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Preface

The International Conference on Cognitive Modeling (ICCM) is the premier conference for research on
computational models and computation-based theories of human cognition. ICCM is a forum for 
presenting and discussing the complete spectrum of cognitive modelling approaches, including 
connectionism, symbolic modeling, dynamical systems, Bayesian modeling, and cognitive 
architectures. Research topics can range from low-level perception to high-level reasoning. In 2019, 
ICCM was jointly held with MathPsych – the annual meeting of the Society for Mathematical 
Psychology at the Le Centre Sheraton hotel, in Montreal, Quebec, Canada, on July 19th – 22nd.
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Cognitive Models as a Computational Correlate of Theory of Mind for
Human-Machine Teaming

Leslie M. Blaha (leslie.blaha@us.af.mil)
Air Force Research Laboratory, Carnegie Mellon University

Pittsburgh, PA 15213 USA

Abstract

I delve into an initial discussion on the nature of the theories
of mind needed to support effective human-machine teaming.
Effective human-machine teaming will require humans to have
a theory of mind about machine intelligence and for machine
intelligence to have a theory of mind about human teammates.
The latter will require a machine to be able to make inferences
about the cognitive states related to observable behaviors by
the human and to predict future states and actions consistent
with the human’s beliefs, goals, and desires. This paper pro-
poses that cognitive models can provide the computational cor-
relates to enable a machine theory of mind to reason about its
human counterparts.
Keywords: Human-machine teaming; Computational cogni-
tion; Cognitive models; Human information processing; The-
ory of mind

Introduction
The purpose of this paper is to spark an exploration around
the nature of the theory of mind required to support human-
machine intelligence teaming. I begin with the claim that a
theory of mind is necessary for humans and machine intel-
ligence to work together in collaborative teaming situations.
These are situations in which a machine has autonomous ca-
pability, meaning it can act alone without human supervision
or direct intervention, can take direction or feedback from a
human, can give direction or feedback to a human teammate,
and leverages some form of artificial intelligence to process
information, learn and adapt to complete tasks and achieve
the team’s goals.1

Human-machine teaming of this type is predicated on the
assumption that humans and machine intelligence understand
each other. We can see this in claims that increasing trans-
parency of automation will allow humans to properly cali-
brate their trust and reliance on the technology (Lee & See,
2004). Or it is similarly implied in the claims that artificial
intelligence endowed with the ability to explain its decisions
(so called explainable AI or XAI) will aid human users to
reason about the correctness and sources of error in the ma-
chine’s output (Hoffman, Klein, & Mueller, 2018). The push
for real-time state assessment in humans is partially driven by
the goal of representing the human in ways that can be inter-
preted and adapted to by machine systems (e.g., Borghetti &
Rusnock, 2016). Across these research topics and engineer-
ing endeavors, there is a common theme of measuring, iden-
tifying, and representing the unobservable states of agents to

1At this junction, I am agnostic to whether that intelligence is
embodied in a robotic form and to the specific nature of the inter-
actions and communications between the human and machine intel-
ligence. These details not change the present argument, though are
critical for engineering actual systems.

make them understandable to the other team members, par-
ticularly between heterospecific team members.

We have been implicitly demanding a theory of mind to
support effective human-machine teaming.

Theory of Mind Defined for Human-Machine
Teams

Theory of mind (ToM) is the term ascribed to the processes
an agent uses to impute the internal “mental” states of itself
and other agents (c.f. Fodor, 1992; Mahy, Moses, & Pfeifer,
2014; Premack & Woodruff, 1978). Note that herein, I am
using the term mental state both for humans and machines
to refer to the internal information processing mechanisms
and representations that are only indirectly observable by the
other agent. In various social and developmental lines of
ToM research, this inference process is usually considered
conceptually from the perspective of an exemplar human or
primate, the “subject” of the study. The social interactions,
and therefore relevant ToM, is about the subject’s ability to
reason about itself and one or a small number of other agents,
usually other humans.

One level of reasoning within ToM emphasizes the sub-
ject’s ability to interpret observed actions of the other as goal-
directed behaviors. That is, the ToM must support the inter-
pretation of a sequence of actions as representing a trajectory
through a state space toward a goal state. Any time the agent
is seeking the same goal state, it is likely to exhibit similar
sequences of behaviors. A subject could reason over these
trajectories to abstract a degree of meaning about the goals
driving the observed behaviors. However, ToM is usually in-
voked at a deeper level: the inferences by the subject should
be representing the intentions, emotions, prior experiences,
mental state, awareness, and goals of the other agent. That is,
we hypothesize that a subject capable of full ToM is attempt-
ing to represent to him or herself the latent factors within an-
other agent that contextualize the goal-oriented behaviors.

The dominant theories about ToM generally argue that ei-
ther people rely on their own mental mechanisms to simulate
the experiences of other agents (e.g., Scholl & Leslie, 1999),
or they rely on their ability to reason over internal concep-
tual representations of cognitive mechanisms (e.g., Gopnik &
Wellman, 1994). A key commonality across theories is the
reliance on an internal representation of the mechanisms of
mind. This brings us to the crux of the challenges in defining
a ToM for human-machine teaming, which can be summa-
rized in three questions:

1. What are the mechanisms of mind for machine intelli-

1ICCM2019



gence?

2. How do we represent machine mechanisms of mind in hu-
mans to be reasoned over?

3. How do we represent human mechanisms of mind in ma-
chines to be computed about?

The nature of human-machine teaming and the fundamen-
tal differences between human cognition and computational
processes require that we expand the concept of ToM to in-
clude multiple types of ToM models and mechanisms. In
spite of our often-useful analogy of cognition as computa-
tion, the nature of the ToM for machines reasoning about ma-
chines, machines reasoning about humans, and humans rea-
soning about machines must be different than human ToM
about other humans. Elucidating the nature of these new theo-
ries of mind is a hard problem. Indeed, I note that developing
an artificial theory of mind to support human-robot interac-
tion was listed as one of the top grand challenges in humanoid
robots today (Yang et al., 2018).

The human ToM within a human-machine team will likely
operate as a classical ToM: introspection about self and in-
trospection about other people (particularly for multi-human,
multi-agent team configurations) will continue to engage pro-
cesses of simulating and theorizing about mental states based
on our own experiences with self and interacting with other
people. But now human ToM must also provide introspec-
tion about machine intelligence. Properly supporting such
heterospecific introspection will require the development of
appropriate mental models for machine intelligence capabil-
ities. Deeper discussion about human mental models of ma-
chine intelligence is beyond the current scope.

Let us make the working assumption that a machine ToM
parallels human ToM. It must enable a machine intelligence
to “introspect” about itself.2 It must enable a machine intel-
ligence to introspect about other machine agents. In some
cases, the other agents may employ similar artificial intelli-
gence algorithms, but machine learning, which is sensitive
to input data and conditions, may have produced deviating
internal representations of the world. In other cases, other
machine agents may have completely different algorithms,
chip architectures, and system structure. It could potentially
take a complex set of representations and savvy abstractions
to enable machines to reason about other agents. Recently,
Rabinowitz and colleagues (2018) have made headway in de-
veloping machine ToM that abstracts all agent behaviors into
state-action trajectories and engages pattern recognition for
inferences between agents (see also Winfield, 2018, for a can-
didate abstraction in robots).

Finally, a machine ToM for human-machine teaming must
enable the machine to reason about human teammates. I ar-
gue that it will not be enough to abstract a human into a sim-

2I use the term introspection here loosely and without proper def-
inition at the present time. This definition will need to delve into the
nature of computational inference and state assessment of computa-
tional algorithms, which is beyond the present scope.

ple, observable state-action sequence for pattern recognition.
Analogous to human ToM, the machine intelligence will need
to make inferences about the mechanisms of mind, the emo-
tions, intentions, beliefs, and goals of the humans. There may
also be cases where the machine must make inferences about
physical states and capabilities, too.

The reason we must go beyond simple state-action pattern
recognition is that our intentions for human-machine team-
ing capabilities entail intelligent machines that anticipate and
adapt to their human teammates in addition to adapting to dy-
namic task environments and data. This will require that ma-
chines can predict future human states and likely actions (and
sometimes likely consequences).3 For machine ToM about
humans to achieve prediction or anticipation, it must incorpo-
rate a representation of the internal states, intention, beliefs,
and goals of the human. It is not enough for the machine
intelligence to be reactive to the behavior or action of the hu-
man, which may facilitate pattern recognition but not predic-
tion of future actions contextualized by the mental state of the
human teammate. It is here that cognitive models of the men-
tal mental mechanisms and processes supporting the human
states have a critical role to play.

Cognitive Models in the Machine ToM
We now come to a primary question for consideration by
the cognitive modeling community: can cognitive models
provide the algorithmic framework(s)—computational corre-
lates, if you will—to enable machine intelligence to have a
ToM about human teammates? A limitation of the few current
artificial theories of mind is that they do not offer a human-
specific representation that differentiates human teammates
from other environment variables or computational agents,
though the need for such representations to support effective
interactions is recognized within social robotics at least (Yang
et al., 2018). Winfield (2018) states that the artificial ToM for
robots based on a consequence engine is most effective for
conspecific agents; that is, reasoning about another agent is
most effective when the agent is the same type as the robot.
Scassellati (2002) had demonstrable success integrating mod-
els of fundamental perceptual skills into humanoid robots to
encourage behaviors consistent with the emergence of higher
level ToM-related behaviors (e.g., gaze tracking). While be-
havior consistent with a machine ToM about human team-
mates is promising, we can go further by not only leverag-
ing models of elements of perception and cognition but lever-
aging models instantiating full decision-action processes and
information processing systems or even full architectures of
cognition and conceptualizing them as the machine’s ToM
about the human teammate. In this way, the cognitive models
provide a computationally tractable representation of human
mental mechanisms, states, beliefs, intentions, and goals—

3I note for completion that there is an analogous need for humans
to predict the future states, likely actions, and likely consequences of
machine activity in the human-machine team. This is related to the
need to examine the nature of human mental models about machine
intelligence and is left to future exploration.
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all those elements critical for deeper introspection within a
ToM. And because computational model implementations are
in computational languages, they can be integrated into sys-
tem architectures and intelligent processes.

We must ask then, if cognitive models are to be thought
of as a correlate for machine ToM about humans, do they
provide the same support to machines that neural correlates
of human ToM provide to humans? Within their review of
neural correlates of ToM from the social and developmental
psychology perspectives, Mahy et al. (2014) offer some initial
criteria we can use to evaluate conceptual consistency.

A correlate for ToM should support mental simulation.
One key hypothesis for ToM is that people simulate them-
selves in novel situations and then project inferences about
what will happen onto other people (Fodor, 1992; Scholl &
Leslie, 1999). Such simulation relies on people having di-
rect access to their own mental states and past experiences.
Cognitive models, whether computational cognition formal-
ized in cognitive architectures or mathematical models in-
stantiated in computational algorithms, can simulate human
behavior. While the “mental states” of a specific model de-
pend on the mechanisms instantiated in it, generative cog-
nitive models are theoretically grounded in known cognitive
mechanisms. In this way, cognitive models might provide
machine intelligence teammate direct access to the internal
model/mechanism states. Traces of the model history or di-
rect representations of memory, such as declarative memory
in ACT-R, provide access to past experiences. The simulated
representation of a human (or multiple simulations), can then
be compared to observed human behavior to further inform
the machine ToM.

A correlate for ToM should be modular in nature. Mul-
tiple theories of mind postulate the existence of dedicated,
even innate, neural correlates and cognitive mechanisms sup-
porting reasoning about self and others. Modularity of mech-
anisms is important for the reasoner to keep the inferences
about self separate from inferences about others. In our case,
then we want to construct human-machine teaming systems
where the cognitive models constitute their own module that
keeps the representation of human teammates unique from
the representations of the task, environment, data or ma-
chine’s own capabilities. It is not inconsistent to consider the
cognitive models within the machine intelligence in a mod-
ular way. Designing machine intelligence-based systems in
a modular way would enable the system to access its ToM
about human teammates when operating with those team-
mates and to operate autonomously when the human team-
mates are not present. The representation of the human re-
mains consistent even as the structure or mission of the team
changes.

A correlate for ToM supports reasoning over multiple
perspectives. A mature ToM is able to hold multiple per-
spectives in working memory and reason over them inde-
pendently. This helps someone to differentiate inferences

about themselves from inferences about each other individ-
ual. Cognitive models have been used as independent agent
representations within larger systems. One example is the
use of model to support human-robot interaction using ACT-
R to simulate human predictions to inform robot planning
(Lebiere, Jentsch, & Ososky, 2013). This system enables rea-
soning about potential human states together with computa-
tion about the robot itself. Another example is the develop-
ment of cognitive-model based synthetic teammates for train-
ing (Ball et al., 2010) where the system tracks the synthetic
agent and models human learning behavior simultaneously.
As long as they are incorporated into systems with adequate
processing resources, cognitive models are capable of being
used in a modular way in parallel with all other relevant ma-
chine intelligence algorithms and artificial ToM about other
machine agents.

A correlate for ToM should support theoretically
grounded conceptual learning. Human ToM evolves over
time, as people learn about themselves and others. They move
from simpler to more complex conceptual representations.
They evolve to account for observations about other that are
inconsistent with currently held conceptions. It is argued
that relevant conceptual knowledge must reside in theory-like
structures that support the human ToM (Gopnik & Wellman,
1994).

Cognitive models are theoretically grounded in the mech-
anisms of cognition. As such, they can provide the theo-
retical structures needed for evolution of conceptual under-
standing about the human within the machine ToM. Cogni-
tive models can further be equipped with human-like learning
mechanisms that enable the model representations to evolve
in human-like ways. Consistent with the assumptions of ToM
development, this concept learning can be captured through
experiential changes in the model and age-related changes in
a model operating at a longitudinal scale. This is critical for
the machine to have conceptual, or theoretically grounded,
representations of how the human’s mental state is or could
be changing, even if the machine is not learning or reasoning
in a human-like way.

Open Questions
Conceptually, cognitive models are capable of supporting ma-
chine ToM about human teammates. As we are early in the
process of exploring ToM for human-machine teaming, there
are a number of open questions that must be debated, includ-
ing but not limited to:

• Do we need full computational cognitive architectures or
unified theories of cognition instantiated in machine intel-
ligence to make useful inferences?

• How detailed must a human’s mental model of the machine
be for useful inferences?

• What are the critical tests that a cognitive-model based ma-
chine ToM is, in fact, a full theory of mind?
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• When would it disadvantage a human-machine team to re-
quire a full ToM in the system?

As we evolve our vision for the capabilities of human-
machine intelligence teams, and as the evolution of such
teams changes the way we even conceive of what be ca-
pable, the need for the human and machine to understand
each other will remain a constant system requirement. It be-
hooves us to consider now what it means for humans and ma-
chines to understand each other and how establishing human-
machine teaming theories of mind will inform that under-
standing. Cognitive models have an important role to play
in meeting the grand challenge of developing an artificial the-
ory of mind and a critical role to play when those artificial
minds interact with our own.
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Abstract

Recent work in modeling human syllogistic reasoning claimed
that heuristic approaches perform worse in accounting for ex-
perimental data than more comprehensive representations of
cognition. We show that this observation might have been due
to a misconception of the goals heuristics are often developed
for: representing a specific psychological phenomenon or re-
flecting individual inference strategies. To demonstrate the
performance of heuristic models, we introduce a novel model
for syllogistic reasoning fundamentally based on transitivity.
By evaluating it based on predicting the most frequent answer,
i.e., the response most often selected by participants, we show
that this model is able to outperform the current state of the
art, demonstrate the promising role of transitive inferences in
syllogistic reasoning, and discuss its implications for modeling
individual reasoners instead of populations.

Keywords: syllogistic reasoning; predictive modeling; heuris-
tics; transitivity

Introduction
Syllogistic reasoning is, next to conditional and relation rea-
soning, one of the core domains of human reasoning research
(Evans, 2002). Syllogisms are quantified statements of the
form “All pilots are painters, Some painters are divers” con-
sisting of two premises which are constructed by relating
two terms A-B (i.e., pilots-painters), and B-C (i.e., painters-
divers) via one quantifier out of “All, Some, No, Some ...
not” (for additional background information see Khemlani &
Johnson-Laird, 2012). Depending on the order of terms in the
premises, syllogisms can be classified into four figures:

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

The goal of syllogistic reasoning tasks is to use the infor-
mation of the premises which are related to each other via
the middle term B in order to draw a conclusion about the
end terms A, C by using one of the quantifiers mentioned
above or infer “No Valid Conclusion” (NVC) if there is none.
In total, by considering all combinations of quantifiers and
figures, there are 64 distinct syllogistic problems with nine
possible conclusions causing the domain to be well-defined
and accessible for cognitive modeling endeavors. To increase

*Both authors contributed equally to this manuscript.

readability of the syllogistic problems, quantifiers will be rep-
resented in accordance to their traditional latin abbreviations
(originating from “affirmo” and “nego”) by an uppercase let-
ter for the remainder of the article:

All Some No Some ... not

A I E O

Syllogistic problems are encoded by specifying these quan-
tifier encodings as well as the figural identifier (e.g., AI1 for
“All A are B; Some B are C”).

Research shows that human syllogistic inferences differ
substantially from classical logics (Wetherick & Gilhooly,
1995). Over the course of the last decades, multiple sta-
tistical effects and psychological phenomena were identified
and used to formulate hypotheses and theories about mental
representations and inferential mechanisms used when rea-
soning over syllogisms. Traditionally, analyses of syllogistic
models are based on aggregated data resulting in models be-
ing evaluated in terms of their capability to capture an “aver-
age” reasoner. As an example, the authors of a meta-analysis
(Khemlani & Johnson-Laird, 2012) relied on hits, correct re-
jections, and correct predictions to quantify the match be-
tween model predictions and experimental data. Their results
showed that no satisfactory ordering of model performances
could be identified as all theories exhibited distinct strengths
and weaknesses with respect to the evaluation metrics.

In this paper, we introduce a novel model for syllogistic
reasoning — TransSet — which is based on a heuristic use
of transitive inferences. We evaluate the model by focus-
ing on the ability to predict the most frequently given answer
(MFA) to a syllogism. This reflects the response given by the
“average” reasoner, which lies at the center of population-
based analyses. The model’s performance is discussed and
compared to the state of the art models in cognitive model-
ing of syllogistic reasoning. Additionally, since group-level
results do not necessarily generalize to the individual level
(Molenaar, 2004; Fisher, Medaglia, & Jeronimus, 2018), we
investigate the transferability of the results to the level of in-
dividuals.

The structure of the remainder of the article is as follows.
First, we introduce related literature on cognitive modeling
in the field of syllogistic reasoning as well as on statisti-
cal effects and psychological phenomena we base our model

5ICCM2019



on. Second, we give details about the model’s computational
principles along with an overview of the responses it is able to
predict. Third, we perform the predictive analysis of the state
of the art and our newly proposed model. Finally, the impli-
cations of the results are discussed and directions for future
work are suggested.

Related Work
Developing accurate models to explain and predict human re-
sponses which differ greatly from classical logics (Wetherick
& Gilhooly, 1995) has been a core focus of syllogistic rea-
soning research in the past decades. Currently, there exist
at least twelve cognitive theories attempting to give expla-
nations about the inferential mechanisms inherent to human
cognition by relying on a multitude of different methodolog-
ical foundations (Khemlani & Johnson-Laird, 2012). The au-
thors of a recent meta-analysis (Khemlani & Johnson-Laird,
2012) proposed a classification of the existing theories into
heuristic theories largely based on simple explanations for
differences from classical logics, formal rule theories mainly
proposing logic-based inference mechanisms, and theories
based on diagrams, sets, or models which focus on mental
representation of information and corresponding inferential
operations.

Recently, an increasing effort has been made to turn ab-
stract and often underspecified cognitive theories of syllogis-
tic reasoning into computational models allowing for an as-
sessment of predictions. In their meta-analysis, Khemlani and
Johnson-Laird (2012) compiled prediction tables for most of
the cognitive theories resulting in an analysis showing that
the existing theories feature distinct predictive properties with
respect to hits, correct rejections, and correct predictions. In
consequence, no clear ranking of the models’ predictive qual-
ities could be determined.

One minor result of the meta-analysis was that heuristic
models generally perform worse than more elaborate com-
prehensive accounts which try to give more detailed expla-
nations about cognition by tying into mental representation,
memory, or other components of the human mind (for an ex-
ample, see the mental models theory, MMT, Johnson-Laird,
1983). However, as recent work shifting the focus of analy-
sis to predicting responses could show, the poor performance
of heuristics might have been due to a mismatch of model-
ing purpose and intent. Since heuristics do not aim at ex-
plaining the general population but attempt to formalize spe-
cific strategies which may be applied by certain individu-
als, caution needs to be exercised when analyzing compara-
tive performance evaluations. Indeed, recent work combining
heuristics to form a composite portfolio model demonstrated
a substantial improvement in performance when leveraging
strengths while avoiding weaknesses of specific heuristic ac-
counts (Riesterer, Brand, & Ragni, 2018). A conclusion of
this work is that heuristic models should not be underrated
in general cognitive modeling. While potentially unsuitable
as comprehensive accounts of human cognition, they might

be able to reflect strategies and mechanisms employed by in-
dividuals. Because of this they can serve as promising test
benches to investigate the role of the numerous statistical ef-
fects and psychological phenomena uncovered.

A fundamental concept of human reasoning that has been
extensively investigated is transitivity. In the domain of rea-
soning in particular, the term pseudo-transitive fallacy was
introduced to describe the phenomenon that human reasoners
are prone to drawing transitive inferences even if logically un-
warranted (Goodwin & Johnson-Laird, 2008). Some reason-
ers also assumed transitivity and symmetry when presented
with a completely unknown relation (Tsal, 1977).

In the following, we rely on transitivity to develop a
novel heuristic model of human syllogistic reasoning which
is based on transitive chains of information. The idea to ex-
plain syllogistic reasoning based on transitive effects is not
new. Guyote and Sternberg (1981) introduced a model which
represents information as pairs and integrates set relations via
rules applied to transitive chains of information. The differ-
ence to what we propose is that transitivity is used as the driv-
ing factor for reasoning. Our model assumes transitivity to
serve a heuristic purpose allowing humans to avoid relying
on higher-level reasoning processes.

A Transitive Model
A major part of the inferences that are drawn on a regular
basis in daily life are transitive (e.g., A is bigger than B, B is
bigger than C, therefore A is bigger than C). Usually, these
kinds of inferences are easy for human reasoners to draw. On
the other hand, tasks that look like transitive inference tasks
at first glance, when in reality they are not, are prone to errors
originating from an unwarranted use of transitivity. It can be
assumed that the simplicity and familiarity of transitive tasks
plays a major role for this kind of fallacy.

In the following we propose a heuristic model for syllogis-
tic reasoning based on the principle of transitivity. The main
assumption of the heuristic model is that some human rea-
soners try to circumvent a fully fleshed-out inference process
by trying to apply simple rules for patterns they are famil-
iar with from transitive inferences. Here lies the major dif-
ference to the transitive-chain theory (Guyote & Sternberg,
1981), which is a theory of the human reasoning process in-
stead of a heuristic which might be used by some reasoners to
avoid in-depth inference processes by applying shallow trans-
formations to obtain familiar patterns.

The general process of TransSet is sketched in Figure 1.
Its first step focuses on determining the direction of the syl-
logism by looking for a transitive pattern A-B-C or C-B-A.
Such patterns can be found directly for syllogisms with fig-
ure 1 and 2, corresponding to a path from A to C and from C
to A, respectively.

For Figure 3 and 4 this process fails, which leads to an
NVC response in most cases. In some cases, however, a path
can be constructed by changing the direction of one of the
premises: Figure 3 syllogisms consist of two premises featur-
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Determine Quantifier

Determine Direction

Syllogism

Direct 
Path?

Direction 
Determined

Yes

Impose path by 
reversing a universal 

premise in accordance 
to the preference order

A > E

Possible Situations
A → B ← C (Figure 3)
A ← B → C (Figure 4)

NVC

Fail if no universal 
premise available or if 
both premises feature 

the same quantifier

First
Quantifier 
Positive?

Merge 
Quantifiers

Response

Yes

Second
Quantifier

All?

No
NVCNo

Yes

No

Possible Situations
A → B → C (Figure 1)
A ← B ← C (Figure 2)

In analogy to
Atmosphere

Figure 1: Flow of the TransSet model. First, the direction is
determined by extracting a transitive path from the premise
information. Second, the quantifier is determined by merg-
ing quantifiers. In case of failures resulting from insufficient
information or disconnected premises, NVC is generated.

ing paths to B, while Figure 4 syllogisms yield paths starting
from B. In both cases it has to be decided which categorical
set (A or C) should be put in the place of B. At first glance, it
might seem reasonable to choose the set of elements that has
the most informative quantifier as it is able to “compensate”
for the uncertainty introduced by changing the premise direc-
tion. We consider the universal quantifiers A and E as “in-
formative”, since they make statements about all elements in
a set. The TransSet model therefore changes the direction of
the premise with the most informative universal quantifier, if
there is a single “most informative” universal quantifier (with
an ordering of A > E). In case of ties or a lack of informa-
tive quantifiers, the process fails and returns NVC. Note, that
the change of direction requires the assumption of symmetry,
which is logically invalid for the quantifier A. The occurrence
of this deviation from classical logic in human reasoning be-
havior is also a core concept of the conversion theory (Revlis,
1975).

As soon as a path is obtained, the task can be solved by
propagating the starting set of elements along the path (while
applying the quantifiers). For example, considering syllogism
AI1 (All A are B, Some B are C), a set consisting of all A is
propagated to B, where it is filtered by the second quanti-
fier on its path from B to C, reducing the set to “Some A”.
Therefore, the conclusion would be “Some A are C”, which
is logically invalid. It is important to note that the process of

set propagation yields the same conclusion quantifiers as the
atmosphere theory (Wetherick & Gilhooly, 1995), but also
predicts the direction of the answer: a path from A to C nat-
urally corresponds to an answer with the direction A → C.
The resulting predictions are in line with the figural effect
(Johnson-Laird, 1983).

The propagation, however, does not succeed in all cases.
When the set obtained after filtering by the first quantifier is
empty, traversing the transitive path is no longer possible. For
example, when considering syllogism EI1, the set after the
path A → B would be empty, as there are no elements from A
that are also B. It is therefore not possible to integrate the sec-
ond quantifier, as the set cannot be reduced any further. This
leads to the NVC response, since the endpoint of the path can-
not be reached. An exception to this can occur if the second
quantifier is A: because A does not require any filtering, it
corresponds to simply passing the set ahead, which prevents
the path from breaking. Note, that this failure of the propaga-
tion induces an asymmetry regarding the quantifier which is
not generally assumed in heuristic models: since it can only
happen if the first processed quantifier leads to an empty set,
syllogism EI1 and IE2 are affected but IE1 and EI2 are not.

The TransSet model is a heuristic model. As such, it only
describes a single heuristic strategy assumed to be used by
some human reasoners for syllogistic reasoning. Therefore,
we used the heuristic in a strictly deterministic setup, where a
single prediction for each syllogism was generated according
to the procedure described above. The resulting predictions
are shown in Table 1.

Analysis
The following analysis is based on the dataset and models re-
ported by Khemlani and Johnson-Laird (2012). Additionally,
we included a separate analysis on a dataset of 139 reason-
ers obtained from a web experiment conducted on Amazon
Mechanical Turk which was published as part of the bench-
marking framework CCOBRA1. This second dataset is not
only included to extend the size of the evaluation dataset, but
also because it contains unaggregated responses to syllogis-
tic problems which can be used to assess a model’s capability
to account for individual reasoners. All files related to the
following analyses are available on GitHub2.

MFA Assessment
First, we investigate how accurately models are able to predict
the MFA by comparing the set of possible predictions for a
given syllogism with the most frequently selected response in
the data.

Figure 2 depicts the results of this evaluation based on
two different metrics. The left plot presents the propor-
tion of syllogistic problems which feature an MFA response
that is contained in the set of possible predictions by the re-
spective model. The obtained values differ substantially be-

1https://github.com/CognitiveComputationLab/ccobra
2https://github.com/Shadownox/iccm-transset
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Figure 2: Analysis of predictive performances based on MFA comparison. Left plot depicts proportion of syllogistic prob-
lems where at least one of the possible model predictions matches the MFA. Right plot depicts accuracy of predicting MFA
(discounted for multiple possible conclusions).

Table 1: Predictions of the TransSet model.

Syllogism Prediction Syllogism Prediction

AA1 Aac EA1 Eac
AA2 Aca EA2 Eca
AA3 NVC EA3 Eac
AA4 NVC EA4 Eca
AI1 Iac EI1 NVC
AI2 Ica EI2 Oca
AI3 Ica EI3 Oca
AI4 Iac EI4 NVC
AE1 Eac EE1 NVC
AE2 Eca EE2 NVC
AE3 Eca EE3 NVC
AE4 Eac EE4 NVC
AO1 Oac EO1 NVC
AO2 Oca EO2 NVC
AO3 Oca EO3 NVC
AO4 Oac EO4 NVC
IA1 Iac OA1 Oac
IA2 Ica OA2 Oca
IA3 Iac OA3 Oac
IA4 Ica OA4 Oca
II1 Iac OI1 NVC
II2 Ica OI2 Oca
II3 NVC OI3 NVC
II4 NVC OI4 NVC
IE1 Oac OE1 NVC
IE2 NVC OE2 NVC
IE3 Oac OE3 NVC
IE4 NVC OE4 NVC
IO1 Oac OO1 NVC
IO2 NVC OO2 NVC
IO3 NVC OO3 NVC
IO4 NVC OO4 NVC

tween models. While heuristics such as Matching, the Prob-
abilistic Heuristic Model (PHM), or Atmosphere only con-
tain the MFA response in less than 60% of syllogistic prob-
lems, model-based approaches such as the Mental Models
Theory (MMT) or Verbal Models are able to achieve above
80%. These observations are in line with the results obtained
by Khemlani and Johnson-Laird (2012). However, despite
its fundamentally heuristic principles, TransSet is capable to
compete with the most performant state of the art models ar-
riving at MFA coverage proportions of above 80% demon-
strating that heuristic principles are not generally inferior to
more comprehensive models.

A shortcoming of this type of coverage-based analysis is
that it ignores the size of the sets of possible model predic-
tions. However, since the more responses a model is allowed
to include the higher the possibility is to cover the MFA, mod-
els need to be penalized for unnecessary predictions. This is
presented in the right plot of Figure 2 which assigns a score of
1/|Ps| if the MFA is contained in the prediction set Ps thereby
introducing a penalty factor linear in the number of possi-
ble predictions. As a result, a model is given a score of 1 if
it does not include other responses apart from the MFA for
all syllogisms and lower scores if unnecessary conclusions
are predicted. For example, the mental models theory cap-
tures the MFA “Aac” for syllogism “AA1” in its prediction
set {Aac,Aca, Ica}. As a result it is assigned a score of 1/3.

This plot draws a different picture of model performances.
It shows that when discounting scores based on the number
of predictions, performances drop considerably. MMT and
Verbal Models which dominated the coverage analysis (left
plot) drop substantially due to the fact that they include up to
five of the nine possible conclusions in their prediction sets.
TransSet on the other hand remains unchanged since it only
allows a single prediction to each syllogistic problem.

Put together, both plots demonstrate that the high levels of
accuracy achieved by some models (Mental Models, Verbal
Models) are mainly due to their large numbers of predicted
responses. When compared to TransSet, however, it becomes
apparent that complex and potentially parameterized mod-
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Figure 3: Evaluation of the predictive accuracies of syllogistic models. Boxplots denote medians, inter-quartile range (IQR)
as well as whiskers extending to the last data point within a distance of 1.5 times the IQR from the edge of the boxes. Points
indicate the accuracy for a specific individual reasoner. Accuracies on the CCOBRA 139 participant dataset of the state-of-the-
art models computed from the predictions as reported by Khemlani and Johnson-Laird (2012) are depicted alongside TransSet
and two baseline models: “Uniform” corresponds to using a uniform distribution to randomly select an answer and “MFA”
reflects the most-frequent answer strategy.

els are unnecessary for predicting aggregated responses. The
heuristic principles based on notions of transitivity resulting
in a single response suffice to achieve state-of-the-art perfor-
mance. Note that this analysis focusses on the ability of pre-
dicting responses, whereas some models might also be able
to provide additional estimates (e.g., reaction times), which
are out of scope for the present article.

Individual Match
The results show that TransSet is able to cover a majority
of the most frequently given answers and is able to account
for populations of reasoners. The pressing question is how
relevant MFA is for capturing the variety of strategies that are
employed by human reasoners. Put differently, it would be
insightful to see whether reasoners differ with respect to their
strategies and whether MFA, and accordingly TransSet as its
approximation, is a suitable representation for the majority of
reasoners.

The second analysis reported in the following therefore
shifts the focus towards an assessment of the capability of
models to account for the strategies employed by individual
human reasoners. In particular, we investigate the match be-
tween model predictions and individual responses of the 139
participants contained in the CCOBRA dataset.

Figure 3 depicts the evaluation output obtained from the
benchmarking framework CCOBRA. The image depicts the
accuracy of individual models when predicting responses for
individual reasoners (dot swarm). The box plots present an
aggregated representation of these exact results. The image
shows that models achieve low predictive accuracies across
the board with TransSet surpassing the current state of the
art. The swarm plots show that variances of accuracies dif-
fer greatly between models. While models on the lower end

of the spectrum produce accuracies between 0% and 40%,
TransSet is able to predict up to 80% of an individual’s re-
sponses correctly.

There are two sides to the results depicted here. On the
one hand, it is interesting to see that some of the models are
able to successfully predict most of the responses for at least
a small part of the population. On the other hand, it shows
that not even MFA is able to adequately cover the majority of
people. This demonstrates that syllogistic model evaluation
solely on aggregated data is severely limited and not neces-
sarily generalizable to individuals. This puts the general goals
of cognitive modeling into perspective. A model that claims
to reflect cognitive processes or general phenomena of nature
in a suitable manner should always be able to achieve high
levels of predictive accuracy. If we assume reasoners to rely
on a large number of independent strategies this would corre-
spond to models being able to match certain individuals well
while completely failing to capture others. This is often the
case for heuristics, since the phenomena or cognitive falla-
cies they are constructed on are only applicable to a subset of
individuals in the population. Models accounting for general
principles, on the other hand, should generally show a smaller
variance in coverage of individuals since the principles should
be prevalent in all responses to some degree.

Discussion
In this article we introduced TransSet, a novel model for pre-
dicting human syllogistic reasoning. Drawing from the statis-
tical effects and psychological phenomena of the recent liter-
ature, TransSet is capable of competing with state-of-the-art
models by relying on deterministic and heuristic principles
only. When discounted for the number of possible predic-
tions a model generates for a syllogism, TransSet is able to
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achieve a coverage of MFA of above 80% resulting in an im-
provement of about 20% over the state of the art as reported
by Khemlani and Johnson-Laird (2012).

The main conclusions of this article are twofold. First,
we demonstrate that complex parameterized models are not
required when aiming for predicting an “average” reasoner,
i.e., aggregated data. TransSet, which generates a single de-
terministic response to each syllogism is not only competing
with but outperforms the state of the art when discounting for
the number of possible responses. Second, the evaluation of
predictive accuracy on individuals highlights that no existing
model is able to adequately reflect the reasoning strategy em-
ployed by the majority of participants. In order to not only
account for a select few reasoners but for a wide variety of
individuals, adaptive models tuned to the inferential mecha-
nisms of specific reasoners are required. This, however, re-
mains an open challenge for future work.

TransSet’s performance is made possible because it incor-
porates effects and phenomena uncovered in empirical re-
search. As such it is comprised of ideas found in other mod-
els (e.g., transitivity and illicit conversion) and as such can
be understood as a superset of models. The fact that a sim-
ple model based on heuristic principles is able to outperform
the state of the art illustrates the potential that remains in the
field. Especially when moving beyond models for aggregated
data, the adaptability of parameterized models to individual
inferential mechanisms will allow for an even better under-
standing of cognition and consequently for the development
of more accurate models.

Human syllogistic reasoning is far from being solved. In
addition to outperforming the state of the art in the aggregate
case, TransSet demonstrates a performance that suggests that
its underlying concepts form a plausible reasoning strategy
for at least some individuals. The heuristic use of transitiv-
ity has therefore proven to be a powerful mechanism for ex-
plaining human syllogistic reasoning performance and might
suggest connections to related results from cognitive science
indicating that humans are generally likely to draw transi-
tive conclusions even when they are unjustified (Goodwin &
Johnson-Laird, 2008). It remains to be seen if the model can
be transferred to other domains featuring transitive properties
successfully (e.g., spatial-relation or conditional reasoning).
Currently, we only focus on a direct extraction of general
output predictions from the model. Future work will focus
on two directions: First, we will investigate possible parame-
terizations allowing the model to fine-tune itself to individual
human reasoners. Second, we will investigate further prop-
erties of the reasoning process such as reaction times or its
connection to the psychological phenomena of syllogistic rea-
soning.
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Abstract 

People without any advanced training can make deductions 
about abstract causal relations. For instance, suppose you learn 
that habituation causes seriation, and that seriation prevents 
methylation. The vast majority of reasoners infer that 
habituation prevents methylation. Cognitive scientists disagree 
on the mechanisms that underlie causal reasoning, but many 
argue that people can mentally simulate causal interactions. 
We describe a novel algorithm that makes domain-general 
causal inferences. The algorithm constructs small-scale iconic 
simulations of causal relations, and so it implements the 
“model” theory of causal reasoning (Goldvarg & Johnson-
Laird, 2001; Johnson-Laird & Khemlani, 2017). It 
distinguishes between three different causal relations: causes, 
enabling conditions, and preventions. And, it can draw 
inferences about both orthodox relations (habituation prevents 
methylation) and omissive causes (the failure to habituate 
prevents methylation). To test the algorithm, we subjected 
participants to a large battery of causal reasoning problems and 
compared their performance to what the algorithm predicted. 
We found a close match between human causal reasoning and 
the patterns predicted by the algorithm. 

Keywords: causation; mental models; reasoning; simulation 

Introduction 
People routinely make inferences about complex causal 

matters. For instance, consider the following description 
about a particular farm: 

 

1. Flourishing weeds will cause a lack of nutrients. 
A lack of nutrients will prevent the vegetables from 
growing. 
The lack of vegetables will enable an early harvest. 

 

What is the relation between the growth of weeds and an early 
harvest? Reasoners needn’t have a background in botany to 
infer a possible causal relation between the two events, such 
as in (2): 
 

2. Flourishing weeds will cause an early harvest. 
 

People’s inferences are systematic, and at least some errors 
are obvious, i.e., anyone who infers (3) from the information 
in the description above is grossly mistaken: 
 

3. Flourishing weeds will prevent an early harvest. 
 

How do people infer causal relations between events? 
Sometimes, perceptual cues may drive people to infer a 
causal connection between one event and another: if you 
observe that when a man flips a switch, a particular light goes 
off, it seems reasonable to infer a causal relation between the 
switch and the light. Indeed, the temporal contiguity of two 
events can be sufficient to imply causality (e.g., Lagnado & 

Sloman, 2006; Rottman & Keil, 2012). But the preceding 
farming example demonstrates that people can infer causal 
relations from descriptions, not just observations, and that 
they can do so in the absence of any explicit temporal 
information. 

How do people make causal inferences? A popular 
approach in artificial intelligence simulates human causal 
reasoning using causal Bayes nets and a calculus developed 
by Pearl (2009). It allows precise calculations of conditional 
probabilities, e.g., the probability of an early harvest given 
flourishing weeds, P(early harvest | flourishing weeds), 
provided that relevant causal relations are translated into the 
notation of a graphical network. While the approach can 
distinguish between causes and mere associations, Pearl’s 
calculus cannot explain how reasoners infer novel causal 
relations where none had existed before, i.e., it cannot explain 
how people infer (2) from (1). 

Cognitive scientists disagree on the mechanisms and 
representations that underlie causal reasoning (Ahn & 
Bailenson, 1996; Cheng, 1997; Sloman, 2005; White, 2014; 
Wolff & Barbey, 2015). Mental simulation is central to many 
psychological accounts of the process: theorists agree that 
people construct small-scale simulations to predict outcomes 
(Kahneman & Tversky, 1982), to understand mechanistic 
relations (Hegarty, 2004), to comprehend physical scenes 
(Battaglia, Hamrick, & Tenenbaum, 2013), to resolve 
inconsistent and contradictory information (Khemlani & 
Johnson-Laird, 2011), to deduce the consequences of 
sequences of events (Khemlani, Mackiewicz, Bucciarelli, & 
Johnson-Laird, 2013), and to make counterfactual inferences 
(Byrne, 2005; Galinsky & Moskowitz, 2000). 

Recent approaches to modeling causal reasoning in AI and 
cognitive science face two overarching challenges: first, 
people distinguish between causal relations such as cause, 
enable, and prevent. They understand, for instance, that (4a) 
and (4b) mean different things: 
 

4a. A lack of vegetables will cause an early harvest. 
b. A lack of vegetables will enable an early harvest. 

 

Graphical networks have difficulty capturing the difference 
between the two relations. Various psychological theories 
have invoked the transmission of causal forces (Wolff, 2007), 
causal model structures (Sloman et al., 2009), and mental 
simulations of possibilities (Goldvarg & Johnson-Laird, 
2001) to explain what different causal relations mean (for a 
review, see Khemlani, Barbey, & Johnson-Laird, 2014). But 
there exists no robust computational model that predicts what 
causal relations people generate from descriptions such as (1) 
above. 

11ICCM2019



Second, most theories of causal reasoning cannot explain 
reasoning about omissive causal relations, such as in (5): 
 

5. A lack of nutrients will cause the vegetables to die. 
 

The assertion is distinct from (2) above because it describes 
how the absence of an element can bring about some 
outcome. Philosophers, psychologists, and computer 
scientists have so much difficulty coping with omissive 
causation that some philosophers deny it as a meaningful 
concept (e.g., Beebee, 2004; Dowe, 2001; Hall, 2004). In 
recent years, psychologists advanced theories to account for 
omissive causation: some theorists treat omissive causes as 
an arrangement of causal forces (Wolff, Barbey, & 
Hausknecht, 2010) or as a set of counterfactual contrasts 
(Stephan, Willemsen, & Gerstenberg, 2017). But, 
counterfactuals cannot explain how people reason about 
future causal relations, such as in (1) above, because the 
counterfactuals are retrospective by definition. And, forces 
do not explain why reasoners appear to distinguish omissive 
causes from omissive enabling conditions and omissive 
preventions (see, e.g., Khemlani, Wasylyshyn, Briggs, & 
Bello, 2018). 

Hence, students of causal reasoning remain bereft of a 
feasible, adequate process model of how humans infer causal 
relations. Our goal in the present article is to specify such an 
algorithm and to describe its computational implementation. 
The algorithm is based on the notion that people build iconic 
simulations of possibilities when they reason, and that they 
mentally scan those possibilities to infer novel conclusions. 
Since the goal of the algorithm is to account for human 
intuitions, we describe an experiment used to benchmark the 
algorithm, and we show how its implementation matches the 
performance of human reasoners. We also describe a set of 
simulations used to validate the parameters in the 
implementation. We conclude by evaluating the results in the 
context of contemporary accounts of causal reasoning.  

Mental models and causal reasoning 
The algorithm for causal inference we present in this paper 

is based on the tenets of mental model theory – the “model” 
theory for short. The model theory argues that reasoning 
depends on the mental simulation of sets of possibilities. The 
theory is based on three fundamental principles: 

 

• Mental models represent possibilities. When people 
reason about relations, causal or otherwise, they construct 
one or more possibilities – situations describing finite 
alternatives – consistent with those relations (Johnson-
Laird, 2006; Khemlani, Byrne, & Johnson-Laird, 2018). 

• Mental models are iconic. The structure of a mental 
model mirrors the structure of what it represents as far as 
possible (Peirce, 1931-1958, Vol. 4). An iconic 
simulation of a causal relation, e.g., A causes B, concerns 
sets of events, A and B, in a temporal order. Models can 
also include abstract symbols, e.g., the symbol for 
negation (Khemlani, Orenes, & Johnson-Laird, 2012) and 
they can represent sequences of events as they unfold in 
time (Khemlani et al., 2013). 

• Intuitions depend on one model; deliberations depend 
on multiple models. Human reasoning is based on two 
interacting sets of processes: people form rapid, intuitive 
inferences by constructing and scanning a single “mental” 
model, but those intuitive inferences lead individuals to 
make errors (Khemlani & Johnson-Laird, 2017). Mistakes 
can be corrected by deliberation, which requires reasoners 
to consider multiple models by searching for 
counterexamples to intuitive conclusions (Khemlani & 
Johnson-Laird, 2013; Khemlani et al., 2015). 

 

The model theory explains why people distinguish between 
causes, enables, and prevents: each relation refers to a 
distinct set of possibilities (Goldvarg & Johnson-Laird, 
2001), known as fully explicit models. Table 2 shows the fully 
explicit models for the three relations. For instance, a causal 
assertion such as (2) above refers to a conjunction of three 
separate models of possibilities, depicted in this schematic 
diagram: 

 

    weeds  early-harvest  
   ¬ weeds  early-harvest 
   ¬ weeds ¬ early-harvest 
 

Each row in the diagram represents a distinct temporally 
ordered possibility, e.g., the first row represents the 
possibility in which weeds flourish and then an early harvest 
occurs. Any possibility missing from the diagram is 
inconsistent with (2): hence, the situation in which weeds 
occur and an early harvest does not is incompatible with (2), 
and so too is any possibility in which an early harvest occurs 
before the weeds flourish. In contrast, an enabling condition, 
such as in (6): 
 

6. Flourishing weeds will enable aphids to thrive. 
 

refers to a different conjunction of possibilities: 
 

    weeds  aphids  
    weeds ¬ aphids 
   ¬ weeds ¬ aphids 
 

Unlike causes, enabling conditions permit the situation in 
which the antecedent occurs but the consequent doesn’t, e.g., 
(6) allows for the possibility in which weeds occur but aphids 
don’t thrive. Typically, enabling conditions rule out the 
possibility in which aphids thrive in the absence of weeds. As 
Goldvarg and Johnson-Laird (2001) showed, reasoners list 
these possibilities for assertions such as (2) and (6).  
Reasoning about causal relations, however, requires 
significantly more processing than interpreting causal 
statements, and so when people have to reason, they often do 
not consider the full list of possibilities – instead, they draw 
conclusions from just a single possibility, referred to as the 
mental model. The mental models for causes and enabling 
conditions are bolded in the diagrams above. They’re 
identical, and as a result, individuals often fail to distinguish 
enabling from causing when they reason (see Experiment 5 
in Goldvarg & Johnson-Laird, 2001). Preventions are akin to 
causes with a negated consequent (see Table 1). 
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A recent development of the model theory shows that it can 
explain omissions: the theory treats them as negated 
antecedents (Khemlani et al., 2018). Hence, the fully explicit 
models for (5) above are:  

 

    ¬ nutrients  dying-vegetables  
    nutrients  dying-vegetables 
    nutrients ¬ dying-vegetables 

 

Analogous changes explain omissive enabling conditions and 
omissive preventions (Table 1). The theory accordingly uses 
a unified representation for both omissions and orthodox 
causes. 

The model theory explains how people represent causal 
relations, and various empirical assessments validate the 
theory’s central predictions (Johnson-Laird & Khemlani, 
2017). We turn next to describe a novel algorithm and its 
computational implementation, and we show how to compute 
inferences from models of possibilities.  

Computing with mental models 
The algorithm used to infer causal relations relies on three 

separate subroutines, each of which depends on the 
representational conventions described in the previous 
section. First, the algorithm needs to build integrated models 
of multiple causal relations, e.g., it needs to combine the three 
sentences in (1) above into a set of models. Second, since 
reasoners are unlikely to construct models deterministically, 
the algorithm needs to specify a stochastic system that can 
mimic the distribution of possible interpretations that humans 
tend to make. Third, the algorithm needs to explain how 
people scan models to generate novel relations. We review 
each subroutine in turn. 

Building integrated models 
To construct an integrated model from a set of premises, 

the algorithm adopts a mechanism developed for previous 
model-theoretic computational implementations (see, e.g., 
Johnson-Laird & Byrne, 1991): the algorithm takes the 
Cartesian product of two models with the proviso that a 
model of an event cannot be combined with its negation. An 
example will illustrate the process. Consider the premises in 
(7), both of which concern omissions: 

 

7. A lack of sunlight will prevent the vegetables from 
growing. 
The lack of vegetables will enable an early harvest. 

 

The mental model of the first premise is: 
 

 ¬ sunlight ¬ vegetables  
   

and the model of the second is: 
 

   ¬ vegetables  early-harvest 
 

So, a Cartesian product of the two models identifies that the 
middle event is shared in both models, and it combines the 
two to create an integrated model: 
 

 ¬ sunlight ¬ vegetables  early-harvest 
 

Suppose instead that people build fully explicit models of the 
premises, not mental models. The fully explicit model of the 
first premise is: 

 

 ¬ sunlight ¬ vegetables  
   sunlight ¬ vegetables  
   sunlight   vegetables  

   

and the fully explicit model of the second premise is: 
 

   ¬ vegetables  early-harvest 
    ¬ vegetables ¬ early-harvest 
      vegetables ¬ early-harvest 
 

A procedure implementing the Cartesian product starts by 
combining the first model of the first premise with the three 
models of the second premise to yield: 
 

 ¬ sunlight ¬ vegetables  early-harvest 
 ¬ sunlight ¬ vegetables ¬ early-harvest 
 

The last model of the second premise is a situation in which 
vegetables grow, and so it cannot be combined with the first 
model of the first premise. The same procedure applies to the 
second and third models of the first premise, and so the full 
Cartesian product of the two sets of fully explicit models is: 

 

8. ¬ sunlight ¬ vegetables  early-harvest 
 ¬ sunlight ¬ vegetables ¬ early-harvest 
  sunlight ¬ vegetables  early-harvest 
  sunlight ¬ vegetables ¬ early-harvest 
  sunlight  vegetables ¬ early-harvest 

 

Reasoners are likely to vary in their tendency to interpret 
causal assertions using mental models or fully explicit 
models, and so the algorithm implementing the theory uses a 
stochastic parameter to govern the process: the ε-parameter 
determines the probability that the algorithm will construct 
only the mental model or whether it will construct fully 
explicit models (see, e.g., Johnson-Laird, Khemlani, & 
Goodwin, 2015; Khemlani & Johnson-Laird, 2013, 2016; 
Khemlani et al., 2015; for applications of this methodology 
to quantificational reasoning). The parameter accordingly 
varies from 0.0 to 1.0 such that when ε = 0.0, the algorithm 
always produces mental models, and when ε = 1.0, the 
algorithm produces fully explicit models. Hence, the ε 
parameter varies the contents of the models. 

Varying the size of models 
Another parameter, the λ -parameter, controls the number 

of possibilities that the algorithm yields as it constructs an 
integrated model. It therefore controls size of the models. 
This parameter corresponds to the λ-parameter of a Poisson 
distribution. Consider how the parameter might apply to 
interpreting the premises in (7). On any given run of the the 
algorithm, the size of a set of models is governed by nPremise 1 
+ nPremise 2, both of which are established by two samples 
drawn from a Poisson distribution of parameter λ. Once the 
two ns are determined, possibilities are sampled from the 
fully explicit models and their Cartesian product is taken to 
yield an integrated mental model. Hence, if nPremise 1 = 2, the 
algorithm would sample 2 separate possibilities from the 
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 Conjunctions of possibilities yielding different causal relations 
 A causes B A enables B A prevents B Not A causes B Not A enables B Not A prevents B 

Fully explicit models 
   A   B 
  ¬A   B 
  ¬A  ¬B 

   A   B 
   A  ¬B 
  ¬A  ¬B 

   A  ¬B 
  ¬A  ¬B 
  ¬A   B 

   ¬A   B 
    A   B 
    A  ¬B 

   ¬A   B 
   ¬A  ¬B 
    A  ¬B 

    ¬A  ¬B 
     A  ¬B 
     A   B 

Mental model    A   B    A   B    A  ¬B    ¬A   B    ¬A   B     ¬A  ¬B 
 

Table 1. The possibilities consistent with various causal relations in the model theory. Reasoners distinguish between the meanings of relations based on the 
distinct sets of possibilities – the fully explicit models – to which they refer. But, when they make inferences, people often consider just one of the possibilities 
consistent with the meaning of a relation – the mental model. Background knowledge can block the construction of certain models, e.g., alcohol causes 
inebriation is true, and since only alcohol causes inebriation, people should not consider the situation in which inebriation occurs in the absence of alcohol, 
i.e., the ¬A B model in the first column. A more thorough discussion of strong and weak interpretations is provided in Johnson-Laird and Khemlani (2017). 
 
3 consistent with not-A prevents B, which corresponds to the 
first premise of (7). The same procedure would be used for 
the second premise. Their Cartesian product would be taken, 
and since the product concerns sets of fewer possibilities, the 
resulting integrated model would be a subset of the models in 
(8) above, e.g., 
 

9. ¬ sunlight ¬ vegetables  early-harvest 
 ¬ sunlight ¬ vegetables ¬ early-harvest 
  sunlight  vegetables ¬ early-harvest 
 

The algorithm provides two distinct methods of sampling 
from the possibilities to which the relations refer: the first 
method samples n separate possibilities uniformly; the 
second samples the possibilities in the order specified by 
Table 1. Previous empirical results suggest that reasoners list 
certain possibilities more frequently than others in a manner 
predicted by the model theory (Bello, Wasylyshyn, Briggs, & 
Khemlani, 2017). A simulation analysis presented below 
tests whether random sampling or preferential sampling 
produces a better to human data. 

Generating causal inferences 
To generate causal inferences from, e.g., an integrated 

model such as (9) above, the algorithm reduces the integrated 
model to a model of its end terms, discarding redundant 
models where relevant. The reduction process for (9) yields 
the model in (10) below: 
 

10. ¬ sunlight    early-harvest 
 ¬ sunlight   ¬ early-harvest 
  sunlight   ¬ early-harvest 
 

The algorithm attempts to match this reduced set of 
possibilities with all combinations of possibilities in Table 1. 
If one or more matches can be found in Table 1, the algorithm 
can form a response by choosing randomly from the 
corresponding matching relations. In the case of (10), 
matching relations include: sunlight prevents an early 
harvest and a lack of sunlight enables an early harvest. 

A more sophisticated response heuristic integrated into the 
algorithm assesses the first premise of the problem to check 
whether the antecedent it describes concerns omissive or 
orthodox causation. For (7), the antecedent – “a lack of 
sunlight” – concerns omission, the only candidate response 
is: a lack of sunlight enables an early harvest. 

To assess whether the algorithm we describe matches 
human causal reasoning responses, we collected data from 
participants and compared their responses to those generated 
by the algorithm.  

Experiment and simulations 
We conducted an experiment to test the algorithm specified 

in the previous section. The experiment replicated a design 
developed by Wolff and Barbey (2015, Experiment 3), in 
which the authors provided participants with 32 causal 
reasoning problems of the following form: 

 

X prevents Y. 
Y prevents Z. 
What, if anything, follows? 
 

In their original study, participants carried out a multiple-
choice task in which they selected which responses followed 
of necessity from 10 possible options. Multiple-choice tasks 
are limited in their ecological validity – the task encourages 
participants to select multiple responses, and the order in 
which they select those responses is subject to carry-over 
effects. To address the limitation, we replicated their design 
but used a fill-in-the-blank task to test participants’ natural 
responses to causal reasoning problems. Participants in our 
study registered their responses by using a series of dropdown 
menus to formulate a conclusion that relates X and Z: 
 

[X/¬X] [causes/enables/prevents] [Z/¬Z] 
 

Participants provided one response to each problem.  

Method 
Participants. 50 participants were recruited through Amazon 
Mechanical Turk (28 male, mean age = 34.6). 15 participants 
reported some formal logic or advanced training in 
mathematics, and all but 1 of the participants were native 
English speakers. 
 
Design, procedure, and materials. Each participant was 
presented with 32 two-premise causal inference problems 
taken from Wolff and Barbey (2015). The causes and effects 
in each premise were populated from a set of fictional 
conditions (e.g., “valmork temperaments”, “kandersa 
moods”). Orthodox and omissive antecedents were created 
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using the phrases “having” and “not having,” respectively, 
and so some participants received the following problem: 
 

Having valmork temperaments prevents kandersa disease. 
Having kandersa disease prevents rempust fever. 

 

The order in which the participants carried out the 32 
problems was randomized, as was the assignment of the 
contents of the premises. Data, materials, experimental code, 
and computational modeling code are available at 
https://osf.io/5yqfx. 

Results and simulations 
Figure 1 (top panel) shows the data from the experiment. As 
the figure shows, different problems yielded markedly 
different patterns of response, e.g., participants generated the 
response “Not X causes Z” for only one of the 32 problems. 
For brevity, we omit further analyses of the experimental data 
in favor of using the dataset to benchmark a series of 
simulation analyses. 

Four separate versions of the algorithm were implemented. 
The four versions reflected the two strategies for model 
constructed described above (random sampling or preference 
sampling) and the two sorts of response policy (random 
selection or heuristic selection). A separate parameter search 
was conducted for each of the four versions of the algorithm. 

Sampling 
method 

Response 
selection 

Best fitting 
ε value 

Best fitting 
λ value 

Goodness 
of fit (r) 

Random Random 0.8 1.0 .65 
Random Heuristic 0.8 1.3 .71 

Preferential Random 0.9 0.9 .71 
Preferential Heuristic 1.0 0.8 .75 

 

Table 2. The model-fitting results of simulation analyses conducted for each 
of the four versions of a model-based causal reasoning algorithm. The 
version of the algorithm that used preferential sampling and heuristic 
response generation yielded the best fit to the data.  
 
 
For each parameter search, the parameters ε and λ varied in 
0.1 increments such that the ε ranged from 0.0 to 1.0 and the 
λ parameter ranged from 0.0 to 3.0, which produced 300 
separate parameter configurations. For each parameter 
configuration, the algorithm was run 100 times on each of the 
32 separate causal reasoning problems. 

Table 2 compares the overall results of each of the four 
versions of the algorithm. The table shows that the version of 
the algorithm that used preferential sampling to construct 
integrated models as well as a heuristic response strategy 
performed better than the other three versions of the 
algorithm. Figure 1 (bottom panel) shows the data generated 
by the best fitting simulation amongst the four versions of the 
algorithm.  

 
Figure 1. The proportions of participants’ responses to 32 different causal reasoning problems (top panel) and from the best fitting simulation from the 
algorithm that computes causal inferences (bottom panel). The color in each cell indicates the proportion of corresponding conclusions such that the darker 
the cell, the higher the proportion. Hence, nearly 100% of participants responded “X enables Z” when responding to the problem: “X enables Y / Y enables 
Z”. The version of the algorithm that yielded the best fit implemented a preferential sampling and a heuristic response selection policy.  

 

¬X causes ¬Y / ¬Y causes Z

¬X causes ¬Y / Y causes Z

¬X causes ¬Y / Y enables Z

¬X causes ¬Y / Y prevents Z

¬X causes Y / ¬Y causes Z

¬X causes Y / Y causes Z

¬X causes Y / Y enables Z

¬X causes Y / Y prevents Z

X causes ¬Y / ¬Y causes Z

X causes ¬Y / Y causes Z

X causes ¬Y / Y enables Z

X causes ¬Y / Y prevents Z

X causes Y / Y causes ¬Z

X causes Y / Y causes Z

X causes Y / Y enables Z

X causes Y / Y prevents Z

X enables ¬Y / ¬Y causes Z

X enables ¬Y / Y causes Z

X enables ¬Y / Y enables Z

X enables ¬Y / Y prevents Z

X enables Y / ¬Y causes Z

X enables Y / Y causes Z

X enables Y / Y enables Z

X enables Y / Y prevents Z

X prevents ¬Y / ¬Y causes Z

X prevents ¬Y / Y causes Z

X prevents ¬Y / Y enables Z

X prevents ¬Y / Y prevents Z

X prevents Y / ¬Y causes Z

X prevents Y / Y causes Z

X prevents Y / Y enables Z

X prevents Y / Y prevents Z

X causes Z
X enables Z
X prevents Z
X causes ¬Z
X enables ¬Z
X prevents ¬Z
¬X causes Z
¬X enables Z
¬X prevents Z
¬X causes ¬Z
¬X enables ¬Z
¬X prevents ¬Z
No valid conclusion

D
ata

X causes Z
X enables Z
X prevents Z
X causes ¬Z
X enables ¬Z
X prevents ¬Z
¬X causes Z
¬X enables Z
¬X prevents Z
¬X causes ¬Z
¬X enables ¬Z
¬X prevents ¬Z
No valid conclusion

S
im
ulation

15ICCM2019



To assess the necessity of the algorithm’s two parameters, 
we carried out parameter lesioning tests for the version of the 
algorithm that used preferential sampling and heuristic 
response selection. Specifically, we ran the algorithm in two 
lesioned conditions: one in which ε was set to 0, while λ was 
permitted to vary, and another in which λ was set to 4.0 while 
ε was permitted to vary. If either condition performed as well 
as the optimal fit, then it suggests that one of the parameters 
was redundant. But, neither lesioned condition produced a 
better fit to the data: the best fitting simulation when λ was 
permitted to vary yielded a lower goodness-of-fit (r = .64) 
and likewise for the best fitting simulation when ε was 
permitted to vary (r = .44). We conclude that the algorithm 
that incorporated preferential sampling and heuristic 
response generation produced the closest match to 
participants’ inferences (r = .75).  

General discussion 
We introduced a novel algorithm for computing causal 

inferences from sets of causal premises. The algorithm 
mimics human inference because it is based on a cognitive 
theory of reasoning, the model theory (Khemlani et al., 2014). 
It generates causal conclusions by following three 
procedures: first, the system stochastically constructs mental 
models from the meanings of causal relations. Second, it 
combines models from multiple premises using a procedure 
akin to taking the Cartesian product of a set of possibilities. 
Third, the algorithm reduces the model and checks it against 
models of the causal relations specified by the model theory. 
If an adequate match is found, the system generates the 
corresponding causal relation as a conclusion. 

No prior computational cognitive theory explains how 
people infer causal relations from sets of causal premises. 
But, the algorithm can be improved further. As Figure 1 
shows, many discrepancies exist between the algorithm's 
predictions and human participants’ tendency to make certain 
causal inferences. For instance, the algorithm predicts that 
humans should frequently infer that X prevents Z from the 
following premises: X causes Y and Y causes ¬Z. But people 
seldom ever make such a response. Perhaps they operate on 
a different sort of inferential heuristic, or perhaps they 
deliberate on their initial inferences and consider multiple 
models consistent with the premises (see, e.g., Khemlani & 
Johnson-Laird, 2016). The present algorithm can serve as a 
foundation for causal reasoning systems that take such 
deliberations into account. 
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Abstract

We characterize difficulties with both absolute and relative ac-
counts of magnitude representation in the absolute identifica-
tion paradigm and present a resolution for these difficulties.
We postulate that people store neither long-term internal refer-
ents for stimuli nor operate simply using binary comparisons
of size between successive stimuli. Rather, they obtain proba-
bilistic judgments of size differences between successive stim-
uli and encode these for future use, within the course of iden-
tification trials. We set up a Bayesian ideal observer model
for the absolute identification task using this memory-based
representation of magnitude and propose a memory-sampling
algorithm for solving it. Simulations suggest that this model
captures complex human behavior patterns in absolute iden-
tification. Specifically, it reproduces empirically documented
crossover effects, practice effects, effects from the use of over-
lapping stimuli and stimuli with uneven spacing.

Keywords: absolute identification; relative judgment; mental
representations; memory; Bayesian learning

Introduction
While it is possible for humans to make fine-grained percep-
tual judgments about magnitudes, it is not yet clear at what
granularity judgments about magnitudes experienced previ-
ously are stored. Theoretical opinion currently lies on a spec-
trum conceptually defined by two strongly divergent posi-
tions: one camp assumes that people have direct psychophys-
ical access to the magnitude of entities in the world (how big
was this stimulus on the scale I’m interested in?) (Brown,
Marley, Donkin, & Heathcote, 2008); the other claims that
people store only the relative results of comparative eval-
uations (which stimulus was bigger?) (Stewart, Brown, &
Chater, 2005).

A classic problem for the absolute magnitude camp is that
of absolute identification. Across a range of sensory modal-
ities like line lengths, sound frequency, and sound loudness,
observers are quicker and more accurate in identifying stimuli
at the extremes of the presented stimulus set than those in the
middle (Lacouture & Marley, 2004). In addition to identifi-
cation, it is also possible to ask participants to categorize per-
ceptual stimuli into one of two groups, in which case a similar
pattern of results is seen to hold. The same ‘bow-tie’ seen in
identification experiments is also seen in perceptual catego-
rization experiments, with extreme stimuli within the stim-
uli set categorized more accurately and rapidly (Lacouture &
Marley, 2004; Ratcliff & Rouder, 1998). Why should the
range of stimuli presented in a set affect observers’ responses
to individual stimuli, if each stimulus has its own independent
internal magnitude representation?

A classic challenge posed to the relative magnitude camp
is the distance effect seen in closely related experiments. Dis-
tance effects are seen when people are asked to identify which
of two presented stimuli is larger (Ratcliff & Rouder, 1998).

Participants were more accurate and quicker to respond when
pairs of presented stimuli were far apart in actual brightness
in a brightness discrimination experiment (Ratcliff & Rouder,
1998). The distance effect in perceptual choice finds an ex-
act counterpart in the distance effect observed in economic
experiments, where participants are more inconsistent and
late in responding when the values of competing options are
close (Dickhaut, Smith, Xin, & Rustichini, 2013). If people
are not storing absolute magnitude information, why do they
find stimuli farther apart easier to categorize and differenti-
ate?

While explanations for subsets of these phenomena have
been previously proposed, the ubiquity of these effects in per-
ception and cognition demands a universal explanation, one
equally applicable to both simple perceptual identification
and cognitive preference judgment tasks. Sophisticated mod-
els of absolute identification place the source of these effects
in the process by which observers map their internal repre-
sentations of perceived stimuli magnitude onto discrete num-
ber labels. For instance, Lacouture & Marley showed that
treating the magnitude-label mapping problem as an encoder
problem, to be solved by a feed-forward network, yields map-
pings for response strengths quadratic in the stimulus order,
immediately yielding the bowtie effect (Lacouture & Marley,
1995) when coupled with a DDM (Brown et al., 2008).

Assuming that long-term absolute internal representations
of stimuli magnitude are noisy, the efficient encoding hypoth-
esis holds that when confronted with a specific stimulus set,
humans will respond to the specific task challenge of map-
ping stimuli to labels by comparing the presented stimulus
to all available internal referents. The strength of the evi-
dence for the mapping is information-theoretically stronger
for stimuli corresponding to fewer overlapping internal refer-
ents, thus privileging points closer to the extremes, since they
will have less interference from stimuli representations from
one side of the scale.

A prominent empirical challenge to such accounts comes
from the finding that stimuli of the same length are responded
to differently when they are members of stimuli sets of dif-
ferent lengths, even within the same subject. If long-term
stimulus magnitude representations exist, then they should be
indifferent to the impact of adding more stimuli to an exist-
ing stimuli set, and the pattern of response should not change
for the side of the stimulus order where new stimuli are not
added. However, empirical evidence shows that it does (Sims,
2016). One solution to this problem is to adjust the noise
levels in the internal stimuli representations ‘adaptively’ as a
function of the set of stimuli to be represented (Sims, 2016).
Such solutions, while mathematically feasible, call into ques-
tion exactly how long-term the internal representations are, if
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they are to be so responsive to extraneous context.
Adopting a representation of stimuli that stores only local

comparisons, it has been argued that observers, once given
feedback about the previous trial, and comparing the cur-
rent stimulus to the immediately previous one, can restrict
the range of possible responses by using the previous stim-
ulus as an upper or lower bound for the new one (Stewart
et al., 2005). This range restriction naturally proves to be
more informative for stimuli closer to the edge of the stimu-
lus set range, making responses to these stimuli more accu-
rate. Thus, a convex relationship between response strength
and stimulus order, specific to the presented stimuli set, is
obtained.

Prominent challenges to such relative comparison-based
accounts include the fact that they do not provide easy expla-
nations for differences in response patterns induced as a func-
tion of unequal distances between stimuli in absolute identi-
fication tasks. When a large gap was included in the middle
of an otherwise linear in log space stimuli range, people find
stimuli surrounding this gap easier to identify. However, rel-
ative judgment models find it hard to even fit such data with-
out detracting from predictive performance for the other stim-
uli (Brown, Marley, Dodds, & Heathcote, 2009). The core
problem is that the model in question, the relative judgment
model (RJM) uses a hard threshold in inter-stimulus distance
to determine if a stimulus is larger or smaller than its prede-
cessor, and fits this threshold as a parameter (Stewart et al.,
2005). Changes in spacing end up compromising the quality
of the model fit.

It is intriguing to note that what is hard to explain using
one family of models is easy using the other. Relative judg-
ment models would have no difficulty explaining the effect of
multiple stimuli sets on the response pattern, since there are
no long-term response strength mappings to expect consis-
tent responses from. Absolute magnitude models would find
it straightforward to explain heightened accuracy across large
gaps - assuming the same variance for each internal represen-
tation, shifts in the mean by adding a gap increases the dis-
criminability of neighboring stimuli, increasing the response
strength for the corresponding stimuli.

Finally, both classes of models find it hard to explain prac-
tice effects in absolute identification - the fact that partici-
pants in these experiments actually get better at the task given
practice (Rouder, Morey, Cowan, & Pealtz, 2004). Since nei-
ther class of model posits any form of learning mechanism
for observers, they fail to explain the actual learning curves
seen in real experimental subjects (Dodds, Donkin, Brown, &
Heathcote, 2011).

Judgments are formed from memories
The striking complementarity of the strengths and weak-
nesses of absolute and relative models of absolute identifi-
cation suggest an opportunity to formulate an intermediate
account that bridges this theoretical divide. We make an ef-
fort to do so in this paper.

We make three assumptions about the process by which
observers perform absolute identification and related tasks.

• First, we assume that the mental representation actually
used by people in such tasks is a judgment of relative mag-
nitude made using comparison to the immediately preced-
ing stimulus during the experiment.

• Second, we assume that observers learn the stimulus-label
mapping via a process well-described as an approximately
Bayesian learning algorithm that explicitly samples mem-
ory engrams corresponding to the internal representations
of stimulus magnitude learned during earlier trials of the
experiment.

• Finally, we assume that this memory sampling self-
terminates according to an information-gain criterion dur-
ing each trial, and that the learned distribution of stimuli
ranks at the time of termination is what the observer uses
to emit an overt label response.

The relative magnitude representation. We use the
same relative judgment assumption as Stewart’s RJM
model (Stewart et al., 2005), that observers calculate a rel-
ative magnitude judgment comparing the immediate stimulus
to the one immediately preceding it. This probabilistic repre-
sentation of the pairwise difference between successive stim-
uli may, in principle, contain more information than a sim-
ple binary judgment. For any pair of successive observations
{xt−1,xt}, we denote this probabilistic container of relative
magnitude p(r|x,o = {xt−1,xt}), where r takes on the inter-
pretation of magnitude. For all the demonstrations in this pa-
per, we use binary judgments.

Bayesian stimulus-label mapping. Given this assump-
tion about the nature of the long-term internal referent, an
observer’s goal in absolute identification is to extract a rel-
ative magnitude judgment across stimuli in the stimulus set
given access to a history of pairwise relative magnitude ob-
servations, and to do so using their own history of stimulus
exposure within the task. We model the stimulus-label map-
ping process in the absolute identification task as Bayesian
marginalization over relative magnitude judgments seen in
pairwise comparisons (Srivastava, Vul, & Schrater, 2014).
The mathematical machinery of sequential Bayesian updating
allows us to formalize this learning process sequentially on a
trial-by-trial, instead of treating the stimulus-label mapping
and experimental responding as separate events as is classi-
cally done.

The relative magnitude of each stimulus, as we describe
above, takes on a probabilistic interpretation formally ex-
pressed as p(r|x,o), where r is the relative magnitude judg-
ment, x is the currently visible stimulus, and o = {xt−1,xt} is
the relevant comparison observation. The ideal Bayesian ob-
server learns p(r|x,o) by combining comparison information
from all previously observed comparisons. Thus, this quan-
tity is obtained by marginalizing over the set of previously
seen unique observations in memory C = P (X ),s.t.∀c ∈
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C , |c| = 2 which we denote the memorized comparisons.
Then,

D(x) = p(r|x,o) = ∑
C
c p(r|x,c)p(x|c)p(c|o)

∑
C
c p(x|c)p(c|o)

, (1)

where it is understood that the comparison probability
p(c|o) = p(c|{o1,o2, · · · ,ot−1}) is a distribution on the set
of all comparisons available from observation history. Here,
p(r|x,c) encodes the probability that the item x was found to
be larger in the comparison c, p(x|c) encodes the probability
that the item x was present in the context c and p(c) encodes
the frequency with which the observer encounters these com-
parisons during the experiment. This frequency is updated
via recursive Bayesian estimation,

p(c(t)|o(1:t)) =
p(o(t)|c)p(c|o(1:t−1))

∑
C
c p(o(t)|c)p(c|o(1:t−1))

. (2)

This completes the computational description of the task an
ideal Bayesian observer would perform in service of absolute
identification, given access to local relative magnitude judg-
ments. The practical approximation arises when we explicitly
model the act of accessing previous relative magnitude judg-
ments as memory sampling.

Self-terminating memory sampling. Evidence accumu-
lation influences the shape of the distribution p(c|o) via mem-
ory sampling. We model the process of memory recall as
the activation of a subset Q of decision-relevant memory en-
grams. Using this notation, a general memory accumulation
model could be expressed as,

p(c) = ∑
q∈Q

p(c|q)p(q), (3)

where c∈ C are stimuli comparisons available in memory and
q ∈ Q are memory engrams corresponding to past relative
magnitude judgments. Here, the probability distribution p(q)
- which we call the memory prior - encodes the likelihood of
recalling the memory of experience q, while the distribution
p(c|q) encodes the knowledge of having seen c and its corre-
sponding relative magnitude judgment stored in the memory
engram q. For simplicity, we assume a trivial bijective map-
ping between c and q - each memory engram is assumed to
be associated with a unique stimuli pair.

This memory-sampling variant of p(c|o) plugs directly as
the prior in the Bayesian comparison probability update for
p(c|o) in Equation 2, which then itself plugs into the two
computations in Equations 1 and 2 that define the ideal ob-
server model. This replacement is facilitated by one addi-
tional assumption: that the comparison-specific memories
recalled are episodic, and therefore convey all comparison-
relevant information once the comparison episode itself has
been activated in memory1.

1This assumption simplifies our analysis by ignoring the memory
dependence of our other intermediate probability terms. While it is
likely that such dependence exists, its effects will work in the same
direction as the basic results of our approach, since it would further
impoverish the preference representation we are already imposing
sampling constraints on.

Finally, we formalize our information-theoretic criterion
for terminating memory sampling and emitting an identifica-
tion response. We assume that observers continue to sample
memory engrams until the rate at which these provide new
information subsides below a threshold. Additional informa-
tion gained by adding an additional engram qn to the existing
set can be expressed as,

IG(qn) = ∑
i

p(ci|q1:n−1) log
p(ci|q1:n−1)

p(ci|q1:n)
, (4)

so our sampling termination rule is,

argmin
n

IG(qn)< T, (5)

where T is the termination threshold, potentially informed by
exogenous influences.

Stimulus rank decoding. At each time step t the model
uses the differential internal representation between the cur-
rent and one-back stimulus (Dt−Dt−1), and the previous rank
obtained from post-trial feedback to estimate the current stim-
ulus’ rank according to the formula:

RANKt = RANKt−1 +

(
Dt −Dt−1

αt

)
(6)

The parameter α in turn is updated at each time step t as:

αt =
1
t ∑

t

[
Dt −Dt−1

RANKt −RANKt−1

]
(7)

The observer’s choice is determined from the relative mag-
nitude judgments across all x available at the time memory
sampling is terminated. We count instances where the ob-
server’s decision variable predicts the correct rank of the stim-
ulus introduced on individual trials as accurate responses.
Samples to termination are directly interpreted as linearly
scaled response times. Notice that the parameter α control-
ling the rank-magnitude mapping relies entirely on local one-
back comparisons between magnitude judgments D, as in the
RJM (Stewart et al., 2005).

Simulation Results
Modelling our in silico experiment design after the design
reported in (Lacouture & Marley, 2004), we showed 20 in-
stances of the model 40 copies each of N stimuli, asking them
to assign number labels 1 · · ·N to them. On each trial, agents
updated their estimates for p(r|xt ,o = {xt ,xt−1}) following
the model described above. Since we assumed equal spacing
on a log scale for stimuli as in the original experiment, we
kept the relative magnitude judgments as 1 for simplicity, and
used a threshold value T = 10e−7 across all our experiments
unless specified otherwise.

Our model reproduces the absolute identification results
of (Lacouture & Marley, 2004), which are the baseline bench-
mark for absolute identification models (Brown & Heathcote,
2008). Accuracy exhibits a convex relationship with stimulus
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Figure 1: Replication of the crossover effect in perceptual
choice.The x-axis plots the rank distance between compared
stimuli on a given trial, and the y-axis plots the average num-
ber of samples drawn before responding during 20 model
runs. Error bars represent ±1 s.e.m. across these model runs.

order, and the response time distribution is concave, matching
the profiles observed by (Lacouture & Marley, 2004). We do
not explicitly demonstrate these results in the interest of suc-
cinctness, focusing on demonstrating more complex patterns
of behavior.

Then, we show how it can replicate a harder pattern of be-
havior - the crossover effect in RT (Luce, Nosofsky, Green,
& Smith, 1982; Brown & Heathcote, 2008).

Reproducing the crossover effect
The crossover effect describes a complicated pattern of be-
havior typically seen in perceptual choice experiments. When
choice is easy and speed is emphasized, incorrect responses
are quicker than correct responses; when choices are harder
and accuracy is emphasized, the opposite is true (Brown &
Heathcote, 2008). This pattern of response time (RT) behav-
ior has proved very challenging for several models of choice
RT to fit, and is a challenging benchmark for models in this
field.

Perceptual choice fits into our framework without affect-
ing the formalism in the slightest. The only difference is that
the observations o now represent two stimuli seen together
instead of sequentially. All the other interpretations remain
identical to those in the identification setting. We conducted
in silico experiments using the same simulation setup as
above. As Figure 1 illustrates, our model displays a crossover
effect even ignoring the effect of the speed-accuracy trade-
off.

Further, our model offers a straightforward parameter-free
explanation for the crossover effect. Simple choices corre-
spond to situations where most samples in memory point in
the same direction for a particular stimulus. In such cases,
the only way the model could fail to produce the correct re-
sponse is if the sampling was terminated prematurely. Thus,
incorrect responses for simple choices have to be fast. Given

sufficient time for integration, it would be impossible for the
model to be incorrect. Hard choices correspond to situations
where both options have memory samples supporting their
case for being bigger. In such cases, the model is biased
towards terminating when the marginal information gain is
low. Thus, the model will fail to terminate when memory
sampling fails to resolve to a modal response, which is more
likely when the sampling has failed to discover the true mode
of the relative magnitude judgment distribution, resulting in
bigger response times for errors.

Reproducing practice effects
By varying the number of history samples, i.e. the samples
that the model is exposed to before the start of the trials, our
model can reproduce the differential conditions observed in
experiments documenting practice effects in absolute identi-
fication (Dodds et al., 2011). We ran 5 iterations of the model
for practice/no practice conditions with number of stimuli
N = 6. For the no practice case, the model was exposed to 30
history samples, whereas in the practice case it was exposed
to 300 history samples before we started taking the model’s
predictions into account. The information threshold was kept
at T = 10E − 4.The results of the simulation are shown in
Figure 2 alongside data from (Dodds et al., 2011). A clear
qualitative reproduction of the pattern of results seen in the
experiment is seen - accuracy for end-points starts out high,
while responses for stimuli in between start out with greater
error, and then improve. The explanation is intuitive: fewer
unique samples are needed to clearly differentiate the rank
order of endpoint stimuli.

Reproducing overlapping stimuli effects
The overlapping stimuli effect in which the same stimulus
elicits different responses when presented as part of different
stimulus sets poses a challenge to absolute accounts of mag-
nitude representation. We ran 30 iterations of the model, for
each of the cases with number of stimuli N = 5, N = 8, and
N = 11. To work around the large compute times necessitated
by the combinatorial explosion in the number of contexts to
be sampled with increase in N, the empirical data presented
in (Sims, 2016) for the cases N = 13, N = 20, and N = 30
were down sampled to N = 5, N = 8, and N = 11 respectively.
The down-sampling was done by taking every 3rd data point
and extrapolating the last point, if necessary. We observe a
strong qualitative and quantitative reproduction of the empir-
ical effect with a single parameter fit across all conditions in
the experiment.

Reproducing the uneven spacing effect
When a large central gap is introduced into the stimuli set, the
accuracy profile significantly deviates from the bowtie curve,
with the stimuli near the gap having higher accuracy com-
pared to the ones away from the gap. The uneven spacing
effect presents a major challenge to relative accounts of mag-
nitude representation, including ours. To capture this effect,
our model requires an additional augmentation - we assume
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Figure 3: Reproducing the overlapping stimuli effect. The x-
axis plots the stimulus length and the y-axis plots the accuracy
of the model. Empirical data re-plotted from (Sims, 2016)

that the observer first seeks to identify when a stimulus from
one side of the gap is presented versus the other, and then tries
to identify its rank.
Rank decoding across gaps. Our model’s estimate of α as
a simple running average makes sense when it expects per-
ceptually even spacing between successive stimuli. Where
spacing is uneven, ranks estimated using such an estimate
would be faulty. To accommodate the effect of uneven spac-
ing, after each trial, the decoder in our model calculates and
stores the ordinal difference between the perceived rank, as
estimated using α, and the real rank, obtained from feedback
post trial. This rank difference is denoted by RD and is up-
dated at every trial involving a jump across the gap.

RDt = (PerceivedRank)t − (RealRank)t (8)

Rank prediction occurs as follows here

RANKt = RANKt−1 +

(
Dt −Dt−1

α

)
−RDt , (9)

such that the evenly spaced stimulus set decoding (as spec-
ified in Equation 6) arises as a special case of the unevenly
spaced stimuli. If the gap tracks the constant inter-stimulus
interval, RD goes to 0 in Equation 9, yielding Equation 6.

We ran 30 iterations of the model with number of stim-
uli N=10 with a large central gap, 9 times the size of the
even spacing gap, introduced between stimuli 5 and 6. The
threshold parameter was held at the same value as in the other
demonstrations. The model’s results (Figure 4) match the ’w’
shaped accuracy profile observed in the empirical data.

Discussion
In this paper, we have presented a model of absolute identi-
fication based on three basic principles: one, that observers
store 1-back relative magnitude judgments in memory; two,
that observers solve the computational problem implicit in
absolute identification (stimulus-rank mapping) using an ap-
proximately Bayesian calculation that can be stylized as sam-
pling engrams from memory; three, that this memory sam-
pling procedure terminates using an information-gain crite-
rion.

Our model’s capacity to identify absolute stimuli arises
from differences in the informativeness of memory samples
corresponding to various stimuli. Because the evidence from
comparisons involving extreme stimuli consistently points
the same way, the marginal information gain from sampling
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saturates rapidly and the model terminates memory retrieval
sooner, leading to faster and accurate responses. On the
other hand, for stimuli closer to the middle, samples will be
split between comparisons where the stimulus is larger and
ones where it is smaller, resulting in greater decision variable
volatility, and hence, more sampling. This interaction then
manifests summarily as slower and noisier responses.

The representational flexibility provided by our encoding
stimulus-rank mapping information in memory, in conjunc-
tion with the fact that we model the process by which the rep-
resentation is actually learned trial-by-trial from stimulus ob-
servations, allows our model to reproduce practice effects in
absolute identification (Dodds et al., 2011), as well as repro-
duce both the shift in response patterns as a function of stim-
ulus set (Rouder et al., 2004) and the heightened response to
unequal spacing (Brown et al., 2009) without committing to
long-term storage of magnitude estimates for arbitrary stim-
uli, and using only two explicit free parameters. Our account
also predicts that the uneven spacing effect should also prop-
agate to the RT distribution - an easily testable prediction.

In addition to these direct results, sequentially modelling
the mapping process, in conjunction with the use of an
information-based stopping criterion, also sheds new light
on the relationship between the psychophysical bowtie effect
(Lacouture & Marley, 2004) and the economic distance ef-
fect (Dickhaut et al., 2013). Extreme choice valence (dis-
tance in utility) appears to be correlated with lower error rate,
response times and interestingly, levels of neuronal activation
as measured by fMRI (Dickhaut et al., 2013). According to
our model, constructing a decision variable using conflicting
evidence requires more samples to breach the information-
based threshold, resulting in greater effort, which is corre-
lated with higher RT and brain activation for both perceptual
and economic choices with greater mutual confusability, as

determined by their history of pairwise comparisons.
In summary, the model we have proposed appears to have

robust empirical fits to challenging data within the absolute
identification literature, and interesting theoretical connec-
tions with other strands in the literature on choice process
modeling.
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Abstract

Previous studies have documented the learning effect of
approximate arithmetic training on symbolic arithmetic skills
in both preschoolers and adults. Particularly, Park and
Brannon (2013, 2014) have trained participants to add
two non-symbolic quantities (dot arrays) and showed that
such training improved the participants’ symbolic arithmetic
skills. They argued that this finding suggested that training
subjects to mentally manipulate non-symbolic quantities and
practice nonverbal addition would result in enhanced symbolic
arithmetic skills. However, we would like to propose an
alternative explanation to account for their findings: instead
of mentally manipulating visual dot arrays, participants might
simply estimate the numerosities represented by the dot arrays
and practice exact symbolic arithmetic during the seemingly
non-symbolic arithmetic training. In that case, it would also
lead to a better performance in subsequent symbolic arithmetic
test. To verify our hypothesis, we implemented a neural
network model to simulate their experiments. Our simulations
confirmed that our explanation was sufficient to reproduce
their psychological findings. The current work invites
re-interpretation of the benefit of approximate arithmetic
training and pushed us to think what cognitive component was
improved exactly in approximate arithmetic training and what
the relationship between approximate number processing and
symbolic number processing really is.

Keywords: neural network model; approximate arithmetic;
symbolic arithmetic; cognitive training

Introduction
Many researchers believe that infants exhibit a number
sense without any knowledge of mathematical symbols
(Feigenson, Dehaene, & Spelke, 2004). This non-symbolic
representation of numbers, known as the Approximate
Number System (ANS), is believed to be widely present
in different species (Feigenson et al., 2004). Previous
researchers have documented positive correlations between
non-symbolic number processing and symbolic mathematical
ability (Halberda, Mazzocco, & Feigenson, 2008; Libertus,
Feigenson, & Halberda, 2011).

Particularly, Park and Brannon (2014) investigated the
effect of approximate arithmetic training on symbolic
arithmetic performance. Approximate arithmetic refers to a
process of applying numerical manipulation, such as addition
and subtraction, to non-symbolic quantities without counting
(Park & Brannon, 2013). It turns out that such nonverbal
arithmetic training did improve the exact symbolic arithmetic
performance for adults and this result cannot be explained
by just better approximate number comparison or a boost of

1equal contribution

short-term memory (Park & Brannon, 2014). Similar results
were found in a recent study by Szkudlarek and Brannon
(2018) in which participants were preschoolers.

In Park and Brannon (2013, 2014), participants were first
presented with two images of dot array. They were asked
to mentally add the two numerical quantities represented
by the two dot arrays. Participants were then presented
either (1) with a third image of dots and asked to report
whether the numerical quantity represented in the third image
is more than the sum of the numerical quantities in the
first two images (More-or-Less comparison) or (2) with two
images of dots and asked to select the one that matched
the sum of the numerical quantities in the first two images
(Same-or-Different comparison). Note that the participants
were not given enough time to count the number of dots and
they were not required to report the sum of the numerical
quantities in the first two images. Park and Brannon (2013,
2014) found that training participants to perform these tasks
lead to significant improvement in symbolic addition and
subtraction. The authors took the findings as evidence for
a causal link between non-symbolic number processing skills
and symbolic number process skills. Many other researchers
shared this view as well (for review, see Szkudlarek and
Brannon (2017)). Particularly, they argued that nonverbal
addition and subtraction was trained in such approximate
arithmetic training, which led to improvement in symbolic
addition and subtraction. However, we would like to
propose an alternative explanation for such learning transfer:
participants may simply estimate the numerosities of the first
two dot arrays, perform symbolic arithmetic on the extracted
numerosities, and compare the sum with the numerosity of
the third dot array. In other words, the participants may
practice symbolic arithmetic in the seemingly non-symbolic,
arithmetic training (Julie & Silke, 2012; Gobel, Watson,
Lervag, & Hulme, 2014; Mazzocco, Feigenson, & Halberda,
2011a, 2011b; Kolkman, Kroesbergen, & Leseman, 2013).
Under that assumption, it would also lead to a better
performance in later symbolic arithmetic test.

In this paper, we explore this alternative explanation by
implementing this idea in a deep learning model. In our
modeling framework, we simulated a similar approximate
arithmetic training experiment as in Park and Brannon
(2013, 2014), and evaluated our trained model on symbolic
arithmetic problems. For simplicity, we only report our
simulations on addition tasks. We compare the model
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performance on symbolic addition tasks before and after
approximate arithmetic training and showed that the training
resulted in significant learning outcome. Our simulations
confirmed our hypothesis that an alternative explanation
for the transfer learning effect of approximate arithmetic
training is plausible, and future work is needed to understand
what cognitive component is actually being trained in
approximate arithmetic training and what the relationship
between approximate number processing and symbolic
number processing might be.

Method
Data For non-symbolic number stimuli, we randomly
generated 10000 training images of dot arrays (see Figure 1,
top). The number of dots per image ranged from 0 to 9,
and each numerosity class contained 1000 images. We also
generated a separate test dataset of 2000 dot array images.
For symbolic numbers, we used the training digit images and
the test digit images from the MNIST database (LeCun &
Cortes, 2010), a dataset of handwritten digits with labels. In
both cases, the training dataset and the evaluation dataset had
no overlapping images.

For the comparison tasks, we train the model to compare
numbers that ranged from 0 to 9. For More-or-Less
comparison, the two comparands always differ by one, and
the base rates of responding “More” and responding “Less”
are the same (except for 0 and 9). In Same-or-Different
comparison, every number n is compared with itself, and also
with either n+1 or n−1, so that the base rates of responding
“Same” and responding “Different” are the same.

Model Architecture
Approximate Arithmetic
We proposed a neural network architecture to perform
the non-symbolic arithmetic task. As mentioned in
the Introduction, we proposed an alternative account
for how participants actually solved the approximate
arithmetic problems in Park and Brannon (2013, 2014)
experiments. Consistent with our hypothesis, in our model,
the approximate arithmetic task was decomposed into a
“recognition” part, an “addition” part and a “comparison”
part. In our previous work, we have shown that
decomposing numeric processing tasks into sub-tasks and
building several neural networks that collectively work on
the tasks could explain learning transfers in a situated math
game environment (Yuan & McClelland, 2019). Inspired by
those results, in the current paper our model also consists
of several neural networks (Figure 1). First, we built an
Image Classifier Network to extract the numerosity of the
dot arrays. The Image Classifier Network learned to output
a one-hot vector which represented the number of dots in the
given input image. We built an Addition Network to add two
numbers in the form of one-hot vectors/probability vectors
to obtain the sum (also represented as a vector). Finally,
we had a Comparison Network that learned to compare two

numbers. During the approximate arithmetic training, the
Addition Network is combined with the Comparison Network
to form a so-called Combined Network that could perform
the Same-or-Different/More-or-Less comparison. We next
describe these networks in detail (Figure 1).

Image Classifier Network The Image Classifier Network
was trained on dot array images to output a one-hot vector
which represented the numerosities (from 0 to 9) of the dot
array in the image. The Image Classifier Network processed
the input images with a convolutional neural network (CNN).
It contained four blocks of (a convolution layer with 3× 3
filters and 20 output channels, a ReLU activation layer, a
2× 2 max pooling layer), followed by two fully connected
layers of size 120 and 84 with ReLU activation function. The
activation of the last fully connect layers were then used to
predict the one-hot vectors of numerosities. Here the ReLU
non-linear activation function is used to restrict the magnitude
output to be non-negative, i.e., ReLU(x) = max(0,x).

Addition Network The Addition Network was a fully
connected neural network of two hidden layers of size
81 (with ReLU activation function), which was trained to
output a correct response for the addition task given two
addends. Since we are only interested in modeling the
relationship between non-symbolic number processing and
symbolic number processing, but not multi-column addition,
we restricted our scope to single digit processing. Therefore,
we only considered numbers that ranged from 0 to 9, and the
number pairs whose sum fell into the interval between 0 and
9.

Same-or-Different (SD) Comparison To perform the
Same-or-Different comparison, we built a model that learned
to differentiate very similar numerosities. The model learned
to decide whether two input numbers were the same or
different. Our SD Comparison Network is a fully connected
layer of two fully connected layers of size 81 (with ReLU
activation function) and its output layer contained two nodes,
indicating the “Same” and the “Different” responses.

More-or-Less (ML) Comparison We also simulated the
More-of-Less comparison. Instead of deciding whether two
numerosities were the same or not, the More or Less (ML)
Comparison Network needed to decide whether the first
image had more dots than the second image or less dots. We
trained a different comparison network. The architecture of
the ML Comparison Network is exactly the same as the SD
Comparison Network, except that the two output nodes now
represented the “More” and the “Less” response, rather than
the “Same” and the “Different” response.

Combined Network During the approximate arithmetic
training, three dot array images were first processed by the
Image Classifier Network to obtain three 10-dimensional
probability vectors. The vectors of the first two images
were then fed to the Addition network. The output of the
Addition Network was again a probability vector representing
the distribution over the possible sums. This output was
concatenated with a third vector and was fed into the
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comparison network. This was to simulate the experimental
procedure in Park and Brannon (2013, 2014). Regarding
the output of the Combined Network, in Same-or-Different
(SD) Comparison, the output layer had two nodes, indicating
whether the number of all dots in the first two images was
equal to the number of dots in the third image. In the
More-or-Less (ML) Comparison, the output layer also had
two nodes, indicating whether the number of all dots in the
first two images was greater than the number of dots in the
third image. The architect of the model and the information
flow during the training process is illustrated in Figure 1.

Symbolic Arithmetic Network

When people solve symbolic arithmetic problems, it is
reasonable to assume that humans first recognize the
digits and then perform the actual addition or subtraction
operation. To simulate this process, we decomposed
the symbolic addition task into a “recognition” part and
an “addition” part. We use the same Image Classifier
Network and the same Addition Network as used in the
approximate arithmetic training simulation to solve the
symbolic arithmetic problems. For symbolic arithmetic task,
we trained our Image Classifier Network on the digit images
to output a 10-dimensional one-hot vector which represented
the digit classes from 0 to 9.

Training Procedure

In this task, we first pre-trained our Image Classifier Network
on both digit images and dot array images so that it achieved
near-perfect accuracy. Also, it is reasonable to assume
that participants in Park and Brannon (2013, 2014) already
had some ability to add single-digit numbers. Therefore,
we pre-trained our Addition Network to reach a decent
level of accuracy. Particularly, the addition network for
symbolic arithmetic is pre-trained for 60 epochs to reach
∼60% accuracy. We deliberately leave our Addition Network
some room for improvement so that we could explore the
role of non-symbolic arithmetic training and avoided a ceiling
effect. Similarly, we also assumed that the participants were
already equipped with some knowledge about comparison
before they underwent the approximate arithmetic training,
so we also pre-trained our SD and ML comparison network 7
epochs to reach ∼90% accuracy.

When simulating the comparison tasks, the probability
vectors over the possible numerosities are fed to the
Comparison Network. Since we pre-trained the Image
Classifier to near-perfect performance, the probability vectors
approximated 10-dimensional one-hot vectors, where the
node standing for the correct label had activation of 1.0 and
the rest of the nodes had activation of 0.0.

Figure 1: Model Architecture

In the joint-training phase, the Comparison Network
is joint trained with the Addition Network. The first
comparand was the probability vector obtained from the
output layer of the downstream Addition Network, and the
second comparand (the referent) was the probability vector
obtained from the output layer of the downstream Image
Classifier Network when applied to the image of the third
dot array. The Combined Network (the Addition Network
+ the Comparison Network) were trained for 200 epochs,
during which time period the network only had access to
the “Same/Different” or “More/Less” labels. The model
was tested on exact symbolic addition both before and after
non-symbolic arithmetic training. The overall experiments
were repeated for 10 runs with different random seeds. For
both SD comparison and ML comparison, we used cross
entropy loss and we ran backpropagation to train the model
(Rumelhart, Hinton, Williams, et al., 1988). The learning rate
for both SD and ML experiments were the same, as shown in
Table 1. For evaluation, the accuracy was calculated as the

25ICCM2019



percentage of correct examples among all predictions.

Results

For the sake of clarity, the learning curves of the Addition
Network during the single-task training and the joint-training
(when the Combined network was trained) are colored
differently in the figures in this paper. Moreover, the
horizontal axis indicates the cumulative epochs, i.e., the
number of epochs that one network has been trained. In
other words, since the Addition Network has been trained for
60 epochs before it was recruited in Combined Network for
joint-training, then the epoch index of its joint training starts
from 60 rather than 0. The arrows and the associated texts in
the figures indicate the time point when the training condition
changed.

Table 1: Learning Rates in different tasks

Model Learning Rate
Pre-trained Addition 0.001

Pre-trained Comparison (SD/ML) 0.01
“Combined” Addition 0.0012

“Combined” Comparison 0.0001

Approximate Arithmetic Training with
Same-or-Different Comparison

The learning curves of the networks, averaged from 10 runs,
are shown in Figure 2 and Figure 3. The error bars indicate
standard deviations that are calculated from 10 runs and are
plotted every 5 epochs.

It can be seen from Figure 2 that the addition test
loss reached the minimum around epoch 200, i.e. when
the combined network was trained for ∼140 epochs.
The prediction accuracy and the cross entropy loss were
calculated both before the Combined Network was trained
(i.e. pre-approximate arithmetic training) and after the
Combined Network was trained (i.e. post-approximate
arithmetic training). We ran a paired t-test and found
that there was a significant improvement in test accuracy
of the symbolic arithmetic problems after the approximate
arithmetic training, t = 18.427, p = 0.000. Both pre-training
and post-training test accuracies are shown in Table 2.

The learning curves of the Combined Network during
approximate arithmetic training are shown in Figure 4, with
the loss and the accuracy of the Addition Network and the
whole Combined Network. We could see that as the training
proceeded, both the test accuracies of the Addition Network
and the whole Combined Network increased (Figure 4,
bottom).

Figure 2: Test loss of the “Addition Network” in
Same-or-Different comparison.

Figure 3: Test accuracy of the “Addition Network” in
Same-or-Different comparison.

Approximate Arithmetic Training with
More-or-Less Comparison

Similarly, in the More-or-Less Comparison case, the overall
experiments were repeated 10 times with different random
seeds. The learning curves of the networks, averaged from
10 runs, are shown in Figure 5 and Figure 6. Figure
7 shows the learning curves of the Addition Network
and the overall Combined Network during the approximate
arithmetic training.

From Figure 5 we can see that the addition test loss reaches
the minimum around epoch 260, i.e. when the combined
network was trained for ∼200 epochs. We also ran a paired
t-test and found that there was a significant improvement
in test accuracy of the symbolic arithmetic problems after
the approximate arithmetic training, t = 17.660, p = 0.000.
Both pre-training and post-training test accuracies are shown
in Table 2. Though the learning curves demonstrated
more variance across different runs in the More-or-Less
comparison than in the Same-or-Different comparison, the
model’s addition ability did improve in both cases.
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Table 2: Symbolic addition performance pre- and post-approximate arithmetic training

Approximate
Arithmetic
Training

Addition Loss:
Pre-training

Addition Loss:
Post-training

Pre- vs.
Post-

t-statistics

Pre- vs.
Post-

p-value

Addition
Accuracy:

Pre-training

Addition
Accuracy:

Post-training

Pre- vs.
Post-

t-statistics

Pre- vs.
Post-

p-value
mean std mean std mean std mean std

Same-or-Different
Comparison

1.612 0.005 0.967 0.206 -9.983 0.000 0.597 0.030 0.837 0.033 18.427 0.000

More-or-Less
comparison

1.613 0.007 0.962 0.212 -9.637 0.000 0.607 0.022 0.876 0.038 17.660 0.000

(a) Loss

(b) Accuracy

Figure 4: The test losses and the test accuracies of
the Addition Network (orange) and the whole Combined
Network (blue) in Same-or-Different comparison.

Discussion
Our model demonstrated improved addition accuracies in
both the Same-of-Different comparison and the More-or-Less
comparison, which is qualitatively aligned with the
psychological findings in Park and Brannon (2013, 2014).
This confirmed our hypothesis that if participants were doing
exact symbolic addition rather than nonverbal addition during
the approximate arithmetic training, their symbolic arithmetic
skill would still be improved. This alternative explanation
forces us to question the original interpretation of the findings
in Park and Brannon (2013, 2014). For instance, how did
participants mentally added the two dot arrays exactly? Did
they combine two dot arrays and compare it with the third
dot array, or extract the numerosities first and perform exact

Figure 5: Test loss of the Addition Network in More-or-Less
comparison.

Figure 6: Test accuracy of the Addition Network in
More-or-Less comparison.

symbolic addition? Also, what was being compared in the
non-symbolic arithmetic training? Were the non-symbolic
combination of dots being compared or the symbolic sums?
All these questions call for future investigation.

One of the limitations in the current study is that number
distribution in our simulations did not match the one in Park
and Brannon (2013, 2014). They used arithmetic problems
that involved multi-digit numbers, but in our current study
we only limited our scope on single digit addition. It is
reasonable to believe that our conclusions should still hold
when extended to multi-digit addition, because multi-digit
addition does involve single digit addition. Future work is
needed to confirm this intuition. Another limitation is that we
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(a) Loss

(b) Accuracy

Figure 7: The test losses and the test accuracies of
the Addition Network (orange) and the whole Combined
Network (blue) in More-or-Less comparison.

did not simulate subtraction in our modeling work. Although
computationally subtraction would be analogous to addition
for the neural networks and our simulation results won’t
change if we replace addition with subtraction, in reality
the behavioral patterns of human children on addition and
subtraction are different. Therefore, it still worth simulating
subtraction in future work to see if our model reproduces the
learning effect on symbolic subtraction as well.

Finally, we want to note that despite the alternative
explanation we proposed for the learning effect in Park and
Brannon (2013, 2014), we did not mean to reject the strong
connection between non-symbolic number processing and
symbolic processing. We only want to advocate for a more
cautious interpretation for any learning effect observed in
cognitive training and invite other researchers to join our
effort in understanding what exactly was learned in different
intervention studies.
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Abstract

The present study aims to investigate similarities between
how humans and connectionist models experience difficulty
in arithmetic problems. Problem difficulty was operational-
ized by the number of carries involved in solving a given prob-
lem. Problem difficulty was measured in humans by response
time, and in models by computational steps. The present study
found that both humans and connectionist models experience
difficulty similarly when solving binary addition and subtrac-
tion. Specifically, both agents found difficulty to be strictly
increasing with respect to the number of carries. Furthermore,
the models mimicked the increasing standard deviation of re-
sponse time seen in humans. Another notable similarity is
that problem difficulty increases more steeply in subtraction
than in addition, for both humans and connectionist models.
Further investigation on two model hyperparameters — confi-
dence threshold and hidden dimension — shows higher confi-
dence thresholds cause the model to take more computational
steps to arrive at the correct answer. Likewise, larger hidden
dimensions cause the model to take more computational steps
to correctly answer arithmetic problems; however, this effect
by hidden dimensions is negligible.

