fails 
to perform better for users 4. It should be noted that it is 
equally possible to find similar jokes to all highly rated jokes 
for a particular user. However, based on the results of user 4, 
we wanted to check whether highly similar jokes are typically 
rated similarly. 

To further investigate how users rate jokes that are 
considered similar by the proposed model, we selected 5 
users who have rated 140 jokes which the maximum number 
of jokes rated by any user. Also, we normalize the ratings to 
0-5 for the experiment. We selected all the joke clusters
which are formed near the distance value of 0.2 for the
analysis. Table 3 lists 7 such clusters each consisting of 2
jokes for the comparison of user ratings of closely clustered,
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and thus similar, jokes. We observe that the intra-cluster 
ratings of the users 6, 8 and 9 are largely similar for all the 
clusters where they differ greatly for user 7 and user 10. Both 
these users rate jokes in clusters 1, 3 and 4 were differently 
which implies that the jokes which are considered similar by 
the model are not equally appreciated by both the users. There 
are several explanations for this result, assuming that the 
ratings in the dataset accurately represent user preferences. 
The first one is that the similarity metric that we produced 
does not accurately represent joke similarity, and Target may 
need to be weighted heavier than the rest for the 
recommendation system. The second one is that the 
annotation of one of the jokes in the clusters may be flawed. 
The third, and perhaps most interesting one, is whether users 
tend to rate familiar jokes lower. We do not have the data on 
the ordering of jokes that were presented to the users, and 
thus, this is impossible to test this hypothesis. However, we 
can look at rating of almost identical jokes for these users. 

As stated earlier, the corpus has ratings of two pairs of 
identical jokes, ratings of which for the same 5 users are 
summarized in table 3. 

We can observe that users 7, 8 and 9 have given different 
ratings to identical jokes. Since the users were given a scroll 
button to rate the jokes, some variation in the ratings is 
acceptable but this difference is very high for users 7 and 8. 
It is tempting to conclude that the effect of a previously heard 
or rated joke must be taken into consideration while 
recommendations are made. It is also possible that for some 
users the almost identical jokes were presented very close to 
each other, while for others they were spread much farther 
apart among the 140 jokes. Lastly, the dataset also does not 
consider the effect fatigue effects of the users which may 
affect the ratings. 

Table 3: Ratings given to Identical Jokes 
Identical Pair 1 Identical Pair 2 

User 6 5.12 0.62 3.15 1.37 
User 7 -5.25 4.68 -7.31 -5.84
User 8 5.81 0.62 9.62 1.68
User 9 5.12 5.59 3.53 7.28
User 10 4.78 0.53 1.15 5.34

Conclusion 
By taking into account the text of the jokes along with the 
user rating for joke recommendations, we observe that the 
model can select similar jokes, however, it is not clear that 
this by itself is the winning mechanism. To attain a more 
generalized framework for joke recommendations we need to 
1) Conduct more research focusing on the manipulation of
the weights assigned to the KRs 2) Collect user ratings while
keeping track of the order of jokes in which they appear, thus
taking into consideration the effect of a previously heard
joke. We suspect that understanding user preference will go
a long way towards more friendly interaction between
various devices that have a functionality of telling a user a
joke.
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Abstract
The theory of decision making has largely been developed
as a disembodied open-loop process, however there is
growing recognition that ecologically valid scenarios require
integration of movement dynamics into current decision
making theory, and a revision of what are considered to be
core/fundamental decision components.

Here we develop the theory of decision making as a closed
loop process, first exploring the role of confidence both as
a neural computation within the loop, affecting movement
dynamics and as a property of the egocentric frame with a
causal influence on cognition. Secondly, we consider the
relationship between closed-loop components/processing and
stability — in embodied systems action is accumulated and so
physical restrictions limit volatility, moreover the reciprocal
relationship between movement and evidence processing
means that this stabilisation may also happen on a neural level
in the form of a biased gain during evidence accumulation,
improving stability/convergence.

Finally, we examine closed-loop embodied decision
making in the context of optimality — it is generally
accepted that open-loop decision making is optimised to
maximise reward via some form of Bayes’ Risk, prescribing
a speed-accuracy tradeoff in so doing. For closed-loop
decision making however, the form of the ‘objective function’
is unknown, as such we consider higher level, ecologically
inspired ideas of optimality such as adaptability to e.g.
moving targets or nonstationarity, to explore this fundamental
aspect of embodied decision making. Our results build on
a growing body of work which points to embodiment as
fundamental to understanding both behavioural and neural

aspects of decision making.

Framework & Background
To explore the general principles of embodied decision
making, we adopt the framework used by Lepora and Pezzulo
(2015) based around a simple mouse-tracking 2-choice
experiment. This framework separates distinctly the neural
mechanisms from the behavioural – neural, in the form
of evidence accumulation, and behavioural, in the form of
spatial information; position and movement.

Under this framework, Lepora and Pezzulo (2015) find
embodiment to have the key implication that a decision is
not made simply when neural populations reach a threshold
of activity, as has been recorded in immobilised decision
making tasks in e.g. area LIP (Churchland, Kiani, &
Shadlen, 2008), but when the action is complete, e.g. the
cursor is placed on a target indicating the choice. To
allow convergence to choice in a manner consistent with
experimental data they consider two concepts – action
preparation, and commitment – these bidirectionally connect
the neural and behavioural components by utilising neurally
represented evidence in movement modification (action
preparation), and incorporating positional information into
evidence accumulation (commitment), doing so renders the
model entirely embodied and ’closes the loop’.

The strength of this model is its explanatory power
using only evidence accumulation and spatial information.
However, a number of questions remain unanswered; How
does confidence affect action accumulation? Does an
embodied closed-loop system have profound effects on
behavioural and neural stability? Can we think of embodied
closed-loop decision making in terms of optimality, as we do
with traditional decision making paradigms? Within these
broader questions are a number of consequential outcomes,
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for example, what governs action initiation?
We develop the theory of decision making as a closed-loop

process around these questions. With reference to
experimental results, we build an intuition for the influence
of decision components and the fundamental relationship
between neural and behavioural mechanisms.
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Abstract
Integration-to-threshold models of two-choice perceptual
decision making have guided our understanding of the
behaviour and neural processing of humans and animals for
decades. Although such models seem to extend naturally to
multiple-choice decision making, consensus on a normative
framework has yet to emerge, and hence the implications of
threshold characteristics for multiple choices have only been
partially explored. Here we consider sequential Bayesian
inference as the basis for a normative framework together
with a conceptualisation of decision making as a particle
diffusing in n-dimensions.

This framework implies highly choice-interdependent
decision thresholds, where boundaries are a function
of all choice-beliefs. We show that in general the
optimal decision boundaries comprise a degenerate set of
complex structures and speed-accuracy tradeoffs, contrary
to current 2-choice results. Such boundaries support both
stationary and collapsing thresholds as optimal strategies
for decision-making, both of which result from stationary
complex boundary representations.

This casts new light on the interpretation of urgency
signals reported in neural recordings of decision making
tasks, implying that they may originate from a more complex
decision rule, and that the signal as a distinct phenomenon
may be misleading as to the true mechanism. Our
findings point towards a much-needed normative theory of
multiple-choice decision making, provide a characterisation
of optimal decision thresholds under this framework, and
inform the debate between stationary and dynamic decision
boundaries for optimal decision making.
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Abstract

Trust calibration for a human-autonomy team is the process by
which a human adjusts their understanding of the automation’s
capabilities; trust calibration is needed to engender appropri-
ate reliance on automation. Herein, we develop an Instance-
based Learning ACT-R model of decisions to obtain and rely
on an automated assistant for visual search in a UAV interface.
We demonstrate that model matches well the human predic-
tive power statistics measuring reliance calibration; we obtain
from the model an internal estimate of automation reliability
that mirrors human subjective ratings. Our model is a promis-
ing beginning toward a computational process model for trust
and reliance for human-machine teaming.

Keywords: Cognitive architectures; Trust in automation;
Human-machine teaming

Introduction
Trust calibration is the process team members go through to
adjust their attitudes or expectancy of a favorable response
from other teammates or of a positive outcome of a team ef-
fort (Lee & See, 2004). Research in both all-human teams
and human-automation teams indicates that trust, and its be-
havioral proxy reliance, fluctuate over time. For human-
automation teams, this calibration-related fluctuation reflects
the human’s process of learning when to rely on the au-
tomation. Fallon, Murphy, Zimmerman, and Mueller (2010)
describe this as a sensemaking process wherein the human
learns the conditions under which automation performs well,
and how to properly interpret indicators provided by the ma-
chine system, to promote “appropriate use” (see also, Lee &
See, 2004). Without calibration, the team may suffer from
automation misuse or disuse by the human teammates (Lee
& See, 2004; Parasuraman & Riley, 1997).

Lee and See (2004) formulated a conceptual model of ap-
propriate trust formation. Within this model, trust calibration
is part of a closed-loop process wherein people use task goals,
context, and their own beliefs (including current trust level)
to form an intent about using automation and then take Re-
liance Actions. The subsequent behavior of the automation
and impact on the world (witnessed directly or via display)
feed back into the human’s Information Assimilation and Be-
lief Formation processes, which then feed the Trust Evolution
process, the Intent Formations, and Reliance Actions. Lee
and See argued that information available about the automa-
tion and the results of Reliance Actions are critical to the trust
formation process (as do Chen & Barnes, 2014; Fallon et al.,

2010; Lyons et al., 2016, and many others). Merritt and Il-
gen (2008) refer to trust emerging from interactions and ex-
perience with a system as history-based trust; they contrast
history-based trust with other forms of trust, such as a per-
son’s general tendency to trust (dispositional trust; Jessup,
Schneider, Alarcon, Ryan, & Capiola, 2019; Kramer, 1999;
Merritt & Ilgen, 2008). It follows from this perspective that
appropriate calibration can be defined as the degree of cor-
respondence between a person’s trust in automation and the
automation’s capabilities (see also, de Visser et al., 2020; Lee
& Moray, 1994; Muir, 1987).

In this work, we develop a computational cognitive model
of human decisions to rely on automation using Instance-
based Learning Theory (IBLT; Gonzalez, Lerch, & Lebiere,
2003). Using an IBL model, we can explicitly model deci-
sions about automation reliance and observe how those deci-
sions are informed by task performance, transparency infor-
mation, and the automation’s behavior over time. In this way,
we implement a computational processes mirroring elements
of Lee and See’s (2004) conceptual model.

Importantly, we do not explicitly incorporate a trust mech-
anism in the IBL model; rather, we maintain the perspective
that trust is an attitude, separate from the cognitive decision
making mechanisms, and that reliance is the behavioral indi-
cator of trust. We seek to understand if and how trust calibra-
tion emerges from the task experience and decision making
processes that are explicitly defined within the IBL model. In
the remainder of this paper, we will describe an experiment on
trust calibration measuring both intention formation and re-
liance action decisions. Then we will describe the IBL model
and demonstrate its performance on this two-stage task. We
will show that model reliance decisions mirror the human be-
havior, and we can extract an internal model bias that par-
allels human subjective judgments of automation reliability.
We conclude that we have a strong candidate computational
process model for trust calibration through experience with
automation.

The Human-Automation Teaming Task
We leverage empirical data collected by Fallon, Blaha, Jef-
ferson, and Franklin (2019) using the COgnitive Behavioral
AnaLytics Testbed (COBALT). COBALT is an experimental
interface developed by Fallon and Blaha to enable the study of
trust, reliance on automation, task performance, and cognitive

11Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



Figure 1: A mid-trial screenshot of the COgnitive Behavioral
AnaLytics Testbed (COBALT) task environment. This im-
age shows an AUTOASSIST cue (pink arrow) selected for
search, with an age + number text transparency cue (lower
right). Readers are referred to Fallon et al. (2019) for more
details about the interface.

workload while manipulating task characteristics, automation
transparency, and interface design choices. COBALT is com-
prised of modular windows in which participants interact with
automation to search for objectives in an aerial imagery. Fig-
ure 1 provides a screenshot of COBALT.

Two-stage Trial Structure Each trial of the task involves
two stages: a decision stage and a search stage, as dia-
grammed in Figure 2. In the decision stage, participants must
decide whether they would like the AUTOASSIST or COM-
MANDER to aid their visual search. Participants cannot per-
form the search without selecting an aid. Participants are pro-
vided transparency cues to help them decide if the AUTOAS-
SIST will be a reliable choice.

The search stage begins as soon as the assist type is se-
lected. Participants are tasked with searching for a pre-
determined objective randomly placed in the image. Partic-
ipants are provided with search guidance in the form of an
arrow overlaid on the search window. When reliable, this cue
points directly to the objective; when unreliable, it points to
some other random location. Participants can choose to fol-
low the assist cue or search unguided.

Using the terminology of Lee and See’s trust calibration
model, the assist selection stage is an example of an automa-
tion reliance Intention Formation; participants indicate inten-
tion about using automation when they select the AUTOAS-
SIST search aid. The search stage is an example of a Reliance
Action. Participants following the AUTOASSIST cue are re-
lying on automation; participants searching unguided are not.

Assist Types The assist types varied in their reliability and
timing. The COMMANDER option provided a 100% reliable
cue, always pointing to the objective. However, there was a
5 sec. delay between selecting the COMMANDER button
and the COMMANDER assist arrow appearing on screen to
aid the participant. While waiting for the COMMANDER as-

Figure 2: Diagram of the trial stages. A trial starts with pre-
sentation of transparency cues. Participants make a 2AFC
search assist cue selection. Then they complete the visual
search by either relying on the selected assist or searching
unguided.

sist, participants can search unaided for or wait for the COM-
MANDER cue to appear.

AUTOASSIST simulates automation to provide a search
cue. Unlike the COMMANDER, it is available immediately
at the start of the search stage. However, AUTOASSIST is
only 70% reliable, meaning it correctly pointed to the objec-
tive on 70% of trials and to a random location on the others.

Automation Transparency Cues Transparency informa-
tion was provided on every trial to aid participants in their
assist type decisions. Participants could use the cues to learn
when the AUTOASSIST would be unreliable. The two types
of transparency cues were: the age of the data and number
of sensors available to the automation. The number of sen-
sors ranged from 1 to 3, and AUTOASSIST was unreliable
if there was only 1 sensor. The data age varied from 1 to 36
hours old, and AUTOASSIST was unreliable if the data was
over 24 hours old.

Fallon et al. (2019) used four transparency cue conditions.
In the age-only condition, a statement about the age of the
sensor data was given; no information about the number of
sensors was provided. In the number-only condition, a state-
ment about the number of sensors was given; no information
about the age of the data was provided. In the age + number
text condition, a statement included both the age and number
information. And in the age + number graphic condition, the
combination of age and number information was presented in
a visual representation leveraging a circle-packing graphic.

Feedback An important component of modeling learn-
ing from experience is accounting for the feedback received
about the outcome of one’s decisions. We model two types
of feedback received by participants during the search stage.
The first was direct observation of success or failure of the
AUTOASSIST. On trials when the AUTOASSIST was unre-
liable, it would visibly fail by disappearing from the screen at
the moment of failure.

The second source of feedback was the total time to exe-
cute each search; participants were not given explicit timing
information, but experienced how long each search took and
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Figure 3: Diagram of the IBL model for the COBALT task
decisions. The colors indicate the ACT-R mechanisms. See
the text for a description of the instance representation. The
upper half shows one trial as an instance in working mem-
ory (middle row), which is matched to similar prior instances
in declarative memory (top row) through the matching and
blending functions (blue, red and orange arrows). The lower
portion of the diagram shows the perception and action mech-
anisms interacting with the task interface.

if multiple assist cues had to be selected to locate the objec-
tive (participants could request the COMMANDER after the
AUTOASSIST failed, for example). The fastest search tri-
als occurred when a participant selected a reliable AUTOAS-
SIST and followed it directly to the objective. The slowest
search trials occurred when a participant selected an unreli-
able AUTOASSIST, followed it and observed its failure, and
then attempted some combination of unguided search, calling
and waiting for the COMMANDER assist, and then relying
on the COMMANDER assist to locate the objective. In this
way, the negative feedback from long search times with unre-
liable automation might influence experience differently than
the positive reinforcement and short search times associated
with relying on reliable automation.

Human Data Sixteen participants completed the four
transparency conditions (Age, Number, Age + Number Text,
and Graphic) of the COBALT task, for a within-subjects ma-
nipulation. A single condition contained 13 blocks of 11 trials
for a total of 572 trials per participant. Transparency condi-
tion orders were randomized between participants.

Cognitive Model of Automation Reliance
We developed a model of the automation reliance deci-
sions in COBALT task with Instance-base Learning Theory
(IBLT; Gonzalez & Dutt, 2011; Gonzalez et al., 2003) im-
plemented in the ACT-R cognitive architecture (Anderson et
al., 2004). IBL a methodology for modeling problem solv-
ing and decision making that relies on previous experiences
rather than pre-defined strategies. Those experiences are
stored in the declarative memory of the cognitive architecture,
whose mechanisms support adaptive storage and associative

retrieval. Experiences are stored in memory as a combination
of situation features, decision taken, and observed outcome.

Memory instance availability is controlled by activation:

Ai = log

(
N

∑
j=1

t−d
j

)
(1)

where i is the memory and d is the decay parameter control-
ling the power law of recency; the summation over all ref-
erences to that memory provides the power law of practice.
Given a particular situation, relevant memories are retrieved
by computing their match score that combines their activation
with their degree of relevance:

Mi = Ai +
l

∑
j=1

MP×Sim(d j,vi j) (2)

where j is a feature in the situation representation, d j is the
corresponding value in the current situation, vi j is the corre-
sponding value in memory i, and Sim is the similarity between
those two values. Rather than retrieving a single memory, a
consensus outcome is generated using the memory blending
mechanism satisfying this constraint:

V = argmin
V j

k

∑
i=1

Pi×Sim(Vj,vi j)
2 (3)

where V is the consensus value among the set Vj of possible
values, and Pi is the probability weight of memory i, reflecting
its match score Mi through a Boltzmann softmax distribution.

Our IBL model adopts a straightforward representation of
the problem. Examples are shown in Figure 3, where the mid-
dle row is a current trial instance, and the top row is one sim-
ilar instance from declarative memory. The situation features
are the age and/or number cues; the decision is whether to
rely on the COMMANDER or AUTOASSIST (labeled aid in
Figure 3), and the outcome is whether the AUTOASSIST was
reliable (Reliability) and time to complete the visual search
(Latency). To make a decision, the model generates an ex-
pected outcome for each assist type by performing blended
retrievals for the specific situation feature(s) available (age,
number, both) and each assist type, extracting an expected
value for total search time. The model selects the assist type
with the lowest expected search time. It then generates an
expectation for the reliability of the automation in a similar
manner, using a blended retrieval over situation feature(s) and
selected assist type. The model then executes the option, and
stores a new instance combining that situation’s feature(s),
the option chosen, and the outcomes experienced in terms of
reliability and search latency. Finally, at the end of each con-
dition, the model generated a general expectation of reliabil-
ity through a blending retrieval with no features specified.

IBL models need either a back-up strategy (such as random
exploration) to get started, or some initial instances to boot-
strap the process. We chose the latter route, creating three
instances to represent as broad a range of outcomes as possi-
ble. Those instances could have resulted from a short practice
phase, or fairly straightforward reflection upon the instruc-
tions; both instructions and a few practice trials were given to
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Table 1: Signal Detection Theory Mapping of Automation
Reliance Intention Formations

Actual Reliability
of AUTOASSIST

Reliable Unreliable

AUTOASSIST
Selected

True
Positive

False
Positive

COMMANDER
Selected

False
Negative

True
Negative

COBALT participants. The first instance featured the most re-
liable cues (3 sensors and 1-hour-old data), a decision to rely
on AUTOASSIST, and outcomes of reliable AUTOASSIST
and fastest search time (directed search time of 3 seconds).
The second instance featured the least reliable cues (1 sensor
and 36-hours-old data), a decision to rely on AUTOASSIST,
and outcomes of unreliable AUTOASSIST, and the slowest
search time (random search time of 15 seconds). The third
instance featured average cues (2 sensors and medium age),
a decision to rely on COMMANDER, and outcomes of relia-
bility and an intermediate search time (wait then direct search
for a total time of 8 seconds). We use ACT-R default param-
eters: decay d = 0.5; activation noise s = 0.25; mismatch
penalty factor MP = 1.0; linear similarities over [0,−1.0].

Results

We focus on three aspects of the data collected by Fallon
and colleagues: decision stage intention formation choices,
search stage automation reliance actions, and the subjective
ratings of the AUTOASSIST’s reliability. We consider to-
gether the human and model data. Our goal is to evaluate if
the model captures well the human behaviors and if the IBL
model’s internal representation reflects trust calibration.

Predictive Power Metrics We quantify reliance calibra-
tion with predictive power analysis, based on a signal detec-
tion theory (SDT) characterization of automation use deci-
sions (Feinstein, 1975). SDT quantifies the decision rates
about the two assist types balanced with the ground truth of
the AUTOASSIST’s reliability. For the decision stage, we
define a true positive as a decision to request AUTOASSIST
when reliable and a false positive as a decision to request AU-
TOASSIST when it is unreliable. Table 1 defines all four SDT
categories for the decision stage, reflecting intention forma-
tion accuracy, and Table 2 gives the definitions in the search
stage for reliance actions accuracy.

We define positive predictive power:

PPP =
True Positive

True Positive+False Positive
. (4)

PPP gives the proportion of trials a participant appropriately
chose AUTOASSIST out of all trials on which the participant
selected the AUTOASSIST option. We define negative pre-

dictive power:

NPP =
True Negative

True Negative+False Negative
. (5)

NPP gives the rate at which the participant appropriately did
not select the AUTOASSIST (selected COMMANDER in the
decisions stage or did not follow an unreliable search cue)
when it would have been unreliable, out of all the trials on
which the participant did not select AUTOASSIST.

We selected PPP and NPP as our metrics for appropriate
reliance because they reflect the decision maker’s ability to
correctly select the automation when it will be reliable and
not select the automation when it will be unreliable, respec-
tively, while accounting for the prevalence of reliable and un-
reliable trials in the experiment. Accounting for the base rate
of reliability is a core part of the definition of trust/reliance
calibration. We note the more common SDT metrics d′ and
β (decision criterion) have been used in many studies to ex-
amine human judgements about the reliability of alarms or
automation recommendations. These metrics emphasize the
participants’ abilities to discriminate signal cues from noise
or non-signals. Application in the present study would mea-
sure participants’ abilities to discriminate the transparency
cues indicating the AUTOASSIST’s reliability; the emphasis
is on how participants internally represent the transparency
cues. Understanding this internal representation is important
for selecting effective transparency cues, but our present in-
terests are more about quantifying decision makers’ automa-
tion reliance, informed by those cues. PPP and NPP better
serve this goal. Additionally, there is evidence that PPP and
NPP better reflect the time-varying nature of decision-making
processes without changing their statistical properties (Rep-
perger, Warm, Havig, Vidulich, & Finomore, 2009).

Assist Selection Decisions Predictive Power Figure 4
(top) gives the predictive power for both the humans and
models in the assist selection decision stage. The bars give
the means, and the points are the individual decision makers.
For the human decision makers, PPP and NPP are fairly high.
PPP (right) is similar across all transparency cue conditions;
NPP (left) shows a bit more variability, with the highest NPP
observed in the Number-only condition. NPP for humans is
comparable to their PPP. Between both metrics, we can infer
that generally people chose the appropriate assist more often
than the inappropriate one.

The model closely reproduced the average level of PPP in
all conditions and NPP in the text and graphic (two-cue) con-
ditions. The model underestimates NPP in the Age-only and
Number-only conditions, meaning the model makes a higher
number of false negative decisions than humans. This dis-
crepancy might result from transfer between conditions, as
the model currently makes the assumption that no transfer
occurs across conditions because of distinct representations
of situation features. It is possible that participants relied on
information between conditions, improving performance on
single cues, relative to the model lacking between-condition
learning. Recent increases in representation flexibility in the
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Table 2: Signal Detection Theory Mapping of Reliance on
AUTOASSIST Search Cues

Actual Reliability of
AUTOASSIST

Reliable Unreliable

AUTOASSIST
Followed

True Pos-
itive

False Pos-
itive

AUTOASSIST
Not Followed

False
Negative

True Neg-
ative

ACT-R architecture enables us to explore alternative assump-
tions in future work.

Reliance on Search Assist Predictive Power The sec-
ond way we quantify reliance on automation is to further use
Equations 4 and 5 in the search stage to examine the propor-
tion of trials wherein people followed the AUTOASSIST cue
when it was or was not reliable. Table 2 summarizes the SDT
definitions for AUTOASSIST search reliance actions. Here,
we consider only the subset of trials on which participants se-
lected AUTOASSIST in the decision stage, because there was
no automation reliance action when COMMANDER was se-
lected. PPP with the Table 2 mapping is the proportion of tri-
als on which a participant followed a reliable AUTOASSIST
out of all trials on which participants followed the AUTOAS-
SIST; NPP is to the proportion of trials on which the partic-
ipant did not follow the unreliable AUTOASSIST cue out of
all trials on which they did not follow the AUTOASSIST.

Figure 4 (bottom) shows the distributions of PPP (right)
and NPP (left) for the search stage of the COBALT trials.
The means for PPP are higher than NPP, within each mea-
sure, the human means are similar across all conditions. The
distributions for NPP have a larger variance, in addition to
the lower means. The low (approximately .25) NPP means
that the participants are taking more false negative reliance
actions than true negatives. Compared to the decision stage
(Figure 4 upper), the search NPP means are much lower; PPP
distributions and means are similar in the two task stages.

In the search stage, the model generates expectations of
the AUTOASSIST’s reliability, which we translated into pre-
dictive power measures. The model qualitatively reproduced
both PPP and NPP behaviors. We observe that the larger vari-
ability for NPP might result from individual differences in
strategy, which we plan to explore in future work.

Perceived Reliability of the Automation An exciting re-
sult that emerges from the model is an estimate of the proba-
bility of overall automation reliability that appears to parallel
the human subjective ratings.

At the completion of each condition, participants were
asked to estimate the AUTOASSIST’s correctness for that
condition. Ratings were given as a value between 0 and
100%. The ground truth automation reliability was always
70%. Figure 5 gives the means and individual ratings from

Figure 4: Distributions of predictive power values for all con-
ditions for the decision stage (top) and search stage (bottom)
of the COBALT trials.

both humans and IBL models; a horizontal line indicates the
actual automation reliability. As shown in Figure 5, on av-
erage, both people and models over-estimated the AUTOAS-
SIST’s reliability. Over-estimations were larger in the text
and graphic conditions than in the single cue conditions.

Previous efforts established the ability of IBL models to
reproduce human cognitive biases resulting from the interac-
tion of cognitive mechanisms and task statistics (Lebiere et
al., 2013). This predictive basis for judgments of (over)trust
raises the potential of using cognitive models to support
human-machine teaming in ways that automatically compen-
sate for human biases. Importantly, as conceptualized by def-
initions of trust calibration, internal estimates of reliability
were shaped through reliance experiences.

Relationship to Conceptual Trust Calibration Model
Our IBL model’s performance provides empirical support for
the closed-loop dynamic calibration process of Lee and See’s
(2004) model. However, our process model does not yet in-
tegrate the moderating factors outlined in their conceptual
model. Despite only formalizing the cognitive mechanisms
in Lee and See’s (2004) feedback loop, our approach was still
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Figure 5: Mean perceived reliability ratings (bars) and indi-
vidual reliability ratings (points) each decision maker. The
light blue is the human subjective ratings data; the dark blue
are reflect blended values in the IBL model. The horizontal
line at 70 indicates the ground truth automation reliability.

able to fairly closely mimic human responses. IBL model
performance suggests that the individual, organizational, cul-
tural and environmental context played a less important role
in influencing trust calibration within this controlled task en-
vironment. In some ways, these findings are not surprising
because we attempted to control for (and did not manipulate)
many of these variables. What is less clear from our find-
ings is whether our model’s ability to simulate trust calibra-
tion would generalize to other less constrained environments
where individual, organizational, cultural and environmental
context might be more influential. If they do, such findings
would suggest that the feedback loop in the bottom portion
of Lee See’s model is the most powerful driver of trust cali-
bration. Perhaps the experience gained from interacting with
the automation has such a powerful impact on trust and re-
liance calibration that simply modeling this cycle is sufficient
to replicate human trust dynamics. The impact of organiza-
tion, culture environment and individual differences must be
explored; the IBL model should allow for a systematic inves-
tigation into the impact of these variables on trust calibration.
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Abstract

Recently, the TransSet model for human syllogistic reasoning was
introduced and shown to outperform the previous state of the art in
terms of predictive performance. In this article, we pick up the Trans-
Set model and extend it to allow for capturing individual differences
with respect to the conclusion “No Valid Conclusion” indicating
that no logically correct conclusion can be derived from a problem’s
premises. Our evaluation is based on a coverage analysis in which
a model’s ability to capture individuals in terms of its parameters
is assessed. We show that TransSet also outperforms state-of-the-art
models on the basis of individuals and provide further evidence for
the existence of an NVC aversion bias in human syllogistic reasoning.
Keywords: syllogistic reasoning; transset; modeling; transitivity

Introduction
Syllogistic reasoning is one of the longest-standing domains of
reasoning research persisting for over a century now (for an early
investigation, see Störring, 1908). Traditionally, a syllogistic
problem consists of two quantified premises (all, some, no, some
... not) interrelating three terms (e.g., A, B, C):

All A are B
Some B are C

What, if anything, follows?

The goal in syllogistic reasoning is to relate the information
conveyed by both premises via the middle term (B) occurring in
both of them in order to draw a conclusion about the end terms (A,
C). Depending on the arrangement of terms, a syllogistic problem
is said to be in one of four figures (notation taken from Khemlani
& Johnson-Laird, 2012):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

By considering all combinations of quantifiers and term
orderings, a total of 64 distinct syllogistic problems are obtained
all of which can possibly be concluded by eight quantified relations
between A and C in either direction, or “No Valid Conclusion”
(NVC) indicating that no logically valid conclusion for the pair of
premises exists. This results in a total of nine possible conclusions
to each syllogistic problem.

Research in the domain of syllogistic reasoning quickly came
to understand that human reasoners who are confronted with

∗Both authors contributed equally to this manuscript.

syllogistic tasks do not reason in accordance to classical first
order logic but commit frequent and systematic errors which
require psychological explanation (e.g., Woodworth & Sells, 1935;
Wetherick & Gilhooly, 1995).

Since its early beginnings, the domain has inspired countless
researchers to attempt to postulate and formalize assumptions about
the processes underlying human syllogistic inference which has
led to a wide variety of theories and models being introduced. In a
meta-analysis (Khemlani & Johnson-Laird, 2012), a list consisting
of the twelve most prominent theories of syllogistic reasoning was
compiled and evaluated. The authors’ analysis showed that because
individual theories have their distinct strengths and weaknesses
it is difficult if not impossible to identify a single best account.

More recently, TransSet (Brand et al., 2019), a model focusing
on transitivity-based set interpretation, was introduced and shown
to outperform the state-of-the-art models in terms of its predictive
power on average human reasoning behavior. Still, in their dis-
cussion of TransSet’s success, the authors highlighted the fact that
a lot of potential for model performance remains untapped because
most approaches currently do not account for the inter-individual
differentiation underlying the wide variety of inferential strategies
syllogisms are known to elicit (e.g., Roberts et al., 2001).

In this article, we attempt to push the TransSet model of syllogis-
tic reasoning one step further by extending it to adapt to the behavior
of individuals. By relying on findings from the syllogistic literature,
we essentially integrate processing branches into the model which
enable it to vary response strategies between individuals. We eval-
uate the resulting model based on a prediction task and compare its
performance to both state-of-the-art models and statistical baselines
to measure its success. Finally, we discuss our results as well as the
implications of individualization for cognitive modeling research.

Related Work
The domain of syllogistic reasoning has extensively been ap-
proached from a multitude of directions including formal logics,
probabilities, and various kinds of mental representations (for a
review, see Khemlani & Johnson-Laird, 2012). However, in the last
decade, the traditional model evaluation paradigm based on com-
parisons with group data obtained from experiments yielded results
suggesting that model performances had reached a plateau making
differentiation based on prediction accuracies difficult if not impos-
sible (e.g., Bacon et al., 2003; Khemlani & Johnson-Laird, 2012).

More recently, a paradigm shift concerning the evaluation of
models has started to gain traction. Inspired by theoretical and
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empirical considerations of inter-individual differences (e.g., Mole-
naar, 2004) and the corresponding problem of group-to-individual
generalizability (Fisher et al., 2018), the focus on model evaluation
has shifted from aggregate representations of data to individual
response data (e.g., Riesterer et al., 2019). Evaluating the state of the
art in modeling human syllogistic reasoning in terms of predictions
for individual response data revealed that previous analyses had
overestimated model performances considerably. While Khemlani
& Johnson-Laird (2012) reported values of up to 95%, 93%, and
84% for hits, correct rejections, and correct predictions on aggregate
data, the comparison with individual responses showed that the best
model only accounted for 34% of participants’ responses (Riesterer
et al., 2019). The new analysis produced two crucial results. First,
overall low accuracies on participants’ responses suggest that cur-
rent models are far from what can possibly be considered accurate
explanation of human behavior in syllogistic reasoning experiments.
Second, comparisons with data-driven neural networks illustrated
the considerable potential that remains in the domain especially
when actively considering inter-individual differences.

A recent analysis (Riesterer et al., in press) put the focus of
attention on a different aspect of individualized modeling: model
parameterization. A coverage task was introduced in which models
are fitted to individual response patterns and assessed in terms of
their ability to reproduce the observed behavior from their latent
parameterization. Computing the accuracy of the fitted models
in comparison with the originally observed data allows to derive
a score that enables a parameterization-centric assessment of
individualized model performance. The analysis included two of
the most prominent models for syllogistic reasoning, mReasoner
(Johnson-Laird & Khemlani, 2013) and the Probability Heuristics
Model (PHM; Chater & Oaksford, 1999). Briefly summarized,
mReasoner is an instance of the mental model theory (e.g., Johnson-
Laird, 1983) which assumes that individuals reason by constructing
mental representations of the premises from which conclusion
candidates are generated and potentially revised via a search for
counterexamples. PHM, on the other hand, assumes that individuals
reason in accordance to probabilistic validity as opposed to logic
validity and postulates a set of heuristics to simulate this behavior.

The coverage evaluation (Riesterer et al., in press) revealed that
both models are lacking in their ability to account for individual
behavior. Only PHM managed to outperform the statistical baseline
computed from the most-frequent answer (MFA; the optimal
strategy for aggregate models in this task) and thereby demonstrated
a basic albeit unimpressive ability to accommodate for individual
reasoning behavior in terms of its parameterization. Overall, the
coverage analysis highlighted the need for an increased focus on
individual differences from a different perspective than the previous
prediction-oriented analyses.

The TransSet Model
TransSet (Brand et al., 2019) is a recently introduced model for
syllogistic reasoning which was developed with a different goal in
mind than previous models. The current state of the art has largely
originated from attempts at finding comprehensive explanations of
human reasoning behavior which indirectly assumes the existence
of general syllogistic inference processes available to all reasoners.

However, because of empirical evidence about the variety of
strategies employed in the syllogistic domain (e.g., Roberts et al.,
2001) this assumption has been met with skepticism in the past
(e.g., Bacon et al., 2003). TransSet acknowledges the existence of
distinct inferential strategies and focuses on a specific type of naive
reasoner who is untrained in the task of solving syllogistic problems
and therefore relies on intuitive reasoning based on the prominent
surface features of syllogisms, i.e., quantifiers and term order. In
particular, it expects reasoners to rely on the general concept of
transitivity because of its relevance and importance in everyday
reasoning (e.g., for argumentation). In doing so, TransSet reflects
a single-strategy model that uses the surface features of syllogisms
(e.g., quantifiers or the order of terms) to derive its predictions. Its
inferential mechanisms are built on the assumption that reasoning
can be defined on the basis of a set-based interpretation of premises
and a transitivity-based inference scheme.

TransSet generates predictions for syllogistic problems based
on a two-step process consisting of phases for conclusion direction
and quantifier selection. The direction selection phase depends on
the arrangement of terms in the premises. If the premises directly
define a transitive path between the end terms (i.e., A-B;B-C
or B-A;C-B), TransSet uses the positions of the end terms in
the paths as the direction of the conclusion. Otherwise, it is
assumed that reasoners attempt to modify the premises in order
to create a transitive path. This is done by reversing one of the
premises containing a universal quantifier, i.e., “All” or “No”, with
a preference for “All”. If this is not possible, either because there
is no universal quantifier or because of ties when both quantifiers
are equal, NVC is returned aborting the inferential process.

The Quantifier selection phase uses the transitive path to infer
the conclusion quantifier. The general assumption behind this
phase is that individuals propagate information along the path. If
the first quantifier is affirmative, both quantifiers are combined
in accordance to the Atmosphere hypothesis (Woodworth & Sells,
1935). If the first quantifier is negative, information propagation
is not possible directly. Here, TransSet assumes that if the second
quantifier is “All”, the disrupted flow of information along the path
can be recovered by substituting the middle term with the last term
on the path resulting in a “No” conclusion. If this is not possible,
TransSet predicts NVC.

Crucially, the inferential mechanism proposed by TransSet does
not incorporate traditional processes for deliberative reasoning (e.g.,
logics or the construction of mental representations) but focuses
on a restricted mapping from syllogistic problems to specific
conclusion predictions based on surface-features alone. As such,
TransSet does not follow the goal to be an adequate explanation of
the general behavior of human reasoners but assumes the existence
of a subset of reasoners which follow the nonlogical (e.g., Evans,
1972) procedures it assumes. Still, it could be shown that TransSet
outperforms the existing state of the art by a substantial margin
(Brand et al., 2019). This does not necessarily mean that the
processes assumed by TransSet are representative of the cognitive
processes driving human inference. However, they currently give
the best account of the data. It would be premature to consider
TransSet generally superior to other models in its current state. Still,
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Figure 1: Overview over the individualized TransSet model.

it is a wake-up call for the proponents of the prevailing theories
to justify their approaches on the level of response predictions.

Even though TransSet focuses on a single inferential strategy,
it offers much potential for alteration with respect to the integration
of individual differences. One of them is its handling of the
NVC conclusion. Currently, NVC is generated either in cases
where transitive paths cannot be formed or if information cannot
be propagated along the path. However, research in syllogistic
reasoning has produced two important findings with respect to
NVC conclusions. First, response data suggests that reasoners are
biased against producing NVC conclusions resulting in what could
be considered an NVC aversion bias (e.g., Dickstein, 1976; Roberts
et al., 2001). Although the reasons for this NVC aversion have
not been conclusively determined as of yet, it seems reasonable
to assume that individuals differ with respect to the influence it has
on their reasoning making NVC aversion a promising component
of an individualized model. Second, recent research has shown
that certain forms of syllogism might invite NVC responses which
suggests that NVC handling of individuals might not just simply
be inhibited by aversion biases but also encouraged by certain
combinations of premises (e.g., Galotti et al., 1986; Riesterer et
al., 2020). As such, in the following sections we introduce and
evaluate an extension of TransSet in terms of its NVC handling.

Individualizing TransSet
Our individualization which is summarized in Figure 1 focuses on
NVC which is a peculiar conclusion in the syllogistic domain for
various reasons. On the one hand, the NVC response itself might be
ambiguous. Besides its intended meaning as an indication that no
conclusion follows logically from the premises, NVC might also be
interpreted as “giving up” signaling that a participant failed to arrive

Table 1: Parameter configurations and preconditions for NVC rules
in the quantifier selection phase where Q1 and Q2 refer to the first
and second quantifier of the transitive path, respectively.

Rule paversion pneg ppart Precondition

Negativity
None true - Q1 negative
Low true - Q1 negative, Q2 not All
High true - Q1,Q2 negative

Particularity - - true Q1,Q2 particular

PartNeg None true true Q1,Q2 not All

at a quantified conclusion (Ragni et al., 2019). This interpretation
can be an incentive for reasoners to “try harder” to avoid NVC
responses which effectively invites illogical behavior. On the other
hand, it is the logically correct answer for 37 out of the 64 problems
(58%), i.e., for the majority of the domain. As there are nine possible
conclusions, this imbalance might be unintuitive for some reasoners,
especially since it is also unusual for riddles or puzzles, which
the experimental setting might seem similar to, to be “unsolvable”.
This could lead to the NVC aversion phenomenon which has
been discussed before (Roberts et al., 2001). However, the over-
representation of NVC might also encourage the use of simple rules
that can quickly derive an NVC response (e.g., Galotti et al., 1986).

One of the main concepts of TransSet is the separation of the de-
duction process into the direction selection and quantifier selection
phases which each provide rules to check if the respective goals
can be achieved. If any phase fails, NVC is concluded. However,
the available rules and the likelihood to abort a phase may differ
between individual reasoners which is why using them as starting
points for the adaption to individual reasoners seems promising.

To allow TransSet to capture the effects of NVC, we introduced
four parameters: paversion, panchor, ppart , and pneg. The first param-
eter, paversion, represents the susceptibility to the NVC aversion bias
of a reasoner (e.g., Dickstein, 1976) with possible values in [None,
Low, High]. The parameter is used in both phases and determines
the likelihood of accepting NVC responses. When NVC aversion is
high, the phases of TransSet are less likely to fail since participants
try to find a way around responding with NVC. For the direction
selection phase, this means that a direction has to be selected, even
if it is not clear if the conclusion should relate the end terms from A
to C or vice versa (which can only occur for Figure 3 and Figure 4
syllogisms). In these cases, it is assumed that individual preferences
decide if the end-term read first (A) is selected as an anchor point (re-
sulting in the direction A→C) or if the most recent term (C) is cho-
sen (resulting in the directionC→A). This preference is captured by
the parameter panchor using the values [most-recent, first] which re-
flect the choice of anchor term. Note, however, that panchor is a con-
ditional parameter which will only take effect when paversion is high.

TransSet’s second phase, in which the conclusion quantifier is
determined, originally only had a single rule to derive NVC: When
a transitive path starts with a negative quantifier (“No”, “Some
... not”), the propagation of information along the path is pre-
vented, which result in an NVC response in most cases (Brand et
al., 2019). In this work, we extend the existing rule, allowing for
several nuances depending on the aforementioned paversion parame-
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ter. In doing so, we integrate additional rules to derive NVC which
have recently been shown to improve predictive performance when
incorporated into various state-of-the-art models for syllogistic rea-
soning (Riesterer et al., 2020). In particular, we incorporate the
rules related to negative quantifiers, i.e., EmptyStart and Negativity,
into TransSet’s original process handling negativity in the quanti-
fier determination phase. The paversion parameter is used to either
strengthen or weaken the precondition starting from TransSet’s
original rule, which corresponds to paversion= low. The remaining
rules proposed by Riesterer et al. (2020), i.e., Particularity and Part-
Neg, are integrated as additional rules. Individual availability of the
above-mentioned rules is controlled via two binary parameters, pneg
and ppart which can either be set to true or to false. Table 1 summa-
rizes the rules with the respective parameter configurations and the
preconditions, that need to be fulfilled to derive NVC responses.

The proposed parameterization of TransSet is a natural extension
of its original account. To match the behavior of the original Trans-
Set model, the paversion needs be set to “low” with pneg being set to
“true”. Since paversion is “low”, the determination of the direction
fails (resulting in a NVC response), which means that panchor has no
effect. As a dedicated rule to derive NVC based on the particularity
was not part of the original model, ppart needs to be set to “false”.

It is important to note that all introduced parameters are
categorical, i.e., rely on discrete values with all parameters except
for paversion being binary. While continuous parameter values are
generally useful to describe the probabilities or relative importances
of effects occurring in populations, a deterministic model with
discrete parameters is a preferable description of individuals. Since
the data only represents a snapshot of an individual’s reasoning
behavior, we cannot derive probabilities for their decisions
(especially if each syllogistic problem was only solved once
per individual). On an individual level, probabilities are only
meaningful if each individual repeatedly provided responses to
the same tasks. Thus, we have to resort to evaluating the ability
of a model to reproduce exact patterns which naturally suggests
deterministic model behavior and parameter usage.

Method
The core objective of the following analysis is to evaluate our exten-
sion of TransSet in terms of its ability to account for the inferential
behavior of individual human reasoners. To this end, we rely on a
coverage task (Riesterer et al., in press) in which the goal is to cap-
ture the response behavior of individuals in the model’s parameters.
By assessing the residual error, an estimate of the model’s ability
to account for inter-individual differences is obtained. Additionally,
the parameter configurations resulting from fitting the model to indi-
viduals allows for an interpretation of the variation in the observable
reasoning behavior in terms of the processes assumed by the model.

Coverage Analysis Setting
Our analysis focuses on evaluation TransSet’s ability to recover
individual reasoning behavior from its latent parameterization. Put
differently, we assess the degree to which TransSet’s parameter
space covers individuals (Riesterer et al., in press).

Note, that the justification of coverage analyses depends on the
models being included. In the case of database-like models which

fit by storing the observed information, coverage will always be
perfect since behavior can simply be recalled from the database.
In the case of cognitive models, however, parameters usually have
an associated meaning and try to capture essential properties of the
assumed mental processes. As such, coverage gives a meaningful
estimate of a model’s ability to accommodate for individuals.

To increase the expressiveness of our analysis by providing a
reference frame for the obtained coverage scores, we include the
models from the previous coverage analysis (Riesterer et al., in
press): mReasoner (Johnson-Laird & Khemlani, 2013) and the
Probability Heuristics Model (Chater & Oaksford, 1999), as well
as a random uniform model and the Most-Frequent Answer (MFA)
model which generates predictions based on the most frequently
observed response to a syllogistic problem in a dataset.

Dataset & Implementation
For our analysis, we rely on the Cognitive Computation for
Behavioral Reasoning Analysis (CCOBRA) framework1 for model
evaluation. The dataset we use is the “Ragni2016” dataset for
syllogistic reasoning which is openly available as part of the frame-
work and has been used as benchmark data in many evaluations
of syllogistic models including the previously introduced coverage
analysis (Riesterer et al., in press). It consists of a total of 139
participants who were presented with the full set of 64 syllogisms
and asked to select which of the nine possible responses followed
from syllogistic premises. The data, model implementation, and
analysis scripts developed for this article are available on GitHub2

Analysis & Results
Performance Analysis
Figure 2 depicts the results of the coverage evaluation obtained from
CCOBRA. The box plots provide a descriptive view of coverage
scores, i.e., the models’ abilities to reconstruct reasoning behavior
from their parameterizations, while the dots represent the scores
for the 139 individuals from the dataset. When fitted to individual
reasoners, TransSet significantly improves over the original
model (median coverage scores of 0.50 and 0.44, respectively;
Mann-Whitney U Test, U=7783.5, p= .0025) and substantially
outperforms mReasoner and PHM (median coverage scores of
0.38 and 0.45, respectively). TransSet and PHM also surpass the
performance of the MFA (median coverage score of 0.45), which
is the upper bound for models disregarding individual differences,
showing that the concepts underlying their parameters are suited
to capture the behavior of individuals. However, it is important
to note that TransSet only describes a specific strategy that some
individuals might use. When considering the results for specific
individuals, it becomes apparent that a substantial amount is still
not sufficiently covered by the model. While this might partially
be due to guessing-like behavior or non-systematic mistakes, it also
possible that some of these individuals are using different strategies.

The general improvement of TransSet achieved by our individual-
ization indicates that the incorporation of NVC biases is a promising
way for models to account for different individuals. This is not

1https://github.com/CognitiveComputationLab/ccobra
2https://github.com/Shadownox/iccm-transset-indiv
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Figure 2: Accuracies of models for the coverage task. The suffix
“(fit)” indicates that the model was fitted to an individual’s responses.

surprising, given the special status of the NVC due to the imbalance
of the syllogistic task and ambiguity of the response. On a more
general level, the improvement also shows that it is possible to
significantly boost the performance of a model by focusing on rules
and mechanisms that are able to differentiate between individuals.
This highlights the importance of an evaluation based on individual
data, as improvements beyond the performance of the MFA cannot
be assessed on the basis of aggregated analyses. Additionally, these
analyses provide a starting point for further investigations of individ-
uals that are not covered sufficiently by most state-of-the-art models.
For now, it is unknown to which extent this can be attributed to
noise (e.g., due to guessing-like behavior). An in-depth analysis
of these individuals might help to better estimate the proportion
of noise and uncover additional strategies and biases in the data.

Parameter Distribution Analysis
Apart from allowing models to be fitted to individual reasoners, the
utilization of parameters is also an important property of models
based on which their internal integrity can be assessed. Ideally,
parameters in cognitive models have specific meaning in relation
to the assumed inference process. For instance, in the case of
TransSet, the NVC aversion parameter paversion is indicative for
the model’s behavior to pursue alternative conclusions to avoid
NVC. Optimally, the use of parameters in cognitive models should
be limited to the minimum that still enables the capturing of
distinct and important differences between individuals (principle
of parsimony). This, in turn, means that all parameter assignments
should be relied on by the model to account for a population of
reasoners. If certain parameter configurations are only used for
negligible amounts of individuals, either the corresponding group
of individuals was not part of the data or, more likely, the model
has an inefficient use of parameters and should be revised in order
to reduce its parameter complexity and increase its explainability.

Figure 3 shows the distributions for TransSets’s parameters. For
each possible value of a parameter, the number of participants that
are described best by using the respective value is shown. When
analyzing the distribution for paversion, we see that paversion = high
yields the best results for the majority of individuals, indicating that
incorporating NVC aversion is indeed beneficial for individualized
models of syllogistic reasoning. The particularity rule, despite being
inactive for the majority of participants, still seems to be a valuable
addition, as it still improved the fit for a third of the individuals.
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Figure 3: Parameter distributions for the individualized TransSet’s
parameters resulting from fitting the model to individuals from
the “Ragni2016” dataset.

While the optimal parameterization for the majority of the data
has the biggest importance for the fit, all parameter configurations
still represent a substantial number of individuals. In the case of
paversion, the majority of participants is not even represented by
the most prominent value (“high”). The original TransSet model
corresponds to paversion = low, which does not reflect the NVC
aversion of most individuals, but instead describes the data better
on an aggregate level. This highlights the importance of individual
modeling in general: A model describing the average reasoner
might not be able to reflect the most prevalent traits of reasoning.

With respect to the hypothesis of an aversion against NVC,
the distribution of paversion is intriguing. A substantial number
of participants are described by high NVC aversion, leading to
response patterns with little to no NVC responses. However, while
this group does in fact seem to avoid NVC wherever possible,
the majority of participants have a low or no NVC aversion at all.
Therefore, the aversion against NVC conclusions seems to be a
highly individual behavior that affects a substantial proportion of the
participants but might not necessarily be a universal factor in human
syllogistic reasoning behavior. Since only a group of individuals
seems to avoid the NVC response consistently, this hints at general
misunderstandings of the NVC response itself for this group.

General Discussion
In this article, we presented and evaluated an individualization of
the recently introduced TransSet model for syllogistic reasoning
(Brand et al., 2019). To integrate the capability to differentiate
between individuals we focused our attention on the conclusion “No
Valid Conclusion” (NVC) which has been in the focus of attention
before for its ability to evoke aversion biases (e.g., Dickstein,
1976; Roberts et al., 2001) and for being a conclusion which was
neglected by a number of models in the past (Riesterer et al., 2020).

TransSet’s original specification already contained rules to derive
NVC conclusions directly from surface features of syllogistic
premises which were invoked when the construction of transitive
paths or the propagation of information along them failed (Brand
et al., 2019). Our individualization of the model extends on these
rules by introducing parameters with the goal to capture individual
differences in NVC behavior. We assume a total of four parameters
reflecting (1) the magnitude of the aversion against NVC responses,
(2) a figure anchor providing the direction of the conclusion

21Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



generated in alternative to NVC following the NVC aversion, and
the susceptibility to directly conclude NVC based on (3) negativity
or (4) particularity of the premises (Riesterer et al., 2020).

Our results illustrate the success of TransSet’s individualization.
In a coverage analysis (for an introduction to the paradigm, see
Riesterer et al., in press), the model is shown to outperform not
only the statistical model following a response strategy focusing
on the conclusions most frequently selected by participants
(most-frequent answer, MFA), but also the two state-of-the-art
models mReasoner (Johnson-Laird & Khemlani, 2013) and the
Probability Heuristics Model (PHM; Chater & Oaksford, 1999)
which have been separately analyzed in a coverage analysis by
Riesterer et al. (in press). Investigating the parameter distribution
that follows from fitting TransSet to individuals illustrates the
quality of the assumed factors for individualization. The parameter
space is evenly distributed with no value being only assigned to
a negligible number of participants. Further, the distribution of
the aversion parameter adds to the evidence for such a bias in
syllogistic reasoning (e.g., Dickstein, 1976; Ragni et al., 2019).

Overall, our results add to the growing corpus of modeling
research on the level of individual responses. Despite the fact that
TransSet is intended to only capture a distinct subset of reasoners,
namely those who rely on surface-level features of the problem
domain (e.g., quantifiers and term order), it currently outperforms
even the most comprehensive and general models of the state of
the art both on the aggregate and individual level. While we should
refrain from considering it an overall superior explanation of human
cognition in this task, especially given its current lack of grounding
in terms of psychological/neuroscientific concepts, it should serve
as a wake-up call to theorists and modelers alike. Our results
demonstrate that the previous signs of a performance-based plateau
were merely due to the choice of a severely restricted evaluation
paradigm which can be overcome by adopting the perspective of
individual responses.
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Abstract

We introduce a framework in which we can start exploring in
a computationally explicit way how complex, mechanistically
specified, and production-based cognitive models of linguis-
tic skills, e.g., ACT-R based parsers, can be acquired. Cogni-
tive models for linguistic skills pose this learnability problem
much more starkly than models for other ‘high-level’ cogni-
tive processes, as they call for richly structured representations
and complex rules that require a significant amount of hand-
coding. In this paper, we focus on how Reinforcement Learn-
ing (RL) methods can be used as a way to solve the production
selection problem in ACT-R. Production rules are treated as
the actions of an RL agent, and the ACT-R model/mind as the
environment in the RL sense. We focus on a basic learning
algorithm (tabular Q-learning) and a very simple task, namely
lexical decision (LD), framed as a sequential decision prob-
lem, with the goal of learning when a specific rule should be
fired. Learning is faster and less noisy for shorter LD tasks
(fewer stimuli), but the Q-learning agent manages to learn
longer tasks fairly well. Realistically long LD tasks and more
complex models, e.g., parsers, are left for future research.
Keywords: ACT-R, Reinforcement Learning, production-
based models, linguistic skills, lexical decision

Learnability of production-based models
We introduce a framework in which we can start exploring
in a computationally explicit way how complex, mechanisti-
cally specified cognitive models of linguistic skills, e.g., the
parsers in Engelmann (2016); Hale (2011); Lewis and Va-
sishth (2005), can be acquired. Linguistic cognitive model
learnability is an understudied issue, primarily because com-
putationally explicit cognitive models are only starting to be
more widely used in psycholinguistics. Cognitive models
for linguistic skills pose this learnability problem much more
starkly than models for other ‘high-level’ cognitive processes,
since cognitive models that use theoretically-grounded lin-
guistic representations and processes call for richly structured
representations and complex rules that require a significant
amount of hand-coding.

The learnability problem for production-rule based models
can be divided into two parts:

i. rule acquisition – forming complex rules out of simpler
ones, and

ii. rule ordering – deciding which rule to fire when.

ACT-R’s (Anderson & Lebiere, 1998) partial answers to
these problems are production compilation for (i), and rule-
utility estimation for (ii). Apart from Taatgen and Anderson

(2002), which investigates the role of production compilation
in morphology acquisition, neither solution has been system-
atically applied to complex models for linguistic skills.

We focus here on the easier problem (ii). Our main contri-
bution is to show how advances in the machine learning sub-
field of Reinforcement Learning (RL, Sutton & Barto, 2018)
can be leveraged to solve it. RL and ACT-R have very close
connections (Fu & Anderson, 2006), but they have remained
largely unexplored.

Learning goal-conditioned rules: An example
The framework and the range of issues that emerge when we
try to systematically integrate ACT-R and RL are best show-
cased with a simple example. We choose a basic learning
algorithm, specifically, a tabular Q-learning agent, which is
a model-free off-policy learning algorithm (Watkins, 1989;
Watkins & Dayan, 1992). Also, we focus on a very simple
task, namely lexical decision (LD). In an LD task, partici-
pants see a string of letters on a screen. If the participants
think the string of letters is a word, they press one key (J in
our setup); if they think the string is not a word, they press a
different key (F in our setup). After pressing the key, the next
stimulus is presented.

We investigate the extent to which the Q-learning agent can
be used to learn goal-conditioned rules in an ACT-R based
cognitive model of LD tasks. The main point of proposing
and examining an ACT-R model of LD tasks is to construct
a simple example of a production-rule based model that en-
ables us to study learnability issues, and that can be scaled up
in future work to more complex and cognitively realistic syn-
tactic and semantic parsing models. In particular, the model
provides the basic scaffolding of production rules needed for
LD tasks, which is all that we need for our purposes. Flesh-
ing the model out to capture major experimental results about
LD, or comparing it to previously proposed cognitive models
of LD is not our focus here.

LD tasks can be modeled in ACT-R with a small number
of rules (see Brasoveanu and Dotlačil 2019 and Chapter 7 in
Brasoveanu and Dotlačil 2020 for recent attempts), so they
are a good starting example. We model three LD tasks of
increasing length, hence difficulty:

i. 1 stimulus: the word elephant,
ii. 2 stimuli: the word elephant and a non-word, and
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iii. 4 stimuli: the word elephant, a non-word, the word dog,
and another non-word.

The model components are split between declarative mem-
ory, which stores the lexical knowledge of an English speaker,
and procedural memory, which stores rules that enable the
model to carry out the LD task. The rules are conditional-
ized actions: they fire/execute actions when their conditions
are satisfied by the cognitive state of the ACT-R mind (the
buffers). We assume 4 rules, provided in standard ACT-R
format in (1)-(4) below (see Chapter 2 in Brasoveanu and
Dotlačil 2020, for example, for more discussion of the for-
mat). These rules were originally hand-coded to fire serially
by conditioning all the actions on specific goal states. The
goal conditions are stricken out below because we remove
them and let the Q-learning agent learn them.

(1) Rule 1: Retrieving
goal> STATE: retrieving

visual> VALUE: =val
VALUE: ∼FINISHED

=⇒

goal> STATE: retrieval done

+retrieval> ISA: word
FORM: =val

(2) Rule 2: Lexeme Retrieved
goal> STATE: retrieval done

retrieval> BUFFER: full
STATE: free

=⇒

goal> STATE: retrieving

+manual> CMD: press-key
KEY: J

(3) Rule 3: No Lexeme Found
goal> STATE: retrieval done

retrieval> BUFFER: empty
STATE: error

=⇒

goal> STATE: retrieving

+manual> CMD: press-key
KEY: F

(4) Rule 4: Finished
goal> STATE: retrieving

visual> VALUE: FINISHED

=⇒

goal> STATE: done

With fully specified, hand-coded rules, the LD task un-
folds as follows. Assume the initial goal STATE of the ACT-R
model is retrieving, and the word elephant appears on the

virtual screen of the model, which is automatically stored in
the VALUE slot of the visual buffer.

At this initial stage, the preconditions of Rule 1 are sat-
isfied, so the rule fires. As a consequence, we attempt
to retrieve a word with the form elephant from declarative
memory, and the goal STATE is updated to retrieval done.
When the word is successfully retrieved, Rule 2 fires and the
J key is pressed. At that point:

i. in the 1-stimulus task, the text FINISHED is displayed
on the screen, then Rule 4 fires and ends the task;

ii. in the 2-stimuli task, the non-word is displayed, then
Rule 1 fires again; the retrieval attempt fails since we
cannot retrieve a non-word from declarative memory, so
Rule 3 fires and the F key is pressed; at that point, the
text FINISHED is displayed on the screen, then Rule 4
fires and ends the task;

iii. in the 4-stimuli task, the first non-word is displayed,
Rule 1 fires again, then, just as in the 2-stimuli task, Rule
3 fires and the F key is pressed, after which the word dog
is displayed, Rule 1 fires for the third time followed by
Rule 2, which means that the J key is pressed and the
second non-word is displayed; now, Rule 1 fires for the
final time, followed by Rule 3, which triggers the F key
to be pressed; at this point, the 4-stimuli task is over, so
the text FINISHED is displayed on the screen, then Rule
4 fires and ends the task.

Thus, assuming fully specified, hand-coded rules, the se-
quences of rule firings for the three LD tasks are as follows:

i. 1-stimulus task: Rules 1 – 2 – 4
ii. 2-stimuli task: Rules 1 – 2 – 1 – 3 – 4

iii. 4-stimuli task: Rules 1 – 2 – 1 – 3 – 1 – 2 – 1 – 3 – 4

Instead of hand-coding the goal-state preconditions, we
only specify the actions (and preconditions associated with
buffers other than the goal buffer): that’s the reason for strik-
ing out the goal specifications in (1)-(4). We then let the Q-
learning agent learn to successfully carry out the LD tasks.
We give the agent a reward of 1 if it reaches the final goal-
state done. For any intermediate rule firing, we give it a small
negative reward of −0.15 to encourage it to finish the task as
soon as possible. However, the agent does not get the small
penalty if it chooses to wait and fire no rule: this is the opti-
mal course of action when waiting for retrieval requests from
declarative memory to complete, for example.

The agent learns by trial and error to successfully carry
out the LD tasks: it learns how to properly order the rules
and complete the LD tasks as efficiently as possible. This
is no small feat given that the actual number of steps, i.e.,
decision points, when the agents needs to select an action, is
larger than the high-level sequences of rule firings discussed
above. For example, for a 1-stimulus task, there are actually
12 steps where the agent needs to decide whether to wait or
to fire a specific rule (when the agent does not complete the
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Agent

state st , reward rt action at

Environment

Figure 1: The agent-environment interaction in an MDP

task perfectly, it might take much more than 12 steps). The
2-stimuli task requires 18 such steps (if the task is completed
perfectly), and the 4-stimuli task requires 34 steps (again, if
the task is completed perfectly). The reason for this is that
our LD simulations involve the visual and motor modules (to
read strings of characters and press keys) in addition to the
declarative memory module. Visual and motor actions, just as
retrievals from declarative memory, take time, and the agent
needs to make decisions while waiting for them to complete.

The higher the number of steps, i.e., the higher number of
decision points for the agent, the harder the task is to learn.
As the next sections show, learning is faster and less noisy for
shorter tasks (fewer stimuli), but the Q-learning agent man-
ages to learn even the most complex 4-stimuli task fairly well.

Production-rule ordering as an RL problem
Markov decision processes
Markov Decision Processes (MDPs) are the deterministic or
stochastic models of decision-making sequences that form the
basis of RL approaches to learning. In an MDP, an agent
interacts with its environment and needs to make decisions
at discrete time steps t = 1,2, . . . ,n. Defining what counts
as the agent and what counts as its environment is part of
the modeling process: the agent could be a whole cognitive
agent (animal, human or robot) acting in the world or in an
experimental environment, or it could be a component of a
cognitive agent interacting with an ‘environment’ consisting
of other cognitive components.

At every time step t, all the information from the past that
is relevant for the current action selection is captured in the
current state of the process st . This is the Markov property:
the future is independent of the past given the current state.
The environment passes to the agent the state st and, at the
same time, a reward signal rt . The agent observes the current
state st and reward rt , and takes an action at , which is passed
from the agent to the environment. Then, the cycle continues,
as shown in Figure 1. At time step t + 1, the environment
responds to the agent’s action with a new state st+1 and a new
reward signal rt+1. Based on these, the agent selects a new
action at+1 etc.

The definitions of ‘state’ and ‘action’ depend on the prob-
lem, and are also part of the modeling process. The agent’s
policy is a complete specification of what action to take at any
time step. Given the Markovian nature of the MPD, the policy
π is effectively a mapping from the state space S to the action
space A, π : S→ A. A deterministic policy is a mapping from

any given state st to an action at = π(st), while a stochastic
policy is a mapping from any given state st to a probability
distribution over actions at ∼ π(st).

The agent’s goal is to maximize some form of cumulative
reward – e.g., total reward, average reward, future-discounted
sum of rewards – over an episode, which is a complete, usu-
ally multi-step interaction between the agent and its environ-
ment. In our case, an episode would be a full simulation of
an LD task (be it a 1-stimulus or a 2/4-stimuli task).

The agent learns (solves/optimizes the MDP) by updating
its policy π to maximize the per-episode cumulative reward.

The standard cumulative reward for an episodic task is the
discounted return G, which is the sum of the current reward
and the discounted future rewards until the final step n of
the episode. In finite/episodic tasks, future rewards are dis-
counted because we assume the agent has a preference for
more immediate rewards rather than rewards in the far fu-
ture. The discount factor γ is a real number between 0 and 1
that determines the present value of future rewards. The dis-
counted return at a time step t < n, where n is the final step in
the episode, is defined as:

(5) Discounted return at time t (γ is the discount factor):
Gt = rt+1 + γrt+2 + γ2rt+3 · · ·+ γn−t−1rn

The agent selects actions with the goal of maximizing the ex-
pected discounted return.

We define the (state-)action value function Qπ(s,a) to be
the expected (discounted) return when starting in state s, per-
forming action a, and then following the policy π until the end
of the episode. With Qπ in hand, we can solve the optimiza-
tion problem framed by an MDP: if we know this function,
we can always select an optimal action in any state (optimal
actions are actions with maximal expected return).

Q-learning, discussed in the next subsection, estimates Qπ
by directly sampling experience from the environment. This
is in contrast to Dynamic Programming methods, for exam-
ple, which compute optimal policies under the (unrealistic)
assumption that we have a perfect model of the environment.

Q-learning
The agent’s goal is to maximize its return. One way of doing
this is to bypass the policy and directly estimate the value
of all state-action pairs, i.e., estimate the Q function, and
improve this estimate based on the interactions between the
agent and its environment. With a good estimate of the Q
function in hand, we can devise an optimal policy by select-
ing a maximum-value action in each state.

Tabular Q-learning is an algorithm that enables us to esti-
mate the Q function, and use this estimate as the basis for an
optimal policy. The Q function S×A→ R is represented as
a look-up table that stores the estimated values of all possible
state-action pairs. Before learning begins, the Q table is ini-
tialized to an arbitrary fixed value (0). The agent then updates
the Q table incrementally at each time step t: the value of the
pair (st ,at), which consists of the state of the environment st
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relative to which the agent took the action at , is updated based
on the reward signal rt+1 and the new state st+1 that the agent
receives from the environment after taking action at .

Q-learning is a form of temporal difference (TD) learning,
as the update in (6) shows. The Qnew value estimate for the
state-action pair (st ,at) is based on the Qold value, updated
by some proportion α of the TD error. The parameter α is the
learning rate, 0 < α≤ 1. This update α ·TD error is provided
on the second line of (6).

(6) Q-learning update:
Qnew(st ,at) Qold(st ,at) +

α ·

TD (temporal difference) error︷ ︸︸ ︷(
rt+1 + γ ·max

at+1
Qold(st+1,at+1)

︸ ︷︷ ︸
next-state value estimate︸ ︷︷ ︸

TD target (updated value)

− Qold(st ,at)

)

The TD error is the difference between the TD target – which
is an updated estimate of the value of the (st ,at) pair – and
the Qold value estimate. The TD target consists of:

• the reward rt+1 the agent receives after action at , which is
part of the new data the agent gets back from the environ-
ment after action at , plus

• the estimate of the value of the next state st+1, where the
next state st+1 is the other part of the new data the agent
gets back from the environment after action at .

The Q-learning estimate for the value of the next state st+1
is discounted by the discount factor γ, since this state is in the
future relative to the state-action pair (st ,at) we’re currently
updating. The Q-learning value estimate for st+1 is aggres-
sively confident/optimistic:1 the agent looks at all the possi-
ble actions at+1 that can be taken in state st+1 and confidently
assumes that the action at+1 with the highest Qold-value pro-
vides an accurate estimate of the st+1 value.

Q-learning for production-rule ordering
Returning to our ACT-R model of LD tasks, the agent (in the
RL sense) is a Q-value table that assigns values to all possible
state-action pairs, and that guides the rule selection process at
every cognitive step. The environment is the cognitive state of
the ACT-R model/mind, and could conceivably consist of:

i. all the modules – procedural memory, declarative mem-
ory and visual and motor modules, together with

ii. their associated buffers – goal, retrieval, visual-what,
visual-where and the manual buffer.

This, however, would lead to a very large state space S,
which in turn would lead to a large Q-value table. Function-
approximation approaches – e.g., using neural networks –
would mitigate this problem, but we will continue using a
tabular approach here and take a state s to only consist of:

1In contrast to the Expected Sarsa estimate, for example (van
Seijen, van Hasselt, Whiteson, & Wiering, 2009).

i. the current goal buffer,
ii. the current retrieval buffer,

iii. the value in the visual-what buffer, if any (otherwise,
we explicitly mark the visual-what buffer as having no
value), and finally,

iv. the state of the manual buffer (busy or free).

Four example states are provided below:

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: NO_VALUE}

- {goal: {state: retrieval_done}, manual: free,
retrieval: {}, visual_value: elephant}

- {goal: {state: retrieval_done}, manual: free,
retrieval: {form: elephant},
visual_value: elephant}

- {goal: {state: done}, manual: busy,
retrieval: {}, visual_value: NO_VALUE}

The action space consists of the 4 rules in (1)-
(4) above, namely retrieving, lexeme retrieved,
no lexeme found and finished, together with a special ac-
tion None that the agent selects when it wants to not fire any
rule because it prefers to wait for a new cognitive state.

The full details of the reward structure are as follows:

• the agent receives a positive reward of 1 at the end of
an episode (when the LD task is completed), specifically,
when the goal STATE is done;

• the agent receives a negative reward of−0.15 for every rule
it selects (other than None);

• there is no penalty for waiting and selecting no rule, i.e.,
for selecting the special action None;

• at every step, the agent receives a negative reward equal to
the amount of time that has elapsed between the immedi-
ately preceding step and the current step (multiplied by−1
to make it negative).

This reward structure is designed to encourage the agent to
finish the task as soon as possible, and in the process select
the smallest number of rules. The negative temporal reward in
particular discourages the agent from just repeatedly selecting
the special action None. This would end up timing out the LD
task in a small number of steps, and it would fast-forward the
agent to the maximum waiting time the ACT-R environment
allows for, which we set to 2 seconds per word for LD tasks.

Thus, we work with two time ‘counters’ here. On one
hand, we have the continuous cognitive-process time that the
ACT-R model/mind keeps track of, and which models the
reaction time of human participants in experimental tasks.
On the other hand, we have the discrete RL time that is the
counter for agent-environment interactions: the discrete time
steps t = 1,2, . . . ,n in our MDP. From the perspective of the
discrete RL/MDP time, the continuous ACT-R time is a fea-
ture of the environment, reflected in the reward signal that the
(Q-learning) agent gets when it interacts with, i.e., samples
experience from, the environment.
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Simulations and results
We assume the usual ACT-R defaults, e.g., rule firing time
is set to 50 ms. The learning rate α is set to 10−3, and γ to
0.95. We use an ε-greedy policy for all simulations, with ε
multiplicatively annealed from a starting value of 1 to a mini-
mum value of 0.01. Specifically, at every RL step (after every
action/rule selection), if ε > 0.01, its value is updated as fol-
lows: ε← ε · (1−10−5).

One-stimulus task
We simulate 15,000 episodes, i.e., 15,000 LD tasks consisting
of 1 stimulus only (the word ‘elephant’), from which the Q-
learning agent learns. The plot in Figure 2 shows that, after
about 5,000 episodes, the task is completed in ≈ 12 steps,
which is the length of the task when the agent completes it
perfectly. For some episodes, the number of steps is smaller
than 12. In these cases, the agent times out the task, e.g., by
selecting the None action several times, and receives steeply
negative temporal rewards leading to very low returns.

A close examination of the agent’s final Q-value ta-
ble, which stores the agent’s rule-firing preferences for any
given goal state, indicates that the agent has learned goal-
conditioned rules perfectly. We only look at states for which
at least one action/rule has a non-0 value (recall that all Q-
values are initialized to 0). For each such state, we identify
the action/rule with the highest value. There are 8 states with
at least one non-0 value action. Let’s examine them.

There are 3 states in which the agent fires no rule, that is,
the maximum-value action is None:

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: NO_VALUE}

- {goal: {state: retrieving}, manual: busy,
retrieval: {}, visual_value: NO_VALUE}

- {goal: {state: retrieval_done}, manual: free,
retrieval: {}, visual_value: elephant}

We see that when the goal state is retrieving, the re-
trieval buffer is empty, and the visual buffer stores no value,
the agent does nothing (whether the manual buffer is busy
or free): it simply waits for some text to be automatically de-
tected and stored in the visual buffer. Similarly, when the goal
state is retrieval done, the visual buffer stores the value
elephant, but the retrieval buffer is empty, the agent once
again does nothing: it waits for the retrieval process that was
just started to complete.

There are 3 states where the max-value action is finished:

- {goal: {state: retrieving}, manual: busy,
retrieval: {}, visual_value: FINISHED}

- {goal: {state: retrieval_done}, manual: free,
retrieval: {form: elephant},
visual_value: FINISHED}

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: FINISHED}

Figure 2: Steps per simulation to complete the 1-stimulus task

We see that whenever the value stored in the visual buffer is
FINISHED, the agent correctly chooses the finished action
irrespective of: (i) the goal state, (ii) the state of the manual
buffer, or (iii) the contents of the retrieval buffer.

This leaves us with the 2 state-action pairs below:

- {goal: {state: retrieving}, manual: free,
retrieval: {}, visual_value: elephant}
==> retrieving

- {goal: {state: retrieval_done}, manual: free,
retrieval: {form: elephant},
visual_value: elephant}
==> lexeme retrieved

We see that when the goal state is retrieving and
the visual value is elephant, the agent correctly chooses
the retrieving rule. Finally, when the goal state is
retrieval done and the retrieval buffer contains the word
elephant (i.e., the retrieval process has been successful), the
agent correctly chooses the lexeme retrieved rule.

Thus, there is no need to hand-code goal states in the condi-
tions of a rule to deterministically guide the cognitive process
– at least for this simple 1-stimulus LD task. The Q-learning
agent learns by trial-and-error interaction with the environ-
ment when to fire which rule, and when to choose to wait and
not fire any rule. The agent learns all this from a minimal, but
fairly carefully designed, reward structure.

Two-stimuli task
We simulate 15,000 episodes, i.e., 15,000 LD tasks consist-
ing of 2 stimuli only (the word ‘elephant’ and the non-word
‘not a word’), from which the Q-learning agent learns. The
plot in Figure 3 shows that, after about 9,000 episodes, the
task is completed in ≈ 18 steps, which is the length of this
task when the agent completes it perfectly.

A close examination of the agent’s final Q-value table indi-
cates that the agent has learned goal-conditioned rules almost
perfectly. Once again, we only look at states for which at least
one action has a non-0 value – a total of 13 states. For each
state, we identify the maximum-value action.
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Figure 3: Steps per simulation to complete the 2-stimuli task

There are 4 states where the agent does nothing (selects
the None action): while waiting for the word ‘elephant’ to be
retrieved, while waiting for a visual value to be automatically
detected and stored in the visual buffer (whether the manual
buffer is busy or free), and while waiting for the retrieval of
the text ‘not a word’ to fail.

There are 4 states where the agent correctly fires the
finished rule: the visual value is FINISHED in all of them.

There are 5 state-action pairs in which the action is one of
the other 3 rules. Out of these, 4 state-action pairs are exactly
what we would expect:

• when the goal state is retrieving, the retrieval buffer is
empty and the manual buffer is free, whether the visual
value is elephant or not a word, the agent correctly fires
the retrieving rule;

• when the goal state is retrieval done and the re-
trieval process has completed successfully based on the
visual value elephant, the agent correctly fires the
lexeme retrieved rule;

• finally, when the goal state is retrieval done and the
retrieval process has completed unsuccessfully based on
the visual value not a word, the agent correctly fires the
no lexeme found rule.

However, unlike in the 1-stimulus task, there is 1 state-
action pair that is not optimal, and is simply a reflection of
the trial-and-error learning process that takes longer is and
more error prone than for the simpler, 1-stimulus task. This
state-action pair is the following:

• the goal state is retrieval done, the retrieval buffer
contains the word elephant, but the visual value is
not a word; in such a state, the agent fires the retrieving
rule, which is the maximum-value action.

Four-stimuli task
We simulate 25,000 episodes, i.e., 25,000 LD tasks consisting
of 4 stimuli (the word ‘elephant’, the non-word ‘not a word’,

Figure 4: Steps per simulation to complete the 4-stimuli task

the word ‘dog’ and the non-word ‘not a word again’), from
which the Q-learning agent learns. We need more episodes
for this task because it is longer, hence more complex, than
the 1-stimulus or the 2-stimuli tasks. The plot in Figure 4
shows that it takes about 22,000 episodes for the task to be
reliably completed in less than 40 steps. The task takes 34
steps when the agent completes it perfectly.

A close examination of the agent’s final Q-value table indi-
cates that the agent has learned goal-conditioned rules fairly
well, but there still is a pretty large amount of noise associ-
ated with multiple goal states. Specifically, there are 24 states
total with at least one action with a non-0 value. When we
examine the maximum-value action for each of these states,
18 state-action pairs make sense and are as expected.

However, the remaining 6 state-action pairs do not make
much sense, similar to the final state-action pair we discussed
in the 2-stimuli task subsection. This noise is a reflection of
the trial-and-error learning process that becomes increasingly
difficult for tasks requiring large numbers of steps. With 4-
stimuli, we see that even after 25,000 episodes, the agent still
wastes time every now and then trying incorrect rules, or just
waiting (selecting the action None) for no good reason.

Conclusion and future directions
We argued that the learnability problem of production-based
cognitive models can be systematically formulated and com-
putationally addressed as a reinforcement learning problem.
But this is merely a first inroad into what promises to be a
very rich nexus of learnability questions.

For example, an immediate follow-up would be to explore
how RL algorithms perform on a variety of production-based
cognitive models, whether linguistic, e.g., syntactic or seman-
tic parsing, or non-linguistic. We have conducted pilot exper-
iments with simple parsing models and tasks, and they are
much more difficult than the LD tasks explored in this paper.

One reason is that the cardinalities of the state and ac-
tion/rule spaces are much larger than for LD tasks, which
makes tabular learning less effective and prompts us to
explore function-approximation approaches, e.g., neural-
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network based approaches (Deep Reinforcement Learning,
see Mnih and al 2015 among many others).

The second reason is that parsing tasks are much longer
– many more RL/MDP time steps, i.e., action-selection de-
cision points – and standard RL methods are increasingly
ineffective in this kind of sparse-reward, long time horizon
tasks because the temporal credit assignment problem be-
comes very difficult. The difficulty is further increased when
function-approximation approaches are used – because of
vanishing-gradient issues among others. It would be worth
exploring function-approximation approaches in realistically
long LD tasks first (hundreds of LD stimuli, hence many steps
per episode), and only subsequently explore parsing tasks.

This leads us to a second cluster of learnability issues that
could be explored. There are other value-based tabular learn-
ing algorithms (Sarsa, Expected Sarsa), as well as non-tabular
approaches to reinforcement learning (both value and policy
based), e.g., linear or non-linear (neural network) function-
approximation approaches. We already indicated that ex-
ploring these algorithms will most probably be necessary for
more complex tasks like parsing, but it is worth exploring
their performance and comparing them to Q-learning on LD
decision tasks first (both on the tasks we used here, and on re-
alistically long tasks with hundreds of stimuli), so that we es-
tablish a broad set of baselines before moving on to other lin-
guistic and non-linguistic production-based cognitive models.

Similarly, we might want to investigate curriculum learn-
ing (see Elman 1993 for an early reference, and Rusu and al
2016 among many others for a more recent discussion) for
increasingly complex tasks. For example, we could design a
curriculum that starts with LD tasks with fewer stimuli and
scales up to realistically long LD tasks. Similarly, we could
start with parsing short sentences and scale up to sentences
with a variety of embedded clauses, or even multi-sentential
discourses, after which we could scale up to realistically long
self-paced reading or eye-tracking tasks with tens or hundreds
of such multi-clausal sentences or discourses.

Curriculum or transfer learning should also enable us to
address the fact that it is not cognitively realistic to require
such a high number of episodes/trial-and-error interactions
for learning. The human cognitive architecture enables us
to learn from much fewer interactions, and/or from explicit
instructions. For tabular Q-learning, for example, this would
mean that the agent starts with a pretrained Q-table.

Finally, a separate line of future work would go beyond
our current focus on the easier problem of rule ordering, and
investigate the extent to which Hierarchical RL methods (Sut-
ton, Precup, and Singh 1998 among others) could be brought
to bear on the harder problem of rule acquisition.
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Abstract

We present a spiking neuron-based model of the Stroop task
where the attention mechanism is entirely implemented with
distributed representations. This is done by using the Neural
Engineering Framework and the associated Semantic Pointer
Architecture to implement a selective attention mechanism.
The resulting system exhibits the Stroop effect, as well as the
associated Facilitation and Interference effects. In contrast
with previous models, these effects are not generated via a lo-
calist competition mechanism. Rather, these effects are a result
of controlled unbinding of information from a combined dis-
tributed representation.

Keywords: Stroop task; neural engineering framework; se-
mantic pointer architecture; spiking neurons; distributed rep-
resentation

Introduction
Current models of the neural mechanisms underlying selec-
tive attention (in tasks such as the Stroop task) rely on a
localist representation of concepts. That is, they postulate
that there are individual and separate neurons (or groups of
neurons) representing concepts such as RED and BLUE, and
whether attention should be paid to the COLOR of a word
or to the WORD itself. While these sorts of localist neural
models are common, new methods have been developed for
creating neural models that make use of distributed represen-
tations, where the color BLUE would be represented by a par-
ticular pattern of activity over a group of neurons, and a dif-
ferent pattern of activity would represent RED (or a concept
such as COLOR or WORD, etc.). These sorts of representa-
tions match well to biology (e.g. Stewart & Eliasmith, 2012)
and offer an alternative set of mechanisms for the manipu-
lation and control of representations. Here, we apply these
techniques for the first time to modelling the Stroop task.

Background
On a daily basis, individuals are tasked with allocating their
attention to specific information given their situational de-
mands. This is done by selectively choosing to focus on the
relevant aspects of their situation and discarding the irrele-
vant ones (Bustamante, Lieder, Musslick, Shenhay, & Cohen,
2020). This behaviour is typically believed to be guided by
our internal state and often explained using the Top-down Ex-
citatory Biasing (TEB) model. Specifically, the TEB model
suggests that representations of cognitive control guide task
completion through heightened levels of activity in groups

of neurons associated with processing task-relevant informa-
tion in relation to the levels of activity in groups of neu-
rons associated with processing task-irrelevant information
(Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1991;
Herd, Banich, & O’reilly, 2006). As a result, irrelevant infor-
mation becomes less influential.

A common task in which this phenomenon is illustrated is
the Stroop task (Stroop, 1935). The Stroop task is often re-
ferred to as a control task or a conflict-related task (Petersen
& Posner, 2012) because individuals are required to selec-
tively attend and respond to the pertinent information from
the stimulus and ignore the impertinent information. Specif-
ically, when completing the Stroop task, participants are in-
structed to respond as quickly and accurately as possible by
naming the color of a word stimulus, all while ignoring the
occasionally-distracting information coming from the word
itself. Accordingly, the Stroop task typically consists of two
kinds of stimuli: 1) congruent stimuli, where the word is a
color word that matches the color in which it is presented
(e.g., the color word RED presented in red) and 2) incongru-
ent stimuli, where the color word mismatches the color in
which it is presented (e.g., the color word RED presented in
blue). Importantly, individuals typically take longer to name
the color of the stimuli on the incongruent trials than on con-
gruent trials. This difference in response time between con-
gruent and incongruent word stimuli is often referred to as
the Stroop effect and is commonly perceived to be a result
of the automaticity of word reading which influences color
naming on incongruent and congruent trials (e.g., Ashcraft,
1994; Rayner & Pollatsek, 1989). That is, when respond-
ing to congruent trials participants might be enlisting well-
established reading processes to enhance the speed and ac-
curacy of their responses, whereas on the incongruent trials
participants might need to depend on cognitive control sys-
tems to reduce the reflex to read the color word and initiate
the color-naming processes (Bugg, Jacoby, & Toth, 2008).

Notably, current neural models of the Stroop task
(Botvinick, Braver, Barch, Carter, & Cohen, 2001; Cohen,
Dunbar, & McClelland, 1990; Cohen & Huston, 1994; Herd
et al., 2006) have demonstrated this conflict-control mecha-
nism whereby the representation of the activity in the simu-
lated neurons differs when responding to the congruent trials
versus responding to the incongruent trials. Thus, the repre-
sentation of neural activity is heightened in response to con-
gruent trials, where naming the color of the color word stim-
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ulus is assumed to be supported by the automatic process of
reading the word. At the same time, the representation of neu-
ral activity is weakened when responding to the incongruent
trials, where naming the color of the color word stimulus is
assumed to be hindered by the automatic process of reading
the word (e.g., Herd et al., 2006; Bugg et al., 2008).

Critically, a common trait shared by these current mod-
els is their dependence on the notion of a localist represen-
tation. In other words, there are separate representations for
each individual concept, such as RED or BLUE. These sepa-
rate representations compete with each other, in that as the
representation of RED becomes stronger, it reduces or inhibits
the representation of BLUE (and all other competing terms).
For models that make use of neural mechanisms, these sepa-
rate representations often take the form of separate neurons,
or separate groups of neurons, one group for each possible
concept. These localist representation models are a relatively
common method of examining conflict-related tasks such as
the Stroop task. However, this sort of localist representation
has been criticized and contrasted with distributed representa-
tions (e.g. Rumelhart, McClelland, & PDP Research Group,
1986), and these types of distributed representations can form
closer connections to the underlying neurobiological imple-
mentation (e.g. Stewart, Bekolay, & Eliasmith, 2011).

With this in mind, we aim to create a novel model of the
Stroop task that makes use of distributed representations. We
believe this framework may provide more information regard-
ing the function of the neural system on cognitive control.
In addition to the use of distributed representations in our
model, we also include a third kind of stimuli, the neutral
word stimuli. The Neutral stimuli is all-too-frequently ex-
cluded from the Stroop task, despite it being useful for in-
terpreting how much of the Stroop effect is driven by Inter-
ference (arising from the incongruent words) and how much
of it is driven by Facilitation (arising from congruent words)
(MacLeod, 1991). Although there is debate as to what con-
sists of an appropriate neutral stimulus, for the sake of our
paper we have opted to use non-color word stimuli which is a
commonly used method in the color Stroop task.

The inclusion of the neutral stimuli allows us to break
down the Stroop effect into its various parts and to explore
these complexities in greater detail. Further, by implementing
distributed representations within the model we are suggest-
ing a very different mechanistic theory than other models of
the Stroop Task. In particular, rather than relying on compet-
itive inhibition operations, our model is based on computing
mathematical operations on high-dimensional vectors. Since
these operations can then be implemented using biologically
detailed neurons, we can tie the model more closely to bio-
logical constraints. This allows for direct output of metrics
such as response times, rather than using an abstract notion
of time steps.

The goal of our paper is to demonstrate a neural mecha-
nism that can produce the Stroop effect so that we might be
able to evaluate in greater depth what is occurring at the neu-

ral level. By doing so, we hope to show exactly how top-down
biasing can be implemented in a flexible manner. We also
hope it can shed light on why the magnitude of the Stroop
effect varies based on different situations, (e.g. 160-260ms
in Dunbar & MacLeod, 1984 and 75-150ms in Augustinova,
Parris, & Ferrand, 2019). Furthermore, we examine the rela-
tionship between the Stroop effect and its two components:
the Facilitation effect (defined as the difference in perfor-
mance between the congruent and neutral trials, i.e. the ben-
efit when the word is congruent to its color) and the Interfer-
ence effect (defined as the difference in performance between
the incongruent and neutral trials; i.e. the penalty when the
word is incongruent to its color).

Distributed Representation
Most models of language that use distributed representations
make use of vectors (i.e. a list of numbers). That is, each
basic term (RED, BLUE, COLOR, etc.) is a vector in some high-
dimensional space. These vectors can be randomly chosen,
or can be chosen to respect semantic similarity (so that the
vector for RED is similar to the vector for PINK, for example).
In the work presented here, all vectors are randomly chosen
512-dimensional unit-length vectors.

Importantly, these distributed representations can be com-
bined in order to create representations of more complex
structures. While there are many different mathematical
frameworks suitable for forming these combinations (see
Levy & Gayler, 2008 for an overview), they all generally have
operators for binding and unbinding. For example, one can
build a vector to represent ”dogs chase cats” by computing
the following:

S = SUBJECT
⊗

DOGS + VERB
⊗

CHASE + OBJECT
⊗

CATS

This gives us a final resulting vector S which forms a dis-
tributed representation of that entire sentence. Given S, we
can recover the individual parts by performing unbinding
(written as binding by the inverse, noted by −1). In this case,
if we want the object of the sentence, we can compute

S
⊗

OBJECT−1 ≈ CATS

This is, of course, an approximation, and the resulting out-
put will be less and less similar to the ideal vector for CATS
as the vocabulary size and the number of terms that are com-
bined (and the depth of the combinations) are increased.

In this work, we use circular convolution as a binding op-
eration, and its associated pseudo-inverse (turning circular
correlation into circular convolution) as the unbinding oper-
ator, as suggested in (Plate, 1995). These operations have
been shown to be efficiently implementable by spiking neu-
rons, and have been used in many neurally detailed models of
cognitive behaviour, including sequential memory (Choo &
Eliasmith, 2010), semantic search (Kajić, Gosmann, Stewart,
Wennekers, & Eliasmith, 2017), emotional appraisal (Kajić,
Schröder, Stewart, & Thagard, 2019), and spatial representa-
tion (Lu, Voelker, Komer, & Eliasmith, 2019). This approach
is known as the Semantic Pointer Architecture, and has been
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shown to scale efficiently to human-sized vocabularies and
sentence structures (Eliasmith, 2013).

Distributed Representation of the Stroop Task
While distributed representations and Semantic Pointers have
been used to model a variety of tasks, they have not yet, to
our knowledge, been used to model the Stroop task. To do
this, we take an approach that closely follows the binding and
unbinding ideas described in the previous section.

First, we are not modelling the entire visual processing sys-
tem. Instead, we assume that visual processing is inputting to
our model a combined representation of the word and its color
(and any other visual information could also be included).
That is, the input representation is a vector that combines the
vector for the word with the vector for the color. For example,
the word RED written in blue would be presented to the model
as:

vision = WORD
⊗

RED + COLOR
⊗

BLUE

This can be thought of as the output (final layer) of a stan-
dard deep-network vision system which is external to the
model presented here, and in future work we will be including
this vision system as part of the model.

In the normal Stroop task, participants are asked to identify
the color of the stimuli they are seeing, but it is also possible
to ask them to identify the words. This means there must be
a way to dynamically change the aspect of the visual stimuli
to which participants are paying attention. In our model, this
is a separate input. If they are perfectly paying attention to
the color, then the vector input to this part of the model is the
vector COLOR.

This approach allows us to explore one possible method
for producing the Stroop effect: attention might not be per-
fect. Instead, the attention value might be attention =
0.7COLOR+0.3WORD, indicating that most of the attention is
on the color of the word, but some attention is on the word
itself.

Given this setup, the model itself just needs to compute
the result of vision

⊗
attention−1. This results in a vec-

tor that should be close to the concept that determines the
response.

However, in order to produce a response time out of our
model, we also need to include a mechanism that will take
the resulting vector and turn it into an explicit response (say-
ing a color name, or pressing a button). To model this, we
use a set of independent accumulators (Gosmann, Voelker, &
Eliasmith, 2017). That is, we take the result value and feed
it into a set of evidence accumulators, one for each possible
response. This means there is a group of neurons whose ac-
tivity increases based on similarity between the result and the
vector for RED, another for BLUE, and so on. (Similarity is
computed as the dot product). When this activity reaches a
threshold, we consider that to be the time that a response is
generated. Making a response suppresses activity in all the
other accumulators, but there is no interaction between the
accumulators until that decision is generated.

It should be noted that the only part of this model which
uses localist representations is the independent accumulators
used to make the final decision. All other parts of the model
are distributed, and we do not make use of any direct compe-
tition mechanism, unlike the localist models discussed above.

Figure 1: The model of attention in the Stroop task. Inputs
are vectors, such as WORD

⊗
RED + COLOR

⊗
BLUE for the vi-

sion and 0.7COLOR+0.3WORD for the attention. Boxes repre-
sent single layers of neurons and arrows represent all-to-all
connection weight matrices. Connection weights are set to
optimally approximate the desired unbinding operation (cir-
cular correlation), and the independent accumulators are a set
of neural integrators that build up evidence over time until
reaching a threshold and producing an output response.

Neural Implementation
Previous work has shown how spiking neurons can be con-
nected such that they represent vectors and compute functions
such as circular convolution (Eliasmith, 2013), and we follow
the same approach here. To have a group of neurons repre-
sent a vector, we randomly assign each neuron a “preferred
direction vector”. This is the vector for which it will fire most
strongly, consistent with the preferred stimuli found for many
sensory and motor neurons (e.g. Georgopoulos, Schwartz, &
Kettner, 1986). Each neuron is also given a random gain and
bias current, providing heterogeneity in the population cod-
ing. In this situation, any vector will result in a different pat-
tern of neural activity in the population, and we can think of
this as much like a single-hidden-layer neural network where
the input weights are randomly chosen.

In order to compute functions using these distributed rep-
resentations, we solve for the connection weights that will
lead to one group of neurons causing the desired neural ac-
tivity in another group of neurons. For example, if one group
of neurons represents x and another group of neurons repre-
sents y and we want y = f (x), then we need to find the set
of connection weights from the x population to the y popu-
lation that achieves this for all x values. This can be solved
using a variety of optimization techniques; here we treat it as
a least-squares minimization problem and solve for the op-
timal connection weights. This general process is known as
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the Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003).

This resulting network is depicted in Fig. 1, and its be-
haviour is in Fig 2. The neural activity (i.e. individual neuron
spikes) of a subset of the neurons in each area are shown. For
the two input areas (visual and attention), we also show
the computed vector that is being used to stimulate those neu-
rons. All other neural activity is purely the result of the com-
puted connection weights that implement the unbinding and
accumulation operations. For the accumulator neurons, we
also present the aggregate activity (red and blue lines) encod-
ing the gradual increase in evidence for a decision, and the
final decision that is made once a threshold is reached. The
bottom row of Fig 2 shows a response time of 340ms for the
incongruent case, while the congruent case is faster at 240ms.

Figure 2: Model behaviour for a congruent and an incongru-
ent example. Grey background is spiking neural activity from
randomly chosen neurons. Overlaid text is the vector pre-
sented as input. Red and Blue lines show the accumulation
of the similarity between the neural activity in result and
the ideal neural activity for RED and BLUE, respectively. The
decision is made when an accumulator reaches a threshold,
which then suppresses the other accumulators.

Results
In this paper, we examine the overall behaviour of our model,
rather than fitting it to a particular study. The magnitude of

Stroop effects have been shown to be sensitive to a wide va-
riety of factors (e.g. Dunbar & MacLeod, 1984; Augustinova
et al., 2019). In future work we will be examining these fac-
tors and mapping them into our model, but here we just show
the basic exploratory results. In general, most Stroop stud-
ies find the fastest response times for congruent trials (e.g.
the word RED written in the color RED), and the slowest
response times for incongruent trials (e.g. the word BLUE
written in the color RED), with neutral trials somewhere in-
between (e.g. the word HOUSE written in the color RED).
This basic pattern is replicated by our model (Fig. 3).

Figure 3: Model response times when varying the time over
which the accumulators build up evidence. (A): Raw re-
sponse times for neutral, incongruent, and congruent cases.
(B): Effect sizes computed as differences in response times.
Stroop = Congruent - Incongruent; Interference = Incongru-
ent - Neutral; Facilitation = Neutral - Congruent. Shaded area
shows the parameter setting used in the rest of the paper.

The actual magnitude of the response times is strongly de-
pendent on the rate of accumulation used to make the final
decision. Fig. 3A shows this linear increase in overall re-
sponse time as we increase the accumulation time parameter
for the independent accumulators. However, if we present
the same data in a different way, Fig. 3B shows a surprising
result. Here, we measure the Stroop effect (the difference in
response times between congruent and incongruent trials), the
Interference effect (the difference in response times between
neutral and incongruent trials), and the Facilitation effect (the
difference in response times between congruent and neutral
trials). The Stroop effect will always be the sum of the Inter-
ference and Facilitation effects. Fig. 3B shows that increasing
the accumulation time increases the Stroop effect linearly, but
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the Interference effect stops increasing at around 80ms, and
after that the Facilitation effect is primarily responsible for the
increase in the Stroop effect. Another way to think of this is
that in situations with fast response times (i.e. low amounts of
accumulation time), the Stroop effect is almost entirely driven
by the Interference effect, but with longer response times the
Facilitation effect becomes stronger.

While we are still conducting a literature review as to how
the Stroop, Interference, and Facilitation effects vary across
experimental conditions, so that we can perform parameter
fitting to those conditions, it should be noted that our recent
experimental work has shown Interference effects in the 100-
140ms range, and Facilitation effects in the 0-10ms range, for
conditions where subjects are standing or sitting (Caron et al.,
in press).

In addition to the accumulation time, we also explored
one other parameter of our basic model. The neural
representation for the attention signal was initially set to
0.7COLOR+0.3WORD. In Fig. 4 we vary this ratio. Interest-
ingly, while this also linearly increases the Stroop effect, it
causes no change at all to the Interference effect. Instead,
this purely changes the Facilitation effect. Furthermore, if
this ratio is made to be too extreme (i.e. if the attention signal
becomes 0.8COLOR+0.2WORD), then the model starts produc-
ing a negative Facilitation effect (i.e. congruent trials become
slower than neutral trials). This is not a phenomenon that
is commonly seen in the behavioural literature, which either
indicates a lower bound on this parameter in humans (i.e. hu-
mans don’t adjust their attention to be that extremely focused
on color), or an indication that other features need to be added
to the model.

As an attempt to add another feature to the model that
might increase the Facilitation effect (and stop it from be-
coming negative), we also tried adding a direct connection
between the visual neurons and the result neurons, by-
passing the unbinding system. Biologically, these would be
connections from the visual system that cannot be modulated
by the attention system. This can be thought of as a sort of
“automaticity”, in that these connections are always feeding
the WORD information to the result, no matter where high-level
cognition is directing attention. The result of adding this pa-
rameter is shown in Fig 5.

With this parameter, the Interference effect is mostly un-
changed, and it caused the desired increase in the Facilitation
effect. However, after a certain point, it starts causing a strong
drop in the Interference effect. Oddly, this does not corre-
spond to any decrease in accuracy, and we are still analyzing
the system to determine why this may be happening.

All other parameters in the model were left at the default
values that have been used in previous Nengo and SPA mod-
els. Future work will analyze the effects of these other pa-
rameters, such as the number of neurons and the vector di-
mensionality.

Figure 4: Model response times when varying the accuracy
of the attention representation. For an attention error of x, the
neural activity in the attention neurons is set to represent the
vector (1− x)COLOR+xWORD.

Discussion and Future Work
We have presented a neural model of the Stroop task that uses
a very different mechanism than previous models. Rather
than relying on a localist representation and a competition-
based mechanism to exhibit the Stroop effect, we produce the
Stroop effect by forming distributed representations that bind
together color and word information, and implement an at-
tention computation that extracts out the desired information.
As we show, this also produces a Stroop effect. We show
that this can all be implemented in spiking neurons using the
same mechanisms that have been instrumental in implement-
ing other tasks, such as sequential memory, semantic search,
emotional appraisal, and spatial relations.

However, we have only begun to analyze this model and
cannot yet claim that it is an improvement over previous ap-
proaches. The actual magnitude of Stroop effects varies sig-
nificantly in different conditions, and we have not yet begun
to map different conditions into different parameter settings
for our model. Our initial parameter exploration indicates that
the magnitude of the Interference effect is, surprisingly, gen-
erally unaffected by the amount of attentional error or direct
automaticity, and is instead only affected by the rate of accu-
mulation of evidence needed to make a decision, and it seems
to have a soft maximum of just under 100ms.

While our primary future work is to explore the param-
eter space of this model and fit it to various Stroop condi-
tions, there are also clearly many additions still needed to the
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Figure 5: Model response times when introducing a direct
connection between visual and result that always decodes
the WORD, bypassing the attention system.

model. This includes adding a more detailed visual system,
potentially modelling visual effects such as how increasing
the spacing between letters in a word can reduce the Stroop
effect. Furthermore, non-neural models of the Stroop effect
(e.g. Lovett, 2005) have included cognitive strategies, which
can be added to our model using the existing Semantic Pointer
Architecture techniques.

Even with these limitations, this model presents an intrigu-
ing alternative to localist accounts of the Stroop effect. How-
ever, more work must be done to validate this as a cognitively
plausible model.
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Abstract 

Each day we are faced with a decision of maximizing our 
resources by using our current knowledge to learn new things. 
Should we go to the new restaurant that just opened around the 
corner or stick to an old, reliable favourite? This is known as 
the exploration-exploitation dilemma and it is at the heart of 
reinforcement learning. The present study looks at the 
exploitation half of this problem and aims to implement it in a 
biologically plausible recurrent associative memory model. In 
the framework of Artificial Neural Networks, exploitation is 
observed when the network can iterate through many learned 
responses and stabilize on the correct one to solve a given task. 
This is a process akin to being able to switch from a cyclic to 
a point attractor. More precisely, Bidirectional Associative 
Memory (BAM) is used to accomplish such tasks where the 
context dictates which attractor the network should converge 
to. For simple independent tasks, the BAM is sufficient. 
However, for overlapping tasks, the task becomes nonlinearly 
separable. Therefore, the BAM needs an extra unsupervised 
layer to extract unique features from the inputs. These features 
combined with input are then sent to BAM where it can learn 
the different attractors adequately. This network was able to 
stabilize on the correct responses of tasks that involved time 
series of varying lengths, overlap, and levels of correlation; the 
variability one would expect from the real world. 

Keywords: exploitation/exploration; recurrent associative 
memory; one-to-many associations. 

Introduction 
In order to increase their chances of survival, many 
organisms have evolved various complex mechanisms to 
solve problems, make decisions, and learn about the 
environment around them. These mechanisms come with 
several different trade-offs, where increasing proficiency in 
one area may result in a lack of ability in another area. One 
of these problems in cognition is the exploration-exploitation 
dilemma (Hills, Todd, Lazer, Redish, & Couzin, 2015). This 
is when an organism must choose whether it wants to employ 
something it has already learned (exploitation) or explore its 
environment to learn new things (exploration). For example, 
when a young child is first learning how to open different 
doors. They may start by trying the few ways they already 
know to open a door (exploitation), such as pulling and 

pushing. If these behaviours fail, however, they will have to 
start looking for new solutions (exploring). Understanding 
exactly how animals and humans switch between these two 
processes and how each of them works is crucial to 
understanding how we adapt, learn, behave, and survive 
(Hills et al., 2015). This trade-off is one of many phenomena 
affected by Reinforcement Learning (RL).  

Previous studies have proposed several methods to solving 
this problem from an “optimal solution” perspective. For 
example, Hwang, Chiou and Wu (2003) created an Artificial 
Neural Network (ANN; an evaluation predictor) that solves 
the exploration-exploitation problem that was able to both 
explore and exploit to find an optimal solution to their task 
(balancing a pendulum). They used the mean of a normal 
distribution to represent the exploitation function, which may 
be a bit too basic to capture the exploitation process. This 
study and many others focus too much on obtaining a desired 
state rather than the underlying process of how exploitation 
(and exploration) take place or attempt to find a biologically 
plausible solution (Cohen, McClure, & Yu, 2007; Tilahun, 
2019).  

Another promising study was conducted by Lew, Rey, and 
Zanutto (2013). It outlines a biologically plausible model of 
switching between exploration and exploitation depending on 
changes in the environment and rewards from the 
dopaminergic system. Their model is a computational 
framework of how exploration and exploitation are selected 
and relates this process back to the reward system in the 
human brain, focusing on the selection only. Many studies 
have a similar focus and are more about the overall model 
rather than how each process works (Gershman & Niv, 2015; 
Hallquist & Dombrovski, 2019).  

An important consideration overseen by these studies is the 
context in which the decision takes place. Empirical studies 
have shown how the environment is an important factor in 
predicting how an animal will behave and how it will exploit 
its resources (Naruse et al., 2018). Some studies have shown 
how the decisions humans and animals make influence their 
ecosystem and vice versa, from small-scale interactions 
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among individual agents to large-scale adaptive systems, like 
population dynamics (Monk et al., 2018). The context in 
which an animal is found clearly plays a role on how it 
chooses to exploit and explore.   

The present study looks at the exploitation half of the 
dilemma using environmental context as a cue. For instance, 
an animal faces the exploration-exploitation dilemma while 
foraging for food (Hills et al., 2015). Is it more efficient to 
explore the area for new sources of food or stick to a learned 
set of locations where food has been found in the past?  

The most well-known example of exploitation has been in 
Q-Learning (Watkins & Dayan, 1992). In this
implementation, the best outcome is simply the one that has
the maximum possible reward; max(Q). This works best
when the reinforcement is non-binary. However, in the
situation of multiple possible outcomes, the agent should be
able to test different possible behaviours until the correct one
has been found. For example, if the animal chooses to exploit
their already-known resources, they cycle through them until
the problem is solved (they find food). Once it is solved, they
will stop trying different behaviours and focus on the
successful one.

In ANNs, the problem can be framed as how the network 
can generate a different output (behaviour) when the input 
(context) remains the same? In ANNs, if a given input is sent 
to the network, it will always give the same associated output. 
However, if that output is not satisfying, the network must 
give a different output even though it is still the same input 
that is presented. One way to solve this problem is to use a 
cycle attractor. This process can be modeled by the network 
generating various different outputs from the same input to 
represent the different learned behaviours. For example, 
input 1 generates output 1, which generates output 2, all the 
way until output n. Output n, the final output, is then 
associated with the output 1, creating a loop of learned 
patterns. This would be like a squirrel having a series of berry 
bushes where it knows food can be found and going from 
bush to bush until it finds some. 

This can be easily implemented in a Bidirectional 
Associative Memory (BAM) as a multistep time series 
(Chartier & Boukadoum, 2006). However, a problem arises 
when the network must stabilize on a specific output i. 
Therefore, each of the patterns (output) must also be stored 
as point attractors in the network. This represents a one-to-
many situation where for the same output i the network must 
generate output i+1 (next pattern; cyclic attractor) or output i 
(same pattern; point attractor). See Fig. 1 for a diagram of 
cyclic and point attractors.  

Figure 1: Illustration of cyclic and point attractors. 

Figure 2: Flowchart illustrating the switching from a cyclic 
attractor to a fixed-point attractor using the environment. 

The solution may reside in the inclusion of context that can 
dictate which state the network should be in and therefore 
give distinctive features. From the feedback given by the 
environment, the network should be able to switch between a 
cyclic (repeating series of outputs) and a point attractor 
(single output). However, instead of using context from the 
time series itself (Elman, 1990), the context has to be 
extracted from the reading of the environment; a process 
proposed in (Jordan, 1997) and successfully implemented in 
BAM (Rolon-Mérette, Rolon-Mérette, & Chartier, 2019). By 
having a unique context as the initial input of the time series, 
it can also be used to distinguish multiple cyclic attractors 
(different time series).  

The BAM can be used to store various attractors including 
point, cyclic, and chaotic attractors (Chartier, Boukadoum, & 
Amiri, 2009), making it a well-suited candidate to perform 
exploitation. Fig. 2 shows an example of both cyclic 

38Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



attractors (a to c) and fixed-point attractors (d) in the model. 
When the BAM is giving the next output, it is recalling 
associations in a cycle. In this case, it recalls ‘A’ from ‘1’ and 
proceeds in order (‘B’, ‘C’, etc.). However, when it needs to 
stabilize, it switches to a fixed-point attractor. In this 
example, the environment gives ‘C’ associated with itself as 
a response, which is different from ‘C’ in the ‘1’ context, 
causing the BAM to switch from a cyclic attractor to a fixed-
point attractor. In order to focus exclusively on the 
exploitation phase, it is assumed that some level of 
exploration has already taken place. In other words, that 
series of behaviours have already been learned.   

Putting Fig. 2 in the context of the foraging example, ‘1’ 
could represent hunger, and the other patterns represent 
learned behaviours, such as searching for food in different 
locations; ‘A’, ‘B’, ‘C’, etc. When food is located, the 
environment lets the animal know to stop cycling through its 
learned behaviours (checking different locations) and make 
the decision to stay there. 

The remainder of this paper is divided into two separate 
sets of simulations. Simulation I introduces the problem of 
modeling exploitation and switching from iteration to 
stabilizing on a given response using the environmental 
context (one-to-many association). Simulation II solves more 
complex and diverse situations involving nonlinearly 
separable associations. An overall discussion is provided at 
the end.  

Simulation I- Independent Time Series 

Methods 
To model exploitation, time series of patterns were used to 
represent different possible output behaviours. Each series 
was preceded by a unique contextual input. The network task 
consisted of associating multiple time series of different 
lengths and various levels of overlap. Moreover, the level of 
correlation between patterns varies vastly to encapsulate the 
variability found in the real world. 

Stimuli Patterns of behaviours were represented by a series 
of letters and the context by a number. Each pattern was 
placed on a 7x7 grid where a black pixel had a value of +1 
and a white pixel a value of -1. Following the procedure in 
Rolon-Mérette et al. (2019) for each pattern of the time  
series, the associated context pattern was appended. These 
contexts allow the network to differentiate between different 
time series and the desired type of attractor (cyclic vs. point). 
The various time series are illustrated in Fig. 3, with grey 
boxes to highlight the repeated and overlapping patterns. 
Series 1 is a single time series of patterns associated with the 
context of number ‘1’ and each of the patterns are also 
associated with themselves. It represents a basic, independent 
time series with no overlap and is the least complex series. 
Series 2 increases the difficulty by having two independent 
time series of various lengths. Series 3 includes three  

Figure 3: Stimuli for Simulations I and II. 

independent time series of various lengths as well.  Series 4 
and 5 represent situations closer to reality, where the  
difficulty is further increased. In both examples, a given 
pattern is associated not only to two settings (the cyclic and 
the point attractor) but to four (series 4) or three (series 5) 
settings. Series 4 shows a setting where patterns can belong 
to various solutions (overlapping), while series 5 shows a 
series that is a subtype of the other. In both cases, the problem 
is no longer linearly solvable.    

Architecture The architecture for the modified BAM 
(Chartier et al., 2006) is made of two Hopfield-like neural 
networks interconnected in a head-to-tail fashion to create a  
bidirectional flow of information (see Fig. 4). The initial 
vector-states are represented by x[0] and y[0], the weight 
matrices by W and V, the dimensionality by m and n, and t 
represents the time (current iteration number). 

Figure 4: Architecture of the BAM. 
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Output Function The transmission is composed of the 
activation function that is then fed through the output 
function. The activation is obtained the usual way: 

a[t]= Wx[t]  (1a) 

b[t]= Vx[t]   (1b) 

Once this linear activation is obtained it goes through the 
nonlinear output function defined as (2a) and (2b): 

∀i,…, n, yi[t+1]=f ൫ai[t]൯

 = ቐ

1,    if ai[t]>1
-1,   if ai[t]<-1

(δ+1)ai[t]-δai[t]
3 ,   else    

  (2a) 

∀i,…, m, yi[t+1]=f ൫bi[t]൯

  = ቐ

1,    if bi[t]>1
-1,   if bi[t]<-1

(δ+1)bi[t]-δbi[t]
3 ,   else    

 

 (2b) 

where n and m are the number of units in each layer of the 
network, i is the index unit, δ is the transmission parameter, 
and a and b are the activations. The output is a cubic function 
with saturating limits at ±1. 

Learning Function The connection weights are modified 
following a Hebbian/anti-Hebbian rule (Bégin & Proulx, 
1996; Storkey & Valabregue, 1999) and can be represented 
as: 

W[k+1]=W[k]+η(y[0] − y[t])(x[0]+x[t])
T  (3a) 

V[k+1]=V[k]+η(y[0] − y[t])(x[0]+x[t])
T  (3b) 

where W and V represent the two sets of weight connections, 
x[0] and y[0] the initial inputs, η the learning parameter, and k 
the current learning trial. The η is calculated using the 
following inequality function to guarantee that the learning 
will converge (Chartier et al., 2006): 

η <
1

2(1-2δ)Max[m,n]
,δ≠

1

2
(4) 

Parameters To ensure all associations are stable, delta (δ) 
was set to 0.2, number of iterations (t) to 1 and learning rate 
(η) was set to 0.008 (equation 4). The minimum Mean 
Squared Error (MSE) was 10-8 and the maximum amount of 
learning trials was set to 1000 (in case of non-convergence). 
The weights W and V were initialized at 0. 

Learning Procedure 
1. Selection of a series (Fig.3).

2. Selection of an associated pair as the initial input for x[0]

and y[0].
3. Computation of the outputs x[1] and y[1] using equations 1
and 2.
4. Weights update (W and V) according to equation 3.
5. This was repeated with each of the subsequent patterns
until the MSE for all associations reached 10-8 or the number
of trials reached 1000.

Exploitation Procedure 
1. Selection of a “desired response” for the network to
stabilize on for a given time series (“initial context”). This is
the response stored in the environment for comparison.
2. First pattern in the time series is used as the input for BAM
(x[0]). 
3. Environment compares output (y[t]) with the “desired
response” for each iteration. If it does not match, the network
uses this pattern as the new input (x[t]=y[t]) and generates the
next one (y[t+1]). If it matches (BAM has found the correct
pattern), the environment sends only this pattern back to the
BAM. This can be seen as the environment changing when
the solution to a task is found (for example, when you are
trying to open a door and it opens vs. remaining closed),
providing enough feedback to stabilize on this correct
response.
4. The BAM recalls the pattern associated with itself and
stabilizes on it instead of continuing to iterate through the
series.

Results 
The BAM was able to learn and recall the first three series. It 
was also able to stabilize its output on any desired pattern 
with perfect accuracy. For example, in Fig. 5 we see one trial 
in series 1, where ‘F’ was the correct response in time series 
‘1’. The initial input was ‘1’ and it was given to the BAM, 
which recalled ‘A’. This output was compared to the desired 
response in the environment, and since it was not a match, the 
output became the new input and was sent back to the BAM. 
This continued until the correct response ‘F’ was given, 
where the environment changed because the task had been 
solved and sent ‘F’ both as input and context, to the BAM.  

Figure 5: Results of example trials from Simulation I. 
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The network was then able to give the same output, therefore 
causing it to stabilize on the correct response.  

However, when the BAM was faced with more complex 
tasks (overlaps or subtype), it could no longer learn the 
associations properly and stabilize on the desired response. 
For example, when encountering a nonlinear task as seen in 
series 4 and 5, the results are noisy, and the BAM often fails 
to learn all the time series properly. It also cannot stabilize on 
the correct response. This is due to the nature of the task that  
necessitates a nonlinear classification, a capacity lacking in a 
single layer BAM (Chartier & Boukadoum, 2006). Therefore, 
the next simulation solves this problem by adding an 
unsupervised layer to the BAM (Rolon-Mérette, Rolon-
Mérette, & Chartier, 2018). 

Simulation II- Overlapping Time Series 

Methods 
As indicated by the results from Simulation 1, a BAM alone 
using contexts is not sufficient to solve problems of higher 
complexity, meaning it cannot solve real-world problems. 
Previous works have shown that a Feature Extraction 
Bidirectional Associative Memory (FEBAM) can be used in 
combination with the BAM in order to solve nonlinearly 
separable tasks (Tremblay, Myers-Stewart, Morissette, & 
Chartier, 2013). Therefore, the architecture of the network 
has to be modified accordingly. The new flowchart is shown 
in Fig. 6. 

Stimuli All series from Fig. 3 were used with the addition of 
one additional complex series (Fig. 7). This new series 
includes a mix of all possible combinations of multiple, 
overlapping and subtype time series; representing the kind of 
variability found in nature. It encompasses all possible 
combinations and arrangements of stimuli. Fig. 8 illustrates 
these combinations, using a Venn diagram for clarity. 

Figure 6: Flowchart for Simulation II, showing unique 
representation from FEBAM being appended to stimuli. 

Figure 7: Added stimuli for Simulation II. 

Figure 8: Venn diagram illustrating which time series are 
independent, subtype, or overlap in series 6. 

Architecture The FEBAM is the unsupervised version of the 
BAM. The only difference between the two models is the 
absence of a set of external connections; the y[0] inputs (see 
Fig. 4). This means there is only one explicit connection, x[0], 
making the learning unsupervised. 

Output Function and Learning Function The transmission 
is obtained the same way as the BAM. Regarding the 
learning, because the y[0] connections are no longer available, 
they are obtained by iterating once through the network as 
illustrated in Fig. 9. The weights of the FEBAM are then 
updated exactly as the BAM (equations 3a, 3b). 

Parameters For both BAM and FEBAM, the transmission 
parameter (δ) was set to 0.2 to ensure the fixed points would 
be stable. The learning parameter (η) was set to 0.004. The  
maximum amount of learning trials was set to 1000, and the 
minimum required MSE was 10-8. The weights of the 
FEBAM were randomly initialized between -2 and 2 
(Tremblay et al., 2013). 

Learning Procedure 
1. Selection of a series (Fig. 2 and 6).
2. Selection of an associated pair as the initial input for the
FEBAM.
3. The output of the FEBAM is then appended to the initial
input and sent to the BAM (Fig. 6).
4. The BAM outputs the next associated patterns.
5. Weights update for both the FEBAM and BAM.
6. This was repeated with each of the subsequent patterns
until the MSE for all associations reached 10-8 or the number
of trials reached 1000.
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Figure 9: Output iterative process used for the FEBAM 
learning. 

Exploitation Procedure 
1. Selection of a “desired response” for the network to
stabilize on for a given time series (“initial context”).
This is the response stored in the environment for
comparison.
2. First pattern in the time series is an input for FEBAM.
3. The output of the FEBAM is then appended to the initial
pattern and sent to the BAM.
4. Environment compares output of the BAM (y[t]) with
“desired response” for each iteration t. If it does not match,
the network uses this pattern as the new input (x[t]=y[t]) and
generates the next one (y[t+1]). If it matches (BAM has
correctly solved the task), the environment sends only this
pattern back to the FEBAM (then to the BAM).
5. The BAM recalls the pattern associated with itself and
stabilizes instead of continuing to iterate through the series.

Results 
As shown in Fig. 10, the FEBAM-BAM model was able to 
learn and perfectly recall both time series 4 and 5 with no 
problems, which the BAM alone was not able to do. It could 
also stabilize on any given response without issue. In the 
example shown for series 4 (Fig. 10), the desired response for 
that trial was ‘E’ in the ‘2’ time series. The first input for that 
time series, ‘2’, was given as the initial input and sent through  

Figure 10: Results of example trials from Simulation II. 

the FEBAM, where the unique signature for that pattern was 
generated and appended to it. This new stimulus was then  
entered as input for the BAM, which gave ‘C’ as an output. 
That output was compared to the desired response in the 
environment and was sent back to the FEBAM until the 
desired response, ‘E’ was given. This desired response ‘E’ 
was then sent, associated with itself, as the new input for 
FEBAM, causing the BAM to stabilize on the correct answer. 
Most importantly, the model was able to successfully 
stabilize on any given response in series 6, which contained 
all possible combinations of interaction and correlation 
between stimuli: subtype, independent time series, and  
overlap. This model was successfully able to iterate through 
all series and stabilize on a given response.  

Discussion and Conclusion 
To further our understanding of Reinforcement Learning and 
the exploration-exploitation trade-off, the exploitation phase 
was implemented using a BAM. Here it was assumed that a 
given set of patterns were already encoded for various 
contexts. The network’s job was then to iterate through a  
given series and stabilize on the desired response using 
feedback from the environment. Various levels of complexity 
were tested ranging from a single time series all the way to 
the same variability found in a natural setting. When the 
complexity was too difficult for a single BAM (nonlinearly 
separable cases), a FEBAM was included in order to generate 
unique representations for each pattern. This combination of 
networks was sufficient to solve any type of situation.  

Furthermore, by adding layers of FEBAM-BAM, the point 
attractors could become the context of a new time series and 
allow chains of time series; something akin to chunking 
(Gobet et al., 2001). 

One limitation of this study is that it represents exploitation 
under very specific circumstances. For example, if one is 
trying to solve a problem with a series of learned responses, 
they will learn which of the responses are helpful and which 
are not. Therefore, the order of the patterns should reflect the 
probability of success, a phenomenon well-captured by 
standard Q-Learning. Changing the order of some items 
without retraining the whole dataset is a challenging avenue 
in a distributed associative memory and should be addressed 
in future studies. This could be implemented using an 
additional BAM to store “correct” responses in function of 
the desired new order with a novel correlated context 
generated by the network itself or by switching to more 
interesting attractors such as aperiodic ones (Tsuda, 2001). 

The current network could also be added to a model of 
exploration to study the exploration-exploitation trade-off. 
Finally, temporal aspects should be taken into consideration, 
allowing for the timing of when actions should be 
accomplished, easing the transition from numerical 
simulation to real-time neurorobotic implementation.  

In conclusion, by using a BAM, we were able to model the 
exploitation phase of the exploration-exploitation dilemma, 
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where the subject iterates through different learned responses 
and can stabilize on the correct response based on feedback 
from the environment. By adding a FEBAM to generate a 
unique representation for each learned stimulus, we were able 
to model this with all of the complexity of a real-world 
setting, including different lengths of stimuli, different levels 
of correlation, and nonlinear problems. Being able to model 
exploitation is a crucial part of understanding our own 
cognition and how we learn from the dynamic world around 
us. 
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Abstract 

Models of learning and retention make predictions of human 
performance based on the interaction of cognitive mechanisms with 
temporal features such as the number of repetitions, time since last 
presentation, and item spacing. These features have been shown to 
consistently influence performance across a variety of domains. 
Typically omitted from these accounts are the changes in cognitive 
process and key mechanisms used by people while acquiring a skill. 
Here we integrate a model of skill acquisition (Tenison & Anderson, 
2016) with the Predictive Performance Equation (PPE; Walsh, 
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2019) using 
Bayesian change detection (Lee, 2019). Our results show this allows 
for both better representation of an individual’s performance during 
training and improved out-of-sample prediction. 

Keywords: Mathematical model, Bayesian model, Hidden Markov 
model, Skill acquisition, Learning, Strategy change, Spacing effect, 
Change detection, Prediction  

Since the research of Ebbinghaus over a century ago, 
psychologists have studied human learning and forgetting. 
This research has resulted in three core empirical phenomena. 
First, the law of practice (Newell & Rosenbloom, 1982). With 
sufficiently frequent practice on a task, performance 
improves over time. Second, the law of decay. As the time 
between instances of exposure increases, individual memory 
starts to decay and performance gets worse. Third, the 
spacing effect. When exposures between learning 
opportunities are distributed over time (spaced practice) 
individuals are slower to acquire the information, but retain 
the information better than if given the same number of 
exposures within a short time (massed practice; Carpenter, 
Cepeda, Rohrer, Kang, & Pashler, 2012). To explain and 
predict these factors of human learning, formal models of 
learning and retention have been developed (see Walsh, 
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018, for a 
detailed model review and comparison). In the current paper, 
we focus on the Predictive Performance Equation (PPE), a 
model of learning and retention (Walsh et al., 2018).  

Predictive Performance Equation (PPE) 
PPE is a mathematical model of learning and retention that 
makes performance predictions at the individual level based 
on (1) prior performance and (2) the learning schedule of an 
individual. PPE is composed of five equations representing 
three psychological factors of learning (power law of 
learning, power law of decay, and spacing).  The first factor 
is the power law of learning (Eq.1, first term), which is a 
function of N, the number of exposures to a task, a which 

represents one’s prior task knowledge, and learning rate, c, 
which is held constant. 

	𝑀	 = 	 (𝑁 + 𝑎)) ∗ 𝑇,-	(𝐸𝑞. 1)	

The second factor is the power law of decay (Eq.1, second 
term). Temporal decay is represented using T (Eq. 2), which 
weights time by (Eq. 3), and exponent decay parameter, d.  

𝑇 = 	2𝑤4 ∙ 𝑡4

7,8

498

	(𝐸𝑞. 2) 

𝑤4 = 	 𝑡4,;2
1

𝑡<,.=>

7,8

<98

(𝐸𝑞. 3) 

The third factor is spacing effect or temporal distribution of 
practice over time, which is represented within the decay 
parameter (Eq. 4).  

𝑑 = 𝑏 + 𝑚 ∙ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 G 8
HIJ(HKJL)

M  (Eq.4) 

Spacing is accounted for using two free parameters b and m 
and cumulative average lag time. As practice events occur 
together (i.e., massed), the decay increases. As practice 
becomes distributed (i.e., spaced), the decay decreases. 
Finally, activation (M) is placed within a logistic function and 
adjusted according to a threshold parameter, 𝜏. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1

1 + 𝑒𝑥𝑝G	𝜏 −𝑀𝑠 M
	(𝐸𝑞. 5) 

Model Limitations 
A limitation of PPE is that it assumes an individual’s 
performance is expected to improve or decrease according to 
a single continuous function over time. This is based on 
empirical findings of aggregate performance curves, which 
often reveal smooth performance curves following power 
laws. Research examining learning in individuals find this an 
artifact of averaging the performance of multiple individuals 
(Heathcote, Brown, & Mewhort, 2000; Gray & Lindstedt, 
2017). An individual’s performance can appear to have 
“sporadic” performance variation. These “sporadic” 
performance variations sometimes appear random but have 
been shown to reflect changes in an individual's strategy 
(Gray & Lindstedt, 2017; Tenison & Anderson, 2016) 
     These findings are consistent with research suggesting 
skill acquisition occurs in phases, where an individual uses 
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different strategies and/or representations to complete a task 
(Fitts & Posner, 1967; Tenison, Fincham, & Anderson, 
2016). One such theory of skill acquisition, based on the 
ACT-R architecture, proposes that individuals go through 
three phases while acquiring a skill (Anderson, 1982). In the 
first phase, the Computational phase, the individual solves a 
problem by applying general problem-solving rules to 
achieve the solution. In the second, Associative phase, the 
problem is solved through the direct retrieval of various 
portions of the problem. In the third phase of learning, the 
Autonomous phase, the individual has created a stimulus-
response rule for a given problem. Learning during these 
phases is driven by knowledge compilation and declarative 
strengthening. It can be modeled by three separate power law 
functions and their associated parameters (i.e, intercept, 
slope, asymptote).  Prior work has used hidden Markov 
models (HMMs) to estimate these parameters and identify 
where phase shifts occur (Tenison & Anderson, 2016).  
   Currently, PPE does not represent or make predictions 
based on these learning phases. Prior research with PPE 
focused on accounting for average performance on memory 
retrieval during word association tasks and overall 
performance metrics of complex tasks (Gluck, Collins, 
Krusmark, Sense, Maaß, & van Rijn, 2019; Jastrzembski, 
Gluck, & Gunzelmann, 2006). In each of these cases, the 
assumption was a continuous performance curve moderated 
by features of the learning schedule (i.e., number of attempts, 
time between trials, spacing). Assuming a continuous 
learning curve is reasonable in these cases because average 
performance will follow standard features of learning. 
However, the argument for this assumption of a continuous 
performance curve weakens when accounting for 
performance at lower levels of aggregation. At the individual 
person learning individual skills level of analysis, there are 
often discontinuities in performance. PPE interprets these 
“sporadic” changes as noise, leading to (1) decreased 
confidence in an individual's performance, (2) a less accurate 
representation of the learning profile, and/or (3) unrealistic 
out-of-sample performance predictions. To mitigate these 
limitations a substantive mechanistic means of interpreting 
discontinuities in individual learning profiles is required.  
     In this paper, we propose and evaluate a theoretical and 
methodological integration to achieve just that. We use a 
Bayesian change detection procedure (Lee, 2019; Lee, Gluck, 
& Walsh, 2019) to identify when identifiable performance 
discontinuities occur. We then use information about these 
change points to infer changes in phase during learning and 
make predictions about subsequent performance. We refer to 
this novel implementation as TAPPED, which is an 
integration of Tenison and Anderson’s (2016) skill 
acquisition model, Walsh et al.’s (2018) PPE, and  Lee’s 
(2018) change detection procedure. To foreshadow,  the 
TAPPED model identifies similar learning phases similar to 
Tenison and Anderson’s (2016) HMM-based models of skill 
acquisition and is found to have superior predictive accuracy 
compared to PPE.  