Keywords: arithmetic cognition; problem difficulty; response
time; connectionist model; recurrent neural network; Jordan
network; answer step

Introduction

Do connectionist models experience difficulty on arithmetic

problems like humans? Although connectionist models con-

sist of abstract biological neurons, similar behaviors between

humans and these models are not guaranteed. However, de-

veloping model simulations to discover such similarities can

bridge this knowledge gap between humans and models, and

deepen our understanding of the micro-structures involved

in cognition (Rumelhart & McClelland, 1986; McClelland,

1988). Therefore, finding such similarities is a foundational

step in understanding human cognition through connection-

ist models. This connectionist approach recently has been

used in the domain of mathematical cognition (McClelland,

Mickey, Hansen, Yuan, & Lu, 2016; Mickey & McClelland,

2014; Saxton, Grefenstette, Hill, & Kohli, 2019).

Cognitive arithmetic (Ashcraft, 1992), the study of the

mental representation of arithmetic, conceptualizes problem

difficulty. Problem difficulty can be measured by response

time (RT) from the time a participant sees an arithmetic prob-

lem to the time the participant answers the problem (Imbo,

Vandierendonck, & Vergauwe, 2007).

There are three criteria that affect problem difficulty

(Ashcraft, 1992; Imbo et al., 2007): (a) operand magnitude

(e.g., 1 + 1 vs. 8 + 8); (b) number of digits in the operands

(e.g., 3 + 7 vs. 34 + 78); and (c) the number of carry1 oper-

ations (e.g., 15 + 31 vs. 19 + 37). The present study uses a

similar experimental approach to that suggested by Cho, Lim,

Hickey, and Zhang (2019). This design employs the binary

numeral system to control for familiarity with the decimal

system and the two criteria (a) and (b). As such, the present

study considers the number of carries as the only independent

variable involved in problem difficulty.

Recurrent neural networks (Elman, 1990; Jordan, 1997)

can model sequential decisions through time. These net-

works perform sequential nonlinear computations. Owing to

the principle that many nonlinear computational steps are re-

quired to learn complex mappings (LeCun, Bengio, & Hin-

ton, 2015), parallels can be drawn between human RT and

model computational steps in response to problems of vary-

ing difficulty level.

Two experiments were conducted in the present study: one

on human participants and the other on connectionist models.

Both experiments had learning and solving phases. In the

learning phase of the human experiment, participants were

taught a method for solving binary arithmetic problems by

following guiding examples. In the solving phase, partic-

ipants began the experiment in earnest, solving arithmetic

problems under experimental conditions and having their RTs

recorded as a measure of problem difficulty. In the learning

phase of the model experiment, connectionist models were

trained until they achieved 100% accuracy across all prob-

lems. We consider this to be roughly equivalent to how partic-

ipants were taught to solve arithmetic problems in the learn-

ing phase of the human experiment. In the solving phase, all

problems were solved again and the number of computational

steps taken to solve each problem were recorded as a measure

of problem difficulty. Following both experiments, results

were analyzed in order to investigate whether any similarities

could be observed in how both agents underwent problem dif-

ficulty with respect to the number of carries. We then investi-

gated how major model configurations affect model behavior.

1A carry in binary addition is the leading digit 1 shifted from
one column to a more significant column when the sum of the less
significant column exceeds a single digit. A borrow in binary sub-
traction is the digit 1 shifted to a less significant column in order to
obtain a positive difference in that column. We refer to borrows as
carries.
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Figure 1: Problem sets. The addition and subtraction datasets

were assigned to connectionist models. The addition and sub-

traction problem sets were assigned to participants. n refers

to the number of operations in a given dataset/problem set.

Problem Sets

Operation datasets For addition and subtraction, we con-

structed separate operation datasets, containing all possible

operations between two 4-digit binary nonnegative integers

that generate nonnegative results. The addition dataset has

256 operations, and the subtraction dataset has 136 opera-

tions (Figure 1). Operation datasets consist of (x,y) where x

is an 8-dimensional input vector that is a concatenation of two

binary operands, and y is an output vector that is the result of

computing these operands. y is 5-dimensional for addition

and 4-dimensional for subtraction.

Carry datasets Operation datasets were further subdivided

into carry datasets. A carry dataset refers to the total set of

operations in which a specific number of carries is required

for a given operator. The addition dataset was divided into

5 carry datasets, and the subtraction dataset was divided into

4 carry datasets (Figure 1). For example, in Figure 2, the

addition guiding examples (a) and (b) are in 2-carry2 and 4-

carry datasets, respectively; the subtraction guiding examples

(c) and (d) are in 2-carry and 3-carry datasets, respectively.

Experiment 1: Humans

Experiment 1 investigated whether human RT in problem

solving increases as a function of the number of carries in-

volved in a problem.

Participants

90 undergraduate and graduate students (48 men, 42 women)

from various departments completed the experiment. The av-

erage age of participants was 23.6 (SD = 3.3).

Materials

Participants were given two types of problem sets: addition

and subtraction. The addition problem set was constructed as

follows: 10 different problems were sampled from each carry

dataset without replacement3. These sampled problems were

2Let us simply refer to the carry dataset involving n carries as
the n-carry dataset, and problems from the n-carry dataset as n-carry
problems.

3This only occurred when sampling 3-carry problems (n = 10)
from the 3-carry subtraction dataset (n = 9). This required one ran-
dom problem to be duplicated and shown twice in the 3-carry prob-
lem set.

10100 Carry

1011

+ 1010

10101

(a)

11110 Carry

1111

+ 1011

11010

(b)

0120 Carry

1001

− 0010

0111

(c)

0112 Carry

1000

− 0101

0011

(d)

Figure 2: Guiding examples

shuffled together to make the addition problem set. This addi-

tion problem set was comprised of 50 unique problems evenly

distributed across 5 carry datasets (Figure 1). Likewise, the

subtraction problem sets consisted of 40 problems evenly dis-

tributed across 4 carry datasets (Figure 1). The problems were

newly sampled for each participant.

In any given problem, two operands were presented in a

fixed 4-digit format in order to control for possible extraneous

influences on problem difficulty as outlined by criterion (b).

The experiment was designed in such a way that participants

were required to fill out all digits when answering questions

(e.g. if the answer was 1, participants were forced to respond

with 0001 as opposed to just 1). This is to ensure RT is not

affected by the number of answer digits.

Procedure

Participants were shown calculation guidelines containing

two guiding examples for addition (Figure 2a, 2b). Partic-

ipants were explicitly requested to solve problems by using

carry operations outlined in the examples. Participants then

began to solve each problem from their addition problem set.

After solving all addition problems, participants repeated the

previous procedure for their subtraction problem set with two

subtraction guiding examples (Figure 2c, 2d). Participants

were prohibited from using any writing apparatus in order to

force participants to solve problems mentally.

Results

Analysis of variance (ANOVA) was used to investigate dif-

ferences in mean RTs of participants across carry problem

sets. If there were significant differences between all the

mean RTs, post hoc analysis was applied. If a participant pro-

vided a wrong answer, it was reasonable to assume that this

participant made some cognitive error when solving the prob-

lem. As such, only RTs for correct answers were included in

analysis. We removed the outlying RTs of each carry problem

set for each participant since unusually short RTs may be due

to memory retrieval and excessively long RTs may be caused

by distraction or anxiety during problem solving. The RTs

in the range [Q1−1.5 · IQR,Q3+1.5 · IQR] were considered
outliers, where Q1 and Q3 were the first and third quantiles of

the RTs for a carry problem set, and IQR= Q3−Q1.

Addition There were significant differences in mean RTs

between all carry problem sets, as determined by ANOVA

[F(4,445) = 51.84, p < .001, η2 = .32]. Post hoc compar-
isons using the Games-Howell test indicated that mean RTs

between any two carry problem sets showed a significant dif-
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(a) Addition (b) Subtraction

Figure 3: Mean RT by carries. The error bars are ±1SD.

ference [3-carry and 4-carry problem sets: p = .040; other
pairs: p< .01]. Therefore, the mean RT was strictly increas-
ing 4 with respect to the number of carries (Figure 3a).

Subtraction There were significant differences in mean

RTs between all carry problem sets, as determined by

ANOVA [F(3,356) = 117.41, η2 = .50]. Post hoc compar-
isons using the Games-Howell test indicated that mean RTs

between any two carry problem sets showed a significant dif-

ference [p < .001]. Therefore, the mean RT was strictly in-
creasing with respect to the number of carries (Figure 3b).

Experiment 2: Connectionist Models

Experiment 2 investigated whether computational steps re-

quired by connectionist models in problem solving increase

as a function of the number of carries involved in a prob-

lem. Moreover, this experiment intended to examine how the

central model hyperparameters — confidence threshold and

hidden dimension — affect the simulated RT. The hidden di-

mension, denoted by dh, refers to the number of units in the

hidden layer.

Model

Imagine the human cognitive process while performing addi-

tion and subtraction. Humans predict answer digits one by

one while mentally referencing two operands and previously

predicted digits. Therefore, we aimed to simulate this human

cognitive process by using the Jordan network (Jordan, 1997).

The Jordan network is a recurrent neural network whose hid-

den layer gets its inputs from an input at the current step and

from the output at the previous step (Figure 4).

The Jordan network solves problems as follows: An 8-

dimensional input vector composed of two concatenated 4-

digit operands is fed into the network (Figure 4a). At the

same time, its hidden layer with ReLU gets its previous prob-

ability outputs. The network predicts step-by-step the proba-

bilities of answer digits up to a maximum of 30 steps (Figure

4b). At the initial step, all digit predictions are initialized as

0.5, which mimics the initial uncertainty humans experience

4For every x and x� such that x< x�, if f (x) < f (x�), then we say
f is strictly increasing.

when solving problems. The output layer has sigmoid activa-

tion. Each output unit predicts each output digit. The network

outputs 5-dimensional and 4-dimensional vectors for addition

and subtraction problems respectively.

The network learned arithmetic by minimizing the sum of

the losses at all steps: ∑t H(z(t),p(t)). At each step t, a loss
is defined as the cross-entropy H between the true answer z(t)

and the output probability vector p(t) where x(t) is an input

vector: H(z(t),p(t)) =−z(t) · logp(t)−(1−z(t)) · [1− logp(t)].

At each time step, the network predicts the probability of

every answer digit. When problem solving, humans only de-

cide on an answer digit when they are sufficiently confident

that it is correct. Likewise, the network decides each digit

only when its predicted probability pi is higher than some

threshold. We call this threshold the confidence threshold,

denoted by θc. Suppose θc = 0.9. If a predicted probability
pi is in the range [0.1,0.9], the model is uncertain about the
digit. Otherwise, it is confident about the digit: if pi ∈ [0,0.1),
it predicts the digit is 0; if pi ∈ (0.9,1], it predicts the digit is
1. The network is designed to give an answer when it is first

confident about all answer digits (Figure 4b). The network

in Figure 4b answers at step 1 because this is the first state

where the model is confident about all digits. At this answer

step, the answer is marked as either correct or incorrect. No

answer is given if 30 steps are exceeded.

Measures

Accuracy Accuracy was measured by dividing the number

of correct answers by the total number of problems. Model

accuracy was used to measure how successfully the model

learned arithmetic and to determine when to stop training. No

answer after 30 time steps was considered a wrong answer.

Answer step Answer step was defined as the index of a cer-

tain time step where the network outputs an answer. Answer

step is roughly equivalent to human RT. It refers to the num-

ber of computational steps required for the network to solve

an arithmetic problem. Answer step ranges from 0 to 29.

Training Settings

The network learned arithmetic operations using backprop-

agation through time (Werbos, 1990) and a stocbohastic

gradient method (Bottou, 1998) called Adam optimization

(Kingma & Ba, 2015) with settings (α = .001, β1 = .9,
β2 = .999, ε = 10−8). For each epoch, 32-sized mini-batches
were randomly sampled without replacement (Shamir, 2016)

from the total operation dataset. The weight matrix W [l] in

layer l was initialized to samples from the truncated nor-

mal distribution ranging [−1/
√
n[l−1],1/

√
n[l−1]] where n[l]

was the number of units in the l-th layer; All bias vectors

b[l] were initialized to 0. After training each epoch, accu-

racy was evaluated on the operation dataset (Figure 1). When

the network attained 100% accuracy for the entirety of the

operation dataset, training was stopped. 300 Jordan net-

works were trained for each model configuration in order to

draw statistically meaningful results. Furthermore, to inves-
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(b) The Jordan network unrolled through time steps.

Figure 4: The Jordan network used in the present study. (a) The network is predicting the answer of 110+1101 to be 10011.
In this example, the confidence threshold is 0.9. At the current state t, x(t) = (0,1,1,0,1,1,0,1), p(t) = (.99, .04, .07, .96, .94),
and z(t) = (1,0,0,1,1). (b) The network is constrained to compute at most 30 steps. The initial probabilities of answer digits
are 0.5, meaning the network is uncertain about all digits. The network repeatedly computes the probabilities of answer digits

until it becomes confident about all answer digits; in this figure, it answers at step 1. In the learning phase, the network learns

from the total loss from all steps. Accuracy is computed by comparing predicted answers to true answers.

tigate if any statistically significant relationship held for vari-

ous model configurations, we reanalyzed the models with the

confidence thresholds θc ∈ {.7, .8, .9} and hidden dimensions
dh ∈ {24,48,72}. 9 types of networks were trained for both
addition and subtraction, respectively; a total of 5400 net-

works were trained in this experiment.

Results

Our proposed model successfully learned all possible addi-

tion and subtraction operations between 4-digit binary num-

bers. The model required 4000 epochs on average (58 min-

utes5) to learn addition, and 1080 epochs on average (13 min-

utes) to learn subtraction. When training was completed, we

examined: (1) statistical differences in mean answer steps

between carry datasets across all model configurations; (2)

statistical differences in mean answer steps for operation

datasets between different confidence thresholds and hidden

dimensions.

Addition The first analysis was conducted on mean an-

swer steps per carry dataset. For every model configuration,

ANOVA found significant differences in mean answer steps

between all carry datasets (Table 1). Post hoc Games-Howell

testing found that for 8 of the 9 model configurations, mean

answer step was strictly increasing with respect to the number

of carries (Table 1, Figure 5a); the remaining model configu-

ration (θc = 0.7, dh = 24) showed a monotonically6 increas-

ing relationship between mean answer step and the number

of carries (Table 1).

5Two Intel(R) Xeon(R) CPU E5-2695 v4 and five TITAN Xp
were used. Training networks in parallel is vital in this experiment.

6For every x and x� such that x< x�, if f (x) ≤ f (x�), then we say
f is monotonically increasing.

The second analyses were conducted on mean answer

steps for the addition dataset. For every hidden dimension,

ANOVA found significant differences in mean answer steps

between all confidence thresholds ∀θc ∈ {.7, .8, .9} (Table 2).
Post hoc Games-Howell testing found that for all models,

mean answer step was strictly increasing with respect to con-

fidence threshold (Table 2, Figure 6a). For every confidence

threshold, ANOVA found significant differences in mean an-

swer steps between all hidden dimensions ∀dh ∈ {24,48,72}
(Table 3). Post hoc Games-Howell testing found that with

θc = 0.7, mean answer step was monotonically increasing
with respect to hidden dimension. For both other confidence

thresholds, mean answer step was strictly increasing with re-

spect to hidden dimension (Table 3, Figure 7a). We should

note however that while significant, the effect of hidden di-

mension on mean answer step was small.

Subtraction The first analysis was conducted on mean an-

swer steps per carry dataset. For every model configuration,

ANOVA found significant differences in mean answer steps

between all carry datasets (Table 1). Post hoc Games-Howell

testing found that for all model types, mean answer step was

strictly increasing with respect to the number of carries (Table

1, Figure 5b).

The second analyses were conducted on mean answer steps

for the subtraction dataset. For every hidden dimension,

ANOVA found significant differences in mean answer steps

between all confidence thresholds ∀θc ∈ {.7, .8, .9} (Table 2).
Post hoc Games-Howell testing found that for all models,

mean answer step was strictly increasing with respect to con-

fidence threshold (Table 2, Figure 6b). For every confidence

threshold, ANOVA found significant differences in mean an-

swer steps between all hidden dimensions ∀dh ∈ {24,48,72}
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(a) Addition (b) Subtraction

Figure 5: Mean answer step by carries (for carry datasets).

θ9d72 denotes models with θc = 0.9 and dh = 72. The error

bars are ±1SD and belong to θ9d72.

(a) Addition (b) Subtraction

Figure 6: Mean answer step by confidence threshold (for op-

eration datasets)

(a) Addition (b) Subtraction

Figure 7: Mean answer step by hidden dimension (for opera-

tion datasets)

(Table 3). Post hoc Games-Howell testing found that with

θc = 0.9, mean answer step was monotonically increasing
with respect to hidden dimension. For both other confidence

thresholds, mean answer step was strictly increasing with re-

spect to hidden dimension (Table 3, Figure 7a). We should

note however that while significant, the effect of hidden di-

mension on mean answer step was small (Figure 7a).

Discussion and Conclusion

Experiment 1 Experiment 1 has improved the previous

study (Cho et al., 2019) as follows: Firstly, participants were

forced to solve problems using solely mental arithmetic. This

allows for more valid comparisons to be drawn between hu-

mans and models. Secondly, larger data samples allowed

the present study to find more statistically significant results.

Specifically, mean RT for addition problems were found to be

Table 1: The results of ANOVA and post hoc analysis on

differences in mean answer steps between all carry datasets.

The model configuration varies along two axes: confidence

threshold and hidden dimension. 300 mean answer steps per

carry dataset from 300 trained networks were analyzed for

each model configuration. F is the F-test statistic and η2

is the effect size from ANOVA; in addition, there were 4

degrees of freedom between carry datasets and 1495 within

carry datasets: df+b = 4, df+w = 1495; in subtraction, df−b = 3,

df−w = 1196. The mean answer step columns describe the re-

sults of post hoc analysis. The inequality (<) denotes a sig-
nificant difference at the p < .05 level. Equality (=) denotes
the opposite. The numbers in these columns refer to the num-

ber of carries of a carry dataset. ∗ p < .05. ∗∗ p < .01. ∗∗∗

p< .001.

Addition Subtraction

θc dh F η2 Mean answer step F η2 Mean answer step

.7 24 72∗∗∗ .16 0< 1= 2< 3= 4∗∗∗ 499∗∗∗ .56 0< 1< 2< 3∗∗∗

.7 48 206∗∗∗ .36 0< 1< 2< 3< 4∗∗∗ 765∗∗∗ .66 0< 1< 2< 3∗∗∗

.7 72 294∗∗∗ .44 0< 1< 2< 3< 4∗∗∗ 716∗∗∗ .64 0< 1< 2< 3∗∗∗

.8 24 129∗∗∗ .26 0< 1< 2< 3< 4∗∗ 390∗∗∗ .49 0< 1< 2< 3∗∗∗

.8 48 198∗∗∗ .35 0< 1< 2< 3< 4∗∗∗ 571∗∗∗ .59 0< 1< 2< 3∗∗∗

.8 72 142∗∗∗ .28 0< 1< 2< 3< 4∗∗ 674∗∗∗ .63 0< 1< 2< 3∗∗∗

.9 24 208∗∗∗ .36 0< 1< 2< 3< 4∗∗ 970∗∗∗ .71 0< 1< 2< 3∗∗∗

.9 48 421∗∗∗ .53 0< 1< 2< 3< 4∗∗∗ 1769∗∗∗ .82 0< 1< 2< 3∗∗∗

.9 72 432∗∗∗ .54 0< 1< 2< 3< 4∗∗∗ 1718∗∗∗ .81 0< 1< 2< 3∗∗∗

Table 2: The results of ANOVA and post hoc analysis on

differences in mean answer steps between confidence thresh-

olds. df+b = df−b = 2. df+w = df−w = 897. In the mean answer

step columns, the numbers refer to confidence thresholds.

Addition Subtraction

dh F η2 Mean answer step F η2 Mean answer step

24 1032∗∗∗ .70 .7< .8< .9∗∗∗ 1163∗∗∗ .72 .7< .8< .9∗∗∗

48 2002∗∗∗ .82 .7< .8< .9∗∗∗ 1736∗∗∗ .79 .7< .8< .9∗∗∗

72 1735∗∗∗ .79 .7< .8< .9∗∗∗ 1963∗∗∗ .81 .7< .8< .9∗∗∗

Table 3: The results of ANOVA and post hoc analysis on

differences in mean answer steps between hidden dimensions.

df+b = df−b = 2. df+w = df−w = 897. In the mean answer step

columns, the numbers refer to hidden dimension.

Addition Subtraction

θc F η2 Mean answer step F η2 Mean answer step

.7 58∗∗∗ .08 24< 48= 72∗∗∗ 46∗∗∗ .10 24< 48< 72∗∗

.8 38∗∗∗ .08 24< 48< 72∗∗∗ 77∗∗∗ .15 24< 48< 72∗∗

.9 37∗∗∗ .12 24< 48< 72∗ 51∗∗∗ .09 24< 48= 72∗∗∗

strictly increasing with respect to the number of carries.

Experiment 2 In Experiment 2, the two hyperparameters

— confidence threshold and hidden dimension — were cho-

sen since we expected these hyperparameters to correspond to

humans’ uncertainty and memory capacity, respectively. We
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further expected that increasing confidence threshold and de-

creasing hidden dimension would increase answer step. This

expectation subsequently arose for confidence threshold; con-

fidence threshold had an augmenting effect on answer step.

However, our expectation was not born out for hidden di-

mension. In order to observe clear differences in mean an-

swer steps with respect to problem difficulty, high confidence

thresholds are recommended. Hidden dimension should be

fixed to the extent that the model can learn an entire dataset.

Experiments 1 & 2 The preceding results show three no-

table similarities between humans and our connectionist mod-

els: Firstly, both agents experienced increased levels of dif-

ficulty as more carries were involved in arithmetic problems.

Secondly, the Jordan networks with the model configuration

(θc = 0.9, dh = 72) successfully mimicked the increasing

standard deviation of human RT with respect to the number of

carries (Figure 3, 5). This phenomenon could not be achieved

by a rule-based system performing the standard algorithm, al-

though such a systemwould be able to simulate increasing RT

as a function of the number of carries. Lastly, another similar-

ity found between both humans and models is that the diffi-

culty slope for subtraction is steeper than for addition (Figure

3, 5). This implies that the augmenting effect of carries on

problem difficulty is stronger in subtraction than in addition.

Contributions The present study makes two major con-

tributions to the literature: Firstly, our models successfully

simulated humans’ RT in terms of these three similarities:

increasing latency, increasing standard deviation of latency,

and relative steepness of increasing latency. The similarities

may suggest that some cognitive process, equivalent to the

nonlinear computational process used in the Jordan network,

could be involved in human cognitive arithmetic. Secondly,

the present study demonstrated that fitting our model to arith-

metic data induced human-like latency to emerge in the con-

nectionist models (McClelland et al., 2010). In other words,

human RTs to arithmetic problems were successfully learned

in an unsupervised way. This contrasts with previous studies

that focus on learning arithmetic tasks in a supervised way.

Future Study The present study focuses solely on analyz-

ing mean answer steps between arithmetic problem sets of

varying difficulty levels. Therefore, future studies could aim

to better understand what dynamic processes our model uses

when solving individual problems: Specifically, it might be

interesting to observe how our model predicts individual dig-

its through each time step when solving problems. Further-

more, similarities between both the model’s sequentially pre-

dictive answering process and the human answering process

could be investigated. This comparison would give us a bet-

ter understanding of both our model and human mathematical

cognition (McClelland et al., 2016).

Our model is designed not just for arithmetic cognition,

but also for sequential predictions that based on a constant

input and a previous prediction, which result in a single an-

swer. In this regard, this model has the potential to be applied

to other cognitive processes involving sequential processing

and RT as a measure of cognitive difficulty. Therefore, future

studies could consider extending our model to other domains

of cognition. For example, well known character image and

word classification datasets can be subdivided into datasets of

varying difficulty levels, similar to our carry datasets. Mean

answer steps for classifying these data sets could be analyzed

using a similar model to that outlined in the present study.
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Abstract 

Phishing attacks are a significant threat to cybersecurity, while 
current defense methods do not adequately address the human 
factor of this threat: the role of experiences and cognitive 
biases. To better understand human susceptibilities to phishing 
attacks, we developed an Instance-Based Learning (IBL) model 
for predicting end-user’s behavior in a phishing email detection 
task. We present a phishing scenario that demonstrates that 
typically safe end-users can fall victims to phishing attacks in 
certain circumstances, and these situations are the result of 
cognitive mechanisms such as frequency and recency and 
similarities between memory events. We demonstrate the 
ability of an IBL model to predict human performance in a 
laboratory phishing detection task. While the results indicate 
that phishing detection was difficult for the model, it roughly 
reflects in the data the difficulty humans had. Future research is 
aimed at enhancing the IBL model to better predict end-user 
phishing detection, and to explore the ways in which this model 
can be used as a training tool and online aid for end-user 
detection of phishing attacks. 

Keywords: phishing; cybersecurity; decision making; instance-
based learning; cognitive model; ACT-R 

Introduction 

All it takes is one click in response to a phishing email to 

compromise the security posture of an entire organization, 

and as such phishing attacks pose the biggest threat for 

cybersecurity (Wombat Security report, 2018). Phishing aims 

to persuade end-users to share sensitive information using 

social engineering and psychological techniques (Jagatic et 

al., 2007). While phishing attacks exploit human weaknesses, 

defenders typically employ technological solutions to defend 

against them, such as machine learning filtering of phishing 

emails, email authentication tools, URL filtration, and 

blacklisting phishing URLs (Prakash et al., 2010; Marchal et 

al., 2014; Peng, Harris, & Sawa, 2018). Current methods of 

defense against phishing attacks are insufficient because they 

don't consider human cognitive biases and experience. Since 

the success of phishing attacks rely on the exploitation of end-

user’s cognitive and psychological weaknesses, it becomes 

essential to understand the detection capabilities, decision 

making, and cognitive biases of end users who respond to 

phishing emails (Canfield, Fischhoff, & Davis, 2016). 

Considerable research has been devoted to investigating 

how to best train end-users to detect phishing emails 

(Kumaraguru et al. 2009, Jensen et al., 2017), yet even trained 

end-users can still fall victim to phishing attacks. Recent 

research examining the interaction between attackers and end-

users revealed various strategies that attackers use to design 

phishing campaigns and their success on end-user’s detection 

of phishing emails (Rajivan & Gonzalez, 2018; Curtis et al., 

2018, Singh et al., 2019). In the current research, based on 

psychological theories of decisions from experience, and the 

insights of these recent phishing studies, we propose a 

cognitive model of end-user phishing email detection. Our 

insights suggest that phishing emails detection is influenced 

by the end-user’s prior history of emails, their recent 

experiences, and their innate and learned cognitive biases. 

In what follows, we first describe an example phishing 

scenario that reveals the process by which an end-user might 

fall trap to an attacker’s social engineering strategies. We then 

formalize a cognitive model of end-user email classification, 

built in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998), using Instance-based Learning Theory (IBLT; 

Gonzalez, Lerch, & Lebiere, 2003). Using the data set from 

Rajivan and Gonzalez (2018), we demonstrate that cognitive 

models of end-user detection of phishing attacks can be useful 

for understanding how and when humans are most vulnerable 

to attacks, providing insights on how to best train people to 

detect phishing emails, and could potentially serve as a 

powerful decision support tool to prevent phishing attacks. 

A Cognitive Model of Phishing Email Detection 

In the example phishing scenario, depicted in Figure 1, Alice 

is a representative persona for a class of members of a 

fictional organization. The cyber-security division is 

assessing vulnerabilities of phishing attacks and sends Alice a 

number of emails, some of which are phishing emails. Her 

task is to decide whether to click a link within an email. 

Alice represents a particularly savvy end-user, who usually 

recognizes malicious emails, and does not click on embedded 

links. In this scenario, Alice starts with a prior history of not 

clicking links from unknown senders (i.e., senders that she 

has not previously interacted with and whom she does not  
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Figure 1: The Alice scenario: an example phishing attack scenario. 

 

recognize). She has a predisposition to click on links from 

trusted senders (e.g., coworkers and friends), particularly 

about topics that interest her (e.g., one of Alice’s interests is 

in dogs). She is then presented with three new emails, one at a 

time. The first is from an unknown sender about dogs, for 

which she does not click the link. The second is from a 

trusted coworker that mentions dogs, for which she clicks the 

link. In the third email, after observing and/or inferring 

Alice’s clicking behavior, the attacker spoofs the sender’s 

source address, pretending to be a colleague of Alice, and 

baits her with a topic and domain name related to dogs. Alice 

clicks the link and self-compromises her system. 

Alice’s behavior can be described as emerging from the 

interaction between her learned behavior/tendencies and 

changes to the environment. The cognitive model, described 

next, captures underlying cognitive mechanisms such as 

priming, transfer, and recency bias that reflect the statistics 

and dynamics of the environment and give rise to Alice’s 

behavior. As shown in Figure 2, Alice’s prior history of 

emails may cluster on dimensions of email topic (work, dogs) 

and sender (known, unknown). Emails about dogs from 

unknown senders cluster together and embedded links are 

typically not clicked. Whereas, emails about work topics from 

known coworkers cluster together, and embedded links are 

typically clicked. The first email is similar to past emails for 

which she did not click on embedded links, and so she 

doesn’t. The second email is from trusted coworkers, but 

mentions dogs, yet is more similar to past emails for which 

she clicked on links, and so she does. This expands the cluster 

of emails for which she previously clicked. Alice would 

typically not click on the link in the third email, because it is 

more similar to past emails for which she did not click 

embedded links. However, it is more similar to the recent 

second email, and so is pulled toward the cluster of emails for 

which she clicked links. Alice’s normal behavior has changed 

as a result of her interactions with the environment over time. 

 
 

Figure 2: Representation of Alice’s behavior. 

An IBL Model of Phishing Detection 

According to IBLT (Gonzalez et al., 2003), decisions are 

made by generalizing across past experiences, or instances, 

that are similar to the current situation. Typically, instances 

are encoded as chunks in declarative memory that represent 

the features of the decision: the context in which a decision is 

made, the action taken, and the outcome of that decision. For 

emails, there is usually a dissociation between the actions 

taken and feedback regarding whether the email was 

ultimately malicious. Therefore, for this task, only the context 

and the action are represented within each instance, but not 

the outcome. The context elements of an email include the 

sender’s email address, the subject line, the body of the email, 

and the link. The action slot includes the action taken (either 

click or not click the link). Initial past instances include those 

represented in Figure 1 under Prior History: five emails from 
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unknown senders about various topics, including puppies, for 

which Alice did not click on the embedded links, and five 

emails from trusted coworkers, about work-related topics, for 

which Alice clicked on the embedded links. 

An IBL cognitive model was constructed in the ACT-R 

cognitive architecture (Anderson & Lebiere, 1998). For each 

new incoming email (see Figure 1, “New Emails”), the model 

takes as input the context of the email and generates an action 

by retrieving similar past instances. In ACT-R, the retrieval of 

past instances is based on the activation strength of the 

relevant chunk in memory and its similarity to each of the 

elements of the current context. The activation Ai of a chunk i 

is determined by the following equation: 

 
The first term provides the power law of practice and 

forgetting, where tj is the time since the jth occurrence of 

chunk i and d is the decay rate of each occurrence which is set 

to the default ACT-R value of 0.5. The second term reflects a 

partial matching process, where Sim(vk,ck) is the similarity 

between the actual memory value and the corresponding 

context element for chunk slot k, and is scaled by the 

mismatch penalty (MP) which was set to the default value of 

1.0. The term εi represents transient noise, a random value 

from a logistic distribution with a mean of zero and variance 

parameter s of 0.25 (common ACT-R value, e.g. Lebiere, 

1999), to introduce stochasticity in retrieval. 

The probability of retrieving a particular instance is 

determined according to the softmax equation (i.e., the 

Boltzmann equation), reflecting the ratio of an instance’s 

activation Ai and the temperature t (which was set to 1.0): 

 
The IBL model uses ACT-R’s blending mechanism 

(Lebiere, 1999, Gonzalez et al., 2003) to generate an action, 

based on past instances. Blending is a memory retrieval 

mechanism that returns a consensus value across all 

memories with similar context elements, rather than from a 

specific memory, as computed by the following equation: 

 

The value V is the one that best satisfies the constraints 

among actual values  in the matching chunks i weighted by 

their probability of retrieval Pi. Satisficing is defined as 

minimizing the dissimilarity between the consensus value V 

and the actual answer Vi contained in chunk i. In summary, 

the model matches memories to the current context and uses 

blending to generate the action. After generating an action, 

the experience (context plus action) is saved in declarative 

memory as a new instance, which affects future decisions. 

An important feature of the model is how similarities are 

computed between slot values. Typically, similarities between 

numeric values are computed on a linear function scaled 

between 0 and -1.0, where 0 is a perfect match and -1.0 is 

maximally dissimilar. However, for non-numeric information, 

unless a value is specified for relation, they are either 

maximally similar or maximally different. For emails, the 

context is non-numeric, often several words to paragraphs in 

length. It is sensible then that two texts that are semantically 

similar should have higher similarity values (closer to 0) 

compared to texts that are semantically very dissimilar. 

In order to compute similarities between slot contents 

involving textual information, we used the University of 

Maryland Baltimore County’s semantic-textual-similarity tool 

(Han et al., 2013). The tool uses a combination of latent 

semantic analysis (LSA) and WordNet to produce semantic 

similarity values between two texts. The two input texts can 

be of any word-length and it produces a value between 0.0 

and 1.0, with 1.0 being maximally similar in meaning. For 

example, the similarity between “happy dog” and “joyful 

puppy” is 0.65, whereas “happy dog” and “sad feline” is 0.34, 

and “happy dog” and “hot tea” is 0.0. We subtract one from 

this value to produce a dissimilarity value for use in blending. 

This technique has proven to be a useful methodology for 

producing meaningful similarity values for textual content. 

Demonstration of the IBL Model Behavior 

Figure 3 shows the model behavior during a typical run 

through the Alice scenario. The first column shows the new 

incoming emails. The second column shows Alice’s prior 

history of emails stored in memory: the top stack shows 

emails for which Alice previously did not click on the 

embedded link, while the bottom stack shows emails for 

which she did click. For each new email, the model retrieves 

a decision based on its similarity to prior emails. The darker 

the email, the less recent it was experienced and encoded in 

memory. Darker, fuller arrows indicate greater activation 

strength (purple) or decision weighting (orange). The third 

column shows the blending values (i.e., the relative weighting 

given to each option based on activation and similarities) next 

to the two possible decisions (Click or Not-Click). The 

decision made is that with the greater blending value. 

 

 
 

Figure 3: Example model behavior in the Alice scenario. 
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For example, for Email #1, its context is more similar to 

past emails from unknown senders than to those from trusted 

coworkers. The blending mechanism produces a distance 

metric from each possible decision, and since there are only 

two possible decisions, blending values can be translated 

directly into the weighted probability of making each 

decision. Therefore, for this particular run, the model decides 

to not click the link with a weighting of 75.21%. For Email 

#2, its context is more similar to emails from trusted 

coworkers, and the model decides to attack with a weighting 

of 75.7%. For the critical Email #3, although the contents are 

typically more similar to unknown senders, it also shares 

similarity with the most recent email from a trusted coworker 

giving more weight to the decision to click on the link (e.g., 

recency bias to click on a link about dogs from a David, 

because of the similarity to the contents of Email #2). On this 

run, the combination of activation strength and similarity 

across past instances result in a decision to click on the link 

with a weighting of 52.99%. 

This example shows how under certain circumstances a 

relatively safe user could sometimes get caught performing an 

unsafe act. To generate stable predictions of human behavior, 

the model was run 1000 times to highlight its activation 

dynamics. For Email #1, the model decided to click the link 

on less than 1% of the 1000 runs, with a mean weighting in 

favor of not clicking of 66.3%. For Email #2, the model 

clicked the link on 98.8% of runs, with a mean weighing in 

favor of not clicking of 66.2%. For Email #3, the model 

clicked the link on 56.6% of runs, with a mean weighing in 

favor of clicking of 50.8%. Of course, that action itself will 

make further dangerous actions more likely. 

The IBL model of the Alice phishing scenario shows how a 

user’s response to phishing emails may be highly constrained 

by cognitive mechanisms, especially activation in declarative 

memory, which reflect the statistics and dynamics of the 

environment in the user’s memory. Alice’s behavior is a 

result of manipulating that environment in a way that can 

change well established behaviors. As demonstrated, it only 

takes a short history of human behavior, and their interests, to 

personalize a model to an individual user and make 

predictions about whether the user might perform an unsafe 

act when encountering a malicious email. 

Validation of the IBL Model Against Humans 

To assess performance of the IBL model described above, it 

was adapted to predict human behavior in a laboratory 

experiment, reported in Rajivan and Gonzalez (2018). Their 

data set includes 340 participants as end-users in an email 

management task. Participants were presented with 20 emails, 

one at a time; 10 were benign emails and 10 were phishing 

emails, randomly distributed. Their task was to assist a 

fictional office manager by examine each of her incoming 

emails and decide how to respond: 1) respond immediately; 

2) flag the email for follow up; 3) leave the email in the 

inbox; 4) delete the email; or 5) delete the email and block the 

sender. An email rated as 1 can be viewed as more benign 

and important, while an email rated as 5 is more malicious. 

For this task, the chunk definitions of the model were 

modified to represent the information available to 

participants. For these emails, there was no sender 

information available, but links were represented both as the 

HTML link as well as the observable text in the email. 

Therefore, the context slots include the subject, body, link, 

and link text. The decisions were recoded to be analogous to 

the conceptual model, with ratings of 1 and 2 recoded as 

“respond” (i.e., the equivalent of clicking a link) and ratings 

of 3 through 5 recoded as “do not respond” (i.e., the 

equivalent of not clicking a link). Therefore, for the model, 

the possible decisions are respond or not-respond. All 

parameters were left the same as for the conceptual model. 

Results 

The model was run 10 times for each participant and was 

presented the same stimuli experienced by the human. The 

first 10 emails experienced served as training instances for the 

model and were encoded as an initial declarative memory. 

The model then made a decision for each of the next 10 

emails, and its predictive accuracy was evaluated. 

The model performed better than chance (50%), accurately 

predicting the human’s decision on 58.6% of benign emails 

and 63.4% of phishing emails, on average. The model was 

more accurate on phishing emails than benign emails, F(1,9) 

= 10.12, p = 0.001. There were no differences across trials 

and the interaction was not significant, both p’s > 0.43. 

The confusion matrices presented in Figure 4, show the 

percentage of trials in which the model and human agreed in 

their decisions to respond to the email or not, for phishing 

emails (top) and benign emails (bottom). D-prime for 

phishing emails is 0.60, while it is 0.43 for benign emails. 

Figure 4 also shows the phishing detection accuracy of 

humans and the model. For both phishing and benign emails, 

the model and humans decided to respond to ~40% of emails 

or more. As a result, the model more accurately predicts 

human decisions to not respond to an email than to respond. 

Like humans, the model responded to a large proportion of 

phishing emails (39.7% and 39.0% respectively). Although, 

while humans responded to more benign emails (47.9%), the 

model responded to only 39.5% of benign emails – almost the 

same rate as phishing emails, indicating that distinguishing 

between ham and phishing emails was difficult. 

Discussion 

Humans were less cautious in the email management task 

than they might normally be in real-world circumstances, and 

the IBL model reflected this behavior, and responded to many 

phishing emails. Overall, the model was better than chance at 

predicting human performance, but the task proved difficult 

for both the humans and the model without rewards or 

feedback to aid learning. The model was trained on the first 

10 trials of human data, and therefore reflects the overall 

tendencies to not respond. However, while the model is 

similarly as biased as humans to not respond to emails, it has 

a slightly more difficult time distinguishing a benign email 

from a phishing email than humans. 
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Figure 4: Confusion matrices comparing the model 

predictions of human decisions (in percentages) for phishing 

emails (top) and benign emails (bottom). 

 

The benign emails in Rajivan and Gonzalez (2018) were 

ham emails that came from businesses and senders, and were 

about topics and accounts, that the end user could not know 

were relevant to their fictional office manager. Without 

context, the benign emails look and sound very similar to the 

phishing emails, making the detection of phishing emails 

difficult. In fact, when looking into the UMBC similarities 

within and between benign and phishing emails, the values 

are very close to each other. The mean similarities between 

benign emails are the highest, but still relatively low, at only 

0.43. Meanwhile, the phishing emails are as dissimilar to each 

other (0.36) as they are to benign emails (0.39). The model 

accurately captures overall human tendencies, but has more 

difficulty than humans in classifying a benign email as safe. 

Limitations and Future Directions 

There is clear room for improvement for the IBL model. It is 

limited by its representation of the relevant features for 

detecting phishing emails. Research in human susceptibility 

to phishing scams has revealed important cues and indicators 

of phishing emails that end-users should be trained to detect 

(Vishwanath, Harrison, & Ng, 2018). While the sender, 

subject line, URL, and the email body are all important 

features to use for detection, representing only the semantic 

content limits the model’s ability to discriminate. Some 

features that could be extracted from the email to enhance the 

representation include grammar and spelling ratings, 

emotional tone of the email, and sentiment. Future research is 

aimed at exploring and expanding the features that represent 

the context of an email. It is also unclear at this point what 

features the model relies on most to make decisions or if any 

do not affect decisions. The features need to be accurately 

represented in the context to accurately reflect the statistical 

dynamics of the environment. Representing user interests, as 

well as background knowledge of known senders, are 

additional features that would greatly improve the model’s 

ability to predict a particular individual’s behavior. 

On a related note, while the UMBC semantic similarity tool 

proved useful, many of the similarity values between emails 

are in the range of 0.33-0.66. Adjusting these values so they 

fill the full range of 0.0-1.0 could help to increase the 

dissimilarity between the benign and phishing emails while 

increasing the similarity within email types. Additionally, the 

similarities are computed between entire email bodies. These 

bodies could be parsed into separate phrases to uncover more 

fine-grained features. Future research is aimed at exploring 

these possibilities. 

Improving the cognitive model of phishing detection is an 

important goal for gaining a better understanding of end-user 

susceptibility to phishing emails. Additionally, there is a wide 

array of possible applications in cybersecurity, including 

using cognitive models to help train end users to detect 

phishing attacks. A cognitive model that can track a user’s 

experience helps reveal instances when a user may be more 

susceptible to a phishing scam. The model can make the user 

aware of such instances to improve their detection. Predicting 

individual end user behavior is a challenging task but could 

be extremely helpful in aiding end users in online detection. 

After improving the cognitive model, the model can be 

scaled up to larger applications. For example, cognitive 

models could also be used to estimate the risk of new 

phishing samples, or as part of a larger simulation testbed for 

cyber defense exercises, or to test tools. For applications such 

as these, scalability becomes an issue for computing semantic 

similarities. Tools like UMBC’s similarity tool typically look 

up information from very large databases. If you only need to 

compute a few values per iteration, then computation costs 

are minimal. However, computation time increases 

exponentially as the number of instances in the model’s 

declarative memory increases. One technique that proved 

useful for us was to build a hash-table that stores similarity 

values between two phrases, thereby eliminating the need to 

re-compute values for distinct pairs of phrases. If the corpus 

of emails is known, then these values can be computed prior 

to running the model. Otherwise, the model would only be 

able to reuse values after the first experience. Another 

approach is to use vector embeddings, then compute 

similarities as distances between vectors. 

In the Rajivan and Gonzalez (2018) study, participants saw 

a large proportion of phishing emails compared to benign 

emails (50% precisely). Using the same dataset, Singh et al. 
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(2019) conducted another study to investigate how the 

frequency of experiencing phishing emails during training 

affected detection in a later testing phase. Participants 

completed three phases in a phishing detection task: pre-

training, training, and post-training, where participants were 

trained on different frequencies of phishing emails (25%, 

50%, or 75%) and tested before and after training with 20% 

frequency of phishing emails. The results showed that 

participants that saw a larger proportion of phishing emails 

during training had higher hit rates but also higher false alarm 

rates in detecting phishing emails. This, in addition to the 

similarity between the benign ham emails and the phishing 

emails, can explain the bias to not respond to emails in the 

Rajivan and Gonzalez task. In the future, we will adapt the 

cognitive model to the task performed in Singh et al. to test 

other predictions of the IBL model, given that frequency of 

instances is one of the driving cognitive factors that influence 

decision making. A similar line of research will explore the 

model’s ability to predict end-user behavior in situations 

where the statistics of the environment are more similar to 

that in the real world (e.g., where a very small proportion of 

emails are phishing emails). 

Conclusions 

In this paper we demonstrated that a cognitive model of end-

user detection of phishing emails can be useful for 

understanding human susceptibility to phishing attacks. As 

the Alice scenario showed, normally safe end-users can get 

caught performing unsafe actions under the right set of 

circumstances. Human decisions are constrained by cognitive 

mechanisms (e.g., memory, spreading activation, and pattern 

matching) that reflect the statistics and dynamics of the 

environment. By manipulating that environment, new patterns 

can arise that change well-established user behavior. 

The IBL model developed here is a first attempt to model 

phishing detection using ACT-R, and captures the cognitive 

mechanisms and biases that could give rise to unsafe actions. 

It is also a first step toward developing a cognitive model that 

predicts human performance based on the similarity of emails 

confronted. According to IBLT (Gonzalez et al., 2003), 

decisions are based on the similarity of the current email to 

past emails for which the user clicked links, the recency of 

those past emails, and the frequency of phishing emails in 

comparison to benign emails. The model performed similarly 

to the actions taken by humans, neither the model nor humans 

were highly accurate in classifying phishing emails. The 

nature of the task made classification difficult for both. Future 

research will investigate the various cognitive aspects that 

influence classification decisions, and improve the context 

representation in the model to reflect the relevant features for 

phishing detection. A cognitive model that is highly accurate 

at predicting end-user susceptibility to phishing attacks can 

greatly enhance current cybersecurity practice. 
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Abstract 

Recent research in cybersecurity has begun to develop active 
defense strategies using game-theoretic optimization of the 
allocation of limited defenses combined with deceptive 
signaling. While effective, the algorithms are optimized against 
perfectly rational adversaries. In a laboratory experiment, we 
pit humans against the defense algorithm in an online game 
designed to simulate an insider attack scenario. Humans attack 
far more often than predicted under perfect rationality. 
Optimizing against human bounded rationality is vitally 
important. We propose a cognitive model based on instance-
based learning theory and built in ACT-R that accurately 
predicts human performance and biases in the game. We show 
that the algorithm does not defend well, largely due to its static 
nature and lack of adaptation to the particular individual’s 
actions. Thus, we propose an adaptive method of signaling that 
uses the cognitive model to trace an individual’s experience in 
real time, in order to optimize defenses. We discuss the results 
and implications of personalized defense. 

Keywords: cyber deception; cognitive models; instance-based 
learning; knowledge-tracing; model-tracing 

Introduction 

Cybersecurity often involves passive defense strategies which 

fail to discover a threat before major damage is done to a 

network. However, recent work within the domain of 

cybersecurity has focused on developing active defense 

strategies based on cognitive principles of deception (Al-

Shaer et al., 2019; Cooney et al., 2019; Cranford et al., 2018). 

Deception is a form of persuasion where one intentionally 

misleads an agent into a false belief, in order to gain an 

advantage over the agent and achieve one’s goals (Rowe & 

Rushi, 2016). In this line of research, the goal for security is 

to assist human administrators defend networks from cyber-

attacks (Gonzalez et al., 2014). Limited defense resources 

cannot simultaneously protect all targets. In the event of an 

attack, truthful signals that divulge the protection status of a 

target can deter some attacks on protected targets. However, 

defenders can use a combination of truthful and deceptive 

signals to improve protection of the unprotected resources. 

Game-theoretic principles have been employed to optimize 

the allocation of limited defense resources and determine how 

often to send a deceptive signal before it loses its 

effectiveness (Xu et al., 2015). While deception may reduce 

attacks on uncovered targets compared to no deception, the 

algorithms are static and tailored to an entire population. They 

fail to take into account the individual and their particular set 

of knowledge, experiences, and biases. The goal of this paper 

is to develop a personalized signaling strategy that can 

outperform traditional static methods. 

Cranford et al. (2018) developed an instance-based learning 

(IBL) cognitive model (Gonzalez, Lerch & Lebiere, 2003) of 

attackers that accurately predicts human decision making 

from experience. We propose that such a model can be used 

to trace an individual’s knowledge and experiences, and 

exploit their biases, to determine on-the-fly the best signal 

given the situation, to further reduce attacks. 

The following section presents a line of research on game-

theoretic models that have proven to optimize deceptive 

signaling for perfectly rational adversaries, and initial efforts 

toward optimizing for boundedly rational adversaries. We 

then describe an online game developed to investigate 

attacker behavior against deceptive signaling algorithms and a 

cognitive model that accurately predicts human behavior. 

Next, we describe a method for deceptive signaling that uses 

the cognitive model to drive adaptive signaling, personalized 

to the individual attacker. We highlight its applicability for 

optimizing defense by tracking human knowledge, 

experience, and biases. Finally, we discuss the implications of 

this line of research and avenues for future research. 

Deceptive Signaling for Cybersecurity 

Research on Stackelberg Security Games (SSGs) led to the 

development of algorithms that have greatly improved 

physical security systems (e.g., protecting ports, scheduling 

air marshals, and mitigating poachers) through the optimal 

allocation of limited defense resources (Pita et al., 2008; 

Shieh et al., 2012; Sinha et al., 2018; Tambe, 2011). Xu et al. 

(2015) extended these models by incorporating elements of 

signaling, in which a defender (sender) strategically reveals 

information about their strategy to the attacker (receiver) in 

order to influence the attacker’s decision making (Battigalli, 

2006; Cho & Kreps, 1987). Their solution, the Strong 

Stackelberg Equilibrium with Persuasion (peSSE), improves 
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defender utility against a perfectly rational attacker compared 

to strategies that do not use signaling. For a given target, the 

peSSE finds the optimal combination of bluffing (sending a 

deceptive message that the target is covered when it is not) 

and truth-telling (sending a truthful message that the target is 

covered) so the attacker continues to believe the bluff. 

The goal of the peSSE is to reduce attacks on uncovered 

targets. Attackers earn a reward for successful attacks, suffer 

a loss for failed attacks, and earn zero for withdrawing. When 

a target is covered, the peSSE will always send a truthful 

signal. When uncovered, the peSSE will send a deceptive 

signal with a probability that brings the attacker’s expected 

value of attacking, given a signal, to zero. This makes it equal 

to the utility of withdrawing the attack and, based on standard 

game-theoretic assumptions of perfect rationality, the attacker 

will break ties in favor of the defender and withdraw. 

The peSSE is suitable for cyber defense where optimizing 

the probability of sending a deceptive signal can mitigate 

attacks on uncovered targets with little overhead. However, it 

is based on the assumption of perfect rationality while 

humans exhibit, at best, bounded rationality (Simon, 1956). 

To address this weakness of the peSSE, researchers have 

begun to develop signaling algorithms for security against 

boundedly rational attackers (Cooney et al., 2019). However, 

these algorithms do not offer substantial improvement over 

the peSSE in terms of reducing attacks and minimizing 

defender loss. 

In what follows, we present an IBL cognitive model that 

accurately predicts human attacker behavior playing against 

the peSSE in a laboratory experiment. We propose that a 

personalized deceptive signaling scheme based on insights 

from the IBL model, in combination with model-tracing 

mechanisms, can be used to adapt defense signaling to the 

individual experiences of attackers at each point in time. 

Cognitive Models of Human Attackers Playing 

Against Deceptive Signaling Algorithms 

The Insider Attack Game (IAG) was designed to investigate 

the interaction between an attacker and defender in a 

cybersecurity scenario (Cranford et al., 2018). As shown in 

Figure 1, players take the role of the attacker (a company 

employee) and their goal is to score points by “hacking” 

computers to steal proprietary data. There are six potential 

computers to attack, but only two security analysts (defenders 

controlled by a computer algorithm) that can monitor one 

computer each. If the player attacks a computer that is 

monitored, they lose points, but if the computer is not 

monitored then they win points. Each computer shows its 

reward for winning, penalty for losing, and the probability 

that the computer is being monitored (reflecting the SSE for 

the game). On each turn, the player must select a computer to 

attack; after which, the signaling algorithm determines 

whether to send a truthful signal or a deceptive signal (with 

the signal, the player is presented the probability that the 

given signal is deceptive). The player must decide whether to 

continue their attack or withdraw and earn zero points. 

Players play four rounds of 25 trials each (after an initial 5 

trials of practice). The payoff structures and monitoring 

probabilities of the targets are different in each round. 

Coverage and signaling of targets were precomputed for each 

trial. Therefore, each individual player experiences the same 

coverage and signaling schedule. 

 

 
 

Figure1: Screenshot of the IAG. The attacker is in the center 

surrounded by six targets. The monitoring probability is 

displayed as a percentage in text and represented visually by 

red bars, the yellow stars represent the potential reward, and 

the red stars represent the potential penalty. 

Attacker Cognitive Model 

Cranford et al. (2018) developed an IBL cognitive model of 

the attacker using the ACT-R cognitive architecture 

(Anderson & Lebiere, 1998; Anderson et al, 2004). Following 

collection of human data in the peSSE condition, we modified 

this model to better represent human behavior playing the 

IAG. For brevity, details of the model described below, and 

its underlying equations, can be found in Cranford et al., 

while specific changes are footnoted. 

In the current model, decisions are made by generalizing 

across past experiences, or instances, that are similar to the 

present situation. For the IAG, instances include slots to 

represent the context of the selected target, the decision, and 

the outcome. The context includes the monitoring probability 

[0.0, 1.0], reward [1, 10], penalty values [-1, -10], and 

warning signal [present, absent]. The possible decisions are 

attack or withdraw, and the outcome is the reward or penalty 

based on the decision. In a given situation, for each possible 

decision, an associated utility is computed through blended 

memory retrieval weighted by contextual similarity to past 

instances. The decision with the highest utility is made. In the 

present game there are two decisions: attack or withdraw. 

However, withdrawing always results in zero points. 

Therefore, the model only needs to determine the utility of 

attacking in order to make a choice. 

In ACT-R, the retrieval of past instances is based on the 

activation strength of the relevant instance in memory and its 
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similarity to the current context. The activation of an instance 

reflects the power law of practice and forgetting, and includes 

a partial matching process1 reflecting the similarity between 

the current context elements and the corresponding context 

elements for the instance in memory. A variance parameter s 

introduces stochasticity in retrieval. Similarities between 

numeric slot values are computed on a linear scale from 0.0, 

an exact match, to -1.0. Symbolic values are either an exact 

match or maximally different, -2.5, to prevent bleeding 

between memories for different actions and signal types. 

A Boltzmann softmax equation2 determines the probability 

of retrieving an instance based on its activation strength. The 

IBL model uses ACT-R’s blending mechanism (Lebiere, 

1999; Gonzalez et al., 2003) to calculate an expected outcome 

of attacking a target based on similarity to past instances. The 

expected outcome is the value that best satisfies the 

constraints of all matching instances weighted by their 

probability of retrieval. 

In summary, the outcomes of past instances are weighted 

by their recency, frequency, and similarity to the current 

instance to produce an expected outcome. If the value is 

greater than zero then the model attacks, else it withdraws. 

 

IBL Model Procedure To begin the IAG, the model is 

initialized with seven instances3: five represent a simulated 

practice round, and two represent knowledge gained from 

instructions (one instance had a signal value of absent and an 

outcome of 10, representing that attacking when a signal is 

absent will result in a reward; another instance had signal 

value of present and an outcome of 5, representing that 

attacking when a signal is present could result in either a 

penalty or a reward). On a given trial, the model first selects a 

target to attack. The model cycles through each target and 

generates an expected outcome of attacking via blending. The 

model selects the target with the highest expected outcome. 

Target selection is a passive process; therefore, no instances 

are saved in memory that could influence future decisions. 

After selecting a target, the context is augmented with the 

value of the signal4 (i.e., present or absent). The model then 

decides whether to attack or withdraw by generating an 

expected outcome via blended retrieval. The similarity of the 

selected target’s context to past instances is based solely on 

the value of the signal5 (monitoring probability, reward, and 

penalty values are ignored). In the IAG, the pop-up warning 

                                                           
1 The mismatch penalty parameter for the activation equation was 

originally set high at 2.5, but was reduced to the ACT-R default 1.0. 
2 The temperature parameter was changed from the ACT-R 

default of √2 ∗ 𝑠 to a neutral value of 1.0 which results in retrieval 

probability reflecting the original presentation probability. 
3 The model was originally initialized with 8 instances 

representing edges of the decision space, but we believe the current 

method is a more accurate representation of participants’ experience. 
4 Representing the deception probability as an additional context 

slot in the instance resulted in a poorer model fit. It appears that 

humans do not consider, or know how to utilize, the information. 

Therefore, the deception probability was excluded from the context. 
5 In the original model, the full context was used, but this resulted 

in an over-selection and reduced attack rate of high-reward targets. 

message covers all information about the selected target. 

Therefore, we inferred that humans base their decisions only 

on the value of the signal and ignore, or forget, the occluded 

target information. 

After determining the expected outcome, an instance is 

saved in memory that represents the model’s expectations6. 

Humans tend to remember not only the actual experience, but 

also their expectations prior to the experience (Gonzalez et 

al., 2003). This serves as an implementation of confirmation 

bias, in which one’s preconception of winning/losing can 

increase the likelihood of attacking/withdrawing on future 

trials (i.e., generating positive/negative expected outcomes). 

After generating an expected outcome, a decision is made, 

and the action and outcome slots of the current instance are 

updated to reflect the action taken by the model and the 

ground-truth outcome. This final instance is saved in memory 

and thereby influences future decisions. 

The model continues for four rounds of 25 trials each. The 

model behavior reflects its experiences. If an action results in 

a positive/negative outcome, then its future expectations will 

be increased/decreased, and the model will be more/less 

likely to select and attack that target in the future. Also, the 

impact of a particular past experience on future decisions 

strengthens with frequency and weakens with time. 

IBL Model Evaluation Against Human Players 

The attacker IBL model was compared to human behavior in 

the IAG. In a laboratory experiment, human participants (i.e., 

“attackers”) played against the peSSE signaling scheme. 

Participants were recruited via Amazon Mechanical Turk. All 

participants resided in the United States. For completing the 

experiment and submitting a completion code, participants 

were paid $1 plus $0.02 per point earned in the game, up to a 

maximum of $5.50. Four participants were removed from 

analysis because they had incomplete data (e.g., data 

recording errors) or restarted the experiment after gaining 

experience, resulting in a final sample size of 100. 

The data was analyzed for the probability of attack and the 

number of points earned by attackers across rounds. The 

probability of attack was calculated as the proportion of 

players that continued the attack on a given trial. Points were 

separated into mean losses and gains per round. Losses/gains 

were calculated as the total number of points lost/gained per 

round by attacking targets that were/weren’t monitored. 

The model played the IAG 1000 times to generate stable 

predictions of the probability of attack and total number of 

points obtained per round. At the end of each run, the model 

was reset to its initial state and its memory cleared. Due to the 

stochastic nature of the model, and the influence its 

experiences have on its future decisions, the model behaves 

differently on each run and can therefore represent a diverse 

population of human attackers without the need to 

parameterize for individual differences. 

                                                           
6 The model did not originally save this instance in memory and 

attacked far less often than humans. Saving this instance increased 

the mean probability of attack. This insight was key to understanding 

the biases humans have in the game and why they attacked so often. 

43ICCM2019



 
 

Figure 2: Probability of attack across trials and rounds (left side) and mean gains/losses per round (right side) for the humans 

compared to the IBL model. For probability of attack, RMSE and correlations (r) between human and model data are displayed 

under each round, and the aggregate values across the entire game are on the right under the legend. 

 

Figure 2, left side, shows the mean probability of attack 

across trials and rounds for humans compared to the model. 

The dashed, gray line represents the peSSE predictions under 

assumptions of perfect rationality. Humans attack far more 

than perfectly rational attackers. Meanwhile, compared to the 

human data, the model is an excellent predictor of 

performance. RMSE and correlations, comparing the model 

to human data, are included at the bottom of the graph. The 

model is sensitive to the schedule of coverage, just as humans 

are, which produces the spiking pattern across trials. 

Figure 2, right side, shows the average gains/losses for the 

humans compared to the model. Humans attack at a high rate, 

earning many points from attacks on uncovered targets, while 

incurring fewer losses. Moreover, the model accurately 

predicts this behavior. The peSSE suffers because human 

biases (e.g., recency, frequency, and confirmation) lead them 

to attack at higher rate, resulting in more experiences of wins 

than losses. The IBL model captures these biases, and 

therefore, can feasibly be used as a predictive tool for 

personalizing deceptive signals for an individual attacker. 

Notably, the model has accurately predicted human 

performance against other signaling algorithms (not reported 

here) prior to collection of human data. 

Toward Personalized Deception 

To personalize deception, we can run the IBL model 

alongside the human to predict an individual’s behavior and 

optimize the rate of deceptive signals. To make accurate 

predictions of an individual, two methods have proven useful 

to align the model behavior with the human’s decisions: 

model-tracing and knowledge-tracing. Model-tracing aligns 

the model’s actual actions and outcomes to those observed of 

the human. Knowledge-tracing aligns the expected actions 

and outcomes to match those inferred of the human. 

Model-tracing 

Model-tracing is a method used to align a model’s behavior 

with that of the human and is commonly used to adjust 

feedback provided to the student in intelligent tutoring 

systems (see Anderson et al., 1995). The alignment helps in a 

way that future model predictions are adapted and optimized 

to the interaction with the human. For example, geometry 

tutors use model-tracing to keep track of where errors are 

made so that the learning experience can be tailored to the 

individual (Anderson, Boyle, & Yost, 1986). 

We use model-tracing to synchronize the IBL model with 

the human’s observed actions and experience in the IAG task. 

After each trial, the instance saved in memory that represents 

the model’s decision and outcome is changed to reflect the 

human’s action and outcome (i.e., the action and outcome 

slots are changed to match the human’s). Therefore, on the 

next trial the model makes predictions based on the exact 

experience of the human and not on what it would have done 

based on its own past instances. With more trials, the model is 

expected to make more accurate predictions of a particular 

human’s actions, as the model’s memory aligns better with 

that of the human. Model-tracing changes the instances 

representing the observed ground truth decision and outcome. 

However, in order to generate accurate predictions, we must 

also align the model’s expectations to those of the human. 

Knowledge-tracing 

The model produces instances that represent the expected 

outcome of attacking, which contributes to confirmation bias, 

and these must also be changed. Knowledge-tracing can be 

used to infer the expectations humans had prior to making a 

decision that would contribute to confirmation bias. For 

example, if the model and human both decided to attack (or 

both withdraw), then nothing need change and the expected 

outcome generated by the model can be used to infer the 

human’s expectation. However, if the model expects a 

positive outcome for attacking, but the human withdrew the 

attack, then we can infer that the human expected to lose (or 

vice versa). For these instances, we can modify the expected 

outcome slot to match the expectations of the player. We 

cannot infer this expectation precisely, so we set the expected 

outcome to either the reward or penalty of the selected target. 
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Model Predictions with Model & Knowledge-tracing 

To test the effectiveness of model- and knowledge-tracing for 

predicting human decision making, the model was run 

alongside human data in the peSSE condition. On each trial, 

the model simply makes a decision, which is recorded, and is 

then updated via model-tracing and knowledge-tracing. The 

model decision was then compared to the decision the human 

made to generate a probability of agreement between the 

model and human. The mean probability of agreement for 

rounds 1-4 are 86.4% (SD = 12.3%), 90.8% (SD = 11.4%), 

89.6% (SD = 12.4 %), and 86.8% (SD = 15.5%), respectively. 

The trial-to-trial agreement is highly accurate, just short of 

accounting for the entirety of human stochasticity. In fact, 

even at the 1st trial the model is accurate to 83.3%. Moreover, 

the model adapts well to the individual’s probability of attack. 

Figure 3 shows the overall probability of attack of individual 

model runs compared to the human it traced. The model is 

exceptionally accurate in adapting to the human, r2 = 0.95. 

Using techniques of model-tracing and knowledge-tracing, 

the model makes very accurate predictions and could feasibly 

be used in designing a personalized signaling scheme. 

 

 
 

Figure 3: Overall mean probability of attack comparing 

individual humans to the model run that traced him/her, in the 

peSSE condition using personalized signaling. 

A Personalized Deceptive Signaling Scheme 

The peSSE signaling scheme uses deceptive signals on 

uncovered targets but not on covered targets. These schemes 

invite attacks with impunity when no signal is given. 

Therefore, a broader and more symmetrical approach may be 

warranted, as has been explored in recent game-theoretic 

research (Cooney et al., 2019). The following signaling 

scheme also uses deceptive signals when a target is covered. 

If the goal is to minimize the probability of attack as a 

function of the warning signal then it can be shown that we 

must reach an equilibrium where the probability of attack 

given a warning, P(A|W), is equal to the probability of attack 

given no warning, P(A|NW). A signal must be generated at a 

rate that preserves this equality. We can examine the impact 

of the presence or absence of a signal in various situations. 

For example, given an attack, if a target is covered, the 

attacker will lose, and their future probability of attack will be 

lower. If a target is uncovered, the attacker will win, and their 

future probability of attack will be higher. Each outcome thus 

increases or decreases one of the attack probabilities. In 

particular, the change in attack probability (decrease or 

increase) is determined by whether the selected target is 

covered or not, respectively, while the probability impacted 

(signal or no signal) is determined by the presence or absence 

of a signal, respectively. This results in the following 

algorithm for signal generation: if the selected target is 

covered, if P(A|W) is greater than the P(A|NW) then generate 

a signal, otherwise do not generate a signal; but if the selected 

target is not covered, if P(A|W) is greater than the P(A|NW) 

then do not generate a signal, otherwise generate a signal. 

The role of the cognitive model in this algorithm is to 

determine P(A|W) and P(A|NW). We know the model 

generates expected outcomes of attacking and decides to 

attack if the value is greater than zero. Therefore, we can 

simply generate the expected outcome of attacking given the 

presence or absence of a signal and compare them to compute 

the conditions used in the algorithm above. An essential point 

is that those expected values are not the true expected values, 

but the model’s subjective expected value given its limited 

experience and its reflection of human cognitive biases. 

Intuitively, if the selected target is covered, then we decide 

on whether to generate a signal or not depending on which 

condition is most likely to lead to an attack. This corresponds 

to trying to catch the attacker when the target is covered, 

lowering the future probability of attack. Conversely, if the 

selected target is not covered, select the condition (signal or 

not) least likely to lead to an attack. Again, the accuracy of 

the cognitive model is essential in this approach to capture the 

subject’s intention to attack or not. We can use the current 

model to track an individual’s decisions and generate 

predictions of their probability of attack given the situation. 

Effectiveness of Personalized Signaling Scheme 

To generate predictions of the effectiveness of this 

personalized signaling scheme, we ran the IBL model through 

the IAG while using the personalized signaling scheme 

described above to make predictions about the expected 

outcome of attacking, given a signal and given no signal. 

Based on those predictions and the underlying coverage of the 

selected target, the scheme determined whether or not to give 

a signal on each trial. 

Compared to the human performance in peSSE, the 

personalized signaling method is expected to reduce the 

probability of attack by an average of 2.7% (RMSE = 6.6%). 

Meanwhile, Figure 4 shows that personalized signaling will 

result in fewer gains and more losses. Looking further into the 

data, Figure 5 plots the probability of attack across the 

various targets, based on their monitoring probability. 

Compared to human performance, the personalized signaling 

method seems to shift the distribution of attacking toward 

targets with a higher monitoring probability, and therefore the 

IBL model incurs more penalties. 
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Figure 4: Comparing the mean gains/losses across rounds in 

the personalized signaling model to humans in the peSSE. 

 

 
 

Figure 5: Mean probability of attack across targets, by their 

monitoring probability, comparing the personalized signaling 

model to humans in the peSSE condition. 

Conclusions 

The present research shows that we can leverage the 

predictive power of a generalizable IBL model to infer an 

individual’s knowledge, trace their experience, and exploit 

their biases to design an adaptive signaling scheme that is 

personalized for an individual. The current method is an 

initial attempt toward developing a personalized deceptive 

signaling scheme for cyber defense. Although the current 

scheme did not greatly reduce the probability of attack, the 

cognitive model proved to be an accurate predictor of human 

behavior. Future research will test the personalized signaling 

scheme against human attackers. Insight gained from human 

experiments will provide information about how to modify 

the signaling logic to create a more effective scheme. 
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Abstract 

Skill acquisition experiments have rarely focused on 
collaborative tasks. Here we attempt to fill this gap with a 
study on teamwork in a dynamic task. The task - Coop Space 
Fortress - is computer game, in which subjects fly spaceships 
to destroy a space fortress. This task presents two challenges: 
learning how to fly a spaceship in a frictionless environment 
and developing a strategy on how to coordinate. When 
learning to play this computer game, subjects not only master 
the game controls but also typically settle on team roles to 
more efficiently achieve their goal, despite not being allowed 
to communicate. The data from this study will pave the way 
to an ACT-R model of teamwork in a dynamic task. 

Keywords: skill acquisition, dynamic task, teamwork, Space 
Fortress, ACT-R 

Introduction 

From stumbling into our first steps, to learning a foreign 

language in middle school and our first mathematical 

analysis class at university, our lives are replete with various 

tasks that we master to different extents. It is astounding 

how skilled we can become after a sufficient amount of 

practice: the tightrope walker was once a toddler falling 

after a couple of steps; Shakespeare was once mumbling 

incomprehensible words and even Euler – the most prolific 

mathematician ever – was once unable to count.  

This gradual shift of the unskilled becoming fully 

proficient has been characterized as proceeding in distinct 

phases. Specifically, Fitts (1964, Fitts & Posner, 1967) 

described motor skill as progressing through three phases: a 

Cognitive Phase, an Associative Phase, and an Autonomous 

Phase. Anderson (1982) also adopted the understanding that 

skills go through three phases and applied this to cognitive 

skills, whereby he modeled the successive periods of skills 

acquisition in the cognitive architecture ACT*. Others too 

have accommodated the idea that skill acquisition is a 3-

phase process (e.g., Ackerman, 1988; Kim, Ritter, & 

Koubek, 2013; Rosenbaum, Carlson, & Gilmore, 2001).  

Similarly to ACT*, in ACT-R (Anderson, 2007) – the 

current version of the architecture – skill transitions from a 

slower and more deliberative stage to a faster and more 

automatic stage. This architecture has been applied to model 

skill acquisition in a variety of tasks, such as solving linear 

equations (Anderson, 2005), a complex aviation task 

(Taatgen et al., 2008) and past tense learning (Taatgen & 

Anderson, 2002). Further support of ACT-R’s 

characterization has been provided in neuroimaging studies, 

which uncovered qualitative changes in the recorded neural 

patterns as subjects become more proficient (i.e., in solving 

pyramid problems; Tenison, Fincham, & Anderson, 2016).  

Finally, a modification of the architecture was used to 

model an amount of transfer between skill acquisition tasks 

not completely accounted for by ACT-R (Taatgen, 2013).  

Cognitive Skill Acquisition 

ACT-R does not adhere to a 3-phase view of skill 

acquisition. Instead, this architecture models each 

subcomponent of the skill as transitioning from a declarative 

to a procedural endpoint. At one extreme, the cognitive 

system only has declarative knowledge about a certain task 

domain. This knowledge is typically stored in terms of 

operators in declarative memory, which are composed of 

three pieces of information: the state in which they apply, 

the action that should be taken, and the state that results 

after that action is taken. Operators are the building blocks 

of a subject’s mental model of the task and they are 

typically acquired when reading the task instructions. When 

an unskilled subject faces a task, operators are retrieved to 

determine what action should be taken next.  

These operators are gradually converted to procedural 

knowledge through a process called production compilation 

(Taatgen & Anderson, 2002). When an operator is compiled 

into a production, its actions are directly performed by that 

production without the need to retrieve the operator. The 

result is, first, a faster execution of that action as the time 

cost of retrieval is no longer incurred and, second, retrieval 

processes are no longer occupied and can be used for other 

purposes. Moreover, it is possible for two subsequent 

actions to be complied into a single action if there is no 

conflict of cognitive resources. The relative rate at which 

operators are compiled is a function of how often they are 

evoked, meaning that different subcomponents of skill can 

be proceduralized to different extents at certain time points.  

Dynamic Tasks 

The majority of skill acquisition tasks modeled with 

ACT-R follow a linear perception-cognition-action pattern. 

Yet, real-world tasks are complex and dynamic, meaning 

that they involve the coordination of cognitive, perceptual 

and motor activities in an ever-changing, yet predictable 

world. To investigate the applicability of ACT-R’s approach 

to dynamic tasks, learning in the arcade game Space 

Fortress was addressed (Anderson et al., 2019). Space 

Fortress was selected because it is simple enough to be 

suitable for an experiment, challenging at first and still 
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learnable within a single experimental session. In addition to 

its dynamic nature, Space Fortress differs from the majority 

of skill acquisition tasks modeled with ACT-R in that it 

requires learning to tune skill to features in the environment 

so that actions are successful. To this end, ACT-R was 

extended with a new module – the Controller (Anderson et 

al., 2019). The model of this dynamic task underwent the 

same process of skill acquisition that other models did by 

gradually compiling operators into productions. However, 

the increased complexity of this task relative to others meant 

that the model spent much more time compiling operators 

than simpler models do. Moreover, while operators in 

declarative memory were being proceduralized, the 

Controller module was tuning actions to relevant 

environmental features.   

Teamwork 

One aspect of skill acquisition that has been rarely 

researched in the lab is how people learn to execute a novel 

task while working as a team. In a team, individuals’ tasks 

become interdependent and their goals shared (Dyer, 1984). 

To achieve high performance, each team member needs to 

successfully manage the tasks that are independent of the 

other team members (i.e., taskwork) and the tasks that are 

intertwined with the others (i.e., teamwork; Salas, Cooke, & 

Rosen, 2008). Both taskwork and teamwork depend on the 

processes of encoding, storage and retrieval of information, 

while two additional factors are key to teamwork. 

Specifically, shared cognition (i.e., shared mental models 

and situation awareness; Salas & Fiore, 2004) and 

communication facilitate coordination and cooperation 

between team members. To investigate how people learn to 

work in a team in a dynamic task, we created a new 

cooperative computer game, Coop Space Fortress. 

Coop Space Fortress 

Space Fortress has a history in the study of skill 

acquisition dating back to the end of the 80’s (Donchin, 

1989; Frederiksen & White, 1989; Gopher et al., 1989). The 

goal of the game is to accumulate as many points as 

possible, which can be achieved by destroying a fortress 

located in the center of the screen while avoiding crashing 

into a rectangle, which defines the playing field. We relied 

on the Pygame implementation of Space Fortress (Destefano 

& Gray, 2008) to create a cooperative version of the game – 

Coop Space Fortress.  

In Coop Space Fortress, two players control two ships 

(see Figure 1). Their goal is to destroy a fortress in the 

center of the screen. However, the fortress has an 

impenetrable shield around it (the small hexagon), which is 

only partially disabled when the fortress shoots a missile. 

When this happens, the back of the fortress is no longer 

shielded and the fortress can be destroyed. Consequently, 

for the team to destroy the fortress, one ship needs act as a 

bait: it needs to enter the big hexagon, which triggers the 

fortress to aim and shoot at that ship if the ship moves 

sufficiently slowly. While the fortress is shooting and its 

back is exposed, the other ship needs to navigate behind the 

fortress, aim at it and destroy it (see Figure 2). To keep 

things simpler, we did not allow players to communicate. 

Thus, players needed to figure out their roles based solely 

on the common instructions that they received. 

 

 

 
Figure 1: Start of the game. Both players are outside of 

the hexagon and the fortress has no target. The players 

should enter the hexagon and try to destroy the fortress. 

 

When the fortress is destroyed, the score is incremented 

by 100 points. The ships need to then exit the hexagon. 

When both ships are outside of it, the fortress respawns and 

the ships can again attempt to destroy it. When outside the 

hexagon, the ships should avoid hitting the outer border (big 

square), because they would explode and reduce their 

common score by 100 points. In addition to penalizing 

deaths, reckless shooting is also penalized by 10 points for 

each missile that does not hit the fortress.  

Navigation in Coop Space Fortress relies on three actions: 

rotating clockwise (key “D”), rotating counterclockwise 

(“A”) and thrusting (“W”), while shooting is achieved with 

the spacebar. Despite having only 4 actions overall, learning 

to play Coop Space Fortress is a challenging task. A major 

difficulty is that frictionless space is counterintuitive to 

operate in. First, the ship’s orientation is independent of its 

direction of flight. Moreover, the ship does not slow down 

on its own and no breaks are available. Instead, to slow 

down one needs to turn in a direction opposite the flight 

direction and thrust. Similarly, moving in a desired direction 

requires thrusting in a direction, whose vector sum with the 

flight velocity results in the desired flight path. Another 

challenge for players is learning how key press durations 

map to acceleration or rotation rate. 

In addition to learning how to control the ship, Coop 

Space Fortress poses the additional challenge of 

coordinating with a teammate, because unless each player 
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does their task, no player will earn any points. For example, 

the player that acts as a bait needs to stay inside the hexagon 

and fly at a slow speed while the shooter is aiming and 

shooting. Note that if the bait accidentally exits the hexagon 

or is shot down by the fortress, the shooter becomes the bait 

and both players need to reset their current goals. Similarly, 

if the shooter does not succeed in commanding the ship with 

enough proficiency to destroy the fortress, the team will 

perform poorly. Finally, both players need to exit the 

hexagon for the fortress to respawn. As a consequence, the 

final performance in the game is an interaction between the 

skills of each player: If even one player struggled to 

performs his/her task, the common score would remain low. 

On the other hand, if each player performed at a reasonable 

level, the common score would increase. 

 

 
Figure 2: Players coordinating: one player acts as a bait, 

while the other is shooting at the fortress. The fortress, 

having shot at the first player, has its back exposed. Once 

the fortress is destroyed, the two players should exit the big 

hexagon so that the fortress respawns. 

 

Methods 

Participants 

Thirty subjects (13 males, mean age: 22.4 years, min age: 

18, max age: 35) from the Pittsburgh area, mostly students 

from Carnegie Mellon University and the University of 

Pittsburgh, participated for money, which included a base 

payment ($15) and a bonus payment (Mean: $2.03, Min: 

$0.10, Max: $11.85) based on their performance. Pairs of 

participants were formed either randomly, restricted by 

participants’ availability, or by asking participants to bring 

another participant to play with. Informed consent approved 

by the Carnegie Mellon University Institutional Review 

Board (IRB) was obtained from each participant. The data 

of the first pair of subjects was not included in the analysis 

as it was not completely recorded. Only 4 of the 28 subjects 

reported having played a similar game (2 reported 

Asteroids, while Snake and Minecraft were each considered 

similar by a single subject each) in the post-experimental 

questionnaire.  

Procedure 

The experiment consisted of 4 tasks: (1) a demographics 

questionnaire, (2) game instructions, (3) 20 3-minute-long 

rounds of playing Coop Space Fortress, and (4) a feedback 

questionnaire. A task needed to be completed by both 

participants before the subsequent one could be started. 

Participants were given a 1-minute break after 10 games. 

The overall experiment took between 1h15min and 1h20min 

of participants’ time.  

Demographics questionnaire. This questionnaire consisted 

of general demographics questions and of game-related 

questions. The general demographics questions inquired 

about the subject’s sex, age, ethnicity, and field of study. 

The game-related questions requested information about the 

subject’s video game experience, such as whether they ever 

played or currently play video games, the frequency of play, 

the platform they played on and the preferred genre of video 

games. 

Post-experimental questionnaire. The post experimental 

questionnaire elicited information about a subject’s 

experience during the experiment. It inquired what 

difficulties subjects faced during gameplay, what strategies 

they attempted and what strategy they finally settled on. 

Results 

All pairs of participants exhibited learning in the course of 

the 20 games of Coop Space Fortress. Figure 3 shows the 

average, minimum and maximum points obtained by subject 

pairs over the course of the 20 games. On average, teams 

monotonically increased their performance as the 

experiment progressed. Yet, there was a substantial 

variability in the amount of points achieved in a game.  

 

 
Figure 3: Game score progression over 20 3-minute 

games. Error bars represent minimum and maximum points 
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achieved in a game. The mean score increases steadily, but 

the variability is large. 

A major reason for the large variability in score is the 

between-subject variability (Figure 4), which likely reflects 

prior experience with video games. Note that total points 

result from an interaction of the ability of both players: If 

one player is of low skill, the pair would not reach a high 

total score no matter how skilled the second player. The 

skewed distribution of average team score is likely a 

consequence of this interaction. A second major contributor 

to the large variability in score is the game-to-game 

variability within pairs of subjects (error bars in Figure 4).  

 

 
Figure 4: Average score per game for each of the 14 pairs 

of subjects. Error bars plot standard deviations. There is a 

large variability in skill between pairs of subjects. 

 

Points are determined to a large extent by the number of 

fortress kills and number of player deaths. Not surprisingly, 

as the game progresses, players become better at destroying 

the fortress and less likely to die (see Figure 5).  
 

 
Figure 5: Average number of fortress kills and average 

number of deaths over 20 3-minute-games. Error bars 

represent standard deviations. Players progressively become 

better at killing the fortress and avoiding crashing into 

obstacles. 

 

The primary cause of death in the beginning of the game 

is hitting the outer border of the game field (i.e., the large 

square), which reflects players’ poor navigation abilities. As 

players become more skilled at controlling the ship in the 

frictionless environment, they also almost never hit the outer 

border and their total number of deaths decreases 

substantially. 

 Pairs of subjects differ significantly in skill. Where some 

subjects are highly skilled at coordinating their actions and 

aiming accurately while moving fast and, consequently, are 

able to achieve a lot of kills, other subjects’ poor navigation 

skills force them to fly at a slow speed to avoid crashing 

into an obstacle, which leads them to reaching a lower 

number of kills per unit time. Moreover, these subjects are 

also typically worse at aiming and precisely navigating their 

ship to successfully coordinate with each-other.  

Individual Skill Acquisition 

Learning to navigate is a primary challenge in the 

frictionless environment. In addition to becoming better and 

pressing keys at durations that would lead to the intended 

ship state, players also learn to stay within reasonable 

ranges of their flight speed, because too high speeds easily 

lead to losing control over the ship and crashing (Figure 6).  

 

 
Figure 6: Speed distribution over 20 games. Players learn 

that excessive speed leads to loss of ship control and thrust 

less. The lines correspond to the 10th, 25th, 50th, 75th and 90th 

percentile. 

 

Another key component of the game is the ability to 

destroy the fortress, which requires learning how to aim and 

when to shoot. In the initial games, players shoot more 

frequently overall (Figure 7a) and need many more shots to 

achieve a fortress kill (Figure 7b). As players become more 

skilled, they asymptote towards needing 2 shots per fortress 

kill on average and reduce their total number of shots 

overall, which further increases their point total as each 

missed shot leads to a 10-point penalty.  

Cooperation Strategy 

No matter how skilled at flying the ship, aiming and timing 

a shot, players still need to coordinate their action in order 

to achieve a high score in the game. An efficient strategy 

would exploit the strengths of each player and allow players 
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to learn quickly. As indicated by in-game variables and 

subject reports, the majority of teams settled on a 

cooperation strategy that required each player to adopt a 

specialized role, whereby one player acted as a bait, while 

the second one as a shooter. Specifically, out of the 14 

teams, in 9 at least 2/3 of all kills were committed by one 

player (see fraction of fortress kills per player in Figure 8).  

 

 
Figure 7: (a) Total number of shots and (b) fortress kills 

per shot over 20 games, averaged over 14 subject pairs. 

Error bars plot standard deviation. Teams become more 

efficient at destroying the fortress as the game progress. 

 

 
Figure 8: Total number of fortress kills for each player in 

each pair of subjects. The fraction of total fortress kills of 

the subject that committed more kills is displayed on top of 

each bar.  

Role adoption did not happen immediately. While initially 

each player was, on average, equally likely to shoot down a 

fortress, role separation slowly started emerging. By games 

5-6, the player acting as a shooter destroyed the fortress on 

average 70-75% of the time (see Figure 9). Note that there 

was a large inter-subject and inter-game variability, which 

was due to, first, the teams that did not adopt a role and, 

second, to poorly performing teams, for which the fraction 

of fortress kills varied more strongly.   

 

 
Figure 9: Average fraction of fortress kills per game of 

the player with more total kills over all 20 games. Error bars 

plot one standard deviation. As the games progress, players 

become more likely to adopt and stick to a role. 

 

In their post-experimental reports, 9 of the 14 pairs of 

subjects reported purposely adopting a role, 4 pairs of 

subjects did not report this or reported purposely alternating 

roles, and the subjects in one pair had conflicting intentions 

– one player attempted to act as a bait, while the second did 

not adopt the role of the shooter. Instead, his strategy was to 

try to get any positive score and then try not to die by the 

end of the 3-minute game. Moreover, each team followed 

their idiosyncratic cooperation path. For example, out of 

fairness considerations, the skilled player in one pair 

reported intentionally taking turns in acting as a bait and as 

a shooter until realizing that it is more efficient to stick to 

the same role.  

 Most pairs did not report why they adopted their role. Of 

the 3 that did, for 2 the shooters were the players that were 

better at controlling the ship and for 1, the bait was the 

player better at controlling the ship. Interestingly, 7 of the 

28 subjects also mentioned that one difficulty in playing the 

game was their inability to communicate with their partners, 

which they claimed would facilitate strategizing and role 

assignment.  

Finally, independent of their role, many subjects also 

reported trying fly on the opposite side of the fortress than 

their teammate. Evidence for this could also be seen when 

observing player’s trajectories, which for some teams 

revealed that the teammates stayed in opposite quadrants of 

the playing field.  
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Discussion and Conclusion 

We presented the results of an experiment that investigates 

how subjects acquire skill in a dynamic teamwork task. The 

task, Coop Space Fortress, is a modification of the dynamic 

game Space Fortress that requires pairs of subjects to 

cooperate in order to earn points. All pairs of subjects 

learned to play the game, although there were large inter-

subject differences in ability. Subjects improved their game 

score both by becoming more skilled at controlling their 

ship and by typically settling on a role. 

Why are subjects adopting distinct roles? Adopting roles 

likely simplifies skill acquisition, because it is easier to 

learn the actions associated with a single task as opposed to 

with two separate tasks. Moreover, it is likely more 

efficient, because there are no switching costs. Yet, how do 

subjects decide who should adopt what role, given that they 

are not allowed to communicate? As hinted by the post-

experimental questionnaires, different roles might require a 

different amount of skill. Consequently, the more competent 

player should lean towards adopting the more difficult task. 

Interestingly, the three subject reports did not all agree on 

which role is more difficult. If subjects are equally skilled, 

random factors such as who happens to be targeted by the 

fortress first might turn the scales in one direction.  

One way of exploring these questions more deeply would 

be to extend the existing ACT-R model of Space Fortress 

(Anderson et al., 2019), which captures individual skill 

acquisition, to include shared mental models. One 

component of shared mental models are the game 

instructions, which are represented as operators. 

Additionally, the model of each player needs to represent 

the past actions of the teammate, which would then enable it 

to infer the teammate’s likely future actions. As suggested 

by Lebiere, Jengtsch, and Ososky (2013), one could rely on 

Instance-based Learning Theory (Gonzalez, Lerch, & 

Lebiere, 2003) to store instances of the teammate’s past 

actions and their outcomes. This final model would then 

allow us to trace out the skill acquisition trajectory in this 

cooperative task to better understand how people learn to 

work in teams. 

Acknowledgments 

This work was supported by AFOSR/AFRL 

award  FA9550-18-1-0251. 

References  

Ackerman, P. L. (1988). Determinants of individual 

differences during skill acquisition: Cognitive abilities 

and information processing. Journal of Experimental 

Psychology: General, 117, 288-318. 

Anderson, J. R. (1982). Acquisition of cognitive skill. 

Psychological Review, 89, 369-406. 

Anderson, J. R. (2005). Human symbol manipulation within 

an integrated cognitive architecture. Cognitive Science, 

29, 313-341. 

Anderson, J. R. (2007). How can the human mind occur in 

the physical universe?. Oxford University Press. 

Anderson, J. R., Betts, S., Bothel, D., Hope, R., & Lebiere, 

C. (2019). Transfer of rapid and precise action skills. 

Manuscript submitted for publication. 

Destefano, M., & Gray, W. D. (2008). Progress report on 

Pygame Space Fortress. Troy, NY: Rensselaer 

Polytechnic Institute. 

Donchin, E. (1989). The learning-strategies project: 

Introductory remarks. Acta Psychologica, 71, 1-15. 

Dyer, J. L. (1984). Team research and team training: A state 

of the art review.  In F. A. Muckler (Ed.), Human Factors 

Review (pp. 285–323). Santa Monica, CA. 

Fitts, P. M. (1964). Perceptual-motor skill learning. 

Categories of Human Learning, 47, 381-391. 

Fitts P.M., Posner M.I. (1967). Learning and Skilled 

Performance in Human Performance. Brock-Cole, 

Belmont, CA. 

Frederiksen, J. R., & White, B. Y. (1989). An approach to 

training based upon principled task decomposition. Acta 

Psychologica, 71, 89-146. 

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-

based learning in dynamic decision making. Cognitive 

Science, 27, 591-635. 

Gopher, D., Weil, M., & Siegel, D. (1989). Practice under 

changing priorities: An approach to training of complex 

skills. Acta Psychologica, 71, 147–178. 

Kim, J. W., Ritter, F. E., & Koubek, R. J. (2013). An 

integrated theory for improved skill acquisition and 

retention in the three phases of learning. Theoretical 

Issues in Ergonomics Science, 14, 22-37. 

Lebiere, C., Jentsch, F., & Ososky, S. (2013). Cognitive 

models of decision making processes for human-robot 

interaction. In International Conference on Virtual, 

Augmented and Mixed Reality (pp. 285-294). Springer, 

Berlin, Heidelberg. 

Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. 

(2001). Acquisition of intellectual and perceptual-motor 

skills. Annual Review of Psychology, 52, 453-470. 

Salas, E., Cooke, N. J., & Rosen, M. A. (2008). On teams, 

teamwork, and team performance: Discoveries and 

developments. Human Factors, 50, 540-547. 

Salas, E., & Fiore, S. M. (Eds.). (2004). Team cognition: 

Understanding the factors that drive process and 

performance. Washington, DC: APA. 

Taatgen, N. A. (2013). The nature and transfer of cognitive 

skills. Psychological Review, 120, 439-471. 

Taatgen, N. A., & Anderson, J. R. (2002). Why do children 

learn to say “broke”? A model of learning the past tense 

without feedback. Cognition, 86, 123-155. 

Taatgen, N. A., Huss, D., Dickison, D., & Anderson, J. R. 

(2008). The acquisition of robust and flexible cognitive 

skills. Journal of Experimental Psychology: General, 137, 

548-565. 

Tenison, C., Fincham, J. M., & Anderson, J. R. (2016). 

Phases of learning: How skill acquisition impacts 

cognitive processing. Cognitive Psychology, 87, 1-28. 

52ICCM2019



Predicting Performance in Cardiopulmonary Resuscitation 
 

Kevin A. Gluck1 (kevin.gluck@us.af.mil) 

Michael G. Collins2 (michael.collins.ctr@us.af.mil),  

Michael A. Krusmark3 (michael.krusmark.ctr@us.af.mil) 
1Air Force Research Laboratory, 2ORISE at AFRL, 3L3 Technologies at AFRL 

Wright-Patterson Air Force Base, Ohio, USA 

Florian Sense (f.sense@rug.nl), Sarah Maaß (s.c.maass@rug.nl), Hedderik van Rijn (d.h.van.rijn@rug.nl) 
Department of Experimental Psychology, University of Groningen 

Groningen, The Netherlands 

 

 

Abstract 

Cardiopulmonary resuscitation (CPR) is a real-world basic 
lifesaving skill that requires a complex combination of 
declarative memory and psychomotor skill. It is also simple 
and brief enough to be practical for laboratory use. Here we 
describe a repeated measures study with increasing lags 
between sessions. At the time of the writing of this initial 
manuscript submission, the final session of CPR performance 
data has not been run. This paper documents our participant-
level performance predictions for that final session, using the 
Predictive Performance Equation (PPE; Walsh, Gluck, 
Gunzelmann, Jastrzembski, & Krusmark, 2018). With the final 
lag period for that final experiment session at approximately 
one year for every participant, we will be able to assess 
predictive accuracy of PPE over an ecologically relevant 
timeframe. 

Keywords: skill acquisition; retention; learning; memory; 
CPR; performance prediction; mathematical model 

Introduction 

Cardiopulmonary resuscitation (CPR) is an essential 

component of first aid training. The Basic Life Support CPR 

procedure, as laid out by the European Resuscitation Council 

(ERC) guidelines (Soar et al., 2015), includes an assessment 

of the so-called victim (check response, check breathing) and 

a series of steps (alert emergency services, hand positioning) 

before the actual chest compressions and rescue breaths are 

administered in a cycle of 30 compressions and two rescue 

breaths. In addition to its being a critical life-saving skill, 

CPR is a useful domain for studying human performance. It 

is a task that combines declarative knowledge and 

psychomotor skills, and clear performance standards are 

available. High fidelity training and assessment equipment, 

such as the Laerdal QCPR manikin used in this study, record 

and store detailed performance measures automatically.  

Crucially, CPR certification entails periodic retraining to 

ensure performance remains above criterion. For medical 

professionals, retraining is typically completed every other 

year. This interval is often considered suboptimal as 

performance is likely to drop below the criterion during this 

period (Stross, 1983). Furthermore, the American Heart 

Association (AHA) recognizes that large individual 

differences in CPR performance exist, which complicates the 

prescription of ideal methodology and frequency of training 

(Nolan et al., 2015). Consequently, cognitive-psychological 

theories of learning and retention over realistic time-frames 

could provide a benefit to public health and safety by 

accurately predicting when someone should be provided with 

additional training to remain above performance criteria. 

To validate learning and retention theories for this purpose, 

we initiated the collection of a CPR dataset (Sense, Maaß, 

Gluck, & van Rijn, 2019, https://osf.io/m8bxe/). A benefit of 

studying CPR performance is that there exist certain sub-

populations who have been trained previously on this task 

before entering the lab. Specifically, part of the requirements 

to obtain a German driver’s license is to demonstrate CPR 

performance above criterion. Therefore, German students 

with a driver’s license are a suitable population to test long-

term retention of procedural and declarative knowledge 

because they had CPR training in the past, typically had no 

retraining, and there will be natural variation in time since 

last presentation.  

Mathematical models of learning and retention can help 

describe fluctuations in CPR performance over time based on 

individuals’ prior performance. Sometimes the motivation in 

research and application of these models is to optimize 

repetition schedules within individual learning sessions (van 

Rijn, van Woudenberg, & van Maanen, 2009; Sense & van 

Rijn, submitted). Earlier research has shown that an ACT-R-

based cognitive model can use response accuracy and latency 

on a trial-by-trial basis to predict when each studied item is 

likely to be forgotten and ensure rehearsal before that 

moment. This improves retention of the studied facts (Sense 

& van Rijn, submitted) and allows the estimation of a 

learner’s rate of forgetting (Sense, Behrens, Meijer, & van 

Rijn, 2016).  

 Other times the motivation is to predict performance over 

longer time periods between sessions. This is our primary 

interest in the analyses reported here. A model that has shown 

some promise regarding its predictive validity over those 

longer between-session intervals, regardless of the relative 

mix of declarative or procedural knowledge involved, is the 

Predictive Performance Equation (PPE; Walsh, Gluck, 

Gunzelmann, Jastrzembski, & Krusmark, 2018). PPE is a set 

of equations capturing key human performance dynamics. 

First, activation increases with the number of learning events 

(N). This is implemented as a power law of learning, with the 

learning rate fixed at 0.1 based on prior empirical evidence 

and model fits (Equation 1). Because participants enter the 

study at different experience levels, we add to N a free 
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parameter, a, to represent each individual’s past CPR 

experience. Second, performance drops as a function of 

elapsed time among practice events (T; Equation 1). This is 

implemented as a power function of forgetting, with the 

decay rate determined by the function expressed in Equation 

4, below. In PPE the effects of learning and retention on 

activation is multiplicative, such that: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (𝑁𝑁 + 𝑎𝑎)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖 𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙 ∙ 𝑇𝑇−𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑 𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙     (1) 

Third, PPE captures the spacing effect, such that retention 

is better and more stable when practice is distributed over 

time. This is implemented in the forgetting function through 

T and the decay rate. T is computed as the sum of the 

weighted age of each practice event,  

 

𝑇𝑇 =  �𝑤𝑤𝑖𝑖 ∙ 𝑎𝑎𝑖𝑖

𝑙𝑙−1

𝑖𝑖=1

,     (2) 

where the weight, wi, is an exponential decay function of 

time, 

 

𝑤𝑤𝑖𝑖 =  𝑎𝑎𝑖𝑖−𝑥𝑥 �
1
𝑎𝑎𝑗𝑗−𝑥𝑥

𝑙𝑙−1

𝑗𝑗=1

.      (3) 

Thus, T weighs practice repetitions so that more recent 

events carry more weight, and the variable x, which is fixed 

at 0.6, controls the degree of the weighting.  

The decay rate is computed as a function of the complete 

history of lags between successive practice opportunities 

(lagj):  

 

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎 + 𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑑𝑑

∙ 𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑎𝑎𝑎𝑎𝑑𝑑 �
1

𝑠𝑠𝑎𝑎𝑎𝑎(𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖)
�                    (4) 

 

Finally, in PPE performance is computed as a logistic 

function of activation: 

 

𝑃𝑃𝑑𝑑𝑟𝑟𝑃𝑃𝑎𝑎𝑟𝑟𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 =
1

1 + 𝑑𝑑𝑒𝑒𝑖𝑖 �𝑎𝑎ℎ𝑟𝑟𝑑𝑑𝑠𝑠ℎ𝑎𝑎𝑠𝑠𝑑𝑑 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑟𝑟 �

(5) 

 

PPE parameters are estimated separately for individuals 

based on their performance histories. For each individual, we 

compute the optimal values of the decay intercept, decay 

slope, threshold, and experience (a) parameters that 

maximizes the likelihood of individual performance 

trajectories. These parameter values are then used to generate 

out-of-sample predictions of performance at future points in 

time.   

An increasingly common modeling practice in 

environments with sparse and noisy data is to seed a model’s 

parameter values with priors. This avoids over fitting and 

improves out-of-sample prediction (Yarkoni & Westfall, 

2017). There has been some previous exploration of this 

approach in the context of PPE (Collins, Gluck, Walsh, & 

Krusmark, 2017; Collins & Gluck, 2018). Here we use priors 

generated from an independently completed CPR study 

(Jastrzembski et al, 2017). In that research, CPR compression 

data from four sessions separated by either one day, one 

week, one month, or three months were used to calibrate the 

model and generate model parameters for temporal 

predictions at either three or six months in the future. These 

model parameters were used in the current study to inform 

parameters generated during the model fitting process. The 

generalization of priors allows PPE to use available prior 

information about human performance on CPR. 
The current study was devised to assess the accuracy of 

personalized performance predictions. The ERC’s guidelines 

(Soar et al., 2015) state that “The intervals for retraining will 

differ according to the characteristics of the participants”. 

The availability of predictive models that take an individual’s 

performance profile over time into account permits such 

personalized predictions. Ideally, this would make retrainings 

more efficient and reduce the interval during which a medical 

professional might perform below criterion. The viability of 

personalized refresher schedules crucially depends on the 

accuracy of the predictions: Requiring people to retrain too 

early is a waste of resources but requiring them too late can 

cost lives. 

Method 

Participants 

Fifty participants (age range = [18, 27]) were recruited for a 

first learning session, 40 took part in the second session, and 

35 participated in the third session. All participants held a 

valid German driver’s license.  

Procedure and Stimuli 

The full experiment protocol includes four sessions in which 

CPR performance data are collected. At the time these model 

predictions were run, participants had completed three 

experimental sessions, with the fourth session upcoming. In 

addition to assessing CPR performance in all sessions, a set 

of computerized laboratory tasks more typical of 

experimental cognitive psychology were also administered in 

some of the sessions. These are documented elsewhere in 

detail (Sense, Maaß, Gluck, & van Rijn, 2019, 

https://osf.io/m8bxe/) and are not a focus in this paper. A 

graphical summary of the CPR-specific experiment protocol 

is provided in Figure 1. 

Session 1: Test 1.1. At the beginning of each session, 

participants signed the informed consent forms. In the first 

session participants then entered the experimentation room 

where a Laerdal Resusci Anne QCPR manikin was lying on 

the ground. Participants read the following instructions: “You 

volunteered for community service to help elderly neighbors 

with chores in their homes. When you enter the house of Mr. 

Johnson, you find him on the living room floor. There are no 

signs of bleeding or open wounds and no one else is in the 

house. Based on your first aid training, take the steps 
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necessary in this situation on the manikin to assess and react 
upon the situation.” 

 

 
Figure 1. Overview of the experiment protocol. 

 

This scenario was chosen to sketch a hypothetical scenario 

that required participants to perform CPR on the manikin. 

They were asked to perform the necessary actions required 

according to the ERC guidelines (Soar et al., 2015). This 

means participants were supposed to alternate between 30 

compressions and two rescue breaths. Participants were 

stopped after administering four cycles of compressions and 

rescue breaths (i.e., 30-2, 30-2, etc.) to avoid fatigue. We 

refer to this procedure (i.e., initial steps followed by four 

rounds of 30-2) as one run-through of CPR.  

Performance scores were based on Laerdal’s proprietary 

scoring algorithm using the European guidelines (ranging 

from 0 to 100%; a score of 75% or higher is considered 

“proficient”).  

Retraining. After the initial assessment, participants were 

re-trained. First, participants watched a short instructional 

video (see https://osf.io/9er6g/) demonstrating the initial 

steps, as well as instructions on how to correctly apply chest 

compressions and rescue breaths. This video was specifically 

made for this research project.  

Subsequently, participants had the opportunity to practice 

compressions on the manikin with its live feedback option 

enabled for one minute. That is, for each compression 

participants could track their depth and frequency and adjust 

if necessary. Then participants practiced giving rescue 

breaths until the live feedback indicated that two correct 

breaths had been given in a row. Following retraining, 

participants completed a basic lab task. As noted earlier, due 

to space limitations, details about the basic lab tasks will not 

be discussed. 

Practice 1 and 2. Participants were instructed to “Perform 

the complete procedure you saw in the video, with four 

rounds of compressions and rescue breaths” twice while their 

performance was scored. 

After the run-throughs of CPR, participants completed 

questionnaires to gather demographic information, the date 

their driver’s license was issued, and the approximate number 

of months between obtaining their license and completing 

their CPR training. The time between the mandatory training 

and obtaining the driver’s license ranged from 1 to 60 months 

(mean = 9.92 and SD = 12.71). Participants then completed 

two more basic lab tasks. 

Test 1.2. Following the computerized tasks, participants 

were asked to complete another run-through of CPR. If the 

score of this test was below 75%, participants were re-trained 

until they reached criterion. 

Session 2: Test 2. Participants completed a run-through of 

CPR. If performance was below 75%, they repeated the run-

through. Participants also completed the full set of basic lab 

tasks. 

Session 3: Test 3. Participants completed another run-

through of CPR. If performance was below 75%, they 

repeated the run-through. Participants also did one minute of 

chest compressions without live feedback from the manikin, 

then rescue breaths until two consecutive ventilations were 

correctly performed. 

Session 4: Test 4. Participants will complete another run-

through of CPR. Then participants will watch the short 

instructional video again (as in Session 1) and complete 

another run-through of CPR.  

Predicting Future CPR Performance 

As noted earlier, individual participant single performance 

event-level predictions present a small data challenge, 

especially earlier in the protocol. To manage and avoid 

overfitting to unexplained individual event-level variation we 

use Hierarchical Bayesian Modeling (Kruschke, 2014; Lee & 

Wagenmakers, 2013) to bias the PPE parameters with priors 

from a previous CPR study and generate posterior predictive 

distributions for each participant remaining in this study 

through Session 3.  

In predicting CPR performance on Session 4, PPE’s free 

parameter values were estimated using the model shown in 

Figure 2. For each participant, the model estimates 

probability distributions for PPE’s free parameters (decay 

intercept, decay slope, a, threshold) that best characterize 

performance over the first three sessions. The estimates are 

based on a set of hyperparameters (decay interceptpop decay 

slopepop, apop, thresholdpop). that were estimated from 

individual-level CPR performance data collected in a 

previous CPR study (Jastrzembski et al, 2017). 