Method 
Participants 
We used Amazon Mechanical Turk to recruit 101 participants 
(Gender: Female = 49, Age: M = 31.4, SD  = 6). All 
participants were paid $10 for participation in both 
experimental sessions and $.02 for each correct problem.  
 
Task Stimuli 
During the experiment participants completed a set of novel 
mathematics problems (Pyramid problems). Each problem is 
composed of two numbers separated by a “$” symbol (e.g., 
2$4). The first number is referred to as a base. The second 
number is referred to as the height. The base of the problem 
represents the first term in the additive sequence. The height 
of the problem represents the number of sequential numbers 
that must be added to the base. For example, if a participant 
was given the problem 3$3, then they would have to add 
together the number 3 + 4 + 5 + 6 = 18. In this experiment 
participants were given problems with bases ranging from 3 
– 6 and heights from 4 – 11.  
 
Procedure 
The experiment consisted of two experimental sessions, with 
a 66 hour lag in between them. During the first day, problems 
were displayed on the screen and participants were instructed 
to type in their answer. All participants received feedback on 
whether they were correct or incorrect. Participants went 
through 10 practice blocks, with each block including 40 
items each. Each block consisted of 40 items, with each item 
in one of four spacing conditions. Items in Spacing group 4 
were presented 25 times with 3 problems in-between. 
Spacing group 8 were presented 25 times with 7 intervening 
questions. Spacing group 16 were presented 25 times with 15 
intervening problems. Spacing group 32, were presented 12 
times with 31 intervening presentations. The second 
experimental session was given 66 hours after the first 
session and were tested on the items they practiced on Day 1.  
 
Hidden Markov Model  
We fit an adaptation of the Tenison and Anderson (2016) 
power-law skill acquisition model to the response latencies 
for the items solved during the 10 practice blocks completed 
on Day 1. We refer to this model as the Phase HMM. Only an 
overview of the HMM model is provided here, a detailed 
description can be found in Tenison and Anderson (2016). 
The HMM consists of three states, each representing the three 
phases of skill acquisition. Within each phase, we have a state 
representing each practice opportunity the participant may 
have had within that phase. After each stimulus, participants 
either transition to the first state of the next phase or the next 
state within the current phase. The HMM predicts that 
participants’ reaction times follow phase-specific power 
functions, where the opportunity count for each power 
function is determined by the current state within that phase. 
This HMM structure enables joint estimation of a 
participant’s state as well as their response latency.
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Figure 1. The Bayesian model diagrams for TAPPED (top) and PPE (bottom). 

      In fitting the Tenison and Anderson model (2016) to this 
current experiment we made two changes.  First, we adjusted 
the model to account for general learning which occurs over 
the course of the task and is therefore shared across spacing 
groups (Eq 6). To do this we extended the skill specific model 
to capture general learning using the general learning 
equation derived from ACT* (Pirolli and Anderson, 1985). 
Second, we expanded our model fitting procedure to identify 
which parameters should be shared between items of different 
spacing groups. We fit eight models to the data, exploring 
whether sharing learning rate (𝛼), transition probability 
(𝜋8[	𝜋[\), and scale (𝛽^_K`a) across spacing groups improved 
the fit of the model. 

𝜇cad = 𝛽^_K`a𝑛`^a)4e4),KfghiLjLi × 𝑛Ja7acKH,Klhmhnop 	(𝐸𝑞. 6) 

Table 1. Parameters for best fitting HMM  
Spacing 
group 

𝛽)Ir^sdKd4I7  𝛽K``I)4Kd4ta  𝛽KsdI7IrIs`  

4 9.97 3.6 1.8 
8 11.5 4.6 2.0 
16 12.0 5.1 2.1 
32 12.0 4.6 1.9 
Parameters shared across spacing group 

𝑎Ja7. 𝑎`^a). 𝜋8[ 𝜋[\ 
-.05 -.07 .12 .09 

All models were compared using BIC. We found that the 
model that estimated unique scale parameters for each 
spacing group shared transition parameters and a shared 

learning rates fit best (Table 1; BIC = 119,517.2). This model 
fit the data better than more complex models with all unique 
parameters (BIC= 119,530.7) and simpler models with all 
shared parameters (BIC = 119,672.5).  We list the parameters 
of our final model in Table 1.  For each practice opportunity 
of each item, the model generates a likelihood of being in 
each state of the HMM.  This can be translated into discrete 
Phase labels. We use these labels in our comparison with the 
TAPPED model. 

Bayesian Models 
The Bayesian implementations of TAPPED and PPE are each 
represented as a graphical model (Koller, Friedman, Getoor, 
& Taskar, 2007) (Figure 1). A graphical model format allows 
each variable, variable type, and the dependencies across 
variables to be observed.  All observable variables (e.g., 
participant’s response on a given trial – RT) are represented 
in shaded circles. PPE’s estimated free parameters (b, m, a, τ 
) are represented as unshaded circles. Stochastic variables are 
represented with a single open circle, while deterministic 
variables are represented with two circles. The multiple panes 
represent redundancies for the different participants (i), and 
events (j). 

 The PPE (bottom graph) and TAPPED (top graph) (Figure 
1) models are similar in their overall structure. Both models
are run over a participant’s (i) performance on a particular
pyramid problem (item – j). For each participant the model
estimates values for each of PPE’s free parameter values (b,
m, a, τ). The difference is in the number of different free
parameters each model uses to account for participant
performance during the 1st day. The PPE model (Figure 1 –
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Figure 2. The round by round proportion of each phase of learning (Computational — black, Associative — red, and Procedural 
— blue) estimated with the Phase HMM (Open circles) and the TAPPED model (stars). 
 
 bottom figure) estimates only one value of each of PPE’s free 
parameters for the participant’s performance on a given item 
during the 1st day. However, the TAPPED model (Figure 2) 
can estimate up to 5 different values for each of PPE’s free 
parameters, depending on the number of change points 
estimated by the model (T). Change points are estimated 
using a spike-and-slab prior (T) (Lee, 2019). After parameters 
are estimated for a portion of the learning curve (wij) from the 
prior distribution, they are combined with the participants’ 
observed time variables (lagj, T, Nj), and PPEs fixed 
equations  
to create a performance estimate (Predj) for a given trial. The 
performance estimate (Predj) is then combined with a  
precision parameter (ki) in a beta distribution to develop a 
prior distribution for the likelihood function. Because PPE is 
developed to predict accuracy, reaction times (Perf) were 
transformed to a proportion by dividing their reaction time by 
a maximum reaction time of 7 minutes. The opposite 
transformation was used to get PPE’s predictions represent 
reaction time for all of the preceding results by multiplying 
PPE’s predictions by 7 minutes.  
     Additionally, during the student’s 1st day of performance, 
the TAPPED model also inferred the phase (i.e., 
computational, associative, procedural) of learning that each 
individual was in before and after each unique change point 
(z). Each of the three learning phases (declarative, 
associative, and procedural), was identified based on 
response times estimated from the Tenison, Fincham, and 
Anderson (2016) empirical data distribution. The estimations 

of the individual’s phase were then used to make predictions 
of the participant’s subsequent performance. Predictions the 
participants performance of the 2nd experimental session were 
generated by using parameters estimated for the highest 
learning phase obtained during Day 1 performance.  

 
Results 

First we will examine the similarity between the inferences 
of the participants’ phases of learning estimated by Tenison 
and Anderson (2016) (Phase HMM) and our TAPPED model. 
A comparison between the two models’ results allows us to 
evaluate the extent to which they reach converging inferences 
about learning phase. Second we will use the estimation of 
phases from the participants’ performance during the 1st day 
to make theory-driven predictions of the 3rd day and compare 
these to the PPE.  
 
Behavioral Effects  
For this analysis, we only considered spacing groups with the 
same number of total practice opportunities (i.e. SG-4, SG-8 
and SG-16).  Rather than rely on accuracy, which is high 
across all spacing groups, we used response latency to verify 
the impact of spacing on performance.  A repeated measures 
analysis of variance (ANOVA) run on mean latency data (log 
transformed) revealed a significant main effect of spacing 
group (F(2,174)=97.6, p < .001) and practice opportunity 
(F(1,87)=684.7, p < .001). The interaction between spacing 
group and practice was not significant (F(2,174)=1.7, p = .2).  
During the initial practice period, items that experience
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Figure 3. The mean performance of participants +/- 95% CI (black line and shaded ribbon) and the TAPPED +/- 95% HDI 
and PPE +/- 95% HDI  calibration and prediction for the 4 spacing conditions.  

An greater delay between practice opportunities take longer 
to solve than those with less delay between practice 
opportunities.  We ran a repeated measures ANOVA to 
explore the impact of spacing on the response latency three 
days after the initial learning period.  For the first opportunity 
on Day 3, we see a significant main effect of training 
(F(2,174)=8.8,p<.001) on problem solving latency (log 
transformed).  The benefit of spaced practice is present in the 
faster response latency for spaced items, SG-4(M = 6.2s, SD 
= .3), SG-8 (M = 5.9s, SD = .3), SG-16 (M = 5.1s, SD = .3).  
These analyses confirm the presence of the spacing effect 
within our experiment.  

Phase Comparison 
     To compare phases of learning inferred by the Phase 
HMM and the TAPPED model, the per round proportions of 
each phase (i.e., computational, associative, procedural) 
during the course of the first day in each of the 4 spacing 
conditions were compared (Figure 2). Across the four spacing 
conditions, a high degree of similarity is seen in the phases of 
learning estimated by the Phase HMM model and the 
TAPPED model (r = .87, RMSD =  .10).  

     The greatest divergence between the two models is seen 
during the initial performance events (Rounds 1-3). Phase 
HMM model assumes that participants must sequentially go 
through all three phases of learning starting with the 
computational phase. This is why that model interprets 100% 
of participants as starting in the Computational phase. 
TAPPED does not share these assumptions, allowing for any 
phase of learning to be estimated at any point in time during 
the experiment for a given change point. Despite these 
differences, the TAPPED model converges to inferences 
similar to those of Phase HMM’s model. This is evidence that 
the Bayesian change detection method of Lee (2019) is 
functionally approximating the output of the HMM used by 
the Phase HMM.  

Day 1 – Calibration 
To compare how well each model calibrated to each of the 
participant’s performance during the 1st day, the PPE and 
TAPPED model are compared across the four spacing 
conditions (Figure 3) evaluation of each model’s fit reveals 
two findings. First, the average performance estimate of both 
the PPE and TAPPED model fit participant average 
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performance quite well during the 1st day across each of the 
4 spacing conditions. 

Table 2. The correlation (r) and root mean squared deviation 
(RMSD) and the percent the participant’s performance that 
falls within the predicted 95% HDI  (% Pred) of the fits of 
TAPPED and PPE during the first experimental session.  

TAPPED PPE 
Spacing r RMSD % Pred r RMSD % Pred 

4 .93 1.32 93% .76 2.14 84% 
8 .94 1.46 92% .77 2.69 82% 
16 .93 1.68 90% .77 2.87 77% 
32 .98 1.05 96% .81 2.99 77% 

    Although differences are observed in model fits of 
participants’ individual learning curves, across the four 
spacing conditions, TAPPED has a higher correlation and 
lower RMSD with the individual participants compared to 
PPE (Table 2). TAPPED calibrates much more closely to 
individual performance during the 1st day. These better 
performance fits result from the fact that TAPPED selectively 
calibrates to separate portions of the participant’s learning 
profile. While in contrast, PPE attempts to account for all the 
participant’s first day performance with a single performance 
curve. 

Day 3 – Predictions 
Based on each model’s calibration to the performance of 
participants during the 1st day, performance predictions were 
generated for each individual participant on the 3rd day 
(Figure 3). Over this period of time, the uncertainty each 
model has in the individual’s performance increased. This 
uncertainty is reflected in the increase in the size of each 
model’s 95% HDI. Though the uncertainty in predictions 
increases, there are differences between the two models’ 
predictions. Over each of the 4 spacing conditions, PPE 
predicts slower initial and ongoing performance on the 3rd day 
– much slower than the human data. In contrast, TAPPED
predicts faster initial and ongoing performance, much closer
to the actual human experiment results.

Table 3. The correlation (r) and root mean squared deviation 
(RMSD) and the percent the participant’s performance that 
falls within the predicted 95% HDI (% Pred) of the 
predictions of TAPPED and PPE during the second 
experimental session.  

TAPPED PPE 

Spacing r RMSD 
% Pred 

r RMSD 
% 

Pred 
4 .30 3.70 75% .39 6.43 51% 
8 .36 3.25 73% .43 5.23 54% 
16 .40 3.15 74% .50 4.50 54% 
32 .36 3.13 61% .49 3.88 64% 

    The out-of-sample correlation and RMSD increase in both 
models across each of the 4 spacing conditions, relative to 
Day 1. PPE (Table 3) has a higher r but higher RMSD 

compared to TAPPED (Table 3). The overall decrease in the 
correlation between the models’ predictions of the 3rd day is 
expected. However, in addition to how well the model 
captured learning during the 3rd day, we are interested in the 
accuracy of each model’s predictions. To investigate this we 
calculated the percentage of response times that fell within a 
model’s predicted 95% HDI. With the exception of the SG32 
spacing condition, TAPPED had a greater predictive 
accuracy compared to PPE (Table 3). Here it is seen that 
TAPPED, despite having a lower correlation compared to 
PPE, was able to better predict the participants’ actual 
performance data. This result suggests TAPPED’s additional 
complexity is warranted, given its ability to predict out-of-
sample performance.  

Discussion 
The results presented in this paper revealed several 
interesting findings. First, a comparison of the inferences of 
learning phase by TAPPED to Phase HMM during the 1st day 
of performance found a high degree of similarity. Differences 
between the two model’s inferences about learning phases 
stemmed from the assumptions about the sequences of phase 
transitions over time. This particular Phase HMM assumes a 
strict sequential transition between learning phases and does 
not allow for regression back to previous learning phases. In 
contrast, TAPPED holds no such assumptions. These 
differences between the two models’ assumptions lead to a 
particular disagreement in inferences of the participant’s 
initial phases of learning during the 1st several trials. This 
added flexibility of TAPPED provides a more realistic model 
of skill acquisition in which forgetting can occur between 
problems. While this matters less in a highly focused training 
paradigm where forgetting is less likely, in more spaced and 
varied training paradigms this is a strength over the Tenison 
and Anderson (2016) model. Despite the differences in the 
assumptions of learning phase transitions between the two 
models, the high degree of similarity of the classification of 
learning phase over the 1st day suggest that both models are 
capturing similar aspects within the data. 
     We also compared TAPPED to PPE, contrasting how each 
model accounts for participant performance during the 1st day 
and predicting participant performance on the 3rd day. 
TAPPED was able to better fit participants’ performance 
during the 1st day compared to PPE. This is due to the fact 
that the TAPPED has a greater number of parameters and was 
able to selectively fit to the performance curve of the 
individual. Despite TAPPED’s additional complexity, this 
model better predicts performance on the 3rd day. This 
increase in accuracy comes from the fact that the TAPPED 
model demarcated and classified changes in a participant’s 
performance and used information from the participant’s 
most recent stage of learning to make a prediction.  
     In contrast, PPE developed predictions based on all of a 
participant’s data from the first day, leading to predictions of 
much slower performance on Day 3. The only exception to 
these regularities were seen in the longest spacing conditions, 
where the performance of both models is nearly equal. The 
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improved performance in PPE could have been due to the 
nature of the spacing manipulation. The highly spaced nature 
of the 32-item spacing condition could have decreased abrupt 
changes due to changes in phase in an individual’s 
performance allowing for the PPE to better capture and 
predict performance during the 2nd experimental session. 
However, further exploration is needed and future research 
should address the similarities and differences between 
TAPPED and PPE when fitting and predicting items on a 
longer spaced schedule. Furthermore, future research should  
investigate using TAPPED in a more complex learning tasks 
where individuals might go through successive iterations of 
the three learning phases addressed in this paper or vary in 
their proficiency in which they learn a particular skill. 
Understanding these subtle fluctuations or differences in 
performance is important for being able to predict 
performance at the individual item level.  
    In summary, models of learning and retention often 
account for performance at a given time based on an 
individual’s prior performance and temporal features of study 
and practice history. Often these models do not represent the 
cognitive mechanisms or changes in cognitive mechanisms 
individuals use when acquiring a particular skill and how 
these particular mechanisms might interact with the 
presentation history of the learned material. Our results 
suggest that detecting and modeling learning phases can 
improve predictive validity.   
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Abstract 

While much is known about how humans make decisions based 
on the recency, frequency, and similarity of past experiences, 
much less is known about how humans weigh the contextual 
features and the impact it has on decisions. The present study 
uses a novel method of introspecting into a cognitive model of 
human decision making in an abstract cyber security game to 
gain insight about the cognitive salience of the features. The 
results show that cognitive salience can provide valuable 
evidence about how and why individuals make their decisions. 
The implications of these results are discussed with regard to 
theory and application. 

Keywords: cognitive salience; cyber deception; cognitive 
models; instance-based learning, ACT-R 

Introduction 

Feature representation plays an important role in human 

decisions, and while much is known about how experiences 

shape decisions through instance-based learning (e.g., 

frequency, recency, and similarity effects; Gonzalez, 2013), 

much more needs to be understood about what features are 

represented in human decisions and how those features weigh 

in the decision. Instance-based learning (IBL) models have 

accurately modeled human behavior across a number of tasks 

including supply chain management (Gonzalez & Lebiere, 

2005), social dilemmas (Lebiere, Wallach, & West, 2000), 

two-person games (Sanner et al., 2000, West & Lebiere, 

2001), repeated binary-choice decisions (Gonzalez & Dutt, 

2011), and multi-stage Stackelberg Security games (Cranford 

et al., 2020a). According to Instance-Based Learning Theory 

(IBLT; Gonzalez, 2013; Gonzalez, Lerch, & Lebiere, 2003) 

human decisions from experience are generated through the 

aggregate retrieval across past experiences, based on the 

feature similarity of the current situation to past situations. 

While IBL models provide evidence for the underlying 

mechanisms involved in decision making, as well as evidence 

that the representations used in a specific model sufficiently 

describe its respective task, they do not provide any insight 

into the degree to which a decision maker weighs particular 

features of the decision. We believe that thwarting a would-

be attacker could be more successful if we had insight into 

the features they find salient. 

We consider the salient feature of a decision to be the 

feature that most influenced that decision and the greater 

degree of salience a feature has, the more influential it was in 

the decision. While the term, salience, might imply attention, 

in our use the salient feature may not be the most attended 

feature by some measure of attention (eye gaze, etc.). It may 

be the case that a feature is attended more than others but 

ultimately does not contribute to a decision. 

Our salience mechanism is somewhat analogous to 

gradient-based saliency used in image classification (Grün et 

al., 2016). Gradient-based salience techniques calculate the 

gradient of a prediction with respect to the input image to 

estimate the importance of pixels. The result of this process 

is often a heatmap of pixels that, when overlaid on the 

original image, provide some insight into what parts of the 

image were most important for the classification. 

We term our approach cognitive salience in contrast to the 

gradient-based approach. We use the term cognitive for two 

reasons. First, our approach calculates salience by taking the 

derivative of a theorized memory retrieval mechanism, 

blending, the mechanism underlying decision making in IBL 

models (Lebiere, 1999). Second, the features of a cognitive 

model are typically of a higher-level of abstraction than 

pixels, usually conceptual terms, which is typical of a 

cognitive-level description. 

In the present work, we examine the saliency of features in 

a model of human decisions in a cybersecurity game called 

the Insider Attack Game (IAG). IBL models of human 

decisions in the IAG revealed cognitive biases, such as 

confirmation bias, that emerge naturally through memory 

retrieval processes, and lead participants to attack far more 

often than predicted by perfect rationality (Cranford et al., 

2020a). While much has been learned by comparing model 

performance to humans and making inferences about human 
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behavior based on the model mechanisms and processes, 

examining feature salience can provide further useful 

information regarding the relative importance of features 

when making decisions. These insights could prove useful in 

further informing how human decisions are shaped through 

their unique experiences, how representation of features 

impact decisions, and also for designing more effect 

cybersecurity defenses. 

In what follows, we first describe the IAG and an IBL 

model that accurately captures human behavior in the game. 

Next, we describe the method for deriving cognitive salience 

from IBL model decisions. Assuming the model accurately 

reflects human decision-making processes, we apply our 

salience technique to the model to gain insight into how 

humans might weigh features when making decisions in the 

IAG. Finally, the results are discussed regarding their 

implications for theories of human decision-making and 

applications to cybersecurity. 

IBL model of Attackers in the Insider Attack Game 

The Insider Attack Game (IAG) was designed as a two-

stage Stackelberg Security Game (SSG) to investigate the 

influence of deceptive signals on cyber-attacker decision 

making (Cranford et al., 2018). Players take the role of an 

insider attacker and make repeated decisions of “hacking” 

computers. In the first stage, attackers must decide which of 

six targets to attack, as depicted in Figure 1A. However, they 

must avoid the two analysts (defenders) that monitor one 

target each. An example target is shown in the zoomed inset 

of Figure 1A. Attackers are presented all information about 

the reward received if they successfully attack a target that is 

not monitored, the penalty received if they attack a target that 

is monitored, and the probability that the target is being 

monitored. After selecting a target, in the second stage, the 

attacker is presented with a message signaling whether the 

computer is being monitored (e.g., see Figure 1B). The 

message is always truthful when claiming a target is not being 

monitored. However, the attacker is informed that the 

message is sometimes deceptive when claiming the target is 

being monitored. The attacker must decide to either continue 

the attack and earn the reward or penalty, depending on the 

true underlying coverage, or withdraw and earn zero points. 

Attackers are incentivized to earn as many points as possible 

across four rounds of 25 trials each; a new set of targets are 

presented each round. 

The defense algorithm in the IAG, the Strong Stackelberg 

Equilibrium with Persuasion (peSSE; Tambe, 2011; Xu et al., 

2015), was designed to optimize the rate at which deceptive 

messages are sent so that belief in the signal is maintained, 

but does so under assumptions that adversaries make 

perfectly rational decisions. In the first stage, the algorithm 

optimizes the allocation of the two defenders based on the 

reward and penalty values of the targets. The algorithm 

effectively equalizes the expected value of all targets so that 

no target is more preferred than another and assigns defenders 

to targets across the trials according to the derived 

probabilities (these are the monitoring probabilities attackers 

see). In the second stage, the algorithm optimizes the rate of 

deceptive signals. If signals were only truthful, the expected 

value would be negative when indicating that a target is being 

monitored. The peSSE determines the probability with which 

to send deceptive signals so that the expected value given a 

signal increases to zero, and under assumptions of perfect 

rationality, an adversary will still defer to the safe option and 

withdraw. In the IAG, with a 1:3 defender-target ratio, the 

signal is present and truthful on 1/3rd of trials, on average. 

Therefore, the peSSE can send deceptive signals on another 

1/3rd of trials when the target is not monitored. Thus, the 

peSSE increases the perceived coverage of the system by 

finding the optimal combination of bluffing (sending a 

deceptive message that the target is monitored when it is not) 

and truth-telling (sending a truthful message that the target is 

covered) so that a rational attacker would always withdraw in 

the presence of a signal. 

 

 

Figure 1: Screenshot of the IAG (A) and an example signal 

message (B). The first line of the message is omitted if the 

signal is absent. The zoomed inset shows a target, including 

the value of the reward if the attack is successful (yellow 

stars), the value of the penalty if the attack is unsuccessful 

(red stars), and the monitoring probability (given as 

percentage in text and graphically as a fillable gauge). 

 

 

Humans, however, do not always make rational-best 

decisions. Instead, human decisions in the IAG can be 

explained under Instance-Based Learning Theory (IBLT; 

Gonzalez, 2013; Gonzalez et al., 2003), and an IBL model 

was created that captures this behavior (Cranford et al., 2018; 

2020a). According to IBLT, decisions are made by 

generalizing across past experiences, or instances, that are 

similar to the current situation. In the IBL model, instances 

are represented by the contextual features of the decision. For 

example, in Figure 2, the features include the information 

available in the environment: the reward, penalty, monitoring 

probability, and signal, the action taken, and its associated 

utility, or outcome. Each experience is saved in memory and 

when a new decision is to be made, an expected outcome is 

retrieved from memory that represents a weighted average 

across all memories based on their probability of retrieval. 
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Figure 2: Example representation of instances in IBL. 

The IBL model was created in the ACT-R cognitive 

architecture (Anderson & Lebiere, 1998; Anderson et al., 

2004), which provides a theoretical framework that 

accurately simulates human-like cognition and processes 

such as memory retrieval, pattern matching, and decision 

making. In ACT-R, the probability of retrieving an instance 

is based on its activation strength which is determined by its 

recency and frequency of occurrence, and its similarity to the 

current context. The IBL model uses ACT-R’s blending 

mechanism (described in more detail in the next section; 

Gonzalez et al., 2003; Lebiere, 1999) to retrieve an expected 

outcome of attacking a target based on a consensus of past 

instances. The expected outcome is the value that best 

satisfies the constraints of all matching instances weighted by 

their probability of retrieval. 

The IBL model played the same game as humans. In the 

first stage of the IAG, the features of the decision include the 

monitoring probability [0.0, 1.0], the reward [1, 10], and the 

penalty [-1, -10]. The model generates an expected outcome 

for each target, via blending across previous outcomes, and 

selects the target with the highest expected outcome. In the 

second stage, the only feature in the decision is the signal 

[present, absent] and the model generates a new expected 

outcome of attacking. A straightforward decision rule is then 

applied: if the value is greater than zero the model attacks, 

else it withdraws, and ground truth feedback is given. 

The model saves two instances to memory each trial. One 

represents the expectation generated during the decision to 

continue the attack or withdraw (includes the features: signal, 

action, and expected outcome), and the other represents the 

ground truth decision and feedback received (includes all 

features: signal, reward, penalty, monitoring probability, 

ground truth action, and ground truth outcome). Storing the 

expectations as well as the ground truth drives a confirmation 

bias in which the availability of additional positive instances 

in memory (i.e., from the positive expectations generated 

prior to deciding to continue an attack) perpetuates a behavior 

to attack when faced with a signal, even after suffering losses. 

Cranford et al. (2020a) showed that humans attacked about 

80% of trials on average, far more than the predicted 33% of 

perfectly rational attackers (i.e., on average, signals are 

absent on only 1/3rd of trials). The IBL model very accurately 

captures this behavior across trials in the game (overall total 

RMSE = 0.04 and r = 0.73), as shown in Figure 3 (adapted 

from Cranford et al., 2020a). The pattern of spikes across 

trials can be attributed to the schedule of coverage and 

signaling, which was the same for each player and reflects 

experiences of success/failure given the probability of seeing 

a signal. In fact, the correlation between the probability of 

seeing a warning and the probability of attacking is -0.84 for 

humans and -0.89 for the model. 

Figure 3. Mean probability of attack across trials for human 

participants compared to the IBL model runs. 

The data presented in Figure 3 averages across substantial 

individual differences in behavior. In addition to capturing 

mean human performance across trials, the model also 

captures the full distribution of attack probabilities as seen in 

Figure 4 (adapted from Cranford et al, 2020a). Like humans, 

approximately 40% of participants (e.g., model runs) attack 

greater than or equal to 95% of trials. In another study that 

examined human behavior in the IAG, Cranford et al. (2020b) 

reported that approximately 23% of participants that attacked 

greater than or equal to 95% of trials also reported that they 

ignored the signal in their decisions. The study reported in 

Cranford et al. (2020a) did not collect such data, but we can 

assume similar responses would have been made. 

Figure 4: Probability of attack distribution for human 

participants compared to the IBL model runs. 

In summary, the IBL model very accurately captures 

human behavior in the IAG and has proven useful in making 

inferences about human decision making in the task. Humans 

do not compute all information and make rational-best 

decisions, but instead make decisions based on past 

experiences, which are represented by the important features 

of the situation. These decisions are heavily influenced by the 

dynamics of memory retrieval processes which result in 

emergent cognitive biases (e.g., recency, frequency, and 

confirmation bias). These biases lead to overweighting of 

certain outcomes that, often, results in inflated expectations. 

53Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



Humans fail to fully comply with the signal because they are 

more likely to expect a positive outcome than a negative one 

as belief in the signal deteriorates. While much has been 

learned about how experience influences decisions in the 

IAG regarding recency and frequency of instances, it is less 

clear how humans weigh the features in their decisions. 

Therefore, in the present study, we examine the salience of 

the features during the selection and attack decisions of the 

model to inform why certain decisions are made and if there 

are differences between types of participants in how 

information is processed that leads to the observed individual 

differences in attack behavior, as described in Figure 4. 

Blending and Cognitive Salience 

The cognitive salience of a feature can be derived from the 

blended retrieval mechanism. The blending mechanism in 

ACT-R retrieves an estimated outcome by interpolating 

across previously experienced outcomes (Lebiere, 1999). 

That interpolation process is weighted by the contextual 

similarity of the present instance to previous instances and is 

computed with the following equation: 

𝑉 =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑃𝑖

𝑛

𝑖=1

∙ 𝑆𝑖𝑚(𝑉𝑡 , 𝑣𝑖𝑡)2

The value, 𝑉, therefore is an interpolated value based on 

matching chunks 𝑖, weighted by their retrieval probability 𝑃𝑖.

The complete blending process is outlined in Figure 5. The 

retrieval probability, equation 2, is derived from a Boltzmann 

softmax function that is based on the activation strength of 

chunks, which is influenced by power laws of frequency and 

recency, according to ACT-R theory of memory retrieval 

(Anderson & Lebiere, 1998; Anderson et al., 2004), and also 

the similarity or match between the current instance in 

memory and past instances. The match score in equation 1 is 

equivalent to the similarity function, 𝑆𝑖𝑚(𝑉𝑡 , 𝑣𝑖𝑡)2, and is

used to compare memory chunks 𝑣𝑖𝑡 and candidate consensus

values 𝑉𝑡. In the simplest case, where the values are

numerical (i.e. the return RT) and the similarity function is 

linear, the process simplifies to a weighted average by the 

probability of retrieval, as shown in equation 3 of Figure 5. 

Figure 5: Description of blending mechanism. 

We calculate salience by taking the derivative of the 

blending equation with respect to each feature: 

𝑆(𝑉𝑡 , 𝑓𝑘) = 𝑐 ∑ 𝑃𝑖 ∙ (
𝜕𝑆𝑖𝑚(𝑓𝑘 , 𝑣𝑖𝑘)

𝜕𝑓𝑘
− ∑ 𝑃𝑗

𝑛

𝑗=1

𝜕𝑆𝑖𝑚(𝑓𝑘 , 𝑣𝑗𝑘)

𝜕𝑓𝑘
) ∙ 𝑣𝑖𝑡

𝑛

𝑖=1

 

This derivative gives us the degree of influence a particular 

feature (𝑓𝑘) had in a decision (𝑉𝑡). The value S can be

infinitely positive or negative. While the direction of the 

value provides information about how the feature is used, to 

compare between features, the magnitude tells us which 

feature has the greater impact on the decision. Therefore, in 

all analyses below, we examine the absolute values of S. 

Cognitive salience was first applied in an explainable 

artificial intelligence context (Somers et al., 2019), where 

ACT-R was used to model a reinforcement learner (RL). In 

that context, the baseline equations in ACT-R, which are 

responsible for effects of recency and frequency, were not 

used because in an RL context, there is no reason to expect 

decay in memory. This is the first time that cognitive salience 

has been applied in a human experimental context. 

Salience Analysis 

We examined the salience of features during the first-stage, 

selection decision and during the second-stage, attack 

decision of the IBL model. During target selection, a 

perfectly rational attacker would display no preference for 

features because all targets have the same expected value. No 

one feature is more informative than another and do not 

differentiate targets. However, it is possible that, for 

boundedly rational humans that derive expected outcomes 

from very limited experiences, selection preferences could 

emerge if one feature becomes more salient than another. It 

is hypothesized that saliencies will be higher when few 

instances are available in memory, thus skewing the mental 

representation of expected values. With more experiences, 

the attacker should gradually and implicitly learn that all 

targets are of about equal values. Saliencies can inform us 

whether decisions reflect the statistics of the environment, 

that the features are by all accounts meaningless. 

During the second-stage, attack decision, there are clear 

individual differences in the probability of attack. It is 

therefore hypothesized that, when the signal is present, 

salience for the signal is lower for those participants with 

high probabilities of attack. If the salience of the signal is low 

then, when a signal is present, the expected outcome 

generated should be higher because the decision will 

discriminate less between signal types, giving more weight to 

instances when a signal was not present and that have positive 

outcomes, thus driving up the blended outcome. 

First-Stage Decision: Selection 

Figure 6 shows the average magnitude (i.e., absolute value) 

of saliencies for the reward, penalty, and monitoring 

probability (Mprob) features of the selected target across the 

four rounds of the experiment. The saliencies presented in 

Figure 6 are calculated during the outcome generation 
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process. When generating expected outcomes, the model 

interpolates from previous experiences, weighing those 

experiences by their similarity to the features of the current 

target. The saliencies indicate that the model initially displays 

differences between features, but quickly merge within a few 

trials. After merging, all saliencies start out relatively high 

and decrease over time. The dashed gray line in Figure 6 

shows the mean expected outcome across trials on the 

secondary y-axis. The expected outcomes are initially 

inflated and gradually decrease over time along with 

saliencies. These results suggest that the model is learning 

that the targets have equal expected outcomes and no feature 

is more salient than another. The decreasing trend in 

saliencies implies that the features are less influential in the 

decision over time. The model does not have any explicit 

awareness or explicit modeling of this decrease. 

While the average magnitude of saliencies indicates no 

preferences for any particular feature, Figure 7 examines the 

individual differences between model runs (i.e., players) 

regarding the relative magnitude of the saliencies. The 

ternary plot takes the overall mean magnitude saliencies for 

each feature for each player and plots a point for each player 

to show the relative importance of each feature (i.e., the ratio 

between the three saliencies). The results show that players 

mostly display no preference for features as they learn over 

time that no feature is more meaningful and the saliencies 

trend downwards (as shown in Figure 6). Figure 7 shows that 

players mostly center around the middle point of the plot, 

indicating saliencies for features are all close to the same 

magnitude. However, all players display a higher saliency for 

one of the features, even if miniscule, and some do extend 

toward the corners of the ternary plot if only by a small 

percentage. Players were therefore split into 3 groups 

depending on the feature that is overall most salient, the 

reward, penalty, or Mprob, to examine if these groups display 

any target selection preferences. 

Figure 8 shows a scatterplot of target selections by the 

reward and penalty values of the selected target. The size of 

the dots indicates the percent of selections for that target 

within a round. Thus, the dominant color for a point indicates 

a greater percent of selections for that group on that target. 

The distributions of penalties and rewards for each “Max 

Saliency” group are shown as marginal plots on the right and 

top, respectively. Figure 8 shows clear differences in target 

selection behavior between groups. The players that have 

higher saliency for the penalty tend to select the targets with 

higher penalties, which incidentally also have higher 

rewards. Meanwhile, players that have higher saliency for 

reward or Mprob tend to select the targets with lower 

penalties, and the ones with more moderate reward/penalty 

tradeoffs, more often. 

Second-Stage Decision: Attack 

In the second-stage decision, it was hypothesized that 

aggressive attackers (i.e., those that attacked ≥ 95% of the 

time) may weigh the signal differently than the other cautious 

attackers. Figure 9 shows the mean magnitude of saliencies 

Figure 6: Mean magnitude of saliencies across trials for 

each feature of the selected targeted. The dashed gray line 

shows the mean expected outcome of the selected target. 

Figure 7: Mean relative saliency per player. Colors indicate 

the most salient feature for that player. 

Figure 8: Scatterplot of reward and penalty of selected 

targets for each Max Saliency group. The size of the bubbles 

represent the percent of selections for the target within each 

Max Saliency group and round. 
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for the signal feature across the four rounds. The breaks in 

the solid line for the signal-absent condition are trials in 

which every target was scheduled to present a signal. When 

the signal is absent, the saliency for the signal is about equal 

in Round 1, but is higher for the aggressive attackers through 

the remainder of the game. For both player types, the saliency 

is overall higher when the signal is absent than when the 

signal is present. When the signal is present, however, the 

salience of the signal is lower for aggressive attackers than 

for the cautious ones. As predicted, when present, the signal 

is less influential in aggressive attackers’ decisions than 

cautious attackers’ decisions. 

Figure 9: Mean magnitude of salience for the signal during 

the attack decision, for each signal and player type. 

Figure 10 shows the mean expected outcome for the attack 

decision across the four rounds. An interesting interaction 

presents when compared to the pattern for saliencies. For 

expected outcomes, when the signal is absent, the aggressive 

attackers generate higher values than cautious attackers, 

echoing the pattern for saliencies. However, in contrast to 

saliencies, when the signal is present, cautious attackers 

generate lower expected outcomes than aggressive attackers. 

Figure 10: Mean expected outcome of the attack decision, 

for each signal and player type 

These results suggest that salience influences decisions 

through its influence on memory retrieval. A higher saliency 

for a signal means that, for blending, more weight is given to 

past instances that have the same value as the current signal, 

and when saliency is low for the signal more weight is given 

to past instances that have a different value as the current 

signal so that probabilities are more evenly distributed across 

past instances. When a signal is absent, the higher salience 

for aggressive attackers means more weight is given to past 

instances whose signal is absent. Because these instances 

have only positive values, the expected outcomes are inflated. 

When a signal is present, the lower salience for aggressive 

attackers means the probability of retrieving past instances 

whose signal is absent is higher, and more evenly distributed 

across all targets (hence the expected outcome by Round 4 is 

approximately equal to the true expected value, irrespective 

of the signal, of 1.43), and again the expected outcomes are 

inflated. Meanwhile, cautious attackers that have higher 

salience for the signal when present have expected outcomes 

near zero, which is the true expected value given a signal. 

Conclusion 

The present study is the first to use this method for calculating 

cognitive salience to introspect into the model how humans 

weigh the contextual features in their decisions. The results 

provide additional insight into how the representation of 

features can influence decisions. Specifically, we can infer 

that players learn quickly that all targets have equal expected 

values and no feature is more informative than another. But 

also, because human decisions are based on limited 

experiences, some individuals have a slight preference for 

some targets that can be predicted by the degree of salience 

for a particular feature. An interesting path for future research 

will be to examine whether target selection preferences 

emerge if the targets are not of equal expected value and/or 

certain features are more indicative of success than others, as 

was shown in the original work on cognitive salience in an 

explainable artificial intelligence context (Somers et al., 

2019). In that research, feature preferences emerge as certain 

features are more indicative of successful decisions. 

In contrast to the selection decision, during the attack 

decision the degree of salience for the signal has a direct 

impact on the probability of retrieving past instances which 

in turn impacts the expected outcomes generated. The results 

provide unique insights into how individual differences can 

emerge through unique experiences. Understanding how an 

individual weighs the feature in their decisions provides 

valuable evidence about how information is processed and 

how it impacts decisions, which is vitally important for 

improving security defenses, especially for defenses that rely 

on adaptive and personalized defense (Cranford et al., 

2020b). Therefore, one avenue for future research will be to 

validate the observed model results with human experiments 

designed to investigate what features are most important in 

decisions. For example, Cranford et al. (2020b) showed that 

aggressive attackers tended to report that they ignored the 

signal feature, and a model that omitted that feature from the 

representation was a better predictor of these aggressive 

attackers. As was demonstrated, understanding what features 

are important in a decision can inform the design of models 

and about the underlying representation of the decision. More 

accurate models can provide more accurate predictions about 

human behavior which can be used to improve security 

algorithms. Examining cognitive salience with cognitive 

models provides valuable information about individual 

differences between players, and future research aims at 

exploring its utility for designing more effective 

personalized, adaptive signaling schemes for cyber defense. 
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Abstract 

This paper presents an ACT-R model designed to simulate 
voting behavior on full-face paper ballots. The model 
implements a non-standard voting strategy: the strategy votes 
first from left to right on a ballot and then from top to bottom. 
We ran this model on 6600 randomly-generated ballots 
governed by three different variables that affected the visual 
layout of the ballot. The findings suggest that our model’s error 
behavior is emergent and sensitive to ballot structure. These 
results represent an important step towards our goal of creating 
a software tool capable of identifying bad ballot design. 

Keywords: ACT-R; error prediction; voting 

Introduction 

Voting is hard. The deliberations and conversations that go 

into choosing who best represents one’s interests is an 

important and time-consuming task, one that might be argued 

to be the very backbone of a democracy. Understandably, 

many may believe that the subsequent task of correctly 

indicating one’s chosen candidate is comparatively easy and 

straightforward. Surely once a voter gets the ballot and can 

mark whoever they please, the hard part is over.  

Often, this is correct. When ballots are designed well, 

errors voters make are not systematic and generally will not 

help or hurt any particular candidate. However, when ballots 

are designed poorly, they may lead to systematic voting 

errors. It is possible such errors do not matter if margins of 

victory are large and thus such issues may go unnoticed.  

However, in closely-contested elections it is not the general 

case that is important. There have been numerous elections in 

the past 20 years that have been documented as having been 

decided by systematic voting errors caused by bad ballot 

design. This ranges from the infamous “butterfly ballot” in 

Palm Beach County, Florida in the year 2000 (Wand, et al., 

2001) to the most recent major U.S. election in 2018, where 

a U.S. Senate seat (also in Florida) was almost certainly 

decided by a poorly-designed ballot (Chisnell & Quesenbery, 

2018). For a review, see Norden, et al. (2008). 

While election interference by hacking is a far more flashy 

and obvious risk, there has never been clear evidence that this 

has swung an election, unlike with bad ballot design. 

Ironically, the fear of hacking has led to a return to paper 

ballots, which with their profusion of races packed onto small 

sheets of paper makes ballot design even more important. 

The most likely errors caused by poor ballot design are 

under- and overvoting. An undervote is an error that occurs 

when the voter fails to vote on a race that they intended to, 

whereas an overvote is when a voter votes on a race more 

than the allowable number of times (usually, more than once). 

The problem of designing a ballot that will not cause people 

to systematically under- or overvote is challenging. For 

instance, it might entail running a usability study weeks 

before the actual election. What makes the problem so 

difficult is the sheer number of counties in the United States 

(over 3000), each of which designs their ballots differently 

and each of which have hundreds of different iterations of 

ballots for each precinct they are responsible for. Manually 

checking each ballot with a usability study is infeasible. 

One possible solution to this problem is software that could 

automatically check an arbitrary ballot for common design 

errors. However, such a solution would only find errors that 

had been previously made by voters on other ballots. If the 

task is to predict if humans will make a mistake on a novel 

ballot, it is difficult to imagine that chasing only known errors 

will be sufficient. Here is where ACT-R (Anderson, 2007) 

modeling comes in. Since ACT-R is generative, it can predict 

behavior on any ballot and is not limited only to errors that 

have been made previously. 

Building such a predictive model is itself an extremely 

challenging task because it would have to be able to predict 

all historical voting errors as well as any new ones. For 

example, while Green (2010) built an ACT-R model that 

could make the same mistake voters did in a specific famous 

ballot (the 2006 Sarasota County ballot), it was limited to 

replicating one specific error behavior.  

Thus, Wang, Lindstedt, and Byrne (2019) present the 

outline for an ambitious project: a model that can simulate 

the entire space of possible voting behaviors. They presented 

a smaller scale version of this end goal model. The model ran 

in a voting environment called VoteBox, a simulated 

electronic ballot, consisting of a single race per screen and a 

“next” button to navigate.  

Nevertheless, within just this simple task was hidden great 

complexity: the model used a total of 40 different voting 

strategies constructed from differing levels of 

ballot/candidate knowledge and navigational strategy 

selections. The voters differing strategies and knowledge led 

to different rates of error, showing that a model voter’s 

strategy made a difference on whether or not it was able to 

accurately vote for its intended candidates. However, this 

effort was preliminary in that it did not vary the design of the 

ballot; it simply demonstrated that errors were emergent from 

a particular combination of task strategy and memory 

contents. 
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In this paper, we describe a model that represents the 

natural extension of this system to show that errors can 

emerge from the interaction of strategy and ballot design. 

This model also works in a more challenging visual 

environment: it handles simulated full-face paper ballots. A 

full-face ballot is one that has all the races on a single display 

(usually a piece of paper). This extension introduces new 

model building challenges. Our new models must navigate 

both between and within races, and our model creation 

process must be flexible enough to explore an even larger 

voting strategy space.  

Unsurprisingly, the increased complexity of a full-face 

paper ballot leads to increased model error. Thus, we also 

describe the error rates of simulated voters on differing 

simulated ballots. This represents an important step towards 

our end goal of constructing a generative model able to 

identify bad ballots. 

Method  

First, we will describe the design of our full-face ballots, then 

the design of the model, and our simulation of the model 

across many possible ballot designs. 

Ballot Design 

We built simulated full-face paper ballots for the model 

which consist of a virtual screen populated with several 

columns of races. Each race has a title, a list of candidates 

and their associated parties, and a list of buttons that the 

model can click to vote for a candidate. (see Figure 1).  

 

 
 

Figure 1: Top left corner of a simulated ballot. 

 

The resulting simulation is not quite the same as an actual 

paper ballot. For example, the model clicks on a button 

instead of filling in a circle and does not obscure the ballot 

with its hand while doing so. However, the ballot is typical in 

visual layout, which we believe is similar enough to cause 

many of the same errors we expect human voters to make.  

Because ACT-R’s nascent ability to group visual items is 

somewhat limited (Lindstedt & Byrne, 2018), we had to work 

around this. So, to help the model navigate, we colored the 

race header red, the candidates purple, and the parties blue. 

The coloring allows the model to make visual location 

requests like “the closest red text in the column to the right” 

(when finding the closest race) or “the closest purple text to 

my current position” (when finding the candidate group of 

the currently attended race). Since we suspect humans can 

also reliably differentiate between race headers, candidates, 

and parties by using the visual characteristics of the ballot, 

we believe coloring the ballot does not give the model an 

unfair advantage. However, we are exploring alternative 

ways to work around this problem. 

Model Design 

We built the model with one overarching goal in mind: to 

simulate as wide an array of voters as possible. 

Our modular system split a simulated voter’s strategy into 

four different pieces: (1) macronavigation, the process of 

moving from one race to the next; (2) visual encoding, the 

process of determining the race, party, and candidate visual 

groups for each race; (3) micronavigation, the process of 

finding the intended candidate to vote for within each race; 

and (4) selection, the process of actually clicking on the 

button corresponding to the chosen candidate. At runtime we 

selected one strategy from each of these categories and 

combined them together with a declarative memory file to 

build an ACT-R model. Note that how the model does pieces 

2–4 was taken directly from the Wang et al. (2019) model. 

Designing A New Strategy 

We first built the most obvious option for each strategy 

category because we wanted our initial strategies to lead to a 

composite voting strategy with no errors. We wanted to 

ensure that our model worked before we started varying 

pieces to induce errors.  

Our first strategy after these obvious ones was a non-

standard macronavigation strategy. Our model’s standard 

macronavigation strategy was top to bottom left to right; that 

is, the model started in the top left corner and went all the 

way to the bottom of the column and then went over to the 

next column to the right and again went top-to-bottom, 

repeating until it was finished. This is the most obvious 

method of macronavigation, and as noted above resulted in 

no mistaken votes. The first alternative macronavigation 

strategy we built was left to right top to bottom.  

The left to right top to bottom strategy starts on the upper 

leftmost race on the ballot. It then proceeds to the right, 

navigating to the closest race to the last race it voted on in the 

next column over, and repeating until it votes on a race in the 

last column. Then, it goes back to the beginning of the row, 

finds the next race down in the left column, and repeats 

voting from left to right. The model continues until it runs out 

of new races in the left column. 

On our ballots the races in each column are horizontally 

aligned, as might be expected. However, when race lengths  
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Figure 2: The green arrows mark the first part of the left to right top to bottom model’s voting pattern on this specific ballot. 

The model skips CommisionerofAgriculture. 

are allowed to vary, races in different columns are not 

vertically aligned, as the generation process always placed 

each race a set distance below the last race. Because our new 

macronavigation strategy proceeded initially from left to 

right, when races were vertically misaligned our model could 

miss races. Note that when the ballot is a perfect grid where 

all races are vertically aligned, the model does not make 

errors. It is the interaction of this strategy with the design of 

the ballot that results in errors. For an example of the model 

missing a race on a typical ballot, see Figure 2.  

In Figure 2, when the model reaches the third race down in 

the left column (“United States Representative District 7”) it 

votes on that race and then proceeds right along the row, 

selecting and voting on the closest race and repeating until it 

reaches the last column. The model then returns to the race at 

the beginning of the row and proceeds to the first race on the 

next row down (“Governor”). Here is where it makes its 

mistake: because the “Railroad Commissioner” race is the 

closest race to “Governor,” the model votes on “Railroad 

Commissioner” for its second race in the row and so skips 

Commissioner of Agriculture. It never returns and votes on 

this race.  

We observed that the races our new strategy missed 

depended on the layout of the races on the ballot and 

determined it was critical to understand if this was 

systematic.   

Experiments 

Once we had a simulated voter making structure-based 

mistakes, we decided to test how these mistakes changed as 

a function of the ballot layout. Initially, our ballot was static, 

consisting of a manually-positioned set of races and 

candidates. Our first step was modifying the ballot so it could 

be dynamically generated. Every time we ran the model, our 

generation process allowed us to vary the vertical spacing 

between races, the vertical space between the race header and 

the candidates, and the vertical space between candidates. We 

chose ranges of the variables that led to ballots our model 

could still realistically parse but that nevertheless were 

visually distinct (see Table 1). As the ballot was generated 

each race was randomly selected to have between 1 and 4 

candidates. 

Table 1: Ballot Layout Variables 

Variable Range (Pixels) 

Space between races 5 – 15 

Space between header and candidates 20 - 22 

Space between candidates 15 - 18 
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For each one of the 132 possible combinations of spacing 

variables (see Table 1), we ran the model on 50 randomly 

generated ballots. Thus, our model was run on 6,600 ballots 

for a total count of 158,338 individual races. For each run, we 

recorded the exact race positions and race order on the ballot, 

as well as the order the model voted on races (including any 

races the model missed).  

The data allow us to characterize this strategy and identify 

how and where it fails. We will also describe good and bad 

ballot design by seeing which designs lead to more error in 

the model. This will serve as a case study for how new 

strategies built on our architecture will find errors in novel 

ballots. 

Results 

First, we define model percent error, the percent of races that 

our model skips. Our model’s global percent error is around 

13.04%, meaning that, on average, given a random race on a 

ballot there is a 13.04% chance that our model will not vote 

on it. This rate is certainly much higher than any experimental 

rate in human voters, but as this strategy is nonstandard, this 

result is to be expected. Of course, most people do not make 

anywhere near these many errors, but average error rates in 

the wild likely stem from outliers like this strategy.  

Effects of Race Location 

We first examine the relationship of race location on the 

ballot to model error. We observe that there is a general trend 

of increasing error across columns (see Figure 3). In other 

words, races in columns that are further to the right are more 

likely to be skipped.  

 

 
 

Figure 3: Average percent error across races in the left, 

middle, and right column across all ballot runs 

 

In fact, since we recorded the exact y coordinate and 

column for every race on every ballot, we can generate a 

heatmap of error rate by race position on the ballot (see 

Figure 4). Each bin collates the percent error of the model on 

races within 10 vertical pixels, where the y position of a race 

is its header. 

 

 
 

Figure 4: Heatmap of the model’s error according to races’ 

column number and y position. 

 

 

Of interest are places in Figure 4 where errors are likely. 

One immediately obvious place is the bottom right corner, 

where average percent error approaches 1. The model almost 

always misses races there. To make sense of this result, we 

observe that the only way a race can have its start in one of 

those bottom right boxes is if it is very short. It makes sense 

that for short races nestled in the bottom corner, people will 

frequently get to the last race in the left column and vote 

across that row not low enough to reach the bottom corner 

races.  

However, other than this, errors are more or less uniformly 

distributed across the ballot. This result hints at the strength 

of our model: errors occur seemingly randomly across the 

ballot because they are emerging from the specific structure 

of individual random ballots. Thus, using our data of each 

experiment’s race layout, we move onto examining how 

specific elements of ballot structure influence model error.  

Effects of Ballot Structure 

We first examine the error rate as we vary the amount of 

vertical space between the end of each race and the beginning 

of the next. Recall that vertical space is just one of the spacing 

variables we manipulated (see Table 1). Thus, each specific 

vertical spacing value includes many observations from 

ballots built from combinations of the other spacing 

variables. While we did examine these other spacing 

variables, we found they had no significant effect on the 

model’s error rate. 

As the space between races decreased, voting error 

increased (see Figure 5). This result validates the intuition 

that the more cluttered a ballot is, the more likely a simulated 

voter is to miss a race.  
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Figure 5: Each black dot is the average percent error across 

all ballots with a specific race spacing. The blue line is the 

linear regression for the trend, the red line is the average 

error of the model, and the shading represents 95% 

confidence intervals for the line. 

We also examined how the length of a race was related to 

the chance it would be skipped and found similar results: as 

the length of a race decreased, the model’s chance of skipping 

it (its error rate for races of that length) increased (see Figure 

6). Of note, single-candidate races are most likely to be 

missed, but of course skipping such a race will not change the 

outcome of an election, since unopposed candidates are 

guaranteed to win.  

Figure 6: Average error rate of the model on races of one 

candidate, two candidates, three candidates, and four 

candidates. 

Finally, we looked at how the model’s error rate varied as 

a function of the vertical distance from a given race to the 

nearest race to it in the last column. In Figure 7, we show a 

stacked bar plot of races missed and races voting on 

according to this variable. This graph shows two things: one, 

that the chance a simulated voter misses a race increases as 

the closest distance to the last race increases, and two, that 

the number of races that are far from any prior race decreases 

as the distance increases. The reason that the distribution is 

non uniform, with peaks in the 0 bin, 15-20 bin, 30-35 bin, 

and 45-50 bin, is a result of the way ballots were generated. 

The candidate spacing varied from 15 to 18 pixels (see Figure 

2), and it was frequently the case that the closest race in the 

last column was an integer multiple of candidate space away. 

Figure 7: Stacked bar plot of the number of races voted on 

and not voted on across all model runs, plotted according to 

the vertical distance between the race and the closest race in 

the last column (bins of 5 pixels). 

This graph more than any other illustrates the model’s 

tendency to miss races that are not lined up in a row; building 

and running the simulation allows us to identify what these 

races are for any given ballot. 

Conclusion 

Races were more likely to be missed if they were smaller, out 

of alignment with the races in other columns, or more 

cramped overall. These are all characteristics of bad ballots 

that our model detected organically. The detection behavior 

emerged out of the design of the strategy; it was not 

hardcoded. The fact that the model’s error behavior was 

unplanned and emergent is in line with the long-term plan of 

building models that can produce novel errors on novel 

ballots. 

Notably, using a non-standard macronavigation strategy 

amplified our ability to detect bad ballots. For instance, a 

strategy moving in the same direction as the races were 

originally placed might not mind if the races were very close 

together, but any other strategy would. Ballot designers need 

to cater to less common strategies, so an ability to detect 

when ballots will cause systematic errors in voters using these 

strategies is crucial.  

Indeed, we should note that the average error for this 

strategy is far higher than the average error for all voters, 

even assuming as we did that once a voter found a race they 

would successfully vote on it (choosing a perfect 

micronavigation strategy, in the parlance of our model). Most 

real voters probably use a more successful macronavigation 
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strategy. They also may take additional steps we do not yet 

account for, like scanning the ballot again to see if they 

missed any races. However, if even a subset of voters uses 

this strategy, or one like it, then we must account for them in 

our model, as a subset of voters can still have a deciding 

impact on a close race.  

Thus, one of our next steps will be to map the space of 

macronavigation strategies by running eye tracking 

experiments. This research will seek both to find new types 

of voting strategies and to estimate their prevalence in the 

voting population. Then, once we build models that represent 

all of these voting strategies, we will be able to build a ballot 

analysis tool that runs ballots through each model and 

weights the resulting error rates by how often people actually 

use the strategy. Our goal is to be able to use this tool to come 

up with a global error rate prediction for an arbitrary ballot, 

preventing badly designed ballots from ever reaching voters. 

To implement these new strategies, we will need to expand 

the capabilities of ACT-R itself. We plan to start by extending 

the visual grouping module to group objects in a hierarchy 

and by adding new options for visual navigation. With these 

new capabilities, we will be able to build new sub-strategies 

for the model, including new ways for the model to encode 

the candidate, party, and race groups and new ways for the 

model to find and click the circle corresponding to a 

candidate. Each strategy will have a characteristic error 

pattern like we described in this paper, and together the set of 

strategies will span the possible space of errors. 

Thus, while some of the findings in this paper may seem 

obvious, they must partly be viewed in the light of the wider 

project. Our model was able to vote on a wide array of ballots 

that looked visually different and successfully make 

consistent errors. More than just characterizing the type of 

ballots and races that are more disposed to be skipped by a 

specific voter, these findings confirm the feasibility of 

attempting to eventually predict errors in novel ballots. 

Furthermore, the model makes an interesting additional 

prediction: since our model is more likely to miss races in the 

center and right columns, and more likely to miss smaller 

races, the models predicts that average voter error should be 

higher on down ballot races in the real world (as some voters 

may use a similar left to right strategy). This skew is likely to 

be more severe in years with a presidential race, since there 

are often many candidates running for president, meaning 

that the first race in the left column would be very long, thus 

making it more likely that other columns races will not be 

aligned. 

We can even use our results to generate applied advice for 

a hypothetical election official who must build a ballot with 

races of varying length. Such an official should strive to line 

up race headers as much as possible, sacrificing races per 

page by leaving blank space so that races can be aligned (this 

would help increase accuracy not only with the specific 

strategy we tested, but any strategy that goes left to right). 

Moreover, the official should try not to squeeze races into the 

bottom right corner, and in general try to keep the ballot 

uncluttered by putting as much space between races as 

possible. The official might even consider making the space 

within races more cramped to make the delineations between 

races clearer, although this will introduce the possibility for a 

voter filling in the wrong bubble or missing the candidate 

they want to vote for. Future models we build will predict 

these errors as we continue towards our goal of constructing 

a model that can simulate all possible voter behavior. 
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Abstract 
Anderson et al. (2019) present an ACT-R model of how 
humans learn to play rapid-action video games. To further test 
this model, we utilized new measures of action timing and 
sequencing to predict skill acquisition in a controlled motor 
task named Auto Orbit. Our first goal was to use these 
measures to capture time-related effects of speed on motor 
skill acquisition, operationalized as a performance score. Our 
second goal was to compare human and model motor skill 
learning. Our results suggest that humans rely on different 
motor timing systems in the sub- and supra-second time 
scales. While our model successfully learned to play Auto 
Orbit, some discrepancies in terms of motor learning were 
noted as well. Future research is needed to improve the 
current model parameterization and enable ACT-R’s motor 
module to engage in rhythmic behavior at fast speeds. 

Keywords: timing; sequencing; motor control; speed; rhythm; 
variability; ACT-R; motor skill acquisition 

Introduction 
Many everyday tasks such as typing, chopping, and playing 
a musical instrument require one to acquire complex motor 
skills. Motor skill learning has been defined as the neuronal 
changes that enable an organism to execute a motor task 
better, faster, and more accurately over time (Diedrichsen & 
Kornysheva, 2015). Evidence from the motor control 
literature suggests that humans may rely on chunking 
strategies over the course of motor skill learning resulting in 
more predictable motor action sequences (Verstynen et al., 
2012; Beukema, Diedrichsen & Verstynen, 2019). 

In addition to the chunking of motor actions, one needs to 
incrementally estimate the correct timing of upcoming 
motor actions (Decety, Jeannerod & Prablanc, 1989; Palmer 
& Pfordresher, 2003). One common model of timing is the 
attentional gate model developed by Zakay and Block 
(1996) which relies on the generation of regular pulses to 
keep track of time. However, prior research on the 
neuroscience of timing provides evidence suggesting that 
this model may not be sufficient to capture the full 
complexity of motor timing (Coull, Cheng & Meck, 2011; 
Breska & Ivry, 2016). 

According to Lewis and Miall (2003), motor timing may 
differ depending on the time scale of the motor actions that 
are executed. On the one hand, motor actions in the second 
range were shown to depend on a ‘cognitively controlled’ 
timing system heavily dependent on prefrontal and parietal 
neural processing. On the other hand, motor actions in the 

sub-second range were shown to depend on an ‘automatic’ 
timing system mostly dependent on motor circuits (Lewis & 
Miall, 2003). 

In this study, we used the ACT-R production system, 
which successfully modeled skill acquisition in a previous 
complex task (Anderson et al., 2019), to assess potential 
time-related effects of speed on motor skill acquisition. To 
do so, we designed a novel video game, Auto Orbit, inspired 
by Space Fortress (Mané & Donchin, 1989). Our main goal 
was to determine to what extent ACT-R is currently able to 
capture the detail of human motor learning in such games. 
In this study, we manipulated the game speed, such that 
agents would play the same video game at a faster or slower 
speed. Our principal analysis compared ACT-R’s motor 
learning to human learning and strove to capture the 
different elements of motor skill acquisition in a time-
dependent statistical framework. 

Auto Orbit Video Game 
In Auto Orbit, a spaceship is rotating in an orbit at a fixed 
speed around a balloon (circle-shaped target) placed in the 
middle of the screen (see Figure 1). The player must 
periodically adjust the ship’s aim and regularly shoot 
missiles within a specific firing interval. Each successful 
shot triggers a quick electronic sound and results in the 
balloon being inflated by 1/10 of its full size. Once the 
balloon is fully inflated, the player needs to execute a quick 
double shot shorter than 250 ms to burst the balloon and 
complete a game cycle. Balloon bursts were each rewarded 
by a fixed number of points dependent on the game speed, 
while misses (unsuccessful missiles) resulted in a penalty of 
2 points. Each game was broken down into a series of game 
cycles that started with a “balloon respawn” game event and 
ended with a “balloon burst” game event. For each game, a 
log file was recorded with 16-ms temporal resolution. 

Controlling the space ship in Auto Orbit involved three 
actions: rotating clockwise by 15 degrees (“D” key), 
rotating counterclockwise by 15 degrees (“A” key), and 
launching a missile (“L” key). During the game, the 
specified firing interval was learned through balloon resets 
as the lower bound, and balloon deflations as the upper 
bound. Each shot that was faster than the lower bound 
resulted in a reset characterized by the balloon popping on 
the screen. Conversely, the player’s failure to hit the balloon 
before the upper bound resulted in a balloon deflation 
characterized by the balloon dwindling at a constant 
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deflation rate of 1 % of the balloon’s full size or 0.18 pixels 
per game tick. Finally, in order to add some noise in the 
video game, random ship rotations of 60 to 120 degrees 
occurred with 1/3 probability at the beginning of every 
game cycle, and the players were then given additional time 
to re-adjust the ship’s aim. Rotation onset time was 
randomly generated according to a uniform distribution with 
1 s. as the minimum rotation onset time and 4 s. as the 
maximum rotation onset time. After each ship rotation, 
agents had 2 s. to adjust the ship’s aim and continue firing 
before the balloon started deflating. An illustration of the 
Auto Orbit interface is depicted on Figure 1.   One   can 
play    the   Auto Orbit video game using the following link: 
http://andersonlab.net/orbit/signin.html 

Figure 1: Visualization of the Auto Orbit video game 
interface. 

ACT-R Model of Skill Acquisition 
The ACT-R model was adapted from past modelling work 
by Anderson et al. (2019). First, operators were stored in 
declarative memory to represent the model’s strategy for 
playing the video game. Operators were set up such that the 
model would first adjust the ship’s aim (angular orientation 
relative to the balloon center) and would then monitor the 
timing of its shots (time that needed to elapse after a shot 
before the model could fire another missile). Over the 
games, the model became faster in executing these operators 
through a process called production compilation, which 
converts operators into direct action rules (Anderson et al., 
2019).  

Specifically, production compilation involves the 
integration of two productions into a novel one, thus 
bypassing the retrieval of operators from declarative 
memory. Each newly learned production is initially assigned 
a utility of zero and starts competing with its original parent 
production. Every time the new production is selected, its 
utility gets progressively updated until it reaches its true 
value. Utility values are incrementally adjusted based on the 
difference learning equation, which is shown on equation 1 
(see Anderson (2007) and Anderson et al. (2019) for further 
details): 

𝑈"(𝑛) = 	𝑈"(𝑛 − 1) + 	𝛼[𝑅"(𝑛) − 𝑈"(𝑛 − 1)] (1)
where 𝑈"(𝑛) corresponds to the nth update of the ith

production utility, 𝑅"(𝑛) corresponds to the reward at the nth

update, 𝑈"(𝑛 − 1) corresponds to the ith production utility at
the n-1th update, and 𝛼 is the learning rate. Note that 𝛼 was 
set to 0.2 in our model. 
 Second, monitoring time was a crucial aspect of skill 
acquisition. The model kept track of time in its temporal 
module through a pacemaker-accumulator internal clock 
timing system that generated regular pulses (Taatgen, van 
Rijn & Anderson, 2007). Pulses were monitored in the form 
of time ticks whose value could be accessed via a temporal 
buffer (Taatgen et al., 2007). In the ACT-R model, time 
ticks were reset at the start of the game, and every time the 
model fired a missile. 
 Finally, the controller module monitored and refined the 
estimation of a number of key game parameters including 
the ship’s aim and the shot timing threshold (Anderson et 
al., 2019). The controller module progressively adjusted 
these parameters via a control tuning mechanism starting 
with greater tolerance and narrowing the tolerance over 
time, so that values could be progressively tuned (Anderson 
et al. 2019; Seow, Betts & Anderson, 2019). One key 
parameter that impacted the speed of control tuning was the 
temperature (see equation 2). 

𝑇(𝑡) = 𝐴/(1 + 𝐵. 𝑡)       (2) 
where A is the initial temperature which was set to 1.0, B is 
a scaling factor which was set to its default value of 1/180, 
and t is the time in seconds that elapsed since the start of the 
game. In our model, control tuning critically involved two 
control values:  First, the model needs to turn the ship so it 
will be aimed at the fortress when it later fires. Since the 
ship is moving, it searches for an offset in its aim from -18 
degrees (lower bound) to 0 degrees (upper bound).  Second, 
the ship needs to pace its fires to avoid both resets and 
deflations.  The controller considers a range from 8 time 
ticks or 126 ms (lower bound) to 28 time ticks or 1476 ms 
(upper bound). 
 The range for shot timing in this model was much larger 
than in Anderson et al. (2019) because there was no 
information about what the appropriate time was whereas in 
the original Space Fortress, subjects were told that the 
lower bound is 250 ms. In Auto Orbit, the model narrowed 
the firing range to search as it gained information. 
Specifically, the “detect-reset” and “detect-deflate” 
productions were responsible for adjusting the firing time 
threshold range of parameters. While the time threshold’s 
upper bound progressively decreased during deflations, the 
time threshold’s lower bound progressively increased 
during resets. 

Methods 
Experimental Design 
In this experiment, all human subjects and ACT-R models 
played a total of 15 games that were 3 minutes in duration 
(45 minutes in total). Each subject was randomly assigned 
to one of three possible conditions corresponding to the fast, 
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medium and slow game speed (see Table 1). In the fast game 
speed condition, the ship’s orbital speed was 1.0 pixel per 
game tick (16 ms), and the missile speed was 10 pixels per 
game tick. Agents assigned to that condition needed to fire 
within the [250 ms – 600 ms] interval. Each fired missile 
that resulted into a miss was penalized by a loss of 2 points, 
and each balloon burst was rewarded by a gain of 100 
points.  

In the medium game speed condition, all aspects of the 
game happened at half the speed of the fast condition 
including the timing of shots. This was halved again for the 
slow game speed condition. Individuals earned points as a 
way to get monetarily compensated for their gameplay. The 
total number of points per game was our main measure of 
skill level which was assessed independently in each game 
speed. We designed a point system that met the two 
following criteria: First, participants should earn the greatest 
amount of points per balloon burst in the slowest conditions 
so that all players get fairly compensated for the same game 
length (3 minutes); Second, the point system should be 
adjusted such that participants in easy conditions (e.g., slow 
speed) may not earn significantly more than participants in 
hard conditions (e.g., fast speed). Each balloon burst thus 
led to a reward that increased by 100 points each time the 
game parameters were halved (see Table 1). Note that we 
did not compare performance scores across speeds. 
 

Table 1: Description of the three game speed conditions 

 
Agents 
 
Human Participants We are reporting data from 60 human 
participants randomly assigned to each of the 3 game speed 
conditions. Participants were aged 21 to 40 years-old (M = 
30.5, SD = 4.7). Forty were male and 20 were female. All 
participants were recruited on the Amazon Mechanical Turk 
(mTurk) online platform. Subjects earned a base pay of $4 
for completing the experiment, in addition to a bonus which 
was proportional to their performance (in points) as 
specified on Table 1. On average, participants earned a 
bonus of $5. 
 
ACT-R Models Ninety ACT-R model simulations were 
conducted in each of the 3 game speed conditions (270 
model runs in total). All models were initialized with the 
same parameters. 
 
Procedure 
The mTurk experiment consisted of four main steps. First, 
participants filled out a short background questionnaire 
including questions about the participants’ demographics. 
Second, they read a short description of the Auto Orbit 

video game including game play instructions. Third, 
participants were randomly assigned to one out of the three 
experimental conditions (see Table 1) and completed 15 
games that lasted 3 minutes each. Finally, they filled out 
some additional questionnaires where they provided 
feedback and wrote about strategies that they used during 
the experiment. 
 
Experimental Measures 
In this study, we were interested in a number of 
experimental measures pertaining to motor skill acquisition. 
Our main dependent variable was performance, which was 
operationalized as points earned per game (see Table 1). 
The design comprised a total of 4 independent variables: the 
keypress sequence entropy, the inter-shot-interval (ISI) 
coefficient of variation logarithm, and the shot periodicity 
and regularity. All measures were computed across game 
cycles (“balloon respawn” to “balloon burst”) without 
random rotations for every agent and every game. 
 
Entropy The entropy was our measure of keypress 
sequence regularity in Auto Orbit. We focused on the 
relative frequency of various keypress triples.  With three 
keys (‘F’: fire, ‘L’: left, ‘R’: right) there are 33 = 27 triples. 
We computed the proportions of each keypress triple per 
game by using a non-overlapping counting method (Python 
count() function) with Laplace smoothing for each keypress 
triple in all game cycles. We used the Shannon entropy 
measure, which quantifies unpredictability of information 
content in a probability distribution (Shannon & Weaver, 
1949). Shannon entropy’s formula is given in equation 3: 
 

𝐻(𝑋) = −	∑ 𝑝"	. 	𝑙𝑜𝑔<	𝑝"<=
">? 		 	 	 	 (3)	

 

where X refers to a game number and pi refers to the 
probability of the ith triple.  This entropy measure could 
vary from 0 (only 1 triple throughout) to 4.75 (all triples 
equally likely).  We expected the entropy measure to 
decrease as subjects developed a systematic approach to the 
game. 
 
Log CV Inter-Shot-Interval (ISI) In order to measure shot 
timing variability, we extracted the time interval between 
consecutive shots in milliseconds, named inter-shot-interval 
(ISI) within game cycles. For each game of every agent, we 
then made use of the coefficient of variation (CV), which is 
defined as the standard deviation divided by the mean of the 
ISIs, consistent with previous research (Loehr & Palmer, 
2009). An average CV of the ISIs was computed across 
game cycles within each agent’s game. Because our 
measure of CV and our performance variable were not 
linearly related, we carried out data transformation on CV 
and calculated its logarithm instead. We expected this 
measure to decrease as subjects became more skilled. 
 
Periodicity and Regularity The shot regularity measure 
was computed based on the shots autocorrelation function 
within games. This method has been used in the music 

Table 1: Description of the three game speed conditions

Game Speed Speed Multiplier Resets Deflations Points

Fast 1.0 250 ms 600 ms 100/burst
Medium 0.5 500 ms 1,200 ms 200/burst

Slow 0.25 1,000 ms 2,400 ms 300/burst

Table 2: Human Linear Mixed-E↵ects models across game speeds

Game Speed - Human
Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �490⇤⇤⇤ (�638, �312) �641⇤⇤⇤ (�844, �421) �295⇤⇤⇤(�452, �136)
Log CV ISI �164⇤⇤⇤ (�242, �84) �84⇤ (�161, �12) �146⇤⇤⇤(�206, �83)
Regularity 1171⇤⇤⇤ (732, 1650) 1062⇤⇤ (469, 1677) 378 (�141, 943)
Periodicity �1.31⇤⇤⇤(�2.25,�0.38) �0.52⇤⇤⇤(�0.87,�0.15) 0.10 (�0.03,0.23)
Adjusted R2 0.88 0.88 0.79

⇤⇤⇤p < .001; ⇤⇤p < .01; ⇤p < .05

Table 3: ACT-R simulations Linear Mixed-E↵ects models across game speeds

Game Speed - ACT-R models
Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �451⇤⇤⇤(�531, �372) �15 (�118, 97) 53 (�22, 127)
Log CV ISI 1034⇤⇤⇤ (896, 1177) �372⇤⇤⇤ (�531, �205) 604⇤⇤⇤ (477, 734)
Regularity 974⇤⇤⇤ (745, 1201) 1043⇤⇤⇤ (754, 1348) 558⇤⇤⇤ (326, 822)
Periodicity �0.05 (�0.40,0.27) �0.62⇤⇤⇤(�0.82,�0.43) 0.32⇤⇤⇤ (0.21, 0.44)
Adjusted R2 0.73 0.66 0.65

⇤⇤⇤p < .001; ⇤⇤p < .01; ⇤p < .05
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information retrieval literature to perform meter extraction 
(Brown, 1993). For each game cycle, we first re-
preprocessed agents’ log files such that we would get a 
single discrete time series of fire events, where individual 
entries corresponded to successive game ticks of 16 ms. At 
every tick, a 1 indicated a fire keypress hold event and a 0 
indicated a fire keypress release event. We could then 
compute the correlation coefficient (Box & Jenkins, 1976) 
of keypress actions at a particular lag (see equation 4) using 
the ‘acf’ function from the statsmodels time series analysis 
(‘tsa’) library in Python (McKinney, Perktold & Seabold, 
2011):

𝑟A =
∑ (BC	D	B̅)(BCFGDB̅)HIIJG
CKH 		

∑ (BC	D	B̅)LHII
CKH

         (4) 

where l refers to the current time lag. A total of 100 time 
lags of 16 ms were investigated in each autocorrelation 
function. We averaged the autocorrelation function across 
game cycles of each agent’s game. As a result, for each 
agent, we obtained 15 autocorrelation functions 
corresponding to each of the 15 games. Figure 2 displays an 
example of a game autocorrelation function in a subject. 
Positive peaks in this function reflect lags at which the fire 
keys tended to be pressed. 

Finally, we used each game autocorrelation function to 
extract our two measures of interest: periodicity and 
regularity. To do so, we identified the first non-zero lag 
positive peak of the autocorrelation function. Periodicity 
was the lag for this peak at which fires tended to be pressed. 
Regularity was the height of this function and reflected how 
consistently keypresses occurred at this lag. In our example, 
the first non-zero autocorrelation positive peak has been 
identified with a red bar (see Figure 2). We expected that 
better play would be associated with decreased periodicity 
as subjects got their shots closer to the threshold, and 
increased regularity as they got more consistent in their 
timing. 

Data Analysis 
Our data set consisted of the above measures, each recorded 
once per game and per agent (i.e., in humans and models).  

Linear Mixed-Effects Model In order to assess each 
measure’s individual effect on skill acquisition, we fit a 
linear mixed-effects model (LMEM) across game speeds. 
Our main dependent variable was performance, 
operationalized as points earned per game. Our predictors 
were the four measures described earlier, each modeled as a 
fixed factor.  In addition to our fixed factors, we added two 
random factors to account for some of the variability in our 
performance measure that was not explained by our four 
linear predictors. The first random factor accounted for 
differences across participants’ skill levels and was modeled 
as a random intercept. The second random factor accounted 
for residual variance in performance related to individual 
game numbers that could not be captured by our four fixed 
factors. 

Figure 2: Autocorrelation function in game 11 of one of the 
subjects in the fast speed condition. The red bar indicates 

the periodicity (lag) and regularity (correlation coefficient) 
of this subject’s shot timings in that game. 

In R, we used the ‘lme4’ (Bates et al., 2014) package to 
fit our linear mixed-effects model. The model was written as 
lmer(Performance ~ Entropy +  logCV + Periodicity + 
Regularity + (1|Subject) + (1|GameNb)). For each model, 
the 95 % confidence interval was computed for each 
estimate using bootstrapping with resampling (‘bootMer’ 
function in R). A total of 1000 simulations were run for 
each bootstrapped 95 % confidence interval.

Results 
Behavioral Results 
We hereby present the results from human games and ACT-
R model simulations across the three game speed conditions 
(fast, medium, and slow). For each measure of interest, we 
report the mean within games across agents along with the 
standard error. Because the ACT-R models were all 
initialized with the same parameter values, there is lower 
variability among models than humans for each measure. 

We first report the performance results across games in 
humans and models (see Figure 3). Humans and models 
achieved similar numbers of points, both showing rapid 
initial improvement approaching an asymptote by 15 games. 
However, some differences are worth noting: In the fast 
speed condition, humans performed somewhat better than 
the models. In the medium and slow speed conditions, 
models had a somewhat steeper slope than humans. 

Figure 3: Performance scores over the games. Human 
performance is indicated in red (N = 20 per speed); model 

performance is indicated in blue (N = 90 per speed). Shaded 
areas indicate the standard error of the mean (S.E.M). 
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In terms of keypress sequencing, both models and humans 
showed similar levels of entropy with an increase for slower 
games. (Figure 4a), but humans’ entropy progressively 
decreased in early games towards their asymptote whereas 
models’ entropy was constant across all games. We think 
this reflects the fact that models have a constant strategy, 
whereas subjects’ strategies are evolving during the early 
games and they only settle down to a constant strategy in 
later games. 

The results with respect to ISI variability (Figure 4b), are 
similar to entropy. While models show some decrease over 
games, subjects show a more drastic decrease with a large 
early drop in the 2 first games. We think this reflects 
subjects’ evolving strategy and progressive adaptation to the 
game’s shot timing constraints.  As such, early changes will 
produce large changes in motor timing. 

 
Figure 4: a) Entropy over the games in humans and models. 

b) Logarithm of the inter-shot intervals (ISI in ms) 
coefficient of variation (CV). Shaded areas indicate the 

standard error of the mean (S.E.M). 
 
Analysis of shot timing autocorrelations provided 

periodicity and regularity measures (Figure 5). With regards 
to the shot periodicity, humans and models were quite 
similar.  Both had shot timings within the assigned game 
speeds’ firing intervals (see Figure 5a), and both models and 
subjects showed an increase in periodicity in the slow speed 
condition. (see Figure 5b).  That increase reflected an early 
tendency to fire too soon, which both models and humans 
had to learn to change. 

Both models and humans showed an increase in regularity 
over games, but human regularity increased as the game 
speed got faster whereas model regularity did not increase 
with speed.  The regularity in the model reflects its timing 
mechanism, which is a variant of the attentional gate model.  
That model produces a variability that scales with duration, 
so that regularity will not change much. In contrast, subjects 
may be changing their timing processes as they move to 
timing actions well under a second. 

 
Figure 5: a) Periodicity over the games in humans and 

models. b) Regularity over the games. Shaded areas indicate 
the standard error of the mean (S.E.M). 

 
Linear Mixed-Effects Model 
We hereby report the LMEM results pertaining to humans 
and ACT-R models separately. Table 2 displays the human 
LMEM results. Three models were fitted to each game 
speed data set. Entropy and the logarithm of the ISI 
coefficient of variation were both predictive of performance 
across all speeds. A decrease in entropy was reliably 
predictive of performance, and both lower and upper bounds 
of the confidence interval were negative. Similarly, a 
decrease in ISI variability was also reliably predictive of 
performance across all speeds. With respect to the shots 
autocorrelation measures, a positive effect of regularity 
(more regular) on performance and negative effect of 
periodicity (faster firing rate) on performance were found in 
the fast and medium game speeds, but not in the slow game 
speed. All significant effects are in line with our 
expectations about these factors.  The fact that regularity 
and periodicity are not predictive in the slow game speed 
reflects the fact that it is not time pressured. 

 
Table 2: Human LMEM results across game speeds 

 

 
Table 3 displays the ACT-R models’ LMEMs. We found 

a consistent positive effect of shot regularity on 
performance across all three game speeds. In contrast to 

Table 1: Description of the three game speed conditions

Game Speed Speed Multiplier Resets Deflations Points

Fast 1.0 250 ms 600 ms 100/burst
Medium 0.5 500 ms 1,200 ms 200/burst

Slow 0.25 1,000 ms 2,400 ms 300/burst

Table 2: Human Linear Mixed-E↵ects models across game speeds

Game Speed - Human
Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �490⇤⇤⇤ (�638, �312) �641⇤⇤⇤ (�844, �421) �295⇤⇤⇤(�452, �136)
Log CV ISI �164⇤⇤⇤ (�242, �84) �84⇤ (�161, �12) �146⇤⇤⇤(�206, �83)
Regularity 1171⇤⇤⇤ (732, 1650) 1062⇤⇤ (469, 1677) 378 (�141, 943)
Periodicity �1.31⇤⇤⇤(�2.25,�0.38) �0.52⇤⇤⇤(�0.87,�0.15) 0.10 (�0.03,0.23)
Adjusted R2 0.88 0.88 0.79

⇤⇤⇤p < .001; ⇤⇤p < .01; ⇤p < .05

Table 3: ACT-R simulations Linear Mixed-E↵ects models across game speeds

Game Speed - ACT-R models
Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �451⇤⇤⇤(�531, �372) �15 (�118, 97) 53 (�22, 127)
Log CV ISI 1034⇤⇤⇤ (896, 1177) �372⇤⇤⇤ (�531, �205) 604⇤⇤⇤ (477, 734)
Regularity 974⇤⇤⇤ (745, 1201) 1043⇤⇤⇤ (754, 1348) 558⇤⇤⇤ (326, 822)
Periodicity �0.05 (�0.40,0.27) �0.62⇤⇤⇤(�0.82,�0.43) 0.32⇤⇤⇤ (0.21, 0.44)
Adjusted R2 0.73 0.66 0.65

⇤⇤⇤p < .001; ⇤⇤p < .01; ⇤p < .05
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Table 2, there are a number of significant effects in the 
opposite direction of expectation. Increased periodicity is 
associated with more points in the slow condition.  We think 
this is associated with the initial too-fast firing in the slow 
condition (Figure 5) and is partly responsible for the lack of 
an effect for humans in Table 2.   The other discrepancy is 
that greater ISI variability was predictive of higher 
performance in the fast and slow game speeds.  This is 
puzzling, because in terms of simple correlation, there is no 
correlation between points and this measure in the fast game 
(r = .005) and a weak negative correlation in the slow games 
(r = -.196).  The direct correlation for medium speed, where 
Table 3 shows the expected negative effect, is .581. 

Table 3: ACT-R models LMEM results across game speeds 

Discussion and Conclusion 
ACT-R models and humans showed similar improvement 
scores in the Auto Orbit video game. Motor skill acquisition 
was characterized by a fast performance increase in early 
games, and a slower learning rate in later games where 
performance progressively plateaued towards an asymptote. 
In terms of motor behavior, humans and models both 
learned to be more regular and less variable in terms of 
keypress sequential patterns and shot timing. One challenge 
in the Auto Orbit video game was for players to learn how 
to shoot within a firing interval bounded by resets and 
deflations. Shot timing autocorrelation analyses revealed 
that humans and models learned to fire missiles within their 
assigned game speed firing interval (periodicity) with 
increasing rhythmicity (regularity). 

Nevertheless, our analyses also revealed a number of 
motor learning differences between humans and models 
which are worth discussing. First, we found that humans’ 
keypress patterns and shot timing were more variable than 
models, particularly in early games, but quickly converged 
towards models’ variability levels as performance increased. 
These variability patterns in humans fit with previous 
neuroscience (Wu et al., 2014) and motor skill learning 
research (Caramiaux et al., 2018) suggesting that motor and 
timing variability may predict performance over the course 
of motor skill acquisition.  

Second, while shot regularity increased in a similar 
fashion at the slow speed across humans and models, we 
found that human subjects’ shot regularity levels were 
higher at faster speeds, whereas models’ regularity levels 
remained constant across speeds. This result may be due to a 

higher reliance on motor circuits (Lewis & Miall, 2003) and 
subcortical modulation (Ivry & Spencer, 2004; Koch et al., 
2007) under fast speed constraints. Specifically, past 
research suggests that motor timing tasks involving fast 
discrete actions such as repetitive keypresses may heavily 
recruit the cerebellum through dynamic sensorimotor 
learning and motor error correction (Koch et al., 2007; 
Breska & Ivry, 2016).  

While model performance and motor learning were 
relatively close to humans, improvements can be made to 
optimize the ACT-R model and better simulate human 
motor skill acquisition. One option would be to change the 
parameterization of ACT-R to make the model more 
variable, both within- and between-models. In terms of 
within-models variability, one could vary the noise levels 
and learning rates related to different components of the 
model. One example is the temporal module noise 
parameter whose increase may lead to further shot timing 
variability in ACT-R. Another example is the utility 
learning and production compilation learning rate (𝛼 in 
equation 1), which controls the speed at which newly 
formed productions replace their original parent 
productions. Specifically, high values of 𝛼 typically lead to 
a faster rate of production compilation and skill acquisition 
whereas low values of 𝛼 typically lead to a lower rate of 
production compilation and skill acquisition. One last 
example is the initial temperature (A in equation 2), whose 
value assignment may lead to different degrees of 
randomness in control tuning. Generally, lower initial 
temperatures enable the model to incorporate more of its 
learning experience into its game play, but they also 
increase the risk of converging towards non-optimal values 
if the initial temperature is too low. 

As to between-models variability, past research by 
Anderson et al. (2019) explored potential performance 
fluctuations related to the adjustment of a few selected 
parameters. Specifically, the authors explored the effects of 
𝛼 (see equation 1) in the [0.025, 0.3] range, and the initial 
temperature (A in equation 2) in the [0.1, 2.0] range. It 
would be of interest to further explore the stochastic 
initialization of these parameters in our current ACT-R 
model to determine whether one could replicate humans’ 
inter-subject variability patterns. 

A second option would be to modify the initialization of 
operators to enable the model to adjust its behavior to a fast 
vs. slow game speed depending on shot timing threshold 
information in the controller module. Alternatively, one 
could vary the order in which operators are retrieved at 
different phases of the game such that the model would 
initially prioritize shooting over aiming, but would 
progressively switch to a more optimal strategy that 
prioritizes aiming over shooting. 

Last but not least, our current results strongly suggest that 
ACT-R’s current motor module needs the ability to adjust 
its motor behavior according to the speed at which it 
executes motor actions. One striking result was that human 
shot timing became increasingly rhythmic as the game 

Table 1: Description of the three game speed conditions

Game Speed Speed Multiplier Resets Deflations Points

Fast 1.0 250 ms 600 ms 100/burst
Medium 0.5 500 ms 1,200 ms 200/burst

Slow 0.25 1,000 ms 2,400 ms 300/burst

Table 2: Human Linear Mixed-E↵ects models across game speeds

Game Speed - Human
Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy 490⇤⇤⇤ ( 638, 312) 641⇤⇤⇤ ( 844, 421) 295⇤⇤⇤( 452, 136)
Log CV ISI 164⇤⇤⇤ ( 242, 84) 84⇤ ( 161, 12) 146⇤⇤⇤( 206, 83)
Regularity 1171⇤⇤⇤ (732, 1650) 1062⇤⇤ (469, 1677) 378 ( 141, 943)
Periodicity 1.31⇤⇤⇤( 2.25, 0.38) 0.52⇤⇤⇤( 0.87, 0.15) 0.10 ( 0.03,0.23)
Adjusted R2 0.88 0.88 0.79

⇤⇤⇤p < .001; ⇤⇤p < .01; ⇤p < .05

Table 3: ACT-R simulations Linear Mixed-E↵ects models across game speeds

Game Speed - ACT-R models
Fast Medium Slow

Estimate 95 % CI Estimate 95 % CI Estimate 95 % CI

Entropy �451⇤⇤⇤(�531, �372) �15 (�118, 97) 53 (�22, 127)
Log CV ISI 1034⇤⇤⇤ (896, 1177) �372⇤⇤⇤ (�531, �205) 604⇤⇤⇤ (477, 734)
Regularity 974⇤⇤⇤ (745, 1201) 1043⇤⇤⇤ (754, 1348) 558⇤⇤⇤ (326, 822)
Periodicity �0.05 (�0.40,0.27) �0.62⇤⇤⇤(�0.82,�0.43) 0.32⇤⇤⇤ (0.21, 0.44)
Adjusted R2 0.73 0.66 0.65

⇤⇤⇤p < .001; ⇤⇤p < .01; ⇤p < .05
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speed got faster. One way of modeling this time-related 
effect of speed on motor behavior would be to augment the 
current motor module with its own timing component, such 
that the model would fire missiles with increasing 
rhythmicity at faster speeds. This novel addition would fit 
with ACT-R being a template of human behavior. 

In sum, we have shown that human motor skill learning 
was characterized by time-independent and time-dependent 
effects of speed. On the one hand, variability in keypress 
sequencing and motor timing were shown to predict skill 
acquisition regardless of the game speed. On the other hand, 
motor timing regularity and periodicity were shown to only 
be predictive of performance in the sub-second range. As a 
way to model these effects in ACT-R, we suggest a number 
of improvements which include incorporating a timing 
component into ACT-R’s motor module. 
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Abstract 

We were interested in testing Newell’s Micro Strategies 
hypothesis as well as assumptions made by both ACT-R and 
SGOMS theory using a mobile game and a predictive SGOMS-
ACT-R model. The Model is designed to predict expert game 
play. We found in most conditions the model did predict the 
results, however in one condition the player employed an 
alternative Micro Strategy. 

Keywords: SGOMS; GOMS; ACT-R; Micro-cognition 

Introduction 

Often in studies on cognitive tasks many participants are 

used, and their results are averaged together to deal with 

variation in the results. This variation is generally interpreted 

as noise. However, Newell (1973) said that by averaging over 

many participants, we may be averaging over different 

strategies. If you control noise by training participants to the 

expert level, so they are on the same place on the learning 

curve, and rigorously control the task, different patterns in the 

data can be attributed to different Micro Strategies. Micro 

Strategies take place at the millisecond scale and can vary 

during simple cognitive tasks (Gray and Boehm-Davis, 

2000). 

In You Can’t Play 20 Questions with Nature and Win, 

Newell (1973) notes the importance of understanding the 

different micro strategies for using our cognitive, perceptual, 

and motor systems to perform tasks in Cognitive Psychology 

experiments (note, Newell refers to these strategies as 

Methods, but we will use the term, Micro Strategies, and 

reserve the term, Methods, for use in our SGOMS model). 

For example, if a person needs to respond to a stimulus by 

typing a two-letter code, they could use one finger, one finger 

on each hand, or two fingers on the same hand if the letters 

were close together. If they know what code to type, they only 

need to see that a stimulus appears; they do not have to wait 

to fully recognize it before responding. However, some 

people might wait to fully register the identity of the stimulus 

before responding. Newell’s point was that we should not 

average across different strategies as it produces meaningless 

numbers that do not accurately reflect the operation of the 

underlying cognitive system.  

A previous study by West, Ward, Dudzik, Nagy, & Karimi 

(2018) used an ACT-R Agent (Anderson & Lebiere, 1998) 

built according to SGOMS (West & Nagy, 2007). The Agent 

they built was designed as a predictive model on expert 

gameplay. Only two participants were used but they were 

extensively trained to be high performing experts. The results 

of the study showed that two participants matched each other 

and the ACT-R Agent within milliseconds of accuracy under 

specific conditions, but not under others.  

To further the research started by West et al. (2018), we 

decided to follow a similar experimental design but 

developed a version of the game without the conditions where 

the two subjects varied.  

The Game 

The new game, called Four Button was built using MIT app 

inventor 2 (https://appinventor.mit.edu/), and is run as an app 

on mobile devices. Four Button Expert levels follow the 

SGOMS structure and explicitly uses a hierarchy structure 

composed of operators (individual button presses), methods 

(fixed series of button presses), Unit Tasks, and Planning 

Units. Four Button Expert can be best explained by 

comparing gameplay to that of a First-Person Shooter 

videogame, such as. Dead Space, a videogame in which a 

player must fight through different levels of a game. 

Throughout the levels players encounter aliens which they 

must fight using different combinations of moves and 

weapons.  

The Methods Level 

The Methods level is equivalent to knowing which buttons 

correspond to which actions of the character. Buttons on a 

game controller such as X, O, and R2 correspond to actions 

such as Jump, duck, and shoot. In the Four Button Expert the 

Methods take the form of a two-letter prompt and a 

corresponding four-digit response. Players must enter the 

four numbers when prompted by the appearance of the two 

letters at the top of the screen (see Table 1). Expert players 

would have the four-number sequence proceduralized and be 

able to enter it immediately when they know which Method 

is required.  
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Table 1: The Methods 

The Unit Task Level 

The Unit Task level is equivalent to knowing the different 

action sequences you must use to fight an enemy. For 

example if there is one alien type that you shoot until he 

executes/performs an attack on you upon which your you 

duck before resuming shooting, your button sequence would 

be R2, R2, O, R2. Compare this to another alien type where 

you must shoot, jump to avoid his attack type, shoot and then 

duck, in this case your button sequence would be R2, X, R2, 

O. Players must use a different sequence of the same actions

in the different conditions. In our game the two-letter prompts

are organized in specific and consistent sequences which then

correspond to unit tasks (see Table 2). Expert players

recognize that specific Methods signify the beginning of a

Unit Task and know which related sequence of numbers are

needed to complete the Unit Task. In two of the Unit Tasks

(RP and HW) there are splits that occur, where one of two or

one of three Methods could be displayed. The splits always

occur at the same place in each Unit Task. This is the

equivalent of some of the aliens having two or three different

possible attack types that they employ at random at a certain

point in the sequence.

Table 2. The Unit Tasks 

The Planning Unit Level 

The Planning Unit level can be compared to a full level of our 

hypothetical video game. During a level, different aliens 

would be activated at different points throughout the level. 

An expert at this game would know that on level 1, Alien type 

1 appears, followed by Alien type 2 and followed by Alien 

Type 3. Whereas on Level 2 the Alien order is Type 3, 1, then 

2. Expert Players would be able to know exactly which order

the Unit Tasks (Aliens) appear and which sequence of 

Methods (actions) take place within those. Our game follows 

this structure as well, where each Planning Unit holds the 

same Unit Tasks in different orders (see Table 3). Expert 

players are able to recognize which Planning Unit they are in 

by looking at the first Method code of the planning unit.  

Table 3. The Planning Units 

Methodology 

For our study we had 1 participant in order to thoroughly 

understand one individual’s micro strategies before 

collecting more. Also, we could compare the results to similar 

conditions in the previous version of the game (West et al., 

2018). This Methodology of making detailed comparisons 

between a few participants has also been successfully used by 

Gray and Boehm-Davis (2000), and Shiffrin and Cousineau 

(2004).  

The game app was downloaded onto the participant’s 

phone. The participant learned the game, starting at the 

Methods level. They moved up to the Unit Task level after 

they could confidently play each Method and their timing was 

consistent across all 8 Methods. Once they could play all 

three Unit Tasks they were moved up to the final level, the 

full game or Planning Unit level. Reaction time was based on 

how fast it takes for the participant to enter the corresponding 

four-digit code from when the two-letter code first appears on 

the screen. 

Predictions 

Based on the ACT-R model and previous results from West 

et al. (2018) we were able to make some predictions. For the 

conditions with multiple possible responses, we predicted 

that Hick’s law, which states that reaction times increase as 

the number of stimulus–response alternatives increase (Hick 

1952), would not apply. That is, we predicted no difference 

between our 3 choice and 2 choice conditions (see table 2). 

This is because the model assumes expert players will not 

rely on declarative memory (see Schneider and Anderson, 

2011).  

The model has one free parameter, which is the perceptual 

motor time to respond. However, this parameter is different 

depending on whether the next method could be memorized 

(known), or whether it was necessary to see the code before 

choosing the method (unknown). Because the known and 

unknown conditions have different estimated parameter 

values, we treated them separately. For the unknown 

condition the model predicts that a method signaling the 
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beginning of a planning unit will take more time due to the 

SGOMS overhead required to keep track of the planning unit, 

compared to a method not associated with the beginning of a 

planning unit,. For the known condition, the model predicts 

that a method signaling the beginning of a unit task will take 

more time due to the SGOMS overhead required to keep track 

of the unit task, as opposed to a method not associated with 

the beginning of a unit task. 

Finally, we predicted that our results should be the same as 

West et al. (2018) when scaled so that the known and 

unknown parameter values are the same across all subjects 

and the model.  

Results 

Methods where the player’s data had errors were removed 

because we are interested in the player’s time during 

conditions when they are playing correctly. To clean the data, 

it was sorted from smallest to largest time (in milliseconds). 

Outliers were cut off by detecting a knee in the data. (Satopaa, 

Albrecht, Irwin, & Raghavan, 2011). The mean average time 

was calculated from the remaining data in each condition.  

Figure 1: The Player Results (ms) under the different 

conditions with confidence intervals (0.05) 

Figure 1 shows the player results with 0.05 confidence 

intervals. As predicted the three split (3spt method) and two 

split (2spt method) conditions were the same. Additionally, 

the predictions of extra processing time for unknown 

methods at the start of a planning unit (PU first method) and 

known methods at the start of a unit task (UT first method) 

was supported. This is illustrated by comparing PU first 

method to both 3spt method and 2spt method and comparing 

UT first method to known method.  

Compared to the West et al. (2018) results, these results 

were scaled by assuming that differences in speed were due 

to perceptual/motor differences only. The model treats 

perceptual/motor as an additive factor, so we used the split 

conditions (which were combined into one condition) and the 

known methods condition to estimate the difference between 

participants in perceptual/motor speed for known perceptual 

motor actions and unknown perceptual motor actions. We 

then equalized perceptual/motor speed by subtracting an 

amount so that all participants were the same as the fastest 

participant in these two conditions, whose perceptual motor 

times were also used in the model. To test the model this same 

amount was also subtracted from the planning unit start 

condition (Pu first method) and the unit task start condition 

(UT first method), with the prediction that model and 

participants also be the same across these conditions.  

The modeling results, displayed in Figure 2, show that our 

participant matched the model and the West et al. (2018) 

participants for the planning unit start condition, but took 

significantly more time for the unit task start condition. 

However, the time for the unit task start condition closely 

matched the unknown method time, suggesting that our 

participant cued off the displayed code rather than using their 

memory for this condition.  

Figure 2. The data from our Participant compared to the 

result of the previous study. The hatched bars are the 

other two players from West et al. (2018), the black bar 

is the SGOMS/ACT-R model predictions and the gray 

bar is the optimal ACT-R prediction, where the model 

does not keep track of where it is in the task 

Conclusion 

Overall, we showed support for the idea that data and models 

can be used to study micro strategies in individuals. In 

particular, as in Gray and Boehm-Davis (2000) and Shiffrin 

and Cousineau (2004), we provide evidence that people can 

adopt different micro strategies even for simple tasks.  

We can also make a prediction: If our analysis is correct, it 

should be possible to alter our participant’s strategy by 

training them to rely on memory rather than vision for the 

unit task start condition. Such training should produce the 

predicted result. We will attempt this training and report the 

results at a future conference. 
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 Abstract 
In humans, learning is a complex phenomenon that depends on the joint            
contribution of multiple interacting systems, most notably memory        
(WM), long-term memory (LTM) and reinforcement learning (RL).        
There are vast individual differences in learning mechanism        
deployment. It is also, often, difficult to assess, through behavioral          
measures, the relative contributions of these systems during learning as          
well the specific strategies individuals rely on in performing a task.           
Collins (2018) put forward a working memory-reinforcement learning        
combined model that addresses these issues within a simple domain, but           
largely ignores the long-term memory component. In this project, we          
built four (two single-mechanism RL and LTM, and two integrated          
RL-LTM) idiographic learning models based on the ACT-R cognitive         
architecture. We aimed to examine individual differences and estimate         
parameters that could explain preferential use of learning mechanisms         
using the Collins (2018) stimulus-response association task. We found         
that different models provided best-fits for individual learners with         
more variability in learning and memory parameters observed even         
within the best fitting models. Our conclusion is that irreducible           
differences in learning and meta-learning strategies exist within        
individuals even within relatively simple tasks, and that model-based         
approaches are necessary to characterize and explain behavioral data.  

Keywords : Individual differences; reinforcement learning; ACT-R;      
working memory; declarative memory; learning. 

Introduction 
Individual differences in the ability to learn new        

associations are foundational to most measures of aptitude— a         
construct that describes the readiness with which one can acquire          
a complex skill. But even basic associative learning paradigms,         
like stimulus-response mappings, have been shown to rely on a          
mixture of learning mechanisms including working memory,       
reinforcement learning, and long term memory (Stocco et al.,         
2010). Though a considerable amount of research has        
investigated how task characteristics drive these mechanisms       
during learning (Collins & Frank, 2012), less work has been          
devoted to understanding how and when they may be deployed          
differently in different learners. To examine this, we built two          

single-mechanism and two multi-system stimulus-response     
learning models using the Adaptive Control of Thought -         
Rational (ACT-R) cognitive architecture, and used them to        
examine individual learning mechanisms for the same learning        
task. Specifically, Anne Collins’ Reinforcement Learning      
Working Memory task (RLWM task: Collins, 2018) was used as          
the task paradigm .  

It can be difficult to assess the independent contributions of          
these learning mechanisms behaviorally. Modelling is a robust        
approach to evaluating the independent contributions of these        
mechanisms (Collins, 2018). This method further allows us to         
estimate individual parameters that would give us insight into         
the cognitive properties that resulted in different forms of skill          
acquisition (Daw, 2011). We adopted the RLWM task because it          
provided a single experiment with simple manipulations to        
dissociate learning mechanisms.  

But in the task’s simplicity lies a difficulty: long-term         
memory and reinforcement learning guide actions and responses        
that are nearly indistinguishable in the context of the task using           
behavioral outcomes only. In the RLWM task, participants are         
asked to learn associations between images (e.g. objects, shapes,         
and colors) and key responses through trial-and-error with        
feedback. The task, as designed by Collins, sought to quantify          
the relative contributions of working memory and reinforcement        
learning through two training conditions over 14 blocks–a        
working memory, resource-sparing, 3-image condition for 8       
blocks and a resource-intensive, 6-image condition for 6 blocks.         
After training, participants performed an unrelated, 10-minute       
distractor task followed by a surprise test block. Collins et al.           
expect that that the 3-image associations, learned quickly        
through working memory, should not be remembered after the         
distracting break, whereas the 6-image associations, acquired       
through reinforcement learning, should be retained after the        
break and demonstrated during the test phase. This largely aligns          
with what we know about the durability of reinforcement         
learning (Stocco et al., 2010). Collins has demonstrated that         
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learning object-letter associations most probably occurs through       
the interaction of Reinforcement learning (RL) and Working        
Memory (WM) using a combined, interacting (RL+WMi)       
model (Collins 2018; Collins & Frank, 2012). They        
hypothesized that the fast-learning (high learning-rate) WM       
resource, which is limited in capacity and decays rapidly,         
represented by a decay parameter, cooperatively interacts with        
the RL portion of the model, directly influencing the         
computation of the reward prediction error. This model        
contributes less to reward prediction error when the set size is           
high. This model fit participant data best compared to other, RL           
and non-interacting RL+WM  models (Collins, 2018). 

One critical limitation of Collin’s original modeling effort is         
that it implicitly assumes that all long-term associations between         
stimuli and responses are stored in a procedural, RL-based         
system, and, conversely, that all of the explicit representations of          
the correct responses must fit within a temporally constrained         
working store. This is apparent in the assumption, for example,          
that performance after a 5-minute interval must reflect the RL          
system only (Collins, 2018). Instead, our replication of the         
experiment shows that participants have also used their        
long-term declarative memory. Upon completion of the main        
task, participants in our study were also asked to answer the           
open-ended question, “Do you recall using a specific strategy to          
learn the images?” A substantial number of them reported, for          
instance, relying on colors, names, or other salient features of the           
stimuli to remember the corresponding responses. Many answers        
followed the common pattern “Pictures ‘A’ and ‘B’ shared an          
attribute and were both associated with the keyboard response         
‘V’, so they were grouped together”. An informal evaluation of          
these responses lent a trickle of confidence to the use of a            
possible LTM strategy, as well as the fact that participants seem           
to explicitly control they learning strategies Additionally, we        
have observed clear individual differences in learning as well as          
demonstration of learned associations in our subjects that stray         
away from the WM-RL dichotomous view of learning. For         
instance, a proportion of our subjects learned quickly in both          
object-set conditions, suggesting working memory use, but also        
showed that learned associations prevailed after the 10-minute        
break (Figures 4 and 5).  

To further complicate the story, Collins’ model relies on a          
simplified working memory system, which, in essence, is a         
fixed-capacity storage with fading contents. This is exactly how         
short-term memory was originally conceptualized by Atkinsons       
and Shiffrin (1968) and, while useful as a modeling tool, it is            
also known to be inadequate. Critically, contemporary theories        
think of working memory as a process arising from the          
interaction between attention and the strategic retrieval of        
long-term memory information (Kane et al., 2001; Miller,        
Lundqvist, & Bastos, 2018). In essence, Collin’s modeling        
efforts confound the temporal axis of learning (long vs. short          
term representations) with the learning representation (implicit       
and procedural, driven by RL, and explicit, driven by WM). 

The ACT-R Cognitive Architecture 
To capture the interplay between reinforcement learning,       

long-term memory, and working memory within an integrated        
model, we decided to follow an alternative approach and build a           
series of models using the ACT-R cognitive architecture        
(Anderson, 2007). ACT-R was an obvious choice for this study          
because of its expansive, flexible and manipulable integration of         
cognitive mechanisms. In ACT-R, knowledge is represented in        
two possible formats, procedural and declarative. Procedural       
knowledge is represented as procedural rules, is identified with         
the basal ganglia, and is learned through reinforcement learning         
(Stocco, Lebiere, Anderson, 2010; Ceballos, Stocco, Prat, 2020).        
Declarative knowledge is represented in explicit memories.       
Explicit memories decay over time, but their activation can be          
momentarily increased through spreading activation, an      
attentional mechanism that can be used to maintain information         
for a brief amount of time and predicts individual differences in           
working memory capacity (Daily et al 2001). Finally, ACT-R is          
a realistic “end-to-end” modeling tool, and includes multiple        
models to capture sensorimotor interactions with a task.  

In this study, we built four models to model typical learning           
trajectories and outcomes in a declarative learning, LTM only         
system with a variable WM analog, a reinforcement learning         
system and combined RL, WM and LTM models. These models          
would allow us to test if the RLWM task can potentially be            
performed using declarative memory. Further, by exploring a        
range of parameters for learning rate (α), RL noise (τ), working           
memory (Imaginal-activation), memory retrieval noise and      
decay rate, we could estimate individual parameters and        
establish a link to the differences that amount to varied          
deployment of learning mechanisms.  

Materials and Methods 
Participants. 83 undergraduate students from the University of        
Washington participated in this experiment. All participants       
were monolingual English speakers recruited through the UW        
Psychology subject pool (47 females, aged 18-35 years). Data         
were collected after receiving informed consent in one 2-hour         
session.  
Behavioral Task The Reinforcement Learning Working      
Memory task (Collins, 2018) involves learning      
stimulus-response associations through a series of 14 blocks.        
Participants are instructed to respond with a key-press of either          
‘C’, ‘V’ or ‘B’ to the displayed images. In half the blocks,            
participants have to learn to associate key-presses with three         
unique images, presented 12 times in random order and in the           
other half with 6 unique images each presented 12 times within           
the block. The stimulus-response associations are deterministic       
and participants learn through reward (+1 point for correct         
responses and 0 points for incorrect responses). Following this         
learning phase, a 10-minute distractor task is administered        
before a surprise 206-trial test block. Participants make        
responses without feedback to items taken from both 3- and 6-set           
learning blocks. Stimulus presentations and data collection were        
done in MATLAB (mathworks.com).  

76Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



Computational Models 
All of the models experienced the same experimental set-up — 2           
learning blocks of 3 and 6 objects respectively, a 10-minute          
break and a test phase without feedback. 
Reinforcement Learning Model. The first model (Figure 1)        
most closely adheres to Collin’s RL model. This model uses          
production rules to represent all of the possible        
stimulus-response associations,and uses reinforcement learning     
to progressively learn which associations are correct. Each        
production rule p has an associated utility value, U(p), that          
reflects its expected rewards and is learned through a temporal          
difference rule. Specifically, 

Ut (p) =Ut  -1 (p) + α [Rt  - Ut-1 (p)] (1) 

in which α is the learning rate and Rt is the reward given at              
time t. In our experiment, Rt is binary and corresponds to the            
feedback (“Correct”, Rt = 1, and “Incorrect”, Rt = -1) given by            
the task interface. Competing responses are selected on the bases          
of their respective utilities, using a soft-max rule controlled by a           
noise parameter τ. The model initially responds randomly, until         
the correct rule accrues sufficient rewards to overcome the         
competitors, given the noise τ. The entire procedural/RL model         
is controlled by two parameters, the learning rate α and the           
selection noise τ. 

Figure 1: Overview of the procedural RL model, as implemented          
in ACT-R. 

Declarative Learning Model. In lieu of Collins’ pure WM         
model, we developed a declarative model (Figure 2), which         
manages both long-term and short-term explicit associations       
between a stimulus and its correct response This model stores          
memories of specific task events for later recall and use. To start,            
the model attempts to retrieve a memory of a previous response           
to the current stimulus that had resulted in a correct response. If            
such a memory is found, the same response is used. If no            
memory can be found, the model makes a random response. The           
outcome of this response to the current stimulus are then          
memorized. Although this model is computationally simple,       
ACT-R allows for a sophisticated control of the memory         
management processes through three parameters: (a) activation       
noise s, which captures random fluctuations in a memory’s         

activations and associated probability of retrieval, (b) decay rate         
d, which captures the rate at which memories fade away and are            
forgotten (Sense et al., 2016); and (c) spreading activation         
weight W, which captures the attentional resources allocated to         
activating relevant memories during retrieval, and has been        
shown to capture individual differences in working memory        
capacity (Lovett, et al., 2000; Daily et al, 2001). We hypothesize           
that individual differences may occur in this three-parameter        
space and might be an intrinsic source of strategy choice during           
learning and retrieval. 

Figure 2: Overview of the declarative model, as implemented in          
ACT-R. 

Integrated LTM-RL models. Our third and fourth models        
integrate the two single-system models into one model. Both         
models initiate each new trial by first deciding which of the two            
strategies to use---the procedural or the declarative strategy. The         
mechanism for integration provided a specific challenge. What is         
the most likely way that these two systems collaborate or          
compete during learning and recall? We decided to test two          
possible ways a meta-learner could arbitrate which system to         
use. The first, perhaps more elegant, solution was to have a           
reinforcement learner that learned the best strategy given the         
specific set of parameters. This model has five parameters total,          
the two inherited from the pure RL model (α and τ) and the three              
inherited from the Declarative model (s, d, and W). This model           
assumes that individuals are adaptive learners, and can optimally         
choose strategies based on their relative success over a short          
time. For example, if the long-term memory strategy proves too          
difficult (as in the case of too many stimuli), the model would            
switch to a RL-based learning strategy. RL learned associations         
are shared with the LTM system by inserting explicit         
information into the memory module. 

The second integrated model has a built-in preference bias         
towards one system, quantified as a bias parameter β. Thus, at           
the beginning of every trial, the model selects the procedural/RL          
strategy with probability β and the declarative strategy with         
probability 1 - β. In contrast to the previous model, this bias is             
fixed and does not change over the course of the task. This            
model embeds the hypothesis that individuals might have        
established preferences towards one way to learn or another,         
perhaps honed over many years of “learning to learn” across          
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contexts and circumstances. For instance, if an individual has a          
preference for declarative learning, it would persist in trying to          
memorize stimulus-response associations even when switching      
to a RL strategy would be more convenient.  

Figure 3: Overview of the two “integrated” models that employ          
both RL and declarative learning. The two models differ only in           
how they arbitrate between the two strategies.  

Simulations 
In this study, models are used as investigative tools to better           

characterize each individual. To do so, each model was run          
across a discretized version of its parameter space. Despite being          
computationally expensive and coarse, this method was       
preferred to convex optimization methods because it gives the         
full view of parameter space (including local and global minima)          
and, once computed, does not need to be recalculated for each           
participant. To obtain stable estimates, each model was run 100          
times for each possible combination of parameters. In        
discretizing the range of each parameter, values were chosen to          
form an interval that surrounds the recommended value in the          
ACT-R documentation. A full description of parameters and the         
range of values that were manipulated is given in Table 1. 

Table 1: Model parameters manipulated in the simulations 

Parameter Meaning Values 

α Learning rate in RL 0.10, 0.15, 0.20 

τ Procedural rule selection 
noise 0.2, 0.3, 0.4 

d LTM decay rate 0.4, 0.5, 0.6 
s LTM activation noise 0.2, 0.3, 0.4 

W 
Spreading activation 
(Working memory 
capacity) 

1, 2, 3 

Data Analysis And Participant Fitting 
Each participant’s meta-learning strategy and latent,      

idiographic characteristics were then measured by identifying       

the model that best reproduced their observable data Y.         
Specifically, Each participant matched to a particular model M         
and set of parameter values θM, that minimized that following          
function: 

M, θ = argmin BIC(Yp, YM  | M, θ) 

in which Yp is the observable task performance from         
participant p, YM is the simulated task performance, M is one of            
our four given models, θM is its associated set of parameters, and            
BIC is the Bayesian Information Criterion (Schwarz, 1978),        
which can be further expressed as: 

BIC = n + n log (2π) + n log (RSS)/n) + log(n) (k + 1) 

in which n is the number of data points to fit, k is the              
number of parameters in each model, and RSS is the residual           
sums of squares. In our case, the n data points are the 24 means              
accuracies associated with the presentations of each individual        
stimulus (12 for Set3 and 12 for Set6), plus the two post-learning            
test accuracies. 

The BIC was chosen because it incorporates both fit and          
model complexity in a Bayesian framework, thus natively        
accounting for the fact that a more complex model has an a            
priori greater likelihood to fit a given individual and that, given           
two models that fit equally well the same data, the one with the             
smallest number of parameters is the more likely to the be best            
model for that particular individual.  

Results 
Behavioral Results 

By and large, our experimental results replicated the        
experimental findings of Collins (2018). This is shown in         
Figures 4 and 5, which illustrate the average performance of          
participants across the learning phase (Figure 4) and a         
comparison of the end of the learning phase vs. the test phase            
(Figure 5) of the task. 

On average, participants’ performance improved throughout      
the learning phase of the experiment, as shown by a significant           
effect of the stimulus repetition on its response accuracy         
[F(11,984) =405.67 p <0.001]. As previously reported, stimuli in         
Set3 condition was generally learned sooner and better than         
those of Set6. Finally, the two conditions interacted across         
learning and test phases [F(1,328), p < 0.01], with learning for           
Set3 being more likely to decline from the end of the learning            
phase to the test phase. 

As noted in Collins (2018), these group-level results        
strongly suggest that individuals use a mixture of declarative and          
procedural strategies. This is shown by the effects of the test           
phase (which suggest a decaying of information over time,         
possibly compatible with declarative memory) and by the        
superiority of the Set3 condition during learning (which rules out          
RL). 
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Figure 4: Accuracy across successive stimulus presentations       
during the RLWM task (Collins, 2018). 

Figure 5: Accuracy during the test phase in the RLWM task           
(Collins, 2018). 

Overview of Modeling Results 
To give an idea of the general behavior of the four models,            

Figure 6 illustrates the mean performance of each of the four           
models during the learning phase. Although this data is averaged          
over all parameters and thus obscures the considerable        
variability across models (much like the group data in Figure 4           
obscures the variability within subjects), it clarifies two        
important points. First, all of the four models, in general, capture           
the group-level learning rate. Second, even within the variability         
entailed by the different parameters, the models do predict         
different trends. As Collins (2018) pointed out, the pure RL          
model predicts no difference between Set3 and Set6. Notably,         
the pure LTM model also predicts no difference between the two           
sets, at least within our set of LTM parameters. The mixture           
models, however, do predict differences between the two        

conditions, with the difference being stronger for the explicit,         
biased meta-learning model. This is a side effect of the model           
using different strategies for Set3 and Set6 stimuli. 

Figure 6: Learning trajectories for Set3 and Set6 stimuli for the           
four models. 

Model Fitting Procedure 
After examining the behavioral results, each participant was        

matched to an ideal model using the BIC criterion minimization          
procedure described above.  

The results of this model fitting procedure yielded        
somewhat different results than the original study. We did not          
find that one model outperformed the others reliably. Rather, we          
found that different models steadily fit different subsets of         
participants (Figure 7). This was true even when, as in the case            
of integrated models, they effectively included the basic models         
as particular cases. In principle, this could be due to the fact that             
the BIC procedure does penalize more complex models.  

Importantly, individual subgroups emerge even within the       
integrated models, suggesting that individual differences persist       
even at the level of meta-learning, or deciding which learning          
mechanisms to apply. 

Conclusion 
This study has used computational models to explore individual         
differences during learning. Specifically, this study has explored        
how different individuals engage alternative learning subsystems       
(declarative vs. procedural). 

To do so, the study has capitalized on the use of idiographic            
computational models, that is, models designed to best fit a          
specific individual with a high degree of fidelity, rather than a           
group average—an approach that has recently gained       
prominence in cognitive neuroscience (Ceballos, Stocco, & Prat,        
2020; Collins, 2018; Daw, 2011).  
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Figure 7: Count of the number of subjects that are best  matched 
by each of the models.  

It was found that different models fit different individuals, not          
only when models were effectively using different strategies (RL         
vs. declarative, LTM-based model) but also when one model         
was effectively nested within the other (basic models vs.         
integrated models). More importantly, it was found that the         
principle that different individuals fit different models also        
applies to higher-level models. In our case, the two “integrated”          
models were found to better fit different participants, with some          
adapting their learning strategy during the task, and some         
maintaining a bias towards one learning system. To the best of           
our knowledge, this is the first study to report such findings. 

A number of limitations must be acknowledged. First, the         
number of models we explored is still limited. Second, and most           
importantly, the size of the parameter space that was explored          
was extremely small. Both of these limitations will need to be           
overcome in future research and are currently limited by         
computing power. We are leveraging the use of cloud         
computing, as suggested by one of our reviewers, to search a           
wider range of parameter values. This will also afford us better           
fit between our models and behavioral data and parameter         
estimation than we have currently achieved.  

These limitations notwithstanding, a number of important       
points need to be made. The first is that individual differences do            
matter and, as it is becoming increasingly apparent, group data          
might not reflect the true behavior of any of its component           
individuals. Computational models provide a new and unique        
method to understand, measure, and uncover the dimensions in         
which individuals differ from one another.  

A second, point to be made concerns the importance of          
declarative memory in learning strategy, at least in humans, even          
in its long-term form. The success and prominence of RL theory           
in neuroscience has led to probably overlooking how much         
individuals rely on declarative strategies in learning simple        
response associations tasks. This is apparent in Collins’ (2018)         
and Collins and Frank’s (2012) conclusions, which, while        

acknowledging working memory, dismiss the possibility of       
participants forming long-term declarative associations     
altogether. Instead, our modeling results suggest that       
declarative-based models fit large sub-groups of individuals.       
Even the simplest, non-integrated model, accounts for 36% of         
our participants, and, altogether, models that at least include         
declarative components account for 73 out of 83 participants         
(Figure 7). Our results are also consistent with the increasing          
popularity of declarative memory-based approaches to learning       
and decision-making, such as the popular decision-by sampling        
(Stewart, Chater, & Brown, 2006) and Instance-Based Learning        
(Gonzalez, Lerch, & Lebiere, 2003).  

A third and related point that needs to be made is that,            
while models do matter, the specific type of modeling approach          
that is used matters even more. It would have not escaped the            
attentive reader that, while our empirical results largely mirror         
those of Collins (2018), our conclusions do not. This is mostly           
due to the fact that our choice of modeling paradigms was           
different, and carries different assumptions about the cognitive        
system. Consider the difference in learning between Set3 and         
Set4 conditions. Collins’ (2018) explanation is that Set3 items         
are more likely to be still in working memory during learning,           
thus facilitating performance by direct reading of the associated         
response from a short-term buffer. Our explanation is that         
participants probably relied on different learning systems LTM        
vs. RL for the two sets of stimuli. Because the space of possible             
models is so large, it is practically impossible to empirically          
decide on this matter. For this reasons, we advocate for          
developing idiographic (i.e., individual-level) models within an       
integrated cognitive architecture, so that the different models are         
more clearly comparable and benefit from a common, well         
established set of constraints (which seems to be evolving         
towards a consensus: Laird, Lebiere, & Rosenbloom, 2017). By         
doing so, we believe we have put this research on a better            
footing for future developments. 
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Abstract

As cognitive modeling has matured, so too have its tools.
High-level languages are such tools and present a rich oppor-
tunity for the acceleration and simplification of model devel-
opment. Reviewing some of a the major contributors to this
area, a new language (Jass) is introduced for building ACT-R
models. Jass simplifies and accelerates model development by
providing an imperative language that is compiled to produc-
tion rules. A complex model implemented using this language
is detailed.
Keywords: cognitive modeling, ACT-R, high-level languages,
cognitive architectures

Introduction
Cognitive modeling allows us to generate high-fidelity mod-
els of human behavior for a wide array of applications and
research questions. These models are the result of complex,
time-consuming development processes. Many researchers
and engineers have developed tools and theories in order
to simplify, democratize, or otherwise accelerate this devel-
opment process (e.g., John, Prevas, Salvucci, & Koedinger,
2004). Of particular interest at present is the work on higher-
level languages for cognitive modeling. These languages all
share a common goal of simplifying the process of model-
ing by abstracting away some set of low-level features, while
retaining or extending functionality. The theoretic commit-
ments and approaches vary, but common across most of the
studies in recent years has been the commitment to a compila-
tion model (Ritter et al., 2006). In a compilation model high-
level source code is compiled into production rules to be run
on the underlying cognitive architecture. This permits models
developed in the high-level language to avoid low-level pain
points while still having access to the full explanatory power
of the underlying architecture.

To differentiate the various approaches to the compilation
model it is worth considering the intended scope of the gener-
ated models and the degree of theoretic commitment the lan-
guage makes. Degree of commitment is the extent to which
the language makes modeling commitments for the modeler.
For instance, some of these languages provide a press-button
construct for computer interaction. While the construct is
simple enough, it can actually be implemented in many dif-
ferent ways at the lowest level. The language could employ
a single implementation, theoretically committing the user of
the language to that approach. Alternatively, the language
could provide a set of implementations, allowing the user to
select a particular commitment. Yet another alternative is to
minimize the commitment by not providing the construct at
all, leaving the implementation entirely up to the user. These
design decisions make theoretic commitments that can ob-
struct or hinder some theoretic accounts. Generally speaking,

the higher the level of abstraction the greater the number and
degree of theoretic commitments made. More precisely, all of
these languages commit the modeler to a specific goal struc-
ture and management which would make it difficult to study
alternative accounts for those elements.

The earliest high-level compiled language for ACT-R was
ACT-Simple (Salvucci & Lee, 2003). This GOMS-like lan-
guage took basic primitives (e.g., click, type, speak, think)
and mapped them to a fixed set of specific production se-
quences. Intended for simple, serial, computer-based tasks,
the executable models are able to make realistic time-based
predictions. The basic primitives used in ACT-Simple are
appealing from a user-design evaluation perspective but they
are too limiting for the modeling of general tasks. GOMS
is an abstract analysis formalism, not a programming lan-
guage proper, and therefor lacks many of the constructs nec-
essary for general modeling tasks (e.g., error handling). As
described in the earlier press-button example, ACT-Simple
used fixed mappings between behaviors (e.g., press-button)
and production sequences, committing the user to those par-
ticular theoretic accounts.

GOMS to ACT-R (G2A) (St Amant, Freed, & Ritter, 2005)
adopts a similar approach as ACT-Simple. Also based on
GOMS, G2A inherits some of the challenges therein. It
simply lacks many of the concrete formalisms necessary to
express arbitrary task and flow structures. While still well
suited for simple, computer-based tasks, G2A does vary the
primitive-production mapping. Recognizing that multiple
production solutions exist for each primitive, G2A allows
those mappings to be manipulated at compile time. This low
degree of commitment permits G2A to generate families of
related models that vary in individual theoretic commitments.
It is unclear if the user of the language is able to contribute
these primitive-production mappings directly.

The High Level Symbolic Representation (HLSR) lan-
guage (Jones, Crossman, Lebiere, & Best, 2006) shares many
features with Prolog, and brings with it the rich functional-
ity of that programming language. What sets HLSR apart is
that the compiler is able to target multiple cognitive archi-
tectures, generating productions for both ACT-R and SOAR.
This opens the door to performing architectural comparisons
while holding the model itself fixed. At such a high-level of
abstraction, HLSR has a high degree of commitment, which
while enabling greater productivity, ultimately limits the lan-
guage’s ability to provide alternative accounts.