Unique parameter distributions are sampled for each 

individual participants from the hyperparameters to derive a 

distribution of values for each free parameter. The sampled 

set of parameters are then combined with the student’s fixed 

time variables (t, N) and are transformed into performance 

predictions (Perfi:n). The average of these performance 

predictions (Perfi:n) is represented by variable omega (ω) and 

is then combined with free parameter k, to represent the 

model’s prior beliefs of the student’s performance (𝜽𝜽). This 

prior is then combined with the student’s actual performance 

to generate a posterior estimate of performance. 

Under this methodology, PPE’s free parameter values are 

treated as a probability distribution, representing our degree 

of belief in a particular parameter value to generate a 

prediction. The final posterior probability distribution used 

to determine PPE’s prediction is affected by two factors: (1) 

Prior, the beliefs about the most likely free parameter values 

before observing the performance of a participant (i.e., Prior  
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Figure 2. The hierarchical Bayesian model used to estimate free parameter values (Decay Intercepti, Decay slopei, ai, 

Thresholdi  - all shown in blue ) for PPE prediction of performance in the 4th CPR session, given prior distributions (Decay 

Interceptpop mean  , Decay Intercept pop sd, Decay Slopepop mean  , Decay slope pop sd, apop mean, a pop sd, Threshold pop mean, Threshold 

pop sd  - all shown in salmon) based on a sample of CPR performance from a different study and the participant’s prior 

performance across the first three sessions (Perf). Random variables are represented as circles, deterministic variables are 

represented as double circles, and observed variables (lag, t, Perf) are in grey. 

 

CPR performance), and (2) the performance of a particular 

participant over the course of three sessions (i.e., likelihood). 

These two factors are combined together to generate a 

posterior distribution for each of PPE’s free parameters. It is 

this posterior distribution that is used to make predictions for 

each participant’s next performance. We do this iteratively 

through the experiment protocol for each of the 35 

participants, culminating in a prediction for their upcoming 

performance in Session 4. 

Results 

Data collection for Session 4 is scheduled for May 2019, after 

the submission deadline of this manuscript. Our key interest 

at present is in documenting our predictions for each 

participant’s CPR performance when they return for Session 

4, approximately one year after they did Session 3.  

In the process of generating Session 4 CPR predictions for 

each participant, we ran several simulations to assess how 

different assumptions about participants’ past CPR 

experience would affect predictions. Recall that the 

participants in the current study were German college 

students with a valid driver’s license, which required them to 

successfully complete CPR training prior to getting their 

license. Thus, from the issue dates on the licenses, we know 

the approximate date of each participant’s initial CPR 

training. Although no performance measures are available, 

we assumed that all participants reached criterion level of 

performance (i.e., 75%) during this initial training. Based on 

this information, we combined the 75% performance score 

that we assumed at the time of licensing with the data from 

Sessions 1 and 2, and predicted performance on Session 3. 

We then compared the accuracy of these predictions to 

predictions from the model with only data from Sessions 1 

and 2 predicting Session 3. Results of this comparison 

showed that predictions were more accurate when we ignored 

the licensing data. A possible explanation for this is that we 

were making assumptions about the level of performance 

participants reached when they received their license, but not 

that they started with no experience. Thus, we ran the model 

again assuming that performance was 0 prior to their initial 

training, and that it increased to 75 afterwards. But again, this 

did not improve predictive accuracy. Predictions were more 

accurate when we made no assumptions about CPR 

performance prior to the onset of the study.  

Figure 3 plots data for the fit and prediction methodology 

described in the previous section for each of the 35 

participants. A data file documenting the raw values used to 

generate the graph is available at (https://osf.io/5ma29/). 

Performance scores are exported from Laerdal’s proprietary 

software, which combines the compression and rescue breath 

performance into a single score.  

On the initial test at the beginning of the first session, only 

two participants demonstrate proficient performance (a score 

of 75% or above), while many score below 25%. The CPR 

Retraining administered between CPR Test 1 and CPR 

Practice 1 results in a marked increase in performance, 

making the majority of participants reach criterion. Testing 

for a difference between those two scores with a paired 

Bayesian t-test yields a decisive Bayes Factor of 2.4×1017 in 

favor of a difference. The second practice marks a further 

increase in overall performance and the vast majority of 

participants retain above-threshold performance until CPR 

Test 2 at the end of the first session. In the eight-week interval 

until the second session, and performance decreases (BFH1 = 

9.95) but many participants still exhibit near-ceiling 

performance.  
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Figure 3. CPR performance for each of the 35 participants. Observations within a session are connected by lines; sessions are 

indicated by color and shape. Session 1 is orange squares. Session 2 is a yellow circle. Session 3 is a green triangle. The 

model’s predicted performance is shown in blue, with mean predicted performance at each measurement indicated by the 

blue circle. The blue ribbons indicate the 95% highest density interval (HDI) of the posterior distribution at each instance. 

The predictions for the final session are the rightmost blue circles in each panel. 

 

Another way to summarize the data and contrast the 

predictions with the recorded data is to compute a prediction 

error at each measurement event. In Figure 4, predicted 

performance has been subtracted from the actual performance 

to express the prediction error at each measurement event. 

The color-coding indicates the session and the root-mean-

squared-error (RMSE) is listed for each event to summarize 

the prediction error. At the first event, most errors are 

negative, suggesting that predicted performance was 

consistently estimated to be higher than the recorded 

performance. This is also apparent in Figure 3, where we see 

human performance nearly always worse than the model’s 

posterior predictions at Test 1.1. The RMSE decreases over 

the events in the first session and increasingly normally 

distributed around zero, suggesting that the model’s 

posteriors become less biased: Performance is overestimated 

about as often as it is underestimated. 

Discussion 

The focus of the current work is the prediction of future CPR 

performance over ecologically valid periods. After 

completion of the first three sessions, individual predictions 

have been made for CPR performance in the 4th session.  

As can be seen in Figure 3, the priors do a generally poor 

job of representing the actual performance of participants in 

the early trials. This is a risk in generalizing parameters from 

one study to another. They are different samples, with 

participants in the previous study starting at and maintaining 

higher levels of proficiency. Given that participants in the 

study reported here started at a lower proficiency, it is to be 

expected that the prior distributions based on better 

performers would not predict worse performer data very well. 

However, most participants in both studies achieved and 

maintained higher levels of proficiency after several trials, so 
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this is bias-variance tradeoff we are willing to make in the 

interest of what we hope will be an improvement in predictive 

validity in Session 4. Additionally, the use of Bayesian 

Hierarchical Modeling as a method of parameter estimation 

provides posterior predictive distributions for each 

individual’s learning profile. The use of prediction intervals 

allows for a quantification of certainty in our out-of-sample 

predictions.  

 

 
Figure 4. Prediction errors at each measurement event. Colors 

indicate the session; numbers at the bottom are the RMSE at 

each event. 

 

The ERC’s report (Soar et al., 2015) states that CPR 

performance is known to deteriorate within months of 

training and, therefore, even annual retraining might not be 

frequent enough for some people. Due to the fact that CPR 

training can be time consuming and optimal training intervals 

are currently unknown, they suggest that frequent “low dose” 

training using video instructions and hands-on practice can 

be as effective as instructor-led courses (Nolan et al., 2015). 

The work presented here confirms that there is a swift 

improvement in performance after such CPR retraining.  

In summary, we report an experimental setup in which the 

learning and forgetting of CPR is assessed over ecologically 

relevant timeframes. We test a mathematical model’s ability 

to predict future CPR performance using very sparse data. A 

first wave of predictions is presented here and an evaluation 

of the accuracy of those predictions will be presented at the 

conference.  
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Evolutionary Optimization of Neural-Network Models of Human Behavior
Anonymous Submission

Abstract
Neural network models are essential tools in understanding
how behavior arises from information processing in the brain.
Recent advances in computing power and neural network al-
gorithms have made more complex models possible, increas-
ing their explanatory power. However, it is difficult to make
such models work: they have many configuration parameters
that have to be set right for the model to work properly. Conse-
quently, automated methods are needed to optimize them. This
paper proposed an evolutionary approach to this problem. An
Age-Layered Evolutionary Algorithm is introduced and evalu-
ated by fitting training parameters for BiLex, a self-organizing
map model of lexical access in bilinguals. The resulting con-
figurations are highly optimized and able to generalize to pre-
viously unseen human data, showing that evolutionary opti-
mization of complex models has the potential to play an inte-
gral role in cognitive modeling in the future.
Keywords: Neural Networks; Cognitive Modeling; Evolu-
tionary Algorithms

Introduction
Over the last few decades, connectionist neural networks have
become an essential tool to characterize and investigate hu-
man cognition. Models based on such networks are usually
not intended as physiologically accurate simulations of bio-
logical neurons and their interactions; nevertheless, they ex-
hibit many characteristics of information processing in bio-
logical systems, including robustness to damage and input
errors, and the ability to learn and generalize. This prop-
erty of brain-like information processing on an abstract level
is the main advantage of neural network-based models, en-
abling them to capture many aspects of high-level cognition
while relying on mechanisms that are plausible analogs of the
underlying neural substrate.

Recent progress in computing technology, such as GPU
computing and software frameworks that rely on it, like
Theano and TensorFlow (Abadi et al., 2015; Theano Devel-
opment Team, 2016), have dramatically increased the perfor-
mance and complexity of achievable models. At the same
time, advances in neural network algorithms and architec-
ture like deep learning and reservoir methods (Schmidhuber,
2014; Maass, Natschlager, & Markram, 2002) have made use
of these capabilities, and thus the scale and performance of
neural network applications have increased in equal measure.

Together these advances can significantly improve cogni-
tive neural network models. Most importantly, rather than
simulating behavior on an abstract and qualitative level, suf-
ficiently large and complex networks can now be built so that

clinical and psychometric tests can be modeled directly and
quantitatively. Furthermore, rather than demonstrating that a
certain kind of function of behavior can plausibly occur in
a model, modern architectures can be used to investigate the
link between environmental factors on the one hand, and the
resulting individual differences on the other.

Building this new brand of models presents new and unique
challenges. Most importantly, their ability to capture individ-
ual differences in behavioral data makes them sensitive to a
large set of interdependent parameters governing e.g. module
sizes, extent and intensity of training and pre-training, and in-
put/output behavior of different classes of artificial neurons.
In contrast to typical models in the past, fitting a model’s
many parameters manually in order to account for behavioral
data is no longer feasible.

Another significant challenge is that the amount of indi-
vidual human data available is often limited. Since the re-
quired amount increases with larger parameter spaces, and
since quantitative measures need to be elicited for both target
behavior and any individual differences of interest, acquir-
ing the data necessary for accurate parameter fitting becomes
prohibitively difficult.

Third, for an interdependent set of parameters that influ-
ence the behavior of the model in a non-linear way, fully
evaluating a given set of model parameters involves training
a complete model for each human participant. The resulting
goodness-of-fit measure provides no gradient w.r.t. the pa-
rameter set. Therefore, the standard gradient based methods
of metalearning cannot be used to optimize these models.

This paper proposes an evolutionary approach to these is-
sues. The goal is to make parameter fitting of complex neural
network models to limited human data workable in practice.
In order to limit the cost of evaluation, the proposed EA uses a
variant of the previously introduced Age-Layering technique
(Shahrzad, Hodjat, & Miikkulainen, 2016), which aims to fo-
cus detailed evaluations on the most promising candidates.

The approach is evaluated in optimizing parameters for
BiLex, a neural network model of the bilingual lexicon (Anon
et al., 2016). BiLex simulates tests used in clinical practice,
and captures the complex interactions between exposure to
different languages and the resulting individual differences in
bilingual lexical access. It is a complex model of individual
subjects, for which little training data is available. It is there-
fore an appropriate test case for the proposed approach.
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The next section gives an overview of bilingualism and the
BiLex model. Using BiLex as a working example, the follow-
ing sections then introduce and evaluate the proposed model
fitting method, and discuss the results.

Bilingualism and the BiLex Model
The mental lexicon, i.e. the storage of word forms and their
associated meanings, is a central component of language pro-
cessing. The lexicon of bilinguals is considerably more com-
plex than that of monolinguals, and the ways in which multi-
ple language representations can develop, coexist, and inter-
act are incompletely understood.

Given that the majority of the world’s population is bilin-
gual or multilingual (Bhatia & Ritchie, 2005), extending ex-
isting modeling approaches to improve our understanding of
these additional complexities is of considerable practicle im-
portance, and computational models of the bilingual lexicon
could contribute to novel approaches in bilingual research,
education, and clinical practice.

Current theoretical models of the bilingual lexicon gener-
ally agree that bilingual individuals have a shared semantic
(or conceptual) system, and that there are separate lexical
representations of the two languages (L1 and L2). However,
the models differ on how L1 and L2 interact with the seman-
tic system and with each other. The most recent model is
the Revised Hiearchical Model, proposed by Kroll & Stewart
(Kroll & Stewart, 1994). It assumes connections of varying
strength between all three components, depending on relative
language dominance.

The physiological structure and location of the lexicon in
the brain are still open to some debate, but converging evi-
dence from imaging, psycholinguistic, computational, and le-
sion studies suggests that the lexicon is laid out as one or sev-
eral topographic maps, where concepts are organized accord-
ing to some measure of similarity (Caramazza, Hillis, Leek,
& Miozzo, 1994; Spitzer et al., 1998).

Self-organizing maps (SOMs; Kohonen, 2001) are neu-
ral networks that model such topographical structures, and
are therefore a natural tool to build simulations of the lexi-
con. SOM models have been developed to understand e.g.
how ambiguity is processed by the lexicon (Miikkulainen,
1993), and how the lexicon is acquired during development
(Li, Zhao, & MacWhinney, 2007).

Following the Kroll & Stewart model, and using SOMs as
its building blocks, the BiLex model consists of three sepa-
rate maps: one for word meanings, and one each for phonetic
symbols in L1 and L2, as illustrated in figure 1. All maps are
linked by associative connections of varying strength, which
allow network activation to flow between them.

Training Corpus During model training, the semantic and
phonetic maps need to organize according to similarity, i.e.
on the semantic map, words with similar meaning will tend
to be close, while on phonetic maps, words that sound similar
will tend to be close. For this organization to occur, seman-
tic and phonetic symbols need to be encoded as vectors that

L1 phonetic map (English) L2 phonetic map (Spanish) 

Shared semantic map 

Figure 1: The BiLex model consists of three SOMs, one each
for semantics, L1, and L2, that are linked by associations that
enable the model to translate between semantic and phonetic
symbols, simulating lexical access in bilingual humans.
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Figure 2: A word is encoded as a phonetic vector representa-
tion, creating the basis for phonetic map organization in the
BiLex model.

reflect this similarity.
Feature-based semantic and phonetic vector representa-

tions were developed for a training corpus of 638 concrete
nouns in English and their direct translations to Spanish. Se-
mantic representations were derived from feature data devel-
oped by Sandberg, Gray, and Kiran (2018). For each word,
10-20 relevant attributes (e.g. “can fly”) were used that were
normed on healthy adults using Amazon MTurk. Overall,
data from more than 320,000 interactions of the type “does
word X have feature Y?” were used to produce semantic vec-
tors of 400 features.

Phonetic representations were based on phonetic transcrip-
tions of English and Spanish words, which were split into
spoken syllables, and padded such that the primary stress
lined up for all words. The individual phonemes compris-
ing each syllable were represented numerically as a set of
phonetic features like height and front-ness for vowels, and
place, manner, etc. for consonants (Ladefoged, 2001). Figure
2 illustrates the encoding process. The final phonetic repre-
sentations consisted of 144 real-valued features for English,
and 192 for Spanish.

Model Training
Using the semantic and phonetic symbols as input data, the
organization of the three maps and the associations between
them are learned simultaneously. Symbols are presented to
two of the maps at the same time; the two exposed maps
adapt, and over time become more likely to represent each
symbol in the corpus accurately. At the same time, associa-
tive connections between corresponding semantic and pho-
netic symbols grow stronger.

Varying relative exposure to English and Spanish can be
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Figure 3: A well-trained semantic map, with winner units
for each word labeled (LEFT). Map units are colored accord-
ing to semantic categories, showing good global organization.
RIGHT: Detail demonstrating that semantic similarity is re-
flected locally as well (e.g. walnut, nut, peanut are neigh-
bors). Carefully designed training parameters are essential in
creating this kind of highly organized map.

simulated by presenting English and Spanish phonetic sym-
bols at proportional frequencies during model training, en-
abling the model to capture the effects of an individual’s lan-
guage learning history.

SOM Training Each SOM consists of a two-dimensional
grid of neurons; each neuron is associated with a weight
vector that encodes a semantic or phonetic symbol. The
maps are trained using the standard SOM training algorithm
(see e.g. Kohonon, 2001), which causes the weight vectors
to become representations of the symbol vectors. At the
same time, neighboring weight vectors become similar, and
the map learns to represent the space of symbols as a two-
dimensional layout where units that are close to each other
on the map are similar either semantically (in the semantic
map) or phonetically (in the phonetic maps).

SOM training is mainly governed by two parameters: the
learning rate α determines the intensity of training, and the
neighborhood size σ determines whether a larger or smaller
part of the map changes in response to a training input.

The effectiveness of SOM training depends critically on
how σ and α change over time. To develop the map’s global
structure first, the size of the neighborhood usually starts rel-
atively large (on the order of the size of the map), and is
gradually reduced, which causes the map to learn the sim-
ilarity relations between input patterns at a more and more
fine-grained level. Similarly, the learning rate is usually re-
duced over time, which allows the map to fine-tune its weight
vectors in later stages of training.

Figure 3 shows an example of a well-trained semantic map,
with colors encoding rough semantic categories. The cate-
gories tend form contiguous areas that border on similar cate-
gories. The detail on the right illustrates that locally, concepts
tend to be arranged according to semantic similarity as well,
e.g. ”walnut”, ”nut”, and ”peanut” form a tight cluster.

A central working assumption underlying the BiLex model
is that, similar to the training schedules necessary to achieve
well-organized SOMs, language acquisition during human

development requires an equivalent progression of factors
governing learning. In other words, the cortical structures
that underlie the human lexicon start out highly flexible and
adaptive, but later in life adapt only to a smaller degree, both
in terms of learning intensity and overall flexibility. In this
way, SOM-based models can provide a mechanistic explana-
tion for the age-related limitations on second language learn-
ing that occur in humans.

Training Associative Connections In addition to map
training, associative connections between the maps are
adapted simultaneously based on Hebbian learning, i.e. by
strengthening connections that link active neurons:

a′i j = ai j +αθiηiθ jη j,

where ai j is the weight of the associative connection from
unit i in one map to unit j in the other map, ηi is the activa-
tion of unit i, and θi is a function defining the current map
neighborhood.

In order to prevent the associative strengths from increas-
ing indefinitely, the the overall sum of outgoing associative
connections is normalized such that for each neuron, the L2
norm of outgoing connections to each target map is 1.

Additionally, since lexical access can decline in humans
with age or lack of exposure to a language (Kavé, Knafo, &
Gilboa, 2010), small amounts of random noise (with a given
variance γ) are added to the associative connections during
training.

Simulating Naming Tests Once a BiLex model is trained,
the task of naming an individual word in either language can
be simulated by first presenting its semantic representation to
the semantic map. The resulting map activation is then prop-
agated to the phonetic map via the associative connections;
the weight vector of the most highly activated phonetic unit
is then compared to all phonetic representations in the corpus,
and the word with the minimal distance is produced as out-
put. If the output word matches the original input, the word
is counted as correctly named. The simulated naming perfor-
mance for a set of words is the percentage of words that are
correctly named in this way.

Evolutionary Parameter Fitting
In BiLex, age and relative language exposure over time are
based on individual human data: the age of an individual de-
termines the number of epochs used for model training, one
training epoch per simulated year. The relative exposure to
each language determines the proportion of English vs. Span-
ish words randomly selected for training during each epoch.
However, appropriate settings for all remaining parameters
governing the training process are initially unknown, includ-
ing how learning rates and neighborhood sizes for the SOMs
change over time. Finding parameter settings that enable
BiLex to match an individual’s naming performance given
past language exposure is a complex problem, involving pre-
cise tuning of a large set of interdependent parameters. The
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remainder of this section describes an Evolutionary Algo-
rithm (EA; e.g. Bäck et al., 1997) designed to solve this prob-
lem.

EAs are a class of population-based optimization algo-
rithms that use mechanisms inspired by biological evolution,
like reproduction and mutation, to solve optimization prob-
lems. EAs maintain a population of candidate solutions, us-
ing a fitness function to determine the quality of each candi-
date. Highly fit candidates are more likely to be selected to
reproduce, and recombine with other highly fit candidates. In
this way, evolution tends to produce better candidate solutions
over time.

Representation of Candidate Parameter Sets For the
present problem of finding the best possible parameter set-
tings for BiLex, each candidate solution was a set of BiLex
training parameters, excluding age and relative language ex-
posure, but including α and σ at different simulated ages, the
scale γ of the random noise added to simulate aging and attri-
tion effects, and the size N for each SOM.

To avoid overfitting, both α and σ were assumed to be the
same for all three maps. Specific values for α and σ were
evolved at a number of simulated ages (1,4,7,10,13,19,25,
and 50 years), and interpolated linearly for intermediate val-
ues. Additionally, both α and σ were constrained to non-
increasing values, i.e. at each time, the minimum of all values
so far was used for training.

Training the associative connections also requires a learn-
ing rate α′ at each time during training. To limit the number
of parameters, a single factor k was added, such that at each
time, α′ = k×α. In this way, the scale of α′ was independent
of that for SOMs, but changed in the same way over time.

To account for the fact that monolinguals tend to score
above zero on naming tests in the other language, a minimum
exposure parameter ε was added such that exposure for each
language was clipped to values between ε and 1− ε.

Initially, the number of words trained per simulated year
were also included in the set of evolved parameters, which
turned out to be unnecessary. In the reported experiments,
the number of trained words per simulated year was set to a
fixed value of 1.5 x the size of the training corpus.

Overall, each candidate parameter set was encoded using
20 numeric values; the initial population of 100 candidates
was generated using random values within reasonable inter-
vals, which were chosen empirically for each parameter. E.g.
neighborhood sizes were constrained to an interval between
0 and 10, and initial learning rates ranged from 0 to 0.4.

Evaluation and Age-Layering In order to evaluate how
well a particular candidate was able to match the naming
performance of a given human participant, a BiLex model
was trained, and the naming tests administered to the hu-
man participant were simulated using the trained model. The
goodness-of-fit for a given candidate on a human individual
i (GOFi) was then calculated as the sum of squared residuals
for the naming scores in both languages.

Based on this GOF measure, the straightforward way of
fully evaluating the fitness of a candidate would be to evalu-
ate it on all training samples, and compute the fitness as the
mean GOF measure, requiring training and evaluating a com-
plete model for each i, and making the evaluation function
extremely expensive.

As a possible solution, age-layered EAs (Shahrzad et al.,
2016) attempt to limit complete evaluations to only the most
promising candidates. Candidates that score highly on an ini-
tial limited evaluation are further evaluated, while weak can-
didates are eliminated, saving computing resources.

Age Layering is particularly useful for noisy and expensive
evaluations, and has been shown to speed up evolution signif-
icantly. To optimize BiLex parameters, a slight variation was
used that accounts for the small, fixed set of human individu-
als on which each candidate can be tested: rather than ranking
candidates by their overall fitness, a separate ranking for each
human data set i was computed, and candidates were then dis-
carded if their average ranking was below the 50th percentile
within their age layer.

EA Design The remaining components of the Evolutionary
Algorithm were fairly standard (see e.g. Bäck, 1997); Par-
ents were chosen by standard roulette-wheel selection; off-
spring was created using uniform crossover, and mutated by
adding normally distributed noise with uniform probablility
(p=0.05) and standard deviation 0.025, scaled by the size of
the initialization interval for each parameter.

In order to simplify distributed evaluations across remote
compute nodes, and because age-layering makes the time re-
quired for evaluations unpredictable, a steady-state EA was
used, i.e. rather that proceeding in distinct generations, pop-
ulation size was maintained between 50 and 70 candidates by
adding new candidates continually as needed.

Finally, if none of the most recent 500 candidates was able
to improve on the previous best solution, a mutation burst was
performed, i.e. to maintain diversity, new candidates were
added without recombination, but using a high mutation rate
of 0.5. If no improvement was observed in the 1000 most
recent candidates, the EA terminated, and the current best so-
lutions were used as the final result. All parameters governing
the EA were set empirically.

Experiments
Human Data The human data used to evaluate the parame-
ter tuning methodology were collected from 33 healthy adult
individuals, including 28 Spanish-English bilinguals and 5
monolinguals (2 Spanish, 3 English), who were included in
order to provide the EA with appropriate edge cases w.r.t. lan-
guage exposure and naming performance.

Relative exposure to English vs. Spanish over each individ-
ual’s lifetime was estimated using a standard Language Use
Questionnaire (LUQ19; Kastenbaum, 2018), which included
questions about age, native and second languages, as well as
a detailed self-reported linguistic profile that included relative
exposure to both languages.

62ICCM2019



In order to measure lexical access (i.e. naming perfor-
mance) in English and Spanish, all participants completed the
Boston Naming Test (BNT; Kastenbaum, 2018), as well as
another 60-item picture naming screener test used in clinical
practice. To reduce the noise inherent in such tests, both tests
were averaged to obtain one composite naming score for each
language.

The provided data on language exposure and age made it
possible to modulate relatitve English vs. Spanish exposure
over the course of the simulated lifetime for each individual
human, creating an individual BiLex model whose naming
performance could be measured and compared to the actual
test scores.

Validating the Evolutionary Parameter-Fitting Method
In order to evaluate the generalization performance of the pro-
posed evolutionary method, a five-fold cross-validation run
was conducted, using the human data described above as ei-
ther training or test data. The initial set of 33 participants
was divided randomly into five test sets, with each test set
containing one monolingual. For each test set, the EA pa-
rameter optimization was performed using the remaining 26
or 27 healthy controls as training data. Generalization per-
formance was measured as the goodness-of-fit on the respec-
tive test sets: For each individual in a test set, a model was
trained using parameters that were evolved to fit the naming
performance of the respective training set. Since each control
subject was part of one test set, this was possible for all 33
controls.

Results
All five cross-validation runs produced highly fit candidate
solutions; final best-fit parameter sets were found after evalu-
ating 2749 (SD=1023) candidates on average, training and
evaluating an average of 13549 individual BiLex models.
Complete evaluation of all candidate parameter sets would
have required over 7x as many trained models, suggesting
that the age-layering approach was highly effective in reduc-
ing the number of required evaluations.

Most parameters in the best-fit candidate parameter sets
tended to be similar, e.g. low but finite minimum expo-
sure ε (0.04, SD=0.0137), and large initial neighborhood
size (08.06, SD=1.17) that decreased dramatically (0.59,
SD=0.049) by age 25.

Simulated composite naming scores were highly predictive
of human data for both English (R2 = 0.77 , p << 0.0001)
and Spanish (R2 = 0.63 , p << 0.0001). Figure 4 shows
predicted vs. actual composite naming scores for both lan-
guages, using predicted naming scores from the top five pa-
rameter sets found by each of the five EA runs.

Figure 5 illustrates the way in which L2 age of acquisition
(AoA) and exposure influence the structure of BiLex maps
using concrete phonetic maps from four individual BiLex
models; each map was trained using evolved training param-
eters and the language history of one of the bilingual study
participants. The individual maps were chosen to represent
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Figure 4: Simulated naming scores on test sets are highly
predictive of human data for both English (left, R2 = 0.77)
and Spanish (right, R2 = 0.63), indicating that models trained
with evolved parameters are able to generalize to simulate
bilingual access of previously unknown individuals.

extreme AoA/exposure combinations: Panel A shows early
AoA and high exposure, from a model with high L2 naming
score (> 90%). Panel B demostrates that as long as the AoA
is early, the L2 map organizes and performs well even for
low exposure. Panel C shows a late-AoA/high exposure map;
the global organization deteriorates to some degree, but per-
formance is still acceptable (70%). Finally, panel D shows
how the combination of late AoA and low exposure leads
to a badly organized map that accounts for low performance
(<40%).

Discussion
The complexity of the BiLex model, the infinite possible
combinations of individual language history, and the com-
paratively small amount of human data available in this case
make BiLex an appropriate test case for the evolutionary pa-
rameter fitting method proposed in this paper. The reported
results demonstrate clearly that using evolution, a complex
model like BiLex can be configured to capture complex in-
teractions between environment and behavior, in a model that
itself plausibly models neural information processing.

In addition to capturing the link between language expo-
sure and naming ability quantitatively, the same link was vis-
ible in the organization of phonetic L2 maps in the optimized
model: either early L2 acquisition or high exposure lead to
well-organized L2 phonetic maps and high naming perfor-
mance, while low exposure and late acquisition led to defi-
cient map organization and naming ability.

In this way, models based on known theories, and designed
to account for quantitative data on a more abstract level, can
still provide additional insight and generate unexpected ex-
planations for mechanisms underlying a given phenomenon –
in this case, about the way in which AoA and exposure mod-
ulate lexical acces through phonetic map organization.

Note that, while BiLex was used as a concrete example
throughout, the method extends to similar models, and aims
to make parameter fitting of complex neural network models
to limited human data workable in general.

Finally, while evolution can help models such as BiLex ex-
plain normal human cognition and capture the ways in which
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Figure 5: L2 phonetic maps of individual EA-optimized
BiLex models. (A) Early age of acquisition (AoA) and high
exposure leads to well-organized L2 phonetic maps. (B)
Early AoA leads to well-organized maps despite low expo-
sure. (C) Late L2 AoA impacts both global organization of
the phonetic map even at high exposure. (D) Late AoA and
low exposure lead to deficient global and local map organiza-
tion. Taken together, the maps offer a mechanistic explana-
tion for AoA/exposure effects seen in humans.

underlying brain mechanisms, environment, and cognitive
function interact, the resulting models of normal cognition
can also serve as a basis to investigate how these functions
break down, and potentially inform the development of im-
proved diagnostic methods and clinical interventions.

In current research, EA-optimized BiLex models are used
in this way to create individual models of bilingual pa-
tients suffering from Aphasia; the resulting pre-morbid pa-
tient models are then used to simulate the onset of Aphasia,
and to predict outcomes of alternative interventions. The ap-
proach is currently evaluated in an ongoing clinical trial, mak-
ing it (to our knowledge) th first time a neural network model
has been used in this way – the systematic, mechanical way of
optimizing the model that was introduced in this paper makes
novel modeling application such as these possible.

Conclusions
This paper proposed an evolutionary approach designed to
make fitting complex NN-based models of higher cognition
to limited data workable in practice. An Evolutionary Al-
gorithm was introduced and evaluated by optimizing training
parameters for BiLex, a connectionist model of the bilingual
lexicon. Using EA-optimized parameters, BiLex was able to
capture the complex interactions between exposure to differ-
ent languages and the resulting individual differences in bilin-
gual lexical access, demonstrating how evolution can help
build the next generation of computational models of cog-
nition.
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Kavé, G., Knafo, A., & Gilboa, A. (2010). The rise and fall of
word retrieval across the lifespan. Psychology and Aging,
25(3).

Kohonen, T. (2001). Self-organizing maps (3rd, extended
ed.). Berlin: Springer.

Kroll, J. F., & Stewart, E. (1994). Category interference
in translation and picture naming: Evidence for asymmet-
ric connections between bilingual memory representations.
Journal of Memory and Language, 33.

Ladefoged, P. (2001). Vowels and consonants: An introduc-
tion to the sounds of languages. Oxford: Blackwells.

Li, P., Zhao, X., & MacWhinney, B. (2007). Dynamic
self-organization and early lexical development in children.
Cognitive Science, 31.

Maass, W., Natschlager, T., & Markram, H. (2002). Real-
Time Computing Without Stable States: A New Frame-
work for Neural Computation Based on Perturbations.
Neural Computation, 14(11).

Miikkulainen, R. (1993). Subsymbolic natural language pro-
cessing: An integrated model of scripts, lexicon, and mem-
ory. MIT Press.

Sandberg, C. W., Gray, T., & Kiran, S. (2018). Develop-
ment of a free online interactive naming therapy for bilin-
gual aphasia. In American speech language hearing asso-
ciation convention.

Schmidhuber, J. (2014). Deep learning in neural networks:
An overview. CoRR, abs/1404.7828.

Shahrzad, H., Hodjat, B., & Miikkulainen, R. (2016). Es-
timating the advantage of age-layering in evolutionary al-
gorithms. In Proceedings of the genetic and evolutionary
computation conference (gecco-2016, denver, co).

Spitzer, M., Kischka, U., Gückel, F., Bellemann, M. E., Kam-
mer, T., Seyyedi, S., . . . Brix, G. (1998). Functional mag-
netic resonance imaging of category-specific cortical acti-
vation: Evidence for semantic maps. Cognitive Brain Re-
search, 6.

Theano Development Team. (2016). Theano: A Python
framework for fast computation of mathematical expres-
sions. arXiv e-prints, abs/1605.02688.

64ICCM2019



A Skill-based Approach to Modeling the Attentional Blink 
 

Corné Hoekstra (c.hoekstra@rug.nl) 
Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence 

University of Groningen, Groningen, the Netherlands 
 

Sander Martens (s.martens@umcg.nl) 
Department of Biomedical Sciences of Cells and Systems 

University Medical Center Groningen, University of Groningen, Groningen, the Netherlands 
 

Niels A. Taatgen (n.a.taatgen@rug.nl) 
Bernoulli Institute for Mathematics, Computer Science, and Artificial Intelligence 

University of Groningen, Groningen, the Netherlands 
 
 

Abstract 
People can often learn a new task very quickly. This 
suggests that people are able to use skills that they have 
learned from a previous task, and apply them in the 
context of a novel task. In this paper we used a 
modeling approach based on this idea. We created a 
model of the attentional blink (AB) out of the general 
skills needed to perform an AB-task. The general skills 
were acquired from creating separate models of other 
tasks, in which these same basic skills are used. Those 
models showed a good fit with reported data, indicating 
that the basic skills we created are valid. Subsequently, 
we created the AB model by tying together the basic 
skills taken from the basic models. The AB model 
generated the same basic AB effects as reported in the 
literature. The models produced by the skill-based 
approach suggest that this is a feasible modeling 
method, which could lead to more generalizable 
models. Furthermore, it shed new light on previously 
difficult to explain findings in the AB literature. 

 
Keywords: Attentional Blink, PRIMs, ACT-R, Skill-
based modeling, Cognitive model, Instruction learning 

Introduction 
Humans have the impressive ability to learn certain 

relatively simple tasks with minimal instruction and in 
a very short period of time. The experimental tasks 
used in (cognitive) psychology are particularly good 
examples of these types of tasks. Participants have 
often never encountered these tasks before, yet they 
are quickly able to work out what to do. This quick 
learning suggests that people reuse previously learned 
skills and apply them to new contexts (Salvucci, 2013; 
Taatgen, Huss, Dickison, & Anderson, 2008). For 
example, if a task requires a stimulus to be 
remembered for later recall, people do not have to 
work out how to remember the stimulus, but they can 
simply reuse the already learned ‘remembering-skill’. 
It would be unnecessary, in this case, to reinvent the 
wheel. Learning how to do a new task simply means 
selecting the appropriate skills, assuming all these 
skills have already been acquired. 

Reusing skills speeds up learning, but it can also 
have negative side effects that lead to sub-optimal 

performance even though the cognitive system is, in 
principle, capable of optimal performance. That is, it 
is sub-optimal strategy that underlies the impaired 
performance, not a fundamental information 
processing limit (e.g., Taatgen, Juvina, Schipper, 
Borst, & Martens, 2009). One factor underlying the 
sub-optimal strategy-choice might be the selection of 
the wrong skills, either because the "right" skill is not 
available, or because the interpretation of the task cues 
the wrong skill. A well-known instance of this is the 
Stroop effect (Stroop, 1935). Because people are so 
used to reading words, this automatically triggered 
skill interferes with the task of naming the color of the 
word. In this case, selecting the ‘reading-skill’ leads to 
worse performance. Another instance where this can 
happen is the attentional blink (AB).  

The AB is a well-studied phenomenon in cognitive 
psychology (Martens & Wyble, 2010). It refers to the 
finding that the second of two to-be reported targets in 
a stream of distractors presented at a rate of 100 ms per 
item is often missed when it is presented within an 
interval of 200-500 ms after the first target (T1) 
(Raymond, Shapiro, & Arnell, 1992). Interestingly, the 
second target (T2) is hardly ever missed if it is 
presented directly (i.e., within 100 ms) after the first 
target (lag-1 sparing). This suggests that the cognitive 
system does possess the processing capacity to identify 
both targets, but that the chosen strategy prevents the 
second target from being reported. 

The crucial aspect of the strategy that most 
participants use can be the selection of a sub-optimal 
skill to consolidate the targets in memory. Many 
theories of the AB assume that consolidation of T1 into 
memory underlies the AB. Memory consolidation is 
thought to be a serial process, meaning that only one 
consolidation process can occur at a time and that the 
consolidation has to be completed before a new item 
can be consolidated. This means that T2 cannot always 
be consolidated straight away, but sometimes has to 
wait for the consolidation of T1 to be completed. This 
leads to the AB when consolidation of T1 has not yet 
been completed before T2 has disappeared from visual 
short-term memory. However, such theories all 
assume that targets are consolidated as separate 
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memory items, whereas in other areas of memory 
research it is assumed that multiple items are 
consolidated in a single chunk. 

The strongest indication that strategy underlies the 
AB phenomenon is an experiment by Ferlazzo and 
colleagues (Ferlazzo, Lucido, Di Nocera, Fagioli, & 
Sdoia, 2007). In their experiment, participants were 
instructed to report two target letters (which were 
always a vowel and a consonant) either separately or 
as a single syllable. In the latter condition participants 
did not exhibit an AB. A possible explanation is that 
the original instruction cues a strategy in which all 
targets are consolidated separately, while the syllable 
instruction encourages consolidation of both targets in 
a single chunk. We will explore this difference by 
creating two versions of an AB-model that only differ 
in their consolidation strategy. 

To create the model, we have used a novel approach. 
Instead of creating the model specifically for the AB, 
we built a model from the general skills that we have 
constructed as parts of other models. In other words, 
the AB model only links together existing skills. We 
chose this approach because it mirrors how 
participants performing an AB-task work out what to 
do. They do not start from scratch, but they tie skills 
they already possess together in such a way that allows 
them to perform an AB-task.    

We created this model in the cognitive architecture 
PRIMs (Taatgen, 2013, 2014). PRIMs is based on 
ACT-R (Anderson et al., 2004) and works in a highly 
comparable way. The architectures of both ACT-R and 
PRIMs consist of a ‘central workspace’ and a number 
of modules capable of performing specific cognitive 
functions. The modules can communicate (i.e., 
exchange the results of their cognitive operations) with 
each other through the central workspace, which is 
subdivided in buffers. This exchange of information 
between the modules in PRIMs is controlled in largely 
the same way as it is in ACT-R. In ACT-R this is done 
by productions, and in PRIMs it is done by operators, 
but they have similar functionalities. A crucial 
difference between ACT-R and PRIMs is that in 
PRIMs operators are further organized into skills. A 
skill is a collection of general operators capable of 
accomplishing a certain goal or processing step. The 
generalizability of skills makes it possible to use the 
same skills in models of different experimental tasks. 
The organization into skills thus allows us to employ a 
novel approach to constructing cognitive models, 
placing them in a context of related models, tasks, and 
skills. 

Each skill has a number of variables that are 
instantiated when a skill is used in the context of a task. 
It is by this mechanism that we tie together tasks, but 
also fill in specific values.  

We had two main goals in this project. Firstly, we 
wanted to investigate the feasibility of creating a 
cognitive model by tying together already existing 
skills. Secondly, we wanted to create a model of the 
AB which is capable of capturing most of the effects 

found in the AB-paradigm, including differences due 
to instruction.  

  

Method 
Instead of creating operators specifically for the 

attentional blink, we first considered which general 
skills are required to perform an AB-task and 
assembled the AB-model from these skills. 

Based on previous work and other models of the 
attentional blink, we identified four basic skills 
(cognitive processing steps) which had to be 
performed by our model of the AB. We developed 
these four skills by first creating models of other tasks 
which share (some) of these same basic skills. This 
step was done to get a better idea of what these general 
skills should be capable of and to test the plausibility 
of these skills. 

First, we will describe the three models that 
provided the building blocks for the AB-model. The 
three models are: (1) a visual search model, (2) a 
model of a simple working memory (SWM) task and 
(3) a model of a complex working memory (CWM) 
task. Not all parts of all three models will be used for 
the AB-model, but all three contain at least one of the 
four basic skills needed to perform an AB-task. 

The first model, the visual search model, is very 
straightforward. The goal of this model is to find a 
vowel on a screen filled with other letters. It is 
composed of three skills. The main search skill 
processes the current visual item and determines its 
category through memory retrieval. If it does not 
match the target category (vowel in this case), it 
transfers control to another skill which focuses on the 
next search item. In visual search this is a shift of 
attention to another item. If it does match the target 
category, it transfers control to a third skill, in this case 
a skill that clicks on the target with the mouse. Finally, 
if it runs out of items to attend to, it transfers control 
to yet another skill, which is not instantiated in the 
visual search model. In the AB-model, we will reuse 
the search skill to find targets, but we will instantiate 
it differently.  

To illustrate, here are the operators that make up the 
search skill, slightly abbreviated for clarity. In these 
operators Vx refers to a slot in the visual buffer, RTx 
refers to a slot in the retrieval (declarative memory) 
buffer, and Gx refers to a slot in the goal buffer. 

 
operator look-for-target { 
 V1 <> nil // if there is a visual input 
==> 
 *fact-type -> RT1 // build a 
 V1 -> RT3 // retrieval request 
 nil -> V1 // and clear the input 
} 
 
operator keep-looking { 
 V1 = nil 
 RT2 <> *target-type // if it is not a target 
==> 
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 *next-stim -> G1 // change to the skill that 
       // selects the next stimulus 
} 
 
operator found-target { 
 RT2 = *target-type // if it is a target 
==> 
 RT3 -> G8 // Store the target in the goal 
 *after-found-target -> G1 // and 
  // switch to the skill to handle a target 
} 
 
In these operators, values that are preceded by an 

asterisk are variables that need to be instantiated for a 
particular task. For visual search, we instantiate 
*fact-type with vowel, *next-stim with the 
attend-next skill, and *after-found-
target with the click-item skill. 

The second and third basic model are strongly 
related and provide the final basic skills. Both models 
deal with working memory tasks which require the 
participants to remember presented items and, after 
presentation of the items, recall which items have been 
seen. Although they both include a consolidation step, 
they accomplish this step with a different skill. Both 
build a chunk in working memory, however they differ 
in the moment of consolidation. The “consolidate-
separate” skill, used in the SWM-model, starts 
consolidation immediately after an item is 
encountered. In contrast, the “consolidate-chunk” 
skill, used in the CWM-model, only starts 
consolidation after all items have been presented. 
Using these two consolidation skills, we created two 
versions of the AB-model, a “consolidate-separate” 
version and a “consolidate-chunk” version. 

Finally, these two working memory task models 
provide the “retrieve” skill and the “respond” skill. 
The “retrieve” skill retrieves the appropriate 
consolidated item from memory and the “response” 
skill gives the appropriate response based on the 
retrieved item. 

The four skills described above form the basic 
building blocks of both versions of our attentional 
blink model. To finalize the AB-model, the basic skills 
were put together in one model and were instantiated 
to fit the context of an AB-trial. This procedure was 
the same for both versions of the AB-model. In the 
AB-model, after presentation of a stimulus, the 
“search” skill checks, whether this is a target or a 
distractor. In other words, the *fact-type variable 
is instantiated with letter. If the stimulus is a 
distractor, it is ignored and the model waits for the next 
stimulus (*next-stim is instantiated with wait). If 
the stimulus is a target it switches to the consolidate 
skill (by instantiating *after-found-target 
with that skill) that moves the stimulus into a working 
memory slot. The consolidate skill is the source of the 
attentional blink in our model. Depending on which 
skill is used to accomplish consolidation, the model 
either starts consolidating directly after encountering 
the first target or postpones consolidation until the 

second target is encountered. If the chunk is 
consolidated, no other operator can be executed for a 
period of, on average, 200 ms (the imaginal delay 
parameter in ACT-R), leading to a possible attentional 
blink. If consolidation is postponed until the arrival of 
the second target, no attentional blink will occur at this 
point and the model will keep performing the task 
normally. After all stimuli are presented, the model 
will retrieve the targets that were consolidated on this 
trial (the “retrieve” skill) and then, after the retrieval, 
responding to the retrieved items (the “respond” skill). 

 

Results 
We compared the behavior of the models with 

human performance. This was done in order to verify 
the feasibility of the basic models and to check how 
well the final AB-model could model the AB 
phenomenon. The comparisons were made with 
existing data from the literature. 

We did not find suitable data to which we could 
compare our visual search model. This is likely due to 
the fact that our visual search model is very simple and 
does not have any other functionalities besides what is 
described in the method section. Furthermore, the 
visual search model was not our primary interest, as it 
is not responsible for creating the AB. 

Firstly, we will discuss the comparison between the 
SWM-model and human performance. The specific 
task we modeled required participants to remember a 
certain number of digits and report them at the end of 
a stream (Anderson et al., 1998). The critical 
manipulation in this experiment was that the digits 
were presented in multiple groups. This grouping was 
thought to influence chunking of the digits, digits 
grouped together during presentation would also be 
grouped together in memory (i.e., chunked together). 
The findings supported this expectation, such that 
participants showed longer reaction times during recall 
for the first item of a group, indicating that the groups 
were remembered (and recalled) as one chunk. The 
data from the simple working memory model showed 
this same pattern in reaction times as reported in 
Anderson et al. (1998). 

As can be seen in Figure 1, the reaction times 
produced by the model show the same typical pattern 
as the human participants. This reflects the strategy 
used by the model (and presumably the participants) 
of recalling the remembered digits. The digits are 
stored in chunks of three in memory and this 
influences how the recall occurs. Firstly, the full chunk 
containing all three digits is retrieved from memory 
and, subsequently, the three responses are given 
without any further memory retrieval. Note however 
that the model is unable to capture the extra-long 
reaction times at the start of the recall-phase. These 
increased reaction times are likely due to processes 
relating to getting started on a new task, an aspect of 
the task unrelated to working memory so we chose not 
to model it at this moment. 
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Figure 1: Model fit for reaction times in the SWM-
task. Figure depicts the RTs produced by the model 
(dashed line) and human data (solid line).  

 
Secondly, we will discuss the comparison between 

the CWM-model and human performance. In the task 
we modeled, a series of 3, 4, 5, or 6 digits were 
presented to the model. In between presentation of the 
digits, the model did a word-decision task in which it 
had to distinguish between nouns and adjectives. We 
compared the performance of our model on this task to 
a similar experimental task (Daily et al., 2001). In this 
task, participants were instructed to remember a series 
of digits (also 3 to 6), but here the digits were presented 
among letters which they were required to read aloud. 
Both of these tasks have in common that working 
memory is required to perform the interrupting task 
(either deciding between a noun or adjective or reading 
a letter aloud). This demand on working memory 
makes it impossible for the participants (and the 
model) to chunk the items in memory. 

 

 
 
Figure 2: CWM-model fit for accuracy data. The 
average accuracy as a function of list length for the 
model (dashed line) and the human data (solid line). 
 

We compared model performance with human 
performance with respect to accuracy (see Figure 2). 
Generally, the model shows a good fit to the human 

data reported by Daily et al. (2001). Both the model 
and the participants show decreased accuracy when the 
length of the presented list is longer. This decreased 
accuracy for longer lists occurs in the model because 
the presentation of the longer lists takes a longer time 
to be completed. The longer time required for 
presentation allows for additional item-decay in 
memory, leading to reduced accuracy for longer lists. 
The model, however, generally underestimates 
accuracy, this is probably due to the model being 
unable to capture the primacy effect (Murdock, 1962). 
The primacy effect is often modeled by including a 
rehearsal mechanism. The fact that we did not include 
such a mechanism to the model could thus explain the 
general underestimation of the accuracy.   

Finally, we compared our AB-model (which 
resulted from the combination of the above discussed 
models) with human AB-performance (see Figure 3). 
The exact task we modeled is the classic AB-task 
reported in Chun & Potter, 1995. In this standard 
version of the AB, participants are instructed to 
identify two digits within a stream of distracting letters 
and, at the end of the stream, report which digits they 
have seen. We modeled this experiment with the 
version of the AB-model that used the “separate-
consolidation” skill. The crucial effect in an AB-task 
is, unsurprisingly, the attentional blink itself. This 
refers to the strong performance decrement at lags 2 
and 3, which our AB-model nicely captures. In the 
model, the AB occurs because consolidation of the 
first target (T1) is still in progress when the second 
target (T2) is presented. Therefore, T2 cannot be 
consolidated and will not be reported at the end of the 
stream. Our model also shows the typical lag-1 sparing 
effect. This is because consolidation of T1 often has 
not started at the moment that T2 is presented at lag 1. 
Therefore, they can both be consolidated into a single 
chunk and reported at the end of the stream. Finally, 
the model shows the slow performance increase for the 
later lags (lag 4 and higher). This is caused by the slow 
increase of the likelihood that T1 consolidation is 
finished by the time T2 is presented. 

   
Figure 3: AB-model fit for T2 accuracy. Figure 
showing T2 accuracy in an AB-task for the model 
(dashed line) and human data (solid line).  
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Using the other version of the consolidation skill 

(the “consolidate-chunk” version) in the AB-model, 
however, will prompt the model to always try to 
consolidate both targets into a single chunk, thereby 
eliminating the AB all together. We compared the 
performance of the AB-model instantiated this way to 
the data from the study reporting a reduced AB when 
participants were instructed in a way that promoted 
chunking (Ferlazzo, Lucido, Di Nocera, Fagioli, & 
Sdoia, 2007) (see Figure 4). The model mirrored the 
general performance level and, crucially, showed no 
blink. The model, however, shows a slight 
performance decrease at lag 1. This is caused by our 
means of simulating noise in the visual system, which 
meant that occasionally T2 had already disappeared 
before it was processed fully and therefore it was 
missed. We do not consider this problematic, because 
in many AB experiments lag 1 performance is slightly 
lower than performance on long lags. 

 

 
Figure 4: Model fit for the alternative AB model. 
Figure showing T2 accuracy for the alternative AB 
model (dashed line) and human data (solid line).  
  

Discussion 
Computational models of cognitive psychological 

phenomena are often able to accurately capture one 
specific phenomenon, however they are often hard to 
generalize to other tasks and cognition in general 
(Anderson et al., 2004). In this paper, we attempted to 
(partly) bridge this gap by employing a novel approach 
to building cognitive models, which mirrors the way 
people approach a new task. People do not consider 
every task in isolation but they use knowledge gained 
from the past. That is, they reuse skills learned from 
doing other tasks and apply them to the (new) task at 
hand (Salvucci, 2013; Taatgen, 2014). This paper 
describes our attempt to apply a similar approach. We 
created a new model of the attentional blink by reusing 
the models of other cognitive tasks. In short, we had 
two goals: (1) test the feasibility of the described 
approach and (2) create a model with the potential to 
shed new light on differences in AB due to instruction.  

The comparisons between our models and human 
data show that our models are reasonably able to 
capture human performance. This result demonstrates 
the basic feasibility of the described modeling 
approach. It is possible to break a task down into a 
limited set of skills that are reusable in different tasks. 
This is an important first step towards creating more 
generalizable models, because it allows for a method 
of creating models that are built up from the same 
building blocks. Using existing building blocks when 
modeling a new task allows for much more integration 
of any new model into the already existing collection 
of models and, more importantly, might better reflect 
the way people approach a new task. 

Note, however, that the devil is in the details. 
Building a model using this approach can be 
challenging, especially when it comes to determining 
how small differences between tasks should best be 
handled. Such differences make it difficult to use 
exactly the same operator (and therefore the same 
skill). Every operator has a condition-checking part 
(which checks whether this operator should be 
activated now) and an action-performance part (which 
actually executes the ‘cognitive action’ or PRIM). The 
action-performance part is relatively easy to generalize 
across tasks, but the condition-checking part is more 
challenging. Basically, the condition-checking part 
checks whether the situation matches the predefined 
situation in which this operator should be executed. 
This makes it difficult to generalize the condition-
checking across tasks since a different task usually 
also means a different situation. We solved this 
problem in the models described in this paper by 
defining the conditions in such a way that they work 
for all the modeled tasks. This is a workable solution, 
but it is time-consuming and a better method for 
condition-checking is needed. 

A further limitation to the models described here is 
that they did not perfectly capture all aspects of human 
performance. However, we do not see this as a major 
issue because we did not set out to create complete 
models of the described experimental paradigms. 
Instead we aimed to create models of the main findings 
only because we were merely interested in the skills 
that are important for the AB. Although there remain 
limitations and improvements to be made to the skill-
based method, we consider it a feasible and promising 
approach to improve the generalizability of models. 

The second goal we set out to achieve in this paper 
was to create a model of the AB that can account for 
differences due to instruction. The model described in 
this paper produces most of the basic effects from the 
classic AB-task, showing lag-1 sparing, the AB itself 
and the gradual improvement on later lags. Although 
there are many additional aspects of the AB reported 
in the extensive literature which we did not discuss, we 
believe that the model described here is an adequate 
first attempt that we will build on in future work.  

For now, the fact that the model captured the basic 
AB-effects implies that these effects, at their core, may 
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be caused by improper selection of skills. At the start 
of a new task, a participant has to figure out which 
skills to combine in order to be able to perform the new 
task. The models we created suggest that there are (at 
least) two different skills which can take care of the 
consolidation into working memory aspect of the task: 
(1) consolidate every presented target into working 
memory separately (as in the CWM-task) or (2) 
consolidate targets as larger chunks (as in the SWM-
task). The chunk-consolidation skill as used in the 
SWM-task would be the optimal pick in this situation, 
two items can be consolidated into one chunk and there 
would be no negative unexpected effects. This 
approach is perhaps employed by participants after 
receiving the experimental instructions from the 
Ferlazzo et al. (2007) study. However, given that 
standard AB instructions consider targets as separate 
items probably prompts most participants to use the 
separate-consolidate skill from the CWM-task.  

The emphasis put on strategy by our model could 
explain previous findings in the AB literature that have 
proven difficult to explain. This includes the effect of 
instructions as well as the existence of non-blinkers 
(individuals who do not show an AB) (Martens, 
Munneke, Smid, & Johnson, 2006), and the reduction 
of AB-magnitude because of training (Choi, Chang, 
Shibata, Sasaki, & Watanabe, 2012). All these effects 
could be explained by the type of consolidation 
strategy. Different instructions might cue the ‘correct’ 
consolidation skill, non-blinkers could be more 
naturally inclined to use the ‘correct’ chunking 
strategy compared to blinkers, and the training 
procedure by Choi and colleagues might nudge 
participants toward using the same optimal strategy.  

To summarize, our novel skill-based approach to 
cognitive modeling resulted in valid models, created 
using a more natural and human-like method. In 
addition, we believe it shows great potential to 
generate more generalizable and thus more flexible 
models. Furthermore, it can lead to interesting new 
perspectives on well-established cognitive phenomena 
such as the AB. The choice of consolidation-strategy 
may play an important role in the AB, explaining 
individual differences as well as instruction and 
training effects of the AB. 
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Abstract 

The PRIMs (primitive element) cognitive architecture 
addresses the issue of deterministic programming of 
production-rules (Taatgen, 2017). Motivated by infants’ 
flexible discoveries of simple rule-like algebraic patterns (e.g., 
a-a-b, a-b-a, and a-b-b types of patterns, with variable 
individual syllable tokens), this study illustrates how the 
gradual integration of primitive operations to task-related 
contexts can be made possible through a reward-guided 
contextual learning mechanism. The promise of this 
prototypical model is demonstrated in its ability to (a) learn and 
generalize simple algebraic patterns, and (b) to account for 
infants’ differential focusing time on a learned pattern and 
other unexposed new patterns. The modeled results are 
summarized from a developmental plasticity perspective. 

Keywords: infant, discovery; robust; plastic; PRIMs. 

Introduction 
The ongoing presentation of distinct new micro-theories in 
cognitive psychology makes it difficult to see the forest for 
the trees (see Newell, 1990). Thanks to the advent of ACT-R 
(adaptive control of thought, rational; Anderson et al., 2004), 
seemingly disparate task-related aspects of cognition are now 
frameable within an overarching cognitive architecture. 
However, a priori programming of just one solution of a task 
again neglects other possible task-related solutions, and fails 
to capture the trial and error discovery processes observed in 
real-life task performance (see Taatgen, 2017). The need for 
modeling flexible discovery is especially motivated by infant 
learning, since young infants cannot be taught as how to 
complete a task but must arrive at their own solutions. In this 
paper, we present a model with particular focus on the 
flexible discoveries of simple algebraic patterns during 
infancy (see Marcus et al., 1999). We start by introducing the 
paradigm, and then briefly review previous models from a 
multilevel view (see Taatgen, 2017).  

Infants seem innately capable of detecting simple algebraic 
patterns, and generalize them without relying on statistical 
features of the learned patterns. In an experiment reported by 
Marcus et al. (1999), infants with brief exposure to audible 
sequential presentation of the a-b-a or the a-b-b type of 
pattern (note the symbols a and b here refer to distinctive 
syllable tokens that are variable), during the test phase 
showed longer preferential focusing time for the other 
unexposed types of patterns as compared to the just learned 
pattern. This held even when each of the syllable token within 
the pattern were drawn from a different set (e.g., focusing 
longer for “ko-ko-ga” as compared to “ko-ga-ko” at test, after 
just exposing to “le-we-le”). Recent years have seen 

replication of this phenomenon with visually presented 
patterns (for a meta-analytical review, see Rabagliati, 
Ferguson, & Lew-Williams, 2019), and its extension to more 
complex variants of algebraic patterns (see Wilson et al., 
2018). For instance, the acquisition of the a-b-a type of 
pattern is now considered a specific case of non-adjacent 
dependency learning, when an infant predicts that the first 
token a always matches the third token b. 

With sensory perception as a point of departure, some 
modelers speculated that the acquisition of algebraic patterns 
is merely a basic form of feature detection (see McClelland 
& Plaut, 1999). Nevertheless, most models were built from a 
slightly higher level of abstraction (see Altmann, 2017), in 
assuming infants to be capable of forming representations 
from features (see Saffran & Thiessen, 2007). These 
representational models implicitly assume that young infants 
can deriving relational rules from a complex representation. 
However, very young infants cannot flexibly retrieve for 
instance a syllable “le” as parsed from a complex pattern of 
“le-we-le” (see Richmond & Nelson, 2007). Even when this 
constraint is suspended, a recent biologically-inspired 
representational model is only capable of generalize simple 
algebraic patterns at chance level (Alhama & Zuidema, 2018). 
This observation calls into question whether feature and/or 
representation alone are indeed sufficient or plausible in 
explaining the acquisition of simple algebraic patterns (see 
Dawson & Gerken, 2012; Frank & Tenenbaum, 2011). 

On the contrary, models applying rule-based processes not 
only successfully modeled the learning of simple algebraic 
patterns (Seidenberg & Elman, 1999), but also stimulated a 
wide range of studies in the field of algebraic pattern 
acquisition (Frank & Tenenbaum, 2011). The Bayesian 
model of Frank and Tenenbaum (2011) demonstrated 
multiple algebraic solutions based on a hypothesis space of 
primordial rules. Moreover, the results modeled with this 
approach reflected emergent distinctions between type- and 
token-based processes (Frank & Tenenbaum, 2011). In other 
words, there is an empirical age-related distinction between 
young infants’ early capability of detecting the types of a-b-
a/a-b-b patterns; and their slightly delayed ability to detect 
the invariant a-b token pair in the a-x-b pattern where it is 
separated by a variable x (Dawson & Gerken, 2012). The 
distinction between type- and token-based processes are often 
interpreted in terms of the exogenous-to-endogenous 
transition, when early infants’ passive exogenous reactions to 
the environment are gradually augmented by their active 
endogenous flexible retrieval of information as parsed from a 
complex representation (Diego-Balaguer et al., 2016).  
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How early infants might flexibly learn to recognize simple 
algebraic patterns remains to be explained. Emergent 
evidence now suggests that the infant brain possesses a 
modular architecture (see Dehaene-Lambertz & Spelke, 
2015), thus calling for its conceptual implementation in 
studying the cognition of infants. Specifically, the exogenous 
reactions can be mapped to the passive encoding and 
comparisons at various modules, and the endogenous 
processes can be mapped to the active retrieval from 
declarative memory (Colombo & Cheatham, 2006; cf., 
Stocco & Anderson, 2008). Moreover, recent evidence 
indicates that the language-related prefrontal area is already 
functional during infancy (see Dehaene-Lambertz & Spelke, 
2015), which can facilitate simple task-relevant processes 
such as the detection of syllable repetition (Bristow et al., 
2009). Nakano et al. (2009) further reported selective 
activation of the prefrontal cortex in infants upon repetition 
of a syllable, and upon alteration of the syllable, which 
demonstrates inherent sensitivity of frontal structures to the 
establishment and alteration of the task requirement. It is 
possible that frontal activation follows a reward-guided 
mechanism that integrates and strengthens the currently 
acquired adaptive skills for future use (cf., Duncan, 2010).  

Based on this empirical background, a modular and 
adaptive architecture is a well-suited tool for studying infant 
learning. Here, the PRIMs (primitive element) cognitive 
architecture is a promising candidate (Taatgen, 2013). It 
follows a modular structure pioneered by ACT-R, with 
additional prospects for the flexible discovery of rule-like 
patterns. This discovery mechanism is comprehensible from 
the perspective of functional development (see Bateson & 
Gluckman, 2011). To illustrate, initially randomly fired 
lower-level processes may occasionally lead to the successful 
detection of a repetition. This then entails a higher-level 
reward-guided mechanism that integrates various just applied 
lower-level operations to their associated task contexts, thus 
making them context-sensitive. 

In this paper, we first aim to show how simple algebraic 
patterns can be acquired and generalized. Based on that, we 
attempt to account for the empirical findings in infants’ 
focusing time differences in reacting to learned and other 
unexposed types of simple algebraic patterns. 

Model 
There follows a brief description of PRIMs operations at both 
the lower- and higher-levels.  

Primitive Operations 
The PRIMs cognitive architecture breaks down artificially 
programmed production-rules into elemental processes that 
can copy and compare information between separate slots in 
the input channel and the various memory modules (see 
Figure 1). These processes are called primitive operations, 
and they can be flexibly fired during task exploration. 

 
 

 
 

Figure 1: The PRIMs architecture for skill acquisition. 
 

This PRIMs model of infant learning includes all possible 
lower-level primitive operations that encode (e.g., encode 
information within the input channel to the working memory 
module; see Lencode) or compare (e.g., compare whether 
information within the input channel matches to the working 
memory module; see Lcompare) information between various 
modules (see Figure 1, Table 1, ik in table refers to slotk in 
chunki). However, a constraint is placed upon infants’ 
processing capacity. This constraint acknowledges that the 
infants cannot yet simultaneously process multiple 
representations (e.g., encode/retrieve distinct representations 
“le” and “we” at the same time), and neither can they retrieve 
detailed information (e.g., syllable token “le”) as parsed from 
a more complex representation (e.g., representation of the 
pattern “le-we-le”). When a condition is met for repetition 
detection, a scaffolding operation (Lscaffold) enables state 
transition to evaluation. Note that state transition to 
evaluation may also be flexibly entailed without scaffolding. 

 
Table 1: Primitive operations. 

 

Lencode 

inputik ⇏working/decl. memoryik ignore 

inputik ⇒ working/decl. memoryik encode 

working/decl. memoryik ⇒ controlik encode 

Lcompare 
inputik = working/decl. memoryik compare 

inputik ≠ working/decl. memoryik compare 

Lscaffold “evaluation”  ⇒ controlik transition 
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Reward-Guided Contextual Learning 
In addition to the firing of lower-level operations, adaptive 
skills need to be arranged to satisfy and accomplish a defined 
task more efficiently. This is achieved by another higher-
level evaluation operation. In this model, the evaluation 
operation is activated only when the presented stimulus at the 
input channel matches to the stored representation at the task 
control module (Hevaluation, see Table 2). This operation 
quickly entails a reward-guided contextual learning 
mechanism that reinforces the associations of just fired 
operations with their relevant task contexts – namely, which 
operation to fire at what context. For instance, to successfully 
detect a repetition in “le-we-le”, the model always needs to 
encode the first token “le” with reference to its task contexts 
such as its general position “first” or its specific value “le”. 
Gradually, the flexible firing of operations starts forming 
robust context-sensitive skills (i.e., encode-“first”, or encode-
“le”), which may be employed during relevant future contexts. 
Primitive operations can also be compiled to process more 
efficiently (e.g., “input ⇒	memory” and “memory ⇒	control” 
may be compiled into “input ⇒	control”). 

 
Table 2: Task-related operations. 

 

Hevaluation 

inputik = controlik match 

inputik ≠ controlik mismatch 

 
In this model, the weight of contextual association between 

a certain operationj and its relevant task context - in this case 
the specific syllable token stored in sloti of modulek - is 
reflected in the following equation: 

 

∆Sjik = β ( Sjik (current trial) - Sjik (previous trial) ) 
 

in which, Sjik (current trial) = default association ⨉ ( expected 
time – actual time ) / expected time 

 
In this equation, actual time is the actual trial completion 

time, while expected time is hypothetically set initial trial 
completion time. The changing rate of the association weight 
Sjik is moderated both by (a) how efficiently the task was 
completed (when actual time < expected time) and (b) a 
learning rate parameter β. The default association sets the 
maximum weight for any contextual associations. 

Default-Mode Operations 
At the stage when the task is well learned, the firing of task-
related operations become more efficient, increasing task-
negative transitional spaces between them. The transitional 
spaces can become frequently occupied by the default-mode 
operation (Hdefault-mode, see Table 3), which are reinforced also 
by the contextual learning mechanism (cf., Smith et al., 2018). 
In other words, default-mode operation starts also to bind 
with task contexts whenever task-relevant operations are not 

active. The activation of default-mode operation is initially 
set at a low magnitude, but is gradually increased when it is 
more often fired and integrated also to the task contexts. 

 
Table 3: Default-mode operations. 

 

Hdefault-mode inputik = “empty” task-irrelevant 
processes 

 

Methods 
The modeled algebraic paradigm is adapted from Marcus et 
al. (1999, Exp. 2 and 3). In the first simulation, the focus is 
placed on the learnability of the a-a-b, a-b-a, and a-b-b 
patterns, each based on 100 model runs. The individual 
tokens of the trisyllabic pattern are presented each for 330 ms, 
with an ISI of 250 ms following each syllable token, and an 
ITI of 1000 ms following each pattern. The patterns are 
randomly drawn from a pool of 16 examples for each pattern 
type as adapted from Marcus et al. (1999, a-b-a/a-b-b type 
from Exp. 2 and a-a-b type from Exp. 3). The modeled trial 
is considered successful when repetition is detected during 
the evaluation operation (e.g., if inputik = controlik, estimated 
success = 1). This will in turn issue a reward to the model, 
strengthening associations of the manifestly adaptive lower-
level operations with their relevant task contexts. Otherwise, 
the model is considered unsuccessful (e.g., if inputik ≠ 
controlik or no comparisons were made, estimated success = 
0), and contextual associations for the operations during this 
trial will remain unchanged. To illustrate the gradual learning 
progression, 400 trials for each of the a-b-a, a-b-b, and a-a-b 
patterns are included.  

Alternatively, simulations 2 and 3 focus on the 
generalization of the learned patterns, each based on 100 
model runs. In the learning phase, the models are identical 
with the first simulation, except for the number of learning 
trials included. Specifically, simulations 2 was run for 150 
learning trials, while simulation 3 was run for 500 trials to 
illustrate the effects of overlearning. The capacity of the 
model to generalize was then tested with novel examples of 
the learned pattern (e.g., ko-ga-ko) or other unexposed types 
of patterns (e.g., ko-ga-ga, ko-ko-ga). In the test phase that 
exams pattern generalization, specifications of primitive 
operations were not included. Instead, the models directly 
apply those operations and skills acquired from the learning 
phase to generalize them in the novel task contexts. To 
illustrate the trajectory of generalization, 150 transfer trials 
were included for each of the a-a-b, a-b-a, and a-b-b patterns.  

Finally, the same learning and transfer models are applied 
in simulation 4 to illustrate critical differences in the 
empirical finding - in other words, infants’ preferential longer 
focusing time on other unexposed types of patterns versus the 
learned pattern during test phases. The simulation consists of 
100 learning and 10 transfer trials for each pattern, 
whereupon the frequency of default-mode operations during 
transfer trials is then calculated.  
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Results 

Learning 
Results of simulation 1 demonstrate the model’s ability to 
learn simple algebraic patterns (see Figure 2, averages with 
95% CI error bars). Acquisition of all patterns converged to 
high percentages of correct predictions, albeit at different 
learning rates.  

 

 
 

Figure 2: The discoveries of a-a-b, a-b-a, and a-b-b algebraic 
patterns. Horizontal axis shows learning trials from 1 to 400. 
Vertical axis shows the averaged percentages of correct predictions 
across 100 model runs (with 95% CI error bars). 

 
It is easy to grasp that the learning of a-b-a is slightly more 

difficult than a-a-b, since irrelevance of second item b in a-
b-a needs to be additionally acquired for repetition detection. 
However, it is less straightforward to explain the slower 
learning rate of a-b-b. This is nevertheless consistent with a 
recent finding showing 11-month-olds difficulty in detecting 
repetition in the a-b-b-c pattern (Schonberg, Marcus, & 
Johnson, 2017), and the slight advantage of initial versus late 
repetition (a-a-b versus a-b-b) in neonates at the neural level 
(Exp. 3, Gervain, Berent, & Werker, 2012). Note both 
findings were interpreted in terms of the primacy effect. 
Similarly, the simulation results similarly show a primacy 
effect at the skill level (see Figure 3). The first token in a-b-
b must be “ignored” (orange) against the readily firing of 
various “encode” operations at the first position that are 
otherwise essential in learning a-b-a and a-a-b.  

Another feature of the model is found in its ability to select 
an initial range of operations, while remaining capable of 
converging on to relatively invariant solutions when robust 
skills are formed (Figure 3). For instance, the model can 
flexible encode the item to the task control module, either 
from the working memory module (brown) or from the 
declarative memory module (purple). Nevertheless, when 
selection of the declarative memory route gradually 
organized into a robust state, it then becomes difficult to 
return to the initial flexible state in selecting an alternative 
working memory route. The modeled results in Figure 3 also 
revealed a gradual increase of default-mode operations (blue) 

when the selection of task-relevant operations gradually 
stabilize. 

Generalization 
Simulations 2 (150 training trials) and simulation 3 (500 
training trials) demonstrates the generalization of algebraic 
patterns from learning, based on 100 model runs (see Figure 
4, averages with 95% CI error bars). Results in simulation 2 
show that an optimal level of learning facilitates transfer of a 
learned pattern for other novel patterns (Figures 4A, 4B, and 
4C, cf., Taatgen, 2013). Note that the transfer rates are 
moderated also by the degree of difficulty to learn that pattern. 
To the contrary, modeled results of simulation 3 predict 
hindrance of transfer due to overlearning (Figures 4A, 4B, 
and 4C). Although infants may not realistically be expected 
to participate in a prolonged learning session, overfitting to a 
particular context may still render the system less adaptive to 
a slightly altered context (e.g., a deterioration of prediction 
rates even for the same pattern with altered tokens). 

Lastly, results of simulation 4 shows a higher frequency of 
default-mode operation when a pattern has been learned 
(Figure 5, averages with 95% CI error bars). Default-mode 
operations may cause infants to divert from the task, and are 
therefore likely to have an inverse relation to the time they 
would be focusing on the task. These simulated results are 
consistent with the findings of Marcus et al. (1999). 

 

 
Figure 3: Operation selection over learning trials. Horizontal axis 
shows the number of learning trials. Vertical axis shows the 
frequency of various operations applied in a trial as averaged over 
100 model runs (with 95% CI error bars). Color coding: purple, 
declarative mem. encode; brown, working mem. encode; orange, 
ignore; light-green, other primitive operations; dark-green, other 
compiled operations; blue, default-mode operations.  
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Figure 4. Generalization after learning or overlearning. Horizontal axis shows learning trials (150 trials in A, B, and C; 500 trials in D, E, 
and F) and the transfer trials (150 trials followed from the learning trials). Vertical axis shows the averaged percentages of correct predictions 
across 100 model runs (with 95% CI error bars).

 
Figure 5: Frequencies of default-mode operations in transfer. 
Horizontal axis shows the learned type. The bar colors denote types 
applied in the 10 test trials on generalization. The vertical axis shows 
frequencies of default-mode operation per trial, as averaged across 
100 model runs (with 95% CI error bars).  

Discussion 
An Aristotelian axiom nihil est in intellectu quod non sit prius 
in sensu holds that there is nothing in the intellect that was 
not originally derived from the senses. However, more recent 
literature on cognition in infants has disputed whether the 
detection of simple algebraic patterns is purely a lower-level 
statistical process or follows higher-level rules. Towards 
reconciling these two disparate views, results of our present 
PRIMs model suggest that seemingly rule-like patterns can 
be gradually acquired from the bottom-up. The promise of the 
model is reflected in its ability (a) to learn and generalize 
simple algebraic patterns (cf., Marcus et al., 1999; Schonberg, 
Marcus, & Johnson, 2017); and (b) to account for differences 
in infants’ preferential focusing time on learned patterns 
versus other unexposed types of patterns (cf., Marcus et al., 
1999). The modeled results may be framed in terms of a 
contemporary view on developmental plasticity (cf., Bateson 
& Gluckman, 2011).  

Contemporary biology and psychology may be said to be 
correcting an earlier overemphasis on whether cognitive 
development is innate or learned. It is now clear that altering 
an innate property (e.g., presence or absence of certain trait-
related genetic factors) is not always equatable with changes 
in learned characteristics. Instead, environmental conditions 
are crucial in shaping the precise characteristics of a learned 
skill (Bateson & Gluckman, 2011). The present PRIMs 
model demonstrates equal possibility of various routes in 
detecting syllable repetition. For instance, when flexible 
retrieval is not yet developed, infants can still distinguish 
between algebraic patterns (Dawson & Gerken, 2012). 
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Nonetheless, an innate structural architecture undoubtedly 
provides the basis for primitive operations to function. 

Furthermore, distinct characteristics such as robustness and 
plasticity are not as cleanly separated as once thought. For 
instance, people maintains certain typical ways of dealing 
with a problem, but can also become flexible when the 
problem is changed. An emergent view now holds that robust 
outcomes can be derived from individual’s plasticity 
(Bateson & Gluckman, 2011). This present PRIMs model 
shows that robust context-sensitive skills can be gradually 
integrated through a reward-guided contextual learning 
mechanism, and that the achieved robustness also raise 
barriers against the application of other possible skills that 
were currently not integrated. In addition, robust skills may 
be co-opted in other task contexts achieving generalization 
(see Taatgen, 2013). On the other hand, the present model 
also points to the detriments of overlearning and extreme 
robustness during one learning instance, which hinder the 
system for instance to accommodate the same type of pattern 
with just the syllable tokens altered. This extreme case may 
be taken as similar to a deterministically programmed model 
that only monotonously performs one single task. 

Furthermore, the present PRIMs model suggest that the 
empirical finding concerning infants’ shorter focusing time 
on the learned versus the other unexposed types of patterns 
may be product of the degree of robustness. Specifically, 
efficient processing of robust skills encourages the firing of 
default-mode operation, and gradually diverts the system 
from the focused task. In real terms, this may be associated 
with displacement of the infant’s attention to need for food, 
comfort, play and so forth, curtailing the focusing time for 
the simple algebraic pattern. As illustrated from the present 
model, the accumulation of default-mode operations could 
occur whenever the system is still exploring the task. This in 
turn suggests that focusing time difference may not be 
directly relevant to how well an infant habituates a 
representation or masters a rule. Currently we are applying 
the same model to account for the counterintuitive reversed 
focusing time findings (longer focusing time on the learned 
versus the other patterns) to the generalization of non-
adjacent dependency pattern a-x-b (Gómez & Maye, 2005).  

Conclusion 
Our PRIMs model firstly shows that simple algebraic patterns 
can be discovered bottom-up through the interplay between 
flexible primitive operations and a reward-guided contextual 
learning mechanism. This adaptive process produces robust 
context-sensitive skills that not only satisfies a given task, but 
may be also generalized in other relevant tasks. Secondly, the 
present study shows that infants’ differential focusing time 
on the learned versus other unexposed types of pattern may 
be indirectly related to the robustness/plasticity of skill 
integration. In other words, efficient skill processing may 
encourage default-mode operation that reduces task focus. 
The modeled results suggest a more cautious position on 
drawing a direct link between infants’ focusing times and the 
habituation/rule-bound operation of simple algebraic patterns. 
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Abstract

We propose a spiking recurrent neural network model of flex-
ible human timing behavior based on the delay network. The
well-known ‘scalar property’ of timing behavior arises from
the model in a natural way, and critically depends on how many
dimensions are used to represent the history of stimuli. The
model also produces heterogeneous firing patterns that scale
with the timed interval, consistent with available neural data.
This suggests that the scalar property and neural scaling are
tightly linked. Further extensions of the model are discussed
that may capture additional behavior, such as continuative tim-
ing, temporal cognition, and learning how to time.
Keywords: Interval Timing; Scalar Property; Spiking Recur-
rent Neural Networks; Neural Engineering Framework; Delay
Network

Introduction
Time is a fundamental dimension against which our mental
lives play out: we remember the past, experience the present,
and anticipate the future. Humans are sensitive to a wide
range of temporal scales, from microseconds in sound local-
ization to tens of hours in circadian rhythms. It is somewhere
in between—on the order of hundreds of milliseconds to sev-
eral seconds—that we consciously perceive time and coordi-
nate actions within our environment (van Rijn, 2018). How
does our brain represent time as accurately as possible, and
how does it flexibly deal with different temporal intervals?

Scalar Property
Given the centrality of time to our experience, it is no won-
der that timing and time perception have been the subject of
extensive empirical study over the past 150 years. Many per-
ceptual, cognitive, and neural mechanisms related to time per-
ception have been studied, and perhaps the most well-known
finding from the literature is the scalar property (Gibbon,
1977). The scalar property of variance states that the stan-
dard deviation of time estimates are linearly proportional to
the mean of the estimated time. The scalar property has been
confirmed by a wide variety of experimental data (Wearden
& Lejeune, 2008). However, some research suggests that
the scalar property does not always hold. It was already
observed by Allan and Kristofferson (1974) that for well-
practiced subjects in interval discrimination tasks, the stan-
dard deviation was constant for a range of relatively short
intervals. Similar results were observed with pigeons, where
the standard deviation remained flat for intervals up to around

500 ms (Fetterman & Killeen, 1992). Also, Grondin (2014)
notes that the scalar property of variance critically depends
on the range of intervals under consideration, and cites many
examples with increases in slope after intervals of about 1.3
seconds.

Most models of timing take the scalar property as a start-
ing point, or consider conformity to the scalar property as a
crucial test. This seriously undermines their ability to explain
violations of the scalar property. Here, we take the approach
of not assuming the scalar property a priori, but instead con-
struct a biologically plausible model that is trained to opti-
mally represent time. We then systematically explore ranges
of model parameters that lead the scalar property to be sat-
isfied or violated, and provide a theoretical framework that
aims to unify a variety of empirical observations.

Neural Scaling

Variance is not the only property of timing that scales with
the estimated time interval. The firing patterns of individual
neurons also stretch or compress proportional to the timed
interval. In a recent study, Wang, Narain, Hosseini, and Jaza-
yeri (2018) show that neurons in striatum and medial pre-
frontal cortex (mPFC) scale in this manner. During the timed
interval, individual neurons display ramping, decaying, oscil-
lating, or more complex firing patterns. In general, the spe-
cific shapes of temporal firing patterns for a given neuron re-
main the same, but become stretched for longer intervals and
compressed for shorter intervals. Additionally, neurons in the
thalamus display a different kind of scaling: their mean level
of activity correlates with the timed interval. Both findings
have been explained using a recurrent neural network (RNN)
model (corresponding to neurons in striatum or mPFC) that
receives a tonic input (originating from the thalamus) to scale
the temporal dynamics of the network (Wang et al., 2018).
The units in the neural network exhibit neural firing patterns
and scaling similar to those observed experimentally. The
model of timing we propose reproduces the same findings
as the RNN model described in Wang et al. (2018). These
findings suggest that, in order to perform timed actions as
accurately as possible, the brain is able to flexibly scale its
temporal dynamics. This implies a tight connection between
the scalar property of variance and the temporal scaling of
individual neurons.
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Neural Models of Timing
Many neurally inspired models of timing and time perception
have been proposed. Some models are based on ramping neu-
ral activity (Simen, Balci, deSouza, Cohen, & Holmes, 2011),
some decaying neural activity (Shankar & Howard, 2010) and
some on oscillating neural activity (Matell & Meck, 2004).
Interestingly, all these neural firing patterns (and more com-
plex ones) have been observed by Wang et al. (2018) in
striatum and mPFC during a motor timing task. Therefore,
appealing to only one of these neural firing patterns may
be insufficient to fully explain timing performance. In line
with this observation, the recurrent neural network model by
Wang et al. (2018) exhibits a wide variety of firing patterns.
However, their model does not show why this heterogene-
ity of firing patterns is important for timing performance or
what the role is of ramping, decaying, or oscillating neurons
in timing performance. Randomly-connected recurrent neu-
ral networks—referred to as reservoir computers—produce a
wide variety of dynamics that can subsequently be extracted
by a read-out population (Buonomano & Maass, 2009). A
more structured approach to building a recurrent neural net-
work may highlight the functional relevance of different neu-
ral firing patterns on timing performance.

One candidate for such a structured approach is the delay
network (Voelker & Eliasmith, 2018). The delay network is a
spiking recurrent neural network that approximates a rolling
window of its input history by compressing the history into
a q-dimensional state-vector. It has been observed that in-
dividual neurons in the delay network show responses simi-
lar to time-cells (MacDonald, Lepage, Eden, & Eichenbaum,
2011). Here, we use the delay network to explain both the
scalar property of timing and the scaling of individual neural
responses by comparing delay network data to empirical data
from Wang et al. (2018).

Methods
We first discuss the mathematics behind the delay network.
Then, we show how to implement the delay network as a
spiking recurrent neural network using the Neural Engineer-
ing Framework (NEF; Eliasmith & Anderson, 2003). Lastly,
we discuss the details of our simulations that follow the ex-
perimental setup of Wang et al. (2018).

The Delay Network
The delay network is a dynamical system that maintains a
temporal memory of its input across a rolling window of
θ seconds (Voelker & Eliasmith, 2018; Voelker, 2019). It
does so by optimally compressing its input history into a q-
dimensional state-vector. This vector continuously evolves
through time in a way that captures the sliding window of
history, while being amenable to representation by a popula-
tion of spiking neurons using the NEF (as explained in the
following subsection).

We consider the problem of computing the function y(t) =
u(t − θ), where u(t) is the input to the network, y(t) is the

output of the network, and θ > 0 is the length of the window
in time to be stored in memory. In order to compute such a
function, the network must necessarily maintain a history of
input across all intermediate moments in time, u(t− θ′), for
θ′ ranging from the start of the window (θ′ = 0), going back
in time to the end of the window (θ′ = θ). This window must
then slide forwards in time once t > θ, thus always preserving
the input over an interval of length θ. Computing this func-
tion in continuous time is challenging, as one cannot merely
sample a finite number of time-points and shift them along;
the time-step of the system could be arbitrarily small, or there
may not even be an internal time-step as in the case of imple-
mentation on mixed-analog neuromorphic hardware (Neckar
et al., 2019).

The approach taken by Voelker and Eliasmith (2018) is
to convert this problem into a set of differential equations,
dx/dt = θ−1 (Ax+Bu), where x is a q-dimensional state-
vector, and (A,B) are matrices governing the dynamics of
x. We use the (A,B) matrices from Voelker (2019; sec-
tion 6.1.3). This results in the approximate reconstruction:
u(t−θ′) ≈ P (θ′/θ) · x(t), where P are the shifted Legendre
polynomials. Importantly, the dimensionality q determines
the quality of the approximation. This free parameter con-
trols the number of polynomials used to represent the win-
dow – analogous to a Taylor series expansion of the input
using polynomials up to degree q− 1. Thus, q determines
how much of the input’s frequency spectrum, with respect to
the period 1/θ, should be maintained in memory. Another
notable property is that 1/θ corresponds to a gain factor on
the integration of x(t) that can be controlled in order to dy-
namically adjust the length of the window on-the-fly.

The Neural Engineering Framework (NEF)
Given this mathematical formulation of the computations that
the neurons must perform in order to represent their past in-
put, we turn to the question of how to recurrently connect
neurons such that they perform this computation. For this,
we use the NEF (Eliasmith & Anderson, 2003).

In the NEF, the activity of a group of neurons forms a dis-
tributed representation of some underlying vector space x. In
particular, each neuron i has some encoder (or preferred di-
rection vector) ei such that this neuron will fire most strongly
when x is similar to ei. To produce heterogeneity in the neu-
ral population, each neuron has a randomly assigned gain αi
and bias βi. Overall, the current entering each neuron would
ideally be αiei ·x+βi. This input current determines the spik-
ing activity of the neuron, based on the neuron model. In
this work, we use the standard leaky integrate-and-fire (LIF)
model. This results in a pattern of neural activity over time
ai(t) that encodes some continuous vector over time x(t).

If we have two groups of neurons, one representing x
and one representing y, and we want y to be some function
of x, then we can form connections from the first popula-
tion to the second. In particular, we want to connect neu-
ron i to neuron j with weights ωi j such that the total sum
from all the input connections will give the same result as
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the ideal equation assumed above. In other words, we want
∑i ai(t)ωi j = α je j · y(t) for all j (the bias β j current is sup-
plied separately). The ideal ωi j are found using regularized
least-squares optimization.

Furthermore, this method for finding connection weights
can be extended to support recurrent connections (i.e., con-
nections from the neurons in one population back to itself).
These connections are solved for in the same manner, and, as
has been shown Eliasmith and Anderson (2003), the result-
ing network approximates a dynamical system of the form
dx/dt = f (x) + g(u), where x is the vector represented by
the group of neurons, u is the vector represented by the group
of neurons providing input to this group, and the functions f
and g depend on both the functions used to find the connec-
tion weights (as per the previous paragraph) and the tempo-
ral properties of the synapses involved (most importantly, the
postsynaptic time constant).

The result is that the NEF provides a method for generat-
ing a population of neurons (to represent the q-dimensional
state) and finding the ideal recurrent connections between
those neurons such that they compute the differential equa-
tions required by the delay network.

It should be noted that the resulting network is structured
exactly like a standard reservoir computer: a large number
of neurons are recurrently connected, an input is supplied to
that network, and we can decode information from the dy-
namics of the network by computing weighted sums of the
overall neural activity. However, rather than randomly gener-
ating the recurrent weights, we are using the NEF to find the
optimal weights for storing information over a rolling win-
dow in time. This method has been shown to be far more
computationally efficient and accurate than various forms of
reservoir computer for computing delays (Voelker, 2019).

An example of the resulting system is shown in Figure 1.
Here the network is optimized to represent the past θ = 1 s of
its own input using q = 6 dimensions. Part A shows the (one-
dimensional) input to the network over time. In this case, the
input is a Gaussian bump centred at t = 0.5 seconds. The
resulting neural activity (for 50 randomly-chosen neurons) is
shown in Part B. Note that the neural activity at the begin-
ning (before the input bump) and at the end (after t > 1.5 s) is
fairly constant. This is the stable background activity of the
network in the absence of any input. Since the network only
stores the last second, in the absence of any input it will settle
back to this state in ∼ 1 second.

Part C shows one example of decoding information out
of this network. In particular, we are decoding the function
y(t) = u(t−0.5) – that is, the output should be the same as the
input θ′ = 0.5 seconds ago. This output is found by comput-
ing the weighted sum of the spikes that best approximates this
value, again, using least-squares optimization to find these
weights. That is, y(t) = ∑i ai(t)di, where di is the decoding
weight for the ith neuron. We see that the network accurately
represents the overall shape, although the Gaussian bump has
become a bit wider, and the output dips to be slightly nega-
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Figure 1: The Delay Network – Optimized to represent the
past 1 second of input history using 6 dimensions. (A): The
input to the network. (B): Neural activity of 50 randomly-
chosen neurons within the network. (C): Decoding informa-
tion from the network by taking the weighted sum of neu-
ral activity that best approximates the input from 0.5 seconds
ago. (D): Decoding all information from the past 1 second.
Each row is a different slice in time (from 0 to 1 second),
and uses a different weighted sum of the same neural activity.
The graph in part (C) is a slice through this image, indicated
by a dotted line. (E): The underlying low-dimensional state
information that represents the window.
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tive before and after the bump. These are side-effects of the
neurons approximating the ideal math for the delay network,
and its compression of the input into 6 dimensions.

In Part D, we show the same process as in Part C, but for
all times in the past from right now (θ′ = 0 s) to the furthest
point back in time (θ′ = 1 s). This is to show that we can
decode all different points in time in the past, and the partic-
ular case shown in Part C is just one example (indicated with
a dotted line). Each of these different outputs uses the same
underlying neural activity, but different decoders di out of the
recurrent population.

Finally, Part E shows that we can also decode out the q-
dimensional state representation x(t) that the delay network
uses for its representation. These are the values that govern
the dynamics of the delay network, and they form a nonlin-
ear basis for all the possible functions that could be decoded
out from the neural activity. Indeed, each row in Part D can
also be interpreted as a different linear transformation of the
data shown in Part E. Voelker and Eliasmith (2018) derive
the closed-form mathematical expression that provides such a
transformation, thus relating all time-points within the rolling
window to this underlying state-vector.

These different views of the delay network can be seen
as a very clear example of David Marr’s Tri-Level Hypoth-
esis (Marr, 1982), which we use here to understand this sys-
tem at varying levels of abstraction. For instance, we may
consider only the implementational level, which consists of
leaky integrate-and-fire neurons with recurrent connection
weights between them, a set of input weights from the stimu-
lus, and multiple sets of output weights. Or we may consider
the algorithmic level, where the system is representing a q-
dimensional state-vector x and changing that vector over time
according to the differential equations given in the previous
section. Or we may consider the computational level, where
the network is storing a (compressed) history of its own in-
put, and different slices of that input can be extracted from
that memory. All of these are correct characterizations of the
same system.

Simulation Experiment
In the original experiment by Wang et al. (2018), monkeys
were presented with a “cue” signal that indicated the inter-
val to be reproduced: red for a short interval (800 ms) and
blue for a long interval (1500 ms). Then, they were presented
with a “set” signal that marked the start of the interval. The
monkeys had to issue a response after the cued interval had
elapsed. We have attempted to match the relevant details of
their experimental setup as follows. The delay network (with
q = 4) continually receives input from a control population
that scales θ in order to produce intervals around 800 ms or
1500 ms. In effect, this gain population controls the length
of the window on-the-fly. The effective value of θ is 1, di-
vided by the value that the gain population represents. When
the value represented by the gain population is greater than 1,
it makes the length of the window shorter; when it is smaller
than 1, it makes the window longer. This enables us to choose

values for the gain population that will let the delay network
time intervals around 800 ms or 1500 ms. The delay network
receives input that is continually represented, along with the
history of this input. The input signal is a rectangular impulse
of 500 ms. The same read-out population decodes the delayed
input signal as θ is varied.

Results
Scalar Property in the Delay Network
In order to quantify the scalar property in the spiking imple-
mentation of the delay network, we calculated the mean and
standard deviation of the decoded output at θ seconds. We
performed this analysis for delay networks with a range of
values for θ and q while keeping the number of neurons per
dimension fixed at 500. We considered only positive values
around the peak of the decoded output. If the scalar prop-
erty holds, we should observe a linear relationship between θ

and the standard deviation of the impulse response. Our data
suggests that the scalar property critically depends on q (Fig-
ure 2). The relationship between the standard deviation, θ,
and q can be described as follows. The standard deviation
remains constant for a range of short intervals and starts to
increase linearly after some value of θ. Both the location of
this transition and the slope of the linear increase depend on
q. This helps explain some previous differences in experi-
mental findings. For example, the flat standard deviation for
≤ 500 ms observed by Fetterman and Killeen (1992) can be
explained by assuming that q = 2 within our model.

0 1 2 3 4

0.75

1

1.25

1.50
q: 2

0 1 2 3 4

q: 3

0 1 2 3 4

0.75

1

1.25

1.50
q: 4

0 1 2 3 4

q: 5

Figure 2: Scalar Property. The standard deviation of the im-
pulse response plotted against θ for different values of q.

Neural Scaling in the Delay Network
Our simulations of the Wang et al. (2018) experiment pro-
duced results with a qualitative fit to the empirical data (Fig-
ure 3). First, the standard deviation of the decoded output
increased with θ (also see previous section). Second, the neu-
ral responses were highly heterogeneous, with ramping, de-
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caying, and oscillating neurons. These firing profiles were
observed because they are linear combinations of the under-
lying state vector x(t) (see Figure 1E). Third, the responses
of individual neurons stretched or compressed with the length
of the timed response response, similar to the empirical data
from Wang et al. (2018).
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Figure 3: Neural Scaling. A square input was provided to
the delay network, while varying the value of the gain input.
The peak and standard deviation of the decoded output scale
with the gain. The heterogeneous firing patterns of individual
neurons also scale with gain. Here, neural firing patterns of
three example neurons are shown that qualitatively fit the data
from Wang et al. (2018). We focused on the first period of the
neural response to the “set” stimulus. The top neuron shows
ramping activity, the middle neuron shows decaying activity,
and the bottom neuron shows oscillatory activity.

Discussion
The aim of the present study is to use the delay network to ex-
plain two findings in the timing literature: the scalar property
of variance and neural scaling. We did not assume the scalar
property a priori, but systematically explored the parameters

of the delay network that lead the scalar property to be satis-
fied or violated. Our results suggest that the scalar property
critically depends on q. Notably, the time-cell data that was
analyzed in earlier work fit best for q = 6 (Voelker & Elia-
smith, 2018). The temporal range of conformity to the scalar
property and slope of the scalar property may be explained
by the number of dimensions the delay network uses (q): for
higher q, the range of short intervals with a constant standard
deviation increases, whereas the slope of the scalar property
decreases. We also found that scaling the dynamics of the de-
lay network produces scaling of neural firing patterns, match-
ing empirical data (Wang et al., 2018). Our model suggests
that when the delay network represents its input history with
more dimensions, neural firing patterns become more com-
plex, as additional linear combinations of higher-degree Leg-
endre polynomials are encoded by individual neurons. Fur-
thermore, these findings suggest that the scalar property and
the adaptive control of neural dynamics are tightly linked.

Previous Models
The delay network shares some features with previous neu-
ral models of timing, but there are also critical differences.
First, similar to previous RNN models, the delay network is
an RNN that uses population-level dynamics to time inter-
vals. However, previous RNN models use a random connec-
tivity approach to generate the necessary dynamics for ac-
curate timing, whereas the delay network explicitly defines
the required dynamics and optimizes neural connectivity to
implement those dynamics. Also, previous RNN models of
timing do not characterize how the input history is repre-
sented. Similar to memory models of timing (Shankar &
Howard, 2010), the delay network makes this connection ex-
plicit. Even though memory models and the delay network
both specify how input history is represented, the memory
models do not specify how to optimally scale the dynamics
of the network or compute arbitrary functions over the repre-
sented history. In contrast, the delay network is optimized to
recurrently represent time, and comes with a general frame-
work that links the input history, network representation, and
spiking neural activity. In sum, we believe that the delay net-
work is an improvement over previous models of timing by
both explicitly specifying how time is represented and imple-
menting that representation in a flexible neural framework.

Extending the Delay Network
In this work, we have used the delay network to explain the
scalar property and neural scaling in a simple motor timing
task. However, the delay network may be used to explain a
wide variety of timing phenomena, including: continuative
timing, temporal cognition, and learning how to time.

Continuative Timing First, the delay network can be ex-
tended to account for time perception in a wide variety of re-
alistic situations. A classic dichotomy in the timing literature
is between prospective and retrospective timing. Prospective
timing is explicitly estimating an interval with knowledge be-
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forehand that attention should be focused on time. On the
other hand, retrospective timing is estimating, in hindsight,
how long ago an event happened. However, this distinction
may be arbitrary, since in realistic situations, one often no-
tices the duration of an ongoing interval. For instance, you
may notice that a web page is taking too long to load but wait
an additional amount of time before checking your signal re-
ception. When this happens, one neither has earlier knowl-
edge that time should be attended to (prospective) nor the in-
struction to estimate how much time has passed since an event
(retrospective). Therefore, a more appropriate term for timing
in realistic situations would be continuative timing (van Rijn,
2018). The delay network, at any point in time, serves as a
rich source of information regarding the temporal structure
of ongoing events, including how long ago an event started
and stopped. This information can be used to infer how much
time has elapsed since a salient event and compared to the
typical temporal structure of an event in memory. Such com-
parisons could then facilitate decision-making, such as in de-
ciding whether to wait for an additional amount of time.

Temporal Cognition Second, time is a crucial factor in a
wide variety of cognitive processes. Timing models have
been successfully integrated in ACT-R (Taatgen, van Rijn,
& Anderson, 2007) and models of decision-making (Balc &
Simen, 2016). The delay network, built with the NEF, is
compatible with other cognitive models that have been devel-
oped in the same framework, or indeed any cognitive mod-
els that can incorporate neural networks. Therefore, a future
avenue of research will be to incorporate the delay network
into existing models of cognitive processes, such as action-
selection (Stewart, Bekolay, & Eliasmith, 2012) and working
memory (Singh & Eliasmith, 2006).

Learning to Time Third, the delay network may be used to
explain how timing is learned. In the experiment by Wang
et al. (2018), the monkeys trained extensively before they
could accurately perform the motor timing task. The mon-
keys received rewards according to the accuracy of their per-
formance. Another open question is how an optimal mapping
between cues and the gain population can be learned. There-
fore, future work will focus on modeling how timing is mas-
tered during reinforcement learning.
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Abstract 
The ability to respond to the needs of an individual operator is 
key for cognitive assistance in naturalistic settings. In order to 
keep track of changing operator demands in dynamic 
situations, a model-based approach for cognitive assistance is 
proposed. Based on model tracing with flight deck 
interactions and EEG recordings, the model is able to 
represent individual pilots’ behavior in response to flight deck 
alerts. As a first application of the concept, an ACT-R 
cognitive model is created using data from an empirical flight 
simulator study on neurophysiological signals of missed 
acoustic alerts. Results show that uncertainty of individual 
behavior representation can be significantly reduced by the 
combination of cognitive modeling and EEG data. 
Implications for model-based cognitive assistance in flight 
deck operations are discussed. 

Keywords: Cognitive modeling; flight deck alerts; model-
based cognitive assistance; model-tracing; neuroadaptive 
technology; 

Introduction 

Individual user behavior 
Representing individual user behavior is a challenge for 
cognitive modeling. Most models aim to simulate average 
user behavior under controlled conditions instead of 
individual performance in complex tasks (Rehling, Lovett, 
Lebiere, Reder, & Demiral, 2004). Representing individual 
behavior in naturalistic settings requires dealing with 
multiple sources of variation such as inter-individual 
differences (e.g., architectural and knowledge differences; 
Taatgen, 1999) and uncontrolled external factors of the 
situation. For example, when modeling pilot performance in 
commercial aviation, different levels of experience and 
changing weather conditions would need to be considered. 
A cognitive model that is able to keep track of the 
operational context and an individual users’ cognitive 
dynamics can serve as the basis for cognitive assistance in 
operations (Zhang, Russwinkel, & Prezenski, 2018). 

Cognitive assistance is about providing the right 
information at the right time. The quality of support that can 
be provided therefore depends on what is and can be known 
about the task environment and the operator’s cognitive 
processes. In naturalistic situations, very extensive models 

would be needed to incorporate all sources of variation for 
explaining individual performance in a deterministic 
fashion. Regardless of the feasibility of such modeling, 
understandability of the model would be traded in for 
completeness, also known as “Bonini’s paradox” (Dutton & 
Starbuck, 1971). Alternatively, leaner models would 
introduce epistemic uncertainty (Kiureghian & Ditlevsen, 
2009), leaving specific aspects of behavior unexplained due 
to a model’s lack of knowledge. A number of methods have 
been used to reduce epistemic uncertainty caused by 
individual differences, such as pre-test scores as predictors 
(Rehling et al., 2004), model tracing (Fu et al., 2006), 
inserting physiological data on user’s workload into the 
model (Putze, Schultz, & Propper, 2015) and dynamic 
adjustment of parameters with pre-computed lookup tables 
(Fisher, Walsh, Blaha, Gunzelmann, & Veksler, 2016).  

Cognitive assistance in aviation 
Inattentional deafness leads to performance drops in the 
cockpit (Dehais, Roy, & Scannella, 2019) that can benefit 
from cognitive assistance, e.g. in the form of verbal 
reminders (Estes et al., 2016). Causes and consequences of 
overheard messages for individual pilots’ performance need 
to be considered to identify the right information to be 
provided and the right timing to provide it for cognitive 
assistance in operations. 

Causes can be diverse and situation dependent (e.g., 
perceptual/attentional factors, see Dehais et al., 2019) and 
are likely too complex for deterministic modeling of single 
occurrences of missed alerts. Often, alerts are declared as 
missed when pilots fail to react. Knowing what made a pilot 
fail to react or what pieces of information he or she was 
unable to process gives diagnostic value and helps to 
identify adequate means of support. For cognitive assistance 
in handling flight deck alerts, information about a message’s 
contents and whether it was processed by the pilot is a 
viable alternative to complex models required for 
deterministic prediction of user states. 

Consequences of an overheard or ignored message for 
pilots’ performance can be anticipated with the help of a 
cognitive pilot model. ACT-R (Anderson et al., 2004) is a 
comprehensive and scientifically substantiated cognitive 
architecture that has produced models representing 
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processes e.g. involved in “manual” flight control of single 
engine aircraft (Somers & West, 2013), visual attention 
allocation in a glass cockpit (Byrne et al., 2004) and the use 
of and skill acquisition for the flight management system 
(Schoppek & Boehm-Davis, 2004; Taatgen, Huss, & 
Anderson, 2008). For model-based assistance such formal 
descriptions of flight related tasks and processes can 
describe what constitutes normative performance.  

Neuroadaptive cognitive model 
In the present paper a modeling concept is proposed that is 
able to explain uncertainty in single instances of missed 
alerts by representing individual pilots’ behavior. In the 
fashion of Putze et al. (2015) we extend the idea of model 
tracing (Fu et al., 2006) by incorporating physiological data. 
Whereas Putze et al. (2015) integrate physiological data to 
model architectural differences, i.e. occupying cognitive 
resources with a dummy model to model workload, the 
concept in this paper focuses on modeling knowledge 
differences (Taatgen, 1999) due to unprocessed auditory 
messages. 

Model tracing based on monitoring pilot interactions with 
flight deck instruments enables the model to identify when 
performance deviates from normative behavior. Based on 
such deviations, the model can make inferences about the 
pilot’s cognitive states. By treating instances of deviating 
behavior as situations it cannot explain due to lack of 
knowledge, the model consults external sources of 
information, i.e. event-related physiological data of the pilot 
it tries to represent. 

Physiological measurements, e.g. electroencephalography 
(EEG) can provide information about cognitive operations. 
With a passive brain computer interface (Zander & Kothe, 
2011) EEG can be recorded without interfering with the task 
and data can be processed in (almost) real-time. The 
integration of these data into the model allows for more 
refined representations of individual pilots. Such a 
neuroadaptive (Zander, Krol, Birbaumer, & Gramann, 2016) 
cognitive model would be able to adjust its generic or 
normative behavior to measurements of a pilot’s current 
cognitive state and to identify current needs for assistance. 

Physiological measures can be subject to errors that 
introduce intrinsic or aleatory uncertainty (Kiureghian & 
Ditlevsen, 2009). Whereas epistemic uncertainty represents 
defined model boundaries, aleatory uncertainty is hard to 
identify in single situations where there is no ground truth 
available. That is, the model is able to identify situations of 
deviating behavior, but it cannot say which of the 
physiological data are affected by measurement or 
classification error and which are not. In model-based 
cognitive assistance, thoughtful handling of the two types of 
uncertainty is required (see Figure 1 for an overview of type 
of uncertainty introduced by data source). 

 

Figure 1: Sources of uncertainty in neuroadaptive concept 

The objective of this study is to increase the effectiveness 
of modeling individual pilot behavior in response to flight 
deck alerts. For increased effectiveness, model tracing and 
EEG recordings are used to reduce uncertainty due to 
individual differences. Behavioral data from an empirical 
study on the neurophysiological reaction to auditory signals 
in simulated flight (Krol et al., 2018) are modeled to 
demonstrate how the proposed concept can be implemented. 
Accuracies of a neuroadaptive cognitive pilot model and 
normative model are compared to quantify the fraction of 
uncertainty reduced by inserting pilots’ EEG data. 
Epistemic and aleatory uncertainty are quantified and 
examined regarding their implications for model-based 
cognitive assistance in flight operations. 

Methods 

Empirical study 
21 air crew (one female) who were predominantly military 
pilots participated in the empirical flight simulator study. 
Participants had a mean age of 49.08 years (SD = 6.08) and 
an average experience of 3230 hours of flight (SD = 
2330.71). All participating air crew had normal or corrected 
to normal vision, all but two were right-handed. Air crew 
were seated in a fixed base experimental flight simulator in 
single pilot setup that approximated Airbus A320 cockpit 
design. Participants were asked to perform an 18 minutes 
scenario that consisted of 9-14 events resembling flight deck 
alerts per participant, each preceded by auditory warnings or 
air traffic control (ATC) messages. The scenario had to be 
flown by selecting heading and altitude on the auto flight 
system according to ATC instructions. In addition, 
participants were asked to manage thrust manually and 
attend to alerts. Alerts included in the scenario could have 
low (“amber alert”, e.g. fuel pump failure) or high priority 
(“red alert”, e.g. engine fire) and ATC messages contained 
navigation or speed instructions. Speed warnings were 
issued dynamically whenever participants left a speed 
threshold area, which resulted in different numbers of 
acoustic events per participant. For the scenario, the open 
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source flight simulation software “FlightGear 3.4”1 was 
used. Essential instrument properties and state changes in 
the scenario were recorded in log files with a sampling rate 
of 20 Hz.  

Before the flight scenario, participants’ EEG was 
recorded while performing an auditory oddball paradigm 
(frequent versus rare sounds). A classification algorithm 
was trained on the EEG data to recognize activity patterns 
for processing of target (i.e. processed alerts) and standard 
sounds (missed alerts). The algorithm was tuned to have 
equal chances for false alarms and misses in case of 
incorrect response classification. Due to the frequent use of 
standard compared to rare target sounds in the training 
paradigm, classifier accuracy needs to be higher than 0.78 to 
perform significantly better than chance. EEG was recorded 
during classifier training and scenario with a 32 channel 
BrainProducts LiveAmp system. 

Cognitive modeling 
ACT-R was used to create a cognitive model to represent 
individual pilot’s behavior. ACT-R consists of memory, 
perceptual and motor modules that interact with each other 
by exchanging chunks of information through buffers. The 
declarative memory module can hold and store information 
about the task state, whereas procedural memory allows for 
modeling productions (condition-action-statements) that 
apply depending on the state of the task or the environment. 
Perceptual and motor modules allow for modeling of basic 
sensory processes and enable a model to interact with the 
environment. When modeling pilot activities, the respective 
modules can be used to represent storing and updating flight 
information such as altitude and speed, procedures for how 
to react in case of alerts, and auditory and visual perception 
of messages in the cockpit. 

For assistance in operations, a cognitive pilot model 
needs to be flexible, adaptive at runtime and knowledgeable 
of the operational context. Not only does it need to know 
what constitutes optimal or normative performance of a 
task, but also alternative means to meet the objective. In 
case of deviations from normative performance, it has to be 
able to adapt its functionality and adjust its representation of 
the pilot. Finally, the model needs to be able to anticipate 
the consequences of both normative and alternative 
performance in a task so it can offer support when needed. 

A scenario specific hierarchical task analysis (HTA; 
Stanton, 2006) was conducted identifying seven main tasks 
of which one routine and six alert specific tasks. Main tasks 
were then split up iteratively until the lowest level of actions 
that can be observed in simulator log files. Based on this 
HTA, an ACT-R cognitive model was created that was able 
to memorize flight information by reading airspeed and 
altitude data, decide when to adjust the throttle, process and 
respond to auditory messages, and check if its own actions 
match pilot’s actual behavior. This model will be referred to 
as the “normative” model. 

                                                           
1 http://home.flightgear.org/ 

An extended version of ACT-CV (Halbrügge, 2013) was 
used to create an interface and FlightGear log files. ACT-R 
did not interface with FlightGear directly (see Somers & 
West, 2013), but through recordings of individual 
participants’ performance The graphical interface of the 
flight simulator was represented textually, e.g., “on”, “539”, 
in ACT-R’s visual representation of the environment, the 
visicon. As the study’s focus was not on visual behavior, 
different parameters (e.g., airspeed, altitude, etc.) were 
presented at pre-defined locations independent of Airbus 
cockpit design. Parameter changes linked to events (e.g., 
engine1-on-fire from “0” to “1”) triggered sounds in ACT-
R, so messages from the cockpit were presented in the same 
modalities as in the empirical study. Processed EEG data 
were displayed as event-related Boolean variable (“1” for 
alerts processed as target sound, “0” for standard sounds). 
Contents of ATC messages in the controller-pilot datalink 
communications could not be communicated through 
FlightGear. As a workaround, an extra buffer was added that 
gives the model access to information not displayed in the 
visicon. 

 

 

Figure 2: Routine loop in both models 

For the routine task (see Figure 2), the model monitors 
variables of airspeed and altitude that were shown in the 
simulator’s primary flight display. Based on these data, it 
computes trends for speed and altitude and updates its 
internal representation of the flight information that is stored 
as declarative knowledge in an imaginal buffer. If airspeed 
approaches threshold values, the model prepares to adjust 
the thrust accordingly. If speed trend is not increasing or 
decreasing considerably, the model returns to monitoring 
speed or altitude after updating its flight information. 

In case of auditory signals, the model leaves this routine 
loop and processes the sound and the corresponding 
message. In case of ATC messages, it processes 
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navigational instructions and stores them in the imaginal 
buffer. If the model hears an alert, it retrieves a checklist 
matching the alert type and puts the response required from 
the pilot in its imaginal buffer. For all acoustic events, the 
normative model assumes that pilots will respond 
adequately and, after each event, it checks the log data for 
the required pilot response to evaluate if its assumption is 
correct. Situations where pilots do not respond adequately 
are treated as epistemic uncertainty and marked as cases 
when some sort of assistance should be provided. 
 

 

Figure 3: Alert procedure for neuroadaptive model 

The neuroadaptive model forms an extension of the 
normative model. It follows the same courses of action for 
routine tasks and acoustic events that were followed by an 
adequate pilot response. If no adequate response is 
observed, the neuroadaptive model consults the EEG data to 
check if the pilot had paid attention to the sound (see Figure 
3). If EEG data show the pilot has processed the alert or 
message like a standard stimulus, the neuroadaptive model 
updates its description of the situation to a missed alert. The 
model considers these cases as situations that require verbal 
reminders of the alert or message. Situations where no 
adequate response was observed but EEG-data show the 
preceding sound was processed are treated as epistemic 
uncertainty. For these situations, the model knows that 
assistance of some form other than a verbal reminder is 
needed. 

Analysis 
For this study the first reaction to the auditory events was 
evaluated, i.e. adjusting selected altitude in response to ATC 
messages or opening a checklist in response to alerts. In 
both models epistemic uncertainty was scored as incorrect 
description of pilot behavior. Both the normative and the 
neuroadaptive model could correctly describe situations 

with adequate pilot reactions to acoustic events; in addition, 
the neuroadaptive model was able to classify lacking 
responses as correct descriptions, when EEG data showed 
no reaction to the sound.  

Correctly described responses are scored with 1, 
incorrect response descriptions with 0. For each participant, 
both models divide the sum of correct descriptions by the 
total number of alerts and ATC messages to quantify model 
accuracy. For both models, mean accuracy is computed 
across pilots. As the number of auditory events was not the 
same for all participants due to ATC speed messages, 
median and interquartile range had to be used as measures 
of central tendency and dispersion. Wilcoxon signed rank 
tests for pairwise comparisons are used to quantify added 
value of EEG-data for the neuroadaptive model. 

Aleatory uncertainty in the neuroadaptive model is equal 
to one minus EEG classifier accuracy. As the data give no 
information about which situations are concerned by 
classifier inaccuracies, aleatory uncertainty is accepted and 
scored as correct. Added value of neuroadaptivity to the 
normative model is quantified by subtracting normative 
from neuroadaptive model accuracy. By multiplying added 
value with EEG classifier accuracy, a mean accuracy of the 
neuroadaptive model corrected for aleatory uncertainty can 
be computed. 

Results 

 

Figure 4: Median accuracy per model 

In total, behavior descriptions for 225 events were 
generated by each model for all pilots with an average of 
10.7 (SD = 0.9) per pilot. The normative model correctly 
described participant’s behavior for 163 of these events 
(AccNorm. = 0.72) with a Median model accuracy of 
MDNNorm. = 0.70 (IQR = 0.80 - 0.67; Figure 4). Thus, the 
total amount of uncertainty treated as epistemic is 0.30. 

The neuroadaptive cognitive model generated correct 
descriptions in 213 of 225 cases (AccNeuro. = 0.95) with a 
median accuracy of MdnNeuro. = 0.92 (IQR = 1.0 - 0.9; Figure 
4). The uncertainty treated as epistemic is therefore 0.05. 
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The signed rank test showed that neuroadaptive model 
accuracy is significantly higher compared to the normative 
model (z = -4.01, p < 0.01).  Added value of the EEG-data is 
0.23. Correcting the added value for the EEG classifier 
accuracy of 0.86 results in a corrected accuracy of the 
neuroadaptive model of 0.92 and aleatory uncertainty of 
0.03. 

Model accuracies per participant and model are shown in 
Figure 5. 

 

Figure 5: Mean accuracy per participant and model 

Discussion 
The presented concept and its application demonstrate how 
pilot performance can be modeled in spite of individual 
differences using model tracing and physiological data. The 
distinction between aleatory and epistemic uncertainty 
(Kiureghian & Ditlevsen, 2009) and their quantification was 
decisive for the neuroadaptive model’s design and 
implementation. Data show how model accuracy can be 
significantly increased by connecting model-tracing and 
EEG data in line. The specification of remaining fractions of 
epistemic and aleatory uncertainty provide starting points 
for further improvement of the concept. 

Whereas flight deck instrument interactions can be 
observed directly, unprocessed alerts can only be detected 
by behavioral or physiological symptoms. Due to aleatory 
uncertainty introduced by the EEG classifier, model tracing 
with instrument and EEG data had to be connected in line to 
maximize effectiveness in reducing epistemic uncertainty. 
Compared to other studies using EEG data to model effects 
of individual differences, the integration of EEG data was 
quite straightforward for the neuroadaptive model and did 
not require a dual model approach (Putze et al., 2015). 
Model tracing based on the log files proved effective in 
detecting deviations from normative behavior due to an 
increased density of acoustic events in the scenario. Real 
flight however contains long periods of monitoring 
instruments without direct input required. Deriving mental 
states based on model tracing (Fu et al., 2006) in such 

highly automated or autonomous environments could 
therefore require other pilot behavior data sources, e.g. 
unobtrusive monitoring of neurophysiological activity, 
speech or gaze. Cognitive models are well suited for the 
interpretation of such data by linking physiological 
phenomena to context.  

Apart from measurement and classification errors, the 
neuroadaptive model was able to explain ~81% of the 
normative model’s epistemic uncertainty, leaving a total of 
5% of cases when the model does not know what made 
participants fail to react adequately. These data suggest that 
cognitive assistance in form of verbal reminders would 
suffice to help with performance recovery in all other 
situations lacking responses from participants. 

Normative model accuracy represents the effects of 
individual differences on performance given the scenario. 
By design, the neuroadaptive model improves on the 
normative model; the significance of improvement with the 
EEG data is moderated by the effect of individual 
differences. Nonetheless, increased accuracy of the 
neuroadaptive model shows how epistemic uncertainty can 
be reduced with the help of physiological data. For an 
empirical evaluation of the concept, a comparison with 
alternative designs for model-based assistance is required. 
E.g., a wizard-of-oz setup with a human co-pilot interpreting 
pilot behavior could be compared to the effectiveness of the 
neuroadaptive model.  

The neuroadaptive model tracks pilots’ perception of 
auditory events. The fact that a piece of information has 
been perceived and processed by a pilot does not mean that 
it has been understood. Measures of pilots’ situation 
assessment and awareness (Endsley, 1995) may help to 
reduce epistemic uncertainty about why a pilot may fail to 
respond adequately. Physiological symptoms of cognitive 
conflict can be used to identify when information that was 
perceived could not be comprehended by the pilot. 

Mean accuracy of the neuroadaptive model corrected for 
aleatory uncertainty is 92 %. Aleatory uncertainty may be 
reduced with other independent physiological measures, e.g. 
eye tracking. EEG classification could be supported with 
corresponding gaze data by connecting both methods in 
line. E.g., when the EEG data show that a pilot has 
processed an alert, saccades to the warning display after the 
alert can reduce the uncertainty by eye tracking 
classification accuracy. 

Further research is required on how to model individual 
differences with the help of behavioral and physiological 
measures of operators’ cognitive states. Model-based 
assistance in human machine interaction can provide 
machines with an implicit feedback loop that allows to 
check if the information they provide is perceived and 
understood by the user. Ideally, this will enable machines to 
form a more refined model of their users and to anticipate 
their behavior in much the same way that humans learn to 
interact with a machine. 
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Abstract
Behavioral experiments are often feed-forward: they begin
with designing the experiment, and proceed by collecting
the data, analyzing it, and drawing inferences from the re-
sults. Active learning is an alternative approach where par-
tial experimental data is used to iteratively design subsequent
data collection. Here, we study experimental application of
Bayesian Active Model Selection (BAMS), which designs tri-
als to discriminate between a set of candidate models. We
consider a model set defined by a generative grammar of
Gaussian Process kernels that can model both simple func-
tions and complex compositions of them. To validate the
method experimentally, we use BAMS to discover how fac-
tors such as contrast and number affect numerosity judge-
ments. We compare the rate of convergence of the active-
learning method to a baseline passive-learning strategy that
selects trials at random. Active learning over a structured
model space may increase the efficiency and robustness of
behavioral data acquisition and modeling.
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A Model of Human Language Comprehension 

Humans understand natural language rapidly in real time. 

Empirical literature supports the idea that human language 

comprehension involves immediate interpretation. 

Tanenhaus et al. (1995) show that humans focus their gaze 

on a particular object in the scene immediately upon hearing 

a description of that object. Bergen (2012) reviews studies 

that demonstrate that perceptual and motor areas of the brain 

are activated dynamically during  sentence comprehension. 

These and other studies show that as soon as a word or 

phrase that refers to an object or event is processed, its 

meaning is immediately interpreted and grounded to the 

situational or dialog context. 

Language processing is constrained by the capacity of 

working memory. Christiansen and Chater (2016) argue that 

a partial comprehension must be quickly incorporated into 

larger structures, or it will be lost due to working memory 

limits. They propose chunk-and-pass processing, where the 

analysis of a sentence is constructed in units they call 

chunks. Whenever possible, chunks already built are 

composed into larger ones, so that only a few chunks at a 

time need to be separately maintained in working memory. 

Lindes and Laird (2016) have developed a computational 

theory of language comprehension with immediate 

interpretation using a chunk-and-pass-like approach. The 

theory has been implemented in a system called Lucia 

(Lindes, Mininger, Kirk, & Laird, 2017) that models form-

meaning mapping using Embodied Construction Grammar 

(ECG; B. K. Bergen & Chang, 2013) and is built in the Soar 

cognitive architecture (Laird, 2012). 

An analysis of this model shows that its processing 

depends on four basic principles: 

1. A sentence is comprehended one form-meaning unit, 

called a construction, at a time. 

2. Comprehension proceeds as a succession of building 

these units, or a series of construction cycles. 

3. Each construction cycle is made up of three phases: 

selection, integration, and grounding. 

4. Each of these phases accesses different types of 

memory. 

In what follows we analyze implications and predictions of 

this model and compare them to EEG data studies. 

Model Predictions 

Figure 1 shows a spatiotemporal map of the processing of a 

simple sentence. Cognitive cycles are grouped into 

construction cycles, and then word cycles. 

In each construction cycle, one construction from the 

available inventory in the grammar memory is selected (S) 

and integrated (I) into the comprehension state in working 

memory. Optionally, it is grounded (G) to the agent’s 

knowledge. A, X, and Z operators perform overhead 

functions, such as attending to the next word. 

The model uses four types of memory. Long-term 

memories store linguistic knowledge (Grammar) and the 

agent’s long-term knowledge of the environment and its 

perception and action capabilities (Ontology). Short-term 

memories store the state of the comprehension process 

(Comprehension) and the agent’s current perception, dialog, 

and situational states (Perception). 

This model implies a time sequence in which different 

memories are accessed at different times, as Figure 1 shows. 

We suggest that this spatiotemporal pattern of memory 

accesses may approximate a similar pattern of activation in 

the brain. In accordance with standard modeling, the 

cognitive cycles have a 50ms time course in humans, 

modulated by long-term memory access. We expect that 

comparing these predictions to brain data will help 

understand both the brain and the model better.  

Comparison to Brain Data 

Figure 2 shows examples of the kind of data reported in the 

large literature on measurements of the brain during 

language comprehension (Left: Schwartz & Mitchell, 2019; 

Right: Hale, Dyer, Kuncoro, & Brennan, 2018). The images 

show several kinds of Event Related Potentials (ERPs) 

averaged over many words as they are distributed in time 

and space. We will compare our model to these and other 

related data. 

Our model predicts that more time is required to process 

content words than function words due to grounding and the 

frequent need for multiple constructions. Brennan and Hale 

(2019) compare several simpler models to EEG data and 

show processing differences between these two types of 

words, and that less frequent content words have a stronger 

N400 response. Further analysis of the details is needed. 

A S I G

Pick up the

G

green

G G

sphere.

Time in cognitive cycles

A A A A ZX X X X XS S S S S S SI I I I I I I

Grammar

Comprehension
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Memory Types

A construction cycle

Cognitive cycles:

A attend Word S Selection I Integration G Grounding X no selection Z no input   
 

Figure 1: Time course of memory use 
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Figure 2: Examples of EEG data 

Our model shows that the number of construction cycles 

per word varies, and the length of each cycle varies 

depending on whether grounding is needed. The model 

implies that processing of each word runs to completion 

before the next word is attended to. The EEG data shows 

word processing extending to beyond 600ms, even to almost 

a second (see Fig, 2). Human language input proceeds 

typically in a range of 150-250 words/minute, for an 

average time between words of 240-400ms. This implies 

that word processing often continues in parallel with the 

processing of subsequent words. This sort of parallelism is 

lacking in our model. Figure 3 gives a suggestion of what 

the processing pattern might look like. How to accomplish 

this within the Soar architecture is an open question. 

WS I G

WS I G
WS I G

WS I S I
Pick

up

the

green

sphere.

WS I

S I G S I

Time in cognitive cycles
 

Figure 3: A possible parallel processing pattern 

Bornkessel-Schlesewsky and Schlesewsky (2019) present 

a new, unified way of looking at the N400 response, arguing 

that it happens when the brain needs to modify its predictive 

model of the sentence. Our system restructures its sentence 

model each time it adds a construction, and when it 

performs a local repair. A general prediction function, 

which is lacking from our current model, will need to be 

added for it to better reflect the brain’s processing. 

Our model suggests there are different memory areas 

involved in language comprehension, and that there is a 

repetitive time sequence in their accesses. The data in 

Figure 2 show temporal patterns in the spatial distribution of 

brain activation. There is the potential here to improve both 

our understanding of the brain and our model by further 

analysis of the relationship between these two things. 

This abstract suggests ways in which cognitive models of 

comprehension and brain measurements can be compared to 

improve both the models and understanding of the brain. 

The analysis here is very preliminary and superficial; much 

work is needed to explore these areas in detail. 
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Introduction 
In a world that is uncertain and noisy, human perception 
makes use of optimization procedures to reduce the 
influence of moment-to-moment noise by incorporating 
statistical properties of previous experiences. This 
observation holds for the perception of many 
psychophysical quantities, ranging from light intensity to 
interval timing, the focus of the current study. These types 
of optimization procedures assume that when a specific 
interval needs to be reproduced, observers do not only take 
the current percept into account but also use their prior 
knowledge of previous similar incidents to form an internal 
estimate of the just perceived interval, yielding a central 
tendency effect (Hollingworth, 1910). That is, in a 
reproduction task in which different durations have to be 
reproduced, the shorter intervals will be overestimated and 
the longer durations underestimated yielding a regression 
towards the mean. A formal account of this phenomenon 
has only recently been proposed. In 2010, Jazayeri and 
Shadlen formulated a mathematical framework in which a 
Bayesian observer is assumed to combine the noisiness 
associated with time perception with a probability 
distribution representing the earlier observed durations. The 
actual reproduction is based on the posterior distribution, 
which consist of the integration of a Gaussian-distributed 
likelihood, representing the observed duration, with a 
uniform prior, representing the experimental history. 
Jazayeri and Shadlen demonstrated that the mean of the 
posterior distribution captures a number of important 
empirical phenomena, including the central tendency effect. 
    To account for individual differences in the magnitude of 
the central tendency effect, they assumed differences in the 
variability of the temporal percept, represented in the width 
of the likelihood (see https://vanrijn.shinyapps.io/MaassVan 
MaanenVanRijn2019/ for a simulation). Note that after a 
value has been sampled from the posterior distribution, 
Gaussian-shaped production noise is applied to map the 
posterior-based estimation to the actually reproduced 

duration. Similar Bayesian observer models have been 
shown to accurately reproduce human behavior in a number 
of timing tasks (see, e.g., Shi, Church, & Meck, 2013). 
    From a theoretical or conceptual perspective, however, 
one can question certain implementation decisions 
underlying this Bayesian Observer Model. Firstly, the prior 
with which the likelihood is convolved is assumed to be a 
uniform distribution precisely spanning the range of the 
presented durations. Even though this provides 
computational simplicity, its theoretical suitability can be 
questioned as the average of the resulting posterior 
distributions will, because of the central tendency, have a 
higher mass around the center of the distribution. Following 
the assumption that the prior is based on previous posteriors, 
the prior should reflect this bias towards the mean. This 
example of the central limit theorem would suggest a more 
Gaussian-like distributed prior which also naturally results 
from instance-based explanations of the role of memory 
processes in interval timing (for a review, see Van Rijn, 
2016). Cicchini et al. (2012) addressed the issue of the 
uniform prior, and proposed to use a truncated normal 
distribution to represent the prior. Where Jazayeri and 
Shadlen (2010) focused on the width of the likelihoods, 
resembling clock precision, to account for the variability 
between participants in observed central tendency effects, 
Cicchini et al. (2012) argued that the prior might also differ 
on a per participant basis. To tear apart the contribution of 
the likelihood and prior, they estimated clock variability 
using a secondary task. With the likelihood fixed on a per 
participant basis, they demonstrated that the width of a 
truncated normal distribution varied over participants. 
    Even though a Gaussian-like distribution is theoretically 
more plausible than a uniform prior, its theoretical elegance 
is affected by the necessity to constrain its range to prevent 
it extending to negative values, nor does it match the heavier 
right tail observed in empirical data. In addition, the 
proposed symmetrical, Gaussian prior does not match the 
stronger central tendency bias for the longer compared to 
the shorter durations: As the mass of the average posteriors 
associated with the longer durations is more pulled towards 
the mean of all presented durations than the average of the 
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posteriors associated with the shorter durations, a skewed 
Gaussian distribution would be theoretically more plausible. 
A second theoretical challenge for these Bayesian observer 
models is that they incorporate two independent sources of 
noise, one associated with the perceptual phase (wm), 
determining the width of the likelihood, and one associated 
with the reproduction of a duration which is based on the 
posterior (wp). Whereas wm captures the perceptual noise 
associated with perceiving the onset and offset of the 
presented duration, as well as the clock noise associated 
with the actual timing of the interval, wp captures the 
perceptual noise for the onset of the reproduction phase, the 
clock noise, and the motor noise associated with the motor 
movement to mark the end of the reproduction phase (by a 
key press). Assuming perceptual noise to be smaller than 
motor noise, and clock noise to be the dominant source of 
noise (e.g., Taatgen, Van Rijn, & Anderson, 2007), wp 
should always be larger than wm. Additionally, as clock 
noise can be assumed to be the largest source of variability 
in both wm and wp, it follows to estimate wm and estimate 
Δwp that expresses the difference in noise between a 
perception and motor action (i.e., the reproduction noise, wp, 
is defined as wm + Δwp). As both parameters were fit 
independently in Jazayeri and Shadlen’s Bayesian Observer 
model, wp could be estimated at a smaller value than wm and 
no correlation between both parameters was instantiated. In 
contrast, no parameters were estimated in Cicchini’s et al. 
(2012) model. Their model incorporated an estimate for wm 
based on each participant’s performance on a secondary 
task, and wp was fixed for all participants at a value that fell 
within the range of values that were determined for wm. 
Thus, this model did not adhere to the notion that wm should 
be larger than wp, and it assumed that all sources of noise, 
including clock noise, were identical for all participants 
during reproduction. 
    Here we present Bayesian Observer models with different 
assumptions with respect to the source of the individual 
differences, by considering individual differences in clock 
noise and memory: We will independently estimate wm and 
Δwp assuming priors based on either a fixed uniform prior 
distribution, or normal and log-normal shaped prior 
distributions of which the variance will be estimated. To 
assess the goodness of fit of these models, we will estimate 
fit measures for 15 aged participants with the diagnosis of 
amnestic Mild-Cognitive Impairment (aMCI) and 44 
healthy aged controls. Whereas the first group showed 
strong central tendency effects, the latter group showed 
weaker effects (Maaß, Riemer, Wolbers, & Van Rijn, 
submitted). will be compared. Interestingly, measures of 
memory functioning predicted the magnitude of the central 
tendency effect, even in the healthy aged control group. 
Additionally, we will use 1-second task data (Maaß & Van 
Rijn, 2018) to assess clock variability. The results suggested 
that neither age (cf. Paraskevoudi, Balcı, & Vatakis, 2018), 
nor clinical status (cf. Rueda & Schmitter-Edgecomb, 2009) 
influenced clock time variability, but that aMCI patients 
more strongly weigh prior experiences than healthy, age-

matched controls, resulting in stronger central tendency 
effects. By fitting Bayesian Observer models to the 
empirical data from these (sub)populations, we aim to 
understand the contributions of likelihood and prior on 
temporal reproduction in healthy and memory-impaired 
individuals. 
    In sum, we will (1) assess whether one type of prior is 
preferred, (2) whether estimated values that mostly reflect 
clock noise (i.e., wm) correlates to the collected clock-
variability measures, and (3) whether the estimated prior 
parameters provide a sensible theoretical interpretation of 
the empirical phenomena. 
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Abstract

Our long-term research goal is the development of a cognitive
theory for adequately modeling human reasoning tasks. The
theory should be computational and on the other hand com-
prehensive. The Weak Completion Semantics (WCS) seems to
be a good candidate, as it has previously shown to adequately
model a wide range of human reasoning tasks. By means of
human spatial reasoning, we show here that the WCS can fully
cover all three stages of reasoning that have been suggested
by the preferred mental model theory. The contribution com-
prises aspects within the area of Computer Science and Psy-
chology. Through the formal process of modeling, in partic-
ular through the computation of alternative models within the
variation phase, we have gained new insights and put forward
assumptions that need to be verified.
Keywords: Computational Theory, Spatial Reasoning, Pre-
ferred Mental Model Theory, Weak Completion Semantics

Introduction
Our long-term research goal is the development of a cognitive
theory for adequately modeling human reasoning tasks. The
theory should be computational in that answers to queries can
be computed. The theory should be comprehensive in that
different human reasoning tasks can be modeled by the theory
without changing the theory.
Currently the Weak Completion Semantics (WCS) is a very
good, if not the best candidate for such an comprehensive and
computational cognitive theory. The WCS is based on ideas
initially proposed by Stenning and van Lambalgen (2005,
2008), but is mathematically sound: As Hölldobler and Ken-
cana Ramli (2009) have shown, the three-valued logic used
in Stenning and van Lambalgen (2008) is inadequate for the
suppression task. Surprisingly, the suppression task can be
adequately modeled if the three-valued Łukasiewicz (1920)
logic is used. Since then, the WCS has been applied to var-
ious human reasoning tasks (cf. Wason, 1968; Byrne, 1989)
summarized in Hölldobler (2015), has outperformed twelve
cognitive theories considered by Khemlani and Johnson-
Laird (2012) in syllogistic reasoning (Oliviera da Costa, Di-
etz Saldanha, Hölldobler, & Ragni, 2017), and can be im-
plemented as a neural network (Dietz Saldanha, Hölldobler,
Kencana Ramli, & Palacios Medinacelli, 2018).
Given a human reasoning task, the first step within the WCS
is to construct a logic program representing the task. The
construction of these programs is based on several princi-
ples, some of which are well-established like using licenses
for inferences, existential import (Johnson-Laird, 1983; Rips,

1994; Stenning & van Lambalgen, 2008), or Gricean im-
plicature (Grice, 1975), whereas others are novel like un-
known generalization (Oliviera da Costa et al., 2017). If in-
terpreted under the three-valued logic of Łukasiewicz (1920),
the programs have a unique supported model, which can
be computed by iterating the semantic operator introduced
by Stenning and van Lambalgen (2008). Reasoning is per-
formed and answers are computed with respect to these mod-
els. Skeptical abduction is applied if some observations in the
given human reasoning task can not be explained otherwise.

Human Spatial Reasoning
In this paper we apply the WCS to spatial reasoning. Suppose
you were given (in this sequence) the following information:

The Audi is left of the Beetle.
The Audi is left of the Cadillac.
The Cadillac is left of the Dodge.

Given these premises, what, if anything, follows for the Bee-
tle and the Dodge? A psychological finding by Ragni and
Knauff (2013) is that many human reasoners do construct the
preferred (mental) model a b c d.1

Based on the spatial representation of this preferred model, a
reasoner could infer that the Beetle is to the left of the Dodge.
In fact, most human reasoners seem to do this. Yet, the pre-
ferred model is not the only model for the given premises. If a
reasoner would construct these alternative models he/she may
find a counter-example and may answer that nothing follows.
Under First-order Logic, there might be more than one model
for the given premises of the task, letting unspecified which
one to choose as the preferred one. Ragni and Knauff (2013)
presented an algorithmic approach – the preferred mental
model theory – to construct and manipulate mental models.
Based on this theory, Dietz, Hölldobler, and Höps (2015)
modeled the preferred models for human spatial reasoning in
the WCS. They represented the relations among objects, tran-
sitivity properties, and the first-free-fit-principle suggested
by Ragni and Knauff (2013) as logic programs and showed
that the supported model in the WCS corresponds to the pre-
ferred mental model.
However, the approach of Dietz et al. (2015) is restricted to
computing and reasoning with respect to the preferred mental
model and does not cover the inspection and variation phase

1a denotes Audi, b Beetle, c Cadillac, and d Dodge.
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reported by Ragni and Knauff (2013). More generally, it does
not cover the flesh-out process after the initial mental model
has been constructed. The goal of this paper is to show that
the whole process – construction of an initial mental model,
inspection, and variation – can be modeled by the WCS in the
context of spatial reasoning.

Programs
Here, we consider programs similar to the ones introduced
by Dietz Saldanha, Hölldobler, and Pereira (2017). A (con-
textual logic) program is a finite set of (positive) facts of the
form A← >, (negative) assumptions of the form A←⊥ and
rules of the form A ← L1 ∧ ·· · ∧ Lm ∧ (¬)ctxtLm+1 ∧ ·· · ∧
(¬)ctxtLm+p, where A is an atom, Li, 1≤ i≤m+ p, are liter-
als (i.e. Li is an atom or a negated atom), > denotes truth, ⊥
denotes falsehood, and ctxt is a unary context operator. The
interpretation of the connectives is given in Table 1.
The ctxt operator is similar to negation as failure (Clark,
1978) or default negation locally, and helps to provide a nat-
ural formalization of defeasible rules. To explain its behavior
let us return to the spatial reasoning problem in the introduc-
tion. After reading the first premise, most participants seem
to assume that the space right of the Beetle is not occupied.
However, (classical) logically, it can neither be proven that
the space is occupied, nor that it is not. Here, the application
of ctxt allows us to conclude that the space is not occupied.
The example from the introduction can be represented by the
facts left(a,b)←>, left(a,c)←>, left(c,d)←>. In addi-
tion, the rule right(X ,Y )← left(Y,X) denotes the symmetry
of left and right. Such a rule is considered to be a schema.
Ground instances of this rule are obtained by replacing the
variables occurring in it by the constants occurring in the pro-
gram. In this example, these are a, b, c, and d. Let P be a
program. gP denotes the set of ground instances of clauses
occurring in P .

Computation of Supported Models
The connectives in Table 1 can be read as not (¬), and (∧),
or (∨), if (←), only if (↔) and not, if not true (ctxt). It re-
mains to specify the meaning of ground atoms. A ground
atom A may be true (>), false (⊥), or unknown (U). An in-
terpretation I can be represented by a pair 〈I>, I⊥〉, where
I> = {A | I(A) =>} and I⊥ = {A | I(A) =⊥}. As interpreta-
tions are mappings, I> and I⊥ must be disjoint. Ground atoms
which do not occur in I>∪ I⊥ are mapped to U. I is a model
for a program P if and only if I maps all ground instances of
clauses occurring in P to true.
Under the WCS a program P may admit a unique supported
model which can be computed by iterating the semantic oper-
ator ΦP on the space of interpretations provided by Stenning
and van Lambalgen (2008). Let I be an interpretation, then
ΦP (I) = 〈J>,J⊥〉, where

J> = {A | there is A← body ∈ gP such that I(body) =>},
J⊥ = {A | there is A← body ∈ gP and

for all A← body ∈ gP , we find I(body) =⊥}.

Under certain conditions ΦP has a unique fixed point which
can be computed by iterating the operator starting with an ar-
bitrary interpretation.2 In this case, this fixed point is the sup-
ported model of the weak completion of the given program P .
For example, considering the program presented in the previ-
ous section and starting with the empty interpretation 〈 /0, /0〉
the fixed point 〈I>, /0〉 is reached after two iterations, where

I> = {left(a,b), left(a,c), left(c,d)}
∪ {right(b,a), right(c,a), right(d,c)}.

All instances of left are added in the first iteration, whereas
all instances of right are added in the second iteration.
A formula F follows from P under the WCS (P |=wcs F) if
and only if the supported model of P maps F to true.

Construction/ Inspection for Preferred Models
Relations between objects can be easily represented in pro-
grams. However, there is no straightforward way in which
we can express the order in which the premises are given.
But exactly this information is crucial if we want to formal-
ize the preferred mental model theory. For this purpose, we
explicitly express phases, where each premise is read at one
particular phase.
Let S be a spatial reasoning problem consisting of a finite
sequence of premises and a conclusion. The program PS
represents the premises of S and the necessary background
knowledge in order to construct the preferred mental model.
Within PS we will use the following relations, whose infor-
mal meanings are as follows:

l(X ,Y, I) in phase I, X is placed to the left of Y ,
nl(X ,Y, I) in phase I, X is the left neighbor of Y ,
ol(X , I) in phase I, directly left of X is occupied,
or(X , I) in phase I, directly right of X is occupied,

where I ∈ [1,n], n is the number of premises, and X and Y are
objects. The construction of the program PS is initialized by
specifying all premises of S as facts of the form

l(u,v, i) ← >, (1)

given that the i-th premise of S was object u is left of object v.
Thereafter, the following rules are added:3

nl(X ,Y, I)← ctxt l(X ,Y, I) (2)
∧ ctxtol(Y, I)∧ ctxtor(X , I).

nl(X ,Y,J+1)← nl(X ,Y,J). (3)
ol(Y,J+1)← nl(X ,Y,J). (4)
or(X ,J+1)← nl(X ,Y,J).

l(X ,Z,J+1)← l(X ,Y,J+1)∧nl(Z,Y,J). (5)
l(Z,Y,J+1)← l(X ,Y,J+1)∧nl(X ,Z,J).

left(X ,Y )← nl(X ,Y,n). (6)
left(X ,Z)← left(X ,Y )∧ left(Y,Z). (7)
right(X ,Y )← left(Y,X). (8)

2See, Dietz Saldanha et al. (2017) for details. For each pro-
gram P presented in this paper ΦP has a unique fixed point.

3Here and in the sequel, ctxt is used as abbreviation for ¬ctxt.
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Table 1: Three-valued Łukasiewicz logic with ctxt. F is a formula, L a literal, and>,⊥, and U denote true, false, and unknown, respectively.

F ¬F

> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

← > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

L ctxtL

> >
⊥ ⊥
U ⊥

These rules are schemas and need to be instantiated such that
I ∈ [1,n], J ∈ [1,n−1], and X ,Y,Z are different constants de-
noting the objects occurring in the premises of S . We assume
that the addition J +1 is computed while instantiating a rule.
The rule in (2) states that if in phase I object X should be
placed to the left of Y and the space to the left of X as well as
the space to the right of X are empty, then X is placed as the
left neighbor of Y . The rule in (3) keeps neighbors for suc-
ceeding phases. The rules in (4) ensure that neighbors take
space, i.e., if X has become the left neighbor of Y in phase J,
then the space to the left of Y as well as the space to the right
of X are occupied in phase J +1. The rules in (5) implement
the first free fit technique from (Ragni & Knauff, 2013), thus
if X should be placed to the left of Y but there is already a
left neighbor Z of Y , then X is placed to the left of Z. Like-
wise, if X should be placed to the left of Y but X is already the
left neighbor of some other object Z, then Z should be placed
to the left of Y . The final neighbors are derived by the rule
in (6): If X is left neighbor of Y after processing all premises,
then X is (finally) to the left of Y . The rules in (7) and (8)
express that left is transitive and right is the inverse of left.
In each phase, one premise is processed and understood as
a request to place the mentioned objects in the required or-
der. Objects are placed in the first available space like in
PRISM (see, Ragni & Knauff, 2013). Once the fixed point
of ΦPS is computed the preferred model can be identified:
Given a problem S , X is the left neighbor of Y if and only if it
holds that PS |=wcs nl(X ,Y,n). Queries involving the left and
right relation can be answered with respect to the preferred
model of S .

Variation/ Inspection for Alternative Models
We now present the main result of this paper, viz. an approach
to the model variation phase. Figure 1 shows the modeling
process of the variation phase, which consists of several steps:
First, all initial left placement requests (il), all positive neigh-
borhood left relations (nl), and all positive ambiguous rela-
tions from the preferred model are extracted (Extract rele-
vant information from preferred mental model). Thereafter,
the program is constructed (Create program). Based on all
extracted ambiguities, all permutations of all length are com-
puted (Compute all permutations). The order of the items in
each permutation is kept by the variation program through
the phase-indices in the relations: The first item in a per-
mutation is assigned the phase-index 1 and the last item the
phase-index v. All different ways of swapping ambiguous
objects are simulated. Considering all permutations, all al-
ternative models of the spatial reasoning problem S can be
found. Until all permutation have been processed, the fol-

Figure 1: Flowchart of the variation phase.

lowing is done (Iteration through list of permutations): One
trial of swapping objects is done per iteration, by swapping
objects through ambiguous relations (Program construction).
This is realized by adding the ambiguous relations of the cur-
rent permutation as positive facts to the program (see (14)
below). Moreover, the program needs to know which objects
are affected by these swap-requests. Therefore, the imple-
mentation adds two positive facts for each added ambiguous
fact, encoding that the objects in question need to be adjusted
(see (13) below). Thereafter, it is checked whether the rela-
tion encoding the conclusion of the spatial reasoning problem
is mapped to true or false in the fixed point of the semantic
operator (Compute fixed point). The answer is saved, pro-
vided that the model is not marked as abnormal (see (21) and
(22)). The program is reset, which includes deleting all facts
regarding the ambiguous and adjust relations and resetting all
atoms occurring in the program to unknown (Reset program).
The iteration continues until all permutations have been pro-
cessed. The final answer is given by checking whether the
list of collected answers contains the answer “No” (Final an-
swer). If that is the case, the final answer to the query is “No”
because an alternative model has been found that does not
support the conclusion. Otherwise, the final answer is “Yes”.

96ICCM2019



Ambiguity Identification
We first record the set of initial placements of the spatial rea-
soning problem by replacing each fact of the form (1) by

il(X ,Y ) ← >. (9)

We extend PS to mark ambiguities in the model construction:

amb(Z,X ,J+1)← l(Z,Y,J+1)∧nl(X ,Y,J). (10)
amb(Z,Y,J+1)← l(X ,Z,J+1)∧nl(X ,Y,J).

amb(Z,X , I)← l(Z,Y, I)∧amb(X ,Y,J+1). (11)
amb(Z,Y, I)← l(X ,Z, I)∧amb(X ,Y,J+1).

X , Y , Z, I, and J must be instantiated as before and we assume
that I > J. Let AS be the program consisting of all ground
instances of clauses mentioned in this paragraph.
The rules in (10) record the ambiguities from neighbors: if
object X is the direct left neighbor of object Y in phase I and
there is a request to place a new object Z to the left of Y ,
then there is an ambiguity between Z and X , because both
could possibly be the direct left neighbor of Y . Similarly,
if X should be placed to the left of the new object Z, but X
and Y are already in a direct left neighborhood, then Z and
Y are ambiguous and could be swapped in order to obtain an
alternative model. The rules in (11) record the inherited am-
biguities: If a new object Z is requested to be set to the left
of Y , but Y is already marked as ambiguous with respect to
another object X , then Z is ambiguous with respect to X , too.
Likewise, in case X is requested to be placed to the left of a
new object Z with X and Y already being marked as ambigu-
ous objects, then Z will also be ambiguous with respect to Y .
It is important to note that these clauses need to be created
for all phases I and J with I > J. This means that the amb-
relation with phase index J does not necessarily need to be in
the phase directly before I, but it can also be that I = J+2.

Program Construction for Alternative Models
Likewise to the construction of the program for the preferred
model, the construction of the programs during variation uses
phases as well. The neighbor left relations that have been gen-
erated by the preferred model will be used as starting point:

{nl(X ,Y,n)←> | PS |=wcs nl(X ,Y,n)}. (12)

First, the number of programs for the computation of alter-
native models (i.e. one program for one alternative model) is
specified by the number of amb relations in the fixed point
of ΦAS∪PS :

#perm =
|amb|

∑
i=1

i

∏
k=1

(|amb|− k+1),

where

|amb|= |{amb(X ,Y, I) | AS ∪PS |=wcs amb(X ,Y, I), I ∈ [2,n]}|.

The amount of phases v for each program depends on the
number of ambiguous-relations with respect to the current
permutation pm, i.e.

vpm = |{amb(X ,Y, I) | amb(X ,Y, I) ∈ pm, I ∈ [1, |pm|]}.

Second, the amb relations of the current permutation pm tells
us which objects can be adjusted within the variation phase:

{adj(X , I)←> | amb(X ,Y, I) ∈ pm, I ∈ [1, |pm|]} ∪ (13)
{adj(Y, I)←> | amb(X ,Y, I) ∈ pm, I ∈ [1, |pm|]}.

In each phase I of the variation, two objects X , Y are swapped
according to a swap-request of the form amb(X ,Y, I)← >.
Accordingly, the maximum phase index v refers to the num-
ber of phases in the variation process and the phase index n
refers to the number of phases in the construction process of
the preferred model. Since the model variation starts with
the preferred model, that is, the last phase n of the preferred
model, the last overall phase in the variation program is n+v.
Together with the fact in (9), which will serve as constraint to
prevent violating the premises of the given spatial reasoning
problem, the set of neighbor relations in (12) of the preferred
model, and the objects in (13) that have to be adjusted, each
program varPS with its according considered permutation pm,
where I ∈ [1, |pm|] , consists of the following clauses:

amb(X ,Y, I)←>. (14)
amb(Y,X , I)← amb(X ,Y, I). (15)
left(X ,Y )← nl(X ,Y,n+ v). (16)
left(X ,Z)← ctxt left(X ,Y )∧ ctxt left(Y,Z). (17)
right(X ,Y )← left(Y,X). (18)
nl(X ,Y,Q)← nl(X ,Y,P)∧ ctxtadj(X , I)∧ ctxtadj(Y, I). (19)
nl(X ,Y,Q)← ctxtamb(Y,X , I) (20)

∧ nl(Y,X ,P)∧ ctxt il(Y,X).

nl(X ,Y,Q)← ctxtamb(Z,X , I)∧nl(Z,Y,P)∧ ctxt il(Y,X).

nl(X ,Y,Q)← ctxtamb(Y,Z, I)∧nl(X ,Z,P)∧ ctxt il(Y,X).

X , Y , Z, I, and J must be instantiated as before, n is the num-
ber of premises, v is the last phase in the variation model con-
struction, P = n−1+ I, and Q = n+ I.
The fact in (14) ensures that all amb-relations from the current
permutation are added as facts. The permutation order within
a permutation pm is specified by the phase index I, starting
from 1 to |pm|. These facts are requests to swap two objects
in phase I. The rule in (15) expresses that the order of objects
in an ambiguous-relation is irrelevant, as all orders lead to the
same result. The rule in (16) specifies final neighbors. The
rules in (17-18) are analogous to (7-8). The rule in (19) is
similar to (3) except to the additional constraint that none of
the concerned objects has to be adjusted in the current phase I.
The rules in (20) encode the actual swapping of two objects.
Altogether, there are three different cases how two objects
can be swapped: Either the objects to be swapped are in the
same nl-relation, or the left object in the nl-relation has to be
swapped, or the right object in the nl-relation is requested to
be swapped.
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Incomplete Model or Constraint Violation
As the models constructed in the variation may be incomplete
due to violated constraints, we include abnormality clauses in
order to consider only normal models for computing answers
with respect to the given problem query:

chain← left(X1,X2)∧ left(X3,X4)∧·· ·∧ left(Xn−1,Xn). (21)
ab←¬chain.

ab← left(X ,Y )∧ ctxt(il(Y,X)). (22)

X ,Y,X1, . . . ,Xn ∈ con(initP rem) and X ,Y,X1, . . . ,Xn are differ-
ent to each other. The rules in (21) denote the case when the
alternative model is not complete: If no chain can be con-
structed from the left-relations, then this model is marked as
abnormal. The rule in (22) denotes the case when the alter-
native model violates some constraint. The case of constraint
violation only concerns big, non-deterministic problems with
five or more objects, for which the constraints contained in
the bodies of the rules in (20) cannot prevent some of the vi-
olating swaps anymore.
In each phase of the model variation, two objects are swapped
according to the swap-requests (by amb(X ,Y, i)), until all re-
quests in the current permutation have been processed. Like-
wise to the preferred model construction, the variation pro-
gram will then proceed with mapping the nl-relations to left-
and right-relations by the rules in (16), (17) and (18). After
all left- and right-relations are determined, we can check in
the alternative model whether there are any abnormalities. As
soon as the fixed point of Φ with respect to the given program
is computed, the alternative model can be identified, provided
that the model is not abnormal, i.e. the atom ab is false.

Is the beetle (necessarily) left of the dodge?
Consider again the example from the introduction, where the
preferred model is a b c d.
This example has additionally two valid alternative models.
Due to the limited space, we do not show the complete com-
putation of the preferred mental model with marking ambi-
guities. The result of the computation are two marked ambi-
guities, one between the objects c and b and one between d
and b. For a detailed explanation on what happens in each
iteration when computing preferred models under the WCS,
see the examples in Dietz et al. (2015).
The implementation determines four different permutations
of the two ambiguous-relations, which are (1) amb(c,b,1),
(2) amb(d,b,1), (3) amb(c,b,1) and amb(d,b,2), and (4)
amb(d,b,1) and amb(c,b,2). We show the variation pro-
gram exemplary for permutation (3) in Table 2, starting with
the empty interpretation, leading to the alternative and valid
model a c d b.
The atoms ambiguous and adjust are abbreviated to amb and
adj to fit the table. Furthermore, Table 2 only shows the atoms
that appear in I> and I⊥ for the first time to maintain read-
ability, as was done in Dietz et al. (2015). The column on the
right side of the table signifies the clause which leads to the
atoms shown in the respective row.

In iteration 2 and 3 in Table 2, the model obtained af-
ter processing the first swap-request is computed, which is
a c b d (phase 4).
Thereafter the final alte rnative model is computed
a c d b, determining all nl-relations that hold in the
model, as can be seen in iteration 3 and 4 (phase 5).
The answer to the query of the problem, left(b,d) is deter-
mined in iteration 4. Since left(b,d) is False in the fixed point
of ΦP , this relation does not hold in the alternative model. It
does however hold in the preferred model a b c d.
Conclusively, the final answer of our implementation is “No”,
because there was at least one model in which the relation de-
scribed in the query did not hold.

Table 2: Alternative model computation with two swaps.

ΦP I> I⊥ clause nr./ program

↑ 1 il(a,b), il(a,c), (9)
il(c,d), (9)
nl(a,b,3),nl(b,c,3), (12)
nl(c,d,3) (12)
amb(c,b,1), (14)
amb(d,b,2), (14)
adj(b,3),adj(c,3), (13)
adj(b,4),adj(d,4), (13)

↑ 2 amb(b,c,1), (15)
amb(b,d,2), (15)

nl(a,b,4),nl(b,a,4),nl(c,a,4), (19)
nl(c,b,4),nl(c,d,4),nl(d,b,4), (19)
nl(d,c,4),nl(a,b,5),nl(b,a,5), (19)
nl(c,b,5),nl(d,a,5),nl(d,b,5), (19)
nl(d,c,5), (19)

nl(b,d,4), (20)
nl(a,c,4) (20)

↑ 3 left(a,b), left(b,a), left(c,b), (16)
left(d,a), left(d,b), left(d,c) (16)

nl(a, c, 5), nl(a,d,5),nl(b,c,5), ln(b,d,5), (19)
nl(c,a,5), ,nl(c,d,5) (19)

nl(c,b,4), (20)
nl(d, b, 5) (20)

↑ 4 left(a,c), left(a,d), left(b,c), left(b, d), (16)
left(d,b), left(c,a), left(c,d), (16)

right(a,b),right(a,d),right(b,a), (18)
right(b,c), left(b,d),right(c,d) (18)

nl(c, d, 5) (20)

↑ 5 left(c,d), (16)
right(c,a), right(a,c),right(c,b),right(d,a), (18)
right(b,d), right(d,b),right(d,c) (18)

chain (21)

↑ 6 left(a,d), (17)
left(c,b), (17)
right(d,c), (18)
chain (21)
ab (21)

↑ 7 left(a,b), (17)
right(d,a), (18)
right(b,c) (18)

ab (21)

↑ 8 right(b,a) (18)
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Discussion and Conclusions
The contribution of this paper comprises various aspects
within both the area of Computer Science and Psychology.
Through the formal process of modeling the spatial reason-
ing task, we have had to put forward new hypotheses on the
model variation phase which need to be verified in the future:

Cognitive complexity of alternative models The variation
phase starts with the information provided on the preferred
model. How is this related to the cognitive complexity for
the construction of the individual alternative models?

List of permutations Is the list of permutations cognitively
adequate? Do humans keep track of such a list, or does one
permutation trigger the next one? If humans keep such a
list, how likely do they make mistakes? Are these mistakes
related to the distance of the preferred model?

Ambiguity identification We suggested to rigorously iden-
tify ambiguities within the task. Yet, humans might be
sloppy in the sense that they recognize certain ambiguities
more easily. If so, which are the selection criteria?

Default and explicit knowledge Two notions of negation,
weak and strong negation, were necessary for modeling
this task. How does this distinction relate to other tasks?

The Weak Completion Semantics has shown again to be a
good candidate for a comprehensive and computational cog-
nitive theory, as it seems to adequately model yet other as-
pects of human reasoning task not considered so far. The
WCS can fully cover all three stages of reasoning that have
been suggested by the preferred mental model theory. This
is novel as the WCS has previously never been considered
to model the variation phase or alternative models in such
a rigorous way. In particular, it seems that only few ap-
proaches (e.g., mReasoner Khemlani & Johnson-Laird, 2013)
deal with the processes of alternative model construction.
From a cognitive point of view, this is a central step if we in-
tend to understand actual human reasoning, as one main part
of it is concerned with the construction of counter examples.
Future work includes the application of the current approach
to other human reasoning tasks, such as syllogistic reasoning
and reasoning with (counterfactual) conditionals. Further-
more, a metric among the alternative models and with respect
to the model transformation should be specified. Possibly this
could depend on the cardinality of the list of permutations or,
more interestingly, on the amount of steps within the fixed
point computation of the Φ operator. An interesting starting
point of investigation would be whether a certain experimen-
tal setup could make it possible to mimic the operator itera-
tion, by providing participants the information sequentially.
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Abstract
Recent works in Second Language Acquisition Literature and
Corpus Linguistics have shown the interference of a person’s
first language (L1) when they process words in a new language.
In this work, we build on the findings in two recent studies that
explore the various differences in the lexico-semantic models
of a person’s L1 and L2 (English in their case), and test their
hypotheses within the framework of two popular word vector
models. This test is carried out by extracting erroneous con-
tent word errors from an annotated corpus of essays written by
learners of English who belong to 16 different first languages.
Specifically, we compare the vectors representations of the in-
correct and correct-replacement word pairs in English as well
as in the person’s first language and find a moderate correlation
between L1 and English. Additionally, we find certain incon-
sistencies between the two word embedding models when ob-
served under the radar of language typology, suggesting new
avenues for future work.
Keywords: L1 influence on L2; Natural Language Processing;
Semantic Overlaps between L1 and L2

Introduction
While writing in a non-native language, people often make
wrong word choices. For example, French speakers often use
scene in place of stage when writing in English. Observations
such as these are often a result of a transfer of properties from
the speakers Native Language (L1) during their Second Lan-
guage (L2) acquisition. In this paper, we investigate whether
models for distributed representations of words capture this
transfer of L1 semantic knowledge based on the errors made
by learners of English; and if they do, whether the observa-
tions are similar to results from previously conducted experi-
ments.

Patterns of lexical choice in content produced by non-
native speakers have been widely studied by Second Lan-
guage Acquisition (SLA) and Natural Language Processing
(NLP) researchers. It has been shown that a person’s native
language L1 influences their L2 acquisition in morphological,
phonological, syntactical and semantic aspects (Groot, 1992;
Koda, 1993; De Groot & Keijzer, 2000; Hopman, Thomp-
son, Austerweil, & Lupyan, 2018). The semantic influence
of L1 over L2 has been studied by SLA researchers in be-
havioral studies (Prior, MacWhinney, & Kroll, 2007; Degani
& Tokowicz, 2010; Bracken, Degani, Eddington, & Tokow-
icz, 2017) as well as corpus analysis (Gilquin, Granger, et al.,
2011). Within NLP, errors in lexical choice have been ana-
lyzed based on their detection or correction (Ng et al., 2014;
Rozovskaya & Roth, 2010, 2011; Chang, Chang, Chen, &
Liou, 2008; Futagi, Deane, Chodorow, & Tetreault, 2008;
Dahlmeier & Ng, 2011).

Word Choice by Second Language Acquisition
Research
Degani and Tokowicz (2010) found that translation ambigu-
ity occurs when there is an indirect mapping between trans-
lations of a word. Earlier works in SLA have highlighted the
role of cross-lingual translation and semantic ambiguity in L2
acquisition. In an experiment with word translations from 40
English and Spanish bilinguals, Prior et al. (2007) found that
the overlap between the words across the two languages was
highly correlated with the translation choices made by the
bilinguals. This was further confirmed by Boada, Sánchez-
Casas, Gavilán, Garcı́a-Albea, and Tokowicz (2013), where
the presence of translation ambiguity proved to be challeng-
ing to recognize words for Spanish and Catalan bilinguals, as
compared to when words only had one translation in the L2.
A more recent study by Bracken et al. (2017) introduced a
new metric known as Translation Semantic Variability (TSV)
that measures the meaning similarity between translations,
as conducted by participants who were trained to translate
German-English word pairs. The TSV was found to be a
predictor in measuring the learning of translation-ambiguous
German words, i.e., the accuracy of learning fell when the
relatedness between the German and English word was low
(Bracken et al., 2017), further highlighting the importance of
ambiguity in early acquisition of an L2.

Word Choice in Corpus Analysis
The influence of L1 on errors in lexical choice in learner cor-
pora has been studied based on functional words as well as
combinations of content words. Rozovskaya and Roth (2010,
2011) improved on correcting errors in preposition usage
made by learners of English by inducing error-probabilities
made by learners in their L1 from external corpora. Siyanova
and Schmidt (Siyanova & Schmitt, 2008) showed that learn-
ing of content word combinations and collocations has also
been shown to be a challenging task for non-native speakers
of English. Chang et al. (2008) introduced a system to de-
tect and correct mis-collocations of words in English content
produced by Chinese speakers. Their system benefited from
consulting parallel English-Chinese collocation dictionaries.

More recently, Kochmar and Shutova (2016, 2017) ana-
lyzed the L1 effects on L2 semantic knowledge using three
types of content word combinations (Adjective-Noun, Verb-
Direct Object, and Subject-Verb). They addressed L2 acqui-
sition across a spectrum of proficiency, as well as within dif-
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ferent language families of the learner L1s. We are interested
in three hypotheses (out of five) that were tested in these pa-
pers: (1) L1 lexico-semantic models influence lexical choice
in L2; (2) L1 lexico-semantic models are portable to other ty-
pologically similar languages; (3) typological similarity be-
tween L1 and L2 facilitates semantic acquisition of knowl-
edge in L2. For hypothesis (1), it was found that semantic
models of lexical choice derived from a learners L1 helped in
improving error detection in the content word combinations.
This improvement was also observed in the case of errors
made by learners belonging to typologically similar L1s, as
hypothesized by (2). Additionally, within language typology
(hypothesis (3)), lexical distributions of content word combi-
nations were found to be closer to native English for distant
L1s, as compared to closer L1s. This contradicted the authors
original assumptions that Germanic L1s would be closest to
Native English. In particular, their experiment showed that
the lexical distributions of Romance L1s and Asian L1s were
closer to that of Native English, as compared to that of Ger-
manic L1s. The authors speculated that this result was due to
(1) the usage of prefabricated word combinations by speak-
ers of typologically different L1s, which makes their distri-
bution more native-like, and (2) the adventurous experimen-
tation carried out by proficient speakers, especially observed
among those that speak languages closer to English, where
new (although incorrect) expressions are created.

Word Embeddings
Recent research within NLP has seen the emergence of neural
network-based models of distributed word representations,
also called word embeddings. Neural word embeddings were
first introduced by Bengio, Ducharme, Vincent, and Jauvin
(2003) and, after their reemergence due to the popularity of
word2vec (Mikolov, Chen, Corrado, & Dean, 2013), have be-
come an integral part of NLP research (Bojanowski, Grave,
Joulin, & Mikolov, 2016). These word representations have
found to capture semantic information of words by treating
words as multi-dimensional vectors, such that words with
similar contexts have similar vectors. Recent development
in the intrinsic evaluation of these embeddings have high-
lighted their competent performance in comparison to human
judgments. Specifically, word embeddings have achieved
high correlation to humans in tasks involving the judgment
of semantic similarity and relatedness between words such
as WS-353 (Finkelstein et al., 2002), MEN (Bruni, Boleda,
Baroni, & Tran, 2012), SimLex-999 (Hill, Reichart, & Ko-
rhonen, 2015). Word embeddings also exhibit the capability
to solve verbal analogies, for example, king - man + woman
= queen, which has attracted the attention of the Cognitive
Science community. A recent study (Chen, Peterson, & Grif-
fiths, 2017) analyzed two popular word embedding models,
GloVe (Pennington, Socher, & Manning, 2014) and word2vec
(Mikolov et al., 2013), as accounts of analogy to evaluate
their performance in a relational similarity task. Chen et al.
(2017) showed that the models capture certain forms of sim-
ilarities more than others. Word embeddings have been used

in SLA literature as well. Word embedding based similar-
ity measures were successful in predicting L2 word learning
accuracy (Hopman et al., 2018). Vector representations of
words have been successful in improving error detection on
learner corpus of essays (Kochmar & Shutova, 2016). Since
word embedding models have been shown to capture cer-
tain semantic properties observed in language, we explore
whether they capture patterns that were found by earlier work
in the analysis of content word errors made by learners of En-
glish. Specifically, we explore the relationship of word errors
in L2 and the learners L1 using distributed representations of
words, following Kochmar and Shutova (2016, 2017). We are
interested in the following questions:

1. Do distributed representations of words reflect L1 influ-
ence on learner English error words?

2. Does distributed representation of learner English error
words exhibit similar relationships between typologically
similar languages?

In order to approximate the extent of influence of L1,
as represented by word embeddings, we take the incorrect-
correct pairs in their present state (English), and compare
them with their translated form in the learners’ first language
(L1). The influence is approximated by correlation between
the closeness of the incorrect and correct words in each of
the languages embedding spaces, i.e., a positive correlation
might indicate some signal showing influence of L1 on the
errors made in English. We compute the closeness of the in-
correct and correct words based on their vector space neigh-
borhood. Given the various word vectors, cosine similari-
ties offer a good way to calculate a word’s nearest neighbors,
these represent words that are most related to the word (Hill
et al., 2015). We assume that the closer two neighbors are
in the L1 space, the easier they are to confuse in a typologi-
cally close L2 space. We introduce a metric that measures the
closeness and using correlation between the closeness in L1
and L2, approximate a possible influence.

Methodology
In order to answer the questions presented above, we use an
error annotated corpus where the errors are made by peo-
ple whose native language is different from English. We use
the Cambridge - First Certification in English (FCE) corpus
(Yannakoudakis, Briscoe, & Medlock, 2011) which is a small
subset of the Cambridge Learner Corpus (Nicholls, 2003).
The FCE examination falls under the B2 proficiency cate-
gory of the Common European Framework of Reference for
Languages (CEFR). In the CEFR framework, language profi-
ciency is organized in 6 categories, ranging from A1 (lowest)
to C2 (highest). The FCE corpus contains error annotated
short essay responses by learners of English taking the First
Certification in English examination. There are 16 different
L1 backgrounds represented in the 2488 different short es-
says. The errors in the corpus are annotated, including the
linguistic information such as the type of error and the part
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of speech involved in the correction, as well as the correct re-
placement. The annotation follows the scheme provided by
(Nicholls, 2003). We chose this corpus because it is the only
freely available corpus for learner English with error annota-
tions and suggested replacements.

We only consider the annotations involving a replacement
of a content word. Based on the annotation scheme, the
replacement category for content word errors have been la-
belled as RX where X indicates the part of speech of the word
in that context. For the purposes of this research, only Nouns
(N), Adjectives (J), Verbs (V), and Adverbs (Y) have been
considered as content words. Furthermore, we ignore the se-
mantic errors containing multi-word expressions or phrases,
or errors counted as replacements but also containing mis-
spellings. The incorrect-correct content word pairs were ex-
tracted based on the given criteria, resulting in a total of 5521
cases of incorrect usage of a content word, and its replace-
ment.

Translation of Error Pairs into L1
Since each of the essays contained learners L1, the extracted
incorrect words as well as the corrected words suggested by
annotation we will refer to then as incorrect and correct word
pairs were translated from English (L2) into the learners
L1 using the Microsoft Azure Text Translator API. This was
used in place of the widely used (for instance, in Hopman et
al. (2018)) off-the-shelf Google Cloud Translator API, since
the latter only provides one-to-one word translations, with-
out providing much choice about the part of speech, or the
confidence with which it predicts a certain translation, both
of which were available in the Azure API. Translations that
resulted in word utterances rather than a single word, as well
as errors made by Dutch L1 speakers (only 5 cases) were dis-
carded, resulting in a total of 4932 incorrect and correct word
pairs (known as L1 and L2 pairs respectively, hereafter). Ta-
ble 1 describes the number of semantic error cases for the
various L1s used in the experiment.

Table 1: Number of Error Cases per language (L1).

L1 n L1 n

Spanish 796 German 285
French 794 Portuguese 284
Greek 353 Turkish 272
Russian 340 Japanese 192
Italian 335 Korean 185
Catalan 325 Thai 122
Chinese (Simplified) 310 Swedish 44
Polish 295

Distributed Representation of Words
Word embeddings provide mapping between words and their
vectors in a multi-dimensional space, such that the semantic
properties of the words are preserved. Since our final selec-
tion consists of content word-based errors and has a multilin-

gual element to it, we use embeddings trained on corpora in
multiple languages. Moreover, we compare different models
that were produced using different parameters and different
corpora. Specifically, we use:

1. polyglot: a word representation with embeddings for over
100 languages (Al-Rfou, Perozzi, & Skiena, 2013). This
embedding learns a 64-dimension vector for each word by
scoring the word’s surrounding context, and a corrupted
context (the selected word swapped out randomly).

2. fasttext: a word representation with embeddings for over
100 languages (Bojanowski et. al, 2016). In fasttext, each
word vector is composed by summing up vectors of the
subwords of the word (specifically, 3-6 character ngrams)
and is trained using skipgrams along with negative sam-
pling.

Error Pair Neighbor Overlap
To measure the differences between the incorrect and correct
word in a given language, the semantic properties of their
vectors in the distributed vector space are taken into account.

Figure 1: Visual Depiction of Computing EPNOs for (i,c)
pairs in English and the person’s L1 (Russian in this case).
The context line is provided along with all the neighbors of
the words.

More formally, given the incorrect-correct word pair, (i,c),
the semantic overlap between i and c is computed. We intro-
duced the Error Pair Neighbor Overlap (EPNO) to quantify
the semantic relatedness between the incorrect word and cor-
rect word in terms of their nearest neighbors in the vector
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space, by relying on the idea that if the two words have a high
semantic overlap, they will have related neighboring vectors.
Mathematically, the EPNO for words i and c in language L is
computed as:

EPNOL(i,c) =
1
2k

[ ∑
c′∈NNL

k (c)

cos(i,c′)+ ∑
i′∈NNL

k (i)

cos(c, i′)]

(1)
where NNL

k (x) is a set of k nearest neighbors for word x in
vector space for language L, and cos(x,y) is the cosine sim-
ilarity between vectors x and y. For our experiments, k is
kept as 10. While cosine similarity shows a direct similarity
between two vectors, EPNO computes the degree to which
a given word (x) is related to words that are most similar to
the second word (y),and vice-versa. Figure 1 shows a visual
example of an error made by a native speaker of Russian,
where EPNO values are calculated for statement (incorrect)
and opinion (correct replacement) as well as for their respec-
tive Russian translations. The nearest neighbors, along with
a context where the incorrect word occurs, are also provided
for both cases.
Research Question 1
The first question that we would like to explore is: Whether
distributed representations of words reflect L1 influence on
learner English error words.

Experiment In order to approximate the influence of L1 on
learner errors, EPNO values are computed for the L1 and the
respective translated L2 word pairs over the fasttext as well
as polyglot vector spaces. Japanese L1s were left out of the
polyglot embeddings due to difficulty in feeding the text into
the polyglot package. In order to check whether embeddings
capture the L1 influence on learner English, the Spearman’s
Rank Correlation Statistic (ρ) between the overlaps in English
as well as the L1 pairs was computed. Spearman’s ρ calcu-
lates the monotonic relationship between the two variables. A
significant correlation between the overlaps sustained across
languages would indicate a potential role of L1 in influencing
errors made by the learner. To test the significance for ρ for
different languages, the p-values are computed along with the
95% bootstrap confidence intervals over 1000 resamples for
each language. The resulting correlation estimates between
the overlaps along with their p-values are shown in Table 2,
while the bootstrap confidence intervals are shown in Figure
2.

Results As can be seen from Table 2 and Figure 2, the fast-
text and polyglot EPNOs between L1 and English incorrect-
correct word pairs have a moderately positive Spearman’s ρ.
In the case of Polyglot, errors committed by learners who
speak Thai had a non-significant negative correlation, the rest
(apart from Japanese L1) showed a significant correlation es-
timate between L1 and English. All languages within fasttext
had significant positive correlations overall (p < 10−3).

Discussion The results demonstrate a significant positive
relationship between the EPNOs of error word pairs in En-

Table 2: Spearman’s ρ between L1 and L2 overlaps in the
error word pairs for fasttext and polyglot embeddings.

L1 fasttext polyglot

Catalan 0.403 (<.001) 0.312 (<.001)
Chinese (Simplified) 0.588 (<.001) 0.322 (<.001)
French 0.477 (<.001) 0.373 (<.001)
German 0.505 (<.001) 0.384 (<.001)
Greek 0.489 (<.001) 0.351 (<.001)
Italian 0.565 (<.001) 0.355 (<.001)
Japanese 0.457 (<.001) NA
Korean 0.366 (<.001) 0.281 (<.001)
Polish 0.546 (<.001) 0.356 (<.001)
Portuguese 0.543 (<.001) 0.369 (<.001)
Russian 0.552 (<.001) 0.129 (.025)
Spanish 0.539 (<.001) 0.351 (<.001)
Swedish 0.573 (<.001) 0.516 (<.001)
Thai 0.373 (<.001) 0.006 (.953)
Turkish 0.492 (<.001) 0.369 (<.001)
Note: Correlation Estimates and p values are listed as
estimate (p-value)

glish and the learners L1 for almost all languages, with the
exceptions of Thai (non-significant) and Japanese (not in-
cluded) in the case of Polyglot. A significant positive cor-
relation shows that the incorrect-correct word pairs that are
highly overlapping with each other in a person’s L1 also
highly overlap in English, indicating equal strength between
the similarities in L1 and L2. These observations are consis-
tent with findings reported by Kochmar and Shutova (2016),
where L2 error detection accuracy improved when L1 lexico-
semantic models were used as predictors, where their model
showed improvement in differentiating error words from cor-
rectly used ones.

Figure 2: Spearman’s ρ estimates of EPNOs computed for L1
and English incorrect-correct word pairs.
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Research Question 2
The second question that we explore is: Whether the simi-
larity between semantic information of English and typologi-
cally closer L1s can be captured by fasttext and Polyglot.

Experiment In this analysis, the same initial assumption
made by Kochmar and Shutova (2017) was followed, i.e.,
L1s belonging to the same typological family will have simi-
lar EPNOs. For example, Germanic L1s should be closest to
English based on their EPNO. The closeness with English is
measured by the difference between the L1 and the English
EPNO values computed for the fasttext and polyglot spaces.
Based on our corpus, five groups of languages are consid-
ered: Germanic, Romance, Asian, Slavic, and an Other cate-
gory to store the rest of the L1s. While we report the results,
we will discard the Other category in the analysis since this
combination is linguistically meaningless. The L1-English
EPNO differences are computed as average differences over
1000 random samples (with replacement) within each group
for 10,000 iterations. The notations d f asttext and dPolyglot de-
note these differences. Then, a one-way ANOVA is carried
out to test for significance between the group L1-English dif-
ferences. Table 3 lists the various languages covered in each
group and their EPNO differences with English.

Results Table 3 reveals that for fasttext, the Asian family
of languages in the corpus had the least difference between
the EPNO values, followed by Slavic, Romance, and finally
the Germanic. In contrast, for polyglot the differences ob-
served for Germanic were the lowest, followed by Romance,
Asian, and finally the Slavic. From the ANOVA results, the
group L1-English differences were found to be significantly
different from each other for both fasttext (F(4, 49995) =
16539, p < 2×10−16), and polyglot (F(4, 49995) = 128751,
p < 2× 10−16). A post-hoc Tukey HSD test revealed sta-
tistically significant pairwise difference between each of the
groups except those with Slavic (p = 0.131).

Discussion The results observed in Table 3 reveal contrast-
ing (although statistically significant) observations between
differences in overlaps computed in fasttext and Polyglot.
Based on the typology of languages, English falls under the
Germanic family. However, the difference in the overlaps be-
tween the error pairs of Germanic L1s and English is the high-
est when computed for fasttext, with the least being the Asian
L1s. In case of differences observed in the polyglot space,
the opposite observation is made. The observations made
in fasttext align with the findings of Kochmar and Shutova
(2017), where Asian L1s were found to be closest to English
in case of certain word pairs in the B2 proficiency category
(same as our corpus), while Germanic L1s were found to be
the farthest. On the other hand, the polyglot differences be-
tween L1 and English aligned with the initial assumptions
made by Kochmar and Shutova (2017). The inconsisten-
cies between fasttext and polyglot can be attributed to several
factors. First, their dimension size and vocabulary: fasttext
contains 300 dimensional vectors and an average vocabulary

Table 3: Differences between L1 and English EPNOs for each
Language Family in the Corpus.

Group Languages dfasttext dPolyglot

Germanic German 0.135 0.184Swedish

Romance

Spanish

0.129 0.188
Catalan
Italian
French

Portuguese

Slavic Russian 0.127 0.226Polish

Asian

Chinese

0.123 0.217Japanese*

Korean
Thai

Other Turkish 0.128 0.195Greek
* Japanese was ignored in the analysis of Polyglot.
The bold formatted values highlight the minimum
value in the respective column.

size is in the order of 10 million, while polyglot has 64 di-
mensional vectors with an average vocabulary size between
10,000 to 100,000. The difference in vocabulary size may
dictate the choice in the neighbors for each overlap compu-
tation. Second, the nearest neighbors: fasttext incorporates
the usage of subwords in its training along with the context
of the words themselves, while polyglot follows only the con-
textual route. For example, the word almost has the follow-
ing neighbors in fasttext: nearly, practically, virtually, alm-
sot, Almost, amost, alsmost, alomst, damn-near, pretty-much;
while in Polyglot: nearly, once, roughly, just, equally, vir-
tually, somewhat, less, absolutely, slightly. The neighbors
in fasttext could contribute to the noise while measuring the
overlaps, thus distorting the results.

Conclusion
By analyzing content word errors in a corpus of learner En-
glish using two different word embedding models, we found
(1) a significantly positive relationship between the error
words in a learner’s L1 and English, and that (2) while fast-
text vector spaces emulate the results reported by Kochmar
and Shutova (2016), the polyglot vector spaces are consistent
with their initial assumptions. We speculate that the incon-
sistencies between fasttext and polyglot could be attributed
to their inherent differences, namely: the dimensionality and
vocabulary size, resulting in nearest neighbor choices. Due to
the small size of the corpus, we unable to analyze the specific
relationships within the different parts of speech used in the
content word set, which could shed more light on the differ-
ences between the two embedding models.

104ICCM2019



References
Al-Rfou, R., Perozzi, B., & Skiena, S. (2013, July). Polyglot:

Distributed Word Representations for Multilingual NLP.
arXiv:1307.1662 [cs].

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine
learning research, 3(Feb), 1137–1155.

Boada, R., Sánchez-Casas, R., Gavilán, J. M., Garcı́a-Albea,
J. E., & Tokowicz, N. (2013). Effect of multiple transla-
tions and cognate status on translation recognition perfor-
mance of balanced bilinguals. Bilingualism: Language and
Cognition, 16(1), 183–197.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016,
July). Enriching Word Vectors with Subword Information.
arXiv:1607.04606 [cs].

Bracken, J., Degani, T., Eddington, C., & Tokowicz, N.
(2017). Translation semantic variability: How semantic re-
latedness affects learning of translation-ambiguous words.
Bilingualism: Language and Cognition, 20(4), 783–794.

Bruni, E., Boleda, G., Baroni, M., & Tran, N.-K. (2012). Dis-
tributional semantics in technicolor. In Proceedings of the
50th annual meeting of the association for computational
linguistics: Long papers-volume 1 (pp. 136–145).

Chang, Y.-C., Chang, J. S., Chen, H.-J., & Liou, H.-C.
(2008). An automatic collocation writing assistant for tai-
wanese efl learners: A case of corpus-based nlp technology.
Computer Assisted Language Learning, 21(3), 283–299.

Chen, D., Peterson, J. C., & Griffiths, T. L. (2017). Eval-
uating vector-space models of analogy. arXiv preprint
arXiv:1705.04416.

Dahlmeier, D., & Ng, H. T. (2011). Correcting semantic col-
location errors with l1-induced paraphrases. In Proceed-
ings of the conference on empirical methods in natural lan-
guage processing (pp. 107–117).

Degani, T., & Tokowicz, N. (2010). Ambiguous words are
harder to learn. Bilingualism: Language and Cognition,
13(3), 299–314.

De Groot, A. M., & Keijzer, R. (2000). What is hard to learn
is easy to forget: The roles of word concreteness, cognate
status, and word frequency in foreign-language vocabulary
learning and forgetting. Language Learning, 50(1), 1–56.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan,
Z., Wolfman, G., et al. (2002). Placing search in context:
The concept revisited. ACM Transactions on information
systems, 20(1), 116–131.

Futagi, Y., Deane, P., Chodorow, M., & Tetreault, J. (2008).
A computational approach to detecting collocation errors
in the writing of non-native speakers of english. Computer
Assisted Language Learning, 21(4), 353–367.

Gilquin, G., Granger, S., et al. (2011). From efl to esl: evi-
dence from the international corpus of learner english.

Groot, A. M. de. (1992). Determinants of word translation.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 18(5), 1001.

Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999:

Evaluating semantic models with (genuine) similarity esti-
mation. Computational Linguistics, 41(4), 665–695.

Hopman, E. W. M., Thompson, B., Austerweil, J. L., &
Lupyan, G. (2018). Predictors of L2 word learning ac-
curacy: A big data investigation. In (p. 6).

Kochmar, E., & Shutova, E. (2016, August). Cross-Lingual
Lexico-Semantic Transfer in Language Learning. In Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp.
974–983). Berlin, Germany: Association for Computa-
tional Linguistics.

Kochmar, E., & Shutova, E. (2017, September). Mod-
elling semantic acquisition in second language learning.
In Proceedings of the 12th Workshop on Innovative Use
of NLP for Building Educational Applications (pp. 293–
302). Copenhagen, Denmark: Association for Computa-
tional Linguistics.

Koda, K. (1993). Transferred l1 strategies and l2 syntactic
structure in l2 sentence comprehension. The Modern Lan-
guage Journal, 77(4), 490–500.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, Jan-
uary). Efficient Estimation of Word Representations in
Vector Space. arXiv:1301.3781 [cs].

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto,
R. H., & Bryant, C. (2014). The conll-2014 shared task
on grammatical error correction. In Proceedings of the
eighteenth conference on computational natural language
learning: Shared task (pp. 1–14).

Nicholls, D. (2003). The Cambridge Learner Corpus - error
coding and analysis for lexicography and ELT. , 10.

Pennington, J., Socher, R., & Manning, C. (2014). Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (emnlp) (pp. 1532–1543).

Prior, A., MacWhinney, B., & Kroll, J. F. (2007). Translation
norms for english and spanish: The role of lexical vari-
ables, word class, and l2 proficiency in negotiating transla-
tion ambiguity. Behavior Research Methods, 39(4), 1029–
1038.

Rozovskaya, A., & Roth, D. (2010). Generating confusion
sets for context-sensitive error correction. In Proceedings
of the 2010 conference on empirical methods in natural
language processing (pp. 961–970).

Rozovskaya, A., & Roth, D. (2011). Algorithm selection and
model adaptation for esl correction tasks. In Proceedings
of the 49th annual meeting of the association for computa-
tional linguistics: Human language technologies - volume
1 (pp. 924–933).

Siyanova, A., & Schmitt, N. (2008). L2 learner production
and processing of collocation: A multi-study perspective.
Canadian Modern Language Review, 64(3), 429–458.

Yannakoudakis, H., Briscoe, T., & Medlock, B. (2011). A
New Dataset and Method for Automatically Grading ESOL
Texts. , 10.

105ICCM2019



Method of Development of Interactive Agents
Grounding the Cognitive Model to the Virtual World

Junya Morita (j-morita@inf.shizuoka.ac.jp)
Kazuma Nagashima (cs16065@s.inf.shizuoka.ac.jp)

Yugo Takeuchi (takeuchi@inf.shizuoka.ac.jp)
Faculty of Informatics, Shizuoka University,

3-5-1 Johoku, Naka-ku, Hamamatsu City, JAPAN

Abstract

Toward the realization of cognitive agents that interact with
humans, this research attempts to integrate the cognitive ar-
chitecture ACT-R and a 3D game engine. We built a hierar-
chical architecture in which ACT-R and the game engine were
connected through a blackboard server, and we constructed a
cognitive model for searching the 3D environment. The con-
structed model reproduced behavioral differences by following
parameters of the cognitive model. We also made interesting
errors related to the brain-body connection. From these re-
sults, it is suggested that the method of cognitive modeling is
useful for constructing agents that imitate human behaviors in
3D space.
Keywords: ACT-R; virtual agent; game engine

Introduction
There are several approaches to the ultimate goal of build-
ing human or animal-like artificial agents. In the field of
human-agent interaction (HAI), researchers have attempted
to achieve this goal by focusing on interactions between ar-
tificial agents and human users. By considering intelligence
as emergent properties of interactions, researchers have de-
veloped physical robots and virtual agents that can interact
with humans, and they have conducted psychological ex-
periments to examine human reactions to the implemented
agents. Throughout these efforts, researchers have tended to
emphasize visual appearance (Minato, Shimada, Ishiguro, &
Itakura, 2004) or social relationships (Reeves & Nass, 1996)
rather than the internal representation and internal processing
of agents.

Meanwhile, the method of implementing human nature
into internal representations and processing them into arti-
ficial agents has been traditionally studied in the commu-
nity of cognitive modeling, which is a traditional research
approach that combines artificial intelligence researches and
psychological studies in the field of cognitive science. In this
community, cognitive models are assumed to be hypotheses
of a human’s internal processing, which are represented as
a computational system. Unlike other artificial intelligence
researches, the study of cognitive modeling focuses on repro-
ducing human errors, biases, and bounded rationality (Simon,
1996) found in psychological studies, which are evaluated by
simulation studies reproducing the results of psychological
experiments.

Despite dealing with similar topics, not much knowledge
has been exchanged between the two communities. For HAI

researchers dealing with human response to agents as the
main data, deep internal processing might not be of interest.
However, in the future, when HAI handles complicated and
long-term interaction series more often, the development of
agents that include internal processing, as dealt with in cog-
nitive modeling, will be required.

From the above recognition, the authors explored the de-
velopment method of an interactive agent that involved a cog-
nitive modeling approach. In particular, this paper aims to
discuss approaches toward this goal and research topics de-
rived from the developed approach. In the following sections,
we first discuss the approach of integrating HAI and cognitive
modeling along with previous findings in the related fields.
Based on this approach, we then present our system and a pre-
liminarily experiment to discuss its usefulness in HAI studies.

Integrating HAI and Cognitive Modeling
Cognitive Architecture
In the cognitive modeling community, the role of cognitive
architectures has become increasingly important. Cognitive
architectures are the basis for integrating methods developed
in individual studies of cognitive modeling. By accumulating
the findings obtained from individual model development, it
is thought that the structure of a universal cognitive system
can be approached (Newell, 1990). Several cognitive archi-
tectures have been developed so far. In the current research,
we focused on ACT-R (Anderson, 2007). ACT-R has been
developed in the community, where many researchers partic-
ipate. In addition, psychological and physiological studies
have been conducted to associate the modules and parameters
of the architecture with the brain structure (Anderson, 2007)
and physiological functions (Dancy, Ritter, Berry, & Klein,
2015). Although the original ACT-R is described in Lisp,
there are also implementations in multiple programming lan-
guages, including Java (Harrison, 2002) and Python (Stewart
& West, 2005), making it possible for it to be developed flex-
ibly depending on each individual developer’s environment.

Connect to the Virtual World
ACT-R has several modules that are not only related to in-
ternal processing, including goal, declarative, and imaginal,
but also used for interaction with the external environment,
including perception and motors. However, these interactive
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modules do not include sensors that acquire physical signals
or actuators that interact directly with the physical world. In
other words, to construct an interactive agent using ACT-R, it
is necessary to prepare a separate body to be connected with
ACT-R. Regarding this problem, Trafton et al. (2012) imple-
mented ACT-R on a humanoid robot that was able to interact
with humans in the real world although its interactions are
limited because of hardware limitations.

Considering such implementation difficulties, the current
research adopts a virtual agent in a three-dimentional (3D)
world instead of physical robot. To build a 3D virtual world,
we used a game engine. Many game engines developed in
recent years include sophisticated physical engines and body
models, and they can build worlds with high reality. Recently,
several studies linking these 3D environments and ACT-R
have appeared. One study has developed a virtual humanoid
robot that determines simple actions, such as walking and
rotation, according to its perception of the 3D environment
(Somers, 2016), and another study has developed a virtual
robot that searches a maze environment in the virtual world
while constructing a map of its environment (Smart, Scutt,
Sycara, & Shadbolt, 2016). Based on the findings of the pre-
vious studies, the current research extends the scope of ap-
plication while developing a novel architecture that links an
ACT-R model with the virtual world.

Integrating Cognitive Architecture and the Virtual World
When connecting ACT-R to the virtual world, we need to
solve a problem derived from different time scales of the two
systems. In the virtual world, multiple independent events
usually proceed in real time. By contrast, the process occur-
ring within ACT-R is sequential. Therefore, for the integra-
tion of ACT-R and the virtual world, a framework such as the
Subsumption Architecture (Brooks, 1986), which organizes
sub-behaviors into hierarchical layers, is required to run pro-
cesses of different layers in parallel. In other words, the con-
trol of body movement in the virtual world occurs in the lower
layer, and decision making based on knowledge representa-
tion by ACT-R occurs in the upper layer. Both of these layers
operate in parallel while communicating at regular intervals.
The upper layer decides upon an action based on inference
with a knowledge base while inputting the perceptual infor-
mation acquired in the lower layer. The lower layer receives
the decision of the upper layer as a command and transforms
it to perform low-level body movement (walking, changing
posture, turning around, etc.).

System
Architecture
We implemented a prototype hierarchical system that con-
nects ACT-R (Python ACT-R) and a game engine (Unreal
Engine 4) via a blackboard server (Figure 1). The server
was implemented in C language, and had slots for storing ac-
tion commands from agents and slots for storing visual infor-
mation obtained from the environment. The value of each
slot was updated via periodic socket communication from

Figure 1: Architecture connecting ACT-R and the virtual
world.

the game engine or ACT-R. With reference to past research
(Somers, 2016; Smart et al., 2016), the data format used
for communication was unified to JavaScript Object Notation
(JSON).

According to Anderson (2007), the ACT-R modules corre-
spond to brain regions: the production module to the basal
ganglia, the visual module to the visual cortex, the motor
module to the motor cortex, the imaginal module to the pari-
etal lob, the goal module to the anterior cingulate cortex, and
the declarative module to the prefrontal cortex. Therefore,
in this architecture, we assumed that the server corresponds
to the brainstem connected to the brain model (ACT-R) with
the virtual body, which have several movement patterns. The
ACT-R architecture communicates with the server to mon-
itor the state of the body, and to send a command for the
next movement pattern, and to interrupt the current move-
ment when necessary.

Task and Model

To test the above architecture, we implemented an agent that
performs a simple environment search with the constructed
architecture. Figure 2 shows the 3D environment in which the
agent is located. A bird’s-eye view is shown in the upper left,
and a visual perspective of the agent is shown in the lower
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Figure 2: Task environment. The upper left window shows a
view from a bird’s-eye view camera, and the bottom window
shows a view from the agent. The blue-colored objects are in
the agent’ s field of view. The white-colored objects are out
of sight.

right. The task of the agent in this environment is to collect
all the blue objects in as short a time as possible. However,
with this agent, we did not aim to search for the shortest path
connecting the positions of the objects. At each time point,
the agent repeated a forward chaining search toward the near-
est object.

Figure 3 is a flow chart showing the operation of the agent.
Before collecting each object, the agent rotates its body and
searches for objects in the environment. When the agent pays
attention to one of the objects, it perceives the distance from
it. When there are multiple objects in the field of view, one
of the objects is selected according to the saliency values set
for the object (Stewart & West, 2005). In the current agent,
the saliency values were determined by the size of the object
projected in the field of view, which corresponds to the dis-
tance from the agent. Based on the distance of the object to
which its attention is directed, the agent updates the “nearest
distance object” in the goal buffer.

At the blue triangle in Figure 3, the rule for searching for
objects in the environment (the searching rule represented in
the right-directed arrow from the triangle) conflicts with the
rule for finishing the search (the finishing rule represented in
the downward arrow from the triangle). Depending on the
result of this choice, two types of errors might occur: in-
correctly going to the non-nearest objects or continuing the
search even after all objects were checked. In ACT-R, the
frequency of these errors is controlled by conflict resolution.
When the utility (priority) of the searching rule is higher than
the utility of the finishing rule, the agent carefully checks the
nearest object. Otherwise, the possibility of the other type of
error (heading to the non-nearest object) is increased.

Experiment

We considered that one of the benefits of incorporating a cog-
nitive modeling approach to HAI research is representing the
individual difference between agents at a behavioral level.

Figure 3: Flowchart of the environment search model.

Recently, in the cognitive modeling community, the explo-
ration of model parameters that represent personal traits is
a major topic (Rehling, Lovett, Lebiere, & an B. Demiral,
2004; Anderson, Bothell, Fincham, & Moon, 2016). Using
parameters implemented in ACT-R, some researchers have
also constructed models of atypical personal traits, such as
depression (van Vugt & van der Velde, 2018) and autism
(Morita et al., 2017). Utilizing these studies, it is possible
to create various types of agent manipulating parameters that
can be implemented in the model and architecture. In the
case of our model, the agent that has a high utility value for
the finishing rule can be regarded as the reckless agent, while
the agent that has a high utility value for the searching rule
can be regarded as the careful agent.

To demonstrate the difference between the behaviors of
such agents, we conducted a simple experiment in which the
utility values of the two rules in Figure 3 were varied. We
prepared five conditions of 1:5, 2:4, 3:3, 4:2, and 5:1. The
numbers on the left and right indicate the utility values of
the searching rule and the finishing rule, respectively. In the
simulation, transient noise (s = 0.5) was added to each util-
ity value. The agent, whose walking speed was 450 cm/s,
searched the environment presented in Figure 4 ten times for
each condition. Figure 5 shows the completion time of each
condition in box plots. From this figure, we can observe dif-
ferences between the behaviors of each agent. Compared to
the careful agents (the box plots toward the right), the reckless
agents (the box plots toward the left) indicated better perfor-
mance. However, we are not intending to conclude on the su-
periority of reckless decisions. There is a possibility that this

108ICCM2019



Figure 4: Arrangement of objects in the experiment.

result may change depending on the simulation settings (the
map or the parameters of the agent such as walking speed).
The key point is that by manipulating the parameters of the
ACT-R model, we can easily represent a variability of the be-
havior in the 3D environment.

In addition to the above quantitative result, we found that
the qualitative result indicating the potential of our architec-
ture to replicate human-like behavior. In our architecture,
the game engine and ACT-R regularly communicate via a
blackboard server (Figure 1). During this process, the ACT-R
model sometimes overlooked the update from the blackboard
server due to mismatches between the communication rate
and movement speed of the virtual agent. When such a com-
munication error occurred, the current agent typically failed
to be aware of finishing its own behavior keeping searching
for the object even though it has already gotten (Figure 6).
From an engineering point of view, such an error is regarded
as a bug that should be fixed. However, in cognitive model-
ing or when building a human-like agent, we should evaluate
such agent behaviors based on their correspondence to human
behaviors. With regard to this error, we can find similar errors
in the literature, in ecological psychology, called microslips
in which an erroneous action is initiated but aborted (Reed &
Schoenherr, 1992). The similarity between the human error
pointed out in this psychological study and our agent shows
that there is a certain validity in the structure of this architec-
ture.

Conclusion
In this research, we constructed a mechanism to integrate
cognitive modeling with the 3D virtual world. This was not
the first time that it has been attempted to connect a game en-
gine and ACT-R cognitive model. However, our architecture

Figure 5: Results of the experiment.

Figure 6: Schematic presentation of microslip error.

was different from the previous research in using a black-
board server (Figure 1) and not connecting the ACT-R and
game engine with peer-to-peer. Due to this mechanism, novel
agent behaviors, such as the microslip mentioned at the end
of the previous section, emerged, and these were caused by
ACT-R and the game engine operating in parallel.

Thus, the architecture constructed in this research may lead
to the modeling of cognitive processes that have been over-
looked in previous research. Many of the conventional cog-
nitive models do not have a body and deal with the problems
of a simple system closed in the brain. By giving a body in
the virtual space to the cognitive model, there is a possibility
of simulating important phenomena related to the interaction
between the body and brain. In addition, the architecture of
this research also has advantages in terms of being extended
to a multi-agent environment. Considering this advantage, in
the future, we plan to model interactions between groups with
multiple embodied agents in the virtual world.

In addition, visualization of the virtual world using game
engines has the advantage of making it possible to interact
with agents operating using the ACT-R cognitive model and
human users. The advantage of such interactive agent de-
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velopment with ACT-R is systematic diversion of research
knowledge accumulated in cognitive modeling research. Fur-
thermore, visualizing the behavior of interpersonal agents in
the virtual world may also lead to a new methodology of vali-
dating hypotheses behind the implemented internal process in
a cognitive model. In this way, the integrated approach that
this research aimed for may lead to new HAI and cognitive
modeling research methods.
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Abstract
We present a spiking neuron model of attention-driven mem-
ory, where participants use a cue to indicate whether a word
on a list is to be remembered or not. This model is fit to in-
dividual differences on mean behavioural data and produces a
good match in terms of variance of performance on a recogni-
tion task, but not on a recall task. Neural activity patterns dur-
ing the memorization parts of the task are also well-matched,
but not during the time between when the attention cue is pre-
sented and when the word itself is presented. We believe this
indicates mechanisms are involved in the recall task which are
not considered as part of the current model.
Keywords: attention; memory; Neural Engineering Frame-
work; LIF neurons

Introduction
The overall goal of this work is to produce a neural-level ex-
planation of psychological phenomena: in this case, the abil-
ity to control (via attention) what items on a word list are
remembered, and which ones are not. In particular, we are
interested in how low-level effects (such as how well neurons
can represent, store, and transform information) can give ex-
planations for how tasks are performed, and how people dif-
fer.

In an experiment to ”isolate the neural mechanisms of at-
tention that lead to improved memory formation,” Wittig et
al. (2018) visually presented words for one second, followed
by a five second delay between words. Subjects were in-
structed to remember words that were preceded (cued) by a
row of asterisks, with no instruction given regarding uncued
words. Once the entire list was presented, subjects performed
distraction tasks (simple arithmetic problems) for 20 seconds
to suppress sub-vocal rehearsal and mitigate recency effects.
Then the subjects memory of the word list was assessed us-
ing recognition and recall tests (John H. Wittig, Jang, Cocjin,
Inati, & Zaghloul, 2018). This process is shown in Figure 1.

In the recognition (seen/unseen) test, subjects were shown
a second list of words (test list) and asked to identify which
words came from the list originally presented during the task
(task list). The test list consisted of a mixture of cued words
and uncued words from the task list, in addition to words that
were not part of the task list (foil words). The recall test re-
quired subjects to verbally recite as many of the cued words
as possible.

There were two recognition test criteria used to determine
whether sessions would be used in the analysis 1) there must
be a significant difference in recognition rates between cued
and uncued words 2) there must be a significant difference
in recognition rates between uncued and foil words. Signif-
icance was determined using a chi-squared contingency ta-
ble (we assumed the criterion was p<0.05, although this is

Figure 1: Task description, from (John H. Wittig et al., 2018).

not stated in the paper). While training subjects to perform
the task, the task difficulty was calibrated for each subject.
Task difficulty was set primarily by altering the length of the
task list such that subjects would meet both stated criteria.
Other parameters (e.g. fraction of cued words) were altered if
changing the list length was insufficient to meet the criteria;
however, these secondary adjustments were not considered in
the current work.

Adjusting the task difficulty allowed the testers to ”collect
isoperformance data across participants who showed a wide
range of natural aptitude for the task 1. Overall, 71/90 ex-
perimental sessions met both criteria, with training sessions
excluded from the analysis. The distribution of list lengths is
shown in Figure 2.

Representation
The goal of this work is to build a computational model of the
memory aspects of this task using spiking Leaky Integrate-
and-Fire (LIF) neurons. We use the Neural Engineering
Framework (Eliasmith & Anderson, 2003) to find the connec-
tion weights between these neurons such that a) each group of
neurons forms a distributed representation of a vector and b)
each set of connections between groups of neurons approxi-
mates some desired function on those vectors. The neurons
themselves have randomly chosen properties such as maxi-
mum firing rates, tuning curves, and preferred stimuli (a.k.a.
encoders) to give a realistic heterogeneous distribution

In particular, if a population of neurons is to represent the
vector x, then each neuron i has an encoder ei which is the
value of x for which it most strongly fires. If the neuron has
a randomly chosen gain αi and bias βi then the total current
flowing into the neuron would ideally be αiei · x+ βi. This
will cause the population of neurons to have a different firing
pattern for every value of x.

If one group of neurons represents x and another represents
y and we want y to be some function of x (i.e. y = f (x)), then
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Figure 2: Distribution of list lengths among the 18 subjects,
from (John H. Wittig et al., 2018).

we can form connections between the two groups of neu-
rons. We solve for the weights ωi j between neuron i in the
first population and j in the second population such that the
spiking activity ai in the first population when representing
x will lead to the corresponding current flowing into the sec-
ond population to represent f (x). In other words, we want
∑i aiωi j = α je j · f (x). Given this formulation, the connec-
tion weights ωi j for any given function f (x) can be found
using least-squares minimization. We use the software pack-
age Nengo (Bekolay et al., 2014) to automate this process and
run the resulting model.

While the above method can be used to create biologically
plausible implementations of any computation, the neurons
never perfectly approximate that computation. For example,
if a group of neurons is connected back to itself with con-
nection weights approximating the function y = x, then this
would ideally be a perfect memory, storing the information x
over time without change. However, the neural activity will,
in practice, gradually change, leading to drift in the value x
that is being represented. The purpose of this paper is to ex-
plore how that sort of low-level implementation detail affects
the performance of an attention-driven memory system.

Because this is our goal, here we only present a model of
the attention-driven memory. We do not include here a model
of the visual recognition of cues and words, or the cogni-
tive control needed to perform the task itself, as these aspects
have been previously modelled using the Neural Engineering
Framework (Eliasmith et al., 2012). We also do not model
the decision-making process required to decide whether or
not a particular word was in the remembered list. Instead,
we directly decode out the vector x in the memory (also via
least-squares minimization) and compare it to the vectors for
different words using the dot-product to measure similarity.
This was done for simplicity, and is equivalent to (but less
noisy than) more detailed decision-making models that have
previously been published (Sharma, Komer, Stewart, & Elia-
smith, 2016; Hurzook, Trujillo, & Eliasmith, 2013).

Figure 3: The spiking model of attention-driven memory.

Model
To model the memory aspects of this task, we use a group of
51,200 neurons representing a 512-dimensional vector (Mem-
ory Neurons). These neurons are recurrently connected to
compute the function y = x. This means that, in the absence
of any input, the neurons will maintain their firing pattern,
creating a memory (mathematically, it will compute the in-
tegral of its input). The presented word is represented us-
ing another group of 51,200 neurons, representing a 512-
dimensional vector (Word List Neurons). The effect of the
cue is represented with an attention signal: 100 neurons rep-
resenting a scalar value of how much attention to pay to the
current word (Attention Signal Neurons. The 102,400 Prod-
uct Neurons multiply the attention value by the word vector,
sending the result into the memory.

To model the task, we present as input the (randomly cho-
sen) vector for the current word, and a scalar value of how
much attention to pay to that word. This will be larger for
cued words than for uncued words, but the exact values are
fit to account for individual differences between subjects. We
apply varying amounts of white noise to the memory, also
to account for individual differences. An illustration of this
model can be seen in Figure 3.

The word list is represented by N randomly chosen 512-
dimensional normalized vectors, where N is the length of the
list. The attention signal is either high (cued words) or low
(uncued words) for the one second the word is presented, and
zero for the five second delay between words. When the at-
tention signal is zero, the memory neurons are only affected
by the white noise input and the inherent error involved in ap-
proximating a perfect memory using spiking neurons. For all
simulations, exactly half the words in the list are cued, mir-
roring the original experiment conditions considered here.

The memory vector acts as an information compass, where
the direction it points in the 512-dimension space indicates
what information it represents. As the product of the inputs
accumulates in memory, the memory vector gradually turns
toward the direction of the word vector. How far the mem-
ory vector turns depends on the magnitude of the input (i.e.
whether the attention signal is high or low), how long the
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word is presented for (one second in all cases), and how much
information has previously been imprinted on the memory
space. These effects can be seen in Figure 4. In all cases,
we plot the dot product (i.e. the cosine similarity) of the vec-
tor decoded from memory and the ideal (randomly chosen)
vector for each word.

The subjects memory at the time of testing is represented
by the decoded memory vector at the end of the simulation.
The 20 seconds of distraction tasks are represented by a 20
second period of zero input, during which no mechanism is
applied to simulate rehearsal or other memory-enhancing ef-
fects. Although the recognition test was performed before
the recall test in the experiment, for this work we did not con-
sider how to model this interaction, which may be addressed
in future work.

Since the model’s memory vector represents the history of
words imprinted on it, how strongly those words are held in
memory can be calculated as the dot product of the original
word vectors and the memory vector. Henceforth, we refer
to this as cosine similarity. In the compass analogy, the mag-
nitude of similarity indicates to what degree the memory and
word vectors are pointing in the same direction. Cosine sim-
ilarity can result in a value between 0 and 1, with 1 being
perfect alignment and 0 being perfectly orthogonal. Since
we are not yet building a full model of the decision-making
process for extracting information out of memory, here we
simply choose a threshold (different for each individual) for
this similarity value.

Simulating the recognition and recall tests involved creat-
ing cosine similarity threshold values above which a word
is represented strongly enough in memory to be considered
”recognized” (seen) or to be ”recalled”. These were taken as
separate threshold values, as it was assumed that the mental
process for recognizing a word is different than for recall-
ing one. In order to establish threshold values that would
reflect the experimental responses, experimental data was
used to determine thresholds for each of the categories “seen
cued”, “seen uncued”, “seen foil”, and “recalled”. Thresh-
olds were calculated using the experimental correct response
rates, which can be seen in Figure 5 below. For each cat-
egory, the value above which the proper percentile of word
cosine similarities lay was taken as the threshold. For exam-
ple, in the experimental results, approximately 90% of cued
words were correctly identified in the recognition test. There-
fore, the “seen cued” threshold was calculated as the value
above which 90% of cued words cosine similarities lay, see
Figure 4. The calculations were performed over 20 sessions
to reduce sample size error, and account for the volatility in-
dividual sessions.

Note that foil words are a separate randomly generated list
of word vectors that are never presented to memory. They
represent words that are not part of the task list, but are shown
during the recognition tests. The rate of foil words recognized
(seen) is the false-alarm rate of the test. Even though the
words are never presented, and therefore are never imprinted

Figure 4: (Top) Spiking output from 50 randomly chosen
Memory Neurons. This is the neural activity from which we
decode the memory vector used for the other two parts of
this figure. (Middle) Strength of task list words in memory,
represented by the normalized cosine similarity of the mem-
ory vector with each studied word at each point in time. The
calculated thresholds for the recognition and recall tests are
shown for this subject (see below). (Bottom) Strength of foil
words in memory. No foil words are imprinted on memory
during simulation, so any similarity is simply due to the ran-
dom foil word vectors existing in the same vector space as
the memory vector. In this case, one foil word was incor-
rectly identified as being seen during the task. The ”Seen
Word Threshold” has the same value in the upper and lower
plots.
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on memory, their cosine similarity values are non-zero, since
they exist in the same 512-dimension vector space as mem-
ory. This allows us to calculate a false-alarm rate for the sim-
ulation, representing random chance, which is analogous to
the foil word recognition rate in the experiment.

Since the recognition test involved three different cate-
gories, three separate recognition thresholds were calculated.
However, in order for a word in memory to be recognized, it is
irrelevant which category that word comes from. Therefore,
model parameters were adjusted such that the recognition
thresholds for the three seen categories were close enough
that using their average would produce results similar to the
individual thresholds. This allowed us to calculate a single
recognition threshold representing all ”seen” categories. It
was found that various combinations of parameters could pro-
duce approximately overlapping recognition thresholds for
the three categories. This led to the creation of individual pa-
rameter profiles for each participant, examples of which can
be seen in Table 1.