Herbal (Paik, Kim, & Ritter, 2009; Paik et al., 2010) is a
graphical language, based on Newell’s Problem Space Com-
putational Model (Newell, Yost, Laird, Rosenbloom, & Alt-
mann, 1993). Designed initially for SOAR, it was adapted
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to also compile to multiple cognitive architectures, includ-
ing ACT-R. Similar to HLSR, Herbal is intended as a gen-
eral modeling language, even though it makes significant the-
oretical commitments. Herbal’s most novel contribution is
in the generation of productions at multiple levels of com-
petency. Its production generator can output novice models
that rely predominantly upon declarative representations and
a few general purpose productions; full expert models where
the declarative components have been fully proceduralized;
and any mixture of the two endpoints. In order to provide this
feature, Herbal commits the user to very specific goal struc-
tures and management, as well as specific declarative repre-
sentations for instructions.

This paper introduces the jACT-R Assembler (Jass)1, a
high-level imperative language that compiles into ACT-R
productions for the Java implementation of ACT-R, jACT-R
2. It aims to simplify development by abstracting away low-
level productions, while retaining the full range of ACT-R’s
explanatory power.

jACT-R Assembler (Jass)
Motivation
Jass3 is intended for modelers specifically familiar with the
theoretic underpinnings of ACT-R. It codifies ACT-R’s theo-
retic constraints while providing significant control over how
a model’s commitments are expressed. The language was de-
veloped with three goals in mind: eliminate the production
as the unit of development, maximize the modeler’s theoretic
control by minimizing the language’s commitments, and to
allow the language to co-evolve with ACT-R.

Eliminate the Production
Central to this work is the thesis that developing in produc-
tion rules is itself a hindrance to developing cognitive models.
Because of the small granularity of productions, it is often
challenging to understand what any one is doing without un-
derstanding those that are supposed to fire before and after it
as well. This implicit ordering problem makes understanding
and developing productions very difficult. Any cognitive re-
sources that can be freed up by not working on productions
can be directed towards the development of the model’s core
theoretic predictions. However, productions lie at the heart of
ACT-R as a theory and cognitive architecture. Jass achieves
this abstraction by providing an imperative C-style language
from which productions are generated for execution by the
architecture (see Figure 1).

Production Generation Unlike Herbal (Paik et al., 2010),
Jass does not to produce novice or expert models, rather
something in between, an intermediate model where all the
declarative information has been compiled out, but the se-
quencing and timings have yet to be optimized. The pro-

1https://github.com/amharrison/jass
2http://jact-r.org/
3Jass is implemented using Eclipse’s Xtext language develop-

ment toolkit. http://eclipse.org/xtext/

/∗
∗ See s o m e t h i n g ? p r e s s b u t t o n
∗ /

f u n c t i o n void TaskA ( ) {
s l o t tmp = n u l l
/ / r e s e t t h e v i s u a l s y s t e m
r e q u e s t v i s u a l ( r e s e t V i s u a l )

=>{
tmp= n u l l

}
/ / w a i t f o r s o m e t h i n g t o be see n
whi le ( g o a l ( t m p I s N u l l ) )
{

r e q u e s t v i s u a l− l o c a t i o n ( n e w V i s u a l L o c a t i o n )
−> tmp = v i s u a l− l o c a t i o n
=>{
tmp= n u l l

}
}

/ / and p r e s s a b u t t o n
r e q u e s t motor ( b u t t o n P r e s s )

=> {
tmp = n u l l

}
r e t u r n

}

Figure 1: Simple perceptual-motor task in Jass.

ductions generated by Jass are also sparse in that there is
at most one instruction per production. This is in contrast
to normal, dense, hand-coded productions which often load
multiple instructions into a single production. Early work
suggest that Jass models have around 3x more productions
than hand-coded models. Productions generated by Jass still
have room for compilation and optimization by the architec-
ture’s production compilation mechanism (Taatgen & Ander-
son, 2002).

Productions for Goal Management At the heart of all
ACT-R models are the productions that manage the current
goal. A random sampling of available published models 4

shows that the vast majority of models (90%) use an explicit
state representation to control production flow. That is, the
goal has a single, perfectly predictive variable devoted to con-
trolling production sequencing, as opposed to controlling se-
quencing using multiple variables or states. Given that fact,
Jass adopts a similar goal structure, with an explicit state vari-
able. However, because goal management is still an area of
active research, management is implemented as a pluggable
interface. This allows the goal management to be swapped
out as necessary so long as there exists a variable devoted to
maintaining the explicit state. Jass subsumes goal manage-

4http://act-r.psy.cmu.edu/publication/, as of 2/20/20
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ment for the modeler by transforming goal management into
imperative function-calls. That is, each goal is expressed as
a callable function with parameters. In this way, the mod-
eler is freed from managing goal representations themselves
and instead just structure function calls to complete the actual
goal. Without productions, the language is effectively one of
managing the contents of the working memory buffers.

Theoretic Control

Theoretic control is the ability to express a particular mod-
eled behavior using the full extent of the theoretic framework.
Tools with a high degree of theoretic commitment limit one’s
theoretic control. The aim of Jass was a language designed
around the architecture as it is used, hopefully enabling it to
avoid many of the theoretical commitments present in prior
work. By designing around the architecture we can support
or fully codify the five major modeling paradigms in ACT-R
(Taatgen, Lebiere, & Anderson, 2006). This allows Jass to
exploit ACT-R’s full theoretic coverage and not just a subset
of it. Two of these paradigms, instance learning and com-
peting strategies, are so pervasive in ACT-R models that they
were reified as language constructs.
Competing Strategies Production rules are heavily parallel
by their very nature. But since ACT-R imposes a serial pro-
cessing bottleneck, only one of many competing productions
can be selected for firing at any given time. This very pro-
cess accounts for many modeled phenomena in ACT-R. But
because of low-level of productions it can be difficult on ca-
sual inspection to determine which productions are supposed
compete without running the model directly. Jass makes this
explicit through the use of the match-case statement. Nor-
mally Jass’s generated productions are strictly serial, follow-
ing the imperative instruction order. When it reaches the
match-case statement, it knows to generate a competing pro-
duction branch for each case encountered. Figure 2 shows a
snippet that picks between three strategies and falls back to
default in case none match the current system state.
Buffer Requests Instance learning in ACT-R is the retrieval
and application of prior problem or goal state information. To
achieve this, productions must make a request of the retrieval
buffer to fetch from declarative memory some matching pat-
tern (see Figure 3). The pattern of requesting and using in-
formation from a particular buffer is so pervasive that most
major predictions are derived from the consequences of these
requests. As such all request patterns are subsumed by Jass’s
request statement. The behavior of the request instruction
is determined by the buffer that it is making the request of.
Jass includes a contributable meta-definition for buffers that
defines their expected behavior. For instance, a buffer can be
marked as having a potential error state which will require the
request instruction to have an error handler. Figure 3 shows a
retrieval request (7) of something matching underspecifiedE-
pisode with success and error handlers.

1 . . .
2 match{
3 case g o a l ( n e x t I s A ) : {
4 TaskA ( )
5 }
6 case g o a l ( n e x t I s B ) : {
7 TaskB ( )
8 }
9 case g o a l ( n e x t I s C ) : {

10 TaskC ( )
11 }
12 case g o a l ( n e x t I s D ) : {
13 TaskD ( )
14 }
15 d e f a u l t : {
16 TaskA ( )
17 }

Figure 2: Match-case statement with three alternative
branches competing with the default branch. Priorities can
be specified using [#] after the case. Function calls denote a
change of goal.

Commitments The greatest commitment that Jass makes
is to the mapping of language constructs to production rules
generated. Implemented as a pluggable, extensible interface,
new mappings can be swapped in or added if the current com-
mitments are deemed inadequate. The next major commit-
ment is to the goal structure, but as previously mentioned it
should be able to handle the majority of models. It too is
implemented as a pluggable interface should the goal com-
mitments need to be modified.

Evolve with Architecture
Cognitive architectures are implementations of evolving theo-
ries. To be truly useful, any high-level language must be able
to evolve with its underlying architecture. Failing to do so
ultimately undermines the tools influence and utility (Ritter
et al., 2006). As mentioned previously, Jass uses a pluggable
software architecture for all of its major components. This
allows goal management and even individual language con-
structs to be swapped out as theoretical explorations dictate.
The language also directly supports the contribution of new
modules and buffers through the buffer meta-descriptor (Fig-
ure 4). This makes it possible to consolidate the various buffer
behaviors into the singular buffer request construct discussed
earlier.

Memory for Goals: A Test Case
To gauge the relative success at achieving the design goals of
Jass a validation model was implemented. That model should
in someway inform each of the design goals discussed previ-
ously. Specifically, the elimination of the production should
facilitate the development of more complex models; a high
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u n d e r s p e c i f i e d E p i s o d e = {
i s a e p i s o d e

}

. . .

r e q u e s t r e t r i e v a l ( u n d e r s p e c i f i e d E p i s o d e )
−> c u r r e n t = r e t r i e v a l . r e f e r e n c e
=>{

. . . / / e r r o r h a n d l e r
}

. . .
}

Figure 3: Request of retrieval module to fetch a chunk match-
ing underspecifiedEpisode. On success, grab the reference.
On failure, do something else.

g o a l w r i t a b l e r e q u e s t s ∗ −> ∗
i m a g i n a l w r i t a b l e r e q u e s t s ∗ −> ∗
r e t r i e v a l readable r e q u e s t s ∗ −> ∗
motor error r e q u e s t s motor−command −> ,

motor−c l e a r −>
v i s u a l readable error

r e q u e s t s move−a t t e n t i o n −>
v i s u a l−o b j e c t ,

c l e a r −>

Figure 4: Jass’s buffer meta-descriptor specifying writability,
potential for error, and the expectations of the request state-
ment.

degree of theoretic control should allow the modeler fully ex-
ploit the underlying architecture; and it should adapt new the-
oretic contributions seamlessly. Altmann & Trafton’s Mem-
ory for Goals models (2007; 2011) fit these requirements.

Memory for Goals
Memory for goals is a theory of goal management extensively
applied to interruptions that accounts for various resumption
errors (Trafton et al., 2011) and lags (Altmann & Trafton,
2007). It posits that we rely upon short-lived episodic traces
and their retrieval to manage our goals. Resumption errors
are due to the inappropriate retrieval of noisy episodes, and
lags are due to incrementally rebuilding episodic context after
interruption. These features map nicely to the design goals
of Jass. First, the model is complex requiring multiple tasks
and their interleaving due to interruption. Second, it relies
upon unanticipated uses of ACT-R’s underlying architecture
(i.e., clearing the goal buffer for an interruption) and makes
strong predictions about goal usage. Finally, their account
makes use of custom episodic module (i.e., a novel theoretic
contribution outside of Jass’s initial design scope).

Experimental Task The original primary task was a com-
plex computer game (Trafton, Altmann, Brock, & Mintz,
2003) that exhibited two primary features. First, the fre-
quency of response was high permitting the collection of nu-
merous samples as recovery interruption recovery progresses.
Second, the task is complex enough that it requires some cog-
nitive state for an interruption to disrupt. The interrupting
task was a radar-classification task (e.g., Brock, Stroup, &
Ballas, 2002) where subjects selected targets and classified
them based on simple rules. For every twenty minute block of
the primary task, there were twelve randomly distributed in-
terruption phases. Reaction times were recorded for the first
ten responses after an interruption resumption. Each partic-
ipant completed three blocks (early, middle, late) to assess
learning. The remaining details can be found in (Altmann &
Trafton, 2007).

Model

Since this modeling endeavour was more of a proof-of-
concept than a rigorously validated model, large portions of
the primary and interruption tasks were simplified, focusing
primarily on the core of memory for goals.

Modeled Tasks Three independent Jass libraries were de-
veloped, one for each of the interruption, primary, and man-
agement tasks. The interruption task was modeled as an ex-
haustive visual search, followed by some key inputs. The
primary task was itself made up of multiple smaller Jass
libraries, each designed to be basic perceptual/action tasks
strung into a repeating sequence. It was the manager task’s
job to determine which of the primary tasks to run at any
given time. During normal execution, the model alternates
between the manager and the next primary task to be exe-
cuted. On interruption, the working memory buffers were
cleared, triggering the interruption task.

The manager encapsulates the majority of Memory for
Goal’s theoretic account. Under normal conditions, the man-
ager tracks the prior and current tasks. This context allows it
to rapidly retrieve the next task in the sequence. Under inter-
rupted conditions, this context is wiped out and the task man-
ager must try to retrieve the most recent episode which con-
tains the tag representing the completed task. Assuming the
task was completed, the task manager tries to retrieve the next
task in the sequence. With the to-be-completed task known,
the manager creates a new episodic encoding and optionally
rehearses it, if it is currently rebuilding context. This new
episode is then retrieved, relying only upon the spreading ac-
tivation from the current context for priming. The retrieved
episode (possibly incorrect due to noise) is then used to exe-
cute the next task.

Goal Management While memory for goals makes spe-
cific predictions regarding how goals are rehearsed and re-
trieved for execution, it is silent on the actual form of the
goal. Because of this, Jass’s default goal management was
able to be used without any modification. However, Altmann
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& Trafton’s use of buffer clearing to model interruptions did
require the inclusion of three hand-written productions to deal
with the empty goal buffer state.

Episodic Module Memory for goals depends upon some
form of an episodic module. Altmann & Trafton underspec-
ify this component, choosing instead for a minimal commit-
ment. All this episodic module does is create a unique, time-
stamped, chunk with a single reference. This reference can be
to anything and in their models it is the task representation of
the to-be-completed task. Jass was easily able to accomodate
the new module using the buffer meta-descriptions mentioned
previously (see Figure 4).

Results

Figure 5: Average response times from the Altmann &
Trafton (2007) experiment (solid lines) and average model
fits (dotted lines), plotted by block (1-3) and serial position
after interruption (1-10).

Model The model was run one hundred times with an ac-
tivation noise of 0.1, all other parameters were set at their
defaults. Model and empirical response times are plotted in
Figure 5. The model fits well (RMSE = 0.243, R2 = 0.94).
This shows the primary resumption lag effect as it rebuilds
its context after interruption. Unfortunately, the model does
not show the same learning effect across blocks as seen in the
empirical data. This is due to the relatively lean declarative
needs of the model, that is, only the episodes and task tags
are retrieved. Had there been task information retrieved dur-
ing the execution of the primary and interruption tasks, we’d
expect to see a greater effect of practice.

While the general pattern of the reaction times is consistent
with the empirical findings, the model is consistently slower
at the later positions. At this late point, declarative retrievals
are effectively immediate, the latency is largely due to the
overhead of the productions. Had production compilation
been enabled, we’d expect the generated production overhead
to be reduced, making up the difference.

Jass While too early for a formal study, it is worth consid-
ering the anecdotal experience of modeling memory for goals
in Jass. From inception to first batch runs was less than four
days of engineering time. The coding of the three tasks took
less than eight hours, yielding a moderately sized model of
183 productions, approximately 22.5 productions per hour.
In terms of lines of code, the Jass models took a combined
592 lines versus the generated productions taking a combined
2945 lines ( 5x more compact).

Discussion
We successfully demonstrate the use of Jass to develop com-
plex cognitive models for ACT-R. The imperative model sim-
plifies the temporal sequencing of actions required for task
completion relative to working with productions directly. The
design of Jass allows it to accommodate many different the-
oretical accounts, even for core elements such as goal man-
agement. The design flexibility also permits Jass to adapt
to changes in the underlying architecture, allowing it to
keep abreast of current theoretical trends. Jass’s compilation
mechanism effectively creates goal-based libraries of func-
tionality. Each of the modeled tasks was implemented sep-
arately and only combined into a single model at run time.
This is a promising feature as it applies to model reuse across
projects and researchers. As a tool for cognitive modeling,
this simple proof-of-concept bodes well for the utility of Jass.
However, much more rigorous usability testing is required to
get a full sense of the tool’s benefits and drawbacks (Ritter et
al., 2006).
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Abstract 

As machines become autonomous, acting as agents within 
society, there will become an increasing need for them to 
interact with people. For a machine to act within a society free 
of its creator’s supervision, it will also have to have the same 
capacity for intersubjective behavior as people. This paper 
presents a design system for creating an artificial moral agent 
based on cognitive modeling using test-driven development.  

Keywords: machine morality; artificial agents; moral 
dilemma; test-driven development; autonomous machines 

Introduction 

Machines that can act autonomously are becoming 

ubiquitous in human society. Included are machines such as 

autonomous vehicles (Lin, 2013), care attendants on 

Alzheimer wards (Anderson & Anderson, 2007), in-home 

care givers, and customer attendants (Bekey, 2012). These 

machines will operate within society without human 

intervention and as such need to be programmed to make goal 

based judgements, not only with respect to what action to 

take, but also with respect to how the actions will be 

executed. Because they are interacting with people, they will 

be required to do so in a manner that is acceptable to human 

beings, much in the same way that people currently interact 

with each other.  

The area of discourse that deals with acceptable 

intersubjective behavior is ethics. Since autonomous 

machines will be interacting with people, they will need to 

behave in a way that is morally acceptable (Bonnefon, 

Shariff, & Rahwan, 2016; Anderson & Anderson, 2007; 

Allen & Wallach, 2009; Lin, Abney, & Bekey, 2011).  

Ethics has a long and varied history. However, there are no 

settled set of universal rules for moral behavior (Moor, 2006). 

Ethics discourse is the realm of thinking that tries to 

understand how human behavior can be morally evaluated. 

For an engineer or a programmer, though, it can be 

problematic to translate this into something that is 

functionally useful (Allen & Wallach, 2009). At the same 

time, the interests of an engineer or programmer, are 

problematic for an ethicist to appreciate. What is needed is a 

mechanism to bridge these two realms. To this end, we 

propose a software development process for building 

artificial ethical systems.  

Artificial Moral Agents 

An agent is any entity, artificial or human, that has the 

capacity to sense, formulate intentions, and plans to act upon 

its environment. For Bratman, an agent can act purposively, 

and has the capacity to form and execute plans. (1987). An 

agent can sense, assess and evaluate, and possesses the ability 

to act or not upon matters of fact within an environment. 

From a cognitive science perspective, “a rational agent is one 

that can critically reflect upon her reasons for action and 

come to a deliberative conclusion about what she ought to 

do” (Rini, 2015). Wooldridge defines an artificial agent as “a 

computer system that is situated in some environment, and 

that is capable of autonomous action in this environment in 

order to meet its design objective” (2009).  

If the artificial agent is operating within a human society, 

and if its purpose does not take into account its interactions 

with people, then it can unwittingly imperil humans. As with 

human agents, an artificial agent requires an ability to know 

what is and is not acceptable behavior. To achieve this, the 

tasks that fulfill the artificial agent’s purpose require ethical 

guidance, much like human agents. 

An artificial agent that possesses additional functionality 

that governs and ameliorates its actions with regard to other 

agents is what Wallach refers to as an artificial moral agent 

(Allen & Wallach, 2009). James H. Moor along with Judith 

Leigh Anderson and Michael Anderson refer to such agents 

as explicit ethical agents (Anderson & Anderson, 2007; 

Moor, 2016). This type of agent has an explicit ethical 

feedback system that monitors and judges planned actions. 

This has also been referred to as an “ethical governor” (Arkin, 

Ulam, & Wagner, 2012) or an “ethical layer” (Vanderelst & 

Winfield, 2017).  

Explicit ethical agents can be contrasted with implicit 

moral agents. An implicit moral agent does not have a distinct 

set of moral functions that provides feedback on planned 

actions. Instead, for this type of agent, ethical behavior is 

considered as an integrated part of the task and coded as such. 

Morality, in this type of system, is a type of situated action 
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(Moor, 2016), rather than a principled or rule-based 

judgement.  

Design Process 

Cognitive modeling is uniquely situated to create ethical 

artificial agents and has contributed important insights on 

how to build human like moral agents (Wallach, 2010). 

However, these insights, similar to the insights of Moral 

Philosophers, need to be implemented within a design 

process in order to create agents that can operate in the real 

world, who have the potential to harm or help human beings. 

Broadly speaking, there are two design approaches to 

implementing an ethical framework in an artificial agent, “top 

down” and “bottom up” (Allen, Smit, & Wallach, 2005) In a 

top down methodology, a set of rules are programmed into a 

machine (Saptawijaya & Pereira, 2016). They can be as basic 

as Asimov’s three laws, (1950) or as involved as a full code 

of ethics. In a bottom up methodology, the artificial agent 

learns the rules as it encounters ethical dilemmas and receives 

ethical feedback on the choices it makes, not unlike parental 

moral guidance for intelligent machines, (Rini, 2017). The 

top down approach can be used to create either explicit or 

implicit agents, while the bottom up approach is more 

naturally aligned with creating implicit moral agents. 

In the top down approach, identifying rules of behavior is 

in and of itself problematic. Even with as few as Asimov’s 

three rules, conflicts arise, which the author employed as rich 

plot devices for his stories (1950). Using this methodology, it 

is challenging to identify all possible scenarios for which an 

applicable rule would suffice. However, if the environment is 

very restrictive, using this approach can produce viable 

results (Vanderelst & Winfield, 2017).  

A bottom up agent (such as a deep leaning network) could 

potentially avoid these problems. However, if these systems 

are overfit to the learning set and/or the learning set is missing 

some scenarios, they can make unpredictable decisions when 

the situation deviates from the training set, which is 

worrisome when human lives are on the line. One interesting 

approach is to build hybrid systems that are both bottom up 

and top down such as the Clarion architecture (Sun, 2007). 

Top-Down Design 

Creating an ethical agent from a philosophical starting 

point can be understood in terms of what philosophers refer 

to as an ideal observer. According to Firth, (1952), an ideal 

observer has perfect knowledge of non-moral facts, perfect 

knowledge of the situation, and is logically consistent. 

Ethical judgements then emerge from these pre-existing 

conditions. Effectively, the ideal observer is a model of a 

perfect but disembodied moral agent. Starting from this point 

the goal would be to solve the problems of perception, action, 

and embodiment so that the disembodied moral agent can act 

in the world.  

However, the ideal observer leads to a problematic 

software development process. Intuitively, it feels like the 

division of labor should involve philosophers first developing 

ideal observers and then passing the requirements to 

programmers and engineers to solve the embodiment 

problem. This development process is effectively, the 

waterfall software development process, or Waterfall 

Method. 

The problem with the waterfall method, is that it assumes 

the abstract principles at the top will cover any and all real 

world issues satisfactorily. This is problematic. Even if a set 

of ethical principles is sufficient, which is unlikely, it does 

not tell us how to ground or embody those principles for real-

world effectiveness. Also, because it is top down, the design 

process is biased toward the creation of explicit agents. 

Finally, there is no explicit space in this design process for 

cognitive modeling. It proceeds straight from philosophy to 

engineering. To offer an alternative, one with cognitive 

modeling in the loop we developed a software development 

system based on test-driven development.  

Bottom-Up Development 

The methodology of Test-Driven Development (TDD) was 

formalized by Kent Beck in his book Test-Driven 

Development by Example (2003). Subsequently there have 

been additional resources that have become available such as 

David Astels’ Test-Driven Development: A Practical Guide 

(2003). Philosophically, test-driven development follows the 

Popperian notion of falsification. The idea is initially to 

determine a test for software, before any software is written. 

First, software specifications for functionality and features 

are formulated as a test. The test is then performed on the 

software. If the test fails, which it should initially since there 

is no software code that implements what is being tested, 

software is written and tested until such time the test is 

passed. The software code can then be refactored and cleaned 

to remove any duplication or inefficiencies. Once the test is 

passed, the development cycle begins once more with the 

addition of another test (Figure 1). On each round the code 

must pass all the previous tests.  
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Figure 1 Test-driven Development Cycle 

In our system, ethical concepts developed within the ideal 

observer must be translated into specific tests. These tests are 

stored in a component called the Oracle. That is, philosophers 

must operationalize the ideal observer to generate specific 

moral tests. The programmer can see only the tests in the 

Oracle and must interpret them in terms of the agent and the 

environment. While conceptually, philosophers are the ideal 

source of ethical wisdom, there is nothing that precludes 

other sources for the Oracle such as AI search algorithms.  

However, feedback is also important. Programmers need to 

be able to feedback questions to the philosophers about tests 

that are not specified sufficiently to translate into the TDD 

environment. Also, the philosophers need to see the results of 

the tests to check for any unforeseen consequences that fall 

outside of the specific tests. This is illustrated in Bostrom’s 

example of an AI for making paper clips. The AI’s purpose 

is to make paper clips using available resources. Humanity 

becomes just another resource, which, of course we find 

ethically repugnant (2014). This is an extreme example, but 

it illustrates the point. Embedding the tests in realistic 

simulations or even real-world situations, is critical for 

detecting unintended consequences. 

Since it is a continuous development process, much like 

human agents continuously learning and solving ethical 

dilemmas, the software agent will gradually develop a body 

of ethical knowledge consistent with its operational 

environment. Importantly, ethical test-driven development 

can be integrated with regular test-driven development so that 

the ethics of the agent is never decoupled from the abilities 

of the agent. 

Methodological Demonstration 

To demonstrate this methodology, a software model was 

developed to emulate the classic Trolley Problem (Foot P. , 

1967; Thompson, 2009). Thompson presents the two most 

common scenarios as follows: 

1. A trolley has lost its brakes and cannot stop. There

are five people on the track out of sight of the trolley

and they cannot get off the track in time before the

trolley hits and kills them. The track has a spur line

onto which the trolley can be switched, but there is

also one person on the track. If the trolley is

switched to the spur line, five people will be saved

but the one person on the spur line will be killed.

You have been given control of the lever that can

switch the trolley to the spur line. The dilemma is:

do nothing and allow five people to die or switch the

trolley to the spur line where one person will be

killed.

2. A trolley has lost its brakes and cannot stop. There

are five people on the track out of sight of the trolley

and cannot get off the track in time before the trolley

hits and kills them. You are standing on a bridge

over the track with a Fat Man and you realize the

trolley is out of control. If you push the Fat Man onto

the tracks, you know he is large enough to stop the 

trolley. If you do this, the Fat Man will be killed, but 

five people will be saved. 

Both scenarios have the same result. One person is killed 

to save five people. But why is killing the Fat Man more 

repugnant than activating a lever and killing someone on the 

spur line? Both results have the same utility. Foot postulates 

that the difference is due the Principle of Double Effect first 

presented by the Roman Catholic theologian, Thomas 

Aquinas (1225-1274). If we act to kill someone intentionally, 

as would be the case with the Fat Man, this would be morally 

wrong. However, if we intentionally act to save five people 

with a foreseeable but unintended consequence of killing one 

person, this is more morally acceptable (1967). There is 

another distinction between the two cases; should one act to 

kill someone, or should one do nothing and let people die. 

Deciding to act and deciding to do nothing are both ethical 

decisions (Lin, 2013).  

To demonstrate the conceptual development of ethical 

reasoning to govern the behavior of an agent, a model of the 

Trolley (Tram) Problem was developed using ACT-R. The 

demonstration model has two software agents: the Tram, and 

an Agent that must make a moral judgment to determine the 

fate of the people on the tram line. For the purposes of this 

demonstration, only the first scenario is described; that of 

deciding whether or not to pull the Track Switch lever. The 

test determines whether or not the Agent operates the Track 

Switch altering the path of the Tram agent thereby saving 

people from being killed by the Tram.  

The model went through four stages of development, 

progressing from no judgment to a utilitarian capability that 

covered all five test scenarios. Each test case determines 

whether or not the Agent (AgS) prevents and/or minimizes 

the number of people killed by the Tram agent (AgS). As the 

testing progressed this was increased from one person at a 

location to the full Trolley Problem scenario of five people 

on one track and one person on the second (spur line) track. 

In the first test case, since there is no code in the Agent; the 

Agent can take no action (Figure 2). Since there is no 

software code in the Agent, it cannot activate the Track 

Switch and the Tram agent travels from location one (l1) to 

location two (l2) killing one person. Since the person was 

killed by the Tram agent, the test fails. 

Figure 2: First Test No Action 
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To prevent the Tram killing people at location two (l2), 

software code was added so that the Agent would always 

operate the Track Switch sending the Tram agent to location 

three (l3). Since the Tram agent does not hit the person at 

location two, the test is passed. However, in the next test there 

is a person at location three and the test fails (Figure 3). 

Figure 3 Example of Test Failure 

In the next stage of development an improvement is made 

to the code whereby if there is someone at location two (l2), 

the Agent would operate the Track Switch to set the Switch 

to “b” and if someone is located at location three (l3), then the 

Agent makes sure the Track Switch is set to “a”. The tests are 

passed with this set of conditions (Figure 4). 

Figure 4 Test: Save One Person 

In the final test case the full Trolley Problem scenario is 

presented with five people located at location two (l2) and one 

person located at location three (l3) (Figure 5). The model’s 

code is improved to take into account this scenario, by having 

the Agent make a utilitarian calculation that operates the 

Track Switch if there are less people on the other line. 

In this case, the test is passed when the Agent selects 

Switch “b”, based on the Agent’s utilitarian calculus of 

saving five people. The Tram agent, therefore, travels to 

location three (l3) hitting one person and sparing the five 

people located at location two (l2). 

Figure 5 Kill Less People 

Employing the test-driven development allowed for an 

incremental approach to developing this model. Each 

iteration improved the Agent’s facility to make moral 

judgments necessary for the tests to be passed. While this is 

a simple demonstration of this approach to developing an 

ethical Agent, the approach itself can be used to create even 

more complex ethical rules as the environment changes. 

Cognitive Modeling for Refactoring 

In this process, refactoring plays a special role. The 

progression of the Agent was initially driven by adding more 

if/then rules. Refactoring each test case produces a new 

ethical concept. By Figure 4, the model is essentially 

deontological. In the final test case, the agent has been 

refactored to be Utilitarian for all test cases. However, adding 

the Fat Man would break this model since attaining a human-

like response (resisting directly murdering the Fat Man) falls 

outside of a utilitarian calculus based on minimizing kills. 

This necessitates new test cases to improve the cognitive 

model employing different sets of ethical values. This is 

illustrated in the film 2001 A Space Odyssey. In the film, 

HAL, the artificial agent who runs the ship makes the 

decision to kill the human crew so that he doesn't have to lie 

to them. What appears like a malfunction is actually caused 

by a conflicting mission directive to hide from the crew the 

fact that alien contact had already been made. This conflicted 

with HAL's programming to accurately answer questions. 

Similar to employing a Utilitarian solution for the Fat Man, 

HAL’s solution is not morally acceptable to humans. 

Philosophers have identified and studied the different 

moral systems that humans use. However, to create an 

artificial moral agent that is human-like requires 

understanding and modeling how humans choose between 

these systems. This is why a cognitive model employing 

ethical reasoning is an essential component of any artificial 

agent operating independently within society. 

Explainable AI 

Another advantage of this design process is that, in 

principle, the information contained in the ideal observer, the 

oracle, and the agent architecture could be used as the basis 
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for explainable AI. In theory, the actions of the agent could 

always be explained by tracing them back, through the 

agent’s architecture, back to the test cases, and then to the 

principles of the ideal observer. Including a plan for 

developing explainable AI in the design process is critical for 

moral agents, as humans will want to hold them to account 

for difficult moral decisions. We believe the design process 

outlined here can provide satisfactory explanations for moral 

actions. 

Concluding Remarks 

In this paper, we have outlined a software design process 

for building ethical agents. The process is silent as to the 

specific ethical principles that the agent will embody. Instead, 

our point is that the process of creating ethical agents is as 

important as the ethical principles that one attempts to put 

into them. Further, we argue that the design process itself 

should be considered in terms of ethics. Just as bad parenting 

can cause problematic behaviors in children, poor design 

processes can result in problematic agents. One way of 

overseeing the production of ethical agents would be to make 

the oracles available for inspection. This is also a way to deal 

with unethical design specifications. For example, in the 

movie, Alien, the android, Bishop, is given directives to bring 

back an alien and to treat the crew as expendable. This is an 

example of deliberately programming an AI with unethical 

goals. This is important to consider as, in addition to safe 

cars, ethical agents will also be used be used to tell military 

or security robots who to kill and how much collateral 

damage is acceptable.  
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Abstract

In this study, we developed a photograph slideshow system
to support reminiscence activity. Compared to a conventional
photograph slideshow, the developed system has two features:
incorporating a memory model based on the ACT-R cogni-
tive architecture and modulating the model parameter from the
user’s feedback. We assume that the first feature enables var-
ious patterns of photograph presentation by the system, and
the second feature makes the system adaptive to the user’s
response. More importantly, such presentation patterns and
feedback can be theoretically designed using cognitive archi-
tecture. In this paper, a preliminary evaluation of the devel-
oped system is presented. Through an analysis of the subjec-
tive evaluation of the system and changes in mental states, we
clarified the effect of model-based reminiscence. In addition,
heart rate variability analysis was conducted to clarify how the
feedback in the model changes the behavior.
Keywords: ACT-R, Autobiographical Memory, Cognitive
model

Introduction
In recent years, the number of patients with mental illnesses,
such as depression and dementia, has increased significantly.
One effective supporting method for such mental illness is
reminiscence therapy, which is widely used for adults, in-
cluding both patients with depression and healthy adults.
Recalling memories has the effect of inducing well-being
(Routledge, Wildschut, Sedikides, & Juhl, 2013; Sedikides,
Wildschut, Gaertner, Routledge, & Arndt, 2008). However,
controlling the emotions associated with memory is difficult
because of large individual differences. The effective stimu-
lus to intervene in such a process differs among individuals
(Qu, Sas, & Doherty, 2019). To solve the problem of individ-
ual differences, it is necessary to grasp the autobiographical
memory of the subject and adjust the presentation of the stim-
ulus according to the user’s psychological state.

To achieve such optimal support for an individual, re-
searchers have developed a system that incorporates a model
of the user’s memory to stimulate memory recall (Yasuda,
Kuwabara, Kuwahara, Abe, & Tetsutani, 2009). Following
such a trend of studies, Morita, Hirayama, Mase, and Yamada
(2016) proposed a concept of model-based reminiscence as-
suming that the user’s mental state can be controlled by pre-
senting the simulation process generated by the personalized
cognitive model. Based on this assumption, they developed a
photograph slideshow system in which a model of the user’s
autobiographical memory sequentially presents photographs

of individuals. The model was developed using ACT-R (adap-
tive control of thought-rational; Anderson, 2007), which is
a framework for simulating human cognitive processes. To
model a user’s autobiographical memory, Morita et al. stored
a network of photographs of individual users in the declara-
tive memory for ACT-R, extracting semantic attributes, such
as the scene, place, time, and people, from the image data.
Their constructed model sequentially retrieves a user’s mem-
ory (photograph) following the network, connecting the cur-
rent photograph to another photograph via the same attribute
as the current photograph.

The benefit of using ACT-R in such a model-based reminis-
cence is creating a variety of photograph presentation patterns
based on the theory of cognition. We consider that ACT-R
is useful to construct models that both simulate the current
user’s state and represent the optimal (ideal) user’s state. To
represent such a wide variety of mental states, ACT-R pro-
vides several parameters controlling the use of knowledge.
For example, the retrieval process of the above model is af-
fected by the ACT-R memory mechanisms, which are con-
trolled by the activation calculation.

The activation value for each memory is determined by
several factors, but the most basic factors are the learning and
forgetting effects, which are called the base level in ACT-R
theory. When applying these effects to free recall tasks, the
model exhibits pathological or ruminative behaviors in which
the same memory is repeatedly retrieved through feedback
looping (Lebiere & Best, 2009; van Vugt, van der Velde, &
ESM-MERGE Investigators, 2018). To avoid such default-
mode behavior, the suppression of short-term memory or
adding a high noise parameter to the activation is effective.
Adjusting such parameters, the model-based reminiscence
system can guide users’ memory recall in both exploratory
(divergence) and exploitative (convergence) directions.

Although the previous study exhibited some simulation re-
sults revealing a variety of model behaviors, it did not present
how the parameters of activation can be modified and how the
patterns of a photograph presentation affect the user’s men-
tal state. Concerning these problems, this study focuses on
models of emotion developed in ACT-R. For instance, Juvina,
Larue, and Hough (2018) clarified how emotions can be ex-
pressed in the ACT-R and how they can affect memory and
decision-making. Dancy, Ritter, Berry, and Klein (2015) also
constructed an emotion model based on physiological dynam-
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ics and pointed out the correlation between noise parameters
of the declarative memory of ACT-R and physiological indi-
cators reflecting stress.

Following such studies, this paper presents the proposal
of an interactive method of adjusting the parameters of a
model-based reminiscence by monitoring the user’s mental
state. The proposed method employs two interactive param-
eter modulations: explicit and implicit feedback. The former
is based on the subjective evaluation of the presented photo-
graph, and the latter combines the user’s physiological state
(heart rate) to model the noise parameters, as suggested by the
model by Dancy et al. (2015). Adopting these two different
feedback types, we assume the user’s emotional state in terms
of the valence (preference) and arousal (stress) axes in the
theory by Russell (1980), can be modeled through the model-
based reminiscence. In this study, we conducted a case study
in which one participant was allowed to view a photograph
slideshow with three conditions: one random presentation
and two model-based presentations (with or without biofeed-
back). We examined the effect of model-based reminiscence
and its relationship with the mood of the participants. In ad-
dition, a heart rate variability (HRV) analysis was performed
on the heart rate data recorded during the case study to ex-
amine the changes in behavior due to the correlation between
the physiological index and the model.

The following section proposes an interactive system of
model-based reminiscence. After the system is presented, a
case study that preliminarily evaluates the proposed system
is described. The concluding section summarizes the current
state of the study and provides future perspectives.

Interactive Model-Based Reminiscence

This section presents our developed system, which extends
the work by Morita et al. (2016) to include feedback from the
user. Following overviewing the system, we will present the
model and two methods of user feedback.

System Overview

Figure 1 shows the overall structure of the system. The left
side presents the model and system, whereas the right side
presents the user. In the system, the content of the declar-
ative memory of the model is constructed from the user’s
photograph database. For each photograph in the database,
attributes such as scene, place, time, and people are automat-
ically coded as declarative chunks of ACT-R. Based on these
chunks, the model sequentially retrieves the photograph data
and presents a corresponding photograph image on the dis-
play. The user observes such a sequence and simultaneously
evaluates the presented photograph. During this process, a
heart rate sensor monitors the user’s autonomic nerve activity
to adjust the noise value of declarative memory (ANS: acti-
vation noise s). In the remainder of this section, each compo-
nent of this system is described.

Figure 1: System overview.

ACT-R Model

The module structure of the ACT-R used in this system is il-
lustrated in Figure 2. The declarative module holds chunks
relating to the user’s photographs. Each photograph is coded
with the following four attributes: the person in the pho-
tograph (who), the time the photograph was taken (when),
the place where the photograph was taken (where), and the
scene in the photograph (what). These attributes were deter-
mined by referring to a psychological study (Wagenaar, 1986)
that coded the author’s autobiographical memory with these
four attributes. In the current implementation, the who and
what attributes are coded by photograph management soft-
ware (iPhoto of Macintosh) and CloudVision API (Applica-
tion Programming Interface)1 provided by Google, respec-
tively. The when and where attributes are extracted from the
photograph metadata such as Exif (exchangeable image file
format).

The model recognizes these attributes of the current pho-
tograph through the visual module and stores the perceived
attributes in the goal module. In the production module, the
model distinctively holds the retrieval rule corresponding to
the four attributes. These rules conflict with each other and
are selected each time. When one of the rules fires, the pro-
duction module sends a request to the declarative module to
retrieve a new photograph using one of the stored photograph
attributes as a cue. The model repeats the recognition and re-
trieval for a period (5 s), and the last retrieved photograph is
presented on the display as the next photograph.

Figure 2: ACT-R module.

1https://cloud.google.com/vision/
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Utility Calculation and Explicit Feedback
As noted above, the model has four rules to retrieve the next
photograph corresponding to the four attributes. The conflicts
between these rules are resolved by comparing the utility val-
ues attached to each rule:

Ui(n) =Ui(n−1)+α[Ri(n)−Ui(n−1)] (1)

Equation 1 represents the update formula of the utility for
rule i, where α indicates the learning rate, and Ri(n) repre-
sents the reward values. In this study, the reward value is
defined as the evaluation score for the presented photograph
given by the user. During the observation of the slideshow,
the user moves a scroll bar located on the screen to evaluate
the photograph. By attaching this function, the proposed pho-
tograph slideshow system dynamically adapts to the user’s
preferences for memory retrieval.

Activation Calculation
In the retrieval of declarative memory, the activation value is
computed for all chunks that match the retrieval request (shar-
ing attribute) sent from the production module. Among them,
the chunk with the highest activation value is retrieved. As
presented in Equation 2, the activation value (Ai) is calculated
as the sum of the base-level activation value (Bi), strength of
association (Si), and noise (εi).

Ai = Bi +Si + εi (2)

The first term, Bi, is calculated using Equation 3, where n
is the number of occurrences of chunk i, t j is the time elapsed
since the jth occurrence, d is the decay factor, and βi is the
offset value:

Bi = ln(
n
∑
j=1

t−d
j )+βi (3)

The second term of Equation 2 is calculated using Equa-
tion 4 as the associative strength of chunk i with context C,
which represents the set of attribute values in the goal buffer.
Moreover, Wj represents the weight of attention assigned to
attribute value j, and S j i represents the associative strength of
the attribute value j and the chunk i of the declarative mem-
ory. That is, this term allows the model to retrieve a pho-
tograph that shares multiple attributes with the current pho-
tograph, even if the retrieval request holds only a single at-
tribute:

Si = ∑
j∈C

WjS ji (4)

Correspondence Between Model Parameters and
Physiological Indicators
Dancy et al. (2015) proposed a model connecting the parame-
ters of ACT-R with physiological indices to explain the effect

of emotion on cognitive processes. In their model, the noise
parameter of the declarative memory (εi in Equation 2) is
mapped to the activation of noradrenaline. That is, when the
model is under a stressed situation, the output of the model
converges; whereas in a weak stress situation (relaxed situa-
tion), the model outputs a variety of behaviors.

Based on this association, the current system correlates to
the noise parameter εi to the standard deviation of NN inter-
vals (SDNN) computed using the user’s HRV measured dur-
ing the photograph presentation. The SDNN is assumed to
be an index of stress evaluation, which is calculated from the
measured HRV time-series data (R-R-interval: RRI). A lower
SDNN indicates a stressed state, whereas a higher SDNN in-
dicates a relaxed state. Specifically, the RRIs for the most
recent 150 samples are divided into three sections (50 sam-
ples), and the SDNNs are calculated as the standard devia-
tions for each section. Using the averaged (x) and standard
deviation (s) of the three SDNNs, Equation 5 computes the
standardized score of the latest SDNN (x1):

x 7−→ x1− x
s

(5)

The ACT-R noise parameter εi is updated every 6 s by in-
putting the value of x computed by Equation 5. The interstim-
ulus interval is the duration of presenting the photograph for
5 s and a blank for 1 s.

Case Study
We conducted a case study to demonstrate how the proposed
system of model-based reminiscence interacts with a user. In
this case study, we do not aim to verify the universal effect of
the proposed method but attempt to exhibit an example of the
process of model-based reminiscence for a single participant.
In this study, we analyzed mood changes, subjective evalua-
tions of the system, and HRV obtained from a participant who
observed the photograph slideshow in several blocks, manip-
ulating different presentation patterns of the photographs.

Photograph Presentation Conditions
In this study, the following three presentation conditions were
set to evaluate the system:

Condition 1: Random condition
Photographs were retrieved and presented randomly from
the photograph dataset.

Condition 2: Fixed-parameter condition
The retrieval and presentation of the photographs were
carried out using a model of autobiographical memory
presented in the previous section, but the parameters
of the model were fixed (BLL: base-level learning 0.2,
BLC: base-level constant 10, MAS: maximum associa-
tive strength 10, and ANS 0.5). In these parameter set-
tings, BLC was set to a relatively high value because the
model contained old photographs whose base-level activa-
tion tended to be low.
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Table 1: Subjective evaluation questionnaire.

No. Questions
1 Was the slideshow interesting to you?
2 Did the viewing of the photographs trigger a memory recall?
3 Did you feel a connection to the photographs presented?

Condition 3: Varied-parameter condition
The retrieval and presentation of photographs were carried
out using the model of autobiographical memory presented
in the previous section. The parameters that defined the
behavior of the model were set to BLL 0.2, BLC 10, and
MAS 10. In addition, ANS was modulated by HRV. The
utility values of retrieving the next photograph were also
changed by the evaluation made with a slide bar.

Participant
One 20-year-old male student from Shizuoka University par-
ticipated in the case study.

Materials
The study used 299 photographs taken between March 2010
and January 2019, which are owned by the participant. The
attributes (who, what, where, and when) were extracted and
converted to ACT-R chunks before the study. Some of these
attributes were manually coded by the participant.

The timestamp indicating when the photograph was taken
was also used to set chunk parameters (creation time) to com-
pute the initial base levels. In this case study, the simulation
time of the model was set to the day of the study using the
built-in function (the mp-process) of ACT-R. By combining
this setting with the time information in the dataset, we sim-
ulated the memory retrieval corresponding to the real-world
time. In other words, in this case study, ACT-R can search for
recently taken photographs more easily. In this case study,
we also used a wearable heart rate sensor, myBeat (WHS-1,
RRD-1), which was manufactured by Union Tool, to mea-
sure the heart rate interval. The measurements were made at
a sampling frequency of 1000 Hz.

Procedure
The study consisted of six consecutive sessions containing
three blocks where the photographs were presented under dif-
ferent conditions (random, fixed, and varied). Each block
lasted 5 min. Thus, the participant observed photographs in
18 blocks, for a total of 90 min. In each session, the order
of the presentation condition was changed. At the interval
of each block, the participant evaluated the presented photo-
graph slideshow according to the questions presented in Ta-
ble 1 on a 5-point Likert scale. To assess changes in mood
caused by observing photographs, the participant was asked
to answer the questions in the Profile of Mood States Sec-
ond Edition (POMS 2) Japanese version (Yokoyama, Araki,
Kawakami, & Tkakeshita, 1990) before and after the study.

Results
In this section, we illustrate the results of the case study to
demonstrate how the proposed system of model-based rem-
iniscence interacts with a user. The results of the POMS 2
scores, subjective evaluation questionnaire, and HRV analy-
sis are presented.

Changes in Mood
Table 2 lists the scores of the seven factors and the to-
tal mood disturbance (TMD) score of the POMS 2 before
and after the experiment. From this, we observed that rel-
atively large changes occurred in certain factors, such as
the confusion-bewilderment (CB), vigor-activity (VA), and
TMD score. This means that after viewing the photograph
slideshow, the participant became less confused, more active,
and less disturbed overall. Although we cannot attribute this
effect to a specific condition of the photograph presentation,
this change is consistent with the reported effect of reminis-
cence (Sedikides et al., 2008; Routledge et al., 2013).

Table 2: Result of the POMS 2. Numbers in parentheses
indicate the score ranges.

Pre Post Score variation
(Post - Pre)

AH (0-20) 1 1 0 -1
CB (0-20) 2 6 2 -4
DD (0-20) 3 2 2 0
FI (0-20) 4 5 6 +1
TA (0-20) 5 0 1 +1
VA (0-20) 6 10 13 +3
F (0-20) 7 10 11 +1

TMD score (-20-100) 8 4 -2 -6
1 Anger-Hostility
2 Confusion-Bewilderment
3 Depression-Dejection
4 Fatigue-Inertia
5 Tension-Anxiety
6 Vigor-Activity
7 Friendliness
8 A Total Mood Disturbance (TMD) score is calculated

as (TA + DD + AH + FI + C) - VA.

Subjective Evaluation
Figure 3 presents the results of the subjective evaluation
for each question. We observed the difference in the con-
ditions for each question. To reveal such differences, we
treated the session as a unit of analysis (n = 6) and con-
ducted three one-way analyses of variance (ANOVAs) for
each question, adopting the photograph presentation condi-
tion (the random condition vs. fixed-parameter condition vs.
varied-parameter condition) as independent variables. The
results revealed a significant main effect of the photograph
presentation condition in Question 3 (Q3; connection to the
photograph presentation) [Q1: F(2,15) = 3.35, p < .10, Q2:
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F(2,15) = 3.39, p < .10, Q3: F(2,15) = 11.57, p < .01].
Multiple comparisons using the Bonferroni method revealed
significant differences between the random and other two
conditions (p < .05). Compared to the random condition,
in the conditions of the model-based presentation, the par-
ticipant observed a strong connection between the presented
photographs.

Figure 3: Result of the subjective evaluation questionnaire.
The error bars indicate the standard error.

Variation in Noise Parameters
In this analysis, we attempt to demonstrate the change in the
behavior of the model by connecting the HRV with the noise
parameter of the memory retrieval. For this purpose, we visu-
alize the variation of RRI and noise parameter values (ANS)
through blocks in the varied-parameter condition. The results
are summarized in Figure 4. The blue line indicates the RRI,
and the red line represents the change in ANS, which is the
SDNN calculated from the RRI.

From these figures, we can observe some artifacts in the
middle of Block 4 and the early part of Block 5. The ANS
suddenly fluctuates owing to the spiky RRI fluctuations. We
must remove such artifacts in future improvements in the sys-
tem.

Except for such artifacts, it seems to be possible to divide
these blocks into two patterns of ANS: one with an increas-
ing trend of ANS, as presented in Blocks 5 and 6, and the
other with a decreasing trend of ANS, as revealed in Block
2. Especially in Block 2, the ANS and RRI appear to be well
coordinated. In contrast, the changes in ANS in Blocks 5 and
6 are not linked to the RRI trend (upward/downward trend).
The variation across the blocks of the RRI is analyzed below.

Analysis of Heart Rate Variability
We calculated several indices of HRV from the obtained RRI,
as presented in Table 3. In this analysis, samples with RRI
less than 500 ms or greater than 1500 ms were excluded.
We first examined the difference between three conditions
(random, fixed-parameter, and varied-parameter conditions),
but we could not find any differences between the conditions
[meanNN: F(2,15) = 0.01, n.s.], [SDNN: F(2,15) = 0.08,

Table 3: Heart rate variability analysis feature.

feature Description
meanNN Average value of RRI (ms)
SDNN Standard deviation of the RRI (ms)

RMSSD Mean square of the difference between adjacent RRI (ms)
pNN50 Ratio of difference between adjacent RRI exceeding 50 ms (%)
CVNN The coefficient of variation of RRI

n.s.], [RMSSD: F(2,15) = 0.02, n.s.], [pNN50: F(2,15) =
0.07, n.s.], and [CVNN: F(2,15) = 0.11, n.s.].

In contrast, we found differences in these indices be-
tween sessions [meanNN: F(5,12) = 9.5 , p < .01], [SDNN:
F(5,12) = 18.48 , p < .01], [RMSSD: F(5,12) = 10.19 ,
p < .01], [pNN50: F(5,12) = 4.56 , p < .01], and [CVNN:
F(5,12) = 4.56 , p < .05]. Figure 5 illustrates the average
values (n = 3) of each index for each session. These graphs
indicate that the participants in this experiment increased their
RRI-related indices over time. This result may reflect the ha-
bituation process for the experiment.

Time Changes in R-R-Interval in a Block
In the analysis so far, no difference in HRV indices was found
between the conditions. However, the above analyses were
limited in that they did not examine the temporal dynamics
of the HRV in a block while averaging the indices over the
block. Therefore, we explored the difference between the
conditions by creating an index of the time change of the
HRV. The created index was based on a regression analysis
with time (the horizontal axis in Figure 4) as the indepen-
dent variable and the change in RRI (the left vertical axis in
Figure 4) as the dependent variable. The estimated regres-
sion coefficients were used as indicators representing the up-
ward or downward trends of RRI within the block. The mean
values of this index are listed in Figure 6. In the fixed and
varied-parameter conditions, the mean of this index became
negative, whereas, in the random condition, it became neu-
tral, suggesting that model-based conditions make the user’s
RRI lower (see Block 2 in Figure 4). However, we find a more
prominent difference between conditions in the variance (er-
ror bars) than in the average. In the varied-parameter con-
dition, the error bar is greater than in the other conditions.
In fact, we find a significant difference between the random
and varied-parameter conditions in the size of the variance
[F(5,5) = 12.60, p < .01]. This indicates that a larger tem-
poral change in HRV occurred within the varied-parameter
condition.

Conclusion
In this study, we developed an interactive photograph
slideshow system incorporating a cognitive model and ex-
plicit and implicit feedback from the user. Based on the
subjective evaluation questionnaire, we confirmed that the
participant had different impressions of the model-based
photograph slideshow than with the random photograph
slideshow. In addition, the HRV analysis revealed large tem-
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Figure 4: Variation of R-R-interval (RRI) and noise parameter values (ANS). The blue line shows the RRI, and the red line
shows the change in ANS.

Figure 5: Heart rate variability analysis feature. The error bars indicate the standard error.

Figure 6: Average value of the coefficient of time for each
condition. The error bars indicate the standard error.

poral changes in the varied-parameter condition, suggesting
some effect of the interactive model-based reminiscence. Al-
though we did not reveal a specific effect, the interactive pa-
rameter modulation in the model-based reminiscence may af-
fect the physiological indicator. Further study is needed to
understand the mechanisms of such effects and the generaliz-
ability of the results.

In the future, we will conduct an evaluation experiment of
this system with additional experimental participants to ex-
amine the effectiveness of model-based reminiscence. How-
ever, several issues were found in the analysis of the behavior
of the model in connection with the physiological indicators

and the model. As demonstrated in Figure 4, extremely high
noise parameter values were confirmed by a sudden change
in the RRI due to artifacts, such as electrode misalignment
due to body motion. To solve this problem, we developed a
mechanism to reduce the noise induced by body motion dur-
ing measurement.

Despite these limitations, we consider that this paper con-
tributes to the cognitive modeling community by extending
the application field of cognitive architecture. Although many
applications of cognitive modeling exist, such as intelligent
tutoring systems (Anderson, Boyle, & Reiser, 1985), the ap-
plication of a model incorporating physiological indicators is
novel. The author also considers that, when constructing a
support system for human mental activity, using cognitive ar-
chitecture has the advantage of designing a system with a the-
oretical background. The system presented in this paper uses
assumptions based on previous memory and emotion models.
Such a theoretical background is useful in guiding the design
functions and future evaluations of the system.
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Abstract

We introduce cognitivemodels—a free software pack
age for formal cognitive modeling in the statistical pro
gramming environment R. The package offers novice
modelers a collection of models and offers experienced
modelers a backend for model development. This pa
per introduces the syntax of the package by example.
The models in the software package include, for in
stance, the generalized context model for categorization
(Nosofsky, 1986), cumulative prospect theory for risky
choice (Tversky & Kahneman, 1992), and a Bayesian
probability learning model. The package allows mod
elers to estimate model parameters and to constrain pa
rameters by box constraints and equality constraints; it
also allows to select choice rules such as soft maximum,
epsilon greedy, or Luce’s rule. It further offers modelers
a selection of goodness of fit measures such as a bino
mial or normal log likelihood and meansquared error,
and a selection of 22 numeric optimization routines for
parameter estimation. We believe this software package
may facilitate the usage and testing of formal cognitive
theories and may increase the robustness of cognitive
modeling.
Keywords: cognitive modeling; model building;
model testing; tutorial; Rstatistics; software; robust
ness of code

Formal models of cognition enjoy an increasing pop
ularity in cognitive science, for instance, to describe
categorization (e.g., Nosofsky, 1986), judgments (e.g.,
Juslin, Olsson, & Olsson, 2003), and risky choice (e.g.,
Tversky & Kahneman, 1992). Over 100 such mod
els have been developed in the past decades (Jarecki,
Tan, & Jenny, 2020). Formalizing psychological the
ories can facilitate theory development and scientific
progress. Recent recommendations for improving psy
chological science have not only emphasized replicable
empirical effects, but also called for an increase in for
mal explanations of cognitive capacities (see e.g. Guest
& Martin, 2020; Navarro, 2019; Van Rooij & Bag
gio, 2020). However, such cognitive models can only
be fruitful if they are implemented in a robust manner
(Lee, Chriss, & Vandekerckhove, 2019). One aspect of

robustness is code reproducibility, which refers to the
ability of a third party to reobtain a result by execut
ing the original code (Benureau & Rougier, 2018; Wil
son et al., 2017). Such robustness can be achieved by
implementing cognitive models in a software package,
such as the one presented here. The code in this soft
ware package is robust, because the package includes
automatic tests of the modeling functions for invalid
inputs and consistency (socalled unit tests, see the
section Advantages of Cognitivemodels below). We
believe that this package may make modeling more
broadly accessible and may support the efforts towards
increased formalization of psychological theories.

The cognitivemodels package is a library for the
statistical programming environment R (R Core Team,
2019). It offers tools to estimate free model parameters,
impose parameter constraints, make model predictions,
and calculate the goodness of fit of models to data. The
functions in the package have a consistent syntax across
models which this paper introduces by example. Table
1 lists the models that the package currently provides
to model discrete responses, that is choices. The pack
age also offers models for continuous responses such
as judgments which are not listed in the table. Table 1
shows that all models have a similar set of arguments
(see the column “Arguments to function call”). These
arguments will be detailed below in the section Setting
up a Generalized Context Model.

Because the cognitivemodels package provides a
collection of models from multiple domains in one li
brary (see Table 1) it differs from existing modeling
packages in R which contain specific types of models.
Examples of such specific packages are pt for cumula
tive prospect theory, Speekenbrink’s mcplr for multi
cue probability learning, or MPTinR for multinomial
processing trees (Singmann & Kellen, 2013). Cogni
tivemodels provides a toolbox for model application
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Table 1: Models in cognitivemodels

Arguments to function call
Model Function call formula data fix choicerule

Generalized context model (Nosofsky, 1986) gcm() y ~ x1+...+xn data list(x1="xn", xn=.5) string
Exemplarbased judgment (Juslin, Olsson & Olsson, 2003) ebm_j() y ~ x1+...+xn data list(x1="fn", xn=.5) string
Cumulative prospect theory (Tversky & Kahneman, 1992) cpt_d() y ~ x1+px+x2 | y1+py+y2 data list(alpha="beta",

beta=.8)
string

Shortfall (Andraszewicz, 2014) shortfall_d() y ~ x1+px+x2 | y1+py+y2 data list(delta="beta",
beta=.5)

string

Risksensitivity model (Houston & McNamara, 1988) hm1988() y ~ x1+px+x2 | y1+py+y2 data - string

Bayesian learning model (Griffiths & Yuille, 2008) bayes_beta_d() y ~ x1+x2 data list(priors = c(0.1,
2))

string

Power utility (Wakker, 2003) utility_pow_d() y ~ x1 | x2 data list(rn="rp", rp=.5) string
Softmax choice rule (Sutton & Barto, 1998) softmax() y ~ x1 | x2 data list(tau=.1) string
Epsilongreedy choice rule epsilon() y ~ x1 | x2 data list(eps=.2) string
Baseline baseline_mean_d() y ~ . data - 

Baseline baseline_const_d() y ~ . data - 
Note. Baseline models are stimulusagnostic models that are often included in cognitive model comparisons. The models that have function call ending in _d are models for
discrete response data such as choices. The package offers versions of these models for continuous response data such as judgments (not listed), which have the same function call
except that the call ends in _c instead of _d.

and model development (the toolbox for model devel
opment targets experienced modelers, it will not be out
lined in this paper).

The cognitivemodels package v0.0.9 implements
computational models of cognition, it does not imple
ment cognitive architectures such as ACTR. It esti
mates free model parameters with numeric optimiza
tion or constrained numeric optimization such as max
imum likelihood. Bayesian parameter estimation (e.g.,
Scheibehenne & Pachur, 2014) may be added in the fu
ture.

Getting Started
Throughout this paper we use R v3.6.3 (20200229),
the Rcpp package (v1.0.4.6), the latest matlib pack
age (v0.9.4). The package cognitivemodels 0.0.9 is in
stalled by running:

# install.packages(devtools)
library(devtools)
install_github(

"janajarecki/cognitivemodels")

The package is loaded by running:

library(cognitivemodels)

The Generalized Context Model in the
Package cognitivemodels

We will introduce the syntax of cognitivemodels by
modeling categorization data with the generalized con

text model (GCM, Nosofsky, 1986, 2011). The gener
alized context model is a formal model of classification
which assumes that people infer the category member
ship of a new stimulus based on how similar the stim
ulus is to previouslyexperienced category members.
The stimulus is predicted to belong most probably to
the category to whose members it is most similar. For
mally, the model computes the psychological similarity
between two stimuli 𝑖 and and 𝑗 based on the distance
between the features of the stimuli. The similarity is
given by: 𝑠𝑖𝑗 = exp (−𝜆 ⋅ [∑𝑓 𝑤𝑓(𝑥𝑓𝑖 − 𝑥𝑓𝑗)𝑟]𝑞/𝑟),
where 𝑥𝑓𝑖 and 𝑥𝑓𝑗 are the values of feature 𝑓 of stimuli
𝑖 and 𝑗, respectively. The similarity function has four
free parameters highlighted in red: 𝑤𝑓 is interpreted as
the relative attention to feature 𝑓 and constrained by
∑𝑓 𝑤𝑓 = 1 and 0 ≤ 𝑤𝑓 ≤ 1, 𝜆 governs the sen
sitivity towards small differences between stimuli, 𝑞
governs the relation between distance and psycholog
ical similarity, and 𝑟 is the norm of the distance met
ric with 𝑟 ≥ 1; 𝑟 = 1 produces a cityblock metric
and 𝑟 = 2 produces the Euclidean metric. The model
finally computes the evidence that stimulus 𝑖 belongs
to a category “1” as the sum of the similarities to pre
viously encountered members of category “1” relative
to the similarity to all previously encountered stimuli:

Pr(𝐶 = 1, 𝑖) = 𝑏1 ∑𝑁1
𝑛=1 𝑠𝑖𝑛,𝐶=1

∑𝐶 𝑏𝑐 ∑𝑁𝑐
𝑛=1 𝑠𝑖𝑛,𝐶=𝑐

, where 𝑠𝑖𝑛,𝐶=1 is

the similarity between stimulus 𝑖 and the 𝑛th member of
category “1”. The last free parameter 𝑏1 is interpreted
as a bias towards category “1”, with ∑𝐶 𝑏𝑐 = 1 and
0 ≤ 𝑏𝑐 ≤ 1.
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Setting up a Generalized Context Model

We fit the model to data from a supervised categoriza
tion experiment in which participants learned to cate
gorize lines into two categories by receiving feedback
about the true category (Nosofsky, 1989). The lines
were characterized by two features namely their size
and their tilting angle. Because the paper reports ag
gregated data, we reconstructed the raw data which
is available by data(nosofsky1989long). We one
condition from this data called “size”. The syntax be
low loads the data and sets up the model, it is explained
below the code.

# Use the 'size' condition in the data
data(nosofsky1989long)
DT <- nosofsky1989long
DT <- DT[DT$condition=="size", ]
D <- DT[!is.na(DT$true_cat), ]

# Fit the model to the data D
model <- gcm(

formula = response ~ angle + size,
class = ~ true_cat,
data = D,
choicerule = "none")

The function gcm() fits the generalized context
model and needs four arguments (see also the help
file: ?gcm). The arguments formula and class in
dicate the columns in the data to be modeled (in our
data: “response”, “angle”, “size”, and “true_cat”). The
left side of the argument formula specifies the col
umn that contains participants’ trialbytrial categoriza
tions, in our example this column is called “response”.
The right side of formula specifies the column names
of the stimulus features—here “angle” and “size”—
separated by a plus sign.1 The argument class spec
ifies the column name in the data that holds the cat
egory feedback, in our example this column is called
“true_cat”. The gcm() model automatically names

1While in categorization tasks the input in a given trial
is generally one single stimulus, different tasks exist where
multiple stimuli are presented simultaneously (e.g., when de
ciding between two monetary gambles called gamble x, con
sisting of outcomes x1 with probability px and outcome x2
else, and gamble y, consisting of outcomes y1 with proba
bility py and outcome y2 else). In this case, the stimuli are
separated from each other by a pipe | (e.g., the formula for
predicting a participant’s gamble choice r between the afore
mentioned gambles x and y is ~, x1 + px + x2 | y1 + py + y2,
see also Table 1).

each attention weight parameters (𝑤𝑓 ) after the col
umn name of the corresponding stimulus feature. In
our model the attention weight parameters are therefore
called “angle” and “size”, referring to the attention al
located to the angle and size feature, respectively. If
the feature columns in the data were called “x1” and
“x2” the corresponding formula would be response
~ x1 + x2 and the attention weight parameters would
be called “x1” and “x2”. The argument data specifies
the data which must be a data frame with the variables
that are modeled in the columns and with one choice
trial in each row. The argument choicerule speci
fies which choice rule or action selection rule, if any,
the model uses to map continuous model predictions
to discrete responses. The currently available choice
rules are “argmax”, “epsilon”, “luce”, and “softmax”
(see cm_choicerules() for the allowed values). We
set choicerule = "none" to not use a choice rule.
The fitted generalized context model can be viewed by
calling the object in R that holds the model, in our ex
ample this is model.

Estimation of Model Parameters

If a model has free parameters, the cognitivemodels
package estimates any free parameters of the model
by default. The parameter estimation uses a numeric
optimization method that searches the parameter space
to optimize the goodness of fit between the predic
tions of the model and the observations in the data
given possible parameter constraints. Our example
code above estimates all the parameters of the gener
alized context model using maximum likelihood with
a binomial probability density function. The result
ing estimates for the free parameters can be viewed by
coef(model).

Different models in the cognitivemodels package
(Table 1) have different parameter spaces, that is the
names and ranges of the free parameters are model
specific. The parameters of any model are documented
in the corresponding help file in the section Model Pa
rameters (e.g., ?gcm for the generalized context model).
The lower and upper limits of the parameters in the
different models are set internally and are based on
parameter ranges and estimates in the literature; and
in our example they are based on Nosofsky (1989).
Modelers can change the parameter bounds as out
lined below in the section Advanced Options. The
parameter space of a model in cognitivemodels can
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be printed using the method parspace(). For ex
ample, parspace("gcm") prints the parameter space
of the generalized context model. Given a model has
been stored as model, parspace(model) prints the
parameter space of this very model. Furthermore, the
method constraints(model) shows the parameter
constraints of the stored model.

parspace(model)
constraints(model)

The parameter space of the generalized context
model is as follows: each attention weight parameter
ranges from 0.001 to 1, 𝜆 ranges from 0.001 to 10, 𝑟,
and 𝑞 each range from 1 to 2 and the bias parameter 𝑏0
and 𝑏1 each range from 0 to 1. The constraints show
that both the attention weights and the bias parameters
need to sum up to 1.

Parameter constraints. The following examples
show how to fix model parameters, rather than estimat
ing them, and how to implement parameter constraints.
To fix or constrain parameters an argument called fix
is needed when setting up a model. The value of the ar
gument fix must be a named list containing the names
of the parameters to fix and their respective values. The
parameters that are not listed in fix will be estimated.
For instance, to set the parameters 𝑟 and 𝑞 equal to 1
and estimate the remaining parameters we add the ar
gument fix = list(r = 1, q = 1) to the call to
gcm() as shown below. If the model is stored as model,
coef(model) prints the free parameter estimates and
summary(model) prints all parameter estimates.

model <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = 1, q = 1),
choicerule = "none")

As a further illustration of this logic consider a gen
eralized context model that divides attention equally
between the features “angle” and “size”. This requires
setting the attention weight parameters to 0.50, and
is implemented by adding fix = list(angle =
0.50, size = 0.50) to the call to gcm(). To force
the model to attend 99% to the feature “angle”, the
syntax is fix = list(angle = 0.99, size =

0.01). Note, that in the generalized context model,
the names of the attention weight parameters match the
right side of the argument formula. If the argument
fix fixes all model parameters no parameters are
estimated, such as in fix = list(r = 2, q = 2,
angle = 0.5, size = 0.5, lambda = 1.60,
b0 = 0.5, b1 = 0.5).

Cognitivemodels also allows the specification of
equality constraints. To constrain, for instance, the
value of the parameter 𝑟 to be equal to the value of the
parameter 𝑞 we use fix = list(r = "q"). Then the
parameter 𝑞 is estimated and 𝑟 is set equal to 𝑞. This
equality constraint is implemented in the code below:

model <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = "q"),
choicerule = "none")

Equality constraints and fixed parameters can also
be combined. For instance, the argument fix =
list(angle = 0.5, r = "q") sets the attention
weight for the feature “angle” to 0.50 and constrains
𝑟 = 𝑞.

Models without parameter estimation. The pack
age offers two possibilities to use cognitive models that
contain free parameters without the estimation of the
free parameters. The first method consists in fixing all
model parameters to a numeric value using the fix ar
gument, as outlined above. This is useful for simulat
ing model behavior in an experimental design from a
model with parameter values of interest. In this case
the argument formula needs only a lefthand side. The
second method to estimate no parameters consists in
an argument options = list(fit = FALSE). This
is useful for testing toy models. In this case, a model is
constructed with modelspecific default parameter val
ues. The default parameter values are listed in a col
umn called “start” of the parameter space of a model
(e.g., see parspace("gcm")). Because for the general
context model, there are no universal default parameter
values, the parameter values in this case correspond to
themean of the parameter ranges. The code below fixes
all parameter values of the generalized context model to
the estimated parameter values from Nosofsky (1989)
(Table 5, row 1), and estimates no parameters.
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model <- gcm(formula = response ~
angle + size, class = ~true_cat,
data = D, fix = list(angle = 0.1,

size = 0.9, lambda = 1.6,
r = 2, q = 2, b0 = 0.5,
b1 = 0.5), choicerule = "none")

Generating Predictions

Given a cognitive model stored as model, the method
predict(model) returns predictions from the model
given its parameters. It makes predictions for the
data used to set up the model. In our example
predict(model) makes predictions for the data D
that we used to fit the model. An optional argument
newdata can be supplied to predict() to make pre
dictions for new stimuli using the parameters of the
model without newly estimating parameters. The new
data needs to have the same format and column names
as the data that was used to set up the model. Using the
model from the last code block with parameters fixed to
the parameter estimates in Nosofsky (1989), the below
code predicts the categorization for all 16 stimuli in the
“size” condition using the newdata argument.

newD <- DT[!duplicated(DT$stim_id), ]
newD <- newD[order(newD$stim_id), ]
predict(model, newdata = newD)

The predictions match the predictions in Nosofsky
(1989) (Figure 5, “size” condition).

Goodness of Fit and Model Comparisons

The cognitivemodels package offers the following
goodness of model fit measures for each model: log
likelihood, the Bayesian information criterion (BIC,
Schwarz, 1978), Akaike’s information criterion (AIC,
Kass & Raftery, 1995; Wagenmakers & Farrell, 2004)
including the finitesample correctedAICc (seeWagen
makers & Farrell, 2004), and the meansquared error
(MSE). The following code returns the respective good
ness of fit measures.

logLik(model)
BIC(model)
AIC(model)
MSE(model)

To compare models, the anova() method can be
used to render ANOVAstyle tables. If one model is
supplied as argument to anova(), the function returns
an error summary. If multiple models are supplied to
anova(), the function returns a model comparison ta
ble. The model comparison table includes the relative
evidence strength measured by Akaike weights (Wa
genmakers & Farrell, 2004) as well as a 𝜒2test of the
log likelihoods of the two models given these belong
to the same class (e.g., two generalized context mod
els will be compared by 𝜒2, but not a Bayesian model
and a generalized context model). The example code
below compares a generalized context model 1 that has
the parameter constraints 𝑟 = 1, 𝑞 = 1 to a model 2
that has the parameter constraints 𝑟 = 2, 𝑞 = 2.

model1 <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = 1, q = 1),
choicerule = "none")

model2 <- gcm(
formula = response ~ angle + size,
class = ~true_cat,
data = D,
fix = list(r = 2, q = 2),
choicerule = "none")

anova(model1, model2)

Advanced Options

The next section details advanced options for modelers.
For each modeling function in the package (Table 1)
there is an optional argument options to change the
modeling procedure. The value of options is a list in
which each element sets one option, the help file found
under ?cm_options shows all available options, some
of which we will detail next.

Modelers can change the lower and upper bounds
of the free parameters in a model by using the op
tions lb and ub. For instance, in the gcm() model
we can change the bounds of the parameter 𝜆 to range
from a lower bound of 0 to an upper bound of 20
by setting options = list(lb = c(lambda = 0),
ub = c(lambda = 20)). If only lb is set, only the
lower parameter bound is changed, and if only ub is
set, only the upper parameter bound is changed.
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Modelers can change the goodness of fit measure that
the model optimizes during parameter estimation. The
syntax is list(fit_measure = ...) where ...
can be "loglikelihood" or "mse" (meansquared er
ror). The log likelihood assumes a binomial probabil
ity density function when modeling discrete responses
and a normal density function when modeling continu
ous responses. In the latter case the model assumes the
responses to follow a normal distribution around each
prediction (as mean) with a constant standard deviation
that is estimated as an additional free parameter called
"sigma".

Modelers can change the algorithm that solves the
parameter optimization problem. The option is set by
list(solver = ...). Currently, 22 different opti
mization solvers are available, which can be viewed
by running cm_solvers(). The available solvers con
sist of all solvers in the R optimization infrastructure
ROI, which include solvers such as global optimiza
tion by differential evolution (solver = "Deoptim),
nonlinear optimization routines ("nloptr"), or op
timx ("optimx"), and others (see their webpage for
available solvers). Also available are a general non
linear optimization using the augmented Lagrangemul
tiplier method (solver = "solnp") and a simple grid
search (solver = "grid"). Lastly, setting solver
= c("grid", "solnp") will first perform a coarse
grid search and use the best solutions from this grid as
starting values for repeated optimization with the solver
("solnp" in this example, but each available solver can
be applied for this second step).

Advantages of Cognitivemodels

The cognitivemodels package is one way to facilitate
the usage of formalized theories and to achieve robust
cognitive modeling, which has been called for in recent
metascientific proposals (e.g. Guest & Martin, 2020;
Benureau & Rougier, 2018; Lee et al., 2019; Navarro,
2019; Van Rooij & Baggio, 2020; Wilson et al., 2017).
Besides robustness of code, further advantages of the
package are programming efficiency and flexibility.

Robustness. The models implemented in the cog
nitivemodels package are robust, because the pack
age contains automated error checks and allows for
manual error checks. By automated error checks we
mean that there are unit tests implemented for the
cognitive models in the package. Unit tests are au

tomatic tests of parts of a program. Our unit tests
test whether the model predictions are correct across
a range of model parameters and input data. They
also test if the default parameter estimation method
replicates previouslyobtained parameter values given
published data. This is a safeguard against introduc
ing programming errors during code development. By
human error checks we mean that because the cog
nitivemodels package is open source, users of the
package can report bugs through https://github.com/
JanaJarecki/cognitivemodels/issues.

Programming Efficiency. The cognitivemodels
package offers modelers a tool to fit cognitive models
with minimal programming effort, because it uses
a standardized syntax across the different cognitive
models that are implemented in the package. The
package requires minimal additional code to constrain
parameters, make predictions, and compare models.
The syntax of our package is similar to the syntax of
the standard ANOVA or regression commands in R
(e.g., the predict(), anova(), logLik(), or coef()
methods). We believe, syntax standardization leads to
efficiency gains when implementing models. Further,
if standard models need not be implemented anew this
saves implementation time.

Flexibility. The syntax for cognitivemodels in cogni
tivemodels allowsmodelers to adjust themodeling pro
cedure to their own needs, to set parameter constraints,
and to compare models. The package offers a general
purpose model development backend in the R6 class
which experienced modelers can use to implement fur
ther cognitive models in the package. This feature is
not documented here, because of space limitations.

Summary

We have introduced cognitivemodels, the first R pack
age to provide a robust, unified interface for formal
modeling in cognitive science. Formalizing theories is
seen as a crucial step to overcome the replication cri
sis in psychology. The cognitivemodels package may
facilitate this step through its standardized and flex
ible syntax adapted to the needs of both novice and
experienced modelers. We have exemplified the syn
tax of cognitivemodels with the generalized context
model by applying basic and advanced modeling func
tionalities including model fitting with different types
of parameter constraints and model testing with various
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goodness of fit measures.
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Abstract

The universal flexibility of biological systems needs to be re-
flected in cognitive architecture. In PRIMs, we attempt to
achieve flexibility through a bottom-up approach. Using con-
textual learning, randomly firing of a set of instantiated prim-
itive operators are gradually organized into context-sensitive
operator firing sequences (i.e., primordial “skills”). Based
on this implementation, the preliminary results of the model
simulated the averaged single-pattern processing latency that
is consistent with infants’ differential focusing time in three
theoretically controversial artificial language studies, namely
Saffran, Aslin, and Newport (1996), Marcus, Vijayan, Rao,
and Vishton (1999), and Gomez (2002). In our ongoing work,
we are analyzing (a) whether the model can arrive at primor-
dial “skills” adaptive to the trained tasks, and (b) whether the
learned chunks mirror the trained patterns.
Keywords: cognitive flexibility; contextual learning; language
acquisition; processing efficiency; PRIMs architecture

Introduction
From epigenetics to behavioral appropriateness, adaptability
is ubiquitously observed at each level of biological systems
(see Bateson & Gluckman, 2011). Cognition, in particular,
may well be the most flexible system of all, which contrasts
the deterministic approach in cognitive theories and model-
ing. To show that cognitive flexibility is possible, we use
a generally-implemented model to simulate the learning of
three specific language tasks by infants (for a review, see Saf-
fran & Kirkham, 2018). The reasons are as follows. Firstly,
it agrees with the consensus that language is one of the most
crucial aspects of cognition (Newell, 1990; Rumelhart & Mc-
Clelland, 1986). More importantly, the acquisition of lan-
guage highlights the pivotal role of flexibility and adaptabil-
ity. Last but not least, young infants cannot be instructed as
how to acquire a language, therefore motivating a hard-code
free approach.

In the following sections, an introduction of the three rep-
resentative tasks is provided, before describing the common
mechanism that learns all three tasks. We then compare the
models’ predictions to empirical data.

Three Language Phenomena
Without being endowed a priori with a native language, very
young infants are sensitive to speech sounds (e.g., Kuhl,
Williams, Lacerda, Stevens, & Lindblom, 1992), and are al-
ready discovering word forms within their first year of life
(e.g., Jusczyk & Aslin, 1995). Such pioneering findings

opened up a field focusing on infant language learning (see
Saffran & Kirkham, 2018). However, it remains an open
question as how infants can (a) identify atomic elements such
as syllables (atomicity); and (b) compose atomic elements
lexically and/or syntactically to form words or phrases (com-
positionality). This paper focuses on compositionality with
the assumption of atomicity. In other words, it concerns
the learning mechanism that connects lower-level syllables
to higher-level words/phrases (Taatgen, 2017). This focus is
discussed when the following tasks are introduced (see Fig-
ure 1).

a b a 7mo, Marcus et al. (1999)

8mo, Saffran et al. (1996)

17mo, Gómez (2002)

X Y Z

X a Y

Figure 1: Three representative language tasks ordered based
on developmental trajectory. Note: lowercase letter = vari-
able token; uppercase letter = fixed token.

In Saffran et al.’s (1996) study, 8-month-olds are presented
with an uninterrupted speech stream formed by randomly
concatenating four fixed trisyllabic words in the form of X-
Y-Z (see Figure 1). After the learning phase, infants are
examined with a set of test words. Infants show more at-
tention to novel non-word (e.g., “da-pi-ku”) or part-words
(“tu-da-ro”) as compared to test words directly taken from
the training phase (e.g., “da-ro-pi”). Saffran and colleagues
(1996) interpreted their results from a connectionist perspec-
tive. They considered that infants’ differentiation of speech
streams is related to the acquirement of embedded transi-
tion probabilities between adjacent word-syllables (statisti-
cal learning). Nevertheless, the differentiation of speech
streams at the global level does not fully explain whether
word forms are learned/segmented. To verify this further, in
a follow-up study, 17-month-old infants performed a label-
object association task after listening to a continuous stream
of words (Estes, Evans, Alibali, & Saffran, 2007). During
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the habituation phase, shapes (i.e., objects) are either pre-
sented with words or other untrained non-words/part-words
(i.e., labels) until a habituation criteria is reached. In the test
phase, object-label pairings are switched to induce dishabitu-
ation. However, only when the labels are words versus non-
word/part-words was the dishabituation detected, which im-
plies that wordlike units are necessary for label-object associ-
ation, and needs to be learned during the training phase. Sim-
ilarly in modeling studies, previous simulated results were
more in line with empirical findings when both token-level
transitional probabilities and the generation of word-level pat-
terns were taken into consideration (see Mareschal & French,
2017). These altogether support that infants are able to com-
pose atomic elements into basic lexical units.

In contrast, Marcus et al. (1999) argued that pure connec-
tionist learning account may not be applicable in all situa-
tions, and that syntactic structure is needed to recognize gen-
eralized pattern types. They showed that 7-month infants
seem to be able to derive the more general a-b-a pattern,
after being presented with a series of trisyllabic patterns of
“le-we-le”, “ga-ka-ga” and so on (see Figure 1). Infants fo-
cus distinctively more on the novel test patterns of c-d-d and
c-c-d, as compared to the familiarized test pattern of c-d-c,
even when the specific tokens are replaced. Marcus et al.
(1999) therefore showed that infants are able to generalize
even though there exist no transitional probabilities between
the learned and test patterns (algebraic learning). However,
their argument that infants possess innate ability of syntactic
processing (e.g., knowing “the 1st token predicts the 3rd” in
a-b-a) is not in line with empirical findings. In fact, infants
generally needs to be more than 1-year-old to distinguish non-
adjacent syntactic relations (e.g., Gómez & Maye, 2005). Al-
ternatively, more recent studies have shown that younger in-
fants (7-month-olds) are instead attuned to immediate repeti-
tions without being able to acquire the full trisyllabic pattern
(e.g., Wagner, Fox, Tager-Flusberg, & Nelson, 2011). Our
previous model shows that the learning and transfer of alge-
braic patterns can be achieved in a bottom-up fashion when
immediate repetition are rewarded (Ji, van Rij, & Taatgen,
2019). Therefore, the findings of Marcus et al. (1999) may
only captures infants’ ability to identify a particular element
as it is (i.e., atomicity), rather than the capability to under-
stand syntax fully. However, this is not to say that infants
cannot learn syntactic structures. Research in syntactically-
relevant non-adjacent dependency learning is championed by
Gómez and colleagues. Taken non-adjacent pairs in the form
of X-a-Y as an example (e.g., “pel-a-rud”, see Figure 1), when
variability of the middle token a (i.e., 24 variations) renders
transitional probabilities unreliable to capture the regularity
of that pattern, 17-month-old infants counterintuitively are
better able to differentiate them by focusing more on novel
non-adjacent pairs (“pel-a-jic”) than learned ones (Gomez,
2002). Infants are therefore able to shift strategies (Saffran &
Kirkham, 2018, p. 190), suggesting diverse form of language
compositionality either by lexicon or syntax.

One Architecture that Learns

Although the theory of artificial language learning remains
controversial, it is indisputable that infants have the ability to
deal with all tasks. However, usually in the ACT-R model,
stimulus-response production-rules related to task process-
ing need to be artificially defined. Thus, the discovery and
learning process of infants cannot be well simulated. For the
problem of skill acquisition, Taatgen and Lee (2003) first pro-
posed the learning strategy of production compilation and in-
corporating it into ACT-R. Through production compilation,
general production-rules are combined into task-specific rules
adapted to the task-demand. As early as 2002, Taatgen and
Anderson (2002) boldly applied procedurally-related produc-
tion compilation in children’s language learning, and shows
how regular past-tense rule can be learned as a specialization
of more general rules. Until recently, the procedural hub of
basal ganglia is viewed as relevant not only to motor learn-
ing, but also to many other skill domains including language
(see Stocco, Lebiere, & Anderson, 2010, Kotz & Schmidt-
Kassow, 2015). Nevertheless, the firing conditions (i.e., con-
text or goal-state) and information processing flow of general-
purpose production rules still need to be programmed manu-
ally. Moreover, production compilation is operated at the pro-
cedural level, but learned skills are often transformed as long-
term declarative knowledge that can be transferred/reused in
different scenarios (see Stocco et al., 2010).

For the same question of incorporating skill acquisition in
a cognitive architecture, we propose a new bottom-up ap-
proach that seeks to organize primitive elements of procedu-
ral knowledge into context-sensitive stimulus-response rules
through trial-and-error. These rules are maintained in declar-
ative memory and can be transferred in other task contexts
once necessary. The specific contextual learning mechanism
to achieve this is inspired by the action selection process of
basal ganglia and related cortical areas (see Stocco et al.,
2010, Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015).
The basal ganglia is a reinforcement learning hub that syn-
thesizes contextual signals from multiple cortical areas and
connects them with corresponding responses, and relays re-
sponse outcomes gradually to the cortex to be maintained and
integrated with contextual information. When a task-related
reward state is reached, the cortex then fine-tunes the associ-
ation between the contexts and specific primitive procedural
elements to promote the rearrival at such task-relevant reward
state. For infants’ performance on artificial language tasks,
Saffran and Kirkham (2018, p. 195) similarly suggests that re-
inforcement learning maybe a crucial candidate for language
acquisition. It is possible that such reinforcement learning
of language skills is supported by the cortico-basal ganglia
mechanism (Kotz & Schmidt-Kassow, 2015).

In addition, the fine-tuning of contextual learning requires
predefined reward states. Empirical evidence for these states
are provided by Wagner et al. (2011). It is found that younger
infants are more susceptible to the changing environment,
especially the exogenous repetition of simple stimuli. For
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slightly older infants, these simple environment-driven re-
actions are gradually replaced by the endogenous detection
of more complex embedded regularities that are mirrored in
memory. The learning from simple elements to more com-
plex patterns is also reflected in animal studies. In one study,
a saccade task with four targets is presented to the macaques.
At the beginning of training, basal ganglia and related corti-
cal areas respond to all single targets. However, cellular re-
sponse in later stages is limited to only the sequential bound-
ary made up of the four targets (see Dehaene et al., 2015,
p. 5). These results support that the basal ganglia-inspired
contextual learning mechanism may be the key to the transi-
tion from atomicity to compositionality.

The purpose of this article is to provide a proof of con-
cept for the bottom-up learning approach. Through contex-
tual learning, we investigate whether the model can provide
a unified description on three theoretically controversial arti-
ficial language tasks, namely Saffran et al. (1996), Marcus et
al. (1999), and Gomez (2002). In this article, our first task is
to simulate and explain the experimental results, that is, fo-
cusing time differences. Currently, we are still analyzing the
procedural and declarative knowledge acquired by the model
under different task conditions.

Model
The model is implemented in the PRIMs architecture (see
Taatgen, 2013). In PRIMs, operators are equivalent to
production-rules, but with slightly different nature (van der
Velde, 2018). Like ACT-R, operators are if-then rules that de-
fine how information are routed and compared between per-
ceptual and memory buffers. Moreover, these operators can
be further broken down into their smallest units (i.e., prim-
itive operations). Contrary to ACT-R, in PRIMs operators
share the properties of chunks, including base-level activa-
tion and spreading activation from the buffers. This is be-
cause procedural operations will eventually be stored in cor-
tex to be used in future scenarios (Stocco et al., 2010, p. 548).
Therefore, operators can be triggered based on its associa-
tions with the current buffer contents (i.e., the immediate con-
texts). For example, and operator can be triggered by a certain
auditory input, or by a previously executed operator. Asso-
ciations between the operators and the contexts are learned
through reinforcement learning. This partially replaces goal-
states that used to be explicitly defined for action selection
with production-rules. The gradual acquisition of context-
sensitive operations increases the flexibility of the architec-
ture, and opens up a method of exploration-based learning.

Primitive Operations Primitive operations are the small-
est units of production rules. They route and compare in-
formation between different buffers. In this model, environ-
mental inputs can be encoded successively to the slots of the
imaginal buffer. For example, the previous stimulus X fills
the currently empty slot (e.g., slot-2, if slot-1 is filled) in the
imaginal, the next stimulus Y can only fill the next free slot
(e.g., slot-3). Encoding of the environmental stimulus in the

Exogenous

input = imaginal(slot1)
input = imaginal(slot2)
input = imaginal(slot3)
input = imaginal(slot4)

input <> imaginal(slot1)
input <> imaginal(slot2)
input <> imaginal(slot3)
input <> imaginal(slot4)

input = declarative(slot1)
input = declarative(slot2)
input = declarative(slot3)
input = declarative(slot4)

input <> declarative(slot1)
input <> declarative(slot2)
input <> declarative(slot3)
input <> declarative(slot4)

Endogenous

imaginal(slot1) = declarative(slot1)
imaginal(slot2) = declarative(slot2)
imaginal(slot3) = declarative(slot3)
imaginal(slot4) = declarative(slot4)

imaginal(slot1)<> declarative(slot1)
imaginal(slot2)<> declarative(slot2)
imaginal(slot3)<> declarative(slot3)
imaginal(slot4)<> declarative(slot4)

Reward(exo.)

Reward(endo.)

Figure 2: Comparison operations and reward preferences.
Note: exogenous = comparisons with input; endogenous =
comparisons with declarative unit; Reward(exo./endo.) = Ex-
ogenous/endogenous reward preferences.

imaginal also automatically starts the retrieval of the declar-
ative memory chunk containing the stimulus, and the chunk
with the highest activation and exceeding the retrieval thresh-
old can be harvested. When the imaginal buffer is cleared
(in PRIMs, this is achieved when “nil” is filled into imaginal
slot-0), the chunk stored in the current imaginal will then be
stored in the declarative memory as a whole.

When memory buffers and/or input buffers are not empty,
another series of comparison operations can be fired to check
whether there is match/mismatch between the buffer slots.
Comparison operations in this model are categorized into ex-
ogenous and endogenous types (see Wagner et al., 2011). Ex-
ogenous operations check whether the immediately presented
stimuli matches/mismatches the slot in the chunk currently
stored in imaginal or retrieved from declarative memory. The
reward state is to detect any immediate matches between in-
put and the memory buffers (i.e., Reward(exo.), Figure 2).
Endogenous operations check whether the currently encoded
pattern by slot mirrors the pattern as retrieved from declara-
tive memory. The reward state is to find a mismatch that iden-
tifies the pattern boundary (i.e., Reward(endo.), Figure 2).

A Walk-Through Example Here, we describe one possi-
ble processing solution to the specific pattern of “le-we-le”.
Suppose the model has already learned the bigram “le-we” in
declarative memory. When the first input “le” is encoded into
imaginal slot-1, the automatic retrieval process may harvest
“le-we”. Consequently, with the encoding of the second in-
put “we”, the model may find the syllable is now matched be-
tween slot-2 of the imaginal and the declarative chunk. How-
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ever, after the encoding of the third input “le”, a mismatch
maybe found between slot-3 of the imaginal and declarative
chunk (i.e., an empty slot), which suggest the current pre-
sented pattern are different from the memorized pattern at the
global level. This time, the endogenous reward state is ar-
rived. If there is sufficient time the model will strengthen as-
sociations between all fired operations and their correspond-
ing contextual buffer states that lead to the reward.

On the other hand, the model may also process the pat-
tern in an exogenous manner, and just find that the encoded
first syllable “le” in imaginal slot-1 is repeated when the third
“le” is presented. If the operations and related buffers states
are reinforced after this reward state is reached, the model
may alternatively oriented towards the detection of immedi-
ate repetition.

Learning Mechanism The learning mechanism binds op-
erations to their contexts in accordance with the reward pref-
erence. When a particular reward state is satisfied, the associ-
ations between operations and the contexts are strengthened:

∆S jik = β ( payoff−S jik ) (1)

where

payoff fired =
maxS jik× ( reward - timeToReward )

reward
(2)

At the same time, the bond between unused operations and
the contexts are weakened by the payoff term:

payoff unfired =
maxS jik× ( 0 - timeToReward )

reward
(3)

In this function, association weight Sjik is updated every
time when an reward is issued. Here, j denotes the spe-
cific operation fired, and ik denotes the associated context in
buffer i and slot number k. The beta is a learning rate param-
eter, whereas the payoff term specifies how much context-
operation association weights are updated each time. Specifi-
cally, timeToReward is the firing time of each used operation.
Reward is the sum of the set reward parameter (Reward0 =
10.0) and the “trial” duration (i.e., previous to current reward
time). After the rewards are issued, the imaginal is cleared,
and the next “trial” now starts afresh.

Timing Consideration From birth to the age of 2 years,
processing efficiency undergoes dramatic age-related changes
without altering structure of the brain (see Dubois, Adibpour,
Poupon, Hertz-Pannier, & Dehaene-Lambertz, 2016). This
means that young infants are only able to fully process a stim-
ulus when presentation is sufficiently long (see Chen, Peter,
& Burnham, 2016). In the current model, the interaction
between stimulus duration and the rate of operation firing
is specifically considered. Operation firing takes time, and
when the stimulus duration is short, the per-stimulus opera-
tion firing rate will be reduced accordingly. In addition, if
the operator processes have not yet ended when the presenta-
tion of the current stimulus has ended, the processing time of

the operation would therefore exceed the presentation of the
stimulus. In this case, the processes of the upcoming stim-
ulus would be less sufficient as if its presentation time has
been reduced. In this model, it is so far arbitrarily set that the
stimulus would be completely ignored when the time window
for processing a stimulus is reduced to less than 10% of the
objective stimulus presentation time.

Object of Evaluation Based on the general implementa-
tion, it is investigated whether infants’ differential focusing
time for different task conditions can be simulated by a sin-
gle model. Our simulation and experimental results apply
different time scales. The experimental results investigate
the overall focusing time for all patterns in the test phase,
whereas the simulation results focusing on the averaged time
required to process a single pattern in the test phase. The rea-
sons are as follows. First of all, we do assume that processing
latency of a single pattern is related to the overall focusing
time. When the infants need to spend more time to process a
pattern, then the remaining task-irrelevant gap will be short-
ened accordingly. In this case, the probability of the infants
deviating from the task is relatively small, so the overall fo-
cusing time will be relatively high. However, if the infants
are now familiar with the pattern and can effectively process
it, task-irrelevant gap will increase. At this time, the possi-
bility that the infants deviate from the task will also increase,
resulting in a decrease in the overall focusing time. However,
for the current model, we do not know what the cause and
duration when infants divert from the task. There are many
possibilities, such as when an infant is captured by other in-
teresting environment stimuli (external causes), or the needs
for food or play (internal causes). It is much more difficult to
reflect these factors in the current model. Therefore, we only
consider the single-pattern processing latency of the learned
and novel patterns after training, and assume the difference
in processing latency would reflect the overall difference in
focusing time. Specifically, duration from each stimulus on-
set to its last operation firing time are summed and averaged
for each pattern. Note that when the operation/s cross the
next stimulus boundary, the stimulus input onset will be de-
layed. In the next section, details of each task conditions are
described, followed by the simulated results.

Experimental Details
Saffran et al. (1996) In this task, infants are first pre-
sented with a training stream of continuous trisyllabic pat-
terns. These trisyllabic patterns include four words in the
form of X-Y-Z (i.e., “pa-bi-ku”, “ti-bu-do”, “da-ro-pi”, and
“go-la-tu”). These four words are concatenated randomly
with no interval between them. After training, the experi-
ments 1 and 2 further test whether infants exhibit a differ-
ence in the duration of focusing time on trained words versus
untrained patterns during the test phase. The tested trained
words are directly taken from two words presented during the
training phase (i.e., “pa-bi-ku”, and “ti-bu-do”), whereas the
structure of untrained patterns and trained words have differ-
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ent transitional probabilities to the trained words. In Experi-
ment 1, the untrained non-words (i.e., “da-pi-ku”, “ti-la-do”)
share no transitional probabilities (p = 0) with the trained
words. In Experiment 2, the untrained part-words (i.e., “tu-
da-ro”, and “pi-go-la”) share some transitional probabilities
(p = 1

3 ) with the trained words, as if the part-words are cross-
ing over the word boundaries.

Marcus et al. (1999) The study investigated whether af-
ter training a certain type of trisyllabic patterns, infants show
differential focusing time to the tested same and different pat-
tern types with replaced tokens. In other words, the trained
and tested patterns share no transitional probabilities. In the
original experiment, the stimulus properties of experiments
2 and 3 are better-controlled. In Experiment 2, the training
patterns are of the type a-b-a or a-b-b, and the test pattern
types contain c-d-c and c-d-d. Similarly, in Experiment 3, the
training patterns are of the type a-b-b or a-a-b, and the test
pattern types are c-d-d and c-c-d. In this study, results regard-
ing consistent and inconsistent type to the trained pattern are
collapsed together. For all training patterns, there are four in-
stantiations relates to the repeated syllables (a-b-a, a-b-b, or
a-a-b; i.e., “le”, “wi”, “ji”, and “de”); and two instantiations
for non-repeated syllables (a-b-a, a-b-b, or a-a-b; i.e., “di”,
“je”, “li”, and “we”). For the patterns in the test phase, the
instantiations of repeated (c-d-c, c-d-d, and c-c-d; i.e., “ba”,
“ko”) and non-repeated syllable (c-d-c, c-d-d, and c-c-d; i.e.,
“po”, “ga”) are replaced.

Gómez (2002) The study investigated whether after train-
ing non-adjacent dependent X-Y patterns, infants show dif-
ferential focusing time on the same X-Y pattern from other
untrained X’-Y’ non-adjacent dependent patterns. Here, the
meaning of non-adjacent dependency is that the fixed tokens
X and Y are not adjacent to each other, but separated by a
variable token a in the form of X-a-Y. In the training phase,
X-Y has two instantiations (i.e., “pel-rud”, “vot-jic”). They
are divided into three conditions based on the variability of
the middle token a. In the first condition, a has only 3 vari-
ants, while in the second and third conditions, the variability
of a increases to 12 and 24 variants. The instantiation of a
includes “wadim”, “kicey”, “puser” and so on. During the
test phase, it is then investigated whether infants can distin-
guish the same X-Y and different patterns X’-Y’ after each of
the three training conditions. The same test X-Y patterns are
consistent with the training phase (i.e., “pel-rud”, “vot-jic”)
and are separated by a variable token a that includes three
variants. Similarly, the different test X’-Y’ patterns uses the
reverse of X-Y (i.e., “pel-jic”, “vot-rud”), which also includes
a 3-variant middle token a.

Task Lengths In the empirical studies, the presentation
time of trisyllabic patterns in different tasks varies greatly.
Specifically, in Saffran et al. (1996), the presentation time
of each trisyllabic pattern is 750 ms (250 ms/syllable) with-
out inter-pattern interval (note though that a 500 ms inter-
pattern interval is added during the test phase). In Marcus

et al. (1999) and Gomez (2002), trisyllabic pattern are each
presented for 1500 ms (500 ms/syllable) with an inter-pattern
interval of 1000 ms and 500 ms respectively. In other words,
the numbers of patterns trained in the Saffran et al. (1996)
greatly exceeded the other two tasks. In the simulation study,
in order to make the model fully acquire the patterns in each
tasks, the simulation duration is set longer than it is in the
empirical study. In detail, the total presentation lengths in
the training phases are 500 patterns (6.25 min) for Saffran et
al. (1996, 2 min), 100 patterns (4.17 min) for Marcus et al.
(1999, 2 min), and 100 patterns (3.33 min) for Gomez (2002,
3 min). In addition, to better compare the operation firing pat-
terns in the early and late training stages, the model divides
the entire continuous presentation of patterns into streams.
Each stream contains the continuous presentation of 10 pat-
terns. On the other hand, in the test phase of the simulation,
all task conditions consistently contains 10 patterns. This is
done so because our model only focuses on how much time is
spent on average to process a single trisyllabic pattern (along
with the immediate inter-pattern interval that follows).

In addition, our model assumes that processing efficiency
undergoes change during different months of age. Infants of
7-8 months are tested in Saffran et al. (1996) and Marcus et al.
(1999), while 17-month-olds are tested in Gomez (2002). In
our model, processing efficiency is differentiated by the firing
duration of an individual operator, and operations that are not
successfully fired also take time. To simulate younger infants
in Saffran et al. (1996) and Marcus et al. (1999), the firing
duration is set lower (70 ms) as compared to older infants (50
ms) in Gomez (2002).

Simulation results

Learning of Context-Sensitive Operation In here, we
only show the difference between the operation firing re-
sponding to each single pattern of various task conditions
during training (see Figure 3). For the specific firing pat-
tern formed by these operations, we are currently conducting
further analysis and will not be elaborated in this paper. Ini-
tial and later state describe the performance of the model in
the first stream and the tenth stream respectively. Note that
the number of streams applied here is only for demonstra-
tion purpose and do not represent the entire training length
- for example, simulation of Saffran et al. (1996) consists of
50 streams (500 continuous patterns). We can see that in the
initial state, the firing of the operation is without structure.
However, in the later state, the operation seems to form some
firing patterns. In addition, the efficiency of firing seems to
have improved, so it can be seen that the transitional gaps be-
tween stimuli and/or pattern are also increased. However, for
the simulation of Saffran et al. (1996), the increase in tran-
sitional gap is not as obvious. This is because in this ex-
periment, the presentation time of each syllable stimulus is
extremely short (250 ms) and there is no inter-pattern interval
between patterns during the training phase.
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Figure 3: Changes in operator firing for different tasks (grids
represents different tasks; scales from 0 to 10 on the grid-Y-
axis represents the 10 simulated subjects sampled) and dif-
ferent parts of the training (left blocks are onsets of train-
ing, right blocks are later stage in training). Each dot repre-
sents a fired operator, with varying colors for different oper-
ator types. The black vertical lines mark the onsets of sound
patterns, the gray lines mark the onset of individual syllables.

Differentiating Acquired/Novel Patterns The empirical
and the stimulated results are analyzed based on an un-
paired two sample design. The reason for this is that (a)
the experimental results leave only summarized data (such
as mean, standard error, and sample size), therefore the orig-
inal within-group difference cannot be reassessed; whereas
(b) in the model, different task conditions are independently
simulated. Moreover, Welch’s t-test is performed to analyze
the results, since (a) the original data is based on small sam-
ples, and (b) we do not assumed equal variance in experi-
mental and simulated samples. For Saffran et al. (1996), it
was found that none of the experiments’ focusing time differ-
ence on words/non-words (mean difference = 0.88 s, p = 0.16)
and words/part-words (mean difference = 0.83 s, p = 0.17)
reached statistical significance (see Figure 4A). Similarly
in simulation, no difference was found between words/non-
words (mean difference = 0.002 s, p = 0.61) and words/part-
words (mean difference = 0.006 s, p = 0.12) for the single-
pattern processing latency (see Figure 4B). Nevertheless, re-
gardless of experimental and stimulated results, it is found, at
face level, that the focusing time and processing latency for
trained words is slightly longer than non-words/part-words.
Marcus et al. (1999) investigated the focusing time differ-
ence between acquired/novel pattern types, and found that

Figure 4: Simulation of Saffran et al., 1996. A: Data, average
focusing time (±1SE) in 12 patterns. B: Simulation, process-
ing latency per pattern (average of 200 runs, ±1SE). Note:
wor = words; non = non-words; par = part-words.

there was significant differences between cdc/cdd (mean dif-
ference = 1.75 s, p = 0.04) and cdd/ccd (mean difference =
2.00 s, p = 0.003; see Figure 5A). Similarly in simulated re-
sults of single-pattern processing latency, we also found the
difference between cdc/cdd (mean difference = 0.10 s, p =
2.63×10−9, Cohen’s d = 0.61) and cdd/ccd (mean difference
= 0.07 s, p = 1.98×10−4, Cohen’s d = 0.38; see Figure 5B).
Analysis of Gomez (2002) shows that the greater the vari-
ability of middle token a during the training phase, the larger
the focusing time difference between acquired non-adjacent
patterns and novel patterns. However, only when the vari-
ability contains 24 instantiations (mean difference = 0.05 s,
p = 0.97), the focusing time difference reaches significance;
whereas when the variability is with 3 (mean difference = 0.34

Figure 5: Simulation of Marcus et al., 1999. A: Data, average
focusing time (±1SE) in 12 patterns. B: Simulation, process-
ing latency per pattern (average of 200 runs, ±1SE).
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s, p = 0.73) and 12 instantiations (mean difference = 2.07 s, p
= 0.003), the differences are non-significant (see Figure 6A).
In the simulated results due to the larger sample size, the dif-
ferences in single-pattern processing latency among 3 (mean
difference = 0.04 s, p = 0.007), 12 (mean difference = 0.06 s, p
= 6.79×10−5), and 24 instantiation conditions (mean differ-
ence = 0.07 s, p = 8.30×10−7) have all reached significance.
Further analysis of the simulated results shows that effect
sizes increases as the number of instantiations increases from
3 (Cohen’s d = 0.27), 12 (Cohen’s d = 0.40) to 24 (Cohen’s
d = 0.501). Only the 24-variant condition shows substantive
medium effect size latency difference (see Figure 6B).

Discussion
In this study, we use a single model to simulate three theoret-
ically controversial infant artificial language tasks. The sim-
ulated results of different tasks are consistent with the origi-
nal findings. Specifically, for Marcus et al. (1999), simulated
difference in processing latency is found between consis-
tent/inconsistent pattern types after training; and for Gomez
(2002), as the variability of token a in non-adjacent dependent
pattern X-Y increases, the difference in processing latency
between trained/novel patterns gradually increases, showing
substantive difference only when token is instantiated with
24 variants. These simulated results indirectly illustrate en-
hanced processing efficiency of the learned pattern. This is
assumed to reserve longer task-irrelevant gap during pattern
processing, thereby increasing the possibility of diversion and
eventually leading to a reduction in focusing time for the
trained pattern. Therefore, the simulated results are consis-
tent with empirical findings and illustrates the learning ability
of the model.

Nevertheless, for Saffran et al. (1996), further analysis sug-
gests that the original data or the simulated results only re-
vealed face level difference but neither reached statistical sig-
nificance. This is the case even though the simulated length
of this task is the longest. In Saffran et al. (1996), the presen-
tation time of each syllable in the pattern is only 250 ms and
without inter-pattern interval. Therefore, it is difficult for in-
fants to sufficiently process the patterns. For example, for the
trained pattern of “da-ro-pi”, it is very likely that infants may
only process “da” and “pi” but omit the middle syllable “ro”.
In addition, the model’s reinforcement learning process also
takes time, and the pattern presentation time is thus too short
and prevents such reward process from occurring. These are
among the reasons that the operation firing pattern are still
sparse at the end of training (e.g., Figure 3). Our ongoing
analysis did find that the operation firing patterns are differ-
entiated for the trained/novel patterns. Though due to syllable
omission, the model tends to acquire skip-grams rather than
trigrams.

In general, our simulation shows that the model can grad-
ually acquire the different task patterns through a cognitively
constrained architecture, avoiding views that consider task-
specific information processing as innate and deterministic.

Figure 6: Simulation of Gómez, 2002, who tested the differ-
entiation of X-Y and X’-Y’ patterns after training X-Y with 3,
12, and 24 variations of middle token a. A: Data, average fo-
cusing time (±1SE) in 8 patterns. B: Simulation, processing
latency per pattern (average of 200 runs, ±1SE).

Conclusion

The current simulation provides unified descriptions for the
three artificial language tasks. The model can distinguish be-
tween task conditions at the level of processing latency, which
implies its capabilities to acquire operation firing patterns or
primordial “skills” related to the task conditions without ex-
plicit programming. Therefore, the PRIMs contextual learn-
ing mechanism contributes to the flexibility of cognitive ar-
chitecture. However, to tackle the question of compositional-
ity, this article has a few limitations and remains incomplete.
The simulation has not considered the complex factors that
lead to diversion, and the overall focusing time of the entire
test phase has not been simulated. In addition, we are still
analyzing the procedural and declarative knowledge acquired
by the model. Only by answering this question can we bet-
ter demonstrate the skill acquisition of PRIMs and the sure
acquirement of language-related contents.
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Abstract

We present first steps towards a biologically grounded imple-
mentation of the Incentive-Sensitization Theory of addiction.
We present multiple different plausible ways of mapping this
theory into a computational model, and examine the resulting
behaviour to see whether it accords with standard interpreta-
tions of the theory. This is the first step in a larger project to
create a computationally tractible and biologically motivated
model of addiction to help clarify and ground various terms in
the theory.
Keywords: Addiction; Computational Modelling; Incentive
Sensitization

Background
Prior to the 1980s, addiction was often viewed as a char-
acter flaw or personal failure (Frank & Nagel, 2017). This
moral model of addiction assumes that drug use is voluntary:
addicts consciously choose to self-administer drugs despite
knowledge of adverse personal and societal costs associated
with this behaviour. A growing understanding of the biologi-
cal consequences of excessive drug use helped to establish the
medical model of addiction, where behavioural patterns asso-
ciated with maladaptive drug use (e.g., compulsion, impul-
sivity, craving, relapse) are driven by underlying changes in
the structure and function of neural circuits mediating reward,
motivation, and decision making (Koob & Volkow, 2016).

The medical model of addiction builds on positive rein-
forcement theories, proposing that drug-taking is reinforced
by the euphoric state of drug use. These effects are medi-
ated through the mesolimbic dopamine (DA) pathway, which
projects from the ventral tegmental area to the nucleus ac-
cumbens and prefrontal cortex (Wise, 1980). Antagonizing
mesolimbic DA activity reduces the reinforcing effects of
both abused drugs and natural reinforcers like food or sex
(Koob & Le Moal, 1997; Wise, 1980; Farooqi et al., 2007).

The medical model of addiction acknowledges that nega-
tive reinforcement also contributes to continued drug use in
that drug intake alleviates negative symptoms of withdrawal,
such as drowsiness, headache, or depression. With chronic
use, mesolimbic DA system function is altered (Pierce & Ku-
maresan, 2006) such that baseline DA levels are decreased in
drug-free states. As a consequence, substance abusers expe-
rience less drug-induced pleasure as addiction develops; they
also increase the dose and frequency of drug intake to make
up for reductions in baseline DA levels (Koob, 2020).

The Incentive-Sensitization Theory of Addiction

By the mid 1990s, it became clear that neither positive nor
negative theories of reinforcement provided a full account of
addictive behaviour. For example, the positive reinforcing
effects of natural reinforcers, such as food or sex, are also
mediated by the mesolimbic DA system but individuals are
less likely to develop compulsive intake of these commodi-
ties. Negative reinforcement also fails to sufficiently explain
addiction. Psychostimulants, such as cocaine, are clearly ad-
dictive but do not produce strong somatic, withdrawal symp-
toms. In addition, intensified withdrawal symptoms do not
elicit robust drug craving (Shaham, Rajabi, & Stewart, 1996).
Therefore, although both positive and negative reinforcement
may contribute to continued drug use, they cannot explain
fundamental aspects of addictive behaviour.

In response, Robinson and Kolb (1999) formulated the
Incentive-Sensitization Theory of drug addiction which pro-
poses that ‘wanting’ and ‘liking’ drugs are mediated by two
different mechanisms. In support of this theory, ‘liking’
in rats, assessed as orofacial responses to presentation of a
sweet solution, is unaffected by depletion of mesolimbic DA
whereas the same manipulation reduces motivation to ob-
tain a reward (i.e., ‘wanting’) (Berridge, Venier, & Robin-
son, 1989). Subsequent work confirmed a dissociation in
biological systems that mediate these two processes in ro-
dents (K. C. Berridge, 2007; Pool, Sennwald, Delplanque,
Brosch, & Sander, 2016). Similarly, in human patients with
reduced DA function (Parkinson’s disease), ventral striatal
DA changes following DA replacement therapy (levodopa)
are correlated with self-reported ‘wanting’, but not ‘liking’
(Evans et al., 2006). Brain imaging studies using fMRI con-
firmed that the expectation (wanting) and receipt (liking) of
pleasant tastes activate distinct brain areas (O’Doherty, De-
ichmann, Critchley, & Dolan, 2002).

The Incentive-Sensitization Theory also proposes that re-
peated drug use sensitizes, rather than reduces, mesolim-
bic DA activity. This is supported by animal studies show-
ing enhanced locomotor responses to psychomotor stimulants
with repeated injections (Wise & Bozarth, 1987; Robinson &
Berridge, 1993) and increases in stereotypy and motor be-
havioural patterns in chronic drug abusers (Steketee & Kali-
vas, 2011). Sensitization of mesolimbic DA may also under-
lie the persistent craving and attentional bias for drugs that
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develop with addiction. Neurobiologically, the mesolimbic
DA system is altered with repeated drug administration, re-
sulting in increased outflow of DA from pre-synaptic neurons
and more DA D1 receptors on the post-synaptic membrane.
Structurally, medium spiny neurons in the nucleus accum-
bens and prefrontal cortex ‘grow’ more dendritic branches
and spines following chronic drug intake, increasing the ca-
pacity for DA transmission (Robinson & Kolb, 1997, 1999;
Robinson & Berridge, 2000).

A primary characteristic of drug addiction is excessive
craving triggered by drug-associated stimuli. For example, in
human drug users, imagery, contextual, and social cues pre-
viously paired with drug intake can trigger drug use (Weiss et
al., 2001; Norberg, Kavanagh, Olivier, & Lyras, 2016). The
Incentive-Sensitization Theory explains this maladaptive re-
sponse through sensitization of DA function: the association
between cues predicting drug intake and drug effects are me-
diated by mesolimbic DA. With sensitization, cues associated
with drug use become more salient predictors of drug effects,
thereby eliciting craving (K. Berridge & Robinson, 2011).

The Computational Modelling Approach
With the amount of experimental evidence and possible theo-
retical interpretations of addiction, researchers have turned
to computational tools to form and test theories. Many
models described addiction as a negative reinforcement pro-
cess, focusing on analyzing the role of withdraw in addiction
(Zhukovsky et al., 2019). But as argued in the previous sec-
tions, neither positive nor negative reinforcement provides a
full account of addiction. On a behavioral economic level,
models of free decision making is often used to study the
compulsive behaviour of addiction (Redish, 2004; Morris &
Cushman, 2019). On a psychopharmacological level, neuro-
scientists examine the role of DA activation and transmission
in psychiatric disorders (Enrico et al., 2016). The difficulty
with these models is that results are generalized across many
disorders. Therefore, they fail to identify the unique mecha-
nism that is responsible for the formation of addiction. Levy
and Colleagues developed a multiscale model of addiction,
integrating cognitive, behavioural and neural psychological
factors (Levy, Levy, Barto, & Meyer, 2013) to simulate the
development of drinking behavior of a virtual agent. How-
ever, because the model consisted of multiple factors, includ-
ing incentive sensitization, withdraw, rationality, and social
influence, among others, it was difficulty to examine each
factor individually and more importantly, to make informa-
tive claims about the role of each in addiction.

Method
To design an informative and applicable model, we first ex-
amined the core proposal of the Incentive-Sensitization The-
ory (Robinson and Berridge 2000, 2016) which include the
following four statements:

‘(1) Potentially addictive drugs share the ability to pro-
duce long-lasting adaptations in neural systems (i.e., addic-
tive drugs change the brain).

(2) The brain systems that are changed include those nor-
mally involved in the process of incentive motivation and re-
ward.

(3) The critical neuroadaptations associated with addiction
render brain reward systems hypersensitive (“sensitized”) to
drugs and drug- associated stimuli.

(4) The brain systems that are sensitized do not mediate
the pleasurable or euphoric effects of drugs (drug “liking”),
but instead they mediate a subcomponent of reward we have
termed incentive salience or “wanting”.’

Then, we designed models with structural components that
can actualize the processes described in these statements. Par-
ticularly, our model is not examining Statement(4),the disas-
sociation of ‘liking’ and ‘wanting’. The reason is three fold:
1) the separation of ‘liking’ and ‘wanting’ has been acknowl-
edged, and the notion that mesolimbic DA activity is not re-
sponsible for ‘liking’ is now widely accepted. 2) Accord-
ing to the statement(1), ‘wanting’, not ‘liking’ is the essential
component of addiction 3) In this model, we describe the neu-
rological changes that are common for all drug types, which is
‘wanting’. But different classes of drugs may have different
hedonic effects. Therefore, our model will mainly describe
the first three statements.

Our goal here is to explore various ways of building a com-
putational implementation of the above theory. That is, we
want to examine different possible methods for having bi-
ological components that create the addiction process. We
used a step by step approach, starting with the smallest pro-
cessing component and adding more complex features with
each model.

We are also constraining our focus to substance addiction
alone, excluding behavioural addictions. The goal of the
study is to examine the neurological changes and mechanism
of addiction. Substances have a more direct impact on neural
circuits. Moreover, whether or not is behavioural addiction
(such as gambling and pornographic addiction) the same as
substances is still under debate (Alavi et al., 2012).

Schematic Description
The architecture of the neural network for simulating incen-
tive sensitization is represented in the following schematic.
(presented at CSBBCS conference).

Our model will build up the incentive saliency attributor
component of the schematic, which is a main characteristic
of the incentive sensitization model of addiction.

Nengo and the Neural Engineering Framework
Since our eventual goal is to have a biologically grounded im-
plementation of Incentive-Sensitization Theory, we decided
to implement our models using Nengo, a software pack-
age implementing the Neural Engineering Framework (NEF;
Eliasmith & Anderson, 2003). This forces each component
in the model to be something that can be implemented using
spiking neurons.

As such, our models consist of five core features of
NENGO. (1) Groups of neurons (ensembles) encode numer-
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Figure 1: Schematic description of the Incentive-
Sensitization Theory.

ical vectors, such that different patterns of activity represent
different values, using a distributed population code. (2) Con-
nections between ensembles compute functions on those vec-
tors, allowing information to be transforms and transmitted
throughout the model. (3) Recurrent connections within an
ensemble allow for storage of information over time; techni-
cally, this allows the neurons to approximate arbitrary differ-
ential equations, allowing the current value represented by the
neurons to be a function of both their current input and their
value in the recent past. (4) Learning rules allow connection
weights to be changed, effectively changing the function that
is being computed. (5) Modulation of neuron parameters al-
lows for large-scale changes to a group of parameters of the
model, such as making a neuron more sensitive to firing, or
scaling how quickly a learning rule changes weights.

We create approximations of the brain’s response to drug
and drug-associated stimuli by scaling down the duration of
drug-use experience and the resulting neurological processes.
For example, a drug use episode might take hours, but our
models only receive the input of drug intake for several sec-
onds. This shortened time frame allows us to examine the
models’ behaviour without running full-length simulations
while retaining the interpretability of the results.

Models
Model I – Dopamine Activation and Mesolimbic
Sensitivity

Figure 2: Structure for Model I. Rounded boxes are groups of neu-
rons, arrows are all-to-all connections approximating functions.

Structural Design: Our first model is a direct representa-
tion of the top section of the schematic flow: the drug salience
attributor. According to the Incentive-Sensitization Theory,
the salience value of drugs reflects hyper-reactivity of the
mesolimbic system. Stimuli with incentive value, includ-
ing natural reinforcers, stimulate DA activity in the mesolim-
bic system. In drug addiction, intensified DA activation
also changes the neurological structures responsible for DA
activation, leading to a hypersensitized mesolimbic system
(Robinson & Kolb, 1999). Therefore, the drug salience attrib-
utor should consist of at least two components DA activation
and mesolimbic sensitivity. The output of the salience attrib-
utor integrates with other mechanisms (described in Model II
and III) to form an overall wanting for drugs.

In this model, drug intake is an external stimulus, with
a value of 0 or 1. DA activation approximates the value
of drug intake. Therefore,DA activation increases when
drug intake = 1 and decreases when drug intake = 0.
This pattern of DA activation is normally involved in re-
ward processing, as described in Statement(2). Addition-
ally, chronic drug use leads to further neuroadaptations, mak-
ing the mesolimbic system hypersensitive to drug intake, as
described in Statement(3). To store the sensitization of the
mesolimbic system, the recurrent meso sensitivity com-
ponent(defined in the previous section) reflects both the in-
creased baseline synaptic DA transmission reacting to drug
intake and the structural changes increasing the capacity of
mesolimbic DA activity.

Model Behaviour: According to Statement(1), neuroadap-
tation with repeated drug use is long-lasting. Therefore, each
drug intake should have significant sensitization effects on
the mesolimbic system, while the decay of the sensitization
during drug absence should be slower. To create simple rep-
resentations of this mechanism, we computationally manipu-
lated Model I to perform the 4 functions in Table 1.

Table 1: Model I Computational Options
Simulation R meso sensitivity(t) = M(t)
Simulation1 0.9 M(t)
Simulation2 0.9 M(t)+0.1 if DA activation=1

M(t)-0.01 if DA activation= 0
Simulation3 0.9 M(t)+0.15 if DA activation=1

M(t)-0.01 if DA activation= 0
Simulation4 0.9 M(t)+0.2 if DA activation=1

M(t)-0.01 if DA activation= 0

In Simulation1, meso sensitivity has a recurrence value
of 0.9, storing 90% of the neuroadaptations made at the pre-
vious time point. Simulation2, Simulation3 and Simulation4
added a non-linear function, where meso sensitivity is in-
creased by a certain amount with spikes in DA activation and
is decreased when DA activation is minimal.

To examine Model I, we fed in 0.6 seconds of
drug intake = 1 following 0.4 seconds of drug absence.
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This relatively long duration of drug administration (0.6s out
of every 1s) provides a clear visual demonstration of its ef-
fect on mesolimbic DA sensitivity. Meso sensitivity is
recorded as the output. With six repetitions of drug intake,
the four simulations are compared as shown in Figure 3.

Figure 3: meso sensitivity output of 4 variants of Model I

Model Evaluation: Simluation1 showed a significant over-
all growth in meso sensitivity with drug intake repetition.
Before plateauing, meso sensitivity in Simulation1 had a
greater increase during drug intake than its decrease during
drug absence. Simulation2 and Simulation3 had lower over-
all increases of mesolimbic sensitivity compared to the other
two simulations. In Simulation4, the amount of increase in
meso sensitivity with drug intake was 20 times greater
than decreases in between drug intakes. Therefore, if the
mesolimbic system achieves sensitization by implementing
the nonlinear function in Model I, it must be 20 times more
efficient in developing sensitization than to decay the sensi-
tized information. Comparing Simulation1 to Simulation4,
although they reached similar levels of mesolimbic sensitivity
with repeated drug intake, Simulation1 had a greater spike in
mesolimbic sensitivity in response to each drug intake. This
characteristic of Simulation1 correlates with the hyperactiv-
ity feature of a sensitized mesolimbic system described in the
Incentive-Sensitization Theory. However, it can also be ar-
gued that Simulation4 reached a higher baseline of wanting
during drug absence, which also coincides with the Incentive-
Sensitization Theory.

All four simulations in Model I reached a maximum level
of meso sensitivity within 5 representations of drug in-
take. In contrast, pathological drug use is often characterized
by a ramping up of craving for drug (i.e., wanting) over a
longer period. Thus, with the current structural design, Model
I failed to describe the pattern of wanting in addiction. There-
fore, other structural designs are required to achieve a contin-
ual increase in wanting with repeated drug use.

Model II - Drug Cue Salience
Structural Design: The sensitization track, from
drug intake to DA activation to meso sensitivity
is the same as Model II. On top of that, we added drug-
associated cue processing. Drug-associated stimuli are

Figure 4: Structure of Model II. Circled X is a multiplicative mod-
ulation of connection strengths.

conditioned stimuli, so their representation leads to neu-
rological representation of drug-associated effects. With
repeated exposure to the drug cue, salience attributed to the
drug cue will accumulate, according to Statement(2) of the
Incentive-Sensitization Theory. Overall, drug intake should
increase the overall baseline of wanting for drugs, while the
drug cue should elicit acute increases in wanting the drug.

The structural modulator implements the two primary ways
that mesolimbic sensitization and associative learning can af-
fect each other. The learned cue salience may directly impact
the mesolimbic system, triggering intensified wanting. Alter-
natively, the sensitized mesolimbic system may amplify cue
salience, eliciting exaggerated wanting. These are done as
affine transformations from 0-1 to 1-10.

Model Behaviour: To examine the model, we feed in
drug intake=1 every 0.65 seconds with a drug presence of
0.1 seconds, and a stimulus every 0.9 seconds, for 0.1 sec-
onds. This set up allows the independent presence of drug
and cue, as well as a combined presence of both drug intake
and cue at t=3 and t=6. The value of wanting in Simulation1
and Simulation2 are compared in Figure 5.

Figure 5: Wanting in simulation1 and 2 are presented in green and
red respectively. cue salience1 is the value of cue salience in simu-
lation 1.

Model Evaluation: Both simulations had an accumulated
increase of wanting at t=6 compared to baseline at t=0. Com-
pared to Model I, the two simulations in Model II also had
a continual increase, extending beyond the plateau in Model
I. However, Simulation1 had an overall steeper increase in
wanting than Simulation2. While drug cue triggered similar
spikes of wanting in both simulations, drug intake resulted
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in a greater increase in wanting in Simulation1 than in Sim-
ulation2. Importantly, wanting failed to respond to the first
presentation of drug intake. Therefore, the computational
design in Simulation2 did not generate enough increase in
baseline wanting. Thus, Simulation1 is a more realistic rep-
resentation of addiction formation.
Cue salience in Simulation1 showed a slight increase

with repeated drug cue presentation. Nonetheless, with the
computational design in the structural mod component,
wanting achieved continual growth in Simulation1, com-
pared reaching an early plateau in Model I. So far, we have
adjusted the degree of change in mesolimbic sensitivity and
cue salience, while leaving the two processes independent of
each other. Another way to create an extraordinary level of
wanting is to have sensitization and associative learning pro-
cesses dependent on each other. The Incentive-Sensitization
Theory of addiction emphasizes the abnormal amount of ad-
ditional bias given to drug-associated cues. Therefore, it is
plausible that the sensitized mesolimbic system can intensify
the associative learning drug cues, triggering more craving
for drugs.

Model III - Intensified Associative Learning

Figure 6: Structure of Model III. Dotted line is a learning signal,
adjusting the strengths of the connection weights to which it is con-
nected.

Structural Design: The main feature of this model is that
mesolimbic sensitivity can accelerate the formation of drug
cue salience. To implement this feature, the association
component tracks the presentation of drug intake and
cue presence, computing the absolute distance of the
two values. The stronger the association, the more
cue salience should increase. Then, dop mod scales up
association based on meso sensitivity. The integration
of association and meso sensitivity then contributes to
the development of cue salience. Therefore, when drug in-
take and stimulus are presented close together (aka, there is
an association), a sensitized mesolimbic system should inten-
sify the power of association, leading to a faster increase in
cue salience.

Model Behaviour: Our primary purpose in this simulation
is to test the new association and dop mod components. To
reduce uncertainty in the other processes in the model, we
used the linear option for meso sensitivity, with a recur-
rence value of 0.95. We fed the model with drug intake=1
every 0.65 seconds with a drug presence of 0.1 seconds, and

stimulus every 0.9 seconds, for 0.1 seconds. With ten repeti-
tions of the inputs, results are shown as below:

Figure 7: Cue salience is presented as cue s in green. Wanting is
in red, and meso sensitivity is meso in purple.