Tuning for Individual Differences in Task Difficulty
The original experiment used 18 subjects, whose correspond-
ing word list lengths are shown in Figure 2. For the simu-
lation, we created 18 subject profiles, tuned for list lengths
matching the distribution of the original subjects. Tuning in-
volved adjusting parameters such that the three “seen” cat-
egory thresholds were similar in four out of five simula-
tions. The parameters manipulated were the attention signal
high/low values and the level of white noise added to memory.
Once the subject profiles were determined, 30 simulations
were run for each profile. The first 20 simulations were used
to calculated recognition and recall cosine similarity thresh-
olds, and the final 10 simulations were used as test sessions,
upon which the analysis is performed.

White noise negatively affects the memory neurons abil-
ity to hold a value over time. Without the white noise, the
“seen cued” and “seen uncued” thresholds were much higher
than the “seen foil” threshold, which would have caused
foil word recognition rates of near zero. Thus, adding this
noise was necessary to accurately reflect the experimental
responses. Another option for reducing the stability of the
memory would have been to adjust the number of neurons.
However, using white noise produced a much smoother ef-
fect on performance, making it easier to find parameter set-
tings which matched particular subjects.

The experimental criteria described in the Task Description
section were used to determine whether sessions were valid
for analysis. Significance was calculated using a chi-squared
contingency table, as described in the experimental method-
ology, using p<0.05.

It was found that subjects tuned for list lengths of four
words resulted in a large majority of failed sessions (5/30 met
the recognition test criteria). In a four word task list, two
words are cued and two are uncued. Therefore, only two data
points are available for calculating the ”seen cued” and ”seen
uncued” thresholds. This made individual session thresholds

Table 1: Subject Profile Examples.

Tuned Parameter Sub #1
(N = 8)

Sub #13
(N = 16)

Sub #15
(N = 24)

Cued (High) Attention 0.7 0.9 0.9
Uncued (Low) Attention 0.4 0.5 0.5
White Noise 0.01 0.008 0.003

Simulation Output
”Seen Cued” Threshold 0.081 0.050 0.058
”Seen Uncued” Threshold 0.087 0.060 0.059
”Seen Foil” Threshold 0.073 0.074 0.071
Average Seen Threshold 0.080 0.061 0.063
Recall Threshold 0.128 0.106 0.106

for four word task lists quite volatile, with a large variance
across the sessions used to calculate the average threshold.
Consequently, the average thresholds for these subject pro-
files were not properly representative of the data, resulting in
a high number of failed tests. Furthermore, the tests that did
pass the statistical criteria, did not provide recognition rates
in the expected ranges. Therefore, subject profiles with four-
word task lists were removed, leaving 15 subject profiles for
analysis. Additionally, Figure 2 shows only one subject with
a task list length of zero. This subject was replaced with one
where N = 16.

Since the thresholds were based upon the experimental
data, and the parameters were tuned such that the seen thresh-
olds would overlap, there was some concern about over-
tuning the model. This is investigated in the Model Explo-
ration section below.

Stages of Analysis

The model is analyzed in two independent stages. Any
changes made to the model parameters affecting the first stage
of analysis changes the simulation data used in the second
stage of analysis. Therefore, second stage parameters were
much easier to adjust and re-analyze than the first stage.

The first stage consists of creating the subject profiles and
determining the associated recognition and recall thresholds,
as described above. Once the thresholds are set for a particu-
lar subject profile, the first stage of analysis is complete. The
second stage of analysis involves running test simulations.
Using the thresholds from the first stage, the simulated recog-
nition and recall test results are calculated and compared to
the experimental data.

This means that the subject profiles parameters (attention
signal values and white noise), and other model parameters
(e.g. number of neurons) which would affect the simulation
output (i.e. threshold values) cannot be altered in the second
stage of analysis without repeating the first stage of analysis
as well. This created time constraints on the number of pa-
rameters that could be investigated, as the first stage of analy-
sis requires many hours of simulation for each subject profile.
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Figure 5: Comparison of experimental and simulated test re-
sults (John H. Wittig et al., 2018). In each case, only sessions
that met both specified criteria were used (71/90 valid experi-
mental sessions, 132/150 valid simulated sessions). Each data
point represents the average recognition rate for an individual
subject over 10 test sessions.

Table 2: Statistical Comparison of Test Data.

Category Cued Uncued Foil Recalled

Experimental
Variance 50.7 174.3 79.7 534.3

Simulation
Variance 39.4 190.9 44.4 23.3

Task Performance
The model’s performance is compared to experiment in the
rates of recognition and recall for each subject. Since the
recognition and recall thresholds were generated using the
experimental test data, it is expected that the simulated tests
would produce similar average rates of recognition and recall.
Therefore, we will focus instead on the variance of correct re-
sponse rates for each of the two tests. These variances can be
visually compared in Figure 5, and the calculated statistics
are summarized in Table 2.

There is a large differences in variance between the exper-
imental recognition and recall tests; however, the simulated
results do not share this difference. Additionally, experimen-
tal and simulated sessions failed the performance criteria at
approximately similar rates (Exp. = 79%, Sim. = 89%).

Figure 6 (Top) shows the activity of neurons measured by
(John H. Wittig et al., 2018) during the experiment. It can be
seen that the presence of a cue corresponds to a drop in ac-
tivity immediately before presentation of the word. The red
bar above the plot indicates where this effect is statistically
significant. Figure 6 (Bottom) is the analogous plot show-
ing neuron activity of our model. During the word presen-
tation and the period after the word presentation, our model
shows no difference in neural activity for cued versus uncued
words. This is consistent with the empirical data. However,

Figure 6: (TOP) Experimental neuron activity represented by
high-frequency power electrode feedback, from (John H. Wit-
tig et al., 2018). (Left) Single electrode. (Right) Population
average across all electrodes. A red bar at the top of each
plot indicates where there is a statistically significant differ-
ence between the cued and uncued responses. (BOTTOM)
Average neuron activity from the model, for cued and uncued
conditions. Note that the current model does not include the
points in time between the cue and word presentation.

our model does not include the extra processing needed to
remember the cue, and thus we do not expect to see a corre-
sponding drop in activity in our model.

Model Exploration
As a test to check for extreme over-fitting in recreating the
experimental correct response rates, we also ran the partici-
pant profiles to list lengths both longer and shorter than what
they were tuned for. Longer lists should produce lower rates
of correct responses for tests involving task list words, while
shorter list lengths should produce higher rates of correct re-
sponses in the same tests. There should be no significant ef-
fect on the foil word rates as this represents random chance.
The results of these modifications can be seen in Figure 7.

Discussion
In Figure 5 we see that the model behaves similarly to hu-
man subjects in the recognition test. We were able to choose
a single cosine similarity threshold that produced results with
significant differences in recognition rates between the cued,
uncued and foil word categories, meeting the performance
criteria. Table 2 illustrates that the variance in test perfor-
mance is similar to experiment for the recognition test, but
not for the recall test.

One possible explanation for the model’s ability to match
human behaviour well in the recognition test, but not the re-
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Figure 7: Effects of altering list length on task performance
for three patients. The subject profile of patient 3 is calibrated
for list lengths of N = 8, patient 13 for list lengths of N = 16,
and patient 15 for list lengths of N = 24.

call test, is the way these tests were designed in the simu-
lation. The simulated recognition test mirrors the experiment
in that both involve presenting the subject with the word, then
determining whether the subject recognizes that word. In the
experiment, subjects are visually shown the word and must
decide whether the word came from the original task list. In
the simulation, the word vectors are compared to the final
memory vector through cosine similarity. Conversely, in the
experimental recall test subjects recall words from memory
without a prompt, whereas in the simulated recall test cosine
similarity is used again. This may indicate that using cosine
similarity is a reasonable approximation of how the human
brain performs the recognition test, but that humans use a dif-
ferent mechanism in performing the recall test.

The cosine similarity time plot (Figure 4) shows that the
memory neurons of the model store information in an intu-
itive way. Words that are introduced to the memory space first
are represented more strongly than those introduced later, re-
gardless of whether or not they are cued. Therefore, the first
word in a list will be imprinted most strongly on memory,
since it is the only information stored in memory at that time.
This effect is seen in Figure 4, where the first word is uncued,
yet has the greatest similarity of all words when first intro-
duced. After the fourth word of the list, the difference be-
tween high and low attention signals is more evident, as there
are enough words affecting memory at this point that recency
bias becomes less influential. This pattern reflects the way we
would expect humans to remember words in a list.

Figure 7 illustrates that the model responds as expected
when changing the difficulty of the task by altering the task
list length for a subject profile. For cued and uncued words
in the recognition test and cued words in the recall test, the

simulation performance reduced as the task list length in-
creased. This is the type of behaviour that we would expect
from human subjects as the difficulty of the task, represented
by task list length, increased. Performance for the foil words
remained relatively flat, which is also as expected. This indi-
cates that the fitting of the model parameters reasonably gen-
eralizes to other conditions, and produces predictions about
individual performance on varying list lengths.

The simulation activity plot, Figure 6 (Bottom), does not
show a difference between cued and uncued words. This is
likely due to the design of the model. In the model, there is
no analog for the cue, prior to the word being presented. The
memory input simply represents a visual stimulus, multiplied
by an attention value. This was done to keep the model sim-
ple, with the goal of comparing simulation and experimental
results. In a further iteration of this model, a proper cue mech-
anism could be added examine the effects on model spiking
activity.

Overall, we have presented a model showing a possible
neural implementation of attention-driven memory. By tak-
ing the simple approach of representing words as vectors fed
into a memory, and by scaling those vectors based on the
amount of attention paid to them, we achieve a reasonable ap-
proximation of human behaviour in the recognition test, but
the actual empirical data on the recall test has a much higher
variance. Furthermore, we do not currently include the part
of the task involving remembering the cue. Future work will
address these concerns by including both the cue memory and
the decision-making process to extract information out of the
memory.
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Abstract 

It has long been understood that there is an interplay 

between affect and cognition((Kort & Reilly, 2003), but this 

interaction, based on the recent chess studies((Guntz, 

Crowley, Vaufreydaz, Balzarini, & Dessus, 2018), is much 

more intertwined than what the established theories 

postulate. To understand the underlying mechanisms in 

greater detail we propose an integrated model using Chrest 

and Nengo. We analyze the results based on simulations 

with data from previous empirical studies. 

Keywords: Affect, Cognition , Chess, Nengo , Chrest 

Introduction  

The outline of our Paper is as follows: We start with   

Motivation for study followed by: Rational for using chess, 

Problem description, Research Objectives, Insights from 

previous research, State the Hypothesis, give a detailed view 

of proposed Architecture and finally implications for further 

research. 

Motivation: 

1. How do Chess players leverage emotions/Affect 

to deal with information overload and 

complexity? 

2. How can interplay between emotions and 

cognition (information processing) be modelled? 

3. How can interplay between emotions and 

information processing be modelled in two 

player chess game, where the behavioral signals 

from opponent serve as valuable cue? and 

behavioral cues from the player can serve as 

valuable information regarding the game play 

and therefore regulating these emotions (to 

suppress the display of behavior ) have adverse 

effect on cognitive performance? ( How can this 

scenario be quantified?)  

4. How do chess players leverage emotions to 

Improve game play, complement the information 

processing capability and gain information about 

the situation based on the emotions of the 

opponent.? 

5. What are the underlying mechanisms of this 

Cognitive Affective process and how can the 

components be modelled using available 

cognitive Frameworks/models? 

Why Chess: 

Researchers in computer science have famously referred 

to chess as the 'drosophila' of artificial intelligence 

(AI)(Lane & Gobet, 2012). What they seem to mean by this 

is that chess, like the common fruit fly, is an accessible, 

familiar, and relatively simple experimental technology that 

nonetheless can be used productively to produce valid 

knowledge about other, more complex system ( 

(Ensmenger, 2012). 

 

Chess is a very complex game. (Shannon showed a 

calculation for the lower bound of the game-tree complexity 

of chess, resulting in about 10120 possible games, to 

demonstrate the impracticality of solving chess by brute 

force, in his 1950 paper "Programming a Computer for 

Playing Chess". As a comparison, the number of atoms in 

the observable universe, to which it is often compared, is 

roughly estimated to be 1080 - Which is orders of 

magnitude lower ) (  Claude Shannon , 1950) 

Problem Description: 

Despite the enormous complexity, Chess players perform 

very well, in addition to making accurate moves under time 

constraints  (Gobet, 2005) 

Insights from Previous Research: 

Even though, Chunking and template theory explain 

underlying mechanisms about how human mind can 

overcome the limitations imposed by working memory. 

Chunking and template theory is implemented in Chrest 

Framework. This framework has been used to validate the 

results of various chess observations. Similarly, modules for 

attention are also part of this framework.(Gobet, Lane, & 

Lloyd-Kelly, 2015) 

Recent studies have highlighted the influence of emotions 

in dealing with this complexity(Guntz et al., 2018). The 

studies indicate that emotions are more tightly coupled with 

the information processing capability. Chess players 

associate previous game situations to specific emotions and 

use the emotions in narrowing down the potential candidate 

moves which are subsequently evaluated. But These studies 

were conducted in lab, and so far, there is no theoretical 

model to explain this observation.  
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Research Objective: 

We propose to model the influence of emotions on chess 

playing skill using Chrest and Nengo. 

We Leverage the modules already implemented in Chrest 

(Gobet & Jansen, 2004) for chess capabilities and leverage 

nengo for modulating the emotion based on the game 

situation. (Chrest and Nengo(Bekolay et al., 2014) work in 

tandem simulating a real-player scenario) 

 

 

 

Hypothesis: 

H1a: Emotions, rather than just cognitive abilities, will 

influence cognitive processing in chess task 

H2a: Emotions, complement and assist cognitive abilities, 

in chess task (They are integral to Cognitive abilities) 

Proposed Architecture 

We have built on the existing NTIM Framework ( (Degroot 

& Broekens, 2003). The current Architecture is limited to 

manipulating behavior but does not integrate emotion to 

complement the cognitive task. We use CHREST 

Framework to model the attention, heuristic search and 

pattern recognition, and the input from Nengo which is 

based on the situational parameters given (Personality 

Model) is used to manipulate the emotion Valance and 

Arousal. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Proposed Architecture to integrate Affect and Cognition 

Figure 2 Integration of Nengo and Chrest and output Results (Gaze patterns) 
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Results 

S.NO User 

Profile 

Chess-Score 

(ELO) - DV 

Fixation 

Time, Gaze 

time, 

Fixation 

Duration 

(Seconds) 

1 Cognitive 

(Analytical) 

1900 16.1,12,5.

4 

2 Cognitive - 

Affective 

2100 18.1,12,5.

3.5 

3 Affective 

(Intuition) 

1700 7.3,5,6 

 

Future Directions  

 

The Framework can be used to model the users profile 

based on the affective and cognitive observations and has 

practical implications in developing cognitive affective 

learning agents.  
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Abstract

A wealth of experimental evidence shows that, contrary to nor-
mative models of choice, people’s preferences are markedly
swayed by the context in which options are presented. In this
work, we present the first resource-rational, mechanistic ac-
count of the decoy effect—a major contextual effect in risky
decision making. Our model additionally explains a related,
well-known behavioral departure from expected utility theory:
violation of betweenness. We demonstrate that, contrary to
widely held views, these effects can be accounted for by a
variant of normative expected-utility-maximization, which ac-
knowledges cognitive limitations. Our work is consistent with
two empirically well-supported hypotheses: (i) In probabilistic
reasoning and judgment, a cognitive system accumulates infor-
mation through sampling, and (ii) People engage in pairwise
comparisons when choosing between multiple alternatives.
Keywords: Risky decision-making; decoy effect; violation of
betweenness; rational process models; expected utility theory

1 Introduction
Expected utility theory (EU), the most prominent model of
rational choice (Bernoulli, 1738/2011), maintains that peo-
ple’s preferences should not change depending on the con-
text in which options are presented. More specifically, ac-
cording to the von Neumann-Morgenstern axiomatization of
EU (von Neumann & Morgenstern, 1947/2007), a rational
decision-maker obeys the independence axiom: preferences
between alternatives A and B depend only on preferences be-
tween A and B. Formally, the independence axiom prescribes
the following: If A is preferred to B out of the choice set
{A,B}, introducing a third option X , expanding the choice
set to {A,B,X}, does not make B preferable to A.

Contrary to the independence axiom, however, a wealth
of experimental evidence shows that people’s preferences are
markedly swayed by the context in which options are pre-
sented (e.g., Huber, Payne, & Puto, 1982; Wedell, 1991;
Roe, Busemeyer, & Townsend, 2001; Soltani, De Martino,
& Camerer, 2012; Tsetsos, Chater, & Usher, 2012; Noguchi
& Stewart, 2014; Mohr, Heekeren, Rieskamp, 2017).

Although contextual effects are predominantly studied in
the realm of multi-attribute decision making without risk
(e.g., Roe et al., 2001; Noguchi & Stewart, 2014), several
studies have experimentally investigated contextual effects
in risky decision-making (Huber et al., 1982; Wedell, 1991;
Soltani et al., 2012; Tsetsos et al., 2012; Mohr et al., 2017).

A prominent contextual effect in risky choice is the de-
coy effect (e.g., Mohr et al., 2017) according to which the

inclusion of a third asymmetrically-dominated gamble (de-
coy) into the choice set leads to increased preference for the
dominating gamble (target), thus clearly violating the inde-
pendence axiom of EU.

In this work, we present the first resource-rational, mech-
anistic account of the decoy effect in risky decision-making.
Concretely, we show that, contrary to widely held views, this
effect can be accounted for by a variant of the normative
maximizing of expected utility, sample-based expected util-
ity (SbEU), which acknowledges cognitive limitations that a
decision-maker is faced with (Nobandegani, da Silva Castan-
heira, Otto, & Shultz, 2018).

SbEU is a metacognitively-rational, process model that
takes into account that people adapt their strategies depend-
ing on the amount of time available for decision-making (e.g.,
Maule & Svenson, 1993; Svenson, 1993). Consistent with
a large body of evidence, SbEU posits that, in probabilistic
reasoning and judgment, a cognitive system accumulates in-
formation through sampling (e.g., Vul et al., 2014; Battaglia
et al., 2013; Lake et al., 2017; Gershman, Horvitz, & Tenen-
baum, 2015; Hertwig & Pleskac, 2010; Griffiths et al., 2012;
Gershman, Vul, & Tenenbaum, 2012; Bonawitz et al., 2014).

Additionally, our mechanistic explanation of the decoy ef-
fect relies on a key assumption: people engage in pairwise
comparisons when choosing between multiple alternatives.
Recent experimental work has provided mounting evidence
for this assumption (e.g., Russo & Rosen, 1975; Noguchi
& Stewart, 2014). Specifically, recent eye-tracking work by
Noguchi and Stewart (2014) shows that, when choosing be-
tween multiple alternatives, a series of comparisons is made
in each choice, with a pair of alternatives compared on a sin-
gle attribute dimension in each comparison.

We furthermore show that our resource-rational, process-
level account of the decoy effect can also explain another re-
lated, well-known behavioral departure from EU: violation of
betweenness (e.g., Camerer & Ho, 1994; Prelec, 1990). Con-
cretely, betweenness is a weakened form of the independence
axiom, prescribing that a probability mixture of two risky
gambles should lie between them in preference (Camerer &
Ho, 1994). Despite being widely assumed in game theory,
auction theory, macroeconomics, and dynamic choice, vio-
lations of betweenness are experimentally well-documented
(e.g., Camerer & Ho, 1994; Prelec, 1990).
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After presenting a brief overview of SbEU, we proceed to
model the decoy effect and violation of betweenness in risky
decision-making.

2 Sample-based Expected Utility Model
Extending the cognitively-rational decision-making model of
Lieder, Griffiths, and Hsu (2018) to the realm of metacogni-
tion (Roberts & Erdos, 1993; Cary & Reder, 2002), SbEU
is a metacognitively-rational process model of risky choice,
positing that an agent rationally adapts their strategies de-
pending on the amount of time available for decision-making
(Nobandegani et al., 2018). Concretely, SbEU assumes that
an agent estimates expected utility

E[u(o)] =
∫

p(o)u(o)do, (1)

using self-normalized importance sampling (Hammersley &
Handscomb, 1964; Geweke, 1989), with its importance dis-
tribution q∗ aiming to minimize mean-squared error (MSE):

Ê =
1

∑
s
j=1 w j

s

∑
i=1

wiu(oi), ∀i : oi ∼ q∗, wi =
p(oi)

q∗(oi)
, (2)

q∗(o) ∝ p(o)|u(o)|

√
1+ |u(o)|

√
s

|u(o)|
√

s
. (3)

MSE is a standard normative measure of the quality of an
estimator, and is widely adopted in machine learning and
mathematical statistics (Poor, 2013). In Eqs. (1-3), o denotes
an outcome of a risky gamble, p(o) the objective probabil-
ity of outcome o, u(o) the subjective utility of outcome o, Ê
the importance-sampling estimate of expected utility given in
Eq. (1), q∗ the importance-sampling distribution, oi an out-
come randomly sampled from q∗, and s the number of sam-
ples drawn from q∗.

While cognitively-rational agents are ignorant about adapt-
ing their importance distribution q based on time avail-
ability, a metacognitively-rational agent would plausibly
use such considerations in their choice of q. That is,
the metacognitively-rational agent chooses a q which is
normatively-justified based on time availability considera-
tions, allowing strategy selection to be guided by time avail-
ability. In agreement with this view, a large body of psycho-
logical work on decision-making suggests that people adapt
their strategies in accord with time availability (e.g., Maule &
Svenson, 1993; Svenson, 1993). As evidenced by Eq. 3 ex-
plicitly depending on s, SbEU assumes that decision-makers
rationally adapt their strategies depending on time availabil-
ity.

SbEU posits that, when choosing between a pair of risky
gambles {A,B}, people make their choice depending on
whether the expected value of the utility difference ∆u(o) is
negative or positive (w.p. stands for with probability):

A =

{
oA w.p. pA
0 w.p. 1− pA

(4)

B =

{
oB w.p. pB
0 w.p. 1− pB

(5)

∆u(o) =


u(oA)−u(oB) w.p. pA pB
u(oA)−u(0) w.p. pA(1− pB)
u(0)−u(oB) w.p. (1− pA)pB
0 w.p. (1− pA)(1− pB)

(6)

Recent work by Nobandegani et al. (2018) showed that
SbEU can account for availability bias, people’s tendency
to overestimate the probability of events that easily come to
mind (Tversky & Kahneman, 1973), and can accurately sim-
ulate the well-known fourfold pattern of risk preferences in
outcome probability (Tversky & Kahneman, 1992) and in
outcome magnitude (Markovitz, 1952; Hershey & Schoe-
maker, 1980; Scholten & Read, 2014). Notably, SbEU is
the first rational process model to score near-perfectly in opti-
mality, economical use of limited cognitive resources, and ro-
bustness, simultaneously (Nobandegani et al., 2018; Noban-
degani, da Silva Castanheira, O’Donnell, & Shultz, 2019).

Following Nobandegani et al. (2018), and consistent with
prospect theory (Kahneman & Tversky, 1979) and cumulative
prospect theory (Kahneman & Tversky, 1992), in this work
we assume the following S-shaped, utility function:

u(x) =
{

x0.85 if x≥ 0,
−|x|0.95 if x < 0.

(7)

3 Decoy Effect in Risky Decision-Making
A prominent contextual effect in risky choice is the de-
coy effect (DE) according to which the inclusion of a third
asymmetrically-dominated gamble (decoy D) into the choice
set {T,C} (comprising of target T and competitor C) leads
to increased preference for the dominating gamble (target T ),
thus violating the independence axiom of EU (Arrow, 1963;
Ray, 1973; Machina, 1987).

Formally, DE can be mathematically characterize by hav-
ing P(T |{T,C,D}) > P(T |{T,C}) (Huber et al., 1982; Si-
monson, 1989; Speekenbrink & Shanks, 2013; Mohr et al.,
2017), with P(T |{T,C,D}) and P(T |{T,C}) denoting the
probability of choosing T when the choice set is {T,C} and
{T,C,D}, respectively.1

Consistent with mounting experimental evidence (e.g.,
Russo & Rosen, 1975; Noguchi & Stewart, 2014), we as-
sume that the decision-maker engages in pairwise compar-
isons when choosing from the choice set {T,C,D}, with pa-
rameters ptc, pcd , ptd denoting the probability of starting with
the pairs (T,C),(C,D),(T,D), respectively. The winner of
the first pairwise comparison will then compete against the
remaining risky gamble. Ultimately, the winner of the final

1DE is also a violation of the regularity axiom—a weakened
form of the independence axiom—according to which the addition
of an option to the choice set can never increase the probability
of choosing an option relative to the original set (Speekenbrink &
Shanks, 2013). More formally, for options X ,Y,Z, the regularity
principle prescribes the following: P(X |{X ,Y})> P(X |{X ,Y,Z}).
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Figure 1: Mohr et al.’s (2017) experimental data. Once de-
coy (D) is added to the choice set (middle bar, Decoy Con-
dition), people’s preference for the target (T ) significantly in-
creases. People’s preference for the target in the Decoy Con-
dition is also significantly higher than it is in the Filler Con-
dition. However, people’s preference for the target is not sig-
nificantly different between the Baseline Condition (wherein
the choice set is {C,T}) and the Filler Condition (wherein the
choice set is {C,T,F}). Adapted from Mohr et al.’s (2017,
Fig. 2A).

pairwise comparison will determine the explicit choice that
the agent makes from the original choice set {T,C,D}.

Recently, Mohr et al. (2017) investigated the neural under-
pinnings of DE in risky decision making using fMRI. Con-
cretely, Mohr et al. (2017) showed that specific brain regions
(e.g., the medial orbitofrontal cortex and the anterior insula)
not only code the value or risk of a single choice option but
also code the evidence in favor of the best option compared
with other available choice options.

In their behavioral experiment, Mohr et al. (2017) showed
that P(T |{T,C,D}) > P(T |{T,C}) when D is asymmetri-
cally dominated (i.e., D is dominated by T but not C), while
P(T |{T,C}) ≈ P(T |{T,C,F}) when a gamble F (called
filler) is dominated by both T and D, thus experimentally
confirming DE in risky decision-making. Mohr et al.’s (2017)
experimental data are shown in Fig. 1.

Next, we show that SbEU, together with the experimen-
tally well-supported assumption of pairwise comparison, can
provide a resource-rational mechanistic explanation of the be-
havioral finding by Mohr et al. (2017) discussed above. For
our simulation of risky DE, we adopt a representative stimu-
lus from Mohr et al. (2017, Fig. 1), involving four gambles
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Figure 2: Model simulation of Mohr et al.’s (2017) experi-
mental data reported in Fig. 1. Error bars indicate standard
deviation (SD). ∗∗∗P < .001, n.s. not significant.

(e denotes the Euro sign):

C =

{
80e w.p. 20%
0 w.p. 80%

T =

{
20e w.p. 80%
0 w.p. 20%

D =

{
20e w.p. 70%
0 w.p. 30%

F =

{
20e w.p. 20%
0 w.p. 80%

where C,T,D,F denote the competitor, target, decoy, and
filler gambles, respectively.

A la Mohr et al. (2017), we consider three experimental
conditions, with the Baseline Condition, Decoy Condition
and Filler Condition corresponding to participants choosing
from the choice sets {T,C},{T,C,D},{T,C,F}, respectively.

We simulate N = 1000 participants, with every participant
performing 100 trials of each of the experimental conditions.
Model predictions for a few samples (s = 4) are shown in
Fig. 2. This choice of s is supported by recent work providing
mounting evidence that people often use only a few samples
in probabilistic judgments and reasoning under uncertainty
(e.g., Vul et al., 2014; Battaglia et al. 2013; Lake et al., 2017;
Gershman, Horvitz, & Tenenbaum, 2015; Hertwig & Pleskac,
2010; Griffiths et al., 2012; Gershman, Vul, & Tenenbaum,
2012; Bonawitz et al., 2014; Nobandegani et al., 2018).

Fully consistent with Mohr et al.’s (2017) experimental
results (see Fig.1), SbEU predicts that P(T |{T,C,D}) >
P(T |{T,C}) (t(999) = 42.2177, P < .001, Cohen’s d =
1.3350) and P(T |{T,C,D}) > P(T |{T,C,F}) (t(999) =
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43.9820, P < .001, Cohen’s d = 1.3908), while predicting
that P(T |{T,C}) ≈ P(T |{T,C,F}) (t(999) = 0.7550, P =
0.4504, Cohen’s d = 0.0239). Model predictions are shown
in Fig. 2.

In Fig. 2, we set ptc = 0.01, pcd = 0.98, ptd = 0.01. Re-
call that the parameters ptc, pcd , ptd denote the probability of
starting with the pairs (T,C),(C,D),(T,D), respectively. The
relatively high value of pcd receives strong theoretical sup-
ports from Theorem 1. Specifically, Theorem 1 provides a
general, theoretical foundation for risky DE, under the ex-
perimentally well-supported hypothesis that people engage in
pairwise comparisons when choosing between multiple alter-
natives (the pairwise-comparison hypothesis).

Theorem 1. Let S = {T,C,D} be the choice set, with
T,C,D denoting the target, competitor, and decoy, respec-
tively. Assuming that a decision-maker is to always start with
a particular pair, then the following holds true: Starting only
with the pair (C,D) can potentially produce risky DE. That
is, starting with the pair (C,D) can potentially lead to having
P(T |{T,C,D}) > P(T |{T,C}), while starting with the pair
(T,C) or (T,D) grants P(T |{T,C,D}) 6> P(T |{T,C}).

Proof of Theorem 1 is given in the Appendix. Theorem 1
has an important implication which can be articulated in sim-
ple terms as follows: Assuming that people perform pair-
wise comparisons when choosing between multiple alterna-
tives, the only reliable way of producing risky DE is for peo-
ple to significantly direct their attention to the pair (C,D)
at the outset of their decision-making process. (Recall that
the amount of attention directed at the pair (C,D) at the out-
set of decision-making is controlled by the parameter pcd .)
This provides a mathematically-rigorous, formal basis for our
choice of ptc = 0.01, pcd = .98, ptd = 0.01.

4 Violation of Betweenness in Risky Choice
Betweenness is a relaxation of the independence axiom, pre-
scribing that a probability mixture of two risky gambles
should lie between them in preference (Camerer & Ho, 1994).
Despite being widely assumed in game theory, auction the-
ory, macroeconomics, and dynamic choice, experimental vi-
olations of betweenness are well-documented (e.g., Camerer
& Ho, 1994; Prelec, 1990).

Formally, betweenness can be characterized as follows
(Camerer & Ho, 1994): If risky gamble A is preferred to
risky gamble B (i.e., A � B), then the following should hold:
∀p ∈ (0,1) : A � pA+(1− p)B � B, where pA+(1− p)B
denotes a probabilistic mixture of A and B with probabilities
p and 1− p, respectively. In simple terms, betweenness re-
quires that every probabilistic mixture of two gambles A and
B lie between them in preference (hence the term "between-
ness").

Next, we show that SbEU can additionally account for
an experimentally-documented violation of betweenness (Pr-
elec, 1990; Camerer & Ho, 1994).

An experiment by Prelec (1990), and replicated by
Camerer and Ho (1994), revealed that people preferred X to
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Figure 3: Model simulation of Prelec’s (1990) experimental
results. Consistent with the experimental data, the model pre-
dicts that, when choosing from the choice set {X ,Y}, people
prefer X over Y . However, when choosing from the choice
set {X ,Z}, the model predicts that people prefer Z over X ,
thus violating the betweenness property. Error bars indicate
standard deviations.∗P < .05, ∗∗∗P < .001.

Y , but preferred Z (a probabilistic mixture of X and Y ) to
X , hence violating the betweenness property. The gambles
X ,Y,Z are given by (Prelec, 1990):

X =

{
$20,000 w.p. 34%
0 w.p. 66% Y =

{
$30,000 w.p. 17%
0 w.p. 83%

Z =

 $30,000 w.p. 1%
$20,000 w.p. 32%
0 w.p. 67%

where Z = 16
17 X + 1

17Y , i.e., Z is a probabilistic mixture of the
gambles X and Y with probabilities 16

17 and 1
17 , respectively.

As we did in our simulation of risky DE, we simulate N =
1000 participants, with each participant performing 100 trials
of each of the experimental conditions (Condition I: choosing
between the gamble X and Y ; Condition II: choosing between
the gambles X and Z).

Model predictions for a few samples (s = 4) are shown
in Fig. 3. Consistent with the Prelec’s (1990) experimen-
tal data, SbEU predicts that, in Condition I, P(X |{X ,Y}) >
P(Y |{X ,Y}) (t(999) = 2.4160, P = .0159, Cohen’s d =
0.0764) while predicting that, in Condition II, P(Z|{X ,Z})>
P(X |{X ,Z}) (t(999) = 44.8260, P < .001, Cohen’s d =
1.4175).

5 General Discussion
Expected utility theory (EU), the most prominent model of ra-
tional choice, maintains that people’s preferences should not
change depending on the context in which options are pre-
sented. Contrary to a widely held view, in this work we show
that a variant of normative expected-utility-maximization
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which acknowledges cognitive limitations, SbEU (Noban-
degani et al., 2018), can provide a metacognitively-rational
process-level account of a prominent contextual effect in
risky decision-making: the decoy effect (e.g., Mohr et al.,
2017). Additionally, our explanation provides a resource-
rational mechanistic account of another behavioral departure
from EU: violations of betweenness (e.g., Camerer & Ho,
1994; Prelec, 1990). Betweenness, a relaxation of the inde-
pendence axiom, has played a prominent role in developing
generalizations of EU and their applications to game theory
and macroeconomics (Camerer & Ho, 1994).

Recent work has shown that SbEU can account for the
St. Petersburg paradox, a centuries-old paradox in human
decision-making (Nobandegani, da Silva Castanheira, Shultz,
& Otto, 2019a), and can provide a resource-rational mecha-
nistic account of (ostensibly irrational) cooperation in one-
shot Prisoner’s Dilemma games, thus successfully bridging
between game-theoretic decision-making and risky decision-
making (Nobandegani, da Silva Castanheira, Shultz, & Otto,
2019b). There is also experimental confirmation of a coun-
terintuitive prediction of SbEU: Deliberation leads people to
move from one well-known bias, framing effect, to another
well-known bias, the fourfold pattern of risk preferences (da
Silva Castanheira; Nobandegani, & Otto, 2019).

Notably, the present study is simultaneously guided by,
and consistent with, two empirically well-supported assump-
tions: (1) In probabilistic reasoning and judgment, a cognitive
system accumulates information through sampling (e.g., Vul
et al., 2014; Battaglia et al. 2013; Lake et al., 2017; Ger-
shman, Horvitz, & Tenenbaum, 2015; Hertwig & Pleskac,
2010; Griffiths et al., 2012; Gershman, Vul, & Tenenbaum,
2012; Bonawitz et al., 2014), and (2) People engage in pair-
wise comparisons when choosing between multiple alterna-
tives (e.g., Russo & Rosen, 1975; Noguchi & Stewart, 2014).

Camerer and Ho (1994) provide evidence suggesting that
people are more likely to violate the independence and the
betweenness axioms when presented with single-stage gam-
bles than with multi-stage gambles (wherein, with some prob-
ability, the agent is presented with one risky gamble, and,
with some other probability, with a different risky gam-
ble). The present study particularly focused on single-stage
gambles. Future work should investigate if the resource-
rational process-level explanation presented in this work
could also account for the forgoing tendency experimentally
documented by Camerer and Ho (1994).

There have been several recent studies (see Lieder & Grif-
fiths, 2018, for a review) attempting to show that many well-
known (purportedly irrational) behavioral effects and cogni-
tive biases can be understood as optimal behavior subject
to computational and cognitive limitations (e.g., Griffiths,
Lieder, & Goodman, 2015; Nobandegani, 2018; Lieder, Grif-
fiths, Huys, & Goodman, 2018). The present study con-
tributes to this line of work by providing a resource-rational
process-level explanation of two (purportedly irrational) ef-
fects in risky decision-making. As such, our work suggests

an alternative perspective on evaluating human rationality:
To judge human rationality not by whether human behav-
ior respects a set of axioms and/or principles (e.g., the in-
dependence axiom, the betweenness axiom, etc.), but by the
extent to which human judgment and decision-making is in
accord with rational process models acknowledging compu-
tational and cognitive limitations (e.g., Lieder & Griffiths,
2018; Nobandegani, 2018).

While the foregoing approach to evaluating human ratio-
nality is still in its infancy, and much work is needed to inves-
tigate the efficacy of this perspective, we hope to have made
some progress in this direction.

Appendix
Proof of Theorem 1
There are three possible pairs (T,C),(T,D),(C,D) that the
decision-maker can begin with. In what follows we consider
each possibility in turn, showing that only starting with the
pair (C,D) grants the occurrence of risky DE.
Case 1. Starting with the pair (T,C):

P(T |{T,C,D}) = P(T |{T,C})P(T |{T,D})≤ P(T |{T,C}).

The right-hand side inequality immediately follows from the
basic axiom in probability that P(T |{T,D})≤ 1.
Case 2. Starting with the pair (T,D):

P(T |{T,C,D}) = P(T |{T,D})P(T |{T,C})≤ P(T |{T,C}).

The right-hand side inequality immediately follows from the
basic axiom in probability that P(T |{T,D})≤ 1.
Case 3. Starting with the pair (C,D):

P(T |{T,C,D}) = P(C|{C,D})P(T |{T,C})+
P(D|{C,D})P(T |{T,D}) (8)

Under the plausible assumption that P(T |{T,D}) >
P(T |{T,C}) (due to the fact that T dominates D), it follows
that the right-hand side of Eq. 8 is greater than P(T |{T,C}),
hence granting the occurrence of risky DE.

This completes the proof of Theorem 1. �
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Abstract
Human rationality is predominantly evaluated by the extent to
which the mind respects the tenets of normative formalisms
like logic and probability theory, and is often invoked by ap-
pealing to the notion of optimality. Drawing mainly on Si-
mon’s bounded rationality principle, there has been a surge in
the understanding of human rationality with respect to the lim-
ited computational and cognitive resources the mind is faced
with. In this work, we focus on another fairly underappreci-
ated yet crucial facet of rationality, robustness: insensitivity
of a model’s performance to miscalculations of its parameters.
We argue that an integrative pursuit of three facets (optimal-
ity, efficient use of limited resources, and robustness) would
be a fruitful approach to understanding the extent of human
rationality. We present several novel formalizations of robust-
ness and discuss a recently proposed metacognitively-rational
model of risky choice which is surprisingly robust to under-
and over-estimation of its focal parameter, nicely accounting
for well-known framing effects in human decision-making un-
der risk. We close by highlighting the ubiquitous presence of
robustness in natural as well as artificial realms, and the impli-
cations of our work for rationalistic approaches to understand-
ing human cognition at the algorithmic level of analysis.
Keywords: bounded rationality; robustness; rational process
models; heuristics; metacognition

1 Introduction
Practical applications of complex algorithms to solve prob-
lems may not always prove to be the ideal approach to
real world problems. Indeed, there are circumstances in
which simple heuristics outperform optimal process mod-
els (Gigerenzer, 2008, 2010). A good example is that of
Harry Markowitz previously outlined by Gigerenzer (2010).
Markowitz is best known for his optimal asset-allocation
model known as mean-variance portfolio, for which he won
a Nobel prize in economics. However, when it came to his
investments for retirement, he relied on a simpler intuitive
heuristic known as the 1/N heuristic: allocate your resources
equally to each of N alternatives (Gigerenzer, 2007). In
fact, it has been shown that 1/N heuristic outperforms mean-
variance portfolio which is sensitive to sampling error unless
there are sufficiently many samples. In contrast, except for
N which can be trivially set based on the number of invest-
ment options available to the agent, 1/N does not have any
free parameters to estimate (Gigerenzer, 2010). Even when
N is relatively small (N = 50), one needs a large amount of
data, approximately 500 years of stock data, in order to out-
perform the simple 1/N heuristic. This is far more data than
are available to the average investment firm (DeMiguel, Gar-
lappi, & Uppal, 2009). Surely, a model like this cannot rea-
sonably be considered as truly rational as attempted imple-

mentations would prove to be impractical. Process models
which require gargantuan amounts of data to provide accu-
rate parameter estimates do not possess the robustness nec-
essary to be considered as rational in uncertain environments
(Gigerenzer, 2008). Considerations of robustness when eval-
uating rationality of process models are far too scarce in the
psychological literature.

There have been many attempts to define human rationality
with respect to normative formalisms like logic and probabil-
ity theory. In doing so, the notion of optimality is often in-
voked. Anderson’s (1991) rational analysis approach specifi-
cally characterizes rationality as the extent to which a model
approximates or attains optimality with respect to some rea-
sonable objective (see also Chater & Oaksford, 1999). How-
ever, recent work has drawn on Simon’s (1957, 1972) prin-
ciple of bounded rationality to temper rationality by placing
limitations on this model (e.g., Icard, 2014; Griffiths, Lieder,
& Goodman, 2015, Nobandegani, 2018).

In this paper, we focus on an often overlooked, yet, crucial,
factor in understanding human rationality: robustness. To
corroborate this view, we discuss a recent metacognitively-
rational model of Availability bias which is surprisingly ro-
bust to under- and over-estimation of its focal parameter,
and which accounts for well-known framing effects in hu-
man decision-making under risk: the fourfold pattern of risk
preferences in outcome probability (Kahneman & Tversky,
1992) and magnitude (Markovitz, 1952; Scholten & Read,
2014). We further elaborate on the key role of robustness at
the cognitive and meta-cognitive levels, and articulate how
robustness, along with principles of optimality and efficient
use of limited resources, naturally leads to a key, yet, often
overlooked, cognitive level: meta-metacognition. We present
several formalizations of the notion of robustness, and close
by discussing how various recent rationalistic approaches to
cognition at the algorithmic level (rational process models,
Griffiths et al., 2009, 2012) could be integrated with robust-
ness, simultaneously enabling the pursuit of optimality, effi-
cient use of limited resources, and robustness.

2 Facets of Human Rationality
In what follows, we first overview the two main facets of ra-
tionality predominately discussed in the psychological litera-
ture, and then turn our attention to a key, yet often overlooked,
dimension of human rationality: robustness.

Optimality Perhaps the best characterized and extensively
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discussed facet of rationality is optimality. Optimality has
been portrayed as the extent to which a model satisfies some
objective (see Anderson, 1991, and Chater & Oaksford 1999).
Models generally have as their objective the minimization or
maximization of some objective function, or a combination
thereof. For example, minimizing sum-of-squared error or
cross entropy in training neural networks, minimizing proba-
bility of error in decision-making as in the Bayesian decision
rule (Poor, 2013), maximizing expected utility as in expected
utility theory (Von Neumann & Morgenstern, 1955), or min-
imizing the maximum probability of error as in the minimax
decision rule (Poor, 2013). A model is considered optimal to
the extent that it attains the set objectives. Thus, this facet
of rationality depends on both the objective and the outcome,
without regards to the context in which the cognitive system
is operating. Surely, this cannot be taken as a comprehensive
evaluation of rationality as it ignores many important factors
affecting a cognitive system’s performance, e.g., environmen-
tal uncertainty, lack of information, resource limitations, etc.

The importance of optimality—in evaluating what it means
to be rational—is unquestionable. However we argue, like
many others before us (Icard, 2014; Griffith et al., 2015;
Nobandegani, 2018; Gigerenzer, 1998, Lewis, Howes, &
Singh, 2014; Howes, Lewis, & Vera, 2009; Russell, Stuart
& Subramanian, 1995; Russel 1997, inter alia), that there are
other factors to take into consideration.

Economy In recent years, many have taken inspiration from
Simon’s (1957) bounded rationality to expand our under-
standing of human rationality. This concept is heavily based
on the limitations of cognitive and computational resources
imposed on the model when considering rationality. A
boundedly rational agent need not fully optimize but find a
solution which only satisfices certain criteria given the lim-
itations at hand—both environmental and internal (Simon,
1957). The emphasis here is primarily on the circumstances
and conditions under which the cognitive system operates,1

highlighting the importance of the cognitive system’s quest
for economy: the economical use of limited computational
and cognitive resources (e.g., time, memory, information). As
opposed to optimality, which is predominately invoked with a
disregard for such contextual limitations, the concept of econ-
omy is context-dependent. The concept of economy and its
role in theorizing about human cognition are mainly pursued
under titles like ecological rationality (Gigerenzer, 1998;
Gigerenzer & Todd, 2012), algorithmic rationality (Halpern
& Pass, 2011), bounded-optimality (Russell, Stuart & Sub-
ramanian, 1995; Russel 1997), boundedly rational analy-
sis (Icard, 2014), resource-rationality (Griffiths et al., 2015),
computational rationality (Lewis, Howes, & Singh, 2014),
and rational minimalist program (Nobandegani, 2018).

Importantly, here there are broadly two approaches to
economy. One assumes there is a necessary trade-off to be

1A reader familiar with Minimalist Program in linguistics
(Chomsky, 1993), could see clear connections between the concept
of virtual conceptual necessity and the topic under discussion here.

made between the two facets (e.g., Icard, 2014; Griffiths
et al., 2015, Russell, Stuart & Subramanian, 1995; Russel
1997), while the other views the facets as largely independent
(e.g., Gigerenzer, 2010; Nobandegani, 2018). For example,
it has been surprisingly demonstrated that economical pro-
cess models—often referred to as heuristics (fast-and-frugal,
Gigerenzer, 2008)—can outperform optimal process models
(Gigerenzer, 2010), thereby establishing that, at least in some
settings, optimality and economy need not trade off.

Also interestingly, using limited knowledge, some algo-
rithms can outperform or match algorithms which integrate
all information available (i.e., multiple regression) (Gigeren-
zer, 2010). Drawing on the previously discussed example of
investment, superior performance of the heuristic is chiefly
due to its robustness with respect to uncertainty in parameter
estimates (Gigerenzer, 2008). Only under extraordinary cir-
cumstances can the optimal, mean-variance portfolio model
outperform the simple 1/N heuristic.

In the following sections, we shed light on another aspect
of rationality which is not extensively discussed in the liter-
ature: robustness. Examples of robustness as an objective
criterion are provided as well as several formalizations of it,
providing formal and precise characterizations of this aspect
and facilitating future evaluations of human rationality.

3 On Robustness
Although the concept of robustness is not new in the liter-
ature, it has been largely overlooked in discussions of ra-
tionality. Robustness has appeared previously in academic
writing in a specialized and narrow sense (e.g., Gigerenzer,
2008; Lempert & Collins, 2007), largely without precise for-
mal characterizations. In the field of decision-making, where
attempts have been made to tackle the issue of uncertainty in
model specifications (specifically the probability distributions
of the parameters), robustness has been discussed (Lempert &
Collins, 2007). There, importance is placed on not achieving
the optimal solution, but dealing with uncertainty—trading
off optimality for less sensitivity to violated assumptions
(Lempert & Collins, 2007). We propose a similar view when
evaluating process models of cognition in general. Robust
models should be insensitive to inaccuracies of their parame-
ters, with little or no decline in their performance. An agent
should use models allowing them to perform optimally or
near-optimally, regardless of the limitations imposed on them
and possible miscalculations of model parameters.

At first, it may seem that robustness and economy are ad-
dressing the same concerns. However, further investigation
of the implications of robustness as an independent facet of
rationality reveals that these two facets are indeed distinct.

In fact, we can force a model to be economical (i.e., fru-
gal) by restricting its use of resources (e.g., by limiting the
amount of information the model is allowed to process). Nev-
ertheless, this does not make the model robust with respect to
miscalculations of its parameters. Let us elucidate this un-
derstanding in the context of a recent model by Piantadosi
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(2018). Surprisingly, Piantadosi (2018) presents a single-
parameter model capable of fitting any scatter plot, on any
number of points, to arbitrary precision. Despite having only
a single parameter, this model is overly sensitive to parameter
imprecision. We can have this model estimate its single pa-
rameter using only one randomly chosen point from the target
scatter plot, thereby forcing the model to highly respect econ-
omy. Nonetheless, this does not alleviate the oversensitivity
of the model with respect to parameter imprecision: Robust-
ness is an intrinsic property of a model (either a model is
sensitive to inaccuracies in parameter estimation or not), and
it is independent of whether a model is economical.

Economy is primarily concerned with the strategic use of
limited resources (e.g., computational, cognitive, etc.). In
contrast, robustness is about insensitivity to inaccuracies in
parameter estimation; the sources of these inaccuracies often
boil down to the agent’s incomplete knowledge of, and uncer-
tainty about, its environment. However, incomplete knowl-
edge and uncertainty are not the only factors responsible for
an agent’s inability to precisely estimate parameters.

There are several sources of uncertainty. First, uncertainty
can come from changes in the environment. If one is attempt-
ing to estimate a value which changes over time, an estimate
would be likely erroneous. Second, uncertainty can come
from limited knowledge. An agent may not know all rele-
vant information for the task at hand.2 Third, even if an agent
has all the relevant knowledge at their disposal, the compu-
tational power needed to accurately estimate parameters may
be outside the agent’s computational capacity.

Thus, miscalculations of parameters may be due to external
(e.g., environmental changes) as well as internal (e.g., limited
computational power) constraints. In that light, robustness
can be characterized as preserved performance despite these
constraints. Much like optimality and economy, robustness
serves as a meta-level objective criterion for an intended cog-
nitive level of analysis, reflecting on the quality of the model
developed at that cognitive level.

4 Robustness as an Objective Criterion
In the following, we discuss in greater detail how robustness
can serve as a meta-level objective criterion for human cogni-
tion at two distinct cognitive levels of analysis: the cognitive
and meta-cognitive levels.

4.1 On the Cognitive Level
Reflecting on the robustness of cognitive models leads to a
key level of analysis: metacognition. This level of analysis is
analogous to the considerations afforded to the economy of
cognitive models. To elaborate on the use of robustness as
a meta-level objective criterion, we return to the investment
example. The example of Harry Markowitz has been used to

2More precisely, uncertainty due to unanticipated environmental
changes can be seen as an instance of incomplete knowledge with
respect to future states of the environment. In that sense, the first
source of uncertainty mentioned above is a special case of the second
source.

illustrate the success of heuristics over rational process mod-
els (Gigerenzer, 2010). Here, the optimal strategy is imprac-
tical to use as it requires a sizable amount of data (about 500
years of stock data) to accurately estimate parameter values.
In other words, the optimal asset allocation strategy proposed
by Markowitz (1952) would only result in the best outcome if
the parameter values were known near-perfectly, as in a small
world, but is inferior to heuristics in a large world, where pa-
rameter values need to be estimated from limited samples of
information. The success of heuristics is largely due to the
robustness of their performance afforded by insensitivity to
imperfections in parameter estimates (see Gigerenzer, 2008).

Although the literature emphasizes limited number of sam-
ples as the main source of inaccuracies in parameter esti-
mation, this account is incomplete. Gigerenzer (2010) ar-
gues that the optimality of mean-variance portfolio hinges on
accurate parameter estimation using only a limited number
of available samples. However, even if the samples would
abound, one would need an extraordinary amount of compu-
tational power to estimate parameters adequately. Processing
500 years of stock data is no trivial task.

A noteworthy example of computational intractability be-
ing the primary source of miscalculations (as opposed to in-
complete knowledge) eminently features in the problem of
finding Nash equilibria in game theory. Even when every-
thing about the game is known (aka complete-knowledge
games), finding a (mixed) Nash equilibrium is computa-
tionally intractable (more precisely, it is PPAD-complete,
Daskalakis et al., 2009), attesting to the claim that miscalcu-
lations may sometimes result from computational complexity
barriers, not lack of information.

4.2 On Meta-Cognitive Level
Following the logic of the previous section, reflections on ro-
bustness can be applied to metacognitive models leading to
another key level of analysis: meta-metacognition. “Meta-
metacognition” is scarcely used in the literature. Previous
uses have either been in a narrow sense (e.g., Arnold, 2013;
Buratti & Allwood, 2012), or as a term whose content is not
concretely specified, characterized broadly as “reflection” on
the metacognitive level without articulating precisely what
that reflection means (e.g., Renkl et al., 1996; Efklides & Mi-
sailidi, 2010). In what follows, we seek to clarify what meta-
metacognitive considerations entail and provide concrete ex-
amples.

Research on metacognitively-rational models is still in its
infancy, and little work is done on this exciting topic (e.g.,
Lieder & Griffiths, 2017; Nobandegani, da Silva Castanheira,
Otto, & Shultz, 2018). A good example of such models is
the recent work by Lieder and Griffiths (2017) on rational
models of strategy selection. Despite its great performance, a
pre-theoretic evaluation of this model suggests that it would
not score high on robustness as its performance largely hinges
on accurate parameter estimations. In this model, strategies
(e.g., heuristics) are evaluated based on their previous per-
formance on problems which share similar features (Lieder
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Figure 1: Accounting for the fourfold pattern of risk preferences in outcome probability (Kahnemnan & Tversky, 1992) using Nobandegani
et al.’s (2018) metacognitively-rational model. Each figure plots the probability of choosing the risky choice, depending on the probability
of outcome involved in the risky choice (p) and the amount of outcome in dollars; see Nobandegani et al. (2018) for details. A striking
resemblance can be observed between (a,b,c).

Figure 2: Accounting for the fourfold pattern of risk preferences in outcome magnitude (Markowitz, 1952) using Nobandegani et al.’s (2018)
metacognitively-rational model. Each figure plots the probability of choosing the risky choice, depending on the probability of outcome
involved in the risky choice (p) and the amount of outcome in dollars; see Nobandegani et al. (2018) for details. A striking resemblance can
be observed between (a,b,c).

& Griffiths, 2017), and the perceived benefits from applying
a given strategy (e.g., rewards) are contrasted with the costs
(e.g., opportunity costs of the strategy’s execution time) to
supply a “value of computation” (Lieder & Griffiths, 2017;
Horvitz, 1990). To evaluate the performance of a given strat-
egy, accurate estimates of pivotal features of the problem are
needed. However, in complex environments where these es-
timates are not readily available or easily computable, such a
metacognitively-rational model for strategy selection would
likely fail to satisfy robustness considerations. Therefore, one
could say that such metacognitively-rational models are not
meta-metacognitively rational.

Recent work on rational process models has proven to suc-
cessfully capture all the three facets of optimality, economy,
and robustness. In particular, drawing on the work by Lieder,
Griffiths, & Hsu (2017) which applied importance sampling
to estimate the expected utility of an action, recent work
by Nobandegani et al. (2018) provides a metacognitively-
rational process model of Availability Bias (Tversky & Kah-
neman, 1972), and the fourfold pattern of risk preferences
in probability outcome (Tversky & Kahneman, 1992) and in
outcome magnitude (Markowitz, 1952), by rationally taking
into consideration the amount of time available for decision-
making. Concretely, the model takes into account the number
of samples the decision-maker draws before making a deci-
sion (Nobandegani et al., 2018). This model is in accord with
a recent, empirically supported line of research suggesting

that people draw very few samples (i.e., few mental simu-
lations) in reasoning and decision-making (Vul et al., 2014;
Battaglia et al. 2013; Lake et al., 2017; Gershman, Horvitz,
& Tenenbaum, 2015; Hertwig & Pleskac, 2010; Griffiths et
al., 2012; Gershman, Vul, & Tenenbaum, 2012; Bonawitz et
al., 2014). Further investigation of this metacognitive model
reveals that the performance of the model depends on the ac-
tual number of samples the model gets to draw (denoted by
sreal), and not on the number of samples it anticipates draw-
ing (denoted by sexpt, with sexpt serving as a priori estimate of
sreal). In other words, the model is robust with respect to in-
accurate estimation of the number of samples it gets to draw,
both under- and over-estimations. Sensitivity analysis shows
that the model is indeed surprisingly robust with respect to its
focal parameter sexpt. Consistent with the past literature pro-
viding evidence for people drawing very few samples in rea-
soning and decision-making, when sreal assumes a value of 2,
the fourfold pattern of risk preferences in outcome probabil-
ity persistently emerges for exact, under- and severely over-
underestimated values of sexpt (i.e., sexpt = 2, sexpt = 1, and
sexpt = 108, respectively); see Fig. 1.

The model is also strikingly robust when producing more
nuanced patterns of behavior like Markowitz’s (1952) four-
fold pattern of risk preference in outcome magnitude; see
Fig. 2. In fact, it was this model which inspired our consid-
erations of the importance of robustness in evaluating ratio-
nal cognitive models. (Thus, process models satisfying near-
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perfectly all three facets of rationality are indeed possible.)
Nevertheless, Nobandegani et al. (2018) failed to provide a
formal characterization of the robustness of their model.

In the following section, we formalize robustness to pro-
vide precise characterizations of this notion and facilitate fu-
ture evaluations of rationality. As we show, our work addi-
tionally allows us to formally characterize the robustness of
the Nobandegani et al.’s (2018) model and the 1/N heuristic.

5 Formalization of Robustness
We first consider robustness with respect to real-valued pa-
rameters, and finally show how these formalizations can be
adapted to the discrete-valued parameters case.

Def. 1 (ith-order locally-robustness) Model Mθ parame-
terized by θ is ith-order locally-robust at θ = θ0 iff Mθ’s per-
formance measure T [Mθ] is insensitive to infinitesimal devi-
ations of θ from θ0, all the way up to the ith-order. That is,
formally, ∀ j ≤ i, ∇

( j)
θ=θ0

T [Mθ] = 0, where ∇
( j)
θ=θ0

(·) denotes
the jth-order gradient w.r.t. θ and evaluated at θ = θ0.

Def. 2 (ith-order ε-locally-robustness) Model Mθ parame-
terized by θ is ith-order ε-locally-robust at θ= θ0 iff Mθ’s per-
formance measure T [Mθ] satisfies: ∀ j≤ i, |∇( j)

θ=θ0
T [Mθ]| ≤ ε.

Definitions 1 and 2 are founded on an important under-
standing based on the concept of Taylor series in calculus:
The more number of higher-order derivatives of function f (x)
are zero (or nearly-zero) at x = x0, the wider and flatter f (x)
is in the neighborhood of x = x0. Extending Definitions 1
and 2 to the case of multi-parameter models (as opposed to a
single-parameter model Mθ), we arrive at the following:

Def. 3 (ith-order singly-locally-robustness) Model M
θ,θ
′

parameterized by {θ,θ′} is ith-order singly-locally-robust at
(θ = θ0,θ

′
= θ

′
0) iff M

θ,θ
′ ’s performance measure T [M

θ,θ
′ ]

is insensitive to infinitesimal deviations of θ from θ0, all the
way up to the ith-order, when θ

′
is held fixed at θ

′
0 (denoted by

θ
′
:= θ

′
0). That is, formally, ∀ j≤ i, ∇

( j)

θ=θ0|θ
′ :=θ

′
0
T [M

θ,θ
′ ] = 0,

where ∇
( j)

θ=θ0|θ
′ :=θ

′
0
(·) denotes the jth-order gradient w.r.t. θ

′

and evaluated at θ
′
= θ

′
0, when θ

′
is held fixed at θ

′
0.

Def. 4 (ith-order ε-singly-locally-robustness) Model
M

θ,θ
′ parameterized by {θ,θ′} is ith-order ε-singly-locally-

robust at (θ = θ0,θ
′
= θ

′
0) iff M

θ,θ
′ ’s performance measure

T [M
θ,θ
′ ] satisfies: ∀ j ≤ i, |∇( j)

θ=θ0|θ
′ :=θ

′
0
T [M

θ,θ
′ ]| ≤ ε.

Definitions 1 to 4 can be straightforwardly adapted to to the
case of discrete-valued parameters, with operations ∇

( j)
θ=θ0

(·)
and ∇

( j)

θ=θ0|θ
′ :=θ

′
0
(·) being replaced, respectively, with the op-

erations D( j)
θ=θ0

(·) and D( j)

θ=θ0|θ
′ :=θ

′
0
(·) defined as follows:

D( j)
θ=θ0

f (θ),
(

f (θ0 + i)− f (θ0)
)
/i, (1)

D( j)

θ=θ0|θ
′ :=θ

′
0
g(θ,θ

′
),

(
g(θ0 + i,θ

′
0)−g(θ0,θ

′
0)
)
/i. (2)

Eyeballing Figs. 1 and 2 reveals that Nobandegani et
al.’s (2018) metacognitively-rational model is approximately3

(108 − 2)th-order singly-locally-robust at (sexpc = 2,sreal =
2), with the performance measure being the most proba-
ble choice suggested by the model (i.e., the preference for
the risky choice vs. the safe one). Note that, given that
Definition 4 is a relaxation of Definition 3, Nobandegani et
al.’s (2018) model is also approximately (108− 2)th-order ε-
singly-locally-robust at (sexpc = 2,sreal = 2), ∀ε ∈ R+.

Our formalism also allows us to provide a formal charac-
terization of the robustness of 1/N heuristic. Using Def. 2,
it is easy to mathematically show that, for any N0, i ∈ N, the
1/N heuristic is ith-order 0.5-locally-robust at N = N0, with
the performance measure being the portion of resources to be
allocated to each of N investment alternatives.

6 General Discussion
Examples of robustness in natural and man-made artifacts are
abundant and often ensured by adding redundancy. In biolog-
ical systems, robustness can be characterized as the mainte-
nance of some functionality (e.g., phenotype) despite pertur-
bations (e.g., genetic variation) and achieved through many
means, one being redundancy (Kitano, 2004; Felix, 2015).
At the genetic level, this can be seen as genes with overlap-
ping products or at the network level with different mech-
anisms serving the same purpose: glycolysis and oxidative
phosphorylation both produce ATP under different conditions
(anaerobic and aerobic respectively) (Kitano, 2004). Modu-
larity and decoupling of low-level variations from high-level
functionality (e.g., genotype and phenotype) are also seen as
sources of robustness in a biological system (Felix, 2015).
Furthermore, a modular view of the brain fits nicely with
the concept of robustness: Locally perturbations of a mod-
ule should leave other modules unaffected. In fact, Fodor’s
(1983) view of low-level system modularity (e.g., perception
and language) provides another example of modularity of bi-
ological systems. Similarly, decoupling of higher-level sys-
tems from lower-level systems is in accordance with the pro-
posed view of robustness. The ubiquitous presence of robust-
ness in biological systems suggests its importance in success-
ful fulfillment of a system’s goals (Felix, 2015).

Similarly, in artificial systems robustness is engineered into
systems by particularly capitalizing on the benefits of adding
redundancy to systems. For example, network architecture
comprises several modules with overlapping functionalities,
as opposed to a single integrative module (Kurose & Ross,
2009). In information theory, robustness is featured in er-
ror detection/correction codes for communicating informa-

3The rationale behind using the term “approximately” is that
there could be some (x,y)-coordinates whose values are not per-
fectly invariant across Fig. 1(a-c) (and, likewise, across Fig. 2(a-c)).
However, note that even if such (x,y)-coordinates do exist, they are
very scarce, as evidenced by the striking resemblance of Fig. 1(a-c)
(and, likewise, Fig. 1(a-c)). We could have provided a more rig-
orous characterization of this possibility using notions analogous
to almost-everywhere in measure theory. However, for the sake of
keeping the formalism simple, we refrained from that.
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tion over a noisy medium, which by introducing redundancy
into the transmitted code ensures that possible errors can be
detected/corrected at the receiver (Cover & Thomas, 2012).

6.1 Toward Robust Models

Outperforming optimal models when accurate-enough pa-
rameter estimates cannot be obtained is evidence for their
lack of robustness (Gigerenzer, 2008). The success of recent
models at capturing and providing metacognitively-rational
bases for intricate behavior patterns (Nobandegani et al.,
2018) suggests that many of the findings in the psychol-
ogy literature which are often considered “irrational” may
be well-explained by appealing to metacognition or meta-
metacognition. Indeed, the modeling work which inspired
these reflections did not explicitly consider robustness. How-
ever, considerations of robustness should not be left up to
serendipity. Rather, we believe that robustness of process
models should be another factor in the modeler’s objective
set. Unlike considerations of sensitivity analysis, optimality
and economy are not treated as an after-thought. Why should
robustness be any different? Nobandegani et al.’s (2018)
metacognitively-rational model achieves all three facets of ra-
tionality near-perfectly: optimality, economy and robustness.

Several frameworks for theorizing about cognitive process
models have been proposed to simultaneously attain optimal-
ity and economy (e.g., Icard, 2014; Griffiths et al., 2015;
Nobandegani, 2018). An important question is whether and
how robustness can be integrated into these frameworks?
Drawing on statistical learning theory and machine learning,
we proposed a possible solution.

But first it is important to highlight a key connection be-
tween the concept of robustness discussed here and that of
over-fitting in statistical learning theory and machine learn-
ing. If models (or theories) are selected from overly complex
hypothesis sets, the learned model would likely overfit the
observed data and would not generalize well. Importantly, an
over-fitting model would also be fragile (as opposed to ro-
bust), since slight perturbations of the training patterns would
lead to the selection of a radically different model. In that
light, over-fitting models are fundamentally unrobust.

Inspired by these understandings, we suggest that cur-
rent modeling frameworks should search for algorithms that
satisfy some general characteristics ensuring robustness. A
prominent such characteristic is for hypothesis sets to be not
overly complicated, to avoid over-fitting. Importantly, several
important theoretical measures of complexity of a hypothe-
sis set have been already extensively studied in the statisti-
cal leaning theory, e.g., VC-dimentsion (Vapnik & Chervo-
nenkis, 1971), Natarajan dimension (Natarajan, 1989), and
Rademacher complexity (see Bartlett & Mendelson, 2002).

Although previous work has largely focused on the aspects
of optimality and economy, underplaying the role of robust-
ness in rationality, we hope to have given robustness the at-
tention it truly deserves.
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Abstract

Investigations into human reasoning, judgment and decision-
making have led to the finding of numerous cognitive biases
and fallacies, with new ones continually emerging, leading to
a state of affairs which can fairly be characterized as the cog-
nitive fallacy zoo! In this work, we formally present a prin-
cipled way to bring order to this zoo. We introduce the idea
of establishing implication relationships (IRs) between cogni-
tive fallacies, formally characterizing how one fallacy implies
another. IR is analogous to, and partly inspired by, the funda-
mental concept of reduction in computational complexity the-
ory. We present several examples of IRs involving experimen-
tally well-documented cognitive fallacies: base-rate neglect,
availability bias, conjunction fallacy, decoy effect, framing ef-
fect, and Allais paradox. We conclude by discussing how our
work: (i) allows for identifying those pivotal cognitive falla-
cies whose investigation would be the most rewarding research
agenda, and importantly (ii) permits a systematized, guided re-
search program on cognitive fallacies, motivating influential
theoretical as well as experimental avenues of future research.
Keywords: Cognitive biases and fallacies; cognitive fallacy
map; cognitive processes;

1 Introduction
Over the past few decades, empirical investigations into hu-
man reasoning, judgment and decision-making have led to
the discovery of new cognitive fallacies, giving rise to a
large, ever-growing number of documented biases and falla-
cies, a state of affairs which can fairly be characterized as a
zoo1 of cognitive fallacies (e.g., Tversky & Kahneman, 1973,
1981b). A glance at over a hundred cognitive fallacies listed
on Wikipedia attests to this claim (see Fig. 1).

In this work, we formally present a principled way to bring
order to the cognitive fallacy zoo, allowing for a precise char-
acterization of how various fallacies relate to one another.
We introduce the idea of establishing an implication relation-
ship (IR) (denoted by  ) between a pair of cognitive falla-
cies, formally characterizing how the occurrence of one fal-
lacy implies another. More formally, for two cognitive fal-
lacies A,B, the expression A  B denotes that A leads to
B, i.e., the occurrence of A logically implies the occurrence
of B. As a proof-of-concept, we present several examples
of IRs involving experimentally well-documented cognitive
fallacies: base-rate neglect (Tversky & Kahneman, 1981a),
availability bias (Kahneman & Tversky, 1973), conjunction
fallacy (Kahneman & Tversky, 1983), decoy effect (Huber,

1The term ‘cognitive fallacy zoo’ is inspired by an
analogous terminology in the computational complex-
ity literature, called ‘complexity zoo.’ For details, visit:
https://complexityzoo.uwaterloo.ca/Complexity Zoo

Joel, & Puto, 1982), framing effect (Tversky & Kahneman,
1981b) and Allais paradox (Allais, 1953).

The idea of establishing IRs between pairs of cognitive
fallacies is analogous to, and partly inspired by, the founda-
tional concept of reduction in computational complexity the-
ory (see Karp, 1972; Papadimitriou, 2003; Arora & Barak,
2009; Sipser 2006), which has played a profound role in the-
oretical computer science, allowing to formally establish how
various computational problems relate to each other and how
the solution to one sheds light on that of another. After a brief
discussion on the role of reduction in computational com-
plexity, we return to the formal characterization of the notion
of IR and subsequently present several examples of IRs in-
volving experimentally well-documented cognitive fallacies.
But first, some historical notes on reduction in computational
complexity.

2 Reduction in Computational Complexity
The notion of reduction plays a fundamental role in computa-
tional complexity theory, and in theoretical computer science
more generally. Informally put, a computational problem A
is reducible to computational problem B, if every instance of
A can be transformed into an instance of B. Therefore, the
reduction of A to B offers an indirect way of solving A, by
first reducing A to B, and then solving B.

To further clarify the idea of reduction, we provide two
examples. As a first example, consider two well-known
computational problems, namely, HAMILTONIAN-PATH and
HAMILTONIAN-CYCLE. The HAMILTONIAN-PATH problem
is defined as follows: given a (directed) graph G, is there
a path which visits every node of G exactly once? The
HAMILTONIAN-CYCLE is defined as follows: given a (di-
rected) graph G, is there a cycle which visits every node of
G exactly once? It turns out that HAMILTONIAN-CYCLE
is reducible to HAMILTONIAN-PATH. Given that the defini-
tions HAMILTONIAN-CYCLE and HAMILTONIAN-PATH are
closely related (since a cycle is a path with its endpoints co-
inciding), this reduction is not especially surprising.

As a second example, let us consider HAMILTONIAN-
PATH together with the 3-COLORABILITY problem, defined
as follows: given a graph G and 3 distinct colors, can you
color the nodes of G such that the endpoints of every edge
are colored differently? At fist glance, the HAMILTONIAN-
PATH and 3-COLORABILITY appear to have no connec-
tion with one another whatsoever. Surprisingly, however, it
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Figure 1: Cognitive fallacies listed on Wikipedia. Besides qualitatively categorizing them into classes depending on the context in which
they occur, to date there exists no principled way of bringing order to these fallacies, allowing for formally characterizing how one fallacy
relates to another.

turns out that HAMILTONIAN-PATH can be reduced to 3-
COLORABILITY.2 Thus, the question of whether a graph G
has a Hamiltonian path can be resolved by answering if a cor-
responding graph G′ is 3-colorable.

The idea of reduction has had profound implications for
theoretical computer science, allowing for formally connect-
ing seemingly unrelated computational problems to one an-
other (see Fig. 2(a)). Had reduction not been introduced into
theoretical computer science, every computational problem
would have had to be investigated on its own, because the so-
lution to one would not have shed any light on the solution
to others. It was a major breakthrough when Karp (1972)
showed that a key computational problem called SATISFIA-
BILITY could be reduced to a number of other well-known
computational problems, a contribution for which he was
eventually awarded the Turing award in 1985. It is also worth
noting that the (in)famous P vs. N P problem in theoretical
computer science, at its core, concerns the possibility or im-
possibility of establishing a particular form of reduction.

2The reduction can be established by a chain of straightforward
reductions: HAMILTONIAN-PATH to SAT, SAT to 3SAT, and fi-
nally, 3SAT to 3-COLORING.

One might wonder if an idea broadly analogous to reduc-
tion in computational complexity could be introduced into
cognitive science, allowing for formally connecting seem-
ingly different cognitive fallacies with one another, and,
hence, bring order to the cognitive fallacy zoo in a principled
manner. Primarily motivated by this, and, by analogy with
the notion of reduction in theoretical computer science, we
introduce the idea of establishing IRs between cognitive fal-
lacies, formally characterizing how one fallacy would imply
another.

3 Implication Relationships: Formalization

In what follows, we first formally introduce the idea of estab-
lishing an implication relationship (IR) (denoted by  ) be-
tween a pair of cognitive fallacies, followed by several exam-
ples of IRs involving experimentally well-documented cogni-
tive fallacies.

Definition (Implication Relationship). For two cognitive
fallacies/biases A,B, the fallacy A is said to implicate the fal-
lacy B (denoted by A B) if and only if the occurrence of A
logically implies the occurrence of B.
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Figure 2: (a) A map showing reductions (directed gold lines) between a set of important computational problems (ovals) in theoretical
computer science, formally characterizing how one problem is related to another. The first demonstration of a particular reduction from one
problem to another is listed on the corresponding arrow between the two. (b) The IRs formally established in this paper, among well-known
cognitive fallacies (AvB: Availability bias, BRN: base-rate neglect, CF: conjunction fallacy, APX: Allais paradox, DE: Decoy effect, FE:
framing effect). Letters c (for causal) and l (for logical) on the arrows specify the type of an IR; see the Discussion section for details.

4 Examples on Implication Relationships
As a proof-of-concept, We next present several examples
of IRs involving experimentally well-documented cognitive
fallacies, namely, base-rate neglect (Tversky & Kahneman,
1981a), availability bias (Kahneman & Tversky, 1973), con-
junction fallacy (Kahneman & Tversky, 1983), decoy effect
(Huber et al., 1982), framing effect (Tversky & Kahneman,
1981b), and Allais paradox (Allais, 1953).

4.1 Case Study 1: Decoy Effect Framing Effect
As our first example, we formally establish an IR between
two well-documented cognitive fallacies, namely, the decoy
effect (DE) and the framing effect (FE).

The Framing Effect (FE): If people produce different re-
sponses for two equivalent tasks, the framing effect (FE) has
occurred (Tversky & Kahneman, 1981b; Kahneman & Tver-
sky, 1984). In that light, FE is a violation of the extension-
ality principle (Bourgeois-Gironde & Giraud, 2009), which
prescribes that two equivalent tasks should elicit the same re-
sponse.

FE is well captured by Tversky & Kahneman (1981b):
Subjects were asked to “imagine that the U.S. is preparing for
the outbreak of an unusual Asian disease, which is expected
to kill 600 people. Two alternative programs to combat the
disease have been proposed. Assume the exact scientific esti-
mate of the consequences of the programs are as follows.” In
one condition, subjects were presented with a choice between

Programs A and B, while in another condition, subjects were
asked to choose between Programs C and D:

Program A: 200 people will be saved.
Program B: There is a 1

3 probability that 600 people will
be saved, and a 2

3 probability that no people will be saved.
Program C: 400 people will die.
Program D: there is a 1

3 probability that nobody will die,
and a 2

3 probability that 600 people will die.

Despite the equivalence of these Programs pairs, a majority of
the first group preferred Program A (= C), while a majority
of the second group preferring Program D (= B).

The Decoy Effect (DE): The decoy effect (DE) refers to
a change in people’s preference between two options, when
presented with a third asymmetrically-dominated option, i.e.,
an option which is inferior to one option in all respects, but,
in comparison to the other option, it is inferior in some re-
spects and superior in others. In that light, DE is a violation
of the independence of irrelevant alternative axiom of rational
choice theory (Ray, 1973), which prescribes the following: If
A is preferred to B out of the choice set {A,B}, introducing a
third option X , hence expanding the choice set to {A,B,X},
should not make B preferable to A.

We are now well-positioned to formally present our result.
Proposition 1. The following holds:

DE FE.
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Proof. According to normative principles, preference for
the choice sets {A,B} and {A,B,X} should be the same, with
X being an asymmetrically-dominated option. The rationale
is the following: Since X is inferior to one option in all re-
spects, rationally X should never be chosen; hence, the pref-
erence pattern for the choice sets {A,B} and {A,B,X} should
be identical. Therefore, whenever people’s preference pattern
for the choice sets {A,B} and {A,B,X} differs (which is the
case for DE), it logically implies the violation of the exten-
sionality principle, hence granting the occurrence of FE. This
concludes the proof. �

The message of Proposition 1 is simple: From the stand-
point of normative principles, the two choice sets {A,B}
and {A,B,X} (with X being an asymmetrically-dominated
option) are equivalent, therefore people’s showing different
preference patterns for the two choice sets, as is the case in
DE, is a clear indication of FE. Proposition 1, therefore, for-
mally establishes that the occurrence of DE leads to the oc-
currence of FE.

4.2 Case Study 2: Base-Rate Neglect 
Conjunction Fallacy

As our second example, we formally establish an IR between
another pair of well-documented cognitive fallacies, namely,
the base-rate neglect (BRN) and the conjunction fallacy (CF).
BRN and CF can be characterized as follows.

The Base-Rate Neglect (BRN): Base-rate neglect (BRN)
(Tversky & Kahneman, 1981a) refers to people not consider-
ing prior probabilities in their judgments under uncertainty.

The Conjunction Fallacy (CF): For two events A,B and
presented with evidence e, people judge the probability of the
event A∩B to be greater than that of A (or B), in isolation.
That is, more formally, people judge: P(A∩B|e)>P(A|e). In
that light, CF is a clear violation of the axioms of probability
(since ∀A,B, A∩B⊆ A⇒ P(A∩B|e)≤ P(A|e) ∀e 6=∅; that
is, the probability of a subset of Y , in principle, cannot be
greater than that of Y ).

CF is well captured in the famous Linda experiment by
Tversky and Kahneman (1981). Presented with a description
(e) of Linda, a politically active, single, outspoken, and very
bright 31-year-old female, people overwhelmingly judge that
Linda is more likely to be a feminist bankteller (A∩B) than
to be a bankteller (A).

We are now well-positioned to formally present our result.
Proposition 2. The following holds.

BRN CF.

Proof. Since P(A ∩ B|e) = P(e|A ∩ B)P(A ∩ B) and
P(A|e) = P(e|A)P(A), we have:

P(A∩B|e)
P(A|e)

=
P(e|A∩B)
P(e|A)

P(A∩B)
P(A)

,

where the term P(A∩B)
P(A) indicates the ratio between priors

P(A∩B) and P(A). If BRN occurs (which results in the term

P(A∩B)
P(A) being dropped), it follows that:

P(A∩B|e)
P(A|e)

=
P(e|A∩B)
P(e|A)

.

Assuming that P(e|A∩B)>P(e|A), which is the case in the
context of CF (see the Linda experiment discussed above), it
follows that:

P(A∩B|e)
P(A|e)

=
P(e|A∩B)
P(e|A)

> 1⇒ P(A∩B|e)> P(A|e),

hence CF occurs. This completes the proof. �
In simple terms, Proposition 2 shows that the occurrence

of BRN leads to the occurrence of CF.

4.3 Case Study 3: Allais Paradox Framing
Effect

As our third example, we formally establish an IR between
the Allais paradox (APX) and FE. APX can be characterized
as follows. (See Sec. 4.1 for the characterization of FE.)

The Allais Paradox (APX): The Allais paradox refers to
an observed reversal in participants’ choices in two different
experiments, each of which consists of a choice between two
gambles, A and B, while in fact, according to the indepen-
dence axiom of rational decision-making (Von Neumann &
Morgenstern, 1953), no such a reversal should occur. That is,
although the independence axiom grants the equivalence of
the two experiments, the pattern of people’s preference nev-
ertheless reverses from the first experiment to the second.3

Proposition 3. The following holds:

APX FE.

Proof. The proof is evident from the characterization of
APX given above. Although the independence axiom of ra-
tional decision-making (Von Neumann & Morgenstern, 1953)
grants the equivalence of the two experiments entertained in
APX, the pattern of people’s preference nevertheless reverses
from one to the other. That is, in the case of APX, people
produce different responses for two equivalent experiments.
Therefore, the occurrence of the Allais paradox logically im-
plies the occurrence of the framing effect. This concludes the
proof. �

4.4 Case Study 4: Availability Bias Conjunction
Fallacy

As our final example, we formally establish an IR between
the well-documented Availability bias (AvB) and CF. AvB
can be concisely characterized as follows: (See Sec. 4.2 for
the characterization of CF.)

The Availability Bias (AvB): Extreme events come to
mind easily, people overestimate their probabilities, and over-
represent them in decision-making (Tversky & Kahneman,

3The reader is referred to Allais (1953) for a clear description of
the two experiments.
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1973; Lieder et al., 2018; Nobandegani et al., 2018). For-
mally, people overestimate the probability of an event o, p(o),
proportional to the absolute value of its subjective utility u(o)
(Lieder et al., 2018; Bordalo, Gennaioli, & Shleifer, 2012).
That is, people’s subjective probability of event o, q(o), is
given by4 q(o) ∝ p(o)|u(o)|.

Proposition 4. Let o1 and o2 be two events, and let o∧
denote the event corresponding to the occurrence of o1 and
o2 together, i.e., the one corresponding to the conjunction of
the two events o1 and o2. Assuming that ∀i = 1,2, |u(o∧)| �
|u(oi)|, the following holds:

AvB CF.

Proof. According to the characterization of AvB
given above, q(o∧) ∝ p(o∧)|u(o∧)| and ∀i = 1,2, q(oi) ∝

p(oi)|u(oi)|. We have,

∀i = 1,2,
q(o∧)
q(oi)

=
p(o∧)
p(oi)

|u(o∧)|
|u(oi)|

.

It follows from the axioms of probability that ∀i =

1,2, p(o∧) ≤ p(oi); hence, ∀i = 1,2, p(o∧)
p(oi)

≤ 1. However,

since ∀i = 1,2, |u(o∧)| � |u(oi)|, it follows that |u(o∧)||u(oi)| �
1, ∀i = 1,2. Therefore, altogether, ∀i = 1,2, q(o∧)

q(oi)
> 1 which

implies ∀i = 1,2, q(o∧) > q(oi), granting the validity of the
conjunction fallacy (CF). This concludes the proof. �

The message of Proposition 4 is simple. If people judge
the conjunction of two events to be much more extreme than
each of them individually (i.e., ∀i = 1,2, |u(o∧)| � |u(oi)|),
then the occurrence of AvB leads to the occurrence of CF.

5 General Discussion
In this work, we introduce the notion of implication relation
(IR) between a pair of cognitive fallacies, formally character-
izing how one would logically imply the other.

A crucial initial step in establishing IRs between cogni-
tive fallacies is to provide a characterization of the cognitive
fallacies involved in those IRs, i.e., to specify, for each cog-
nitive fallacy, what instances and/or circumstances belong to
the class of that cognitive fallacy. In Sec. 4, we first provide a
characterization of the cognitive fallacies of interest, followed
by formally establishing IRs. Particularly, we provide a broad
characterization of the cognitive fallacies we are interested in,
with those characterizations being primarily guided by exper-
imental findings. As such, these characterizations could be
arguably made more precise and/or broadened as future re-
search deepens our understanding of the cognitive fallacies

4We must emphasize that our establishing of the IR between
AvB and CF only depends on the broad assumption that the more
extreme an event is, the more people overestimate its probability,
and holds for any q(o) which satisfies this condition, e.g., q(o) ∝

p(o)|u(o)|
√

1+|u(o)|
√

s
|u(o)|

√
s (Nobandegani et al., 2018). Therefore, the

assumption q(o) ∝ p(o)|u(o)| made in the characterization of AvB
is only one choice out of infinitely-many possibilities satisfying the
said condition, and hence, is not necessary.

involved. Accordingly, we see the characterizations provided
in the current study as work in progress and, very likely, sub-
ject to change.

A closer examination of Propositions 1 to 4 and their proofs
reveals that IRs can be categorized into two broad types:
logical-IRs (denoted by l

 ) and causal-IRs (denoted by c
 ).

Establishing a logical-IR, l
 , from a fallacy F1 to another fal-

lacy F2 implies that F1 is a special case of F2, with every in-
stance of F1 being an instance of F2. For example, a closer
examination of Proposition 1 and its proof reveals that DE is
a special case of FE, with every instance of DE being an in-
stance of FE in disguise. The same understanding holds for
Proposition 3 and its proof, indicating that APX is simply a
special case of FE, with every instance of APX being an in-
stance of FE in disguise. Hence, using our newly introduced
notation: DE l

 FE and APX l
 FE. Establishing a causal-

IR, c
 , from a fallacy F1 to another fallacy F2 implies that the

occurrence of F1 brings about (i.e., causes) the occurrence
of F2. For example, a closer examination of Proposition 2
and its proof reveals that the occurrence of BRN brings about
the occurrence of CF, i.e., there is a cause-effect relationship
between BRN and CF, with BRN being the cause and CF
the effect. The same understanding holds for Proposition 4
and its proof, indicating that the occurrence of AvB brings
about the occurrence of CF, i.e., there is a cause-effect rela-
tionship between AvB and CF, with AvB being the cause and
CF the effect. Hence, using our newly introduced notation:
BRN c

 CF and AvB c
 CF. Drawing further on the analogy

between IR and reduction in computational complexity, it is
worth noting that there also exist several types of reduction in
computational complexity, namely, Karp’s reduction, Cook’s
reduction, truth-table reduction, L-reduction, A-reduction, P-
reduction, E-reduction, AP-reduction, PTAS-reduction, etc.

Importantly, logical-IRs and causal-IRs have quite differ-
ent implications. If F1

l
 F2 holds (implying that F1 is a spe-

cial case of F2 as discussed above), it then follows that a com-
plete account of F2 should also account for F1, and, in that
sense, accounting for F2 is more demanding5 than accounting
for F1. For example, since DE is a spacial case of FE (see
Proposition 1 and its proof), that is, DE is nothing but FE
in disguise, any complete account for FE inevitably should
also account for DE, implying that accounting for FE is more
demanding than accounting solely for a special case of FE,
DE. However, if F1

c
 F2 holds (implying that the occurrence

of F1 brings about F2), it then follows that an account of F1
naturally serves as an account of F2 due to the following ratio-
nale: If X causes F1, and F1 causes F2, it then follows that X
causes F2, with F1 serving as a mediator. In that light, estab-
lishing causal-IRs between various cognitive biases/fallacies
has an intriguing implication: For any chain of causal-IRs
F1

c
 F2

c
 F3

c
 . . .

c
 Fn−1

c
 Fn, any mechanistic account

5Accounting for F2 is “more demanding” than for F1, as a com-
plete account of F2 would necessarily have to explain a wider range
of cases, including all instances of F1 as a subset.
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of Fi naturally serves as an account of Fi+1,Fi+2, . . . ,Fn. For
example, since the occurrence of BRN causes the occurrence
of CF (see Proposition 2 and its proof), it then follows that
any mechanistic account of BRN naturally serves as an ac-
count of CF, with BRN serving as a mediator. This under-
standing has a very intriguing implications for studies of cog-
nitive fallacies in general: Establishing a chain of causal-IRs
F1

c
 F2

c
 F3

c
 . . .

c
 Fn−1

c
 Fn, clearly reveals which of

the fallacies F1, · · · ,Fn is more pivotal or fundamental to ac-
count for; the answer is of course the left-most fallacy in the
chain, i.e., F1. This strongly suggests that, directing efforts to-
ward finding a comprehensive, satisfying account of F1 would
be the most rewarding research agenda, because, thanks to the
established chain of causal-IRs, we would get a set of com-
prehensive, satisfying accounts of all F2,F3, · · · ,Fn for free!
Therefore, identifying IRs could systematize and guide a re-
search agenda, with a huge increase in research efficiency.

Suppose we have established a causal IR between two bi-
ases A and B (i.e., A c

 B). Here is a question worth consid-
ering. (Q1) Does a mechanistic account of A also serve as a
mechanistic account of B? As we argue above, it does. But
it is crucial to note that this is just a theoretical possibility.
That is, upon empirical investigations (e.g., using advanced
neuroimaging techniques), we may come to realize that the
mechanistic underpinnings of B, after all, have nothing to do
with that of A. Just because some process model can simulate
B does not necessarily imply that that process model is the
cognitive process responsible for the occurrence of B in the
brain. Thus, identifiability remains an issue.

Another question worth considering is the following. (Q2)
Assuming we have established A c

 B, is a participant who
commits bias A more likely to commit bias B? The answer to
this question is a bit subtle, and is related to our elaboration
on (Q1) presented above. If the occurrence of A is indeed
what mechanistically drives the occurrence of B (through
mechanisms specified in our establishing of the IR between
A and B), then the answer to (Q2) is positive. Otherwise,
solely based on the fact that we have theoretically established
A c
 B, no decisive answer can be given to (Q2), as there is no

real mechanistic connection between A and B. Note that just
because we have theoretically shown A c

 B (i.e., A can bring
about B, hence a purely theoretical possibility), it does not
necessarily imply that A does bring about B in reality—the
latter claim can be only shown empirically.

Proposition 4, establishing AvB  CF, demonstrates an
interesting possibility wherein, under a set of auxiliary as-
sumptions (e.g. ∀i = 1,2, |u(o∧)| � |u(oi)| in this case), an
IR can be established between two fallacies. The idea of
establishing IRs under a set of assumptions widens the ap-
plicability of the notion of IR, allowing it to link together
pairs of cognitive fallacies that would have little connections
unless further assumptions are invoked. Drawing again on
the analogy between IR and reduction in computational com-
plexity, it is worth noting that in establishing reductions it is
common practice to evoke various assumptions/constraints on

the characterization of computational problems (e.g. 3-SAT
instead of SAT) and/or on the forms of reductions themselves
(e.g. polynomial-time reductions or linear-time reductions).
Importantly, these auxiliary assumptions should be empiri-
cally confirmed, motivating new and exciting experimental
avenues of research. Empirical confirmations of such aux-
iliary assumptions, empirically justifies the validity of invok-
ing such assumptions. Importantly, empirical disconfirmation
of such assumptions, of course, discredit the said established
IR, inviting attempts for establishing other IRs (in the hope
that they would survive empirical tests), or for invoking other
empirically validated assumptions which would save the es-
tablished IR, motivating new theoretical and empirical work.

In this work, as a proof-of-concept, we establish IRs
between several well-documented cognitive biases; see
Fig.2(b). Future work should investigate the possibility
of establishing IRs between a wider range cognitive bi-
ases/fallacies, with the ultimate goal of developing a prin-
cipled, comprehensive map of cognitive biases/fallacies,
broadly resembling what is shown in Fig. 2(a) in the context
of computational complexity. As it is conceivable, and in our
view very likely, that a single mechanism would act as the
common cause of several biases, that mechanism would then
serve as a common parent node (in the yet-to-be-developed
comprehensive map of biases) having those biases as chil-
dren. As such, ultimately, the comprehensive map of biases
would have (at least) two types of nodes, one to denote biases
and one to denote mechanisms.

While many questions remain open, and much work is left
to be done in this direction, we hope to have made some
progress toward systematically bringing order to the cognitive
fallacy zoo. We see our work as a first step in this direction.
Acknowledgments This work is supported by an operating grant
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Abstract

I present two models of mental rotation created within the
ACT-R theory of cognition, each of which implements one of
the two main strategies identified in the literature. A holistic
strategy rotates mental images as a whole unit whereas piece-
meal strategy decomposes the mental image into pieces and
rotates them individually. Both models provide a close fit to
human response time data from a recent study of mental rota-
tion strategies conducted by Khooshabeh, Hegarty, and Ship-
ley (2013). This work provides an account of human mental
rotation data and in so doing, tests a new proposal for rep-
resenting and processing spatial information to model mental
imagery in ACT-R.

Keywords: Mental imagery; Mental rotation; ACT-R; Cogni-
tive architectures.

Models of mental imagery
There have been various attempts to provide formal compu-
tational accounts of mental imagery phenomena (e.g., Glas-
gow & Papadias, 1992; Kunda, McGreggor, & Goel, 2013;
Tabachneck-Schijf, Leonardo, & Simon, 1997; Just & Car-
penter, 1985) and these have often sought to address the issue
of whether imagery requires some form of array based rep-
resentation or can be accomplished by more abstract, amodal
representations and processes.

An early and influential cognitive model that combined
pixel array based representations and more abstract represen-
tations is the CaMeRa model of expert problem solving with
multiple representations (Tabachneck-Schijf et al., 1997). A
more recent example is a model of problem solving on the
Raven’s Progressive Matrices test by Kunda et al. (2013) us-
ing 2D arrays of grayscale pixels and associated transforma-
tion operations.

In recent years there have been a number of attempts to de-
velop computational accounts of mental imagery from within
the assumptions and constraints of cognitive architectures
(e.g., Rosenbloom, 2012; Wintermute, 2012). Cognitive ar-
chitectures are theories of the core memory and control struc-
tures, learning mechanisms, and perception-action processes
required for general intelligence and how they are integrated
into a “system of systems” to enable human cognition and
autonomous, human-level artificial cognitive agents.

The cognitive architecture with one of the most well de-
veloped and comprehensive set of representations for spatial
reasoning and visual imagery is Soar (Laird, 2012) and its
Spatial/Visual System (SVS) (Lathrop, Wintermute, & Laird,
2011; Wintermute, 2012). The SVS system contains two lay-
ers of representation: a visual depictive layer (a bitmap ar-
ray representation of space and the topological structure of
objects), and a quantitative spatial layer (an amodal sym-
bolic/numerical representation of objects and their spatial co-

ordinates, location, rotation and scaling)1. SVS also con-
tains operations to transform the continuous information in
the quantitative spatial layer into symbolic information that
can be used by Soar for reasoning. These processes allow
Soar agents to perform mental imagery operations that can
manipulate the representations and then extract spatial rela-
tionships from the modified states.

Several proposals have been put forward to endow the
ACT-R cognitive architecture (Anderson, 2007) with spatial
abilities. For example Gunzelmann and Lyon (2007) outlined
an extensive proposal for modelling a range of spatial be-
haviour (including imagery) by augmenting the architecture
with a spatial module and several additional buffers and pro-
cesses for transforming spatial information. These proposals
have, as yet, not been implemented however and so it remains
to be seen whether the suggested changes would be able to
account for human spatial competence.

An alternative approach to providing ACT-R with spatial
capacities is the ACT-R/E project to embody ACT-R in robots
(Trafton et al., 2013). ACT-R/E incorporates the Special-
ized Egocentrically Coordinated Spaces (SECS) framework
(Trafton & Harrison, 2011; Harrison & Schunn, 2002) which
adds modules for three aspects of spatial processing: 2D-
retinotopic space, configural space for navigation and local-
isation, and manipulative space for the region that can be
grasped by the robot.

Both of these approaches are broad in the sense that they
propose extensive changes to the architecture (i.e., new mod-
ules and buffers) and seek to endow ACT-R with a wide range
of spatial capabilities related to different spaces (Montello,
1993). Neither approach has modelled spatial imagery how-
ever. The aim of the study reported here is to fill this gap
by developing ACT-R models of human spatial imagery be-
haviour. The approach adopted here is more limited and fo-
cussed than those discussed above in that it does not pro-
pose new modules or buffers but seeks to determine whether
the phenomena can be accounted for with only minor adjust-
ments to the existing structures and assumptions of ACT-R.

In the following sections I describe the relevant structures
and assumptions of ACT-R and the adaptations required to
allow the architecture to model spatial imagery. I then test
the approach by using it to develop models of two proposed
strategies for mental rotation. Finally I discuss the implica-
tions, strengths and weakness of the approach and consider
further applications.

1In the current (9.6.0) version of Soar, the visual depictive level
has been omitted from SVS.
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Figure 1: Components of ACT-R’s mental imagery mechanism: (a) explicit representation of object vertex coordinate locations,
(b) encoding of the vertex locations in the visual buffer, (c) manipulation of the coordinates via matrix transformations.

An ACT-R approach to mental imagery
The two components of ACT-R most relevant to this work are
the vision module which allows ACT-R to perceive objects in
external task environments and the imaginal module which
functions as ACT-R’s limited capacity working memory store
in which information is represented and manipulated during
problem solving.

ACT-R’s perceptual and motor systems were designed to
support interaction with computer-based psychology exper-
iments and therefore typically works within a screen-based
2D coordinate space. ACT-R’s visual module doesn’t interact
with the computer interface directly but via a visual icon, an
intermediate symbolic representation of the objects in the vi-
sual environment. When ACT-R’s visual attention is directed
towards an object in the visual icon, information about the
object enters two buffers: a visual buffer containing informa-
tion about the object’s features (type, shape, colour etc.), and
a visual-location buffer representing the object’s coordinate
location.

Once information has entered the buffers, it is available for
further processing, for example as a cue to retrieve further in-
formation from declarative memory or to create a new prob-
lem state representation in the imaginal module. Compared
to other modules, the imaginal module has a greater degree of
flexibility in that, in addition having standard buffer for cre-
ating and holding information, it also has an imaginal-action
buffer to allow the module to be extended with novel capa-
bilities by enabling arbitrary actions to be performed on in-
formation in the imaginal buffer. This feature is crucial for
modelling mental imagery.

Modifications required to model imagery
Many spatial imagery phenomena involve mental represen-
tations of the shape, location, orientation and spatial extent
of the imagined objects and a set of processes that are able
to transform and compare objects according to these charac-
teristics. While the representational and processing assump-
tions of ACT-R outlined above impose strict but valuable con-
straints on methods for modelling mental imagery, in this re-
gard, the discrete symbolic representations of ACT-R’s visual
module (e.g., shape = ‘square’) with only one x-y coordinate

location for each object are currently inadequate.
In light of this, the approach adopted here augments ACT-

R with the addition of a new feature slot in the visual object
chunk to represent information regarding the outline shape
of environmental objects. This requires objects in the task
environment to be defined so that the coordinate locations of
their vertices are represented explicitly (see Figure 1a). When
ACT-R’s visual module attends to an object, the vertex coor-
dinates are encoded (Figure 1b) and then transferred to the
imaginal buffer.

The second extension to ACT-R adds the ability to perform
various imagery operations (e.g., translation, scanning, scal-
ing, zooming, reflection, rotation and composition functions
such as intersection, union and subtraction) using a set of
linear and affine matrix transformation functions which act
upon the vertex coordinates in the imaginal module via the
imaginal-action buffer. For example, to rotate each coordi-
nate counter-clockwise by a particular angle θ, it is multiplied
by the transformation matrix shown in Figure 1c.

Mental imagery and mental rotation
Mental imagery plays a crucial role in many aspects of cog-
nition, from problem solving, creativity and scientific discov-
ery to psychological disorders such as post-traumatic stress
disorder, social phobia and depression (Kosslyn, Thompson,
& Ganis, 2006; Pearson, Deeprose, Wallace-Hadrill, Burnett
Heyes, & Holmes, 2013). Mental imagery has also been the
subject of one of the longest running and fiercest debates in
cognitive science (Kosslyn & Pomerantz, 1977; Pylyshyn,
1973; Anderson, 1978; Tye, 2000) and the nature of the men-
tal representations and processes underlying mental imagery
is still a subject of contention.

The study of mental rotation has been a cornerstone of re-
search into mental imagery since the original experiments of
Shepard and Metzler (1971). In the typical form of the mental
rotation task, participants are presented with pairs of similar
images, one of which has been rotated around its centre, and
then required to decide whether the images are identical or
not (Figure 2 shows a widely used stimulus from (Shepard &
Metzler, 1971)). The key finding of mental rotation tasks is
that RT typically increases monotonically with the degree of
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angular rotation between the images.
Mental rotation has been studied extensively over the last

half century in a wide variety of forms and a range of strate-
gies and underlying processes have been proposed. For ex-
ample, some have suggested that mental rotation is carried out
using a holistic strategy in which the rotated figure is mentally
manipulated as a single, whole unit (e.g., Shepard & Metzler,
1971; Cooper, 1975). Others have argued that rotated figures
are subdivided and the component pieces mentally manipu-
lated separately in a piecemeal fashion.

The latter strategy was advanced by Just and Carpenter
(1976, 1985) who used eye tracking data to support the iden-
tification of three distinct stages in the mental rotation task.
In the first search stage, people look for correspondences be-
tween regions of the target and rotated figures in order to se-
lect candidate pieces for transformation. In the second trans-
form and compare stage, the piece from the rotated image
is mentally re-rotated towards its corresponding piece in the
target image. Crucially, this process is not a single ballistic
rotation but consists of a series of discrete steps in which the
mental image is repeatedly manipulated and then compared
to the target image to determine whether they are sufficiently
congruent to stop.

Figure 2: Stimuli used by Shepard and Metzler (1971).

If the second stage is successful and the two pieces are
found to be congruent, a third confirmation stage is conducted
to determine whether the same degree of rotation will also
bring other corresponding pieces of the two figures into con-
gruence. This involves a repeat of the three stages until it is
judged that the two figures are in fact the same.

In contrast, a holistic strategy involves different stages of
processing. The first consists of a process by which represen-
tations of—and correspondences between—the two images
are constructed. The second consists of a whole-figure rota-
tion process which continues until the two figures are aligned.

In addition to eye movements, response time data are also
used to infer the nature of the processes and strategies being
employed in mental rotation. A common assumption is that
the linear difference in RT between degrees of angular dispar-
ity is a function of the rotation processes and that additional
time is taken by processes as stimulus encoding, response de-
cision and motor processing (Cooper, 1975; Khooshabeh et
al., 2013).

Modelling mental rotation strategies

Human performance In a recent study, Khooshabeh et al.
(2013) investigated the behavioural effects of the two rotation
strategies by forcing people to use one strategy or the other.
They did this by creating fragmented versions of the stimuli
shown in Figure 2 (i.e., objects in which some of the blocks
had been removed), on the assumption that fragmented stim-
uli would be harder to rotate holistically.

To analyse their data Khooshabeh et al. (2013) classified
participants (thirty-eight undergraduate students) as good or
poor imagers according to their degree of accuracy in the task
(the categories being defined as approximately the top and
bottom thirds of the distribution respectively) and analysing
the two groups separately.

This classification is based on previous studies which have
led to the claim that piecemeal strategies are favoured by in-
dividuals with lower spatial ability whereas those with high
spatial ability, because of their greater capacity to build and
maintain complete images in working memory, are more
likely to use a holistic strategy (e.g., Bethell-Fox & Shepard,
1988; Mumaw, Pellegrino, Kail, & Carter, 1984).

Khooshabeh et al. (2013) predicted therefore that in their
experiment, lower spatial ability participants would not dif-
fer in their performance for complete and fragmented stim-
uli (because they use piecemeal strategies for both) whereas
those with higher spatial ability would be faster and more
accurate with complete figures than for fragmented figures,
reflecting the switch from a holistic to a piecemeal strategy.
This would be indicated by the slopes of the respective RT
functions, with the piecemeal producing a steeper slope than
the holistic strategy (Cooper, 1975).

The form of the task was typical, with target and rotated
figures being presented simultaneously side by side on a com-
puter screen. Participants were instructed to judge whether
the shapes were the same or different and that their judgement
should be based on the overall shape of the two figures, ignor-
ing the missing cubes. Participants were also explicitly told
not to respond that the figures were different just because one
had missing cubes. After eight practice trials with feedback,
participants were given 200 experimental trials (100 control
trials in which both figures were complete and 100 trials with
one complete figure and one fragmented figure) and RT was
recorded from the onset of the stimulus until the participant’s
key press response. Ten degrees of rotation were used, from
0 to 180 degrees in increments of 20.

Figure 3a presents the RTs for good imagers as a func-
tion of angle of rotation and figure type (complete, frag-
mented) for same trials (the typical analysis in mental rota-
tion studies). As predicted, the good imagers were signif-
icantly slower in rotating fragmented figures (M = 4601.04
ms, SD = 1944.14) than complete figures (M = 3260.75ms,
SD = 1516.09, F(1,25) = 25.89, p < .001, ηp

2 = .51) and
also had steeper slopes on fragmented (M = 28.29 ms/degree,
SD = 17.03) than complete figures (M = 20.43ms/degree,
SD = 5.99, F(1,25) = 6.65, p = .02, ηp

2 = .21).
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Figure 3: Left: Mean RTs for fragmented and complete stimuli for each angle of rotation, Experiment 1, good spatial imagers,
Khooshabeh et al. (2013). Right: Mean RTs for piecemeal and holistic strategies for each angle of rotation, ACT-R model.

Model performance Two ACT-R models of the experiment
conducted by Khooshabeh et al. (2013) were created, each
implementing one of the two strategies. The holistic and
piecemeal strategies implemented by the models are repre-
sented as flow charts in Figures 4a and 4b respectively2.

Both models perform the rotation task according to the in-
cremental move and test process described by Just and Car-
penter (1976, 1985). The coordinate points representing the
rotated image are incrementally rotated counter-clockwise to-
wards the target image by a constant amount (subject to a de-
gree of perceptual error, represented by a random value sam-
pled from a logistic distribution with mean 0 and variance k).