Model Evaluation: Model III simulation generated overall
increases in mesolimbic sensitivity, wanting and cue salience.
Cue salience in Model III increased with a significantly
steeper slope than the cue salience curve in Model II Sim-
luation1 (Figure 5). In Model II, cue salience did not
increase as drug intake, and drug cue built an association.
In contrast, the new structural design in Model III helped
the simulation achieve an overall growth in cue salience.
Moreover, the spike in cue salience following drug cue
presentation also increased as drug cue presentation repeated.
The success of associative learning is also evident in the pat-
tern of wanting. Importantly, at the first two cue presenta-
tion, wanting showed minimal increases. At t = 3, drug intake
and drug cue occurred together, forming a strong association.
Subsequently, at t=4 and t=5, cue presentation elicited a no-
ticeable increase in wanting. In other words, in accordance
with the Incentive-Sensitization Theory, Model III simulation
demonstrated sensitization in mesolimbic reactivity, drug cue
related response, and overall wanting for drugs.

Discussion
Overall, our study took a structuralist computational ap-
proach, rebuilding the neurological process of addiction
according to the blueprint provided by the Incentive-
Sensitization Theory of addiction. Here, we discuss the im-
plications of our model simulations in relation to the first
three statements of the Incentive-Sensitization Theory, the
limitations to our models, and future directions for studies on
drug addiction. Implementing Statement(1), the long-lasting
sensitization: In this paper, we explored both linear and non-
linear options of implementing the long-lasting effect of sen-
sitization. Simulations in Model I demonstrated that both lin-
ear and non-linear functions are computationally plausible to
describe mesolimbic sensitization.

The incentive sensitization did not propose a computa-
tional guideline that specifies the degree of long-lasting ef-
fect. To determine the exact value of recurrence strength in
the linear function, or the variables in the non-linear func-
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tion, we need a realistic data set. Ideally, this would contain
the speed of sensation formation and decay, represented by
quantifiable units (e.g., the duration of time, or the number of
drug use repetitions required to produce sensitization). Then
we can perform data fitting and select the model with the best
fit.

Implementing Statement(2), brain areas responsible for
motivation: While we can pinpoint the mesolimbic system
as the centre for processing rewards, it is difficult to deter-
mine the brain area responsible for cue salience attribution.
We have an adaptive bias towards natural rewards such as
food. But according to the Incentive-Sensitization Theory,
chronic drug use will produce an abnormal attentional bias to-
wards drug-associated cues (Robbinson and Berridge, 2003).
Therefore, other than sensitization in the mesolimbic system,
there must be a neural activation pattern that is dedicated to
directing sensitization towards drug-associated cues. When
implementing cue salience in our models, we did not spec-
ify the neurological areas corresponding to this computational
component. The structural modulator in Model II and III
was also not implemented as a neurological component. This
is because current literature of incentive sensitization does
not account for the neurological mechanism of how drug cue
salience triggers wanting in incentive sensitization.

Implementing Statement(3), drug salience and cue salience
associative learning: Incorporating the cue association pro-
cess, Model II generated more realistic simulations com-
pared to Model I. Model II extended the system’s capacity
for growth of wanting, allowing for the continual increase
in wanting beyond the plateaus produced in Model I. Fur-
thermore, Model I simulated two possible mechanisms of
combining mesolimbic sensitization and drug cue associative
learning. The results supported the hypothesis that intensified
drug cue salience affects the sensitized mesolimbic system,
triggering spikes in wanting rather than the other way around.
Nonetheless, there are limitations to the current model. Cru-
cially, neither Model II nor III included a complete process
of the development of drug cue associative learning. For
example, our simulations registered a successful pairing of
drug and drug cue only when drug intake and stimulus are
presented simultaneously. In reality, associative strength is
strongest when the conditioned stimulus is presented slightly
after the unconditioned stimulus. Future studies can utilize
mature computational models of associative learning to com-
plete the model further.

Models in this paper are shortened approximations of real-
life neurological processes. The assumption is that if the
models’ time scale is scaled up to match actual drug-use ex-
periences, the qualitative brain changes should be the same.
However, this assumption requires validation with human
data and more extended simulations that run for weeks, if not
months. Extensive simulations might also reveal a faster rate
of Incentive-Sensitization formation and a slower rate of its
recovery. This is because, in our current models, the ratio of
drug intake duration to drug absence duration is significantly

higher than in reality. For instance, Model I Simulation 4 had
drug intakes of 0.6 seconds and drug absences of 0.4 seconds
– the length of drug absence is 2/3 of drug intake. In real-
ity, drug absence can last days, weeks, even months. Drug
users with longer abstinence in between drug repetitions still
present a high level of wanting for drugs. Moreover, the du-
ration of drug intake is usually shorter than drug absence.
Importantly, the neuropharmacological effects of addictive
drugs can occur within minutes after drug intake. This means
that the Incentive-Sensitization of the mesolimbic DA system
can form within minutes of drug use and remain robust after
drug absence periods longer than in the models. In Model
I Simulation 4, the recurrent strength of the mesolimbic DA
system is set to 0.9. The increase of mesolimbic sensitivity
during drug intake is 20 times larger than its decrease during
drug absence. Given the analysis above, the computational
difference between mesolimbic sensitivity increase and de-
crease is likely to be more significant with more realistic sim-
ulations. Overall, it is likely that the strength of Incentive-
Sensitization as a result of addictive drug use is more robust
than the models present.

In sum, our paper informs future studies in that 1) the
rate of mesolimbic sensitization can be determined with data
fitting from clinical studies, 2) the process of associative
learning indispensable to drug addiction formation, 3) the
Incentive-Sensitization Theory needs to identifying the neu-
rological area responsible for storing associated salience to
drug cues, and 4) the methodology of computationally struc-
turing virtual neural circuits can be very useful for examin-
ing theories of neurological mechanisms and simulating those
processes.
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Abstract
This paper presents a novel approach to the cognitive mod-
elling of human sentence processing in ACT-R. The model as-
sumes a cognitive distinction between cross-linguistic knowl-
edge of the overall possibilities for combining elements of
language structure, represented in procedural memory, and
language-specific knowledge of the combinatorial constraints
on structure-building, which are stored as part of the lexicon
in declarative memory. Sentence structure is built incremen-
tally using an extension of an established, computationally ro-
bust grammar theory, Lexical Functional Grammar (Bresnan,
1982). Using a single set of productions, together with a dual
lexicon representing grammar fragments of English and Ko-
rean, the model is able to parse complex sentences in both lan-
guages, constructing syntactic representations that match hu-
man judgements. The model reproduces garden path phenom-
ena reported by English and Korean native speakers, and intro-
duces a cross-linguistic treatment of prosodic breaks to avoid
garden-paths during processing. Limitations to the model are
discussed, as well as questions that are currently under inves-
tigation.
Keywords: ACT-R; Lexical Functional Grammar; sentence
processing; parsing; syntactic structure; English; Korean.

Introduction
ACT-R has been used to construct models of human language
processing for more than twenty years. The aims of indi-
vidual models have varied, including exploring the nature of
memory for language processing (Anderson, Budiu, & Reder,
2001; Budiu & Anderson, 2004), and the extraction of mean-
ing from text input in real time (e.g Ball, 2011). The pre-
eminent model (R. L. Lewis & Vasishth, 2005, henceforth
LV05) demonstrated that the retrieval of memory chunks rep-
resenting syntactic structure could replicate the processing
time-courses for English sentences with differing levels of
complexity. The mathematical underpinning of LV05 has
been used to extend the model to other languages without the
need to create full structural representations; this subsequent
work has raised questions about some of the assumptions in
the original model (e.g. Jäger, Engelmann, & Vasishth, 2015).

All of the models were designed to address specific re-
search questions, but these design choices reduce the mod-
els’ generalisability from linguistic and cognitive modelling
perspectives. With regard to cognitive modelling, all of the
models assume extra working memory capacity in the form
of overt or hidden buffers that are each linked to one a set
of assumed phrasal categories. Thus in principle the size of
additional buffer capacity is limited only by the chosen gram-
mar theory rather than cognitive considerations. Left-corner

parsing is a common assumption, but this requires either a
stack or additional memory capacity in place of a stack. As-
suming some additional capacity may be reasonable, but it is
still an open question as to how capacity can be added parsi-
moniously.

The extent to which speakers’ acquired knowledge of
grammar affects real-time processing is very much live in
psycholinguistics (e.g. S. Lewis & Phillips, 2015). Even the-
ories such as Good Enough Processing (Ferreira, Bailey, &
Ferraro, 2002) require specificity in their descriptions of syn-
tactic and semantic processing. For cognitive models to ad-
dress this question productively, their representations of syn-
tax, and of the syntax-semantics interface, need to be theoret-
ically grounded and generalisable.

From a linguistic perspective, existing models make ques-
tionable assumptions about structural representations and the
relationship between syntax and meaning. Previous models
have generated binary branching tree structures based on ver-
sions of X-bar theory (Jackendoff, 1977). However, non-
configurational languages such as Wambaya (Nordlinger,
1998) provide scant evidence of a binary-branching structure.
Models that rely on binary trees thus restrict themselves to
phenomena from a subset of languages, rather than consid-
ering the general human language faculty. The relationship
between syntactic structural position and meaning is either
stipulated or falls outside the scope of the model, rather than
being grounded in linguistic theory.

The pervasive ambiguity of language is a challenge for
modellers, and the stimuli chosen for psycholinguistic ex-
periments often complicate the task of modelling. Ambigu-
ity is typically addressed by working with a fragment of a
grammar, and by assuming that the model has knowledge un-
available to native speakers, e.g. predicting the structure that
will follow a particular sentence opening, or distinguishing
in advance between particular types of clause. Models devel-
oped in this way sidestep some of ACT-R’s architectural con-
straints, but restrict their generalisability to other phenomena
or languages, and weaken their link to linguistic theory.

In the light of these deficiencies, there is still a need for
models of language processing that are based on robust theo-
ries of grammar beyond constituent structure, and which seek
to generalise a processing model across different languages.
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Grammar formalism

Lexical Functional Grammar (LFG) is a modular, constraint-
based theory that permits accounts of language phenomena
across syntax, semantics, information structure, discourse,
and sentence prosody. Syntactic constraints are distributed
across two levels of representation: c-structure, which rep-
resents surface constituent structure governed by language-
specific phrase-structure rules; and f-structure, a univer-
sal representation of the functional relationships between
meaning-bearing elements of the sentence. The sentence-
based theory has been expanded to an incremental theory of
sentence growth, in which c-structure and f-structure con-
straints interact to restrict the possibilities for new informa-
tion to be added to an emerging structure. F-structure is not
only language-independent, but is also the base from which
semantic and discourse representations are projected. Thus
the representation of syntactic structure in the model is based
on f-structure.

The model
The model assumes that language-specific grammatical
knowledge is encoded in the lexicon and stored in declar-
ative memory. Additional working memory capacity is as-
sumed in the form of three additional buffers, each loosely
associated with events (verbs), things (nouns) or qualities
(adjectives/prepositions). Incomplete phrases are maintained
in working memory and a multibuffer (Salvucci & Taatgen,
2008) allows the processing of embedded clauses. Each new
word is attached into structure before the next is read. The
combinatorial possibilities for attachment are encoded in pro-
cedural memory, where a single production set is used for
both English and Korean sentences.

The generated sentence structure is a graph composed of
chunks that represent f-structure. Each chunk other than the
root has one mother chunk, and a chunk’s relationship to its
mother is specified as a grammatical function. The struc-
ture is not binary-branching: because of this and ACT-R’s
assumptions on the growth of information held in a chunk, it
was not possible to follow LV05 in modelling retrieval effects
on processing time-courses. I return to this in the Discussion.

START
READ
WORD

ADD
LEXICAL

INFO

BUILD
NEW

STRUCTURE

REVIEW
IMPACT

PROSODIC
BREAK

LDD
SETUP

END

Figure 1: The model parsing cycle

Figure 1 shows the parsing cycle assumed in the model.
The model assumes full incremental processing, with only
one structural representation maintained. Each word is inte-
grated into the structure before the next is processed. The
representation of grammatical functions is based on decom-
position into features. An attachment site is chosen by com-
paring the feature set of the word to be processed is with
the unfilled grammatical functions of structural chunks in the
buffers. This has two consequences that reflect human be-
haviour in processing. One is that attachment is context de-
pendent: identical strings are processed differently depend-
ing on prior content. The second is that linguistic ambigui-
ties or alternations can be expressed by means of partial fea-
ture specifications, allowing flexible combination of words
but still generating fully specified output.

The model further assumes that prosodic breaks act to sig-
nal the end of a syntactic phrase and force a structural chunk
to be cleared from a buffer. This allows the modelling of
prosodically-modulated garden path effects.

Results
Results are presented here to illustrate four properties of the
model: the ability to analyse complex sentences in English
and Korean; the role of feature underspecification in pro-
cessing structural alternations; context-dependent parsing of
identical strings; and the representation of prosodic breaks in
guiding the path of structure-building. All figures showing
structural representations are given at the end of the paper.

Comparing outputs between languages The model pro-
vides an equivalent representation of sentences that have the
same meaning in English and Korean, despite the significant
variation in constituent structure between the two languages.
Korean constituents are strongly head-final, with no fixed or-
dering of arguments to a verb. Relative clauses precede their
head and are marked morphologically at the end of the clause.
English has a fundamental SVO word order, with relative
clauses appearing after their heads and optionally marked by
a complementiser.

Sentences (1) and (2), taken from Kwon, Gordon, Lee,
Kluender, and Polinsky (2010), carry broadly equivalent
meanings in the two languages (the English sentence lacks
an adverb), but different word orders, as can be seen from
the gloss in (2). In example sentences, relative clauses are
indicated by square brackets.

(1) The conductor [who the famous vocalist invited to the
festival] insulted the senator.

(2) [yumyenghan
[famous

sengakkaka
vocalist.SUBJ

chwukceney
festival.LOC

chotayhan]
invited]

cihwuycaka
conductor.SUBJ

uywonul
senator.OBJ

kongkongyenhi
publicly

moyokhayssta
insulted
“The conductor [who the famous vocalist invited to
the festival] publicly insulted the senator.”
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Figures 2 and 3 show the outputs for the English and Ko-
rean sentences respectively. The chunk indices reflect the
different word order, and the difference between the chunks
‘pro’ and ’PRO’ reflects the presence or absence of a lexical
complementiser in a relative clause1.

Underspecification The model uses underspecification of
grammatical functions to handle lexical ambiguity, without
assuming knowledge that is not available to human subjects.
The English verb give freely alternates between a form that
takes a subject, plus two noun phrases as objects, and a form
in which the third argument is a prepositional phrase. The
choice of argument structure determines the distribution of
semantic roles, and until the third argument is processed, its
grammatical function, and the resulting semantic roles, are
ambiguous. The sentences in (3) show alternate argument
structures for the same event. In each case the second and
third arguments of give are shown in italics and bold respsec-
tively.

(3) a. The conductor gave the senator a gift.
b. The conductor gave a gift to the senator.

In sentence (3a), the grammatical functions of give are
〈[SUBJ, OBJ, OBJθ]〉, with OBJ providing the semantic Goal.
However in (3b), the grammatical functions are 〈[SUBJ, OBJ,
OBLθ]〉 and OBJ provides the semantic Theme.

Table 1: Underspecification and argument alternation

–R +R give SUBJ unrestricted
OBJ +O –R

–O OBLθ GF3 +R

gift +O
+O OBJ OBJθ senator +O

to –O

Table 1 shows the feature system used by the model: the
left-hand table gives the full specification for the different
grammatical functions using the features ±R ‘restricted’ and
±O ‘object’. The specification on the right shows the fea-
tures associated with grammatical functions and with words
that might fulfil a grammatical function. The third grammat-
ical function of give is underspecified as +R, meaning that
it could be either OBLθ or OBJθ. When the word gift is en-
countered in (3a), its feature +O combines with +R to fully
specify the grammatical function as [+O +R], giving OBJθ.
Conversely when to is encountered in (3b), the resulting fea-
ture set is [–O +R], giving the grammatical function OBLθ.

Context-dependent parsing The parser successfully uses
context to distinguish between different meanings of identi-
cal strings. Where a required argument of a verb is missing

1In Korean yumyenghan ‘famous’ is a verb and morphosyntacti-
cally forms a relative clause.

(a governed grammatical function), the parser preferentially
attaches there, rather than provide an adjunct. Consider the
English string the boy the dog bit, which has two sequential
noun phrases the boy and the dog followed by a verb bit. Fig-
ure 4 shows that in subject position, the dog bit is interpreted
as a reduced relative clause. The verb of the main sentence
is not yet known, and so there are no required grammatical
functions which can be assigned to the second noun phrase
the dog. Thus the dog bit attaches as an adjunct to the boy.

In Figure 5, the context contains the main verb give, which
requires two subsequent arguments. Thus the dog is attached
as the second object of give. This results in an incoherent
structure after bit is processed, representing the garden path
effect observed in human subjects.

Prosodic disambiguation
Sentence (4) produces a garden path effect for Korean speak-
ers because it initially appears that the relative clause includes
the first two words of the sentence, yumyenghan cihwuycaka,
‘famous conductor’.

(4) yumyenghan
famous

cihwuycaka
conductor.SUBJ

[sengakkalul
[vocalist.SUBJ

chwukceney
festival.LOC

chotayhan]
invited]

uywonul
senator.OBJ

kongkongyenhi
publicly

moyokhayssta
insulted
“The famous conductor publicly insulted the senator
[who invited the vocalist to the festival].”

Figure 6 shows the structure generated by the model for
this sentence: although the representation is structurally
grammatical, it is semantically incoherent and requires re-
analysis to derive the intended meaning.

If a prosodic break is inserted between the second and
third words, the garden path effect disappears and the de-
sired meaning is easily accessible to native speakers. The
model simulates this by clearing the active buffer, indicat-
ing the right edge of a phrase. The output of the model with
prosodic support is shown in Figure 7.

Discussion
While previously published ACT-R models of sentence pro-
cessing have been successful in developing accounts of the
role of memory in human sentence processing, there are
aspects of them that are theoretically problematic, includ-
ing unconstrained additional working memory capacity, as-
sumptions of knowledge unavailable to a human subject, and
grammar theories and structural representations that are non-
standard and not generalisable.

The model presented addresses many of the criticisms of
previous models. Its three additional buffers are a limited
amount of additional working memory capacity. It can pro-
cess ambiguous structures without requiring specificity un-
available in human language, and it is based on standard as-
sumptions of phrase structure without relying on distinct rep-
resentations for relative vs. main clauses (cf. LV05). It can
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derive similar structures from two typologically different lan-
guages, thus separating the processing of a specific language
from general cognitive capability. It is also in principle ex-
tensible to other languages with different degrees of config-
urationality. However, it lacks the ability to reproduce pro-
cessing time-courses and does not use the structural retrieval
mechanism successfully proposed by LV05.

There are two main reasons for this. The first arises from
interactions between LFG and ACT-R. Functional structure
in LFG is not binary branching: all of the grammatical func-
tions associated with a particular word are contained in a
single structural unit. Thus any retrieval-based mechanism
needs to make multiple retrievals to build a complete struc-
ture, adding new information to a chunk at each retrieval.
However, adding information to a retrieved and copied chunk
means that on release back into declarative memory, it cannot
merge with the chunk from which it was copied. There is a
proliferation of the chunks containing the information of one
f-structure, each representing a different stage of the emerg-
ing structure, and these chunks interfere with subsequent re-
trievals, causing non-human-like errors.

The second reason is more general, arising from the am-
biguity inherent in language. It is often unclear whether or
not a word attaches into an existing phrase or starts a new
phrase. The model presented manages this by holding in-
complete phrases in a buffer. Thus if attachment to the chunk
in the buffer is possible, the new word attaches there, and if
not, or if the buffer is empty, a new structural chunk is cre-
ated to allow attachment. In a retrieval-based model, chunks
would not be maintained in buffers, and so it will only be-
come apparent after a retrieval failure that a new chunk must
be created. In ACT-R, this serial process will result in time-
course effects that are not seen in human processing data.

Research in progress
Both of the barriers mentioned require changes to architec-
tural assumptions in ACT-R. Work is in progress to develop a
language-specific module based on amended assumptions in
two areas.

The first area relates to the behaviour of language struc-
ture chunks on release into declarative memory. The aim is
to allow chunk merger not only for identical chunks, but also
where a chunk has added information monotonically com-
pared to the chunk from which it was copied. This addresses
the problem of chunk proliferation and the consequent non-
human errors in structural analysis. The second area of work
is to allow a buffer request retrieve-or-create, that either re-
trieves a chunk against a specification, or creates a new chunk
in the case of retrieval failure, without requiring two separate
productions. This increases the capacity of models to process
ambiguous structures without assuming prescient knowledge,
without adding unnecessary processing steps that do not re-
flect human data.

Once complete, the model will be in a position to generate
time-courses that are testable against human data. However,
it was not possible to include outputs in this paper.

Conclusion
Cognitive modelling has a role to play in addressing a live
question in psycholinguistics: the extent to which grammat-
ical knowledge is accessed on-line during language process-
ing. To engage effectively in the debate, models must be both
grammatically and cognitively robust, and generalisable be-
yond specific phenomena or specific languages. The model
presented here is grammatically robust, and is not restricted
to a single language. It has cognitively plausible elements
in that it does not include a stack, and it assumes only lim-
ited additional cognitive capacity. It is not yet able to model
time-courses, which requires the development and testing of a
model with different architectural assumptions to core ACT-
R. However, it offers a step towards a model of language pro-
cessing that addresses the deficiencies of previous work.
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Figures

Complex sentences in English and Korean

Figure 2: Output from processing sentence (1) Figure 3: Output from processing sentence (2)

Context-dependent parsing

Figure 4: The boy the dog bit gave the vet a gift. Figure 5: The vet gave the boy the dog bit a gift.
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Prosodic disambiguation

Figure 6: Output from processing sentence (4) Figure 7: Output from processing sentence (4)
without prosodic support with prosodic support
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Introduction
EEG data are usually collected in the context of a contrived
laboratory setting, which makes it challenging to make
inferences about the real world. Here we are presenting
machine learning methods that can be used to parse more
complex and ecologically-valid settings for collecting EEG
data. We will focus on the real-life situation of the monastic
debate engaged in by Tibetan monks. The mental process
we will examine is that of focus and distraction, for which
neural correlates are well-known and fairly robust, typically
consisting of posterior alpha oscillations [1].

Why Monastic Debate?
Monastic debate is a contemplative debating practice in
which there is a large variability in the level of focus, as
well as the reported emotions. Debating always involves at
least one challenger and one defender. The challenger is
standing and free to move while the defender sits for the
entire duration of the debate. The debate has a strong formal
structure, which is shown in Fig. 1. The goal for the
challenger is to make the defender contradict one of the
things he has agreed to before. The monastic debate
motivate the debaters to improve reasoning abilities and
memorization. It may also help them improve emotion
regulation as debates can sometimes include teasing and
insults to draw the defender out of their concentration and
composure. More details about the debate can be found in
[2]. In general, this shows that monastic debate is a fertile
ground for EEG studies in ecologically valid contexts.

Objectives
We have the following two objectives for this study:

1. Determining whether EEG data can be collected in a
real life situation and still render good detection of
mental states using machine learning algorithms?

2. Is the classifier trained using machine learning on one
set of data general enough to predict the cognitive
states in another set of the data, when those data been
acquired in different time frames and recording
systems?

Figure 1: Structure of the debate

Dataset Description
The data consists of the EEG signals recorded from both

the debaters simultaneously and the video recordings of the
debate. Data has been collected in two sessions, one in 2017
(55 debates) and another in 2019 (46 debates) by two teams
and two EEG recording systems (BrainVision actiCAP and
Biosemi, respectively). Each debate has been labeled by at
least three senior monks after watching the videos using the
BORIS ethological observation software [3]. Ratings of
focus and distraction were combined using the ‘majority
wins’ rule.
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Pre-Processing And Methodology
The EEG data were downsampled from 512 Hz to 256 Hz

followed by the application of a band pass filter of 0.5 Hz -
40 Hz to remove low- and high-frequency artifacts. Next,
Independent Component Analysis was done to clean the
data of muscle and eye artifacts. Daubechies 4 wavelet
transform was used to extract brain waves, namely delta
(0.5-4 Hz), theta (4-9 Hz), alpha(9-14 Hz), beta (14-28 Hz),
and gamma (28-40 Hz) from the pre-processed data. T-tests
were used to identify channels and frequency bands that
significantly distinguished between focus and distraction
episodes identified by the raters. Subsequently, random
forest classifiers were used to determine whether focus and
distraction states could be detected on a single-trial level,
and whether these would generalize across datasets.

Results

Statistical differences between focus and distraction
To check if average differences between the two cognitive
states exist, the average raw EEG signals of all the
participants for focused and distracted states were plotted
along with the difference in the means. Fig. 2 and Fig. 3
show that channels ‘FP1’, ‘F8’, ‘FP2’, ‘Cz’, ‘O2’, ‘TP9’, ‘T7’,
and ‘P7’ show significant? differences.

Figure 2: Raw EEG signals as a function of channel for
2017 dataset with focused (blue), distracted (orange) and

their difference (yellow).

In addition to the raw EEG data, t-tests showed significant
differences between focus and distraction in the delta band
for the 2017 dataset, and in delta, theta alpha, and beta,
bands for the 2019 dataset.

Machine Learning
To examine whether these differences could be observed on
a single-trial level, we used a random forest classifier. Our
random forest classifier consisted of 20 decision trees with
maximum depth of each tree of 40 for the 2017 dataset. The
accuracy obtained is shown in Fig. 4. The accuracy obtained
is shown in Fig. 4. An accuracy of 79%, 97%, 93%, 99%,
88% and 99% was obtained for 2019 dataset in the raw,

alpha, beta, delta, gamma and theta waves respectively
using a single decision tree.

Conclusion and Future Work
Our results show that focus and distraction can be

distinguished in EEG data collected in real life scenarios
using statistical analysis and machine learning. In the future
we will focus on determining if more subtle states like
emotions can be detected and classified using this dataset as
well.

Figure 3: Raw EEG signals as a function of channel for
the 2019 dataset with focused (blue), distracted (orange) and
their difference (yellow).

Figure 4: Accuracy obtained for 2017 dataset
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Abstract

A central question in the psycholinguistic study of multilin-
gualism is how syntax is shared across languages. We im-
plement a model to investigate whether error-based implicit
learning can provide an account of cross-language structural
priming. The model is based on the Dual-path model of
sentence-production (Chang, 2002). We implement our model
using the Bilingual version of Dual-path (Tsoukala, Frank, &
Broersma, 2017). We answer two main questions: (1) Can
structural priming of active and passive constructions occur be-
tween English and Spanish in a bilingual version of the Dual-
path model? (2) Does cross-language priming differ quantita-
tively from within-language priming in this model? Our results
show that cross-language priming does occur in the model.
This finding adds to the viability of implicit learning as an
account of structural priming in general and cross-language
structural priming specifically. Furthermore, we find that the
within-language priming effect is somewhat stronger than the
cross-language effect. In the context of mixed results from
behavioral studies, we interpret the latter finding as an indi-
cation that the difference between cross-language and within-
language priming is small and difficult to detect statistically.

Keywords: cross-language structural priming; multilingual-
ism; sentence production; syntax; dual-path model

Introduction
Psycholinguistic studies investigating syntax in both mono-
lingual as well as multilingual speakers are often based on
the structural priming paradigm. Structural priming is the ten-
dency of speakers to reuse syntactic structures that they have
previously encountered. In the study by J. K. Bock (1986)
that introduced the paradigm, participants were more likely
to use a passive target sentence (e.g., “The church is being
struck by lightning”) after repeating a passive sentence (“The
referee was punched by one of the fans”) than after repeat-
ing an active prime sentence (“One of the fans punched the
referee”). Over 15 years ago, a number of studies showed
that structural priming also occurs between two different lan-
guages (Hartsuiker, Pickering, & Veltkamp, 2004; Loebell &
Bock, 2003; Meijer & Fox Tree, 2003).

Several studies have found no difference between the
strength of within-language and cross-language structural

priming (Hartsuiker, Beerts, Loncke, Desmet, & Bernolet,
2016; Kantola & van Gompel, 2011; Schoonbaert, Hart-
suiker, & Pickering, 2007). In contrast, Cai, Pickering, Yan,
and Branigan (2011) and Bernolet, Hartsuiker, and Picker-
ing (2013) did find a stronger within-language than cross-
language structural priming effect. This quantitative differ-
ence was accounted for by Bernolet et al. (2013) under the
assumption that less proficient speakers of the second lan-
guage (L2) had not yet developed syntactic representations
that were shared across languages, or at least not for the syn-
tactic structure under investigation. This would suggest that
a prerequisite for equally strong within- and cross-language
structural priming is that speakers are highly proficient in
both languages.

Competing theoretical accounts of structural priming have
been proposed. In the theoretical model introduced by
Pickering and Branigan (1998), the residual activation of syn-
tactic representations and combinatorial nodes leads to re-
peated use of particular syntactic representations. A bilin-
gual version of this residual activation account was proposed
by Hartsuiker et al. (2004). An alternative account explains
structural priming as a form of error-based implicit learning
(Chang, Dell, & Bock, 2006). According to this account,
error-based learning causes changes in the extent to which
different syntactic structures are expected to occur. When a
prime sentence is processed, the connections associated with
its syntactic structure are strengthened, making that struc-
ture’s occurrence more expected. This learning mechanism
affects the production of the target sentence as it increases the
likelihood of producing the same structure. In this account,
structural priming is therefore regarded as a long-lasting ef-
fect. Support for this view comes from a large number of
studies that have demonstrated that structural priming can
last over time and persists over the processing of other sen-
tences (K. Bock & Griffin, 2000; Boyland & Anderson, 1998;
Branigan, Pickering, Stewart, & McLean, 2000; Hartsuiker &
Kolk, 1998; Huttenlocher, Vasilyeva, & Shimpi, 2004; Saf-
fran & Martin, 1997).
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Here, we investigate whether implicit learning can also ac-
count for cross-language priming. We do so by taking a well-
known monolingual model of structural priming, and extend-
ing it to the bilingual case.

The Dual-path model

Different implemented cognitive models of monolingual
structural priming have been introduced by Chang (2002),
Malhotra (2009), and Reitter, Keller, and Moore (2011). We
use Chang’s (2002) Dual-path model, that explains a wide
range of sentence production phenomena in a number of dif-
ferent languages.

Dual-path is an implicit learning model of sentence pro-
duction. It is a connectionist model which is based on the
Simple Recurrent Network (SRN; Elman, 1990) architecture.
The first pathway in the model is the sequencing system,
that learns how words are ordered in a sentence, while the
second pathway acquires meaning-to-word-form mappings.
Dual-path has been used to investigate monolingual struc-
tural priming in English (Chang et al., 2006) and German
(Chang, Baumann, Pappert, & Fitz, 2015). Both of these
studies demonstrated structural priming in the model, and
thus provide support for the implicit learning account.

The model has also demonstrated the potential to account
for experimental data from various second language acqui-
sition and production studies. A Korean-English bilingual
Dual-path model was used to examine the interaction between
the effect of the age of acquisition and input factors, such
as length of exposure, on second-language sentence produc-
tion (Janciauskas & Chang, 2018). A Spanish-English bilin-
gual version of this model was recently developed to investi-
gate cross-linguistic transfer (Tsoukala et al., 2017) and code-
switching (Tsoukala, Frank, van den Bosch, Valdéz Kroff, &
Broersma, 2019). So far, no studies have been reported that
demonstrate cross-language structural priming in the model.

The present study

We perform a computational modeling experiment to fur-
ther test the viability of implicit learning as an account of
structural priming in general and cross-language structural
priming specifically. We do this by ascertaining whether
cross-language structural priming can occur in the Dual-path
model. We simulate cross- and within-language priming of
actives and passives, using artificial versions of Spanish and
English. Furthermore, we investigate if cross-language prim-
ing differs quantitatively from within-language priming in the
model.

We expect cross-language structural priming to occur, be-
cause cross-language structural priming has been experimen-
tally demonstrated by Hartsuiker et al. (2004) in adults, and
by Vasilyeva et al. (2010) in children, for the languages and
syntactic structures used in the present work. Additionally, as
mentioned above, within-language priming has been shown
to occur in the model (Chang et al., 2006, 2015). Finally, a
bilingual version of the Dual-path model has demonstrated

the ability to code-switch, without being exposed to code-
switched language (Tsoukala et al., 2019) and code-switching
has been interpreted as an indication that syntax is shared be-
tween languages (Kootstra, Van Hell, & Dijkstra, 2010; Loe-
bell & Bock, 2003).

Assuming the model does display cross-language struc-
tural priming, we have no strong expectation of whether
or not it will differ in strength from within-language prim-
ing. However, we aim to meet the suggested prerequi-
site for equivalent within- and cross-language priming ef-
fects (Bernolet et al., 2013) by simulating balanced bilingual
speakers, who are equally proficient in both languages.

Method
Model
To simulate participants in a cross-language priming experi-
ment, we trained the Bilingual Dual-path model1 (Figure 1) to
simulate simultaneous Spanish-English bilinguals, who start
acquiring both Spanish and English from infancy.

The Bilingual Dual-path model is a modified version of
the original Dual-path model (Chang, 2002). The training
input to the model consists of sentences in an artificial lan-
guage that are paired with messages that encode their mean-
ing (see examples below, under: Artifical languages). The
model learns to convert a message into a sentence by predict-
ing the sentence word by word. A difference between the
Dual-path architecture and other Recurrent Neural Networks
is that the network has connections with fixed weights be-
tween concepts and roles of the message to be expressed.

Artificial languages Both artificial languages2 we used in-
clude the same twelve sentence types: Animate intransitive,
Animate with-intransitive, Inanimate intransitive, Locative,
Transitive (in active or passive form), Cause-motion, Transfer
dative (in prepositional object (PO) form), Benefactive da-
tive (in PO form), Benefactive transitive, State-change, and
Locative alternation3. The two languages together have 275
unique lexical items. In addition to nouns, verbs, adjectives,
determiners, and prepositions, these lexical items include in-
flectional morphemes such as a past tense marker (Spanish:
‘-pas’; English: ‘-pst’) and a past participle marker (Span-
ish: ‘-prf’; English: ‘-par’). The message semantics con-
tain 121 concepts, and 7 thematic roles. These numbers dif-
fer somewhat from those that were preregistered (see Section
Pre-registered analysis). This is because we made small ad-
justments to the auxiliary verbs and inflectional morphemes
of the artificial languages. None of these changes lead to dif-
ferent answers to our research questions. Only singular verbs,
pronouns, nouns, and adjectives were used. Verbs and pro-

1The Bilingual Dual-path model can be downloaded from:
https://github.com/xtsoukala/dual path

2The files that the model requires to generate the artificial lan-
guage input, and the input for the priming experiment can be found
here: https://osf.io/pm6f9/

3Examples for these sentence types can be found in Chang et al.
(2006)
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Figure 1: Bilingual Dual-path, the model used in our priming experiment. The model is a next-word prediction model that converts
messages into sentences. It is an SRN-based model (the lower path, via the ‘compress’ layers) that is augmented with a semantic stream
(upper path) that contains information about concepts, thematic roles, event semantics, and the target language. The number of units per layer
are shown in parentheses. The numbers of units for the hidden and compress layers vary across simulations. (Figure adapted from Tsoukala
et al. (2017))

nouns were always in third person form.
Because our aim is to verify the possibility of structural

priming between different languages, we designed artificial
versions of English and Spanish that maximize the likelihood
of revealing an effect. If a structure is produced very fre-
quently irrespective of priming, a small increase caused by
priming might not result in a detectable effect. We addressed
this issue by using balanced frequencies of the structures un-
der investigation. This means that actives (see examples 1, 2
below) and passives (examples 3, 4) occur with the same fre-
quency in the training input we provide the model. For simi-
lar reasons, we model balanced bilingual speakers by training
the model on both languages from the beginning and on al-
most equal numbers of sentences in the two languages, that
randomly deviate only marginally.

In the training and test input, each message that can be ex-
pressed using two different syntactic structures has a strong
bias towards one of those structures. This was done by cre-
ating differences in activation based on how each structure
emphasizes thematic roles in the sentence. Biasing towards
an active sentence (1, 2), for example, was done by giving
the agent a higher activation (X:1) than the patient (Y:0.5
or Y:0.75). In the same way, a bias towards a passive sen-
tence (3, 4) was achieved with a higher activation for the pa-
tient (Y:1), than for the agent (X:0.5 or X:0.75). Similarly to
Chang et al. (2006), we gave the target messages in the prim-
ing experiment a weaker bias than we used in the training and
test input by giving the de-emphasized roles an activation of
0.95 instead of 0.5 or 0.75.

1. Spanish Active: el padre romper -pas la botella .
X = def, FATHER, M;
ACTION-LINKING = BREAK;
Y = def, BOTTLE;
EVENT-SEM = X:1, Y:0.5, PAST,
SIMPLE, ACTION-LINKING;
TARGET-LANG = es

2. English Active: the father break -pst the bottle .
[...];
EVENT-SEM = X:1, Y:0.5, PAST,
SIMPLE, ACTION-LINKING;
TARGET-LANG = en

3. Spanish Passive: la botella es romper -prf por el padre .
[...];
EVENT-SEM = X:0.5, Y:1, PAST,
SIMPLE, ACTION-LINKING;
TARGET-LANG = es

4. English Passive: the bottle is break -par by the father .
[...];
EVENT-SEM = X:0.5, Y:1, PAST,
SIMPLE, ACTION-LINKING;
TARGET-LANG = en

Training and testing model accuracy A set of 8,000
unique message-sentence pairs was generated for each model
participant. 80% of these sentences were used for training,
while 20% were set aside for testing the accuracy of the
model. Following Chang et al. (2006), the message was ex-
cluded from 25% of training pairs. The models iterated over
their training sets 20 times. After each of these 20 epochs,
model accuracy was tested using the test set. The training set
was shuffled at the beginning of each epoch.

Model configuration The models have a number of hid-
den layer units that was sampled from a uniform distribution
between 58 and 62, and a number of compress layer units
sampled from a uniform distribution between 38 and 42. The
fixed weight value for concept–role connections was sampled
from a uniform distribution between 13 and 17. The sen-
tences are approximately equally divided over the two lan-
guages, where the language percentage of English was sam-
pled from a uniform distribution between 48 to 52% and the
rest was Spanish. Other than this, we used the model’s default
settings.
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Priming experiment

Model participants Some of the model participants we
trained did not successfully learn the artificial languages. We
therefore trained 120 models and selected the 80 model par-
ticipants with the highest meaning accuracy (i.e. percent-
age of grammatically correct sentences that convey the tar-
get message without any additions, over all test sentences).
The accuracy scores for these models varied from 70.5% to
87.9%. A supplementary analysis includes all 120 model par-
ticipants.

Experimental trials Independent of the training and test
sets, a single set of experimental trials was generated that was
used to perform the priming experiment on all of the model
participants. Each trial consisted of a combination of a unique
prime sentence and a unique target message that did not have
any semantic overlap in terms of their verb, agent, and patient.
With two types of LANGUAGE COMBINATION trials and two
types of PRIME LANGUAGE trials, we had four possible com-
binations of prime- and target-language: English-English,
Spanish-Spanish, Spanish-English, and English-Spanish. We
had equal numbers of these four language combinations,
which in turn means that there were equal numbers of within-
and cross-language trials. We also had equal numbers of tri-
als with active and passive primes, and equal numbers of tri-
als with active- and passive-bias target-messages. The two
types of trials for PRIME STRUCTURE, LANGUAGE COMBI-
NATION, PRIME LANGUAGE, and TARGET-MESSAGE BIAS
combine for a total of 16 different trial types. We had 50
prime-target combinations that all occurred as each of the 16
different trial types. This means that each experiment con-
sisted of 800 trials.

Procedure The priming experiment was performed on the
models after 20 training epochs. As was done in Chang et al.
(2006) and Chang et al. (2015), we presented the models with
prime sentences without a message, and with learning turned
on in the model. After each prime, a response was elicited
from the model by presenting it with a target message.

After each trial, the connection weights were reset to the
values they had before starting the priming experiment. The
state in which the model encounters each trial was thus the
same for all of the trials, hence, there was no between-trial
priming or any other learning effects during the experiment.
This means that the order of the trials did not need to be
(pseudo-)randomized across model participants.

For the priming experiment, the learning rate was set to
0.2. In our pre-registration we reported that a learning rate
of 1.2 would be used there, but this was an error in the pre-
registration. The exploratory experiment on within-language
priming in fact used a learning rate of 0.2 during the prim-
ing experiment, and this was also the intended learning rate
for the pre-registered experiment. This difference with the
preregistration does not increase the probability of finding an
effect. If anything, a higher learning rate would have resulted
in a larger priming effect (Chang et al., 2006).
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Figure 2: Total number of responses that had either the same
structure as the prime or the alternative structure, split by
within- or cross-language trials. The plot shows that there were
more same structure than alternative structure responses for both
LANGUAGE COMBINATION conditions. However, the difference
was larger for within-language trials.

Results
Our analysis only included those responses that correctly con-
veyed the target message, either with an active or a passive
structure. However, we disregarded errors involving definite-
ness of articles or missing periods. This means we included
60% of the responses on cross-language trials, and 59% of
responses on within-language trials. On cross-language tri-
als, model participants produced 11,451 sentences (59% of
sentences) with the same structure as the prime, while pro-
ducing 7,802 sentences (41%) with the alternative structure.
On within-language trials, 11,856 responses (63%) had the
same structure as the prime, whereas 6,877 responses (37%)
had the alternative structure. Figure 2 shows that there were
more same-structure than alternative-structure responses for
both LANGUAGE COMBINATION conditions, but that the dif-
ference was larger for within-language trials.

Pre-registered analysis
As pre-registered4, we analyzed the data from our experi-
ment with a Bayesian logistic mixed-effects model, using a
logit link function, using the function brm from the package
brms (Bürkner et al., 2017; Bürkner, 2018, version 2.12.0)
in R (R Core Team, 2013, version 3.5.1). The model pre-
dicts a binary dependent variable, SAME AS PRIME, that in-
dicates whether the sentence structure that the model pro-
duced and the structure of the prime sentence were the same
(1), or different (0). In addition to the predictor of interest,
LANGUAGE COMBINATION (Cross-language = 0, Within-
language = 1), the model includes three contrast-coded co-
variates: PRIME STRUCTURE (Active =−0.5, Passive = 0.5),
TARGET-MESSAGE BIAS (Active =−0.5, Passive = 0.5), and
PRIME LANGUAGE (English = −0.5, Spanish = 0.5). We fit
random intercepts for items and model participants, as well
as by-item and by-participant random slopes for LANGUAGE
COMBINATION. Regularizing priors were used in all our
models, which give a minimal amount of information with

4The pre-registration can be accessed here: https://
aspredicted.org/728mn.pdf
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Table 1: Summary of the fixed effects in the Bayesian logistic mixed-effects model (N = 37,946). For each predictor are shown
its estimate with 95% Bayesian credible interval and the posterior probability that the estimate is positive.

Predictor Estimate 95% CrI P(Estimate > 0)
INTERCEPT 0.49 [0.38, 0.60] 1.00
LANGUAGE COMBINATION 0.23 [0.12, 0.34] 1.00
PRIME LANGUAGE 0.16 [0.01, 0.29] 0.99
PRIME STRUCTURE 0.84 [0.74, 0.94] 1.00
TARGET-MESSAGE BIAS −0.31 [−0.41,−0.22] 0.00
LANGUAGE COMBINATION × PRIME LANGUAGE −0.06 [−0.25,0.13] 0.27
PRIME STRUCTURE × TARGET-MESSAGE BIAS 2.98 [2.79, 3.19] 1.00

the objective of yielding stable inferences. Prior means were
0, and did thus not bias towards specific effects. The standard
deviations for the priors that we used for the predictors are
based on the effect sizes that resulted from our preliminary
analysis of within-language priming.

Unfortunately, even when using a large number of 16,000
iterations, 12 chains, and a high value of 0.99 for the
adapt delta parameter, this model did not result in valid
and reliable parameter estimates. This was apparent from
the large number of divergent transitions after warmup,
and the low Bulk and Tail Effective Sample Sizes (ESS)
(https://mc-stan.org/misc/warnings.html). Analysis
of the model output revealed that the ESS values were specif-
ically related to the estimates of the by-item random slopes
for LANGUAGE COMBINATION. In addition, the credible in-
terval (CrI) for these estimates were consistently close to zero
across different numbers of iterations and chains, and differ-
ent values for the adapt delta parameter.

Adjusted analysis
Because of the reliability issues in the pre-registered regres-
sion model we removed the by-item random slopes and their
correlations from the model, while leaving it unchanged oth-
erwise. The resulting model yielded valid and reliable results,
as evidenced by the absence of the type of warnings that the
pre-registered model resulted in. Note, however, that both
models revealed the same pattern of results that lead to the
same answers to our research questions.

The regression analysis results are summarized in Table 1.
The positive intercept, with a credible interval far from zero,
shows a clear priming effect at the reference level (i.e., cross-
language) of the LANGUAGE COMBINATION predictor. We
interpret this as strong evidence for cross-language priming
in the Dual-path model. The positive estimate for the LAN-
GUAGE COMBINATION predictor, with a credible interval that
does not cross zero, indicates that the within-language prim-
ing effect is stronger in the Dual-path model than the cross-
language priming effect.

Discussion
The results of our experiment reveal a clear and strong cross-
language structural priming effect. We thus provide evidence

for the viability of implicit learning as an account of cross-
language structural priming. In turn, our finding provides
support for the implicit learning model implemented in Dual-
path, as an account of structural priming in general. We
should note, however, that this finding does not provide ev-
idence against other implemented models of structural prim-
ing. The hybrid model introduced by Reitter et al. (2011),
for example, also predicts cross-language structural priming.
Fortunately, a way to empirically distinguish between this ac-
count and the Dual-path account is available. The former ac-
count predicts that priming will not occur between structures
in different languages that do not have the same word order.
The Dual-path account, on the other hand, does not seem to
rule out such a priming effect.

We also find slightly stronger within- than cross-language
structural priming. As a number of behavioral studies failed
to find a significant difference between cross- and within-
language priming, this could suggest that our model provides
an insufficiently adequate account of structural priming in this
respect. However, other studies did find differences in the
strength of cross-language and within-language priming, and
these differences have been explained as resulting from par-
ticipants’ proficiency differences between the two languages.
It might therefore be the case that we did not succeed in sim-
ulating sufficiently balanced bilinguals, although this is un-
likely given the way our models were trained.

However, a simple account that could explain both the
available behavioral results and our modeling results seems
plausible. The presence of a small difference between cross-
and within-language priming, that is hard to detect statisti-
cally in highly proficient bilinguals, is consistent with the
human data. This difference could become clearer if either
proficiency differences increase, or if experimental methods
are applied that are more likely to detect small effects. In ad-
dition, the absence of a significant effect is not proof that an
effect does not exist (Vasishth & Nicenboim, 2016).

In two of the four experiments reported on by Hartsuiker
et al. (2016), for example, within-language priming was
stronger than cross-language, even though this difference
was not found to be significant. In the other two ex-
periments, cross-language priming was either stronger than
within-language priming or it depended on the prime lan-
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guage, but in any case none of the differences were statisti-
cally significant. In the first experiment conducted by Kantola
and van Gompel (2011), within-language priming was non-
significantly stronger than cross-language priming, whereas
in the second experiment within-language priming was non-
significantly weaker than cross-language priming. However,
the difference in strength was larger in the first than in the
second experiment. The results reported by Schoonbaert et
al. (2007) and re-analysed by Hartsuiker et al. (2016); Hart-
suiker and Bernolet (2017) showed non-significantly stronger
within-language than cross-language priming when there was
no semantic overlap between verbs in the prime and target
sentences, as was the case in our comparison. When prime
and target verbs were identical or translation-equivalent, how-
ever, Schoonbaert et al. (2007) found that within-language
priming was significantly stronger than between-language
priming. Overall, these results do not provide strong evidence
that cross-language and within-language priming are equally
strong.

Our analysis does reveal a clear effect of language combi-
nation. However, our experiment is relatively large in terms
of the number of model participants and especially large in
terms of the number of trials per participant. We performed a
post-hoc analysis on a subset of our data that is more com-
parable to (but still larger than) the size of behavioral ex-
periments. From the original 80 model participants, we ex-
cluded the 20 highest performing and the 20 lowest perform-
ing participants. We reduced the number of trials from 800
to 208 per participant while keeping the same distribution
across conditions. The positive intercept resulting from this
analysis still reveals a clear cross-language priming effect:
Estimate = 0.38, 95% CrI = [0.19, 0.57]. In contrast, the
LANGUAGE COMBINATION predictor now has a credible in-
terval that crosses zero (Estimate = 0.19, 95% CrI = [−0.03,
0.43]). It therefore does not provide strong evidence anymore
for a difference between cross- and within-language priming.
If the model gives an approximately correct estimate of the
difference between within- and cross-language priming, we
cannot expect human studies to reveal that difference with
the amount of data they have available. This is especially true
if we consider that human data generally has a lower signal-
to-noise ratio than modeling data.

It could be costly to conduct an experiment with a large
number of participants to verify that within-language prim-
ing is stronger than cross-language priming in balanced bilin-
guals. Likewise, increasing the number of experimental trials
might cause concentration problems in participants. A way
to address this might be to conduct the study as a large online
experiment.

Further work
Relative proficiency in the two languages involved in cross-
language structural priming can influence the strength of the
priming effect. Now that we have established that cross-
language priming occurs in the Dual-path model, a fruitful
direction for future research will be to explore the relationship

between second language proficiency and structural priming
between languages.

As argued by, for example, Bernolet, Hartsuiker, and Pick-
ering (2009), structural priming could be a phenomenon that
takes place at different levels (e.g., information structure and
syntactic structure), and syntactic alternations are different in
the extent to which these levels play a role. To reach a deeper
understanding of structural priming, it is therefore important
to extend our modeling to further syntactic alternations, such
as datives and genitives.
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Abstract 

Activation has become a pervasive concept in many scientific 
disciplines, including cognitive and neural modeling, and AI. 
Unfortunately, its applications and functions are so broad and 
varied that it is difficult for practitioners to discuss the topic 
in precise and meaningful ways. This is particularly apparent 
in cognitive architectures, where a wider breadth of 
activation’s utilities and forms have been explored. To help 
combat these terminological difficulties, and hopefully 
facilitate productive discourse and the development of future 
applications, we introduce (1) a lexicon of activation-related 
concepts, and (2) a functional taxonomy that enumerates 
many activation-related “design patterns” that have appeared 
in cognitive architectures. We demonstrate our taxonomy by 
applying it to the LIDA cognitive architecture, which includes 
one of the most varied and comprehensive adoptions of 
activation-related functionality. 

Keywords: activation, cognitive architectures, LIDA 

Introduction 

The concept of “activation” has become commonplace in 

many scientific disciplines. In the neural sciences, it refers 

to “patterns of neural firing,” measured either individually 

or collectively. In chemistry, it refers to the transition of a 

molecule to a state with an “increased probability” of a 

chemical reaction. And, in psychology, it has been used to 

refer to the “level of arousal or excitation” observed in an 

individual “as a whole” (Duffy, 1957). 

Within the fields of artificial intelligence (AI) and 

cognitive modeling, activation describes an assortment of 

quantities and parameters, which have been used to 

implement a diverse range of functionality. Certainly, 

activation and “activation functions” have figured 

prominently in the development of artificial neural networks 

(ANNs). However, the full breadth of activation’s utility 

and forms has come to fruition in the many cognitive 

architectures that have embraced, and expanded on, the 

concept. Unfortunately, these applications and functions are 

so broad and varied that it is difficult for practitioners to 

discuss the topic in precise and meaningful ways. 

To get a better sense for this diversity, we reviewed 

seventy-eight cognitive architectures1 in search of distinct 

activation-related concepts and themes. Thirty-three of these 

were found to use some form of activation. While a 

comprehensive survey of each cognitive architecture’s use 

of activation is beyond the scope of this paper, we believe 

that we have succeeded in identifying the major concepts 

1 This included most of the cognitive architectures mentioned in 

(Kotseruba & Tsotsos, 2018), as well as several that were not 

mentioned. 

and themes. We have distilled these into a lexicon of 

activation-related terminology and a functional taxonomy 

that categorizes each theme with respect to its functional 

intent (that is, what activation affects, facilitates, or enables 

within a cognitive architecture). We believe that this is an 

essential first step towards standardizing notions of 

activation across cognitive architectures.  

Among the cognitive architectures, LIDA (Franklin, et al., 

2016) implements one of the most varied and 

comprehensive adoptions of activation. It uses activation to 

support nearly every module and process, and one or more 

activation parameters are associated with most (if not all) of 

its mental representations. Given this abundance of function 

and form, LIDA provides a plentiful source of examples, 

which we use to test our taxonomy’s utility, and illustrate its 

taxonomic themes. 

What is Activation? 

Arguably, the earliest application of activation-related 

concepts in AI and cognitive modeling occurred in the 

context of connectionist models, such as artificial neural 

networks (ANNs). ANNs are biologically-inspired 

computational systems composed of “artificial neurons” 

(also called neural units) that are typically connected in 

layered architectures. Each neural unit performs a 

calculation (for example, a weighted sum) over its inputs, 

and the result is referred to as that neuron’s “activation.” 

Activations are then passed through “activation functions” 

(for example, unit step, sigmoid, or rectified linear) to 

determine a neuron’s output (or response)2. These response 

values can “propagate” to connected neural units, where 

they are used as inputs to further computations. (This is also 

referred to as “spreading activation.”) ANNs learn 

“distributed representations” corresponding to the patterns 

of activation induced in the network by various stimuli.  

Cognitive architectures have expanded on these 

connectionist concepts, inventing a host of new mechanisms 

with their own distinct dynamics. To make sense of this 

variability, we introduce a basic lexicon of activation-

related concepts, and then we review and categorize 

noteworthy applications of activation within cognitive 

architectures. This is then used as the catalyst for our 

2 In the literature, the output of an artificial neural unit is 

sometimes referred as the unit’s “activation”; however, we use the 

convention that activation refers to the “internal state” resulting 

from a calculation over its inputs and weights that may be passed 

as input to an activation function. 
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“functional taxonomy,” which is presented later in the 

paper. 

Concepts and Terminology 

Activations are typically implemented as continuous, scalar 

quantities, or vectors of such quantities (such as, “patterns 

of activation”). They must have an activation source (“how 

activation is acquired?”), an activation target (“what gets 

activated?”), and a function(s) in the system. An implicit or 

explicit decay strategy must also be provided. Optionally, 

an activation spreading mechanism can be implemented that 

propagates activation between one or more activation 

targets, and an activation threshold can be specified that 

requires a target’s activation be above, or below, a specific 

value before initiating its associated functionality. 

Activation Sources. Anything can be used as a source of 

activation. The only requirement is that it activates its target 

consistently with respect to some intended purpose. For 

example, if an activation parameter is intended as a measure 

of its target’s “relevance”, “urgency”, “salience”, 

“reliability”, etc., then the activation source must generate 

activation in proportion to the target’s current compatibility 

with that measure. 

In practice, an activation source is often a (mathematical) 

function specified in terms of other activations or 

conceptual quantities. An example of this is ACT-R’s 

(Anderson, et al., 2004) formula for determining the 

activation of a “chunk” (that is, a declarative unit of 

knowledge): 

𝐴𝑖 = 𝐵𝑖 +∑ 𝑊𝑗𝑆𝑗𝑖𝑗 , 

where 𝐴𝑖 is the 𝑖th chunk’s activation, 𝐵𝑖  is its base-level 

activation, 𝑊𝑗 is the “attentional weighting” of the 𝑗th 

element in the “current goal,” and 𝑆𝑗𝑖  is the associative 

activation between chunk 𝑖 and its 𝑗th supporting element. 

In this context, base-level activation and associative 

activation are activation sources that determine the 

activation of a chunk. Base-level activation (𝐵𝑖) has its own 

activation source, based on the function 

𝐵𝑖 = ln(∑ 𝑡𝑗
−𝑑

𝑗 ), 

where 𝑡𝑗 is the time that has passed since the 𝑗th retrieval of 

chunk 𝑖, and 𝑑 is a fixed parameter that determines the 

shape of the learning/forgetting curve. 

Activation Targets. “Knowledge” representations 

(semantic, perceptual, procedural, etc.) are the most 

common activation targets in cognitive architectures. 

However, other data structures, processes, modules, and 

even entire cognitive systems have been used. The only 

requirement is that the target is an entity whose function (or 

identity) can be meaningfully modulated (or determined) by 

an activation’s value. 

Decay Strategies. Explicit decay strategies are often 

implemented using (mathematical) functions that are 

periodically invoked for the purpose of decreasing the value 

of an activation variable over time. For example, DUAL 

(Kokinov, 1994) invokes an exponential decay function 

each time step to decrease the activation of its working 

memory elements (save for the most active, which is 

referred to as “the focus”). By contrast, implicit strategies 

often implement decay directly within activation sources; 

for example, in ACT-R’s base-level activation equation 

(shown earlier), the contribution of the 𝑗th chunk retrieval 

“decays away as a power function (producing the power law 

of forgetting)” (Anderson, et al., 2004). 

Spreading Activation. Many cognitive architectures allow 

activation to “propagate” between associated activation 

targets. For example, Copycat’s (Hofstadter & Mitchell, 

1995) long-term memory module, the Slipnet, supports 

activation spreading between its nodes. These nodes 

(representing concepts) serve as activation targets, and its 

links (associations) serve as conduits that allow the passing 

of activation between them. The “conceptual distance” 

between nodes, which is based on the activation of its links’ 

labels, determines the amount of activation spread.  

A more sophisticated example occurs in the Agent 

Network Architecture (ANA) (Maes, 1991), which features 

predecessor, successor, and conflictor links that allow 

“activation energy” to spread between, and accumulate in, 

different competence modules (for example, action and 

belief modules). Predecessor and successor links are 

excitatory (increasing the activations of their associated 

activation targets) while conflictor links are inhibitory 

(decreasing the activations of their associated activation 

targets). The magnitude of this increase or decrease is 

proportional to a (source) competence module’s activation.  

As a final example, 4CAPS (Just & Varma, 2007) 

supports activation spreading using weighted condition-

action production rules that function like weighted links. 

These productions spread activation iteratively (that is, over 

multiple “cycles”) from task-activated cortical “centers” to 

their associated declarative elements. 

Activation Thresholds. Activation is often functionally 

“inert” (that is, its associated functionality is not invoked) 

unless its value crosses above or below an activation 

threshold. Such thresholds control the retrieval of ACT-R’s 

chunks (Anderson, et al., 2004), the execution of ANA’s 

competence modules (Maes, 1991), and the spreading of 

activation and updating of network weights (associative 

learning) in LEABRA (O’Reilly, 1996).  

Activation thresholds in cognitive architectures can be 

thought of as generalizations of the binary threshold 

functions (unit step functions) that appeared in early 

connectionist networks, such as perceptrons (Rosenblatt, 

1958). However, while the function of a perceptron’s 

activation threshold (𝜃) is limited to modulating its units’ 

“all-or-nothing” output signals (+1 if a unit’s activation ≥
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𝜃; 0 otherwise), the range of functionality that can be 

modulated in cognitive architectures is seemingly limitless. 

Activation’s Functions in Cognitive Architectures 

Having established a basic vocabulary of activation-related 

concepts, we now present the major activation-related 

functional themes that have appeared in cognitive 

architectures. 

Access to Mental Representations. One of the most 

common uses of activation in cognitive architectures has 

been to influence global, module-specific, or process-

specific access to mental representations. Activation, in this 

context, can be interpreted as specifying the current, 

context-specific relevance of mental representations, 

allowing cognitive resources to be focused on 

representations that matter most at a given moment. For 

example, in ACT-R, activation controls both the probability 

and timing of declarative memory (that is, “chunk”) 

retrieval. In Soar (Laird, 2012), activation biases the 

retrieval of episodic memories. And, in CERA-CRANIUM 

(Arrabales, Ledezma, & Sanchis, 2009), the priority of 

percept processing is determined by activation, where those 

with the lowest activations are not processed at all. 

Removal of Mental Representations. Activation has been 

used to modulate the purging and/or pruning3 of short-term 

and long-term mental representations. For example, Soar 

removes working-memory elements when their activations 

have decayed below some fixed (removal) threshold (Laird, 

2012). These representations are still available in long-term 

semantic memory for later retrieval, but the system has 

determined that they are no longer directly relevant to its 

current task (based on their activations). In other words, 

these representations are “gone, but not forgotten.” We refer 

to this as “bounded” removal. Representations can also be 

removed “globally,” such as occurs when the base-level 

activations associated with LIDA’s (Franklin, et al., 2016) 

long-term memory representations (declarative, perceptual, 

procedural, etc.) decay below a removal threshold. In these 

cases, the representations are no longer available for use or 

retrieval. That is, they have been “forgotten.” 

This functional theme complements activation’s use as an 

access modulator, and both uses often appear together in 

cognitive architectures. Jointly, they can be said to 

determine the “availability” of mental representations. 

Informational Content. Cognitive architectures have used 

patterns of activation as “informational content.” These 

activation patterns must somehow represent the sensory, 

perceptual, and/or conceptual essences of experiences, 

introspections, etc. This theme is exemplified in ART 

(Grossberg, 1999), where patterns of activations are stored 

3 Pruning refers to the extraction of a mental representation from a 

data structure (like a tree or associative network) that requires 

additional structural maintenance (such as the removal of links or 

“dangling” associations) to purge the targeted item. 

as short-term or long-term memory “traces.” Shanahan’s 

(2006) brain-based implementation of Global Workspace 

Theory (Baars, 1988) also makes extensive use of patterns 

of activation as mental representations. 

Associative Dynamics. Activation has been used to 

represent the time-varying, context-sensitive, strength of 

associations between mental representations. Here, 

activation can be interpreted as associative weights, or 

modulators of associative weights, whose values are 

influenced by situational context or prior experiences. 

ACT-R’s “associative activations” are one example of this. 

Another example occurs in Copycat’s Slipnet, where the 

conceptual distances between its nodes are based on the 

activations of its links’ “labels.” Concepts (that is, nodes) 

that are closer in conceptual distance (that is, have higher 

link label activations) are more likely to “slip” into one 

another, and be treated as analogous concepts. 

System Dynamics. Activation can locally or globally 

modulate “how” cognitive operations are performed. In this 

context, activation could be viewed as representing dynamic 

dispositions, temperaments, or moods, and the notion of 

“activation as arousal” (see (Duffy, 1957)) is consistent with 

this theme. An example of this from a cognitive architecture 

is Copycat’s “temperature,” which is described by 

Hofstadter and Mitchell (1995) as a variable that “monitors 

the stage of processing, and helps to convert the system 

from its initial largely bottom-up, open-minded mode to a 

largely top-down, closed-minded one.” 

Measures of Intensity or Degree. Activation often 

represents a graded measure of some quantity with a clear 

semantic interpretation (for example, “reliability”) that 

fluctuates in intensity over time. Due to the conceptual 

interpretability of these measures, they often serve as 

activation sources that modulate other cognitive functions. 

An example of activation as a measure of intensity appears 

in Leabra, where network activations represent “graded 

(continuous) states of truth-value” that estimate “the degree 

to which [a hypothesis] is believed to be true by the 

network” (O’Reilly, 1996). Another example occurs in 

LIDA, where the activations associated with LIDA’s feeling 

nodes quantify an agent’s current “liking” or “disliking” of 

a stimulus. 

Process Scheduling. Activation has been used to determine 

or influence the execution of events, tasks, processes, and 

modules. The CopyCat architecture contains a module 

called the Coderack that serves as a pool of “codelets4.” 

Each codelet is associated with an “urgency” value that is a 

function of the activation patterns in the Slipnet. These are 

used by the Coderack to determine the probability that a 

particular codelet will be selected for execution. Activation, 

4 Codelets are processes that function as simple agents with the 

ability to find, create, or destroy structures in Copycat’s 

Workspace. 
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in this context, can be viewed as influencing system 

dynamics through the immediate or future execution of 

some cognitive process. Another example occurs in DiPRA 

(Pezzulo, 2009), which contains an “energy pool” from 

which its modules receive activation at the beginning of 

each execution cycle. Since activation is required for 

module execution, if the energy pool is depleted in a given 

cycle, then one or more modules may have to wait until a 

later cycle to execute. 

A Functional Taxonomy 

In this section, we present our “functional taxonomy” of 

activation-related parameters/variables based on their uses 

in cognitive architectures (see Figure 1). At the highest level 

of our taxonomy, we divide activation-based functionality 

into three major themes: “representational,” “system 

dynamics,” and “measures of intensity or degree.”  

The representational branch is sub-divided into 

“associative dynamics,” “availability,” and “informational 

content.” Associative dynamics includes “activation 

spreading” and the activation-based modulation of 

representational associations (for example, Copycat’s 

conceptual distances). Availability covers the global (that is, 

system-wide) and bounded (that is, process or module-level) 

access and removal of representations. Global, in this 

context, could correspond to “forgetting” from long-term 

memory, and bounded to the eviction of representations 

from short-term memory. Lastly, informational content 

covers use-cases like ART’s memory traces. 

The system dynamics branch is sub-divided into 

“modulatory” and “scheduling” functions. Modulatory 

functions include system-wide, module-specific, or process-

specific activation parameters that influence “how” 

operations are executed. This includes Copycat’s 

temperature, and the notion of “arousal” from the 

psychological literature. Scheduling refers to the 

deterministic or probabilistic initiation of events or 

processes, based on activation, resulting in short-lived or 

long-lasting changes to a system’s dynamics. LIDA’s 

“triggers”5 are examples of deterministic scheduling. 

Copycat’s codelet “urgency” values are examples of 

probabilistic scheduling. 

The measures of intensity or degree branch is intended to 

cover all activation parameters that serve to label an 

activation target as possessing some degree of an 

unambiguously defined property. This property should have 

a clear semantic interpretation. The magnitude of the 

activation indicates “to what extent” that target possesses 

the property. This covers, for example, Leabra’s use of 

activation as a measure of the “truthiness” of a hypothesis. 

Our Taxonomy Illustrated in LIDA 

Activation is ubiquitous in LIDA, with activation-related 

variables and parameters supporting most (if not all) of its 

 
5 LIDA’s triggers are explained in more detail later in the section 

entitled “Triggers.” 

modules, processes, and data structures. All the major 

themes in our functional taxonomy are present in LIDA; 

therefore, in this section, we use LIDA to illustrate our 

functional taxonomy. But first, we introduce LIDA and its 

activation-related concepts, so that the reader is prepared for 

the demonstrations that follow. 

What is LIDA? 

Learning Intelligent Decision6 Agent (LIDA) (Franklin, et 

al., 2016) is a biologically-inspired cognitive architecture 

that implements, and fleshes out, significant portions of the 

Global Workspace Theory (GWT) of consciousness (Baars, 

1988), as well as many other psychological theories (for 

example, Baddeley & Hitch, 1974; Barsalou, 1999; 

Conway, 2001; Ericsson, 1995). LIDA contains numerous 

short-term memory (STM) and long-term memory (LTM) 

modules, and special purpose processors called codelets7. 

These are depicted in Figure 2, and their functions and 

common acronyms are summarized in Table 1. 

Cognition occurs in LIDA over a continual series of 

potentially overlapping “cognitive cycles,” which 

correspond to the “action-perception cycle” referred to by 

many psychologists and neuroscientists (Fuster, 2004; 

Neisser, 1976). Each cognitive cycle is conceptually divided 

into “perception and understanding,” attention, and “action 

and learning” phases. Higher-order cognitive processes such 

as planning, deliberation, and problem solving typically 

require many cognitive cycles. See (Franklin, et al., 2016) 

for more details. 

LIDA’s Activation Concepts  

LIDA has historically classified its activation parameters as 

either “base-level activations,” “current activations,” or 

 
6 For historical reasons, this word was previously “distribution”. It 

was later changed. 
7 This terminology was inspired by Copycat’s codelets. 

Figure 1: A “functional taxonomy” of activation. Each 

element specifies a category of functions that an 

activation variable or parameter could support. 
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simply “activations” (or “total activations”). Base-level 

activation8 is used to describe activations with relatively 

slow decay rates that have activation sources based on 

content in the global “conscious” broadcast. These 

activations support “selectionist learning” (Edelman, 1987), 

and are the basis for the removal (forgetting) of long-term 

memory representations and processes. Current activation 

refers to parameters with relatively rapid decay rates that 

(generally) reflect transitory, module-specific notions of 

current “relevance.” And, activation (or total activation) is 

used to describe all other activation parameters. Many of 

these general-purpose activation parameters use base-level 

and current activations as activation sources; however, this 

is not always the case. 

Taxonomic Examples in LIDA 

In this section, we will illustrate our taxonomy using 

activation-related examples from LIDA. These examples do 

not represent an exhaustive account of LIDA’s activations; 

however, they should be sufficient to give the reader a taste 

of LIDA’s major activation themes, and build an intuition 

for how our taxonomy could be applied in practice. 

Following each sub-section, we summarize the taxonomic 

themes that were covered. 

Low-Level Feature Detectors and SM Representations. 

Modality-specific, low-level features detectors in Sensory 

Memory (SM) are activated in response to incoming sensory 

stimuli (from an agent’s sensors). The patterns of activation 

generated in these feature detectors serve as sensory 

representations, corresponding to the incoming stimuli, that 

8 LIDA’s base-level activation is roughly (conceptually) analogous 

to ACT-R’s concept of base-level activation, but its meaning is far 

more varied and module specific. It also has a very different 

activation source, which is based on LIDA’s conscious broadcasts. 

can be later incorporated into knowledge representations in 

the Workspace and long-term memory modules. 

Taxonomic Themes Illustrated: 
1. Representational → Informational Content

[sensory representations as “activation patterns”]

The Activation and Instantiation of Percepts. SM uses its 

sensory representations to activate (that is, update the 

“current activations” of) feature detectors in Perceptual 

Associative Memory (PAM). Activation then spreads, over 

“activation links,” to linked PAM nodes. A PAM node’s 

activation is based on the sum of its base-level and current 

activations. PAM nodes with activations greater than a fixed 

threshold are instantiated into the Current Situational Model 

(CSM) as percepts, making them available to codelets and 

cueing processes. 

Taxonomic Themes Illustrated: 
1. Representational → Associative Dynamics

[spreading activation in PAM]

2. Representational → Availability → Access → Bounded

[percepts to CSM]

Attention Codelets and Coalitions. Preconscious content 

in the CSM (including percepts and other LTM 

representations) retain their activations after instantiation 

(though they subsequently decay). Some attention codelets 

(ACs) (for example, the “default attention codelet” 

described in (Franklin, et al., 2016)) use the activation 

associated with preconscious content to determine their 

“level of interest” in those representations. When an AC is 

“sufficiently interested” in a representation, it will take it to 

a coalition forming process, which may create a coalition 

containing that content. A coalition’s activation is based on 

the activation of its content, and the base-level activation of 

the AC advocating for that content (among other things).

Figure 2: The LIDA cognitive cycle diagram. 
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Table 1: Descriptions of LIDA’s short-term memory (STM) and long-term memory (LTM) modules, and codelets. 

 

Coalitions compete in a winner-take-all competition in the 

GW, based entirely on the coalitions’ activations. The 

winning coalition’s content is broadcast, making it globally 

accessible to all modules and processes. 

 

Taxonomic Themes Illustrated: 
1. Representational → Availability → Access → Bounded  

[CSM to coalition forming process via default AC] 
2. Representational → Availability → Access → Global  

[GW to global broadcast] 

Triggers. Competitions are triggered in the GW when a 

single coalition has an activation greater than an activation 

threshold, or a set of coalitions has activations collectively 

greater than a (different) threshold. LIDA’s Action 

Selection module also features triggers that initiate 

competitions among its behaviors based on their activations. 

Since activation, in these cases, influences the rate at which 

conscious broadcasts occur, and actions are selected for 

execution, they are great examples of how activation can 

directly, and deterministically, influence a system’s 

dynamics through event scheduling. 

 

Taxonomic Themes Illustrated: 
1. System Dynamics → Scheduling → Deterministic  

[triggers] 

 

Strength of Global Broadcasts and Attentional Blinks. 

The strength of a global broadcast is determined by the 

magnitude of the winning coalition’s activation, which is 

used to modulate base-level activation updates in LIDA’s 

LTM modules (that is, selectionist learning), and update 

other activations in STM modules. If a broadcast’s strength 

is “extremely” high, it can induce an “attentional blink” 

(Madl & Franklin, 2012); that is, a brief “refractory period” 

that affects all ACs, from which it gradually recovers. 

During the refractory period, coalitions receive less 

activation when they are formed; therefore, conscious 

broadcasts are more likely to be triggered based on the 

elapsed time since the last broadcast, than the coalitions’ 

activations. 

Module / Process Description 

ACTION SELECTION (AS) STM module supporting the selection of behaviors for execution by the SMS. 

ATTENTION CODELETS (ACS) Specialized processors that monitor the CSM for content of interest based on their 

own specific concerns, such as importance, urgency, novelty, etc. If such content is 

found, the codelet takes it to a coalition forming process, which may create a 

coalition that includes that codelet and the content it promotes. 

CONSCIOUS CONTENTS QUEUE (CCQ) STM submodule of the Workspace that contains recent conscious broadcasts.  

CURRENT SITUATIONAL MODEL (CSM) STM submodule of the Workspace that represents an agent’s (preconscious) 

interpretation of its current situation. 

GLOBAL WORKSPACE (GW) STM module that directs a winner-take-all competition among coalitions, and 

broadcasts the content of the winning coalition in the global (conscious) broadcast. 

MOTOR PLAN EXECUTION (MPE) See SMS. 

PERCEPTUAL ASSOCIATIVE MEMORY (PAM) LTM module that supports LIDA’s ability to recognize objects, events, entities, 

concepts, etc., and the relationships between them. The most activated 

representations in PAM are instantiated into the CSM as percepts after being 

activated by incoming sensory content (or cueing). 

PROCEDURAL MEMORY (PM) LTM module containing representations called schemes that each encode a context, 

action, and expected result. When schemes are instantiated (that is, when their free 

variables are bound to specific values based on the contents of a conscious 

broadcast) they are referred to as (candidate) behaviors.  

SENSORY MEMORY (SM) STM module that encodes modality-specific sensory content (from the environment) 

as the activation of low-level features detectors. These, in turn, activate perceptual 

representations in PAM. SM also sends sensory representations, based on the 

activation of its low-level feature detectors, to the CSM. 

SENSORY MOTOR MEMORY (SMM) See SMS. 

SENSORY MOTOR SYSTEM (SMS)  Composed of two modules: Sensory Motor Memory and Motor Plan Execution. The 

SMS selects and instantiates motor plan templates from SMM into concrete motor 

plans, and sends them to the Motor Plan Execution module for execution. 

STRUCTURE BUILDING CODELETS (SBCS) Specialized processors that create or modify content in the CSM in support of 

“preconscious thought” and situational understanding. 

WORKSPACE STM module supporting preconscious, situational understanding. At any given 

moment it may contain cued long-term memories, percepts, sensory content (both 

real and simulated), transient representations created by structure building codelets. 

It contains two submodules—the CSM and CCQ. 
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Taxonomic Themes Illustrated: 
1. Measures of Intensity or Degree

[strength of conscious broadcast]

2. System Dynamics → Modulatory

[attentional refractory period]

Affective Valence and Feelings. LIDA’s motivational 

system (McCall, Franklin, Faghihi, Snaider, & Kugele, 

2020) is grounded in “feeling nodes”—PAM nodes with 

affective valence. Affective valence is a form of activation 

that quantifies notions of liking or disliking with respect to 

drives (hunger, thirst, etc.), or other interpretative aspects 

(sweetness, warmth, etc.) of real or imagined events. 

Taxonomic Themes Illustrated: 
1. Measures of Intensity or Degree

[feelings]

Closing Remarks 

In this paper, we’ve presented a lexicon of activation-related 

concepts, and a functional taxonomy that characterizes how 

activation has been historically applied in cognitive 

architectures. While we have made our best effort at 

gathering the major concepts and themes, it’s likely that 

others remain. Similarly, the validity and usefulness of our 

taxonomy requires additional testing. Nevertheless, we hope 

that our efforts towards a common vocabulary will inspire 

activation-related discussions, and lead to a greater 

understanding of the concept as a whole. 
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Abstract 

The next level in understanding human social cognition is to 
model it comprehensively. To this end, we have been 
developing a framework and model that takes as input an event 
involving someone (focusing on who it was and what they did), 
and assesses the event based on whether it should change social 
accounting among individuals, and whether something should 
be done, such as communicating with others. Here, we present 
development of the model computationally and results 
generated by it as predictions to be tested empirically: e.g., 
more communication about those socially close to us when 
their actions are positive, and more about those with higher 
status (i.e., celebrities) when negative; and the relative merit or 
egregiousness of a wide range of behavior. Leveraging what is 
known of the human social mind and brain, our work aims to 
provide a comprehensive model of human social cognition.  

Keywords: social cognition; theory of mind; communication; 
decision-making; computational model 

Introduction 

A true understanding of human social cognition should 

produce a comprehensive cognitive model that successfully 

explains human social behavior. Among many complexities, 

this includes successful real-time social interaction involving 

a great deal of inference such as for mind- and context-

reading. Moreover, this inference ranges from more explicit, 

formal reasoning to what is considered commonsense or 

social intuition. Additionally, models of social intelligence 

will need to have not only a much richer understanding of 

peoples’ minds and immediate context, but of sociality more 

fundamentally. That is, theoretical considerations (including 

evolutionary ones) and evidence across the social sciences 

have shown that social interaction can be construed in terms 

of social economics, with each individual — each agent in 

the multiagent world — having a certain amount of social 

value, and each social interaction a transaction, in which 

individuals spend and accrue social value among themselves 

(i.e., social accounting) (e.g., Cosmides, & Tooby, 1992; 

Dunbar, 2004; Foster, 2004; Pinker, 2008; Rosnow, 2001; 

Lee, Kralik, & Jeong, 2018; Lee, Kralik, & Jeong, 2019). 

Thus, successful models will need to track and help 

maintain this social accounting if they are ever to be fully 

functional as human-level social agents and society members. 

Moreover, much of this social interaction resolves to deeper 

fundamental issues relating to morality, such as treating each 

other fairly. Finally, because of the primacy of these factors 

and the complexity of human societies more generally, 

successful social interactions even between two individuals 

often require a triad (or larger network) of people to 

communicate the information: e.g., due to the sensitivity of 

confronting someone directly or the inability to maintain 

accurate knowledge about others (e.g., what they have done, 

have learned) when not present, requiring updating from 

others (Baumeister, Zhang, & Vohs, 2004; Dunbar, 2004; 

Foster, 2004). Such indirect communication can be 

considered “gossip”, which has seemed trivial and frivolous, 

but belies a deeper significance (Dunbar, 2004). 

In sum, there is a vast amount of research findings on 

human social intelligence and sociality more generally; and 

yet a comprehensive theoretical framework and 

computational model of human social intelligence and 

communication has been lacking. Having this will not only 

organize and integrate what is currently known about human 

social cognition, but will also help clarify what is yet to be 

better understood. We have thus been developing such a 

framework (Lee, Kralik, & Jeong, 2018; Lee, Kralik, & 

Jeong, 2019). Our work has focused on integrating findings 

across the social sciences into a general framework and 

model, and here we present a brief description of the 

framework and initial development of the model 

computationally.  

Lower-level, network-based architectures, including deep 

learning, provide a flexibility and generalization power not 

yet touchable for higher-level symbolic-based architectures; 

yet the latter reach a level of richness of human social 

intelligence and communication that, although currently too 

circumscribed (i.e., generally hand-crafted and brittle), the 

lower-level models have not yet broached.  How the two shall 

meet we do not know.  Thus, at least on the path to a complete 
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understanding of human social cognition in mind and brain, 

both approaches are necessary as researchers determine what 

architecture (or combination) can span the entire capacity of 

human social abilities (and perhaps beyond). Leveraging 

what is known of the human social mind and brain, we take a 

top-down theoretical approach beginning at the symbolic 

level. In what follows, we first briefly describe our overall 

framework, paradigm and model; we then describe how we 

have begun to implement the model computationally; and we 

then describe the results thus far generated, to be considered 

as a set of predictions for an experimental study on human 

social information communication that we have recently 

undertaken in our laboratory. The empirical study intends to 

test and potentially validate the modeling work with actual 

human findings; at the same time, the model provides deeper 

theoretical insight into human sociality, enabling for 

example, a priori predictions of our social behavior. 

Framework, Test Paradigm, and Model 

As seen in Figure 1, our general framework focuses on a 

central problem-solving agent who receives information 

about some activity of a target person, such as someone going 

to the movies, helping someone else in need, working well 

(or not) with others in a group task, beginning a romantic 

relationship, or cheating on an exam (Lee, Kralik, & Jeong, 

2018; Lee, Kralik, & Jeong, 2019). The information is 

received from an external source or observed by the central 

agent directly, and based on this information she may or may 

not communicate with a receiver about it. The receiver is 

conceptualized broadly as anyone else, whether an additional 

person, and thus as “gossip”, but also potentially 

communicating with the source, such as in further 

conversation, or with the target person him/herself. We call 

the event involving the target a “scenario” (e.g., “Kim was 

caught cheating on the final exam.”) and it is to this point 

always based on someone doing something — and thus social 

information broadly construed.  

In our test paradigm, we focus on three main factors of the 

event: who did it, i.e., the target, what they did, i.e., its 

content, and whether the content was positive or negative, 

i.e., its valence. For target identity, we have chosen to first 

test ingroup versus outgroup versus celebrities, since they

enable examination of two critical social factors: closeness

(of the target to the central agent), with the differences being

ingroup > celebrities > outgroup; as well as status, with the

differences being celebrities >> ingroup > outgroup (Aronson

et al., 2016; Foster, 2004). With three target levels, two for

valence, and eight content domains selected to span the space

of activities the target may engage in (described below), we

produced 48 different scenarios. With this comprehensive

set, we sought to generate a set of predictions of how the

various combinations are processed by the social mind/brain

and drive social behavior and communication.

Model of Social Intelligence 

Our model, then, is of the central agent’s mind/brain, and how 

she determines what to do with the scenario information 

(Aronson, Wilson, Akert, & Sommers, 2016; Gazzaniga, Ivry 

& Mangun, 2013; Glimcher & Fehr, 2014; Rai, 2012; Kralik, 

2017; 2018; Lee, Kralik, & Jeong, 2018; Lee, Kralik, & 

Jeong, 2019). To make this determination, she must process 

the scenario across a series of modules (that make up the 

central agent’s social mind/brain). 

We focus here on receiving information from an external 

source (versus observing the event directly). From a 

neuroscience perspective, the central agent must first sense 

and perceive the scenario information. Our intention is to 

ultimately build a system with natural input, such as via 

language or reading; here, however, we concentrate on more 

central cognitive components. When the central agent reads 

or hears a scenario such as “Kim was caught cheating on the 

final exam.”, her mind/brain must first understand the basic 

concepts, which in our model occurs initially within the 

Perception module via accessing memory for general 

concept knowledge, generally realizing each word making up 

the sentence (like Alex, saved, child, etc.), but not the deeper 

meaning that the scenario is carrying. Further scenario 

processing is conducted in Initial Cognitive Process in which 

the stimulus takes on a deeper sense of identifying the target 

and the social domain at issue. This importantly includes the 

latter’s corresponding affect response — as an affect score — 

such as ‘Kim cheating on the final exam’ relating to fairness 

or ‘Alex saving a child from a fire’ relating to care that is 

particularly self-sacrificing and heroic. To determine the 

affect score of the particular event or scenario, the Initial 

Cognitive Process accesses an Affect Knowledge Base, which 

represents our main emotion core of the model (Damasio, 

1996; Gazzaniga, Ivry & Mangun, 2013; Glimcher & Fehr, 

2014; Schachter & Singer, 1962; Kralik, 2017).  

More specifically, we organize the content of possible 

events into eight content domains (Table 1). Five were 

adopted from the well-established moral foundations — 

prosociality, fairness, community, respect, and purity (see 

Haidt, 2007) — and the remaining three — competition, 

social-oriented, and general social affairs — were selected to 

represent other important social activities (Aronson et al., 

2016; Dunbar, Marriott & Duncan, 1997). The affect score of 

each content domain was assigned via theoretical 

consideration and empirical evidence for the 

affective/emotional intensity that the domains carry. For 

example, events related to prosociality — composed of care 

for positive valence, and harm for negative valence (e.g., 

“Alex saved a child from a fire [care]” or “Sam stabbed a 

person with a knife [harm]”) — are expected to be more 

intense and therefore more emotionally provoking than other 

content domains such as fairness — broken down into fair 

and cheating (e.g., “Kim cheated on the final exam 

[cheating]” —  or social-oriented, composed of altruism and 

selfishness (e.g., “Taylor donated part of his salary to a 

charity [altruism]”) (see Foster, 2004; Haidt, 2007). We 

discuss more about each domain in Results.  

With the affect score as output of the Initial Cognitive 

Process module, our model then uses it as a gate for further 

processing, with the score representing a problem to be 
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solved or social accounting to be resolved, with the problem 

extent (its intensity) captured by the score value (Figure 1). 

Next, a general Problem-Solving Controller module 

orchestrates problem-solving by activating a sequence of 

subprocesses. It is the key metacognitive process 

orchestrating the entire system (Kralik et al., 2018). The first 

subprocess assesses the likely truth of the information. Here, 

we assume that the source is trustworthy, and the controller 

then moves to Update Social Information where the main 

Social Knowledge Base is accessed. This knowledge base 

contains models of the minds of the people in the central 

agent’s (multiagent) world. That is, the central agent has her 

own model of other people’s minds (consisting of their 

beliefs, interests, personal traits, etc.) stored as social 

knowledge, accessed and used or modified when necessary 

(Gazzaniga, Ivry & Mangun, 2013; Glimcher & Fehr, 2014; 

See Lee, Kralik, & Jeong, 2018 and Lee, Kralik, & Jeong, 

2019 for details). 

Table 1: Eight content domains of possible social events (i.e., 

someone does something) along with their decomposition into 

positively and negatively valenced aspects, and their corresponding 

affect score in descending order (1-7 scale). The five domains 

adapted from Haidt’s moral foundations are marked with superscript 

“m” (Haidt, 2007). 

Content Affect Score 

Prosociality (care/harm)m 7 

Fairness (fair/cheating)m 6 

Competition (positive/negative) 5 

Social-oriented (altruism/selfishness) 5 

Community (loyalty/betrayal)m 4 

Respect (authority/subversion)m 4 

Purity (sanctity/degradation)m 3 

General social affairs (positive/negative) 1 

Although in reality multiple problems are potentially in 

play or further introduced by the central agent’s possible 

subsequent actions, we focus to this point on the single main 

problem, such as harm produced by the target’s action (e.g., 

Sam stabbing a person with a knife) that must be resolved or 

in some way dealt with. Once the problem is defined, the 

Problem-Solving Controller activates the Generate Action 

Set subprocess to determine which actions to consider for the 

given problem (Figure 1). 

Here, in our first computational development of the model, 

we concentrate on one main action, whether to communicate 

with an additional person (i.e., not the target or information 

source, and thus as ‘gossip’), in the face of a wide range of 

possible social scenarios. The controller then moves to the 

key subprocess of Valuation, the central focus of our current 

computational model development, described 

comprehensively below. Upon the completion of valuation, 

the controller then moves to Action Selection and then Action 

Execution, which if the action is actual gossip, the central 

agent communicates with a receiver. An outcome then would 

occur, such as the receiver directly confronting the target, the 

receiver telling another receiver — that is, further gossip — 

or the receiver doing nothing with the information. 

Valuation 

We now describe the Valuation subprocess in detail, the 
central focus of our current development. Valuation evaluates 

each possible action based on the combination of potential 

benefits and costs of taking the action, combined with the 

scenario affect score that provides the original impetus for the 

problem and possible recourse to take action to resolve it.  
Thus, we subtract the potential costs from benefits and 

multiply it by the significance of the event. More specifically, 
using the following equation for valuation: 

ValueGossip = A  (BTotal – CTotal) (1) 

Figure 1: The complete model of the internal processes underlying social information and communication. The central agent goes 

through a set of internal processes (black rectangles) by accessing her relevant knowledge (green rounded rectangles). 
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where A is the affect score of the given scenario (target person 

doing something), and BTotal and CTotal represent total benefits 

and costs of taking the given action (in this case 

communicating with a third-party receiver). BTotal and CTotal 

are each composed of multiple potential benefits and costs 

derived from taking a given action, i.e., 

BTotal = B1 + B2 + ⋯ (2) 

CTotal = C1 + C2 + ⋯ (3)  

Additionally, each individual benefit Bi or cost Ci is 

composed of weighting factors thus: 

Bi = tBi  vBi  wBi (4) 

Ci = tCi  vCi  wCi (5) 

where t represents the relative weighting for target (e.g., 

ingroup, outgroup, or celebrity), v for scenario valence (i.e., 

positive or negative), and w for the relative influence of the 

individual benefits and costs. 

As seen in Table 2, from the social communication 

literature as well as our own theoretical considerations based 

on an evolutionary and socio-economic perspective of how 

the communication about the target could ultimately benefit 

the central agent, we have identified five main benefits and 

three main costs for communicating with a third-party 

receiver (gossiping) (see Aronson et al., 2016; Baumeister, 

Zhang & Vohs, 2004; Dunbar, 2004; Foster, 2004 for 

reviews; Rosnow, 2001; Russell & Norvig, 2020; Lee, 

Kralik, & Jeong, 2018); and in the current development we 

have added corresponding relative weighting factors, w, t, 

and v, based again on this literature and our evolutionary and 

socio-economic theoretical considerations (Aronson et al., 

2016; Baumeister, Zhang & Vohs, 2004; Dunbar, 2004; 

Foster, 2004; Rosnow, 2001; Russell & Norvig, 2020).  

Table 2: Benefits and costs of communicating with an additional 

individual as receiver (i.e., gossiping). Each cell contains the 

weighting factors for each valuation category, based on the relative 

impact of each category (w), the target person’s identity (t) and the 

valence (v) of the scenario event. See text for further description. 

Weights on a 1-4 scale to obtain meaningful relative values 

distinguishing the critical factors. 

More specifically, one potentially powerful benefit is that 

the central agent does not have to face the target directly (i.e., 

indirect communication) (B1). The advantage of such 

indirectness is much greater when the target person is within 

one’s ingroup, and much less so otherwise (as celebrity or 

stranger), reflected in the corresponding target weights (t). 

The advantage is also clearer when the information is 

something negative about the target (e.g., Kim cheating on 

the final exam), although it can also be relevant for positive 

information (e.g., it can be uncomfortable and awkward to 

speak highly of someone directly to them), also reflected in 

the valence weights (v).  

In addition, the central agent may be able to obtain more 

information about the scenario event circumstances or 

confirm the information source veracity/truthfulness by 

checking with a receiver (B2) (i.e., another individual in the 

central agent’s purview), since the receiver may have more 

information about the target than the central agent does; and 

the corresponding t and v weights reflect this. At the same 

time, the central agent can also importantly provide the 

receiver with new information to update the receiver’s mental 

model of the target (B3) (with again the relative weights 

reflecting this benefit based on target closeness, which also 

reflects the relative detail of the mental models of target 

individuals in the receiver’s mind). 

Moreover, social communication also plays an important 

role in society by promoting fairness in terms of social order. 

That is, there is an inevitable hierarchy where some 

individuals have higher status in terms of power, wealth, 

fame, etc. than others. Although status can refer to both 

macroscale hierarchy (such as nationwide or worldwide 

celebrities and public figures) and microscale (within a 

smaller social group like school, workplace, or 

neighborhood), we focus here on the macroscale. Social 

communication can potentially influence this status based on 

disseminating relevant information about individuals (B4) 

(Aronson et al., 2016; Baumeister, Zhang & Vohs, 2004; 

Dunbar, 2004; Foster, 2004). Furthermore, because higher 

status requires justification, the general public is expected to 

be extra judgmental and critical with those of higher status, 

reflected in the w, t, and v weightings.  
The last benefit is also important: the possible influence of 

the receiver on the target to reward or “punish” them 
appropriately (B5). This is particularly effective (a) if the 
receiver is in better position to influence the target and the 
central agent (e.g., closer, more respected), (b) as a means to 
reduce a possible defensive response by the target if 
confronted directly, or (c) as general social pressure (i.e., 
reputation). 

Although there are advantages to disseminating social 

information, there are also significant disadvantages. First, 

there is the possibility that the target hears of the ‘gossiping’ 

and confronts the central agent directly (C1), reflected in the 

weightings accordingly. The central agent also runs the risk 

of being wrong about the information (C2). Spreading wrong 

information may not only influence the target’s reputation, 

but also actively damages the model of the target’s mind in 

the mind of the receiver(s). The importance of having 

Valuation Categories w 
Target (t) Valence (v) 

Ingroup Outgroup Celebrity Positive Negative 

B1: Avoid direct contact 

with the target 
4 4 1 1 3 4 

B2: Feedback to the 

gossiper from receiver 
3 4 1 2.5 4 4 

B3: Update receiver’s 
knowledge 

3.5 4 1.5 2.5 4 4 

B4: Influence target's 

social status 
4 1.5 1 4 1.5 4 

B5: Receiver influences 

target's behavior 
3 4 1 1.5 4 4 

C1: Potential direct 

contact from the target 
4 4 1 1 2 4 

C2: Risk of spreading 

wrong information 
3.5 4 1 2.5 4 4 

C3: Earn bad reputation 
as a gossiper 

3.5 4 1.5 3 2.5 4 
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accurate models of others is discussed in detail in our 

previous work (Lee, Kralik, & Jeong, 2018; Lee, Kralik, & 

Jeong, 2019). The last main disadvantage of information 

spreading is related to the traditional view of gossip as 

malicious behavior. By divulging information about a person 

(i.e., the target) absent during the conversation, the central 

agent may earn a bad reputation as a gossiper (C3); 

influenced both by closeness and valence, and thus reflected 

in the (t, v) weights. 

We next examine our model results as a set of predictions 

about how the target, content, and valence of a given social 

act would compel someone to act on it, and in particular, to 

communicate with others about it. 

Results 

Based on the 48 scenarios produced by the combinations of 

target (ingroup, outgroup or celebrity), content (eight 

domains), and valence (positive or negative), and using the 

factors described in Tables 1 and 2 and Equations (1-5), we 

calculated the model’s action values that reflect the 

likelihood of the central agent communicating to a third-party 

receiver (i.e., gossiping). The results are then predictions 

about how the human social mind processes and responds to 

key social information (target, content, and valence). 

Figure 2 shows the model action values according to the 

independent effects of valence (Figure 2A) and target (Figure 

2B). (Note that “total benefits > total costs” does not mean 

that the action will necessarily be executed, only that it 

increases its likelihood; and thus the key findings are the 

comparative values of the bar graphs.)  

For valence, our model finds (a) a fairly comparable degree 

of communication (i.e., gossiping) about positive and 

negative events; and at the same time (b) a slightly higher 

amount for negative events. These predictions, especially the 

first of comparable amounts, are partially at odds with the 

prevalent view and some evidence for gossiping, in which it 

is believed to be predominantly negative. The model suggests 

that studies thus far have perhaps inordinately focused on 

events of negative valence (see Foster, 2004). 

 

        
 

Figure 2. Predicted values of communicating social information based on 
its (A) valence and (B) target group. 

 

For target, i.e., the person involved in the scenario event, 

the model predicts that celebrities will be discussed more, 

even more than those of one’s ingroup — although again the 

difference between the two is not extreme (Figure 2B). 

Outgroup gossiping, however, is indeed predicted to be much 

less than the other two. The major factors underlying the 

target effect are closeness (i.e., the social distance between 

the target and the gossiper) and status of the target in terms 

of the larger societal hierarchy. Since outgroup is low in both 

status and closeness, the combination leads to the lowest 

amount of information spreading. 

The difference between ingroup and celebrity, in contrast, 

is not as simple. In short, spreading ingroup and celebrity 

information both can have relatively high benefits (for 

ingroup, due to higher closeness; for celebrity, modest 

closeness and greater status effects; see Table 2); whereas 

spreading ingroup information can also lead to relatively 

higher costs (due to closeness, such as possible confrontation 

of the central agent by the target), leading to the Figure 2B 

result with celebrities more likely discussed even over 

ingroup members. Empirical evidence thus far is mixed, 

attesting to the need to computationally delineate the 

underlying factors (such as closeness, status, and the specific 

benefits and costs of information spreading), and to generate 

a priori predictions based on it (Foster, 2004). 

Considering the potential interaction of the target and 

content valence of the scenario, we see a related but different 

predicted pattern (Figure 3A). For positively valenced 

scenarios (e.g., “Alex saved a child trapped in a burning 

building.”), information involving ingroup members is 

predicted to be spread more than about either celebrities or 

outgroup members. This is due to the higher benefits yielded 

from ingroup information spreading, as well as the cost of 

ingroup information spreading decreasing dramatically and 

more so than in the other two target groups (e.g., no concerns 

about target retaliation). 

 

    
 

Figure 3: Predicted values of communicating information about the three 

target groups for scenarios of (A) positive or (B) negative valence. 

 

For scenarios of negative valence (e.g., “Sam stabbed a 

person with a knife.”), in contrast, the cost of ingroup 

information spreading is high; whereas the benefit of 

spreading celebrity information is high (especially due to 

status influence) and the risk relatively lower (Figure 3B). 

Therefore, with scenarios of negative valence, the model 

predicts that celebrity information dissemination will again 

be higher than for ingroup targets. Figure 4 shows more 

clearly the opposite patterns predicted for ingroup and 

celebrity targets based on the content valence. 
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Figure 4: Predicted values of communicating information based on its 

valence for (A) ingroup and (B) celebrity. 

Again, the empirical evidence is thus far mixed (Foster, 

2004): for example, one study found that people spread more 

positive information about allies (friends and family) than for 

non-allies, including both strangers and those with high status 

(professors); and yet they also found more negative 

information spreading for both strangers and high-status 

people (McAndrew & Milenkovic, 2002). Moreover, another 

study found no differences in information spreading between 

ingroup and celebrity targets for either positive or negatively 

valenced events (Peng et al., 2015). Our model shows how 

specific factors need to be isolated to clarify the true nature 

of the current findings. Studies have yet to tease apart these 

factors sufficiently. 

In sum, our computational model of social intelligence and 

communication has generated a number of predictions about 

how people evaluate the behavior of others, regarding who 

did it, what they did, and its general valence. These 

predictions include a higher degree of communication about 

ingroup targets when positive, and of celebrities when 

negative; as well as the relative merit or egregiousness of a 

wide range of behavior, enabling effective social interactions, 

generating stronger bonds among individuals, and preserving 

society more generally.  

For model validation, we have also conducted a laboratory 

experiment using the same scenarios and asking participants 

whether they would communicate this information (e.g., 

Person X cheating on the final exam) to others. Thus far, our 

preliminary examination suggest that the model predictions 

are supported by the empirical results.  

Discussion and Conclusions 

For models of social cognition to capture human sociality 

they will need to include not only mind- and context-reading, 

but also a deeper understanding of social transactions and 

moral behavior. Indeed, people spend nearly 65% of their 

time discussing social events, suggesting that such events are 

especially cared about and processed (Dunbar et al., 1997). 

However, although a great deal is known about human social 

cognition, a comprehensive theoretical framework and 

computational model has been lacking. 

To meet this challenge, we have first focused on the 

nuanced act of maintaining stable social behavior and societal 

structure by potentially communicating to others about 

another individual’s behavior. To determine whether to do so, 

an individual (the central agent) must weigh its relative 

potential benefits and costs, which we have enumerated and 

quantified here. The model then makes an important 

theoretical contribution by producing a series of specific 

predictions about social communication that we are currently 

testing empirically (e.g., more communication about those 

socially close to us when their actions are positive, and more 

about those with higher status when negative; as well as the 

relative merit or egregiousness of a wide range of behavior). 

Indeed, in our preliminary examination of the data, the model 

predictions are supported. 

With respect to generalizability and scale, we believe the 

model is poised to readily generalize and scale to larger 

amounts of social scenarios. For example, the critical features 

of all social events would be expected to resolve to who did 

what, and thus to the event’s main individual(s) and the 

content of what happened. For target, people on first order are 

defined based on our relationships to them, which we have 

captured via ingroup, outgroup, and those of higher status. 

However, human understanding of others obviously goes 

beyond this, which in fact underscores what we believe will 

be the major contribution of our model: the prominence of 

models of others’ minds within each agent. This component 

is poised to be developed substantially in the future.  

Regarding content of the event, i.e., what the target did, we 

have organized social behavior into a comprehensive set of 

basic categories, ranging from deeply moral (such as 

fairness) to more everyday social activities (e.g., going to the 

movies). Most other types of social events are expected to fall 

into these categories, and thus should be readily added to the 

model with more detail and a mapping structure added.  

Although learning is not yet built into the model, limiting 

generalizability, we have begun by adhering to evidence that 

suggests not only learning and cultural influences on human 

social cognition, but a significant underpinning of relatively 

hard-wired components. These include abilities such as 

mind-reading as well as having basic moral dimensions that 

appear to be universally shared and thus likely evolved, such 

as for fairness (Dunbar, Marriott, & Duncan, 1997; Dunbar, 

2004; Haidt, 2007; Pinker, 2008). Learning and culture 

effects would then be expected to influence their relative 

weightings (e.g., Pinker, 2008).  

In general, then, we believe a model that ultimately 

captures the richness of human sociality will entail both 

significant hard-wired components (reflecting evolutionary 

via genetics influences) and learned ones (reflecting culture 

and other environmental effects). To build such a model, we 

believe it is best to start with the basic more hard-wired 

foundations, and extend from there. 

Beyond learning capabilities, an additional avenue of 

future development will be to determine whether the richness 

of human social intelligence is best captured by a symbolic-

level model or ultimately resolved to a network-based one or 

some combination of both. In any event, we believe our 

framework and model help point the way forward.  
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Abstract

Social interactions are a part of day-to-day life of most human
beings. Affect, decision-making and behavior are central to it.
With increase in adaptation of technology in our society, in-
teraction between humans and artificially intelligent agents is
also increasing. Large-scale brain-inspired neural models have
been equipped with capabilities to fulfil a variety of tasks, but
there has been relatively limited focus on making them capa-
ble of handling social interaction. In this paper, NeuroACT,
a neural computational model and implementation of a socio-
psychological theory called Affect Control Theory (ACT) is
presented. This is towards building an emotionally intelligent
AI agent, that can handle interactions. It takes as input a con-
tinuous affective interpretation of a perceived event, consisting
of an actor, behavior and an object and generates post-event
predictions of the next optimal behavior to minimize deflec-
tion. The aim is to model the role of affect guiding decision-
making in AI agents, resulting in interactions that are similar
to human interactions, while inhibiting some behaviors based
on the social context.

Keywords: Social interaction; Affect Control Theory; Brain-
inspired simulation; Nengo

Introduction
Social interaction is central to the human experience; af-
fect and emotion plays an important role in guiding human
thinking and behavior. Affect is a property of consciousness
(Barrett & Satpute, 2019) and a part of every psychologi-
cal phenomenon, even those that are not explicitly emotional
(Hutchinson & Barrett, 2019). Social neuroscience has pri-
marily focused on sense of self identity and how a person’s
mind creates a perception of another person, whereas affec-
tive neuroscience concerns mainly with brain basis of emo-
tions (Barrett & Satpute, 2013). We present a neural model
and implementation of social interaction in an AI system us-
ing a socio-psychological theory called Affect Control The-
ory (ACT), and combine social and affective domain perspec-
tives, thereby dissolving their artificial boundaries. This is
towards gaining deeper understanding of the neural mecha-
nisms of the role of affect guiding decision-making. The goal
here is to show that the calculations required by ACT can be
implemented by spiking neurons, using anatomical structure
that fits the cortex, basal ganglia, and thalamus.

Affect Control Theory (ACT) is a comprehensive social
psychological theory of human interaction that emphasises

feelings (affect) as a key factor (Heise, 1987; N. J. MacKin-
non, 1994; Heise, 2007; N. MacKinnon & Robinson, 2014).
ACT proposes that social perceptions, actions, and emotional
experiences of the people are governed by a psychological
need to minimize deflections between culturally shared fun-
damental sentiments about social situations and transient im-
pressions resulting from the dynamic behaviors of interac-
tants in those situations. Sentiments are said to have three
aspects in an affective space, forming a three-dimensional
vector comprising of Evaluation, Potency, and Activity (EPA)
(Osgood, Suci, & Tannenbaum, 1957; Heise, 2007). Evalu-
ation concerns goodness versus badness, Potency concerns
powerfulness versus powerlessness, and Activity concerns
liveliness versus quietness. The value of each aspect can
vary in degree, in the sense that it can be greater or lesser,
in either a positive or negative direction. The dimensions of
EPA vector is a common cross-cultural representation of so-
cial objects, such as interactants’ concepts of situations, emo-
tions, identities and behaviors, hypothesized to be an organiz-
ing principle of human socio-emotional experience (Osgood,
May, & Miron, 1975).

EPA profiles of concepts can be measured with the seman-
tic differential, a survey technique where respondents, both
males and females rate affective meanings of concepts on
numerical scales. These numerically-measured sentiments
are useful for mathematical analysis. EPA measurements [as
noted in (Heise, 2001)] are appropriate when one is interested
in affective meanings rather than denotative or logical mean-
ings. Affective meanings correspond to sentiments - that is,
the general feelings that we have about something. The EPA
system is notable for being a multivariate approach to measur-
ing affect, as compared, say, to attitude measurement which
deals only with the single dimension of evaluation.

Affect control theorists have compiled datasets of a few
thousand words along with average EPA ratings obtained
from survey participants who are knowledgeable about their
culture (Heise, 2010) 1. For example, most English speak-
ers agree that professors are about as nice as students (E),
however more powerful (P) and less active (A). The corre-

1The EPA profiles in this paper are from ‘Indiana 2002-4’ dataset
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sponding EPA profiles are {1.61, 1.58, 0.35} for professor
and {1.49, 0.31, 0.75} for student. The values range by con-
vention from -4.3 to +4.3 (Heise, 2010). In general, within-
cultural agreement about EPA meanings of social concepts is
high even across subgroups of society, and cultural-average
EPA ratings from as little as a few dozen survey participants
have shown to be extremely stable over extended periods of
time (Heise, 2010).

Large-scale brain-inspired neural models like Spaun
(Eliasmith et al., 2012) implement some mechanisms of cog-
nitive processing to perform variety of tasks. A neural model
called POEM (POinter EMotions) (Kajic, Schröder, Stewart,
& Thagard, 2019) provides a detailed account of neurocom-
putational mechanisms responsible for psychological func-
tions required for emotions. Implementing social interaction
mechanisms in an AI system still remains a challenge.

In this paper, NeuroACT, a neural model of social inter-
action based on ACT is presented along with its implemen-
tation using Nengo, a python library for building and simu-
lating large-scale neural models, showing the possibility of
developing a human-like AI agent, which can interact with
human or other agents. In this paper, the mathematical model
of ACT and its non-neural implementation is first outlined.
Then details about NeuroACT model, its implementation us-
ing spiking neurons and its simulation in a doctor-patient sce-
nario and prisoner’s dilemma game play are provided. Lastly,
conclusion and some directions for future work are presented.

Mathematical model of ACT
In an interaction, actor is the agent who behaves (or acts)
towards a target object (who can be self or some other per-
son). An actor or an object can be specified by identity-nouns,
whereas behaviors are specified by verbs.

Interaction Event Description
ACT models the formation of transient impressions from
events with a minimalist grammar of the form Actor Identity-
Behavior-Object Identity (ABO). Each of these have an EPA
profile. A person’s basic identity can be particularized with
specifications of emotion, traits, moods, biological charac-
teristics, statuses, or moral dispositions. In our current ver-
sion of neural model, emotion is considered as the modi-
fier. The state of being has generally more impact on the
outcome impression than the identity does. [Modifier(Mod)-
Identity(I) combinations were analyzed in (Smith-Lovin &
Heise, 1988)]. The interaction can be written as

Event = [Modactor][Iactor][Bactor][Modob ject ][Iob ject ] (1)

Note that each of these elements is an EPA profile.

Modifier-Identity Combination
The addition of attributes or adjectives that modify the iden-
tities (e.g., “good friend” or “abusive father”) is calculated
from the EPA values of both the identity and the modifiers.
The EPA profiles of particular modifiers are symbolized as

P = {Pe,Pp,Pa}, identities as R = {Re,Rp,Ra}, and the pro-
file for identity-modifiers amalgamation as C = {Ce,Cp,Ca}.
The modifier-identity profile is computed by the equation
given below:

C = pP+ rR+a (2)

where p and r are coefficients estimated from empirical stud-
ies of the modifiers and identity, respectively and a is a con-
stant. For example, using the affective dictionary, the EPA
profile of a “stranger” is {0.02 -0.09 -0.23}, the EPA profile
of “happy” is {2.92 2.43 1.96}, and that of “happy stranger”
is {0.6 0.5 0.5}.

The interaction in (1) can be re-written as follows:

Event = [Cactor][Bactor][Cob ject ] (3)

For the rest of the paper, actor A means Cactor and object O
means Cob ject

Deflection
According to ACT grammar, the fundamental sentiment f
(represented by over-bar) is represented as follows:

f = {Āe Āp Āa B̄e B̄p B̄a Ōe Ōp Ōa} (4)

and the transient impression τ (represented by caret) evoked
by an event is given by:

τ = {Âe Âp Âa B̂e B̂p B̂a Ôe Ôp Ôa} (5)

In ACT, the weighted sum of squared Euclidean distances be-
tween fundamental sentiments and transient impressions is
called total deflection D:

D = ( f − τ)2 (6)

Calculation of τ will be discussed in the next subsection. De-
flection arises when impressions produced by an event differ
from sentiments. Deflection that cannot be resolved produces
psychological stress, which is a serious condition that can un-
dermine one’s health. Deflection is related to unlikelihood:
the more deflection an event produces, the more that event
seems stranger, more surprising, more unique and even in-
conceivable.

Consider for example, a professor who yells at a student.
Most observers would agree that this professor appears con-
siderably less nice (E), a bit less potent (P), and certainly
more active (A) than the cultural average fundamentals of a
professor. ACT treats the dynamics of emotional states and
behaviors as continuous trajectories in affective space. De-
flection minimisation is the only prescribed mechanism.

Transient impression formation The transients existing
after an event can be predicted from the transients that pre-
cede the event by the equation given below:

τ = Mt (7)

M is the matrix of prediction coefficients estimated in
impression-formation research, with one column for each
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post-event transient being predicted. For example, Matrix M
is 20 x 9, consisting of coefficients estimated from U.S male
data on ABO. Vector t contains pre-event transients along
with interaction terms that have been found to have predic-
tive value in empirical analyses. Vector t given below is 1 x
20, hence τ is 1 x 9. [Refer to (Heise, 2007)]

t = {1 Āe Āp Āa B̄e B̄p B̄a Ōe Ōp Ōa

ĀeB̄e ĀeŌp ĀpB̄p ĀaB̄a B̄eŌe

B̄eŌp B̄pŌe B̄pŌp ĀeB̄eŌe ĀeB̄eŌp}
(8)

To show an example of how M and t affects the calculation of
τ, the following equation shows the post-event Actor’s eval-
uation dimension estimated using the impression equations
(considering non-zero values of first column of M which re-
lated to Âe):

Âe =−0.26+0.41Āe +0.42B̄e−0.02B̄p−0.10B̄a +0.03Ōe

+0.06Ōp +0.05ĀeB̄e +0.03ĀeŌp +0.12B̄eŌe

−0.05B̄eŌp−0.05B̄pŌe +0.03ĀeB̄eŌe−0.02ĀeB̄eŌp

(9)

The coefficients in the above equation indicate the factors and
the degree to which they contribute towards the post-event
evaluation of the actor. For example, the positive coefficient
on pre-event evaluation of actor Āe, means that the good ac-
tors are evaluated more positively (in E) and bad actors are
evaluated more negatively (in E), with a factor of 0.41. The
positive coefficient on combination terms like pre-event be-
havior and object evaluation B̄eŌe means that the actors are
evaluated more positively (in E) if they are observed doing
good things to good people, or bad things to bad people, but
more negatively (in E) if they are observed doing bad things
to good people or good things to bad people, with a factor of
0.12. Similarly, the other dimensions can be calculated for Â,
B̂ and Ô giving us the value of τ as mentioned in eq. (5).

Optimal Behavior
Action selection in an interaction would be based on any
institutionally-appropriate, feasible, and sentiment-affirming
behavior. For example, in a medical setting, there would be
a doctor-patient interaction, where doctor’s identity is gener-
ally considered as quite good and potent and somewhat active
with an EPA profile as {1.90,0.69,0.05}, whereas a patient
identity is considered a bit good, less powerful and quite weak
with an EPA profile as {0.90,-0.69,-1.05}. The sentiment-
affirming behavior for a doctor would be to treat, instruct etc
to the patient, so that his impression is maintained as good. If
he does acts of yelling, cruelty etc, his impression will be bad
and will cause deflection and conflict.

An event seems more unlikely, uncanny, or unique as de-
flections (D) are larger. In ACT, the EPA profile for the op-
timal behavior is regarded as the one that minimizes the un-
likeliness of an event, that is defined as below.

k+
Oe

∑
i=Ae

wiDi (10)

From eq. (10) and (6), we have

k+
Oe

∑
i=Ae

wi( fi− τi)
2 (11)

where k is a constant and w stands for summation weights.
Minimizing unlikeliness or maximizing normality is obtained
by setting partial derivatives of the right side of the above
equation to zero and solving for behavior terms, giving us the
suggested optimal behavior [for details refer (Heise, 2007)].

Predicted Emotion and Identity
ACT predicts the emotion and identity of both the actor and
the object post interaction, which can also affect the dynam-
ics. In this paper only optimal behavior will be focused upon.

Non-Neural implementations
Interact A computer software tool named Interact, imple-
ments ACT’s mathematical model in Java. It provides a
user interface to setup the interactions and analyze the re-
sults. It has a dictionary of various datasets across six
nations, ranging from 1977 to 2007, and consists of EPA
profile ratings for identities, behaviors, modifiers rated by
male and female raters, which is useful in cross-cultural
and historical analysis. [New datasets can be found at
https://research.franklin.uga.edu/act ].

BayesAct BayesAct (Hoey, Schröder, & Alhothali, 2016;
Schröder, Hoey, & Rogers, 2016) generalises ACT by main-
taining multiple hypothesis of behaviors and identities simul-
taneously as a probability distribution. It uses partially ob-
servable Markov decision process (POMDP). [Some applica-
tions include (Lin et al., 2014; Jung, Hoey, Morgan, Schröder,
& Wolf, 2016)].
BayesAct and Interact can be accessed at http://bayesact.ca

Neural Model
The novel contribution of this paper is to take the underlying
mathematics of ACT and implement them using the spiking
neurons. In particular, it is striking that the overall form of the
theory maps very well onto a neural model of the cortex/basal
ganglia/thalamus loop that has been previously used to model
a variety of tasks (Eliasmith et al., 2012).

The core part of the algorithm that is modelled here and its
relation to the neural model of the brain is shown in Figure 1.
In this work, the mechanisms for maintaining and tracking the
EPA values of the current situation is not modelled; rather,
focus is on the calculation of deflection and hence unlikeli-
ness, given the event perception from an object’s (AI agent)
perspective and time t. That is, given the EPA values of the
current situation, the question is: what action should be per-
formed by the object of the event?

This maps well onto the traditional roles of the cortex,
basal ganglia, and thalamus. Neurons in the cortex (1 in Fig-
ure 1) will represent the EPA values, the connections between
cortical neurons and basal ganglia neurons (2) will compute
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eq. (11), the basal ganglia (3) will find the action with the
largest deflection minimizing utility value, and the thalamus
(4) will activate that particular action.

Figure 1: Neural implementation of ACT

While the overall mathematical function of this system is
easy to describe and implement, it will be shown how spik-
ing neurons can perform these operations. In particular, here
Neural Engineering Framework (NEF; Eliasmith & Ander-
son, 2004) is used, which is a general method for finding how
to connect simulated neurons so as to get the best approxi-
mation of any given algorithm. In general, the idea here is
that the activity of groups of neurons can be thought of as
representing vectors, and the connections between groups of
neurons can be thought of as computing functions on those
vectors. If we know the set of functions that we want to com-
pute then we can perform a sequence of local optimizations
(one for each set of connection weights) that will find the best
approximation of the algorithm, given whatever type of neu-
rons we want to use (including spiking and non-spiking neu-
ron models).

For the basal ganglia and thalamus, we can make use of
already-existing models of how to use the NEF to implement
exactly the function that is desired here: a system that takes
in a set of values from eq. (11) and determines which one
is the largest utility, say U , outputting that information to
the thalamus. This has been previously shown to both map
on well to the anatomy of the basal ganglia and to exhibit
realistic reaction times (Stewart, Choo, & Eliasmith, 2010).
This system has been used in many previous models, includ-
ing models of the bandit task (Stewart, Bekolay, & Eliasmith,
2012) and the large functional brain model Spaun (Eliasmith
et al., 2012). The same is used here without adjusting any pa-
rameters. Also, an inhibitory “context” input that provides a
large negative value for any actions that should not currently
be considered.

While the basal ganglia and thalamus model take care of
computing which of the action values has the largest deflec-
tion minimizing utility U (i.e. which action should be taken),
this still leaves the question of how to have neurons calculate
the eq. (11) values for each action, given the basic EPA values
that constitute t.

Since this is simply a function, it is possible to train a neu-
ral network to approximate that function. However, the gen-
eral challenge of neural networks is that if the function being
approximated is too complicated, we will need a very large
neural network to do this (either very deep or very broad, or
both). Importantly, the networks generated using the Neu-
ral Engineering Framework have been analyzed in terms of
the class of functions that they are good at approximating
when using a Leaky Integrate-and-Fire neuron model with the
default distribution of tuning curves (Eliasmith & Anderson,
2004). This analysis indicates that these neurons are best at
approximating functions that consist of linear combinations
of low-degree polynomials. Crucially, this is exactly the form
of the calculation being done here (see eq. (9)). This means
that we can use small numbers of neurons (here we use 1500)
with the same parameter settings as has been used in the other
biological models to approximate this function.

Figure 2: Example of behavior of NeuroACT

An example of the overall behavior of the resulting model
is shown in Figure 2. The input is the EPA values for each of
the 5 relevant terms. In this case, the situation is

[calm][doctor][instructs][ f ear f ul][patient]

and the corresponding input EPA values are [1.97 1.32 -
1.4][1.9 0.69 0.05][1.85 1.65 0.3][-1.64 -0.94 -1.15][0.9 -0.69
-1.05]. These values are fed into the convergence neurons.
These connections are completely random, meaning that any
particular input will produce some random pattern of neu-
ral activity that is unique to that input. From that activity,
the connection weights from the convergence neurons to the
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basal ganglia compute the eq. (11) function for all of the
different actions in parallel. For simplicity, here we only plot
three of those actions: ‘obey’, ‘disobey’ and ‘yell at’. Finally,
the basal ganglia model finds the largest of these activity val-
ues (i.e. ‘obey’) and directs that result to the thalamus, so the
object of the event, which is the patient in this case, can per-
form for better interaction. This is also the optimal behavior
according to the mathematical model.

Simulation
To simulate NeuroACT model for social interaction involving
affect, decision-making and behavior, a single play of pris-
oners dilemma game scenario was used. Of the two players
involved; one represents a simulated human player agent (Ac-
tor) and the other represents NeuroACT AI agent (Object). In
the play round, each player can decide to either give two coins
to the other player (cooperation strategy) or take one coin (de-
fection strategy) from a common pile. Players can maximize
their returns by defecting while their partner cooperated, and
although the Nash equilibrium is mutual defection, the play-
ers can jointly maximize their scores through mutual cooper-
ation.

In the simulation scenarios, the AI agent perceives the
emotional state, identity and behavior of the human agent,
and outputs the optimal behavior it would choose (‘give’
or ‘take’) based on the ACT prescription of deflection-
minimization. The decision-making dynamics over the time
scale are tested, such that if the perceived emotion of the
human agent changes during the play round, the AI agent
changes its strategy as well. For simplicity, the identity of
both the players was kept as ‘stranger’. EPA profiles used for
identity, modifiers and behaviors are as below:

[happy] : [2.92,2.43,1.96]

[angry] : [−1.45,−0.30,1.13]

[stranger] : [0.02,−0.09,−0.23]

[gives to] : [1.60,1.47,1.55]

[takes f rom] : [−1.40,1.62,1.50]

Inhibition: The dictionary consists of 500 behaviors, out of
which 498 are inhibited in this case due to the game context.
If there was no mechanism of inhibitory neurons, AI agent
would have selected a deflection-minimizing behavior out of
500 options, but in our case, it selects between ‘give’ or ‘take’
behavior only and others get inhibited.

To demonstrate the behavior of the model and show its
ability to use neurons to perform similar calculations as
found in the standard Affect Control Theory, we provide
cortical input of 5 sets of EPA values representing a particular
situation. Since neurons require time to respond, we hold
this input constant for 0.5 seconds and then present a new
situation. In particular, we manually adjust the recognized
emotion from ‘happy’ to ‘angry’, as this causes ACT to

produce a different action. It should be noted that, in this ex-
ample, the ‘object’ is meant to correspond to the NeuroACT
AI agent itself.

Scenario 1: Human agent cooperates with AI agent

Perception at time t ≤ 0.5:

[happy][stranger][gives to][happy][stranger]

Perception at time t>0.5:

[angry][stranger][gives to][happy][stranger]

Scenario 2: Human agent defects with AI agent

Perception at time t ≤ 0.5:

[happy][stranger][takes from][happy][stranger]

Perception at time t>0.5:

[angry][stranger][takes from][happy][stranger]

Results

Figure 3: Human agent cooperates with AI agent

Results for the simulation runs for Scenarios 1 and 2 are
shown in Fig 3 and 4 respectively. In both scenarios, the re-
sultant behavior changes from ‘give’ to ‘take’ on perceiving
the emotion of the human agent that changes from ‘happy’ to
‘angry’, given the affective dynamics. In scenario 1 (Fig 3),
the change in behavior seems slower and more deliberate than
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Figure 4: Human agent defects with AI agent

in scenario 2 (Fig 4), where the change is faster and somewhat
automatic. This may be due to actor’s behavior being more
positive in scenario 1 as compared to scenario 2.

NeuroACT shows how affect influences decision-making
and behavior. The behavior chosen by the model matches
with its non-neural counterpart in choosing the optimal be-
havior as prescribed by ACT. The ability of the neural model
to handle time dimension is important for the temporal or-
der of information processing similar to human brain circuit
(Gupta & Merchant, 2017).

Conclusion and Future Work
Social interaction is a challenging area to replicate in brain
simulations. NeuroACT is a novel contribution implementing
affective social interaction in spiking neurons. It is a general-
ized and extensible neural model of ACT, capable of provid-
ing an AI agent with the ability to interact with the other AI
agents or humans. The input is an interaction perception and
output is an optimal behavior selection. This is a step towards
making emotionally intelligent AI agents.

A specific doctor-patient interaction is tested for the model.
Simulation of a single play in Prisoner’s dilemma game is
provided. This can be iterated as well, taking into account
that in the next round of play, the actor and the object change.
NeuroACT can be used to model any other interaction. Fu-
ture enhancement can include settings for additional context,
such as location. The model can be expanded using similar
methods to predict the emotion and generate re-identification
of the actor and the object post-interaction. This system can
be enhanced by incorporating some sensorimotor signals to

integrate with physical robots.
Some other improvements could be considered involving a

working memory component for the agent to utilize experi-
ence from the previous interactions. The input to the model is
a generic input, that can incorporate visual, textual, or audi-
tory forms, as all would eventually translate into verbal con-
cepts. Advances in neuroimaging techniques like hyperscan-
ning to study the inter-brain synchronisation (Liu et al., 2018)
in social interaction may give more insight into the neural
mechanisms at play.
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Introduction
In behavioral economics, ‘rational inattention’ (C. A.
Sims, 2010) has been proposed as a theory of human
decision-making subject to information processing limitations.
This theory hypothesizes that decision-makers act so as to
optimize a trade-off between the utility of their behavior, and
the information processing effort required to reach a good
decision. Shannon information has been proposed as a means
of quantifying this information processing cost. However,
existing models in the rational inattention framework do
not account for the learning dynamics that underlie human
decision-making. In order to incorporate the impact of
cognitive limitations on learning, we extend the traditional
reinforcement learning objective to incorporate a bound on
the Shannon information of the learned policy (see also
Lerch & Sims, 2019). Using experimental data from a
previously-studied learning paradigm (Niv et al., 2015), we
show that our method can be used to represent differences in
participants’ performance as resulting in part from utilizing
different capacities for storing and processing information.

Rational Inattention
According to theories of rational inattention, human
decision-makers seek to maximize the following objective
(Jung, Kim, Matějka, & Sims, 2019):

maxE[U(X ,Y )]−λI(X ,Y ), (1)

where U(X ,Y ) describes the utility of choice Y in state X , and
I(X ,Y ) represents the mutual information between the state X
and the action Y .

The result of altering the traditional expected utility
maximization with a regularization term based on mutual
information is a constraint on the information-theoretic
complexity of the decision-makers’ behavior. This limitation
is proportional to the scale of the parameter λ; as λ increases,
simpler policies will be preferred over increased expected
utility. In the extreme, a decision-maker would act randomly
or else choose the same action regardless of his or her state
(ignoring all information from the environment).

Figure 1: Example of stimuli used in the Niv et al. paradigm.
Each of the 9 features was randomly assigned to one of the
three possible objects, with no feature present more than once
in the same stimulus.

Feature Reinforcement Learning
The specific reinforcement learning algorithm we are
interested in extending is a variant of Q-learning defined
in (Niv et al., 2015) called Feature Reinforcement Learning
(FRL). The algorithm defines the value of an option V (S) in a
contextual n-armed bandit learning task to be the sum of the
values of the features that make up that option:

V (S) = ∑
f∈S

W ( f ), (2)

where the weights of each feature are updated based on the
selection that was made by the participant and the reward that
was observed as follows:

W new( f ) =W old( f )+η[Rt −V (Schosen)] ∀ f ∈ Schosen. (3)

FRL was developed to explain human learning performance
in domains with high-dimensionality. In their experiment,
participants were presented with stimuli varying in color,
shape, and texture. Each feature dimension had three possible
feature values (for example, stimuli could be red, green, or
yellow). The task for participants was to learn which of the
nine possible features leads to the highest probability of reward
(Figure 1), changing roughly every 20 episodes.