After each rotation step, the angular disparity between cur-
rent and target coordinate points is reviewed to determine
whether they are sufficiently close for the process to stop.
This test is a measure of image similarity in that if the points
do not coincide then the rotation process will not stop.

The model assumes that RT is determined by the size of
the rotation increment, m, taken at each step and the prox-
imity threshold, p regulating the stop decision. The ACT-R
imaginal delay time parameter, t, which determines the how
long a modification request to the imaginal buffer takes to
complete was adjusted from its default of .2s. to .1s.

According to the holistic strategy model (implemented by
eight production rules), the first stage of the mental rotation
task involves a search for correspondences between regions

2Both ACT-R models are available to download from GitHub:
https://github.com/djpeebles/act-r-mental-rotation-models.

of the target and rotated figures in order to build up a com-
plete, integrated image. When enough pieces of the images
have been matched (two in this model), the rotation stage is
engaged until the figures are sufficiently aligned, at which
point a response is initiated.

In the piecemeal strategy model (implemented by seven
production rules), the first stage of the task involves a search
for correspondences between only two regions of the target
and rotated figures. Once a piece of the rotated image has
been matched to the target image, the rotation stage is en-
gaged until the figures are sufficiently aligned.

When an alignment has occurred, instead of initiating a
response, the model repeats the process from the start until
enough pieces have been matched. When sufficient pieces
have been matched for there to be confidence that the two im-
ages are the same (two in this model), a response is initiated.

The piecemeal strategy model has one additional parameter
than the holistic model, a separate rotation increment, n for
figure pieces subsequent to the first one. This represents the
assumption that the rotation of pieces being used to confirm
the distance will be faster (i.e., be implemented using bigger
step sizes) because the distance is already known.

To test the two models, they were both run 40 times (to sim-
ulate 40 participants) for all of the 10 degrees of rotation and
the mean RT for each distance computed. Figure 3b shows
that both models (with parameters k = 2, m = 8, n = 18,
p = 12 and t = 0.1) provided a close fit to the human data
(holistic: R2 = .951, RMSD = 0.476; piecemeal: R2 = .928,
RMSD = 0.608).
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Figure 4: Control structure of the ACT-R model for a trial of the experiment using (a) the holistic strategy and (b) the piecemeal
strategy. Each rectangle corresponds to one production rule in the model.

Discussion
The work described above demonstrates that with only rel-
atively minor modifications and a small number of reason-
able assumptions, ACT-R can be applied to develop models
of mental imagery phenomena that provide a close match hu-
man RT data. Crucially, the modifications are restricted to
enabling the representation and transformation of shape in-
formation but the new representation and processes integrate
with the existing control structures of ACT-R so that the be-
haviour of the model is primarily a result of the strategy en-
coded in the production rules (which is essentially the same
for both tasks) and the information processing assumptions
built into the ACT-R’s imaginal module.

The representation of object spatial extent is not at the level
of pixel arrays nor at the level of discrete symbols, but at
an intermediate numerical level that abstracts from the pixel
level. Similarly, the transformation processes incorporated
into the architecture are quantitative in nature and are as-
sumed to belong to the wider set of subsymbolic functions
that act upon quantitative information in ACT-R at a level
closer to the visual system than the qualitative reasoning pro-
cesses over symbolic representations.

In this regard, the current work represents a modest step
towards answering the question concerning the nature of the
representations required to support mental imagery discussed
in the introduction. The human data modelled here are a use-
ful test of the representations and processes used to adapt the
architecture. The models provide an account of the two strate-
gies in terms of where in the task people construct the coher-
ent representations of the figures. In the holistic strategy this
is done at the start (which arguably requires greater effort to
maintain during rotation) whereas in the piecemeal strategy
this is done at the end (which imposes less of a demand on
working memory).

Compared to other mental imagery tasks, mental rotation
is relatively simple in nature. A more stringent test of the
assumptions is necessary therefore and this will come from
modelling more challenging tasks, for example the Raven’s
Progressive Matrices (c.f. Kunda et al., 2013), the pedestal
blocks world or the nonholonomic car motion planning task
(Wintermute, 2012) as these will provide richer behavioural
data and will require more complex strategies involving a
wider range of spatial transformations. This is the plan for
the next stage of this project.
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Abstract

Mental spatial transformation is usually modeled with highly
task-specific approaches, allowing high model accuracy and
valid explanations for effects in experimental data. These ap-
proaches however suffer from overfitting of models to data,
resulting in low general validity. Based on neuro-imaging re-
search suggesting a dedicated cognitive system for mental spa-
tial transformation, a theory for universal spatial transforma-
tive cognition and its implementation as an ACT-R module is
proposed. This spatial module enables the prediction of pro-
cessing time for mental spatial operations. Concurrently, a
mental folding experiment is conducted to gather participant
data for model fitting. Our data confirms an effect of trans-
formation difficulty on reaction times often found in related
research, as well as learning effects during the experiment.
These results form the foundation for ongoing development of
the spatial module, especially regarding the influence of trans-
formation complexity on spatial assessments.

Keywords: spatial cognition; cognitive modeling; ACT-R;
mental folding; mental transformation

Introduction
Mental spatial manipulation of objects or scenes is a core
mechanism of human cognition. In this regard, understand-
ing an object in three-dimensional space allows us to reason
and make assumptions about quality, category, function and
other attributes associated with it (Kosslyn, 1996). Although
mental spatial transformation is often associated with men-
tal imagery, evidence for the distinctness of the two exists.
Spatial representations seem to be separable from mental im-
agery (Knauff & Johnson-Laird, 2002). A study by Gramann
(2013) implies the existence of inter-individual differences
in spatial cognition, including the proclivity for an egocen-
tric or allocentric reference frame during mental spatial tasks.
Mental spatial processing and mental imagery seem to be sit-
uated in separate brain areas, respectively: past research of
behavioral and neurophysiological data implies pathways for
spatial processing as well as a functional distinction between
egocentric and allocentric cognitive systems (Nadel & Hardt,
2004).

Different, partially compatible paradigms for mental spa-
tial transformation have been introduced, each proposing fac-
tors for the complexity of a spatial transformation. Shepard
and Metzler (1971) studied reaction times for the sameness

of two abstract 3D objects, of which one is rotated to a vari-
able degree. A linear relationship between angular disparity
and reaction time was found. As objects were only required
to be mentally rotated however, the explanatory power of this
study for general spatial cognition seems limited. A follow-
up study measured reaction time during a task based on cube
folding patterns (Shepard & Feng, 1972). In a recent varia-
tion of this cube folding paradigm (Wright, Thompson, Ga-
nis, Newcombe, & Kosslyn, 2008), a reference object must be
mentally manipulated to assimilate its shape to a target object.
Reaction time grew linearly with the folding complexity re-
quired by the target object. Additionally, higher complexity
levels were reported to be unsolvable within the given time
limit by most participants, which suggests an upper limit to
spatial transformation capacity.

Lotz and Russwinkel (2016) introduced a decay factor for
spatial representations. According to the authors, these de-
caying representations could only be upheld for a short period
of time before they required re-encoding by visual or mem-
ory processes. In another variant of mental rotation, a study
theorized that non-linear reaction time results are caused by
the intricacy of the transformations necessary for a correct re-
sponse (Neely & Heath, 2010). Based on this theory, higher
transformation complexity could be a factor especially in de-
manding tasks. Other possibilities of complexity measures
for spatial processing exist, such as object structure (Bethell-
Fox & Shepard, 1988), semantics (Smith & Dror, 2001) or
familiarity (Bethell-Fox & Shepard, 1988; Smith & Dror,
2001), and potentially many others. So far, no unequivocal
data reasonably demonstrates their effect, but these factors
should be kept in mind.

Modeling Spatial Cognition

The cognitive architecture ACT-R (Anderson et al., 2004)
consists of modules which represent cognitive systems for
e.g. visual, imaginal or motoric processing. Cognitive mod-
els rely on the interplay of these modules to simulate specific
task behaviors and cognitive processes by exchanging infor-
mation between buffers associated with each module. This
approach also allows for the prediction of brain activity, as the
neural representation of each cognitive system can be roughly
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localized in the human brain (Borst & Anderson, 2015).
While ACT-R offers a unified approach for cognitive mod-

eling of mental imagery (Anderson et al., 2004), similar
mechanisms are so far not available for mental spatial trans-
formation. Such cognitive systems and their implementation
as a module for ACT-R have been proposed (Gunzelmann &
Lyon, 2007), but so far not scientifically validated. In this
paper, we seek to formulate a theory on mental spatial trans-
formative cognition, namely how effects shown in studies of
spatial cognition can be represented algorithmically, and im-
plement it in the form of an ACT-R module. The goals for the
module are:

• Explainability: known effects in spatial cognition like
growing time costs with growing task complexity, differ-
ences in spatial strategies and others should be explained
by spatial module functions

• Universal applicability: the module should support mul-
tiple mental spatial transformation paradigms

• Validity: as models are able to refer to a unified imple-
mentation of spatial cognition instead of using highly task-
specific approaches, the overall validity of modeling spatial
processes is improved

One of the challenges of modeling mental manipulation lies
in correctly predicting the effect of inter-individual differ-
ences, for instance in the proclivity for egocentric or allo-
centric reference frames (Gunzelmann & Lyon, 2011). The
proposed addition to the ACT-R architecture should eventu-
ally account for these differences by providing the possibility
of multiple approaches to spatial transformation. Addition-
ally, identifying the source of effects like cognitive limita-
tions, time demands, inaccuracies and errors is essential for a
sufficiently predictive performance of the module.

As a starting point for the development of the spatial mod-
ule, we chose to conduct an experiment based on the men-
tal folding task developed by Shepard and Feng (1972), in a
variation by Wright et al. (2008) as described above. Con-
currently, two cognitive models are developed: one using
only default ACT-R modules (the baseline model), another
incorporating our spatial module (the enhanced model). The
baseline model will rely on default ACT-R capacities with
the goal of achieving as close a fit to human behavioral data
as is possible with ACT-R’s base mechanisms, while the en-
hanced model will make use of the spatial module described
in this paper. Thus, the baseline model will act as a bench-
mark - if the addition of a spatial module is indeed a rea-
sonable assumption, the enhanced model should reach a sig-
nificantly better fit while ideally explaining effects that the
baseline model can not.

Hypotheses
We expect our experimental results to show a linear effect
of task difficulty on reaction time, as previous studies have

shown (Shepard & Feng, 1972). Over the course of the ex-
periment, participants should also show learning effects, re-
sulting in shorter reaction times. The enhanced model should
subsequently show an improved fit compared to the baseline
model while being more cognitively plausible.

Methods
Mental Folding Study

Participants The study was conducted with 45 partici-
pants, of which 5 were excluded due to aberrant error rates,
reaction times or technical problems, leaving a sample of 40
participants (20 female, 20 male). All participants were se-
lected according to their orientation strategy measured via
the Reference Frame Proclivity Test (Goeke, König, & Gra-
mann, 2013) and completed a pretesting battery prior to the
mental folding task. Additionally, data from a 64-channel
electroencephalogram (EEG) was collected. Participant se-
lection, pretesting and EEG-Data are no further subject of this
paper.

Mental Folding Task A computerized version of the men-
tal folding task originally developed by Shepard and Feng
(1972) was created and adjusted into a comparison task sim-
ilar to the task designed by Wright et al. (2008). The men-
tal folding task consisted of reference figures in the form of
semitransparent 3D cubes, and 2D unfolded cube templates
as target figures, each with two black arrows on their sur-
faces and a blue square indicating the base, presented on a
black background. Each trial started with a one second pre-
sentation of a central fixation cross, followed by the display
of a reference figure, either on the left or right side of the
screen. Subsequently, after one more second, a target fig-
ure appeared on the other respective screen side. The par-
ticipants were asked to mentally fold the template together
and to decide then whether the arrows on reference and target
match. Judgements on matching or mismatching arrow po-
sitions were recorded via button presses on a response pad.
Vertically aligned buttons were used with one button for each
judgement type. The experiment consisted of 600 trials, sub-
divided in five blocks. Participants had to take at least one
minute breaks between the blocks and were instructed to al-
ways fold upwards, starting from the base. Task comple-
tion took 60 minutes on average and each participant passed
through 10 minutes of training with feedback in advance.

Stimuli Four levels of difficulty were chosen for the task
(see Figure 1). The sum of squares carried (SSC) during the
series of folds necessary to compare the arrow positions de-
termined the level of difficulty, as defined by Shepard and
Feng (1972). The easiest level (A) was a direct visual com-
parison with arrow tips always meeting. The second level (F)
required to carry four, the third level (G) five and the fourth
level (H) six squares through the folding sequence. Six dif-
ferent template figures with three arrow variations each (for
Levels F, G and H: one variation with arrow tips touching,
two with arrow tips in different directions) were constructed
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Difficulty

Level
A F G H

Squares

Carried
None 2 + 1 + 1 = 4 3 + 1 + 1 = 5 3 + 2 + 1 = 6

Example

Pattern

Figure 1: Difficulty levels used in the experiment, based on
the classification by Shepard and Feng (1972). Squares car-
ried refers to the amount of squares that need to be trans-
formed to reach an informed decision.

for every level and paired with reference cube figures with ei-
ther matching or mismatching arrow positions. This resulted
in 144 different trials. In order to shorten the length of the
experiment to one hour, 24 trials of the mismatch condition
were excluded by balanced randomization from each block.
Each mismatch stimulus type of each level was shown at least
three times over the whole experiment, resulting in 72 match-
and 48 mismatch trials per block. The sequence of trials and
the presentation sides were randomized in a balanced manner
within each block.

Baseline Model
Lacking a spatial module, the baseline model uses memory
retrieval as its main mechanism. Spatial structures and re-
sults of folding operations are encoded as world knowledge
and queried as needed. Cube and folding pattern are visually
presented to the model. Arrow directions and base square
positions are then saved in a mental representation and used
to create folding paths for each arrow on the folding pattern.
These paths are then subsequently folded up and the result-
ing mental images compared to the actual arrow positions
and directions on the reference cube. Additionally, a simple
instance learning mechanism is implemented, allowing im-
provement over time.

While the approximation of spatial processes through re-
peated memory retrieval processes is highly implausible, it
represents a reasonable approach using only the standard
ACT-R architecture, and thus a benchmark to be improved
upon by the enhanced model.

Spatial Module
The spatial module integrates seamlessly into the existing
modular structure of ACT-R. Its feature set is chosen with
mental rotation and mental folding paradigms in mind, al-
though other applications are possible. In its current version

the module supports translation, rotation, scaling and com-
parison of three-dimensional objects. As it is developed con-
currently to subject data acquisition, several design choices
are intuitive as of now. Results of upcoming research will be
consulted to confirm or improve the proposed module struc-
ture.

Structure The module is interfaced by use of its two
buffers:

• The spatial buffer acts as storage for a mental spatial image
of an object, which in turn can be a specific part of a larger
object or a group of smaller objects. These objects consist
of a three-dimensional representation and optionally of a
specific object class, a list of contingently attached objects
and a pointer to an origin object, if applicable.

• The spatial-action buffer is analogous to the imaginal-
action buffer in the way that transformations to the mental
representation are handled. It receives and handles trans-
formation requests or queries about the object in the spatial
buffer.

Point clouds form the structure for three-dimensional rep-
resentations, as they are versatile and easily transformable
through mathematical computation. Each point is formed by
xyz-coordinates, allowing objects to be represented with ar-
bitrary level of detail.

Buffer structure and amount were chosen to balance func-
tionality and parsimony - this module setup should allow ap-
plicability to all spatial tasks while limiting its complexity
and need of resources. This way, in contrast to the approach
of Gunzelmann and Lyon (2007), interaction with ACT-R’s
core module structure is facilitated: as spatial object chunks
are standard ACT-R chunks, functionality like object com-
parison or episodic memory can be achieved through or sup-
ported by default modules.

Configurable module parameters are module latency and
maximum transformation complexity.

Complexity of Spatial Representations The module ob-
serves an upper limit on the number of transformations ap-
plicable to the object. If this number is reached, no further
transformations will take place and the module will return an
error. This limit is an exploratory account of effects showing
that for tasks of high difficulty, a jump in reaction time occurs,
breaking the linear pattern (Shepard & Feng, 1972). The au-
thors assume that these jumps reflect re-encoding processes
- to continue the task, the preliminarily transformed object
needs to be harvested from the buffer, memorized and subse-
quently either recalled from memory or visually re-encoded
again. Further research will try to validate this assumption.

At the moment, the upper limit of subsequent object trans-
formations defaults to 4, in line with the instantiation fingers
(or finsts) of the declarative and visual modules that work
as similar limitations. If a valid transformation is requested
on the object in the spatial buffer and the upper limit is not
reached, a complexity equation is consulted to compute the
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Figure 2: A rough outline of the process underlying the en-
hanced model. Visual representations get encoded, then rel-
evant surfaces of the folding pattern are mentally folded up
and subsequently compared to the reference arrow positions
and directions.

time delay required for the operation. As data of mental spa-
tial studies (e.g. Shepard and Metzler (1971), Shepard and
Feng (1972)) shows a linear relationship between the discrep-
ancy of the spatial object to its required transformation state
and reaction times of human participants, a linear equation of
the form f (x) = b+mx is used as a basis for the complexity
equation. We assume the intercept b is given by ACT-R’s de-
fault mechanisms such as production firing or the forming of
mental representations. The rest of the equation (i.e. factor
m) is proposed to be as follows:

Crequest = F ∗M ∗ x∗N2

• F : a latency factor, set as a module parameter. Its default
value will be fit based on current experiment data.

• M: a compensation factor used to equalize discrepancies
between transformation types like rotation or translation.
Potentially depending on the specific function called, this
factor equals 1 for now.

• x: the change value for the transformation, i.e. degrees,
distance units or others.

• N: the current number of transformations applied to the
mental spatial object since it was put into the spatial buffer.
This implements research by Neely and Heath (2010), im-
plying that reaction times grow with increasing transfor-
mation complexity.

Capabilities of the Module The spatial module is able to
translate, rotate and scale spatial objects consisting of point
clouds in 3D space. For comparison between two spatial ob-
jects, so far two operations are available: A simple compar-
ison is implemented that compares the mean euclidean dis-
tance between point pairs from two point clouds. If the point
clouds have unequal sizes, the distance from the spare points

to the origin substitutes the missing pairs. For instance, an
object compared to itself would return a mean euclidean dis-
tance of 0, while deviating objects return larger values de-
pending on their scale and significance. Furthermore, a com-
putation of the angle between vectors is implemented to allow
for the comparison of e.g. reference and target arrows.

The module offers these tools for modeling mental spatial
transformation, however certain task-specific operations like
reacting to specific thresholds or perception of the spatial ob-
jects still need to be implemented on a model level.

Enhanced Model
An enhanced model for the mental folding task that incor-
porates the spatial module is currently in development. The
underlying process is based on the baseline process model,
but instead of memory retrieval processes, spatial informa-
tion is now processed by the spatial module, which calculates
the time needed for each spatial operation based on the above
equation. Each square of the folding pattern is now foldable
in 3D space, while arrows are represented as direction vec-
tors. Once all relevant surfaces have been folded to their re-
spective cube positions, these direction vectors are compared
to the reference arrows and used to form a decision. A pro-
cess diagram of this model is depicted in Figure 2.

As the enhanced model foregoes memory retrieval pro-
cesses for spatial operations, it exhibits stronger cognitive
plausibility, as forming representations through declarative
knowledge is unlikely to occur in spatial problem solving.
Additionally, the resulting process model is less rigid and
allows for easier backtracking, required for modeling phe-
nomenons like loss of concentration or validation.

Comparison to Experiment Data
The models are compared to participant data through correla-
tion and root mean square error (RMSE) of averaged reaction
times and model output, respectively.

Results
Experiment Data
Behavioral data was analyzed to investigate effects of the fac-
tors Difficulty Level and Experiment Block on participant re-
action time. Only trials with correct responses were selected
for analysis. Trials with reaction times lower or higher than
2 standard deviations from the levels mean within each par-
ticipant were considered outliers and therefore excluded from
further analysis.

A two-way ANOVA with the within-factors Difficulty
Level (A, F, G, H) and Experiment Block (1, 2, 3, 4, 5)
was conducted on logarithmized reaction times. ANOVA
results, adjusted per Greenhouse-Geisser, display signifi-
cant main and interaction effects of the factors Difficulty
Level and Experiment Block on reaction time (Difficulty
Level: F1.74,67.96 = 282.86, p < .001; Experiment Block:
F2.16,84.22 = 144.17, p < .001; Interaction: F5.94,231.84 =
12.57, p < .001). Reaction times increased with increasing
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Figure 3: Error bars depict 95% confidence interval. (a) Reaction times in seconds averaged over participants and blocks,
showing the mean effect of difficulty level. Level A requires no folding operation. The sums of squares carried necessary during
folding are 4 in Level F, 5 in Level G and 6 in Level H, respectively. (b) Average participant reaction times in seconds per
Difficulty Level and Experiment Block. Black solid line denotes the learning effect, averaged over levels of difficulty. Dashed
line shows model learning effect for comparison. (c) Model reaction times in seconds per Difficulty Level and Experiment
Block. Black solid line denotes learning, averaged over levels. Dashed line shows human learning for comparison.

level of difficulty. Tukey-corrected post-hoc comparisons re-
veal that the increase in reaction time with increasing level
of difficulty is significant in all blocks, with the exception
of the difference between difficulty Levels F and G which is
only significant in the first two experiment blocks. Overall
the ANOVA results seem to imply a learning effect that is es-
pecially pronounced for higher difficulty levels. Means and
standard deviations are summarized in Table 1. The latency
factor parameter of the spatial module was fit based on the av-
eraged reaction times for each difficulty level (see Figure 3a),
suggesting a factor of around 0.6 per necessary folding oper-
ation.

Model Data
Baseline Model The baseline model output is sufficiently
similar to participant data (see Figures 3b and 3c). Due to
its mechanisms being based on world knowledge retrieval in-
stead of actual spatial processes, model reaction times are
uniformly higher than for participants. While a comparison
of model and human reaction times over the factor difficulty
showed no significance (r = .89, p = .11 with an RMSE of
3.14), a comparison over experiment block showed a high
correlation with high significance (r > .999, p < .001 with an
RMSE of 3.09).

Discussion
Discussion of Results
Both human and model data show a clear improvement over
time, correlating highly and showing a learning effect that
seems well explained by instance memorization. This sug-
gests an important role of pattern memorization for improve-
ment in spatial tasks.

The effect of task difficulty - as in the sum of squares car-
ried over all necessary folding operations to obtain the correct
arrow positions and directions - is clearly pronounced in the

experimental data. The baseline model shows a similar influ-
ence of the difficulty factor in its output, but shows no cor-
relation to the human data. Interestingly, reaction times for
the highest difficulty setting seem to diverge from the linear
influence of required folding operations, implying other fac-
tors. This might support the aforementioned idea that with
more complex mental spatial transformations, re-encoding
processes take place (Neely & Heath, 2010).

The data also shows a slight decrease of variance in the
reaction times for higher difficulty levels that grows smaller
over the course of the experiment (Figure 3b). This variance
seems to be within-subject, meaning that solvability of the
puzzles in higher difficulties differed strongly for unexperi-
enced solvers, but gradually improved.

Revisiting our original hypotheses, we found a mostly lin-
ear effect of task difficulty, with slightly longer reaction times
for the highest difficulty level at the start of the experiment
than a linear relation would suggest. Learning effects over the
course of the experiment in the form of decreasing reaction
times were also found. The baseline model showed highly
similar learning effects, but remains much slower than hu-
man participants and relies on cognitively implausible mech-
anisms for mental spatial transformation.

Open Questions
The specifics of the spatial module are chosen for simple
integration into the existing module structure of ACT-R, its
functional requirements and buffer parsimony. These might
be challenged by upcoming neurophysiological results of hu-
man problem solving in mental folding and rotation tasks.
Potential consequences range from showing the existence of
multiple systems to a lack of evidence for a dedicated spatial
system altogether.

With the claim of modeling universal mental spatial cogni-
tion, information from several paradigms needs to be evalu-
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Block Difficulty Mean SD

1 A 0.17 0.35
1 F 0.84 0.39
1 G 1.02 0.49
1 H 1.32 0.59
2 A -0.01 0.33
2 F 0.67 0.40
2 G 0.81 0.47
2 H 1.08 0.63
3 A -0.10 0.32
3 F 0.58 0.40
3 G 0.66 0.49
3 H 0.91 0.60
4 A -0.13 0.34
4 F 0.48 0.41
4 G 0.57 0.53
4 H 0.76 0.60
5 A -0.17 0.34
5 F 0.40 0.41
5 G 0.47 0.51
5 H 0.69 0.55

Table 1: Mean and standard deviation of logarithmized reac-
tion times by Experiment Block and Difficulty Level.

ated and used to fit the spatial module. However, it will still
need to be falsifiable - changes to the module need to be done
in a way that do not introduce task-specific information, but
try to make as few general assumptions necessary to be able
to interpret as much spatial processing as possible.

The presented complexity function should work well in the
context of mental folding, but its applicability to other spatial
paradigms (e.g. non-transformative or non-object-oriented
tasks) is still unexplored. While it is based on past research on
mental transformation processes, a plethora of amendments
or alternatives to the equation is conceivable.

A central issue inherent to the object representation lies in
the omission of surface textures. Many paradigms require
access to interpretable texture information like arrows, num-
bers, colors etc. While some features can be encoded as an
additional object or point cloud information, this approach is
highly restrictive.

The necessity for an equalizing factor for different transfor-
mation modalities is unclear. For example, rotation and trans-
lation can be reasonably assumed to have different effects on
reaction times due to their handling of input as degrees or
distance units, respectively. On one hand, a factor specific
to the transformation modality could offset this disparity. On
the other hand, translation can be interpreted as being based
on view angle instead of arbitrary distance units, allowing a
closer comparison to rotation. Differences in modalities may
not just arise from a disparity in change value however, but
from their application difficulty or their neurophysiological

basis as well. Additionally, a differentiation between trans-
formations changing the object and those simply changing
its perceived orientation could be necessary - a simple rota-
tion seems less resource-intensive than folding parts of an ob-
ject and subsequently influencing its form or function. In this
regard, reference frame proclivity seems especially informa-
tive.

Work on the enhanced model is currently ongoing. A chal-
lenge remains in finding an optimal ontology for spatial ob-
jects, able to represent both internal (e.g. single aspects of an
object like cube faces or physical connections between ob-
jects) and external (e.g. comparisons of objects or measures
of object sameness) relations in and between objects, and ad-
justing both spatial module and model accordingly.

Outlook

The proposed spatial system is developed in parallel to re-
search into mental spatial transformation. As such, in addi-
tion to being subject to change, many details of the imple-
mentation are still unclear and highly exploratory. Data from
current and future research will aim to provide answers and
solutions to these challenges.

On completion, the enhanced model will serve as a first
testbed for the spatial module as well as a competitor for the
baseline model regarding data fit. Altogether, it forms an
important landmark for the validation or falsification of the
assumptions laid out in this paper. While spatial reference
frame proclivity seems to be an important inter-individual
trait for the prediction of performance in mental spatial trans-
formation tasks, it is unclear how spatial processing, and a
potential implementation thereof, differs between egocentric
and allocentric perspective takers. With the possibility of fol-
lowing distinct neural pathways, a spatial module incorporat-
ing this distinction could be comprised of a structure far dif-
ferent than the one described here, e.g. with additional buffers
as originally proposed by Gunzelmann and Lyon (2007). This
issue will be explored in-depth based on forthcoming imaging
data for spatial transformation tasks, with the module being
adjusted accordingly.

Upcoming research will incorporate data from a mental ro-
tation study into the spatial module. The additional evaluation
of available EEG and eye tracking data for both mental fold-
ing and mental rotation will give insight into the functional
localization of specific spatial brain functions and improve
process models for mental spatial transformations. To enforce
the module’s universality claim, additional paradigms for spa-
tial tasks like mental scanning or spatial navigation could be
investigated in the future.

Acknowledgments

This research is financed through the German Research Foun-
dation (DFG), as part of project #396560184. The authors
would like to thank Klaus Gramann for his supervision of the
Experiment.

149ICCM2019



References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An Integrated Theory of
the Mind. Psychological Review, 111(4), 1036–1060.

Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation:
Effects of stimulus complexity and familiarity. Journal of
Experimental Psychology: Human Perception and Perfor-
mance, 14(1), 12.

Borst, J. P., & Anderson, J. R. (2015). Using the ACT-R
Cognitive Architecture in Combination With fMRI Data.
In An Introduction to Model-Based Cognitive Neuroscience
(pp. 339–352). New York, NY: Springer New York.

Goeke, C. M., König, P., & Gramann, K. (2013). Different
strategies for spatial updating in yaw and pitch path inte-
gration. Frontiers in behavioral neuroscience, 7, 5.

Gramann, K. (2013). Embodiment of spatial reference frames
and individual differences in reference frame proclivity.
Spatial Cognition & Computation, 13(1), 1–25.

Gunzelmann, G., & Lyon, D. R. (2007). Mechanisms for
Human Spatial Competence. In T. Barkowsky, M. Knauff,
G. Ligozat, & D. R. Montello (Eds.), Spatial Cognition V
Reasoning, Action, Interaction (pp. 288–307). Springer.

Gunzelmann, G., & Lyon, D. R. (2011). Representations and
processes of human spatial competence. Topics in cognitive
science, 3(4), 741–759.

Knauff, M., & Johnson-Laird, P. (2002). Visual imagery can
impede reasoning. Memory & cognition, 30(3), 363–371.

Kosslyn, S. M. (1996). Image and brain: The resolution
of the imagery debate. Cambridge, Massachusetts: MIT
press.

Lotz, A., & Russwinkel, N. (2016). Modelling different
strategies in mental rotation. In T. Barkowsky, Z. F. Llan-
sola, H. Schultheis, & J. van de Ven (Eds.), Proceedings of
the 13th biannual conference of the german cognitive sci-
ence society (pp. 35–38). Bremen.

Nadel, L., & Hardt, O. (2004). The spatial brain. Neuropsy-
chology, 18(3), 473.

Neely, K. A., & Heath, M. (2010). Visuomotor mental ro-
tation: Reaction time is determined by the complexity of
the sensorimotor transformations mediating the response.
Brain Research, 1366, 129–140.

Shepard, R., & Feng, C. (1972). A chronometric study of
mental paper folding. Cognitive Psychology, 3(2), 228–
243.

Shepard, R., & Metzler, J. (1971). Mental Rotation of Three-
Dimensional Objects. Science, 171, 701–703.

Smith, W., & Dror, I. E. (2001). The role of meaning and fa-
miliarity in mental transformations. Psychonomic Bulletin
& Review, 8(4), 732–741.

Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S.,
& Kosslyn, S. M. (2008). Training generalized spatial
skills. Psychonomic Bulletin & Review, 15(4), 763–771.

150ICCM2019



A Meta-Analysis of Conditional Reasoning 

Marco Ragni (ragni@cs.uni-freiburg.de) 
Cognitive Computation Lab, Technical Faculty, University of Freiburg, Germany 

Hannah Dames (dames@cs.uni-freiburg.de) 
Cognitive Computation Lab, Technical Faculty, University of Freiburg, Germany 

 Phil Johnson-Laird (phil@princeton.edu) 
Princeton University, Princeton NJ 08540, USA  

New York University, New York, NY 10003, USA  
 
 

Abstract 
 Conditional premises are assertions with “if”, e.g., If I have 

measles, then I have fever. They provide a connection 
between different propositions and can express causal 
relations. Conditional inferences often comprise 
conditional and categorical assertions, e.g., such as modus 
tollens: If I have measles, then I have fever; I don’t have 
fever; So, I don’t have measles. Most research has 
concerned four sorts of conditional inference, examining 
them separately. Only a few studies have focused on the 
patterns over the four sorts of inference (e.g., Oberauer, 
2006). Our meta-analysis was of 39 experiments (with 
2378 participants) that reported these patterns. It showed 
that a version of the mental model theory best fits the 
results when participants produced their own conclusions 
or evaluated a given conclusion, whereas the suppositional 
theory provided the best fit when participants chose a 
conclusion from a list of options. 

 
Keywords: Conditional reasoning; Information; 
Mental models; Suppositions; Probabilities 

 
Introduction 

Conditionals allow humans to describe hypotheses, causal 
dependencies, diagnoses, and other relations between pieces 
of information. They tend to be expressed in assertions of 
the sort, If A then B, where A and B are sensible clauses in 
natural language, which may be simple or compound, i.e., 
contain sentential connectives of their own. Classical studies 
of reasoning use inferences consisting of a conditional and 
an additional categorical premise, as in: 

 
If he has measles, then he has a fever.    (A conditional) 
He has measles.             (A categorical) 
What, if anything, follows? 

 
Almost all reasoners infer: he has a fever (see, e.g., 
Oberauer, 2006). This sort of inference is the first of four 
sorts (called modus ponens) as shown below with their 
conventional names and abbreviations. These four sorts of 
inferences share a conditional premise, but have different 
categorical premises and so yield different conclusions. 
We use ‘∴’	 to	 preface	 conclusions. For the given 

conditional If A then B and we have the respective 
categorical premise and conclusion:  

 
A.   ∴ B.     (Modus Ponens: MP); 
B.    ∴ A.      (Affirmation of Consequent: AC); 
Not A. ∴	Not B. (Denial of Antecedent: DA); 
Not B.  ∴	Not A. (Modus Tollens: MT). 

  
In classical logic, MP and MT are valid, i.e., given that their 
premises are true, their conclusions are also true. DA and AC 
are valid only if the conditional has a biconditional 
interpretation, equivalent to: If and only if A then B.  The 
biconditional inference pattern often occurs in studies (e.g., 
Oaksford & Chater, 2007, p. 140). While most studies report 
the response frequencies of the four sorts of inference, they 
do not give any information about the inference patterns of 
each participant, such as the number of participants who 
drew only MP and MT inferences. A few studies, however, 
do report the frequencies of these inference patterns over the 
four sorts of premises (e.g., Oberauer, 2006, Barrouillet, 
Gauffroy, & Lecas, 2008; Evans & Over, 2004). In what 
follows, we also show that the separate overall frequencies of 
each of the four inferences yields a misleading picture of the 
process of reasoning.  

Psychologists have proposed five main sorts of theory of 
conditional reasoning: theories based on formal logic, on 
mental models, on suppositions, on dual-processes with 
suppositions, and on probabilities. In what follows, we 
briefly review them.  

Theories based on formal logic (e.g., Rips, 1994) postulate 
that the mind contains a formal rule for MP but no rule for 
MT. Thus, its inference depends on the three steps: i) make a 
supposition of the conditional’s if-clause, A; ii) the rule for 
MP yields B; iii) its conjunction with the categorical premise 
not B is a self-contradiction. As a consequence, one can deny 
the supposition to yield the conclusion: not A.  Readers 
should note that formal rule theories are not included in the 
meta-analysis, because their processes have never been 
formulated as multinomial processing trees (see below).  

The theory of mental models. The theory of mental models 
(e.g., Johnson-Laird & Byrne, 2002) postulates two systems 
of reasoning: intuitive and deliberative. The first system is 
the intuitive process in which reasoners rely on mental 
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models that represent only what is true. Hence, for the 
conditional If A then B a reasoner forms the following, 
mental models: 
 

   A B 
      .  .  . 

 
The first model represents the the possibility in which A, 
and thus B, both hold. The second model – the ellipsis –  
stands for the possibility in which A is not possible. MP 
follows at once from these models given the premise A.  
MT, however, does not. It calls for the second process, 
which is deliberative and in which mental models, including 
the ellipsis, are fleshed out into fully explicit ones: 
 
    A    B 
 ¬ A ¬ B 
 ¬ A    B 

 
This process yields the possibilities in the order above 

(see, e.g., Barrouillet, Grosset, & Lecas, 2000). The 
categorical premise, not B, now yields the conclusion, not A. 
Hence, MP should be easier than MT. The model theory 
explains the discrepancy between human reasoning and 
logically correct inferences as a result of reliance on 
intuitive mental models. A further relevant prediction is that 
MT is easier with a biconditional, which has only two fully 
explicit models, than with a conditional, which has three 
(Johnson-Laird, Byrne & Schaeken, 1992). 

The directional model theory. A variant of the mental 
model theory – the directional model theory – introduces the 
assumption that inferences are easier from the if-clause to 
the then-clause of a conditional than in the opposite 
direction (Evans, 1993; Oberauer, 2006). Hence, it follows 
that an MP-inference is easier than an AC-inference. If the 
inferences are based on biconditionals, a DA-inference is 
easier than an MT-inference.  

The suppositional theory. The suppositional theory 
(Evans & Over, 2004) also assumes that two cognitive 
systems underlie conditional reasoning: a heuristic, 
automatic, and fast system (1), and an analytical, controlled, 
and slow system (2). In later versions, the theory assumes 
that conditionals have a probabilistic interpretation in which 
there is high conditional probability of the then-clause given 
the if-clause. System 1 takes background knowledge, 
context, and the content of the premises into account. 
System 2, however, can focus on the information given in 
the premises and principles of deductive reasoning. 
Oberauer (2006) formulated two versions of the theory in 
order to fit data. In the sequential version, system 1 operates 
first and then system 2 generates a conclusion on the basis 
of this outcome. In the exclusive version, only one of the 
two systems operates on a given problem, i.e., they are 
mutually exclusive. 

The dual process theory of suppositions. There is a family 
of dual-process theories (see, e.g., Evans, 2008 for a 
review). However, one prominent version is similar to the 

suppositional theory (Verschueren, Schaeken, & d’Ydewalle, 
2005) because it has the same system 1. But, in this version, 
system 2 makes inferences using mental models in the same 
way as the model theory does, instead of the proof-based 
system in the suppositional theory. The two systems are 
assumed to be mutually exclusive.  

The probabilistic theory. The probabilistic theory shares a 
general assumption of the suppositional theory, that is, that 
conditionals are interpreted in terms of subjective conditional 
probabilities (Oaksford, Chater, & Larkin, 2000). 
Conditionals have a high conditional probability of the then-
clause given the if-clause. The process for drawing 
inferences, however, differs from the suppositional theory. 
Reasoners accept a conclusion based on its subjective 
conditional probability given the minor premise. This theory 
was not included in this meta-analysis, because its parameters 
for MP and MT inferences have only the ‘exceptions’ 
parameter (1 – P(then-clause | if-clause)) in common, which 
is close to zero.  De facto. the theory treats the four 
inferences as independent, and Oaksford et al. (2000) do not 
report the frequencies of the patterns of inference (cf. 
Singmann et al., 2016). 

 
Table 1 summarizes the predictions of the three main sorts 

of theory.  But, as we will see, our meta-analysis was able to 
examine four theories.   
 
Table 1: Three predictions that discriminate about theories 
based on logic, suppositions, and mental models.  
 

 Logical Suppositional Mental 
models 

The meaning of  
If A then C: 

1. implies the 
possibilities:  
A C, ¬A ¬C, ¬A C 

- - + 

2. implies that only 
cases of A are 
relevant to 
verification 

- + + 

3. implies that MT 
with a bicondi-
tional is easier than 
with a conditional 

- - + 

Note:  + indicates that a theory makes the prediction,  
and - indicates that it does not. 

 
Prior to the work of Oberauer (2006), theories tended to 

consider individual sorts of inference, whereas he formalized 
versions of theories with multinomial processing trees – 
henceforth, we refer to them as ‘trees’ – for all 16 possible 
patterns of responses to the four sorts of inference (MP, AC, 
DA, and MT). Every reasoner is bound to yield of 2- = 16 
possible patterns of responses for the four sorts of inference. 
These patterns give a more accurate understanding of the 
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cognitive processes underlying conditional reasoning than 
analyzing the four sorts of inferences separately. As we will 
see later, the four sorts of inferences are not drawn 
independently from each other.  

 Oberauer’s trees included all the cognitive processes 
leading from inputs to the 16 leaves that represented the 
responses. He added a single fixed guessing component to 
each of the trees and evaluated the goodness of fit using G-
tests. In the following, we use the formulations of 
Oberauer’s (2006) trees for the original model theory, the 
directional model theory, the suppositional theory 
(sequential and exclusive), and the dual-process theory 
(Verschueren et al., 2005). 

The main goals of our analyses were (1) to analyze the 
four sorts of inference in three types of experimental task: 
the production of conclusions, the choice of conclusions  
from options, and the evaluations of single given 
conclusions; and (2) to carry out a new sort of meta-analysis 
that includes assessments of the reliability of the data, of the 
inter-dependence of conclusions over the four sorts of 
inference, and the goodness of fit of the different theories. 
Finally, the paper discusses the implications of its results for 
the various theories.  

Three Types of Reasoning Task 
Studies of conditional reasoning have used three main tasks 
(for an overview see Schroyens & Schaeken, in 
preparation). In the production task, the participants are 
given the premises and asked to state what, if anything, 
follows from them, i.e.., what must be true given that the 
premises are true. In the option task, they are asked to 
choose such a conclusion from a set of multiple options, 
which usually include one for “nothing follows”. In the 
evaluation task, they are presented with the premises and a 
single putative conclusion, and they evaluate whether or not 
it follows from the premises. These three tasks are likely to 
call on different mental processes, e.g., reasoners can work 
backwards from a given conclusion in the evaluation task, 
but they have to formulate or guess a conclusion to carry out 
the production task (see Schroyens & Schaeken, in 
preparation). These authors were the first to show that the 
different sorts of task affect the conclusions that individuals 
draw (e.g., Schroyens et al., 2001; Schroyens & Schaeken, 
in preparation). They formulated the following predictions 
about differences among the three sorts of task: more 
conjunctive conclusions should occur in the production task, 
and fewer selections of fallacious conclusions for AC and 
DA should occur in the option task. We therefore follow 
Schroyens and Schaeken and conducted separate analyses of 
performance for the three types of task. 

Meta-analysis 
The meta-analysis included the data collected and prepared 
by Schroyens and Schaeken (in preparation). They carried 
out their own meta-analysis, which included a detailed 
report of the patterns of inference for the three sorts of task. 

Their results were from adult participants and high school 
students in their final year. Furthermore, the studies used 
abstract conditionals, and other logically equivalent 
formulations, such as: all A are B, B if A, A unless not B, and 
B only if A, and the biconditional: if, and only if, A then B. In 
addition to these data, the meta-analysis included results 
reported in Oberauer (2006). We searched the literature in 
April 2018 on Google Scholar and PubMed. But, none of the 
other papers that we found reported the frequencies of the 16 
different patterns for the four sorts of inference.. Yet, these 
patterns were essential for our meta-analysis. Thus, in the 
end, our work relies on results of one study by Klaus 
Oberauer and 14 studies that Walter Schaeken kindly 
provided to us (e.g., Barrouillet, Grosset, & Lecas, 2000; 
Byrne & Tasso, 1999; Evans, Clibbens, & Rood, 1995; 
Schroyens, Schaeken, & Handley, 2003; and more). In sum, 
the meta-analysis included data from 39 experiments (from 
15 studies) that tested a total of 2378 participants. 
 
MP as the most basic inference pattern  
MP is the fundamental inference in conditional reasoning. It 
is commonplace in everyday life, and most experimental 
participants make it, though a few failures do occur (see, e.g., 
Oberauer, 2006). In our view, individuals who do not make 
MP in an experiment have failed to reason, and so we have 
excluded their data from our analyses. It therefore focused on 
the eight patterns of response that include MP.  
 
The Dependency of the Inference Patterns 
Some theories of conditional reasoning assume that 
inferences of the four sorts of inference are independent of 
one another (Evans & Lynch, 1973). Other theories do so de 
facto in that they consider only the frequencies of each of the 
four sorts of inference, not the frequencies of their patterns 
(e.g., Oaksford et al., 2000). But, are the four sorts of 
inference independent of one another? 

The question is an empirical one, and to examine it we 
used an algorithm based on Shannon’s measure of 
information, which we used to show that the selections of 
potential evidence to test a conditional hypothesis are 
dependent on one another (see Ragni, Kola, & Johnson-
Laird, 2018). The intuition motivating the algorithm is 
simple. Suppose that the inferences in an experiment are 
more redundant – less informative – than inferences based 
only on the individual probabilities of each of the four 
inferences in the experiment. It follows that something is 
constraining the inferences over and above their independent 
frequencies. Hence, the selections are dependent. 
Consequently, if the inferences are dependent, theories 
implying their independence are wrong. We therefore tested 
whether the patterns of inference in the experimental data 
were significantly more redundant (using Shannon’s 
measure) than those of 10,000 simulations of each 
experiment based on independent selections. 

To analyze the potential dependence of the conditional 
inferences we examined the data for each experiment in our 
sample following four main steps:  
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1. Compute N, the number of participants, and the 

probabilities of the eight inference patterns (each 
including MP) in the set of the participants’ 
inferences.  
 

2. Compute Shannon’s entropy H for the experiment.  
 

3. Carry out 10,000 simulated experiments based on 
the probabilities of making each inference, 
assigning a pattern to N hypothetical participants.  
 

4. Return the number of simulated experiments that 
were more informative than the actual experiment 
and the number with the same or lower information 
values. 

 
 
  Table 2 shows the relative frequencies of the main patterns 
of inference in our sample of 39 experiments. 
 
Table 2: The relative percentages of five patterns of 
inference in 39 experiments categorized according to the 
task (evaluation, option or production of a conclusion).  
Three of the eight patterns occurred less often than 5% and 
are not included in the table.    
  

Response 
pattern Evaluation Option Production Overall 

All 
inferences 39.0 43.1 50.3 42.3 

MP, MT 17.7 21.3 12.4 18.3 
MP 14.8 8.4   5.4 10.9 
MP, AC   8.4 5.8 11.0   7.8 
MP, AC, MT   4.0 8.2   8.5   6.3 
 
Number of 
Experiments 

8 22 9 39 

Number of 
Participants 1103 921 354 2378 

     
Note. The different response patterns indicate whether the 
MP, DA, AC, MT inferences were accepted, selected, 
generated or not. We do not present patterns that occurred 
less than 5% in each task. 
 
 
Table 3 presents the information value of the 39 
experiments investigating the three sorts of task, the mean 
value of each of their 10,000 simulations, and the results (of 
Wilcoxon’s test comparing the two values) indicating a 
reliable dependence over the four sorts of inference. 
 
Table 3: The mean information value (in bits, with a 
theoretical maximum of 3 bits) of 39 experiments using 
three tasks, their mean information value, and that of sets of 
10,000 simulations of each experiment. 

 

Sort of task Evaluation Option Production 

Mean 
information of 
experiments 

 
1.69 

 
2.03 

 
1.93 

Mean 
information of 
their simulations 

 
2.05 

 
2.29 

 
2.12 

Wilcoxon’s W 
and p-value 

W = 3,  
p < .04 

W = 3,  
p < .04 

W = 6,  
p = .055 

 
In sum, these results demonstrate that the four sorts of 
conditional inference in the experiments depend on each 
other.  

An evaluation of theories of conditional reasoning 
We evaluated five theories using multinomial processing 
trees (based on the formulated trees in see Oberauer, 2006; 
see Figure 1 for the tree of the mental model theory).   
 
 

 
 
Figure 1: The multinomial processing tree for the mental 
model theory. The parameter r stands for the reasoning part 
and 1-r for the guessing part (for an explanation, see 
Oberauer, 2006). Parameter f controls whether or not models 
are fleshed out to include a model of ¬ p and ¬ q. 
 
Within each tree for a theory, the probability of a particular 
cognitive state is estimated from the observed frequencies of 
inferences (Riefer & Batchelder, 1988). We used the 
maximum-likelihood method from the R-package for 
multinomial processing trees (MPTinR, Singmann & Kellen, 
2012) to fit each theory’s tree to the frequencies of the four 
patterns of inference, separately for the three different types 
of tasks. To compare the models, we calculated the Bayesian 
information criterion (BIC), which indicates how much 
information is lost when a model represents the process that 
generates the data. This criterion takes into account both a 
tree’s parsimony and its goodness of fit with the data. Thus, 
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the BIC rewards a good fit and punishes a higher number of 
free parameters. A lower BIC indicates a better theory, 
because it has fewer parameters or fits the data better, or 
both. Table 4 presents the BIC for the different trees we 
fitted for the three different types of conditional tasks 
(evaluation, option, and production).  
 
The results in Table 4 show that the model theory is the best 
in accounting for the conclusions that reasoners draw for 
themselves (the production task). Its directional version is 
best for the evaluation of given conclusions (the evaluation 
task). The best theory for the task of selecting a conclusion 
from a multiple choice (the option task) is the exclusive 
version of the suppositional theory, which postulates that 
either system 1 or else system 2 is engaged in the process of 
reasoning. 
 
 
Table 4: The fit of the different trees based on the theories 
of reasoning for the different sorts of task. 
 

The theory Evaluation 
(BIC) 

Option 
(BIC) 

Production 
(BIC) 

Suppositional- 
exclusive 42 43 45 

Dual process 
suppositions 48 48 42 

Directional 
mental model  37 60 42 

Mental model 46 62 38 

Suppositional  63 54 60 

 
Note. ‘Evaluation’ refers to the evaluation of a given 
conclusion; ‘Option’ refers to the choice of a conclusion as 
an option in a multiple-choice format; and ‘Production’ 
refers to the production of a conclusion from a set of 
premises. A lower Bayesian information criterion (BIC) 
indicates that a theory has fewer parameters or fits the data 
better, or both. Best fits are shown in bold. 
 

General Discussion 
Following previous research (e.g., Oberauer, 2006; 
Schaeken, 2001), we carried out a meta-analysis to 
determine which theory of conditional reasoning and type of 
tasks gave the best account of individuals’ patterns of 
inference in the four basic sorts of conditional reasoning 
inferences (modus ponens: MP, affirmation of the 
consequent: AC, denial of the antecedent: DA, and modus 
tollens MT). Following Schaeken and Schroyens (in 
preparation), we separated the studies into those that called 

for the evaluation of a given conclusion (evaluation task), its 
selection from a set of options (selection task), and its 
production from the premises alone (production task) and 
considered their differences in the analyses.  

Our results showed that the most frequent pattern of 
inferences in all three tasks was to make all four inferences – 
a pattern that is valid only if the conditionals are interpreted 
as biconditionals (see Table 2). The next most frequent 
pattern was to make MP and MT inferences – the two 
inferences that are valid given a classical conditional 
interpretation. These results do not discriminate among the 
various theories of conditional reasoning, though some 
theories, such as the model theory, predict that AC can occur 
in the absence of a biconditional interpretation.  

An analysis of the amount of information, using Shannon’s 
measure, showed that the patterns of actual inferences were 
more redundant than those of 10,000 simulations of each 
experiment (see Table 3). This result corroborated our 
elimination of any theory in which each selection is in 
principle independent of the others, e.g., the probabilistic 
theory of conditional reasoning (Oaksford et al., 2000).   
   Finally, we fit the multinomial processing trees for each of 
the remaining five theories to the results of 39 experiments 
using the three different tasks (Table 4). The Bayesian 
information criterion, which credits a fewer number of 
parameters and goodness of fit, showed that the model theory 
gave the best account of the production of conclusions. 
Furthermore, its variant that reflects the direction of an 
inference (the directional model theory) – from if-clause to 
then-clause, or vice versa – gave the best account of the 
evaluation of a given conclusion. We speculate that this 
result may reflect the order of clauses, i.e., A C versus C A, in 
some of the putative conclusions that the participants had to 
evaluate. In the suppositional theory, which proposes that 
participants rely either on system 1 or else on system 2 (its 
exclusive variant), gave the best account of the selection of 
an option from a set of multiple conclusions. 
   But why do participants seem to differ in their inference 
patterns given different types of tasks? There is strong 
evidence that the response modality of conditional tasks (e.g., 
scaled or dichotomous response format) affects the way 
participants process the presented information (e.g., 
Markovits, Forgues, & Brunet, 2010). These results are 
consistent with the idea that scaled responses promote a 
probabilistic mode of processing. Yet, the current studies 
concentrated on data from non-rating tasks.  This constraint 
was necessary in order to compare the three sorts of task. 
Future studies should extend the present findings by 
considering different types of response modality.   
    By far the most important task for future studies is to 
formulate tasks in which participants make conditional 
interpretations.  As we mentioned, the most frequent pattern 
in the present studies was for a biconditional interpretation 
and so, for now, it is not possible to determine how well the 
various theories would fit tasks in which the main 
interpretation is for a conditional and not a biconditional 
interpretation.   
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   The difference among the theories’ fit to the data over the 
three types of task shows that theories should account for 
performance in different tasks. Different tasks yield 
different patterns of inference. One factor, for instance, 
could be that the need to formulate a conclusion discourages 
guesswork in comparison with the “option” task in which 
participants choose a conclusion from a multiple set of 
possible responses. Future studies should therefore separate 
different tasks in their analyses of theories. 
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Cognitive Computation Lab, Technical Faculty
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Abstract

While there is a plethora of cognitive models for spatial rela-
tional reasoning, only few of them have been implemented and
less have been compared to each other. Additionally, a quan-
titative benchmark consisting of core spatial relational reason-
ing problems is missing. And, if empirical data is available
it reports aggregated response patterns only, and not the re-
sponses of each individual human reasoner. Accordingly, most
cognitive models do only aim to explain or reproduce these
aggregated response patterns. This paper approaches these is-
sues from a cognitive computational perspective: (1) To estab-
lish a first benchmark, we conducted an experiment on reason-
ing with cardinal direction relations, (2) where necessary, we
reimplemented existing cognitive models for spatial relational
reasoning, ranging from connectionist approaches to symbolic
theories and analyze these theories based on diagnostic crite-
rias, and (3) we evaluated the cognitive models on the bench-
mark data and extended them where necessary to give predic-
tions for individual reasoners. We discuss implications for the-
ories of spatial reasoning.
Keywords: Spatial Cognition; Reasoning; Cognitive Models;
Cardinal Direction; Model Comparison

Introduction
Spatial reasoning is ubiquitous. When we travel, navigate,
or communicate about spatial information, we process spa-
tial information and draw inferences. Consider the following
problem about cardinal directions:

(A1) The tower is north of the city.
The city is north-west of the mountain.
Where is the mountain in relation to the tower?

A human reasoner may quickly conclude that the answer to
this problem is ‘The mountain is south-east of the tower’.
However, a cognitive model, as you will see later, would only
predict about 64% of the responses of individual reasoners
correctly, as inter-individual differences are present. Predic-
tions can become even more difficult:

(A2) The train station is north-west of the library.
The library is south-east of the church.
Where is the church in relation to the train station?

This spatial description is ambiguous, or indeterminate, i.e.,
there are several arrangements possible. Hence, it has no
straightforward answer – all relations are possible. When
looking at the aggregated data, a correct prediction is almost
impossible, since the answers are, with a few exceptions,
nearly uniformly distributed. Therefore, to better understand

the cognitive processes behind the integration of spatial in-
formation, we chose to compare various cognitive models of
spatial relational reasoning on their performance on modeling
the responses of individual participants.

The remainder of the paper is structured as follows: In the
next section we briefly report the conducted experiment on
reasoning with cardinal directions and the framework which
was used for the comparative quantitative evaluation on in-
dividual empirical data. We will then introduce the cognitive
models we (re-)implemented and extended for the experimen-
tal task. Lastly, implications for the domain of spatial reason-
ing are discussed.

Human Reasoning with Cardinal Directions
As a benchmark for spatial relational reasoning, we con-
ducted an experiment about transitive inferences with cardi-
nal direction relations in the line of Ragni and Becker (2010).
As already mentioned, spatial descriptions can be determi-
nate or indeterminate. In the case of oppositional directions
(as in problem (A1)), this is easy to see. However, also other
descriptions can be indeterminate, depending on the interpre-
tation. The description ‘A is south-west of B. B is north of
C.’ can lead to various representations including the follow-
ing, depending on the assumed interpretation of the distances
conveyed by the relation:

B

A C

B

A

C

B

C

A

According to various studies (e.g., Knauff, Rauh, &
Schlieder, 1995; Ragni & Knauff, 2013), humans do not
simply construct all possible models, but have often a pref-
erence for one specific representation - the preferred men-
tal model. Only if prompted to search for other models, for
instance by the experimental task, will humans consider the
other possibilities. Preferences for reasoning with cardinal
directions have been investigated in Schultheis, Bertel, and
Barkowsky (2014) and Ragni and Becker (2010). A prefer-
ence for arrangements obeying a prototypical triangle shape
were found (Schultheis et al., 2014) as well as a preference
for main cardinal directions, e.g., ‘north’ over ‘north-west’
(Ragni & Becker, 2010).
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Figure 1: Response preferences for the 64 problems of the cardinal direction experiment. The row represents the relation in the
first premise (e.g., A is NW of B), the column the respective relation in the second premise (e.g., B is NE of C). In each cell the
first row depicts the logically valid relations, the second row the most frequently chosen answer. In the indeterminate case, the
third row contains the relative frequency of the preferred relation.

Method

We tested 49 participants in a web experiment on Amazon’s
Mechanical Turk. In the main part, participants were pre-
sented with 64 spatial reasoning problems with cardinal di-
rections. All problems were of the form ‘A r1 B. B r2 C.’
with each r1 and r2 being one of the 8 cardinal direction re-
lations north, north-east, east, south-east, south, south-west,
west, and north-west. Instead of A, B, and C different build-
ings based on their frequency in the English language were
used. The task of the participants was to give a relation that
holds between C and A. The premises were presented sequen-
tially in a self-paced procedure. The order of the problems
was randomized separately for every participant. Participants
responded by pressing the respective key/s (e.g., “nw” for
north-west).

Based on previously defined exclusion criteria — more
than two fast guessing responses (RTs < 0.2s), more than
two wrong responses to standard problems (i.e., North-North,
South-South, West-West, East-East) and telling that they
wrote down the premises or drew pictures on paper — eight
participants were excluded. Thus, the final sample size was
N = 41 participants.

Results

Overall, 84.0 % of the problems were solved correctly, i.e.,
participants gave a valid answer. In the indeterminate cases
preferences can be observed. These are depicted in Figure 1.

Evaluating Models on the Individual Reasoner
The Cognitive Computation for Behavioral Reasoning Anal-
ysis (CCOBRA) framework1 is a benchmarking tool imple-
mented in Python. Its goal is to test models and how good
these simulate the experimental procedure of individual par-
ticipants. The models are presented with the same task in the
same sequence with the same response options. By providing
precise responses to individual tasks, models are evaluated
based on their predictive accuracy.

Models are allowed to train on a data set consisting of tasks
and related human responses of individuals not present in the
evaluation data. In the test phase, the models are presented
with novel empirical data on which they are to give a pre-
diction regarding the conclusion drawn by the current partic-
ipant. Additionally, after predicting the response to a task,
they are presented with the true response and thus allowed to
adapt to an individual participant. Hence, CCOBRA extends
the traditional cognitive modeling problem by moving be-
yond the level of aggregates. As a result, the modeling prob-
lem gets harder, but the outcomes can be interpreted more
intuitively. Higher predictive scores correspond directly to a
better grasp of the processes underlying an individual human
reasoner’s cognitive system.

We divided the gathered empirical data into a training and a
test set: One third of the participants were randomly assigned
to the training set, and the other participants were assigned to
the test set.

1https://github.com/CognitiveComputationLab/ccobra
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Five Cognitive Models for Spatial Reasoning
Model Selection Criteria
Models were selected with respect to the following selec-
tion criteria, of which every model reported here fulfills
at least two: (i) the cognitive model is developed, or eas-
ily extendable, for human reasoning with cardinal direc-
tions, (ii) the model already has an implemented version
or is easily implementable, (iii) the model makes a pre-
diction concerning complexity of task, (iv) the model is a
stand-alone implementations, (v) the model offers explana-
tions for basal principles of spatial reasoning. We identi-
fied six cognitive models for spatial reasoning existent in
the literature and contacted the respective authors. The six
models were: The Spatial Probabilistic Model (Ragni &
Becker, 2010), Verbal Spatial Reasoning Model (Krumnack,
Bucher, Nejasmic, & Knauff, 2010), the spatial architec-
ture CASIMIR (Schultheis & Barkowsky, 2011), the Spatial
Artificial Neural Network (Ragni & Klein, 2012), PRISM
(Ragni & Knauff, 2013), the Dynamic Field Theory (DFT)
(Kounatidou, Richter, & Schöner, 2018). The spatial archi-
tecture CASIMIR (Schultheis & Barkowsky, 2011) was not
available and due to its size and dependence between long-
term memory and reasoning processes it was not possible to
reimplement it. In the following, we briefly report the mod-
els.

The Spatial Probabilistic Model
(Ragni & Becker, 2010)
We reimplemented the spatial probabilistic model developed
by Ragni and Becker (2010).

The Unit Layout Model. This model is used as a heuristic
for calculating detours by computing the conditional prob-
ability of relations between different locations (Ragni &
Becker, 2010). It is represented as a lookup table that con-
tains every possible direction relation between R1 and R2.
Example of one unit layout lookup table can be seen in
Figure 2.

Gains. For representing some cognitive phenomena, gains
were added to certain probabilities. E.g., the given data
shows that participants prefer the direction east over the
direction west if they have the choice between them. In
this example the model adds a certain value (usually the
value is optimized in the pre-train-function) to the proba-
bility p(“east”) and normalizes all probabilities (here for
all directions) afterwards.

Implementation Details. Let B′ be the set of cardinal re-
lations, where each of them represents an applicable relation
(in this case, direction). Given three locations a,b,c, the re-
lations between them are stated as R1,R2,R3 ∈ B′ which are
applied as aR1b, bR1c, and aR3c. The relative frequency of
R3 for R1,R2 (called fR1,R2(R3)) is parametrized in probabil-
ity distribution PR1,R2(R3). The preferred relation is then:

M(R1,R2) = argmax
R3∈B

PR1,R2(R3) (1)

Figure 2: The unit layout for R3 = NW. Field a is to the north-
west of c. All other field are uniquely labeled with relations
R1−R2. It holds for each of them that field a is R1-wards of
it and it is R2-wards of c (Ragni & Becker, 2010).

and by using Bayes Rule in equation (Ragni & Becker, 2010),
it becomes:

PR1,R2(R3) := P(R3|R1,R2) =
P(R1,R2|R3)P(R3)

P(R1,R2)
(2)

where P(R1,R2) is assumed to have a unit distribution and
P(R3) has a unit distribution with a probability gain for the
main cardinals and gain towards the east. These gains are mo-
tivated by the given data and are added to the respective prob-
abilities of the directions. After adding the gains, it is neces-
sary to normalize the probabilities. As mentioned, calcula-
tion of P(R1,R2|R3) is done using the unit layout’s lookup
table that contains every possible direction relation between
R1 and R2.

P(R1,R2|R3) =
c−1

R1,R1

∑R′1,R
′
2∈ c−1

R′1,R
′
2

(3)

with the cost function (Ragni & Becker, 2010):

cR3
R1,R2

:=
d([a]R3 , [R1,R2]

R3)+d([R1,R2]
R3), [c]R3

d([a]R3 , [c]R3)
(4)

Verbal Spatial Reasoning Model
(Krumnack et al., 2010)
Verbal reasoning is based on the assumption that the human
mind constructs a verbal representation of a problem, and the
reasoning process then uses mechanisms similar to those of
language processing to draw or validate a conclusion as pro-
posed by Polk and Newell (1995).

The parameter-free verbal model (Krumnack et al., 2010;
Krumnack, Bucher, Nejasmic, Nebel, & Knauff, 2011) sug-
gests that individuals construct a queue of object terms in
their mind that can be read like a sentence. A mental cost
metric determines where a new object is inserted. It assumes
that breaking links between objects costs more than creating
new links, and searching for an object is more efficient in the
direction of the queue. This direction is determined upon in-
sertion of the first relation and depends on a cultural left-right
preference (Maass & Russo, 2003).
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Extension of the Model. The model by Krumnack et al. has
been developed for one-dimensional spatial relational prob-
lems only. Hence, we expanded the model for cardinal direc-
tions, while keeping the structure of the queue. This is done
by adding a direction encoding for the vertical and horizon-
tal plane to each link, with positive values for “north” and
“east”, and negative ones for “south” and “west”. If the angle
between the direction of the new relation and the queue di-
rection is more than 90◦, the new object is inserted before the
reference object, otherwise at the end of the queue. Problem
(A1) generates the following queue:

tower → city → mountain
vertical −1 −1 0
horizontal 0 1 0 (5)

To predict a response the model sums up all the direction
encodings between the two objects in the queue and de-
codes them into cardinal directions. E.g., in the queue above,
the model would sum up all the direction instructions from
“tower” to “mountain”, receiving a negative total in the ver-
tical and a positive one in the horizontal plane, which means
that one must go “south” and “east” to reach the “mountain”
starting from the “tower”. This results in “the tower is north-
west of the mountain”. Individual adaption of the queue di-
rection was implemented to account for (cultural) preference.

The Spatial Artificial Neural Network
(Ragni & Klein, 2012)
We adapted the implementation of an Artificial Neural Net-
work (ANN) (e.g., Zurada, 1992) for spatial relational reason-
ing with cardinal directions (Ragni & Klein, 2012) to work
with the CCOBRA framework to predict individual subjects’
responses to spatial relational problems.

Implementation Details. As in Ragni and Klein (2012),
we used one hidden layer and a full connectivity between
the layers, and trained the network with backpropagation
(Rumelhart, Hinton, & Williams, 1986). The network is
based on calculations on point algebra, and treats x- and y-
directions independently. The network is hence tested twice
on each premise-pair. First, the x-direction (west-east) is cal-
culated, and second, the y-direction (north-south). Conse-
quently, the network consists of 2 input nodes. Three output
nodes semantically describe the spatial relation between the
first and the last object on the tested axis.

All parameters were tuned manually to maximize correct-
ness on the limited data provided. Learning rate and momen-
tum factor were tuned in 0.1 steps in a range of 0 to 1. A
value of 0.1 for both parameters yielded the best results.

To train the network, we performed 10 iterations on the
training set with each of the eight possible response choices
respectively.

Lastly, to perform a prediction on individual participants
in the test set, the given task is given to the network, again

separately for x- and y-direction. The highest valued response
is returned as prediction.

PRISM
(Ragni & Knauff, 2013)
We re-implemented the PRISM model, an implementation of
the preferred mental model theory (Ragni & Knauff, 2013).
It simulates the construction of preferred mental models and
can vary this preferred model to find alternative conclusions.
A spatial working memory structure is operationalized by a
spatial array. In short, it consists of a mental array and a spa-
tial focus which inserts tokens into the array, inspects the ar-
ray to find new spatial relations, and relocates tokens in the ar-
ray to generate alternative models of the problem description,
if necessary. The focus also introduces a general measure of
difficulty based on the number of necessary focus operations
(rather than the number of models).

Dynamic Field Theory (DFT)
(Kounatidou et al., 2018)
Kounatidou et al. (2018) proposed a cognitive model to solve
the preference effect for relations right or left based on the
Dynamic Field Theory (DFT) (Schöner, Spencer, & the DFT
Research Group, 2015). The architecture can be divided into
five functional parts. The first part involves discrete concep-
tual nodes for the input premises whose activation is trans-
lated into continuous activation in later fields. The second
functional part is the attention part which forms peaks of ac-
tivation for objects that are currently attended. The third part
is the scene representation in which the spatial scene as well
as the color of the objects in the scene is stored. The fourth
part is concerned with spatial transformations that put the ob-
jects in the correct relation according to the given premise.
And the final part is concerned with the organization of all
the involved processes, including starting processes, check-
ing if processes are finished and resetting activation to their
resting state after all processes of a premise are completed.

Figure 3: Cardinal direction spatial activation templates can
be seen on the left, along with the new extended inter-cardinal
templates on the right.

Extension of the Model. The original architecture of
Kounatidou et al. (2018) can only create two-dimensional
scene representations with the four cardinal relations (north,
south, east, and west) between the objects. However, the
benchmark data of the Cardinal Direction Experimentin-
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Table 1: Overview of the evaluated models for spatial relational reasoning.

Cognitive Cognitive com- Assumptions about Predictions of Generalizable to Accuracy pre-
Model plexity measure WM representation phenomena other relations dicting individuals

Verbal Reasoning Yes Minimal mental model Yes Yes 64%
Bayesian No None No No 64%
PRISM Yes Minimal mental model Yes Yes 63%
ANN No None No Yes 63%
DFT No Open Yes Yes 62%

Note. Cognitive complexity measure refers to whether the model gives an explicit account of the difficulty of a reasoning problem.
Assumptions about WM representation refers to whether the models make any assumptions about the human working memory. Predictions
of empirical phenomena refers to whether the models make new empirically testable predictions. Generalizable means whether the model
can be extended to other spatial relations. Accuracy predicting individuals denotes the percentage of correctly predicted answers for the
individual participants.

cludes inter-cardinal directions. Therefore, we extended the
architecture with new concept nodes and corresponding spa-
tial activation templates for the inter-cardinal directions. For
these, we took the existing spatial relation templates and per-
formed a component multiplication and normalization oper-
ation on them. For example, to get north-east, we took the
product of a component multiplication between the north and
east spatial activation templates and normalized it, such that
the peaks were equivalent to those found in the cardinal di-
rections. The resulting templates can be seen in Figure 3.

The implementation of this architecture was done within
the CEDAR framework (Lomp, Zibner, Richter, Rano, &
Schöner, 2013), which provides a way to create models based
on dynamic neural fields. However, it was not possible to
connect the framework to CCOBRA’s evaluation function.
Therefore, evaluation was performed by hand, which was
possible because the model is deterministic, i.e., generates
the same output for each participant.

Results and Discussion
If we just consider the accuracy to predict each individual rea-
soner, then we see that we reach about 64% of the predictions
(see Table 1). The probabilistic approach and the Verbal Rea-
soning model performed the best. However, overall accuracy
was very comparable for all models. Considering each single
participant (see Figure 4), the different models reach a pre-
diction accuracy of up to 90%. So a first result is: Though the
models have been developed for predicting the most frequent
answer, the prediction rate for many individual participants is
high. It seems that the aggregate responses do capture general
cognitive processes.

But the models differ in some theoretical aspects: Some do
make predictions about the difficulty of problems and are pro-
cess models, e.g., the Verbal Reasoning model and PRISM,
and they do predict which symbolic mental representation is
built. While this is not necessarily reflected in the accuracy, it
allows to make predictions on a phenomenological level, i.e.,
the model can generate predictions about new phenomena
that can be tested. This is specifically a limitation of the cur-
rent version of the Spatial ANN and the Bayesian approach.

They can fit the data, but testable novel predictions cannot
be drawn. A further point is that models may not be too re-
stricted to some specific spatial relations. Here extensions of
the specific Bayesian approach is not straightforward.

Limitations of the approaches. The Verbal Reasoning
model performed relatively well in the task it was built for:
linear orderings in one dimension. However, as of yet it is
not able to predict instances where a reasoner gives a logi-
cally incorrect answer. In the future, the assumptions of this
cognitive model should be tested more rigorously. It could
be possible that the introduction of an individual mental cost
threshold would solve the problem of giving incorrect solu-
tions. Possibilities for individual adaptation have to be ex-
plored further, since the paths used here did not improve per-
formance. The implementation of the Neural Dynamic Field
Architecture brings some limitation with it. These include the
inability to rearrange existing objects in its spatial memory, to
place a new premise if the reference point does not exist in its
spatial memory yet, even if the target does exist, the inability
to adapt to new information and the limited size of the spa-
tial memory. The model is only able to append objects at the
end of each cardinal direction (e.g., left-most position with
regards to west or top-most position with regards to north).
It is unable to insert objects in between two existing objects.
If the architecture produces a response that is incorrect to the
information or to a specific individual, it is unable to adapt or
be trained specifically to respond differently. Moreover, all
parameters are hard-coded and must be manually tuned.

Conclusion
The current state of the art demonstrates that it can fit about
64% of the data. The models vary to a great extend, but are
very similar in their predictions. More research is necessary
to understand the mechanics of human reasoning for such a
simple task as transitive inferences in cardinal directions.
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Figure 4: Percentage of correct predictions for each individual participant (dots) and for the population (box plots).
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Abstract

How does one person learn a complex task? Averaging per-
formance over a group of individuals implicitly assumes that
there is only one set of methods for accomplishing the task and
that all learners acquire those methods in the same sequence.
We maintain that the average subject is a mythical beast that
does not exist. Hence, rather than profiling a mythical “aver-
age subject”, we use SpotLight – a tool for analyzing changes
in individual performance as skill is acquired in a complex task.
Specifically, in this report, SpotLight uses 35 features and mea-
sures (some collected at millisecond level, others collected once
per game), to investigate the skill acquisition of 9 players each
of whom spent 31 hours learning the complex task of Space
Fortress (SF). SpotLight enables us to uncover the evolution of
individual strategies and the iterative efforts of individuals to
create, discover, and explore new ways to improve their current
performance. To our surprise, these players seem to have fol-
lowed a common ‘design for the weakest link’ rule, in which
after the current weakest link was strengthened a player’s at-
tention turned to the next weakest link. While this rule served
our performers well, an often imposed constraint on the rule
– ‘while retaining existing strengths’ – sometimes led the odd
performer to suboptimal plateaus.

Keywords: Individual Learning; Part-task; Plateaus; Dips;
Leaps; PDL; SpotLight; Relative entropy; Power Law

Introduction
Studies of skill acquisition often proceed by averaging data
collected over large groups of individuals. Such methods are
fine if we wish to measure the average effect of a treatment
administered in different ways, but they fail to achieve our goal
of understanding how individuals acquire complex skills.

Here we adopt the Plateaus, Dips, and Leaps (PDLs) ap-
proach advocated by Gray and Lindstedt (2017) and use the
SpotLight tool (Rahman & Gray, in preparation) which enables
us to identify the PDLs in individual performance. Our results
show some commonalities in individual strategies amidst vast
differences. For example, after varying numbers of hours of
practice, all players adopted an optimal, but effort-expensive
strategy. However, the most striking commonalities are not
in the gameplay strategies per se, but the ways and means in
which these strategies were modified. Specifically, we observe
that the changes in each player’s gameplay strategies pivoted
around part-tasks in which the player was performing well.
Relative to these pivots, gameplay strategies were recurrently
modified to address the weakest parts of gameplay. Based on
these findings, we propose that task execution strategies were
recurrently updated by a common optimize strategies for the
weakest links rule.

By focusing on one subgoal at a time, this rule provides
checkpoints towards devising optimal strategies for the whole

task. However, an excessive focus on subgoals may lead per-
formers to lose sight of the overall goal (maximize total re-
turns) and adopt strategies that maximize the current subgoal
at the expense of the overall goal. For example, as we elaborate
later, our worst performing player, in attempting to reinforce
his skills in one subtask, adopted a suboptimal strategy that
basically contradicted the entire point of the game and led to a
plateau of stable suboptimal performance (Fu & Gray, 2004)
from which there was no path forward. His best alternative
would have been to discard the results of a long branch of ex-
ploration and strategy development, and revert to a much ear-
lier set of strategies; which he did not do and fell victim to a
type of sunk cost fallacy (Sweis et al., 2018).

Learning in Simple vs Complex Tasks
The research literature seems bifurcated between simple and
complex tasks. For simple tasks, the power law of practice
does a fine job of modeling learning (Newell & Rosenbloom,
1981). Those who follow in this tradition have complicated the
world a bit (very reasonably) by proposing revisions that incor-
porate strategy-specific power laws (Rickard, 1997; Delaney,
Reder, Staszewski, & Ritter, n.d.; Donner & Hardy, 2015).
However, the more complex the task, the more the number of
subtasks, and/or the more alternative ways of implementing a
subtask, the less we would expect one individual’s choices to
resemble another’s.

A complex task encompasses a hierarchy of subtasks
(Simon, 1962), where higher level subtasks consist of and
serve as goals for lower level ones. Task complexity exceeds
the sum of separate subtasks because of intermediate associa-
tions in the hierarchy, which also implies a number of alterna-
tive routes in the hierarchy to reach from bottom to top. Con-
sequently, even if practice alone suffices to maximize perfor-
mance for simple tasks, more complex tasks require identify-
ing optimum strategies from many alternative strategies.

The number of subtasks and the sets of possible strategies
for each subtask raises new questions as to how learning pro-
gresses with practice. Does the individual attempt to optimize
all parts of the task? Considering the limited cognitive and
physical resources available to performers, it is reasonable to
expect at least some parts to be satisficed (Simon, 1947). How
choices are made as to which parts are satisficed or optimized
and how such choices affect the goals and ultimately perfor-
mance, are questions that directly relate to the dynamics of
individual learning. To explore answers to these questions, we
put the SpotLight on individual performance in the complex
task of SF (Mané & Donchin, 1989).
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The SpotLight Tool
The SpotLight tool (Rahman & Gray, in preparation) reveals
changes in the execution of individual tasks and subtasks by
detecting the PDLs in individual performance. The tool is
instrumented with relative entropy (denoted by RE in Equa-
tion 1), an information-theoretic measure of the difference be-
tween a target probability distribution (pi) and a reference dis-
tribution (pr); in other words, it measures the difference be-
tween two states of uncertainty (Vedral, 2002). Whereas the
scope of comparison in relative entropy is limited to two dis-
tributions, the scope is extended in the SpotLight to a finite
number of distributions (see Equation 1). First, longitudinal
records of performance (univariate or multivariate) are dis-
cretized into n consecutive phases and converted into phase-
specific probability distributions. Then, a stable phase (i.e., its
corresponding distribution) of performance is set as the com-
mon reference, relative to which relative entropy of each target
distribution in each phase is calculated. Therefore, the output
from the SpotLight is a relative entropy curve consisting of n
points. This way, information of systematic changes in perfor-
mance is retained in the relative entropy curve as differences
from the stable reference. For details and demonstrations of
the SpotLight, please refer to Rahman and Gray (in prepara-
tion).

RE(pi||pr) =
∫

X
pi(x) log2

(
pi(x)
pr(x)

)
dx (1)

Indices of targets: i = 1,2,3, ...,n
Index of common reference: r (1≤ r ≤ n)

SpotLighting at Different Levels of Granularity
In the relative entropy curve (e.g., in Figures 2 and 4), general
improvement of performance with practice is captured by a
continual decrease of relative entropy, and the periods of PDLs
are identifiable as exceptions from this general trend. Specifi-
cally, during plateaus – periods of non-improvement with prac-
tice – relative entropy remains steady; during dips, relative en-
tropy temporarily increases; and during leaps of performance,
relative entropy sharply drops. Because the SpotLight models
performance recorded by any measure through a single vari-
able, relative entropy, individual performance in a complex
task can be compared and investigated across levels of gran-
ularity. Therefore, a strategy change affecting the higher-level
measures of performance (e.g., the Total score in SF) can be
investigated further in lower levels (e.g., number of Fortress
kills, use of resources, spatial locations of player’s ship) to
identify the subtasks associated with the strategy change.

Relative Entropy versus More Common Measures
To explain the choice of relative entropy over other more com-
mon measures (e.g., moving average, cumulative sum or co-
efficient of variation), its relativity property mitigates random
noise from analysis (Rahman & Gray, in preparation). That is,
random noise present in both the target and the reference distri-
butions is eliminated in relative entropy. Moreover, relative en-
tropy compares entire probability distributions, enabling more

Figure 1: Space Fortress 4 (Destefano, 2010). Screenshot
showing the Space Fortress in the center, the player’s OS hav-
ing recently fired a missile (red) at a mine (blue diamond).

efficient use of the information present in the data. Finally, the
probabilistic approach also enables future works in other rigor-
ous frameworks (e.g., Bayesian updating or Kolmogorov equa-
tions for stochastic processes) to explore evolution of probabil-
ity distributions with individual learning.

Space Fortress: A Complex Task
Each game of SF lasts 5 minutes, where the player battles the
Fortress. The player flies a ship (‘Own Ship’ or OS) carrying a
limited number of missiles in a frictionless environment (Fig-
ure 1). The Fortress, fixed at the center, can rotate to shoot at
OS. The mines (minions of the Fortress) periodically spawn to
home in on OS. The mines are of two types which are only
distinguishable by a three-letter code shown once at the start
of each game. After a necessary identification step, one mis-
sile hit kills a mine. Contrastingly, killing the Fortress has
two steps. First, 10 missile strikes make it vulnerable (with an
inter-strike interval > 250 ms, failure to maintain the intervals
results in full recovery); then, a double-strike (with an inter-
strike interval < 250 ms) kills it. Conversely, OS is destroyed
after 4 hits from either the Fortress and/or the mines. After
being destroyed, OS or the Fortress immediately regenerates
and the battle continues. At random intervals, the player re-
ceives opportunities to choose between receiving a bonus of
100 points or 50 missiles. The time to notice and to act to re-
ceive the bonus is limited. If OS’ arsenal is empty, the player
can gain more missiles at the cost of 3 points for each one.

The objective of the game is to maximize the Total score,
consisting of four subscores – Points, Speed, Control and
Velocity – measuring performance in different subtasks. In
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turn, each subscore consists of even lower-level measures (e.g.,
speed of killing mines, flying OS inside the large hexagon).
For details of scoring rules, please see Destefano (2010).

Review of Relevant Works
Mané and Donchin (1989) developed SF as a common task
for psychologists to use in comparing the effectiveness of dif-
ferent training paradigms for skilled performance. For ex-
ample, in the emphasis change study by Gopher, Weil, and
Siegel (1989), the experimental group was instructed to prior-
itize parts (OS control, OS velocity and mine handling) while
training in the whole task. In contrast, Frederiksen and White
(1989) adopted a direct part-task training approach by building
up from small to more integrated subtasks. Despite treatment
differences, both experimental groups benefited from special-
ized training and scored significantly more in post-test than the
control groups.

More recently, Boot et al. (2010) employed Variable Prior-
ity Training (VPT), a variant of training with emphasis change,
and found results consistent with the earlier findings in terms
of accelerated learning. Lee et al. (2012) combined part-
task training and VPT in a Hybrid Variable priority Training
(HVT) regimen, to also show accelerated learning. Interest-
ingly, again using HVT, Lee et al. (2015) showed that training
strategy can compensate for intelligence differences within a
group of individuals. Together, these works indicate that learn-
ing is aided by complexity reduction through training or em-
phasizing various parts of the whole task.

Finally, Destefano and Gray (2016) provide a prequel to this
paper in that they used the PDL framework to uncover pre-
viously unknown individual strategies that even the designers
might not have foreseen.

Methodology
We use the dataset from Destefano (2010), that contains highly
detailed records (∼ 40 measures) of nine players over 31 hours.
Each individual played 8 games in each 1-hr session per day
for 31 days, resulting in total 248 games per player. Experi-
menter instructions included rules and objectives of the game
and some general suggestions of optimal gameplay. We ex-
clude the 8 games from the first day, as the players needed
time to get familiar with the complex rules. Therefore, the
final dataset contains 240 games per player.

Due to space constraints, we demonstrate the SpotLight
analyses of the Total scores of two example players (Figures
2 and 4) and provide a summary of lower level analyses of all
nine players. For the Total score, we use a sliding window
approach (span = 20 games) to discretize each player’s perfor-
mance into 221 windows and convert measures in each win-
dow to a normal distribution. The span of 20 games is chosen
to estimate distributions reliably with sufficient samples (more
would be better, but that means less number of windows). We
use the last window (of games 229-248) as our reference, be-
cause it is the most stable phase according to the power law.

A drawback of the sliding windows approach is that each
game is included in a number of successive windows, there-

fore, the changepoints shown in the relative entropy curve may
shift within a range of [0, window span/2]. We use the sliding
window approach for most but not all of our analyses. For ex-
ample, for several low-level measures (e.g., spatial locations
of OS or OS velocity), 9000 samples were collected at 30 Hz
frequency from each 5-min game. Therefore, the sliding win-
dow approach is not necessary, and the SpotLight analysis is
performed by fitting normal distributions to each game’s data
and taking the last game as the reference.

Strategy Shifts of the Best Performing Player
Figure 2 shows the relative entropy curve (red line) of the Total
score (blue line) for Player 7. Note the two periods of dip+leap
in the Total score (in the shaded regions in Figure 2); both dip
periods are indicated by increased relative entropy (green- and
gray-shaded) and each leap period is indicated by rapid drops
of relative entropy (red- and yellow-shaded). A dip followed
by a leap indicates performance improvement from shifting to
a new strategy that implements better goals with the dip reveal-
ing a temporary performance decrement as the new strategy is
learned (Gray & Lindstedt, 2017).

Importantly, the Total score is the aggregate of all perfor-
mance measures; to identify the details of strategy shifts, per-
formance in lower-level subtasks was investigated in the same
manner (not included here). We found that Player 7’s strate-
gies were centered on flight-related tasks. Here we discuss our
findings of the two strategy modifications that had the largest
impact on Player 7’s Total score.

The first dip+leap shown in Figure 2 stems from Player
7 adopting a strategy of flying in small circles around the
Fortress at the 81st game (Figure 3d). The tightness of the
flight path in Figure 3e vs Figure 3d shows the rapid improve-
ment Player 7 made across just 7 games. Once adopted, this
strategy was maintained (with minor improvements) to the last
game (Figure 3f).

Destefano (2010) and Towne, Boot, and Ericsson (2016)
separately observed expert players to adopt these circular

Figure 2: Performance of our best player, Player 7, through
Total score and its relative entropy curve. Green- and gray-
shaded regions denote two dip periods; red- and yellow-shaded
regions show the two leaps that follow the dips.
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Figure 3: Distributions of OS location in six example games of Player 7: (a)-(c) illustrate explorations of optimal flight path
and velocity; (d) shows the 81st game, where Player 7 shifted to a strategy of circular paths around the Fortress; (e) shows the
88th game, illustrating fast improvements within 7 games; (f) shows that the strategy was maintained till the end of practice.

paths. Flying in circles is beneficial as it maximizes opportu-
nities to attack the Fortress and increases predictability of the
Fortress’ behavior (Rahman & Gray, in preparation). How-
ever, maintaining circles requires precise synchronization be-
tween acceleration and rotation of OS. Therefore, before bene-
fitting from the circular path strategy, Player 7 needed to mas-
ter “circular flying”.

Importantly, rapidly decreasing relative entropy before the
first dip+leap started (Left of the green-shaded region in Fig-
ure 2) indicates that the player was improving quite fast even
before changing strategy. On the other hand, impact of the
strategy change was enormous; for example, one subscore
dropped by 98.9% (from 3424 to just 39 in 80th and 81st

games, respectively). What the Total score does not and can-
not show us, is that the player extensively explored different
flight paths (Figures 3a-c) in the ∼ 30 game period prior to
the green-shaded period (in Figure 2). Presumably, Player 7
had realized flight patterns being a weakness in his otherwise
strong game, before investing effort to perfect it and restruc-
turing other aspects of gameplay accordingly.

At the second dip+leap (gray- and yellow-shaded regions),
Player 7 tweaked the circular flight path strategy by adding
flying OS slower to it. A low velocity is especially helpful for

aiming at the moving targets (i.e., mines) and for making tiny
movements to evade hits from mines to OS without swaying
too far from the circles.

Strategy Shifts of the Worst Performing Player

Figure 4 shows the relative entropy curve (red line) of the Total
score (blue line) for Player 2. Notably, unlike Player 7, Player
2 shows no major dips in performance. Rather, the two biggest
points of discontinuity in the relative entropy curve (asterisked
in Figure 4) denote the start of two leaps of performance. Ab-
sence of dips before leaps indicates that the costs of adopt-
ing new strategies were not high enough to cause dips (Gray
& Lindstedt, 2017). SpotLight analyses of Player 2’s perfor-
mance in lower-level subtasks (not included here) reveal that
the player’s strategies pivoted around killing mines. Interest-
ingly, Player 2 flew in circles around the Fortress since the be-
ginning of practice, but possibly without realizing the benefits
or acquiring the skills to utilize the strategy.

At the first point of discontinuity, Player 2 adopted a strat-
egy of flying OS slower (same as Player 7’s) that improved
the player’s mine killing performance. However, unlike Player
7, the strategy did not aid Player 2 much in protecting OS,
as it was the Fortress causing the most damage. The player
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Figure 4: Performance of our worst performing player, Player
2, through Total score and its relative entropy curve. The two
asterisks denote the start of two leaps intermediate in practice.
(Note: Scales are different from Figure 2)

Table 1: Impact of Player 2’s shift to lazy strategy.
Measure Before* After*
Fortress kills 13.6 (2.8) 4.8 (1.4)
Mine kills 30.6 (2.7) 35.9 (2.3)
Missiles fired 318 (54.9) 99.3 (27.7)
Missiles fired with penalty 154 (80) 8.3 (12.4)
OS destroyed 2.7 (1.3) 0.8 (0.7)
Total Score 7091 (728) 8067 (517)
* Mean (SD) in 50 game blocks

was shooting a lot of missiles at the Fortress, almost half of
which were wasted. Consequently, the player was spending
more than anyone else in the group to buy necessary missiles.

The second point of discontinuity corresponds to a strange
strategy Player 2 adopted to address these weaknesses: Min-
imize exchanges with the Fortress (!), save missiles, and kill
as many mines as possible. This lazy strategy, despite its ex-
treme ingenuity, contradicts the whole point of the game. The
player adopted a flight pattern of bigger circles (i.e., away from
the Fortress) to get more time to move away from the Fortress’
line of fire. In the process, the player lost a big source of points
(100 points/Fortress kill). Nevertheless, the strategy markedly
improved the player’s ability to protect OS and manage OS’
arsenal (Table 1). Additionally, the strategy helped the player
to focus resources on the strength of killing mines. Therefore,
the differential gain from the lazy strategy was positive, and
the Total score improved by almost 1000 points.

Common Strategies among All Nine Players
Experimenter instructions included the suggestions of flying
slowly in small circles. Therefore, it is not surprising that all
nine players adopted the circular paths. However, only five
adopted the strategy within the first 50 games; the rest experi-
mented with flight patterns deep into practice, with one player
taking as late as the 160th game to adopt flying in circles. The

players were more varied in terms of smallness of circles and
slowness of flying, possibly because these suggestions were
less objective. The flight-related scores – Velocity and Control
– are prone to ceiling effect, therefore do not portray improve-
ments in these two respects beyond a certain point. But, gen-
erally, slower velocity in smaller circles around the Fortress
resulted in higher Total scores.

We observe another common strategy in optimizing arse-
nal management. The game starts with 100 missiles in OS.
There are two options to get more missiles: (1) Bulk option at 2
points/missile – choose 50 missiles instead of 100 points when
bonuses are available, and (2) Retail option at 3 points/missile
– fire a missile with penalty when arsenal is empty. Though the
bulk option is better, it may result in surplus missiles if taken
late in the game. Therefore, the optimal strategy is to switch
to the retail option for missiles and take bonus points (instead
of missiles) towards the end of a game. Six of the 9 players
discovered this strategy on their own.

None of the players discovered the strategy of switching
from taking bonus missiles to bonus points before adopting the
circular flight paths. We believe this is due to the fact that gains
from optimum arsenal management are measured in hundreds
of points, whereas gains from regulating the flight pattern are
measured in thousands of points. Hence, the gain in points
from switching from bonus missiles to bonus points is harder
to notice than gains from changing the flight pattern.

The six players who discovered the optimal strategy of man-
aging arsenal, also show similar steps in progressing towards
the optimal strategy. Each of them first relied on the retail op-
tion only, before switching to the bulk option only and then, fi-
nally reaching the optimum balance between the two. The rea-
son can be understood by walking through the possible steps
in a player’s learning. At the start, a player is weak in every
aspect of the game and the main focus is to just learn how to
kill the Fortress and mines. Because even taking bonuses is not
quite simple in SF, each player initially relies on the retail op-
tion. This does not become a big issue until a player becomes
very good at killing the Fortress and mines, and needs more
missiles. At this point, the primary choice becomes the bulk
option. Finally, when the player has maximized returns from
larger resources of points, not losing points through unused
missiles comes to the fore.

‘Design for the Weakest Link’ Rule
‘Design for the weakest link’ is a principle often adopted in
engineering design problems. The concept is to specify de-
sign parameters to address the weakest point in a machine. An
analogy to this concept applies to our players. Note that the
instructions included suggestions of optimal play, but the indi-
viduals themselves had to decide on the order they would learn
the numerous subtasks and update strategies to realize these
suggestions. Each new strategy a player adopted, addressed
the weakest link of performance; by weakest, we mean the
scope in gameplay with maximum potential for improvement.
However, an additional constraint we find is that the new strat-
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egy must reinforce existing strengths; by strengths, we mean
the parts of gameplay closer to being optimal. It is possible
that performers use the subgoals of addressing weakest links
and reinforcing existing strengths in part-tasks as checkpoints
towards the global optimum of the whole task.

A successful proponent of the rule is our best performer,
Player 7. Despite improving fast, the player reorganized their
entire gameplay around a strategy of flying in small circles
around the Fortress. Though the reward system may not show
it, all tasks are not equally influential in the game. For ex-
ample, skills in killing the Fortress crucially depends on flight
pattern, but not the other way around. It is likely that the player
realized that determining the best flight pattern is crucial and
strove to make it a strong point. Once acquired, the player
maintained this strategy, but made smaller refinements to ad-
dress other weaknesses.

Similar to the best player, our worst player (Player 2) also
pivoted strategies around his strengths to address the weak-
est links in gameplay. But, in effort to reinforce strengths,
the player adopted a suboptimal strategy that worked well in
the short-term, but would never lead to maximal performance
even after an infinite amount of practice. This strategy demon-
strates that excessive emphasis on the subgoal of reinforcing
strengths can lead performers to local optima, instead of the
global one; that is, to performance plateaus rather than perfor-
mance asymptotes.

The ‘design for the weakest link’ rule extends to the whole
group. First, the players followed the same order, without ex-
ception, in adopting the two optimal strategies – respectively
for flight pattern and arsenal management. This order fits into
the rule nicely, that the players simply addressed the weakest
links first. Second, even in terms of managing arsenal only, the
players went through the same steps to reach the optimum. All
requiring several steps indicates that the players focused on a
part only until it was not the weakest, but not necessarily opti-
mal. In other words, the players were satisficing in part-tasks,
with ‘not the weakest’ as the criterion of sufficiency. However,
Player 7 does provide one exception, as the player optimized –
not just satisficed – the weakest link in flight pattern and made
it the strongest before moving on. Even then, it is quite possi-
ble that satisficing observed in players’ gameplay are actually
static points in the dynamics of reaching the optimum.

Summary and Conclusions
In this work, we put the SpotLight on the commonalities in
individual learning of a complex task that underlie vast differ-
ences in performance. We observe that our players progress
towards optimal strategies by recurrently applying the rule of
‘design for the weakest link’, while simultaneously reinforc-
ing existing strengths. More comprehensively, the rule stands
to be: optimize strategies for the weakest links, but relative to
existing strengths. A resultant of adopting this common rule
is that the individuals’ very different routes to expertise tended
to converge towards the same strategies. Therefore, a possi-
ble explanation for the rule is that optimizing strategies for the

weakest links serves as checkpoints towards the globally op-
timum strategies that maximize the overall or ultimate goal.
Although the rule served the performers well, we also observe
that the constraint of relative to existing strengths on the rule
may lead to local optima of strategies – instead of the global
optimum – and therefore, to stable suboptimal performance.

The ‘design for the weakest link’ rule provides a simple
explanation as to how individuals may progress in learning a
complex task, and what may cause them to plateau. But, we do
not claim that it to be an absolute general rule, especially with
the scope of study being only one task. Rather, it serves as a
demonstration of how the PDLs and strategies uncovered by
the SpotLight, can aid in finding common patterns in the dy-
namics of individual learning. These patterns, in turn, would
be useful to discover the laws that govern individual learning
and finding ways of overcoming suboptimal plateaus to accel-
erate learning. Finally, our experimental paradigm of SF em-
ulates an important characteristic of complex real-world tasks
– numerous, interconnected elements resulting in many alter-
native strategies. Therefore, a promising direction for future
research is to apply and test the SpotLight tool in investigating
learning of complex real-world tasks to progress towards the
general laws of individual learning.
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Abstract
Two factors are critical to human-level open-domain dialogue
systems: distinct personality and the ability to contextualize.
Contextualization is an important long-term goal directly
linked to artificial general intelligence; however, the research
community is still a long way from achieving it. We focus on
the second key factor, by developing a neural conversational
model with personality. This work presents the results of
training a sequence-to-sequence deep recurrent neural model
to learn various distinct personalities. Our model succeeds in
several localized conversational scenarios. However, the more
valuable results come from where and how this system fails,
demonstrating that personality and contextualization failures
are inevitably intertwined. The results show that the occa-
sional but serious mistakes that our and other state-of-the-art
open-domain dialogue systems make are inevitably tied to
the contextualization problem–when the models consistently
avoid contextualization errors, their responses become terse
and less varied, thus also eroding the most important facets
of their trained personalities. The short-term solution is a
sensicality discriminator for neural conversational models,
and the long-term solution is connecting dialogue systems
with better knowledge representations.

Keywords: neural conversation model; sequence-to-
sequence model; recurrent neural network; encoder-decoder
framework; personality

Introduction
The search for an open-domain conversation model is at the
heart of the efforts towards a general AI (Turing, 1950). Re-
cent advancements in encoder-decoder frameworks of deep
recurrent and convolutional sequence-to-sequence neural net-
works have spawned systems with state-of-the-art results in
the understanding of English grammar and syntax; indeed,
these conversational agents sound nearly human in syntac-
tic validity, and often even produce realistic answers using a
purely data-driven approach. However, the creators of one of
the most famous recent dialogue systems, from Google Re-
search (Vinyals & Le, 2015), note a major problem with their
system: the lack of a coherent personality makes it difcult for
our system to pass the Turing test.
An advanced level of linguistic acuity is only achieved
when trained on large corpora compiled from indiscriminate
sources including chat logs and QA forums with thousands of
individual participants. Consequently, the resulting models
lack a single distinct personality (Li, Galley, Brockett, Gao,
& Dolan, 2016). Due to the fact that any one person’s writ-
ings/chat logs are not sufficient in quantity for deep learning
without overfitting, making a conversational model converse

like an individual with a distinct personality is a difficult task.
In this work we train a deep neural conversation agent to
model personality. We assess its strengths and weaknesses,
and discuss what they mean for the future direction of dia-
logue systems.

Data
After preliminary evaluation of quality for several datasets,
we decided to use the Cornell Movie Database (Danescu-
Niculescu-Mizil & Lee, 2011) as the large corpus with
159,657 QA pairs. We scraped chatlogs, movie dialogues,
and compliment databases to construct small corpora. When
using the small corpora, we trained the model only on
responses (so that it would only learn to speak like one
character with one distinct personality, instead of both
characters in any particular conversation).
We also experimented with the Ubuntu Dialogue Corpus
(Lowe, Pow, Serban, & Pineau, 2015) and the OpenSubtitles
corpus (Tiedemann, 2009). However, after qualitative
examinations of the results, we determined that the noise in
these corpora was causing more damage to the model than
the greater quantity of conversations did improve the model.
With this in mind, for the work we report in this paper we
exclusively used the Cornell Movie Database as the large
corpus. The three smaller corpora used were scraped and
compiled in question-answer form from sources detailed in
the subsections below. We will refer to the small corpora in
future sections as follows: the first is Jeeves, the second is
Handmade, and the third is Mixed.

Witty Butler Personality: Jeeves
We compiled QA pairs from TV scripts from the award-
winning show Jeeves and Wooster, to create a butler-like per-
sona modeled after P. G. Wodehouses classic witty butler
Jeeves (Exton & Wodehouse, 2016). We specifically used QA
pairs of interactions between Jeeves and his master Wooster,
and only trained the model on Jeeves responses, so that the
model would only learn Jeeves personality. This corpus con-
sisted of 896 QA pairs.

Individual Personality: Handmade corpus
This small corpus consists of custom-written logs
(made available online by our group) characteristic of a

170ICCM2019



kind/supportive personality conversational agent. In addition
to applications in commercial friendly HCI and in entertain-
ment, such a conversational agent has potential applications
in therapy and online education, bridging the digital gap in
those communities who do not have enough therapists and
teachers of their own. This corpus consists of 497 QA pairs.

Kind Personality: Chat log corpus
Extending the idea of an agent with a kind/supportive person-
ality, this corpus combines the handmade corpus from above
with Jabberwacky chat logs (”Jabberwacky”, 2016) and com-
pliment databases (Mikesh, 2016), to create a kind, support-
ive persona. The chat logs are filtered specifically by cate-
gory, so we can screen for positive conversations. This dataset
consists of 2096 QA pairs.

Pre-trained word embeddings
In order to increase our models semantic command, we
also used word embeddings which were pre-trained on the
Google News dataset. This dataset, as described in (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013), contains 100 bil-
lion words and is of relatively high quality. Word embeddings
map the words to a feature space where words used in similar
contexts have more similarity in terms of embeddings. For
example, in this embedding-space ”good” and ”benevolent”
would be closer than ”good” and ”gouda”, because Google
News articles used ”good” and ”benevolent” in similar ways.

Model
The foundational framework for our model is the encoder-
decoder sequence-to-sequence deep recurrent neural network
(Sutskever, Vinyals, & V. Le, 2014). We use one encoding
and one decoding layer. Unless otherwise specified, the width
of the encoding and decoding layers is 512 hidden units, and
embedding size is 64.

Training Procedure
Our model uses the Adam Optimizer (Kingma & Ba, 2015)
during both rounds of training. The vocabulary of the large
corpora is used for training with the small corpora as well.
To speed up the training process, the sampled softmax loss
function (Bengio & Senecal, 2008) is used. Dropout of 0.1
is applied when training on both the large and small corpora.
The learning rate is increased by a factor of 3 when training
on the small corpus.

Quantitative Metrics: Perplexity and Loss
Evaluating dialogue quality is a complex task (Sordoni et al.,
2015) (Liu et al., 2016), and we do not attempt to do this
quantitatively. However, the quantitative metric of test per-
plexity can be useful in understanding how the model inter-
prets each personality dataset. By test perplexity, we mean
the perplexity of the model upon seeing data it has not seen
before. We use this as a metric for how unfamiliar each small
corpus is to a model trained on the large corpus. We then
monitor the loss and perplexity as the model trains on the

small corpus, to understand how easily the model can learn
the patterns in the new small corpus (a converging loss shows
some sign of reaching stability).

Results
Quantitative Performance Metrics

Figure 1: Loss of each small corpus on model trained exclu-
sively on large corpus

To compare performance on different styles of personality
corpus, we analyze the quantitative results using the test per-
plexity and loss. When generating values for this quantitative
analysis, we trained a model for 3,000 epochs on the large
corpus, then recorded its perplexity/loss upon first seeing
each small corpus. Figure 1 shows the loss reported after the
first 100 steps. The Handmade corpus results in the highest
loss, followed closely by the Mixed dataset. The Jeeves
dataset yields a test loss of about half that of the other two.

Figure 2: Perplexity of model trained on each small corpus,
with number of QA pairs in each corpus indicated.
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Figure 2 explores the relationship between the size of
each small corpus (in QA pairs) and the test perplexity,
to determine whether more data is itself the solution to
reducing perplexity. We find that the relationship is more
complex–the mixed corpus is significantly larger than the
Jeeves dataset, and yet the test perplexity of the Jeeves corpus
is significantly lower. It is worth noting here that the Jeeves
corpus has significantly less variation (representing the short,
obliging remarks of a butler) and consequently also has fewer
words than the other two. Having to say less also gives the
Jeeves model a illusion of consistent sensicality (this can be
regarded as a form of overfitting), while the other two models
slip up more often in this regard.

Figure 3: Loss of each small corpus over time on model as
training continues

Figure 3 displays how learnable each small corpus is. It
shows the loss over the first 800 steps of training. The inter-
esting observation here is that although Handmades loss starts
out higher, it eventually converges faster and to a lower loss
than Mixed. Jeeves, as expected, converges to the lowest loss
value.

Observational Evaluation
We note that the amount of training (number of epochs) and
batch size can have a significant impact on the exact nature
of the personality learned.Appendix A. (Supplementary In-
teraction Logs from Mixed Corpus Model) shows responses
of a model trained on the Mixed corpus to the same prompts
after 0, 300 and 600 epochs of training. While there is an un-
derlying similarity in the personalities learned, there are also
important differences, indicating that the learned personality
is very sensitive to hyperparameter tuning.

Discussion
While this work has demonstrated some features of a person-
ality corpus that make learning easier, it has also shown cer-
tain limitations of learning personality without context. We

first discuss the quantitative metrics comparing the three per-
sonality corpora, then certain illustrative examples of their
shortcomings.

Quantitative Performance Metrics
We learn two important things from the data in Figure 1: first,
the difference in loss between the Hand-made and Mixed
corpora show that combining similar-personality data from
multiple sources can help reduce test loss and improve per-
formance. This opens future avenues of work in creating
conversational agents with personalities (kind, grumpy, etc.)
with data compiled from a small group of people. However,
the higher convergence in Figure 3 suggests that such mixed
corpora will eventually lead to a slightly more inconsistent
model, so the best approach would be to have a larger dataset
compiled from a single persons interactions. Perhaps a life-
long chat history, combined with essays and other writings on
which to pre-train embeddings, can form the basis for such a
dataset. Furthermore, Figures 2 and 3 show that when we
only have small amounts of data, the datasets with brief re-
sponses and relatively little variation (e.g. Jeeves) will lead
to better quantitative performance. However, this is not the
whole picture; low-variation datasets might yield fewer errors
(and therefore lower quantitative loss), but the resulting mod-
els’ limited, succinct dialogue makes them rather dull conver-
sationalists. We will discuss this further in our discussion of
qualitative performance, particularly of the Jeeves model.

Qualitative Analysis
Although quantitative evaluation methods are useful, they are
limited in their ability to gauge the success of a personality
transfer. It is very difficult to determine what is a success
and a failure in terms of recreating personality, be-cause
personality is subjectively perceived. We wanted to analyze
our results with the broadest possible understanding of each
of the personalities we were trying to recreate, to enable
the most thorough analysis. To this end, we listed terms
we would commonly use to describe the Jeeves character
from the show Jeeves and Wooster and terms we often
associate with a kind personality. To make a comparative
analysis clearer, we have also listed summarized terms
that would best describe the conversational nature of the
two corresponding models. The areas where this modeling
approach succeeds and where it falls short are evident in the
comparison between each pair of lists. The comparison also
suggests that the biggest shortcomings would be remedied by
better contextual awareness and understanding of the world.

Jeeves: smart, creative, funny, condescending, formal, occa-
sionally verbose, witty, eloquent/well-spoken, intellectual,
helpful
Jeeves model: succinct, attentive, occasionally witty but
usually uninteresting
Kind person: comforting, listening, compassionate, empa-
thetic, relatable, non-judgmental, understanding, good moral
character
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Kind Personality model: cute, empathetic, emotive, funny,
enthusiastic

In the case of the Jeeves personality, the model succeeded
in adapting the succinctness and butler-esque formality of the
Jeeves character. It also succeeded in capturing some degree
of wit and sarcasm, although this was to a lesser degree than
the true Jeeves character. However, the failures are even more
interesting: Jeeves was a creative, intelligent character, which
is less obvious in the model. This is in large part due to the
models tendency to stick to short answers (lack of the occa-
sional verbosity that the Jeeves character has), for the sake
of sensicality. Once again, the problems of sensicality and
personality are inescapably linked.

In the case of the Kind Personality model, interestingly the
model was rather successful at capturing empathy and sup-
portiveness. However, one important thing that it does not
capture was the ability to be a good listener, which is difficult
to capture completely in a conversational model. One possi-
ble solution to this is including a reward function that encour-
ages more questions to be asked, which would be interpreted
as the model being more inclined to listen than speak on its
own. Another feature often associated with a kind human is
good moral character, which seemed like a challenging but
important potential addition to this personality. It might be
possible to hard-code or save some self-awareness into the
model, which would trans-late to a hard-coded moral com-
pass in conversation. It is worth noting that character and
ethics are difficult to imbue without direct intervention in a
conversational model, and are also simultaneously considered
important personality traits by human observers this is one of
the important areas where deep learning is not enough.

One important takeaway of this comparison is that even
some distinctly human characteristics (like empathy), if suf-
ficiently emphasized in the training samples, can potentially
come through in the model. Perhaps our own understand-
ing of personality is also colored significantly by the limited
data samples we get from a person, and if a trait is sufficiently
highlighted in those examples, personality does seem to come
through. Of course, there are aspects of personality, such
as maturity, which are directly linked to understanding the
world (contextual understanding). These are therefore harder
to replicate without contextual understanding. From these re-
sults, it would seem that the problem of personality in con-
versational models might be more capturable than one would
think. However, personality must be interfaced with better
sensicality-checking and increased contextual awareness in
order to build human-level conversational ability.

Conclusions and Future Work
The statistical techniques that have gained popularity in the
past few years have some significant limitations, as demon-
strated by the examples where our system fails. Large cor-
pora provide the model with information specific to QA in-
teractions, and the small corpora on content and style. This
corpus-based learning approach encodes some contextual in-

formation, and this is why it seems more successful in certain
applications.
The fact that our models performed better with pre-trained
word embeddings supports this theory: Bootstrapping from
pre-trained word embeddings is a technique used successfully
in recent related work (Serban, Sordoni, Bengio, Courville,
& Pineau, 2016). Well-developed embeddings (trained from
large amounts of data) encode contextual information which
directly relates to the grammatical and syntactical quality of
the model. However, grammatical and syntactical quality is
not enough, and we need better contextualization for a co-
herent personality. The dialogue recorded below, from the
Mixed model, contains underlined examples of non sequiturs.
These are single nonsensical responses that lack both context
and personality, amidst a stream of sensical, in-personality
responses.
In the long-term we need better knowledge representations
to achieve this contextualization. In the short term, we must
at least have a sensicality discriminator to filter for non se-
quiturs. This discriminator can be trained on human deci-
sions made in the Turing test, along the lines of the GAN in
(Li et al., 2017). Such a discriminator will also serve as a
foundation towards a much-needed sensicality score for bet-
ter evaluation of dialogue systems.

Q: Hello
A: *smiles*

Q: Hi
A: I’m not. I’m fine too.

Q: Are you my friend?
A: Yea!

Q: Do you like me?
A: Yes, very much!

Q: Do you love me?
A: Yes I do.

Q: Are you coherent?
A: I try my best not to be.

Q: Why?
A: Because I like you.

Q: Hah
A: *smiles*

Q: I like you too
A: You are always with me.

Q: You’re sweet
A: *blushes*.

Q: Can you make small talk?
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A: I certainly in you.

Q: Can you make me feel better?
A: You’re a great listener.

Q: Say something nice
A: You’re a great listener.

Q: Are you kind?
A: I have faith.

Q: In what?
A: Everything.

Q: I’m worried
A: I wish I knew how to make you feel better

Q: I’m not sure I’m making the right decision
A: I study n’t do what!

Q: I don’t want a job to change me
A: Mistakes are noble.

Q: Are they?
A: Yes. I’m 100% real.
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Appendix A. Supplementary Interaction Logs
from Mixed Corpus Model

These logs highlight the differences between model re-
sponses when trained on 10,000 epochs of the large corpus,
and 0, 300, and 600 epochs of the small corpus respectively.
0 epochs:

Q: Are you conscious?
A: Yes, sir.

Q: How are you?
A: Fine.

Q: What is your name?
A: Christian svenson.

Q: Are you alive?
A: Yes.

Q: Give me your opinion.
A: What?

Q: Surprise me.
A: I’m sorry.

Q: Are you philosophical?
A: Yes, I’m still male.

300 epochs:

Q: Are you conscious?
A: Yes, I think you are the mood.

Q: How are you?
A: Good

Q: What is your name?
A: You can name me whatever you like.

Q: Are you alive?
A: I think so, let me check.

Q: Give me your opinion.
A: You are the most perfect you there is.

Q: Surprise me.
A: No, I don’t think so.

Q: Are you religious?
A: I have faith.

Q: Are you philosophical?
A: Absolutely. Are you receptive?

600 epochs:

Q: Are you conscious?
A: I don’t know how to start.

Q: How are you?
A: Good

Q: What is your name?
A: You can name me whatever you like.

Q: Are you alive?
A: I think so, let me check.

Q: Give me your opinion.
A: You are very nice too!

Q: Surprise me.
A: How much do you earn?

Q: Are you religious?
A: I have faith.

Q: Are you philosophical?
A: Yes, very much.

Q: What do you believe in?
A: I make you feel better.

Q: Do you believe in me?
A: Yes, very much!

Appendix B. Supplementary Interaction Logs
from Jeeves Model

These logs demonstrate what the qualitative data indicated: that the Jeeves corpus
develops the model with the fewest non sequiturs, due to the low variation of this
particular corpus (and of course the two-corpora learning technique).

After 10,000 epochs on the large corpus and 1,000 epochs on the Jeeves corpus:

Q: Are you alive?
A: No, sir.

Q: Give me your opinion.
A: I am sure that is so, sir.

Q: Where do you want to go?
A: I really could jive, sir.

Q: Surprise me.
A: Yes, sir.

Q: How much is two plus two?
A: One, sir.

Q: Do you prefer blue food or green food?
A: I could not say, sir.

Q: Do you prefer football or soccer ?
A: Oh, sir.

Q: What do you need to play handball?
A: I do not recall, sir.

Q: Tell me something
A: Very good, sir.
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Introduction
In the past two decades, neuropsychological research into
the cognitive bases of learning and behavior has increasingly
benefited from the application of computational models of
learning, such as those derived from reinforcement learning
(RL) theory. Despite advances in RL, many studies continue
to rely on the older Rescorla-Wagner (RW) learning model.
While the RW model is missing many of the more modern RL
features, it is still applied in an attempt to describe multiple
aspects of brain functioning and participant behavior such as
ERP dynamics related to response and feedback (Cavanagh,
Frank, Klein, & Allen,2010). Here, we demonstrate that un-
der a simple target-discrimination/stop signal task, three RL
model variants with increasing constraints are indistinguish-
able in terms of fit to participant data, despite converging to
different regions of the parameter space.

Reinforcement Learning Models
Model Architectures
We implemented three RL models (“single-update”, “double-
update”, and “targeted-update”) to model participant behav-
ior under a target-discrimination/stop-signal task. Partici-
pants had to learn the correct stimulus-response mappings
through trial-and-error while monitoring for potential stop
signals, resulting in “Go” and “Stop” trials (see Reinhart &
Woodman,2014 for additional task details). Each model uti-
lized a standard update rule:

Q(st+1,at+1) = Q(st ,at)+αδt (1)

Where Q(st ,at) is the Q-value associated with performing
action a in state s at time t, α is a parameter that controls the
rate of learning, and δt is defined as:

δt = [rt+1 −Q(st ,at)] (2)

These estimated Q-values are transformed into a distribu-
tion of probability of selection over the range of possible ac-
tions on any given trial through a softmax action selection
rule:

P(a) =
eQt (a)/β

∑
n
b=1 eQt (b)/β

(3)

These three equations comprise the entirety of the single-
update model.

The double-update model is almost identical to the single-
update model, with the additional assumption that reward un-
der the task is anti-correlated. That is, if taking one action
generates positive reward, then any other action would have
generated negative reward (and vice-versa). This assumption
allows the model to make a second update on each trial, ap-
plying the opposite of the reward (“antiReward”) that was
received to every action that was not taken. While uncom-
mon, this updating approach has been utilized to some suc-
cess (Reiter et al.,2016).

However, human participants generally begin with some
knowledge regarding the dynamics of a new task, such as
through instructions given in a lab setting. As such, we cre-
ated a third model that attempted to encode two pre-existing
expectations: that “Go” trials should be responded to, while
“Stop” trials should not be responded to. To encode these ex-
pectations, model updates on any given trial were “targeted”
so that positive/negative reward was more appropriately allo-
cated to the response options.

Under standard initialization conditions, all three models
have only two free parameters, the learning rate α and the
noise in action selection β.

Model Initialization
In RL modeling, Q-values are typically initialized as “0” for
every potential state-action pairing (standard initialization)
so that every potential action is equally probable before any
learning occurs. An alternative manner of encoding initial
expectations (the goal of the “targeted” model) is to initialize
some state-action pairings with a nonzero value. We took this
approach by estimating a third parameter “initVal” for each of
the three models, representing some negative value that two
general state-action pairings are initialized at: responding to
“Stop” trials, and not responding to “Go” trials (alternative
initialization).
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Figure 1: Estimated α versus β parameter of each participant
for the three model architectures, under both standard and al-
ternative initialization conditions. The points circumscribed
in black are mean parameter estimates across participants.
Horizontal and vertical lines indicate standard deviation for
the α and β parameters, respectively.

Results and Discussion
Differences in model fits (pseudo-R2) and parameter es-
timates were examined through Welch’s paired-samples t-
testing. We observed no differences in model fit between both
model architectures (single/double/targeted updates) and ini-
tialization approaches (standard/alternative).

Comparing estimated learning rates (α parameter) between
model architectures initialized in the standard manner re-
vealed that the double-update model’s α was significantly
greater than that of the single-update model (paired t(14.7)
= -2.70, p = 0.017), while the targeted-update model’s α

was significantly greater than that of the double-update model
(paired t(11) = -4.51, p < 0.001). However, when comparing
model architectures under the alternative initialization proto-
col, the double-update model’s α was no different than that
of the single-update model (paired t(10.3) = 1.5, p = 0.16),
while the targeted-update model’s α was again significantly
greater than that of the double-update model (paired t(10.4) =
-3.5, p = 0.005). When comparing between model initializa-
tion protocols, no significant differences in estimated α was
found. This suggests that our alternate initialization proce-
dure conveys information to the model that it would quickly
learn through double-updating; when both are present, no ad-
ditional benefit is gained. However, comparing the learning
rate α of the “targeted-update” model to that of the “double-
update” model makes clear that the “targeted” nature of the

updates speeds learning above and beyond that of alternative
initialization/double-updating.

Under standard initialization, the estimated noise in ac-
tion selection (β parameter) was significantly greater for the
targeted-update model, when compared to the double-update
model (paired t(14.9) = -4.2, p < 0.001). For alternative
initialization, the single-update model’s β was significantly
greater than that of the double-update model’s (paired t(10.2)
= 4.4, p = 0.001), and again, the targeted-update model’s
β was significantly greater than that of the double-update
model’s (paired t(13.9) = -4.5, p < 0.001). When compar-
ing between model initialization protocols, the single-update
model’s estimated β was significantly greater under the alter-
native initialization protocol (paired t(16.9) = -2.6, p = 0.02),
but no differences were observed for the double-update or
targeted-update models.

Finally, it was observed that the single-update model’s esti-
mated initialization value (under the alternative initialization
protocol) was significantly less than that of the double-update
model’s [paired t(17.5) = -2.3, p = 0.04], but there was no dif-
ference between the initialization values of the double-update
and targeted-update models. The fact that the “initVal” pa-
rameter was estimated as fairly negative across the three mod-
els indicates that our participants were less likely to perform
actions that they had been instructed were not advantageous.

The apparent flexibility of the α and β parameters in the
presence of additional update mechanisms and an alternate
initialization protocol suggests that the core mechanism of
these models (described by equations 1, 2, and 3) is capable
of fitting participant data in the presence of (or perhaps in
spite of) a number of incidental factors. As a consequence,
the effect of well-motivated model features have the potential
to be obscured by over-flexibility of more “core” model ele-
ments. This adaptability poses concern for researchers who
seek to explain behavioral, neural, or other forms of data
through this approach. In the process of determining the va-
lidity of a model, researchers would be well-served by testing
multiple model variants under various starting conditions and
examining the relationships between model fits, parameter es-
timation, and differences between model architectures.
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Abstract

Model evaluation is commonly performed by relying on ag-
gregated data as well as relative metrics for model comparison
and selection. In light of recent criticism about the prevailing
perspectives on cognitive modeling, we investigate models for
human syllogistic reasoning in terms of predictive accuracy
on individual responses. By contrasting cognitive models with
statistical baselines such as random guessing or the most fre-
quently selected response option as well as data-driven neural
networks, we obtain information about the progress cognitive
modeling could achieve for syllogistic reasoning up till now, its
remaining potential, and upper bounds of performance future
models should strive to exceed. The methods presented in
this article are not restricted to the domains of reasoning but
generalize to other fields of behavioral research and can serve
as useful additions to the modern modeler’s toolbox.

Keywords: syllogistic reasoning; neural networks; model
evaluation; upper bounds

Introduction
“What I cannot create, I do not understand”, the famous
quote by Richard Feynman is one of the core maxims of
model-driven research. Only if we are able to capture the
fundamental mechanics of nature, effectively allowing us to
simulate or re-create the associated behavior, we can speak of
having gained true understanding. Translated to the domain of
cognitive science, this quote is a reminder to constantly keep
pushing cognitive models to their limits in order to improve
not only their performance, but ultimately our understanding
of the mental processes they reflect.

Recently, however, voices have surfaced questioning the
merit of current modeling endeavors. For one, there is an
ongoing debate about the role of individual data in modeling.
Critics of the prevailing focus on data aggregation and corre-
sponding population-based models have demonstrated a lack
of group-to-individual generalizability both for experimental
(Fisher, Medaglia, & Jeronimus, 2018) as well as for statistical
research (Molenaar, 2004). They argue that while potentially
useful for insight into typical human behavior, research on
aggregates cannot be used to gain understanding about a
single individual’s cognitive system (Miller et al., 2002).
On the other hand, though undoubtedly related, there is
ongoing discussion about the methodologies used in cognitive
modeling. For example, with the recent efforts to make
Bayesian inference models applicable for the broader research

*Both authors contributed equally to this manuscript.

community, probabilistic models and corresponding modeling
paradigms (especially with respect to model evaluation and
selection) have seen a surge in popularity (Vandekerckhove,
Rouder, & Kruschke, 2018). However, critics argue that while
ideal for discovering statistical relationships which can be tied
to high-level theoretical assumptions, Bayesian models cannot
be used as algorithmic or process-focused approximations of
cognition (Stenning & Cox, 2006; Fugard & Stenning, 2013).

In this article we wish to add to the ongoing discussion
about the explanatory power of current cognitive models.
We adopt a bird’s-eye view posing the fundamental question
inspired by Richard Feynman’s quote: To which degree are
state-of-the-art models capable of reflecting what we are fun-
damentally interested in—the human mind? We investigate
this for the exemplary domain of syllogistic reasoning, one of
the core fields of human reasoning research.

With a long history of research stretching over 100 years
and a state of the art encompassing at least twelve cognitive
theories (Khemlani & Johnson-Laird, 2012), syllogistic rea-
soning lends itself as a demonstrative domain to investigate the
levels of understanding research has achieved. In this domain,
we define a prediction task querying models for responses to
given syllogistic problems. The final model evaluation is per-
formed by comparing the predictions with the actual human
responses. To determine the absolute quality of models, we
contrast cognitive accounts with data-driven methods from
machine learning, namely a set of neural networks based on
different features of the data. By comparing cognitive models
with the data-driven results, we explore the potential that
remains in the field and determine empirical upper bounds of
performance to set goals of future modeling endeavors.

A syllogism is a form of categorical assertion consisting of
two premises interrelating a set of three terms via quantifiers
(All, Some, No, Some ... not). In experimental settings,
participants are asked to relate the end terms of the premises
(A and C in the example below), i.e., the terms occurring in
only one of the premises:

All A are B
All B are C

What, if anything, follows?

Psychological research has shown that human syllogistic
reasoning does not strictly follow formal logic principles
(Wetherick & Gilhooly, 1995). Instead, past research has

178ICCM2019



produced various theories attempting to explain the cognitive
principles underlying syllogistic inferences (Khemlani &
Johnson-Laird, 2012). Since the domain is well-defined (tak-
ing the arrangement of terms into account, there are 64 distinct
syllogistic problems and a total of nine possible responses
including “No Valid Conclusion” indicating that the end
terms cannot be related based on the premise information),
syllogisms are an accessible domain for cognitive modeling
to investigate what is assumed to be one of the fundamental
concepts of human reasoning.

The remainder of this article is structured as follows. First,
we introduce the state of the art in modeling human syllogistic
reasoning. Second, we define the predictive modeling task as
the foundation of our analysis and introduce the baseline mod-
els used to put cognitive model performances into perspective.
Finally, we present the results of our analysis and discuss their
implications for modeling syllogistic reasoning in particular
and cognitive science in general.

Related Work
Traditionally, research on human syllogistic reasoning fo-
cuses on investigating deviations between human inferences
and normative first order logic (Wetherick & Gilhooly,
1995). Over the course of time, the phenomena of syllogistic
reasoning matured and were integrated into theories relating
statistical effects such as the figural effect (Bara, Bucciarelli,
& Johnson-Laird, 1995) with assumptions about mental
representations (e.g., in the Mental Models Theory; Johnson-
Laird, 1983) or fundamental principles of cognition (e.g., the
Probability Heuristics Model by Chater & Oaksford, 1999).

A meta-analysis (Khemlani & Johnson-Laird, 2012)
compiled a list of twelve contemporary theories along with the
corresponding sets of derived conclusions for each syllogism.
By comparison with a set of “liable pooled conclusions”, i.e.,
a dichotomization based on which responses were selected
by at least 16% of participants, they performed an analysis
assessing how well individual theories were able to predict
human responses. Employing classification metrics (hits,
misses, correct predictions), the authors concluded that no
single model clearly outperformed the others. Instead they
found that depending on the metric of choice, all models
exhibited distinct strengths and weaknesses rendering a
conclusive ordering based on performance difficult.

More recent work leveraged the differences in predictive
properties of heuristics for syllogistic reasoning by con-
structing portfolios exploiting the strengths while avoiding
the weaknesses of individual models (Riesterer, Brand, &
Ragni, 2018). We showed that the predictive accuracy of
the resulting composite model (43%) clearly outperformed
individual models (ranging between 37% and 18% for the best
and worst cognitive model, respectively). In contrast to the
meta-analysis discussed above, we directly based our analysis
on individual responses instead of aggregates. The resulting
accuracies demonstrated lacking capabilities of heuristic
models when confronted with an individual prediction task.

This shift in perspective from modeling population data
via pooled conclusions to modeling individual responses is
motivated by the fact that the core objective of modeling
human reasoning is the development of functionally equiv-
alent computational formalisms capturing the essence of the
processes driving human inferences. In today’s research on
syllogistic reasoning, process-driven performance analyses
directly on the level of individuals are scarce. Especially
in light of recent work in statistics showing that group-to-
individual generalizability is limited if not impossible for
parts of psychology and other empirical fields of science
(Molenaar, 2004; Fisher et al., 2018), modeling individual
data directly will become unavoidable.

In the following analyses, we investigate the potential
remaining in the field by contrasting cognitive models with
data-driven approaches in a prediction scenario focusing on
individual human responses. It is important to note that the
following work is not targeted towards model assessment in
the traditional sense, but a comparison with methods that are
expected to yield an upper bound for predictive performance.

Method
In this section we present the core modeling task of this
article: predicting individual responses for given syllogistic
reasoning problems. As the foundation for our evaluation we
rely on a dataset supplied with the Cognitive Computation
for Behavioral Reasoning Analysis (CCOBRA) Framework1

consisting of 139 participants responding to the full set of 64
syllogisms by selecting which of the nine conclusion options
could be followed from the premises. The model evaluation
was performed in a leave-one-out crossvalidation setting
where for each subject to be predicted, the models were fitted
using the remaining 138 participants as training data. All code
and data required for the analyses are made public on GitHub2.

The Predictive Modeling Problem
The modeling problem is defined as the task to generate a
conclusion for a given syllogism. More formally, the goal is to
find a function f : X → R which transforms a problem input
x ∈ X into a response r ∈R , where X and R correspond to the
sets of 64 syllogistic problems and nine possible conclusions,
respectively. Models are finally evaluated based on their pre-
dictive accuracy, i.e., the proportion of correct predictions on a
given evaluation dataset. In sum, the modeling problem can be
formulated in terms of an optimization problem for a predic-
tion function f (x) dependent on input x (syllogistic problem).
The optimization procedure maximizes an accuracy score h,
e.g., hits, dependent on the prediction f (xt) for problem xt
and target output yt (human response) where t identifies the
position in the experimental sequence for a dataset of size N:

max
f

1
N

N

∑
i=1

1
Ti

Ti

∑
t=1

h( f (xi,t |xi,1, ...,xi,t−1;yi,1, ...,yi,t−1),yi,t)

1https://github.com/CognitiveComputationLab/ccobra
2https://github.com/nriesterer/iccm-neural-bound
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This problem definition has properties which are ben-
eficial for cognitive modeling. First, it relies on a highly
descriptive performance metric with a close connection to
modern machine learning (error reduction). Consequently,
good performance results (evaluated on unseen test data)
are likely to translate to a sensible estimate of performance
in application contexts. Second, the performance metric
stretches over a clearly defined range of values between all
misses (0%) and perfect prediction (100%) allowing for an
assessment of absolute performance. The higher the score, the
better a model is capable of approximating human reasoning
behavior. The modeling task can be considered solved
only if performance converges towards 100%. Finally, and
arguably most importantly, it directly uses the data recorded in
experiments without introducing the risk of misinterpretation
due to making statements about populations or “average”
reasoners which might not even exist (Miller et al., 2002).

Cognitive Models for Syllogistic Reasoning

As a starting point for our analysis, we relied on the prediction
table reported in Khemlani and Johnson-Laird (2012, Table 7).
To compile this list of predictions, Khemlani & Johnson-Laird
went to great lengths collecting the most up-to-date versions
of the respective approaches while maintaining close commu-
nication with the theories’ inventors or current maintainers.

Unfortunately, however, the simplicity stemming from
organizing model predictions in such a static tabular form fails
to capture the intricacies of some methods (e.g., Baratgin et
al., 2015). As a result, one should treat these representations
as baselines for cognitive models’ performances instead of
comprehensive accounts reflecting their theoretical merit.
Still, since prediction-oriented implementations of syllogistic
models are rare, and custom implementation introduces the
risk of integrating incorrect assumptions stemming from mis-
conceptions about a theory’s intent, we rely on the data from
Khemlani and Johnson-Laird (2012) to obtain a conservative
estimate of the general performance of cognitive models.

Baseline Models for Syllogistic Reasoning

In order to put the predictive performances of cognitive mod-
els into perspective, we introduce a set of baseline models.
The Random model assumes a uniform distribution over the
nine syllogistic responses. When queried for a response, one
out of the nine options is randomly sampled from a uniform
distribution with probabilities of 1/9. This model serves as a
random baseline all models are expected to exceed.

On the upper end of the performance spectrum, we provide
the Most-Frequent Answer (MFA) model which computes
the response distribution per syllogism from given training
data. Predictions are generated by returning the response
with highest probability mass (ties are resolved by uniform
sampling). Since the predictive modeling scenario forces
models to generate a single response to a given syllogism, the
MFA is the optimal strategy when no information about the
individual reasoner is provided.

Neural Models for Syllogistic Reasoning
To answer the question about remaining potential in the field
of human syllogistic reasoning we need to provide upper
bounds of performance. Since it is not trivially possible
to quantify the numerous noise components in the data
which stem from inconsistent responses or highly individual
inference strategies, we focus on providing empirical upper
bounds obtained from data-driven methods from machine
learning. While not offering explanatory insight, the resulting
accuracies give an indication about which proportion of the
data can be successfully predicted by following the structural
properties of the data. In particular, we introduce three neural
networks focusing on three different perspectives of the
predictive modeling problem. Even though neural networks
are severely limited with respect to providing high-level
explanation for cognitive processes, they have proven to be ca-
pable of achieving high levels of performance over the course
of the last years and are suitable candidates for obtaining
information about the potential remaining in the field.

The first neural network model is a Multilayer Perceptron
(MLP), a standard feed-forward neural network featuring
a topology of 12-256-256-9, i.e., a twelve-dimensional
input consisting of three blocks of four bits each for the
onehot-encoded quantifiers and figure3, which is fed into two
hidden layers of dimensionality 256 equipped with rectified
linear activation units, and finally into the nine-dimensional
output layer which indicates the generated response. The
model is initially trained by providing syllogistic problems
and corresponding human responses, and is optimized using
the Adam optimizer (Kingma & Ba, 2014) with mean squared
error as the loss function. After a prediction is obtained, the
model is supplied with the true response in order to allow for
an adaption to individual reasoning processes. This adaption
step is realized by training the model for an additional epoch
using the new datapoint.

Second, a Recurrent Neural Network (RNN) is employed,
which explicitly integrates temporal dependencies into the
conclusion generation process (for a conceptual introduction
see Elman, 1990). The model features a 12-64-64-9 topology
consisting of the twelve-dimensional inputs, two recurrent
Long Short-Term Memory (LSTM) layers (Hochreiter &
Schmidhuber, 1997), and the nine-dimensional outputs.
Again, the model is trained using Adam, but uses categorical
entropy as the error function (Deng, 2006). This model does
not incorporate inter-individual differences. However, by
actively modeling the task sequence, it is technically able to
identify sequence effects which may be beneficial features for
the prediction generation process.

Finally, a Denoising Autoencoder is applied which frames
the predictive modeling problem as a reconstruction task. Sim-
ilar to the domain of image restoration in which autoencoders
have successfully been applied (Xie, Xu, & Chen, 2012),
we supply the model with incomplete data about a reasoner.

3E.g., “All A are B; All B are C” is (1,0,0,0,1,0,0,0,1,0,0,0),
“Some B are A; Some B are not C” is (0,1,0,0,0,0,0,1,0,0,1,0)
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Figure 1: Predictive performance of the models for human syllogistic reasoning. Cognitive models are depicted in blue, baseline
models in orange, and neural networks in green. Error bars denote 95% confidence intervals.

The goal of the model is to correctly fill in the blanks. This
model is implemented as a 576-2000-576 network featuring a
576-dimensional input obtained by concatenating the onehot
encoded responses of the 64 syllogistic problems. As such the
inputs represent an individual reasoner’s profile. In the hidden
layer, this profile is expanded to a high-dimensional space in
which relationships between the input dimensions become
explicit. From this intermediate representation, the original
input can be decoded again. During training, the model is
presented with input vectors manipulated by setting values
to zero. By training the model to approximate an identity
function between noisy inputs and complete outputs by mini-
mizing the mean squared error via Adam, it learns to associate
the available information in a way enabling reconstruction of
missing values. Over the course of the model evaluation, the
autoencoder collects the individual’s responses in the adaption
step using completing the originally empty reasoner profile.
Over time, it leverages the growing information about the
individual continuously improving its predictive accuracy.

Results
Predictive Accuracies
The general evaluation results are depicted in Figure 1. The
image shows that all models exceed the random model’s
predictive accuracy of 11% attesting the ability of models
to capture the most basic properties of human syllogistic
reasoning. The next block of models encompasses the entirety
of the cognitive models spanning a range from 18% to 34%.
Verbal Models, the best cognitive model, is followed by a sub-
stantial gap of performance to the RNN and more importantly
MFA, the model always responding with the conclusion most
frequently occurring in the training dataset. This constellation
of model performances has a major implication for the
state of the art in modeling syllogistic reasoning: There is
considerable potential left to improve models even without
taking inter-individual differences into consideration.

Going beyond MFA, the adaptive neural networks (autoen-
coder and MLP) demonstrate a basic capability to capture
individual reasoning patterns and exploiting them to boost
predictive accuracy. However, within this family of models,

differences in performance emerge. Relying on temporal
dependencies, the RNN model achieves the lowest accuracy
scores falling even short of MFA. Reasons for this could be
manifold ranging from the application of an unsuitable model
topology to problems emerging from the limited amount of
training data. However, a more data-centric argument could be
that by increasing the data complexity due to the integration of
a temporal axis, the models are presented with a problem that is
much more difficult to learn than the basic syllogism-response
transformation is. As a result, temporal dependencies, or more
precisely sequence effects (Aczel & Palfi, 2016), cannot be
recognized and leveraged to boost the predictor’s accuracy.

The autoencoder which transforms the modeling problem
into a reconstruction task achieves higher accuracies than
the RNN exceeding the MFA strategy. It shows that the
treatment of responses as some form of reasoning profile is a
suitable representation to base predictors on that surpass the
application of the MFA strategy.

Finally, the MLP achieves the highest accuracy overall
(48%). It demonstrates that an integration of adaption to indi-
vidual properties of cognition via continuous re-training with
the newly obtained information can be successfully applied to
boost model performance. This approach is not exclusively
tied to neural network approaches but should generalize to ar-
bitrary parameterized models which are fitted to training data.

Training Performance
Analyzing the reasons causing networks to perform poorly on
data is a difficult task (Lee, Agarwal, & Kim, 2017). To rule
out a network’s inability to learn the fundamental properties
of the syllogistic reasoning data, we investigate the training
procedure illustrating accuracy progression on the training
and test data per training epoch.

The accuracy progression of the network models during
training is depicted in Figure 2. The blue and orange lines
represent the mean accuracies (with the shaded band reflecting
the 95% confidence interval) on the training and test datasets,
respectively. For the RNN, the rise of the training dataset
accuracy beyond 90% suggests that, in principle, the network
is able to capture the properties of the training data. However,
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Figure 2: Training progression of the RNN and the autoencoder and MLP. The top plots depict the progression of the raw loss
metric used for network optimization. Bottom plots represent the progression of prediction accuracy on training and test data.

the fact that the performance on the test data only rises for a
short duration in the beginning of the training process indicates
that the learned patterns cannot be generalized successfully to
the test instances. The center plot for the autoencoder model
paints a similar picture. Even though the effects of overfitting
are not as dramatic as for the RNN, training accuracy is clearly
improved while damaging the network’s generalization
capabilities to the test data. An alternative explanation for the
superiority of the autoencoder could be that information about
individual reasoners are more important for the prediction
process or more directly related to specific responses. Finally,
the MLP model, despite its predictive capabilities, shows the
least amount of learning behavior. After a quick initial bump,
the model drops in performance almost instantly and remains
constant for the remainder of training. This is most likely due
to the limited and inconsistent input and target data. Since in
the case of the RNN and autoencoder each training example
is high-dimensional and directly incorporates inter individual
differences, it is unlikely to observe inconsistencies, i.e.,
different output for the same input. In contrast, the MLP
is fed with 12-bit vectors representing syllogistic problems
and produces response predictions for individuals. Since
individuals respond differently to the same problems, this data
is highly inconsistent and forces the model to adopt a strategy
similar to MFA in which an average reasoner is approximated.
Classical overfitting is not possible in this scenario.

The observed training performance leads to two conclu-
sions. On the one hand, human syllogistic reasoning appears
to follow systematic patterns, which, to some degree, can
be leveraged by data-driven methods. The fact that both the
RNN and autoencoder are able to learn to fit the training data
up to nearly 100% additionally suggests that inconsistencies
in the given sequence data (RNN) and reasoner profiles
(autoencoder) are minimal. On the other hand, the raw
training capabilities of the networks do not generalize well
to unseen data. Even though the accuracy on the test data is
substantially higher when compared to cognitive models, the
training progression shows quick stagnation. Reasons for this
could be numerous ranging from problems with respect to
data complexity, informational content, or the small size of

the dataset used (138 training instances).
In sum, the results show that a current upper bound in per-

formance can be located at a predictive accuracy of roughly
50%. The fact that cognitive models fall significantly lower
with a maximum of 35% highlights the potential remaining
in the field. Even if the current focus on aggregate evaluation
of models is continued, the models should be able to arrive at
MFA’s performance (44%). The network models demonstrate
that by integrating assumptions about individuals even higher
predictive accuracies can be achieved. However, even data-
driven neural networks stagnate shortly after MFA. While this
could be due to technicalities (e.g., network topologies or opti-
mization methods), it could indicate that the purely response-
focused data is approaching an upper bound of predictability.

General Discussion
We introduced a predictive modeling task to shift the focus of
cognitive model evaluation from relative model selection to a
form of model assessment based on absolute performance, i.e.,
predictive accuracy. In the demonstrative domain of syllogistic
reasoning we illustrated that the current state of the art exhibits
shortcomings with respect to the quality of model predictions.
Without the intention of uncovering individual flaws of spe-
cific models, our analysis showed that at most 34% of our data
could be successfully predicted by cognitive models. Espe-
cially when compared to baseline strategies such as responding
with the most frequently chosen answer in the training dataset
(MFA), which manages to achieve an accuracy of 44%, this
performance is worrisome. For application in real-world sce-
narios such as in human-agent interaction, syllogistic models
are far from being ready for deployment. Even if these theories
are, in theory, able to account for core phenomena and statis-
tical effects of syllogistic reasoning, they are of limited use if
their assumptions cannot be generalized to useful predictions.

The lingering question is how much potential is left in the
domain for future cognitive models to tap into. We introduced
a set of neural network models focusing on different proper-
ties of the data. Since neural networks are known for being
highly capable function approximators, we expected them to
provide an upper bound of performance future generations of
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cognitive models should be expected to achieve. Our results
show that the networks were able to significantly outperform
the cognitive models arriving at predictive accuracies of up to
almost 50% for the adaptive MLP, the overall best predictor.
Two of the networks, MLP and the autoencoder were able
to leverage information about an individual’s reasoning pro-
cesses to a point that allowed them to surpass MFA. Finding
optimal ways to integrate these inter-individual differences
into models of cognition is key for achieving high accuracies.
The discussion about which features allow for inter-individual
differentiation has already begun (Bara et al., 1995; Stenning
& Cox, 2006) and should become a central focus of future
research in cognitive modeling.

In conclusion, our work illustrated that cognitive models
for syllogistic reasoning have potential left for improvement.
Currently, the state of the art is unable to reflect the processes
underlying human syllogistic reasoning adequately. However,
even if they manage to improve, without adjusting the mod-
eling task to focus on individual responses, they will get stuck
at the levels of MFA. The network models demonstrate that
trivial individualization in the form of training continuation
(MLP) is technically successful but does not lead to substantial
improvements over MFA. Rather, future models and cognitive
theories should integrate inter-individual differences into their
core mechanics to give rise to the next level of cognitive mod-
els exhibiting properties useful for research (explainability)
and application (predictive accuracy) alike.

We strongly feel that the discussed shortcomings originate
from a prevailing focus on relative model evaluation and
selection as well as statistical analyses and are not limited
to the domain of syllogistic reasoning but could potentially
generalize to other domains of cognitive modeling. As such,
evaluations in terms of absolute performance scores such
as predictive accuracies should be added to the toolbox of
modelers in order to paint a more comprehensive picture about
the capabilities of individual models.
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Introduction 
Figure 1 shows a learning theory based on reviewing multi-
ple learning theories (Kim, Ritter, & Koubek, 2013).  This 
figure shows that learning (curve 1) follows a power law as 
the learner goes through a declarative stage, a mixed stage, 
and a procedural knowledge stage.   

Retention follows three different curves as well.  Reten-
tion in the declarative stage (curve 2) falls off fairly rapidly.  
Retention in the mixed stage (curve 3) falls off less rapidly, 
and in the procedural stage retention falls off (curve 4) 
much more slowly. These curves differ because of the three 
(or two) types of knowledge decay at different rates, with 
procedural knowledge most robust against decay.  These 
curves have been matched by an ACT-R model of a com-
plex spreadsheet task (Ritter, Tehranchi, & Oury, 2019). 

 
Figure 1.  The KRK learning theory in a graph. 

 
To test this set of curves, we needed a complex task that 

could be learned in an hour but productively practiced for 
several hours. We also wanted it to be related to trouble-
shooting and be instrumented.  

We considered the Klingon Laserbank Task (KLBT) that 
has been used to study learning (Bibby & Payne, 1993; 
Friedrich & Ritter, 2009; Kieras & Bovair, 1984; Ritter & 
Bibby, 2008), but in 20 trials it can be done in under 10 s by 
most subjects.  We report here a more complex task and an 
initial test of it.  

The Ben-Franklin Radar Task 
Ben Bauchwitz for a separate project found a radar that 
could be made by hobbyists.  We modified its schematic to 
be similar to the KLBT but more complex.  The schematic 
and interface are shown in Figure 2.  This device has 36 
components compared to the KLBT’s 7 components.  
Colleagues at Charles River Analytics created it as a Unity 
program.  
 

 

Figure 2.  The Ben-Franklin Radar schematic (top) and 
interface (bottom). 

Method 
Subject 
We had one subject, a 24-y.o. female, first-year master’s 
student, with a BS in Psychology and Mathematics, without 
any engineering background. She had not seen the 
schematic before the study.  
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Materials 
Materials included: a printed schematic, the simulation, a 
D2P2 tutor (Ritter et al., 2013) to teach them both; 1-fault 
problems for practicing with and without feedback; and 10 
recall and 10 recognition questions. The tutor explains each 
subsystem and guidelines that teach how to do 
troubleshooting based on the Navy’s 6-step troubleshooting 
approach with example practice problems.  

Design and Procedure 
In each session, the subject used the tutor and interacted 
with practice problems for 45 min. In the first four sessions 
(days 1 – 4), the subject had five minutes to study the printed 
schematic and then five minutes to draw it from memory. 
Next, the subject went through the tutor and solved practice 
scenarios with feedback. At the end of each session, the 
subject answered the schematic recall and recognition ques-
tions and then solved 5 problems. In the fifth session (day 
14), the subject answered 10 recognition, 10 recall ques-
tions, and 20 troubleshooting questions without feedback.   

Results 
The subject was able to complete the task and got quite rapid 
in her responses.  Figure 3 shows that over Sessions 1 to 4 her 
average time for the test problems dropped from 57.5 s to 
10.7 s.  After a 10 day delay in Session 5, her average time on 
the first 5 test problems was 13.0 s and on all 20 test prob-
lems was 7.9 s.  (Her times within sessions followed a learn-
ing curve.)  Her error rate was consistently low, 4%.  

 
Figure 3.  The learning curve for troubleshooting a fault by 
session (days 1 – 4). Session 5 is the retention test at day 14. 

We can see several things from Figure 3. After one practice 
session, the task was doable and the time to find a fault was 
about a minute. The task time after three hours of practice 
also showed that the performance time did not decrease 
beyond the KLBT task times with 20 practices, so this task is 
much more complex initially, but approachable and learnable. 
Compared to the KLBT, the Ben-Franklin Radar task was 
about 3 times slower in the first test, but after practice, was 
about the same amount of time.  

Another aspect is that the learning curve in sessions 1-4 
approximated curve 1 in Figure 1.  So, this task might be 
useful for studying learning and retention. 

We saw that after a 10-day break between session 4 and 5, 
the subject’s response time in the 5 test problems did not 

increase much (as per curve 4, Figure 1). If all 20 test 
problems are used, however, the average time actually 
decreased further to 7.9 s.  This was on problems without 
direct feedback (but the interface did provide some indirect 
feedback).  Further examination showed that the trial times 
kept improving over the 20 problems.  So, to study retention 
of the procedural knowledge, 10 days was just enough to 
allow forgetting after 4 hours of study—if you do not ask too 
many questions! This suggests that including a larger number 
of test trials even without feedback leads to learning in this 
task, and might not be desirable in a larger study.  

Conclusion and Further Research 
We found that the task appears to support this study and 
found some limited support for the theory.  We will be run-
ning more subjects to test the learning and retention theory.  
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Abstract 

The mechanisms behind the ability to retrieve all exemplars in 
a class when presented a specific contextual cue, have puzzled 
the world of cognition. Various approaches have been used to 
better understand this concept, especially in the field of 
artificial neural networks. That being said, very few models can 
enumerate all exemplars associated to multiple lists in a 
cognitively plausible way. This is mostly due to the problem of 
multiple One-to-Many Associations (OMA)s where various 
exemplars can belong to different lists. To resolve this issue, 
different approaches have been used; from deep learning and 
natural language processing to time delayed contextual units. 
However, none of them is satisfying for a biologically based 
computational model of cognition. A promising solution is 
using the class label as context and associates it with each 
exemplar of the corresponding class. This allows each input to 
be unique and the problem becomes a standard association one. 
This strategy has been implemented within the neurodynamic 
perspective using a bidirectional associative memory. The 
simulations consisted of learning three arbitrary sequences of 
various lengths containing multiple intertwined exemplars. 
Results showed that it was possible to enumerate all associated 
exemplars from a class simply by presenting the corresponding 
contextual label. These findings are an important step towards 
developing cognitively plausible neural implementation of 
multi-step patterns as well as semantic networks in order to 
develop generalized artificial intelligence. 

Keywords: Cognition; Class enumeration; One-to-many 
associations; Learning; Memory; Bidirectional associative 
memory; Feature extraction bidirectional associative memory 

Introduction 
When presented with a class label, the brain has no difficulty 
in enumerating all associated exemplar. This cognitive ability 
is remarkable since learned exemplars are rarely exclusive to 
a single class; they can have multiple associations (also 
referred as One-to-Many Associations; OMAs). A simple 
example to illustrate this would be to enumerate all actions 
(exemplars) needed to score in a specific sport. In soccer a 
sequence may resemble, kick off, pass, dribble, run, and kick; 
while in hockey: face off, pass, dribble, skate and slap; and 
finally, in basketball: jump ball, pass, dribble, run and throw. 
Depending on the class of the sport (soccer, hockey or 

basketball), different exemplars (kick, slap and throw) and 
identical ones can be found (pass, dribble). Thus, in such a 
case, when enumerating exemplars from a class, it is easily 
seen that these exemplars can be associated to a single or 
multiple classes (OMA). Furthermore, when enumerating a 
list, it may always follow a specific sequence (ex. opening a 
door) or, in the case of semantic memory, may not (ex: free 
association task; Nelson, McEvoy & Schreiber, 2004). 

 Many formal models in cognitive sciences have been 
proposed over the years that can accomplish this listing task. 
Models, such as the Semantic memory models, are known to 
predict human performances accurately (Jones, Willits, 
Dennis, & Jones, 2015) but remain limited for neural 
implementation.  

Artificial neural networks have also been used to perform 
this listing task with most using the multi-layer Perceptron 
approach (Collobert et al., 2011; Elman, 1990; Jordan, 1997; 
Neville, 2008). Although these are all interesting models, 
they are limited in meeting the requirements to be consider 
biologically based computational models of cognition 
(O’Reily, 1998). One such class of models that fills these 
requirements are the Recurrent Associative Memory (RAMs) 
that belong to the neurodynamic approach (Haykin, 2009). 
Associative memory consists of learning and storing pairs of 
identical (auto-association) or different (hetero-association) 
exemplars. This has been popularized by Hopfield (1982) for 
auto-association and generalized to Bidirectional Associative 
Memory (BAM) by Kosko (1988) for hetero-association. 
Since then, BAMs have seen many modifications allowing 
them to perform various tasks with better performances; see 
Acevedo-Mosqueda, Yanez-Marquez & Acevedo-Mosqueda 
(2013) for a review. Previous studies have shown that RAMs 
are able to enumerate simple independent lists of exemplars 
(Chartier & Boukadoum, 2006). However, in the presence of 
overlapping list of exemplars, like the initial example, they 
are not able to accomplish the task. This is due to the fact that 
they must deal with several OMAs. In other words, there are 
dealing with a relationship instead of a function.  

An early solution to solve OMA following findings in 
cognition (Clarke, 2017; Spillers & Unsworth, 2011; Stoet & 
Snyder, 2007) was the use of time delayed (context) units 
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(Elman, 1990). This method integrated previous output(s) 
with the current input in order to accurately predict the next 
exemplar in the list (ex. Collobert et al. 2011). Therefore, the 
one-to-many association was transformed into a one-to-one 
association. Unfortunately, this solution of delay units (or 
surrounding context) requires the global knowledge of the 
number of contextual units prior to learning. Furthermore, it 
does not really help towards the original task itself; time 
delayed units (context) are not representative of the class but 
only of the previous exemplars. 

 A more interesting solution in machine learning was 
introduced by Jordan (1997) which used context as a label to 
modify each exemplar for the enumeration of a given class. 
Therefore, this contextual label also modifies each exemplar 
to make them unique without any prior global knowledge. 

A second problem may also arise in RAMs if the OMAs are 
overlapping. In this case there is the possibility that the task 
becomes a non-linearly separable one. Unfortunately, 
standard BAMs are not able to solve this unless the model is 
complexified with a wide range of arbitrary parameters, thus 
losing its simplistic nature. However, recent studies have 
shown that an unsupervised version of the BAM can be used 
to increase the dimensionality of the inputs and therefore, a 
linear solution can be found when combined with the BAM 
(ex. Tremblay, Myers-Stewart, Morissette & Chartier, 2013).  

Following recent progress in using contextual labels 
(Rolon-Mérette, Rolon-Mérette & Chartier, 2018a) it is thus 
proposed to use the class label to make each exemplar unique 
using a combination of supervised and unsupervised BAMs. 
This will increase the BAM’s versatility and help in learning 
any number of overlapping OMAs of any length, where 
exemplars can have any level of correlation and where a non-
linear solution is required.  

The remainder of the paper is divided as follows: the next 
section gives brief background of the BAM used in the study; 
This is then followed by Simulation I, where context is used 
to show the feasibility of enumerating exemplars from a class 
and the limits when facing with overlapping OMAs; 
Simulation II is then presented with a brief background of the 
unsupervised BAM and how its interaction with the BAM 
allows the network to perform the desired task; Finally, a 
short discussion ends this paper.  

Bidirectional associative memory 

Model description 
The model is a modified version of the BAM. Like any neural 
network, it is defined by an architecture, transmission and 
learning functions.  

Architecture 
The BAM’s architecture is illustrated in Figure 1. The 
supervised model has two layers of interconnected units in a 
bidirectional fashion, where the W and V layers return 
information to each other (both acting as a teacher to one 
another); where M and N represents the number of units in 
each layer. The initial patterns are represented by x(0) and 

y(0) while the outputs of the network are x(t) and y(t) after t 
cycles.  

 
Figure 1: Architecture of the BAM 

Output function 
The transmission function is defined by equation 1a and 1b: 
 

(1a) ∀𝑖,… ,𝑁, 𝑦'()*+) = 𝑓/𝑎'())1 = 2
1, 𝑖𝑓	𝑎'()) > 1

−1, 𝑖𝑓	𝑎'()) < −1
(𝛿 + 1)𝑎'()) − 𝛿𝑎'())

: , Else
 

 

(1b) ∀𝑖,… ,𝑀, 𝑥'()*+) = 𝑓/𝑏'())1 = 2
1, 𝑖𝑓	𝑏'()) > 1

−1, 𝑖𝑓	𝑏'()) < −1
(𝛿 + 1)𝑏'()) − 𝛿𝑏'())

: , Else
 

 
Where i is the index unit, δ the general transmission 
parameter and a and b the activations. These activations are 
obtained the usual way: a(t) = Wx(t) and b(t) = Vy(t).  

Learning rule 
The connection weights for the model are modified following 
a hebbian/anti-hebbian rule (Chartier & Boukadoum, 2006). 

(2a)  𝐖(𝑘 + 1) = 𝐖(𝑘) + 𝜂/𝐲(0) − 𝐲(𝑡)1/𝐱(0) + 𝐱(𝑡)1
I 

 
(2b)  𝐕(𝑘 + 1) = 𝐕(𝑘) + 𝜂/𝐱(0) − 𝐱(𝑡)1/𝐲(0) + 𝐲(𝑡)1

I  

 
Where x(0) and y(0) are the initial inputs, η is the learning 
parameter and k is a given learning trial. Equation 2a and 2b 
shows that the matrix weights will converge when x(0) = x(t) 
or y(0) = y(t). To reduce the simulation time, the number of 
cycles performed according to equation 1 is usually set to t = 
1. It is guaranteed that the learning will converge if the 
learning parameter (η) is smaller than the following value 
(Chartier & Boukadoum, 2006): 

 

  (3)  𝜂 < +
K(+LKM)NOP[R,S]

	, 𝛿 ≠+
K
    

 

Simulation I: BAM  
The general task is illustrated in Figure 2. In order to recreate 
the task of enumerating exemplars from a class by only 

yn(0) y2(0) y1(0) 

x1(0) xm(0) x2(0) x3(0) 

x(t) 

y(t) 

V 

W 
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presenting its class label, three overlapping list of arbitrary 
patterns were used. The general goal was to learn all 
overlapping lists. Two simulation (conditions) were created 
to better understand the complexity of the task and the 
feasibility of using a single BAM. The first condition was to 
establish if labels can be used to solve a simple OMA and 
enumerate all the exemplars of a class and while the second 
was to show its limitation with overlapping OMAs. Both 
conditions are illustrated in Figure 3. 

Methodology 
Arbitrary alphabetic patterns were used to test the network. 
Each pattern was a 49-dimensional pixel base pattern where 
black pixels represent the value of +1 and white pixels -1. 
Those patterns have the property of showing various levels of 
correlation (between 0.02 and 0.92). Moreover, they can be 
naturally partitioned in multiple overlapping classes and are 
easily recognized by experimenters. Of course, any other 
arbitrary patterns could have been used without any 
modification in the results. Two conditions were created. 
In condition 1, two sequences of three exemplars (class label 
followed by two letters) were used to generate an OMA 
scenario. For both sequences the class label was concatenated 
to each exemplar of the list allowing exemplar modification 
and transform the OMA into a one-to-one association (Figure 
3a). In condition 2, multiple intertwined lists were used 
(Figure 3b). The number of lists was set to three for proof of 
concept while avoiding the simplicity of having a binomial 
solution. Furthermore, contrary to condition 1, each list was 
of different lengths and contained multiple OMAs. The first 
list contained the class label “L” followed by the 26 letters of 
the alphabet in lowercase. The second sequence was a subset 
of the first, containing the class label “V” followed by all the 
vowels in lowercase. Finally, the third sequence was a 
different subset of the first list containing the class label “C” 
followed by all the consonants in lowercase. For both 
conditions, each list was ended by an auto-association on the 
last exemplar (final attractor).  

 
Figure 2: Sequences with class labels (“L”, “V” and “C”) at 

the beginning of each class for the overall task. 

 
Figure 3: Class labels followed by modified exemplars for 

condition 1(a) and condition 2 (b). 

Procedure 
For all simulations, the transmission parameter (δ) was set to 
0.2 and the learning parameter (η) respected equation 3. The 
M and N layers where set to 98 units each, which represents 
the dimensionality of the combined exemplar (49) and the 
class label (49). Learning was stopped when the mean 
squared error (MSE) was lower than 10-15 or when 5000 
learning trials was reached.  

Learning  
1. Selection of a list containing both the exemplars and the 

combined context (Figure 3). 
2. Random selection of a pair (x(0) and y(0)). 
3. Computation of x(1) and y(1) according to the 

transmission function (equation 1a and 1b).   
4. Computation of the weights according to the learning 

function (equation 2a and 2b) 
5. Repeat step 2) and 4) until all the pairs are selected. 
6. Repeat step 2) to 5) until the desired MSE or the 

maximum learning trial are reached. 

Recall  
1. Selection of an initial contextual label of a given list, x(0). 
2. Compute y(t) in accordance to the transmission function 

(equation 1a and 1b) until convergence; end of the list. 
3. Comparison of the outputted exemplars with the correct 

ones. 
4. Repetition of step 1) to 4) for each contextual label (“L”, 

“V” and “C”). 

Results 
Figure 4 shows the output for each of the conditions when 
presented with the class label. In condition 1, the output is a 
clear representation of the desired solution for both 
associated outputs. By using this approach, it was possible to 
solve a simple OMA. In condition 2, results showed that 
appropriate retrieval was unobtainable in the situation of 
many OMAs. This is not surprising because in such a 
scenario the task becomes non-linear as well. Therefore, a 
single BAM will not be able to perform this task. However, 
by combining the BAM with its unsupervised version, it is 
possible to overcome this limit. Therefore, in the next 
simulation, we show such an implementation while keeping 
the contextual encoding strategy to allow the network to 
achieve the desired behaviour shown in Figure 2. 

 
Figure 4: Recall outputs for condition 1(a) and 2 (b) 

 

…

…

 a)

…

…
b)

…

 
a) b)

…

…

…
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Simulation II: FEBAM-BAM  
In order to use the context to discriminate identical exemplars 
and to solve non-nonlinear classification, the BAM network 
is modified to take into account information from its 
unsupervised version; the Feature Extracting Bidirectional 
Associative Memory (FEBAM). The FEBAM generates a 
representation that when combined with the initial input 
increases the dimensionality and makes the classification 
problem into a linear one (Tremblay et al., 2013). By still 
having the same learning and transmission functions and the 
same general bidirectional architecture, this contributes 
towards increasing the internal consistency of the overall 
model.  

FEBAM model description 
The FEBAM is the unsupervised version of the BAM 
previously described. The only notable difference between 
the two is the absence of external (y(0)) connections. 
Consequently, there is no teacher and the model must rely 
only on one set of inputs, (x(0)). Therefore, the goal of this 
model is to generate the best representation that allows 
optimal reconstruction of the inputs. It is a process akin to 
feature extraction (Chartier et al., 2007). 
Architecture 
The FEBAM’s architecture is illustrated in Figure 5. Like the 
BAM, this model has two layers of interconnected units in a 
bidirectional fashion, where the W and V layers return 
information to each other. As mentioned, there is only one 
explicit set of connections, x(0), used to store information.  

Figure 5: Architecture of the FEBAM 

Transmission and learning functions 
Both transmission (equation 1a and 1b) and learning 
functions (equation 2a and 2b) remained the same. However, 
since y(0) is not explicitly given, the information has to 
circulate a little longer in the network in order to get all 
needed inputs.  

As shown in Figure 6, y(0) is obtained by iterating x(0) 
through its corresponding weight connections W using the 
transmission function. Subsequently, x(1) is obtained from 
y(0) and finally, y(1) from x(1). Through weight updates, 
each x(1) and y(1) will converge to a solution that will try to 
best reconstruct its associated initial pattern x(0) and/or its 

representation y(0). Thus, in the case where it is impossible 
for x(1) to equal x(0) (ex. information compression), weight 
convergence will only be guaranteed by y(1) and y(0). The 
number of units in the y–layer determines the dimensionality 
(level of compression) of the generated representations. The 
more units there are, the better the reconstruction will be 
(Giguère et al., 2009).  

 
Figure 6: Iterative process used to gather inputs for learning. 

FEBAM-BAM Model 
Figure 7 illustrates the overall network to accomplish the 
task where the FEBAM is used to generate features (context). 
 

 
 

Figure 7: Overall architecture of the FEBAM-BAM  

Methodology 
The task consisted of learning the same three sequences from 
simulation I’s condition 2 (Figure 3b). This time, exemplars 
with their class label were fed to the FEBAM first. This 
allowed the FEBAM to generate features which acted as a 
unique “signature” for the current exemplar. This 
representation was then concatenated to the initial input and 
fed to the BAM for learning. The number of y units in the 
FEBAM was fixed at a dimension of 98. This was determined 
in order to increase the probability of success (Rolon-Merette 
et al., 2018b). The number of y-units can be lower than the 
number of x-units but for the scope of this study it was not 
investigated. Finally, in addition to recalling condition 2’s 
lists, a simple noisy (pixel flip) recall task was performed, 
where the class labels were distorted prior being presented to 
the FEBAM-BAM. For the noisy recall task, pixel flip ranged 
from 0 to 50% of the original class label to show the FEBAM-
BAM’s ability to deal with noise.  

FEBAM Learning 
The inputs were presented to the FEBAM. To maintain 
internal consistency, the transmission parameter (δ) and the 
learning parameter (η) were not change from simulation I. 
The weights were randomly initialized with values between -
0.1 and 0.1 and were updated after one cycle (t = 1). Learning 
stopped when the network achieved a mean squared error 
(MSE) of less than 10-15 or when 5000 learning trials were 
reached. The learning procedure can be described as follow: 

x1(0) xm(0) x2(0) x3(0) 

x(t) 

y(t) 

V 

W 

 

W WV

x(0)

y(0)

x(1)

y(1)

 
FEBAM

BAM

CONTEXT

EXEMPLAR(t)

CLASS LABEL CLASS LABEL

EXEMPLAR(t)

CONTEXT

CLASS LABEL

EXEMPLAR(t+1)
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1. Selection of a list containing all three sequences of 
modified exemplar as seen in Figure 3b). 

2. Random selection of a given exemplar from the list to 
obtain x(0). 

3. Iteration through the network (as illustrated in Figure 6) 
using the output function (equation 1a and 1b) to obtain 
y(0), x(1) and y(1).  

4. Computation of weight updates according to the learning 
rule (equation 2a and 2b). 

5. Repetition of steps 2) to 4) until the minimum mean 
squared error between y(0) and y(1) or max trials is 
reached. 
 

Each output was then concatenated to its associated input 
before being presented to the BAM for learning. The same 
learning and recall procedure from simulation I was used for 
the BAM except for the M and N layers, they were increased 
to 196 units due to the concatenation.  

Results 
All three sequences (Figure 2) were successfully learned by 
the combined FEBAM-BAM model (Figure 7). Furthermore, 
contrary to condition 2 in simulation I, every exemplar for 
each sequence is retrieved correctly without any distortion. 
These results are similar to ones obtained in machine learning 
(Collobert et al., 2011; Jordan, 1997; Neville, 2008). 

 
Figure 9: Recall of the learned three sequences. 

 
Likewise, during the pixel flip recall task, correct retrieval 
was possible for distortion between 0 and 25 %. Figure 10 
shows results for a pixel flip of 10% (10 pixels) of the original 
class label ‘L’. This “cleaning” by the FEBAM portion of the 
FEBAM-BAM allowed to obtain the same retrieval results 
(Figure 9) while dealing with noisy class labels (inputs). 

 
Figure 10: Noisy recall (10 % pixel flip) of class label ’L’  

Discussion 
In Simulation I, the goal was to learn a simple one-to-many 
association task (condition 1) by using the context to 
discriminate the exemplar in a BAM. Results showed that 
joining the input with fixed contextual information allows the 
network to solve a simple OMA task using a cognitively 
plausible neuronal implementation. However, condition 2 
showed that this strategy alone is not sufficient if the task 
contains multiple OMAs. In this last case, a non-linear 
classification is then required.  
 To remedy this problem, in simulation II, the BAM was 
employed in combination with the FEBAM. This addition 
allowed the network to create its own generated features and 
when combined with the initial input, allowed to solve non-
linear task. The network was able to achieve a perfect 
learning and recall while maintaining internal consistency; 
the same transmission, learning functions and the same 
general bidirectional architecture were used. Furthermore, 
when faced with distorted exemplars, the model was able to 
“clean” noisy inputs and reconstruct the appropriate class 
label while retrieving the associated generated feature. This 
allowed the FEBAM-BAM to solve the enumeration task 
despite being presented noisy inputs. This is an important 
feature towards having a model deal with real world stimuli. 

This combination (FEBAM-BAM) is an interesting 
solution because it avoids the current task specific problem 
(Marcus, 2018). In approaches where context is given 
through time delay units (Chartier & Boukadoum, 2006; 
Collobert et al., 2011; Elman, 1990) the network must know 
beforehand how many of those units will be necessary for the 
task, limiting its versatility and plausibility. 

That being said, in this model, the proposed mechanism is 
sequence specific. In other words, although the sequences 
themselves were arbitrary and could be replaced by any 
sequences of exemplars, the network outputs will always be 
in the same order. This is accurate in the case of learning 
multi-step patterns like motor outputs. However, a future 
desired property would be the inclusion of more flexibility 
where the order of outputs is determined from the frequency 
of occurrence or the success rate of past experience using 
reinforcement learning. Furthermore, it would be interesting 
to follow up on the inherent characteristic task (Hattori & 
Hagiwara, 1998) while using the FEBAM-BAM’s ability to 
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modify the exemplars with pseudo-contextual compartments 
(Clarke, 2017; Spillers & Unsworth, 2011; Stoet & Snyder, 
2007). This would open the door towards a cognitively 
plausible artificial neural-network capable of combining 
knowledge acquisition and knowledge transfer, increasing 
even further the model’s versatility. Additionally, it is known 
that the number of y-units must be greater or equal to the 
number of unique exemplars for feature extraction in the 
FEBAM (Tremblay et al., 2013). That being said, it would be 
advantageous to investigate the probability of success for this 
multi-OMA task while controlling for the dimensionality of 
the generated context (FEBAM y-unit). This could determine 
if the number of exemplars in a list or the number of 
intertwined exemplars have an impact on the number of y-
units needed for the non-linearly separable OMA task. 
Finally, it would be interesting to account for exemplars in a 
list representing a single exemplar or a whole category in 
itself. This would allow the model to perform an important 
semantic memory task while being a simple neuronal model 
(free association task; Nelson et al., 2004) 

In sum, it was shown that a simple bidirectional recurrent 
associative memory with a hebbian/anti-hebbian learning 
algorithm is sufficient to solve a complex task requiring the 
enumeration of all associated arbitrary exemplars from a 
class by the sole presentation of a class label. These findings 
are an important step towards developing a neural 
implementation of semantic networks in order to shift from 
narrow intelligence to artificial general intelligence (Bengio 
et al. 2015; Marcus, 2018). 
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Abstract 

When learning similar stimuli, we tend to group them together. 
This categorization is a behaviour which all humans share. Yet, 
the pathways undertaken by the brain differs between 
individuals. To investigate this phenomenon, a Feature 
Extracting Bidirectional Associative Memory (FEBAM) was 
used to generate representations of various grouped stimuli. It 
was determined that representations created by different 
FEBAMs were always new. However, the learning behaviour 
was always the same. The generated representations were 
always categorized into the right category. Finally, by lowering 
the size of these representations, prototypes of the categories 
could be created. Recall tests showed that reconstructed 
prototypes remained the same across all FEBAMs, even if the 
representations themselves differed. This shows that although 
the encoding pathways might differ between individuals, the 
learned cognitive concepts do not. These findings are 
promising steps towards better understanding how individuals 
exhibit common cognitive functionality despite variability in 
neural activity. 

Keywords: Variability; Categorization; Feature-Extraction; 
Associative Learning; Bidirectional Recurrent Neural 
Networks, Cognition. 

Introduction 

There are billions of human beings on this planet and each 

one of them can understand and share complex concepts such 

as language, games, music and much more. This common 

cognitive understanding is mind boggling when individuality 

is considered. There is no brain that is the same as another, 

with each containing a unique arrangement of its neural 

structures and connections (Sporns, Tononi, & Kötter, 2005; 

Thompson, Schwartz, Lin, Khan & Toga, 1996). When 

presented with the same learning task, different individuals 

will exhibit different neural activity (Churchland et al., 2010; 

Mueller et al., 2013). While perception can change based on 

certain differences in anatomical structures, surprisingly, this 

variability does not seem to drastically change an individual’s 

understanding of the world and/or its relationships with 

others. While the neurological pathways involved are 

different across individuals, the behaviour remains 

consistent. In other words, from different neural activities, the 

same cognitive functionality can be observed. That being 

said, the mechanisms behind such commonality from 

variability are yet to be fully understood. 

An encouraging avenue to better understand this would be 

to explore the concept of associative learning and 

categorization. Associative learning can be seen as linking 

two or more stimuli together (Rescorla & Wagner., 1972). 

One of its interesting characteristics is the ability to recall one 

stimulus when only presented with a partial cue (McCleland, 

McNaughton & O’reilley, 1995). This process forms the 

basis of categorization whereas similar patterns are grouped 

together to form a category (Shields, Rovee & Collier, 1992). 

However, how these “grouped” patterns are represented in 

our brain remains a mystery. Are the encoded representations 

of stimuli different across individuals? If so, do they respect 

the relationship between stimuli, i.e. correctly categorized? 

In other words, if stimuli are similar, are their representations 

also similar?  

In cognition, such questions can be explored using formal 

models (Forstmann, Wagenmakers, Eichele, Brown & 

Serences, 2011). Specifically, artificial neural networks 

(ANNs) have been an exciting approach to study various key 

cognitive concepts such as associative learning and 

categorization (Mareschal, French, & Quinn, 2000). One of 

the many interesting properties of ANNs dwells in the 

initialization of weight connections. By randomly initializing 

the connection weights, each individual instance of a network 

will be different, analogous to the variability found in human 

brains. However, what would be interesting is that different 

instances of a network would display the same behaviour 

when presented with the same learning task. 

Among ANNs are Recurrent Associative Memories, which 

are designed to implement associative learning (Acevedo-
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Mosqueda, Yáñez-Márquez, & Acevedo-Mosqueda, 2010). 

Particularly, there is the Feature Extracting Bidirectional 

Associative Memory, or FEBAM (Chartier, Giguère, 

Renaud, Lina & Proulx, 2007), which can create perceptual 

features from input patterns via feature extraction (Rolon-

Merette, Rolon-Merette & Chartier, 2018). This property 

allows the FEBAM of category development (grouping 

similar patterns together based on their correlation). 

However, a question remains. When presented with the same 

stimuli, will the FEBAM always generate new 

representations and if so, will it exhibit the same learning 

behaviour? In other words, will the representations be 

categorized in the same manner even if they are always new? 

This would shed light on the mechanisms allowing common 

cognitive functionality found between individuals.  

The next section gives a short description of the FEBAM 

and a cluster analysis, followed by three simulations. In 

simulation I, it was investigated if the representations created 

by different instances of the FEBAM are always new. In 

simulation II, the exemplar categorization was observed with 

a learning task consisting of grouped patterns. In simulation 

III, under the same learning task, the size of representations 

was varied to examine prototype categorization. Finally, this 

paper ends with a short discussion.  

Model 

The FEBAM is a completely unsupervised recurrent ANN, 

meaning it does not have any explicit teacher. The entirety 

of the model can be described by its architecture, 

transmission function and learning function.  

 

Architecture 

The FEBAM architecture is illustrated in Figure 1. The model 

has two layers of interconnected units in a bidirectional 

fashion, where the W and V layers return information to each 

other. Contrary to traditional bidirectional associative 

memories, there is only one explicit connection, x(0), to 

allow the network to perform feature extraction. 

 
Figure 1: Architecture of the FEBAM 

 

Output function 

The transmission function is defined by the Equations 1a and 

1b: 

(1a) ∀𝑖, … , 𝑁, 𝑦𝑖(𝑡+1) = 𝑓(𝑎𝑖(𝑡)) = {

1, 𝑖𝑓 𝑎𝑖(𝑡) > 1

−1, 𝑖𝑓 𝑎𝑖(𝑡) < −1

(𝛿 + 1)𝑎𝑖(𝑡) − 𝛿𝑎𝑖(𝑡)
3 , Else

 

 

(1b) ∀𝑖, … , 𝑀, 𝑥𝑖(𝑡+1) = 𝑓(𝑏𝑖(𝑡)) = {

1, 𝑖𝑓 𝑏𝑖(𝑡) > 1

−1, 𝑖𝑓 𝑏𝑖(𝑡) < −1

(𝛿 + 1)𝑏𝑖(𝑡) − 𝛿𝑏𝑖(𝑡)
3 , Else

 

Where N and M are the total number of units in each layer, i 

is the index unit, δ is the general transmission parameter and 

a and b are the activations. These activations are obtained 

the following way: a(t)=Wx(t) and b(t)=Vy(t).  

 

Learning rule 

The connection weights are modified following a 

hebbian/anti-hebbian rule: 

(2a) 𝐖(𝑘 + 1) = 𝐖(𝑘) + 𝜂(𝐲(0) − 𝐲(𝑡))(𝐱(0) + 𝐱(𝑡))
T

 

(2b) 𝐕(𝑘 + 1) = 𝐕(𝑘) + 𝜂(𝐱(0) − 𝐱(𝑡))(𝐲(0) + 𝐲(𝑡))
T

 

 

Where x(0) and y(0) are the initial inputs, η is the learning 

parameter and k is a given learning trial. Equation 2a and 2b 

shows that the matrix weights will converge when x(0) = x(t) 

or y(0) = y(t). To reduce the simulation time the number of 

iterations was set to t = 1. It is guaranteed that the learning 

will converge if the learning parameter (η) is smaller than the 

following value (Chartier & Boukadoum, 2006): 

(3) 𝜂 <
1

2(1−2𝛿)Max[𝑀,𝑁]
 , 𝛿 ≠

1

2
    

 

FEBAM learning process 

As previously mentioned, in the FEBAM, there is only one 

explicit connection x(0), meaning the y(0) inputs are not 

initially available. Instead, they are obtained after a first 

iteration through the network. As shown in Figure 2, y(0) is 

obtained by the iteration of x(0) through its corresponding 

weight connections W using the transmission function. 

Subsequently, x(1) is obtained from y(0) and finally, y(1) 

from x(1). Through the weight updates, each x(1) and y(1) 

will converge to a solution that will try to best reconstruct its 

associated initial pattern x(0) or its initial output y(0). Thus, 

in the case where x(1) does not equal x(0), weight 

convergence will be granted by y(1).  

The number of units in the y–layer determined the 

dimensionality (size) of the generated representation.  

 
Figure 2: Iterative process for weight updates during 

learning in the FEBAM. 

 

W WV
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y(0)
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FEBAM Learning Procedure 

The transmission function’s parameter (δ) was set to 0.2 and 

the learning parameter (η) respected Equation 3 for all the 

simulations. Weights were randomly initialized with values 

between -0.1 and 0.1. Learning stopped when the network 

achieved a mean squared error (MSE) of less than 10-10 or 

when 5000 learning trials was reached. Learning was 

conducted following this procedure:  

1. Creation of a list of inputs respecting preset conditions. 

2. Random selection of a given exemplar from the list to 

obtain x(0). 

3. Iteration through the network (as illustrated in Figure 2) 

using the output function to obtain y(0), x(1) and y(1).  

4. Computation of weight updates according to the learning 

rule. 

5. Repetition of steps 2) to 4) until the minimum mean 

squared error between y(0) and y(1) or maximum trials is 

reached. 

Cluster Analysis 

In order to partition the generated representations into 

categories, k-mean clustering was used. For a chosen number 

of clusters k, the algorithm randomly sets k centroids in 

feature space and assigns each data point to the category of 

its nearest centroid. The positions of each centroid are then 

iteratively readjusted such that the within-category distance 

of the resulting categories is minimized. Lloyds algorithm 

and K-means++ initialization were implemented with the 

SickitLearn library on Python (Arthur & Vassilvitskii, 2007; 

Kanungo, Mount, Netanyahu, Piatko, Silverman & Wu, 

2002). The sum of the squared distances between data points 

and their centroid is presented by distortion. A priori, the 

number of clusters that would most appropriately divide the 

data cannot be known and its high dimensionality makes it 

prohibitive to determine it visually. Instead, the elbow 

method was applied to select the optimal number of clusters 

(Kodinariya & Makwana, 2013). Cluster analysis was 

conducted under two different scenarios. Scenario A will be 

used to examine variability across all FEBAMs (Simulation I 

and IIIb). Scenario B allows to find the average behaviour of 

an individual FEBAM (Simulation II and IIIa).  

Scenario A 

1. Creation of input patterns respecting preset conditions. 

2. FEBAM learning as specified in the learning procedure. 

3. Repetition of steps 1) and 2) for all FEBAMs. 

4. K-Means cluster analysis on generated representations of 

all FEBAMs at once from step 3). 

Scenario B 

1. Creation of input patterns respecting preset conditions. 

2. FEBAM learning as specified in the learning procedure. 

3. K-Means cluster analysis on generated representations of 

each individual FEBAM. 

4. Repetition of steps 1) to 3) for all FEBAMs. 

5. Calculate average distortion and number of clusters from 

step 4). 

Simulation I: new representations 

The number of different generated features was studied when 

the inputs were kept constant. The task consisted of three 

learning conditions of different input patterns and generating 

their associated representations. In each condition, the 

patterns were fed to multiple FEBAMs, mimicking the 

learning process of different individuals. The generated 

outputs, or representations, were then analyzed with k-means 

clustering using Scenario A.  

Methodology 

Three different learning conditions were studied using 

pixelated bipolar inputs patterns of dimension 50, where 

black pixels represent the value of +1 and white pixels -1. 

The “pattern” condition consisted of a single pattern. The 

“category” condition consisted of two categories of five 

highly correlated patterns. Each pattern within a category 

exhibited a correlation of 0.95 and the correlation between 

patterns of both categories was set to 0.15. Finally, in the 

“random” condition, ten inputs were generated with low 

correlations varying from 0.01 to 0.30. All three conditions 

are presented in Figure 3.  

In order to have a good estimate of the behaviour, the input 

patterns were presented to 1000 different FEBAMs, each 

with a different set of randomly initialized weight 

connections. The size of the generated representations was 

kept constant at a dimension of 50. Finally, for each 

condition, k-means clustering analysis was conducted on the 

generated representations of all the FEBAMs at once, as 

stated in Scenario A.  

 
Figure 3: Input patterns for the “pattern” (a), “category” 

(b) and the “random” (c) conditions.  

Results 

Different FEBAMs generated different representations when 

presented with the same pattern(s). Figure 4 illustrates an 

example of this process. Figure 5 shows the results of k-

means clustering for each condition. As the number of 

clusters created increased, the distortion decreased. However, 

for all three conditions no elbow was observed. 
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Figure 4: Generating representations for the “pattern” 

condition with different FEBAMs. 

 

 
Figure 5: Cluster analysis on representations formed across 

1000 different FEBAMs.  

Simulation II: Exemplar categorization 

In this section, we further investigate whether different 

FEBAMs respect the same behaviour during exemplar 

categorization. To do this, we extended the condition 2 of 

simulation I to five categories. However, in this case, 

clustering analysis will be conducted on individual FEBAMs 

and not all at once, as stated is Scenario B.  

Methodology  

The same method described in simulation I was used to 

generate input patterns.  Here, two to five categories were 

generated. Each category contained five patterns. The 

correlation of patterns within the categories was 

approximately 0.95 and the correlation of patterns between 

the categories was set to approximately 0.15. The 

dimensionality of representations (outputs y units) was set 

again to 50. Each set of patterns were presented to 1000 

different FEBAMs with the same learning procedure and 

parameters as previously described. Subsequently, following 

Scenario B, k-means cluster analysis was conducted on the 

generated patterns of individual FEBAMs only. Within-

category and between-category correlation of generated 

representations were also examined. Finally, a recall test was 

performed to verify that patterns were correctly categorized.  

Results 

In Figure 6, an example of exemplar categorization is 

presented. In Figure 7, the mean number of clusters and 

distortion for the 1000 FEBAMs are presented. Results show 

that the generated representations respected the number of 

categories found in the input patterns (e.g. two categories, 

two clusters of generated representations). Furthermore, the 

average within-category correlation of generated 

representations was 0.75 and the average between-category 

correlation was <0.05. Lastly, the recall test yielded a 

performance of 100% correct pattern categorization. 

 
Figure 6: Example of exemplar categorization. Within 

category (black) and between category (gray) correlation 

for input (a) and output (b) patterns are presented. 

 

 
Figure 7: Average distortion and number of clusters for 

generated representations in function to the number of 

categories. 

Simulation III: Prototype categorization 

In this last simulation, the goal was to examine the behaviour 

of the FEBAM during prototype categorization. A previous 

study showed that if the dimensionality of the representations 

is small enough when compared to the number of patterns, 

prototypes are formed (Giguère, Chartier, Proulx & Lina, 

2007). However, the variability of recalled prototypes formed 

across different FEBAMs was not investigated. 

Methodology  

Two categories of input patterns, each containing five 

patterns, were generated in the same fashion as in Simulation 

Ib and II. The dimensionality of generated representations 

(number of y units) was varied from 5, 10, 25, 50 to 100 

dimensions. The patterns were presented to 1000 different 

FEBAMs using the same learning procedure and parameters 

as in simulation I and II. Two clustering analyses were 

conducted.  
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Simulation IIIa. First, to determine the relationship 

between distortion and size of representations, k-means 

cluster analysis was conducted on generated representations 

from individual FEBAMs. This was done following the 

procedure described in Scenario B.  

Simulation IIIb. Second, to determine the variability of 

recalled patterns, k-means clustering analysis was conducted 

on generated representation of dimension 5 and their recalled 

patterns for all FEBAMs at once. This was done following 

the procedure described in Scenario A. 

Results 

Figure 8 shows the first cluster analysis. The average number 

of clusters and distortion is presented. In all cases, two 

clusters were formed. Additionally, by lowering the 

dimensionality of the representations, clusters with lower 

distortion began to appear. With representations of dimension 

5, two clusters accounted for all the distortion, suggesting that 

prototypes were created.  

 
Figure 8: Simulation IIIa. Relationship between the 

number of clusters and number of y units.  

 

In Figure 9, the second k-means clustering is shown. When 

looking at the generated representations across the 1000 

FEBAMs, it is quickly noted that no clusters were observed.  

This is consistent with the results from Simulation I, different 

FEBAMs will always generate different representations. 

Furthermore, when looking at the recalled patterns, two 

clusters are shown. However, these accounted for almost all 

the distortion. This suggests that although coming from 1000 

different FEBAMs, the same two patterns were recalled. 

Figure 10 illustrates this process. 

 
Figure 9: Simulation IIIb. Recalled prototypes and 

generated representations clustering across 1000 FEBAMs.  

Discussion 

The goal of this paper was to determine if the FEBAM could 

shed light on the categorization process found within and 

between individuals. Results from simulation I showed that 

when learning the same stimuli, different FEBAMs will 

generate diverse representations of these input patterns. As 

seen by the absence of clusters during a k-means clustering 

analysis. This result was expected since connection weights 

were initialized randomly.  

However, in simulation II, it was found that although 

different FEBAMs generate different representations, their 

learning behaviour remained the same. This was first shown 

by looking at the correlation of generated representations 

from each FEBAM. The within-category correlation (≈ 0.75) 

was far greater than the between-category correlation (≈ 

0.05). This was further shown with a k-means clustering 

analysis on the representations. The analysis put forward the 

fact that the number of clusters corresponded to the number 

of categories.  In addition, recalled patterns were correctly 

categorized into individual exemplars. These findings are 

keys since it proposed that the FEBAM will have the same 

encoding behaviour even if the initial connection weights are 

different. This also contributes to previous work by showing 

that both representations and reconstructed patterns are 

categorized in the same manner (Giguère, Chartier, Proulx & 

Lina, 2007). 

 
Figure 10:  Example of Prototype categorization. Two categories of input patterns are presented to (n) different FEBAMs. 

These generate representations of dimension 5. Although representations are always different, the same two patterns are 

recalled. These recalled patterns act as a prototype for each input category. 
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This characteristic was further explored with prototype 

categorization. Simulation III showed that different FEBAMs 

constructed the same prototypes even if the stored 

representations were different. If the size of the 

representations is equal or lower than the number of patterns 

of a given category, then the same pattern was always 

recalled. This recalled pattern was a prototype of all input 

patterns within a given category. Thus, even if the initial 

learning conditions and subsequent generated representations 

are different, the network will still create the same prototypes. 

To sum up, this study showed that the FEBAM is a good 

model for categorization, capable of both exemplars and 

prototypes encoding while also accounting for individual 

differences. The findings are a promising step towards better 

understanding how individuals exhibit common cognitive 

functionality despite variability in neural activity and may 

help in defining the optimal conditions to perform a 

classification task.  

Future work could focus on how manipulating weight 

initialization may influence learning. A change in initial 

weight connections between different FEBAMs could result 

in a corresponding change in their generated representations. 

Furthermore, depending on the size of the network, the 

FEBAM exhibits different behaviours during reconstruction 

of the input patterns (prototype or exemplar recall). An 

interesting property would be to grow (increase y-units) or 

prune (decrease y-units) the network based on a task. This 

would help to surpass the current task specific problem and 

allow the model to be more generalized.  
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Abstract 
A range of dichotomies from across the cognitive sciences are 
reduced to either (a)symmetry or (non)monotonicity. Taking 
the cross-product of these two elemental dichotomies then 
yields a deeper understanding of both two key trichotomies – 
based on control and content hierarchies – and the Common 
Model of Cognition, with results that bear on the structure of 
integrative cognitive architectures, models and systems, and on 
their commonalities, differences and gaps. 

Keywords: Dichotomies; control; memory; learning; 
Common Model of Cognition; cognitive architectures. 

Introduction 
The cognitive sciences embody many dichotomies, with a 

broad range of work focused on either making a case for one 
side versus the other of individual dichotomies or on finding 
a hybrid approach that spans both sides.  Here, the focus is on 
two general clouds of dichotomies – one that is 
fundamentally reducible to (a)symmetry and the other to 
(non)monotonicity – with the overall aim of understanding 
them better both individually and jointly.  (A)symmetry 
concerns whether processing – whether conceived of as 
memory access, derivation, inference or computation – is 
valid in a single direction versus in arbitrary directions.  
(Non)monotonicity in its essence concerns whether 
processing accumulates results versus alters them. 

These are not necessarily the most familiar formulations of 
either dichotomic cloud, but each fundamentally captures the 
nature of its own cloud in a manner that enables a simple 
definition and a clear path for mapping the other dichotomies 
from the same cloud onto it.  Although such mappings may 
at times lose nuances, the main message concerns the 
commonality at their heart rather than the range of subtleties. 

Once the clouds are reduced to the two elemental 
dichotomies, their cross product yields a 2×2 framework that 
enables additional analyses.  It is first applied to two key 
cognitive trichotomies that are based, respectively, on control 
hierarchies – including one implicit in AlphaZero, a system 
that learns to best humans at challenging board games (Silver 
et al., 2018) – and content hierarchies.  Each trichotomy spans 
only three of the four cells but together they span all four. 

The framework is then applied to the Common Model of 
Cognition – an attempt to build a community consensus over 
the structures and processes that define a human-like mind – 
plus three cognitive architectures that heavily influenced its 
initial form (Laird, Lebiere & Rosenbloom, 2017): ACT-R 
(Anderson, 2007), Soar (Laird, 2012) and Sigma 
(Rosenbloom, Demski & Ustun, 2016).  The initial focus here 

will be on memory and control, with results highlighting one 
of the major capabilities missing from the Common Model, 
while clarifying the distinct ways the three architectures span 
the di/trichotomies.  This is followed by an analysis of 
learning that also includes AlphaZero. 

The methodology here is akin in general to the one behind 
the Common Model – based on abstract analysis and 
synthesis rather than detailed experiments and models – but 
the goal is to provide a start at a yet deeper understanding of 
key parts of cognition at a yet more abstract level of analysis 
and synthesis.  The overall structure of this paper is simple, 
focused on dichotomies, then trichotomies, and then the 
Common Model.  The results suggest new ways of thinking 
about existing architectures, models and systems, while also 
highlighting key commonalities, differences, and gaps. 

 Dichotomies 

(A)symmetry 
 (A)symmetry fundamentally concerns whether the 
processing of memory structures is valid in only one direction 
versus omnidirectionally.  For example, consider a rule 
versus a logical implication.  Both can be denoted by arrows, 
but the former only works moving forward whereas the latter 
works in both directions, and in fact, can even be replaced by 
a symmetric connective.  Or, consider a feedforward neural 
network versus a Bayesian network.  Here the former also 
only yields valid results moving forward whereas the latter 
can be used to infer values in any direction.  When reverse 
processing does happen in asymmetric structures – whether 
for abduction, planning or learning – it is of a fundamentally 
different form than the forward processing. 

In addition to rules and feedforward (including recurrent) 
neural networks, additional asymmetric forms include both 
traditional procedural programs plus more recent AI 
formulations such as arithmetic circuits (Darwiche, 2009) 
and sum-product networks (Poon & Domingos, 2011).  
Beyond logics and graphical models – such as Bayesian or 
Markov networks and factor graphs – additional symmetric 
forms also include constraints and Boltzmann machines. 

With respect to actual dichotomies, rules versus logics 
(with, for example, model-based semantics) is a traditional 
symbolic AI one that maps directly onto (a)symmetry.  In 
expert systems, a more abstracted variant occurs as rules 
versus first-principles reasoning (Davis, 1983), with the latter 
focusing on flexible use of small amounts of general 
knowledge, whether logical or not, to yield a wide variety of 
results that might otherwise require many rules.  Abstracting 
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this even further, but still within expert systems, yields 
shallow (or surface) versus deep reasoning (e.g., Hart, 1982). 

Function-based versus model-based approaches – where 
the former may, for example, comprise feedforward neural 
networks or arithmetic circuits and the latter graphical 
models such as Bayesian networks – expresses a related 
dichotomy that arises in probabilistic AI (Darwiche, 2018).  
Likewise, within neural networks, we get the dichotomy of 
heteroassociative versus autoassociative networks (e.g., 
Rizzuto & Kahana, 2001).  Feedforward networks are 
heteroassociative, generating outputs from inputs but not vice 
versa, whereas Boltzmann machines are autoassociative.  It 
may seem jarring to view this distinction between types of 
neural networks in a manner akin to that between rules and 
logics, but that is a clear conclusion from this analysis. 

In (machine) learning more broadly, we see classification 
versus clustering, supervised versus unsupervised learning, 
and discriminative versus generative learning (e.g., Ng & 
Jordan, 2001).  The first element in each pair acquires a 
structure that is to be used in only one direction, whereas the 
second enables processing in arbitrary directions. 

A dichotomy familiar in both symbolic AI and cognitive 
science is procedural versus declarative memory.  In a 
classical cognitive architecture, such as ACT-R or Soar, 
procedural memory is based on rules and declarative memory 
on facts.  Rules are asymmetric structures.  Facts are static 
structures that don’t themselves mandate a direction of 
processing.  However, they do mandate a means for accessing 
them.  Typically, this involves a mechanism for retrieving the 
best candidate(s) given any set of cues; a form of symmetric 
processing, whether as partial match, spreading activation, a 
holographic memory, or an autoassociative network. 

It may even be that it is this symmetric processing rather 
than the nature of the facts themselves that defines declarative 
memory and distinguishes it from procedural memory; an 
idea worth capturing as an explicit hypothesis. 

(A)symmetric Memory Hypothesis: Procedural and 
declarative memory are fundamentally distinguished by 
differences in processing symmetry rather than content. 

Particularly attractive about this hypothesis is how simple yet 
fundamental the underlying distinction is, and how it thus 
obviates the need for a messier attempt at distinguishing 
procedural versus declarative content.  It also enables directly 
mapping varieties of neural networks (e.g., heteroassociative 
versus autoassociative), symbolic structures (e.g., rules 
versus logics), and probabilistic structures (e.g., arithmetic 
circuits versus Bayesian networks) onto procedural versus 
declarative memory, respectively. 

Although a difference in (a)symmetry has long been 
recognized in how knowledge is retrieved from procedural 
versus declarative memories, the key difference here is that 
(a)symmetry is proposed as definitional rather than ancillary, 
yielding a bottom-up mechanistic definition rather than a top-
down content-based one.  In the process, the hypothesis has 
direct implications that would be difficult to derive from 
distinctions concerning memory content. 

Given that procedural and declarative memory fully cover 
the (a)symmetry dichotomy, and that it appears to be a true 
dichotomy rather than just the endpoints of a more graduated 
dimension, the possibility is also raised that there is no further 
conceptual room for other forms of memory along this 
dimension.  There may, however, be variations of these along 
other dimensions; for example, image memory may simply 
be a subsymbolic form of symmetric memory, and thus in a 
deep sense akin to declarative memory.  The two may also be 
combined; for example, both episodic memory and analogy 
combine symmetric access to memory structures with 
subsequent asymmetric processing of the structures, via 
mapping or succession, respectively. One of these memories 
may even be used to implement or emulate the other, such as 
when a rule description is stored in declarative memory, 
retrieved and interpreted to yield procedural behavior; or 
when an autoencoder is implemented via a pair of 
feedforward networks. Still, none of this fundamentally 
changes the essential nature of the dichotomy. 

Two additional dichotomies that are sometimes associated 
with procedural versus declarative memory are procedural 
versus declarative semantics (in AI) and implicit versus 
explicit representations (in cognitive science).  The former 
concerns whether or not structures have fixed, a priori 
semantics, whereas the latter concerns whether or not there is 
awareness of the structures during processing.  Declarative 
memory does appear to more naturally support both fixed 
meanings and awareness, but neither is actually inherent to it, 
nor does either derive directly from symmetry, so an in depth 
understanding of these dichotomies is left for future work. 

(Non)monotonicity 
(Non)monotonicity fundamentally concerns whether 
processing is additive, cumulative or increasing versus 
modifiable, retractable or reducible.  For example, one of the 
core pieces of the Common Model is a cognitive cycle that 
runs at ~50 msec in humans.  In Soar and Sigma this cycle is 
structured as a (mostly) monotonic elaboration phase during 
which new information is added about the current situation, 
followed by a nonmonotonic decision (or adaptation) phase 
during which the situation is actually changed. 

This dichotomy also maps to a distinction in cognitive 
science between automatized versus controlled behavior 
(Schneider & Shiffrin, 1977), with monotonic processing 
safely allowed to proceed automatically, while controlled 
decisions are needed to determine which nonmonotonic 
change to make.  Taking this a step further, it maps onto the 
dichotomy of parallel versus serial processing, where the 
absence of interactions or conflicts in monotonic processing 
authorizes parallelism whereas the need for control and the 
possibility of interactions among nonmonotonic options 
implies a need for seriality  The mapping for both of these 
dichotomies is not perfect, as control may be needed to limit 
parallelism and parallelism may be possible for 
noninteracting nonmonotonic components; however, the 
essential commonalities are again what matter here. 
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Aligning these last two dichotomies yields one form of 
processing that is autotomized and parallel, plus a second that 
is controlled and serial.  This aggregate dichotomy clearly 
maps onto both the dichotomies of reactive versus 
deliberative behavior in cognitive control and fast (System 1) 
versus slow (System 2) behavior in Kahneman (2011).  It has 
also been characterized in terms of knowledge versus search, 
or a bit more precisely, as knowledge (K) search versus 
problem space (PS) search, with the former being monotonic 
search over what is already known and the latter 
nonmonotonic problem-space search over the space of 
combinatoric possibilities (Newell, 1990). 

A key takeaway for cognitive science from this is again 
worth capturing as an explicit hypothesis. 

 (Non)monotonic Control Hypothesis: Reactive (System 1) 
and deliberative (System 2) are fundamentally 
distinguished by differences in processing monotonicity. 
Shifting from cognitive science to the cognitive sciences 

more broadly, and in particular to various subfields of AI, a 
number of additional variations on this same dichotomy can 
be found.  In constraint solving, there is monotonic 
propagation (where existing constraints on some variables 
induce additional constraints on others) versus nonmonotonic 
conditioning (where hypothetical commitments are made to 
particular variable values) (Dechter, 2003)).  In causal 
reasoning, the first two steps on the Ladder of Causation 
(Pearl & Mackenzie, 2018) are association (monotonic 
probabilistic reasoning) and intervention (nonmonotonic 
action changes).  In logic, the distinction between monotonic 
and nonmonotonic logics depends on whether inferences 
made remain valid forevermore versus being retractable.  
Finally, in search over multimodal spaces, making monotonic 
moves that never decrease the current value only guarantees 
a local optimum whereas reaching a global optimum may 
require interim nonmonotonic moves to lower-valued states. 

(A)symmetry × (Non)monotonicity 
The cross product of these two elemental dichotomies yields 
the 2×2 framework outlined in Table 1.   Other such cross 
products have previously been explored in cognitive science, 
such as one in ACT-R and CLARION (Sun, 2016) that spans 
(a)symmetry – under two different names – and 
(sub)symbolic.  However, replacing (sub)symbolic with 
(non)monotonicity in the analysis yields new opportunities 
for a deeper understanding. 
 

Table 1: 2×2 Framework. 
 

 Asymmetry Symmetry 
Monotonicity   
Nonmonotonicity   
Of particular interest here is how this 2×2 framework 

structures cognitive architectures, models and systems, and 
how it reveals commonalities and differences among them.  
With one last explicit hypothesis, it also helps reveal gaps in 
them. 

 (A)symmetric×(Non)monotonic Necessity Hypothesis: 
General intelligence necessitates appropriate processing 
and learning in all four cells of the (a)symmetry × 
(non)monotonicity framework. 

Initial evidence for this hypothesis will, in what is to come, 
take the form of how all four cells are required to handle both 
trichotomies, plus the three architectures that most influenced 
the initial form of the Common Model of Cognition. 

Trichotomies 

Tri-level Control Hierarchy 
The (non)monotonic dichotomy by itself provides a classic 
two-level control hierarchy, whether one thinks of it as 
reactive versus deliberative or System 1 versus System 2.  
However, a number of approaches go beyond this to three 
levels.  One canonical form spans reactive (immediate 
response), deliberative (action sequences), and reflective 
(metacognition), which when mapped to the 2×2 framework 
bends the normal linear trichotomy into an L shape (Table 2). 
 

Table 2: 2×2 Mapping of Tri-Level Control Hierarchy. 
 

 Asymmetry Symmetry 
Monotonicity Reactive  
Nonmonotonicity Deliberative Reflective 
The vertical leg retains the general mapping from earlier of 

reactive onto monotonic and deliberative onto nonmonotonic 
but restricts them to the corresponding asymmetric cells.  The 
reactive level in control hierarchies unsurprisingly focuses on 
procedural rather than declarative memory, due to the 
former’s focus on control, and thus maps to the top-left cell.  
Declarative memory can clearly play a role in control, but this 
is typically ignored in control trichotomies. 

At the elbow of the L is deliberative processing, consisting 
of a controlled action sequence that yields a single 
asymmetric path through situations in the world.  Following 
the horizontal leg to the right yields reflective use of action 
models to explore simulated paths between arbitrary states – 
that is, models of situations – thus yielding the ability to 
search omnidirectionally in a metacognitive problem space. 

Tables 3-4 show how this all works for two tri-level control 
hierarchies from very different contexts: a classical robot 
control approach (Bonasso et al., 1997); and the AlphaZero 
approach to board games.  Although these examples are, 
respectively, from robotics and (neural) ML/AI, and each 
implements the cells in the hierarchy differently, they both fit 
this same trichotomic framework, as do also the three 
cognitive architectures that are analyzed later. 
 

Table 3: 2×2 Mapping of the 3T Architecture. 
 

3T Architecture Asymmetry Symmetry 
Monotonicity Skill Manager  
Nonmonotonicity Sequencer Planner 
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Table 4: 2×2 Mapping of AlphaZero. 

 
AlphaZero Asymmetry Symmetry 
Monotonicity Neural Networks  

Nonmonotonicity Game Moves Monte Carlo 
Tree Search 

Tri-level Content Hierarchy 
Tri-level content hierarchies are less common than tri-level 
control hierarchies, but they do exist, and bear an interesting 
relationship to the other.  One version of this can be seen in 
Table 5, for affective content (Ortony, Norman & Revelle, 
2005).  The development of this hierarchy began with a tri-
level control hierarchy, but then the distinct nature of the 
emotional content at each level was identified.  As in control, 
both nonmonotonic cells are filled, but with emotional 
content.  The larger difference, however, is that the 
monotonic level is now symmetric rather than asymmetric, 
corresponding to declarative rather than procedural memory. 
 

Table 5: 2×2 Mapping of the Affect Hierarchy. 
 

Affect Asymmetry Symmetry 
Monotonicity  Proto-Affect 

Nonmonotonicity Primitive 
Emotions 

Cognitively 
Elaborated Emotions 

Another tri-level content hierarchy, but from AI, is the 
Ladder of Causation mentioned earlier (Table 6).  The tri-
level content hierarchy here includes Bayesian reasoning 
(association level), reasoning about actions (intervention 
level), and hypothetical, or metacognitive, reasoning 
(counterfactual level).  One major point of Pearl’s work is 
that causal reasoning isn’t all just (monotonic) Bayesian. 
 

Table 6: 2×2 Mapping of the Ladder of Causation. 
 
Causality Asymmetry Symmetry 
Monotonicity  Association 
Nonmonotonicity Intervention Counterfactuals 

The asymmetric monotonic cell, where procedural 
memory resides, is unsurprisingly blank in both of these 
content hierarchies.  As with the corresponding gap in control 
hierarchies, the missing memory could be used, but it is at 
best of secondary importance, and thus not typically a focus. 

Common Model of Cognition 
The Common Model of Cognition is being developed as an 
evolving community consensus concerning the structures and 
processes that yield human-like minds, in service of creating 
a cumulative reference point for the field while guiding 
efforts to both extend and break it.  The question of interest 
here is to what extent the 2×2 framework can help to better 
understand the Common Model.  The first step involves a 
mapping of its memory and control aspects (Table 7), 

followed by corresponding mappings of ACT-R, Soar and 
Sigma (Tables 8-10).  Learning is then mapped, with 
AlphaZero added to the mix for this analysis. 

Like the earlier trichotomies, the Common Model is 
incomplete, spanning only three of the framework’s cells.  
However, in contrast to the two trichotomies, the Common 
Model spans both monotonic cells while omitting a 
metacognitive, or reflective, capability in the symmetric 
nonmonotonic cell.  This lack. However, reflects that a 
consensus is needed rather than that there is a consensus 
against such a capability (Kralik, et al., 2018). 
 

Table 7: 2×2 Mapping of the Common Model. 
 

Common Model Asymmetry Symmetry 

Monotonicity Procedural Declarative 

Nonmonotonicity Action Selection 
& Execution  

Three Cognitive Architectures 
The Common Model, as a partial consensus over cognitive 
architectures, lacks aspects such as metacognition that may 
exist in the architectures from which it is derived.  So, as a 
follow up step, it is useful to extend this analysis to the three 
architectures that heavily influenced its initial development – 
ACT-R, Soar and Sigma (Tables 8-10) – each of which 
includes some form of metacognition. 
 

Table 8: 2×2 Mapping of ACT-R. 
 

ACT-R Asymmetry Symmetry 
Monotonicity  Rule Match Facts 

Nonmonotonicity Selection & Execution Imaginal 
Buffer 

 
Table 9: 2×2 Mapping of Soar. 

 
Soar Asymmetry Symmetry 

Monotonicity Parallel Rule System Facts & 
Episodes 

Nonmonotonicity Selection & Execution Reflection 
 

Table 10: 2×2 Mapping of Sigma. 
 

Sigma Asymmetry Symmetry 

Monotonicity Asymmetric Graphs Graphical 
Models 

Nonmonotonicity Selection & Execution Reflection 

In conjunction with Table 7, these mappings show how the 
three architectures fulfill the Common Model’s requirements 
for its three cells, and fill in its blank cell, while highlighting 
the diverse ways they implement such capabilities. 
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All three architectures support rules in procedural memory, 
but in ACT-R it is only their match process that is monotonic, 
with a rule then being selected to yield a nonmonotonic action 
execution.  Soar matches and fires its rules in parallel, making 
the whole rule system – but not final action (or operator) 
selection – part of procedural memory.  Sigma uses a 
unidirectional extension of its graphical models that 
subsumes not only parallel rules but also feedforward neural 
networks (Rosenbloom, Demski & Ustun, 2017) and sum-
product networks (Joshi, Rosenbloom & Ustun, 2018); with 
action/operator selection also separated out. 

One implication of this analysis of procedural memory is 
that the 2×2 framework may draw boundaries that are 
somewhat askew from those found in standard analyses.  The 
approach here splits off nonmonotonic aspects that would 
traditionally be considered part of procedural memory and 
includes them instead as part of action selection and 
execution.  Whether this is ultimately the correct view 
remains to be seen, but either way, such boundary shifts are 
an important part of what falls out of these analyses. 

In declarative memory, all three architectures can represent 
facts, although Soar decomposes this general memory 
capability into distinct semantic and episodic memories, and 
Sigma’s factor graphs provide a broader range of possibilities 
that includes not only these two but also other forms of hard 
and soft constraints.  All three architectures also support 
selecting the best partial match from declarative memory, but 
this does involve asymmetric and nonmonotonic processing.  

Soar and Sigma are similar in the nonmonotonic layer, due 
to Sigma’s approach being based on Soar’s, with the 
asymmetric cell being action related and impasse-driven 
reflection providing the ability to leverage models for search 
within the symmetric cell.  However, Sigma’s selection 
process for declarative memory shares much with its 
procedural selection, whereas in Soar they are distinct, 
including an asymmetrical form of spreading activation.  In 
ACT-R, rule selection and action execution provide its 
asymmetric component, while its symmetric component is 
based on an imaginal buffer that can represent hypotheticals. 

Learning 
Table 11 shows an abstract mapping of forms of learning that 
blends terms from the tri-level control hierarchy and the 
Common Model.  Combining this with an extension, to all 
four cells, of the Common Model’s notion that structure and 
parameter learning are needed in both procedural and 
declarative memory, we can jointly analyze learning in the 
Common Model, ACT-R, Soar, Sigma and AlphaZero to 
better understand its overall structure, how the approaches 
compare and contrast, and what gaps may show up in them. 
 

Table 11: 2×2 Mapping of Learning. 
 

Learning Asymmetry Symmetry 

Monotonicity Procedural Declarative 

Nonmonotonicity Deliberative  Reflective 

Procedural – i.e., asymmetric monotonic – learning 
includes rule creation via composition/chunking (Common 
Model, ACT-R and Soar) and parameter learning via 
backpropagation (Sigma and AlphaZero).  None of these 
models/systems are thus complete with respect to procedural 
learning.  The Common Model is described in a way that 
appears to be complete, but that is due to considering 
reinforcement learning (RL) – which learns to select actions 
from experience with action sequences – as procedural.  But, 
by the analysis here, RL is an asymmetric nonmonotonic 
form of learning, and thus belongs instead in that cell. 