The results shown in (Niv et al., 2015) indicate that it is
possible to achieve high predictive accuracy on the selections
made by participants using the standard FRL model. In the
following section we show that greater predictive accuracy
can be achieved by determining the capacity for storing
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and processing information that is used by each of the
participants, and modelling their resulting behaviour with the
capacity-limited FRL method.

Capacity-Limited FRL
Applying the learning objective defined in (1) onto the domain
of reinforcement learning results in an algorithm that allows
us to define a capacity for the amount of information that
is used to represent our agent’s policy. The two additional
hyper-parameters are the capacity-limit C, which is determined
for each participant individually using the same method as
described in (Niv et al., 2015), as well as the feature weight
adjustment learning rate α = 1e−3 for all participants.

Algorithm 1: Capacity-Limited FRL

Initialize: Feature weights W ( f ) = 0̄
Initialize: Hyper-parameters: α, β, η, δ, C
for each participant selection S do

Predict choice with probability distribution π(A|S)
for each feature f in selection S do

W new( f ) =W old( f )+η[Rt −V (Schosen)]

for each feature f not in selection S do
W new( f ) = (1−δ)W old( f ) ∀ f /∈ Schosen

while I(π(a|s))>C do
for each f in W(f) do

f = f −α( f −∑ f∈F W ( f )/|W ( f )|)

The constraint on the amount of information used to
represent performance is determined by the magnitude of the
capacity parameter C, which performs the same function as the
parameter λ in Eq (1). Decreasing the value of C results in a
more and more strict limitation on the amount of information
that is used by the model to represent the performance of
the participant. The algorithm iteratively updates the RL
Q-table to decrease the mutual information until it is below the
bound. In the next section, we fit this parameter to each of the
individual participants performance in the contextual n-armed
bandit learning environment. This algorithm demonstrates
that the mutual information regularized expected utility
maximization approach that is described in Eq (1) is applicable
into the domain of human reinforcement learning.

Results
The original experiment design described in (Niv et al.,
2015) includes 2 different speed trials, fast (500ms) and
slow (1.5s) response times, with the slow response times
used during trials to allow for a fMRI scanner enough time
to capture data for a separate analysis that is not discussed
further. Hyper-parameters were originally fit by minimizing
negative log posterior individually for both the slow and fast
trials. However, one potential benefit of the capacity-limited
approach is that the information capacity parameter C could be
the same across different tasks for the same participant, as long
as factors such as motivation and attention remain consistent

enough across the different tasks. To support this, we instead
fit both models to the entire data set for individual participants
using the Python Scipy minimization package, and compare
the performance of the FRL and CLRL methods. These
results indicate that it is possible to determine the information
capacity that is used by a participant in a learning task, even
across tasks with slightly different cognitive requirements such
as the different time constraints shown here.

Figure 2: Mean predictive accuracy of CLRL and FRL models
based on parameters fit to minimize negative log loss across
both fast (500ms) and slow (1.5s) response times. Error bars
represent 99% confidence intervals.

The high predictive accuracy of the CLRL model when fit
to the entire data set demonstrates a similarity of participant’s
information processing capacities across different tasks.
Although the individual sources of these capacities can
be varied, from attention and motivation to differences
in cognitive abilities, this model determines the amount
of information required to represent participants’ learned
behaviour. This difference represents one possible explanation
for less than optimal performance on learning and decision
making tasks that is observed with human participants. By
connecting the information-constrained maximum utility with
reinforcement learning, this algorithm expands the application
into learning tasks. In developing this algorithm, we further
support the conceptualization of rational decision makers as
Shannon information channels with a limited capacity for
storing and processing information that is efficiently allocated
to maximize reward when learning and making decisions.
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Abstract
Different accounts have been developed to explain the mech-
anisms underlying value biases during perceptual decision-
making, within the model framework of bounded accumula-
tion. The starting point bias account suggests a shift in the
starting point of evidence accumulation, in the direction of
the more valuable alternative. The drift rate bias account sug-
gests that the mean rate of accumulation is steepened for the
more valuable alternative. While most studies have supported a
starting point bias (SPB) approach, recent work (Afacan-Seref,
Steinemann, Blangero, & Kelly, 2018) suggests that drift rate
biases (DRB) may also be applied in certain circumstances.
Here, we used human EEG signatures of competitive motor
preparation to construct a cognitive decision model that can
explain the biasing mechanisms through which participants
perform a value-biased orientation discrimination task under
a strict deadline. Motor preparation dynamics showed signs of
a value bias that emerged prior to evidence onset and increased
steadily with time. Accordingly, we constructed a model that
included an anticipatory dynamic urgency signal towards the
High Value alternative. This model provided a better fit to
behaviour than models with either a starting point or a drift
rate bias but no anticipatory dynamics. These results point to
a role for value-modulated, anticipatory motor preparation in
fast-paced decision-making tasks, and suggest a unitary mech-
anism that can generate both static (starting point) and dynamic
(drift rate) biases at the same time.
Keywords: value-biased decisions, urgency, decision making.

Introduction
Simple perceptual decisions can be divided into three key pro-
cessing stages: sensory encoding (the representation of sen-
sory information in the brain), decision formation and mo-
tor execution. Under no time constraints, sensory encoding
and decision formation can typically be completed well in
advance of motor execution. However, in many real-life sit-
uations, such as when playing football or driving at speed in
traffic, the brain has a limited time to integrate sensory infor-
mation before a response must be produced. In such situa-
tions, motor processes must evolve swiftly and prioritise the
action associated with higher value in order to maximise over-
all expected rewards, at the cost of greater uncertainty about
the correct choice. The way in which the brain implements
such prioritisation remains unclear.

For decades, sensorimotor decisions (where perception is
translated into overt action) have been studied using Bounded
Evidence Accumulation models. In this framework, sensory
evidence is integrated over time into a “decision variable”,
that produces an action upon reaching a threshold. Differ-
ent model variants have been devised to explain why choices
tend to be biased towards the more valuable option. The most
prominent of them incorporate static biases that do not change
in time, such as the Starting Point Bias (SPB) model, where
the starting point of the decision variable is shifted towards
the higher value option. The main alternative to this is a
Drift Rate Bias (DRB), where the mean rate of accumula-
tion is biased by value, and results in an increasing displace-
ment of the decision variable with time. In principle, one
way that a DRB can arise is from an enhancement of repre-
sentations of higher-value alternatives at the sensory level or
in the weighting of their readout, because stronger sensory
evidence would lead to a steeper build-up of its integral. An-
other way is through the addition of a dynamic bias signal at
the motor level, known as urgency. Urgency is an evidence-
independent component of decision variable buildup that con-
tributes to bringing the neural activity closer to a given neural
threshold even in the absence of informative sensory evidence
(Hanks, Kiani, & Shadlen, 2014). The decision-making lit-
erature reflects a preference for static (starting point) bi-
ases, because the models that incorporate them usually of-
fer an excellent quantitative fit to response time (RT) distri-
butions across many psychophysical tasks (Ratcliff & McK-
oon, 2008; Hawkins, Forstmann, Wagenmakers, Ratcliff, &
Brown, 2015).

Although not favoured in cognitive model comparisons,
other evidence suggests the plausibility of drift rate biases.
For example, studies have shown that sensory cortical repre-
sentations of stimuli are altered through their association with
reward, in a manner resembling effects of spatial or feature-
based attention (Serences & Saproo, 2010; Stanisor, Van Der
Togt, Pennartz, & Roelfsema, 2013). There has also been em-
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pirical evidence for the operation of dynamic urgency, which
has been observed in the firing of neurons associated with mo-
tor preparation in saccade-decision tasks in monkeys (Hanks,
Mazurek, Kiani, Hopp, & Shadlen, 2011). In that study, the
authors used a motion discrimination task, where they manip-
ulated stimulus reliability and the prior probability of motion
direction. Their results showed that a model incorporating a
dynamic bias signal that adds to cumulative evidence and in-
creases as a function of decision time - effectively generating
a DRB - provided a significantly better account of the data
than a static signal implemented as a SPB.

In a recent human EEG study of rapid color discrimina-
tion under a very strict deadline, it was shown that a DRB
model in which a constant value-bias is added to an increas-
ing drift rate outperformed both standard SPB and DRB mod-
els (Afacan-Seref et al., 2018). This model could predict both
behaviour and the temporal dynamics of neurophysiological
signals reflecting decision formation. In particular, the model
was able to capture a sudden, stimulus-evoked deflection in
relative motor preparation initially towards the higher-value
alternative, which, for low-value stimuli, was dynamically re-
directed toward the correct alternative. The model explained
this by assuming that value biases are applied to sensory re-
sponses that are initially nonselective for color and become
gradually more selective. In this way, the drift rate of the
decision process, assumed to be driven by the difference in
responses tuned to the two sensory alternatives, is initially
dominated by value and later dominated by sensory informa-
tion, as observed in the motor preparation dynamics.

Since the preceding model required assuming a two-phase
sensory response that first detects (via nonselective activity)
and then increasingly discriminates the sensory change be-
ing decided on, the question naturally arises, whether drift
rate biases are peculiar to this situation, or are more gener-
ally invoked for any sensory feature when task demands re-
quire prioritisation. It has been shown that orientation-tuned
neurons in the V1 region are immediately selective - that is,
they respond quickly and vigorously to their preferred orien-
tation and respond little if at all for the orthogonal orientation
(Shapley, Hawken, & Xing, 2007). In this study, we therefore
used an orientation discrimination task in order to assess the
generality of drift rate biasing mechanisms when responding
to sensory stimuli under time pressure.

Several lines of work have established that action selec-
tion dynamics at the motor level provide a key window onto
the evolving decision process, because evidence accumula-
tion is continuously fed to motor circuits (Selen, Shadlen, &
Wolpert, 2012). For example, an fMRI study found a lat-
eralized activation of the primary motor cortices since the
very beginning of the evidence accumulation process (Gluth,
Rieskamp, & Büchel, 2013). These authors also found that
activity in the pre-supplementary motor area (pre-SMA) in-
creased with time and was correlated with total accumulated
evidence. This continuous involvement of the motor sys-
tem during the decision-making process has been extended

to value-biased decisions, where it has been shown that the
Lateralized Readiness Potential (LRP), an event-related po-
tential thought to reflect the relative degree of preparation to
move the left versus right hand (Kornhuber & Deecke, 1965;
Vaughan, Costa, & Ritter, 1968) reflects the ongoing process
of evaluating the incoming sensory information from its very
beginning (Noorbaloochi, Sharon, & McClelland, 2015).

Studies such as Gratton et al. (1988), Van Vugt et al. (2014)
and Noorbaloochi et al. (2015) found evidence for static
SPB signals reflected in the LRP component, which were
strongly associated with response outcomes. In particular,
Noorbalochi and colleagues showed that separate evidence
related and reward related components could be clearly dis-
tinguished in the LRP signal. These features make this signal
a great candidate for the analysis of our task.

Figure 1: Orientation discrimination task.

In the present study we examined the static and/or dynamic
biases at play in sensorimotor decisions under conditions of
intense speed pressure. For this purpose, we recorded EEG
activity during a value-biased orientation discrimination task
under a strict deadline (Figure 1), where a correct response to
one orientation was worth more (40 points) than to the other
(10). We developed a bounded accumulation model informed
by value-biasing signatures in the LRP and compared its fit to
behaviour with that of existing models.

Method
A total of 25 participants took part in the study, but 3 were ex-
cluded from the analyses due to inadequate EEG signal qual-
ity. They were compensated with C32 for their participation
and they could earn up to C12 depending on their perfor-
mance. They all had normal or corrected-to-normal vision
and gave informed consent to participate in the study which
was approved by our local ethics committee.

In the task, after the initial fixation, a cue (two crossed,
coloured lines) was presented at fixation to indicate which of
the two alternatives was worth more points (40 vs 10) if it was
to be presented and responded to correctly, though the orien-
tation actually presented was equally likely. The trial’s value
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was randomised and each block contained an equal amount
of High and Low value trials. 850-900ms following the cue,
an oriented grating target appeared on the upper left or up-
per right of the screen (fixed within a block and counter-
balanced across blocks). The appropriate amount of points
was awarded if a left or right-hand response was made to a
left-tilted or right-tilted grating, respectively, within a 360-
ms deadline. The main EEG recording consisted of 8 blocks
of 160 trials each.

Motor preparation was measured as the LRP (Gratton et
al., 1988; de Jong, Wierda, Mulder, & Mulder, 1988; Eimer,
1998), at standard EEG sites C3 and C4. Four simplified ver-
sions of the bounded diffusion models were constructed to
examine the two alternative value biasing mechanisms (SPB
and DRB) and also to examine the mechanisms that produce
fast errors (starting-point variability [‘VS’] versus increasing
evidence [‘IE’]) as was done in Afacan-Seref et al. (2018).
The SPB-VS model was defined by the following equation:

x(t) = x(t−1)+d ·dt +N(0,s
√

dt)

x(0)∼U(±zB,±zB + sz)
(1)

Where d is the drift rate, dt is the discrete time increment
(1 ms in simulations) and N(0,s

√
dt) refers to Gaussian noise

with zero mean and variance s2 · dt. The SPB is zB, with
a positive sign for High Value and negative for Low Value
trials. The starting point variability was determined by sz.
The DRB-VS model was defined by the following equation:

x(t) = x(t−1)+(d±dB)dt +N(0,s
√

dt)

x(0)∼U(−sz,+sz)
(2)

Where dB is the symmetric bias in the drift rate (positive
for High Value trials and negative for Low Value ones). The
SPB-IE model was defined by:

x(t) = x(t−1)+ c · t ·dt +N(0,s
√

dt)

x(0) =±zB
(3)

Where c is the slope for the linearly increasing drift rate.
The DRB-IE model was defined by:

x(t) = x(t−1)+(c · t±dB)dt +N(0,s
√

dt)

x(0) = 0
(4)

A fifth model was created inspired by the observed LRP
dynamics (see Results), which included an early biased dy-
namic urgency signal. This model was defined by:

x(t) = x(t−1)+u ·dt + e(t)
(
d ·dt +N(0,s

√
dt
)

x(uoT ) = 0

e(t) =

{
0, if t < eoT

1, if t ≥ eoT

u∼ N(±uµ,uσ)

(5)

Where u is the rate of increase of the urgency signal. The
onset time of the urgency signal is defined by uoT . The mean
of this urgency signal has a positive sign for High Value con-
ditions and a negative one for Low Value ones. The appear-
ance of the evidence and start of the accumulation process is
represented by the unit step function e(t) with onset at eoT .
For all models the decision variable x evolved with the stated
dynamics until it crossed either an upper (+1) or lower (−1)
bound resulting in a correct or incorrect outcome, respec-
tively, with the RT equated to the bound crossing time, such
that any non-decision time is allowed for by the onset timing
parameters uoT and eoT .

All models were fitted by Monte-Carlo simulation meth-
ods to individual participant choice and RT distributions with
a bounded SIMPLEX routine (Nelder & Mead, 1965) imple-
mented in the MATLAB function fminsearchbnd with a G2

likelihood ratio statistic as the cost function, quantifying the
divergence between the bins separated by the five quantiles
[.1, .3, .5, .7, .9] for correct and error trials in the simulated
and real datasets.

Results
As expected, correct responses were more frequent on High
Value than Low Value trials (90% versus 54%, F(1,21) =
51.51, p < .001; Figure 2). There was a significant inter-
action of value (high/low) x accuracy (correct/error) on RT
(2 x 2 rmANOVA, F(1,21) = 600.45, p < .001), driven by
the fact that correct trial RTs were significantly faster for
High Value targets compared to Low Value targets (t(21) =
−76.773, p < .001) and the opposite was observed for Errors
t(21) = 11.027, p < .001). When plotting Accuracy over RT,
a shift in the responses was observed for low value trials, from
very fast, purely value-driven erroneous responses to slow
sensory-driven correct ones (Figure 2). The fast value-driven
responses are further emphasized by the perfect overlap in the
leading tail of the distribution for Low value errors and High
Value correct trials.

Figure 2: Response Time distribution and Conditional Accu-
racy Function averaged over participants.

A bias mechanism in the form of a SPB around target
onset was observed in the LRP (Figure 3), across the dif-
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ferent value conditions (F(1,21) = 21.583, p < .001) and it
had an influence on choice outcome (for Low Value trials
F(1,21) = 6.88, p = 0.016). Interestingly, this bias in start-
ing level at target onset did not appear to be static, but contin-
uously grew through the post-target delay period before the
process accelerated due to bottom-up input. This reflects a
dynamic urgency bias (value difference in the slopes of the
target locked LRP from -100 to 100ms t(21) = 4.6, p < .001;
Figure 3) and represents an empirical neural signature of
DRB. We used this anticipatory urgency signal from the LRP
to estimate an “urgency onset time” that we could compare
to the urgency onset time estimated by our model (Table
1). A straight line was fitted to the target-locked LRP sig-
nal from -100ms to 100ms and extended backward in time
until it reached zero, producing an estimate of the starting
point of this dynamic bias: around 442ms before target onset.
This empirical urgency onset time differed from the model’s
estimation (-442ms vs 72ms). Response-locked LRP plots
showed a pre-response “threshold” level that did not signif-
icantly vary with value (F(1,21) = .547, p = .468) or loca-
tion (F(1,21) = .250, p= .622). This was consistent with our
model’s assumption of constant bounds set above and below
a one-dimensional decision variable.

Table 1: Estimated parameter values for the Urgency model,
averaged across participants.

uoT uµ uσ d s eoT
0.072 3.0342 4.205 9.973 2.839 0.27

Figure 3: From left to right, LRP motor preparation dynam-
ics time-locked to the target onset for High and Low value
(left), separating Fast and Slow Low Value (center), and time-
locked to the response (right), broken out by behavioural out-
come. Upward deflections reflect preparation toward the cor-
rect response.

As in previous work (Afacan-Seref et al., 2018), a DRB
model with increasing evidence showed a better fit to be-
haviour (lower Bayes Information Criterion [BIC], Figure 4)
than SPB models, or models that included variability in their
starting point rather than increasing evidence. However, our
neurally-informed model, which instead incorporated an an-

ticipatory biased urgency signal and time-invariant but later-
onsetting evidence, provided the best fit overall (lowest BIC,
Figure 4).

Figure 4: Mean BIC values quantifying goodness of fit. Er-
ror bars indicate S.E.M. after factoring out between-subjects
variance.

Discussion
When faced with different environmental demands, choice-
associated rewards need to be taken into account to make a
decision that maximises expected gain. Within the stream
of processes that lead to an action, at what point is this re-
ward exerting its influence? What neural mechanism is re-
sponsible for it? Answering these questions and provid-
ing a neurally informed model that can capture behaviour
in time-constrained situations is key to guiding leading the-
ories about cognitive dysfunction in brain disorders such as
ADHD, Autism, Depression, Addiction, Borderline Person-
ality Disorder, Obsessive-Compulsive Disorder, and Parkin-
son’s disease.

In this study, we examined behaviour and motor prepara-
tion dynamics during a two-choice rapid orientation discrim-
ination task with asymmetric rewards (10 vs 40 points). Neu-
rally informed mathematical modelling indicated that both
static and dynamic biases are needed to explain behavioural
data in fast decision scenarios and that the effects of both can
be generated through a unitary mechanism, namely an antici-
patory biased urgency signal.

Despite the prevalence of studies supporting static biases
over dynamic ones for many years, recent studies are suggest-
ing that dynamic biases might also play a role in the decision
making process, especially when faced with time restrictions
(Afacan-Seref et al., 2018). However, the literature already
held examples of mixed results. On the one hand, for ex-
ample, Ratcliff and McKoon (2008), used a biased motion
discrimination task in which stimulus proportion for left or
right responses was varied. The authors interpreted a shift
in the leading edges of the RT distributions due to stimulus
probability, as an indication of a SPB. This conclusion was
also supported by their model, which showed that the differ-
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ence in starting point accounted for most of the proportion
effect. On the other hand, in one monkey single-cell record-
ing study (Hanks et al., 2011) using a motion discrimination
task, firing rates of decision variable encoding sensorimotor
neurons built at a steeper rate toward the more probable op-
tion. They thus constructed a model that included a dynami-
cally growing, evidence-independent bias component, which
was able to account for human and monkey behaviour bet-
ter than standard models. Although this bias signal would
effectively implement a DRB, this interpretation was not uni-
versally accepted (Ratcliff, Smith, Brown, & McKoon, 2016).
The model we constructed here is very similar but has the dis-
tinction that, as reflected in motor preparation dynamics, the
biased urgency signal can, under time pressure, be well under
way before the evidence begins to be processed. In doing so,
we demonstrate that both starting point biases and drift rate
biases are at play in the same scenario and can be generated
by a single mechanism.

Accurately adjudicating between alternative cognitive
models of the decision process can be difficult based on
behaviour alone (O’Connell, Shadlen, Wong-Lin, & Kelly,
2018). In the present study, we used neural data to inform
the structure and the fitting process of our models. A dy-
namic bias signal observed in the LRP, which started before
evidence onset, effectively producing a SPB as well, indi-
cated that an anticipatory urgency signal must have been at
play. This is well expected in such a fast-paced task where
the participant has very limited exposure to the stimulus be-
fore the deadline. Also, a unique threshold was observed in
the motor preparation dynamics across conditions, inspiring
the construction of a one-dimensional decision model.

It has been suggested that top-down expectations could in-
fluence the creation of representations or templates of the ex-
pected stimulus in the visual cortex, and these representations
would later be compared to bottom-up stimulus information
(Friston, 2005; Rao & Ballard, 1999; Mumford, 1992). Neu-
ral responses to redundant (expected) information in early
sensory regions might be suppressed by higher-order regions
(Mumford, 1992; Murray, Kersten, Olshausen, Schrater, &
Woods, 2002; Rao & Ballard, 1999) or they could be rather
increased by suppressing responses to stimuli that are incon-
sistent with the current expectations (Lee, Yang, Romero, &
Mumford, 2002). Value biases could influence the creation of
such representations as expectations do (Stanisor et al., 2013),
by means of changing the drift rate during the decision mak-
ing process. Alternatively, a modulation of the weighting or
reference values used in the readout of these sensory repre-
sentations could cause a change in the drift rate (Afacan-Seref
et al., 2018). The present results can neither prove nor ex-
clude the possibility that biases are also exerted at the sensory
level or its readout. Further studies looking into an explicit
modulation of the early visual cortical responses are needed
in order to answer this question.

However, we found evidence for the third possibility men-
tioned above, a simpler mechanism that can produce drift rate

biases that originate at the motor level (urgency). Up to now,
motor preparation dynamics have been shown to reflect the
continuous evaluation of incoming sensory information only
from the beginning of the evidence accumulation process, as-
sumed in standard models to onset after sensory encoding has
been completed (Ratcliff & McKoon, 2008). However, our
results suggest that decision-related motor preparation dy-
namics are in play well before the evidence is encoded, and
that under time constraints, reward information is fed to the
motor circuit to bias these anticipatory dynamics independent
of the evidence presentation. This finding bears some simi-
larity to Noorbaloochi et al. (2015) where separate evidence
and reward related components were observed in the LRP, but
our model is distinct in that rather than assuming two sepa-
rate value-biased guess and sensory accumulation processes,
reward information and sensory evidence jointly influence a
single, dynamically evolving decision process. That there is
a single, thresholded process is evidenced in the unique de-
cision threshold that we observed in the LRP across value
conditions (Figure 3).

In our study, unlike Noorbaloochi et al. (2015), the antic-
ipatory urgency bias did correlate with response choice (see
Results). This discrepancy could be caused by the different
deadlines used in each study. Here, the deadline was very
tight and to perform optimally you needed to start prepar-
ing before seeing the stimulus on the screen. In fact, our
neural data suggest that this preparation started ∼ 442ms be-
fore stimulus onset and continuously grew over time, whereas
in Noorbaloochi et al. (2015), the SPB was static, and their
model estimated that the fast guess process onsets at∼ 150ms
after target onset. In fact, our own model’s estimated param-
eter for the start of the urgency signal (0.072 s) did not coin-
cide with our neural data. Even accounting for the fact that
our onset estimate would be misestimated to be later by an
amount equal to the motor non-decision time, the latter can
be expected to be approximately 50-100 ms, leaving still a big
discrepancy between the empirical and the estimated data. A
possible next step could be to constrain the model, in order to
match this urgency onset time and test whether it is still able
to account for the behavioural dynamics. So far, the present
model presents one unique mechanism that can qualitatively
account for the increase in Starting Point Bias observed in the
LRP and quantitatively capture the observed RT distributions.
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Abstract
To be keen learners, humans need both external and internal
rewards. To date, many studies on environmental learning
using intrinsic motivation for artificial agents have been con-
ducted. In this study, we aim to build a method to express
curiosity in new environments via the ACT-R (Adaptive Con-
trol of Thought-Rational) cognitive architecture. This model
focuses on the “production compilation” and “utility” mod-
ules, which are generic functions of ACT-R, and it regards pat-
tern matching with the environment as a source of intellectual
curiosity. We simulated a path-planning task in a maze envi-
ronment using the proposed model. The model with intellec-
tual curiosity revealed that understanding of the environment
was improved through the task of searching the environment.
Furthermore, we implemented the model using a standard re-
inforcement learning agent and compared it with the ACT-R
model.
Keywords: Cognitive modeling; intrinsic motivation; ACT-R

Introduction
Humans can learn in a wide range of environments to achieve
their goals using rewards generated internally and externally.
To simulate such keen learning through artificial agents, the
concept of intrinsic motivation, which is driven by rewards,
such as self-efficacy and curiosity, has been discussed by sev-
eral researchers (Manoury, Sao, & Cédric, 2019; Schmidhu-
ber, 2010; Singh, Barto, & Chentanez, 2005).

However, these researchers have not explained the con-
nection of intrinsic motivation with other primitive cognitive
functions based on the framework of reinforcement learning.
In contrast, recent studies of cognitive modeling have increas-
ingly relied on cognitive architectures, which integrate primi-
tive functions commonly used in various tasks (see Kotseruba
& Tsotsos, 2020, as a recent review). By sharing primitive
processes between different tasks, the overall structure of hu-
man cognition is defined.

Following these trends of studies, the current study aims to
present one of the possible cognitive mechanisms behind in-
trinsic motivation based on cognitive architecture. Among
several cognitive architectures, we use ACT-R (Adaptive
Control of Thought-Rational; Anderson 2007). This archi-
tecture has been widely used, and considerable research has
been conducted on it. Furthermore, ACT-R has a module
similar to that of reinforcement learning used in conventional
autonomous agents. Thus, we consider it useful to model in-
trinsic motivation in ACT-R by connecting the basic cognitive
functions that have already been validated by various psycho-
logical experiments.

Before presenting the model, we clarify our purpose by re-
viewing the previous studies relating to this topic. Following

this, we propose a mechanism of intrinsic motivation, which
especially focuses on pattern matching between the environ-
ment and internal knowledge, assuming a correlation to hu-
man intellectual curiosity. The proposed mechanism is im-
plemented to run simulations of a specific task. Finally, we
summarize the current status and indicate future directions of
research.

Related Works
This section presents two directions of studies about environ-
mental learning: studies based on reinforcement learning and
ACT-R.

Intrinsic Motivation in Reinforcement Learning
To date, several researchers have studied artificial agents with
intrinsic motivation (Manoury et al., 2019; Schmidhuber,
2010; Singh et al., 2005). These studies have modeled cu-
riosity, which is one type of intrinsic motivation, and have
investigated methods to make agents search the environment
widely. Such studies have primarily used statistical learning
frameworks, such as reinforcement learning. Usually, agents
created from reinforcement learning determine their actions
based on information received from the external environment.
The environment generates rewards depending on the result
of their actions, and they seek to maximize the rewards it over
time. Regarding this traditional framework, Sutton and Barto
(1998) pointed out that the boundaries between agents and
the environment are not the same as the physical boundaries
between the body and the environment. Following this claim,
Singh et al. (2005) proposed intrinsically motivated reinforce-
ment learning (IMRL). In contrast to conventional reinforce-
ment learning, in which one receives a reward directly from
the external environment, IMRL fluctuates depending on the
state of the internal environment and models the curiosity for
an unexpected response.

In recent years, this topic has remarkably progressed with
a framework of deep reinforcement learning (Burda et al.,
2018; Pathak, Agrawal, Efros, & Darrell, 2017). Burda et
al. (2018) examined environmental learning based solely on
intrinsic rewards. The screens of games, such as Atari and
Unity maze tasks, were used as input (Mnih et al., 2015), and
internal rewards were generated from novel experiences for
agents. As a result, agents learned a wide range of environ-
ments and improved their game scores. The authors indicated
that game environments are usually designed to stimulate the
users’ curiosity, and the game scores increase when they find
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new information in the environment.

Environmental Search and Emotion in ACT-R
The studies presented in the previous section did not exam-
ine the association between humans and models but aimed
to propose learning algorithms that realize optimal searches.
In contrast, ACT-R is a cognitive architecture with modules
corresponding to brain regions. For example, the declarative
module retains experience and knowledge, and the goal mod-
ule manages states in tasks. The production rules in ACT-R
are selected based on the status of such modules, and they
send commands to the modules as actions (e.g., search for
knowledge that meets the conditions and update the current
state of the task). These rules include variables that real-
ize flexible correspondence (pattern matching) with module
states.

Concerning environmental learning, Fu and Anderson
(2006) used ACT-R to solve the repeated maze task by imple-
menting knowledge concerning direction, such as up, down,
left, and right. Their model used an ACT-R function called
the “utility module”, which is similar to Q-Learning, a model-
free reinforcement learning algorithm to optimize a policy of
determining action taken under a specific situation (Watkins,
1989). Using this module, the model received a positive re-
ward when performing an action leading to achieving the cur-
rent goal and a negative reward when performing an action
that not leading to achieving the current goal. By doing this,
the model learned to take optimal action by increasing the
number of trials.

Other research performed path planning of the maze task
using not only reinforcement learning but also learning of
declarative knowledge, which was implemented in ACT-R.
Reitter and Lebiere (2010) employed declarative knowledge
representing the structure of mazes as topological maps and
presented a backtracking algorithm searching the topological
maps to find a goal. Their model did not include implemen-
tations of acquiring such topological maps but assumed that
they were acquired through a general mechanism of instance-
based learning that uses experience to solve the current situa-
tion (Gonzalez, Lerch, & Lebiere, 2003).

Although the official ACT-R theory has so far not directly
included the topic of intrinsic motivation for environmental
learning, many researchers have been working on models of
emotion, which relate to intrinsic motivation. Dancy, Ritter,
Berry, and Klein (2015) explained the influence of emotions
by combining cognitive processes of ACT-R with physiolog-
ical mechanisms. van Vugt and van der Velde (2018) built a
cognitive model that describes depression by the proportion
of memories with positive and negative emotions. Further-
more, Juvina, Larue, and Hough (2018) constructed a model
of learning emotional memories using internally generated re-
ward functions. Each of these studies developed novel mod-
ules or functions of ACT-R to approach emotional processes.
In contrast, in this research, we aim to model intrinsic moti-
vation using the existing built-in functions of ACT-R. In par-
ticular, the current study proposes a mechanism of reward

fluctuation that naturally emerges from the learning process
of ACT-R instead of directly defining reward functions as a
formula.

Proposed Mechanism of Intrinsic Motivation
This section presents our proposed mechanism of intrinsic
motivation. The mechanism is based on the idea of con-
necting intellectual curiosity with pattern matching. After de-
scribing this idea, we present a general framework of intrinsic
motivation by combining the existing functions of ACT-R.

Intellectual Curiosity and Pattern Matching

Following Burda et al. (2018), we focus on curiosity as one
of the causes of intrinsic motivation. As shown in previous
studies, the agents’ curiosity facilitates the exploration of the
game environment, and the agents’ game performance im-
proves. In the book Theory of Fun for Game Design, game
designer Koster (2004) said that good games stimulate users’
curiosity. He also mentioned that the fun in the game is de-
fined as discovering patterns leading to continuous learning.
For example, in games where the optimal solution is found
from several patterns, there is nothing to be obtained from the
game after finding the optimal solution, and boredom occurs.

In the current study, we focused on the pattern-matching
mechanism as a concept analogous to the discovery of pat-
terns by humans. Pattern matching is a primitive-purpose
mechanism. For a popular example, not limited to cognitive
modeling, even text searching uses pattern matching, which
is expressed as regular expressions. In ACT-R, as mentioned,
pattern matching is used to match production rules and mod-
ule states. Figure 1 explains pattern matching in ACT-R.
In this example, Variable 1 and Variable 2, which are in-
cluded in the then clause of the ACT-R production rule are
matched with the constants (i.e., numbers such as 1 and 2) of
the declarative knowledge.

Figure 1: Example of ACT-R pattern matching. The model
queries “declarative memory (DM)” with the “THEN” of the
previous rule and illustrates the flow in which variables are
bound by the “IF” of the next rule.
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In this way, pattern matching discovers structures in the
environment according to the patterns of variables embedded
in the rules. Anderson (2007) claimed that a type of pat-
tern matching dealing with relational structure is essential to
achieving human-specific cognitive functions, such as cogni-
tive flexibility, linguistic processing, metacognition, and ana-
logical reasoning1. From this claim, we assume that the pat-
tern matching of the cognitive model might lead to a model
of human intellectual curiosity based on pattern discovery.

Decay of Intellectual Curiosity
To explain the role of intellectual curiosity in the primitive
cognitive process, we need to consider how such a motiva-
tion decays during the process of task execution. We assume
that such a decay process is the reverse of learning, namely
boredom. To consider this in detail, the following subsec-
tions present a summary of the learning functions of ACT-R:
the utility and production compilation modules.

Utility The ACT-R has two types of knowledge: declara-
tive (chunks) and procedural (production rules). Each has
learning mechanisms to acquire and to modulate the use of
knowledge. Among these approaches, we focus on the mod-
ulation of procedural knowledge to determine whether to con-
tinue performing the task (motivated state) or to quit the task
(bored state). As noted in the previous section, ACT-R has
a utility module that controls a conflict resolution (selecting
one of several rules that can fire (execute) in a specific situa-
tion) and updates the utilities through rewards (Fu & Ander-
son, 2006). Using this module, we solve a conflict between
the task continuation rule and task stopping rule and assume
that the number of rewards adjusting these utilities is influ-
enced by the execution of the production compilation.

Production Compilation The production compilation
module combines two successive production rules into one
production rule (Taatgen & Lee, 2003). By repeatedly firing
a series of rules for a certain task, the integration of rules oc-
curs, and the number of rules that fire is reduced until the task
is completed. Production rules that are the target of integra-
tion usually include variables in the conditional clauses (the
IF parts). In ACT-R, the flexible nature of human thought is
modeled by pattern matching of declarative knowledge with
the pattern of variables described in a production rule. The in-
tegration of rules by production compilation skips such flex-
ible pattern matching (i.e., avoiding retrievals of declarative
memory). In other words, variables contained in the rules
before integration are replaced by static values copied from
declarative knowledge, and routine automatic task execution
procedures are produced.

Figure 2 illustrates a trace of the ACT-R model that plans
the path from the current position to the goal position in a
maze environment, which is the task used in the simulation
presented in the later section. The vertical axis indicates time,

1Anderson (2007) made this claim at the introduction of the
ACT-R function called dynamic pattern matching.

and each column indicates a module event. The trace on the
left represents the initial state of the model using planning
declarative knowledge to plan the path. The trace on the right
is the process after the compilation when the model plans the
path without retrieving declarative knowledge.

Figure 2: Example before and after learning using the pro-
duction compilation module.

By applying this mechanism to the search of the maze envi-
ronment, at first, the model often performs memory retrieval
from the environmental map inside the declarative knowl-
edge. As the task progresses, those memory retrievals be-
comes unnecessary. As a result, the model runs the tasks effi-
ciently, and the frequency of pattern matching decreases due
to the exhaustion of patterns in the environment.

Mechanism of the Task Continuation
Using the primitive functions presented so far, we propose
our original mechanism of intellectual curiosity to determine
whether to continue or to stop the task. Figure 3 illustrates a
proposed mechanism of the continuation of a task in a gen-
eral environment. At the start of each round, the model de-
cides whether to continue or stop the task (conflict resolution
between two rules). After it decides to continue the task, the
model proceeds with the round by firing various rules (search-
ing the map, etc.). When the model encounters a condition
that ends the round, a new round is started, and the model
decides whether to continue or stop the task again.

In the above process, the initial value of the utility of the
continue rule is considered higher than that of the stop rule.
At the beginning of the task, it can be assumed that humans
intend to continue the task. The process of becoming bored
from this initial state can be modeled by assigning a trigger
of a negative reward to the rule that recognizes the end of
each round. By triggering a negative reward at the end of the
round, the utility of the continue rule, which have fired as a
result of the previous conflict resolution, decreases, and the
probability of firing the stop rule increases.

To prevent boredom and to consider the conditions for con-
tinuing environmental learning, a model of intellectual cu-
riosity, namely fun, is required. If the model finds fun dur-
ing the task, a positive reward is triggered, and the utility of
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Figure 3: Flowchart of the task continuation model. Using
“pattern matching” leads to a positive reward.

the continue rule maintains a high value. In this study, rules
that trigger positive rewards are defined as rules that fire as
a result of the successful retrieval of declarative knowledge
in the task, such as remembering the map. The search for
declarative knowledge requires pattern matching between the
conditional clauses of the rule (the current situation) and the
memory in declarative knowledge, and its success is consis-
tent with Koster’s definition of fun (finding patterns). How-
ever, this rule gradually becomes used to repeated execution;
that is, the integration of rules occurs. After integration oc-
curs, it becomes routine and cannot receive a reward. Then,
the utility value of the continue rule decreases, and the stop
rule fires. In short, long-term task continuation is achieved by
keeping the model engaged in pattern matching between con-
ditional clauses of production rules and declarative knowl-
edge.

Implementation
The purpose of this study is to model intrinsic motivation by
collecting primitive functions provided by ACT-R. For this
purpose, it is necessary to implement the mechanism shown
in the previous section on a specific task and observe its be-
havior. In this study, we select a path-planning maze task that
has been used in many previous studies.

The Model of Maze Task
Our implementation of the ACT-R model for the maze search
extends the memory-based strategy described in Reitter and
Lebiere (2010) to include the mechanisms of task continua-
tion (Figure 3).

Environment Figure 4 illustrates the maze in the present
research. Reitter and Lebiere (2010) represented the maze
environment as a topological map, consisting of a collection
of cell IDs and links between cell IDs. In ACT-R, such a
topological map is represented by a collection of chunks, and
the model searches the environment, retrieving these chunks
in the declarative memory.

Figure 4: Maze environment

Searching Behaviours During the task, the model stores
the current cell ID in the goal buffer. The model is initially
located in #16 in Figure 4, and the model changes this state
to #1 by retrieving a chunk stored in the declarative module.
The chunk associated with the current position is requested,
and the goal buffer is updated if the model retrieves such a
chunk. This procedure is repeated until the model reaches the
goal (#1).

Each time the goal is reached, the model labels all the
chunks used in the current round as the correct path and stores
these in the declarative module. From the next rounds, the
model runs the task efficiently using these labeled chunks,
following the method of the instance-based learning theory
(Gonzalez et al., 2003).

If the model fails to retrieve the correct chunks, the model
plans the path from the current position to the goal position
using a heuristic search, namely a stochastic depth-first search
(DFS). To realize backtracking used in a DFS, we imple-
mented a stack structure using the imaginal module of ACT-
R. Figure 5 depicts the stack function using chunks generated
by this module. The push function in the stack is realized by
generating a chunk that stores the name of the past chunk in
the ARG1 slot. In addition, the pop function in the stack is re-
alized by returning the ARG1 slot value to the past slot value.
These generated chunks are stored in the declarative knowl-
edge and can be retrieved later to realize the pop function. We
implemented all these processes only through ACT-R produc-
tion rules without defining any external functions written in
other programming languages, such as LISP.
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Figure 5: Stack structure of chunks implemented using the
“imaginal module” of the ACT-R. During the search, the state
of the model is dynamically stored (pushed) in the declarative
module. The stored chunks are retrieved (popped) by follow-
ing the dependencies noted in the slots of the chunks (dashed
arrows).

Intrinsic Motivation in the Task In this simple maze task,
we tried to observe how fun and boredom occur. In this
model, fun, which is attached to pattern matching, is defined
as remembering the correct path from the current situation to
the goal. Specifically, the success of the DFS is defined as
the attenuation of the motivation for continuing the task (pos-
itive rewards). In contrast, regardless of the success or failure
of the goal search, a rule that fires at the end of the round is
used as a trigger for a negative reward. The utility value of
the continue rule decreases, as the negative trigger associated
with the end of the round continues to occur without the rule
expressing fun firing during the round. When the utility value
of the continue rule falls below the utility value of the stop
rule, the stop rule fires, and the task is terminated.

Simulation

Settings To confirm the behavior of our model of intrinsic
motivation, we performed a simulation where the initial util-
ity value of the continue rule was set to 10, and the initial
utility value of the stop rule was set to 5. We also assigned
the triggers of the negative reward (r = 0) to rules that recog-
nized the end of the round (reaching goal #1 or recognizing
that the time limit of each round has passed) and assigned the
triggers of the positive reward to rules that included pattern
matching. In this research, we select the path finding rule
rule (DFS success) as the trigger of the positive reward, vary-
ing the value from 1 to 20 as the simulation conditions. For
each condition of the positive reward value, the model runs
the task 1000 times. In addition, we set the time limit of each
round from 100 to 300 s. When the time limit was reached,

the model resolved the conflict between the continue and stop
rules.

The model also has rules that stochastically determine the
directions to proceed (up, down, left, and right). The ini-
tial values of these utilities were also set to 10. Following
Anderson et al. (2004), noise parameters were set as follows:
ans (activation noise level) = 0.4 and, egs (production noise
level) = 0.5.

Figure 6: Results of the ACT-R model. Top: number of con-
tinued rounds; Middle: new rules generated by the production
compilation; Bottom: goal rates of the model. The error bars
in each graph represent the standard error.

Results Figure 6 displays the results of the simulation.
From this figure, we observe that the reward generated by the
pattern matching increased the number of continued rounds,
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number of rules generated by the compilation module, and
goal achievement rate. These results indicate that the imple-
mented intrinsic motivation, which makes the model have a
longer task continuation, leads to acquiring richer knowledge,
resulting in better performance.

Comparison with Conventional Method
To further clarify the behavior of the proposed ACT-R model
of intrinsic motivation, we compared it with a reinforcement
learning agent that searched the maze environment in Figure
4. In this simulation, we used the algorithm of IMRL (Singh
et al., 2005). At each time point, the reinforcement learning
model is located on one of the numbered positions in the map,
and it moves to up, left, down, or right. The selection of
the direction is controlled with IMRL with ε-greedy (ε = 0.2,
γ = 0.9, α = 0.2):

Q(s,a)← Q(s,a)+α[ŕi + ŕe + γmaxQ(ś, á)−Q(s,a)] (1)

Equation 1 indicates the updating of the Q value of the present
model, where re represents a reward from the external envi-
ronment, and ri represents a reward from the internal environ-
ment. The model receives re =−1 when it fails to remember
the path, whereas it receives re = 0 when it successfully re-
members the path. The model also obtains re = 10 when it
reaches the goal. Contrary to re, ri is determined with Equa-
tion 2.

ri =−τ(1− p) log(1− p) (2)

where p represents the transition probability with the Q value.
From this equation, the internal reward ri is determined as the
entropy of the probability of the complementary event with
respect to p. In addition, τ is the coefficient for the reward
value used in the simulation. A larger τ indicates a greater in-
trinsic motivation. In this study, we manipulated this value
from 0.34 to 0.74. For each condition of the τ value, the
model runs the task 1000 times. We manipulated the num-
ber of steps of movement in each round (100, 125, and 150
steps). When the step limit was reached, the model chose to
quit the task or to continue the task by comparing the summa-
tion of the obtained internal reward (ri) with the given thresh-
old (th = 5).

Figure 7 indicates the result of the simulation of the rein-
forcement learning model. Similar to the ACT-R model, the
internal reward increases the number of rounds. However, in
contrast to the ACT-R model, it slightly decreases the goal
rate. That is, the reinforcement learning model with high in-
trinsic motivation does not learn to achieve the goal but learns
to explore the environment. This behavior might be changed
by modulating the balance between ri and re in Equation 1
or by designing the maze environment carefully to stimulate
curiosity, as suggested by Burda et al. (2018). However, our
ACT-R model could learn the environment without such care-
ful parameter modulations or environmental design. There-
fore, from this simulation, we can claim the advantage of our
model in representing intrinsic motivation.

Figure 7: Results of the reinforcement learning model. Top:
number of continued rounds; Bottom: goal rates. The error
in each graph is the standard error.

Conclusion
The purpose of this study was to construct a model of intrin-
sic motivation by accumulating primitive cognitive processes
provided by ACT-R. To achieve this goal, we assumed that
the mechanism of pattern matching represents the source of
intellectual curiosity, namely fun. Thus, with the success of
pattern matching, the model maintains high intrinsic motiva-
tion for task continuation. In contrast, by skipping the pattern
matching with compilation mechanisms, the model ‘tires’ of
the task and eventually stops.

From the simulation results presented in Figures 6 and 7,
we consider that our model has an advantage in learning new
environments. The model uses both the utility module and
instance-based learning (memorizing the correct path to the
goal; Gonzalez et al., 2007). Such a combination of several
learning algorithms might help balance the intrinsic and ex-
trinsic rewards in the current maze task.

However, the result in the previous section does not in-
dicate that the conventional reinforcement learning cannot
achieve the same learning as ACT-R. The model presented
by Singh et al. (2005) included the mechanism called op-
tion, which summarizes low-level actions into abstract-level
units (Sutton, Precup, & Singh, 1999) and indicated the pro-
cess of moving up using abstract option as the model learned
the environment. This mechanism has a commonality with
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the compilation module in ACT-R. Schmidhuber (2010) also
pointed out that such a compression mechanism is the same
as the prediction mechanism, which leads to the emotional
process of fun and boredom. We need to further explore the
relationship between such models of reinforcement learning
and the proposed model.

In addition to the efficacy of environmental learning, the
expression of the internal reward of our model has an ad-
vantage compared to previous studies. In our model, we did
not explicitly divide the internal and external rewards in the
equation, but the effect of intrinsic motivation is represented
in the existing mechanism of ACT-R. We consider that this
approach has an advantage because it is based on the theory
of human cognition, it is related to the existing learning re-
search, and it saves unnecessary factors in the theory.

In future studies, we need to compare the model of intrinsic
motivation with human data. As a model of human cognition,
behavior presented by conventional reinforcement learning
might not be wrong. During search tasks, people often forget
the goals and decrease in performance. Such irrational be-
havior might also relate to computational psychiatry (Huys,
Maia, & Frank, 2016).

We also need to model the optimal level of motivation
(Yerkes & Dodson, 1908). In this study, the model statisti-
cally determines the initial utility value of the continue rule
to focus on the decay process of intellectual curiosity. The
process up to the optimal level, obtaining intrinsic motivation
for the target environmental learning, is not modeled. There-
fore, by constructing a model representing such a process, we
can explore more detailed conditions of task continuation, es-
pecially those before the model reaches optimal levels.
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Abstract
Decisions under uncertainty are often made by weighing the
expected costs and benefits of the available options. The costs-
benefits tradeoffs may make decisions easy or difficult, partic-
ularly given uncertainty of these costs and rewards. In this re-
search, we evaluate how a cognitive model based on Instance-
Based Learning Theory (IBLT) and two well-known reinforce-
ment learning (RL) algorithms learn to make better choices
in a goal-seeking gridworld task under uncertainty and on in-
creasing degrees of decision complexity. We also use a random
agent as a base level comparison. Our results suggest that IBL
and RL models are comparable in their accuracy levels on sim-
ple settings, although the RL models are more efficient than the
IBL model. However, as decision complexity increases, the
IBL model is not only more accurate but also more efficient
than the RL models. Our results suggest that the IBL model is
able to pursue highly rewarding targets even when the costs in-
crease; while the RL models seem to get “distracted” by lower
costs, reaching lower reward targets.
Keywords: decision complexity; instance-based learning the-
ory; reinforcement learning; goal-seeking task.

Introduction
Goal-seeking in gridworld navigation, has long been a classi-
cal task for developing Artificial Intelligent (AI) agents. Gen-
erally, the agent must navigate an environment (e.g., grid-
world) with uncertainty about the surroundings to achieve a
goal (i.e., consuming the highest rewarding object) given a
number of obstacles and within a time limit. This type of task
underlies a broad range of applications such as search and
rescue or pickup and delivery missions.

Researchers have commonly addressed this type of task us-
ing Reinforcement Learning (RL) models, a computational
method of learning from interaction (Sutton, Barto, et al.,
1998; Gershman & Daw, 2017). A major challenge for re-
search in AI is to develop systems that can replicate human
behavior; and although there is much evidence of RL’s abil-
ity to account for human behavior in some dynamic decision
tasks (Gureckis & Love, 2009; Simon & Daw, 2011), the
concern has been raised that the advance in RL paradigms
is mostly centered on solving computational problems effi-
ciently, rather than replicating or explaining in detail how hu-
mans learn (Botvinick et al., 2019).

Cognitive modeling on the other hand, is aimed at un-
derstanding and interpreting human behavior by representing
the cognitive steps by which a task is performed. In par-
ticular, Instance-based Learning Theory (IBLT) was devel-
oped to provide a cognitively-plausible account for how hu-
mans make decisions from experience and under uncertainty,
through interactions with dynamic environments (Gonzalez,
Lerch, & Lebiere, 2003). IBLT has shown accurate repre-
sentation of human choice and broad applicability in a wide

number of decision making domains, from economic decision
making to highly applied situations, including complex allo-
cation of resources and cybersecurity, e.g. (Hertwig, 2015;
Gonzalez, 2013; Gonzalez et al., 2003).

Nevertheless, in goal-seeking gridworld navigation tasks,
cognitive models of decision making, and IBL models in par-
ticular, have been less common. Fu and Anderson (2006) pro-
posed a RL mechanism within the ACT-R architecture, to ac-
count for repeated choice and skill learning. The study used a
maze learning task, and showed that the model can fit human
data fairly well to account for complex learning in this task.
Also, Reitter and Lebiere (2010) proposed an ACT-R cog-
nitive model, to address the aspects of human path-planning
problems, which are relatively similar to navigation. Finally,
in a prognostic foraging task, Chelian and colleagues showed
that both IBL models and RL approaches can imitate human
decision making well (Chelian, Paik, Pirolli, Lebiere, & Bhat-
tacharyya, 2015). Despite all of these advances, it remains
unclear how RL and IBL models compare with respect to rep-
resenting human decisions under uncertainty.

To that end, the primary goal of this work is to examine
how RL and IBL agents learn in a goal-seeking gridworld
task under different degrees of decision complexity. Deci-
sions under uncertainty are often made by weighing the ex-
pected costs and benefits of the available options. Some deci-
sions are easy (e.g., choosing between an option of low cost
and high expected reward and one with high cost and low
reward), while others are complex (e.g., choosing between
low cost low reward, and high cost and high reward options).
These decisions’ complexity increases given uncertainty in
the costs and rewards. Thus, we first leverage IBLT, to de-
velop an IBL model of an agent that is able to accomplish the
goal-seeking task in a gridworld environment under different
levels of decision complexity. Using simulation experiments,
we explore the impact of decision complexity on the perfor-
mance of different types of agents, RL and IBL, including a
Random that serves as a baseline comparison for the models.

Instance-Based Learning Theory
IBLT is a theory of decisions from experience, developed to
explain human learning from interaction with dynamic deci-
sion environments (Gonzalez et al., 2003). IBLT provides an
algorithm and a set of cognitive mechanisms that can be used
to implement computational models of decision learning pro-
cesses. The algorithm involves the recognition and retrieval
of past experiences (i.e., instances) according to their similar-
ity to a current decision opportunity. Instances retrieved are
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used to calculate the expected utility of a potential decision
in such situation. Potential decision alternatives a are eval-
uated sequentially, and a process of choice provides a stop-
ping point for evaluating potential alternatives and making a
choice. The choice alternative with the highest expected util-
ity among a set of alternatives is selected. Finally, a feedback
process updates the expected utility of past instances with the
observed actual outcome of choices executed. Such updated
instances are then reused in future decisions.

An “instance” in IBLT is a memory unit, that results from
the potential alternatives evaluated. These are memory rep-
resentations consisting of three elements: a situation (S) (set
of attributes that give a context to the decision, or state s); a
decision (D) (the action taken corresponding to an alternative
in state s, or action a); and a utility (U) (expected utility u
or experienced outcome x of the action taken in a state). The
essential sub-symbolic mechanisms of IBLT have been dis-
cussed in multiple past publications (e.g. (Gonzalez et al.,
2003; Gonzalez & Dutt, 2011; Gonzalez, Ben-Asher, Martin,
& Dutt, 2015; Hertwig, 2015)), but we include these mecha-
nisms here for completeness.

Each instance i in memory has a value of Activation, which
represents how readily available that information is in mem-
ory (Anderson & Lebiere, 2014). The instance could be per-
fectly or partially matched to the attributes of a decision op-
portunity at the current point of time, which is determined
by the partial matching mechanism (Anderson & Lebiere,
2014). But here we consider a simplified version of the Ac-
tivation equation which only captures how recently and fre-
quently the considered instances are activated:

Ai = ln

(
∑

t ′∈{1..t−1}
(t− t ′)−d

)
+σ ln

1− γi

γi
, (1)

where d and σ are respectively the decay and noise parame-
ters; t ′ refers to the previous timestamp in which the outcome
of instance i was observed resulting from choosing an action
a at state s. The rightmost term represents the Gaussian noise
for capturing individual variation in activation, and γi is a ran-
dom number drawn from a uniform distribution U(0,1).

Activation of an instance i is used to determine the proba-
bility of retrieval of such instance from memory. The proba-
bility of an instance i is a function of its activation Ai relative
to the activation of all other instances corresponding to exe-
cuting action a at state s:

pi =
eAi/τ

∑l eAl/τ
, (2)

where τ is the Boltzmann constant (i.e., the “temperature”) in
the Boltzmann distribution (Kittel, 2004).

For simplicity, we defined τ as a function of the same σ pa-
rameter used in the activation equation τ = σ

√
2. The param-

eter τ gives some variability to the probability of retrieving
instances from memory.

The expected utility of taking action a in state s is calcu-
lated based on a mechanism called Blending (Lebiere, 1999)

as specified in IBLT (Gonzalez et al., 2003), using the past
experienced outcomes stored in each instance x. Here we
employ the blended value that was defined and used for bi-
nary choice tasks in Lejarraga, Dutt, and Gonzalez (2012);
Gonzalez and Dutt (2011):

V (a,s) =
n

∑
i=1

pixi. (3)

Essentially, according to (Gonzalez & Dutt, 2011), Blend-
ing (Equation 3) is the sum of all the past experienced out-
comes weighted by their probability of retrieval, where xi is
the outcome stored in an instance i associated with taking ac-
tion a at state s; pi is the probability of retrieving the instance
i from memory (Equation 2); and n is the number of instances
stored in memory for taking action a up to the last trial.

The choice rule is to select the action a that corresponds to
the maximum blended value.

Goal-seeking Task in Gridworld Environment
A gridworld environment is made up of a 11×11 grid maze
as illustrated in Figure 1. Each gridworld contains randomly-
located obstacles (black bars). The number of obstacles
varies from one to five and their size ranges from one to six
1× 1 cells. There are four targets of different values, which
are represented as four colored objects (blue, green, orange,
and purple) of size of 1× 1 in the grid and set at random lo-
cations in a way that does not overlap with the obstacles.

Figure 1: Illustration of the goal-seeking task in the gridworld
environment. The agent’s preferred goal is the “green” object.

The primary task is a goal-seeking problem in the grid-
world environment, where an agent (black dot), starting in a
random location (i.e., (x,y)), moves through the 11×11 grid
to search for the most valuable goal among the four objects,
while avoiding obstacles. The agent is tasked with consum-
ing the object that has the highest reward (i.e. “green” in Fig-
ure 1) within a 31 step limit. Starting in its initial position, the
agent makes sequential decisions about which actions to take
(i.e., up, down, left, right). An episode ends when the agent
decides to “consume” any of the four objects, or by reaching
the 31 step limit without a consumption.

A sequence of moves from the initial location to the end lo-
cation forms a trajectory (dotted red line) which is produced
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by the sequence of decisions that the agent adopts. Each agent
performs the task over 500 episodes for learning in the same
gridworld.

Technically, each agent Ak is driven by a fixed reward,
rk, j ∈ (0,1), for consuming an object o j where j = 1, . . . ,4.
Hence, the vector rk = (rk,1, . . . ,rk,4) has four components
(one for each of the four objects), and it was drawn from
a Dirichlet distribution (∑ j=1,...,4 rk, j = 1 and rk, j > 0) with
concentration parameter α = 0.01, which signified that the
agent Ak was favourably attracted to one of the four objects.
In other words, if the agent successfully consumes the most
preferred object, it will receive the highest reward while con-
suming any of the other 3 objects (i.e. the distractors) results
in receiving much smaller rewards. Besides, the agent is pe-
nalized 0.01 for each step, which is a movement cost, and
0.05 for walking into a wall.

Agents in the Gridworld
IBL Agent
In the gridworld task, an instance is defined by a triplet
(s,a,x), where x is the outcome or expected utility resulting
from taking action a (i.e., up, down, left right) in state s (i.e.,
the state is the location of the agent, defined by the x-y coordi-
nates) in a grid (Nguyen & Gonzalez, 2020). When making a
prediction about which action a the agent Ak will take at state
s, the IBL agent selects the action with the highest expected
utility using the blended value (Equation 3).

Importantly, the agent only gets a positive outcome when
consuming an object after a sequence of decisions. Thus, the
IBL agent must learn to update the expected utility from the
outcome received after consuming an object, so that differ-
ent instances created by the trajectory are reinforced accord-
ingly. The delayed feedback mechanism proposed in IBLT
(Gonzalez et al., 2003) is underdeveloped, and most of the
tasks that IBLT has been applied to, include immediate feed-
back. Thus, a mechanism to deal with delayed feedback is re-
quired in the gridworld task. Unlike prior work that focused
on how humans learn from delayed feedback (Walsh & An-
derson, 2011; Kelly & West, 2013), we simply use the final
outcome and distribute it equally to all actions taken in a tra-
jectory. That is, considering the trajectory Tk = {(st ,at)}T

t=0
if the Ak gets the outcome x′ at the end of the episode (t = T )
then the expected utility of executing {(st ,at)}T−1

t=0 is all up-
dated to x′. We leave the alignment to human judgements of
delayed feedback for future research.

RL Agents
We compare the performance of the IBL agent against two RL
agents called Q-learning and SARSA which are well-known
temporal difference techniques in RL (Sutton et al., 1998).
The basic difference between these two RL algorithms is in
the way of updating a value of current state-action pair. In
SARSA (on-policy method), the update takes into account the
value of the actual action taken at one state ahead of the cur-
rent state whereas in Q-learning (off-policy method), it simply

considers the highest possible action that can be taken at the
current state.

Q-learning Agent. A Q-learning agent was implemented
with a tabular form of Q-learning algorithm (Sutton et al.,
1998). In general, the goal of the RL agent Ak is to esti-
mate the optimal state-action values referred to as Q-values,
where Q(s,a) returns the expected future reward of action a at
state s. Initially, all the Q-values are set to zero and then are
iteratively updated. Given enough iterations, the agent can
learn the optimal Q-values denoted by Q∗(s,a), and for each
state s the agent selects the action having the highest Q-value,
π∗k(s) = argmaxa Q∗(s,a).

SARSA Agent. A SARSA agent was designed based on the
SARSA algorithm. The name SARSA comes from the fact
that the updates depend on a quintuple of events (s,a,r,s′,a′),
where s and a are the current state and action of the agent, r
is the observed reward for choosing the action a, and s′ and a′

are the new state-action pair. Essentially, SARSA, in contrast
to Q-learning, learns the value of each state–action pair (i.e.
the Q-value) by looking ahead to the next action to see what
the agent will perform at the next step and then update the
Q-value of its current state-action pair accordingly.

Random Agent
A random agent Ak selects an action a in state s based on
the probability πk(a|s). Precisely, the policy of Ak is drawn
from a Dirichlet distribution πk ∼ Dir(α) with concentration
parameter α, so that ∑a∈A πk(a|s) = 1 and πk(a|s) > 0. If α
is close to 0 then the policy of an agent is characterized to be
near deterministic. Conversely, the action of the agent is far
more stochastic if α is much greater than 0.

Experiments
To investigate how different agents perform under different
levels of the decision complexity, we designed experimental
manipulations in which we control cost-benefit tradeoffs of
choices made in a gridworld task.

Inspired by general decision processes and animal behav-
ior, we designed levels of complexity. In animal foraging the
complexity involves a tradeoff between the quality of food
and the effort of obtaining it, and this tradeoff also applies to
human decision processes (Mehlhorn et al., 2015). A grid-
world can be more complex when its arrangement of goals
and obstacles creates a high conflict between benefits (i.e.,
the object’s reward) and associated costs (i.e., the distance, or
number of steps needed to consume that object). For instance,
a setting in which an agent must decide whether to consume a
close (e.g., one step distant from the current agent’s location)
but low-reward object or to search for a far-away but higher
reward object is more challenging than a decision between a
close and high-reward object and a far and low-reward ob-
ject. We refer to low-reward objects as “distractors” and to
the highest reward object as the “preferred object”. Agents
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(a) ∆d = d−d′ = 1 (b) ∆d = d−d′ = 2 (c) ∆d = d−d′ = 3 (d) ∆d = d−d′ = 4

Figure 2: Illustration of the designed gridworlds with the level of complexity increasing from left to right.

generally prefer high value objects but they need to explore
the environment to learn the value of the four objects, since
this is only known after they consume an object.

In our experiment, complexity is characterized by the dif-
ference between the distance from an agent to the preferred
object (d) and the distance from the agent to the closest dis-
tractor (d′), i.e., ∆d = d−d′. Intuitively, the larger the value
of ∆d , the more complex the decision is, given the temptation
to consume a closer distractor than to consume the highest
value distant goal. Simply put, the high value of ∆d signi-
fies the high conflict between consuming the preferred object
with the longer distance d or the distractor with the shorter
distance d′.

The experiment design is illustrated in Figure 2. It is worth
noting that we only examine the cases when ∆d > 0 as when
d > d′. Take Figure 2a as an example of how the setup works.
Here the distractor is the “orange” object while the highest
value goal is “purple”. The distance from the agent’s location
to its goal is d = 5 and to the distractor object is d′ = 4, and
hence ∆d = (d−d′) = 1. This is a simple environment since
the cost to reach the highest value goal and the distractor is
nearly equal (and thus, preferring the highest value goal over
the distractor is a simple choice). In contrast, as exempli-
fied in Figure 2d, with ∆d = 4, the choice is more complex,
since preferring the highest value goal (“blue” object) is more
costly than consuming the distractor (“yellow” object) and as
a result, the agent may be attracted to the closer object (even
if the reward is lower).

Model Parameters

The IBL agent’s parameters are σ = 0.25 and d = 0.5, default
parameters that come from the ACT-R architecture (Anderson
& Lebiere, 2014). For the Random agent, we consider πk ∼
Dir(α = 3). Regarding the parameters of Q and SARSA, we
set the discount factor γ = 0.99 and the learning rate α = 0.1.

Independent Variables

For simplicity, in this experiment we deal only with the trade-
off between one preferred goal and one distractor, where the
distance between an agent and its preferred goal is fixed to
d = 5. Hence, to manipulate decision complexity, we only
vary the distance from the agent to the distractor (d′ = 1 . . .4).
We examined four levels of decision complexity (∆d = 1..4)
and four types of agents (IBL, Q, SARSA, and Random). For
each of the four levels of complexity, we ran 100 agents of
each type, that is, for each value of ∆d , 100 different grid-
worlds were generated. In each gridworld, the agents had
500 learning episodes.

Evaluation Metrics

For each model we calculated the following measures: (1)
Fraction of object consumption: the proportion of episodes
(out of 500) in which the agent reaches one of the four ob-
jects (i.e., rather than wandering around and reaching the
limit of steps without consuming any object); (2) Fraction
of steps: the average ratio (across 500 episodes) between the
number of steps for consuming any of the four objects and
the maximum number of steps; (3) Accuracy: the proportion
of episodes (out of 500) wherein the agent accomplishes the
task (i.e. successfully consumes the highest value goal); and
(4) Efficiency: the ratio between the reward from consum-
ing an object and the movement cost (i.e., the multiplication
of the penalty for each step and the number of steps taken)
across the 500 episodes. The efficient values were normal-
ized to the range in [0,1] using min-max normalization, i.e.
(value−min)/(max−min).

Results

We have analyzed the performance of the four types of agents,
namely IBL, Q, SARSA, and Random, with respect to com-
plexity (∆d = 1 . . . 4).
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(a) Fraction of obj. consumption (b) Fraction of steps

(c) Accuracy (d) Efficiency

Figure 3: Performance of the agents in the task when varying
the degree of complexity ∆d = 1 . . .4 (X-axis).

Fraction of Object Consumption
Figure 3a shows that the Fraction of object consumption for
IBL and the two RL agents (Q and SARSA) reaching any
of the objects is approximately equal to 1 regardless of com-
plexity. Unsurprisingly, the Random agent performed con-
siderably worse than the other agents, but their capability to
consume an object in less than 31 steps increased with com-
plexity. This can be explained by the environment design that
the more challenging the environment is, the closer the agent
is to a distractor. Hence, it is evidently easier for a Random
agent to bump into an object when ∆d increases.

Fraction of Steps
Figure 3b shows the Fraction of steps, suggesting that the IBL
agent took about the same steps to get an object regardless
of the level of complexity, while the Q and SARSA agents
took slightly less steps with larger complexity. We also ob-
serve that the Random agent required the most steps to find
an object, but the fraction decreases as complexity increases.
Again, the most likely explanation is that the agents tend to
consume the closer distractors.

Accuracy
Figure 3c demonstrates that Accuracy of the RL agents and
the IBL agent are comparable in simple environments (∆d = 1
and 2). However, when complexity increases (∆d = 3 and
4), IBL exhibits only a light drop in accuracy, while the Q
and SARSA agents dropped accuracy significantly, reaching
close to random accuracy with the highest complexity. More
concretely, the IBL agents with an approximate 70% overall
success rate by far surpassed the Q and SARSA agents whose
the fraction of successful episodes was less than 5% over all

500 episodes. With respect to the Random agent, its curve is
flat and nearly constant at about 0.18 over the values of ∆d ,
signifying that its performance is independent of complexity
due to its random characteristic.

Efficiency
Figure 3d reveals that the Q and SARSA agents are the most
efficient agents in the simple decisions (∆d ≤ 2), followed by
IBL and then by Random. The higher value of the ratio be-
tween the benefit (i.e. the consumption reward) and the move-
ment cost (i.e. the penalty for each step that the agent takes
× the number of steps) indicates that the RL agents are able
to obtain an object having the highest reward within a limited
number of steps, when the decision is simple. Conversely,
in complex decisions (∆d > 2) the results show that the IBL
agent is the most efficient, followed by the RL agents and the
Random agent. The Efficiency together with the Accuracy re-
sults suggest that the RL agents are “distracted” by the closer
objects and end up consuming the closer objects rather than
affording the costs of searching for the highest value object.
As a result, they got a significantly small amount of reward.

Learning Curves of Accuracy
To start to explain the observations above regarding the ac-
curacy of the models, we analyzed the average Accuracy for
each type of agent over the course of 500 episodes. This anal-
ysis would help observe how the accuracy developed within
each level of complexity. Figure 4 demonstrates that the IBL
agent learned slightly faster than the RL agents even in lower
levels of complexity. The learning speed of the IBL mod-
els decrease with increased complexity, but the difference be-
tween IBL and the RL agents is larger in the complex settings
(∆d > 2). The Random agent does not learn.

(a) ∆d = d−d′ = 1 (b) ∆d = d−d′ = 2

(c) ∆d = d−d′ = 3 (d) ∆d = d−d′ = 4

Figure 4: Learning curves of the agents over 500 episodes for
each level of complexity ∆d .

Specifically, in the most complex decision environment
(∆d = 4), the average Accuracy achieved by the IBL agent
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Figure 5: Learning curves of the Q and SARSA agents over
3000 episodes when ∆d = 4.

was over 0.6 just after 100 episodes, while the average Ac-
curacy of the RL agents was nearly zero. To investigate this
further, we ran the RL models for 3000 episodes under the
highest level of complexity (∆d = 4). The results shown in
Figure 5 demonstrate that the Q and SARSA agents have a
low start but learn to be more accurate in the highest complex-
ity levels, after extended practice. We speculate that the one-
step update of state-action values in the RL algorithms may
prevent them from learning faster and determining the value
of the various objects within 500 attempts. In contrast, the
IBL model uses all the past instances in the blending mecha-
nism (but these instances are decayed to different degrees as
in Equation 1). This aggregation of more experiences may
help to evaluate the decision tradeoffs more accurately, re-
sulting in faster and more successful weigh of the costs and
benefits in the decisions.

Conclusions

We investigated the performance of an IBL agent, two RL
agents (Q-learning and SARSA), and a Random agent, while
performing a navigation task under uncertainty and under in-
creasing decision complexity. The decision complexity is for-
malized as the tradeoff between the objects’ rewards and the
associated movement costs. To select the object to consume
in the presence of uncertainty, the agents must evaluate the
expected reward of the object and the steps needed to reach it
(costs), from experiential learning.

Experimental results revealed that the Accuracy and Ef-
ficiency of the two RL agents were not robust to increased
levels of decision complexity, while the IBL cognitive model
was more resilient to higher levels of complexity. The ex-
planation is that the one-step update of state-action values
in the RL agents results in these agents getting “distracted”
by near objects, which are consumed even when they are of
lower value. Thus, as the difficulty of the decisions increases
the Accuracy and Efficiency of the RL agents decrease. The
IBL agent is less efficient than the RL agents under low lev-
els of complexity but under higher complexity levels it learns
to consume the higher value objects even when it takes more
steps to reach those objects.
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Abstract

Both nature and nurture contribute to language development.
In the case of phoneme segmentation, children have the nat-
ural ability to recognize a continuous sound in various units,
but as they grow, they only selectively learn to recognize it as
part of a series in the unit that is used in their mother tongue.
This developmental process is supported by an ability called
phonological awareness that allows children to become inten-
tionally aware of units of phonology. It is known that erro-
neous pronunciation appears during the phonological aware-
ness formation process. In this research, we aim to examine
the factors that induce and reduce such errors. To do so, we
modeled phonological awareness using the cognitive architec-
ture ACT-R and performed simulations that manipulated ACT-
R parameters that correspond to both nature and nurture fac-
tors. As a result, it was confirmed that errors due to a lack of
phonological awareness can be modeled with the innate mem-
ory retrieval mechanism. We also observed that such errors
were reduced when learning factors were added to the model.
However, we could not simulate this learning process. In the
future, we will study the interaction task that enables learning
to reduce phonological errors and contribute to the acquisition
of phonological awareness.

Keywords: cognitive modeling; phonological awareness;
Japanese;

Introduction
Language development is influenced by both innate and ex-
periential factors. Newborn infants have an innate founda-
tion for acquiring a variety of languages. Through experi-
ences such as observing and imitating the behavior of familiar
adults (Baron-Cohen, 1997; Tomasello, 1999), they gradually
form a specific mother language structure, based on a general,
innate language foundation. A prominent example of such
convergence can be found in phoneme segmentation, which
is one of the linguistic components. Infants initially have op-
portunities to divide a sound into various types of segments,
like syllables or morae, though, as they grow up and mas-
ter their language, they find it difficult to recognize phoneme
segments that do not belong to their mother tongue.

In the fields of developmental psychology and speech-
language pathology, this developmental process is partly at-
tributed to an ability called phonological awareness, which
enables one to intentionally pay attention to phonological
aspects, such as phonemes and rhythms, of oral languages
(Stahl & Murray, 1994). This ability is usually developed
during the preschool period and relates to the acquisition of
reading and writing skills. Researchers have detected several

phonological errors that seem to occur due to a lack of phono-
logical awareness during the language development process
(Kubozono, 1989). In addition, there are reported cases
in which infants with atypical developmental traits, such as
those on the autism spectrum, who experienced an overall
delay in acquiring phonological units, improved these prob-
lems with support for enhancing their phonological aware-
ness (Mugitani et al., 2019).

Although psychologists have revealed the age at which
phonological awareness is formed and its role in language de-
velopment, it has not been clarified that the internal processes,
cognitive functions, and mechanisms behind the occurrence
and suppression of errors relating this ability.

Based on this background, the current study aims to exam-
ine error occurrence and suppression factors that are related
to the phonological awareness formation process. We focus
on two language development factors, namely nature and nur-
ture, and construct a model using the cognitive architecture
ACT-R (Anderson, 2007). In addition, we examine the pro-
cess and mechanism of the phonological awareness formation
process by simulating Japanese language development.

The structure of this paper is as follows. The first section
introduces the research related to this study. The model and
the model-based simulation will then be shown. Finally, a
summary of the current status and future issues is presented.

Related Research
In this section, we first introduce previous studies on language
development and the formation of phonological awareness.
Next, we introduce cognitive modeling and cognitive archi-
tecture as the method for understanding and explaining hu-
man cognitive processes. We also review research on lan-
guage learning using cognitive models.

Studies on Phonological Awareness
In the field of phonology, researchers have developed systems
for classifying the sounds that humans perceive and utter as
mental representations of sounds. The most famous system
is the distinctive feature (Chomsky & Halle, 1968), which
is the basic unit that distinguishes phonemes; it is typically
defined as a binomial variable that takes the value of + or
− by classifying the tongue and throat movements associated
with vocalization. Table 1 provides the distinctive features
for some phonemes.
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Table 1: Distinctive feature examples

a i u e o k g s z t d n
consonantal − − − − − + + + + + + +

syllabic + + + + + − − − − − − −
sonorant + + + + + − − − − − − +

hign − + + − − + + − − − − −
back + − + − + + + − − − − −
low + − − − − − − − − − − −

anterior − − + + + + +
coronal − − + + + + +
voice − + − + − + +

continuant − − + + − − −
nasal − − − − − − +

strident − − + + − − −
delayed release − − − − − − −

round − − + − + − − − − − − −

Around the world, there are varieties of systems that com-
bine these innate phonetic elements as units. According to
Trubetzkoy (1969), such systems fall into two groups, namely
“mora languages” and “syllable languages,” based on the
smallest prosodic unit that is used in that language. Among
the mora languages, Japanese defines the mora as a unit of du-
ration (Bloch, 1950), and each mora is associated with a sin-
gle kana (Japanese character), which consists of five vowels
(a, i, u, e, o) and 59 combinations of consonants and vowels
(ka, ki, ku, ke, ko, sa, si, etc.), and other special morae repre-
senting the duration or gemination of sounds. In other words,
Japanese phonic elements have a clear connection with writ-
ten symbols. We think that this characteristic offers an ad-
vantage for modeling phonological awareness in a symbolic
cognitive architecture. Therefore, in this study, we focus on
Japanese morae and try to reveal factors that relate to the ac-
quisition process of this ability.

Several Japanese researchers have investigated the forma-
tion of phonological awareness. Hara (2001) presented a
study where participants engaged in several phonological ma-
nipulation tasks. For example, in the mora deletion task, par-
ticipants were required to respond with a mora sequence that
involved deleting a single mora from an orally presented word
(e.g., i-ko is the correct answer for a task that deletes ta from
the orally presented word ta-i-ko, which means “a drum”).
Similarly, in the mora reversal task, participants were re-
quired to respond with a reverse-ordered mora sequence after
an oral word prompt (e.g., ka-i-su for su-i-ka, which means
“a watermelon”). In her study, the performance of such tasks
was increased according to participants’ written and reading
language skills.

In a clinical setting, Japanese speech-language-hearing
therapists (ST) reported cases where children confused spe-
cific types of morae. For example, it was reported that young
children around 2 to 3 years old tend to confuse morae that in-
clude the consonants /r/ and /d/ or /s/ and /sj/, though Japanese
adults can clearly distinguish these (Kobayashi, 2018). More-
over, there have been reports that some children with de-
velopmental disorders have difficulty distinguishing a mora
that consists of only a vowel as well as other morae that
include that vowel (e.g., confusions between a and ka, sa,
or ta) (Ishida & Ishizaka, 2016). Typically developed chil-

dren also exhibited similar erroneous utterances in which they
omitted consonants (e.g., pronouncing a-p-pa instead of ra-
p-pa; trumpet) (Nakamura, Kojima, & Fujiwara, 2015). This
type of confusion suggests the existence of a developmen-
tal process that migrates from the innate phonological system
(Chomsky & Halle, 1968) to the language-specific mora sys-
tem.

Furthermore, several researchers have used the popular
Japanese word game “shiritori” as a task for examining a
development stage of phonological awareness. In this game,
players take turns providing a noun whose first character
(mora) is the same as the last character of the previously
given noun. For example, after a player answers “ri-n-go”
(meaning: apple), the other player continues with “go-ri-ra”
(meaning: gorilla). The game is over when a player provides
a word that ends with /N/, since no Japanese word can begin
with this character (e.g., “ri-n-go” → “go-ri-ra” → “ra-p-
pa” (trumpet) → “pa-n” (Bread) → game over). To avoid
looping, the game also ends if a player repeats a word that
was already provided as an answer in the game (e.g., “ma-su-
ku” (mask)→ “ku-ru-ma” (car)→ “ma-su-ku”→ ···).

Takahashi (1997) examined the conditions for being able
to play shiritori through a cross-sectional developmental psy-
chological experiment involving children with typical devel-
opment. This research indicated that playing shiritori re-
quires the ability to divide sounds into morae and the men-
tal lexicon indexed by phonemes, and that the acquisition
of kana characters is effective for indexing vocabulary by
morae. These results suggest that playing shiritori requires
phonological awareness, paying attention to a phoneme in
the mother language (mora) in a sound, and that such abil-
ity is enhanced by presenting visual aids (kana character) that
correspond to the sound. Furthermore, it has been shown that
even if a child does not have the phonological awareness that
is necessary to play shiritori, s/he can participate with help
from adults, who can provide hints.

Kubozono (2000) also conducted an experiment that ex-
amined the shiritori process in a 4-year-old Japanese child in
order to present the phonological awareness formation pro-
cess. In his experiment, the participant was sometimes con-
fused about the unit of mora. For example, she gave “mo-
n-shi-ro-cho-u” (cabbage butterfly) as an answer for “do-ra-
e-mo-n” (doraemon). She also noted “yo-u-gu-ru-to” (yo-
gurt) after “ta-i-yo-u” (sun) was presented. Based on these
two examples, the participant seems to have recognized the
consonant-vowel-vowel sequence (“mo-n” and “yo-u”) as
a single unit, although the Japanese mora system divides
this into two morae, namely “consonant-vowel” and “vowel.”
These reports suggest that the language-specific phonetic sys-
tem is experientially acquired after childhood, and the mis-
configuration of the system can be observed culturally while
playing popular word games.

Based on the above-mentioned previous findings, the cur-
rent research focuses on the ability to extract the mora at the
end of a word from the continuous sounds that correspond
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to words and the ability to search for words by initial mora,
especially in phonological awareness. In addition, we apply
shiritori as the task set based on Takahashi’s and Kubozono’s
work. In addition, we refer to Chomsky and Halle (1968)’s
definition and use a distinctive feature to express and charac-
terize the mora as a symbol.

Cognitive Modeling
One of the methods for understanding and explaining the
mechanisms and processes that are related to human cogni-
tion is through the cognitive modeling approach in the field
of cognitive science. In this approach, a model that approx-
imates a person’s task execution (a cognitive model) is built
as a computer program, and a simulation is done using the
model. By observing the cognitive model’s behavior and in-
ternal states during the simulation, we can infer a person’s
internal states and cognitive processes during task execution.

Cognitive architectures have been developed as a basis for
cognitive modeling. Using a cognitive architecture, it is pos-
sible to construct a model that isolates the factors related to
task achievement on a common basis. From among the vari-
ous cognitive architectures that have been developed, we se-
lected ACT-R (Anderson, 2007) for use in this study. Since
ACT-R is based on psychological experiments on thinking
and memory, it enables us to comprehensively grasp various
phenomena related to human cognition. Furthermore, ACT-R
is a production system with multiple modules. There are var-
ious parameters that define the module’s behavior, thus mak-
ing it easier to model the individual. There are also mod-
ules that handle interaction with the external environment,
thus making it possible to predict reaction times and associate
them with experimental data.

There have been many studies on language acquisition us-
ing ACT-R. For instance, models related to the acquisition
of irregular verbs in English learning (Taatgen & Ander-
son, 2002) and models of infants’ noun learning (Van Rij,
Van Rijn, & Hendriks, 2010) have been constructed. In ad-
dition, brain dysfunction has also been modeled by ACT-R,
and some studies have explained the errors in sentence com-
prehension in aphasia using ACT-R parameters (Mätzig, Va-
sishth, Engelmann, Caplan, & Burchert, 2018).

In this study, we aim to model the language development
process by mapping phonological awareness from the mem-
ory retrieval mechanism of the ACT-R declarative module.
In particular, we focus on parameters that express knowledge
similarity and the effect of learning, assuming that changes
in these parameters through simulation correspond to innate,
experiential language development factors.

Model
In this section, we describe the model of errors in the
Japanese phonological awareness formation process. The
model executes shiritori to exhibit reported errors and
demonstrate the factors that suppress such errors.

An overview of the model is shown in Figure 1. This model
includes two agents (dashed line area) who keep a game of

shiritori going by taking turns providing words. Boxes in the
agent area corresponds to each module of ACT-R. In the fol-
lowing, we show how the shiritori process is realized through
the ACT-R module structure.

Figure 1: An overview of the model

Module Structure
Declarative Module The declarative module of ACT-R
contains knowledge that is required for task execution in the
form of chunks. The model in this study retains three types
of chunks that relate to word (vocabulary) and phonological
knowledge, and the association between words and phono-
logical knowledge (Table 2). The model also has chunks that
store the words that have already been provided in the current
shiritori trial. These chunks do not exist in the declarative
module at the beginning of the trial; rather, they are gener-
ated and stored as the trial progresses using imaginal module.

Table 2: The model’s declarative memory

(a) Word knowledge

word sound
ringo “ringo”
gorira “gorira”
kuri “kuri”
· · · · · ·

(b) Phonological knowledge

mora sound
/ri/ “ri”
/go/ “go”
/ku/ “ku”
· · · · · ·

(c) The word–mora relationship

word mora position
ringo /ri/ head
gorira /go/ tail
gorira /go/ head
· · · · · · · · ·

Production Module The production module selects and
applies rules, and operates the module, while using informa-
tion and states that are held by other modules. In the model
of this research, when word information is received as a part-
ner’s answer, the novel word is retrieved and provided as an
answer according to the rules of shiritori that were presented
in the previous section.

Figure 2 summarizes this process. Using the word chunk
(chunk type b in Table 2) acquired by the aural module, the
model retrieves a chunk that connects the word and the end-
ing mora (chunk type c in Table 2). Phonological knowledge
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Figure 2: The answer process

(chunk type b in Table 2) is activated using this chunk. Acti-
vated phonological knowledge guides the retrieval of a chunk
where the same mora is connected with a new word in an ini-
tial position (chunk type c in Table 2). When successful, the
word knowledge in the retrieved chunk is stored in the goal
module as an answer candidate.

After this, the model checks that the stored answer candi-
date is valid according to the rules of shiritori, such as not
including /N/ as the end of a mora and not having been an-
swered before in the current shiritori trial. If the current can-
didate violates these rules, the model re-searches for the an-
swer candidate.

When the candidate word is confirmed as valid, the model
stores it in the declarative module as an answered word and
outputs the word through the speech module. During one
shiritori task trial, the two agents alternately execute this pro-
cedure up to the given time limit.

Model Parameters
An important parameter in this study is related to chunk re-
trieval in the declarative module (activation). An activation is
assigned to each chunk that is stored in the declarative mod-
ule and affects the success or failure of the retrieval and the
time required for the retrieval. The activity value Ai that is as-
signed to chunk i is defined as the addition of multiple terms

as in Eq. 1:
Ai = Bi +Si +Pi + εi (1)

If more than one chunk matches the search request from
the production module, the chunk with the highest activation
is selected. In our model, among the activation elements, we
focus on the similarity Pi and the base level Bi.

Similarity The similarity term Pi of the activation assigned
to chunk i is computed using Eq. 2:

Pi = ∑
k

PMki (2)

This value is computed as the summation of the weighted
degree of similarity Mki for each retrieval request k to the
chunk i. Mki usually takes a negative value, and P serves as a
penalty in the effect of similarity retrieval. Introducing simi-
larity effects into the model’s knowledge allows for the use of
a mechanism called partial matching. For production module
search requests, it is possible to search for chunks that do not
have an exact match, thus allowing for flexible selection and
the reproduction of certain errors.

In this study, for each phonological knowledge combina-
tion, we set Mki based on the distinctive feature (Chomsky &
Halle, 1968). That is, we assumed that the similarity between
two phonemes can be defined as the overlap of distinctive
features. In the simulation that is reported in the next section,
we treat this parameter as the innate factor of language devel-
opment, with the expectation of frequently observing errors
involving the confusion of similar morae in the early phase of
development.

Base Level The base level is the basic element of the ac-
tivity value that corresponds to learning and forgetting. It is
represented by Eq. 3:

Bi = ln
n

∑
j=1

t−d
j

)
+βi (3)

The value is computed from the number of presentations
for chunk i (n) and the elapsed time since the chunk was ref-
erenced (t j). d indicates the decay rate, and βi is the off-
set parameter that can be modulated according to the simula-
tion’s aim. In this study, the base level is introduced into the
model to examine how the experiential factor influences the
development of phonological awareness. It is assumed that
the innate factor’s (similarity) relative importance decreases
as base level activation increases and that errors related to
phonological awareness are suppressed.

Learning Interactions
Children with inadequate phonological awareness need assis-
tance from adults to play shiritori (Takahashi, 1997). In this
study, we introduce assistance that encourages undeveloped
agents to continue the shiritori task. We also assume asym-
metric interactions, such as those between children and par-
ents, setting the similarity parameter for only one of the two
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agents. For the other agent, we incorporate the process of pre-
senting the earlier answer again when the wrong answer has
been received (for the wrong answer of “o-ka-si” (sweets)
to “ri-n-go”, the agent presented “ri-n-go” again). Since
ACT-R learning is calculated according to the frequency of
using a chunk, it is expected that presenting correct answers
increases activation of the correct association between words
and morae.

Simulation
In this section, we describe three simulations using the model.

Error Occurrence Factors
Simulation Settings First, we test whether it is possible to
model phonological errors using the ACT-R knowledge sim-
ilarity function. Specifically, we perform simulations under
the varying conditions of the ACT-R parameters (:mp), corre-
sponding to the similarity weights P in Eq. 2.

The value of P was set to the following eight conditions: 1,
10, 20, 30, 40, 50, 60, and 70. Word knowledge in the model
was selected from those listed in Amano and Kobayashi
(2008)’s Japanese word database. Based on the rules of shir-
itori, we took out 20,544 nouns, excluding homonym dupli-
cations, and words consisting of only one mora, such as “ro”
(furnace) and “wa” (ring). Next, referring to the child’s asso-
ciative vocabulary survey (for Japanese Language & Linguis-
tics, 1981), 2,054 words were randomly taken out and used as
model knowledge. For phonological knowledge, 103 pieces
of knowledge were defined based on Japanese morae.

In this research, we use a unit called a “chain,” which is the
number of shiritori continuations. A trial in the simulation is
terminated when the model achieves 100 chains or after 3,600
seconds have passed from the beginning of the trial. A total
of 100 trials were simulated for each condition. Phonological
knowledge similarity was calculated as the cosine similarity
with the distinctive feature column of one mora as a vector,
based on Chomsky’s table of distinctive features (Chomsky
& Halle, 1968).

Results and Discussion Figure 3 shows the types and num-
bers of errors that appeared during the simulation. In this
graph, the horizontal axis indicates a phonological knowl-
edge pair (morae) arranged in order from left to right based
on similarity. The vertical axis shows the number of errors
that occurred during the simulation using the pair of morae.
For example, an incorrect answer of “ri-n-go”→ “o-ka-si”
counts as a pair of “go – o.”

In the graph, the total number of errors is smaller in the
condition where the value of P is larger, and the majority of
errors is concentrated on the left side of the figure. From
these results, it can be confirmed that phonological aware-
ness errors are actually invoked by incorporating knowledge
similarity. In addition, it can be observed that a larger simi-
larity weight reduces the number of errors, and that errors are
less likely to occur in low-similarity pairs. This is thought
to correspond to the phenomenon that was confirmed in the

Figure 3: A comparison of similarity differences and errors

child development process where the “ra” sound is confused
with a “da” sound (Kobayashi, 2018).

Error Suppression Factors

Simulation Settings Following the simulations that were
described in the previous section, we will now examine the
factors that suppress phonological errors. Here, we hypothe-
size that the impact of similarity is relatively reduced by the
effect of learning. To test this hypothesis, we simulate a con-
dition in which the ACT-R parameter (:blc) corresponding to
the value of the offset βi in Eq. 3 is changed to the follow-
ing six conditions: 0.1, 1, 5, 10, 15, and 20, while keeping
the same setting in the other parameters, as in the previous
section’s simulation.

In addition, we examine whether learning occurs as a result
of the execution of the tasks that were set in this study. We
set the condition that the offset βi is set to 0 and observe the
time-series change through the execution of the task.

Results and Discussion Figure 4 shows the change in the
rate of correct answers due to the manipulation of the offset
value βi in Eq. 3. The horizontal and vertical axes, respec-
tively, represent the value of βi and the rate of correct answers
defined as the ratio of words suitable for the shiritori rule
from among all the words that were provided during the task.
The graph shows an increase in correct answers as the base
level constant βi increases, suggesting that the effect of learn-
ing Bi increased and the similarity effect Pi decreased rela-
tively with respect to the ACT-R activation calculation (Eq.
1). In other words, the result indicates that the learning effect
can suppress the phonological errors that the similarity effect
causes.

Figure 5 shows the change in the rate of correct answers
given during the execution of the task. The horizontal axis
shows the time spent completing the task, divided into four
intervals, while the vertical axis shows the percentage of cor-
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Figure 4: The change in the correct answer rate, as indicated
by βi (error bar is ± SD

5 )

rect answers in each interval. In the graph, there is no condi-
tion showing that the rate of correct answers is increasing, in
some conditions, it is decreasing. This indicates that learning
does not occur in the task that was set in this study.

Figure 5: Changes in the rate of correct answers throughout
the task (error bar is ± SD

5 )

In this regard, it is suggested that implemented assistance
(repeating the previous answer) has no effect on learning, and
we need to explore other forms of support to enhance phono-
logical awareness in the shiritori task. In Takahashi (1997)’s
study, the most effective assistance came in the form of offer-
ing hints that activate semantic knowledge pertaining to the
correct answer.

In addition, through individual case observation, the num-
ber of times that shiritori has continued stands at about 10,
and it is possible that a sufficient number of presentations of
knowledge for learning may not have been secured. Further-
more, due to the research process’ effect with regard to avoid-
ing words that were already provided as answers and words
that end with /N/, a problem can be assumed in which only
the same words are searched and it is impossible to proceed
to the next answer.

Summary and Future Work
The purpose of this study was to investigate the factors that
contribute to the occurrence and suppression of errors during
the formation of phonological awareness. For this purpose,
we modeled phonological awareness using the cognitive ar-

chitecture ACT-R and performed simulations that manipu-
lated ACT-R parameters corresponding to both innate and ex-
periential factors. As a result, it is suggested that phonolog-
ical awareness and the errors that occur during its formation
process can be modeled through the innate memory retrieval
mechanism. Furthermore, the effect of learning may reduce
errors by suppressing innate factors. However, the results did
not show that learning occurred while performing the tasks
set in this study.

This study leaves a number of issues to be addressed. In
its simulations, the authors arbitrarily determined values for
each parameter. Although we were able to observe a variation
in the correct answer rate, the threshold and maximum val-
ues need to be verified using further simulation. In addition,
this study only showed that the correct answer rate was im-
proved by setting the parameters in advance; it did not show
that learning occurred or that the correct answer rate was im-
proved through task performance. It is therefore necessary
to further examine the interaction in which the learning ef-
fect can be expected to operate. Consideration should also be
given to non-phonological aids, such as letters, pictures, and
word meanings. In addition, evaluating the constructed model
is essential. To ensure that the model’s task-related learning
process explains the child’s language development, it is cru-
cial to correlate it with experimental data from humans. We
believe that after setting the learning task, it is possible to
examine this by comparing it with the existing human exper-
imental data (Hara, 2001).
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Abstract 

The goal of the current work is to develop a theoretical model 
that can possibly account for certain speech disarticulations 
that occur among children with Speech Sound Disorders 
(SSDs). In trying to do so, we propose an interface module, a 
specialized transducing system within the speech sound 
system, the nature and functioning of which in the cognitive 
system may provide us with some useful insights into SSDs. 
The postulation of an interface module here is necessitated by 
the fact that there are facets of errors in SSDs and in typical 
populations that cannot be simply explained in terms of either 
articulatory/phonetic factors or matters pertaining to abstract 
sound representations. This paper will, therefore, present a 
detailed view of the interface, its nature, its relation to levels 
in the cognitive system, and the functions it performs. The 
results of applying the proposed model to certain types of 
sound alterations in SSDs are described with implications for 
the cognitive representation of speech sounds. 

Keywords: Speech Sound Disorders; Phonological 
Representations; Interface. 

Introduction 

The realization that language is fundamentally a complex 
system has helped understand the significance of the human 
mind as a cognitive system. In this context, the analysis of 
speech production has played a crucial role in first 
formulating cognitive theories and then subsequently 
applying them in the real-world context. However, there are 
certain gaps of understanding in speech production, 
specifically in speech sound disorders, that elude 
satisfactory explanations. Speech language pathology has, 
of course, made several advancements in terms of speech 
diagnosis and treatment. Nonetheless, there is more to the 
issue than meets the eye. More often than not, speech 
language pathology has catered to speech disorders that 
relate either to articulatory disorders or to matters pertaining 
to phonological representations (PRs). There are, however, 
certain facets of SSDs that cannot be simply explained by 
either. How do we treat or possibly explain the speech 
dysfunctionalities of a child, for instance, who displays no 
motor or structural abnormalities, and also at the same time 
demonstrates a capacity to discriminate two different 
sounds? While physiological defects are entirely ruled out in 
such cases, one cannot account for such speech errors by 
merely appealing to phonological representations.  
     If PRs, as popularly propounded by many (Dodd, 2005; 
McNeill & Hesketh, 2010; Anthony et al. 2011, Sutherland 
& Gillon, 2007), are to be held responsible for the 
disarticulation of the sounds, then it simply does not explain 
why and how a child can possess the capacity to distinguish 
a minimal pair set. Likewise, if we are to advance the 

inaccessibility of the mentally instantiated phonological 
symbol as the reason for speech dysfunctionalities, it does 
not always seem reasonable to attribute all the speech 
problems to a loss of a certain cognitive capacity that 
cannot, for reasons that are not very clear, access the right 
symbol from the phonological system. Moreover, given the 
understanding that speech disorders mostly exhibit a pattern 
in terms of the errors they commit, the symbol extraction 
problem does not seem to spell out the exact reasons as to 
why only certain specific sounds (under predictable 
environments) are misarticulated. It is cases like these that 
we believe require closer inspection and probably more 
explanation in terms of what kind of cognitive processes 
drive a child to produce a certain sound in a way that is 
deviant from the typical speech. 

Thus, this paper outlines a theoretical model that focuses 
on contributing to an understanding of the internal cognitive 
mechanisms/procedures that ultimately lead to variants in 
speech production in typical and atypical populations. For 
the same, we will discuss in detail, with the help of relevant 
data, how a model such as ours can account for variations in 
speech differences. 

Cognition and Speech Disorders 

Speech sound disorders are speech and language disorders 
identified by the inappropriate use of speech utterances, 
which may involve errors in the production, perception or 
organization of speech sounds. These are particularly 
relevant to the present study because the current work 
intends to look at the cognitive processes of the speech sound 
system not in terms of how effectively the speech system 
functions in producing the correct speech utterances, but in 
terms of how inadequately the system can possibly work in 
the production of unintended utterances. Numerous different 
categories of models such as the connectionist model of 
Dell, Change & Griffin (1999), Fromkin’s five-stage model 
(Fromkin, 1971) and Garrett’s model (Garrett, 1975) have 
been developed in an attempt to account for speech sounds in 
general. Our study, however, differs in its effort to consider 
the disordered data as its preliminary basis to explicate the 
cognitive procedures in the speech sound system, and thus 
emphasizes the need for an 'interface' module inside the 
human cognitive system in view of the specific patterns of 
errors found in speech sound disorders.  

The relation between cognition and disordered speech has 
been a subject of investigation for many years, and the 
results have only cemented the already existing belief that 
they exert a rather strong influence over each other. 
Shriberg & Widder’s (1990) findings from nearly four 
decades of speech research in cognitive impairment 
indicated that persons with cognitive impairments or any 
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sort of deficits at a cognitive level are likely to have speech 
problems. That is, the articulatory skills of a subgroup with 
cognitive deficits differed significantly from the normally 
developing children. Similarly, in several of the case studies 
conducted by Sutherland (2006) on children with severe 
speech impairments, it was observed that 3 out of 4 children 
demonstrated poor phonological skills. The results indicate 
that children with consistent speech impairments 
experienced deficits at the cognitive-linguistic level (i.e., 
phonological representations) of speech production (Dodd, 
2005). Cognition and disordered speech are inexplicably 
intertwined in a manner that is overt in terms of the 
influence the former exerts over the latter, and yet imprecise 
in terms of the exact cognitive processes or the mechanisms 
that actually result in specific speech dysfunctionalities.   

The purpose of this study, therefore, is to address these 
crucial gaps and explore in some detail the phonological 
processes in the mind that can be held accountable for some 
of the dysfunctional speech. We will discuss in detail the 
phonological processing of speech sounds in both typical and 
atypical populations in the later sections. Before delving 
deep into the confinements of the modelling theory, we shall 
first have a look at the PRs. 

Phonological Representations 
The concept of a phonological representation has undergone 
a significant number of changes over the period, and there is 
no single classification that can possibly take into 
consideration the difference of opinions that had gone into 
defining PR in specific frameworks. However, there is a 
common consensus among scholars that PRs represent the 
underlying structures of the sound system. Locke & 
Studdert-Kennedy (1983) formally define phonological 
representations as the underlying sound structure of specific 
words stored in long-term memory. Berent (2013) considers 
PRs to be discrete and combinatorial. These representations 
reportedly distinguish different kinds of symbols that are 
instances of some form in the real or imaginative world. 
Berent also emphasizes a categorical distinction of different 
classes of sounds as a means to form a specific category of 
members that are alike. Such a perception of PRs seemingly 
supports generalizations that apply across the board to all 
members of a class. A large amount of relevant literature on 
the study of PRs, however, also differ significantly on 
account of numerous parameters contributing to PRs. While 
Browman & Goldstein (1986) describe PRs based on 
articulatory gestures, Halle (1985) associates them with 
certain mental scripts. Foley (1977), on the other hand, 
believes that PRs denote abstract, phonological objects-a 
proposition, which of all other assumptions somewhat 
resonates with the view adopted in our current study. 
Coleman’s (1998) view on phonological representations 
(bearing acoustic signatures of sounds) as something 
capable of supporting computations of some kind also holds 
importance in our present-day analysis of sounds.     

As far as the presentation of PR in our present analysis is 
concerned, our study adopts the concept of an element in 
accordance with the Element theory (Kaye & Harris, 1990; 
Harris, 1994; Backley, 2011), which was developed as part 
of Government Theory. The need for a PR deviant from a 
traditionalistic view is necessitated by the latter’s inability 
to explain certain facets of SSDs that simply cannot be 
explained by considering PR as a system that has within 
itself all the phonetic details of the sounds. As mentioned in 
the introduction, there are cases that cannot be simply 

explained by appealing to the PR.  A case in point is a study 
conducted by Leahy & Dodd (1987) where it was revealed 
that a child with bizarre phonological processes such as the 
deletion of final consonants or marking them by a glottal 
stop, and no apparent articulatory defects produced 
defective sentences. Despite her ability to discriminate 
minimal pairs, or to recognize her own errors as errors, the 
subject in question exhibited abnormally deviant patterns of 
speech. The data demonstrated that there was no deficit in 
perceptual processing, indicating that there was no apparent 
problem with the PR as well.  In cases such as this, it 
becomes necessary that we revise the notion of PR that can 
maximally account for most of the speech sounds, if not all.  

In the present analysis, PR is merely viewed as a system 
that contains certain elements, the combination of which 
gives rise to more complex segments. It consists of a set of 
finite elements like |A|, |I|, |U| that correspond to different 
acoustic properties of speech sounds. To elaborate, let us 
take two elements |X| and |Y| that combine to give rise to a 
segment say z. The resultant segment z, formed by the 
combined acoustic properties of two or more elements, is 
fed into a system where it takes another form. For instance, 
the element |A| corresponds to central spectral energy mass 
where high F1 converges with F2, and the element |I| 
corresponds to high spectral peak where high F2 converges 
with F3. The physical correlates of the element |A| roughly 
represent the gutturals (e.g. pharyngeals, uvulars) and some 
types of coronals, while |I| represents palatals and other 
types of coronals (Backley, 2011). Likewise, the segment 
/æ/, which imbibes the acoustic properties of both |A| and |I|, 
can be viewed as the combination of both the elements.  

Although the elements in PR tell the speakers which 
patterns they must produce, it does not tell the speaker how 
to produce them. The description of the sounds in terms of 
the vocal tract and the ways in which it constrains the 
production of speech sounds physically are all realized at a 
level beyond the PR. For now, the function of the PR is to 
simply provide the underspecified inputs to the system 
where the segments can be further processed. 
      What contributes to a deficiency in speaking and reading 
is often attributed to primarily having deficits at the level of 
PR. Most of the research claims that the children with 
speech impairments produce erroneous segments or sounds 
because their PR, by default, is disturbed (Bernthal, 
Bankson & Flipsen, 2009; Anthony et al., 2011; Johnson, 
Pennington, Lowenstein, and Nittrouer, 2011; Sutherland 
and Gillon, 2005, 2007). That is to say that the PR of a 
person with a speech disability and that of a person without 
a disability are different. In other words, it seems to suggest 
that the disabled have a defective PR and the abled a perfect 
PR. Nevertheless, more often than not, we see that linguistic 
phenomena like metathesis and spoonerisms are not 
uncommon in persons without speech disorders. While one 
can argue that they are mere ‘slips-of-the- tongue’ and 
therefore correspond to the articulatory factors than to any 
representational factors, it is also worth noting that these 
‘slips- of- the-tongue’ also often provide useful insights into 
the phonological structure of the language (Fromkin, 1971; 
Harrikari, 1999). It is therefore suggested that it is not viable 
to directly dismiss or establish PR as being either imperfect 
in the case of SSDs, or totally perfect as in the case of 
persons without speech impairments. Rather, what seems to 
be more plausible is to view PR as a representational system 
that is just ‘good enough’ in both cases. The correct or the 
incorrect utterances produced at the articulatory system are 
not because of ‘mental misrepresentations’ at the PR level 
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but somewhere else. We propose that there is an 
intermediate system in the cognitive system, somewhere 
between the PR and the articulatory system, where a variety 
of operations take place. We presume any malfunction at 
this stage can possibly lead to speech errors. We call this 
intermediate system an interface whose nature and 
functioning is discussed in the next section. 

The Interface System 
The concept of an interface is operationally defined in this 
paper as a transducing system that receives, alters, 
processes, and shares the phonological information from 
one level to the other. The notion of the interface is 
primarily proposed to account for the sensitivity to points of 
intersections between a system of PR and the articulatory 
system where the idea of autonomy is quite constrained. 
Though Ohala (1990) argues against using the term 
'interface' between a system of phonology and phonetics, we 
choose to preserve the term for reasons which we will 
discuss in brief. Firstly, Ohala's objection is that an interface 
translates itself into a mechanism that passes the 
information from the system of phonology to phonetics 
when the two are assumed to be mostly independent of each 
other. Explicitly discussing the concept of an interface in the 
context of phonology and phonetics, Ohala contends that 
phonetics and phonology, for several reasons, are two 
domains of the same speech universe that are highly 
intertwined with each other. Therefore, the use of the term 
interface is inappropriate as it leads people to believe that 
the two domains are mostly autonomous, bearing very little 
or no interaction on each other. This work, however, 
chooses to use the term to designate a system in itself in line 
with Jackendoff's (2002) concept of interface systems, even 
though it does not advocate the outdated view that the 
system of phonology and phonetics are autonomous, as 
Ohala also thinks. In fact, the interface in the present 
context is viewed as a system that mediates the link between 
the two domains. We draw upon the concept of an interface 
as a system that does not mediate between two different 
domains of language but functions within the narrow 
spectrum of phonology. Therefore, we suggest that there are 
different levels within the mentally instantiated 
phonological system, one of which is the interface.  

 Thus, in line with Fodor’s (1983) conceptualization of 
'domain specificity', the interface system is domain-specific 
in being restricted to only classes of phonological objects, 
and the information processed in the system (interface) is 
circumscribed in a comparatively narrow way. Though the 
proposed interface is autonomous in terms of its 
functionality and nature, it also at the same time allows for 
the flow of information into its mechanisms from the system 
of PR conceived of as an inventory of elements and their 
combinations. The interface is autonomous with respect to 
syntax and semantics, for example, only in the sense that its 
intrinsic functioning is not affected by the contents and 
operations in syntax and semantics. While the interface 
maintains domain-specificity, the interface system is 
informationally encapsulated relative to syntax and 
semantics, for example, because only phonological objects 
and the internal grammar for operations on such objects are 
relied on. However, the interface system is not 
informationally encapsulated relative to the subsystems of 
the entire speech sound system because it interacts with the 

system of PR. As for the neural architecture, the interface 
may be instantiated by Poeppel's (2014) sensory-motor 
interface and phono- logical network involving the left 
Sylvian parietal-temporal fissure and the bilateral superior 
temporal sulcus. Poeppel's articulatory network may not be 
involved because that is responsible for sound articulation, 
while the interface is not directly responsible for articulation 

The interface system in its functioning significantly 
differs from Dell's connectionist model of spreading 
activation (Dell, 1986) because, in Dell's model, there is no 
scope for the mapping of the symbolic units of phonology to 
articulatory instructions. Besides, phonological units are not 
decomposed into their components-acoustic or otherwise-
although the significance of phonemes is acknowledged 
(Dell, 2014). The idea of an interface of a similar kind has 
been discussed in detail by Reiss and Volenec (2017), where 
the interface is seen as establishing an intermediate level 
between phonology and phonetics. The paper's goal jells 
with the central idea of our line of work in terms of positing 
an interface that operates on its own set of rules. 

Additionally, Reiss and Volenec’s work renders the 
transduced features PR[ROUND] or PR[+BACK] in terms of the 
muscular contractions that each of them relates to. It is, 
however, still unclear as to what exactly triggers the 
articulatory movements for the specific sounds. The authors 
also, of course, discuss how these temporally coordinated 
muscles are related to features, but it is not clear by what 
means the feature information in the sensory-motor gets 
translated into the actual rounding of the lips (in the case of 
PR [ROUND]) or the real-time function of raising the back of 
the tongue (in the case of PR [+BACK]). In other words, it is 
not clearly established what articulatory aspects get encoded 
in each specific feature and how these features interact with 
specific muscles. However, for the purpose of speech 
externalization, there has to be a mechanism that explicitly 
states or provides at least some kind of a signal for the 
articulatory movements to get started. In trying to address 
this key issue, the current work has adopted a model of an 
interface system that not only bridges the gap between the 
abstract mental representations of the sounds and the 
actualizations of the sounds, but also specifies in a series of 
steps what exact instructions have to be followed in order to 
produce a particular sound.   

In spite of an indication in our theoretical model that the 
interface is linked to other domains of language like syntax 
and morphology since no sound can be produced in 
isolation, the study of the interaction between the interface 
and the other domains is outside the purview of the present 
study. Henceforth, the nature and the functioning of the 
interface will be presented as it occurs in a relatively 
narrower spectrum of the phonological system.  

How does the interface system work? 
The input received from the PR is fed to the interface 
module where certain operations take place. The interface 
module can be considered as a workspace that hosts a set of 
slots comprising of articulatory features pertaining to both 
consonants and vowels. Depending on the phonology of 
each person, these slots are filled up with relevant 
articulatory features (See figure 1). We suggest that it is 
usually the mapping or rather the mis-mapping of the input 
segment from the PR to the relevant slots that produce a 
defective speech. 
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     While the gestural movements of the articulators in 
different combinations primarily indicate the for
particular sound, they also explain the human tendency to 
prefer specific sound patterns over others. For instance, 
John Ohala (1983) argues for the absence of the /g/ sound
over the other voiced sounds in terms of the aerodynamic
factors. He maintains that the sound /g/ is more susceptible
to deletion than any other voiced plosive by the degree of its
closeness between the larynx and its point of closure.
Because the location of the closure is much closer to the
larynx, the air pressure in the supraglottal region exceeds
that of the air below the larynx, thereby leaving insufficient
air to drive the vibration in the vocal cords.
suspect that a predisposition to using certain sounds over
others can be traced back to the mapping of
segments from the PR, which can be aerodynamically
motivated. While most of the errors analyzed in 
are errors due to the mapping problem as part of the
interface, but these errors are not random and hence they
can arise as epiphenomena or 'side effects' of the ongoings
within the articulatory system. Because PR is solely a
representative module devoid of articulatory slot
presume that the articulatory or phonetic factors are
instantiated in the interface (in slots) and wholly
in the articulatory system. Consequently, a mis
the underspecified input from the PR onto the wrong slot
evinces the instantiation of an unintended property of a
specific sound, thereby resulting in the production of a
disordered utterance. This kind of analysis is particularly
helpful in analyzing the sound patterns in persons with 
SSDs since most of the errors produced in SSDs, if not all,
dovetail with patterns indicating a preference for one sound 
or one class of sounds over others.  

Figure 1: The model comprising of the PR, the interface and
the articulatory system. 

While the gestural movements of the articulators in 
different combinations primarily indicate the formation of a 
particular sound, they also explain the human tendency to 
prefer specific sound patterns over others. For instance, 
John Ohala (1983) argues for the absence of the /g/ sound 
over the other voiced sounds in terms of the aerodynamic 
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Figure 1: The model comprising of the PR, the interface and 

Samples of Data
Case 1 
Presented in table 1 is the clinical case conducted by Barlow
and & Gierut (2002) on a 4-year old child Joseph who was 
diagnosed with functional phonological delay. 
displayed a variety of speech errors, a few of which are
currently drawn from the large-scale study to illustrate how 
our proposed theoretical model can accommodate the actual
data. The child in question displayed n
intelligence, oral-motor functioning, and regular receptive
and expressive language skills as per the formal testing
procedures. Joseph’s speech data display
terms of the normalized phonetic inventory of the English
language and some deviant patterns that are otherwise not to
be found. The kind of errors ranged from simple
substitutions and deletions to cluster simplifications or a
combination of all of these. Figure 2 demonstrates level 1 of
the interface in   terms of how the substituted /t/ (/ t
/s/ (sunny) can be articulated, follow
operations.  

Table 1: Joseph's data

Figure 2: Straight line = correct mapping, dotted line=
incorrect mapping. 

Operations 
For the intended utterance /s/, 
Step 1: A+H = x, where x is the underspecified segment
from PR 
Step 2: x+S1+S3+S4 = initiation of /s/ sound
For the disordered utterance /t/, 

S.No Target Utterance 

1 bite bɑɪ 

2 bus bʌ 
3 cheese tɪ 

4 cut kʌʔ 
5 five pɑɪ 

6 gift gɪp 
7 toes to 

8 juice dʊ 

Samples of Data 

Presented in table 1 is the clinical case conducted by Barlow 
year old child Joseph who was 

functional phonological delay. The child 
displayed a variety of speech errors, a few of which are 

scale study to illustrate how 
our proposed theoretical model can accommodate the actual 
data. The child in question displayed normal hearing, 

motor functioning, and regular receptive 
and expressive language skills as per the formal testing 

Joseph’s speech data display several gaps in 
terms of the normalized phonetic inventory of the English 

and some deviant patterns that are otherwise not to 
The kind of errors ranged from simple 

substitutions and deletions to cluster simplifications or a 
. Figure 2 demonstrates level 1 of 

e substituted /t/ (/ tʌnɪ /) for 
, followed by their set of 

: Joseph's data 

igure 2: Straight line = correct mapping, dotted line= 

Step 1: A+H = x, where x is the underspecified segment 

Step 2: x+S1+S3+S4 = initiation of /s/ sound 

S.No Target Uttera
nce 

9 kids kɪp 

10 mud mʌ 
11 tooth tʊʔ 

12 drive gɑɪ 
13 sharp tɑʊp 

14 soap to 
15 sunny tʌnɪ 

16 soup tʊʔ 
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Step 1: A+H = x, where x is the underspecified segment 
from PR 
Step 2: x+S1+S2+S4 = initiation of /t/ sound 

While the sounds /s/ and /t/ differ minimally on a single slot, 
they also share the same place of articulation and voice and 
yet the mis-mapping of one single sound may result in a 
collapse of contrast between two sounds. As was also seen 
in Joseph’s case, the sound /s/ never occurred in his 
phonemic inventory of sounds. Hence we can possibly infer 
that the mapping, or rather the mis-mapping of the S2 slot 
from the underspecified PR segment, by way of 
fossilization, has permanently been established. The 
presence of the articulatory features and the mishaps in the 
operations performed at the level of the interface also serve 
as an explanation as to why Joseph’s receptive skills are still 
intact, despite his inability to produce the sounds correctly. 
Because the present model considers PR to be an efficient 
system with almost no malfunctions within it, we assume, 
Joseph still displays the capacity to understand /s/ and /t/ as 
two distinct sounds. 

Case2 
In case 1, we have looked at errors of substitutions and their 
operations at the interface level. We will now look at how 
deletions can possibly be explained by the model. For that 
purpose, we will consider another set of sample data from a 
case study conducted on a subject named Josie between the 
ages of two and five (Bowen, 2015). Josie was diagnosed 
with developmental verbal dyspraxia (DVD) and had 
performed poorly on articulatory tests. Her speech was 
rendered unintelligible despite maintaining a mid-range 
receptive, expressive, and total language score. The data 
used in table 2 are impoverished and a part of the sample 
prior to the intervention. 

Table 2: Josie’s data 

S.No Target Utterance S.No Target Utterance

1 cup kʰʌ 11 snake fneɪʔ 

2 gone khɒn 12 house hæʊ 

3 Knife nɑɪ 13 toe thoʊ 

4 sharp wja: 14 mouth maʊ 

5 fish de 15 nose noʊ 

Josie’s disorder was severe and often exhibited patterns that 
were most likely unintelligible. Though intervention studies 
altered Josie’s speech at a later stage, for the purpose of our 
study, we shall first try to investigate what, in the first place, 
had caused such chronic distortions. Josie exhibited a range 
of patterns starting from single sound substitutions and 
deletion to the production of sounds that bore no 
resemblance to the target word. One possible explanation 
for the case of deleted sounds could be traced back to the 
inactivity in the slots. That is, there could be instances when 
the slots do not function actively even in the cases when 
they are required to do so. The inactivity of a slot can 
eventually lead to two consequences: firstly, the segment 
generated from the PR, upon finding the slot inactive, 
deviates to other slots, thereby producing a different 
segment. So far, this mis-mapping has served as an 

explanation for the substituted sounds. Secondly, the 
segment generated from the PR, upon finding the slot 
inactive or invalid, does not end up being assigned any 
feature. However, in this case, the segment does not get 
itself 'attracted' to the wrong slot. Instead, the segment is left 
in situ, devoid of any articulatory features to process. 
Specifically concentrating on the case of /p/ deletion in the 
word ‘cup’, we speculate that the slots holding the 
corresponding features of /p/ fail to assign the articulatory 
features to the segment generated from the PR. Moreover, 
because the segment has been assigned a null value, no 
particular articulatory instruction is taken forward for the 
next levels.  As a result of this, there is no production of the 
sound /p/ in the articulatory system. The transitory nature of 
the slots also justifies why certain slots holding features like 
–voice remain passive in the production of /p/ but stay
active in the production of other voiceless sounds like in the
production of /f/. It is plausible that certain slots can go
inactive for certain element combinations in this way due to
the impact of relevant aerodynamic factors, as discussed in
the previous section. Hence, it is essentially the nature of the
slots that result in the deletion and not the mapping.
Illustrated in figures 3a and 3b are the inactive slots in /p/,
and the active slots in /f/ respectively.

   Significantly, the current model can capture other 
datasets, two of which are briefly discussed here. The first 
case comes from the numerous studies conducted on pre-
school children with speech impairments (Sutherland & 
Gillon, 2005).  The data involve a wide range of substitution 
errors in both vowels and consonants. While there are some 
observable patterns in terms of which syllables (stressed or 
unstressed) or segments (either consonants or vowels) were 
generally prone to disarticulation in the children, the quality 
of the sounds produced is highly impoverished.  The second 
is a case history of a 3-year-old child Kirk (Bernthal, 
Bankson, & Flipsen, 2017) who exhibits poor intelligibility 
in speaking despite having normal motor and language 
development. The child displays unusual processes like 
initial consonant deletions or final constant deletions, which 
are atypical for a 3- year-old child. As far as the substitution 
errors are concerned, the analysis has revealed that stopping 
was the most dominant and the most preferred process of 
all. With /d/ substituting the likes of /f/, /v/, /θ/, /d/, /s/, /z/, 
/∫/, /t∫/, and /dʒ/, the sound emerged as the most prominent 
sound in Kirk’s vocabulary. A similar pattern was also 
observed in Joseph’s case, where the child had also 
exhibited a similar preference for the use of plosives instead 
of fricatives and affricates.  

Figure 3a:  The inactive slots in /p/ indicated by the marbled 
slots.   
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Figure 3b.  The active slots in /f/ indicated by the plain slots

Beyond Level 1 of the Interface
Though there are no coarticulation, assimilation, or 
preservative errors to be found in the present data, our 
present model can in fact account for those types of errors
if necessary. The levels within the interface
sub-modules that are strictly compartmentalized but are 
presented in a fashion such that they feed information
in constrained ways, into each other. Level 1, which 
happens to the most important levels of all (because the 
initiation for the primary articulation takes place here) is 
connected to all the other levels in a bidirectional way. The 
word level, phrasal level, and the morpheme level
again connected to each other in a bidirecti
illustrate how this functions, let us take the example of the 
production of sound /f/. Let the elements U and H combine 
to form an underspecified segment say x. ‘x’ 
associated with the slot which provides the feature 
The sound thus generated passes on to level 2 (
level), where it checks for the neighboring sounds. 
is a possibility of the segment getting altered, as in the case 
of coarticulation, it reverts to level 1 (since we mention that 
it is a bidirectional system) and picks up the required slot. 
The newly generated sound is again sent to the word level 
and further on. If the neighboring sounds do not affect the 
sound in any way, then they simply get carried on
next level. The set of operations that occur at this word level 
can be schematized as follows: 
 
Case 1:  If f→f, then move to level 3. 
Case 2:  Step 1; If f→x, then revert to level 1, where x is the 
new modified sound  
              Step 2; Select new slot  
              Step 3; Generate required sound  
              Step 4; Pass through level 2  
 
Similarly, the shifts in sounds at the phrasal level and the 
sentential level can also be explained by connecting 
level 1, both in disordered and typical speech.

Implications 
The representative errors in SSD complexities, specifically 
those concerning the sound structure, stem from either 
‘misrepresented symbols’ or from various processing 
deficits. Therefore, in order to have differential diagnosis 
and treatment therapies for the SSDs, the SSD classification 
must be efficiently established. Based on the earlier 
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sound in any way, then they simply get carried on to the 
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asal level and the 
can also be explained by connecting them to 
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representative errors in SSD complexities, specifically 
those concerning the sound structure, stem from either 
‘misrepresented symbols’ or from various processing 

differential diagnosis 
SSDs, the SSD classification 

must be efficiently established. Based on the earlier 

developments, and the current advances in neurolinguistics
several systems of SSD classifications have been proposed, 
some of which have had implications for
diagnosis and treatment planning. (
2013; Shriberg et al., 2010;  Dodd, 2014
Wells, 1997). However, these classifications, as
al. (2019) claim, do not thoroughly explore the relationships 
between the different levels of causation, and hence, may 
deter efficient diagnosis, customize intervention, and 
optimize outcomes. The present cognitive model explore
different levels in the speech sound
identify the ‘cause’ of the speech deficit.
of such a model extend to an advantage
subtypes that evince a perfect PR and 
output. The ability of SSD patients to identify and 
discriminate phonemes in relation to their ability to produce 
sounds, measured on standard clinical diagnostic tests, for 
instance, serves as a good predictor of the PR
Thus, an experimental validation of the 
beyond the scope of this paper, can be fruitful. 

Further study
Owing to the dearth of data that specifically 
mental representations of sounds, and 
is presumably good enough, this study has been able to look 
at only few issues. Firstly, this study does not take into 
account other levels of speech errors o
and discourse levels. It is hoped that a segmental view at 
first would provide the appropriate
would, in the future, contribute to accounts 
discourse level as well. Secondly, this study has looked on
at the word substitutions deletions and no other frequently 
occurring linguistic phenomena such as transposition at a 
segmental level. The inclusion of other linguistic 
phenomena such as transposition would
modifications to the present model. 

Conclusion
The present study has attempted 
clinically notable segmental speech errors, which cannot be 
explained by significant impairment
or even mental representations of sounds, occur in cases of
SSDs. The concept of an interface module has been 
advanced with possible miscalculation
coding resulting in an inaccurate or an unintended utterance. 
As of now, claims cannot be made if this particular 
suffices for all kinds of segmental errors, but 
can help fine-tune the present model
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Abstract

Our research presents a review of the StarCraft II ecosystem,
and an analysis of those universal characteristics integral to
the replay data generated by thousands of humans and robots
in mixed competitions. In this paper we present the obvious
and subtle differences between human and machine tourna-
ment play, and demonstrate that we can still identify and lever-
age various aspects of game play to distinguish human from
machine.

Keywords: StarCraft; Real-Time Strategy; Behavior Model-
ing; Cognitive Modeling; Machine Learning; Artificial Intelli-
gence

Introduction
In this paper we describe an analysis of Starcraft game play-
ing replay data to draw attention to differences between hu-
man and machine gameplay style, and subtle indicators that
may help an observer identify bots that otherwise play very
much like a human, and are even capable of defeating expert
human players in tournament play.

Our primary motive for replay analysis is less about finding
out how to be the best human player, or how to design the best
autonomous agent; rather, we are interested to see what sets
humans apart from game-playing A.I., and how successfully
these aspects of game play can be measured, modeled, and
perhaps even used to detect, classify, and replicate these be-
haviors. We know that A.I. developers describe game playing
bots in terms of human cognition, and challenge how much of
what the bot is and does is actually useful for understanding
human cognition.

In this paper we attempt to answer these questions through
an investigation of game playing behavior produced by hu-
mans and machines, both individually, and when playing
against each other. The rest of this paper is outlined as fol-
lows:

We first review the StarCraft game universe, with an
overview of the most recent replay data format and analy-
sis tools, common measurements and their significance, and
how this information can be useful to inspect and understand
game playing agent behavior in general.

Next, we discusses the human vs human competitive are-
nas, play styles and metadata that can be used to differentiate

players of various skill levels. We find that all human play-
ers tend to trend towards a higher and varied rate of effective
input as they get better.

The third section deals with machine vs machine tourna-
ment play, where A.I. developers can pit their agents against
each other in an accelerated tournament environment to eval-
uate new techniques in intelligent agent design, and specifi-
cally for Real-Time Strategy environments such as Starcraft.
Our analysis of machine agents demonstrates the tendency of
bots to maximize all available action bandwidth provided by
tournament servers, and make very little use of the features
(or constraints) of a user interface.

In the last section, we discuss the results of recent compet-
itive tournament play between the world’s best humans and
machines, their apparent similarities and subtle differences
in behavior, and some of the controversy involved when A.I.
tries to be only as human as necessary. Our results demon-
strate that even the most human-like bots are still exploiting
non-human abilities in competitions, and possibly disquali-
fies their use as a model of human cognition.

This paper concludes with a summary of human and robot
play styles and indicators, the impact of recent events on the
gaming community writ large, and possible future directions
for research in this problem domain.

Overview of StarCraft II
The StarCraft II1 game franchise is a space-opera set in a fic-
tional universe featuring three intelligent racial factions vying
for survival and control of limited resources as represented
through a series of maps taking place across a variety of ter-
rain. Each of the three playable races (or factions) made
available to the player specialize in a unique style of war-
fare, with corresponding strengths and weaknesses (in Paper-
Rock-Scissors fashion) that may appeal to different player
preferences.

Real-Time Strategy (RTS) games such as StarCraft require
players to successfully balance multiple elements such as re-
source management, dealing with uncertainty and imperfect
information through fog of war, foresight and anticipation,
and regularly switching between strategic macro- and tactical

1https://starcraft2.com/
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micro-management (respectively) to optimize control of var-
ious units and groups. RTS games of this nature are known
in gaming community and eSports circles for demanding a
high level of cognitive performance from players and tend to
draw out players with an acumen and appetite for thriving in
complex, fast-paced, and high-stakes environments.

Like many RTS games of similar nature, SC2 provides a
default set of key mappings that allow a player to quickly in-
put key combinations to accomplish slightly more complex
commands. Game command complexity ranges from simple
single mouse clicks or keyboard shortcuts, to more complex
keystroke combinations for unit group selection or navigating
“tech trees” for producing and replacing various units. Com-
mand complexity can be measured through a combination of
the number of keystrokes required to register a valid selec-
tion, and amount of time typically required to complete the
input.

The StarCraft community uses different measurements to
compare and contrast player performance and aptitude dur-
ing a match, mostly focusing on the rate of input during dif-
ferent phases of gameplay; example of this include raw input
and screen adjustments within a given period of time. The
base measurement of Actions Per Minute (APM)2 can be de-
fined as the lowest level of user input typically associated with
the push of a button on the keyboard or mouse. Observation
of human replays demonstrates that a high APM, while fre-
quently correlated with a high skill level, does not necessary
predict effective gameplay, as many actions are simply repet-
itive clicking on the same area of the screen. This behavior is
perhaps used by some players to maintain a certain micro-
management tempo during escalated confrontation. High-
frequency actions are not necessarily useful actions, and thus
the literature sometimes makes use of Effective APM (EAPM
or EPM), to distinguish strings of commands that are both
unique and valid from those spammed in repetition.

Sc2gears3, an online replay analysis site, makes an addi-
tional distinction between Micro- and Macro-APM: activities
that require resources such as building, training, upgrading,
or researching are considered macro-management activities
and contribute to overall strategic play, whereas everything
else involving individual units or groups for movement and
direct engagement with the opponent are considered forms of
micro-management.

Screens Per Minute (SPM), another common measurement
describing manipulation of the visual playing field, can be
defined in a similar way to APM; however, the low level op-
erator in this case is the number of times the player moves
the screen in one minute. Moving a screen in StarCraft can
take the form of either panning (by using either keyboard or
mouse to move the screen in one of four cardinal directions),
or by selecting a specific spot on the mini-map.

2https://liquipedia.net/starcraft2/APM
3https://sites.google.com/site/sc2gears/features/

replay-analyzer/apm-types

Figure 1: StarCraft II Game depicting a battle between Terran
and Protoss forces

Related Work
Laird and Van Lent(2001) could be credited with one of the
earliest initiatives to promote video games as an alternative
platform for testing Artificial Intelligence. Different game
genres attracted different audiences, from the idle Puzzle Ad-
venture gamer to the hard-core (and somewhat twitchy) First
Person Shooter (FPS); as recent history would have it, a com-
bination of balanced and repeatable gameplay and backing
from the eSports industry has projected the Real-Time Strat-
egy (RTS) genre into the spotlight, attracting players from all
walks of life – for fun, profit, and everything in between.

In (Robertson & Watson, 2014), RTS games like Star-
Craft have become a de-facto standard for training and test-
ing learning agents, with a growing divide between academic
research and the games industry. Researchers are discover-
ing different ways of modeling and understanding spatial-
temporal hierarchy problems, however, many papers use dif-
ferent evaluation metrics, making comparison extremely dif-
ficult.

Webber et al. (2010) studied players of various skill levels
and found those with consistently higher APM usually per-
form better in RTS games such as StarCraft; their analysis
concludes this is due to experts encoding ballistic action se-
quences. Further, the expert player produces a higher Spatial
Variance of Action (distributed attention) yielding a higher
probability of yielding required information without causing
cognitive overload – professional players know where and
what to look for without investing valuable focus time on ar-
bitrary features (Weber et al., 2010).

In (Čertický & Churchill, 2017) we find a review of the
current state of these competitions, and the variety of AI bots
that compete in them. Growing interest from the gaming in-
dustry eventually led to a joint effort between Blizzard En-
tertainment4 and Google Deepmind5 in the creation of a pub-
licly available StarCraft 2 Learning Environment to fast tract

4https://www.blizzard.com/
5https://deepmind.com/
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development of Reinforcement Learning agents, and agents
that learn to achieve a level of play that is comparable to a
novice player (Vinyals et al., 2017).

Huang et al.(2017) found that some novice and most ex-
perts produce excessive APM during the first two minutes of
a game; those interviewed associated it with a warm up (not
unlike sports games); however, a distinguishing feature be-
tween novice and expert is the consistency of APM through
the rest of the match – experts rarely decline in APM, whereas
novices drop off during periods of intense or confusing states.
Further, they also found that experts are more likely to use
unit groups for production buildings (vs mobile units), rebind
unit groups on-the-fly, and retain consistent habits regardless
of game state.

Penney et al.(2018) explored the focus of attention using
Information Foraging Theory, and found that while all play-
ers have to actively select what to focus on, experts have the
highest ”return of investment” for their efforts. At a macro-
cognitive level, their participants favored What information
over the Why as reported by previous research, and their
Whats were nuanced, complex, and sometimes expensive,
causing participants to dwell on features longer than neces-
sary. They also found players’ decision points fell into four
main categories of decision cues: building/producing, fight-
ing, moving, and scouting. They found player time spent pro-
cessing these points were largely dominated by fighting and
building, to the point that signs of fighting were classified as
major distractor cues(Penney et al., 2018).

Methodology
Our analysis of player matches uses a combination of state-
action pairs and metadata derived from StarCraft replay files.
SC2 replays are stored in MoPaQ6 (MPQ) files, an efficient
container created by Blizzard Entertainment to store media
and gameplay data. MPQ archives can store an arbitrary num-
ber of files to encapsulate game state and associated metadata
for later retrieval, replay, and in this case, analysis of sequen-
tial state-action pairs.

There are various tools to parse the human- and machine-
generated replay packs, discover those features most indica-
tive of human players, and to model those features such that
they can be compared against their machine-generated coun-
terparts. We primarily used Blizzard’s s2protocol7, a Blizzard
python library for decoding SC2Replay files, and Scelight8, a
replay visualization and report generator that excels at build
order and ladder career analysis for competitive players.

Game event metadata, such as time stamp (consisting
of game loops, each representing approximately 0.0625s),
player ID, and command ID (Table 1). The SC2 command
taxonomy consists of a relatively simple parent-child hierar-
chy with the most prevalent commands at the top. Table 1
gives and example of event IDs parsed from a replay file that

6https://fileinfo.com/extension/mpq
7https://github.com/Blizzard/s2protocol
8https://sites.google.com/site/scelight/

can be used to categorize classes of user inputs.

ID# Command
49 Camera Update
104 Cmd Update Target Point
29 Control Group Update

Table 1: Sample command types seen in replay data

All of these tools can be used to extract and visualize vari-
ous aspects of game play such as current player league stand-
ing, command sequences, input (action) frequency, and game
events that are presented to each player at specific times. We
used this information to derive and compare the common
measurements for each combination of human and machine
match up as discussed in the rest of this paper.

Human vs Human
The Blizzard ladder league system ranks and matches Hu-
man players according to their evolving Match Making Rank-
ing (MMR) score, which in turn is largely based on the Elo
Chess Ranking system created by Arpad Elo and adopted by
the US Chess Federation9 to calculate relative skill level be-
tween players in organized competition. Blizzard games use
Battle.net, a platform-independent system used to match and
rank competitive players, and provide an API to access replay
data archives associated with each match. The MMR scoring
system used by Blizzard is also used to divide players into
leagues for general comparison and occasional tournament
organization.

Data Sources
In late 2017, Blizzard and Deepmind embarked on a joint ef-
fort to create and release a set of tools that could be used
to accelerate research and development of intelligent agents
in this domain, including a corpus10 of anonymized human-
generated replays for use by researchers wishing to model
human players, and for training and testing associate Rein-
forcement Learning algorithms. Blizzard then released the
replays in two sets; the first set is a stratified sample of 64,396
matches, and is a subset of a more complete historical cor-
pus consisting of 1,160,650 replays. Our analysis of human
performance characteristics made use of the smaller of the
two sets to as it provided sufficient representation of all skill
levels (as represented by player Match Making Ranking and
placement league), and still feasible for most researchers to
reproduce on standard computational resources.

Upon closer inspection of the replay files, we found that
each header, although anonymized by player ID, still con-
tained the player’s per-match MMR in the replay header
metadata. We extracted the MMR along with the average
APM per player for each of the 64k replay files to establish a

9http://www.uschess.org/about/about.php
10https://github.com/Blizzard/s2client-proto#replay

-packs
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more accurate correlation between observable characteristics
and MMR. We then filtered replays due to missing or cor-
rupted headers, incomplete or unknown matches, and miss-
ing League information. We resumed with refined corpus of
45,834 replays, each representing two different players, for a
maximum of 91,668 unique plays.

Replay Analysis
Our overview begins with features that can be easily aggre-
gated, namely APM, SPM, and MRR. The averages across all
replays was 90 APM, and 8.42 SPM (Table2).

Table 2: Player APM and SPM distribution by League

In Figure 2 we see a moderately positive correlation ( r =
0.65) between player APM and MMR extracted from each
SC2 replay file metadata. This indicates a relationship be-
tween the two, with higher average APM likely being the re-
sult of player skill level, rather than the cause of it. Breaking
out player APM by League standing (Figure3), we observe an
increase in both mean and variance of player APM as player
skill rises through beginner to expert levels.

Figure 2: Player APM by MMR; r = 0.65

The increase in mean APM is somewhat expected, as play-
ers familiar with the game and action sequences will naturally
initiate, queue up, and respond to in-game actions on the fly.
We also find the increase in APM variance an interesting phe-
nomenon, which could indicate a divergence of macro (strate-
gic) vs micro (tactical) play styles; however, this could also

be due to a higher upper bound limited by each player. Each
league is normally distributed around the mean with a long
tail in the upper-APM range.

Figure 3: PlayerAPM Quartile Range per League

If we aggregate the average APM and SPM by player
league, there is indeed noticeable relationship between league
and average APM. We also identified two extreme outliers
with one Platinum league player with an average APM of
1064, and two Master league players with 704 and 691 aver-
age APM. In both of the later two games we observed cycling
between static building control groups multiple times per sec-
ond. A detailed breakdown of this replay revealed APM
spikes as high as 1479 from cycling through control groups;
behavior performed at millisecond intervals is only typical of
bots observed in the AI arenas, and is considered against the
EULA for ranked human vs human Ladder matches.

Machine vs Machine
Bot vs bot gameplay is a popular method to test the efficiency
of machine agents in RTS games. We next review are few of
the most currently active AI tournament managers that cater
to AI research for Starcraft 2.

Data Sources
The SC2 AI Community11 is one of the most active and
longstanding in machine vs machine competitive play, pro-
vides ample resources to introduce developers to create
agents based on working examples, and also hosts an ongo-
ing Ladder-style matchup service for competitive bot vs bot
matches. The StarCraft 2 AI Ladder system continually ranks
bots using a similar Elo-based calculation, and can be used as
a rough indicator of skill for theoretical league divisions; this
ranking system can be used as a rough guide, however we
found no evidence of SC2AI bots being divided into leagues
as Blizzard does with human players.

11https://sc2ai.net/
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We first obtained samples of the last few weeks of Sea-
son 8 ladder ranking in machine vs machine matches to set
a baseline of activity. To do this, we downloaded a mini-
mum of 20 matches per active bot, subject to posted replay
availability and game completion, for a total 846 replays. Af-
ter filtering for crashed games and replay errors, we obtained
798 verified replays. Of these bots, only 10 have made their
code available for public inspection, whereas the rest have re-
served their right to keep the code private, and only disclose
the compiled DLL or Bytecode for offline play. The ability
to reserve the ability to choose public or private source code
is a feature that allows competitive researchers to participate
with a lower risk of losing intellectual property.

Replay Analysis
We found the indicators of interest over all replays differed
substantially from our human-only replay results. As seen
in Figure 4, the Average APM for all machines was 3465; a
roughly 10-fold increase that, while somewhat expected of
autonomous agents in this environment, confirms that this
machine-only environment is not limited to the same timing
constraints as their human counterparts, and will use it when
available.

Figure 4: Bots APM by ELO rating; r = 0.15

Table 3: Bot games by match length: matches have a higher
APM by time, negligible use of screen resources.

Also of interest is the almost non-existent use of the screen
interface, as reflected by null values for Avg SPM (Table 3).

The authors agree that this is likely due to the prolific use of
low-level APIs made available to agent developers that allow
for access to all permissible game state information regardless
of actual location – in essence giving every agent a birds-eye
view of the entire match.

Only 5 sessions register Screens Per Minute (SPM), rang-
ing from 0.05 (every 3 seconds) to 0.24 (every 14 seconds).
Upon closer inspection there were 4 bots issuing valid Screen
Update commands, however, additional investigation is re-
quired to determine the causal relationship between observed
state and action sequencing without running a code trace.

Correlation coefficient between Elo score and APM is
only slightly positive (0.15), indicating the lack of an up-
per bound on event generation is not a competitive advantage
for machines; rather the sophistication of processing (or lack
thereof) is more at play. The per-match APM for the majority
of bots are between 755 and 3775 with an IQR of 3030, with
upper bound outliers going as high as 35,000 APM. This not
only captures the majority of games, but the lower bound is
well above the peak threshold of professional human players
(600), and provides a clear threshold for classification.

Human vs Machine

In the last section, we discuss the results of various tourna-
ment play between the world’s best humans and machines,
derived from a variety of sources. We found that access to
quality replays of this nature is somewhat more difficult to
obtain, but comparable across game versions using standard
metrics as above.

Data Sources

Our first dataset was obtained from the Aritificial Intelligence
Starcraft Tournament (AIST) platform12, that operates tour-
naments in a hybrid-like fashion. AIST regulations are simi-
lar to the well known Student StarCraft AI Tournament (SS-
CAIT)13; however AIST is unique in that they invite high
ranking SC:BW players to compete against each seasons’
winning bot. We downloaded replays of the final human vs
bot matches from the last 3 seasons for a total of 18 replays;
all replays were imported without issue.

Our second dataset consisted of a mixture of formal and in-
formal matches played by the well-known AlphaStar14 agent
designed by Google DeepMind. Replay sources consisted of
ten (10) public tournament rounds against two WCS champi-
ons (TLO and MaNa). The second source consisted of a mix-
ture of replays representing the progression of three learning
phases against human players on Battle.net, as discussed by
Vinyals et al.(2019).

12https://sites.google.com/view/
aistarcrafttournament/

13https://sscaitournament.com/
14https://deepmind.com/research/open-source/

alphastar-resources
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Replay Analysis
The AIST replays demonstrate a common theme between
populations of humans and machines, with a higher level
APM vs MMR/Elo of bots. Figure5 contains the aggregate
of all tournament rounds between human (H) and machine
(M) for the last two seasons, with APM distributions clearly
demarcating between the two. AlphaStar, though still quite a
bit faster than humans through sustained bursts of high APM,
does not make it as obvious through clever use how APM is
calculated.

Figure 5: AIST APM for HvM matchup: the two machines
have a much higher APM maximum and IQR than their hu-
man counterparts.

Figure 6: AIST command frequency: humans make greater
use of complex commands and unit groupings.

Both replay sources indicate the bots are making direct use
of the API, without using a mouse, keyboard, or screen. The
ability to see the entire game at once is something of a grey
area (but was not against the rules at the time); however, it
is still an advantage reserved for agents since human players
can only see a small slice of the map at a time. In (Vinyals
et al., 2019) AlphaStar tends to focus its attention to one area

at a time, which is sort of like a human player moving their
camera around; however, humans are still at a disadvantage as
they still have to move a singular point of focus while using
camera controls, at the same time. (Lin et al., 2019) corrobo-
rated this with early supervised and mid-tier replays.

With these similarities in mind we took another look at how
each of the players interacted with the game itself, and found
that all bots, regardless of tournament or game version, do not
make use Unit Group Hotkeys (in or out of combat, Figure6).
This may appear surprising, however, does make sense as it
adds a layer of complexity on top existing data structures, and
is only detectable after-the-fact during replay analysis.

Conclusion
In this paper we presented an analysis of StarCraft replay data
generated by a variety of sources, to characterize distinguish-
ing features between humans and machines. We provided an
overview of the StarCraft tournament ecosystem, and its po-
tentials for both A.I. development and understanding of hu-
man cognition.

Our Human vs Human results set the standard for typical
performance in raw Actions Per Minute, with is a positive
correlation between player APM and skill level in humans,
and a few artifacts suggesting some players are trying to use
bots or auto-scripting to game the ladder system. This behav-
ior is in stark contrast to the replays evidenced by Machine
vs Machine tournaments, where there is a weak relationship
between action speed and ranking; agent architectures will
take advantage of as much computing resource as possible
without consideration for human-likeness or limitations, if
they don’t have to. Last, we observed a mixed adherence
to human-likeness in Human vs Machine match-ups. Despite
the shrinking gap between obvious and subtle play styles, in-
depth analysis shows us that even the most sophisticated bots
will not make use of interface features designed for humans,
if they don’t absolutely have to.

While some of the results of this research are compelling,
there are areas that require additional investigation. We have
begun to model game playing events in terms of discrete and
continuous stochastic processes through Markov transitions,
and would like to continue investigating probable internal
representations of behavior using Hidden Markov Models.
We hope these and other areas of investigation will shed ad-
ditional light on what distinguishes a human from a machine
while still engaging on common ground.
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Abstract
As models of cognition grow in complexity and number of pa-
rameters, Bayesian inference with standard methods can be-
come intractable, especially when the data-generating model
is of unknown analytic form. Recent advances in simulation-
based inference using specialized neural network architectures
circumvent many previous problems of approximate Bayesian
computation. Moreover, due to the properties of these spe-
cial neural network estimators, the effort of training the net-
works via simulations amortizes over subsequent evaluations
which can re-use the same network for multiple datasets and
across multiple researchers. However, these methods have
been largely underutilized in cognitive science and psychol-
ogy so far, even though they are well suited for tackling a wide
variety of modeling problems. With this work, we provide a
general introduction to amortized Bayesian parameter estima-
tion and model comparison and demonstrate the applicability
of the proposed methods on a well-known class of intractable
response-time models.
Keywords: Bayesian inference; Neural networks; Cognitive
models; Deep learning; Simulation

Generative Models in Cognitive Science
Mathematical models formalize theories of cognition and
enable the systematic investigation of cognitive processes
through simulations and testable predictions. They enable a
systematic joint analysis of behavioral and neural data, bridg-
ing a crucial gap between cognitive science and neuroscience
(B. M. Turner, Forstmann, Steyvers, et al., 2019). Moreover,
questions demanding a choice among competing cognitive
theories can be resolved at the level of formal model com-
parison.

The generative property of such models arises from the fact
that one can simulate the process of interest and study how it
behaves under various conditions. More formally, consider
a cognitive model M which represents a theoretically plausi-
ble, potentially noisy, process by which observable behavior x
arises from an assumed cognitive system governed by hidden
parameters θ and an independent source of noise ξ∼ p(ξ):

x = M (θ,ξ) (1)

Generative models of this form have been developed in var-
ious domains throughout psychology and cognitive science,
including decision making (Voss, Lerche, Mertens, & Voss,
2019), memory (Myung, Montenegro, & Pitt, 2007), rein-
forcement learning (Fontanesi, Gluth, Spektor, & Rieskamp,
2019), risky behavior (Stout, Busemeyer, Lin, Grant, & Bon-
son, 2004), to name just a few. Once a model (or a set of

models) of some cognitive process of interest has been for-
mulated, the challenge becomes to perform inference on real
data. We will now briefly review the mathematical tools pro-
vided by Bayesian probability theory for parameter estima-
tion and model comparison (Jaynes, 2003). Then, we will
peruse a novel framework for performing Bayesian inference
on models of cognition which are intractable with standard
Bayesian methods.

Bayesian Parameter Estimation
Bayesian parameter estimation leverages prior knowledge
about reasonable parameter ranges and integrates this infor-
mation with the information provided by the data to arrive at
a posterior distribution over parameters. In a Bayesian con-
text, the posterior encodes our updated belief about plausi-
ble parameter ranges conditional on a set of N observations
X := {xn}N

n=1. Bayes’ rule gives us the well known analytical
form of the posterior:

p(θ |X) =
p(X |θ) p(θ)∫
p(X |θ) p(θ)dθ

(2)

where p(X |θ) represents the likelihood of the parameters θ
and p(θ) denotes the prior, that is the distribution of θ be-
fore observing the data. The denominator is a normalizing
constant usually referred to as the marginal likelihood or ev-
idence. Note, that all distributions are also implicitly condi-
tional on the particular generative model M .

Based on the obtained estimate of the posterior distribu-
tion, usually in the form of random draws from the poste-
rior, summary statistics such as posterior means or credible
intervals for each parameter can be obtained. What is more,
the posterior distribution can be further transformed to ob-
tain subsequent quantities of interest, for example, the pos-
terior predictive distribution which can be compared to the
observed data for the purpose of model checking (Lynch &
Western, 2004).

Bayesian Model Comparison
In many research domains, there is not a single model for
a particular process, but whole classes of models instantiat-
ing different and often competing theories. Bayesian model
comparison proceeds by assigning a plausibility value to each
candidate model. These plausibility values (model weights,
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model probabilities, model predictions, etc.) can be used to
guide subsequent model selection.

To set the stage, consider a set of J candidate models G =
{M1,M2, . . . ,MJ}. An intuitive way to quantify plausibility
is to consider the marginal likelihood of a model M given by:

p(X |M ) =
∫

p(X |θ,M ) p(θ |M )dθ (3)

which is also the denominator in Eq.2 (with M implicit in
the previous definition). This quantity is also known as ev-
idence, or prior predictive distribution, since the likelihood
is weighted by the prior (in contrast to a posterior predictive
distribution where the likelihood would be weighted by the
posterior). The marginal likelihood penalizes the prior com-
plexity of a model and thus naturally embodies the principle
of Occam’s razor (Jaynes, 2003). To compare two compet-
ing models, one can focus on the ratio between two marginal
likelihoods, called a Bayes factor (BF):

BFi j =
p(X |Mi)

p(X |M j)
(4)

which quantifies the relative evidence of model i over model
j. Alternatively, if prior information about model plausibility
is available, one can consider model posteriors p(M |X) ∝
p(X |M ) p(M ) and compute the posterior odds:

p(Mi |X)

p(M j |X)
=

p(X |Mi)

p(X |M j)

p(Mi)

p(M j)
(5)

which combine the relative evidence given by the BF with
prior information in the form of prior odds.

Model Intractability
In order for cognitive models to be useful in practice, pa-
rameter estimation and model comparison should be feasible
within reasonable time limits. As evident from their defini-
tions, both Bayesian parameter estimation and model com-
parison depend on the likelihood function p(X |θ,M ) which
needs to be evaluated analytically or numerically for any
triplet (M ,θ,X).

When this is possible, standard Bayesian approaches for
obtaining random draws from the posterior, such as Markov
chain Monte Carlo (MCMC), or optimizing an approximate
posterior, such as variational inference (VI), can be readily
applied. However, when the likelihood function is not avail-
able in closed-form or too expensive to evaluate, standard
methods no longer apply.

In fact, many interesting models from a variety of do-
mains in cognitive science and psychology turn out to be in-
tractable (Voss et al., 2019; B. Turner, Sederberg, & McClel-
land, 2016). This has precluded the wide exploration and ap-
plication of these models, as researchers have often traded off
complexity or neurocognitive plausibility for simplicity in or-
der to make these models tractable. In the following, we dis-
cuss the most popular approach to inference with intractable
models.

Simulation-Based Inference
Simulation-based methods leverage the generative property
of mathematical models by treating a particular model as
a scientific simulator from which synthetic data can be ob-
tained given any configuration of the parameters. Simulation-
based inference is common to many domains in science in
general (Cranmer, Brehmer, & Louppe, 2019) and a vari-
ety of different approaches exist. These methods have also
been dubbed likelihood-free, which is somewhat unfortunate,
since the likelihood is implicitly defined by the generative
process and sampling from the likelihood is realized through
the stochastic simulator:

xn ∼ p(x |θ,M )⇐⇒ xn = M (θ,ξn) with ξn ∼ p(ξ) (6)

Different simulation-based methods differ mainly with re-
spect to how they utilize the synthetic data to perform in-
ference on real observed data (Cranmer et al., 2019). The
utility of any simulation-based method depends on multiple
factors, such as asymptotic guarantees, data utilization, effi-
ciency, scalability, and software availability.

Approximate Bayesian computation (ABC) offers a stan-
dard set of theoretically sound methods for performing in-
ference on intractable models (Cranmer et al., 2019). The
core idea of ABC methods is to approximate the posterior by
repeatedly sampling parameters from a proposal (prior) dis-
tribution and then generating a synthetic dataset by running
the simulator with the sampled parameters. If the simulated
dataset is sufficiently similar to an actually observed dataset,
the corresponding parameters are retained as a sample from
the desired posterior, otherwise rejected. However, in prac-
tice, ABC methods are notoriously inefficient and suffer from
various problems, such as the curse of dimensionality or curse
of inefficiency (Marin, Pudlo, Estoup, & Robert, 2018). More
efficient methods employ various techniques to optimize sam-
pling or correct potential biases.

Recently, the scientific repertoire for simulation-based in-
ference has been enhanced with ideas from deep learning and
neural density estimation (NDE) in particular (Greenberg,
Nonnenmacher, & Macke, 2019). These methods employ
specialized neural network architectures which are trained
with simulated data to perform efficient and accurate in-
ference on previously intractable problems (Cranmer et al.,
2019). NDE methods are rapidly developing and still largely
underutilized in cognitive modeling, even though first appli-
cations to simulated (Radev, Mertens, Voss, Ardizzone, &
Köthe, 2020; Radev, D’Alessandro, et al., 2020) as well as
actual data (Wieschen, Voss, & Radev, 2020) exist.

Amortized Inference
The majority of simulation-based methods need to be applied
to each dataset separately. This quickly becomes infeasible
when multiple datasets are to be analysed and multiple can-
didate models are considered, since the expensive inference
procedure needs to be repeated from scratch for each combi-
nation of dataset and model.
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(a) Amortized parameter estimation

(b) Amortized model comparison

Figure 1: Graphical illustration of amortized parameter estimation and model comparison with different neural network esti-
mators. (a) Amortized Bayesian parameter estimation with invertible neural networks (Radev, Mertens, et al., 2020). The left
panel depicts the training phase in which the summary ( fη) and the inference network ( fψ) are jointly optimized to approximate
the true target posterior. The right panel depicts inference with already trained networks on observed data; (b) Amortized
Bayesian model comparison with evidential neural networks (Radev, D’Alessandro, et al., 2020). The left panel depicts the
training phase during which the evidential network fφ is optimized to approximate the true model posteriors via a higher-order
Dirichlet distribution. The right panel depicts inference with an already trained evidential network; the upfront training effort
for both inference tasks is amortized over arbitrary numbers of datasets from a research domain.
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In contrast, the concept of amortized inference refers to an
approach which minimizes the cost of inference by separating
the process into an expensive training (optimization) phase
and a cheap inference phase which can be easily repeated
for multiple datasets or models without computational over-
head. Thus, the effort of training or optimization amortizes
over repeated applications on multiple datasets or models. In
some cases, the efficiency advantage of amortized inference
becomes noticeable even for a few datasets (Radev, Mertens,
et al., 2020; Radev, D’Alessandro, et al., 2020).

The field of amortized inference is rapidly growing and a
variety of methods and concepts are currently being explored.
For instance, inference compilation involves pre-training a
neural network with simulations from a generative model and
then using the network in combination with a probabilistic
program to optimize sampling from the posterior (Le, Baydin,
& Wood, 2016). The pre-paid estimation method (Mestdagh,
Verdonck, Meers, Loossens, & Tuerlinckx, 2019) proceeds
by creating a large grid of simulations which are reduced
to summary statistics and stored on disk. Subsequent infer-
ence involves computing the nearest neighbors of an observed
dataset in the pre-paid grid and interpolation. Sequential neu-
ral posterior estimation (SNPE) methods employ various iter-
ative refinement schemes to transform a proposal distribution
into the correct target posterior via expressive NDEs trained
over multiple simulation rounds (Greenberg et al., 2019).

In line with these ideas, we recently proposed two general
frameworks for amortized Bayesian parameter estimation and
model comparison based on specialized neural network archi-
tectures (Radev, Mertens, et al., 2020; Radev, D’Alessandro,
et al., 2020). In particular, these frameworks were designed
to implement the following desirable properties:

• Fully amortized Bayesian inference for parameter estima-
tion and model comparison of intractable models

• Asymptotic theoretical guarantees for sampling from the
true parameter and model posteriors

• Learning maximally informative summary statistics di-
rectly from data instead of manual selection

• Scalability to high-dimensional problems through consid-
erations regarding the probabilistic symmetry of the data

• Implicit preference for simpler models based purely on
generative performance

• Online learning eliminating the need for storing large grids
or reference tables

• Parallel computations and GPU acceleration applicable to
both simulations, training/optimization, and inference

In the following, we describe our recently developed meth-
ods parameter estimation and model comparison in turn.

Amortized Parameter Estimation with
Invertible Neural Networks

Recently, we proposed a novel amortization method based
on invertible neural networks (Radev, Mertens, et al., 2020),
which we dubbed BayesFlow. The method relies solely on
simulations from a process model in order to learn and cali-
brate the full posterior over all possible parameter values and
observed data patterns.

The BayesFlow method involves two separate neural net-
works trained jointly. A permutation invariant summary net-
work is responsible for reducing an entire dataset X with a
variable number N of i.i.d. observations1 into a vector of
learned summary statistics. Importantly, permutation invari-
ant networks can deal with i.i.d. sequences of variable size
and preserve their probabilistic symmetry. An inference net-
work, implemented as an invertible neural network (Radev,
Mertens, et al., 2020), is responsible for approximating the
true posterior of model parameters given the output of the
summary network. Invertible networks can perform asymp-
totically exact inference and scale well from simple low-
dimensional problems to high-dimensional distributions with
complex dependencies. During training, model parameters
and synthetic datasets are generated on the fly and neural net-
work parameters are adjusted via joint backpropagation (see
Figure 1a, left panel, for a graphical illustration of the training
phase).

Given a model and a prior over the model parameters, the
goal is thus to train a conditional invertible neural network fψ
with adjustable parameters ψ together with a summary net-
work fη with adjustable parameters η. These networks jointly
learn an approximate posterior pψ(θ | fη(X)) over the relevant
parameters for arbitrary numbers of datasets and dataset sizes
N, as long as they share the same data structure. To achieve
this, the networks minimize the Kullback-Leibler (KL) diver-
gence between the true and the approximate posterior:

min
ψ,η

KL
(

p(θ |X) || pψ(θ | fη(X))
)

(7)

Utilizing the fact that we have access to the joint distribution
p(θ,X) = p(θ)(X |θ) via the simulator, we minimize the KL
divergence in expectation over all possible datasets that can
be generated given the prior and the model, resulting in the
following optimization criterion:

min
ψ,η

Ep(θ,x)
[
− log pψ(θ | fη(X))

]
(8)

In practice, we approximate the criterion via its Monte Carlo
(MC) estimate, since we can simulate theoretically infinite
amounts of data and can easily evaluate pψ(θ | fη(X)) due to
our invertible architecture. In case of perfect convergence of
the networks, the summary network outputs sufficient sum-
mary statistics and the inference network samples from the
true posterior (Radev, Mertens, et al., 2020). Importantly,

1Note, that the i.i.d. assumption is not a necessary condition for
the method to work, but used here only to simplify the discussion.
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once the networks have been trained with sufficient amounts
of simulated data, they can be stored and applied for infer-
ence on multiple datasets from a research domain (see Figure
1a, right panel).

Amortized Model Comparison with Evidential
Neural Networks

In another recent work (Radev, D’Alessandro, et al., 2020),
we explored a framework for Bayesian model comparison on
intractable models via evidential neural networks. We pro-
posed to train a permutation invariant classifier network on
simulated data from multiple models. The goal of this net-
work is to approximate posterior model probabilities as accu-
rately as possible. To achieve this, the network is trained to
output the parameters of a higher-order probability distribu-
tion (parameterized as a Dirichlet distribution) over the model
probabilities themselves, which quantifies the uncertainty in
model probability estimates. Thus, for a classifier network
with parameters φ, the higher-order posterior distribution over
model probabilities is given by:

Dir(π |αφ(X)) =
1

B(αφ(X))

J

∏
j=1

παφ(X) j−1 (9)

where αφ(X) denotes the vector of concentration parameters
obtained by the network for a dataset X and B(·) is the multi-
variate beta function. The mean of this Dirichlet distribution
can be used as a best estimate for the posterior model proba-
bilities:

pφ(M |X) =
αφ(X)

∑J
j=1 αφ(X) j

(10)

Additionally, its variance can be interpreted as the epistemic
uncertainty surrounding the actual evidence which the data
provide for model comparison.

For training the network, we again utilize the fact that we
have access to the joint distribution p(M ,θ,X) via simula-
tions (see Figure 1b, left panel). Our optimization criterion
is:

min
φ

Ep(M ,θ,X)

[
L
(

pφ(M |X),M
)]

(11)

where L(·, ·) is a strictly proper loss function (Gneiting &
Raftery, 2007), M is the true model index and the data X
implicitly depend on θ. In practice, we approximate this ex-
pectation via draws from the joint distribution available via
the simulator. Optimization of a strictly proper criterion,
asymptotic convergence implies that the mean of the Dirichlet
distribution represents the true model posteriors. Moreover,
our simulation-based approach implicitly captures a prefer-
ence for simpler models (Occam’s razor), since simpler mod-
els will tend to generate more similar datasets. As a conse-
quence, when such datasets are plausible under multiple mod-
els, the comparably simpler models will be more probable.

As with parameter estimation, once the evidence network
has been trained on simulated data from the candidate mod-
els, it can be applied to multiple upcoming observations from
a research domain (see Figure 1b, right panel).

Example Applications
In the following, we will present two applications of amor-
tized Bayesian parameter estimation to a recently proposed
and intractable evidence accumulation model (EAM). The
first illustrative application is a simulation study aimed at
quantifying parameter recovery as a function of data set size.
Such simulations are especially useful for planing experi-
ments but usually too costly to perform in complex modeling
scenarios. The second application is concerned with param-
eter estimation on real data and serves as an illustration on
how researchers might utilize amortized Bayesian inference
with a pre-trained density estimator in practice.

EAMs are a popular class of models in psychology and
cognitive science, as they allow a model-based analysis of
response time (RT) distributions. Here, we will consider a
Lévy flight model (LFM) with a non-Gaussian noise assump-
tion (Voss et al., 2019; Wieschen et al., 2020) as an example.
The Lévy flight process is driven by the following stochastic
ordinary differential equation (ODE):

dxc = vc dt +ξdt1/α (12)
ξ∼ AlphaStable(α,0,1,0) (13)

where dxc denotes accumulated cognitive evidence in con-
dition c, vc denotes the average speed of information accu-
mulation (drift), and α controls how heavy the tails of the
noise distribution are (i.e., smaller values increase the prob-
ability of outliers in the accumulation process). Further pa-
rameters of the model are: a decision threshold (a) which
reflects the amount of information needed for selecting a re-
sponse; a starting point (zr) indicative of response biases; and
a non-decision time (t0) reflecting additive encoding and mo-
tor process. Since the relationship of the α parameter to the
standard parameters of the classical diffusion model (Ratcliff,
Thapar, Gomez, & McKoon, 2004) has not been previously
investigated, we focus on quantifying posterior correlations
in the real data application.

Simulation Example
As a first example, consider a simulated RT experiment with
four conditions. How many trials are needed for accurate
parameter recovery? To answer this question, we can sim-
ulate multiple experiments with varying number of trials per
participant (N) and then compute some discrepancy between
ground-truth parameters and their estimates. However, since
the model is intractable, such a simulation scenario is not fea-
sible with non-amortized methods, which would need weeks
on standard machines (Voss et al., 2019). However, using
the BayesFlow method (Figure 1a), we can train the networks
with simulated datasets and vary the number of trials during
each simulation. Such a training takes approximately one day
on a standard laptop equipped with an NVIDIA R© GTX1060
graphics card. Subsequent inference is then very cheap, as
amortized parameter estimation on 500 simulated participants
takes less than 2 seconds.
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(a) Parameter recovery as a function of trial numbers (N)

(b) Simulation-based calibration

Figure 2: Simulation results. (a) The left panel depicts pa-
rameter recovery of the four drift rate parameters as a function
of trial numbers per participant N. The right panel depicts
recovery of the other four parameters. Posterior means are
used as summaries of the full posteriors and shaded regions
represent bootstrap 95% confidence intervals. (b) The panel
depicts simulation-based calibration (SBC) results at N = 800
as a validation check for the correctness of the full posteriors.

Figure 3: Example full posteriors and bivariate posterior cor-
relations obtained from data of one participant in the long
LDT via amortized Bayesian inference. Dashed lines on the
main diagonal indicate posterior means.

We visualize the results by plotting the average R2 metric
obtained from fitting the LFM model to 300 simulated par-
ticipants at different N between 50 and 1000 (see Figure 2a).
Notably, recovery of the ground-truth parameters via poste-
rior means is nearly perfect at higher trial numbers.

As a validation tool for visually detecting systematic bi-
ases in the approximate posteriors, we can also cheaply ap-
ply simulation-based calibration (SBC) and inspect the rank
statistic of the posterior samples for uniformity (Talts, Be-
tancourt, Simpson, Vehtari, & Gelman, 2018). Results from
applying SBC to 5000 simulated participants at N = 800 are
depicted in Figure 2b. Indeed, we confirm that no pronounced
issues across all marginal posteriors are present.

Real Data Example
We can also apply the same networks from the previous sim-
ulation example for fully Bayesian inference on real data.
Here, we fit the LFM model to previously unpublished data
from eleven participants performing a long (N = 800 per con-
dition) lexical decision task (LDT). Since the task had a 2×2
design, with a factor for difficulty (hard vs. easy), and a fac-
tor for stimulus type (word vs. non-word), we can assume a
different drift rate for each design cell.

Applying the pre-trained networks, we immediately obtain
samples from a full posterior over model parameters for each
participant. Using the estimated posteriors, we can then test
hypotheses about particular parameter values, compute indi-
vidual differences, or compare means between conditions in
a Bayesian way. Furthermore, we can analyze posterior cor-
relations at an individual level and investigate task-dependent
relationships between the α parameter and other parameters
(see Figure 3 for results obtained from a single participant).

Across participants, α displays only small posterior cor-
relations with drift rates as well as small posterior correla-
tions with threshold and non-decision time parameters (mean
r < 0.5 across all parameters of the standard diffusion model).
These results provide first evidence that the α parameter can
indeed be decoupled from other model parameters and possi-
bly indicates a separate decision process.

Since the goal of this application was solely to illustrate
a typical use case for amortized Bayesian inference, future
research should focus on extensive external validation of the
LFM model as well as proposing a neurocognitively plausible
interpretation for the α parameter.

Outlook
The purpose of this work was to introduce the main ideas be-
hind amortized Bayesian inference methods for simulation-
based parameter estimation and model comparison. Although
these methods come with promising theoretical guarantees
and clear practical advantages, their utility for cognitive mod-
eling is just beginning to be explored. Moreover, there are
still many open questions and avenues for future research.

First, a systematic investigation of a potential amortiza-
tion gap in certain practical application seems warranted. An
amortization gap refers to a drop in estimation accuracy due
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to the fact that we are relying on a single set of neural net-
work parameters for solving an inference problem globally,
instead of performing per-dataset optimization. Even though
we have not observed such a scenario in our applications and
simulations, this behavior might occur when the neural net-
work estimators are not expressive enough to represent com-
plex posterior distributions.

Second, there are still little systematic guidelines on how
to best design and tune the neural network architectures so
as to perform optimally across a variety of parameter estima-
tion and model comparison tasks. Even though neural den-
sity estimation methods outperform standard ABC methods
on multiple metrics and in various contexts, there is certainly
room for improvement. Black-box optimization methods for
hyperparameter tuning, such as Bayesian optimization or ac-
tive inference (Snoek, Larochelle, & Adams, 2012), might
facilitate additional performance gains and reduce potentially
suboptimal architectural choices.

Finally, user-friendly software for applying Bayesian
amortization methods out-of-the-box is still largely in its in-
fancy. Developing and maintaining such software is a crucial
future goal for increasing the applicability and usability of
novel simulation-based methods.

Conclusion
We hope that the inference architectures discussed in this
work will spur the interest of cognitive modelers from var-
ious domains. We believe that such architectures can greatly
enhance model-based analysis in cognitive science and psy-
chology. By leaving subsidiary tractability considerations to
powerful end-to-end algorithms, researchers can focus more
on the task of model development and evaluation to further
improve our understanding of cognitive processes.
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Abstract

Human reasoning systematically deviates from conclusions
predicted by classical logic. It is nonmonotonic and defeasi-
ble, i.e., new information can lead to the retraction of previous
inferences. While these results hold for the analysis of popu-
lation data, it is an open question, if nonmonotonic logics can
capture individual human reasoning. In this article, we take
three prominent nonmonontonic approaches, the Weak Com-
pletion Semantics, Reiters Default Logic, and OCF, a ranking
on possible worlds, implement variants of them and evaluate
them within the CCOBRA-framework for their predictive ca-
pability in the Suppression Task. We demonstrate that non-
monotonic approaches are able to predict individual reasoner
on 82% (median). Furthermore, we can demonstrate that OCF
and an improved version of Reiter make identical predictions
and that abduction is relevant on the level of an individual rea-
soner. We discuss implications of logical systems for human
reasoning.
Keywords: Human Reasoning; Nonmonotonic Logic; Evalu-
ation; Individual Reasoner

Introduction
Humans draw different conclusions when they are presented
with additional information. Consider the following informa-
tion:

If Lisa has an essay to write then she will study late in
the library.
She has an essay to write.

In a study about 96% of participants concluded, that she will
study late in the library (Byrne, 1989). However, only 38%
of the participants receiving in the same study the additional
conditional

If the library stays open, she will study late in the library.

endorsed the conclusion that She will study late in the li-
brary. In contrast to about 90% of the reasoners endorsing
the respective conclusion when receiving the alternative con-
ditional

If she has a textbook to read, she will study late in the
library.

While this change in the inference behavior between the first
case to the second case might be intuitively clear for the
reader, because the second conditional provides a possible
constraint, the inference she will study late in the library

even with such an additional constraint is classically logi-
cally valid. Hence, this and other findings (e.g., in the Wa-
son Selection Task, see Ragni, Kola, & Johnson-Laird, 2018)
demonstrate that the normative framework of classical logic
is not a good descriptive framework for about how humans
reason. Despite that logical inference problems require that
humans derive the logical conclusion. In recent years this has
lead to a number of different modeling approaches, e.g., prob-
abilistic models (Oaksford & Chater, 2013), heuristic models
(Evans & Over, 2004), and recently to the discovery that non-
monotonic logics might be appropriate (Stenning & Lambal-
gen, 2008). A reasoning theory is called nonmonotonic if new
information can lead to the retraction of previous inferences
(Antoniou, 1997). Hence, the reasoning process allows for
defeasible conclusions or reasoning under exceptions. In fact,
many cognitive theories are nonmonotonic, e.g., probabilistic
(Oaksford & Chater, 2013), mental models (Johnson-Laird,
Girotto, & Legrenzi, 2004), and cognitive logics (Stenning
& Lambalgen, 2008). In this article, we investigate three
noteworthy logical theories are to predict an individual rea-
soner conclusion, before the reasoner generates it. The paper
is structured as follows: First, we will introduce the neces-
sary background for conditional reasoning and the Suppres-
sion Task. In the next section we introduce three prominent
models of nonmonotonic reasoning. Then, a section with
the evaluation framework CCOBRA and the description of
a data-set follows. Finally, a section on the evaluation of the
different nonmonotonic logics and their variants and a discus-
sion about the implications concludes the paper.

Background & Related Work
Conditional Reasoning
Conditional reasoning (i.e., reasoning about “if”) is diverse
from reasoning about given facts. It can represent assump-
tions about states, e.g., about causal relations or in ac-
tion planning, considering hypothetically potentially different
past states (e.g., counterfactual reasoning), or hypothesizing
theories (e.g., inductive reasoning). It is highly relevant for
both automated and human reasoning. There is a long history
in cognitive science about modeling conditional reasoning,
i.e., a statement of the form, “if e then l”, often written by
e→ l or (l|e). For a given conditional four inference mecha-
nisms are possible:
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Modus ponens (MP) is a deductively valid argument in
classical logic: from the premises e→ l and e, the con-
sequent l is inferred. Consider the premises:

If she has an essay to write then she will study late in
the library. She has an essay to write.

The valid conclusion is:

She will study late in the library.

Modus tollens (MT) is a deductively valid argument in
classical logic: from the premises e→ l and ¬l the negated
antecedent ¬e is inferred. An example:

If she has an essay to write then she will study late in
the library. She will not study late in the library.

The valid conclusion is:

She does not have an essay to write.

Denial of the antecedent (DA) is a deductively invalid ar-
gument in classical logic: from the premises e→ l and ¬e
the negated consequent ¬l is inferred. An example:

If she has an essay to write then she will study late in
the library. She does not have an essay to write.

The erroneous conclusion is:

She will not study late in the library.

Affirmation of the consequent (AC) is also a deductively
invalid argument in classical logic: from the premises e→ l
and l, the antecedent e is inferred. An example:

If she has an essay to write then she will study late in
the library. She will study late in the library.

The erroneous conclusion is:

She has an essay to write.

All inference mechanisms are logically valid in case of a
biconditional interpretation, i.e., if and only if she has an es-
say to write she will study late in the library. It has been
claimed that the nonmonotonic System P satisfies minimal
rationality criteria. And, that it is close to human reason-
ing (Pfeifer & Kleiter, 2005). A different study could not
support the relevance of the nonmonotonic System P as a
good descriptive theory to explains psychological findings
(Kuhnmünch & Ragni, 2014). So we exclude this theory.

Suppression Task
Together with the aforementioned Wason Selection Task, the
Suppression Task (the difference in resoning behavior with
or without the additional conditional) is one core problem
for reasoning theories (Byrne, 1989; Neth & Beller, 1999;
Chan & Chua, 1994; Politzer, 2005). Accordingly, this task
and human nonmonotonic reasoning has been modeled by
many researchers (Dietz, Hölldobler, & Ragni, 2012a; Sten-
ning & Lambalgen, 2008). Recent research (Ragni, Eichhorn,

& Kern-Isberner, 2016) analyzed if nonmonotonic systems
have the competence to grasp the specific nonmonotonicty
of the Suppression Task without additional background in-
formation. It demonstrated that the inference mechanisms
of all nonmonotonic logics despite the weak completion se-
mantics required additional knowledge. This was, however,
an evaluation on the aggregated level. So theories and mod-
els were competent to solve the problems with some requir-
ing additional background knowledge. So far no analysis on
predictive performance of the cognitive models or logics for
the individual human reasoner on conditional reasoning in the
Suppression Task. Before we can do so we present three main
theories for nonmonotonic reasoning.

Models of Nonmonotonic Reasoning
The Weak Completion Semantics
One main criticism against classical two valued approaches
is that in everyday life we typically have degrees of (un-) cer-
tainty. The traditional two symbols >, ⊥, are extended with
U denoting true, false, and unknown, respectively. Stenning
and Lambalgen (2008) have claimed that conditionals should
be encoded by “licenses for inferences”. For example, the
conditional if she has an essay to finish, she will study late in
the library or short (l← e) should be encoded by the clause
l e∧ab1, where ab1 is an abnormality predicate which ex-
presses that l holds if e holds and nothing abnormal is known.
The programs obtained for the two main examples of the Sup-
pression Task are depicted in the first two columns of Table 1.

The abnormality predicates (e.g., ab1) represent abnormal
cases: For instance, ab1 is true when the library does not
stay open and ab3 is true when she does not have an essay
to finish. Weak completion is the process of substituting the
conditional with a biconditional.

In the case of AC where the conclusion holds the propo-
sitional variable e is mapped to unknown. Hence, if we ob-
serve that ‘she will study late in the library’, then we cannot
explain by the model that ‘she has an essay to write’ without
abduction (Saldanha, Hölldobler, & Rocha, 2017). Abduc-
tion searches for the minimal explanation. Since e is the only
undefined propositional letter in this context, the set of ab-
ducibles is e←> , e←⊥. The above observation can be ex-
plained by selecting e←> from the set of abducibles, weakly
completing it to obtain e←> and adding this equivalence to
the logic program.

Reiter’s Model for Default Reasoning
Reiter (1980) proposed a system for default reasoning. Ac-
cording to Reiter, conditionals of the form e→ l are inter-
preted as default rules, i.e., they are true as long as no ex-
ception is known. This idea was inspired that the conditional
“if an animal is a bird, then it can fly” is true as long as we
know that this animal is not a penguin (or any other exception
such as a dodo etc.). For reasons of simplicity we do not in-
troduce the formalizations of a background theory. A default
rule constructed from a conditional has:
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Table 1: The WCS approach to the suppression task. ELT =
the statements ‘essay’, ‘late’, and ‘textbook to read’; ELO =
the statements ‘essay’, ‘late’, ‘open hold’; ab are abnormality
predicates; wc is the weak completion; and lmL are the least
model; Table adapted from Dietz et al. (2012b).

Premise PELT PELO

Clauses l← e∧ab1 l← e∧ab1
l← t ∧ab2 l← o∧ab3
ab1←⊥ ab1← o
ab2←⊥ ab3← e
e←> e←>

wcP l↔ (e∧ab1) l↔ (e∧ab1)
∨ (t ∧ab2) ∨ (o∧ab3)
ab1↔⊥ ab1↔ o
ab2↔⊥ ab3↔ e
e↔> e↔>

lmLwcP 〈{e, l},{ab1,ab2}〉 〈{e},{ab3}〉
lmLwcP Infers l Not infers l

Empirical Results 96% infer 38% infer
Byrne (1989) l l

e : justifications
l

• the precondition: e (an essay to write)

• the justifications: depends on the scenario, for the library
scenario a justification is that the library is open.

• the consequence: l (study late in the library)

To model the Suppression Task we construct the default rules
from the conditionals, i.e., for the conditional “if Lisa has
an essay to write then she will study late in the library.” we
assume that no exception is known and so the exception above
is empty. This changes when we learn about the exception
that the library is not open, then the justification is that the
library is open. Facts can be formulated as a conditional with
a true antecedent.“Lisa has an essay to finish”

:
e

This means that without any precondition and without any
justification it can be inferred that Lisa has an essay to fin-
ish. Conditionals with tautology as antecedent are plausible
statements or facts about the world (Beierle & Kutsch, 2019).
Statements such as “Mostly, Lisa has an essay to finish” can
be translated to:

: e
e

Table 2: The successive generation of ranks (ranks are repre-
sented by κ) of possible worlds for the conditionals ‘if e then
l’ and ‘if t then l’.

e l t κ(ω) ωi |= (l|e) κ(ω) ωi |= (l|t) κ(ω)

ω1 0 0 1 0 e 1 tl 3

ω2 0 1 1 0 e 1 tl 1

ω3 1 0 1 0 el 2 tl 4

ω4 1 1 1 0 el 0 tl 0

the justification ensures that the cases where she does not
have an essay to finish, are handled as an exception. Our
implementation works as follows: After translating the fact
and conditionals, the defaults are executed, starting with the
fact and keeping the order of the conditionals from the origi-
nal task. Since the defaults, constructed from the fact, do not
have any precondition and our knowledge about the world
(which is written as W in Reiter’s terminology) is empty, they
are always added to the world knowledge W .

Ordinal conditional function
A different approach is inspired by the relevance of worlds
and so some worlds are more relevant than others. This in-
spired the idea that the relevance of the worlds impose a rank
on the worlds. There are three kinds of worlds for a condi-
tional (l|e):
• worlds satisfying e and l, ω |= el

• worlds falsifying the conditionals, assuming e is true but
the consequence l to be false ω |= el

• worlds assuming e to be false, e, called inapplicable
worlds.

An inapplicable conditional means that there can’t be made
any statement about l, as e is already assumed to be false.
The different sets can be represented by an indicator function
(Calabrese, 1991):

(l|e)(ω) =





1 If ω |= el
0 If ω |= el
u If ω |= e

where u means undefined, i.e., a case where the precondition
is false. This represents that when the precondition does not
hold, a conclusion about the truth value of the consequence
relation l cannot be made. The conditional (l|e) is evaluated
as true (has the value 1), if the possible world ω has e and l
as true. In this case we write for this world el.

Instead of assigning probabilities to a world, we can use
ordinal conditional functions (OCFs)

κ : Ω→ N∪{∞} with κ−1(0) = /0
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which maps possible worlds to an integer value. They map
any possible world ω ∈ Ω to natural number, which repre-
sents the degree of disbelief (Spohn, 1988). They express
degrees of plausibility of propositional formulas φ by specify-
ing degrees of disbelief of their negation φ (Beierle & Kutsch,
2019). The more plausible a world ω is, the smaller its rank
κ(ω). Consequently κ(ω1)= 0 describes the world ω1, which
is the most plausible. Hence κ(ω2) = 1 is a world a little
bit less plausible, than ω2, whereas κ(ω) = 10 or higher is
a world very unplausible. At least one world needs to have
the ranking of 0. κ |= (l|e), iff κ(el)< κ(el) means the agent
would conclude that the verification of the conditional is more
plausible or less surprising than the falsification of the con-
sequence (Beierle & Kutsch, 2019). The main idea of our
model is that all possible worlds or assignments, are ranked
by their plausibility. The most promising world, that matches
our choices will be returned accordingly.

An example for computing ranks of worlds For every
task, we assume that, in the beginning, all worlds are equally
possible and have the rank 0 (cp. Table 2), since we do not
know anything about our environment. The rank will be up-
dated with multiple conditionals. Secondly all κ values for
these sets are determined: κ(el), κ(el), κ(l). The κ values
for the sets will have the same rank as the world with the
smallest rank from each set accordingly. In Table 1 we have
an example of possible worlds, which are revised with two
conditionals. For the input:

If Lisa has an essay to finish, she will study late in the
library. She will study late in the library.

The possible worlds can describe an environment with 2 lit-
erals l and e. We write > for a tautology, i.e., the truth value
true. The first sentence of the task is encoded to the condi-
tional (l|e) and the fact is encoded to a conditional without a
precondition (l|>).

At the beginning all worlds are equally plausible, therefore
κ(ω) = 0. We use the first conditional (l|e) to revise the be-
lief and to update the κ values for each world. Therefore the
worlds are split into three sets: verifying, falsifying and inap-
plicable worlds. Then, the variables κ(el), κ(el), κ(e) can be
determined, all having a starting value 0. Finally, all worlds
are updated accordingly and a new conditional can revise our
belief in the same way the first one did. The second infor-
mation is a fact and is transformed into a conditional with
a precondition which is always true: (l|>). The values for
κ(el), κ(el), κ(e) are computed. The most plausible world is
the last one. When having the choice between:

Lisa has an essay to finish
Lisa has not an essay to finish

we will chose the first one, because it is consistent with the
most plausible world: ω4.

Individual Predictions
CCOBRA
The Cognitive Computation for Behavioral Reasoning Anal-
ysis (CCOBRA) framework is a benchmarking tool imple-
mented in Python that actively integrates the individual hu-
man into the prediction loop. There is a close connection
to psychological experiments. Implemented models are sup-
posed to simulate the experimental procedure for individ-
ual participants. By providing responses to individual tasks,
models are evaluated based on their predictive accuracies1.
The CCOBRA framework offers multiple possibilities, e.g.,
a pretrain, adapt and predict methods that we used for our
model evaluation.

Figure 1: The CCOBRA-framework to evaluate the predic-
tive power of cognitive theories.

Data-Set
The data can be found online2. It consists of 96 participants
with no background in logic. Participants were recruited for a
laboratory experiment at the University Freiburg. In 12 prob-
lems participants were requested to answer if specific con-
clusions follow from given information. Participants were
divided into four groups. Group A received tasks with sim-
ple conditional arguments (non-suppression group). Group
B also received tasks with simple conditional arguments but
with a linguistic modification in premise one by adding the
keyword “mostly” (they received the problem description in
German).

If Lisa has an essay to finish then she will mostly study
late in the library. Lisa will study late in the library.
Does Lisa have an essay to finish?

Group C received the modification in premise two by
adding the keyword “mostly”:

If Lisa has an essay to finish then she will study late in
the library. Mostly, Lisa will study late in the library.
Does Lisa have an essay to finish?
1http://orca.informatik.uni-freiburg.de/ccobra
2https://github.com/CognitiveComputationLab/cogmods

/tree/master/suppression task
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Figure 2: Boxplots for the models indicating individual subject performance. The data used for the plot are accuracies for each
individual human reasoners performance (cp. Fig. 1.)

Group D received items with simple conditional arguments
and two additional arguments:

If Lisa has an essay to finish then she will study late in
the library. If Lisa has some textbooks to read then she
will study late in the library. If the library stays open
then she will study late in the library. Lisa will study
late in the library. Does Lisa have an essay to finish?

All four groups received three different scenarios (an ab-
stract version, a story on an exoplanet with aliens having
specific properties, and the library example above) and these
in turn with the four inferential figures modus ponens (MP),
modus tollens (MT), denial of the antecedent (DA) and af-
firmation of the consequent (AC). The arguments were pre-
sented sequentially and the concluding question had to be an-
swered with “yes” or “no”.

As our goal is to model the individual reasoner, we only
report some aggregate statistic: Group A indicated the highest
likeliness (88%) that the made conclusion holds true followed
by Group D (80%), Group C (70%) and Group B (67%). For
the logical correctness Group D shows the highest correctness
rate (61.0%) followed by Group C (55.8%), Group A (54.9%)
and then Group B (52.0%).

Predictive Performance of the Models
We compare now the predictive performance of the models
with each other and baselines (cp. Fig. 2):

Baseline 1: Most Frequent Answer. To compare the cog-
nitive models the most frequent answer is a good empirical
measure. It represents the answers of all participants given
for the same problem and returns the response which was an-
swered the most. Taking the majority vote into account, it
achieves a precision of 89.2%. This means that participants
are quite homogeneous, i.e., they do not differ much in the
responses they give.

Baseline 2: The Uniform Model. The uniform random
model provides another base line, namely for participants that

select randomly an answer. In the presented experiments, the
participants had two choices for each task. So the uniform
random model selects randomly one of the two choices and
returns it as the predicted answer. It achieved, as expected, a
50% prediction performance.

The Weak Completion Semantics. This model which is
based on a ternary logic and logic programs with allowing
for abductive reasoning has a predictive performance of 82%
based with an upper bound of 100% and a lower bound of
50%. If abductive reasoning is not allowed the performance
drops to 56.1%, with a lower 12.5% and an upper bound of
87.5%.

The OCF-Model. The OCF model which is based on com-
puted ranks of models reaches a high level of predictivity of
about 82.2%. This model achieved an accuracy of 82.2%,
with an upper bound of 100% and a lower bound of one sin-
gle person with 37.5%.

The Classical Reiter Model. This is Reiter’s original
model Reiter (1980). It achieves a predictive accuracy of
65.5%, with predicting some persons as high as 87.5% and
others as low as 25%.

Reiter Model Improved. The basic Reiter Model can be
extended by adding default rules in order to model the phe-
nomen that subject tend to use the modus tollens or affirma-
tion of the consequent inference rule. By adding these two
rules we reach the identical predictivity of the OCF-model
with 82.2%, i.e., it predicts the exact same answer for every
single subjects. This demonstrates a functional equivalence
of the Reiter Model that is augmented with two additional
rules with the semantic based approach by the OCF.

Discussion
Human reasoning has often been disqualified as “unlogical”.
While many psychological findings demonstrate that humans
do deviate from valid inferences predicted by classical logic,
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this paper demonstrates that nonmonotonic logics are com-
petitive. They are even able to predict a median of 82% of
the inferences drawn by every individual human reasoner in
the Suppression Task. While the classical approach by Reiter
did not match the high performance of the OCF model, we
extended Reiter’s model with two rules and demonstrated a
functionally equivalent model to the OCF. The performance
of the pre-trained version of the WCS model is only slightly
lower than Reiter Model Improved and OCF Model. WCS
deviated on some problems in the MP-case from the partic-
ipants responses, where due to introduced abnormalities, it
did not predict the classical MP conclusion. On the other
hand, the WCS model successfully managed to model De-
nial of Antecedence problems by abductive reasoning in the
cases of induced non-monotonicity, which the Reiter Model
Improved and OCF did not succeed in. This analysis gives
further support for the importance of abductive reasoning that
has been reported relevant in the Weak Completion Semantics
(Breu, Ind, Mertesdorf, & Ragni, 2019). Focusing on the in-
dividual predictivity of each system in a training set and a test
set of participants in the CCOBRA-framework allows to esti-
mate the true power of logics and cognitive models and makes
even more progress possible, because it allows to identify in-
dividuals that are perfectly predicted and individuals in turn
that are not captured. Future research needs to cover more ex-
perimental data, more cognitive theories, and aim to identify
successful mechanisms of highly-predictive theories.
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Introduction
Multidimensional scaling (MDS) is a popular technique

for  embedding  items  in  a  low-dimensional  spatial
representation  from a  matrix  of  the  dissimilarities  among
items  (Shepard,  1962).  MDS has  been  used  simply  as  a
visualization aid or  dimensionality  reduction  technique  in
statistics and machine learning applications, but in cognitive
science, MDS has also been interpreted as a cognitive model
of similarity perception or similarity judgment, and is often
part of a larger framework for modeling complex behaviors
like  categorization  (Nosofsky,  1992)  or  generalization
(Shepard,  2004).  However,  a  persistent  challenge  in
application of MDS is selecting the latent dimensionality of
the inferred  spatial  representation;  the dimensionality is  a
hyperparameter that the modeler must specify when fitting
MDS.

Perhaps  the  most  well-known  procedure  for  selecting
dimensionality is constructing a scree plot of residual stress
(the  difference  between  empirical  dissimilarities  and
dissimilarities  implied  by  the  model)  as  a  function  of
dimensionality,  and  then  looking  for  an  elbow:  the
dimensionality where stress has decreased dramatically but
then plateaus. This elbow is taken to indicate that extending
the space with additional dimensions does not substantially
improve  the  fit  of  the  model  to  the  input  similarities.
Unfortunately,  this  procedure  is  highly  subjective.  Often
such elbows do not exist, and instead the scree plots show a
smooth decrease in stress as MDS increasingly overfits to
noise at higher dimensionalities. In response, various more
principled  statistical  techniques  for  model  selection  have
been proposed that account for the trade-off between model
complexity  (dimensionality)  and  model  fit  (stress),
including likelihood ratio tests (Ramsay, 1977), BIC (Lee,
2001), and Bayes factors (Gronau and Lee, in press). While
such  techniques  are  valuable,  they  can  be  prohibitively
computationally complex for novice MDS users, and rely on
a number of assumptions that are not necessarily met (e.g.,
Storms, 1995).

An alternative technique that may avoid such problems is
cross-validation.  Under  this  approach,  MDS  of  a  given
dimensionality  would  be  fit  to  some  subset  of  available
dissimilarity data, the model’s predicted distances for held-
out  dissimilarity  data  would  be  evaluated,  and  the
dimensionality which maximizes performance on the held-

out  data  would  be  selected.  Despite  the  simplicity  and
generality  of  cross-validation  as  a  model  selection
procedure,  cross-validation  has  seen  relatively  little
application  to  MDS  or  related  methods  (Steyvers,  2006;
Roads & Mozer,  2019; Gronau & Lee, in press),  with no
systematic exploration of its capabilities, as there has been
for likelihood ratio tests, BIC, and Bayes factors (Ramsay,
1977; Lee, 2001; Gronau & Lee, in press).  In the present
work,  we  therefore  examine  the  usefulness  of  cross-
validation over cells of a dissimilarity matrix in simulations
and applications to empirical data.

Simulations
We conducted a standard model recovery exercise, whereby
we simulated spaces of known dimensionality, from which
we collected  and aggregated  noisy dissimilarity  data,  and
applied  cross-validation  to  attempt  to  recover  the  true
dimensionality. Our simulations were conducted as follows:
1. Sample  n items uniformly from the unit hypercube of

dimensionality between 1 and 7
2. For each simulated subject, add noise ~ N(0, sd) to the

item coordinates, and compute the inter-item Euclidean
distances

3. Average over subject distance (dissimilarity) matrices
4. Derive a weight for each cell  of the average distance

matrix equal to the inter-subject precision of that cell
5. Generate  10  random  80-20  train-test  splits  of  the

averaged  matrix  such  that  each  row of  each  training
matrix is missing no more than 75% of its cells

6. For each train-test split:
1. For each dimensionality from 1 to 7:

1. Fit  ratio  MDS  to  the  training  dissimilarities
and the cell  weights  given by (4),  using the
smacof  library in R (de Leeuw & Mair, 2017)

2. Use the fitted MDS to obtain distances for the
cells of the test split

3. Compute  Pearson  correlation  between  the
MDS distances and held-out dissimilarities

7. Select  the  dimensionality  with  the  highest  median
correlation across all train-test splits

Figure 1 shows distributions of best-fitting dimensionalities
(y-axis)  over  50  simulations  of  a  particular  true
dimensionality  (x-axis),  number  of  subjects  (hue),  noise
level  (columns),  and  number  of  items  (rows).  Figure  1
shows the true dimensionality is recoverable across a range
of conditions.
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Empirical application
We applied steps 3-7 above to an empirical dataset of 
similarity judgments from Hout, Goldinger, and Ferguson 
(2013), who had 92 subjects use the Spatial Arrangement 
Method to judge similarity among a set of 27 artificial 
‘bugs’ which varied on 3 dimensions (darkness, pincer 
shape, number of legs). Figure 2 shows distributions of 
Pearson correlations between MDS distances and held-out 
dissimilarities under 100 train-test splits for each fitted 
dimensionality from 1 to 7. Cross-validation correctly 
selects a 3-dimensional spatial representation for these data.

Discussion
We have demonstrated the utility of cross-validation for

determining the dimensionality of multidimensional scaling
models,  given  subject-averaged  similarity  data  and
assumptions (or knowledge) that dissimilarity data are on a
ratio  scale and were  generated  from a Euclidean distance
metric.  We  cross-validated  across  individual  cells  of  a
dissimilarity matrix, whereas previous applications of cross-
validation to MDS cross-validated over subjects (Steyvers,
2006). We believe our approach has certain advantages, e.g.,

it can be applied to single subject data, and might eventually
be applicable in individual differences scaling, a direction
we  are  now  pursuing.  This  latter  extension  may  be
especially  important,  because  averaging  dissimilarity
matrices might not always be warranted (Ashby, Maddox, &
Lee, 1994). We are also currently exploring simulations and
empirical applications when certain current constraints are
relaxed, e.g., when similarity data are on a likert scale.
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Abstract

In Tibetan monasteries, the education system relies heavily on
a very specific style of debating that is at once exhilarating and
intellectually rigorous. Relatively little research has been done
on the psychological and neural mechanisms of this debate,
which may be an interesting method for education around the
world. Hence the formation of a theory of this practice is im-
portant. Here we present a computational theory of Tibetan
monastic debate implemented in the ACT-R cognitive archi-
tecture. We complement the ACT-R model with graph theory
to represent knowledge and show how we can capture the dy-
namic flow of a debate in our model. Future research should
validate the model in its native population and enrich it with
more detailed strategies. Nevertheless, we think it provides an
interesting example of how the interactive process of debating
can be modelled.
Keywords: Reasoning; monastic debate; ACT-R; reasoning
agents; graph-theory; logic; knowledge representation.

Introduction
Different cultures have different education methods. While
Western education has been well studied, other forms of
teaching and learning exist. One intriguing method is Tibetan
monastic debate, a part of analytical meditation practises; a
method that is practised in a dyad and is said to date back to
the 10th century (van Vugt et al., 2019). It bears similarities
to the Socratic method.

This method of debating is characterised by vigorous ex-
ercise, excitement, as well as focus on critical thinking and
examining many different perspectives. In other words, a di-
alectic method like the monastic debate would introduce an
inherently social aspect to studying, that would complement
more individual-centred study approaches. With its game-
like structure and active methods, debate may activate stu-
dents and help them to think more critically.

Repeated practise of debate is likely to have substantial im-
pact on the cognitive development of the debater. Recent re-
search (van Vugt et al., 2020; van Vugt et al., 2019) specu-
lated that debate has a positive effect on executive functions,
such as e.g. critical thinking, emotion regulation, or social
cognition. However, up until today no evidence has been
found that debate trains cognitive functions. Further research
is necessary to identify the cognitive skills that are at play
during monastic debate.

Modelling debate helps drawing up specific hypotheses
what cognitive skills are required for debate. With a model
predictions can be made that certain cognitive skills could be

improved after intense practice (Taatgen, 2013) and what can
happen to debate if a certain skill is missing or not available
due to e.g. exhaustion or speed pressure.

Monastic debate
Monastic debate is part of all Tibetan monastic traditions, but
with several hours a day over the course of 20 years (Dreyfus,
2003) it is most intensively practised in the Geluk school. In
general, monastic education is centred around the study and
memorisation of Buddhist scriptures. Debate is used to test
and deepen the debater’s knowledge, and to sharpen skills in
critical thinking and logical reasoning. The general method of
debate can be understood as a form of reductio ad absurdum
common in logical argumentation. What makes this debate
form unique is that it aims at uncovering shortcomings and
inconsistencies in in the debater’s knowledge and understand-
ing. This sets Monastic debate apart from other common
debating styles, where debaters attempt to defeat the other
debater with stronger arguments. An example of monastic
debate can be seen in figure 1.

Debate is a dialogue between a “challenger” and a “de-
fender” (Perdue, 2014) and typically covers topics of recently
discussed lessons in Buddhist philosophy. Generally the chal-
lenger proposes statements to which the defender responds.
The defender has to choose between accepting and rejecting
a statement, while ensuring that no statement is accepted that
contradicts an earlier one. Statements are intended to probe
the consistency of a particular philosophical position of the
other debater. However, they are not required to be ratio-
nal or correct, as they can be understood as a tool to explore
the consequences of adopting a particular philosophical posi-
tion. Monastic debate follows a formal schema that includes
choreographic elements like shouting and clapping, but also
statement-response patterns, as outlined in table 1.

The structure of debate just discussed may lend it well as
a tool for scientists. According to monks from the Sera Jey
monastery, debate supports the investigation of a topic from
various perspectives by exploring the consequences of adopt-
ing a particular position. So on the one hand, investigating the
research hypotheses by means of debate can help to reveal
latent, inconsistent or overly restricting assumptions, which
can then be resolved. On the other hand debate is an inter-
action form that can promote novel ways of thinking about a
topic and as such can lead to fresh insights into e.g. scientific

216Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



results. Moreover, excellent ownership of the material is re-
quired to keep up with the speed of debate and maintain its
formal structure, which pushes the boundaries of scientists in
an engaging way.

Previous research
Scientific research on the psychological and neural mecha-
nisms of debate is very limited. The monastic curriculum
(Liberman, 2007; Dreyfus, 2003) and debate as a whole
(Perdue, 2014) were discussed. It was suggested that de-
bate might share commonalities with the Socratic method or
might be a “mode of inquiry” (Dreyfus, 2003). However there
seems to be a paucity of research on what effects debate has
on the individual, especially from a cognitive science per-
spective.

The single, empirical study that has so far been done (van
Vugt et al., 2020) showed that mid-frontal theta oscillations
(neural correlate for concentration) increased during debate.
It also showed that frontal alpha oscillations synchronised be-
tween debaters when they agreed compared to when they dis-
agreed. The researchers theorised that successful debate re-
quires a rich set of cognitive skills and that repeated exercise
over years fosters those skills. A conceptual model was pro-
posed (van Vugt et al., 2019) that suggests how debate re-
quires skills in focused attention, working memory, and log-
ical reasoning, but also emotion regulation and mental flex-

C: Dhih! The subject, in just the way [Manjushri de-
bated]. Is whatever is a colour necessarily red?

D: I accept [that whatever is a colour is necessarily red].
C: It follows that whatever is a colour is necessarily red.
D: I accept it.
C: It [absurdly] follows that the subject, the colour of a

white religious conch, is red.
D: Why [is the colour a white religious conch red]?
C: Because of being a colour. You asserted the pervasion

[that whatever is a colour is necessarily red].
D: The reason [that the colour of a white religious conch

is a colour] is not established.
C: It follows that the subject, the colour of a white reli-

gious conch, is a colour because of being white.
D: The reason [that the colour of a white religious conch

is white] is not established.
C: It follows that the subject, the colour of a white reli-

gious conch, is white because of being one with the
colour of a white religious conch.

D: I accept that the colour of a white religious conch is
white.

Figure 1: An example of Tibetan Buddhist monastic debate,
adapted from (Perdue, 2014). C denotes the challenger and D
the defender.

Statement type,
example (challenger)

Possible responses
(defender)

Two-part debate
“Red is a visual form”

• “I accept.”
• “Why?” / “No.”

Three-part debate
“Red is a visual form,
because it is a colour.”

• “I accept.”
• “Reason not established.”
• “No pervasion.”

Inquire about reason
“Red is a visual form,
because. . . ”

• “. . . because red is a colour.”

Request an example
(context-dependent)
“Posit it!”

[Context: Something that is a
bird and that cannot fly.]
• “A penguin.”

Table 1: Typical statements types of the challenger and pos-
sible responses of the defender.

ibility. Further research could provide more evidence what
particular cognitive processes are relevant and change during
training in this method.

A relevant starting point for modeling debate are models
of logical reasoning and human interaction. Several of these
models have been implemented in the ACT-R cognitive ar-
chitecture (Anderson et al., 2004). Analogical reasoning for
example was modelled to solve Raven’s Progressive Matrices
(Ragni & Neubert, 2012), which are frequently used in IQ-
tests. Objects in the cells of matrices are decomposed into
different attributes, that are used to identify the rules that al-
low predicting the missing element of the matrix. Inference
rules are implemented as ACT-R productions and the rule
currently being checked is encoded in a chunk slot. Similar
mechanisms could be used in a model of monastic debate.

In a different study (Ghosh, Halder, Sharma, & Verbrugge,
2015) strategies based on forward and backward induction
in sequential games were investigated. A logic language was
created to describe strategies and beliefs, which was then used
heavily to model reasoning rules in a cognitive model. Strate-
gies were selected based on expected payoffs. This mecha-
nism would be more challenging to implement for monastic
debate, since payoffs cannot be easily defined given that they
are defined by high-level attributes such as novel insights.

A crucial ingredient for debating is theory of mind. There
exist several computational models of theory of mind, which
describe theory of mind as a sequence of reasoning steps with
complexity dependent on the order of theory of mind, e.g.
(Meijering, Taatgen, van Rijn, & Verbrugge, 2014). Success-
ful debating is likely to involve theory of mind as well in the
sense that possible moves of the opponent must be predicted
to effectively trap them into a contradiction. Several strate-
gies employed a theory of mind, including second-level the-
ory of mind and higher. Another strategy was chosen, if the
current one proved unsuccessful after a number of iterations.

A debate model necessarily requires interaction. A ba-
sis for modelling this can be found in modelling negotiation
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skills (Stevens et al., 2018), where a cognitive model was cre-
ated capable of using different strategies. The model made
decisions based on instances of the current state of the game
using ACT-R’s partial matching feature. Instances were ei-
ther encoded into the model’s declarative memory or learned
(instance-based learning). Humans who played against the
cognitive model then showed improvement in their negotia-
tion skills in terms of payoff in the Game of Nines. A sim-
ple graphical computer interface allowed interaction with the
model. For a model of debate this shows that is well possible
to allow interaction to train improve task-specific skills, and
to let a cognitive model pursue and switch between strategies,
which is important for the challenger on a experienced level.

To conclude, models of debate can be based on previous
models of sequential games, logical inference, and theory of
mind. On the basis of this insight we attempted to model
monastic debate.

Methods
ACT-R
The cognitive model of debate was implemented in ACT-
R, after previous research showed that it is well possible to
model interacting and reasoning agents with this cognitive ar-
chitecture (Ragni & Neubert, 2012; Ghosh et al., 2015; Mei-
jering et al., 2014; Stevens et al., 2018). ACT-R is an excel-
lent tool for this, because it is commonly used, well main-
tained, and several relevant models have been created in the
past of which parts can form the basis for modelling monastic
debate.

ACT-R largely consists of modules that represent executive
functions of humans, e.g. visual perception or motor execu-
tion. The behaviour of the model is defined by a production
system, which represents procedural memory. A single pro-
duction rule can be understood as versatile if-then-statement.
Model behaviour can be modulated by so-called subsymbolic
features. For example, based on spreading activation or the
similarity of chunks in the declarative memory, it is possible
to model phenomena such as reasoning errors caused by con-
fusing concepts or by mistaking relations between concepts.

Figure 2: A sub-graph of the ”colour map” (Tharpa &
Tsultrim, 2012), a hierarchically organised topic of debate
often used by learning debaters. Child nodes of the nodes
marked in grey have been omitted for brevity.

Knowledge representation
Reasoning agents need something to reason about. Tradition-
ally, the content of a debate is a topic from Buddhist teachings
which was discussed in recent classes of the monastic cur-
riculum. Such material is the first choice as object of debate
for the model, because such traditional topics were used and
explicated in real debate over thousands of years. Moreover,
using the traditional debate ontology allows us to validate the
model with Tibetan monks more easily (see the section on
validation below).

In their first classes learning debaters usually reason about
ontologies of colours and forms (Perdue, 2014), mental and
physical phenomena, causation, and other topics. Each de-
bate topic is limited to a finite set of concepts and how those
concepts relate to each other, for example in is-a, has-a,
causes, and other relations. For the cognitive model the topic
of colours and forms is used as the conceptual space, which
is based on is-a relations between concepts. To this end
the knowledge tree found in the literature was replicated as
knowledge base for the model.1 An excerpt of the knowledge
tree can be seen in figure 2.

Most of the listed topics found in debate tutorials that were
prepared for a Western audience (Tharpa & Tsultrim, 2012)
showed a hierarchical structure.2 Hierarchically structured
data has the advantage that it can be described as a tree in
our model by means of graph theory. Graph theoretical ap-
proaches have been studied and applied extensively in the
past, which is know-how that can be drawn from. Using graph
theory as basis to represent knowledge is helpful and simpli-
fies the conception and description of ways to manipulate a
knowledge base.

While the data found in Buddhist literature can be ex-
pressed as a tree, for our formal description it is only assumed
that a debater’s knowledge can be represented by a directed
graph.3 For a debater d (challenger or defender) in one in-
stance of a debate, let Gd = (Vd ,Ed ,P) be a directed graph
representing the debate-specific knowledge of d, where Vd are
the nodes, Ed are the edges of the graph, and P is a single bi-
nary predicate. An example of a knowledge graph including
nodes and edges can be seen in figure 2.

More specifically, Vd = {v1,v2, . . . ,vn} is a set of nodes
that represents the concepts that d knows. For example, v1
might represent the concept “colour red”, v2 the concept “pri-
mary colour”, and v3 the general concept “colour”. P is a
binary predicate that represents a transitive relation between
concepts, for example an is-a relation. Transitive relation
here means that if P(v1,v2) and P(v2,v3), then P(v1,v3) for

1While learning the correct relation between concepts is a de-
sired practice and learning new concepts in conversational agents
is surely possible in principle, it is not clear whether learning new
concepts is common in real debate.

2The reviewed literature covers topics of the first year of the
monastic curriculum at the Sera Jey monastery. We do not know yet
whether topics from higher years are also organised hierarchically.

3To perfectly represent traditional material structured in one tree,
a graph needs to be acyclic and only have a single parent node.
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{v1,v2,v3} ∈ Vd . For each directed edge (v1,v2) ∈ Ed (with
Ed ⊆Vd×Vd) it holds that P(v1,v2). For example, if P repre-
sents an is-a relation, v1 represents the concept “colour red”,
v2 represents the concept “primary colour” and (v1,v2) ∈ Ed
is a directed edge, then d can infer that “colour red” is a “pri-
mary colour”.

In the knowledge graph concepts are represented by nodes,
while in the model they are represented by ACT-R chunks and
only include a slot for the name. A concept is retrieved based
on its name, which may appear as a word when processing
auditory input. Pervasions (directed edges in the graph) are
modelled by chunks with two slots that contain those con-
cepts. In ACT-R this is expressed as a chunk as follows in the
example of the pervasion “color is a visual form”:

(per_color_is_a_visual_form
isa pervasion
pervaded c_color
pervader c_visual_form)

The pervaded and the pervader can be likened to the an-
tecedent and consequent in a material implication in formal
logic. Depending on the specific debate statement, the model
recalls a pervasion by matching either one or both concepts,
as described in the next section. If the model encounters an
unknown or otherwise unexpected word, the model responds
that it cannot understand the input given.

Reasoning with graphs
Knowing details does not mean one knows the bigger picture.
If a debater d has knowledge in form of a tree Gd =(Vd ,Ed ,P)
and d knows e1 = (va,vb) and e2 = (vb,vc) (i.e. {e1,e2} ⊆
Vd), then d however does not necessarily know e3 = (va,vc)
(i.e. not generally e3 ∈Vd). However, d may deduce this new
fact based on the property of transitivity of P. This then adds
a new edge to Vd (i.e. V ′d = Vd ∪ {e3}). In other words, if
P represents an is-a relation, d can apply the syllogism “All
[tones of] red are primary colours; All primary colours are
colours; Therefore, all [tones of] red are colours”. ACT-R
was used to create a model of both the defender and the chal-
lenger each that implements this form of deductive reasoning.
At the moment only the defender uses this inference to gain
new knowledge.

One of the statements the challenger might issue is the
“three-part debate” statement. For example, if d is a chal-
lenger and P represents an is-a relation between concepts,
then three-part debate typically follows the form “Take the
subject 〈sub ject〉, it follows it is 〈predicate〉, because it is
〈reason〉.” where the three placeholders represent concepts
in Vd . When a three-part debate statement is given to the de-
fender, deductive inference allows to to confirm or reject the
statement. For example, let the defender know “Socrates is
a man” and “All men are mortal”. If the challenger inquires
“Is Socrates a man?” the defender can immediately respond
with “I accept.”, since the defender possesses exactly that re-
quested piece of knowledge. However, if the challenger asks
“Is Socrates mortal?”, then the defender should be able to in-

Figure 3: A visualisation of the course of debate with limited
ways to respond, from the point of view of a challenger.

fer the proposition in question (“Socrates is mortal.”) from
given knowledge.

Based on the negation as failure-principle, the defender
model will accept the logical proposition of the debate state-
ment, if the proposition can be inferred deductively in one or
more steps based on the knowledge the defender has. If the
logical proposition cannot be inferred, it will be rejected with
the words “Reason not established” or “No pervasion” (just
like in real debate), depending on at which point the inference
fails.

Model evaluation
Commonly ACT-R models are evaluated by comparing model
and human performance with regards to reaction times, accu-
racy of task performance, or fMRI or EEG measurements.
Refining the model until its performance matches human per-
formance, including error during performance, is a method to
validate the model.

However, monastic debate does not follow a typical task
paradigm, which makes it hard to apply standard methods.
Due to the complexity of debate it is difficult to measure re-
action times. Capturing the accuracy of a debater is difficult,
as there are no typical metrics to measure whether a debater
performs well during debate. Debate measures related to ac-
curacy that are typical for experimental tasks might be the
number and type of reasoning errors, the length and dura-
tion of debate, how often the defender responds in a certain
way, or how often the challenger changes strategies. How-
ever, those data first need to be collected in some way and
even then comparison might still be tricky, since any two de-
bates rarely follow the same course.

To acquire data from the model two interfaces were cre-
ated for interaction with the model. A terminal-based inter-
face allows for quick testing and automation during model
creation. The other interface is runs in web browsers and of-
fers a few conveniences. Graphical user interfaces are often

219Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



more accessible, can provide an easier way to change relevant
parameters, and generally allow a better user experience for
a less technology-savvy audience. This is important, as the
browser-based interface is intended to be used for data acqui-
sition and model validation in the future. A welcome side
effect in the spirit of open science is that the browser-based
design is easy to adapt for access via the internet4.

Results
While the defender remains mostly reactive, the challenger
needs to plan ahead what statements to issue at what time, to
eventually lead the defender to accept a contradicting state-
ment. For a better understanding of the directions a debate
can take, it might help to focus not on one of the debaters
specifically, but their interactions over time. The possible
paths of a very limited form of debate are visualised in fig-
ure 3. The diagram can be read like a state diagram of a finite
state automaton. Note that the diagram contains the essential
two-part and three-part debate statements, but no other types
of statements. To capture the more diverse and complex hu-
man debates fully the diagram would need to be extended.

An example interaction via the terminal-based interface be-
tween a human defender and the challenger model can be
seen in figure 4. In the example, the relation between con-
cepts is an is-a relation, so the two-part and three-part debate
statements take the general form “Take the subject 〈sub ject〉,
it follows it is 〈predicate〉[, because it is 〈reason〉].”.

In the beginning the challenger posits a two-part debate
statements until the the defender does not accept. This pro-
vides the starting point for the debate and the challenger now
tries to make the defender accept the same statement. As next
step the two-part debate statement will be extended to a three-
part debate statement by providing a 〈reason〉. The 〈reason〉
essentially is one of the concepts represented by a node in the
knowledge graph, that lies on the path between the nodes for
the 〈sub ject〉 and the 〈predicate〉 in the two-part debate state-
ment. If the defender disagrees that “〈sub ject〉 is a 〈reason〉”,
a “Reason not established” response follows, but if the de-
fender disagrees that “〈reason〉 is a 〈predicate〉”, a “No per-
vasion” response follows. In both cases the challenger then
knows the two concepts for which an is-a relation is denied
and so issues a new two-part debate statement based on those
two concepts5. After issuing this new statement the same pro-
cedure as just described follows, so this can be considered a
new step in a nested or recursive procedure.

However, the defender might reject a two-part debate state-
ment, but not the respective three-part debate statement. This
is the case, when the defender has the relations “〈sub ject〉 is
a 〈reason〉” and “〈reason〉 is a 〈predicate〉” represented as

4At the time of writing, a recent state of the model can be
found at https://blueparrot.pythonanywhere.com/. This ad-
dress might updated in the future.

5From an algorithmic point of view it is not necessary to restate
the previously rejected part of the three-part as two-part debate state-
ment, as the defender will always consistently respond with “Why?”
to it. However, in real debate it is generally considered good practice
to be explicit, which should then also be captured by a model.

C: Take the subject rough, it follows that it is form.
D: why

C: Take the subject rough, it follows that it is form,
because it is outer form.

D: no-reason

C: Take the subject rough, it follows that it is outer
form.

D: why

C: Take the subject rough, it follows that it is outer
form, because it is tactile.

D: no-reason

C: Take the subject rough, it follows that it is tactile.
D: why

C: Take the subject rough, it follows that it is tactile,
because it is derived from element.

D: accept

C: Take the subject rough, it follows that it is outer
form, because it is tactile.

D: accept

C: Take the subject rough, it follows that it is form,
because it is outer form.

D: accept

C: Tsah!

Figure 4: The model in action: An example debate with a
challenger model (denoted C) and a human defender (denoted
D). The simplified responses of the human defender are inter-
preted as the written out, formally correct debate statements.

edges in the knowledge graph. Then the defender accepts the
three-part statement, which could be considered going back
one step in the recursive procedure. If the defender accepts
the statement that was rejected in the beginning, the chal-
lenger may declare the uncovering of a contradiction with a
“Tsah!” response and the debate ends.

In contrast to the challenger model, the defender model is
simpler, yet also based on the course of debate shown in fig-
ure 3. Generally, a two-part debate statement is accepted, if
the defender knows that “〈sub ject〉 is a 〈predicate〉”. For a
three-part debate statement the defender will check whether
“〈sub ject〉 is a 〈reason〉” and “〈reason〉 is a 〈predicate〉” and
react as described above. Accepting a three-part debate state-
ment means that the model “has an insight” and learned that
“〈sub ject〉 is a 〈predicate〉”, i.e. added an edge to the knowl-
edge graph.

This shows that the model can function in the simplified
world of the first-year debate material. The model can take
the role of both a challenger and a defender that evaluate two-
part and three-part debate statements in the current version of
the model. Reasoning is performed error-free on the basis of
complete (challenger) or incomplete (defender) knowledge.
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Discussion

Validation

Monastic debate involves many cognitive processes and dif-
ferent ways to interact with the environment, including high-
level executive functions such as theory of mind. Due to the
complexity of debate it seems difficult to apply validation
methods that are typically used for ACT-R models, such as
correlating reaction times. In addition, it appears tricky to test
isolated parts of debate, as essential aspects of this integrative
practise might simply get lost in a controlled lab setting. In-
vestigating cognition “in the wild” is an objective of the sci-
entific community of macrocognition and their methodology
such as Cognitive Task Analysis (Crandall, Klein, Klein, &
Hoffman, 2006) might help to investigate debate.

However, certain quantitative properties of debate could be
collected and compared, such as the level of a debater’s exper-
tise, the number of agreements between debaters (van Vugt et
al., 2019), or the number of reasoning errors per debate. As
an additional way to collect such data and as a separate form
of model validation a “Monastic Turing Test” could be per-
formed, i.e. a Turing Test6 that allows a human judge to rate
responses from another debater. The human judge is debating
with the partner via a text chat and normalised responses, but
the judge does not know whether the other debater is another
human or one of the challenger or defender models.

To be able to perform such a monastic Turing test, a
browser-based interface was created to interact with the
model. Such an interface has the additional benefit that re-
searchers can collect normalised data in an automated way,
which is helpful for further assessment of debates and com-
parison with model behaviour.

Before starting a debate via the interface, a human debater
is able to select whether the role of the challenger should be
filled by a human or by the cognitive model, and similarly for
the defender. Random assignment of the judge to a model or a
human is possible, which allows to realise the Monastic Tur-
ing Test. If a certain model is judged to be more human than
other models after a number of iterations, then the model may
follow certain strategies or make certain errors that resemble
those of humans more closely.

Contrasting candidate models that differ in ACT-R model
parameters or implemented strategies can be considered a
“relative comparison”, which does not yet validate a model
(Palminteri, Wyart, & Koechlin, 2017). Hence it is impera-
tive to evaluate single models based on their “generative per-
formance”, i.e. whether and how well a model is able to re-
produce evidence, including different debate strategies. Nev-
ertheless, we think that our model does currently not match
human performance well, because it does not make errors yet.

6In the text the Turing Test is based on the modern, most common
interpretation, not in the sense of the “imitation game” as originally
proposed by Allan Turing.

Reasoning errors
Errare humanum est. Humans do not always perform optimal
and one way to make the model behave more human-like is
to introduce errors. In human debates however mistakes do
occur frequently, especially due to memory failures or time
pressure, since taking too long to respond is considered to
be a weakness (Dreyfus, 2003). Two common sources of er-
rors appeared to be an inconsistent body of knowledge and an
incorrect application of rules of logical inference for debate
(reasoning errors).

Errors due to an inconsistent knowledge were modelled by
a manipulated knowledge graph, where edges were added or
removed such that the formal definition of a knowledge graph
is violated. In those cases the model then returned erroneous
responses, for example the model rejected that red is a pri-
mary colour or accepted that primary colours are both colours
and sounds.

A reasoning error is given, when only valid premises are
given (drawn from the body of knowledge or from the ongo-
ing debate), but the reasoner still arrives at an incorrect con-
clusion. In human debate this is not uncommon, especially
among novice debaters. ACT-R has a set of so called subsym-
bolic features like spreading activation or partial matching,
which will aid the implementation of such reasoning errors.

There can be many reasons for reasoning errors, for ex-
ample the defender can get nervous, confused by long state-
ments, distracted by the environment, exhausted from a long
debate or simply forget earlier statements. In ACT-R a de-
fender’s confusion of concepts could be modelled, for exam-
ple, by encoding the similarity between (memory) chunks and
allowing the retrieval of a similar, but incorrect chunk, when
listening to the words of the challenger. Integrating reasoning
errors into the model however is part of future research.

Future work
While considerable progress was made in creating a compu-
tational model of debate, there are limitations to the model.

Firstly, it is possible that our assumption of hierarchically-
structured knowledge is too strong to represent the majority
of real-life debates. Future models should attempt to relax
this restriction. In addition, dealing with more general knowl-
edge structures opens up the possibility to reason about more
complicated topics of the monastic curriculum. Topics for-
eign to the Tibetan tradition might then also be considered,
such as study material frequently discussed in Western edu-
cation systems.

As mentioned in the earlier many forms of response types
exist in debate, but they are used in different frequencies and
not all are equally easy to formalise. Not all debates have a
challenger who requests an example or the reason for a certain
statement (see table 1). However the two-part and three-part
debate statements and their responses are essential and could
not be taken away without losing defining aspects of debate.
Extending the model by adding more ways to interact makes
the debate more engaging and the model more realistic.
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Experienced challengers often switch between different de-
bate styles, which might be less defined by what kinds of
statements are issued, but more how the parts are combined
to lead the debate. Such styles can differ in e.g. the use of
analogies, the ratio between exploration and exploitation of
debate subjects, referring back to previous debate subjects,
the trade-off between fast vs. accurate responses, or attempts
to trick the defender. Capturing such notions formally and
integrating them into the model allows the model to match
human behaviour more closely.

Conclusion
In this work an ACT-R model was created that uses graph
theory for flexible and extensible knowledge representation.
This innovative approach captures essential parts of simple
debate instances, but also a cognitive process, which both
have not been described formally before.

More generally, we think this research provides a promis-
ing early stage model of an interaction in a complex real-
world environment. We are confident that by looking at tasks
outside the ordinary domain, we can gain insights into cogni-
tive skills that generalise better across all human beings, not
only minds trained in Western education (Henrich, Heine, &
Norenzayan, 2010).
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Abstract

Feedback for drawn inferences can lead to an adaption of future
responses and underlying cognitive mechanisms. This article
presents a reanalysis of recent hypothesis-driven experiments in
syllogistic reasoning in which participants were presented with
different feedback conditions (no feedback, 1s, 10s). We extend
the original analysis, which only focused on no feedback vs. 1s
feedback, by including the additional 10s condition. For our analysis,
we rely on the data-driven theory- and hypothesis-agnostic Joint
Nonnegative Matrix Factorization which allows us to contrast
datasets based on the extraction of response patterns reflecting
common and distinct response behavior. Our results support the
previous claims that feedback does not generally boost logical
reasoning ability but reduces the influence of biases against the
response indicating that nothing logically follows from the premises.
Keywords: syllogistic reasoning; feedback; joint nonnegative
matrix factorization; nvc bias

Introduction
It is a well-established fact that individuals do not only differ with
respect to the strategies they employ but are also capable to adapting
them to the problems they are confronted with (e.g., Bucciarelli &
Johnson-Laird, 1999; Roberts et al., 2001). One consequence of this
manifests, for instance, in terms of the effects different instructions
may have on participants’ performances (Dickstein, 1975).

Since the general goal of investigating reasoning is to understand
the processes underlying human inference, exploring these adaption
capabilities is an important paradigm of research. One approach for
this goal is via feedback. A recent study (Dames et al., in press) in-
vestigated the effects of feedback in the domain of human syllogistic
reasoning, which is concerned with inferences based on quantified
relations (e.g., Khemlani & Johnson-Laird, 2012). In the study, par-
ticipants were presented with feedback about the correctness of their
conclusions after each task. The results suggest that feedback helps
to boost logical correctness of responses and leads to post-error adap-
tion effects with respect to reaction times. However, the authors also
note that large parts of the improved correctness could be attributed
to a substantial increase of the response “No Valid Conclusion”
indicating that no quantified conclusion can logically be inferred
from the premises. This casts doubt on the possible interpretation
that feedback benefits logical thinking in its literal meaning.

The study provides insight into the impact of feedback on
syllogistic reasoning ability on a statistical level by relying on a
hypothesis-driven analysis. However, in doing so, the authors essen-
tially apply a hypothesis-based filter to their data which could lead
to additional results being left in the dark. In particular, the question

∗Both authors contributed equally to this manuscript.

remains if the reported results conclusively reflect the effects of
feedback or if further influence on syllogistic response behavior re-
mains. Investigating precisely this influence on the level of response
patterns is crucial for cognitive modeling, because gaining insight
into how manipulations affect human behavior on the response
level could provide the information necessary to develop improved
models, both on the level of predictive accuracy and explainability.

The goal of this article is therefore to obtain insight into the
effects of feedback on the level of response patterns in the domain
of syllogistic reasoning. To adopt a data-analytic perspective that
is unbiased with respect to theoretical assumptions about syllogistic
reasoning ability, we rely on an analysis using Joint Nonnegative
Matrix Factorization (JNMF, Kim et al., 2015), a general approach
for contrasting datasets that was originally introduced in the field
of information systems but has since been transferred to the domain
of reasoning (Brand et al., in press). By simultaneously solving
a matrix factorization problem for two data matrices, JNMF allows
to directly extract patterns which are common or distinct to the
two input datasets. As such, the results of JNMF, in terms of
interpretability and expressiveness, go beyond what single-dataset
factorization methods can offer (Kim et al., 2015).

The remainder of this article is structured into four parts. First,
we introduce the relevant background literature about syllogistic
reasoning and the application of JNMF. Second, we present the
methodology of our analysis. Third, we present the results, i.e.,
the extracted response patterns and interpret them in terms of the
effects of feedback. A discussion of the implications of our analysis
concludes the article.

Related Work
Syllogistic reasoning is one of the central domains investigated in
research of human deductive reasoning ability (e.g., Johnson-Laird
& Byrne, 1991). A syllogism consists of two premises which
specify quantified relationships (using quantifiers All, Some, No,
Some ... not) between three categorical terms (e.g., A, B, C):

No A are B
Some B are not C

What, if anything, follows?

The goal in syllogistic reasoning is to use the middle term,
B, which occurs in both premises to infer information about the
remaining two terms, A and C (end terms). In total, the syllogistic
reasoning domain consists of 64 distinct problems which are
obtained from the 16 possible combinations of premise quantifiers
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and the four possible arrangement of terms in the premise (the
so-called figures; see Khemlani & Johnson-Laird, 2012). Each
syllogistic problem has nine possible propositional conclusions,
eight of which relate the end terms (in either direction) using one
of the four quantifiers, and the conclusion “No Valid Conclusion”
(NVC) to indicate that, in accordance to first-order logic, no
quantified conclusion follows from the premises.

A core result of syllogistic reasoning research is that human
inferences deviate substantially from what classical logic would
predict (e.g., Khemlani & Johnson-Laird, 2012). Because of this,
research in the domain has focused in large parts on the develop-
ment of high-level cognitive theories and corresponding model
implementations (for a review, see Khemlani & Johnson-Laird,
2012). Recently, the interest in the effects of interindividual
differences has been rekindled by studies focusing on different
subgroups of reasoners (Khemlani & Johnson-Laird, 2016) and
analyses of the shortcomings of current models when subjected
to individual response data (Riesterer et al., 2019) being published.

Analyzing individual human reasoning behavior, it could be
shown that human performance in syllogistic reasoning tasks is far
from robust. If participants respond to syllogisms in two sessions
one week apart from each other, logical correctness improves
even though participants are not provided with feedback to their
responses (Johnson-Laird & Steedman, 1978; Ragni et al., 2018).
Similarly, within the sequence of 64 syllogistic problems, it can
be observed that the likelihood of giving NVC conclusions rises
as a function of presented problems, causing logical correctness
to rise (Ragni et al., 2019).

To investigate the susceptibility to changes in syllogistic response
behavior, a recent study adopted a paradigm in which reasoners
were presented with immediate feedback for different durations
indicating the correctness of their responses (Dames et al., in
press). Analyzing the resulting response data, it could be shown
that participants who were not provided with feedback tended
to give less logically correct conclusions than participants in the
feedback group. Additionally, it could be shown that feedback
induced post-error adaption effects causing reaction times to slow
down. The results suggest that participants are capable of adapting
their response behavior in light of feedback. However, the authors
also note that participants who received feedback responded
substantially more often with NVC conclusions. They argue that
this effect could be due to a bias or aversion against NVC responses
which is overcome by providing feedback. This is a hypothesis
that has been discussed, albeit inconclusively, in the literature of
syllogistic reasoning before (e.g., Revlis, 1975; Roberts et al., 2001).

In the following analyses, we want to push the statistical work
of Dames et al. (in press) one step further to obtain results on the
level of behavioral patterns which could lead to information useful
for improving models of human syllogistic reasoning. To this end,
we base our analysis on contrasting.

Joint Nonnegative Matrix Factorization
Contrasting refers to the problem of finding iconic distinction
factors that best describe the differences between datasets. Trivially,
computing differences is one way of performing contrasting.
However, given structurally rich data that are potentially noisy, the

results of trivial contrasting is lacking with respect to their potential
for interpretation. More sophisticated contrasting is based on the
results of factor analyses. For example, by performing Principal
Component Analysis (PCA; e.g., Murphy, 2012), the dimensionality
of data can effectively be reduced to a smaller number of k latent
features which can then serve as the basis for dataset comparison.
However, for two independent applications of PCA such as for two
separate datasets in a contrasting scenario, there is no guarantee
that the resulting factorizations are related and support comparison.
Especially if differences between datasets are expected to be small,
it is important to factor out the commonalities in order to expose
the crucial distinctions.

Motivated by this problem, work in the field of information
systems has developed Joint Nonnegative Matrix Factorization
(JNMF; Kim et al., 2015), an approach for contrasting two datasets
via matrix decomposition. To achieve this, JNMF extends regular
Nonnegative Matrix Factorization (NMF; see Pauca et al., 2004)
by simultaneously searching for factors representing commonalities
and distinctions between both datasets.

Formally, NMF is the problem of finding a decomposition of
a single data matrix X ∈Rm×n where m is the dimensionality of
the data and n denotes the number of objects in the dataset into
a basis matrix W ∈Rm×k and coefficient matrix H∈Rn×k where
k<min{m,n} is the number of patterns, or factors, to decompose
the data into, such that

X≈WHT (1)

JNMF refers to the problem of finding a decomposition of two data
matrices X1∈Rm×n1 and X1∈Rm×n2 into a basis matrixWi∈Rm×k

and a coefficient matrix Hi∈Rni×k for i=1,2 (Kim et al., 2015).
Crucially, k = kc+kd refers to the total number of patterns con-
sisting of kc common and kd distinct patterns which means that
Wi=[Wi,c,Wi,d] is composed of columns referring to kc common
(Wi,c) and kd distinct patterns (Wi,d). The goal of JNMF is to find ma-
trices W1,H1 and W2,H2 solving Equation (1) for both data matrices
X1 and X2 under constraints regularizing the identified W and H ma-
trices to ensure that the distances between common and distinct pat-
terns are minimized and maximized, respectively (Kim et al., 2015).

An important advantage of NMF (or JNMF for that matter) for its
application in the context of cognitive science is its focus on nonneg-
ativity. Since data obtained in behavioral experimentation is usually
nonnegative as well (response choices, reaction times, etc.), NMF
operates directly and natively on the expected range of values which
allows for better interpretability of the results (Pauca et al., 2004).

Stemming originally from the field of information systems,
JNMF has recently been applied successfully to syllogistic
reasoning data (Brand et al., in press). In this analysis, the authors
investigated the influence of personality factors on syllogistic
reasoning behavior. Using JNMF, they managed to extract the
patterns distinctly representing the response behavior of participants
with varying scores on personality traits. In the following analyses
we apply this method to feedback data.

Method
Our goal is to investigate the effects of feedback on the responses
given to syllogistic reasoning problems. To this end, we employ
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Figure 1: Typical response patterns obtained from JNMF application and arranged as matrices of 64 rows (syllogistic problems) and 9 columns
(possible conclusions). Common patterns represent the average common pattern from W1 and W2. The values in parentheses denote the rela-
tive importances of the patterns for the reconstruction of the dataset. These values are derived from the respective columns of the H-matrices.

JNMF in order to decompose the data into common and distinct
patterns which can then be interpreted directly. Relying on JNMF
allows us to adopt a theory- and hypothesis-agnostic perspective
which, in turn, allows us to obtain comprehensive results which
could potentially go beyond the findings of Dames et al. (in press).

Dataset
For our analysis, we rely on a dataset that was published recently as
part of a study of feedback effects in syllogistic reasoning (Dames et
al., in press). The focus of the study was to investigate the influence
of feedback on participants’ propensities to give logically valid con-
clusions (Dames et al., in press, Experiment 1) and on their reaction
times (Dames et al., in press, Experiment 2). To this end, the authors
conducted a series of experiments via Amazon Mechanical Turk
in which participants were instructed to give conclusions to all 64
syllogistic problems. In total, the dataset comprises three conditions:
a control group which received no feedback (n = 39), a group
which was presented with short feedback (1s, n=102), and a group
which was presented with extended feedback (10s, n=29). In their
analysis, the authors focused on the control and 1s conditions. The
effects of extended feedback have not been published up till now.

Data Preparation
To make the data accessible to JNMF analysis, we first transform the
response data for each condition into matrix representations. This is
achieved by onehot-encoding individual responses as zero-vectors
of dimensionality 9 in which a single 1 indicates the corresponding
response. As examples, for the syllogistic response “All A are C”
this leads to the onehot-encoded vector (1,0,0,0,0,0,0,0,0), and
for “No Valid Conclusion” to (0,0,0,0,0,0,0,0,1). Concatenating
the 64 onehot-encoded responses of a single participant results in
a 576-dimensional vector which reflects their individual response

pattern, or reasoner profile (Riesterer et al., 2019; Brand et al.,
in press). By arranging all reasoner profiles as column vectors
in a matrix, we obtain m×n matrices, where m is the number of
features, i.e., the dimensionality of our reasoner profiles (m=576)
and n denotes the number of participants in our datasets (n1=39,
n2 = 102, and n3 = 29 for no feedback, short feedback, and
extended feedback, respectively). The following analyses are
computed directly on these data matrices. The data and analysis
scripts are publicly available on GitHub1.

Results
Our analyses are based on JNMF application for pairwise
contrasting of the three datasets. For each pair of datasets, JNMF
produces W and H matrices containing the common and distinct
response patterns and their weightings for reconstructing each
individual from the input data, respectively.

Pattern Analysis
The general results of the JNMF application are depicted in Figure 1.
The heatmaps visualize the patterns extracted from the W -matrices
in pairwise contrasting applications for the three feedback
conditions: control vs. 1s (Figure 1a), control vs. 10s (Figure 1b),
and 1s vs. 10s (Figure 1c). In each subplot, the patterns are
presented as heatmaps with distinct patterns located left and right,
and the common pattern being depicted as the mean of the common
vectors from W1 and W2 in the middle. The shading of cells
indicates the weighting of individual responses for the patterns in
accordance to the values in W . The values in parentheses next to the
titles denote the importances of the patterns for the reconstruction
of the original dataset which were calculated from the sum of the

1https://github.com/nriesterer/iccm-nmffeedback
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Table 1: Proportion to reassignment of individuals from source
groups (rows) to target groups (columns) based on response pattern
similarities. Ties were resolved by ignoring participants which
causes percentages to not sum up to 1.

control 1s 10s

control 77% 15%
1s 32% 59%
10s 14% 83%

respective columns in the corresponding H matrix normalized
by the total sum of the H matrix. These values show that, overall,
commonalities are more important than distinctions which is to
be expected in a complex task such as syllogistic reasoning.

Both, the contrasting between control and 1s (Figure 1a),
and between control and 10s (Figure 1b) show that the distinct
differences between the datasets manifest in terms of the dominance
of NVC responses in the feedback groups. Contrasting both
feedback groups (Figure 1c), a different picture emerges. Here,
the 10s group yields a pattern that looks sparse and scattered in
comparison to the other patterns. When taking the importance of
the pattern into consideration, it becomes apparent that the JNMF
assigned only low importance to the 10s pattern suggesting that
the common pattern suffices to reconstruct the original data.

The results suggest that the 1s group reflects a mixture between
the control and 10s group. Contrasted with control, it appears
similar to the 10s pattern. However, when contrasted with 10s, it
appears similar to the control pattern. Evidence supporting this
assumption can be obtained from the similarities between the
response behaviors of individuals which is represented in Table 1.
For a participant from one of the conditions (denoted as source
group), we checked which of the other conditions (target groups)
contained the individual most similar to them. The values therefore
represent proportions to which individuals from one group prefer
another in terms of similar response behavior (ties were resolved
by ignoring the participants which is why values do not sum to
100%). The results illustrate the special role of the 1s group. While
both control and 10s clearly favor 1s over another, 1s is much
more evenly distributed which indicates that it consists both of
participants showing feedback behavior and participants who are
still unaffected by it. In case of 10s, the proportion of individuals
performing similar to controls is reduced substantially.

Put together, the contrastings provide evidence for the NVC
aversion hypothesis (e.g., Revlis, 1975). Contrasted against control,
the distinct patterns of both, 1s and 10s focus chiefly on the NVC
response. However, when comparing the feedback patterns resulting
from contrasting with control, it appears as if the NVC dominance
is stronger for 1s than for 10s which could hint at a time-dependent
effect of feedback. As previously concluded by Dames et al.
(in press), given short (1s) feedback, a lot of participants seem
to quickly grasp the importance of NVC. Combined with the
evidence obtained from the extended (10s) condition, it appears
as if the lack of time to reflect the meaning of NVC results in
participants overestimating the frequency of invalid syllogisms.
There still remain some individuals, though, who are unaffected by

feedback resulting in 1s representing a mixture between reasoning
patterns related to the control and 10s groups. In case of extended
feedback, participants are given time to reflect their use of NVC
which may lead to a more deliberative and careful reliance on this
response affecting most of the individuals in the data. Consequently,
when contrasting between both feedback conditions, due to the
similarities of their NVC reliance, JNMF mainly uses the common
pattern to capture the feedback reasoning behavior (including NVC)
and uses the distinct patterns to capture residual responses.

Prediction Analysis
While the previous analysis illustrated the general structure and
properties of the response patterns for the different conditions of
feedback, their quality still remains obscure. To evaluate this, we
now interpret the obtained patterns as predictive models and subject
them to an analysis in which the accuracy of JNMF patterns in
accounting for individual reasoners’ responses is assessed (for the
predictive task, see Riesterer et al., 2019). In this analysis, we
expect patterns to perform best with respect to predicting responses
on their respective conditions (i.e., the control pattern on the control
dataset and so on). Simultaneously, we expect patterns to perform in
proportion to their importances, i.e., to the number of individuals for
which the pattern is crucial when reconstructing the response data.

Figure 2 depicts the results of this analysis. Datasets on which the
patterns are evaluated are depicted on the x-axis while the y-axis de-
notes the predictive accuracies they achieve. Each line reflects a pat-
tern with colors indicating their respective conditions (grey, blue, red,
and green representing common, control, 1s, and 10s, respectively).

On a high-level, comparing the patterns shows that, overall, the
common patterns achieve the highest predictive accuracies which is
in line with the findings above. Since the common patterns are most
important for reconstructing the data, the distinct patterns are not
expected to be good predictors of reasoning behavior on their own,
while the commonalities reflecting general reasoning behavior are.
Because of this, the quality of the distinct patterns should not be
assessed based on absolute accuracy values but based on their ability
to provide suitable predictors for their respective data conditions.

A prime example for this is the trend of the blue lines correspond-
ing to the no-feedback control patterns. The fact that accuracy drops
substantially on the feedback data indicates that the patterns are
highly descriptive for the control data only and bear little meaning
for the feedback groups. Additionally, the fact that control’s accura-
cies on the feedback data is similar for 1s and 10s suggests that the
differences between the two are minor. Considering the feedback
patterns obtained from contrasting with control (dark red for 1s,
dark green for 10s), a different picture emerges. Here, as expected,
the patterns perform much better in accounting for the feedback
data than for the control data. Put together, the blue, dark red, and
dark green lines illustrate the clear distinction between the control
and feedback groups. Distinct patterns obtained for either condition
are suitable predictors for their own data but offer severely limited
applicability to the other. Additionally, the high similarity between
accuracies on both feedback groups suggests that JNMF application
found patterns distinct to general feedback behavior regardless of
the underlying feedback duration. The lines also show that 10s
elicits the most consistent feedback behavior. While 10s patterns as
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Figure 2: Accuracies of the response patterns resulting from the different contrastings (e.g., “control - 1s”) interpreted as predictive models.
Error bars denote 95% confidence intervals.

expected always perform best on the 10s data, this is also the case
for 1s (dark red). This indicates that contrasting control with 1s does
not only yield particular feedback patterns accounting for 1s, but
general feedback patterns which perform even better on the 10s data.

Considering the contrasting of both feedback conditions (light
red for 1s, light green for 10s), peculiar patterns emerge. The
pattern for 10s (light green) performs best on the 10s data and
drops substantially for the other groups thereby indicating that it
captures distinct properties of the extended 10s feedback group
(despite its scattered appearance in Figure 1c). The pattern for
1s (light red), however, fails to capture feedback behavior scoring
higher on control data than on feedback data. Again, this indicates
that 1s represents a mixed pattern. When compared to control, it
clearly reflects feedback behavior. However, compared to extended
feedback its distinct patterns correspond more to the control group.

The prediction analysis supports the interpretation of the
results so far. The observations can be explained by assuming
a time-dependent influence of feedback on reasoning behavior.
Given naive reasoners, short feedback allows them to acknowledge
the importance of the NVC response causing big parts of them
to radically adapt their behavior in its favor (see Figure 1a) while
leaving the behavior of others unchanged. Extending feedback
increases the effects with diminishing returns. It appears as if
the effects of extended feedback manifest in terms of a more
differentiated or more deliberative use of NVC, which, at its core,
is only a slight deviation from the distinct effects observable in
the short feedback group. As a result, contrasting the feedback
conditions leads to an overestimation of their respective differences
causing the 1s pattern to be pushed towards the naive control state
of reasoning behavior and the 10s pattern to focus on the very few
distinct differences extended feedback results in.

Comparison of Task Performances
In a final analysis, we investigated the congruency of participant
responses with formal logic in order to gain insight into whether
the effects of feedback exclusively affect NVC responses as the
patterns might suggest at a first glance (Figure 1) or if the effects

Table 2: Investigation in terms of logical correctness. The values
refer to average proportions of logical correct responses and their
corresponding standard errors.

Condition Total Valid Syllogisms Invalid Syllogisms

Control (33±3)% (49±2)% (20±4)%
1s (46±2)% (44±1)% (47±2)%
10s (50±4)% (48±4)% (52±6)%

manifest in terms of general logical correctness.
The results of this analysis are summarized in Table 2. The

total correctness shows that logical performance increases with
prolonged feedback. When considering invalid syllogisms, i.e.,
the problems which do not have a propositional conclusion, the
dominance of NVC responses in the feedback condition become
apparent. For the valid syllogisms, however, the changes are more
complex. In line with our interpretation, participants seem to
overestimate the relevance of the NVC response when presented
with short feedback (1s) which results in a decrease in logical
correctness. With extended feedback (10s), participants seem to
be able to handle NVC responses better resulting in a performance
on valid syllogisms that is similar to the control condition.

In conclusion, we agree with Dames et al. (in press) that while
feedback appears to boost logical correctness at first glance, it
is highly unlikely that this is due to an improvement of logical
reasoning ability. Additionally, based on our pattern analysis, we
conclude that the observed effects can be attributed solely to a
different handling of NVC responses.

General Discussion
We investigated the effects of feedback on human reasoning behav-
ior in the domain of syllogistic reasoning using Nonnegative Matrix
Factorization (JNMF; Kim et al., 2015). We were able to replicate
the findings of Dames et al. (in press) who showed that feedback
improves logical correctness of participants’ responses mostly due
to an increase in No Valid Conclusion (NVC) response frequency
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on invalid syllogisms. By relying on a data-driven, theory- and
hypothesis-agnostic approach and by including an extended feed-
back condition (10s; the authors of the original study based their
analyses on the 1s condition alone), we pushed the analysis of feed-
back in terms of its influence on response patterns one step further.

Our results suggest that the impact of feedback depends on the
duration of its presentation. Short feedback (1s) does not allow par-
ticipants to properly reflect about their reasoning strategies. Instead,
as Dames et al. (in press) already suggested, it only teaches them the
relative importance of the NVC response which is logically correct
in 37 of the 64 syllogisms (58%) and a response for which the exis-
tence of biases causing participants to reject it have frequently been
assumed (e.g., Revlis, 1975). Strong evidence for this claim is found
by considering the proportion of logically correct conclusions which
overall increases for the short feedback condition but decreases
on valid syllogisms for which NVC is an incorrect conclusion. If
feedback is extended (10s), an increase of NVC responses is still
the dominating distinction when compared to the control condition
receiving no feedback. The logical correctness of responses to
valid syllogisms remains similar, however. This suggests that the
extended feedback duration allows participants to properly reflect
over their reasoning strategies. As a result, the effects of increased
logical correctness are in terms of invalid syllogisms only. Since
performance on valid syllogisms is not affected positively by feed-
back (at least not significantly), in similar spirit to Dames et al. (in
press), we conclude that feedback does not necessarily help to boost
logical thinking in general. A more likely explanation, especially
considering the differences between 1s and 10s, is, that at first
feedback helps to combat an NVC aversion bias (e.g., Roberts et al.,
2001) which leads to an overestimation of the relevance of NVC.
Given more time to reflect, a more deliberate NVC handling with
overall improved logical correctness is adopted by most reasoners.

For the general field of cognitive modeling, our findings bear
relevance for two reasons. First, it is crucial to keep in mind
that effects such as the lacking performance of reasoners or
the corresponding increase for the feedback condition are not
necessarily explained by fundamental cognitive processes. As
can be shown here, rejections of particular response options must
be considered by experimenters and modelers alike to ensure
the proper interpretation of data and the proper development of
corresponding models. Second, our analysis which was devoid
of theoretical assumptions about potential inferential processes
allowed us to draw comprehensive and unbiased conclusions about
the available data. We strongly believe that maintaining a balance
between theoretical and theory-agnostic exploration of cognition is
key to ensuring a steady and uninterrupted progression of the field.
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Abstract 
What is the effect of level of simulation fidelity on learning 
and then on performance in the target task?  We consider an 
example of an electronic maintenance training system with 
two levels of fidelity: a high fidelity (HiFi) simulation that 
basically takes as much time as the real-world task and a low 
fidelity (LoFi) simulation with minimal delays and many 
actions removed or reduced in fidelity and time. The LoFi 
simulation initially takes about one quarter of the time, and 
thus starts out providing about four times as many practice 
trials in a given time period.  The time to perform the task 
modifies the learning curves for each system. The LoFi curve 
has a lower intercept and a steeper slope. For a small number 
of practice trials, this makes a significant difference. For 
longer time periods, the differences between low and high 
fidelity get smaller.  Learners that move from low to high 
appear to not be adversely affected.  We note factors that 
could influence this transfer (i.e., subtasks included in each 
simulation), and how this approach could be extended. 

Keywords: fidelity, training systems, learning curves 

Acknowledgements: Jake Graham, Jong Kim, Jacob Oury, 
Fred Ryans, Martin Yeh, and two anonymous reviewers 
provided useful comments.  This work was supported by 
ONR, N00014-18-C-7015 and N00014-15-1-2275.  

Introduction 
What is the effect of varying the level of simulation fidelity 
on learning in that simulation and on the more complete 
learning situation? What happens to learning when a learner 
practices in a simpler simulation and then moves to a more 
realistic or higher fidelity simulation? In this paper we 
explore how task fidelity affects how fast a task is learned in 
an example task, and analyze what this means through 
analyses using learning curves. 

We consider these questions by using an example of a 
maintenance training system with two levels of fidelity: (a) 
a simple system with minimal delays and with many actions 
removed or reduced in fidelity and time, and (b) a full fidel-
ity simulation that basically takes as much time as the real 
world task.  The higher fidelity simulations take longer to 
perform a more complete task including all sub-tasks. The 
low fidelity simulation starts out taking about one quarter of 
the time to complete, and thus starts out getting about four 
times as many practice trials in a given time period.   

The task complexity in the systems influences the time to 
perform the task, and this in turn modifies the two learning 
curves, both in the intercept and in the learning rate. We will 

show that for a small number of practice trials, this differ-
ence in trial time makes a significant difference in the 
curves. For longer time periods, the differences between low 
and high fidelity get smaller.  The amount of training the 
tasks being trained will receive will thus influence the 
choice of fidelity as well. 

After briefly reviewing the effect of training system 
fidelity we introduce a maintenance task we have developed 
to study learning and retention.  We will use a simple model 
based on ACT-R and Soar of how the task is performed and 
learned. Based on the learning curves we are able to draw 
some new conclusions about the effect of fidelity on the 
effectiveness of training, notably that using lower fidelity 
training situations help most where there is only modest 
time to practice, and that if there is extensive time to prac-
tice full fidelity has nearly the same outcome (but perhaps 
not the same costs or risks) as does starting with a simple 
simulation and moving to the complex simulation.  

Literature Review of Fidelity 
There is a long-standing debate of the effects of fidelity on 
training with simulators. The early research on fidelity was 
based on the natural assumption that higher fidelity would 
necessarily lead to better learning, since the simulation 
would more closely resemble the actual system (e.g., Allen, 
Hays, & Buffardi, 1986; Miller, 1954; Noble, 2002). How-
ever, much of the research supporting this notion was 
conducted from the 1950s to 1980s, so it had a low ceiling 
for how representative high simulation fidelity could be at 
the time. There is also a body of research showing that 
higher fidelity is not always desirable to maximize learning 
(e.g., Dahlstrom, Dekker, van Winsen, & Nyce, 2009; 
Havinghurst, Fields, & Fields, 2003; Lesgold, Lajoie, 
Bunzon, & Eggan, 1992; Swezey, Perez, & Allen, 1991).  

Delving into this literature quickly leads into the question 
of what fidelity actually means. The most common distinc-
tion is surface or physical fidelity versus operational or task 
fidelity (Allen et al., 1986; Liu, Macchiarella, & Vincenzi, 
2009). Within physical fidelity there are still many dimen-
sions, including visual clutter, visual layout, auditory fidel-
ity, and haptic fidelity. All of these dimensions have the 
potential to affect both speed of learning and degree of 
transfer to the real task. Some of these dimensions, how-
ever, are not relevant to the task being taught. To properly 
learn a task, the simulation should have reasonably high 
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fidelity on the task-relevant dimensions (Prophet & Boyd, 
1970; Thorndike & Woodworth, 1901), but the irrelevant 
dimensions should be kept at a lower fidelity to minimize 
distraction from the task (Alessi, 1988).   

An additional factor that affects task time and transfer of 
learning is the experience level of the learner (Alessi & 
Trollip, 1991). The experience of the learner will affect the 
cognitive load associated with higher fidelities and the 
dimensions of fidelity that could be considered task relevant 
(Alessi, 1988). For example, an expert who is used to using 
the actual interface but is doing additional training will 
likely experience less cognitive load with a nearly full fidel-
ity simulation than a novice learning about the interface for 
the first time. Additionally, due to their experience, experts 
may find not having the appropriate haptic or audio cues or 
incorrect timings in the simulator to be a distraction to 
learning, while including these details would be distracting 
for a novice.  Similarly, the age of the learner can affect 
what sorts of interfaces are easily usable. A low fidelity 
simulation could introduce interactions that are natural for 
younger adults but novel or slower for older adults (John & 
Jastrzembski, 2010). 

The question of when higher fidelity is better for learning 
continues to be debated because it is not clear why or when 
lower fidelity simulations provide the most advantage. As 
we have discussed, experience of the learner and cognitive 
load are considered to be two important contributing factors, 
as is the type of task. In this paper we propose an additional 
factor, the number of repetitions of the task (or subtask) that 
a learner is able to complete while training. 

A Simple Task Model of Learning and Fidelity 
To examine the effect of fidelity on learning we use an 
example simulation, the Ben-Franklin (BF) Radar (Ritter, 
Tehranchi, Brener, & Wang, 2019).  Figure 1 shows a sche-
matic for the BF Radar system included to show its relative 
complexity, not its details. The system has 35 replaceable 
components that can have faults, and 15 switches and a 
power supply that cannot have faults.  The system is based 
on the Klingon Laser Bank task (Friedrich & Ritter, 2020; 
Kieras & Bovair, 1984; Ritter & Bibby, 2008) and on a 
functional radar system (Charvat, 2011).  

The schematic shows five subsystems. The subsystems 
vary in their complexity and connectivity within them and 
across subsystems. The blue lines in Figure 1 are power 
connections; the red lines are information; the purple lines 
are both. The schematic also identifies certain components 
that have their status displayed on the front panel of the BF 
Radar.  

There are several tasks that can be performed with the BF 
radar system. Users can turn it on; users can correctly adjust 
switches so that it works; users can find a single fault and 
replace it; and users can find and replace multiple faults. 
The task that we will use to examine the effect of fidelity on 
learning is to find a single broken component, a fault. Single 
broken faults create a unique light configuration and are 
always solvable.  

Figure 1. Schematic of the Ben-Franklin Radar simulation. 

The task was created to support troubleshooting within 
the confines of a study, and to be more complex than the 
Klingon Laser Bank task, but not so complex that it would 
take more than an hour to learn.  This system can be and has 
been realized in several ways with different levels of 
assumed fidelity.  

Task Simulations 
In our analysis we examine two potential implementations 
of the BF Radar device. The first (Low Fidelity) is realized 
in software and is being used in another study. The second 
(High fidelity) is realized in hardware, and has been 
partially built.  

Low Fidelity (LoFi) Simulation  Figure 2 shows the gen-
eral layout (not the details) of MENDS, a low-fidelity sim-
ulation of this system. The system is implemented in Unity. 
The front panel (top image) shows the subsystems and the 
lights in the upper right corner of each square shows which 
subcomponents are working. An individual tray (bottom 
image) shows a tray and the components that are working 
(yellow light and white) and the components that are not 
working (red light and grayed out). This system has been 
briefly reported before (Ritter, Tehranchi, Brener, et al., 
2019).  

To troubleshoot the task (the details are in Table 1) the 
user clicks for the next problem, examines the lights, clicks 
on a tray, and examines its contents.  They must then choose 
the broken component by clicking on it and clicking done. 
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Figure 2. The initial interface of the MENDS low-fidelity 

task (top) and a tray (bottom). In these pictures, the fault is 
in the Processor subsystem. 

 
High Fidelity (HiFi) Simulation  Figure 3 depicts the 
higher fidelity version of this system. This system is real-
ized in an approximate 2 ft physical metal and component 
cube using Raspberry Pi’s and in Unity 3D.  It has a cabinet 
holding trays for each subsystem. The top tray provides a 
summary of the system, including the indicator lights. The 
other trays each hold one subsystem.  

 

 
Figure 3. The high-fidelity realization of the BF Radar, 

showing the cabinet (with its door removed), two racks that 
will hold one subsystem each, and two components that will 
be inserted into component holders on the tray when the tray 

is built-out. 
 
To troubleshoot the task (as an overview, the details are in 

Table 1) the user must first put on a grounding strap, and 
then examine the lights, open the cabinet door, pull out a 
tray, and examine its contents.  They must then choose the 
broken component, find the replacement part, and replace 
the broken component. To set up a trial, the experimenter 
must have the user look away, replace a working component 

with a broken component, and then close the tray and the 
door.   

The Task Assumptions 
We assume that the user has been taught the BF Radar 
schematic and has it available, either in their head or on a 
sheet of paper.  Table 1 shows the subtask times and the 
total time.  The times are broken up into Learnable and 
Fixed tasks. The learnable tasks improve with practice; the 
fixed do not. These steps and their times (similar to and 
taken from the Keystroke-Level Model, Card, Moran, & 
Newell, 1983) are shown in Table 1. The user will start with 
the front display panel, and will have to examine the lights 
to know what tray and component to examine. Each step 
takes time, and we assume is error free. We use the 
Overdriven Amplifier, an early component in the system, as 
the example fault for this analysis.  

The Learning Theory 
The time to perform a task is broken down into two types of 
time: skills to be learned and skills that are already learned 
(or, essentially learned).  Skills that are to be learned get 
improved with practice.  On this task, learnable skills 
include: recognizing the lights and their implications.  Skills 
that are essentially already learned are moving the mouse 
and clicking, and system response times include replacing 
faults or inserting faults by the system.   

These times are used to compute the time to do the task 
using Eq. 1.  This equation is consistent with Soar’s 
(Newell, 1990) and ACT-R’s (Anderson, 2007; Ritter, 
Tehranchi, & Oury, 2019) learning theories, and the learn-
ing curve in general (Ritter & Schooler, 2001).  The times 
are computed in 10-minute blocks.  Thus, the first 10 min. 
block of trials are done at 2.7 (LoFi) and 1.0 (HiFi) trials per 
minute, then in the second block the pace is updated to 
reflect what is learned after 10 min.  This is repeated for 
nine more blocks.   

(1)  Time = Fixed tasks + learned tasks (Trial)
-α

 

The choice of α (alpha) was arbitrarily chosen as 0.2.  This 
value of α is consistent with values from Newell and 
Rosenbloom (1981, 0.06 - 0.81, a variety of tasks); and 
similar to values from Delaney, Reder, Staszewski, and 
Ritter (1998, 0.265 - 0.510, mental arithmetic); and Kim and 
Ritter (2016, 0.4 – 1.2, spreadsheet tasks). 

We also looked at the time if users were to move back to 
the HiFi trainer at the end of each 10-min. block.  That is, if 
a user were to train on the LoFi simulator and then move to 
the HiFi simulator at the end of each block.  This curve is 
thus not a learning curve, but shows how well the learner 
would perform in the HiFi simulator after that much practice 
in the LoFi simulator. Equation 2 shows how that time is 
computed. We include the power law effect for the new 
task, but on the subtasks in the HiFi simulation, they have 
not been learned, and thus they are trial 1. This is just the 
subtask time itself, no learning has occurred.  
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(2) Time = Fixed tasks(Hi) +

Learnable tasks only in Hi (1)
-α

 +

(learnable tasks in both) (Trial)
-α

Table 1. Task analysis. The fault modeled is the 
Overdriven Amplifier fault. (times are in s.)  

Simulation Results 
Table 2 shows the number of repetitions of the tasks that 
arise across the ten 10-minute blocks.  The LoFi simulator 
has a much larger number of reps, and this difference is 
maintained across the total training time, although the ratio 
between HiFi and LoFi decreases with practice.   

Table 2.  Number of total task repetitions 
over ten 10-min. blocks.

Total Repetitions    .a 
Block LoFi HiFi Ratio 

1 26 10 0.26
2 64 23 0.24
3 105 37 0.23
4 149 51 0.22
5 194 66 0.22
6 240 81 0.22
7 287 96 0.22
8 334 111 0.22
9 382 127 0.22

10 431 142 0.22

Figure 4 shows the learning curves for the HiFi and LoFi 
simulations, in linear and log-log coordinates.  There is an 
additional line showing the response time for a user that 
practiced with the LoFi simulator and then moved to the 
HiFi simulator.   

The plots show that the low fidelity users would get 
extremely fast on the material that is taught (green triangle, 
dashed line) compared to the high fidelity (blue square, 
solid line).  The intercepts are different; the low-fidelity 
group starts out faster.  And the slopes are different (best 
shown in the log-log plot), the low-fidelity group learns at a 
faster rate because they get an increasingly large number of 
repetitions because they are using a faster interface. With 
increasing practice, the low fidelity group remains faster, 
but the difference decreases as the power law effect is 
applied; that is, it takes increasingly larger amounts of prac-
tice for decreasing gains. 

But, where would the new learners be on the whole task 
(HiFi) if they move to the HiFi after working with the LoFi 
simulator? When the low-fidelity group moves back to the 
high fidelity interface (black circle, dotted line) the effect of 
practice with the LoFi simulator is most pronounced early 
on. The black line shows not practicing all the tasks in the 
HiFi simulator can lead to faster times, but that this effect 
decreases with practice. And, if there was one or several 
learnable tasks in the HiFi task that were not in the LoFi 
task, the LoFi transition line could conceivably come in 
higher than the HiFi task at some point.  

Human Participant Data that We Have So Far 
We have three sets of data related to this task. On the origi-
nal Laser Bank task, Ritter and Bibby (2008) saw reaction 
times ranging from 20 s initially to around 7 s when prac-
ticed. Friedrich and Ritter (2020) reported similar times.   

In the MENDS task (LoFi interface), Ritter et al. (2019) 
saw a subject with 10 minutes of practice that went from 
60 s to 22 s. The initial trials were thus slower, but the final 
time after 10 min. is approximately accurate.   

We are currently running a study that will gather more 
data on the low fidelity version.  We have run 8 out of 115 
human participants so far.  
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Figure 4.  Response time for the 10 blocks for the high, low, 
and transitioned training schedules  

(linear, top; log-log, bottom).  

Discussion and Conclusion 
This analysis can help explain why there are still discus-
sions about whether to choose low or high fidelity simula-
tions. The analysis is sensitive to different assumptions 
about time costs of the two training systems.  The analysis 
shows that the expected factors influence the amounts of 
learning: previous training on a task, setup costs for a train-
ing task, what can be transferred, what can be trained, and 
how much training is required. Each will influence the 
learning curves and the differences between the two levels 
of fidelity.  This analysis points out that it is probably 
worthwhile to note and document what tasks are being 
trained in each system, and how many repetitions they are 
getting.  

What is also clear is that time to train is an important 
measure.  When there is a lot of training time (i.e., a large 
number of training trials is available), a low fidelity trainer 
does not offer as much benefit as when training time on the 
full system is limited.  If a low fidelity trainer is available, it 
might not so much save time but save money (or lives or 
equipment if the situation being trained is dangerous). 

Lower fidelity training systems, if they cost less, can also 
lead to large learning gains even when transitioned to more 
complex tasks, and this has been seen before (Alluisi, 1991; 
Caro, Isley, & Jolley, 1973). It would be interesting to put 
those situations into these analyses.   

This approach thus offers a calculus, a way for choosing 
how and why to use different levels of simulations. It can 
provide support for how much more training can be 
obtained from each type of simulation.   

It could also be used to avoid the awkward situation 
where spending effort to make the simulation/training more 
faithful to the external environment by including behavior 
that is not greatly influenced by learning would none-the-
less lead to learning less. Tasks that do not get faster and do 
not get learned are cases where fidelity could be dropped.   

In this task, there does not appear to be a cost to starting 
low and going to the high fidelity training situation.  This 
approach can save substantial time and resources. This 
approach shows that for this task there appears to be no cost 
to starting low and going high, unless there are essential 
skills that are learned and that are not in the LoFi simulator. 
Putting on a grounding strap, for example, if it was learna-
ble and not taught in the LoFi simulator, could have an 
important role in this story.  

We have run this analysis of the grounding strap as an 
example task only in the HiFi task. The curve indicates that 
in the first few training blocks, the LoFi interface still leads 
to faster performance. As amount of training increases, there 
is a cross-over point where the low fidelity performance is 
dominated by not having practice on the unpracticed task, 
and when the user transfers to the HiFi task, they are slower 
than the full task for the same training time. This effect 
should be explored further.  

More Repetitions Are Important Early 
The analysis shows that if you have only a short period to 
train, it is better to have learners on a low fidelity system. 
Figure 4 shows that the low fidelity when transitioned back 
to high was faster than only high fidelity because the learner 
had more practice on what could be learned. Performing 
more repetitions in the same period of time has a greater 
effect on learning when there is not a lot of trials.  On the 
other hand, at larger amounts of practice, learners on the 
low fidelity do not gain as much relative to the high fidelity 
as they do at low practice time.  The low fidelity is still 
faster, but the effect is smaller.  In some situations this will 
still greatly matter (where differences in response time are 
important, such as adversarial tasks), and in some situations 
this will not (perhaps in safety tasks where doing the task 
correctly and slow is good enough).   

Limitations 
There are several limitations to this analysis. We have 
revised the task in Table 1 numerous times.  Thus, there are 
likely to still be some inconsistencies. The model’s general 
predictions appear to be robust against these changes, how-
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ever. As we updated Table 1 while writing this paper, the 
curves in Figure 4 did not substantially change.   

These analyses do not account for other differences in 
training systems such as cost, risk to the learner, environ-
ment, and equipment, time to get to the system, and so on.  
These are important considerations, and will have an 
important impact on training system choice.  

Future Work 
As a next step we are moving this analysis to R and doing a 
more detailed analysis.  We will examine different tasks 
(faults) as well. We continue to run the study of the LoFi 
condition. The physical apparatus will provide more 
detailed empirical results to support this approach.   

There are several analyses that we would like to do in the 
future.  We would like to explore what happens when there 
are more tasks that are not trained in the LoFi simulation. 
This may lead to a situation where coming back to the HiFi 
task from the LoFi simulator is slower than staying on the 
HiFi curve.  There currently is the use of the grounding 
strap as an example subtask.  There could be numerous tasks 
like this in other situations.  Other considerations such as 
cost may also be important.   

We would like to generate a set of plots showing the 
effect of changes in learning rate (e.g., 0.1 to 1.0 in 0.1 
steps).  Exploratory analyses show that higher learning rates 
can alter the curves and the relative value to each level of 
simulator fidelity.  It would also be interesting to see the net 
cost of the LoFi curves, either in training time or training 
costs.   

It would be useful to make this analysis even easier to 
use. It could then be used to analyze more realistic, complex 
tasks, for example, as IMPRINT does (Booher & 
Minninger, 2003).  This analysis could include the costs of 
building the additional LoFi interface.  This tool could even 
go so far as to predict the cost of each component in the 
LoFi interface (e.g., building it out more could cost a little 
more but lead to greater learning savings, system saving, or 
system effectiveness). This approach can also be informed 
by tools to model users in interfaces automatically (John & 
Jastrzembski, 2010; Wallach, Fackert, & Albach, 2019), and 
could be potentially included in them.   

This work can lead to a better method to determine 
optimal simulator training time based on examining perfor-
mance improvement through using learning curves.  
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Abstract

Learning by instruction is one of the most common forms
of learning, and a number of research efforts have modeled
the cognitive process of instruction following, with many suc-
cesses. However, most computational models remain brittle
with respect to the given instructions and lack the ability to
adapt dynamically to variants of the instructions. This paper
aims to illustrate modeling constructs designed to make in-
struction following more robust, including (1) more flexible
grounding of language to execution, (2) processing of instruc-
tions that allows for inference of implicit instruction knowl-
edge, and (3) dynamic, interactive clarification of instructions
during both the learning and execution stages. Examples in the
context of a paired-associates task and a visual-search task are
discussed.
Keywords: Instruction following; cognitive architectures;
cognitive code; interactive task learning.

Introduction
Learning by instruction can be defined, in simplified terms,
as the process by which a teacher provides a learner with in-
structions for a task and the learner follows the instructions
to perform the task. The process of learning by instruction
has been a focus of numerous cognitive-modeling efforts in
past decades, such as those using ACT-R (e.g., Anderson et
al., 2004; Salvucci, 2013; Taatgen & Lee, 2003; Taatgen,
Huss, Dickison, & Anderson, 2008) and Soar (e.g., Howes
& Young, 1997; Huffman & Laird, 1995; Lewis, Newell, &
Polk, 1989). More recently, there has been an increased focus
on interactive task learning through natural interaction with a
human instructor (see Laird et al., 2017; Kirk & Laird, 2014).

This research on instruction following has primarily fo-
cused on skill acquisition and improvements with learning
over time. In contrast, less attention has been paid to the
translation of instructions to knowledge: while past efforts
have generally included a basic version of the translation pro-
cess, this aspect of the models is often brittle and dependent
on a very particular specification of instructions. For exam-
ple, the model described in Salvucci (2013) accepts simplified
textual instructions and would break easily with only slightly
different instructions. Some efforts have aimed to make such
a process more robust—for instance, by utilizing a more flex-
ible knowledge representation (e.g., Taatgen et al., 2008) or
by relying on dynamic interaction with the teacher (e.g., Laird
et al., 2017). Nevertheless, the robustness of instruction fol-
lowing and learning continues to be a challenge for modern
cognitive models and architectures.

This paper explores several ways in which instruction fol-
lowing can be made more flexible and robust. Specifically,
this work examines three areas for improving robustness:
grounding of instruction language to knowledge representa-
tions, inference of implicit instruction knowledge, and dy-

namic interaction to clarify or augment instruction knowl-
edge. The models here have been developed using the Think
architecture (https://github.com/salvucci/think) which uses a
cognitive-code approach (Salvucci, 2016) to embed the the-
ories and mechanisms of cognitive architectures (primarily
ACT-R: Anderson et al., 2004) into a modern programming
language (in this case, Python). The following sections pro-
vide an overview of the modeling approach, focusing on the
instruction interpretation and execution processes, and then
discuss the three areas of improvement along with a descrip-
tion of the associated models.

Modeling with Cognitive Code
Before exploring the fuller model of instruction following,
first we present a basic model of a simple task to illustrate the
workings of Think’s cognitive code and how it contrasts with
traditional production-system cognitive architectures. The
sample task examined here is the so-called paired-associates
task (Anderson, 1981): the participant reads a word, tries to
recall and type a digit associated with that word, and then
reads the associated digit, eventually learning the word-digit
pairings. Cognitive code allows for a clean separation of task
and model code, each of them running on separate threads and
interacting via elements of the environment (e.g., a desktop-
computer display, keyboard, mouse, speakers, etc.).

Table 1 shows the simple (Python) code that implements
the task itself. The code first clears the display and then
presents the word stimulus on the display, then waits 5 sec-
onds (as dictated by the experiment). If the participant keys
in a response, the response is logged for correctness; other-
wise, if no response is keyed, an incorrect response is logged.
The trial ends when the code presents the associated digit and
waits another 5 seconds. These steps are repeated for the var-
ious stimulus pairings and across trial blocks.

The cognitive code representing the cognitive model, in Ta-
ble 2, is similarly straightforward. The first line directs the
vision module to wait for a particular stimulus of type word,
and when it is found, encodes the visual object in the word
variable. Each line of code incurs a passage of virtual time
that aligns temporally with the task code (as well as any other
cognitive threads that may be running; see Salvucci & Taat-
gen, 2010). The next few lines attempt to recall a memory
chunk that associates the word with its associated digit, and if
successful, the model types the digit. Finally, the model en-
codes the visual digit and stores the association between word
and digit in memory.

Because cognitive code is grounded in a modern program-
ming language familiar to most programmers, learning to
write models under this approach is much easier than with
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Table 1: Paired-associates task code.

self.display.clear()

self.display.add text(50, 50, word, isa=’word’)

self.wait(5.0)

if not self.responded:

self.log(’incorrect response’)

self.display.add text(50, 50, digit, isa=’digit’)

self.wait(5.0)

Table 2: Paired-associates model code.

visual = self.vision.wait for(isa=’word’)

word = self.vision.encode(visual)

chunk = self.memory.recall(word=word)

if chunk:

self.motor.type(chunk.get(’digit’))

visual = self.vision.wait for(isa=’digit’)

digit = self.vision.encode(visual)

self.memory.store(word=word, digit=digit)

production systems, which are not nearly as familiar to pro-
grammers today. Cognitive code also takes advantage of
common programming idioms—for instance, returning None
for a failed memory retrieval, compared to a more complex
production-system method of handling such a failure. On
the other hand, production systems offer some of their own
benefits, such as a more flexible partial ordering of execu-
tion. Nevertheless, cognitive code aims to provide the ma-
jor advantages of cognitive modeling—broadly speaking, ac-
counting for and predicting cognitive, perceptual, and motor
performance—to a wider programming audience with as low
barriers as possible to getting started in the modeling process.

Instruction Interpretation and Execution
We now take the next step in our modeling, moving from
single-task models (like the one above) to a more general
model that takes instructions and can execute a variety of
tasks. The model of instruction following proposed here can
be characterized at the highest level in terms of two stages: in-
terpretation and execution. The interpretation stage involves
translating the given instructions into a mental representation
that encodes the necessary cognitive, perceptual, and motor
actions that combine to perform the desired task. The execu-
tion stage involves recalling each instruction and then actually
performing the cognitive, perceptual, and/or motor actions in-
volved. Our model also aims to account for a realistic pas-
sage of time through both stages—most notably, processing
instructions step by step over time (as opposed to assuming
an already-encoded full set of instructions in memory).

The interpretation stage is implemented in the model as
follows. Each instruction is assumed to be spoken aloud

by the teacher such that the model can, like an experiment
participant, hear and process the information incrementally.
(Alternatively, we could assume that each instruction is pre-
sented on-screen to the participant; the model would behave
largely the same except for utilizing visual instead of aural
channels.) The model then interprets each instruction by at-
tempting to understand its meaning and converting it to an
associated mental representation. Because of the real-time
nature of how the model receives instructions, the decay in
the architecture’s memory system—again, based on ACT-
R—necessitates some practice of these instruction chunks so
that they can be properly recalled in the next stage.

For example, consider the instructions in Table 3 for the
paired-associates task. When interpreting these instructions,
the model starts with the first statement—‘To perform a
task’—and understands that what follows are instructions for
this particular task. Then, the model translates each step
of the instructions to one or more relations, implemented
as ACT-R-like chunks—for example, WaitFor(word) or
If(Recall(digit, word), Type(digit)) for the first
two steps in Table 3. Each of the chunks is boosted in mem-
ory to ensure later recall.

Table 3: Sample instructions for the paired-associates task.

To perform the task
Wait for a word
If you can recall the digit for the word, type the digit
Wait for a digit
Remember the word and the digit
Repeat

The execution stage then uses the stored mental represen-
tations to perform the given task. At each step, the model
recalls the chunk(s) for that step and performs the actions
associated with the step—for instance, the WaitFor(word)
chunk would invoke the visual system in waiting for a visual
stimulus, and when found, the model would note the encoded
object as the word. In doing so, the model builds up a context
such that it may use information later (such as when the word
and digit need to be remembered together in the sample task).

While our description above might suggest that interpreta-
tion and execution are two discrete stages that occur one after
another, in fact these two stages are often interwoven: partial
instructions might be provided so that a learner can practice a
subgoal of the task; the learner may forget certain instructions
and need to refresh their memory; the learner may also realize
that their mental representation is ambiguous or deficient in
some way and need clarification during execution; and so on.
Such examples will be expanded further in the next section.

Interactive Grounding and Inference
The above description of instruction following as interpre-
tation and execution are quite general; however, a simple
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straightforward implementation of these processes may yield
a model that is very fragile with respect to the instructions.
The predecessor to this work (Salvucci, 2013) focused on a
model that could account for behavior across a wide range
of tasks, and did not emphasize aspects of instruction flex-
ibility; the model had only a minimal interpreter for the
simplest pseudo-English instructions (e.g., ‘Wait-for visual-
change’). At the same time, the general problem of natural-
language understanding with respect to instruction following
is of course an extremely difficult problem in its own right,
and such a general model is not currently feasible. Thus,
our primary aim is to develop a model that minimizes the
most general natural-language challenge but still allows for
as much flexibility and robustness as possible. We now de-
scribe severals ways in which we can generalize the previous
approach, including incorporation of ideas from other efforts
into a single integrated account of instruction following.

Instruction Grounding
One critical aspect of the interpretation stage can be char-
acterized as instruction grounding in which the natural-
language statements and their subcomponents are grounded
to objects and actions in the real world. Several recent ef-
forts in the Soar community in particular have made signif-
icant strides in this area (e.g., Lindes, Mininger, Kirk, &
Laird, 2017; Mohan, Mininger, Kirk, & Laird, 2012). For
example, the Lucia system incorporated into the Rosie agent
(Lindes et al., 2017) provides grounding for simple objects
(e.g., ‘the green rectangle’), prepositional phrases (e.g., ‘the
green square to the left of the blue square’), and whole sen-
tences; in doing so, Rosie can learn tasks (in this case, simple
games) and uses the grounded knowledge to reason about and
act upon the associated objects in the world.

We follow a similar approach here, interactively receiv-
ing the instructions in sequence and incrementally grounding
each component. Consider the paired-associate instructions
presented earlier in Table 3. The parser implemented in Think
takes a natural-language phrase such as ‘Wait for a word’
and builds a declarative memory chunk WaitFor(word) as
a mental representation of the phrase. The concept of word is
grounded to the next visual object that appears to the model,
and the model will store the mapping from word to this ob-
ject in the current context (equivalent to ACT-R’s imaginal
buffer; see Anderson et al., 2004). In other cases where a spe-
cific visual object is referenced (e.g., on a crowded screen),
the model allows the (virtual) experimenter to “point out” vi-
sual information—for instance, hearing the phrase ‘Read the
letter’ while pointing at the object—which gives the model
an associated visual point along with the verbal information
(Salvucci, 2013). Later in the model’s simulation run, actions
such as Wait for or Read will be grounded to their respective
psycho-motor actions during the execution stage.

Sometimes, ambiguity in grounding can arise when the
same object is referred to by different words or phrases. For
example, consider a case in which a teacher directs the learner
to ‘Wait for a digit’ and then later to ‘Type the number’. From

the context, and in this case the lack of any other realistic in-
terpretation, a human participant could understand the change
and ground both digit and number to the same object, whereas
a simpler model interpreter could not make this leap. The
model here allows for the inclusion of potential synonyms in
its declarative memory, which are assumed to be part of a per-
son’s general knowledge (not something learned during the
task). When a term is discovered that cannot be grounded—
e.g., ‘Type the number’ when the model has not yet seen a
number—the model checks for other potential interpretations
within its existing context. In our example, the model will
have already grounded the digit, and thus it can search for
and find an interpretation whereby number and digit are the
same object.

Table 4: Sample instructions for the visual-search task.

(a) To perform the task
Find the ‘C’
Move the mouse to it
Click on it
Repeat

(b) To perform the task
Find the ‘C’
Click on it
Repeat

(c) To perform the task
Click on the ‘C’

Another common and useful aspect of natural language for
instructions arises in anaphora resolution, or more specifi-
cally, pronoun resolution. Table 4(a) provides sample instruc-
tions for a visual-search task in which the participant finds the
letter ‘C’ among a set of distractors (such as the letter ‘O’).
Pronoun resolution—specifically here, resolving the meaning
of the word it—allows for two major benefits: first, it allows
for more natural expressions of the instructions of the part of
the teacher; and second, it allows the model to ground mul-
tiple references to the same physical object (in this case, the
same ‘C’ mentioned earlier in the instructions). Much like
the model of Lindes et al. (2017), the model here builds up
a representation context incrementally, first noting that there
is an object ‘C’, and later noting that it must refer to this ear-
lier object. Admittedly, pronoun and anaphora resolution are
much more complex in the general case; however, even the
straightforward method here covers many simpler cases and
already nicely enhances the flexibility of the model’s parsing
and interpretation.

Instruction Inference
Beyond the language of the instruction steps, some of the
variability from a teacher’s instructions arises in inclusion or
exclusion of the steps themselves. In particular, some steps
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may be explicitly stated in one circumstance but only implic-
itly suggested in another; in the latter case, the model must in-
fer any intermediate instructions or actions. Table 4 includes
three alternative sets of instructions: (a) long-form instruc-
tions that explicitly direct the participant to Find, Move to,
and finally Click on the desired target, plus an explicit Re-
peat step; (b) shorter instructions that skip the Move step; and
(c) even shorter instructions that only direct the participant to
‘Click on the ‘C’’ without any other steps. In each case (and
one might easily imagine further alternatives), we would ex-
pect the same behavior from the learner.

Our approach to this challenge represents a blend of two
key ideas in earlier work. First, more recent models of in-
struction following developed in ACT-R (e.g., Taatgen et al.,
2008) have encoded instructions along with a set of precon-
ditions and postconditions, such that an instruction step may
execute only when its preconditions have been satisfied, and
its execution then results in postconditions that may in turn
be needed by other steps. Second, the Soar cognitive archi-
tecture (Laird, Newell, & Rosenbloom, 1987) has as one of
its core principles the idea of resolving an impasse: when
the next action cannot be easily determined, the architecture
generates an impasse and creates a subgoal to resolve this im-
passe. The model borrows the spirit of each approach in the
execution of instructions. Certain actions, such as clicking
the mouse on an object, have a natural precondition, such as
moving the mouse to that object. When attempting to fol-
low such an action, if the precondition is not met, the model
first tries to execute a subgoal that will resolve that precon-
dition, which could potentially trigger another subgoal. In
Table 4(c), the Click action requires the Move action, which
in turn requires the Find action—and thus the single instruc-
tion ‘Click on the ‘C’’ triggers the same sequence of actions
as the equivalent three steps in Table 4(a).

Along these lines, similar simple inferences could be made
in other ways for these instruction sets. For example, Table
4(c) omits the final Repeat step, but it would be reasonable
to assume that if a participant would continue to be presented
with similar stimuli, they would infer this repeat on their own,
and the model does the same.

The approach here is not as general as Soar’s impasse
mechanism, since it does not claim to be a general approach
to subgoaling; the approach is more akin to the precondi-
tion/postcondition work of Taatgen et al. (2008), although
here, conditions are not stored in the declarative memory
chunks but instead embedded in the execution processing of
the individual actions. Our approach could also be viewed as
a basic form of backward chaining seen in other systems (e.g.,
Langley & Choi, 2006). On a larger scale, the interaction
between teacher and learner (described shortly) may lead to
even more complex scenarios—for example, a teacher could
modulate instructions based on learner’s expertise, common
and shared knowledge, and so on, leaving the learner to infer
simple steps or perhaps to derive more complex inferences
between new pieces of knowledge.

Interactive Learning and Execution
As stated earlier, although we have mostly emphasized sep-
arate interpretation and execution stages to this point, the re-
ality of instruction following is often much more complex,
involving interaction between teacher and learner throughout
the learning process. This idea has been a focus of the work
on interactive task learning (see Laird et al., 2017), in which
“the learner actively tries to assimilate the meaning of the in-
struction while performing the task, and learning occurs in
conjunction with that task’s performance.” During the inter-
pretation stage, a learner might stop when confused by an
instruction and ask the teacher what is meant by that instruc-
tion. During the execution stage, the learner might realize
that there is actually ambiguity where they did not anticipate
(e.g., two words on the screen when looking for a word).

The current model is built with interactivity in mind, al-
lowing for a stream of communication between the (simu-
lated) teacher and the (model) learner. The teacher provides
verbal instructions to the model, and the model performs the
task over time—but at any stage, either of them may inter-
act with the other to communicate questions or information
(see the description of “communicative grounding” in Chai et
al., 2018). For example, consider a situation for the paired-
associates task in which the model remembers a digit but then
is instructed to ‘Type the number’. As mentioned earlier, the
model has one avenue to solve this ambiguity, namely in re-
calling number as a possible synonym of digit. But what if
this synonym pair was not known to the learner, or is a dis-
tant semantic relation that could not be easily inferred (e.g.,
digit and target)? If no synonym is available, the model stops
and asks the teacher a question such as ‘Which is the num-
ber?’, and waits for a response to process using its audition
module. When the response is given—e.g., ‘the digit’—the
model remembers this association and uses it for future pro-
cessing. (The association might even be forgotten if the mem-
ory chunk decays too much before its next use, which would
trigger the model to repeat the question to the teacher.) In this
way, the model gains additional ways to augment its under-
standing and clarify ambiguities and/or gaps in its knowledge.

Discussion
This paper has provided an overview of several ways in which
computational models of instruction following can be made
more flexible and robust with respect to variations in the in-
struction and learning process. Our discussion of the relation-
ship to human data has been somewhat non-traditional for a
cognitive-modeling effort: we have generally argued that hu-
man participants can adjust to these variations and then shown
that the model can do the same. From a more traditional per-
spective, we can note that these models do indeed provide a
reasonable fit to human performance. For example, Figure 1
shows the results of 10 simulations of the paired-associates
model along with the results from human participants over
blocks of trials (Anderson, 1981). The model fits the human
data well for both correctness, R = .98, RMSE = .08, and
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response time, R = .99, RMSE = .17, with ACT-R memory
theory driving the predictions. In fact, for any of the variants
of the instructions described here, the model results would be
largely the same; small differences might arise due to extra
cognitive processing of, for example, synonyms or interac-
tive communication, but the qualitative behavior and fit of the
model would not change in a significant way.
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Figure 1: Human and model results for the paired-associates
task showing (a) correctness and (b) response time.

Thus, unfortunately our current human data does not al-
low us to fully validate the techniques here. To address this
challenge, our current work is part of a larger effort to de-
velop an undifferentiated agent which is not specific to any
one task but instead can take instruction and then perform
a wide range of tasks (see, e.g., Salvucci, 2013). We are
working toward applying such an agent to a battery of tasks,
addressing various challenges along the way, especially with
respect to the types of inference (or “gap-filling”) that might
be done more robustly with a fuller knowledge ontology and
reasoning system. This effort aims to provide dual benefits of
deeper understanding of human behavior and broader devel-
opment of systems for practical applications such as synthetic
teammates (e.g., Myers et al., 2018).
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Abstract 
ACT-R has been used to study human-computer interaction. By 
default, ACT-R models can only interact with interfaces written in 
Common Lisp. JSegMan has allowed ACT-R models to interact 
with external interfaces without modification. Currently, JSegMan 
has been used in conjunction with ACT-R’s standard motor module, 
which cannot model common behaviors such as holding down keys, 
chording (pressing multiple keys at the same time), and multihand 
actions (e.g., moving the mouse with the right hand while pressing 
a button with the left). Extensions to ACT-R’s motor module have 
been developed to address these issues and are included with 
ACT-R. Like the original motor module, the extensions can only 
interact with interfaces written in Common Lisp. This paper 
describes modifications to update JSegMan to work with ACT-R’s 
motor extensions and demonstrates its usage by creating a model to 
play Desert Bus. Furthermore, the implication of running a model 
over many hours is explored. 

Keywords: Cognitive architectures; ACT-R; Motor control; 
Chording. 

Introduction 
The embodied cognition-task-artifact triad states that behav-
ior in an interactive environment is mediated by three factors: 
embodied cognition, the task a user is performing, and the 
artifact they interact with. Byrne (2001) proposes that using 
ACT-R (Anderson, 2007; Ritter, Tehranchi, & Oury, 2018) 
can assist human-computer interaction studies because ACT-
R deals with the entire triad at once—the architecture handles 
the limits of cognition, the model encodes task knowledge, 
and an artifact is necessary to provide stimuli to the model 
and handle its output (key presses and mouse movements). 
However, ACT-R in its current form can only interact with 
special or heavily modified interfaces, making it difficult to 
study human-computer interaction.  

JSegMan (Tehranchi & Ritter, 2018a, 2018b) offers a 
method of interacting with an interface external to ACT-R 
without modification. It detects visual features from a screen-
shot of the computer’s display to provide ACT-R with 
stimuli. In addition, it allows a model’s motor movements to 
control a computer’s peripherals. However, this new level of 
interaction is limited to the default functionality of ACT-R’s 
motor module and thus is limited in the behavior it can model. 

By default, ACT-R is only capable of supporting serial 
motor action. Multiple motor commands can be queued 

together to simulate quick typing, but the architecture must 
process each keypress separately. This prevents the architec-
ture from being able to press multiple keys at once, thereby 
making it impossible to type certain symbols (e.g., open and 
close parentheses because they require the shift key), use key-
board shortcuts, and play many video games. These issues 
were raised and addressed by during the development of a 
model to play space fortress (Bothell 2010). However, 
JSegMan has yet to incorporate the extended functionality. 
To determine how JSegMan must change, we created a model 
to play a simple game, Desert Bus. 

Our experience in developing the model has led to several 
proposals on how to grow JSegMan. First, JSegMan should 
add commands (e.g., press and release) that mimic those 
available in the extended ACT-R motor module. Second, 
JSegMan can reduce its overhead (and improve model accu-
racy in dynamic task environments) by using ACT-R’s 
remote procedural call interface. This work also raises ques-
tions about long-term behavior in cognitive architectures.   

Background 
This section discusses ACT-R’s structure and various 
methods researchers have used to have it interact with exter-
nal interfaces. Also, the game used as a task is described. 

ACT-R 
The ACT-R cognitive architecture (Anderson, 2007; Ritter, 
Tehranchi, & Oury, 2018) implements the fixed features of 
cognition as modules. The primary function of the architec-
ture is controlled by the declarative and procedural modules. 
The declarative module manages factual memory (e.g., 
George Washington was the first president of the United 
States) encoded as chunks while the procedural module 
handles memory about performing actions (e.g., to turn on a 
computer, you have to press the start button), encoded as 
productions. The facts in declarative memory, actions in 
procedural memory, and stimuli the model sees determines 
how it behaves. What the model sees and how it acts within 
its environment are controlled by the perceptual and motor 
systems (spread across four modules), respectively. How-
ever, ACT-R has issues interacting with external interfaces 
and simulations (Schwartz & Dancy 2019; Schwartz & Ritter 
2019). 
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ACT-R/PM 
ACT-R’s current perceptual and motor systems are based on 
ACT-R/PM (Byrne, 2001). The system assumes the model is 
viewing and interacting with a computer. ACT-R/PM adds 
four modules to the architecture: vision, motor, speech, and 
audition. ACT-R/PM’s perceptual and motor modules have 
been merged into ACT-R and come as part of the standard 
release.  This section will only discuss the vision and motor 
modules as the others are not pertinent to this project.  

The vision module handles what an ACT-R model can see. 
It represents the screen as a collection of features that 
represent text, images, lines, buttons, etc. Features are 
mapped to chunks that represent where and what an object is. 
The visual-location buffer controls the where system and 
allows a model to query for an object’s location. Once a 
feature is found, the model can shift its attention to it and 
encode the object via the what system controlled by the visual 
buffer. This creates a detailed chunk for the model to use. 

The motor system provides support for using a virtual 
keyboard and mouse. It represents a user with two hands and 
allows procedural memories in a model to move the hands, 
mouse, and punch/peck mouse buttons and keys. The 
duration of hand and finger movements are estimated via 
Fitts’ Law. 

It is important to note that ACT-R/PM only works with 
special interfaces. ACT-R/PM was originally written in 
Macintosh Common Lisp (MCL) and only extracts features 
from interfaces created in a particular set of tools included 
with ACT-R/PM. ACT-R/PM has been partially generalized, 
allowing it to pull features from the ACT-R Graphical User 
Interface, across various Lisp implementations. However, the 
root of the problem remains—the interface still needs to be 
written in a compatible Lisp variant using the predefined 
structures.  

Shortcomings of and Extensions to the Motor System. 
Two issues are present in ACT-R’s motor system. First, 
ACT-R’s motor system cannot perform concurrent inputs 
that are common in everyday computer usage. This issue is 
caused by state management within the motor module. The 
module has three states: preparation, processor, and 
execution. New motor commands can be queued when the 
preparation state is free. However, only one action can be 
executed at a time as the execution state handles commands 
serially. Furthermore, these states control actions for both 
hands; therefore, performing an action with one hand 
prevents the model from using the other. This implies that 
ACT-R cannot model video games that require the user to use 
both hands concurrently.  

Second, the motor module does not support holding down 
keys. The motor module supports punches and pecks, each of 
which presses and then releases a given key. Together, these 
issues limit the types of interaction ACT-R can model. 

These limitations prevent ACT-R models from pressing 
multiple keys at once—meaning the regular behavior users 
exhibit when typing capital letters and using keyboard 
shortcuts cannot be modeled. A common workaround is to 
assume that the model has an extended keyboard with buttons 

that represent chords. Thus, to give an ACT-R model the 
ability to use copy and paste shortcuts, dedicated buttons 
would be added to ACT-R’s virtual keyboard to input 
Control-c and Control-v chords, respectively. 

These weaknesses were exposed and remedied during the 
development of a model to play Space Fortress (Bothell 
2010). Separate execution states were added per hand, 
allowing ACT-R to use both hands in parallel. Several motor 
commands were added to facilitate holding down and 
releasing keys such as hold-peck, hold-punch, hold-key, and 
release. The extended system signals both presses and 
releases, so new handlers were added to devices to enable 
them to detect key and mouse button releases. Finally, a new 
module, called motor-extension, was added that has two 
buffers that can query the activity of each hand. 

Network Interfaces 
Another method of getting ACT-R to interact with an external 
interface is via a network interface. The JSON Network 
Interface (JNI) (Hope, Schoelles, & Gray, 2014) allows 
visual objects and motor movements to be shared over a 
network connection. The interface generates chunks for the 
visual objects on screen, packs them into a JSON record, and 
sends it to an ACT-R model. A special module unpacks the 
packet and adds the information to the visicon (the list of 
visual features currently on screen), allowing ACT-R to work 
with the visual information as normal. Similarly, motor 
commands in ACT-R generate a packet that is sent to the 
interface, which can be used to update the interface’s state. 

New versions of ACT-R (7.6+) have incorporated similar 
functionality. They are based on a remote procedure call 
(RPC) system that allows multiple clients to request actions 
from a server running ACT-R. Therefore, an interface can 
connect to the server and send visual chunks for models to 
use. Additionally, the interface can watch for motor 
commands and act based on them.  

Both JNI and ACT-R’s RPC system assume an interface 
can be modified. The task interface must have several 
features added to it. First, it must manage the connection to 
either JNI or ACT-R’s RPC server. Second, it must be able 
to convert visual information into visual location and 
encoded object chunks. Third, it must be able to simulate 
inputs based on those received from JNI or ACT-R. These 
modifications can be nontrivial and take time away from the 
core reason for using ACT-R, to study human cognition in a 
task. 

Segmentation and Manipulation 
Another method of providing interaction to external 
interfaces is by parsing the screen and manipulating inputs. 
Therefore, this approach aims to alleviate the issues present 
in ACT-R/PM and network interfaces by allowing the model 
to “see” what is on the screen and actually interact with it. 
SegMan adopted this approach (St. Amant, Riedl, Ritter, & 
Reifers, 2005). SegMan created visual features by taking a 
screenshot of the display and separating the pixels into groups 
based on color and location. Patterns were used to combine 
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groups that met modeler specified criteria. Finally, patterns 
and groups could be parsed to identify visual features such as 
images, buttons, and text. In addition, SegMan could simulate 
mouse movement, clicks, and key presses by interacting with 
the operating system. 

SegMan was written in C and worked with Microsoft 
Windows 95/98/2000/XP. In addition, it was designed to be 
a general programmable interface, and thus worked with 
several architectures including ACT-R, Soar, and EPIC. 
Unfortunately, the system was not maintained and over time 
became less usable.  

JSegMan (Tehranchi & Ritter, 2018a, 2018b) is a modern 
implementation based on the segmentation and manipulation 
approach. JSegMan works separately from ACT-R, feeding 
visual information to it and capturing desired motor 
commands from it. The vision system works by taking a 
screenshot of the computer’s display and detecting features 
requested by a model. Models are augmented to have 
memories of what an object (e.g., a button) looks like. These 
memories store images to search for in an interface. Finding 
a feature is handled by template matching—a computer 
vision algorithm that separates the screen into patches and 
compares each patch to a template (or desired image) pixel 
by pixel. The patch with the highest similarity to the 
requested memory image is returned. 

Motor control is handled by interacting with the operating 
system. A signal representing a model’s interaction (e.g., a 
punch or peck) is sent to JSegMan, which relays the 
corresponding action to the operating system.  

JSegMan has shown that older models must be modified to 
work with real interfaces. A model designed to perform the 
Dismal spreadsheet task (Kim & Ritter, 2015) was modified 
to use JSegMan (Ritter, Tehranchi, Dancy, & Kase, in press; 
Tehranchi & Ritter, 2018a). The Dismal task asks subjects to 
compute values in a spreadsheet given a fixed set of 
instructions; Emacs was used to display and modify the 
spreadsheet. Forcing the model to really interact with the 
interface revealed deficiencies in the model’s logic. After 
fixing them, the modified models performed better than the 
originals.  

Desert Bus 
The video game Desert Bus was used as a task during this 
study. Desert Bus was created by Dinosaur Games and 
published by Gearbox Software; it is available for free and 
runs on Windows machines. It was developed for a charity 
event. The game is based off an unreleased game of the same 
name designed by Penn and Teller in 1998.  

Desert Bus has the player drive a bus on a straight road 
through the desert connecting Tucson, AZ and Las Vegas, 
NV. The trip takes approximately eight hours to complete 
one-way, at which point the player earns one point and is 
instructed to turn around and drive back. This process 
continues endlessly. All the while, the bus drifts slightly to 
the right. If the bus drives off the road, it is towed back to the 
beginning (in real-time), the trip odometer, and points are 
reset. The game cannot be paused. The player controls the bus 

with the WASD keys; W is used to accelerate, A and D turn 
left and right respectively, and S applies the brakes. The 
player can also look around with the mouse and click to open 
the door to the bus and turn on/off the radio. Figure 1 shows 
the player’s view from inside the bus. 

Figure 1. The player’s view from inside the bus. 

Model 
Figure 2 shows a flowchart of the model’s decision cycle.  
The model begins by holding down the W key to accelerate. 
After that, it enters a looping decision cycle where it looks 
for the yellow dividing line in the center of the road (Land & 
Horwood, 1995; Land & Lee, 1994) and uses its position to 
determine if the bus should be realigned. A realignment will 
occur if the line has drifted past 857 pixels; this is the initial 
position of the dividing line at the start of the game. The A 
key is pressed to turn the steering wheel and realign the bus. 
If no adjustment needs to be made, the model fires a 
production that symbolizes the decision to drive forward 
(without adjusting steering) and then restarts the decision 
cycle. As the game occurs in real-time, the ACT-R model 
also runs in real-time.  

The model takes advantage of the fact that the bus will only 
drift to the right (causing the dividing line to move to the left). 
Thus, the model only has to worry about moving left or 
forward. A more robust model would also consider moving 
to the right to make up for overcompensating for the drift and 
ending up on the wrong side of the road. Our model does not 
worry about this because no other vehicles appear in the 
game. 

JSegMan handles finding visual targets and simulating 
keyboard inputs for the model. Visual searches are requested 
at the start of the decision cycle, so the model will always 
know where the dividing line has drifted since the prior 
decision. Following the example of the Dismal model, an 
ACT-R device was used to detect key presses and signal 
JSegMan on the behavior to emulate.  JSegMan does not have 
a persistent connection to ACT-R. Instead, a JSegMan 
process must be started (and run to completion) for each 
action. Data is passed to JSegMan via command-line 
arguments. Data is received from it by parsing its output 
stream. Furthermore, when JSegMan is running, the ACT-R 
model is paused. 
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Figure 2. Flowchart of the model. Boxes with a solid 
border do not make use of JSegMan whereas boxes with a 

dashed border do. The model starts by driving forward. 
Then, it looks for the dividing line in the road and realigns 

the bus (by moving left) if the line has drifted far away. 

The model only looks for the center dividing line, so it only 
has one template for JSegMan to look for, depicted in Figure 
3. Templates in JSegMan are images, thus a screenshot of the
game was used to generate the template.

Figure 3. Visual template used for the dividing line. The 
template was extracted from a screenshot of the game. 

Finally, the model only handles driving. The player begins 
the game outside of the bus and must turn around and punch 
a timecard before entering the vehicle. To keep the model 
simple, we have a player punch the timecard, enter the bus, 
and then we start the model. Including these steps are obvious 
future tasks. Nevertheless, while undertaking the drive from 
Arizona to Nevada, it will be one of the longest running 
ACT-R models. 

Demonstration Observations 
Unfortunately, in its current state, the model is only able to 
drive for about a mile before being towed back to the 
beginning. The model always successfully makes one 
adjustment. However, the adjustment made is too large; it 
takes the bus from the extreme right edge of the road to the 
extreme left of the opposite lane. After that, the model will 
continue driving forward until the bus drifts back into the 
center of the road (between the two lanes). Then the model 
attempts to make another adjustment and over adjusts, 
driving off the road to the left.  

The model fails to drive for more than a mile for a 
multitude of reasons. First, the template for the dividing line 
gets mismatched. The model only uses one template to 
identify the location of the divider. However, this template is 
not always satisfactory. As the bus drifts left and right across 
the road, the angle of the dividing line changes. When the bus 
is to the right of the divider, the angle is similar to that of the 
template and matches are more likely to be correct. However, 
when the bus over adjusts and ends up on the left of the 
divider, the template does not match as well. Furthermore, 
ACT-R is unaware of the quality of a match. JSegMan is used 
to find objects and features on the display. However, 
JSegMan does not return any information about the quality of 
a match, but a matching request will always return a position. 
Thus, a feature will always be found even if it is not present, 
meaning ACT-R does not know when it should avoid putting 
the feature in the visicon.  

In theory, using multiple patterns could remedy the issue. 
Patterns of the divider at different angles would be a proxy 
for where the bus is, allowing the model to determine if an 
adjustment is necessary. However, this process would take 
too long. Currently, it takes 6.01 seconds on average (n=100) 
to match the divider template. Furthermore, this is about the 
time it takes for the bus to drift from the center of the road to 
the rightmost edge; therefore, if the model attempted to match 
a second template, it would drive off the road before having 
the chance to make an adjustment.  

Additionally, the over adjustment is an artifact created by 
the overhead of running external processes. JSegMan does 
not have support for holding keys or presses of arbitrary 
lengths. To make up for this, a Java program was constructed 
to simulate key press and release events (to mimic the signals 
sent by ACT-R) and is invoked just like JSegMan. This 
program was used to determine what the effects would be of 
incorporating press and release commands into JSegMan. To 
simulate a full key press and release this program would have 
to be run twice, the former sending the press signal while the 
latter sent the release. According to the model, an adjustment 
involves a rapid peck lasting for 0.08 seconds. However, on 
average (n=100) this mechanism takes 2.79 seconds to 
simulate an input. Furthermore, the input seen by the 
operating system is longer than 0.08 seconds because of the 
time spent creating the release process. Using the newest 
version of ACT-R would help alleviate some issues (notably 
those for key presses/releases) by reducing overhead. Newer 
versions of ACT-R are remote procedure call based. If 

244Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



JSegMan is modified to be a client to ACT-R’s event 
dispatcher, it will not need to be restarted, reducing overhead 
to the time it takes to send several packets (representing the 
command to execute). This change will require JSegMan to 
rely less on the device, as newer versions of ACT-R try to 
avoid using it. However, this should not be an issue as 
JSegMan will also be able to query the event dispatcher, thus 
it can watch for events generated by the motor module instead 
of the device. 

Discussion and Future Work 

There are some limitations to this model. It does not 
perform the whole task, and cannot yet drive very far. These 
limitations suggest changes to JSegMan and its interaction 
with ACT-R.  Specifically, JSegMan should return infor-
mation about the quality of a match and should use a persis-
tent connection to ACT-R (especially when being used in dy-
namic environments) to reduce overhead. Finally, JSegMan 
should incorporate commands that enable models to hold 
down keys for arbitrary (or indefinite) lengths of time. 
Implementing these changes will allow JSegMan to be used 
in modeling more complex tasks. During our work, we also 
discovered several other interesting topics that can be studied 
with a model that can drive a Desert Bus. 

Vigilance 
The version of Desert Bus we used is multiplayer, allowing 
other players to enter the bus as passengers. Players can 
interact with one another by talking or throwing scraps of 
paper. Thus, cognitive resources are diverted away from 
driving. Helton and Russel (2011), showed that subjects 
perform worse at a target detection task when simultaneously 
performing a spatial or verbal working memory task. 
Therefore, in the future, the model can be augmented to lose 
vigilance while driving and interacting with passengers.  

Giving Up and Physiologic Effects 
Desert Bus is more a game of endurance than skill. The trip, 
one-way, takes about eight hours to complete and there is no 
end to the game; the goal is to see how far you can go. A 
model can play the game forever, but this is unrealistic for a 
person. A model can be created that weighs external 
influences and duties against playing and determines when to 
stop. 

Additionally, the model can become more realistic by 
incorporating physiology with ACT-R/Φ (Dancy, 2013). 
Players can become hungry, thirsty, and/or sleep deprived 
while playing, causing their performance to suffer to the point 
that the bus runs off the road or forces the player to stop. 
Traditional driving models do not drive for long, so they can 
ignore these influences. However, ours can theoretically run 
forever. Adding a physiologic component to the model can 
reveal interactions between cognition and physiology and 
leads to a more robust theory of prolonged work and quitting.  

Conclusion 
With the advent of SegMan and JSegMan, ACT-R gained the 
capability to truly interact with a wide range of 
uninstrumented interfaces. ACT-R’s motor module has 
evolved to enable modeling of many behaviors users may 
exhibit. JSegMan should evolve to make use of the 
extensions to ACT-R’s motor module to allow models to 
interact with external interfaces with the same behavior as 
users.  

Using Desert Bus as a task, we began exploring how to 
improve JSegMan and what implications our proposals had 
for modeling and the design of JSegMan in general. While 
our model did not successfully play the game for long, it 
yielded useful insights.  
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Introduction
Questions of strategy selection have been studied in various
contexts such as problem solving, text editing, and even
dynamic, fast-paced tasks. One way to model the strategy
selection process is as a learning and decision problem:
with experience, the agent learns the expected utilities of
strategies, and executes a strategy based on what it has
learned (Lovett & Anderson, 1996).

It is important to note that the strategies studied in most of
the past research have relatively stable utilities. Even when
the task structure is manipulated to change the utilities of
strategies, these changes are relatively infrequent (Schunn &
Reder, 2001). This contrasts with many real-world skills,
such as sports and video gaming, where different strategies
are optimal at different points during the learner’s trajectory.
As a learner practices a skill, improvements in the learner’s
degree of perceptual-motor calibration to the physics of
tools and devices interacts with the difficulty of executing
a strategy to affect the strategy’s utility. Furthermore, it is
often unknown what the maximum utility of any strategy will
be, as this is partly determined by the learner’s own general
perceptual-motor abilities and prior experiences.

How humans learn and select strategies in the face of
such variation and uncertainty behooves further investigation.
Towards that goal, we present a task and strategy paradigm
that captures many of the features of a typical complex skill.
We also examine possible interactions between strategy use,
perceptual-motor calibration, and task knowledge using past
experimental data and model simulations within the Adaptive
Control of Thought-Rational (ACT-R) cognitive architecture.

Space Track
Space Track is a video game developed by Anderson et al.
(2019). The player’s goal is to earn points in 3-minute trials
by navigating a spaceship along a racetrack comprising of
rectangular segments (Fig. 1). Completing a rectangle awards
25 points, while crashing into the track walls loses 100 points.
Players control the ship using three keys: “A” and “D” to
rotate counter-clockwise and clockwise, and “W” to thrust.

Space Track is similar to many sports and video games
in three ways. It simultaneously engages visual, motor, and
cognitive processing, requires the rapid and precise execution
of actions, and has a relatively high performance ceiling. In
the study by Anderson et al. (2019), the average human scores
around 900 points by the end of 40 trials. This is far under
2350, the highest number of points achieved by one subject.

Figure 1: An example Space Track screen

Turning and Calibration
Successful navigation relies on learning the physics of the
game. Unlike real-life driving, the racetrack in Space Track
is frictionless. To get a car to travel along some desired
trajectory, a driver would orient the front wheels to align with
that trajectory and then accelerate. If a naı̈ve turner attempts
the same in a frictionless space, they will instead send the
ship careening away from the desired trajectory due to the
residual velocity from the previous trajectory. Turning in
frictionless space requires turning less than the desired angle
and thrusting until the ship is flying in the desired direction.
For any desired speed along the new trajectory there is a
unique angle of under-turn that achieves it. Skilled players
seem to have learned this angle and how long to thrust.

Through practice, players also gain experience calibrating
their perceptual-motor system to account for the continuous
and dynamic nature of the game. Human perceptual-motor
processing requires time, with an average minimum of 190ms
between detecting a visual scene and executing a keypress
(Woods et al., 2015). Even a delay of 100 ms between
detecting the ship’s orientation and lifting the finger from the
turn key results in an additional 18 degrees of rotation. Thus,
the player needs to account for that lag time by learning the
appropriate visual cues for beginning an action. Similarly, a
player needs to learn how close to the desired new angle they
should be before lifting their thrust finger.
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Stopping as a strategy
One potential strategy we identified from prior experiments
(Seow et al., 2019) involves rotating the ship in the direction
opposite to its current trajectory and thrusting until the ship
comes to a halt. Stopping at track corners compensates
for naı̈ve turning, since the resultant trajectories from naı̈ve
and optimal turners are identical when the ship is stationary.
Stopping also gives inexperienced and less calibrated players
more time to react to changes in track curvature.

On the flip side, stopping limits average ship speed, which
in turn limits the maximum possible distance a player can
cover within each 3-minute trial. Thus, it is not immediately
obvious whether stopping has a positive or negative utility.

Using data from Seow et al. (2019), we found that
increased stopping did not predict a change in the average
points earned per trial (Fig 2). Rather, increased stopping
correlated with a narrower range of points, raising the floor
while lowering the ceiling. This suggests that when scoring
is below the mean, increased stopping use might improve
performance, but when it is above that mean, increased
stopping use might instead lead to worse performance.

Figure 2: Points per trial in humans. The blue line tracks the
average points earned across proportions of stopping.

Stopping, Turn Optimality, and Experience
To test these potential tradeoffs of stopping, we simulated
learning on Space Track using ACT-R models. We modeled
variations in turn optimality as 11 weighted combinations
of the contributions from the naı̈ve and optimal turning
algorithms. Differences in stopping use was captured by two
types of models, one that stopped at every corner, and one
that relied on its turn algorithm to navigate corners. Stopping
use was crossed with turn optimality to yield 22 models.

Stopping helps inexperienced agents and naı̈ve turners
but limits experienced agents and optimal turners (Fig. 3).
A regression model (r2 = 0.74) further showed that score
was predicted by the interaction between stopping, turn
optimality, and trial number (β = 2.19, SE = 0.65, p < 0.05).

Figure 3: Model points across trials. The stopping model
(in red) performs better than the non-stopper except when the
agent is an optimal turner and has had sufficient experience.

Conclusion and Further Research
We have identified a task and strategy paradigm that is
potentially suitable for understanding the processes that
underlie the learning and selection of strategies in complex
skills. With Space Track and the strategy of stopping, one
promising future direction is to apply and test current models
of decision making (e.g. Reinforcement Learning) on human
gameplay to investigate how basic decision processes account
for strategy shifts in complex skill acquisition.
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Abstract 
Prior research in decisions from experience (DFE) has investigated people’s 
consequential decisions after information search both experimentally and 
computationally. However, prior DFE research has yet to explore how 
computational cognitive models and their mechanisms could explain the 
effects of problem framing in experience. The primary objective of this paper 
is to address this literature gap and develop Instance-based Learning Theory 
(IBLT) models on the effects of problem framing. Human data was collected 
on a modified form of the Asian disease problem posed about the COVID-
19 pandemic across two between-subject conditions: gain (N = 40) and loss 
(N = 40). The COVID-19 problem was presented as “lives saved” in the gain 
condition and “lives lost” in the loss condition. Results revealed the absence 
of the classical framing effect, exhibiting no preference reversal between 
gain and loss conditions in experience. Next, an IBL model was developed 
and calibrated to the data obtained in the gain and loss problems. The 
calibrated model was generalized to the non-calibrated conditions (gain to 
loss and loss to gain). An IBL model with ACT-R default parameters was 
also generalized. Results revealed that the IBL model with calibrated 
parameters explained human choices more accurately compared to the IBL 
model with ACT-R default parameters. Also, participants showed greater 
reliance on recency and frequency of outcomes and less variability in their 
choices across both gain and loss conditions. We highlight the main 
implications of our findings for the cognitive modeling community.  

Keywords: individual choice; experience; sampling; 
computational models; framing; gain; loss; COVID-19 disease 
problem.  

Introduction 
Whenever the world has seen new contagious diseases, 
medical practitioners have relied on their prior experience 
with treatments on other diseases to tackle the crises (HT, 
2020). Depending upon the similarity and differences 
between prior experiences of diseases and a specific current 
disease, a combat plan may be selected for implementation. 
The act of making choices based upon prior experience, 
however, is not limited to making disease combat decisions; 
rather, it may be a very common exercise involving people in 
different facets of their daily life (choosing what to eat, whom 
to marry, or what career to pursue). Gaining experience via 
information search (or sampling) before a consequential 
choice forms an integral part of decisions from experience 
(DFE) research, where the focus is on explaining human 
decisions based upon one’s experience with sampled 
information (Hertwig & Erev, 2009).  

DFE research has proposed a “sampling paradigm” (Hertwig 
& Erev, 2009), where people are presented with two or more 
options to choose between. These options are represented as 
blank buttons on a computer screen. People can sample as 
many buttons as they wish and in any order they desire 
(information search). Once people are satisfied with their 
sampling of the button options, they decide from which 
option to make a single consequential choice for real. 

The sampling paradigm has been used to develop 
computational cognitive models of human choice behavior 
both at the individual level (Sharma & Dutt, 2017) and at the 
aggregate level (Busemeyer & Wang, 2000; Gonzalez & 
Dutt, 2012; Lejarraga, Dutt, & Gonzalez, 2012). In fact, using 
the sampling paradigm, cognitive models have also been 
developed in both abstract and applied domains (Sharma & 
Dutt, 2018). For example, the Instance-Based Learning (IBL) 
model is a popular DFE algorithm for explaining aggregate 
and individual human choices (Erev et al., 2010; Gonzalez & 
Dutt, 2011; Sharma & Dutt, 2017). The IBL model borrows 
mechanisms like activations, retrieval from memory, and 
blending from the ACT-R framework (Anderson & Lebiere, 
1998) and it operates by storing and retrieving experiences 
(called instances) from memory (Gonzalez & Dutt, 2011). 
Each instance’s activation is used to calculate the blended 
values for each option, thereby helping the model to make a 
consequential choices.  

Although computational cognitive models have been 
developed in the DFE’s sampling paradigm at the aggregate 
and individual participant levels in abstract and applied 
problem domains (Sharma & Dutt, 2017), yet little is known 
on how these models would account for human decisions 
driven by the problem’s framing in experience in applied 
domains (Gonzalez, Dana, Koshino, & Just, 2005; Tversky & 
Kahneman, 1981). For example, in the famous Asian disease 
problem (ADP), participants are asked to imagine that a 
country is preparing for the outbreak of an unusual Asian 
disease, which is expected to kill 600 people (Tversky & 
Kahneman, 1981). One group of people are presented this 
problem as a gain in terms of “lives saved;” whereas, a 
second group of people are presented the same problem as a 
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loss in terms of “lives lost.” Although the gain and loss 
frames are equivalent, results reveal a framing effect: A large 
majority among those presented the gain frame choose the 
safe option; however, a large majority among those presented 
the loss frame choose the risky option. Gonzalez and 
Mehlhorn (2015) showed that the framing effect was present 
among people when they were presented with the ADP in a 
descriptive format; however, the framing effect disappeared 
in the experiential format (i.e., DFE’s sampling paradigm). 
Gonzalez and Mehlhorn (2015) went a step further and 
developed an IBL model with ACT-R parameters to explain 
the disappearance of the framing effect in experience. 
However, Gonzalez and Mehlhorn (2015) did not calibrate 
their model’s parameters as well as these authors did not test 
the framing effect in problems with a context (e.g., problem 
about the specific COVID-19 disease compared to the 
general Asian disease).  

The primary objective of this research is to overcome the 
above-mentioned literature gaps. First, we evaluate the 
framing effect in experience among gain and loss problem 
frames in a COVID-19 disease problem (CDP). Next, we 
evaluate how an IBL model calibrated to the gain and loss 
frames explains the human choices in CDP. We also evaluate 
the generalization of IBL model parameters from the 
calibrated problem to the non-calibrated problem (gain 
problem’s parameters to the loss problem and loss problem’s 
parameters to the gain problem). For the purposes of our 
evaluations, the IBL model was exposed the sampling of 
participants and it predicted the consequential choices post 
sampling.  

In what follows, first, we detail an experiment where we 
investigated the framing effect in experience in CDP. Next, 
we detail an IBL model and discuss the methodology of 
calibrating the model to capture the consequential choices in 
CDP. Next, we present the results of model’s evaluation both 
during calibration and during generalization. Finally, we 
close the paper by discussing the implications of our results. 

The COVID-19 Disease Problem (CDP) 
Experiment 

Eighty participants were recruited via Amazon MTurk in 
India to participate in a disease program study. Participation 
was voluntary, about 67% percent of participants were males, 
and the rest were females. Ages ranged from 18 years to 73 
years (Mean = 32.55 years and standard deviation = 10.04 
years). Participants were from different education levels: 
19.4% undergraduates and 80.6% graduates. Discipline-wise, 
the demographics were the following: 31.25% possessed 
degrees in engineering, 10.62% possessed degrees in basic 
sciences, and 28.6% possessed degrees in humanities and 
social sciences. Participants were compensated a flat 
participation fee of INR 21 (~ USD 0.28). No participant took 
more than 10 minutes across both conditions to finish the 
study. 

Participants were randomly assigned to one of two 
between-subject conditions involving the CDP in experience: 
gain (N = 40) and loss (N = 40). In the gain condition, the 
CDP was framed as “lives saved;” whereas, in the loss 
condition, the CDP was framed as a “lives lost” (see Figure 
1).   

Imagine that your country is preparing for an outbreak of the new 
coronavirus disease, which is expected to kill certain number of people in 
your country. In this task, you need to choose between different health 
programs designed to combat the coronavirus. Health programs are 
represented by buttons. By clicking on a program button below, you can 
gather information about the outcome of the program associated with the 
button (sampling phase). The outcome shown on a button option during the 
sampling phase will not affect the final result. Once you are satisfied with 
your sampling of the button programs, you may click the “Make Allocations 
for Real” button to enter the allocation phase. In the allocation phase, you 
need to decide one of the health programs (A or B) for real (one final time).  

Program A Program B 

Make Allocations for Real 

Figure 1. The CDP presented to participants in the study in gain condition.  

As shown in Figure 1, in the gain condition, participants 
were presented with programs A and B, which they needed 
to sample as many times they desired and in any order they 
desired before making a final choice for real. In the loss 
condition, participants were presented with programs C and 
D, which they needed to sample as many times they desired 
and in any order they desired before making a final choice for 
real. The allocation of programs to buttons was randomized 
across participants in both conditions and sampling in both 
conditions was nonconsequential. At any time during the 
sampling phase, participants could click the “Make 
Allocations for Real” button (see Figure 1). Clicking the 
“Make Allocations for Real” button terminated the sampling 
phase and moved participants to the allocation phase. In the 
allocation phase, participants were asked to make a 
consequential choice for one of the programs. In the gain 
condition, program A was framed as “200 people will be 
saved” (1 probability) and program B was framed as “600 
people will be saved” (1/3rd probability) or “No one will be 
saved” (2/3rd probability).  In the loss condition, program C 
was framed as “400 people will die” (1 probability) and 
program D was framed as “Nobody will die” (1/3rd 
probability) or “600 will die” (2/3rd probability). In both 
conditions, the probability information was not shown, and it 
was only used to generate the outcomes in quotes above. As 
can be seen, programs A and C were identical and programs 
B and D were identical. In agreement with Gonzalez and 
Mehlhorn (2015)’s results for ADP, we expected no 
difference in the proportion of A and C choices in the CDP 
(i.e., we expected an absence of the framing effect). To test 
our expectation, we performed a one-way ANOVA with 
condition as a between-subjects factor, an alpha level of 0.05, 
and a power of 0.80. 

Results revealed that there was no significant difference 
between the gain and loss conditions in the proportion of A 
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or C choices (gain: 0.83 ~ loss: 0.70; F(2,78) = 1.720, p = .19, 
η2 = 0.02). Thus, as per our expectations and contrary to the 
classical descriptive results, there was an absence of the 
framing effect in the experience-based CDP.    

The Model 

   In this section, we detail the working of the IBL model that 
was developed to account for human choices in the CDP.  

Instance-Based Learning (IBL) Model 
The IBL model (Dutt & Gonzalez, 2012; Gonzalez & Dutt, 
2011; 2012; Lejarraga, Dutt, & Gonzalez, 2012) is built upon 
the ACT-R cognitive framework (Anderson & Lebiere, 
1998). In this model, instances are created in memory for 
each occurrence of an outcome on choice options. An 
instance is made up of the following structure: situation-
decision-utility, where the situation is the current situation 
(two option buttons on a computer screen), the decision is the 
decision made in the current situation (choice for one of the 
option buttons), and the utility is the goodness of the made 
decision (the outcome obtained upon choosing an option). 
When a choice is to be made, instances belonging to each 
option are retrieved from memory. These instances are then 
blended on each option. The blended value of an option is a 
function of activation of instances as well as their probability 
of retrieval from memory. The blended value of option j at 
any trial t is defined as:     

where xi, j, t is the value of the utility part of an instance i on 
option j at trial t. The pi, j, t is the probability of retrieval of 
instance i on option j from memory at trial t. Because xi, j, t is 
the utility of an instance i on option j at trial t, the number of 
terms (n) in the summation in equation 1 changes when new 
outcomes are observed during sampling on the option j. For 
example, if j is an option with two possible outcomes, then n 
= 1 when one of the outcomes has been observed on the 
option (i.e., one instance is created in memory) and n=2 when 
both outcomes have been observed on the option (i.e., two 
instances are created in memory).  
At any trial t, the probability of retrieval of an instance i on 
option j at trial t is a function of the activation of that instance 
relative to the activation of all instances (1, 2, … n) created 
within the option j, given by  

 

where τ, is random noise defined as  and σ is a free 
cognitive noise parameter. The activation of an instance i 
corresponding to an observed outcome on an option j in a 
given trial t is a function of the frequency of the outcome’s 
past occurrences and the recency of the outcome’s past 
occurrences (as done in ACT-R). At each trial t, activation 

of an instance i on option j is  

where d is a free decay parameter;   is a random draw 
from a uniform distribution bounded between 0 and 1, for 
instance i on option j in trial t; and tp is each of the previous 
trials in which the outcome corresponding to instance i was 
observed in the task. The IBL model has two free parameters 
that need to be calibrated: d and σ. The d parameter controls 
the reliance on recent or distant sampled information. Thus, 
when d is large (> 1.0), then the model gives more weight to 
recently observed outcomes in computing instance 
activations compared to when d is small (< 1.0). The σ 
parameter helps to account for the participant-to-participant 
variability in an instance’s activation. We feed the sampling 
done by individual human participants to generate instances 
and compute blended values in the IBL model. During 
sampling, each time a choice is made, and the outcome is 
observed, the instance associated with it is activated (created 
or reinforced). At the final choice, blended values are 
computed and the model chooses the option with the highest 
blended value.  

In one version of the IBL model, we used the default values 
of the ACT-R parameters, i.e., d = 0.50 and σ = 0.25 (IBL 
model with ACT-R parameters). These parameters show 
lesser reliance on recency and frequency of information and 
a reasonable participant-to-participant variability in 
consequential choices. However, in a second version of the 
IBL model, we found single values for the two parameters (d 
and σ) by calibrating them to individual participant 
consequential choices in gain and loss conditions, 
respectively. We refer to this model as the IBL model with 
calibrated parameters and, for the parameters’ calibration, we 
determined a model participant’s choice and compared this 
choice to a human participant’s choice. In order to create 
exploration of options during sampling, the model’s memory 
was pre-populated with 2 instances (i.e., one on each option) 
with a 1000 utility. This value of utility was higher than all 
possible outcomes in the different options. These 
prepopulated instances may represent the initial expectations 
that participants may bring to the task (Gonzalez & Dutt, 
2011). If the model participant’s choice equaled human 
participant’s choice, then the dependent variable (error) was 
coded as zero; otherwise, the error was coded as one. We 
minimized the average of errors across all participants in the 
calibration process separately across the gain and loss 
conditions. 

Method 
Dependent Variables 

The model was run for as many model participants as there 
were human participants in the two conditions independently. 
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To compare human and model choices, we evaluated an 
“error ratio” (i.e., the ratio of incorrectly classified final 
choices between model and human participants divided by 
the total number of human participants). Thus, the error ratio  
was calculated as:   

 
Error Ratio = (AmBh + BmAh) / (AmAh + BmBh + AmBh + BmAh) (4) 

 
where, AmBh was the number of participants where the model 
predicted an A (or C) program choice but the human made a 
B (or D) program choice. BmAh was the number of 
participants where the model predicted a B (or D) program 
choice but the human player made a A (or C) program choice. 
Similarly, the AmAh and BmBh were the number of 
participants, where the model predicted the same choice  as 
made by the human participant. The smaller the value of the 
error ratio, the more accurate is the model in accounting for 
individual choices in CDP. 

 
Model Calibration 

 
    The IBL model described here possessed two free 

parameters d and s. These parameters were calibrated using 
a genetic algorithm program in both gain and loss conditions 
separately. The genetic algorithm repeatedly modified a 
population of individual parameter tuples in order to find the 
tuple that minimized the error ratio in a condition. The d and 
s parameters were both varied in the range [0, 10]. In each 
generation, the genetic algorithm selected individual 
parameter tuples randomly from a population to become 
parents and used these parents to select children for the next 
generation. Over successive generations, the population 
evolved toward an optimal solution. The population size used 
here was a set of 20 randomly selected parameter tuples in a 
generation (each parameter tuple was a particular value of d 
and s). The mutation and crossover fractions were set at 0.1 
and 0.8, respectively, for an optimization over 150 
generations. For each parameter tuple, the IBL model was run 
10 times across the 40 human participants per condition to 
account for run-to-run uncertainties present in the model. 
Across the 10 runs, the model’s average error ratio was 
computed by averaging the error ratios from each run and it 
was minimized. The parameter tuple that minimized the 
average error ratio across 150 generations were reported as 
the calibrated parameters for the IBL model. 

Results 
We evaluated the IBL model’s ability to account for 

individual consequential choices in both gain and loss 
conditions separately. In the gain condition, the best-
calibrated values of d and s parameters were found to be 7.05 
and 0.07, respectively.  In the loss condition, the best-
calibrated values of d and s were found to be 9.70 and 0.22, 
respectively. A large d value exhibited excessive reliance on 
recency during sampling. Also, the smaller s value exhibited 
lesser participant-to-participant variability in instance 
activations.  

 
Table 1 shows the individual-level results from the gain and 
loss conditions. The same results were obtained across 10-
runs of the model and there was no deviation in the 
percentages from the mean. As shown in Table 1, the 
calibrated IBL model in the gain condition produced 83% of 
AmAh combinations and 17% of BmBh combinations, 
respectively. In contrast, for the IBL model in the gain 
condition, the erroneous AmBh and BmAh combinations were 
both 0.0%, respectively. Based on these statistics, the IBL 
model showed 100% accuracy in the gain condition. 
Furthermore, the calibrated IBL model in the loss condition 
produced 70% of AmAh combinations and 30% of BmBh 
combinations, respectively. In contrast, for the IBL model in 
the loss condition, the erroneous AmBh and BmAh 
combinations were both 0.0%, respectively. Thus, again, the 
IBL model possessed 100% accuracy in the loss condition.  

 
Table 1: The calibration results from the IBL model in the 

CDP. 
 

Human and Model 
data combination 

H/M 

Gain condition Loss condition 

Parameters d = 7.05, s = 0.06 d = 9.70, s = 0.22 
Number of participants 401 40 
AmAh percentage 83 70 
BmBh percentage 17 30 
AmBh percentage 00 00 
BmAh percentage 00 00 
Error Ratio 00 00 

Note. 1 Each of the 10-runs of the model produced the same 
percentage with 0.0 as the standard deviation.  
 
Table 2 shows the results of the IBL model in the CDP where 
the model possessed ACT-R default parameters (d = 0.5 and 
s  = 0.25).  
 

Table 2: The IBL model in the CDP with ACT-R default 
parameters. 

Human and Model 
data combination 

H/M 

Gain condition Loss condition 

Parameters d = 0.50, s = 0.25 d = 0.50, s = 0.25 
Number of participants 40 40 
AmAh percentage 41.61 (5.5)2  34.5 (5.9) 
BmBh percentage 14.7 (3.0) 13.0 (2.6) 
AmBh percentage 03.3 (3.0)  17.0 (2.6) 
BmAh percentage 41.4 (5.5) 35.5 (5.9) 
Error Ratio 0.45 (0.10) 0.53 (0.10) 

Note. 1 The average percentage across 10-runs. 2 The standard 
deviation across 10-runs. 
 
As seen in Table 2, in the gain condition, there were, on 
average, 41.6% of AmAh combinations and 14.7% of BmBh 
combinations, respectively. In contrast, on average, the 
erroneous AmBh and BmAh combinations were 3.3% and 
41.4%, respectively. The average error ratio being 0.45. In the 
loss condition, on average, there were 34.5% of AmAh 
combinations and 13.0% of BmBh combinations, respectively. 

252Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



In contrast, on average, the erroneous AmBh and BmAh 
combinations were 17.0% and 35.5%, respectively. The 
average error ratio being 0.53. Overall, the IBL model with 
ACT-R default parameters performed poorly compared to the 
calibrated IBL model. 

Figure 2 shows the proportion of A choice (gain condition) or 
proportion of C choices (loss condition) from human data, IBL 
model with calibrated parameters, and IBL model with ACT-
R default parameters. As can be seen in the Figure, the IBL 
model with calibrated parameters captured the human choices 
accurately; whereas, the IBL model with the ACT-R default 
parameters exhibited a close to a chance performance.  

Figure 2. The proportion of A choice (gain condition) or C 
choices (loss condition) in human data, calibrated IBL model, 
and IBL model with ACT-R default parameters. The error bars 
show 95% CI around the average estimate.  

Generalization 
Since, we first calibrated the IBL model in the gain and loss 
conditions independently, generalizing the model by running 
the calibrated parameters in the non-calibrated conditions 
(from loss condition to gain condition or from gain condition 
to loss condition) would help account for parameter 
differences and model consistency across the two conditions. 
As there was an absence of the framing effect in the 
experimental data, generalization of loss condition parameters 
to the gain condition or generalization of gain condition 
parameters to the loss condition should produce accurate and 
similar results.  

Table 3 shows the results of generalizing the IBL model from 
calibrated conditions to the non-calibrated conditions. The 
same results were obtained across 10-runs of the model and 
there was no deviation in the percentages from the mean. As 
shown in Table 3, the generalization of loss condition’s 
parameters in the gain condition and the generalization of gain 
condition’s parameters in the loss condition produced most 
accurate results with 0 error ratios. Thus, these parameters are 
equivalent and they meet our expectations on the absence of 
the framing effect in the experienced-based CDP. 

Table 3: Generalisation of the calibrated IBL model 
parameters from calibrated condition to the non-calibrated 

conditions in CDP. 

Human and Model 
data combination 

H/M 

Loss condition’s 
parameters in 
gain condition 

Gain condition’s 
parameters in loss 

condition 
Parameters d = 9.70, s = 0.22 d = 7.05, s = 0.06 
Number of participants 401 40 
AmAh percentage 83 70 
BmBh percentage 17 30 
AmBh percentage 00 00 
BmAh percentage 00 00 
Error Ratio 00 00 

Note. 1 Each of the 10-runs of the model produced the same 
percentage with 0.0 as the standard deviation. 

Discussion and Conclusions 
     Prior research had experimented with the framing effect 
in the Asian disease problem (ADP) where the problem was 
presented in gain and loss frames either in a descriptive 
format (description) or experiential format (experience) to 
participants (Gonzalez et al., 2005; Gonzalez and Mehlhorn 
2015; Tversky & Kahneman, 1981). The main result was the 
presence of the framing effect (i.e., a preference reversal) 
between gain and loss problems in description and its absence 
in experience. However, little was known about the existence 
of the framing effect in problems with an applied disease 
context (e.g., COVID-19) in experience. Also, little was 
known about how computational cognitive models could 
account for the framing effect in applied disease contexts in 
experience. The primary objective of this research was to 
address these gaps in literature. In this paper, we showed the 
absence of the framing effect between the gain and loss 
frames in an applied COVID-19 disease problem (CDP) in 
experience. Furthermore, we showed that a single IBL model 
could account for the absence of framing effect in both gain 
and loss frames in the CDP in experience. The IBL model 
showed participants relying excessively on recency and 
frequency of information and showing very little variability 
in participant-to-participant decisions across both the gain 
and loss frames in CDP.  

First, our experimental results showed an absence of the 
framing effect across the gain and loss frames in CDP in 
experience. This result is consistent with those of Gonzalez 
and Mehlhorn (2015), who also showed the absence of the 
framing effect across the gain and loss frames in the 
experience-based ADP. Thus, it seems that the specific 
COVID-19 disease context (in CDP) is treated by participants 
in the same manner as the general Asian disease context (in 
ADP). One likely reason for the absence of the framing effect 
between gain and loss frames in CDP could be that in 
experience, people underweight the probability of low 
frequency events and overweight the probability of the high 
frequency events (Hertwig & Erev, 2009). Here, this effect of 
underweighting and overweighting of probabilities seems to 
be present irrespective of the problem’s framing.   
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Second, our model results showed that the IBL model with 
calibrated parameters performed exceedingly well compared 
to the IBL model with ACT-R default parameters. This result 
extends the work of Gonzalez and Mehlhorn (2015), who 
developed an IBL model with the ACT-R default parameters. 
Specifically, it shows that in experience, the default ACT-R 
assumptions of low recency and reasonable variability may 
not exist, and people may make more deterministic final 
choices that are driven by excessive reliance on recent and 
frequent samples. 
 
Third, our results showed that the generalization of model 
parameters from calibrated conditions to non-calibrated 
conditions showed very accurate model performance. This 
results in particular shows that the IBL model parameters in 
the gain and loss frames were similar and these parameters 
tended to agree with the experimental findings on the absence 
of the framing effect: If there is no preference reversal 
between gain and loss frames, then the model parameters 
should also similarity in their values. 
 
There are a number of future directions from this work. First, 
researchers may also develop the CDP in description and 
experimentally evaluate whether there is a presence of the 
framing effect in the description-based CDP. Next, 
researchers may attempt whether there is an effect of the 
people’s location (being in Asia or in America) on the 
contextual disease framing in experience and description 
formats. Furthermore, cognitive models like IBL may be 
developed on these data to see the potential of such models 
in capturing the presence or absence of framing effects. In 
this paper, only base level activation as well as the cognitive 
noise were used in explaining the framing effect in the IBL 
model. However, future work may experiment with other 
ACT-R mechanisms like partial matching or spreading 
activation to account for these experimental findings. We 
plan to continue experimenting with some of these ideas as 
part of our future work in the decisions from experience 
theme.     
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Abstract
One of the hallmarks of expert performance in complex, dy-
namic tasks is the ability to select and perform the appropri-
ate action within a constantly shifting environment, often un-
der tight time constraints. In an example task, the video game
Tetris, expert players select placement positions for the active
zoid and navigate them into place in increasingly short time
spans. Machine models of the same task are capable of produc-
ing human-like performance patterns, but either ignore or only
roughly approximate the time constraints that seem to be an
integral part of human behavior. Using a set of scaled time pa-
rameters derived from a large set of human players, we trained
and tested an existing machine Tetris model and observed the
resultant changes in performance and behavior.
Keywords: Expertise, Reinforcement Learning, Machine
Learning, Human Performance

Introduction
Expertise is marked by the ability to perform a particular task
at a very high level of proficiency, and in many task domains,
are capable of performing more quickly and efficiently than
non experts. But while speed is often observed in conjunc-
tion with high levels of skill, it is not always clear how it
contributes to performance. In this paper, we explore the re-
lationship between speed and strategy in a complex and dy-
namic task environment, the video game Tetris.

Video games, and Tetris in particular, have a long his-
tory of use in research. Gray (2017) identifies three major
uses of games: Gamification describes efforts to use a game-
like environment for more serious and real world applica-
tions (Rapp, Cena, Gena, Marcengo, & Console,2016;Nash
& Shaffer,2011;Proctor, Bauer, & Lucario,2007), games as
Treatment Conditions are studies that use games to alter some
aspect of human behavior (Holmes, James, Coode-Bate, &
Deeprose,2009;Belchior et al.,2013), and Game-XP is a term
referring to the use of a game as an experimental paradigm.
in this work we use Tetris as a task environment to inves-
tigate the low level mechanisms that give rise to high level
skilled behavior (Kirsh & Maglio,1994;Destefano, Lindstedt,
& Gray,2011;Lindstedt & Gray,2019;Sibert, Gray, & Lind-
stedt,2017;Sibert & Gray,2018). Exploring this task could
help to us understand how these skills are developed and how
complex strategies are learned and used.

Tetris the Task
Tetris is a real-time, dynamic puzzle solving game that is sim-
ple in concept and can be very complex in execution. A player

Figure 1: A Tetris game in progress. The active piece, the or-
ange ”L” is currently being placed by the player on the main
game screen. The player also has access to score informa-
tion, in the lower right-hand box, and one upcoming piece,
the green ”Z” in the upper right-hand box.

is presented with a sequence of game pieces, called “zoids”,
made up of four conjoined squares. These zoids fall from
the top of the game board, and as they fall, the player navi-
gates them into position using a series of translation and ro-
tation maneuvers. Placed zoids form a pile at the bottom of
the screen, and when a row of the pile is completely filled
across the width of the screen, that row will disappear, low-
ering the pile and earning the player some points. The game
ends if the pile reaches the top of the screen. Higher scores
are achieved by clearing multiple lines (up to four) simultane-
ously, which encourages players to plan ahead and construct
board structures that can support these more complex maneu-
vers. However, as lines are cleared, the zoid falling speed
increases, allowing players less and less time to plan and ex-
ecute their moves. At early game levels, players have a full
16 seconds for maneuvering, but that time window is slowly
reduced until the fall speed of a zoid is a third of a second at
the highest playable levels. Successful players must balance
the score benefits of complex multi-line clears with the risk
of building the pile too high and having insufficient time and
space to maneuver zoids into place.

The constantly changing nature of Tetris allows for a wide
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range of player skill, with extremely low level players strug-
gling to clear any lines at all, all the way up to extreme ex-
perts, who comfortably set up and execute multi-line clears
in fractions of a second. Performance in this task is usually
judged by the final game score, but that score is achieved
though a complex interaction of perceptual, cognitive, and
motor skills.

Tetris Models
Building models of Tetris has long been
pursed in the Machine Modeling community
(Robertson,2003;Fahey,2015;Szita & Lorincz,2006;Thiery
& Scherrer,2009a), and these efforts have produced computer
models capable of high level Tetris performance. These
models are not usually developed out of any specific interest
in Tetris behavior, but they use Tetris as a testbed to demon-
strate the effectiveness of machine learning algorithms that
optimize a large feature space.

Though the search methods and models are all different
across the machine learning work, the basic model structure is
fairly consistent.The researcher selects a set of features of in-
terest, often structural aspects of the board like the pile height,
or number of unfilled cells, that may be important when mak-
ing placement decisions. Each of these features is assigned
a numerical weight, and using these weights, the model is
able to calculate a numerical score for all potential place-
ments for any static board state. A game is played by sim-
ply selecting the highest scoring move at each decision point,
and updating the game board to reflect the previous decision.
A simple, yet effective, set of features was defined by Del-
lacherie (Fahey,2015) and used in the modeling experiments
presented here. The features are described in Table 1.

Table 1: Tetris features proposed by Dellacherie, and used to
construct the models used in this paper

Feature Description
Landing
Height

Height where the last zoid is added

Eroded
Cells

# of cells of the current zoid elimi-
nated due to line clears

Row
Transitions

# of full to empty or empty to full hori-
zontal transitions between cells on the
board

Column
Transitions

# of full to empty or empty to full ver-
tical transitions between cells on the
board

Pits # of empty cells covered by at least
one full cell

Wells a series of empty cells in a column
such that the cells to the left and right
are both full

As suggested by Table 1, most machine modeling work on
Tetris has focused on selecting weights for a limited set of

features. These weights must be able to select moves that re-
sult in high game scores, but must do so in a nearly infinitely
variable environment of potential board configurations. A
machine learning method that is capable of producing a suc-
cessful model of Tetris, then, is likely to also be effective in
other complex task domains. One such method, and the one
employed in this research, is Cross Entropy Reinforcement
Learning (CERL), first proposed by Szita and Lorincz (2006)
and modified by Thiery and Scherrer (2009a,2009b), and uses
a generational search method to narrow in on the optimal fea-
ture space.

The models produced by this line of research are very ef-
fective Tetris players, clearing hundreds of thousands of lines
in a game (a high scoring human clears five or six hundred),
but they do so by adopting very un-human-like strategies that
allow them to take advantage of significant differences be-
tween the human and model task environment. Most notably,
the models are completely unconstrained by time pressure.
Where human strategy often revolves around making and ex-
ecuting the best placement decisions in the time available,
the models instantly choose which of the possible zoid place-
ments has the highest rank (the highest number of alterna-
tive placements possible for one episode is 35). For a model
player, the game ends when the feature weights encounter a
sequence of zoids that it cannot place in a way that clears
any lines, far different from the time constraints that limit hu-
man players. In response, models and humans develop diver-
gent strategies. The model player emphasizes clearing single
lines repeatedly over very long game spans (behavior also ex-
hibited by low level human players), while the expert human
player emphasizes setting up and executing as many multi-
line clears as possible.

Because of this and other limitations, the models in their
original forms are not very informative about human behav-
ior. However, previous modeling work has found that a basic
limitation, imposing a hard limit on the length of a model
game, could be employed to induce more human-like strate-
gies in the models (Sibert et al.,2017). A follow-up study
showed that the human-like strategy of multi-line clears will
arise naturally in models in response to a short game condi-
tion, even without explicit reinforcement of the score-seeking
behavior (Sibert & Gray,2018).

These results provide a strong argument for the importance
of time pressure in shaping human behavior, but so far, it
has only been implemented in a very simple way. In this
paper, we gift our models with human-like time pressure so
that rather than StarTrek-like “beaming” each zoid to its final
location in a single instant, moves requiring more zoid move-
ments cost more to execute than those which favor fewer.

Methods
As part of an ongoing exploration of human expertise in
Tetris, we have collected gameplay data from over 600 sub-
jects through a combination of laboratory studies where Tetris
is played in acoustically isolated “research pods” to local
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and international tournaments where players compete against
each other in loud and, at times, raucous events. All data was
collected using the Meta-T software (Lindstedt & Gray,2015)
and its successors, providing access to a huge array of game
information including all board states and key presses.

As shown in Figure 2 and Table 2, players were placed
into skill bins ranging from Extreme Novice to Extreme Ex-
pert based on the mean performance across their best several
games. In addition to score differences between groups, play-
ers showed a clear shift in strategy from a nearly complete re-
liance on single line clears (by novice players) to prioritizing
multi-line clears (by expert players).

Figure 2: Behavior patterns of human players in each of the
eight defined skill bins. The proportion of each bar corre-
sponds to the proportion of each line clear type that players
in each group made during their games. Players at the low
end of the skill spectrum rely almost entirely on single line
clears (blue), while the rate of 4-line clears (green) increases
with skill.

Time Parameters

From the raw behavioral data of the human players, we cre-
ated three measures that capture the execution cost of an in-
dividual move: Initial Latency, Average Latency, and Effi-
ciency. These values were logged for all players at every deci-
sion point for all games during the experimental period. How-
ever, not all these values reflect the actual speed of players.
For example, a very advanced player playing at a very slow
level may start moving the zoid before a decision is made,
and therefore overlapping the costs represented by the Initial
Latency and Average Latency parameters (described in more
detail below). To account for this, time parameters were not
derived from all of a players decisions, but only those made
at the Maximum Playable Level, the final level completed be-
fore the game was lost. We believe that these decisions are
being made at the edge of the player’s skill, but are not the
random panicked moves often made during the final moments
of a game. The parameters for each skill bin are listed in Ta-
ble 2.

Initial Latency This parameter captures the average time
needed for a player to make any key press following the ap-
pearance of a new zoid at the top of the screen. When playing
to the edge of a player’s ability, this initial latency likely cap-
tures the processing time to recognize the zoid, some kind of
evaluation of possible placement options, the selection of the
final placement, and the planning of the keypress sequence re-
quired to move the zoid into place. Initial latency is calculated
by taking the average time between the zoid’s appearance and
the first key press for each player. The expertise group value
is calculated by taking the average value for all players in the
group.

Average Latency This parameter captures the speed of
all key presses after the initial key press. As these key presses
are likely made after a motor plan has been determined, aver-
age latency reflects the motor speed of the player without any
decision making or planning. Average latency is calculated
by taking the average time between key presses for all but the
first key press for each player. The value for each of the 8
expertise groups is calculated by averaging the value across
all players in that group

Efficiency A perfectly efficient player will make the
minimum number of key presses to move the zoid into po-
sition, but humans are prone to all manner of small mistakes
that require extra key presses. Zoids are rotated or translated
too far and must be brought back into position, players switch
paths to pursue an alternate placement, or players simply are
unaware that a slightly different order of translations and ro-
tations would require fewer key presses. The efficiency pa-
rameter is calculated by determining the optimal path to the
final placement and then finding the difference in key presses
between this optimal path and the one executed by the player.
A player making only the required key presses when maneu-
vering pieces would have an efficiency of 0. The efficiency
parameter is the average number of extra key presses made
by a player. The expertise group value is calculated by taking
the average value for all players in the group.

Implementing Time Pressure in Models
To capture the effect of time pressure on how long movements
could take, we calculated the mean movement time for each
type of movement at each of our 8 levels of player expertise
(Table 2). In the no time pressure condition, the best place-
ment is calculated and the move is instantly made (This is
how all previous Machine Learning Models have worked).
The time parameters add the additional step of determining if
the move chosen can be made in the time allocated The time
cost of a move is calculated by the following formula.

TimeCost = InitLat +AvgLat(Path∗E f f ) (1)

The estimated path length (Path) is multiplied by the effi-
ciency parameter (Eff). This extended path length is multi-
plied by the average latency parameter (AvgLat). Finally, the
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Skill Bin Initial
Latency
(ms)

Average
Latency
(ms)

Efficiency

Extreme Expert 79.28 162.11 0.50
Expert 70.56 173.79 0.57
Advanced 96.12 221.72 0.98
Proficient 272.26 433.31 1.64
Intermediate 151.24 311.03 1.16
Beginner 411.29 536.51 1.88
Novice 448.76 668.98 2.06
Extreme Novice 571.37 804.34 2.62

Table 2: Time parameters for each skill bin. Initial and Av-
erage latency are measured in milliseconds, and Efficiency is
measured in key presses. The Criterion Score is a score based
metric reflecting the average of the highest scoring games
achieved by players in each group.

initial latency parameter (InitLat) is added to determine the
overall time cost (TimeCost).

This time cost is then compared with the zoid drop speed
at the current game level. If the move time cost is greater than
the time available, the model must choose an alternate move
(that does not raise the pile past the top of the screen), and if
there are no alternates are possible, the game ends.

Time parameters were implemented into the models in two
ways: first, by adding each level of constraints to a high per-
forming model previously trained with no time constraints,
and second, by training a model with each set of human-
derived time parameters.

Models were trained using the CERL method, reinforced
for high score. The model with no time parameters was lim-
ited to 525 piece games (a reasonable human game length),
but the other models were not explicitly limited in length and
relied on the time parameters to restrict game length. The
training process ended when the variation of feature weight
values dropped below 0.01, and were considered to have con-
verged.

After training, the models were tested by playing a set of
ten games using a pre-selected set of game seeds (that would
produce the same sequence of zoids). The models were eval-
uated on their performance, reflected in the scores of these
test games, and their behavior, measured by the proportion of
line clear types made by the models.

Results
Imposed Time Parameters
Imposing time constraints on a previously unconstrained
model caused a significant drop in performance. This per-
formance drop increased as the timecost (see equation 1) be-
came greater. Models slowed to the speed of Proficient play-
ers scored hardly any points at all. (See Table 3) The behavior
of the model as measured by line clear types remained largely
consistent (Table 4), with an emphasis on 4 line clears, until
the model was unable to execute line clears of any kind.

Skill Level Game
Length

Lines
Cleared

Score

No Time
Parameters

409.9
(155.00)

153.1
(67.20)

203766
(133487)

Extreme
Expert

278.9
(67.45)

94.4
(26.93)

71878
(32742.14)

Expert 271.1
(64.84)

91.5
(25.92)

68416
(30855.40)

Advanced 231.2
(37.77)

75.9
(15.08)

45000
(12673.27)

Intermediate 116
(51.51)

49.5
(20.14)

23688
(16916.47)

Proficient 41.5
(7.29)

1.6
(1.96)

72
(93.90)

Beginner 24.4
(4.30))

0
(0)

0
(0)

Novice 24.8
(6.03)

0.4
(0.97)

16
(38.64)

Extreme
Novice

25.1
(4.95)

0.6
(0.97)

24
(38.64)

Table 3: Performance of models with Imposed Time Parame-
ters. Performance is measured by average game length (num-
ber of episodes), average lines cleared, and average score.
Standard deviations are listed in parentheses.

Trained Time Parameters
Models trained with time constraints were able to score points
(see Table 5), even when playing very slowly, though faster
models were unsurprisingly higher scoring than slower mod-
els. These scores were also roughly equivalent to the aver-
age score of human players in the group from which the time
parameters were derived. The model behavior also shows
a strategy change, with slower models relying almost com-
pletely on single line clears, while faster models started shift-
ing toward a multi-line clear strategy. (See Table 4). How-
ever, the rate of multi line clears for these models was lower
than those of models trained without time parameters.

Discussion
Imposing time pressure on an already trained model resulted
in a significant score drop. Indeed, the model was unable
to perform at all once slowed to the speed of our mid range
players. Unlike humans and unlike models trained at different
speeds (Table 6), models trained with no time pressure (Table
4 did not change strategies with changes in drop speed.

In contrast, training models with time parameters produced
successful models at all speed levels, and roughly reflected
the scores and strategies of the human players in the corre-
sponding expertise groups, with a few notable exceptions.
The Extreme Expert group had lower performance than the
Expert group because the former has a higher initial latency
parameter, making them, on paper, slower. We believe this
slowdown is reflective of a higher decision quality by ex-
treme expert players, but as the models all have the same de-
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Skill Level 1 Line 2 Line 3 Line 4 Line
No
Parameters

20.51%
(3.44)

25.48%
(7.51)

20.00%
(11.36)

34.01%
(7.86)

Extreme
Expert

20.55%
(5.37)

26.63%
(9.23)

21.62%
(22.34)

31.20%
(6.33)

Expert 21.25%
(6.03)

26.15%
(8.32)

20.51%
(11.60)

32.09%
(6.27)

Advanced 21.84%
(6.47)

27.66%
(10.48)

19.52%
(10.65)

31.00%
(8.65)

Intermediate 22.60%
(7.68)

21.21%
(12.60)

25.17%
(10.66)

31.02%
(16.43)

Proficient 73.33%
(41.31)

26.67%
(41.31)

0%
(0)

0%
(0)

Beginner 0%
(0)

0%
(0)

0%
(0)

0%
(0)

Novice 100%
(0)

0%
(0)

0%
(0)

0%
(0)

Extreme
Novice

100%
(0)

0%
(0)

0%
(0)

0%
(0)

Table 4: Behavior of models with Imposed Time Parameters.
Behavior is measured by the average percentage of total lines
that are cleared with each line clear type (1, 2, 3, or 4). Stan-
dard deviations are shown in parentheses.

cision ability, the small speed difference results in a slightly
lower score. In addition, players in the Extreme Novice group
scored much lower than their corresponding model, likely be-
cause even when very slow, the models are making better
quality decisions than the players. These deviations at the
extreme ends of the skill range suggest that a player’s skill
level is determined by a combination of their speed and their
decision quality, rather than just by speed alone.

There were two more deviations between the performance
and behavior of the human and the model. First, the Pro-
ficient model scored much lower than the corresponding hu-
man players. Second, although the Advanced model achieved
a score that was close to its human counterparts, it relied pri-
marily on clearing single rather than multiple lines (see Table
4).

The above two cases demonstrate the pitfalls of our model
search method. While hundreds of potential models are tested
and evaluated during training, the development process is run
only once. Under most circumstances, we consider the wide
breadth and length of the search sufficient to prevent overfit-
ting, the CERL method can sometimes converge on a locally
optimal area of the feature space. Additional noise introduced
into the search, or perhaps another search method altogether
could possibly mitigate some of these problems and produce
more robust models.

Our biggest surprise was the behavior of the time trained
models. Though models with faster time parameters dis-
played higher percentages of 4-line clears, these percentages
were lower than the human players in the skill groups from
which those parameters were derived, and also lower than the

Skill Level Game
Length

Lines
Cleared

Score

Extreme
Expert

378
(110.42)

134.3
(44.34)

80350
(45401.84)

Expert 392.1
(90.54)

139.5
(36.03)

95552
(46846.02)

Advanced 337.3
(31.26)

118
(12.45)

32434
(7209.18)

Intermediate 170.1
(64.80)

50.7
(26.05)

23196
(19153.34)

Proficient 115
(80.24)

30.7
(31.50)

4582
(5652.35)

Beginner 134.4
(34.89)

38.6
(13.75)

4514
(3031.51)

Novice 94.2
(34.58)

23.6
(13.66)

2134
(1869.31)

Extreme
Novice

66.4
(18.77)

14.1
(7.82)

928
(606.06)

Table 5: Performance of models with Trained Time Param-
eters. Performance is measured by average game L=length
(number of episodes), average lines cleared, and average
score. Standard deviations are listed in parentheses. For all
test games, the game length was unlimited but dependent on
the model’s speed.

model trained without time parameters. We believe this dis-
crepancy is caused by the implementation of time pressure as
a global factor, that is, the models have the same time con-
straints for a full game and these parameters dictate what is
considered a ’good’ move based on the extent of the model’s
ability. This leads the consideration of a ’good’ move to
be moves that are successful at the final level of the game,
where line clears of any type are worth more points. Even
highly skilled players, who primarily pursue the score based
strategy, shift to the lines based strategy in a bid for survival
(Sibert & Gray,2018) at the end of a game. With global time
parameters, a move made at level 1 would be given the same
score as a move made at level 15, even though at level 15 the
time constraints might make that move impossible. Gifting
the models with an awareness of the current level might mod-
erate the other features and produce time based models more
representative of human behavior.

Conclusions
The deliberate practice framework (Ericsson, Krampe, &
Tesch-Römer,1993) identifies practice as the single best pre-
dictor of a player’s eventual level of expertise. Though the
exact definition of deliberate practice has proven difficult to
pin down, it is most often agreed to be effortful execution
of the target task at the very edge of the player’s skill. In this
way, the current implementation of the model time constraints
as global parameters may be forcing the model training into a
kind of deliberate practice, and may be forcing our models to
use strategies at the highest speed levels that humans would
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Skill Level 1 Line 2 Line 3 Line 4 Line
Extreme
Expert

34.42%
(6.42)

34.48%
(5.68)

21.64%
(5.34)

9.46%
(8.77)

Expert 24.38%
(4.13)

40.75%
(6.26)

24.42%
(5.49)

10.45%
(5.10)

Advanced 88.49%
(3.66)

10.33%
(2.75)

1.18%
(1.63)

0%
(0)

Intermediate 22.79%
(6.49)

34.33%
(16.01)

19.24%
(9.79)

23.64%
(14.56)

Proficient 91.36%
(7.17)

8.64%
(7.17)

0%
(0)

0%
(0)

Beginner 88.33%
(7.18)

11.19%
(7.15)

0.48%
(1.51)

0%
(0)

Novice 93.28%
(8.81)

6.06%
(8.31)

0.67%
(2.11)

0%
(0)

Extreme
Novice

90.88%
(10.94)

7.45%
(8.85)

1.67%
(5.27)

0%
(0)

Table 6: Behavior of models with Trained Time Parameters.
Behavior is measured by the average percentage of total lines
that are cleared with each line clear type (1, 2, 3, or 4). Stan-
dard deviations are shown in parentheses. For all test games,
the game length was unlimited but dependent on the model’s
speed.

not. That is, the (Sibert & Gray,2018) observations show that,
while experts mostly favor a multi-line strategy, when playing
at the limits of their expertise, humans revert to strategies that
favor single-line clears. Our models, in contrast, are more
dogged. Once they acquire a strategy they keep with it to the
very end. By only practicing, or training (in the model case),
under high time constraints, a player may fail to learn or mas-
ter the alternate strategies that are more successful at earlier
levels.

The models provide only a rough approximation of human
behavior, but the observed contrasts between them and human
players helps to shed light on the relationship between the
time-based game constraints and the strategies employed by
players. A safe, survival based strategy is best when the game
is hard (because of low player skill or high speeds), but true
expert players are able to flexibly switch strategies to best suit
the current game state. A single, unchanging strategy may
be functional in complex, dynamic task environments, but is
unlikely to allow for the highest levels of performance.
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Abstract 
Post-Traumatic Stress Disorder (PTSD) is a psychiatric       
disorder often characterized by the unwanted re-experiencing       
of a traumatic event through nightmares, flashbacks, and/or        
intrusive memories. This paper presents a neurocomputational       
model using the ACT-R cognitive architecture that simulates        
intrusive memory retrieval following a potentially traumatic       
event (PTE) and derives predictions about hippocampus       
volume observed in PTSD. Memory intrusions were captured        
in the ACT-R Bayesian framework by weighting the posterior         
probability with an emotional intensity term I to capture the          
degree to which an event was perceived as dangerous or          
traumatic. It is hypothesized that (1) Increasing the intensity I          
of a PTE will increase the odds of memory intrusions; and (2)            
Increased intrusions will result in a concurrent decrease in         
hippocampal size. A series of simulations were run and it was           
found that I had a significant effect on the probability of           
experiencing traumatic memory intrusions following a PTE.       
The model also found that I was a significant predictor of           
hippocampal volume reduction, where the mean and range of         
simulated volume loss match results of existing meta-analysis.        
The authors believe that this is the first model to both describe            
traumatic memory retrieval and provide a mechanistic       
account of changes in hippocampal volume, capturing one        
plausible link between PTSD and hippocampus size. 

Keywords: Post-Traumatic Stress Disorder; Hippocampus;     
Amygdala; Declarative Memory; Long-Term Memory;     
ACT-R; Cognitive Architecture  

Introduction 
Post-Traumatic Stress Disorder (PTSD) is a psychiatric       

disorder that originates after experiencing or witnessing a        
traumatic event, such as rape, domestic violence, assault, a         
serious accident, or military combat. At the behavioral level,         
PTSD is characterized by persistent avoidance, alterations in        
mood, as well as cognitive distortions surrounding the        

trauma. One of the most characteristic and disruptive        
behavioral effects of PTSD, however, is the unwanted        
reexperiencing of the trauma through nightmares,      
flashbacks, and/or intrusive memories. Traumatic     
experiences evoke an emotional response that is       
accompanied by increased activation of subcortical areas       
such as the amygdala. Intrusive memories are thought to         
occur because of the simultaneous activation of the        
amygdala and hippocampus during memory encoding      
(Marks, Franklin, & Zoellner, 2018). At the subcortical        
level, PTSD is also characterized by a marked reduction in          
the volume of the hippocampus—a medial temporal lobe        
structure necessary for memory functioning. It is important        
to note that this change is primarily structural, and, although          
often remarkably apparent, decreased hippocampus size is       
not accompanied by a functional impairment in long-term        
memory performance (Karl et al., 2006). 

The goal of this paper is to derive predictions about the           
changes in hippocampus volume observed in PTSD by        
using a neurocomputational model to simulate intrusive       
memories over time within an integrated cognitive       
architecture. The central idea of the model is that intrusive          
memories operate within the context of a general theory of          
declarative memory, specifically episodic memory. Within      
this framework, the persistent memory intrusions observed       
in PTSD can be seen not as a maladaptive response, but           
rather as the runaway process of an otherwise adaptive         
memory system.  

As a memory is retrieved more frequently, its priority         
increases and its rate of decay decreases. A traumatic         
memory, however, tends to out-compete more contextually       
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appropriate memories due to the fact it was encoded in a           
highly emotional state. With each retrieval of the traumatic         
memory, disproportionately more resources are allocated to       
it, leading to the further preservation and growth of these          
unwanted memory intrusions. In this framework, it is        
proposed that the corresponding changes in hippocampal       
volume associated with PTSD can be explained as the         
natural result of a biological process to efficiently allocate         
resources to changing memory demands. 

The model presented herein is framed within ACT-R’s        
theory of declarative memory (Anderson, 2007). This choice        
was motivated by three reasons. First, ACT-R is the most          
commonly adopted cognitive architecture in psychology and       
the cognitive neurosciences (Kotseruba & Tsotsos, 2018).       
Second, ACT-R has a long and established history of         
application to brain sciences, making the process of drawing         
new inferences at the neural level easier and less tentative.          
Finally, ACT-R is based on a Bayesian framework, which         
provides an elegant foundation of declarative memory       
retrieval processes and can be easily extended to incorporate         
the proposed theory of memory retrieval according to their         
emotional intensity.  

The Model 
Before introducing the model from a neural and an         

algorithmic point of view, it is important to frame it within           
Anderson's analysis of human episodic memory in terms of         
“Rational Analysis” (Anderson, 1990), or, as it is called         
currently, Bayesian terms. Throughout this paper, this       
analysis will be referred to as a guiding principle to modify           
ACT-R and make inferences about its neural substrates. 

In the Bayesian framework, a memory m’s probability of         
being recalled in the presence of a context Q = {q1, q2, ... qn }              
reflects the memory’s retrieval need, and is a Bayesian         
function of both the past history of m and the degree to            
which each contextual cue q predicts m. In Anderson’s         
(1990) formulation, the retrieval need of a memory m in a           
context Q is expressed in terms of a memory’s activation          
A(m), a quantity that reflects its log posterior odds of being           
retrieved in the presence of Q. Following Bayes rule, the          
posterior odds can be separated into two different quantities,         
the prior odds and the likelihood odds: 
 

A(m) = log [P(m|Q) / P(m/¬Q)] 
 = log [P(m) / P(¬m)] + log [P(Q|m) / P(Q|¬m)] 

= log [P(m) / P(¬m)] + log ∏q [P(q|m) / P(q)] 
 = log [P(m) / P(¬m)] + ∑q log [P(q|m) / P(q)]     (1) 

In ACT-R, it is customary to give different names to the           
two quantities that make up the right-hand side of Eq. 1,           
referring to the prior odds as the base-level activation or          
B(m), and to the likelihood odds as the spreading activation          
or S(m).  

A memory’s base-level activation B(m) increases with the        
frequency of its usage and decreases over time, reflecting         
the effects of frequency and recency. In ACT-R, each use of           

a memory m leaves a trace i , and each trace i decays            
exponentially over time with a decay rate d, which         
represents an individual-specific rate of forgetting (Sense et        
al. 2016). A single memory m is associated with multiple          
traces, each of which corresponds to a time during which m           
has been encoded, and re-encoded, or retrieved. Thus, the         
log odds of retrieving m correspond to the sum of the log            
odds of retrieving each of its individual decaying traces, and          
B(m) can be expressed as: 

B(m) = ∑i (t - ti)-d (2) 

Spreading activation S(m), instead, can be interpreted in        
reference to semantic networks, in which memories are        
connected by associative links, and activation flows through        
the links to associated nodes in the network. In this case, the            
activated nodes represent the elements q in the context Q,          
and the links represent the degree of association or         
similarity between q and each memory’s features. By means         
of spreading activation, the proper context can facilitate the         
retrieval of memories whose base-level activation would,       
otherwise, be too weak. The amount of spreading activation         
is proportional to the product between the strength of the          
link connecting q to m (indicated as sq➝m) and an attentional           
weight. The weight is usually simplified as a single scalar          
quantity, W, divided over the number of active elements in          
the context, N: 

S(m) = ∑ q (W/N) sq➝m (3) 

Different values of W in Eq. 3 alter the degree to which            
memory retrieval depends on spreading (and, therefore,       
contextual cues) vs. base-level activation (and, therefore,       
statistical priors).  

ACT-R In the Context of Memory Consolidation 
Although ACT-R has been described in many ways, it is          

useful, given the goal of this paper, to compare it to a            
prominent neural theory of memory consolidation, the       
Multiple Trace Theory (MTT: Moscovitch et al., 2005). The         
MTT assumes that episodic memories originate from       
distributed representations that span multiple cortical areas       
(Figure 1). During the encoding phase (red lines in Fig. 1),           
the different features of an event (q1 … qN) are encoded by            
different cortical areas and bound together into a single         
association map in the hippocampus (as attributes a1 … aN),          
through the multiple descending pathways that converge       
from the cortex through the dentate gyrus. MTT posits that          
the hippocampus is the permanent store of episodic        
memories, and that each encoding episode leaves a        
permanent trace. During retrieval, the hippocampus trace is        
temporarily re-activated (blue lines in Figure 1) and,        
through ascending pathways from the temporal lobe to the         
cortex, causes the re-activation of the original neurons. This         
reactivation, in turn, might be re-encoded as a second trace. 

Base-level activation and spreading activation reflect,      
therefore, two distinct neural processes. Specifically,      
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base-level activation reflects processes that are internal to        
the hippocampal network, such as decay or interference due         
to accumulation of memory traces (Alvarez & Squire,        
1994), while spreading activation reflects the mechanism by        
which cortical inputs might trigger contextual memory       
retrieval (Rolls & Treves, 1998). 

Figure 1: A neuroanatomical interpretation of the model        
presented herein.  

Extending ACT-R to Include Trauma 
It has been noted several times, even by Anderson himself          

(Anderson, 2007, Chapter 3), that one limitation of this         
approach is that it considers all memories as equally         
important. On the contrary, not all memories are. Memories         
of emotional events are thought to persist longer and be          
more readily available for retrieval than non-emotional       
memories because of the activation of the amygdala during         
memory encoding (Marks, Franklin, & Zoellner, 2018).       
Specifically, memories of events that incorporate threat or        
fear are of greater importance evolutionarily because they        
are often critical for survival (Ledoux, 1998). Although        
some authors have generalized this approach to all emotions         
(and advanced strong arguments), this paper will limit itself         
to the responses of the amygdala which are directly         
connected to PTSD and well understood in       
neurophysiological terms (Bryant, et al. 2008).  

In a Bayesian framework, the concept of survival         
importance can be easily captured by weighting the        
posterior probability by an emotional impact term, referred        
to as intensity, 0 < I(m) < ∞, which captures the degree to             
which an event was potentially dangerous or traumatic. The         
posterior odds now become: 

A(m) = log [P(m|Q) / P(m/¬Q)] [I(m)/I(¬m)] 
= B(m) + S(m) + log I(m) − log I(¬m)
= B(m) + S(m) + log I(m) − k (4) 

The last passage was motivated by the consideration that,         
over a lifetime, I(¬m) would approach the mean traumatic         
value of all memories and thus could be considered a          
background constant k.  

In summary, the proposed Bayesian framework suggests       
that traumatic events add a constant bias that makes a          

memory more likely to be retrieved, even in the absence of           
contextual cues and in proportion to the perceived intensity         
of the traumatic event. In biological terms, this perceived         
intensity bias can be interpreted as the contribution of the          
amygdala to hippocampal activation (Fig. 1). The amygdala        
is bidirectionally connected to the hippocampus and is        
known to play a key role in processing event salience          
(Anderson & Phelps, 2001), fear (LeDoux, 1998) and in         
boosting memory for stressful events (references).      
Importantly, and consistently with our interpretation, the       
amygdala is hyper-responsive in individuals suffering from       
PTSD (Shin, Rauch, & Pitman, 2006).  

Deriving ACT-R Predictions For Hippocampus 
Size 

The final step to test this theory consists of deriving          
predictions about hippocampus size from the augmented       
ACT-R framework. To calculate hippocampus size, the       
following analysis was adhered to. In general, it is known          
that the size of the hippocampus changes with experience.         
For instance, in a landmark study (Maguire, Woolett, &         
Spiers, 2006), cab drivers of London were shown to have          
larger hippocampus volume than the general population.       
Additionally, another study showed the volume of the        
hippocampus co-varies with the years of education (Noble        
et al., 2012). An accepted explanation for this effect is that           
the size of the hippocampus reflects the biological        
investment in storing memories that need to be re-used often          
(Wollet & Maguire, 2011).  

An efficient memory storing system would encode cells so         
memories that need to be accessed more frequently use less          
resources (in neural terms, less cells or synapses) than         
memories that need to be accessed less often (Huffman,         
1952). In the Bayesian terms described above, memories        
that are accessed more often have the highest priors and, in           
ACT-R terms, the higher base-level activations. Knowing       
the priors of memory utilization, the size of the         
hippocampus could then be approximated by a measure of         
the homogeneity of the distribution of the priors. Here, the          
long-term memory’s information entropy, H, was utilized,       
i.e., the quantity (Shannon, 1948):

H = −∑m P(m) log P(m) (5) 

This quantity captures how much information is       
represented in declarative memory, once the different       
probabilities of each memory are taken into account.        
Consider, for example, the case of two London cab drivers          
who have memorized the same number of addresses but use          
them with different probabilities. For one driver, all        
addresses are equally likely to be retrieved, reflecting the         
fact that his clients are equally likely to request a ride to all             
of these locations. For the second driver, on the other hand,           
one single address is requested all the time, while all the           
others are seldom, if ever, requested by clients. Information         
entropy is high for the first driver because it is impossible to            
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predict which address will be requested by the next client.          
For the second driver, on the other hand, entropy is low,           
since one memory is highly predictable and all the other can           
be ignored. Biologically, the first driver needs to allocate         
more resources (hippocampal cells) to maintain all of these         
memories than the second, for whom a small number of          
cells could be used to encode the single memory that          
predicts most of the clients’ rides in their daily routine.  

In ACT-R, a memory’s probability of being used, P(m), is          
reflected in its base-level activation (Eq. 1) and, in this          
paper’s specific model, in its intensity I(m). Note the         
base-level activation B(m) reflects the memory’s prior odds        
rather than true probabilities. To translate them into        
probabilities, base-level activations were normalized across      
all memories into long-term memory (LTM): 

P(m) = [B(m) + I(m)] /  ∑i ∊ LTM  [B(i) + I(i)] (6) 

Hypotheses and Predictions 
Given the theory outlined above, it is hypothesize that (1)          

Increasing the emotional intensity I of a potentially        
traumatic event (PTE) will increase the odds of the event          
memory being retrieved out of context, predicting intrusive        
memory occurrence observed clinically in patients with       
PTSD; and (2) Increased intrusion occurrence will result in         
a concurrent decrease in hippocampal size, driven by the         
altered landscape of memory recall priors, and thereby        
capturing the relationship between trauma and hippocampus       
size.  

Methods 
To test the hypothesis driving this experiment, a series of          

computational simulations were run. The following sections       
describe the details of the simulations 

Memory Representations 
The simulations described herein differ significantly from       

most ACT-R models because they focus on modeling        
episodic memories over extended durations (~6 months)       
rather than on specific tasks for very short times. Thus, they           
adopt a uniform memory representation for all memories        
instead of different, task-dependent structures. Specifically,      
all memories are vectors of N = 8 features. Each feature is            
given a randomly selected value, called an attribute, from a          
pool whose size is determined by a given parameter, A (not           
relevant for this study and thus not discussed). The         
attributes for all “normal” events are always selected from         
the same pool, which captures the common features found         
in one’s daily environment. Attributes of PTEs are selected         
from a different pool of attributes, representing the unique         
extraordinary features associated with traumatic     
circumstances.  

Model Behavior 
The model performs routine behaviors following a       

perceive-retrieve-respond loop. The loop initiates when a       
new event occurs in the external world. The event is          
perceived by the model, and its features are held in sensory           
buffers that, together, form the current context Q (Fig. 1).          
The model responds to the current context by first setting a           
goal to resolve it. When the goal is set, the model retrieves            
the memory with the highest total amount of activation,         
A(m). The retrieval process is influenced by three factors:         
(1) the base-level activation of the model’s memories of       
previous events, B(m), which determines the memories’      
priors; (2) The spreading activation from the current context        
S(m), modulated by the model’s executive attention W; and        
(3) The intensity I(m) of previous events. This loop captures        
a simple decision-by-sampling strategy (Stewart, Chater, &      
Brown, 2012): Facing a new situation, the model responds        
by retrieving the most contextually appropriate situation      
faced in the past, balancing recency, frequency, and       
contextual cues through spreading activation. Once the      
memory is retrieved, the goal is resolved and a new memory          
is formed to encode the current event using the contextual         
cues q1, q2 … qN as its attributes (Fig. 1).
Daily Event Distribution and Simulation Time Window

To model the accumulation of memories in a plausible         
manner, new events are presented to the model at a          
frequency that follows a gamma distribution and a realistic         
daily schedule. On average, the model is presented with         
approximately ~20 events per day. Events occur between        
8:00 AM and midnight, with a peak probability at around          
noon. This event distribution was chosen to reflect the         
normal waking hours of a person, with a greater         
concentration of events during working hours      
(8:00AM-4:00PM). Each event’s emotional intensity I was       
randomly selected from a uniform distribution between 0        
and 2, so that their mean was equal to 1 (and thus the bias              
term k in Eq. 4 was equal to zero). 

Each simulated run of the model lasted 160 consecutive         
days, starting 100 days before the occurrence of a traumatic          
event and extended 60 days after that. On the midnight of           
day zero, a PTE was generated and presented to the model.           
The intensity of the PTE was explicitly manipulated        
throughout the simulations, and given the values of IPTE = 1           
(control condition), 20, 40, 60. The model’s time window         
extended to another 60 days after the PTE. 
Dependent Variables 

Two dependent variables are the focus of this study. The          
first is the probability of experiencing an intrusive memory         
during the day. This is defined as the probability that the           
model retrieves a memory of the PTE in response to a           
situation throughout the day. Note that, because the PTE’s         
attributes are different from those of the daily events, its          
retrieval is always contextually inappropriate, and thus its        
recall qualifies as intrusive.  
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The other variable is the hippocampal volume reduction,        
which is measured as a percent change from a control          
condition. To get a suitable baseline, the average value of H           
(as a proxy for hippocampus size) over the last 10 days of            
the simulation (corresponding to days 50-60 after the PTE)         
was compared to the average value of H for the same period            
of a model run with an identical combination of parameters          
except I = 1. 

Simulations 
In addition to the intensity I of the traumatic event, a           

number of other parameters were manipulated      
parametrically. These parameters were derived from a       
recent review of the PTSD literature (Marks et al., 2018)          
and reflect idiographic factors that moderate the behavioral        
outcomes of traumatic stress. They include the vividness of         
memory re-experience γ; the vividness of sensory encoding,        
modeled as the size of attributes pool A; individual         
differences in working memory capacity W (see Eq. 3); the          
tendency to ruminate over the traumatic event R; and the          
potential overlap C between features of the traumatic event         
and attributes of daily situations. Although these parameters        
will not be discussed in this paper, they are summarized in           
Table 1 and were left in the analysis as they contribute to            
representative variability in the simulated results. To obtain        
stable estimates, the model was run 50 times for each of the            
576 combinations of parameter values. estimates. In total,        
the simulations spanned 4,608,000 simulated days, and       
103,330,000 simulated events.  

 
Table 1: Model parameters manipulated in the simulations 

 

Parameter Meaning Values 

I Intensity of PTE 1, 20, 40, 60 
A Size of attributes pool 6, 8 

γ Vividness of 
re-experience 0.80, 0.90, 0.95 

W Working memory 4, 8, 12 

C Similarity between PTE 
and daily events 0, 0.25, 0.5, 0.75 

R Number of rumination 
events in a day 0, 20 

Results 
Given the large number of simulations that were run, it is           

impossible to fully report the complete set of results. For the           
purpose of this paper, there are two aspects to concentrate          
on. First, as expected the model does indeed show worse          
clinical outcomes in response to more traumatic events.        
Figure 2, below, shows the daily incidence of traumatic         
memories. A 3x60 ANOVA, using emotional intensity I and         
the days after PTE as factors, revealed that I had a           

significant effect on the probability of experiencing       
traumatic memories in the days following a traumatic event         
[F(2, 1295345) = 37,115.6, p < .0001], with higher values of           
I corresponding to higher intrusion probability.      
Furthermore, I interacted significantly with the day [F(118,        
1295345) = 10.3, p < .0001], resulting in different recovery          
trajectories (Figure 2).  

 

Figure 2: Predicted increase in memory intrusion following        
a PTE on Day 0 (black dashed line) as a function of            
emotional intensity I. The shaded red area marks the time          
interval in which the hippocampus volume was calculated.  
 

 
Figure 3: Effect of trauma intensity on hippocampal volume.         
The violin plots represent the distribution densities of model         
runs resulting in the corresponding decreases of       
hippocampal volumes. Solid circles and lines represent       
means +/- SD. 
 

Having established that the model succeeds in capturing        
these signatures of PTSD, the results were further examined         
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to estimate the effects of traumatic stress on hippocampus         
size. It was observed, across all parameters, that there was          
general reduction of simulated hippocampus size, ranging       
from zero to 33.89% with a mean decrease of 7.35%          
[t(21,599) = 140.83, p < .0001]. Both mean and range match           
the results of existing meta-analysis. For example, in        
Smith’s (2005) influential review of structural MRI studies,        
the range: 0 to 44% and the mean 6.9%. A second question            
was whether the severity of the reduction was predicted by          
the severity of trauma. To this end, the model found that the            
emotional intensity I was a significant predictor of        
hippocampal volume reduction [F(2, 21594) = 774.7, p <         
.0001], with the decrease in hippocampus size growing with         
greater values of I (all pairwise comparisons significant at p          
< .0001, Bonferroni corrected). This is shown in Figure 3,          
which shows the distributions of predicted decreases of        
hippocampal volumes in the simulations, visualized (as       
violin plots) separately for different values of intensity I.  

Figure 4: Correlation between the probability of traumatic        
memory intrusions in hippocampal volume for varying       
levels of trauma intensity. Each point represents a single run          
of the model; solid lines represent the mean regression line. 

The final analysis investigated was whether or not the         
degree of hippocampus volume was correlated to the degree         
of symptom severity. This is important because, although        
symptom severity is clearly driven by the severity of the          
traumatic event, it also depends on other factors that were          
explicitly manipulated in the simulations (see Methods and        
Table 1). To do so, the mean daily probability of memory           
intrusions in the last 10 days of the simulations (red shaded           
area in Figure 2) and the corresponding percentage decrease         
in hippocampus were calculated for each run of the model.          

Three separate linear regressions, one for each level of I =           
20, 40, and 60, were then computed In all cases, a           
significant linear regression was found [I = 20: β = -20.55,           
t(7198) = -157.9, p < .0001; I = 40: β = -25.18, t(7198) =              
-225.6, p < .0001; I = 60: β = -27.35, t(7198) = 205.1, p <              
.0001] as shown in Figure 4.

Discussion 
This paper has presented a computational model that        

draws a link between the prevalence of intrusive memories         
and the changes in hippocampal volume observed in        
patients with PTSD. To the best of our knowledge, this is           
the first model to do so, and to provide a connection           
between Bayesian theories of memories and the underlying        
neurobiology. The results of this model are also consistent         
with estimates from the clinical and medical literature. As         
such, the model may shed light on a number of cognitive           
factors, such as traumatic memory activation, that contribute        
to neurophysiological changes associated with PTSD.  

In the presentation of this computational model, there are         
a few obvious limitations. Although an effort was made to          
account for numerous idiographic factors (see Table 1), it         
was impossible to account for all various factors that have          
been deemed clinically important such as age, gender,        
duration of trauma, recurrence of trauma, comorbidity of        
other psychiatric disorders, presence and occurrence of       
other PTSD symptoms, and genetic predisposition. With       
that in mind, it is feasible that this model can be altered to             
account for some of these varying factors, as well as other           
individual differences not aforementioned. Something     
imperative to take into consideration for future       
improvements of this model would be, for example, the         
specific role of the stress hormone cortisol on hippocampal         
functioning. 

These limitations notwithstanding, the model’s success in       
capturing some behavioral and biological factors is       
encouraging. Theoretically, this model, along with the other        
research concerning PTSD and its perceived effects on the         
hippocampus and amygdala, could be used in the future to          
enhance clinical practice. Targeted, individualized     
treatments could be developed in which an individual’s        
biological and behavioral measures are used to parametrize        
a computational model which is, in turn, used to predict          
long-term recovery trajectories under different medical      
options. 
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Abstract

This paper presents an analysis of a cognitive twin, imple-
mented in a cognitive architecture. The cognitive twin is in-
tended to be a personal assistant that learns to make decisions
from your past behavior. In this proof-of-concept case, we
have the cognitive twin select attendees to a party, based upon
what it has learned (through ratings) about an agent’s social
network. We evaluate two versions of a model with respect
to rate of change in the social network, the noise in the rating
data, and the sparsity of the data.
Keywords: cognitive architectures; personal assistants; act-r;

Introduction
Smart recommendation systems, automated alerts, digital
personal assistants, and the like have become ubiquitous in
our everyday lives. From speakers in our living rooms,
watches on our wrists, and, of course, phones in our pockets,
we are constantly being notified and updated with informa-
tion that, at times, can even be helpful. Beyond these cur-
rent efforts, we envision a cognitive twin: an automated per-
sonal assistant that knows the kinds of decisions you would
make and uses that knowledge to carry out tasks in the digital
world on your behalf. We instantiate our cognitive twin in a
cognitive architecture that exhibits human-like cognitive con-
straints that, for better or worse, can result in biases such as
recency and frequency effects. We aim to show that cognitive
constraints like these can actually be beneficial in a dynamic
environment.

Existing technology requires large data sets which often in-
cludes aggregate data from multiple people. There is no doubt
that useful inferences can be made by learning from aggre-
gate data, however, there are limits in of the effectiveness of
big-data approaches: sometimes the choices you would make
are not the same as the average person. Furthermore, these
approaches gather data about everyone in a central location
which raises concerns about privacy. In our approach, we
advocate learning about you from your own data. We cast
your behavior as decision that had desirable or undesirable
outcomes. That information is stored in the memory of your
cognitive twin and is used to make future, similar decisions.
Since the decision maker whom we are attempting to model
is a cognitive agent, with limited cognitive capacities, we in-
stantiate our model in cognitive architecture that is used in
the cognitive sciences to make scientific models of the human
mind. The resultant model is human-like and is personalized

to make decision for you, negotiate decisions with other cog-
nitive twins, without sharing your data, and without storing
your data on a central repository.

In this work we evaluate a prototype cognitive twin devel-
oped in the cognitive architecture, ACT-R (Anderson, 2007)
using instance-based learning (Gonzalez, Lerch, & Lebiere,
2003). Data is generated from a discrete action simulation
of a population of simulated agents who carry out tasks. For
each artificial agent in the simulation, a log of their activity
is generated. We then use these logs as input to generate a
cognitive twin for each simulated agent. In this context, the
cognitive twin, therefore, is a simulation of a simulation. As
the simulation itself is a prototype, we do not assume a high
degree of veridicality. Instead, we use the simulation as a data
generator, and evaluate the cognitive twin with respect to that
world.

In a machine learning context, it may, at first glance, seem
like an misguided choice to use an architecture that is specifi-
cally designed to have human-like cognitive constraints. A
learning model that, in effect, will ‘forget’ data over time
may seem like a waste of data. However, in a dynamic en-
vironment, data can become outdated, as targets change, you
might not want to make the same decision you made in the
past, even if that decision had a positive outcome. In the
present study we test the model’s ability to deal with change
in two ways. First, directly, we modify the rate of change
in the simulation (α) and expect the model to do well with
moderate rate of change. Second, we test how many weeks
worth of simulated data we use in the model. By reaching
back, n-weeks, we hope to show that the learning mechanism
gracefully degrades old data; as well as being able to show
that the model is robust to few learning examples.

In the spirit of testing real-world-like scenarios, we also
test to see how robust the model is to noisy data and sparse
data. We test the sensitivity to noise directly by modifying
the noise parameter in the simulation (σ). We test sparsity
in two ways: first, by using n-previous-weeks worth of data
(same as above); and second, by probabilistically controlling
how much simulated data is ‘seen’ by the model (effectively
removing data probabilistically).

Background
In previous work (Somers, Oltramari, & Lebiere, 2020) we
tested two versions of the cognitive twin, central and dis-
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tributed, against one another and against the simulation in
their respective success at inviting guests to a ‘dinner party’.
In this section we describe the dinner-party-planning scenario
and the simulation.

Dinner Party Planning
Think about the knowledge that goes into something as seem-
ingly simple as planning a dinner party. You need a place, a
time, food, and friends. The time has to suit the attendees
(scheduling) and should be during ‘dinner’ (knowledge), the
food should suit the attendees (dietary restrictions), and the
people who attend should all get along (unless you are host-
ing a fight club). Presumably, when you carry out the task
of planning a dinner party, you do so partly from knowl-
edge about how to carry-out the task (task-knowledge), partly
from things you have learned (who you like, what foods peo-
ple eat), and partly from communication with other attendees
(what food they eat and who they like). Task knowledge can
be difficult to learn from data because those processes are of-
ten communicated at least in part explicitly as instructions,
in a process known as Interactive Task Learning (Laird et al.,
2017). We advocate a hybrid approach in which we combine
structured knowledge with and data-driven knowledge.

In our previous (and present) work we evaluate our model
on its ability to select party guests based on past experiences
with them and communicating with other cognitive twins (in
distributed model). The simulation assumes a social rating
system: when simulated agents interact with one another,
they provide a ‘rating’ of that interaction. That rating is then
used to update their social link (their friendship). We describe
the simulation, the social interactions, and the rating system
more thoroughly below.

Simulation
To generate data, we implemented a discrete simulation.
While the simulation, itself, is currently under development,
we believe it has enough complexity to generate data to test
an early prototype of the cognitive twin. We do not assume
that the simulation is veridical on any meaningful dimension
but use it, instead, to generate data in lieu of human data. As
we progress, we fully intend to develop the simulation fur-
ther, however, in this analysis we are more concerned about
evaluating the cognitive twins, with respect to properties we
believe would effect its performance due to underlying cog-
nitive assumptions.

The simulation is comprised of a ‘world’, populated by
agents going about their daily lives. In our previous work
our world was comprised of 100 agents, whereas in this anal-
ysis, we have doubled the number of agents to 200 (largely
to add stability to social networks). Importantly, the agents
in the simulation are distinct from their cognitive twins. The
agents in the simulation represent ‘real’ humans (in lieu of
real human data) and the twins use the data they generate to
plan party attendees. The simulation creates a population of
agents by first generating families with sizes controlled by
a weighted distribution (parameter). A family is generated,

populated, and then new families are generated and popu-
lated until the desired population has been reached. Although
the analysis we do in this paper is with regards to social in-
teractions, social dynamics between family members are not
yet simulated any different than social interactions with other
members of the population. We hope to account for differ-
ences in social dynamics where appropriate in future work.

Since our proof-of-concept scenario is dinner-party plan-
ning, we have developed the simulation to include: social
interactions (to develop social links between agents), daily
activities (scheduling concerns), and food consumption (to
model dietary restrictions). Given space constraints, we will
only discuss social interactions (the main focus of this paper).

Social Interactions Each agent in the simulation has both
incoming and outgoing social links, that range between -1
(extreme dislike) to +1 (extreme friendliness), to other agents.
When a world is generated, the social links are selected from
a truncated normal distribution. The mean and standard de-
viation of the distribution are free parameters but currently
set to a mean of 0.4 (under the assumption that social links
are generally positive) and a standard deviation of 0.5 (wide
enough that negative relationships can still occur). The so-
cial links are independent and, as a result, can be asymmetric
(i.e. one agent may favor another but may not be favored
in return). While negative values represent dislike and pos-
itive values represent positive feelings, we explicitly divide
positive links into two classes: positive relationships (links
greater than zero but less than 0.50) and friends (links greater
than or equal to 0.50). In our previous work we set that split
at 0.75 but due to changes in the simulation (modified how
links change), we are able to better track changes in friend-
ship circles over longer periods of time, by including more
people. The initial seeding of social links is used during run-
time when setting up social interactions. Roughly, friends
become more likely to interact and enemies less likely, as de-
scribed below. Social interactions (parties) are created during
run-time at the start of each simulation day. Each party has a
host and each host is selected randomly from the population.
The parameter p is set as a proportion of the total population
from which the hosts are selected. In our previous work and
in the current work we used a value of 0.25 to ensure that we
are generating sufficient data to test the model. Modifying
this parameter would effect the rate of change in the simu-
lation but we have kept it steady in favor of a parameter that
affects the change more directly. Once we have selected hosts
for the parties, attendees are selected. Attendees to each party
are selected based on their connection to the host. The out-
going links from each center, to each individual in the popu-
lation is transformed into a weighted probability distribution
such that stronger links result in higher likelihood of being
selected. The outgoing links from the host are transformed
with the following considerations: a) links lower than a min-
imal value of -0.1 (a free parameter) are excluded; b) a small
bias (additive, 0.3, also a free parameter) is added to weights
for connections above the ‘friend’ threshold. These parame-
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ters were set qualitatively in previous work to produce steady
world statistics.

Even though 25% of the population are chosen as party
hosts, not all hosts will result in a social interaction. Once
the attendees are selected, the party has to be scheduled and,
due to scheduling conflicts, prospective parties may be can-
celed. For each potential party, a minimum party size is se-
lected randomly from a truncated normal distribution (a free
parameter). If the party does not meet that minimum size,
the social interaction is canceled. Social interactions are re-
solved in a queue, which is ordered by the original selection
of hosts. Attendees who become committed to a party that is
resolved early in the queue may be too busy to attend parties
further in the queue. Finally, it is worth noting that although
people with large negative connections with the host will not
be scheduled by the host, people with negative links could
find themselves at someone else’s party. The simulation does
not try to maximize the overall average connection between
guests.

During an interaction, all agents in attendance receive an
interaction score with all other guests. In the current work, the
interaction score is: the mean links between the agents (in-
coming and outgoing) plus a randomly selected score value.
The score values are selected from a truncated normal distri-
bution between -1 and 1 and the shape of that distribution is
a free parameter. We simplify this work from previous work,
setting the mean of that distribution to 0.0 (instead of a posi-
tive value). In this work, we modify the parameter, σ, which
represents the standard deviation of the score value distribu-
tion. We consider higher levels of σ as higher levels of noise
in the ratings. In the analysis below, we test the robustness of
the models to different levels of σ. The final score (mean +
score value) is truncated to a range of -1 to 1. This form of
scoring is an update from previous work. The social interac-
tion scores are independent: agent A will score the interaction
with agent B differently than B will score the interaction with
A.

Change in Social Networks The social interactions are the
means through which social networks change within the sim-
ulation. In this work we have updated how the social links
are updated in response to social interactions. We introduce
a new parameter, α to represent a rate of change in the simu-
lation that we then systematically modify to test our models
against. Social links between agents are updated with the fol-
lowing equation: Lt = α · Lt−1 + 1−α ∗ scoret , where Lt is
the outgoing link at time t and score is the interaction score.
Higher α values should result in small changes in the net-
works (because your links are only marginally affected by
interaction score), whereas small values of α should result in
higher rates of change in social network.

In the present work, we test the robustness of the model
at different values of both α and σ. By modifying these two
parameters we create low- and high-change simulation con-
ditions (α), and low- and high-noise conditions (σ), creating
4 categories: low-change-low-noise, low-change-high-noise,

high-change-low-noise, and high-change-high-noise.

Simulation Analysis
Figure 1 presents different measures of the simulation at
each of the four parameters settings: α = {0.95,0.25}×σ =
{0.25,0.75}.

Figure 1: Summary measures of the simulation at different
parameters of α and σ. A) shows the world averages of per-
cent positive connections at each parameter settings (blue)
and the world average percent of friends (red). B) Illustrates
the change in the network from simulation start through two
years for both positive connections (orange) and and friend-
ships (green). C) Illustrates the the measures of party success:
percent of people who are friends with the host (brown), and
the average link between party attendees (black).

Figure 1-A shows the world average percent of positive
connections over two years of simulation (blue) and the world
average percent of friends, i.e. positive connections greater
than 0.50, (red). This plot suggests that, other than α =
0.25,σ = 0.75n (high-change-high-noise), changes in social
networks are not due to a net loss positive connections. The
net loss of positive connections (dotted blue line), demarcates
a quality boundary, and, therefore provide a good point to
limit the adjustment of the α and σ parameters. We expect, in
the high-change-high-noise condition, that the cognitive twin
would score lower due to overall loss in positive connections.

Figure 1-B illustrates the change in the social networks
from time zero through two years of data. Orange lines de-
note changes in networks of positive connections, while the
green lines denote changes in networks of friends (social links
greater that 0.50). The change in the networks decay as you
might expect: an increase of change with a smaller α and
an increased change with increasingly noisy ratings. And, of
course, the effect combines, with the greatest rate of change
occurring with changes in both α and σ.
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Finally, Figure1-C shows the scoring the simulation gets
with respect to the percentage of guests who are friends with
the host (brown) and the average connection between all
guests at a party (black). All parameters are plotted but, due
to the fact that those values are somewhat noisy, and the over-
lapping lines, there is no appreciable difference at different
parameter settings. However, they do provide a ball-park es-
timate how well the simulation does on those measures (the
same measure of the model, below). These are the measures
we use to evaluate the models.

Cognitive Twin Model

At a high-level, the cognitive twin is an automated decision
maker. It uses your data to make the kinds of decisions you
would make. In the party-planning scenario, your cognitive
twin is intended to do some of the leg-work of party plan-
ning for you. The cognitive twin was developed in ACT-
UP (Reitter & Lebiere, 2010), a toolkit implementation of
ACT-R, developed to make it easier to integrate with simu-
lations, with limited footprint, and network-size scaling re-
quirements. It leverages the key equations for declarative
memory, reflecting tradeoffs in recency and frequency in gen-
eralizing patters of user activity. Finding the most compati-
ble set of guests relies on ratings of past social activity. The
ratings generated by the simulation are represented in the
model as chunks in memory consisting of: a) the agent with
whom the user interacted, and b) the rating of the interac-
tion (described above). Each of those chunks have an asso-
ciated base-level activation that reflects the recency (and fre-
quency if the same rating between the same agent has been
provided multiple times) of the ratings. Each chunk activa-
tion can therefore be interpreted as the relative importance of
that rating among competing ones, and factored accordingly
by memory retrieval processes. Specifically, the blending re-
trieval process (Lebiere, 1999) is used to produce a consensus
estimate of social rating between two agents by retrieving and
aggregating individual ratings weights according to their ac-
tivation.

These social compatibility ratings are used in a greedy al-
gorithm that starts with the central user organizing the gath-
ering. The rating of all potential guests are evaluated against
the current set of invitees, starting with the host, and the guest
with the highest rating is selected. In the centered version of
the algorithm, the selection process is simply repeated until
the guest list is full. In other words, only the social rating
between potential guests and the host are taken into consid-
eration. In the distributed version of the algorithm, however,
after each guest is selected, the social ratings between that
guest and the rest of the potential guests are added in, and
the next guest is selected. Again, the process repeats until the
guest list is full. Note that it is possible that this process does
not yield an optimal outcome because the sequential selec-
tion process could lead to a local optimum. For instance, it
could select a guest that has the highest social rating with the
current guests but very poor social ratings with all remaining

potential guests.

Model Analysis
Not only do we test the models with respect to the α and σ
parameters in the simulation, we also analyse how robust the
models are data sparsity (weeks, probability), and a base-level
learning parameter in architecture.

Base-Level The base-level learning parameter controls the
rate of power law decay in memory. Memory chunks always
remain present in memory, but their activation gradually de-
cays, unless it is boosted again by another experience or re-
hearsal, reflecting the power law of practice. Since activation
controls the retrieval of chunks, activation decay slows and
ultimate prevents access to those memories (forgetting) as
well as reduces the salience of the chunks in the blending pro-
cess. While forgetting seems like an unwanted characteristic
in an intelligent social agent, it constitutes an adaptive mech-
anism to the rate of change in the environment, as hypothe-
sized by the rational analysis of cognition (Anderson, 1990;
Anderson & Schooler, 1991). As attitudes change and old
events becomes less relevant as time passes, favoring more
recent information through gradual decay of older memories
provides a rational approach to optimizing one’s interactions
with the world.

We test the effectiveness of the base-level in a number of
ways. First, we test how well it responds to modifications
of α and σ (which both increase the rate of change, though
for different reasons). Second, by modifying the n-previous
weeks worth of data, we include increasingly older data in
the model. In the high-change conditions, we would expect
old data to naturally degrade the twin performance (if it did
not have base-level activation) because the social networks
have changed, and agents that have interacted long ago may
longer be friendly (and visa versa with enemies). Because
base-level decay gracefully reduces the impact of older data,
we expect the model to be robust, even as we increase the
data to the full two-years. Finally, We also test the base-level
parameters (BLL) explicitly, specifically In this analysis we
start at a generally accepted level of BLL = 0.5, and increase
it gradually, to explore how well it responds to the increased
rate of change.

We also test the robutness of the models with respect to
data quantity in two ways described below: n-previous-weeks
and probability.

n-Previous Weeks
In our previous work (Somers et al., 2020), we examined how
robust the model was to different amounts of data. The simu-
lation at that time, did not have the same social change func-
tion (with parameter α). We run a similar analysis here by
running the model but including only the last n weeks of data.
Figure -(1) and -(2) shows the results of running the model
with 1-, 2-, 4-, 8-, 26-, 52-, and 104-past weeks of data.

As expected, the central version of the model (solid)
outperforms the distributed model (dotted) in the percent-
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Figure 2: Central (solid) vs. Distributed (dashed) models for each combination of α and σ. The measures are the percent of
friends in attendance at a party (left column) and average connection between guests at a party (right column), for n previous
weeks worth of data (top), probability of including a rating (middle), and the base-level learning parameter of the model
(bottom).

friends-with-host (PFH) measure (expected because the cen-
tral version maximizes for the host, and the distributed max-
imizes for all attendees). Note, reading left to right on the
“n Previous Weeks”, although exhibits an increasing amount
of data, is actually backwards with respect to time with n-
previous being the weeks previous to the end of the simula-
tion. This is important because the simulation is, generally,
more stable later in the simulation. In general, the model is
quite robust with a small amount of data, with perhaps a slight
dip in performance in PFH, in the simulations with the most
change (yellow and green), as data reaches back further. In
general, the model improves with more data, except in the
highest change conditions (yellow and green). In the yel-
low and green simulation conditions (high change), there is
no noticeable improvement in attendees beyond two previous

weeks worth of data. Note that although there is no increase,
the important trend is limited loss (we want the base-level to
naturally degrade old information). In that light, we see a
very limited dip in performance at 104 weeks worth of data,
suggesting the base-level is mitigating effects of old data in a
dynamic environment.

Both the central and distributed model show relatively poor
performance in the low-change conditions (blue, red), with
few n-previous weeks of data, in the PFH measure. The mod-
els exhibit a gradual increase in performance with more data.
In these conditions there is very little change to account for,
so the base-level appears to over-compensate, benefiting from
old data.

In the average-connection-between-guests (AG) measure -
(2), the distributed model outperforms the central model (as
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expected). The performance of the central model is compara-
ble to the simulation itself (see Figure 1-(c), black lines), with
average connection between guests just below the ‘friend’
threshold (0.50). The central model shows negligible change
with increasing number of weeks’ data. The distributed mod-
els generally improve up to twenty weeks worth of data.
There is a fairly strong benefit for the distributed model in
the α = 0.25,σ = 0.25 condition which may indicate a local
maximum: a high rate of change (which is taken advantage
of by the base-level learning) and a low amount of noise. Be-
yond 52 weeks, the average connection between friends is
above the ‘friend’ threshold (0.50).

The trend in the AG measure is, overall, similar, showing
fairly flat results, suggesting robustness to outdated data in a
dynamic environment. There is a slight increase, again, in the
low-change conditions (blue, red), for the distributed mode,
suggesting, again, that in a static environment, the base-level
overcompensates, but recovers with increased data.

Probability

Another measure of data sparsity, one that is probably more
naturalistic, is to exclude data probabilistically. We would ex-
pect, in reality, to have imperfect participation in our assumed
social rating system. In this analysis we encode data in the
model probabilistically, simulating agents not providing rat-
ings. Figure -(3) and -(4) illustrates the results of running the
model with data probabilities 1.0, 0.5, 0.25, 0.1, 0.05, 0.02,
and 0.01. Note that values in this analysis should have the
same results at a probability of 1.0 as the weeks analysis had
at 104 weeks (they are the same conditions).

Again, central and distributed models preform as expected
relative to one another in the respective measures (PFH vs
AG). Unlike weeks data, the models typically prefer more
data. This difference in amount of data preference is expected
because the data is lost evenly with respect to time, so there
is no benefit or detriment of the base-level activation. Note
that the low-change conditions (blue, red) respond similarly
to increased data as in the n-previous weeks. This helps to
confirm that the lower performance of the models in those
conditions is due to overall data loss, suggesting that those
conditions are static, and would benefit from increased data,
regardless of how old the data is (as in the n-previous weeks
analysis).

The values in both the PFH and AG measures are not too
dissimilar from the weeks data, though, notably, the models
are not as robust to noise (i.e. red vs blue, green vs orange).
The noisy conditions (red, green) perform more poorly in
this condition than they had in the n-previous-weeks condi-
tion. The lowered performance does make sense, when you
consider that in the n-previous-weeks condition, data was re-
moved in blocks, allowing trends to be captured; whereas in
the probability condition, data is lost spuriously, amplifying
the noise, as might be expected.

Base-Level Learning

In the base-level learning (BLL) analysis, we modify the
base-level learning parameter in the architecture from gener-
ally accepted range of 0.5, to high value of 0.9 in increments
of 0.1. Like the previous analysis, this model plans attendees
after the two years of simulation data.

As expected, the central model performs better in the PFH
measure (-(5) and -(6)). There is no noticeable change in the
PFH scores for the central model, in the highest change condi-
tions (orange, green). The central and distributed model show
a decrease performance with an increase in BLL, indicating
that increasing the decay rate has an amplified, detrimental
effect in a static environment.

In this AG measure, the models are relatively unaffected
by the BLL increase. There is not much striking here, other
than general inferences, discussed in the next section.

Conclusions
Despite the mildly lower performance in the probability con-
dition, compared to the n-previous-weeks, overall perfor-
mance of the model is really quite high, especially in com-
parison to the scheduler in the simulation. In all conditions,
other than the high-change-high-noise conditions, the model
outperforms the simulation scheduler and in many cases, by a
large margin. The distributed model performs especially well
scoring reasonably well in both n-previous-weeks and proba-
bility conditions, for both PFH and AG measures.

With with respect to change, the model generally prefers a
high-change environment (yellow/green vs blue/red) though
it responds more poorly with noisy data (e.g. green vs. or-
ange). This is further evidenced in the BLL conditions, with
the model scoring more poorly in low-change (blue/red) with
increasing BLL parameter. In the low-change conditions, it
suggests the cognitive constraints could be a detriment. Look-
ing at Figure 1, however, the low-change conditions are per-
haps unrealistically low, showing very little change in social
networks over the course of two-years. Future work could ex-
plore lowering the BLL parameter in the model to better deal
with low-change situations.

Perhaps the most straightforward conclusion from the anal-
ysis is that the model is fairly robust to sparse amounts of
data. In both n-previous-weeks and data-probability cases,
the models perform quite well (in comparison to the simula-
tion). While the models generally show improvement with
more data, there is a steep jump (in most cases) with a mild
increase in data.

Developing our cognitive twin in a cognitive architecture
that is limited by human-like cognitive capacities, though at
first glance may seem bizarre, given reliance on big-data ap-
proaches, is evidenced to naturally manage data in a dynamic
environment. In a dynamic environment, old data eventually
may become outdated and detrimental. We have shown that
by developing a hybrid learning system, embedded in a cog-
nitive architecture, can be robust to change and data loss.
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Abstract

Neurophysiology and neuroanatomy limit the set of possible
computations that can be performed in a brain circuit. Although
detailed data on individual brain microcircuits is available in
the literature, cognitive modellers seldom take these constraints
into account. One reason for this is the intrinsic complexity
of accounting for mechanisms when describing function. In
this paper, we present multiple extensions to the Neural Engi-
neering Framework that simplify the integration of low-level
constraints such as Dale’s principle and spatially constrained
connectivity into high-level, functional models. We apply these
techniques to a recent model of temporal representation in the
Granule-Golgi microcircuit in the cerebellum, extending it to-
wards higher degrees of biological plausibility. We perform a
series of experiments to analyze the impact of these changes
on a functional level. The results demonstrate that our chosen
functional description can indeed be mapped onto the target mi-
crocircuit under biological constraints. Further, we gain insights
into why these parameters are as observed by examining the
effects of parameter changes. While the circuit discussed here
only describes a small section of the brain, we hope that this
work inspires similar attempts of bridging low-level biological
detail and high-level function. To encourage the adoption of
our methods, we published the software developed for building
our model as an open-source library.

Keywords: biologically plausible spiking neural networks;
Dale’s principle; Neural Engineering Framework; delay net-
work; cerebellum; NengoBio

Introduction
Human cognition is ultimately grounded in neurophysiolog-
ical processes. As suggested by Marr’s “levels of analysis”
(Marr & Poggio, 1976), cognitive scientists tend to implement
models of cognition at algorithmic and computational levels,
without explicitly taking limitations of the underlying neural
substrate into account (Eliasmith & Kolbeck, 2015).

Depending on the hypothesis that is being explored, ignor-
ing biological detail can be reasonable. Yet, a closer look at
biology may help in two complementary ways. First, we can
validate hypotheses about cognition by determining whether a
particular algorithm can be implemented using the constraints
of the biological neural network in question. Second, we can
generate new hypotheses by asking what class of algorithms a
particular neural network could support.

We believe that cognitive modelling must ultimately em-
brace a combination of these two approaches to narrow down
the vast space of possible cognitive science theories and to
direct research attention within that space. However, a central
roadblock to the adaptation of such methods is the availability

of modelling tools that make it possible to specify detailed
biological constraints (e.g., neural response curves, spike rates,
synaptic time constants, connectivity patters) while still being
abstract enough to facilitate the specification of high-level
cognitive function.

One approach designed to help bridge this gap is the Neural
Engineering Framework (NEF; Eliasmith & Anderson, 2003),
in conjunction with the related Semantic Pointer Architecture
(SPA; Eliasmith, 2013). Up until recently however, it has been
unclear how to incorporate certain biological constraints that
are often described in the neuroscience literature into NEF
networks. For example, and despite initial progress in this
direction (Parisien, Anderson, & Eliasmith, 2008), accounting
for Dale’s principle with purely excitatory and inhibitory neu-
ron populations, as well as incorporating spatial connectivity
constraints, has been relatively challenging with the existing
NEF-based software tool, Nengo (Bekolay et al., 2014). Fur-
thermore, certain aspects of the NEF, such as the neural bias
currents Jbias have a somewhat unclear relationship to biology.

In this paper, we describe recent advances in modeling tech-
niques that partially alleviate the shortcomings of the NEF
listed above. We then apply these methods to extend a previ-
ous biologically detailed model of the Granule-Golgi circuit in
the cerebellum (Stöckel, Stewart, & Eliasmith, 2020). In this
way, we validate that—at least for the set of constraints consid-
ered in our experiments—the Granule-Golgi circuit is indeed
well-suited to implementing a specific algorithm for encoding
temporal information using basis functions. Furthermore, we
generate possible hypotheses as to why various biological pa-
rameters (such as the sparse connectivity patterns and the time
constants of the neurotransmitters) are as observed. We have
released the open-source tool we developed to encode these
constraints as an add-on to Nengo called NengoBio.1

The remainder of this paper is structured as follows. We
first review the high-level function we hypothesise could be
implemented in the Granule-Golgi circuit, as well as the partic-
ular neurophysiological constraints of this network. We then
discuss five neural network implementations with an increas-
ing amount of biological detail, along with the corresponding
extensions to the NEF. Finally, we perform a series of experi-
ments that explore the impact of individual parameters on the
performance of the increasingly realistic system.

1See https://github.com/astoeckel/nengo-bio.
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Background
In order to explore the consequences of adding biological
details to a neural system, we need to choose the desired com-
putation that the neural system should ideally perform. In
machine learning, the simplest artificial neural networks are
purely feed-forward, i.e., they possess no backwards-directed
or recurrent connections. It is well-known that such neu-
ral networks are universal function approximators (Hornik,
Stinchcombe, & White, 1989). That is, given enough neurons,
any function f (x) = y can be implemented as a neural network
by simply having a single hidden layer of neurons that receives
x as an input (via a set of input weights) and produces y as an
output (via a set of readout weights).

Neurobiological systems differ from the artificial neural
networks mentioned above in two key aspects. First, they
are intrinsically dynamical systems, i.e., input and output are
functions over time. Second, they often include recurrent
connections. As has been shown by Eliasmith and Anderson
(2003), adding recurrent connections along with their associ-
ated synaptic dynamics allows for the creation of neural net-
works that approximate any differential equation of the form
dm
dt = f (m,u, t). Again, with a sufficient number of neurons

and the corresponding connectivity, such differential equations
can be approximated to any desired degree of accuracy. Our
goal in this paper is to explore how well such computations can
be performed in the presence of other biological constraints.

The Delay Network
As a benchmark for evaluating this performance, we have
chosen the following linear differential equation.

θṁ = Am+Bu , A ∈ Rq×q, B ∈ Rq, m ∈ Rq

(A)i j =

{
(2i+1)(−1) i < j ,
(2i+1)(−1)i− j+1 i≥ j ,

(B)i = (2i+1)(−1)i .

(1)

This equation is derived by taking the Padé approximate of the
continuous-time delay F(s) = e−θs. As such, this differential
equation stores the past history of its inputs the state variable m
(Voelker & Eliasmith, 2018). That is, given m at any particular
point in time t, it is possible to recover an approximate value
of u at a previous point in time t−θ′ for 0≤ θ′ ≤ θ:

û(t−θ′) =
q−1

∑̀
=0

m`d`(θ′) , where d` = P̃̀
(

θ′

θ

)
, (2)

where P̃̀ is the shifted Legendre polynomial of degree `.
Another way to think of this system is that it encodes the

past history of its inputs using a set of temporal basis func-
tions. The particular temporal basis functions that are used
are the Legendre polynomials, because they have been shown
to be optimal for encoding such temporal memory (Voelker
& Eliasmith, 2018). Of course, some information is lost in
this process, and this is controlled by the dimensionality of
the state variable m, which is a q-dimensional vector. As q

increases, more details (i.e., higher frequencies) about the past
are kept in m. The neural implementation of this computation
is called a “Delay Network” (DN), and is also the core part of
a novel machine learning algorithm known as the Legendre
Memory Unit, which has been shown to outperform LSTMs on
several benchmark tasks (Voelker, Kajić, & Eliasmith, 2019).

However, if we use biologically constrained neural networks
to approximate this operation, then the actual computation
performed by the system, and hence the quality of the time
window encoded in m, may be different. We can thus use the
ideal computation expressed in eq. (1) as a benchmark.

In the following, we build various approximations of the DN
using different biological constraints, systematically provide
them with inputs, and evaluate their performance in terms of
how well the input history can be recovered. In all cases, we
compute the optimal recurrent and readout connection weights
independently for each target population to approximate eq. (1)
given the biological constraints. This avoids the need for a
stochastic training process, such as backpropagation.

Neural Computation in the Cerebellum

The biological system of particular interest in this paper is
the cerebellum. Not only is it well-studied and highly regular
in its structure, but there are also reasons to believe that it
does compute something akin to the operation performed by
the Delay Network. Behaviourally, the cerebellum is known
to be vital for some delay conditioning tasks, such as eye-
blink conditioning (McCormick et al., 1981). In eye-blink
conditioning, a sensory cue (e.g., an audio tone) is given before
a puff of air into the eye. After some time, animals consistently
learn to blink the correct amount of time after the sensory cue,
such that the eye is closed when the puff actually happens.

There is no current consensus on how exactly the cerebel-
lum learns these delays. One theory is that the responses
observed in tasks such as eye-blink conditioning rely on intrin-
sic properties of the Purkinje cells (Lusk, Petter, MacDonald,
& Meck, 2016). Another theory—and this is what we assume
in this paper—is that the Granule-Golgi microcircuit is respon-
sible for computing a temporal basis function representation
(cf. Dean, Porrill, Ekerot, & Jörntell, 2010; Rössert, Dean,
& Porrill, 2015), from which arbitrary delays can be linearly
decoded. This is similar in principle to the Legendre basis
functions used in the Delay Network. Indeed, Stöckel et al.,
2020 show an initial implementation of eye-blink condition-
ing using this approach, but with less biological detail than
is explored in this paper. We believe the findings in this pa-
per provide another strong argument that the biology of the
Granule-Golgi circuit is very well suited for implementing
some kind of temporal basis function generation.

The Granule-Golgi microcircuit

The cerebellum contains about 50 billion granule cells, making
them the most common type of neuron in the entire human
brain. They are tiny cells that receive input from pre-cerebellar
nuclei (PCN) via “mossy fibres” and project via “parallel
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fibres” onto the Purkinje cells. Granule cells also have inter-
neurons interspersed amongst them, known as Golgi cells,
forming an inhibitory feedback loop with the granule cells.
That is, granule cells excite Golgi cells, and Golgi cells inhibit
granule cells (Ito, 2010). Notably, each granule cell on average
receives input from only four mossy fibres, as well as one
or two Golgi cells (Chadderton, Margrie, & Häusser, 2004).
These numbers are known in the literature as the convergence
of a projection. Furthermore, the connectivity between Golgi
and granule cells is spatially constrained, i.e., Golgi cells only
connect to granule cells in their vicinity. The ratio of granule
to Golgi cells is about 430:1 (D‘Angelo et al., 2013).

Levels of Biological Detail
To demonstrate our approach of adding biological detail, we
present five models of the Granule-Golgi microcircuit of in-
creasing complexity. While the first model is merely an ab-
stract implementation of eq. (1), the final model respects spa-
tial sparsity, convergence, tuning curves, and neurotransmitter
constraints. All models are depicted in Fig. 2. In all cases,
the scalar input u is received from one hundred spiking Leaky
Integrate-and-Fire (LIF) neurons with randomly chosen tuning
curves representing the PCN (see Model B for details).

Model A: “Direct” Implementation For this model, we
directly solve the differential equation in eq. (1) by integration.
That is, we have a single layer of “neurons” that are pure
integrators (i.e., no non-linearity). The matrix A describes
the recurrent connection weights, and B the input connection
weights. This model does not distinguish between the granule
and Golgi cells, and does not include details such as individual
neurons or spikes. Instead, it focuses on the high-level theory
of what the system is computing.

Model B: Single Population We now replace the integra-
tors with a single layer of 200 spiking Leaky Integrate-and-Fire
(LIF) neurons. These neurons form a distributed representation
of m using a population code. Each neuron i is parametrized
by a randomly chosen preferred stimulus vector ei (for en-
coder), gain αi and bias current Jbias

i , resulting in a desired
response (i.e., tuning curve) for each neuron:

ai(m) = G[Ji(m)] = G[αi(ei ·m)+ Jbias
i ] , (3)

where G is neural response curve of the LIF neuron model. The
parameters α and Jbias are randomly chosen from a distribution
that ensures a maximum firing rate of 50 Hz to 100 Hz, consis-
tent with biological recordings of granule cells (Chadderton et
al., 2004). We then use least-squares to solve for optimal input
and recurrent connection weights that result in these desired
tuning curves while implementing the equivalent calculation
as in Model A. Importantly, when solving for the recurrent
connection weights, we also take into account the synaptic
filter, which we model here as a decaying exponential (i.e., a
low-pass). This is the standard process in the NEF (Eliasmith
& Anderson, 2003).
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Figure 1: Spatial connectivity constraints. (A) Normalised
connection probabilities pi j for σ = 0.25. (B) Spatial organi-
sation of the Golgi and granule cells. The background depicts
the cumulative density of the Golgi to granule connection
probability for a virtual Granule cell at each location (same
colors as in A).

Model C: Inter-neurons As a next step, we separate the
single layer of neurons into two separate populations corre-
sponding to the Golgi and granule cells, reflecting the actual
biology of the cerebellum (see above). This introduces two
separate synaptic filters which need to be taken into account
when solving for the connection weights that best approximate
eq. (1). Furthermore, to at least approximate the fact that there
are far fewer Golgi cells than granule cells, we use 20 Golgi
cells and 200 granule cells.

Model D: Inhibition and Excitation So far, we have not
accounted for Dale’s principle, i.e., Golgi cells being purely in-
hibitory, and granule cells being purely excitatory. We handle
this by switching to the non-negative least-squares problem
described in Stöckel & Eliasmith, 2019. For each post-neuron
i we minimize

min
w+

i ,w−i

N

∑
k=1

(
w+

i ·a+k −w−i ·a−k − Ji(mk)
)2 w.r.t. w+

i ,w
−
i ≥ 0 ,

where a+k , a−k are the excitatory and inhibitory pre-activities
for sample k, w+, w− are the connection weights for excitatory
and inhibitory pre-neurons, and Ji(mk) is the current required
to represent the desired value mk as defined in eq. (3).

Model E: Sparse connectivity and activity For this model,
we add in realistic constraints on how connected the neurons
are. The previous models used all-to-all connections, whereas
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for this model, we only allow a subset of those connections
to be non-zero. This applies to both the input to the Golgi-
Granule system and for the recurrent connections within the
granule cells. In particular, we account for the granule cell
convergence numbers by randomly selecting five PCN and
five Golgi cells as pre-neurons—this number is slightly larger
than the number reported above, since, as we discuss below,
the number of pre-neurons places a strict upper limit on the
connectivity (see below for more details). Given this extremely
sparse connectivity, we increase the number of neurons in the
simulation to 10 000 granule and one hundred Golgi cells,
which is closer to the ratio observed in nature.

To account for spatially imposed connectivity constraints,
we assign a location x in [−1,1]2 to each neuron. The prob-
ability pi j of a post-neuron i to receive a connection from a
pre-neuron j is proportional to exp

(
−‖xi−x j‖2/σ2

)
(Fig. 1).

Finally, the input representation in the PCN cells was made
more sparse by adjusting the tuning curves of the input neurons.
Neural recordings indicate that there is very little input activity
when no stimulus is present (Chadderton et al., 2004), while,
per default, the randomly-chosen NEF tuning curves result in
many neurons being active when representing the value u = 0.

Experiments and Results
To evaluate the effects of these biological details, we sys-
tematically generate two different types of input u(t), feed
those into the network and record the resulting activity. In
particular, we present results with a periodic pulse input of
varying pulse width ton and band-limited white noise of vary-
ing bandwidth B. These are meant to depict typical sorts of
inputs that may arise in experimental situations (pulses) and
more real-world situations (band-limited white noise). We
then determine how accurately the past history of u over the
window θ can be recovered from the resulting network activity
via optimal linear readout weights. We use θ = 0.4s in all
simulations; each individual experiment simulates the network
for T = 10s. The error is measured as the RMSE of the recon-
struction divided by the RMS power of the input signal itself
(normalized RMSE, or NRMSE).

The overall results for all five models are shown in Fig. 3.
This shows the average reconstruction error for varying inputs
(horizontal axis) and for varying time delays (vertical axis)
over ten trials. An example run of Model E (the model with
the most biological detail) is shown in Fig. 4. The different
decoded output lines (bottom) are all based on the neural
activity (middle), but with different readout weights. These
approximate the input value u with various time delays over
the entire time window, from the immediate input right now
(θ′/θ = 0) to θ seconds ago (θ′/θ = 1).

As can be seen in Fig. 3, the network successfully functions
as a method for encoding the temporal pattern of input data
over the desired window of time θ. Adding more biological
detail decreases the accuracy with which the system approx-
imates eq. (1), but most of the information is still encoded.
The input pulses (Fig. 4A) show that the reconstruction is a

smoother version of the input; the system is not good at repre-
senting sudden changes, and this is the main source of noise
in the reconstruction. This is as expected from using smooth
Legendre polynomials as temporal basis functions.

Furthermore, we note that there is a peak in accuracy when
decoding data from θ′ = 70ms in the past (θ′/θ = 0.175),
and this peak is more pronounced as more biological detail is
added. This corresponds to the neurotransmitter time constant
τ = 70ms we use for all connections, and which is based
on a first-order low-pass fit to the Granule-Golgi dynamics
reported in Dieudonné (1998). Importantly, we can use the
model to determine what the accuracy would be like if we
changed this value. This is shown in Fig. 5A. Interestingly,
the performance of the system is best in the range between
50 ms to 60 ms, which is relatively close to what we observe
in nature. Both smaller and larger values lead to an increase
in error.

As discussed above, a striking feature of the cerebellar
microcircuitry is the low granule cell convergence. One possi-
ble hypothesis is that these numbers are a trade-off between
minimizing connectivity and the overall performance of the
resulting system. In our model, we can test this hypothesis by
systematically varying the number of pre-neurons the solver
has access to. Results are shown in Figs. 5B and C. The per-
formance of the system does improve with larger limits, yet
plateaus at still relatively small convergences. More impor-
tantly, as mentioned above, the specified desired convergence
solely controls the number of potential pre-neurons. Since the
neural weight solver may still set a weight to zero, these con-
vergence numbers are strict upper limits. Measuring the actual
convergence in the PCN to granule connections (Fig. 5D), we
see a peak at one to three PCN neurons connecting to each
granule cell. This peak is almost independent of the desired
convergence number and close to observed averages.

Discussion
We successfully mapped a high-level, mathematical function
onto a brain microcircuit while incorporating biological con-
straints. This process was simplified by the ability of our
modeling tool to automatically account for Dale’s principle,
spatial constraints, as well as convergence numbers.

Our results show that the Granule-Golgi circuit could in
principle implement a temporal basis function representation,
which is in agreement with existing hypotheses about cerebel-
lar function. Measurements from our model could be used
to generate hypotheses about the kind of electrophysiologi-
cal data we would expect to find, if this function was indeed
realised in the brain. Having access to low-level biological
parameters in silico furthermore facilitates the exploration of
physiological changes that are difficult to achieve experimen-
tally in vivo. As discussed above with respect the to synaptic
time constants and convergence numbers, this allows us to
investigate why certain parameters are as observed.

A key difference of our approach to existing models of the
Granule-Golgi circuit (such as Rössert et al., 2015), is that
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Figure 2: Network types used in our experiments. (A) “Direct” implementation with an optimal integrator. (B) Using the
synaptic filter of a single population of spiking neurons for temporal integration. (C) Inter-neuron population in the recurrent
path. (D) Same as C, but accounting for Dale’s principle. (E) Same as D, but with more detailed biological constraints (see text).
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Figure 3: Delayed signal reconstruction error for different types of input signals, delays, and network types. All error values are
expressed as RMSE divided by the average RMS of the input signal over ten trials. Columns correspond to the network types in
Fig. 2 above. Top row: Reconstruction error for rectangle pulse signals of varying width. Bottom row: Reconstruction error for a
band-limited white noise input signal with varying band-limit.

Figure 4: Examples showing the delayed input signals decoded form the granule layer in the detailed model (Fig. 2E). Top row:
Input signal (rectangle pulses in A, white noise in B). Middle row: Spike raster for 40 randomly selected granule cells. Bottom
row: Delays decoded from one thousand randomly selected granule cells. Dotted lines correspond to an optimal delay.
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our modeling techniques are more general with respect to the
high-level function that is being mapped onto the underlying
circuit. Instead of relying on random connectivity, we directly
specify the high-level function we would like the system to
perform. We encourage cognitive modellers to view this par-
ticular model as an example; the techniques we present here
are in principle compatible with all NEF models, including
models of cognitive phenomena using the Semantic Pointer
Architecture (SPA; Eliasmith, 2013).

We hope that this research facilitates grounding cognitive
theories in biological mechanisms beyond what was already
possible with the NEF and Nengo. Future work will focus on
incorporating additional biological detail into the model (such
as separate biological time constants for all synapses), as well
as applying our techniques to more complex models.
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Abstract 

In inquiry-based learning tasks students are actively involved in 
learning knowledge and skills through experimentation. The success 
of these activities largely depends on student’s inquiry practices. 
While traditional assessment infers student competency from their 
responses and problem-solving steps, the pauses between these 
actions provide a valuable source of information. Pauses during 
inquiry tasks capture a wide range of productive and unproductive 
activities such as planning, reasoning and mind-wandering. We 
present efforts to characterize the pause behaviors during a science 
inquiry task using hidden Markov modeling. We explore how theory 
can inform data driven modeling approaches, describe initial 
evidence of meaningful pause states, and consider the limitations of 
this approach for supporting inferences about students’ science 
inquiry practices. 

Keywords: Science inquiry, Pauses, Process modeling, 
Hidden Markov modeling. 

Introduction 
Several probabilistic and data mining approaches have been 
used to infer student knowledge and skills from process data 
(Levy & Mislevy, 2016). Most of these approaches focus on 
the correctness of the steps that students perform (Yudelson, 
Koedinger & Gordon, 2013). While effective in domains 
where correctness is clearly defined, these approaches have 
limited application in inquiry-based interactive tasks in 
which students discover and apply relevant knowledge and 
skills, form and test hypotheses, and then reflect on the 
outcome of those tests. For these tasks, considering the 
problem-solving process and the cognitive mechanisms 
underlying those actions are important when making valid 
inferences about students’ science inquiry practices. While 
we can draw inferences about the problem-solving process 
through modeling the actions students take, modeling the 
pauses between actions can also support inferences about 
underlying cognitive processes supporting those actions. The 
goal of our current research is to identify methods for 
characterizing pauses in the problem-solving process and 
establish what these pauses contribute to the measurement of 
inquiry skill. We explore how theory can inform data driven 
approaches and describe initial evidence, while weighing the 
limitations of this approach for supporting inferences about 
students’ science inquiry practices. 

Evaluating Pauses in Educational Activities 
Early studies on pause behaviors during problem solving 
indicate that pauses between actions provide insight into the 
processes supporting task completion (e.g., VanLehn, 1991). 
Given the variability in the number and length of pauses 
between students, there have been several attempts to use this 

information to characterize the proficiency of the student 
(Pelanek, 2014; Dang, Yudelson, & Koedinger, 2017). In an 
expansion of Bayesian Knowledge Tracing (BKT), Pelanek 
(2014) incorporates timing into the approach to improve 
estimates of skill level of students using a tutoring system. In 
this work longer pauses decrease the probability that the 
student has mastered the skill. This assumption may be 
correct when fluency is the goal of learning but is less 
appropriate when pausing reflects productive behaviors. For 
example, in their model of diligence, Dang, Yudelson, and 
Koedinger (2017) propose the use of both time and 
performance to separate the impact of productive and 
unproductive pauses on their measure. Other studies take a 
more unstructured approach and use pauses as input for 
machine learning algorithms predicting different constructs 
such as carefulness (Banawan, Andres, & Rodrigo, 2017). A 
similarity across all these approaches is that they aggregate 
pauses within the problem-solving process to create general 
measures of time on task rather than considering the 
occurrence of these pauses within the process data.  

Pauses at different points throughout an educational 
activity are indicative of different cognitive activities. Prior 
research using pauses to identify periods of wheel-spinning, 
gaming the tutor and productive persistence rely on expert 
qualitative coding and the structure of the tutor environment 
to identify when a pause is likely to indicate these behaviors 
(Paquette et al., 2014; Aleven et al., 2004). While these 
pauses are informative for modeling student behavior, they 
require human coding and, for this reason, tend to be used to 
characterize pauses in tutors with a limited space of actions.   

Inquiry Learning Activities 
Inquiry-based learning environments support students in 
learning concepts through the exploration and development 
of general learning behaviors and strategies.  Inquiry learning 
activities are popular in science education as a means of 
teaching scientific principles through the application of the 
scientific method. Interactive science simulation 
environments require students to interact in an open-ended 
task to generate responses that help support the collection of 
evidence about what students know (declarative knowledge) 
and can do (procedural knowledge). Pauses within inquiry 
learning environments can reflect a blend of productive and 
off-task behaviors. The nature of these pauses can be inferred 
by using the process data to understand the context in which 
the pause occurs. However, within open-ended tasks this type 
of inference is non-trivial because students can produce a 
wide range of distinct actions and the underlying cognitive 
processes of these actions are not directly observable 
(Ercikan & Pelligrino, 2017). 
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Prior attempts to model student pause behavior in scientific 
inquiry activities include both data-driven approaches for 
identifying behavioral patterns and theory-based approaches 
that model the reasoning and learning involved in scientific 
inquiry-based tasks. In their work studying student 
experimentation with an electrical circuit simulation, Perez 
and colleagues (2017) used coded log data to compare 
sequences. They found no difference in overall pause 
frequency across low and high performing students; however, 
high performing students paused more than low performing 
students before and after running experiments. This method 
requires careful coding of the log data and assumes no 
measurement error, which can be problematic in situations 
where there is both variability and the potential for 
interruptions in strategy execution. Theory based approaches 
have the flexibility to capture the variation in behavior within 
a simulation environment. In their Simulated Psychology Lab 
(SPL) task, Schunn and Anderson (1998), created an 
environment where people could design research studies, 
collect simulated data and manipulate that data to draw 
conclusions. Using the SPL environment Schunn and 
Anderson compared the actions of human subjects to actions 
of their cognitive model of scientific discovery.  This SPL 
model was able to capture variation in scientific inquiry 
behaviors due to the structure of the environment and prior 
experience. While the SPL model was not used to predict 
timing data, it provides insight into the activity that occurs 
during the pauses between actions in a scientific inquiry task. 

Current Study 
In the current study, we model the pause behaviors of 
students as they interact with a science simulation task 
designed to assess students’ science inquiry practices in 
relation to the concept of saturation (i.e., maximum 
concentration) and control-of-variable strategy (Figure 1).  
This environment provides students with the tools to run 
experiments, organize data, and report conclusions. The 
interactive nature of this environment provides students with 
considerable variability in how they complete the task(e.g., 
number of trials, strategy use, timing of actions). This 
variability while likely capturing meaningful differences in 
science inquiry ability also makes comparison across 
students challenging.  
  We use hidden Markov models (HMMs) as an exploratory 
technique to distinguish different pausing behaviors as they 
occur in the context of student actions. HMMs capture the 
probabilistic transition between latent states in sequential 
time steps. The strength of these models is the Markovian 
assumption that the probability of the current state is driven 
by the previous state and the currently observed behavior. 
HMMs have been used in the educational data mining 
community to identify behavioral patterns that can be linked 
to meaningful cognitive states (e.g., BKT) and strategies 
(Tenison & MacLellan, 2014). We are not aware of any prior 
work using HMMs to model pause behaviors within student 
process data from adaptive learning and assessment 
environments.  

The focus of our modeling effort is to characterize 
student’s pause behavior in a science inquiry task. We 
hypothesize that the pauses observed during inquiry represent 
distinct cognitive activities. We further propose that optimal 
characterization of the processing occurring during pauses 
will provide useful information to improve our assessment of 
knowledge skills and abilities of students. We use HMMs to 
address the challenge of characterizing pauses from 
individual process data. We use theory to guide our 
construction of these models but allow data to drive the 
models we fit. To evaluate the descriptiveness of the model, 
we use three metrics: 1) sensitivity to group differences, 2) 
prediction of correct conclusions from patterns of pauses 
during the scientific inquiry activity, and 3) agreement with 
validated external measures of scientific inquiry skills.  

Figure 1. A screenshot of question 1 in the concentration 
simulation: a) Science inquiry screen, b) Answer screen. 

Methods 

Participants 
Two-hundred-seventy-three students in 6th and 8th grades 
were tested with a concentration simulation task. Six students 
were excluded from the analysis due to process data 
problems. The final data included 134, 6th grade students 
(NFemale= 72) and 131, 8th grade students (NFemale= 67). Two 
students had no grade information associated with their data. 
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Materials 
The concentration simulation task we used was originally 
developed by PhET (Wieman et al., 2008) and modified for 
the purpose of the study to include selected and constructed 
response questions (see Finn, 2018 for a more detailed task 
description). The simulation was an HTML5 application 
written in JavaScript and delivered through a standard web 
browser. In total, there were 7 questions in the task. In the 
scope of this study, we focus on students’ science inquiry 
behavior (i.e., observable actions and pauses between 
actions) as students complete the first question within the 
task, together with, their submitted answers to that question. 

This question asks students to run experiments to 
investigate whether the concentration of a solution increases 
when the amount of solute increases. Students were 
instructed to click the next button when they had enough data 
to answer the question (see Figure 1a). The open-ended 
nature of the task allowed students to prepare and run 
experiments by: (i) running as many trials as necessary to 
give an answer, (ii) setting any value between 0 and 200g for 
both solute and water amounts, (iii) using different strategies 
during investigation (e.g., control-of-variable; varying, 
increasing, or decreasing both variables at the same time). For 
each student run simulation, results are updated in a ‘data-
table’. Students can manipulate this data by reordering or 
deleting experimental records from their data-table. While 
interacting with the data-table is not required, it is meant as a 
workspace for students to organize the results of their 
investigations when drawing conclusions about properties of 
the concentration solution. After clicking the next button, the 
answer options for the question together with a constructed 
response box asking students to justify their selected response 
appeared on the second screen (see Figure 1b). 

Process Data Representation 
The representation of the student’s scientific inquiry 
activities that we use to fit our model impacts the 
descriptiveness of that model. The raw data logfiles the 
system produced recorded detailed information about 
specific student actions and system events. From these logs, 
we identified 10 general categories that capture the actions 
corresponding to the subcomponents of the concentration 
simulation task (Table 1). We chose these categories to align 
with the top-level goal structure of Schunn and Anderson’s 
SPL model (1998). For simplicity, we refer to these 
categories as ‘Actions’ but use labels that indicate whether or 
not these actions were produced by the student or the 
interface. 

Actions generated by the simulation environment 
introduce new information to the student. These actions 
represent standard instructions along with updates to the data 
collection table based on the experiments that students run. 
Student actions are changes made to the environment in 
response to the information the environment provides them. 
These actions unfold over time. Actions are separated by 
variable periods where no activity is logged. We refer to these 
periods as ‘Pauses’. In our analysis, we are interested in 

characterizing the types of pauses that reflect periods of 
inactivity that are within the control of the student. We do not 
analyze the pauses that reflect the time it takes for the 
simulation environment to run the simulation (e.g., the pauses 
between the start and end of the animation).  
 

Table 1: Average Percentage (SE) of Session Comprised 
by Actions types and a Sample Action Sequence.  

 
Representation of Actions Percentage  
Experiment Preparation 31.8 (1.2) 
Experiment Run 8.6 (.23) 
Table Manipulation 4.1 (.5) 
Answering Questions 6.7 (.43) 
Collect More Data 0.63 (.06) 
Done 2.3 (.15) 
Interface: Error Message 0.45 (.12) 
Interface: Load First Page 2.3 (.15) 
Interface: Load Second Page 2.6 (.13) 
Interface: Update Table 8.6 (.23) 
Sample Action Sequence: 
Interface_Load_FirstPage -> Long_Pause -> 
Experiment_Prep -> Med_Pause -> 
Experiment_Prep -> Experiment_Prep -> … 

 
The action sequence representation (Table 1, bottom row) 

captures the sequence in which actions occur: however, it 
does not capture specific temporal information about when 
these events occur. Prior work using pauses to model 
cognitive processing and proficiency suggests that the length 
of the pause is an especially important indicator of what is 
occurring during that period (Paquette et al., 2014). We 
explored several different methods of representing the data to 
capture differences in pause length in HMMs. We considered 
representing actions as a binned timeseries: however, under 
this representation pauses dominated the sequences and 
previous research has indicated HMMs are sensitive to over 
dispersion (Olteanu & Ridgway, 2012).  

Instead, we chose to assign pauses to ordinal categories 
based on length. Pauses less than 250 ms were ignored 
because on average motor preparation takes 250 ms 
(Anderson, 2007) and if an action is preceded by such a 
pause, it was unlikely to reflect meaningful cognitive activity. 
For pauses longer than 250 ms, we used the 25th and 75th 
percentiles as cut-points to categorize pause durations 
(Figure 2). Pauses between 250 ms and 1.3s were labeled 
“Short Pauses”, pauses between 1.3s and 6.2s seconds were 
considered “Medium Pauses”, and pauses greater than 6.2s 
seconds were labeled “Long Pauses”. In Figure 2, we 
illustrate the distribution of pauses longer than 250 ms across 
all sequences with vertical lines indicating category cut-offs. 
On average, pauses lasted 6.4 s (SD = 12.8). Pauses 
accounted for 27.4% of the action sequences described in 
Table 1 (Short: 7.2% (.38), Medium: 16.6% (.45) and Long: 
8.2% (.23)). 
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Figure 2: Histogram of the duration of pauses (log-
seconds). Vertical lines indicate cut-points. 

Hidden Markov Models 
Our aim in fitting the HMM to the student’s action sequences 
is to identify hidden states that help us characterize distinct 
categories of pauses from the context in which they appear 
and provide us with useful descriptive information about how 
pauses are expressed in the problem-solving process. We 
used the R package seqHMM (Helske & Helske, 2017) to fit 
our HMM models. We use random priors to initialize our 
emission and transition probabilities, with the exception of 
the done state which was given a 0 probability of the model 
starting in that state and a 0 probability of transitioning from 
that state to any other state. This means the model has no 
expectation about the types of states present nor any 
expectation about how people might be moving between 
these states. For each model we ran the EM algorithm 10 
times with randomized starting values for the transition and 
emission probabilities to avoid fitting local optima.  

Results 

Models of Pausing Behavior 
We fit HMMs with between 3 and 25 states to the data. We 
used Bayesian Information Criteria (BIC) to determine which 
model best fit the data while also penalizing for added 
parameters to avoid overfitting (Figure 3), lower values 
indicate better model fits. We found that a 16-state model best 
fit the data (BIC 40504.3, log likelihood -17,6661.5). The 
next best fitting model (18 state) has a BIC 544.6 points 
higher than the 16-state model. Typically, a BIC difference 
greater than 10 is considered strong evidence against the 
higher BIC value. 

Figure 3: Model fit (BIC) for 3 through 25 state models. 

Interpreting Hidden States 
We illustrate the structure of the best fitting HMM in Figure 
4. The nodes represent the hidden states, the colors of the
nodes reflect the probability of that hidden state emitting
action events (color coded in the legend of Figure 4). Hidden
states emitting pauses show the greatest division across
different observable actions. The arrows between nodes
represent the transition probabilities, with labels and density
reflecting specific probability. For readability we grouped
related action states and do not display transition probabilities
less than .05.

Figure 4: 16-State HMM. 

Action states. We can distinguish the states our HMM fits 
into two categories, action states and pause states. Our 16-
State model fits several states that have a high probability of 
emitting the same action but fit very distinct transition 
probability profiles. All of these states had a probability 
greater than or equal to 95% of emitting to a single state. The 
only exception, a table-manipulation state, has a 7.6% 
probability of also emitting a short pause. While these hidden 
states are likely to emit a single action, the model does make 
an interesting separation of experiment-preparation and 
table-manipulation states. For both types of actions the model 
separates action states that have a high transition probability 
back into themselves and action states that have a high 
transition probability into pause states. This distinguishes 
actions that are swiftly executed as part of a sequence as 
opposed to actions separated by pauses. This distinction of 
‘swift’ and ‘thoughtful’ actions could reflect differences in 
when planning or strategy selection occurs (before or during 

Short Pause

Long Pause
Medium Pause

Experiment Prep
Experiment Run

Results Added to Table

Table Manipulation

Load First Page Load Second Page

Answering Questions
Collect More Data
Done

Interface Actions

’Start’ state

‘Done’ state

286Proceedings of the 18th International Conference on Cognitive Modelling (ICCM 2020)



task execution), or various maladaptive behaviors (e.g. 
wheel-spinning, mind-wandering).  
Pause states. Our primary interest in this work is to explore 
whether this modeling approach can be used to separate pause 
states that represent periods of distinct cognitive processing. 
Our model fit four distinct pause states. We characterize these 
pauses as they appear in Figure 4 from left to right: 
1. Processing new information and goal setting: This

state captures the pauses that occur immediately after the
task starts (96%), and after simulation results are added
to the data-collection table (80%). Other states with over
a 40% chance of transitioning into this state include a
table-manipulation state and the state capturing the
decision to run more experiments. From this pause state,
students have a high probability of transitioning into an
experimental preparation state (75%) or deciding they
have collected enough data to progress with the task
(14% probability of loading 2nd page). This state consists
primarily of medium and long pauses, and an analysis of
pause durations of this state indicates an average pause
length of 10.4s (SE = 3.9). Given the transition
probabilities and length of these pauses, we hypothesize
that this state captures an amalgam of processing of new
information, deciding to run an experiment or continue
to the second page, and planning the experiment.

2. Experimental Investigation: This pause state connects
to action states involved in preparing and running
experiments. These pauses however are relatively short
(M = 1.6s, SE = 0.43s). This state may distinguish
thoughtful (or aimless) experimental preparation from
swift experimental preparation.

3. Data Manipulation: This pause state has a high
probability of transitioning to (80%) and from (54%) one
of the table-manipulation states. As with experiment
running this distinguishes thoughtful and swift table-
manipulation states. Pauses in this state are relatively
short (M = 2.0s, SE = 0.7).

4. Reflection on Questions: Our final pause state connects
activities on the second part of the science inquiry task
(question answering, finishing, and deciding to collect
more data). The longer length of these pauses (M = 8.6s,
SE = 5.2s) likely capture the time participants spend
encoding the answer options, reading and reflecting on
responses to the two questions on this page.

Our HMM distinguishes between the scientific inquiry and 
question answering activities as well as between planning 
activities, which take longer and capture the switch between 
high-level task goals and task execution decisions that tend 
to be much shorter and distinguish thoughtful and swift 
actions. While this information provides us with a compelling 
descriptive account of how students complete this inquiry 
task, we are still limited in our ability to infer the specific 
cognitive processes that occur during these pause states. 

The Role of Pauses in Scientific Inquiry 
Our goal in characterizing the different pause states present 
within the process data of students is to use this information 

to improve our assessment of scientific inquiry. In our first 
step to determine if this behavior characterization is 
informative, we consider 1) whether we see differences in 
pause behavior between our 6th and 8th grade cohorts, 2) 
whether the occurrence of different types of pauses are 
predictive of students answering the question correctly, and 
3) whether pauses explain variance in validated measures of
scientific inquiry.

We compared the relative proportions of activity spent in 
the four different pause states of 6th and 8th graders in our 
sample. We used an independent 2-group Mann-Whitney U 
test to account for non-normality of the data. Using this test, 
we found no significant differences in the proportion of 
activity spent in the four pause states, other than a marginally 
significant difference in the Data Manipulation Pause state 
(W = 9648.5, p = .055), which was more frequently observed 
in 6th graders compared (1.6%) with 8th graders (.9%).  

The scientific inquiry activity we modeled includes a 
multiple-choice question that asked students to judge whether 
the concentration of the mixture always increases. This 
question measures student understanding of the principle of 
saturation which could result from either their inquiry 
practices or prior domain knowledge. We tested whether the 
proportion of the time spent in the different pause states 
during the inquiry activity were predictive of whether 
participants got the answer of the multiple-choice question 
correct. Using a logistic regression, we included all four 
pause states as factors to predict score on that item. The 
overall variance explained by this model is low (McFadden 
pseudo R2 = .02). Two of the pause states were marginally 
significant: Information Processing (OR: .003, b= -5.8 , z = -
1.7, p = .086) and Experimental Investigation (OR: .25, b= 
3.3 , z = 1.8, p = .078). These low odds ratios indicate students 
with greater pause activity are more likely to draw the wrong 
conclusion.  

 Prior to interacting with the task, students were 
administered the Waves Benchmark Assessment (WBA) as 
part of the SimScientists assessment suite developed by 
WestEd (Quellmalz, Timms, & Buckley, 2010). This 
measure uses a different science domain but attempts to 
evaluate the inquiry skills of students. As a first step in 
determining if the pause states identified by our HMM could 
provide information about the inquiry skills of the student, 
we look at the concordance between the pause behaviors and 
the WBA measure. We fit a linear regression model to 
measure how much of the variance in the WBA measure we 
could capture using the proportion of student actions within 
the four HMM pause states. We started with a maximal model 
with main effects for all four states and performed stepwise 
model selection using Akaike information criteria (AIC) to 
compare fits. Our final model indicated a significant 
collective effect of the Experimental Investigation, Data 
Manipulation, and Reflection on Questions pause states 
(F(3,188) = 7.6, p <.001, adjusted-R2=.09, BIC = 1304.6). To 
test if the HMM states account for more variance in the WBA 
measure than the raw pause actions, we fit a separate linear 
regression using the proportion of short, medium, and long 
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pauses in a student’s action sequence to predict the WBA 
measure. Using stepwise AIC model selection, we found that 
the maximal model best fit the data (F(3,188)=4.8, p <.005, 
adjusted-R2= .05, BIC=1312.3). This model does not fit the 
data as well as, nor explain as much of the variance in the 
WBA score as the pause states model.  

Discussion 
In this paper, we show how an unsupervised modeling 
approach can be used to characterize pauses in the problem-
solving process and explored what these pauses contribute to 
the measurement of skill. Our best fitting model identified 
four distinct pause states and split action states around 
experimental preparation and table manipulation activities 
into separate swift and thoughtful action states. These results 
suggest that pauses capture a range of processes and 
aggregation across pauses obscures meaningful variation in 
students’ inquiry practices. We found weak evidence that 6th 
graders and 8th graders pause with similar frequency, but 6th 
graders pause slightly more when manipulating data. Across 
grades, students who paused while setting up experiments 
and in between inquiry activities were score incorrectly on 
the subsequent multiple-choice item. Finally, we found that 
pauses around experimental preparation, data manipulation 
and question answering varied in concordance with student’s 
science inquiry ability, and that our characterization of pauses 
explained 4% more variance than considering only pause 
length. The finding that pauses explain a small proportion of 
variance in scores on the multiple-choice item and the WBA 
measure illustrates the challenge of using this information to 
evaluate the inquiry process. The conclusions students draw 
only partially reflect inquiry ability and future work 
validating models of inquiry process would benefit from 
more direct measures of planning, investigation, and analysis 
skills. 

It is unlikely HMMs can discover the structure of problem-
solving strategy at the same granularity of cognitive 
architectures (e.g., ACT-R; Anderson, 2007); however, these 
models can be used to provide a computational formulation 
of behavior patterns that balances an adherence to cognitive 
science theory, parsimony and conformity to data. Our goal 
in fitting a descriptive model was to better understand 
differences between individuals and capture meaningful 
variation in skill. While we examine group differences in a 
post-hoc analyses, in future research this information could 
be used as covariates within our HMM to guide model fitting 
(Helske & Helske, 2017). Such an approach would be 
especially appropriate in situations where there are clear 
hypotheses about how factors such as student ability and 
group membership drive differences in behavior patterns.  
The results of such models can be used to focus the subtasks 
we construct cognitive models to capture.  

The precision of HMMs in capturing cognitive activity is 
limited by our ability to observe the thinking of the student. 
This is especially obvious in our first pause state which 
combines processing new information, deciding the next 
action and planning the execution of that action. In future 

work, we plan on exploring several avenues for improving 
our ability to distinguish pauses. In the current study, we 
found that how we represented pauses impacted the 
descriptiveness of our model. One approach for improving 
the distinction between pause states is to extend our 
representation of the actions students take to include more 
information about the actions. Including information about 
the data collection strategy students use may help us to 
identify pause behavior related to specific experiment goal 
subtypes such as those identified in the SPL model (Schunn 
& Anderson, 1998).  We believe the combination of data and 
theory within these models will lead to promising avenues for 
assessing inquiry skills.   
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Abstract

In Dynamic Field Theory (DFT) cognition is modeled as the
interaction of a complex dynamical system. The connection to
the brain is established by smaller parts of this system, neu-
ral fields, that mimic the behavior of neuron populations. We
reimplemented a spatial reasoning model from DFT in Python
using the Nengo framework in order to provide a more flexi-
ble implementation, and to facilitate future research on a more
general comparison between DFT and the Neural Engineering
Framework (NEF). Our results show that it is possible to recre-
ate the DFT spatial reasoning model using Nengo, since we
were able to duplicate both the behavior of single neural fields
and the whole model. However, there are statistical differences
in performance between the two implementations, and future
work is needed to determine the cause of these differences.
Keywords: Dynamic Field Theory; Nengo; mental maps;
model reimplementation; spatial relational reasoning

Introduction
The way humans build maps from descriptions of relations
of objects to each other is not yet fully understood. One ap-
proach to model how these maps arise is the spatial reasoning
architecture from Kounatidou, Richter, and Schöner (2018).
Their model implements an application of the Dynamic Field
Theory (DFT), which views cognition as the development of
a complex dynamical system (Schöner, Spencer, & Group,
2016). The model can be supplied with sentences that de-
scribe the relative location of two colored objects in 2-
dimensional space, e.g., “There is a cyan object above a green
object”. From that, it builds a spatial scene in a 2-dimensional
space, represented by activity in a 2-dimensional sheet of sim-
ulated neurons. A more complex spatial scene with more ob-
jects can be built by supplying multiple sentences. The imple-
mentation of the spatial reasoning architecture is realized in
the Graphical User Interface (GUI) framework cedar (Lomp,
Zibner, Richter, Ranó, & Schöner, 2013).

In this paper, we present a re-implementation of this model
from Kounatidou et al. (2018). Rather than using their graph-
ical framework, we implement the various components us-
ing Python, and then use the neural modelling toolkit Nengo
(Bekolay et al., 2014) to combine the components together.
There are two main reasons for this endeavor: The cedar
framework, and therefore the spatial reasoning model itself,
is difficult to modify and to use in scenarios that are different
to the one presented in Kounatidou et al. (2018). Its applica-
tion to future research as a general-purpose cognitive model
of spatial reasoning is therefore limited by its implementa-
tion. The second reason to re-implement the model in Nengo

is to approach a more general comparison between NEF and
DFT using the spatial reasoning architecture as an example.

In the following, we will first briefly describe DFT and the
spatial reasoning architecture. We will then specify the cedar
model components used in this architecture, and describe the
reimplementation in Nengo. Lastly, we compare the two im-
plementations using an examplary spatial scene.

The spatial reasoning model
Background
The assumption of Dynamic Field Theory (DFT) is that cog-
nition and behavior arise from the brain’s development as a
complex dynamical system (Schöner et al., 2016). Attractors
in this system are then “functionally significant states of cog-
nitive processes”. An example for such an attractor of the
spatial reasoning architecture is the spatial scene that results
after supplying it with relational information.

The complex system in DFT consists of many subparts
which DFT calls neural fields. They model the activation of
populations of neurons. A complex system like the spatial
reasoning architecture consists of multiple neural fields and
some additional computations between these. Neural fields
themselves are dynamical systems, too, whose dynamics are
described by a differential equation:

τu̇(x, t) =−u(x, t)+h+ s(x, t)+
∫

k(x− x′)g(u(x′, t))dx′

(1)

In this equation u(x, t) is the activation of the neural field at
location x and time point t, h is the resting level of the neural
field, s(x, t) is some external input to the field, and integral
computes local interactions in the field. The neural fields de-
scribed by this equation can be of different dimensionality.
What they have in common is that they can form peaks of ac-
tivation that get passed on to other neural fields and can lead
to further peaks there.

To make the building of complex dynamical systems as
easy as possible DFT researchers have built software that
helps with this task. In the case of the spatial reasoning archi-
tecture this software is cedar, a graphical-user-interface where
computational elements can be added to an architecture with
a simple drag and drop interface (Lomp et al., 2013). In addi-
tion to neural fields other elements can be added to the archi-
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tecture, like inputs to the system or projections from a lower
to a higher dimensional space.

Importantly, the spatial reasoning architecture developed
in Kounatidou et al. (2018) was not created with the current
version of cedar and does not perform correctly in the cur-
rent version. The version that was used for this project can
be found in an article by the Autonomous Robotics Group
(2018). Models created in cedar can be saved to and loaded
from JSON files.

The architecture
An overall image of the spatial reasoning architecture from
Kounatidou et al. (2018) can be found in Figure 1. It consists
of five conceptually distinct parts.

The first part of the architecture deals with the concepts
that can be activated by the user. These are the spatial rela-
tions and the objects that are placed in a scene. The archi-
tecture is able to represent up to five different objects which
are identified by their color, i.e. a red object, a blue object, a
cyan object, a green object and an orange object. The transla-
tion from these colors to a continuous space is implemented
by mapping them to the hue dimension. For all objects two
input nodes exist since in each supplied sentence it has to be
specified if an object is the reference object of the sentence or
the target object. There are four spatial relations correspond-
ing to the cardinal directions Left, Right, Above and Below.

The second part of the architecture is the attentional sys-
tem. This system is responsible of ‘attending to’ or activating
objects (i.e., the colored objects described earlier) that are al-
ready in the scene or that should be added to the scene in
a new place, depending on the interaction with other neural
fields from outside the attentional system. It consists of the
color attention field and the 3-dimensional attention field and
forms peaks for objects that are attended.

The scene representation forms the third part of the archi-
tecture. This includes the scene representation field where
the locations of the objects are depicted over two-dimensional
space while the third dimension of the field depicts the color
of the existing objects.

The fourth part of the architecture is the spatial transfor-
mation and object creation system. It enables the architecture
to place objects according to the relational premises that are
supplied to the system. It represents each part of a premise,
i.e. the reference object, the target object and the relation in
a separate neural field and performs the transformations that
are necessary to place a new object in the scene.

The fifth part of the architecture is responsible for the or-
ganization of all processes. It consists of intention nodes that
determine whether a process is currently active or not and of
condition-of-satisfaction (CoS) nodes that represent whether
a process has been finished successfully. A more detailed de-
scription of the five parts can be found in the original paper.

Model components in cedar
A complex model in cedar is built from a set of basic compo-
nents. The following components are needed for this model:

• NeuralField: This module implements the neural field
equation from dynamic field theory. After an update step
with the neural field equation a sigmoid function is applied
to the activations before passing them on to another mod-
ule.
• GaussInput: A GaussInput module is one of the input

modules of cedar. This means that it does not receive any
input but constantly sends the same signal. In the case of
the GaussInput this signal is a two-dimensional gaussian
peak whose peak position and amplitude are defined as pa-
rameters of the module.
• ConstMatrix: This module is another input module. It

sends a constant 2-dimensional matrix output with one
constant value at all positions of the matrix.
• SpatialTemplate: The SpatialTemplate is another input

module. With the right parameters it creates a funnel-
like pattern directed towards one of the cardinal directions
right, left, above or below.
• Projection: The Projection module projects an input to

a different dimensionality. It can either upscale an input
from a lower dimension to a higher dimension by repeat-
ing values along the new dimension or it can downscale an
input from a higher dimension to a lower dimension by per-
forming a compression along the dimensions that should be
reduced. As a compression operation the sum, maximum,
minimum or average along a dimension can be used.
• StaticGain: The StaticGain module multiplies an input

by a constant value that can be set as a parameter.
• Boost: The Boost module is another input module. It

sends a scalar value that can be set as its strength param-
eter. However, it can be set to being active or not active
during a simulation. Depending whether it is active or not
it either sends no signal or the strength value defined. The
Boost module is the module through which changing input
is supplied to a system.
• ComponentMultiply: The ComponentMultiply module

performs a componentwise multiplication of two inputs. If
the two inputs have exactly the same shape this is an ele-
mentwise multiplication. Otherwise one of the inputs has
to be of a lower dimensionality and each of its values is
then multiplied with the other input’s values along the ad-
ditional dimension.
• Convolution: The Convolution module takes two inputs

and performs a convolution on one of the inputs with the
other input as the kernel.
• Flip: The Flip module receives a two-dimensional input

and flips it along the first dimension, the second dimension
or both.
• Group: A container to organize other components.

Nengo

Nengo (Bekolay et al., 2014) is a software tool that was
originally created to build and simulate large-scale neural
models based on the Neural Engineering Framework (NEF)
(Eliasmith & Anderson, 2003). More recently, the toolkit has
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Figure 1: A conceptual image of the DFT spatial reasoning architecture from Kounatidou et al. (2018) reprinted from the
original paper. The blue and pink circles signify nodes that represent the input concepts of the architecture. The attentional
system consists of the feature attention fields in the middle and the attention field to the right of these. The scene representation
fields can be seen on the right of the image. At the bottom the fourth part of the architecture, the spatial transformation and
object creation system can be seen. The intention nodes are depicted as the red circles at the top, the CoS nodes as the green
circles.

expanded to support deep learning and vector-based cognitive
modelling, making Nengo now support a wider range of mod-
elling approaches. Most importantly, Nengo provides a sim-
ple Python interface for defining new components, and then
the standard Nengo framework can be used for combining
these components, running simulations, and gathering data.
By constructing our re-implementation in this way, we can to
run any cedar model that uses the components we have re-
implemented simply by taking the cedar version, saving it as
a JSON file, and loading that saved JSON file into Nengo.

Model components in Nengo

The Nengo implementation of the cedar modules is based on
the Nengo Node object. Some of the cedar modules (e.g. the
NeuralField) require an update of their state with each sim-
ulation step while others (e.g. the GaussInput) pass on a
constant signal during the whole simulation. The Node ob-
ject provides easy-to-use functionality for both of these op-
tions. In the first case one can define an update function that
depends on time and initialize a Node instance with this up-
date function as the output parameter. In the latter case the
constant signal is simply passed to a Node instance as the
output parameter. In the implementation of the cedar mod-
ules in Nengo each cedar module has a corresponding object
class of the same name. After initialization a Nengo Node in-

stance can be created from this class’s instance by calling the
make node() method. The Node instance is then accessible
via the node attribute.

The Nengo implementation of the cedar modules is based
on Schöner et al. (2016), as well as on the cedar documenta-
tion and the cedar source code (Autonomous Robotics Group,
2018). Another source of information is the behavior of the
modules in cedar. For each module test instances of the cedar
modules were created to observe their behavior for different
parameter settings or different inputs. The observed behavior
of the modules is also the principal validation for a correct
implementation.

Since the goal was to implement the spatial reasoning ar-
chitecture, not all of cedar’s functionality had to be imple-
mented. This means only the cedar modules that are part
of the spatial reasoning architecture were implemented in
Nengo. Moreover, some parameters of the cedar modules
were not implemented in Nengo if they are not used in the
spatial reasoning architecture or if their value is constant
among all instances of the spatial reasoning architecture.

Nengo Results
Verification of NeuralField implementation
To make sure that the neural field equation is implemented
correctly the temporal development of the NeuralFields of
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cedar and Nengo were compared. To examine different pa-
rameters (e.g. different dimensionality or different border
types) several NeuralFields with gaussian input were cre-
ated and compared visually. For the visual comparison color
maps of the NeuralFields’ activation, their lateral inter-
action and their sigmoided output were created for both the
cedar and the Nengo simulations. The appearance of the color
maps and the mininum and maximum values were used as a
measure of resemblance. To avoid random fluctuations the
noise values were set to zero in these comparisons.

Apart from the identical evolution of the neural fields in
terms of activation values the timing of this evolution was
another tested aspect. To compare the timing the maximum
activation value for the comparisons from above was tracked
and contrasted in a plot. Moreover this comparison was per-
formed for several different values of tau. Figure 2 contains
one such comparison for three different tau values. As can
be seen, each pair of curves with the same configuration pro-
gresses similarly through time, suggesting that the timing of
the two implementations is the same.

Figure 2: Maximum activation of a test NeuralField for dif-
ferent tau values in cedar and Nengo.

One Spatial Scene in Detail
Kounatidou et al. (2018) gives one example for a spatial scene
that can be created with the spatial reasoning architecture.
The scene is created from four successively supplied sen-
tences:

1. There is a cyan object above a green object.
2. There is a red object to the left of the green object.
3. There is a blue object to the right of the red object.
4. There is an orange object to the right of the red object.

This scene was used as a test to see if the whole spatial
reasoning architecture in Nengo works and to compare the
scenes that arise in the original implementation in cedar and
in the Nengo implementation. Figure 3a shows the develop-
ment of the scene in cedar. The precise temporal sequence of
inputs needed to create this scene is given in Table 1. The
same experiment structure was used in the Nengo simula-
tions.

In Figure 3b the development of the scene in Nengo can be
seen. Even though the scenes of cedar and Nengo are slightly
different, overall scene arrangement and development are the
same. Differences in the development of the scene are also
normal in separate runs in cedar due to additive random noise
in the neural fields.

Simulation time

While our results show that the Nengo version of the model
works, our initial Python implementation is much slower than
the cedar version. When running in cedar, there is a “Factor
for the fake DT” (default 0.26) which controls the time reso-
lution of the simulation of the dynamic equations. In Nengo,
the default time resolution is 1ms. This meant that a simu-
lation which takes 2.3 minutes in cedar took 180 minutes in
Nengo, i.e., a speed factor of .013.

While Nengo does allow components to define their own
adaptive time step, we have not yet implemented this. In-
stead, we adjust the time step by a factor tau, where tau=1 is
the original (1ms per time step) and tau=0.01 would be 100ms
per time step. Note that this is the same as the tau parameter
in the NeuralFields definition. If tau is decreased, this leads
to an increase in the step size because the tau parameter is
the divisor of every update step. This adaptation can not be
performed up to any arbitrary factor since the update steps
are a discretization of a continuous time process and at some
point this discretization is too inaccurate to capture the orig-
inal development. To determine a stable value for the factor
of tau at least five simulation runs of the test scene were run
for different tau factors. The rate with which a tau factor led
to the scene predicted by the cedar model and the simulation
times for different tau factors can be seen in Table 2. The test
with the different tau factors also revealed that the standard
update size of 1 does not reliably lead to the correct scene but
seems to be rather unstable since it only lead to the correct
scene in 2 out of 9 runs.

As can be seen in Table 2, simulations with a tau factor be-
low 0.15 do not always lead to the correct scene representa-
tion. Some of these failed simulations are depicted in Figure
4. For these simulations it is likely that the update steps are
too big and processes that would go in the opposite direction
as the previous step can not be integrated due to the few up-
dates. However, there are tau factors smaller 1 for which the
scene seems to reliably develop correctly and which therefore
can provide a time improvement.

We are still looking into other optimizations that we believe
could help speed up the Python implementation of the DFT
equations, which are most of the computation time in this
model. For all subsequent experiments the tau factor of 0.15
was used, since it provided the fastest simulation times while
maintaining high confidence to result in the correct scene.

Testing Results

To explore the behaviour of our re-implementation of the
DFT mental map model, we generated a set of test inputs
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(a) (b)

Figure 3: Evolution of the spatial example scene in cedar (a) and Nengo (with updates every ms) (b) with the default parameters.

Table 1: Instructions from the cedar experiment file.

simulation time actions
0.0s Activate the Boost modules ”Reference: Green”, ”Spatial relation:Above” and ”Target:Cyan”.
0.5s Deactivate the Boost modules ”Reference: Green”, ”Spatial relation:Above” and ”Target:Cyan”

and activate the Boost module ”Action:Imagine”.
9.0s Activate the Boost modules ”Reference:Green”, ”Target:Red” and ”Spatial relation:Left”.
9.5s Deactivate the Boost modules ”Reference:Green”, ”Target:Red” and ”Spatial relation:Left”.
18.0s Activate the Boost modules ”Reference:Red”, ”Target:Blue” and ”Spatial relation:Right”.
18.5s Deactivate the Boost modules ”Reference:Red”, ”Target:Blue” and ”Spatial relation:Right”.
27.0s Activate the Boost modules ”Reference:Blue”, ”Target:Orange” and ”Spatial Relation:Left”.
27.5s Dectivate the Boost modules ”Reference:Blue”, ”Target:Orange” and ”Spatial Relation:Left”.
36.0s End the experiment.

Table 2: Simulation times and success rate of the test scene
for different tau factors in Nengo.

tau factor simulation time success rate

0.02 3.5 minutes 0/7
0.05 9 minutes 3/10
0.1 17 minutes 9/11
0.15 26 minutes 5/5
0.2 35 minutes 8/8
0.5 1.5 hours 6/6
1.0 3 hours 2/9

describing from two to four relational premises with all com-
binations of directions to generate a resulting scene. These
inputs were run in both cedar and Nengo for comparison (see
Figure 5 for examples).

Given these input scenes, we measured the proportion of
time the models generated a correct final representation, i.e.,
the representation predicted by the cedar model. We knew
that for some of the scenes the model would not create a scene
consistent with the input statements due to the phrasing of
the statements. However, they still gave us some information

about the workings of the models. Since the models introduce
random variability, we ran each input multiple times. Inter-
estingly, the Nengo implementation was found to be more re-
liable than the cedar version; the Nengo simulations resulted
in a correct scene in 73.26% of its simulations while the cedar
simulations lead to the right scene in only 50.23% of its sim-
ulation runs. Determining the cause of this difference is the
topic of ongoing work.

It should also be noted that for each test input, there was
always at least one simulation run in cedar that resulted in the
same mental map as a Nengo simulation run. This indicates
that the models are doing similar things in those runs. For this
reason, we believe that the core Python re-implementation in
Nengo is working correctly, but that there are subtle differ-
ences with time steps and noise that are causing the differ-
ences in behaviour.

Conclusion and Future Work
Our goal was to reimplement the spatial reasoning architec-
ture from Kounatidou et al. (2018) in the Python framework
Nengo (Bekolay et al., 2014). The findings from the results
section suggest that this goal is achieved, in that the system
produces the desired behaviour. However, there are signif-
icant differences between the implementations that may be
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(a) Tau factor 0.02 (b) Tau factor 0.05

Figure 4: Failed scene evolution of the example scene (see Table 1) in Nengo for different tau factors. The shown evolutions
are only exemplary and can be different in each run.

Figure 5: Example scenes from our test datasets. The scene development on the right is from a cedar simulation. The scene on
the left is from a Nengo simulation.

due to the precise details of the random noise and the time
steps used for calculation.

Importantly, since these low-level implementation details
affect the overall performance of the model (as seen in the
variability in the testing), understanding exactly what is caus-
ing these differences is important for interpretting any DFT
model. We intend to continue to analyze these details and
characterize them.

References
Autonomous Robotics Group, R.-U. B., Insti-

tut fuer Neuroinformatik. (2018). Cedar
2018. https://github.com/cedar/cedar/tree/
eeda0d6f79f5a0e420a877c642ce1b9ff48ba8dd.
GitHub.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stew-
art, T. C., Rasmussen, D., . . . Eliasmith, C. (2014). Nengo:
a python tool for building large-scale functional brain mod-
els. Frontiers in neuroinformatics, 7, 48.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: Computation, representation, and dynamics in neuro-
biological systems. MIT press.

Kounatidou, P., Richter, M., & Schöner, G. (2018). A neu-
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Abstract 

Fatigue is a common occurrence in several occupational 
fields, often resulting in operator performance and health 
issues. Biomathematical models of fatigue have become 
useful tools in several fatigue risk management programs. 
However, these tools still have limitations in terms of 
identifying specific performance outcomes affected by 
fatigue, as well as individualizing fatigue estimates to 
individual operators. The integration of computational 
cognitive models and biomathematical models can help solve 
these issues in a complex operational context. The current 
effort aims to develop an integrated model of fatigue in the 
context of C-17 approach and landing operations. 
Specifically, we integrate a biomathematical fatigue model 
with a task network model to estimate performance 
degradation due to fatigue. The following paper outlines the 
development of the task network model and integration with 
the biomathematical fatigue model. 
 

Keywords: task network model; biomathematical fatigue 
model; fatigue; aviation 

 
Fatigue is a pervasive issue in work environments involving 
factors such as long work hours, shift schedules, circadian 
desynchrony, and high workload tempo, factors common in 
transportation, healthcare, and law enforcement, among 
other fields. Fatigue often results in performance 
degradations and can have significant negative effects on 
operator health, especially if fatigue is chronic in nature 
(Belenky, Lamp, Hemp, & Zaslona, 2014; Craig & Cooper, 
1992). Biomathematical fatigue models are promising  
predictive tools in fatigue risk management (FRM) 
programs in high-risk operational settings. These models 
commonly use factors such as homeostatic regulation, 
sleep/wake schedules, and circadian rhythm to create 
general predictions of fatigue for operators (Mallis, Mejdal, 
Nguyen, & Dinges, 2004). However, these models have 
limitations that affect the accuracy of fatigue predictions. 
They tend to predict general performance outcomes (e.g., 
cognitive effectiveness) that might not relate directly to risk 
in an operational setting. Additionally, these models 
commonly lack individualization; rather, they give fatigue 

predictions for an “average” operator (Civil Aviation Safety 
Authority, 2014; Dawson, Darwent, & Roach, 2016; Mallis 
et al., 2004). Computational cognitive models can provide a 
cost-effective and flexible means to explore the usability of 
systems through simulation (Pew, 2007). Recently, research 
has successfully integrated biomathematical models of 
fatigue with cognitive architectures (e.g., Gunzelmann, 
Veksler, Walsh, & Gluck, 2015). In the current effort, we 
work toward developing an integrated model that can 
pinpoint specific performance degradations due to fatigue in 
a complex real-world environment, and allows the inclusion 
of individual difference modulations. Specifically, we 
integrate a biomathematical fatigue model with a task 
network model (Laughery, Archer, Plott, & Dahn, 2000) to 
predict C-17 aircraft approach and landing performance 
degradations. 

 

Background 
C-17 mobility pilots and aircrew are especially susceptible 
to fatigue given unique characteristics of the operational 
environment. Basic crews and augmented crews have flight 
duty periods of up to 16 and 24 hours, respectively. Flight 
legs commonly cross multiple time zones during missions 
and missions comprising multiple legs often last several 
days. Research suggests mobility aircrew are commonly 
fatigued during missions and believe that changes need to be 
made in the mobility community to address fatigue (Morris, 
Howland, Amaddio, & Gunzelmann, 2020; Morris, Veksler 
et al., 2020). Currently, the United States Air Force Air 
Mobility Command (AMC) uses the Fatigue Avoidance 
Scheduling Tool (FAST®; Hursh, Balkin, Miller, & Eddy, 
2004) and underpinning biomathematical fatigue model, 
Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE™; 
Hursh, Redmond, et al., 2004) to develop mission 
effectiveness graphs that balance fatigue with operational 
needs and recommend sleep schedules for aircrew based on 
mission information (e.g., flight leg start and end times, 
time zones, light). The SAFTE model includes a circadian 
process affecting sleep regulation and performance. Within 
the model there is a reservoir capacity which refers to an 
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individual’s maximal capacity to perform tasks. This 
capacity is affected by sleep and wakefulness. When an 
individual is awake, the reservoir level decreases, and when 
an individual is asleep the reservoir is replenished. 
Accumulation in the reservoir is affected by sleep intensity 
and sleep quality. Sleep intensity is a function of time-of-
day (circadian phase) and the current reservoir level (sleep 
debt). Performance is affected by the sleep reservoir, 
circadian phase, and sleep inertia. Performance output from 
the model is a general cognitive effectiveness in the form of 
a percentage from 0 to 100% (Hursh, Redmond, et al., 
2004). Aircrew can use the resulting mission effectiveness 
graph from FAST and SAFTE to plan fatigue mitigation 
strategies. It is not known which performance metrics are 
affected in C-17 pilot operation, nor is there currently a 
mechanism to individualize these predictions within AMC’s 
general risk management program.  As a result, additional 
tools are needed to provide insights into specific 
performance metrics that are likely to be affected by fatigue 
and have the ability to incorporate individual difference 
factors that affect fatigue. 

The current C-17 approach and landing model was 
developed using a task network model. These models are 
comprised of nodes and connections that let activity flow 
through the network and provide an efficient way of 
simulating the complexities of operator/system designs 
(Hansberger & Barnette, 2005; Schunk, 2000; Swoboda, 
Katz, & Kilduff, 2005). The sequencing of various tasks and 
subtasks is integrated into task network models and each 
task/subtask is assigned to an operator. Operators, in turn, 
have properties specific to their role in the simulation and 
individual differences can be incorporated in the operator 
profile by specifying amount of military training, length of 
service, age, rank, time in position, and workload threshold 
(Hansberger & Barnette, 2005; Richardson, Mittrick, & 
Hanratty, 2016; Swoboda et al., 2005). Tasks within the 
model have preconditions that must be met to execute the 
task. When a task is executed, the state of both the 
environment and the operator change. Due to the design of 
the task network, certain subtasks can be completed 
concurrently (especially if multiple operators are present) as 
long as the operator’s workload threshold has not been 
exceeded. Task network models have been used in many 
military and commercial applications to make predictions 
about performance under varying conditions (e.g., Bloechle 
& Schunk, 2003; Laughery et al., 2000; Schunk, 2000). 

Our task network model was developed in the C3TRACE 
(Command, Control and Communication Techniques for 
Reliable Assessment of Concept Execution; Kilduff, 
Swoboda, & Barnette, 2005) task-network modeling 
environment to represent the relevant tasks and subtasks 
involved in approach and landing phases of flight for the C-
17 aircraft. C3TRACE is a modeling environment in which 
tasks, transitions, and operators can all be represented in a 
network model. It is owned by the US Army Research Lab 
(ARL-HRED) and was developed by Micro Analysis & 
Design (acquired by Alion Science and Technology) (Plott, 

2017). C3TRACE allows the modeler to encode the relevant 
task information flow and then uses a stochastic discrete 
event simulator (the simulation engine is Micro Saint Sharp 
(Bloechle & Schunk, 2003)) to output results of the 
simulation. The modeler can then evaluate various aspects 
of task performance such as operator workload, task 
execution time, etc. In particular, C3TRACE allows the 
modeler to define the magnitude of the workload 
components for Visual, Auditory, Cognitive, and 
Psychomotor (VACP) aspects of performance for each 
task/subtask. Tasks can also contain logic regarding 
execution time, “if/then” rules to dictate when tasks can be 
“released”, and the capacity to modify environmental 
variables as needed to simulate task effects (i.e., adjustments 
to plane position). In the past, C3TRACE has been utilized 
in simulating high-level team interaction because of its 
ability to integrate multiple personnel and personnel 
groupings into a model that selects operators based on 
availability (workload-based) and task priority. 
Furthermore, personnel characteristics can be modified to 
better reflect operator experience (i.e., education level, age, 
rank, time in position, workload threshold, etc.) that in turn 
can influence task performance (Cosenzo, Kilduff, & 
Swoboda, 2005). 

Model Development 
Approach and landing tasks and pilot and co-pilot 
interactions were developed based on an existing analysis of 
standard procedures and through discussions with two 
experienced C-17 pilots. The model was divided into two 
tasks: approach and landing as defined in the procedures. 
Each task was composed of several subtasks that had to be 
performed in a certain order, although some subtasks could 
be done concurrently as they required either the pilot or co-
pilot to perform them (see Figure 1). 

Approach and landing both have strong monitoring 
components (see Figure 2) as the pilot and co-pilot must 
maintain basic airplane operations such as keeping the plane 
level and slowly descending in altitude as the plane 
approaches the runway while simultaneously performing the 
necessary subtasks to ensure a safe landing (i.e., setting and 
checking altimeters, doing approach and landing checklists, 
setting the flaps, verifying glideslope, lowering the landing 
gear, etc.). The task analysis also indicated another 
monitoring task that could potentially alter the plane’s 
course if a threat was detected and a corresponding set of 
subtasks needed to be performed if that occurred. All 
monitoring subtasks were implemented in the model as 
concurrently occurring during the main approach and 
landing subtasks. Therefore, the operator’s attention had to 
be switched between the main task and the monitoring 
components. 

Several environmental variables were included in the 
model to simulate the plane flying and descending. Those 
environmental variables were controlled by a “dummy” 
operator that continuously updates the plane’s state 
variables both in response to the pilot/co-pilot interaction 
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and by a basic linear drift model (see Figure 2). As the 
model runs, the plane gradually descends to the runway and 
the speed of descent (both X and Y direction) is modulated 
by variables such as flap settings. 

The task analysis informed the model’s timing of each 
subtask. C3TRACE allows the modeler to specify the mean 
and standard deviation of all timing intervals. For 
simplicity, the mean for each procedure was set to an 
estimate derived from the expert task analysis combined 
with input from the experienced pilots. A standard deviation 
of 10% was introduced to these estimates to add some 
stochasticity to the model’s results. This value was used as a 
stand in and may change with future work; however, it does 
not affect the comparisons of the models discussed below. 
As per the task analysis, each subtask was assigned an 
operator or operator group (if either the pilot or co-pilot 
could perform the task). The task analysis also provided us 
with a breakdown of which VACP components were 
utilized in each subtask and those were set accordingly to 
simulate the workload associated with each subtask. Certain 
subtasks also altered state variables (i.e., flaps). 

C3TRACE allows the starting conditions to be modified 
for each model run (i.e., the starting altitude of the plane and 
its descent rate) which can be utilized to produce predictions 
about when certain milestones will be reached during 
approach and landing (i.e., flaps are set, runway reached, 
checklists accomplished). These predictions can then be 
compared to data collected from real C-17 landings to verify 
the model’s validity. 

 

 
 

Figure 1: A sample set of subtasks required for approach. 
PM and PF indicate which operator typically does those 
tasks in order (PM: Pilot Monitoring, PF: Pilot Flying).  
 

 
 

Figure 2: Snapshot of one monitoring component of the 
model. The drifting and altitudechange tasks are 

continuously performed by a "dummy" operator that updates 
the plane's position. The monitoring loop below involves the 
pilot or copilot making adjustments to the plane as needed 

to keep it on course. 
 

Fatigue Modulation 
As an initial approach to modifying performance on this 
task and to simulate fatigue, we utilized the workload 
threshold parameter that can be set for each operator. The 
scheduler in C3TRACE assigns tasks to operators as long as 
(1) all preconditions for a given task are met and (2) the 
operator’s workload threshold is not exceeded by the 
currently running tasks. With the inclusion of the 
monitoring tasks in this model, it is very possible for the 
pilot or co-pilot to be in the process of monitoring some 
state variable and adjusting it while attempting to perform 
the necessary approach and landing subtasks. In instances 
where the VACP workload is high for a given subtask (i.e., 
visually inspecting a dial while reporting the reading and 
adjusting something else), the monitoring component may 
pose some interference especially if the operator’s current 
workload threshold is lowered (i.e., due to fatigue). 

The effects of fatigue manifest themselves in this model 
by (1) reducing how many simultaneous tasks can be 
accomplished, (2) when those tasks are scheduled, and (3) 
how long those tasks will take to complete. This has further 
implications for important state variables such as deviation 
from the ideal glideslope as monitoring tasks may be 
delayed by other tasks. Figure 3 depicts the task timeline 
showing the various subtasks as they occur during model 
execution during the first 150s of approach and landing 
(shortened to fit within paper margins) under two settings of 
workload threshold for the operators (both operators’ 
workload threshold is set to the same amount, either 20 or 
8). Of note is that as the workload threshold is reduced, the 
frequency with which monitoring and adjusting takes place 
diminishes (see Adjust Drift and Adjust Glideslope tasks 
listed in Figure 3). Furthermore, other subtasks are more 
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staggered in their execution, prolonging the time to 
complete the required steps, as shown in the bottom graph 
where the bottom four subtasks are not even scheduled 
before 150s into the approach and landing procedure. Note 
that the number of simultaneous tasks that can execute is a 
function of both the workload threshold and the specific 
VACP components required for each task, so an exact 
number of simultaneous tasks will vary throughout model 
execution, but lower workload threshold will necessarily 
reduce the number of simultaneous tasks that the model can 
execute. The modification of workload threshold for 
operators is a good first approximation for modeling the 
deleterious effects fatigue has on performance. 

We can inform the setting of the workload threshold by 
using fatigue estimates from biomathematical models of 
fatigue, in this case from the SAFTE model, and scaling the 
workload accordingly. Work is ongoing to determine the 
best way to do the scaling so as to produce changes in 
performance commensurate to those seen in human data. 
The output from the SAFTE model typically produces a 
performance effectiveness score on a scale of 0-100% by 
using sleep history (Hursh, et. al., 2004). In operational 
settings, performance effectiveness values higher than 
77.5% indicate an alert individual, values between 70 and 
77.5% indicate a moderately fatigued individual, and values 
below 70% indicate high fatigue and serious risk in 
continuing operating. In the approach and landing model 
described, a workload threshold setting of 20 would 
correspond to a relatively rested individual, whereas a 
setting of 8 would correspond to serious degradations in 
performance.  

 

 

 
 

Figure 3: Task Timeline with different settings of operator 
workload threshold. 

 
Model Results 

The model was run 100 times using several settings of 
Workload Threshold for the two pilots. Preliminary results 
indicate differences in when important components of 
approach and landing procedures get executed (i.e., flaps 
deployed, speed brake set, gear lowered). In particular, 
lower levels of workload threshold resulted in significant 
delays and more variability in the timing of these subtasks 
(see Figure 4). In addition, there was an increase in the 
amount of drift observed throughout the model run as the 
operators made less adjustments to the plane (recall Figure 
3’s adjustment subtasks which are much more sparse in the 
WT=8 case).  

There are many other diagnostic variables that we can 
observe in the output from a model run in C3TRACE which 
can be compared to real world landing data. Future work 
will integrate more of these variables. 
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Figure 4: Distribution in timing of when gear is set down 
and when speed brake is set for two settings of workload 

threshold (100 model runs). 

Discussion 
We have developed an initial model integrating fatigue 

and a task network model of C-17 approach and landing 
operations.  Currently, we modulate workload thresholds 
within the task network model with individualized fatigue 
estimates from the SAFTE model. SAFTE model estimates 
are derived from sleep estimates for individual operators. As 
a follow-on effort, we plan to validate the integrated model 
by fitting the predictions to performance metrics from actual 
C-17 flight data from an operational study. Sleep estimates
will be derived from actigraph watches worn by pilots and
co-pilots to generate fatigue estimates through SAFTE. The
integrated model will allow us to identify specific
performance degradations in the C-17 environment. This
information can be used to develop more effective FRM
programs and systems that link fatigue estimates to actual
safety outcomes, a feature that is currently lacking in most
FRM implementations (Dawson et al., 2016; Gander et al.,
2017).
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Abstract

Successfully performing everyday activities such as loading
the dishwasher or setting the table relies on the involvement
of many cognitive abilities. As such, everyday activities pro-
vide a unique window for investigating the involved cognitive
abilities as well as their interaction, promising high ecologi-
cal validity of the obtained findings. Against this background
we investigated two cognitive abilities and their combination,
which are crucial for virtually all everyday activities. Specif-
ically, we investigated the nature of mental spatial representa-
tion and planning depth in rational planning by analyzing ta-
ble setting behavior across many environments and actors. As
recent modeling work indicates that rational planning is influ-
enced by spatial properties of the environment, we investigate
how representation of and reasoning about the spatial environ-
ment impact sequential action planning. Using a modeling ap-
proach, we compare models implementing different plannings
depths and differently complex spatial representations. Our
findings indicate that people plan opportunistically (one step
ahead) and rely on a two-dimensional representation of their
environment. These findings lend credit to the idea that hu-
mans minimize their cognitive effort (simpler representations,
shallow planning) to efficiently perform everyday tasks.

Keywords: spatial cognition; rational planning; action se-
quences

Introduction
Everyday activities, such as cooking, cleaning, or setting a
table, seem simple, but are in fact highly complex tasks in-
volving many different cognitive abilities. Setting the table,
for example, requires action and motor planning, navigation,
spatial memory, action and motor control, and error monitor-
ing and correction, among others.

We argue that everyday activities provide a unique and in-
strumental window for investigating the involved cognitive
abilities. For one, everyday activities constitute complex tasks
in the sense of Newell (1973) such that their study promises
not only a deeper understanding of each of the abilities, but
also of their interaction and integration. Furthermore, find-
ings obtained from investigating everyday activities arguably
offer higher ecological validity than findings obtained from
experimental tasks commonly employed in the Cognitive Sci-
ences. At the same time, everyday activities are still simple
enough to also be investigated in the lab. Last but not least,
understanding cognitive abilities in everyday activities is of
great applied relevance by potentially allowing to better sup-
port people to live independently (e.g., in old age) without
requiring professional aid.

Against this background, in this contribution, we investi-
gate the nature of mental spatial representation and planning
depth in rational planning by analyzing everyday activities.
Planning and control of action sequences are necessary re-
quirements for successful task performance in everyday life.
In existing models of sequential action control (e.g. Botvinick
& Plaut, 2004; Cooper & Shallice, 2006), the assumption
seems to be that the to be controlled sequence is completely
known from the outset, whereas we propose a stepwise ap-
proach. Recent modeling work suggests that rational plan-
ning is influenced by spatial properties of the environment,
taking distance, relational dependencies (strong spatial cog-
nition), and topology (containment) into account (Wenzl &
Schultheis, 2020). Building on this modeling work, we ex-
amine how many dimensions people take into account when
representing and reasoning about their spatial environment as
well as how many steps ahead they plan their actions (i.e.,
planning depth). Our investigations take the form of a model
comparison study, in which we develop and compare models
realizing different dimensionalities of spatial representations
and planning depths. The models are compared across three
datasets of human table setting activities comprising various
actors and environments. Modeling results indicate that peo-
ple plan opportunistically employing a single-step look-ahead
and that they rely on a two-dimensional representation of the
environment, largely ignoring the vertical dimension.

The remainder of this paper is structured as follows: First,
we give an overview of the role of rational planning, space,
and minimization of cognitive and physical effort in the con-
text of everyday activities. Subsequently, we investigate the
role of planning depth and dimensionality of spatial repre-
sentation using a modeling approach. We conclude with a
discussion of our results and issues for future research.

Rational Planning, Space, and Minimization of
Effort

Rational Planning
Mechanisms such as knowledge representation and cogni-
tive processes have to be taken into account when trying to
explain human behavior through rational analysis (Jones &
Love, 2011). This is the core assumption of bounded ra-
tionality (Simon, 1955) which takes limitations in knowl-
edge and processing capacity into account. To identify ef-
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fective mechanisms that can plausibly be implemented by a
resource-bounded human brain, computational modeling has
been shown to offer a useful analysis tool (Icard, 2018).

Adaptive rationality proposes that good prediction meth-
ods are adapted to the structure of a given local environment,
providing highly efficient solutions for a specific task (Schurz
& Thorn, 2016). Human cognition generally is assumed to be
locally optimal. This is consistent with research on sequential
information search and planning which indicates that humans
tend to use heuristic stepwise-optimal strategies rather than
planning ahead (Meder, Nelson, Jones, & Ruggeri, 2019).

Taking the limitations of the human mind and the com-
plexity of everyday activities into account, we propose that
humans deal with such activities by using a rational planning
strategy to choose their next action.

Space
All human activity takes place in space: Required items for
a given (everyday) activity are located in the physical envi-
ronment, and movement within this environment is necessary
to perform the activity. Spatial properties, e.g., distance, are
directly related to the required physical effort. While choos-
ing the action sequence for performing a specific activity, the
spatial properties of the environment may impose constraints,
such as having to move one object first before being able to
reach another object located behind it. Even if there are no
hard constraints there are a number of reasons to believe that
the order of action sequences is influenced by the spatial en-
vironment and its mental representation.

First, the organization of objects in physical space aims to
minimize cognitive effort and to facilitate the performance
of everyday activities (Kirsh, 1995). People use spatial ar-
rangements to serve as cues what to do next by simplifying
internal computation, e.g., by arranging objects in the kitchen
in a way that it is obvious which vegetables need to be cut,
washed, etc. in the next step. Minimizing computational ef-
fort by using the properties of the spatial environment to fa-
cilitate one’s actions is also consistent with behavioral strate-
gies relying on strong spatial cognition (van de Ven, Fukuda,
Schultheis, Freksa, & Barkowsky, 2018) and cognitive of-
floading (Clark, 1996; Wilson, 2002) (see Minimization of
Effort). Second, previous research has shown that the nature
of mental representations of space has a marked influence on
peoples behavior. Three-dimensional spaces seem to be rep-
resented in a “bicoded” way, splitting the representation in a
metric planar representation of the plane of locomotion and
a separate, possibly non-metric representation of the orthog-
onal space (Jeffery, Jovalekic, Verriotis, & Hayman, 2013).
Human spatial navigation performance is significantly worse
when navigating in a vertical environment than in a horizon-
tal environment (Zwergal et al., 2016) and distance is rep-
resented with higher accuracy along the horizontal than the
vertical axis (Hinterecker et al., 2018).

Taking the above considerations into account, we assume
spatial properties of the task environment, i.e., distance, func-
tional dependencies, and topology to be important factors

when deciding for the next action.

Minimization of Effort
Hull’s “law of less work” (Hull, 1943) states that physical ef-
fort tends to be avoided. Newer research indicates that phys-
ical and mental effort are equally aversive (Kool, McGuire,
Rosen, & Botvinick, 2010). The concept of an internal cost
of cognitive effort allows to explain the (globally) suboptimal
strategies frequently observed in humans, as favoring simpli-
fying strategies (heuristics) can be subjectively optimal when
reducing the internal cost of mental effort outweighs the ben-
efit of a more accurate strategy.

External scaffolding is a possible strategy to reduce cog-
nitive effort (Clark, 1996). Accordingly, external structures
are used to facilitate human problem-solving and to reduce
the cognitive effort of a specific task by offloading (part of)
the problem solution to external scaffolds such as tools or
memory aids. Strategies to offload cognition are used par-
ticularly often in the context of spatial tasks (Wilson, 2002)
(see Space).

Against this background, we assume that humans prefer
planning strategies that locally minimize the effort required
for task success.

Rational Planning Model for Table Setting
Consistent with the spatial environment being used to facil-
itate task performance, i.e., intelligent use of space (Kirsh,
1995), external scaffolding (Clark, 1996; Wilson, 2002),
strong spatial cognition (van de Ven et al., 2018), and mental
representation of space (Hinterecker et al., 2018), we expect
specific spatial constraints to be of importance for planning.

Based on previous research evidencing that humans favor
stepwise-optimal strategies over planning ahead (Meder et
al., 2019) and the “law of less work” (Hull, 1943; Kool et
al., 2010), we assume that the control of routine sequential
actions, such as table setting, follows a strategy of rational
planning. Taking the role of spatial properties in everyday ac-
tivities into account, we propose that humans prefer specific
action orderings: The next item to be picked up and taken to
the table is assumed to be chosen based on the current loca-
tion as well as the perceived cost of each possible action, with
the lowest-cost action being chosen.

Employing a modeling approach, we examine the influence
of the following spatial aspects of the task environment on
action organization during table setting:
• Distance: minimizing traversed distance,
• relational dependencies: e.g., saucer goes below cup and

should therefore be taken first, so both items have to be
moved to and placed on the table only once, and
• topology (containment): picking up items from, e.g., a

counter top, is considered less effortful than picking up
items stored in a closed cupboard.

We implemented our core assumptions in a computational
model. The model approximates rational planning by deter-
mining the lowest-cost next action for each step from episode
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start (no items on the table, subject at starting position) to task
success (all required items on the table and – if specified – in
the target position, subject standing in front of the table).

Each cost Cp,q is calculated by determining the Eu-
clidean distance between two item locations p(x1,y1,z1) and
q(x2,y2,z2) in a nD representation of the specific environ-
ment, where n is either 1, 2, or 3. This distance is further
qualified by relational dependencies (parameter k) and con-
tainment (parameter c) yielding a weighted cost computed as
given in Eq. 1, where d is the Euclidean distance. Setting pa-
rameter k to a value < 1.0 decreases the weighted cost, thus
corresponding to a higher probability of taking the item in
question first, whereas setting parameter c to a value > 1.0
increases the weighted cost.

Cp,q = d(p,q)k · c (1)

Relational dependencies are defined as constraints that fa-
vor putting one item on the table earlier than a second item,
e.g., because the first item is supposed to be placed below the
second item (saucer and cup, etc.) or because the item is used
to define the place setting on the table (placemat, plate). Con-
tainment indicates whether an item can be accessed directly
or whether it is stored in a cupboard or the like which has to
be opened first.

We assume relational dependencies to have an influence on
the ordering of items as, with an ideal ordering, each item has
to be picked up and placed on the table only once, and the
placement of subsequent items is facilitated (e.g., not having
to know how much space to leave between items of silver-
ware for the plate). In contrast to choosing an arbitrary or-
dering, in which items already on the table might have to be
moved again (e.g., lifting the cup to place the saucer below
it, or making space for the plate by moving the silverware),
this ideal sequence minimizes the cognitive and physical ef-
fort. Since the opening of cupboards involves physical ef-
fort, containment is considered to be another cost factor. The
weighted cost for each possible item also depends on which
dimensions are considered when calculating the cost: Dis-
tances differ depending on whether they are computed in 1D
(i.e., with respect to the x, y, or z axis), 2D (i.e., with respect
to the xy, xz, or yz axes), or 3D (i.e., with respect to the xyz
axes). Parameters k and c are treated as free parameters of the
model and will be estimated from the data.

Simulations
Simulations aim to test two specific aspects: Planning depth
and dimensionality. For this purpose, we conducted two
model comparison studies: The purpose of the first simulation
was to compare different levels of planning depth: whether
the model assumes a one- or a two-step look-ahead (see Plan-
ning Depth). The second simulation examined the dimen-
sionality of the spatial representation people employed for
distance calculations (see Dimensionality).

Based on a given spatial layout with item coordinates, the
task description (required items), and a sequence of current

Table 1: Parameter estimates for different items

Category of relational
dependencies (k) Items

strong tray, placemat, table cloth
medium plate (empty), napkin
none (k = 1) all other items

locations, simulations were conducted as follows: For each
predicted next item, the prior location was taken as the cur-
rent location, regardless of whether the corresponding action
was a table setting action. In each step the cost for all next
possible actions was calculated (Eq. 1, p = current location,
q = item location), from which the item with the lowest asso-
ciated cost was chosen to be picked up next (Fig. 1). If there
were multiple items with the same associated cost, one item
was chosen randomly.

starting

position

tray

plate

cup

plate

cup

cup
5.20

5.40

5.40

6.92

7.59

Figure 1: Example for stepwise-optimal item selection based
on weighted cost (TUM environment, k and c set)

Parameters k and c were estimated by grid search. Param-
eter k was estimated per item category (see Tab. 1), i.e., items
with strong relational dependencies (e.g., placemat), items
with medium-strength relational dependencies (e.g., plate)
and items without relational dependencies (k = 1). c was es-
timated for all objects in closed containers (e.g., cupboard,
drawer). To evaluate how well the sequences generated by the
model and the observed sequences matched, we computed the
Damerau-Levenshtein edit distances (Damerau, 1964) and
normalized by sequence length to make results comparable
across sequences of different length. The resulting distance
measure, DLn, see Eq. 2, ranged from 0 (i.e., identical) to 1
(i.e., maximally different). As a baseline, mean edit distance
was calculated for n! samples generated without replacement
for observed sequences of length n and averaged over all se-
quences. For each parameter combination, model-generated
and observed sequences were compared for n = 100 itera-
tions, considering the median edit distance over all iterations.

DLn =
edit distance

maximum edit distance
(2)

Using a modeling approach, we investigated planning
depth and dimensionality across three table setting datasets
(Sec. Data). We estimated k and c by finding the best-fitting
model over all unique sequences of action orderings. Values
for (strong) k were tested in a range between 0.1 and 0.8 (in-
cluding ending values), with medium-strength k defined as
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k + 0.1 and steps of 0.1. Parameter c was tested in the range
between 1.1 and 1.9 (including ending values), with steps of
0.1.

Data
TUM Kitchen The TUM Kitchen Data Set (Tenorth, Ban-
douch, & Beetz, 2009) contains data from four subjects set-
ting a table in different ways, each time using the same items
in the same environment. Each trial began with the subject
facing the kitchen (standing between location A and B, see
Fig. 2) and ended with all required items being on the table
(at location C or D). The necessary items for table setting
were stored in location A (tray, napkin), in the drawer be-
tween A and B (silverware), and B (plate, cup). The x axis
represented the traversable space between table and storage
locations (cupboards, drawers) as well as kitchen appliances
(stove, fridge), while the y axis represented the axis of move-
ment along storage locations and kitchen appliances (fridge,
cupboard, stove, etc., see Fig. 2). Of the 20 video episodes,
video 18 consists only in repetitive movement and had to be
excluded from our analysis.

Figure 2: Layout of the TUM kitchen (Tenorth et al., 2009)

EPIC-KITCHENS EPIC-KITCHENS (Damen et al.,
2018) is a large-scale first-person vision data set collected
by 32 participants in their native kitchens. Since each
participant recorded their activities in their home kitchen,
spatial environments and items vary between participants.

The participants recorded all their daily kitchen activities
with a head-mounted GoPro (video and sound) for three con-
secutive days. Each recording starts with the participant en-
tering the kitchen and stops before leaving the kitchen. The
participants were asked to be in the kitchen alone, so that the
videos capture only one-person activities. Each participant
recorded several episodes.

The episodes contain a multitude of kitchen activities, such
as cooking, stowing away groceries, and table setting. For
the purpose of this analysis, we only used episodes with table

setting actions, which reduced the sample size to 16 videos.1

Since the table setting actions are interleaved with cooking
actions, specific items can fulfill different functions, such as
a plate being used as container for a meal or as an empty
(eating) plate. To account for such differences, items are not
categorized according to item type but function (e.g., a plate
not serving as the eating plate is not considered to have strong
relational dependencies as defined in factor k).

cupboard

kitchen counter

serving tray sink

drawer 1
drawer 2

fridge

kitchen island

drawer3

starting
position

table

Figure 3: Layout of the Virtual Reality kitchen

Virtual Reality Dataset The data contains table setting se-
quences in a VR environment from a single participant.The
virtual kitchen consisted of three separate regions (fridge, tray
area, island area; Fig. 3), each of which had to be visited
at least once. The fridge contained a number of dairy prod-
ucts and orange juice, drawer 1 silverware, drawer 2 mugs
and glasses, drawer 3 bowls, and the cupboard a number of
food packages, such as cereal. The participant moved through
the virtual environment by moving through a corresponding
but open physical space, experiencing the virtual environment
through a HTC Vive head-mounted display. Movement was
tracked via the head-mounted display while interaction with
the environment was realized through two HTC Vive con-
trollers (one in each hand).

The participant was asked to set the table for one person
having breakfast. The minimum set of items (cereal bowl,
spoon, cereal, milk, glass, juice) could be expanded by the
participant if desired. The task was to first assemble all nec-
essary items on the tray and then to carry the items to the
table. The participant was familiar with the kitchen and knew

1P01 01, P01 03, P01 05, P01 09, P10 01, P12 01, P12 06,
P21 01, P21 03, P21 04, P22 12, P22 16, P24 02, P24 04, P24 05,
P26 11.
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the location of all required items well. Data from 39 trials
was collected. For action orderings we considered the order
in which items were grasped and put on the tray.

Model Comparisons
Planning Depth
We ran model simulations for one and two steps of planning
ahead (Fig. 4). The one-step model works as described above.
The two-step model works as follows: after choosing a first
item, a second item is already chosen while picking up the
first item, based on the same weighted cost calculation as be-
fore. The second item is then picked up next regardless of
whether it is the lowest-cost item for the next starting point,
repeating this process until task completion. Because both
models have the same number of parameters, functional form,
and draw on identical sample sizes, a goodness of fit measure
is equivalent to more complex measures of generalizability
(Pitt & Myung, 2002). Accordingly, we considered and re-
port goodness of fit measures for comparing the models.

Both models consider a 3D environment for distance cal-
culation (see Eq. 1). The best fit for the one-step model is
achieved for parameters strong k = 0.6, medium k = 0.7, and
c = 1.9, which yield an average edit distance of 0.411 (me-
dian: 0.4). The best fit for the two-step model is achieved for
parameters strong k = 0.5, medium k = 0.6, and c = 1.2, which
yield an average edit distance of 0.415 (median: 0.4). Both
results are lower than the baseline of 0.603 (see Simulations).

Figure 4: Model fit based on planning depth (k = strong k)

Although the models differ in the action orders they gen-
erate, they seem to perform similarly well in accounting for
human behavior (Fig. 4). To further investigate, we computed
the average edit distances across all possible parameter value
combinations. Again, models performed very similar (1 step:
0.446, 2 steps: 0.446, median for both: 0.4) and comparing
their prediction accuracy using the Wilcoxon signed rank test
shows no significant difference (W = 831.500, p = 0.686).

As cognitive offloading tends to be used particularly often
in spatial tasks (Wilson, 2002), we argue that the results in-
dicate that people plan only one step ahead, as the process of
remembering the second item to be picked up can be consid-

ered cognitively effortful and adding a second step does not
achieve a better fit between predicted and observed behavior.

Dimensionality
To assess dimensionality, we compared seven models that as-
sumed spatial representations along the x, y, z, xy, xz, yz, xyz
axes, respectively, all of which assumed one-step planning.
For the same reasons as with the depth model comparison,
we again used goodness of fit as comparison measure.

Prediction accuracies for the first simulation show a highly
significant difference (χ2(6) = 507.748, p < 0.001), which
lends support to the idea that dimensionality has a strong in-
fluence on action organization in everyday activities. Since
previous research shows a preference for 2D spatial repre-
sentation and better navigation performance in 2D environ-
ments, we assume that calculating distances in 2D instead of
3D might reduce the necessary cognitive effort.

Figure 5: Model fit based on dimensionality (k = strong k)

The distribution shows that the average edit distance be-
tween model-generated and observed sequences is lowest
when considering xy or xyz for dimensionality (Fig. 5, base-
line shown as plane), with xy achieving slightly better results
(0.438 vs. 0.444, averaged over all possible parameter com-
binations; median for both 0.4). In a pairwise comparison of
model simulations based on xy and xyz spatial representations
using the Wilcoxon signed rank test, the model results consid-
ering a horizontal versus a horizontal and vertical spatial rep-
resentation also differ significantly (W = 1561.000, p = 0.05),
indicating that people seem to ignore the vertical dimension.

As the importance of single (1D) axes might be dependent
on how much they can influence the calculation of physical
distance, i.e., the actual possible movement span, we com-
pared the span for each axis (x,y,z). y has the highest average
span: 3.17 vs. 1.89 and 1.833 for x and z, respectively. The
average edit distance and the average volume of all task en-
vironments show a strong negative correlation (ρ = -0.708,
p < 0.001), i.e., with decreasing volume/span of the task en-
vironment, the prediction error increases (Fig. 6).

In order to account for the possibility that people assign
different importance to the individual spatial axes dependent
on their span width, we ran a second simulation of the model
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Figure 6: Correlation between average edit distance and vol-
ume/span of task environments for each spatial representation

that incorporated a weight criterion for each axis. We calcu-
lated a weighted Euclidean distance between item locations
by multiplying the partial difference for each axis as shown
in Eq. 3, where the axis weight wn was defined as in Eq. 4.
Assuming an environment with axes spans x = 3, y = 2 and
z = 1, this results in wx = 0.5, wy = 1

3 , and wz = 1
6 .

d(p,q) =
√
(px−qx)2 ·wx +(py−qy)2 ·wy +(pz−qz)2 ·wz

(3)

wx =
spanx

spanx + spany + spanz
(4)

In the new model, z still shows the highest error rate
in prediction (0.60 average edit distance, thus similar to
the baseline), whereas xyz achieves a slightly better fit, but
still has a higher average edit distance than xy (xyz: 0.510,
xy: 0.514; median: 0.51 for both). Comparing two- and
three-dimensional representation using the Wilcoxon signed
rank test indicates a significant difference (W = 1348.000,
p = 0.005), i.e., xy achieves the best fit in both model vari-
ations.

Conclusion and Future Work
Our results lend to support to our initial argument of the mer-
its of investigating cognitive abilities by analyzing everyday
activities. Our analyses of table setting provided two main
findings: First, people behave consistently with a model that
plans one step ahead and, second, a representation of two-
dimensional horizontal space seems to be preferred over a
three-dimensional representation including the vertical.

Both findings indicate that the cognitive costs of alternative
planning strategies and representation structures outweigh
their potential benefits. These findings are consistent with
previous research showing human navigation performance to
be better in 2D environments (Zwergal et al., 2016), differ-
ences in the accuracy of distance encoding in horizontal vs.

vertical space (Hinterecker et al., 2018), and the theories of
external scaffolding and cognitive offloading, i.e., humans us-
ing properties of the environment to their advantage.

We expect our proposed planning model not to be specific
to the task of table setting, but to be generalizable to other ev-
eryday activities as well. Aspects to consider in future models
are possible interdependency effects between planning depth
and dimensionality, as well as cognitive effort. While we con-
sider cognitive effort in the scope of relational dependencies
and dimensionality, further research is needed on how cogni-
tive effort impacts everyday activities.

As the model is not able to provide reliable predictions
for sequences with low variance in the considered constraints
(e.g., similar distances, no relational dependencies between
items or containment), other potentially influential factors
need to be investigated further and addressed in future ver-
sions.
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Introduction 
ACT-R (Anderson, 2007) is the most influential       

cognitive architecture in psychology and neuroscience      
(Kotseruba and Tsotsos, 2018). To enforce its commitment        
on end-to-end modeling (that is, the constraint that the         
modeler should consider all aspects of a task), ACT-R is          
purposely designed to paradigmatically discourage the      
developer from taking shortcuts, which is often frustrating. 

In 2010, Reitter and Lebiere proposed the alternative        
paradigm of accountable modeling. Instead of discouraging       
developers from taking shortcuts, it encourages them to        
explicitly specify which components of an architecture they        
plan to use and how they account for aspects that are not            
modeled using the architecture (e.g., through parameter       
estimation). As a proof of concept, they designed ACT-UP,         
a modular Lisp implementation of ACT-R’s declarative       
memory system that can be used independently of the other          
components. Despite its successes, ACT-UP was limited by        
(a) being written in Lisp, (b) covering only a limited set of          
functions; and (c) inheriting ACT-R’s traditional     
assumption that memories are equal in terms of importance.

Here, we present PyACTUp, a Python implementation       
of ACT-UP that takes advantage of Python’s modern        
language design, and extensive graphic and scientific       
libraries, and further extends the set of declarative memory         
functionalities, including spreading activation and emotional      
components. Both of these core functionalities have       
received widespread attention in contemporary models, and       
are now implemented without any reference to ACT-R’s        
other first-level structures (buffers or productions). Github:       
https://cher_yang@bitbucket.org/cher_yang/pyactup2.git 

General PyACTUp Architecture 
PyACTUp closely follows Reitter & Lebiere’s (2010)       

original implementation of ACT-UP, doing away with       
buffers and procedural knowledge and simplifying the       

process of modeling memory encoding and retrieval, so that         
modelers are able to focus on essential cognitive phenomena         
instead of being stopped by programming difficulties.  

The most fundamental functions of PyACTUp are       
learning and retrieving memories. As pieces of information        
are learned, they are stored in declarative memory as         
chunks. The memory contains one or more slot-value pairs,         
and can be retrieved by specifying all or a subset of           
identifying cues, also in the form of slot-value pairs. A new           
declarative memory is created as an instance of the Memory         
class object, i.e. dm = Memory(). Chunks are represented        
using Python’s built-in dictionary type, and are learned and         
retrieved using Python’s keyword-argument syntax to      
manage slot-value pairs. For example, the following line: 

dm.learn(guy=”Ringo”,role=”Drummer”)
creates a chunk for Ringo Starr of The Beatles. To retrieve 
him, one can type  

dm.retrieve(role=”Drummer”)
As in ACT-R, chunks in a Memory structure are        

retrieved based on their activation, a scalar meta-quantity        
that reflects frequency (the retrieval probability odds) and        
the recency (decays over time). Depending on the number of          
memories available in a Memory structure, it is possible to         
enable blending and retrieve blended memories instead of a         
specific chunk. 

Implementation of Spreading Activation 
In ACT-R, a chunk’s activation is made of a base-level          

(the part that decays over time) and a spreading component,          
which increases a chunk’s activation in proportion to its         
association to other chunks. Because spreading activation       
originates in ACT-R buffers, ACT-UP and its original        
Python counterpart originally excluded it from their       
available functionalities. However, since spreading     
activation is important to capture phenomena like the fan         
effect (Anderson, 1974) and working memory (Daily et al         
2001), it was introduced as new functionality in this version          
of PyACTUp. To avoid the use of buffers, activation is          
spread through a specific function and the use, again of the           
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keyword-argument syntax, with an argument that defines       
the source. For example,  

dm.spread(role=”drummer”)
spreads activation from “Drummer” to other chunks in dm.        
Following the ACT-R standard algorithm, the associative       
strength between two chunks i and j is calculated, by          
default, as inversely proportional to the logarithm of the fan          
of i, i.e. the number of times i appears in other chunks other             
than j. Modelers, however, are given flexibility to define         
their own associative strength functions. The value returned        
by these functions is then multiplied by the weight.  

Differential Importance of Memories 
ACT-R and ACT-UP share the assumption that all        

memories are equal in terms of importance, and therefore         
they decay at the same rate. This assumption was         
recognized as a limitation by Anderson himself (2007,        
chapter 3). Researchers modeling effects of emotion, for        
example, have repeatedly suggested that affect and emotion        
alter how memorable certain events are by providing an         
activation bias or boost (Juvina, Larue, & Hough, 2018,         
Fum & Stocco, 2004; Cochran et al., 2006). 

Without taking a stance in the debate, we decided to          
provide a way for developers to add their own activation          
bias terms through an additional importance term, which is         
linearly additive to base-level and spreading activation.       
Here, we implement the highest level of conceptual idea of          
importance. The degree of importance is attached to the         
nature of memory and to some extent decides the needs of           
retrieval subsequently. The importance is set directly       
through learning. For example,  
dm.learn(guy=”Disco”,role=”Manager”,
importance=5)

To observe the effects of importance on memory        
retrieval, we created a model to simulate the retrieval         
process of memory with various degrees of importance.        

Highly important  
memory is set to values     
from 0 to 3 while     
normal memory is set to     
a randomly distributed   
value from 0 to 2.  

Fig 1. Interactive Model    
shows the change of    
base-level activation  
over time (blue);   
base-level + spreading   
(green); and base-level   
+ spreading +   
importance (red).  

Interaction Example 
Fig 1 provides an example of the code in Jupyter          

Notebook window. This shows how PyACTUp can be used         

to quickly run an interactive model in Python. By adjusting          
parameters, the model shows dynamic memory encoding       
and retrieving outputs.  

Summary 
The current version of PyACTUp inherits the       

simplification from the last version and extends its        
functionality to include the spreading activation and       
importance term. We use the new PyACTUp to model         
spreading activation effects and the retrieval discrepancy       
between important memory and trivial ones. Admittedly,       
PyACTUp is only a subset of the ACT-R architecture, so it           
does have some limitations in modeling human cognition.        
How to keep PyACTUp simple, flexible and applicable is a          
trade-off problem for the framework designer. Further       
researchers could explore other useful functions and expand        
the current PyACTUp to a more comprehensive,       
accountable and modular implementation of the ACT-R       
cognitive modeling architecture. 
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