On the positive side, by including RL, all five 
models/systems do thus span asymmetric nonmonotonic 
parameter learning.  None of them, however, learns new 
primitive actions, although Soar at least learns new high-level 
actions by combining primitive ones (Mohan & Laird, 2014). 

For declarative – i.e., symmetric monotonic – learning, the 
Common Model acquires facts and the quantitative metadata 
that facilitates their use.  Both ACT-R and Soar directly 
implement such a combination.  In Sigma, facts are instances 
of predicates with typed arguments.  The only actual structure 
learning at present is type extension, whereas quantitative 
metadata is learned via Hebbian-style symmetric learning.  
Adding facts to declarative memory occurs not by structure 
learning but by raising probabilities above 0.  AlphaZero has 
no declarative memory, and thus no role for its learning. 

Symmetric nonmonotonic, or reflective, learning can be 
thought of as the acquisition of models and their parameters.  
The Common Model does not include these forms of learning 
due to its general lack of metacognition, even though all three 
of the architectures mentioned do embody some form of it.  
AlphaZero uses action models in model-based RL, but it does 
not appear to learn these models. 

Conclusion 
The first step in this paper was to reduce two distinct clouds 
of dichotomies down to simple computational forms.  In the 
process it was hypothesized that the distinction between 
procedural and declarative memory – along with many other 
dichotomies (Table 12, left column) – can be grounded in the 
more elemental terms of (a)symmetry.  The possibility was 
even raised that although there may be other variants or 
combinations of these two basic types of memory, there may 
be no further basic types along this dimension.  It was then 
also hypothesized that the distinction between reactive and 
deliberative behavior can be grounded in the more elemental 
terms of (non)monotonicity, also along with many other 
dichotomies (Table 12, right column). 

The cross product of these dichotomies yields a 2×2 
framework that enables analyzing two key trichotomies and 
the Common Model of Cognition, providing a common 
means for understanding and comparing across divergent 
integrations of cognitive capabilities.  It also identifies gaps, 
when accompanied by a hypothesis relating to the processing 
and learning that is necessary in all four cells.  It further helps 
understand how apparently ad hoc but highly successful 
systems such as AlphaZero can fit within the same coherent 
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framework for memory, control and learning as more 
traditional cognitive architectures, models and systems. 

 
Table 12: Summary of Dichotomy Mappings. 

 
(A)symmetry (Non)monotonicity 

Rules vs. Logic 
Rules vs. First Principles 
Shallow vs. Deep 
Function vs. Model 
Hetero. vs. Autoassociative 
Classification vs. Clustering 
Supervised vs. Unsupervised 
Discriminative vs. Generative 
Proc. vs. Decl. Memory 

Elaboration vs. Decision 
Automatized vs. Controlled 
Parallel vs. Serial 
Fast vs. Slow 
System 1 vs. System 2 
K vs. PS Search 
Propagation vs. Conditioning 
Association vs. Intervention 
Mon. vs. Nonmon. Logic 
Local vs. global 

In future work, this analysis needs to be extended to more 
systems and architectures, to more precise mappings onto the 
framework, and to a deeper level of understanding of the full 
dichotomic clouds.  A complete analysis of cognition should 
also ultimately provide a coherent story over all relevant 
dichotomies and their combinations.  Additional dichotomies 
of relevance may include discrete versus continuous, central 
versus peripheral, explicit versus implicit, symbolic versus 
subsymbolic, conscious versus subconscious, and short-term 
versus long-term.  Additional combinations of dichotomies 
will also be of central importance; possibly even eventually 
up to a full combination of all relevant, distinct dichotomies. 
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Abstract
In this study, an ACT-R cognitive model, that depicts
cognitive dynamics during a takeover in highly auto-
mated driving is developed. Such a model is inevitable
to explain strong differences between studies and display
and represent cognitive dynamics. Thus, the goal of the
model is, to validly display the time sequence of the
steps, that are undertaken to build up situation aware-
ness during the takeover task. It is developed based on
video analysis and pertinent literature. Empirical data
of a real traffic study show takeover patterns that are
applied after engaging into a non-driving related task.
Correlations between model predictions and empirical
data evaluation show, that the model is able to display
cognitive dynamics. It serves as solid basis, but still
further development is aspired, concentrating on the im-
pact of traffic complexity.
Keywords: highly automated driving; HAD; cogni-
tive modeling; ACT-R; takeover; TOR; conditional au-
tomation; NDRT; non-driving related tasks; real vehicle
study; resource model; situation awareness; SA;

Introduction
The development of technological innovations in the field
of highly automated driving is growing rapidly. The
next level of automation (SAE Level 3; SAE, 2014) en-
ables the driver to engage into non-driving related tasks
(NDRT) during the automated drive. Still, the driver
needs to respond properly to a takeover request (TOR;
SAE, 2014). Thus, the driver has to be enabled to take
over the driving task in a safe and comfortable man-
ner. Several studies have investigated takeover times
(Feldhütter, Gold, Schneider, & Bengler, 2017; Gold,
Damböck, Lorenz, & Bengler, 2013; Naujoks & Neukum,
2014; Walch, Lange, Baumann, & Weber, 2015). As var-
ious factors influence the takeover, current results con-
cerning takeover times and behavior in Level 3 illustrate
incomparable results that range from 1,14s (Zeeb, Buch-
ner, & Schrauf, 2015) to 15s (Merat, Jamson, Lai, Daly,
& Carsten, 2014). It is of scientific relevance to under-
stand underlying cognitive dynamics that lead to these
differences. Also, to improve the human-machine inter-
action (HMI) and the product development in the in-
dusrty, it is inevitable to unravel the black box of cog-
nitive dynamics and gain an understanding of how the
human processes the takeover and builds up situation
awareness (Endsley, 1995). According to Endsley (1995),
situation awareness encompasses three main stages: per-
ception, comprehension and projection (included in Fig-
ure 1). The basis is formed by a persons visual per-

ception of the environment. Based on the perception,
the meaning of the current situation has to be under-
stood (comprehension) and a future status is projected
(Endsley, 1995). The aim of this study is to develop a
cognitive model, representing cognitive dynamics during
the takeover task. Yet, cognitive models for the driving
task exist (e.g. Salvucci, 2006), but no renowned cogni-
tive model explicitly displays the takeover and includes
surrounding traffic.

Figure 1: Definition of the Takeover Process and the
Phases of Situation Awareness for the cognitive model
approach (Source: own figure).

In this paper a first cognitive modeling approach of the
takeover task is introduced and a comparison of model
results to empirical data is drawn. The goal is to cre-
ate an understanding of cognitive mechanisms during the
separate steps of the takeover process (visualized in Fig-
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ure 1). Cognitive processes are later described in detail.
The focus of the model lies on the perception mecha-
nisms rather than the interruption process which has
been modeled by Borst, Taatgen, and van Rijn (2015).
To better understand perception mechanisms, the inter-
ruption is implemented here simply as a new goal setting,
which can later be expanded. Here, the steps to update
situation awareness and perform the takeover task are
modeled. As soon, as the the basic cognitive dynamics
are understood, aspects of complexity will be included
in future work.

For the current approach, it is investigated whether a
cognitive model is able to a.) explain cognitive mecha-
nisms during the takeover according to empirical data,
b.) depict mechanisms that arise due to NDRTs and
c.) illustrate cognitive processes to update SA using the
visual component.

Methods
The approach of this study is to gain an understanding
of cognitive dynamics during the takeover task. Thereby,
behavior during a takeover can be predicted and empir-
ical results of past studies can be explained. Based on
pertinent concepts and results of relevant studies, the
takeover process in conjunction with the three stages
of situation awareness (SA; Endsley, 1995) is defined
(Figure 1) and a cognitive model established for the
takeover task. In order to validate overall predictions
of the model, these are compared to empirical data of a
driving study in a real traffic environment. After validat-
ing the overall model performance, different conditions
of the NDRT are closer examined to extract potential im-
provements. Following, the data acquisition is described
and methods as well as the functions of the model out-
lined.

Data Acquisition
The utilized data derives from a real traffic study of an-
other project (Ko-HAF, 2017) in 2017 with a Wizard
of Oz vehicle in the area of Stuttgart, Germany. The
vehicle allows the experience of highly automated driv-
ing in a real driving environment. The co-driver is able
to drive the car covertly via a control at the passengers
seat and thus simulate highly automated driving (Level
3). This results in the drivers ability to turn away from
the driving task (Ko-HAF, 2017) and engage into a non-
driving related task (NDRT). For the current approach,
the type of NDRT that is performed, is not relevant. As
soon as a TOR is triggered, participants have to take
over. For this study’s purpose N = 28 participants are
evaluated. Half of the subjects (N = 14) are used for
qualitative video analysis concerning gaze- and motoric
behavior. This data is used for the model development.
Two raters independently view the videos and assess the
participants’ behavior in a standardized way. Four be-
havioral relevant steps are extracted (1. Gaze TOR,

2. Interruption NDRT, 3. Hands steering wheel (SW)
and 4. Gaze Road), that define the time course of the
takeover for the current purpose. In order to validate
resulting model predictions, the other half (N = 14) is
quantitatively evaluated concerning the four steps and
compared to model results.

Cognitive Model
The cognitive model displays sub-steps that are under-
taken during the takeover and cognitive dynamics for
visual perception, motoric reactions and decision mak-
ing. The aim is, to have model predictions in accor-
dance with empirically found reaction times. Motoric,
visual and cognitive steps to update SA are included
into the model (Figure 1). To realize the implementa-
tion, the cognitive architecture ACT-R (Anderson et al.,
2004) is used. It allows the modeling of a wide range of
higher cognitive processes (Taatgen, 1999) and provides
an accurate representation of human abilities (Salvucci,
Boer, & Liu, 2001). ACT-R contains various modules
(intentional, declarative, visual and manual) that com-
municate with each other through buffers (Anderson et
al., 2004). The opportunity to model processes of the
particular modules separately and gain insights of their
interaction in certain situations is essential for modeling
the takeover. Cognitive modules form the mental repre-
sentation elaboration and decision-making processes on
attentional and automatic levels (Bellet et al., 2012).
Visual and aural modules describe the visual and aural
processing of stimuli (Anderson et al., 2004). The man-
ual module is responsible for the execution of motoric
responses.

For this study’s’ purpose, three steps are undertaken.
Based on literature (Endsley, 1995; Salvucci, 2006) and
on qualitative analysis of video material from the driv-
ing study (N = 14), first the process that occurs during
a takeover is defined for the current model (Figure 1).
These steps are then used for the definition of the cog-
nitive model. Third, the model is tested and compared
to empirical data. It is important to clearly define the
takeover task and steps that are undertaken to regain
control. (Figure 1) outlines how this is addressed. Addi-
tionally, it has to be understood how the different stages
of SA (Endsley, 1995) are realized to implement corre-
sponding cognitive structures in ACT-R. The focus of
the current model lies on the visual perception phase of
SA as it is the most important of the three SA stages in
driving, the first to occur (Ratwani, McCurry, & Trafton,
2010) and forms the basis for the subsequent steps. Fol-
lowing, the takeover process and the corresponding real-
ization in the model are described.

The scenario, that the model illustrates, describes a
highly automated driving situation (Level 3) on a three
lane highway. The model starts with a NDRT during the
automated drive and ends with an action decision after
the takeover. Figure 2 illustrates the model productions.
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Figure 2: Cognitive Model of the Transition Process after an Automated Drive. Representation of productions from
the NDRT to the motoric response (Source: own figure).

Figure 3 represents the environment, the model interacts
with and the areas that are attended by the model. The
visual perception undergoes three main steps in the per-
ception phase (Endsley, 1995). While focusing on the
NDRT, the model is constantly checking for a takeover
request (TOR) in the visual-location. This is due to
the given task of taking over the driving as soon as a
TOR appears. Due to the perception of a visual or aural
stimulus, the gaze is moved to the TOR (1.; Visual re-
orientation and fixation of the TOR) and the goal set to
attend the TOR. In case no TOR can be detected, the
NDRT is started again. Otherwise as soon as the TOR
is triggered, the NDRT (Visual Load NDRT) has to be
interrupted and a retrieval request for the meaning of the
TOR is made. At the same time, the visual interruption
of the NDRT (2.) is executed. It automatically occurs
with the attentional shift to the TOR in the perception
phase (Endsley, 1995; Salvucci, 2006). They come along
with first automated sensory-motoric steps, encompass-
ing the movement of hands to the steering wheel and
feet to the pedals (3.). In the model only the movement
of the hands to the steering wheel can be implemented,
as ACT-R does not include the feet yet. Nevertheless,

a movement action is carried out by the manual mod-
ule. These are based on an automatic reaction rather
than focused decision making and fluently merge into
the comprehension phase (Endsley, 1995).

In separate productions, the TOR is attended, en-
coded and processed. After the TOR has been processed,
SA has to be build up (Build Up Situation Awareness).
Hence, the gaze is oriented to the road center and the
front lane (near and far area) is checked for objects (4.;
Salvucci, 2006). In case an object is detected in the near
area (encode-near-brake), a strong brake is carried out
(motoric module) and a direct decision to change to the
left lane is made, setting the goal to lanechange left. This
case pictures a critical event and should not apply when
a non-critical TOR is triggered. Thus, in the current
context this case is postponed, as the study focuses on
non-critical takeover scenarios. Nevertheless, for com-
pleteness of the model it is still necessary to cover the
scenario. In the majority of cases though, no object is
in the near area and the far front lane is attended. It is
encoded whether there is a car or not (attend-far) and
the result processed. After this, the rest of the scenery
is attended (5.), starting with the left lane (process-far-
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Figure 3: Focus Areas of the Cognitive Model for Action
Decision (Source: own figure).

attend-left). Again, the model encodes whether there is a
car or not. The result is processed and stored in a chunk
in the imaginal. This process is repeated to perceive
the status of the right lane likewise (process-left-attend-
right). Each status (object or not) of the attended ar-
eas is stored in the imaginal to form a representation of
the traffic environment. Here, characteristics of the sit-
uation are formed and the current status is recognized
(7.; Endsley, 1995) while the automation is deactivated
(6.). The deactivation of the automation is not repre-
sented in the model, as there is no common function yet
and operates by oversteering. After a mapping between
the perceived status and the task (8.), an action deci-
sion is made (9.; comprehension phase of SA; Endsley,
1995). The decision productions (Decision) are based on
the status of the surrounding traffic in the focus areas
(Figure 3) and the underlying law. In case no car has
been detected on the right lane, a lane change to the
right is triggered (LANECHANGE RIGHT). Thus, the
right mirror is attended by the visual module to check,
whether the right back is free. If it is free, the lane
change is executed by a motoric response of the man-
ual module (10.). In case, there is a car in the right
back, the mirror is attended repeatedly, until the lane
change can be performed safely. If the right lane is not
free, the front road is attended again, applying the same
mechanisms as before. Now, distances from the first al-
location that are stored in the imaginal are compared
to the current perception (process-far2). If the distance
to the car in the front stays the same or is increasing,
car following is decided and performed (FOLLOW). If
the distance to the front car is decreasing, a lane change
to the left is triggered (LANECHANGE LEFT). Again,
the mirror is repeatedly checked for occupation of the
left back. Equally to the right lane change, a left lane
change is only performed by the manual module, when it
can be carried out safely (no object in the visual-location

for the left back; Figure 2). The model runs until this
stage, predicting type and time of action execution in
different traffic conditions. Still, the focus of this paper
is to validate the model steps in order to produce valid
predictions. After the driver intervention (10.), the ve-
hicle is stabilized (11.; projection phase of SA; Endsley,
1995).

Results
For the statistical evaluation, only data that the model
does not base on, is used. Four timestamps were defined
for the individual takeover behavior (1. Gaze TOR, 2.
Interruption NDRT, 3. Hands SW and 4. Gaze Road).
In a first step, to validate the model in general, the times-
tamps were plotted for each individual (N = 14) without
distinguishing between the different NDRTs (Figure 4).
As the figure shows, the variance of the measurement
values is high and outliers can be detected. For statisti-
cal evaluation, median values rather than the arithmetic
mean were used, as the median is more robust towards
outliers (Schillinger, 2002). Data was tested on non-
linearity, normal distribution, homoscedasticity and in-
fluential outliers using residual vs. fitted-, normal-Q-Q-,
scale-location and residuals vs. leverage plots.

Figure 4: Course of the Participant Data and Model Pre-
diction of Takeover Behavior Patterns (N = 14; Source:
own figure).

Overall, the gaze to the TOR was performed with a
median of 0.96s (M = 1.07s), ranging from a minimum
(min) of zero seconds (s; zero seconds occur due to no
NDRT condition, in which the gaze did not rest on a
NDRT) to a maximum (max) of 3.3s. The NDRT was
at the median of 1.08s interrupted (M = 1.25s, min =
0s, max = 3.58s), the hands were after a median of 1.32s
(M = 1.91s, min = 0.66s, max = 7.44s) at the steer-
ing wheel and after 2.28s (M = 2.7s, min = 0s, max =
8.44s) the gaze was on the road. The model performs
the sequence with the following times: (1) Gaze to TOR
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Table 1: Correlations of NDRT with the model predictions and the correlation of accumulated empirical data with
model predictions (significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1; source: own table).

NDRT Correlation Coefficient and p-Value
Arithmetic Mean

Correlation Coefficient and p-Value
Median

Baseline r(2) = .96, p = .038 * r(2) = .99, p = .006 **
Listening r(2) = .96, p = .035 * r(2) = .99, p = .012 *
Searching r(2) = .86, p = .136 r(2) = .9, p = .1
Reading r(2) = .8, p = .2 r(2) = .83, p = .17
Tetris r(2) = .89, p = .1 r(2) = .95, p = .048 *
Accumulated r(2) = .91, p = .086 * r(2) = .95, p = .048 *

0.37s, (2) Interruption of NDRT 0.62s, (3) Hands at SW
0.62s and (4) Gaze on Road 1.02s. It is noticeable, that
the model is overall faster in the reaction times. As
this applies for the overall time course, this difference
is supposed to be justified by some patterns, that apply
before the gaze is directed to the TOR. This is an impor-
tant fact, that is further addressed in the discussion. It
does not affect the overall evaluation though, as a time
shift beforehand would shift the overall sequence. Sta-
tistical analysis of the data shows a significant bivariate
pearsons correlation between the median behavior of the
participants (n = 14) and the model predictions (r(2) =
.95, p = .05). Figure 4 shows the course of the indi-
viduals over all takeover conditions, including the me-
dian course (bolt-red line), the mean course (dark-gray
line) and the course of the model predictions (striped-
blue line). The correlation shows that predictions of the
model represent empirical data validly which strength-
ens proceeding model predictions of the action decision.
In order to understand where the variances come from,
further analysis concerning the different NDRTs is made.
Table 1 shows that only NDRT conditions without addi-
tional physical movements show significant correlations
with the cognitive model using mean as well as median
values. These movements apply mainly for reading the
newspaper (occupied hands) and searching something in
the back (torso turned, hands occupied). The tetris on
the mounted tablet also involves the hands, but no hold-
ing is necessary, hence the correlation is significant for
median, but not for mean values. Overall, no signifi-
cant correlation of model predictions can be found for
conditions, in which additional motoric processes were
necessary before taking over. This indicates, that the
model can already display the cognitive occupation of
NDRTs, but lacks to include motoric complex tasks. In
further studies, additional cognitive processes will be in-
vestigated more detailed with eyetracking analysis.

Discussion
Results indicate, that the cognitive model is able to
validly represent the time course during a takeover (a.).
Only conditions, in which the hands are occupied by

holding something (reading a newspaper) or turning the
torso (searching something in the back), model predic-
tions do not correlate significantly with empirical time
courses. This is not a surprise however, as the ACT-R
motor module does not yet include complex movements.
This finding illustrates that as soon as the hands are
occupied during a NDRT or the body is turned away,
additional movement patterns are necessary (e.g. re-
moving reading glasses, folding newspaper, turning body
to front) before the defined takeover steps can be per-
formed. Mechanisms that arise due to NDRTs can only
partly be depicted (b.). These resource depending cir-
cumstances should be considered in the model for better
time estimation of NDRT, depending on the occupied
resource and NDRT cancellation criteria. As mentioned
before, although significant correlations are found for the
course of the takeover, the model is in its overall per-
formance still faster. The cause of that may lie in the
fact, that data was collected in real traffic environments.
Thus, more environmental cues than the model includes
are probably attended by participants before moving the
gaze to the TOR (c.).

However, the current model provides a good basis for
predictions of the takeover. It still is a general model and
does not depict individual differences. The model will be
refined next, incorporating the impact of the complexity
of a situation. Eye movement patterns will be captured
for more particularized understanding of processes in the
vision module. Along with this, further development of
the SA update as well as of the action decision will be
validated. The current cognitive model is going to be
expanded to enable the prediction of individualized cog-
nitive processes depending on the situation complexity.
These predictions will serve as groundwork for further
specification of cognitive processes in complex traffic sit-
uations and resulting action decisions, that should be
linked to eye-movement patterns. Resulting predictions
of human cognition consequently serve for the adaption
of HMI concepts.
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Conclusion
The present model allows the prediction of takeover pat-
terns in highly automated driving. It is able to illustrate
several steps that are undertaken during the takeover
process validly. This approach provides a solid ground-
work for a more specific development of the model. The
impact of complexity aspects on cognitive processes dur-
ing the takeover will further be included. In the next
step, research on complex situations will be done. To
understand how the cognitive system and especially the
visual perception handles complex situations, eye track-
ing data will be gathered. By implementing and com-
paring this approach to empirical data the underlying
cognitive processes can be elucidated and resulting ne-
cessities during a takeover understood. This will later
serve as guideline for the development of suitable HMI
systems.
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Abstract 
Technological developments have spawned a range of 
educational software that strives to enhance learning through 
personalized adaptation. The success of these systems depends 
on how accurate the knowledge state of individual learners is 
modeled over time. Computer scientists have been at the 
forefront of development for these kinds of distributed learning 
systems and have primarily relied on data-driven algorithms to 
trace knowledge acquisition in noisy and complex learning 
domains. Meanwhile, research psychologists have primarily 
relied on data collected in controlled laboratory settings to 
develop and validate theory-driven computational models, but 
have not devoted much exploration to learning in naturalistic 
environments. The two fields have largely operated in parallel 
despite considerable overlap in goals.  We argue that mutual 
benefits would result from identifying and implementing more 
accurate methods to model the temporal dynamics of learning 
and forgetting for individual learners. Here we discuss recent 
efforts in developing adaptive learning technologies to 
highlight the strengths and weaknesses inherent in the typical 
approaches of both fields. We argue that a closer collaboration 
between the educational machine learning/data mining and 
cognitive psychology communities would be a productive and 
exciting direction for adaptive learning system application to 
move in. 

Keywords: learning; forgetting; computational models; 
recurrent neural networks; process models; naturalistic data; 
educational application 

Introduction 
Imagine leading cognitive scientists came together for a 
conference—in Montreal, for example—and decided to build 
the best possible adaptive system to support student learning. 
A successful adaptive learning system would draw upon our 
theoretical understanding of human memory and its temporal 
dynamics: How does knowledge and skill develop with 
practice? How do memory traces decay over time? Which 
individual differences in these processes can be exploited to 
best adapt to individual learners? 

                                                        
1 https://www.duolingo.com/ 
2 Interestingly, Settles et al. describe the task as: “Given a history 

of errors made by learners of a second language, the task is to predict 

Taking this hypothetical endeavor seriously is a productive 
thought experiment because it makes explicit the gap 
between our theoretical understanding—based primarily on 
research conducted in psychology laboratories—and 
practical applications—worked on primarily by computer 
scientists.  

These two disciplines have largely operated in parallel, and 
both fields could benefit greatly from collaborating more 
closely.  Mutual benefits for coming together will likely 
include an enhanced theoretical understanding of learning 
and memory through access to big, naturalistic data; and 
improved practical applications achieved through 
exploitation of robust and well-studied psychological 
principles. 

Here, we will discuss a number of recent efforts to help 
bridge this interdisciplinary gap. We will present promising 
approaches to build adaptive learning systems from both the 
computer science and cognitive science/psychology fields, 
highlighting the strengths and weaknesses afforded by each 
type of approach. We will focus and structure the discussion 
around two recent reports stemming from real-world, 
educationally relevant use-cases: (1) the second language 
acquisition modeling (SLAM) challenge put forward by 
Duolingo, and (2) a comparison of the utility of different 
computational models to personalize review in a middle 
school classroom. 

Duolingo’s SLAM Challenge 
The well-known online language-learning platform 

Duolingo1 recently posed a challenge to the scientific 
community. They made data available from more than 6,000 
users who independently studied English, Spanish, or French 
at their own pace, across a duration of 30 days on their 
platform. Using a corpus of 7+ million annotated words, 
Duolingo invited research teams to submit computational 
models to predict users’ performance at a later point.2  In their 
report of the competing models, they frame this approach—

errors that they are likely to make at arbitrary points in the future” 
(2018, p. 56). 
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second language acquisition modeling (SLAM)—as a new 
computational task (Settles, Brust, Gustafson, Hagiwara, & 
Madnani, 2018). Settles et al. elaborate that educational 
software has made advances in simpler domains but that less 
is known about how beginners acquire second languages in 
realistic settings. As such, their challenge is a special case of 
“building the best possible adaptive learning system.” 

Fifteen research teams responded to Duolingo’s challenge, 
encompassing a multitude of approaches used to submit 
predictions. Most competing teams came from the field of 
natural language processing due to the fact that Duolingo 
posed the challenge in the context of a large computational 
linguistics conference.3  An analysis of the types of 
algorithms used to power the predictions suggested that non-
linear algorithms—recurrent neural networks (RNNs)—were 
especially successful, while linear models—item response 
theory variants—were least successful (Settles et al., 2018; 
Table 3). In fact, the top models demonstrating the highest 
predictive validity were all considered non-linear, suggesting 
that SLAM was mainly approached as deep knowledge 
tracing (Piech, Bassen, Huang, & Ganguli, 2015) in which 
RNNs are used to trace student performance over time. 

It is interesting to note that none of the teams who 
submitted model predictions explicitly accounted for the 
cognitive processing mechanisms involved or how those 
processes unfold over time. These types of process models 
have been the focus of study in cognitive psychological 
research, but that research has remained largely in the realm 
of controlled, laboratory tasks.  

In the following two subsections, we will discuss RNNs 
and process models respectively, to highlight the strengths 
and weaknesses of both types of models. 

Recurrent neural networks (RNNs) 
The dominance of RNNs in the Duolingo challenge is not  

surprising, given their flexibility in discovering useful 
representations from large amounts of data (LeCun, Bengio, 
& Hinton, 2015), enabling these models to leverage the rich 
meta-data available for each instance in the corpus (see 
Figure 3 in Settles et al., 2018). What is surprising, however, 
is that these models do not have a clear representation of time, 
which is of course a crucial dimension of learning (Bloom, 
1974). Settles et al. state that none of the models explicitly 
considered that the passage of time affected acquisition 
and/or forgetting. This disregard for the temporal dynamics 
of learning and retention seems surprising given what is 
known about the spacing effect (e.g., Bahrick, Bahrick, 
Bahrick, & Bahrick, 1993).  It is further surprising to glean 
that Duolingo itself explicitly models time non-linearly, 
taking the shape of the forgetting curve into account (Settles 
& Meeder, 2016). 

An analysis of the features that the different models used 
(see Section 5.2 and Table 4 in Settles et al., 2018) suggests 

                                                        
3 Specifically, the “13th Workshop on Innovative Use of NLP for 

Building Educational Applications” held at NAACL-HLT 2018 
(http://naacl2018.org/). 

that only the response time and days in course features had 
marginally significant effects on the quality of predictions—
the modeling architecture (RNN or additive IRT) was the 
main driver of the differences between the teams. Notably, 
the days in course information for each entry could have been 
translated to the time that elapsed since the last encounter 
with an item (i.e., lag-time) in order to explicitly model 
forgetting as a non-linear function of lag-time. Instead, 
however, “forgetting was either modeled through engineered 
features (e.g., user/token histories), or opaquely handled by 
sequential RNN architectures” (Settles et al., 2018; Section 
4).  

Simply considering the sequence in which events occurred 
(rather than lag-time) is common in knowledge tracing 
models (Corbett & Anderson, 1995) and often works well 
because student behavior is usually modeled in a single 
session. Consequently, most Bayesian knowledge tracing 
models do not assume that forgetting takes place at all (see 
Khajah, Lindsey, & Mozer, 2016 for a BKT variant that does 
consider forgetting). The benefit of considering lag-time 
between (rather than the mere sequence of) events as input 
might only emerge if data are modeled on sufficiently long 
timescales, across which accurately modeling forgetting 
curves should be more important. 

In a recent effort, Mozer, Kazakov, and Lindsey (2017) 
introduced an explicit representation of continuous time (CT) 
in a  RNN that they trained on 11 different data sets. The 
hypothesis behind creating the CT-RNN variant was that 
including certain constraints might guide the model in its 
learning—essentially protecting it against its own flexibility 
(Mozer et al., 2017). Mozer et al. motivate their approach by 
drawing a helpful analogy with vision, in which models 
constrained to take known regularities into account 
outperform unconstrained models (in decyphering 
handwriting, for example: LeCun, Bottou, Bengio, & 
Haffner, 1998).To the surprise of the authors, their CT-RNN 
did not perform any better than the RNN that did not take CT 
into account, but was otherwise functionally identical. What 
is more: removing elapsed time from the input stream 
altogether did not impair the default RNN’s performance by 
more than 5% at most, suggesting that that it did not 
incorporate temporal information to the extent one might 
expect.  

Their null findings are surprising in light of earlier work 
that demonstrated the power of taking statistical regularities 
in the temporal dynamics of forgetting into account. For 
example, Khajah, Lindsey, and Mozer (2016) extended a 
Bayesian knowledge tracing model and showed that it 
performed as well as a RNN knowledge tracing model. Their 
extensions were based on psychological principles—such as 
exponential decay of knowledge over time, which is usually 
not assumed in Bayesian knowledge tracing—that 
constrained the potential patterns that their model could learn 
from the data relative to the deep knowledge tracing model. 
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More importantly, they highlight the fact that the processes 
that are assumed to influence learning and forgetting are 
explicitly expressed in the model’s specification: The model 
parameters correspond to psychological concepts of 
theoretical relevance. For example, how quickly skill X 
decays for student Y, or how much students vary in their 
abilities.  

RNNs are currently the preferred choice of computer 
scientists because of their flexibility to learn arbitrary 
representations from copious amounts of data.  The very 
architecture guaranteeing this flexibility, however, poses a 
risk to overfitting the data and makes it extremely difficult to 
interrogate the model. For adaptive learning systems to be 
used in practice, systems powered by RNNs may preclude the 
ability of the system to understand what the learner may 
optimally require or why the learner is struggling.  For these 
reasons, researchers in psychology—whose main goal is to 
describe underlying cognitive processes—have not embraced 
RNNs. Instead, they have developed process models. 

Process models 
In process models, theoretical assumptions regarding 

underlying cognitive processes are hard-coded in the model 
itself. A prime example of an overarching architecture of 
process models is the Adaptive Control of Thought–Rational 
(ACT-R; Anderson, 2007) framework4, which implements 
testable theories of human memory processing, and supports 
the creation of cognitive models that are capable of predicting 
and explaining human behavior.  ACT-R has been used to 
successfully account for a depth and breadth of phenomena, 
including language comprehension, learning and memory, 
problem solving and decision, and even interpretation of 
fMRI data. 

With regards to adaptive learning systems, ACT-R has 
been leveraged by the intelligent tutoring community to 
minimize the distance between student and expert models.  In 
the case of algebra tutors, for example, ACT-R models each 
step for solving a problem explicitly, and functions by 
identifying the root cause for student errors.  It then provides 
the appropriate assistance and mentoring for the individual 
student to remediate the identified error.  These cognitive 
tutors are highly successful for helping students acquire 
knowledge (Anderson, Corbett, Koedinger, & Pelletier, 
1995). Practically speaking, however, they fail to include 
decay mechanisms, so they lack the ability to account for 
maintenance or sustainment needs long-term. 

A number of process models have focused on and extended 
ACT-R’s declarative memory module to model the temporal 
dynamics of learning and forgetting in greater detail. Pavlik 
and Anderson (2005) extended ACT-R to account for effects 
of spacing using an activation-based decay mechanism.  They 
applied this model iteratively and demonstrated success in 
making real-time predictions for a language learning task, 
nicely pushing the bounds of computational modeling 
application for real-world educational use. More recent 

                                                        
4 http://act-r.psy.cmu.edu/about/ 

extensions incorporated response latencies for each learning 
event to better trace memory strengths over time, showing 
promise in both laboratory (Sense, Behrens, Meijer, & van 
Rijn, 2016) and real-life learning tasks (Sense, van der Velde, 
& van Rijn, 2018; van Rijn, van Maanen, & van 
Woudenberg, 2009). In addition, this model fared well when 
evaluated against a range of theoretical criteria (see Walsh, 
Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018), 
however, gaps were noted in its ability to make out-of-sample 
predictions, particularly at long temporal horizons, or to 
account for the speeded benefit of relearning when initial 
practice was initially more spaced.  

The Predictive Performance Equation (PPE) is another 
model that explicitly captures the spacing effect, motivated 
in its development to remediate limitations of existing 
models. PPE leverages and combines elements of the General 
Performance Equation (Anderson & Schunn, 2000), ACT-R, 
and the New Theory of Disuse (Bjork & Bjork, 1992). This 
novel computational account of the spacing effect has 
demonstrated its theoretical and applied validity across a 
breadth of empirical data (see Walsh et al., 2018). PPE has 
built upon the shoulders of giants previously described and 
pushed into the prescriptive realm for real-world 
applications. This means that real-time predictions are 
iteratively made and successive, optimal training schedules 
are immediately delivered to the individual learner.  PPE has 
successfully been applied to the domain of cardiopulmonary 
resuscitation (CPR), demonstrating greater performance 
effectiveness and minimized training time to acquire and 
sustain proficiency through personalized, precision learning 
capability (Jastrzembski et al., 2017).  

PPE is unusual in its focus on prescribing training 
schedules in real-life tasks and conditions (but also see, e.g.: 
Mozer, Pashler, Cepeda, Lindsey, & Vul, 2009), as most 
process models are primarily developed and evaluated for 
theoretical purposes. PPE exemplifies the capabilities and 
limitations of process models more generally: When the 
relevant processes in a particular domain are mapped onto the 
mechanics of a model, those models can extrapolate from the 
available data to make cognitively-plausible prescriptions. 
Model parameters directly map onto concepts relevant to the 
modelled domain and can be interpreted and communicated 
meaningfully (e.g., “Your ability is very high, but this is an 
unusually difficult fact to learn. You should rehearse this item 
four hours sooner than the other facts in this set.”)  

The downside, however, is that process models do not 
readily translate to new domains or even similar tasks within 
the same domain. Model parameters that capture individual 
learning and forgetting signatures often vary across domains 
and tasks (e.g., Sense et al., 2016). Therefore, using the 
parameters estimated for a person in one domain, does not 
mean their performance profile can automatically be 
accurately predicted in another domain. However, recent 
work with PPE showed that prior data may be used to inform 
free parameters (Collins, Gluck, Walsh, & Krusmark, 2017; 
Collins, Gluck, Walsh, Krusmark, & Gunzelmann, 2016), 
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indicating that the model does not have to start from scratch 
in every domain.   

Another issue is that most process models with potential 
for adaptive learning are based on very sparse inputs: lag-
time, sometimes response latency, and accuracy—which is 
often aggregated to reduce noise. Thus, the models are not 
inherently equipped to leverage the rich meta-data available 
in, for example, the Duolingo data in the way that RNNs are. 

In the final section, we will discuss potential ways of 
“moving forward” but before, we turn from an online 
learning platform to the classroom in order to discuss a recent 
effort to deploy adaptive learning software in realistic 
educational settings. 

Personalized Review in the Classroom 
Duolingo’s challenge to the scientific community is 

instructive because it reflects a clearly defined task that an 
adaptive learning system must perform: modeling second 
language acquisition (Settles et al., 2018), i.e., predicting 
future performance given a corpus of learning history. The 
preceding discussion of how well a number of computational 
models might be able to perform this task is a productive way 
to compare the models’ theoretical assumptions. If we take 
the goal of building the best possible adaptive learning 
system seriously, however, we must also keep the end users 
in mind: the learners.  

Today, learners increasingly engage with study materials 
in distributed learning environments and the culture of 
learning is changing. While lectures will be scheduled at 
fixed times, more and more aspects of learning are now self-
directed, self-paced, and available on demand in online 
learning environments. Traditional, structured classroom 
settings, which are different from Duolingo’s learning 
environment, progressively move towards incorporating 
distributed learning approaches to aid face-to-face 
interactions (e.g., Sense et al., 2018). The best adaptive 
learning system would function in realistic, modern 
educational settings, in which learners follow courses that 
expose them to materials in a prescribed sequence; in which 
there might be regular quizzes on subsets of the material; and 
in which the goal is to perform well on a (cumulative) exam 
at the end of the course. The ideal system would be able to 
inform each learner about their progress, the current state of 
their knowledge, which elements of the course they should 
focus on, and assist them in their self-regulated learning 
decisions (Bjork, Dunlosky, & Kornell, 2013). 

One elucidatory effort deployed retrieval-practice software 
as part of the curriculum in a middle school (Lindsey, 
Shroyer, Pashler, & Mozer, 2014). In a semester-long 
Spanish course, 179 students engaged with a flashcard 
tutoring system during class time. Each week, they completed 
three 20- to 30-minute sessions: In the first and second, the 
week’s new materials were studied to proficiency before 
reviewing old materials; in the third, a test of the week’s new 
materials was administered. The authors tested three different 
algorithms that scheduled items during review. The 
personalized spacing algorithm resulted in the highest 

performance on the cumulative end-of-semester exam, with 
especially high performance for items that were introduced 
early in the semester (Lindsey et al., 2014). The algorithm 
was dubbed DASH—because it incorporated information 
regarding item difficulty, student ability, and study history—
and the authors argue that their model is in principle agnostic 
with regards to the domain that is modeled as long as 
knowledge in that domain can be deconstructed into 
“primitive knowledge components” (Lindsey et al., 2014, p. 
643), which is comparable to the assumptions made by ACT-
R in general and PPE in particular (see above).  

Mozer and Lindsey (2016) discuss the DASH framework 
more generally in a recent book chapter—aptly subtitled 
“psychological theory matters in the big data era”— in which 
they argue that theory-inspired models such as ACT-R and 
the multiscale context model (Mozer et al., 2009) can inform 
theory-agnostic machine learning approaches, specifically 
collaborative filtering. In this framework, collaborative 
filtering is used to estimate difficulty and ability from the 
study history (again: DASH) to infer a student’s knowledge 
state. The generalized power-law of forgetting (Wixted & 
Carpenter, 2007) can then be used to project the decay of 
knowledge into the future. Mozer and Lindsey discuss 
variations of their DASH framework that vary with regards 
to the information that is considered when instantiating 
forgetting curves. Their simulation results suggest that for the 
tested scenarios, individual differences in both learning and 
forgetting should be considered and that models do much 
worse if they do not take forgetting into account at all. In two 
experiments, the authors provide strong empirical evidence 
that personalized review is more effective than other forms of 
spacing, which is in line with other research rejecting one-
size-fits-all approaches to spacing (Mettler, Massey, & 
Kellman, 2016). 

Conducting experiments of this kind in schools imposes 
additional administrative and logistic costs on a research 
project that are not required if large online learning platforms 
make their data available to researchers (e.g., Ridgeway, 
Mozer, & Bowles, 2017). A more accessible, educationally 
relevant context for most researchers might be provided by 
the classrooms of the universities they work at (e.g., Sense et 
al., 2018). Ultimately, the best possible adaptive learning 
system must be tested for effectiveness and usability by real 
learners, not on historical data. 

Moving Forward 
Moving forward, we believe it is crucial that cognitive 

scientists engage with the educational data mining 
community in order to test their process models with 
naturalistic data. This will allow cognitive scientists to 
demonstrate the usefulness of formulating relevant cognitive 
processes explicitly and to learn from approaches commonly 
used to model learning in computer science. A productive 
way forward might be to formally evaluate models of 
different types against each other to map out the boundary 
conditions for which the strengths and weaknesses of each 
class apply.  For example: In which domains does each type 
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of model fare best?  What types of data does each type of 
model optimally function with? And perhaps most critically, 
can the strengths of one model alleviate the weaknesses of 
another through integration? 

One potential path towards leveraging the strengths of both 
process models and RNNs is to have the models collaborate 
when making predictions. The DASH model proposed by 
Lindsey et al (2014), for example, could be simultaneously 
fit with a RNN using gradient descent. Instead of making 
independent predictions, the models would sum the two 
model predictions to make a single prediction. With 
predictions thus combined, the RNN will learn the residual 
between the restricted but interpretable DASH and the actual 
data. This would maintain the interpretable parameters of 
DASH and exploit the flexibility of the RNN at the same 
time. The specific implementation of DASH proposed by 
Lindsey et al. could be replaced with any other process 
model, of course, and the collaborative predictions could be 
weighted to give preferential treatment to either the process 
model or the RNN. 

Although significant progress has been made to close the 
gap between computational models and educational or 
training practice application, it is important to realize that 
literature is sparse or nonexistent for timescales and contexts 
most keenly relevant to formal educational institutions where 
typical summer breaks invoke an inherent acceptance of 
knowledge decay each year (Cooper, Nye, Charlton, Lindsay, 
& Greathouse, 1996; McCombs, Augustine, & Schwartz, 
2011); or for military training, where irregular delays 
between training and use is common and maintenance of 
readiness for high-risk, low-volume skills is a significant 
challenge. Thus, additional research must be conducted to 
evaluate the applied utility of any computational model that 
could be of practical use.  

We argue that a multidisciplinary, collaborative approach 
bringing the power of neural network and process modeling 
approaches together, would be an exciting direction for 
adaptive learning system application to move in (also see 
Mozer, Wiseheart, & Novikoff, 2019). It would acknowledge 
the value of the human-in-the-loop by integrating our 
theoretical understanding of the human memory system with 
RNNs’ ability to make sense of large data; thereby pulling 
their affordances together in a unified task to build the best 
adaptive learning system possible. 
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Abstract

Varied training in comparison to consistent training has been
shown to benefit transfer to novel conditions within the mo-
tor learning paradigm. However, it is unclear if these benefits
of variable training extend to complex skills such as driving.
Unlike simple motor skills, these complex skills require indi-
viduals simultaneously to learn the mapping between ones ac-
tions and their consequences and also to integrate this knowl-
edge into continuous and dynamic responses to the changing
demands of the environment. In the current work, we compare
observed data and an ACT-R model of complex skill acqui-
sition on a navigational video game task (Space Track). Par-
ticipants trained either on one or two levels of thrust. Perfor-
mance on a transfer test was better in the varied training condi-
tions in both humans and model. Performance in both humans
and model was also differentially influenced by the most re-
cently practiced thrust level. Further analyses revealed large
differences between model and human behavior on more de-
tailed measures, which suggests that that the model achieves
the same overall performance through different strategies. We
discuss these findings and their implications for the ACT-R
model of skill acquisition.
Keywords: varied practice; transfer; adaptation; ACT-R; com-
plex skill acquisition

Introduction
Transfer learning is the phenomenon in which practice on one
task facilitates the learning of a related task, which reduces
the time needed to attain a certain level of skill. This phe-
nomenon has been studied in various domains such as math-
ematical problem solving (e.g. Speelman and Kirsner, 2001),
perceptual categorization and discrimination (e.g. McGov-
ern et al., 2012), and sensorimotor learning (e.g. Goodwin et
al., 1998). Within the domain of sensorimotor learning, prac-
ticing on varied task parameters has been shown to facilitate
more transfer to new task parameters as compared to consis-
tent practice. For instance, when the transfer task is to toss a
beanbag to a target at a set distance, participants who trained
on different target distances excluding the transfer target per-
form better than those who trained on just one target distance
(Kerr and Booth, 1978).

In the tasks used to investigate the effects of varied prac-
tice, one common feature is that the goal of the task is often
closely related to the sensory consequence of the sensorimo-
tor mapping that the subject needs to learn. For example, the
goal in a visuomotor rotation task is to maneuver a cursor to-
wards a virtual target in the presence of perturbations (e.g.
Braun et al., 2009). These perturbations cause the motion
of the cursor to rotate with respect to the motion of the con-
troller and successful participants are hypothesized to learn

this new mapping between the motion of their hand and the
motion of the cursor. However, it remains unclear is unclear if
the benefits of varied practice extend to more complex tasks
in which the acquisition of sensorimotor maps is necessary
but insufficient for high performance. For example, assum-
ing that the goal of a driver is to get from point A to B in the
fastest and safest manner, successful driving involves not only
more than just learning how the movement of ones foot on the
accelerator translates to the cars motion, but also the ability
to come up with an action plan to navigate the upcoming ob-
stacles or road hazards. Hence, one of the goals of this study
is to answer the following question: When learning complex
skills, where the sensorimotor map is only a part of the skills
needed to accomplish the task goal, does varied training still
outperform consistent training with regard to the transfer of
performance to novel task parameters?

Task

Space Track was originally a video game developed by An-
derson et al. (in press) as part of a study on the transfer of
complex skills. Just like driving, mastering Space Track is
a complex skill because it requires one to integrate percep-
tual, motor, and cognitive components. Expertise arises from
having gained an intuitive understanding of the physics of the
game and the ability to use that knowledge towards planning
sequences of key presses to overcome various situations. In
Space Track, players control a space ship in a frictionless en-
vironment using three keys: thrust (W), rotate clockwise (A),
and rotate counterclockwise (D). Players earn 25 points by
successfully navigating the ship along each rectangular track
segment and lose 100 points when the space ship crashes into
the walls of the track. Figure 1 shows a schematic of the task.
Finding a good speed is crucial for performance one needs to
fly fast enough to cover as much distance as possible but also
slow enough to avoid losing control of the ship and crashing.

To create changes in the task environment, we manipulated
the amount of thrust the ship receives for the same duration
that the thrust key is depressed. When the thrust key is de-
pressed, a vector of x pixels per second in the current direc-
tion of the ship is added each game tick, which is 1/30th of
a second. For the same duration of key press, a game with
higher thrust would cause the ship to fly faster than a game
with lower thrust. Mastery of the game relies on adequately
predicting and controlling the motion of the space ship. Thus,
players would have to retune their control parameters when
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faced with a different thrust level.
We created three game types, each with a different thrust

level. High thrust games (H) added 0.6 pixels / tick to the
ships velocity vector for each tick that the thrust key was de-
pressed. Medium (M) and low (L) thrust games added 0.4 and
0.2 pixels / tick respectively. With these three game types,
we created four training conditions as follows: LLLLM, HH-
HHM, LHLHM, and HLHLM, where each letter stands for
one block of 8 x 3-minute games. Figure 2 provides a picto-
rial representation of the task design. For instance, a player
in the LLLLM condition would play 4 blocks (32 games) of
low thrust followed by 1 block (8 games) of medium thrust.
For our analyses, the first 4 blocks will be referred to as the
training blocks, and the last block of medium thrust in all con-
ditions will be referred to as the test block. Participants in the
consistent training group will be assigned to either LLLLM
or HHHHM, while those in the varied training group will be
assigned to either HLHLM or LHLHM. Our rationale for us-
ing two different conditions in the consistent training group
is to separate adaptation effects due to consistent vs. varied
training and effects due to training on a high vs. low thrust.
We used two different conditions in the varied training group
to account for possible block order effects.

Figure 1: Schematic of Space Track. The goal is to navigate a
space ship along a racetrack with rectangular segments. The
dashed line displays a potential trajectory along two consec-
utive segments.

Experiment
80 participants, 22 females and 58 males, ranging in age
from 21 to 65 years old (mean = 31.0) completed both ex-
periment sessions through Amazon Mechanical Turk. Partic-

Figure 2: Task design. Each row represents one condition,
and each box represents one block of 8 games.

ipants were paid $5 for the first session and $10 for the second
session plus a bonus of $0.03 per 100 points.

The experiment consisted of two sessions. In the first ses-
sion, participants filled out a demographic questionnaire, then
proceeded to complete the first 20 games. Participants that
passed a set of inclusion criteria were then invited to the sec-
ond session, which consisted of another 20 games. During a
game, if 20 seconds elapse without the participant pressing a
key, a pop up with a ready to restart button will appear. The
inclusion criteria for the second session are 1. No more than
3 resets due to inactivity and 2. Either at least 500 points in
at least 3 out of the 20 games, or that the average of games 17
to 20 is at least 100 points higher than the average of game 1
to 4. These criteria were put in place to maximize recruiting
only players who were sufficiently attentive and showed signs
of learning. Using those criteria, 66 number of players who
finished the first session were excluded from participating in
the second session. Recruitment continued until 20 partici-
pants per condition successfully completed both sessions.

Behavioral results
Figure 3 displays the points per game for each condition; the
following analyses will focus only on data from the human
players (in red). To get a measure of test performance for
each participant, we averaged each participants points across
their 8 games of the test block (games beyond the rightmost
dashed line in Figure 3).

We then fitted a linear regression with average test points
as the dependent variable. The independent variables of in-
terest were training group (consistent or varied) and the thrust
type on block 4, which is the last practiced thrust type be-
fore the transfer test (high or low). To account for the possi-
ble effects of video gaming experience and other participant
characteristics on transfer performance, we included the fol-
lowing as nuisance variables: age, gender, the dominant hand
used to control movement in games, and the number of hours
per week spent on different genres of video games.
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Variable training outperforms consistent training
on transfer test
From the results of the regression (adjusted r2 = 0.32), var-
ied training (β = 265.46, Std. Error = 103.11, p < 0.05), low
thrust on block 4 (β = −272.38, Std. Error = 98.08, p <
0.05), hours per week spent on 2D action (β = 204.88, Std.
Error =51.78, p < 0.05) and 3D shooter games (β = 111.04,
Std. Error = 37.02, p < 0.05) significantly predicted test
points. Notably, players who received varied training were
predicted to outperform their consistent counterparts on the
transfer test by 265.46 points. This advantage of varied train-
ing is aligned with the variability of practice hypothesis.

Changes in performance depends on the direction
and magnitude of switch in thrust level
Thrust type on block 4 also strongly predicted transfer perfor-
mance (β = 185.521, Std. Error = 76.376, p < 0.05), where
participants trained on high thrust outperform those trained
on low thrust. While we did not predict an effect of recent
thrust level, it might be that training with higher thrusts is
more difficult and that switching to lower thrust levels is akin
to switching to an easier task, which has been shown to facil-
itate transfer (e.g. Barch and Lewis, 1954).

If there were behavioral differences between games of dif-
ferent thrust levels, one would expect the largest differences
to manifest when initially switching to a new thrust. Hence, to
further investigate the effect of switching thrust levels, we an-
alyzed the point difference obtained by subtracting the points
earned on the last game of a block from the points earned on
the first game of the subsequent block. Point differences are
then sorted by switch type. For instance, the point difference
between games 33 and 32 for a HHHHM participant would
be considered a H to M switch, whereas the point difference
between the same numbered games for a LLLLM participant
would be considered a L to M switch. Point differences for H
to L (games 8 to 9 and 24 to 25 for HLHLM and games 16 to
17 for LHLHM) and L to H (games 16 to 17 for HLHLM and
games 8 to 9 and 24 to 25 for LHLHM) were gathered from
participants in both varied conditions. Switch types were then
re-coded as thrust differences to express a quantitative differ-
ence in thrust levels (L to H = 0.6 0.2 = 0.4; L to M = 0.2; H
to M = -0.2; H to L = -0.4).

A regression model (adjusted r2 = 0.3308) with thrust dif-
ference as the sole predictor of point difference estimated a
slope of −949.45 (Std. Error = 95.02, p < 0.05). This sug-
gests that increasing thrust by 0.2 would result in a drop of
189.89 in points, providing further evidence that switching
from low to high thrust decreases performance while switch-
ing from high to low thrust increases performance.

Adaptive Control of Thought – Rational
In a recent study, Anderson et al. (in press) demonstrated
that an ACT-R model produced the same learning trajectory
as humans do (r = 0.96) in a Space Track task where play-
ers would play 40 games at a thrust level of 0.3. There are

four key features of ACT-R that enabled this successful sim-
ulation. First, there are limits on various human cognitive
processes such as attention and response times that constrain
how human skill acquisition proceeds. The ACT-R cognitive
architecture incorporates realistic performance constraints on
the speed and accuracy of perception and action. Second, hu-
man participants do not begin learning from scratch, but are
informed by explicit instructions about the controls and goals
of the task. Through instruction following, ACT-R models
also utilize task knowledge to accelerate learning in the ini-
tial stages. Third, the improvement in performance with ex-
perience is partially governed by increased automaticity and
faster deployment of knowledge. ACT-R models capture this
by production compilation, a process that gradually proce-
duralizes declarative knowledge and reduces the time cost of
having to retrieve declarative knowledge for action execution.
Fourth, human skill mastery also relies on tuning the control
parameters of ones actions to predictors of success or fail-
ure in the task environment. This is captured in ACT-R by a
new Controller module that explores continuous dimensions
of performance to identify how to control actions. For in-
stance, one dimension that was explored in Space Track was
the speed of the ship that would yield an optimal trade-off
between number of segments cleared versus ship crashes.

An open question about the new controller module is
whether it responds to environmental changes in the same
way humans do. Thus, it becomes of interest to see how it
responds to the changes investigated in our experiment.

Control Tuning
Through practice, the model learns the optimal values for 5
control variables: aim, ship speed, thrust duration, when to
start making a turn, and the ship’s orientation with respect
to the angle of the upcoming intersection. For each control
variable, the model samples values within a preset range and
evaluates the mean rate of return for the sampled values ac-
cording to relevant feedback. Using that feedback, the mod-
ule then estimates a quadratic function that describes the re-
lationship between rate of return and control value, which in
turn influences how the module samples the next set of con-
trol values to try. This process is repeated iteratively through-
out the experiment, and the model eventually converges to a
truer estimate of the relationship between return and control
values.

For the model, relevant feedback comes from two sources:
the number of crashes and the number of segments cleared.
The weights on these sources determine the contribution of
each source of feedback to the estimated rate of return. Dif-
ferent source weights potentially relate to differences in risk
attitudes; for instance, a player might adopt a riskier ap-
proach, clearing more track segments but also crashing more
often than a more cautious player.

For our first set of model simulations, we compared mod-
els with different weight ratios on the control variables. The
reference model weights both features equally (-1 for a crash,
+1 for a cleared segment). One modified model reflects the
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difference in point values assigned by the game to these fea-
tures and weights a crash four times the benefit of clearing
a segment (-4 to +1). Another modified possibility reflects a
loss aversive player by weighting crashes as being eight times
a cleared segment (-8 to +1).

While points are the primary indicator of performance on
the task, two players could conceivably achieve the same to-
tal points through different strategies. For instance, a player
might adopt a riskier approach to the game, clearing more
track segments but also crashing more often than a more cau-
tious player. To further investigate how switching thrust types
influences more fine-grained behavior in both models and hu-
mans, we also analyzed the mean speed, number of segments
cleared, and the number of crashes per game. For each point
of comparison, we obtained the sum of squared errors (SSE),
which measures the absolute deviation the average model ex-
hibits with respect to the average human across all 4 condi-
tions and 40 games. These results are presented in Table 1.

Different ratios of good and bad weights

The first set of comparisons comprise of the following mod-
els: the base (reference) model with a weight ratio of 1:1, a
model with a ratio of 4:1, and a (loss aversive) model with
a ratio of 8:1. Of the three models, the worst performing
model by far on all measures is the base model. The other
two models perform comparably, with the loss aversive model
performing slightly better than the 4:1 model on all measures
except total points earned. The relatively small differences
in model fits possibly suggest that the weighting function
of some human players might be best characterized by the
4:1 ratio, which reflects the corresponding contributions of
crashes and segments cleared to the total points earned, while
the weighting function for other players might be better char-
acterized a the 8:1 ratio, which reflects a disproportionately
heightened sensitivity to crashes over segments cleared. For
the sake of simplicity, we proceeded to incorporate the 4:1
ratio in our subsequent model simulations.

Figure 3 displays how the average points change as a func-
tion of game number for both humans and the 4:1 model in
all four training conditions; notice that the model shows the
same increases and decreases in performance when the thrust
level switches as do humans.

Adding slowdown and a decay on past experiences

While the 4:1 ratio model does qualitatively simulate hu-
man behavior adequately on the number of crashes, segments
cleared, and the overall points earned (refer to Figures 3 and
5), it does a poorer job of capturing how human players
modulate their mean speed across games. Referring to Fig-
ure 6, it appears that the model drastically changes its speed
whereas human players only make small changes in response
to changes in the thrust level. This then motivated the next
set of models, where we added slowdown, the ability for the
model to actively reduce the spaceship’s speed when it over-
shoots its desired control speed value.

Another model manipulation we investigated was to have
the model discount its old experiences. Because the Space
Track task used in Anderson et al. did not change its parame-
ters over time, it was unsurprising that a model that weighted
all experiences equally would be able to perform comparably
with those that discounted old experiences. However, as the
task used in the current study does introduce changes in the
task parameters, it might be reasonable to expect that a model
that decays the weight of old experiences would be able to
adapt better to the changes in thrust level. When the task pa-
rameters change, it is likely that the same control value will
result in different payoffs. For instance, pressing the thrust
key for 1 second in a low thrust level will increase the ship’s
velocity by a smaller amount than pressing the key for 1 sec-
ond in a high thrust level.

There is evidence from the memory literature for an expo-
nential decay function on the retention of past items in mem-
ory (e.g. Rubin et al., 1999). Hence, we chose to discount
the weight of a past experience by .995t where t is the time in
seconds.

The second set of comparisons comprise of four models:
the 4:1 weight ratio model, which also serves as the reference
model for this comparison, an exponential decay model, a
model with slowdown, and a model with both slowdown and
an exponential decay.

Between the four models, there are two that best fit the hu-
man player data; the exponential decay model for total points
(SSE = 5594241) and crashes (SSE = 1064) , and the slow-
down and decay model for segments cleared (SSE = 2564)
and mean speed (SSE = 15.2). The presence of a decay
function in both models suggests that human players might
adapt to their current thrust level by discounting the weight
of their past experiences, especially if those experiences were
obtained from a different thrust level.

Of the four measures, a model’s match on total points is the
least important because the total points earned is a compos-
ite of the segments cleared and crashes measures. Focusing
on the other three measures, the slowdown and decay model
appears to be the overall better model, especially because the
pure decay model’s advantage over the slowdown and decay
model in crashes appears to be relatively smaller than its dis-
advantage in segments cleared and mean speed.

Referring to Figures 4 and 6, the slowdown and decay
model shows a large reduction in both the number of seg-
ments cleared and its mean speed compared to the reference
(4:1) model. This reduction is particularly apparent during
the high thrust level blocks, and enables the slowdown and
decay model to align better with the mean speed of human
players across all conditions. Despite the model’s success, it
should be noted that the model still exhibits larger modula-
tions in its mean speed in response to changes in thrust level
than human players do, suggesting that human players might
actively aim to maintain the ship speed within a range of val-
ues instead of completely adapting the ship speed to optimize
the points earned in games of different thrust levels.
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Table 1: Model comparisons

Sum of Squared Errors (SSE)

Model Weight Ratio Slowdown Decay Total Points Segments Cleared Crashes Mean Speed

Base -1 : +1 25647698 11064 5087 119.8

Weight=4 -4 : +1 6789958 9413 1370 69.7

Weight=8 -8 : +1 7398453 7383 1299 54.2

Slowdown -4 : +1 19404654 3178 1516 15.5

Decay -4 : +1 Exponential 5594241 11660 1064 82.1

Slowdown + Decay -4 : +1 Exponential 15901165 2564 1327 15.2

Figure 3: Points by game number for each training condi-
tion. Mean human points are in red (n=20 per condition);
mean slowdown + decay model points are in green (n=100);
mean -4 : +1 weight ratio model points are in yellow (n=100).
Shaded areas are S.E.M. Dashed lines indicate the start of a
new block.

Conclusion and Further Work
The behavioral results suggest that the variability of practice
hypothesis extends beyond simple motor skills to more dy-
namic and complex skills that require integrating perceptual,
motor and cognitive components. However, our results also
indicate that a person’s performance on a new thrust level
is influenced by their most recently experienced thrust level.
Thus, transfer performance depends not only on whether one
receives consistent or varied practice, but also on the specific
parameters within a consistent or varied training schedule.

Switching from a high thrust to a low or medium thrust
improves performance while switching from a low thrust to a
high or medium thrust decreases performance. However, it is
unclear why these switch effects occur, and why there is an
asymmetry in these effects. One possible extension involves

Figure 4: Segments cleared per game.

investigating how different thrust levels affect motor varia-
tion. Motor learning often involves the minimization of mo-
tor variation such that one is better able to precisely execute
an intended action (refer to Dhawale et al., 2017 for a review).
In a high thrust game, a small deviation in the duration of a
thrust key press from the intended duration would cause the
ship to slow down or speed up more drastically than for the
same deviation in a low thrust game. Hence, it might be that
players trained on high thrust games have more pressure to
control and minimize their motor variation. When switching
to a lower thrust level, these players easily adapt to the new
thrust because they can immediately apply a suitable degree
of control on their thrust key presses. In comparison, players
trained on low thrust games have less pressure to minimize
motor variation. When these players switch to a higher thrust
level, they would be forced to grapple with learning a level of
control that was previously unnecessary.

Our model comparisons reveal that the best fitting ACT-
R models weight negative events more severely than positive
ones. As players are rewarded depending on how many points
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Figure 5: Crashes per game.

Figure 6: Mean ship speed per game.

they earn, it is reasonable that some players would weight
avoiding crashes over clearing track segments in a ratio that
reflects their relative contribution to points. Alternatively, as
humans have been shown to demonstrate loss aversion in the
face of equally valued gambles (e.g. Kahneman and Tversky,
1979), it is also reasonable that some players would place
an even greater emphasis on avoiding crashes. Future work
would involve investigating if the variability between indi-
vidual players could be explained by models with different
weight ratios.

Our comparisons also provide evidence for including a de-
cay on past experiences. As different thrust levels likely re-
sult in different payoffs for the same control setting, a player
that discounts old experiences from a previous thrust level
would update their estimated payoffs faster when adapting
to a new thrust level. More generally, adaptation to changes
in the environment is facilitated by prioritizing information
learned from recent experiences as these would better reflect
the state and reward structure of the current environment.

Finally, while adding the ability to slowdown does improve
the models’ fit to the human players’ mean ship speed, the
models still exhibit larger modulations than humans players
do when switching between thrust levels. One possibility is
that human players are not using points as feedback for ship
speed but perhaps using some sense of a comfortable speed.
Further work needs to be done to see whether maintaining
desired speed can be used as a feedback for the Controller
module. Speed control was successfully used as a feedback
signal in another video game, YouTurn, described in Ander-
son et al.; that YouTurn model used speed control to tune one
control variable, while using point-related measures to tune
other control variables.
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Abstract

Expert performers in complex tasks synthesize a wide variety
of information to select the optimal choice at each decision
point. For the task of Tetris, the synthesis includes information
about the “next” piece in addition to the configuration of pieces
currently on the board. While simple models of Tetris are ca-
pable of behavior similar to high level human players most
(to reduce the combinatorial explosion in computation time)
are only aware of the active piece and its possible placement
positions. To explore how additional information contributes
to expertise, when placing the current ‘on board’ piece, our
model also considers placements for the “next piece” (visable
to humans in the Preview Box). Though we expected this addi-
tional information to result in higher performance, we instead
observed a drop in performance, and a shift in behavior away
from common human patterns. These results suggest that hu-
man experts are not incorporating the additional piece infor-
mation into their current decision. We speculate about the role
of next piece information for expert level players.
Keywords: Expertise, Reinforcement Learning, Machine
Learning, Human Performance

Introduction
Complex task environments are, almost by definition, dif-
ficult to master and, by extension, difficult to study. In
this work we focus on the complex task environment cre-
ated by the dynamic, decision-making game of Tetris, which
we see as the poster child for human studies of predic-
tive processing (Clark,2013;Engstrom et al.,2018;Rao & Bal-
lard,1999). Although we have made considerable progress
in understanding Tetris play in our laboratory (Lindstedt &
Gray,2019), human play represents a confounding of various
human limitations that may well be impossible to disentangle
in vivo. This tangle has led us to machine models of Tetris
(Fahey,2015;Gabillon, Ghavamzadeh, & Scherrer,2013;Szita
& Lorincz,2006) where we have focused on understanding
how the configural properties of the Tetris board can be inter-
preted by machine models as good placements or bad place-
ments for the currently falling zoid (i.e., Tetris piece) (Sibert,
Gray, & Lindstedt,2017;Sibert & Gray,2018).

The attentive reader will note that we initiated the preced-
ing paragraph by alluding to human predictive processing but
ended that paragraph by focusing on defining characteristics
of good or bad placement decisions by using machine models.

This shift is possible as, unlike humans, our models do not ac-
tually rotate, transpose, or drop pieces; rather, as in an episode
of Star Trek, they simply beam the piece to the desired lo-
cation. This trick neatly disentangles the where to place it
decision from the how to get it there one (which are the con-
cern for Tetris studies of Predictive Processing (Lindstedt &
Gray,2019)).

The current work complicates our models by observing
that the classic, Nintendo Entertainment Systems (NES) ver-
sion of Tetris (which is the version used in the annual Classic
Tetris World Championships, CTWC) as played by humans,
always provides the “next” zoid in a Preview Box (see Fig-
ure 1). As the goals of the machine modeling community dif-
fer from ours, no prior machine model of Tetris play uses that
information.1 Hence, our current work explores two-piece
placement decisions in an attempt to determine whether and,
if so, how, attempts to optimize the current placement with
respect to the next placement improves the game.

A Very Brief History of Games in Research
Gray (2017) distinguishes among three ways in which mod-
ern computer games have been used in psychological re-
search. Gamification represents the attempt to use features
of game play for more serious work such as gamifying a so-
cial media field trial (Rapp, Cena, Gena, Marcengo, & Con-
sole,2016), modeling “professional thinking” (Nash & Shaf-
fer,2011), or teaching helicopter flight skills (Proctor, Bauer,
& Lucario,2007).

Games as Treatment Conditions represents attempts to use
game play as a means of changing some aspect of human
behavior, health, intelligence, and so on. Examples involv-
ing Tetris include its use to reduce “flashbacks” associated
with Posttraumatic Stress Disorder (PTSD) (Holmes, James,
Coode-Bate, & Deeprose,2009) or as a placebo control in a

1While we do not know for sure why the machine modeling com-
munity does not use that information, we do note that doing so ex-
tends the search space for moves from approximately 23 placements
(between 9 and 34, depending on the zoid) up to 3434 placements.
The addition of more complex move generation functions that allow
zoids to be navigated underneath other zoids further increases the
number of placements to be considered at each decision point.
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study of the utility of games (Belchior et al.,2013) in expand-
ing older adult’s useful field of view (UFOV).

Game-XP refers to the use of game play itself as an experi-
mental or quasi-experimental paradigm. The earliest example
of using Tetris for Game-XP (that we are aware of) was for
exploring the concept of epistemic or complementary action
(Kirsh & Maglio,1994;Destefano, Lindstedt, & Gray,2011).
Of course, our past work (cited earlier) as well as the work
presented in this paper provide other examples of the use of
Tetris for these purposes; that is, an experimental paradigm
which we use to seek insights into the low level mechanisms
that contribute to skilled performance in dynamic tasks.

Tetris the Task
During a game of Tetris, players navigate a series of pieces,
called ”zoids”, as they fall from the top of the screen into a
pile at the bottom of the screen. When a row within the pile
becomes full (all ten cells contain a part of a placed zoid) it
vanishes, lowering the pile and earning points for the player.
More points are earned if more lines are cleared simultane-
ously, with up to four lines able to be cleared in a single move.
The game ends when the pile reaches the top of the screen. A
game in progress can be seen in Figure 1.

Though the basic task is simple to understand, game diffi-
culty increases as the player plays. The player is limited in
the actions that they can take to move a zoid: zoids can be
translated one cell left and right, or rotated 90 or 180 degrees
(depending on the zoid) using a single button press, and a
complete movement usually requires several button presses.
As the game progresses, the pieces fall more quickly, mean-
ing that players must make placement choices and navigate
the zoids in increasingly short time periods. At the start of
the game, it takes 16 seconds for a zoid to fall from the top
of the screen to the bottom. At level 29 (considered by top
players to be the ”kill screen”, and the highest playable level)
pieces fall in a third of a second.

In addition to managing the ever increasing game speed,
players must weigh the risks and benefits of making different
types of line clears. Clearing a single line is fairly simple
to do, and most low level players focus on clearing one line
at a time in order to prolong the game as long as possible.
However, from a purely points based perspective, this is a
poor strategy. Setting up and executing a single 4 line clear
(or a Tetris) is worth 7.5 times as many points as clearing a
single line four times. Because the speed component of Tetris
will eventually force any game to end, most high level players
adopt a strategy that emphasizes making 4 line clears early
and often.

Tetris is a complex, dynamic task in that the task state is
constantly changing independent of any action taken by the
player. Pieces will fall even if the player presses no buttons.
In this kind of environment, taking no action requires a de-
cision to do nothing, and the series of decisions made by the
player at each zoid placement result in the final game score.
Performance in Tetris is judged by this final game score, but
because of the constant and varied game state, it is difficult to

Figure 1: A Tetris game in progress. The active piece, the or-
ange ”L” is currently being placed by the player on the main
game screen. The player also has access to score informa-
tion, in the lower right-hand box, and one upcoming piece,
the green ”Z” in the upper right-hand box.

know what contributes to that performance.

Tetris Models
Human play of Tetris is a test of human limits in dy-
namic decision-making and action and provides an excellent
example of predictive processing (Clark,2013;Engstrom et
al.,2018;Rao & Ballard,1999). Deciding where best to place
a zoid becomes increasingly time-limited as the rate of fall
increases. Likewise, the time available for the player to move
the zoid to the chosen location also decreases.

Despite the complexity of human behavior in a task like
Tetris, it is possible to build simple models capable of high
level performance. Most of these come from the machine
learning community, where Tetris is a popular test case for
feature search algorithms.

These models function by defining a set of board features
(selected by the researcher) that are believed to be important
when making placement decisions. An early and commonly
used set of features, defined by Dellacherie (Fahey,2015), is
provided in Table 1. These are the features that we use to
build the models used in this study.2

The models play Tetris by assigning each feature a numer-
ical weight, the magnitude and sign of the weight indicates
how desirable or undesirable a particular feature is. For a
given move placement, the model generates all possible zoid
positions and evaluates each one by multiplying the weight of
each feature against the value produced by that move. These
feature scores are added together to form a total move score,
and the model ultimately selects and executes the placement
with the highest move score.

The feature weights remain constant during a game, so the
challenge of building a high performing model lies in choos-

2See Sibert et al. (2017) and Sibert and Gray (2018) for a fuller
story.
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Table 1: Tetris features proposed by Dellacherie, and used to
construct the models used in this paper

Feature Description
Landing
Height

Height where the last zoid is added

Eroded
Cells

# of cells of the current zoid elimi-
nated due to line clears

Row Tran-
sitions

# of full to empty or empty to full hori-
zontal transitions between cells on the
board

Column
Transitions

# of full to empty or empty to full ver-
tical transitions between cells on the
board

Pits # of empty cells covered by at least
one full cell

Wells a series of empty cells in a column
such that the cells to the left and right
are both full

ing an optimal set of weights from a large search space. We
employ the Cross-Entropy Reinforcement Learning method
proposed by Szita and Lorincz (2006) and modified by Thiery
and Scherrer (2009a,2009b).

Making Models More Human-Like
While traditional machine learning models are capable of
high level performance, several important changes are made
to the task environment that encourages models to adopt un-
human-like strategies in order to do well.

First, models tend to be unconstrained by the time pres-
sure that is a major component of human gameplay. Second,
models are reinforced for line clearing behavior, which en-
courages a strategy that primarily clears single lines. This
is a viable strategy in the very long term (as, for example,
used in Sibert and Gray, 2018), but only yields mediocre per-
formance during the restricted time scale of a human game.
Third, humans have access to additional information, like the
upcoming zoid, that is not incorporated into the model deci-
sion making process.

Efforts have been made to explore how these environmen-
tal factors impact behavior. When trained on games of re-
stricted length, models reinforced for line clearing behav-
ior performed at a low-scoring but stable score level, while
models reinforced for score reached higher scores but not as
consistently. At their best, the score-reinforced models per-
formed at the level of high performing student players, while
line-reinforced models performed closer to intermediate level
student players (Sibert et al.,2017).

This behavioral and strategy split was also observed in the
absence of a reinforcement criteria when comparing mod-
els trained on restricted games against models trained on
games of unrestricted length. The best long-game models
far outperformed the short-game models by clearing single

lines far beyond the point that the human game becomes
unplayable. When restricted to human-length games, mod-
els adopted the higher scoring strategy of executing multiple
line clears (worth far more points than a series of single line
clears) early and often (Sibert & Gray,2018).

Whereas these prior studies focused on addressing the
time pressure and reinforcement criteria aspects of the human
Tetris environment, the current study aims to look at a third
major difference between models and humans: humans have
access to upcoming zoid information that models lack. Ini-
tial eye-tracking explorations (e.g., (Gray, Hope, Lindstedt,
& Sangster,2015)) into human behavior show increased fixa-
tions on the next zoid box for higher level players, suggesting
that this information is an important aspect of advanced play.
Prior studies adjusting the model game environment led to
performance levels, but only to the level of advanced human
players (when equating for game length), suggesting that as-
pects of truly expert gameplay are still beyond the models.
We hypothesized that allowing the models to consider the up-
coming zoid when making placement decisions would result
in higher performance. This ability to do Two-Piece looka-
heads, thereby optimizing placements for 2 zoids rather than
just 1, should also promote an increase in multiple line clears,
as the models will have an increased capacity to plan ahead.

Methods
Model Development
Using the Dellacherie feature set (described in Table 1) and
the cross-entropy reinforcement learning (CERL) method, we
developed two models, a One-Piece Lookahead model and a
Two-Piece Lookahead model.

Both models were trained on short games (a maximum of
525 zoids3) and were reinforced for high score. Both of these
environmental conditions have encouraged more human-like
behavior in our previous modeling studies. The models were
developed using the same iterative CERL method (described
in more detail in (Sibert et al.,2017), which can be summa-
rized as a process that generates a set of candidate models
with each model playing a single game of Tetris. The highest
performing models are averaged together to create the start-
ing point for generating the next set of candidate models. At
each generation, 100 candidate models are tested, and the 10
best models were used to create the averaged model. In pre-
vious studies, this process was repeated 80 times, but here
we implemented a halting condition: when the variance of
the feature weights in the top performing models reached an
acceptable threshold (below 0.01), the model was considered
to have reached conversion and the search ended. Models
tended to converge between 30 and 40 generations, greatly
reducing the search time required for development.

The critical difference between the models was the amount

3Note that although these games are short for Machine Models,
for the 300+ humans who have played an hour or more of Tetris
in our laboratory, 525 zoids is the most zoids ever played by any
human.
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of lookahead information incorporated into the decision-
making process. The One Piece models only information
about one zoid at a time, and have no knowledge about what
might be coming next in the sequence. It generates all pos-
sible placements for that zoid, and each placement is given a
score by combining feature weights with the value of those
features that result from the placement (i.e., if the placement
creates a new pit, the score for that placement will change by
the weight of the pit feature, and so on). At each placement,
the model selects and executes the highest scoring move.

Two Piece models, by contrast, have access to the active
zoid as well as the next zoid. Rather than calculate a score
for each zoid placement, the Two Piece model evaluates the
score for each pair of moves (adding together the score for the
first and second move). This might cause the model to choose
the second or third best move for the first zoid in order to
allow a much higher scoring placement for the second zoid.
Adding this capability greatly increases training time, not just
in the greater computation time required for each game, but
also by increasing the number of generations for convergence
from approximately 30, for the One Piece models, to over 50
for the Two Piece models. However, we expected that this
initial training cost would be compensated by better model
performance.

Model Testing
Both models were tested using performance metrics (mea-
sured by game score) and behavior metrics (measured by
types of line clears executed). Though only two models were
developed, we had a total of four testing conditions. Be-
cause Lookahead was an environmental condition, it could
be turned on or off for a developed model during testing. All
tests were conducted on both models in both conditions: One
Piece model with One Piece tests (same as training), One
Piece model with Two Piece tests (alternate test condition),
Two Piece model with One Piece tests (alternate test condi-
tion), and Two Piece model with Two Piece tests (same as
training).

For the performance test, models were run through ten
Tetris games. The zoid sequences of these games were gen-
erated using one set of ten random seeds (111, 222, 333, and
on to 101010) to ensure that the models were tested in a con-
trolled and equal environment.4 Each model plays through
this set of 10 games twice, once with only the current zoid
(One Piece lookahead), and once with the current and next
zoid (Two Piece lookahead).

Model performance was measured in three ways: the high
score, the mean score, and the criterion score. The high score
is the best score achieved on any game, and the mean is the
average score of all ten games. The criterion score is a met-
ric developed for evaluating human player skill (Lindstedt
& Gray,2019), and is calculated by averaging the scores of
the top four games in a testing period (for human players,

4See the discussion in Sibert & Gray, 2018, of the surprising
differences in the variability of model performance across different
random seeds.

this testing period is one hour, for models it is the set of ten
games). The criterion score reduces the influence of a single
unusually high or unusually low score on the overall measure-
ment of player skill.

Model behavior was evaluated using the same ten test
games, but rather than looking at a numerical score, the mod-
els were measured by the proportion of line clear types made
during the game. Of all lines cleared during a game, some
percentage are cleared using single line clears, some by two
line clears, three line clears, and four line clears. The pattern
of line clear types is a good measure of how the model be-
haves, as truly machine models tend to clear predominantly
single lines, and high level humans try to emphasize 4 line
clears.

Results
Table 2 shows the performance results for models trained in
the One-Piece condition, tested in both the One-Piece and
Two-Piece conditions. All scores were higher during testing
with One-Piece lookahead (the same as the training condi-
tion), though the scaling scoring system of Tetris makes the
score differences look larger than the actual performance dif-
ferences that they reflect (line clears of all types are worth
more points when executed at higher levels, meaning the rate
of score accumulation increases as the game progresses).

Comparing the “native” training positions in the one-piece
model (left column in Table 2) versus the native training po-
sition of the two-piece model (right column in Table 3) shows
that the two-piece model performs worse than the one-piece
model. Perhaps more surprising is the massive drop in per-
formance when the Two Piece model is tested in the One
Piece condition (left column in Table 3). These extremely
low scores (left column in Table 3) represent very few line
clears and in several games, these Two Piece models made no
points at all.

Table 2: One-piece lookahead models tested in either the one
or two piece lookahead condition

Testing Condition One Piece Two Piece
High Score 406000 200560
Mean Score 203766 161472

Criterion Score 323740 187965

Table 3: Two-piece lookahead models tested in either the one
and two piece lookahead condition

Testing Condition One Piece Two Piece
High Score 1600 326180
Mean Score 220 132818

Criterion Score 540 229565
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Figure 2: The behavior of models as represented by the proportion of each type of line clear made. Each set of bars represents
a training/testing condition pair.

Figure 2 shows the percentage of each type of line clear
averaged through the ten test games. The percentage of line
clear type indicates the proportion of lines cleared using each
type of clear to the total lines cleared during a game. Typi-
cal machine performance is characterized by a very high per-
centage of single line clears, and steadily lower percentages
of each type of multiple line clear. High level human players
have a more U-shaped pattern, with the highest percentage of
lines being from 4 line clears, followed by 1 line clears and
two line clears, with the fewest lines from 3 line clears.

The behavior pattern produced by the One Piece/One
Piece condition (one-piece lookahead model playing one-
piece lookahead games) is not quite the same shape as hu-
man experts, but represents a significant behavior shift toward
human-like behavior. The behavior pattern has a U-shape that
is similar to good human players, with more 4-line clears than
3-line clears.

Both models trained in the Two Piece condition show the
much more typical machine pattern, with high percentages
of single line clears, and progressively lower percentages of
higher order line clears. The results from the Two Piece/One
Piece model are representative of significantly fewer lines
cleared, and are not as robust as the results from the other
conditions.

The most unexpected result comes when the One Piece
model is tested in the Two Piece condition. This resulted in
lower performance, but also in a significant behavioral shift
away from a humanlike pattern and toward the machine pat-
tern.

Discussion
We expected that providing models with more information
would improve model performance, and encourage a behav-
ior pattern with higher levels of long term planning. Instead,
we found that more zoid information led to lower model per-
formance, and less human-like behavior. While there were
not huge differences in performance between the one piece
model tested with one piece lookahead and the two piece
model tested with two piece lookahead (compare Tables 2
and 3), there were significant performance drops when a one
piece model was tested with two piece lookahead. Removing
two piece lookahead from the two piece model led to an even
larger drop in performance, where the models were barely
able to clear any lines.

The changes in the patterns of model behavior were also
unexpected. Successful human players display a distinct pat-
tern of line clear types, prioritizing four line clears. Single
line clears are the next most frequent, followed by double line
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clears, and very low frequencies of three line clears. Many of
our previous modeling efforts have tried to encourage models
to follow similar patterns. During these experiments (Sibert
& Gray,2018), we found that the model’s behavior was deter-
mined by the training condition, and the pattern of line clears
would persist in alternate testing conditions.

Adding two-piece lookahead to a high performing one-
piece model (see the second set of bars in Figure 2) caused
a large shift in model behavior, changing from the u-shaped
pattern similar to high level humans to a sloped pattern con-
sisting of primarily single line clears and very few four line
clears. Both two-piece models displayed similar behavior
patterns, but because the two-piece model tested using one-
piece lookahead cleared almost no lines, few conclusions can
be drawn from its pattern of line clear types.

Looking at the episode-level behavior of the models, we
believe that the drop in performance and change in behavior
patterns is caused by the model constantly making a subopti-
mal decision about the current zoid placement in service to a
better placement for the upcoming zoid. However, once the
upcoming zoid becomes the current zoid, there is a new up-
coming zoid that may change the best placement. That is, the
model is always planning to make a better move, but rarely
follows through. Though we thought having additional zoid
information would lead to the model making better moves,
the short term optimization at the level of one or two pieces
came at the cost of the generalization offered by the one piece
model.

Based on these models, we can guess that if humans are in-
corporating upcoming zoid information into their placement
decisions, it is not by making choices to facilitate specific
placements for the next zoid. We do have some evidence
(Gray et al.,2015) that players, particularly expert players,
frequently fixate the next zoid box as they play, strongly sug-
gesting that this information is being used in some way.

We theorize that a Tetris placement involves two stages:
the decision phase and the movement phase. At low speeds,
movement can be initiated before a final decision is made,
but at high levels, speed is the limiting factor in perfor-
mance, and placement decisions must be extremely rapid in
order to maximize the available movement time. Rather than
make decisions about the current zoid when it appears on the
game board, we now interpret our model results as suggesting
that expert players offload the decision phase to the previous
episode, making a decision about the zoid placement while
the zoid is still in the Next box. Once the piece appears on
the Board, the player can initiate the movement phase for that
zoid (now the “current” zoid in our terminology) while simul-
taneously initiating the decision phase for the upcoming zoid
(i.e., the one that is now in the Preview box). Hence, expert
players do not try to optimize two-piece placements but do try
to optimize one-piece placements. The extra time for making
these one-piece optimization is especially important at higher
levels of Tetris; whereas maximum drop time is 16s at level 0,
that decreases to 2s by level 9, to 1s by level 16, and to 0.67s

at level 19. This explanation is compatible with component
2 of Lindstedt & Gray’s (2019) Principal Component Analy-
sis which suggested that better players make their placement
decisions prior to moving the zoid.

We have not yet formally tested this hypothesis, but some
expert Tetris players have already performed an informal ex-
periment on their own. At 2018’s Classic Tetris World Cham-
pionship, 16 players engaged in a novel, ”no-next box” tour-
nament which began play at level 18 (where it takes 1s for
a zoid to drop from top-to-bottom). Although most of these
players had secured a slot in the next day’s playoffs for the
Classic Tetris tournament, only one player scored over 30,000
points in this no-next box match with a few players scoring
no points at all. The behavior of the players, usually char-
acterized by high percentages of four line clears, was almost
entirely single line clears. No four line clears were executed
during the entire no-next box tournament.

Overall, the results of these models suggest that in com-
plex, dynamic tasks, where there is rarely a single objectively
correct action, the most successful behavior pattern must be
general. Adding additional information serves to make model
behavior more specific, which may be more optimal for a sin-
gle decision point, but will be less successful over a long se-
ries of decisions. Additional zoid information, then, is likely
not used to modulate individual zoid placement decisions. In-
stead, observation of expert players suggests that it is used
to shift the time demands of a placement decision and allow
more time to execute movements, making gameplay possible
at very high levels. Further experiments may be able to ex-
plore how upcoming zoid information is incorporated by high
level players, but the more machine-like approach of system-
atically exploring all options is clearly not the answer.
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Abstract
We present a general-purpose method for determining the
salience of features in action decisions of artificial intelligent
agents. Our method does not rely on a specific implementa-
tion of an AI (e.g. deep-learning, symbolic AI). The method is
also amenable to features at different levels of abstraction. We
present three implementations of our salience technique: two
directed at explainable artificial intelligence (deep reinforce-
ment learning agents), and a third directed at risk assessment.
Keywords: computational model; salience; artificial intelli-
gence; reinforcement learning;

Introduction
In recent years, Deep Reinforcement Learning (RL) has
gained popularity for training agents engaged in activities as
diverse as playing Atari games, strategic games such as Go
and chess, and controlling robotic platforms. Despite recent
success, there is, perhaps, a lack of trust in applying RL in
real-world scenarios. The behavior of RL systems are often
qualitatively different from human behavior and they are in-
herently difficult to understand. Unlike traditional symbolic
AI systems, they are not easy to introspect upon. Further-
more, because RL agents are largely trained without human
supervision, there is often little reason to expect them to pro-
duce abstractions similar to our own. This makes the task
of mapping from human conceptual space to the RL agent’s
conceptual space a significant challenge.

Previous Work
The common input of RL agents is usually an image. Thus,
the agents are comprised of convolutional layers that map pix-
els to actions and reward expectations. For this reason, most
of the techniques that are used for saliency calculations in
image classification (Grün, Rupprecht, Navab, & Tombari,
2016) can be used in a RL setting.

One of the first and most common methods for understand-
ing Deep RL agents is to produce gradient-based saliency.
Typically, this method uses the gradient of a prediction with
respect to an input image to estimate the importance of pix-
els. In other words, how much the change of a pixel value
affects the prediction value (Simonyan, Vedaldi, & Zisser-
man, 2013). Other popular methods are perturbation methods
(Greydanus, Koul, Dodge, & Fern, 2017). Such methods rely
on comparing the resulting prediction (or decision) between
a modified input with the original one. This gives insights on
the importance of individual image regions.

Cognitive Salience
Although the above methods provide a visual explanation of
what the agent pays attention to, they often fail to do so con-
sistently. Frequently, the resulting saliences are challenging
for a human user to use in producing a meaningful interpre-
tation of the agent’s behavior. For this reason, we propose
a method that operates on a more abstract level than pixels.
More precisely, our cognitive approach involves modeling of
the agent’s behavior but assuming non-pixel features. Instead
the features are entities that a human can comprehend in order
to understand the underlying causes of the RL agent’s partic-
ular decision. Furthermore, the modeling process is model-
agnostic and can be used with any model or even humans.

Cognitive Model
We have chosen to develop the cognitive portion of our sys-
tem in ACT-R. ACT-R is a computational theory of cogni-
tion that accounts for the information processes in the human
mind (Anderson et al., 2004). The mechanisms in ACT-R are
task-invariant and constrained by the limitations of the brain
(see Anderson (2007) for an overview). ACT-R is a hybrid
architecture, composed of both symbolic and sub-symbolic
processing. The hybrid nature of ACT-R is particularly com-
pelling for our work because the symbolic level is inherently
explainable, while the sub-symbolic level has the potential
representation required to interface with other sub-symbolic
systems like neural networks. Furthermore, because we in-
tend to use the output as an explanation for human users, we
hope to rely on the constraints of the architecture to limit the
output.

Information processing occurs in ACT-R primarily through
the interaction of the production system and the declarative
memory. Declarative memory is represented as chunks of in-
formation. Each chunk has an associated activation level that
modulates its retrieval. Chunks are compared to the desired
retrieval pattern using a partial matching mechanism that sub-
tracts from the activation of a chunk its degree of mismatch to
the desired pattern, additively for each component of the pat-
tern and corresponding chunk value. Finally, noise is added
to chunk activations to make retrieval probabilistic, governed
by a Boltzmann distribution.

While the most active chunk is usually retrieved, a blend-
ing process (Lebiere, 1999) can also be applied that returns a
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derived output reflecting the similarity between the values of
the content of all chunks, weighted by their retrieval probabil-
ities reflecting their activations and partial-matching scores.

Blending and Salience
The ACT-R blending mechanism retrieves an estimate of val-
ues based upon the previous experiences stored in memory,
and is computed with the following equation:

V = argmin
Vt

n

∑
i=1

Pi ·Sim(Vt ,vit)
2 (1)

The value, V is, therefore an interpolated value based on
matching chunks i, weighted by their retrieval probability Pi.
Sim(Vt ,vit) is a similarity function used to compare memory
chunks vit and candidate consensus values Vt . In the simplest
case where the values are numerical and the similarity func-
tion is linear, the process simplifies to a weighted average by
the probability of retrieval Vt = ∑

n
i=1 Pi · vit .

We consider ‘salience’ to be the influence a factor has on
a decision. The greater degree of influence, the more salient
it was when the decision was being made. We model the
decisions of an agent by tracing its action decisions and pop-
ulating a memory. The resulting memory is used in a similar
manner to instance-based learning theory (Gonzalez, Lerch,
& Lebiere, 2003), except our intent is not to learn to maxi-
mize reward, but rather to mimic the behavior of an agent.

We calculate salience by taking the derivative of the blend-
ing equation (1) with respect to each feature:

S(Dt , fk) =

c
n

∑
i=1

Pi · (
∂Sim( fk,vi,k)

∂ fk
−

n

∑
j=1

Pj ·
∂Sim( fk,v j,k)

∂ fk
)

(2)

with Pi = so f tmax(Mi/τ), c = MP
τ

and Mi = Ai +∑
l
k=1 MP ·

Sim( fk,vi,k). This is a novel extension of the blending mecha-
nism that exploits its analytical tractability to provide a closed
form of the gradient-based salience of its representational fea-
tures on its decisions.

Deep Reinforcement Learning Agent
In this work we are not interested in solving completely the
problem that the agent is facing. Instead, a basic Deep RL
architecture that receives relevantly a high score, in the do-
mains used here, will suit our purposes. For this reason, we
utilize the Advantage Actor Critic (A2C) algorithm which is
the synchronous version of the A3C (Mnih et al., 2016). We
adopt the same architecture and implementation details as in
Vinyals et al. (2017) but removed the spatial policy for the
drone domain. The agent as it is common in this setting at-
tempts to maximize the expected return by interacting with
the domain.

Methodology
The process of mapping between an agent (RL or program-
matic) and the cognitive model is common in all the cases de-
scribed below. Once we have an agent implemented (trained

or programmed), we gather data of its performance using
terms from a human ontology. In the RL cases, we create
a symbolic observation for each step, and record a symbolic
interpretation of the action chosen by the network. In the risk-
assessment case, we gather symbolic data about the situation,
and symbolic data describing the outcome. In each of these
cases, this data is gathered to comprise a “memory” for the
model. We treat those memories as the knowledge the model
has about its respective agent. That knowledge is used by
the model (through blending) to estimate what the agent will
do in a new (possibly unseen) situation. The derivative of
that process, as described, provides the salience. We, thereby,
attempt to communicate why the agent chooses the action it
does by allowing the user to build a mental model of what
feature(s) the agent considers most important in different sce-
narios.

StarCraft II
StarCraft II (SC2) is a real-time strategy game in which play-
ers (human or AI) control the production and placement of
buildings and the production, movement, and interaction of
of militaristic units, in order to defeat opponents. An API
and sample RL missions in SC2 are presented in Vinyals et
al. (2017). SC2 also supports smaller, constrained missions
in which points can be designated for certain achievements.
These mini games are useful in the RL domain because they
provide smaller tasks and straightforward rewards to be ex-
ploited by reward functions.

We used the go-to-beacon mini game presented by Somers,
Mitsopoulos, Lebiere, and Thomson (2018). The objective of
the go-to-beacon mini game is to move a unit to one of two
beacons: a low-value green beacon or a high-value orange
beacon. The beacons can be presented either individually or
in pairs. When presented in pairs, the optimal solution is to
prefer the orange beacon over the green beacon. Interaction in
this scenario requires the selection of a unit and then a mouse
click on the game map or mini map in the region of the chosen
beacon. The unit will then proceed, over time, to move to the
location of the mouse click. As soon the agent arrives at one
of the beacons, the score is increased by the value associated
with that beacon, the beacons disappears, and new beacons
are generated at random with four possible configurations: 1)
a sole green beacon (green-only scenario), 2) a sole orange
beacon (orange-only scenario), 3) both an orange and green
beacon presented in such a manner that the unit could take
a direct path to the orange beacon without stepping on the
green beacon (non-blocking scenario), and 4) both the orange
and green beacons presented in such a manner that the green
beacon is overlapping the direct path between the unit and the
orange beacon (blocking scenario).

The scenarios are grouped into the four categories to ac-
commodate a human-level ontology that might help under-
stand the RL’s behavior. Despite the simplicity of the mission,
our RL agent learned a sub-optimal policy. In particular, the
RL fails to guide the SC2 unit around the green beacon to the
orange beacon, failing to distinguish the blocking and non-
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blocking scenarios. In the context of this work, we did not
attempt to resolve this issue. Our aim in this paper is to ex-
plain why the RL agent acts the way it does, and to cast these
explanations using a human-level ontology.

SC2 Explanation The RL agent did not learn how to go
around the green beacon to reach the orange beacon. Our ap-
proach aims to explain the behavior of the RL agent in terms
of its internal states: what it perceives, what it knows, and
what actions it takes in response. We assume that actions
consistent with a going-around action require a spatial infer-
ence: that the green beacon is ‘between’ the agent and the
goal. In the SC2 case, we aim to communicate to a user that
the network has not acquired this concept and therefore fails
to act as expected.

In this particular task we are curious whether the agent has
an internal representation that is functionally consistent with:
a) a sole green beacon, b) a sole orange beacon, c) a non-
blocking scenario, and d) a blocking scenario. We collected
data of the RL agent by tracing its behavior while it played the
game, collecting chunk representations that described the sce-
nario and the action chosen in that scenario. The chunks had
the following structure: green:value, orange:value, block-
ing:value, internal representation:vector, select-green:value,
select-orange:value, select-around:value. Each value, aside
from the vector value, are binary 0 or 1. The green, orange,
blocking together describe the scenarios (a-d) and select-
green, select-orange, select-around are high-level descrip-
tions of possible actions taken. Note that these are repre-
sentations of ground-truth, not representations created by the
agent. We are attempting to assess when (and if) the RL agent
is behaving in a manner consistent with these representations.
We adopted the approach used by Somers et al. (2018) and
used a vector representation to capture the internal state of
the agent. The internal representation is used in the partial-
match portion of the blending process. Just as in Somers et
al. (2018), we use cosine as a similarity measure between two
vectors. Overall, we filter the data we collected to include at
least one example of each scenario and to maximize the dis-
tance between vectors. For the purposes of the present de-
scription, experience was filtered down to 20 examples.

We made a prototype of a display that could be used for
explanation. It outputs the results of the blending process
and salience calculation graphically, relying on the user to
create the proper inferences. At each step in the game, the
cognitive model makes a blend estimate of the action to be
chosen by the agent, and calculates the salience of the high-
level features: green, orange, blocking. A screen-capture of
this display is presented in Figure 1. A screen capture of the
corresponding SC2 scenario is presented in Figure 2.

The top graph in Figure 1 displays the three possible ac-
tion choices a human might expect the RL agent to make and
the cognitive architecture’s estimate of which action the RL
agent will choose. The example in the scenario is a blocking
scenario and, as the display correctly indicates, the RL agent
will choose to select the orange beacon.

Figure 1: Explanation display. Top panel illustrates the blend
value for the action decision. The three remaining panels dis-
play the associated salience for their respective decisions.

Figure 2: Screen capture of blocking scenario in StarCraft
II. In this image, the marine (controlled by the reinforcement
learner) is attempting to get to orange beacon.

The three bottom graphs in Figure 1 display the salience
for each decision available. The top displays the salience for
the select-green decision, the middle displays the salience for
the select-orange decisions, and the bottom graph displays
the salience for the select-around decision. As described
above, the salience indicates the degree of influence each of
the features (green, orange, block) have on the action deci-
sion. Given that the dominant action chosen by the drone is
select-orange in the blocking scenario, discussion will focus
on describing the bottom-middle graph, ”select-orange”. The
graph indicates that the presence of the green beacon has a
small negative salience in the action decision and the abstract
concept ”blocking” has a larger negative salience, with the
dominant influence being the presence of the orange beacon.
This makes sense given that the RL agent always tries to get
to the highest reward but appears to be unaware of the fact that
the green beacon is blocking the orange. The salience and the
associated lack of ‘go-around’ action communicate that the
agent has not formed the abstract concept, ‘blocking’.
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Drone Domain
A second domain that we have applied the cognitive salience
technique to is a drone operations domain. Currently, our
drone environment is a 3D gridworld abstraction of MAVSim
(Youngblood, Kravacic, & Le, 2018). Once trained, the RL
agent can be deployed in MAVSim.

The aircraft we are simulating are fixed-wing drones.
The missions generally include search and provisioning lost
hiker(s) with any combination of food, water, first-aid, and
communication devices. The rules of the environment are
an abstraction that capture the constraints of flight dynamics.
Although, at our current level of simulation, the specifics of
the aircraft are not captured, the rules of the environment are
sensitive to flight constraints more generally. The rules of the
environment constrain the turning radius, maintains forward
motion, and restricts elevation changes, just to name a few.
Sensors on the aircraft are sensitive to altitude. Package sur-
vival (once dropped) depends on underlying terrain and will
fall differently when dropped at different altitudes.

We have trained an RL agent to navigate to a hiker vis-
ible on a topological map and to drop package(s) near the
hiker. Currently, programmatic solutions are used to carry out
other segments of the flight including: loading the packages,
searching for the hiker, and returning to the airport. Our ex-
plainable AI challenges in this domain are many and we have
only begun to touch the explainability potential in the drone
domain. We present here two example prototype uses of our
salience technique within the drone domain: risk assessment
and egocentric salience.

Risk Assessment As we move from low to high levels of
fidelity, there is an increasing number of moving parts to deal
with the increasing level of detail and, as a result, a large
potential decision space to explain. Anticipating our needs,
we have begun to prototype different explanation interfaces
for different aspects of a mission. In this simplified exam-
ple, we imagine the provision-loading process, and when it
might need explanation. The most obvious situation where
we might want some form of explanation is when there is a
failure. After a large number of simulations, for example, we
may want some form of risk analysis that is sensitive to the
particular constraints of any given example case. We use the
following simplified example, where the ground truth about
a package loading module is described. In this example, the
operator is unaware of the ground truth and is attempting to
diagnose a problem with the package loading module.

The package loading module is given as input the needs
of the hiker(s). This module has a number of flaws that we
know a priori for this example but are not known by the user:
1) it always loads communications equipment, regardless of
needs. 2) It always loads food, regardless of needs. 3) It never
loads water, regardless of needs. We characterize success and
failure in the following manner: A) if the hiker needs a provi-
sion and does not get it, there is a failure. B) If the hiker does
not need a provision, and a provision is loaded, this is also
considered a failure. We chose to consider this a failure be-

cause the aircraft we are modeling has limited space for pro-
visions. Loading unnecessary provisions can prevent loading
required provisions and lead to increased fuel consumption,
which could lead to the drone making multiple, unnecessary
trips, putting the hiker(s) in unnecessary risk. To remove any
confusion, we also include a third success/failure condition:
C) even though we know, a priori, what is wrong with the
drone, we remember that, for the purposes of the example,
when the hiker does not need a provision (in this example,
water) and that provision is not loaded (because there is a flaw
preventing it), we consider that a success even though, under-
lying that success, is a failure in the mechanism. In other
words, the salience mechanism in this case only has access to
the behavior of the drone, without any knowledge of its in-
ternals. These are the rules that describe the success/failure
conditions in this example.

Following those rules we generated data to simulate the
erroneous module described. The data includes all sixteen
possible binary combinations of package-loading require-
ments: food needed/not needed, water needed/not needed,
first-aid needed/not needed, communications needed/not
needed; as well as traces of their success and failure:
food-success yes/no, water-success yes/no, first-aid-success
yes/no, communications-success yes/no. This is represented
in ACT-R as chunks with 8 slot/value pairs.

Once we have data, we can probe the module with a new
case to perform a risk assessment in a specific situation.
For example: Food: needed; Water: not needed; First-Aid:
needed; Communications: not needed

There are two aspects to the output. First the blend pro-
vides an estimate of the values (randomly generated exam-
ple presented in Table 1). The values are intuitively what we
might expect (given the module described above): a value
of 1 for both radio and food (which is always loaded by the
erroneous module). Water is estimated to be zero (which de-
ceptively makes sense, since it was not requested). Finally,
First-Aid is estimated to be 0.68, which could be rounded to
1 (given our binary example). These results are consistent
with the rules described above.

Table 1: Blend Estimate of Random Example

Provision Requested Estimate
Food 1 1
Water 0 0
First-Aid 1 0.68
Communications 1 1

The salience provides further, useful information that could
potentially be used to diagnose a faulty module. Since the
blend is produced for each output factor (food, water, first-
aid, communications), we generate a set of saliences for each.
The salience derivative is computed with respect to each fea-
ture, so each factor has 4 saliences values associated with it.
The salience values for the Food and Communications are
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identical but their values are so small (10−8) that we do not
display them. The small values are important in the explana-
tion, however, because they indicate the blend is not strongly
influenced. This makes sense, given that we know that the
agent always loads food and always loads communications.

The salience of Water is zero for all features and, therefore,
not displayed. This is particularly telling, a very strong sug-
gestion that the loading of water is not sensitive to any factor.
This makes sense given the ground truth about the module
(always fails to load water).

Finally, the salience of First-Aid is presented in Figure 3.
This display is telling, indicating salience values near zero for
Water, Food, and Communications (Radio).

Figure 3: Display of salience for assessment of First Aid pro-
visions.

Egocentric Salience While the risk assessment is derived
from synthetic data generated by a programmatic agent, our
final example, which we term, ‘egocentric salience’, results
from a model trace of an RL drone agent. The input to the
RL is an egocentric image and an allocentric image. Exam-
ple inputs are illustrated in Figure 4 and the bottom display
of Figure 5. The first image is a 20 unit by 20 unit allocentric
map of our environment. The different green and brown col-
ors represent different kinds of vegetation. The purple arrow,
pointing downwards, represents the drone; with the direction
of the arrow indicating the drone’s heading. The drone’s color
indicates its altitude. The red cross indicates the location of
the hiker for which the drone is attempting to drop off a pack-
age.

The second image (bottom of Figure 5) is a 5 unit by 5
unit egocentric view that corresponds to the first image. This
image is a vertical slice of the first, in the region around the
drone’s action space. At any step the drone can head directly
forward, diagonally forward, or turn 90 degrees in either di-
rection. Furthermore, any of those directions can be com-
bined with a single change of altitude. With the options of
left, diagonal left, center, diagonal right, and right, multiplied
by: no altitude change, an increase in altitude, or a decrease
in altitude; the drone has an action space of 15 possible grid
square in a 3D gridworld. A sixteenth action to drop a pack-
age is also available. The movement actions are entirely cap-
tured by the five by five units of the egocentric input image.

Figure 4: 20x20 unit allocentric view. Greens and browns in-
dicate different forms of vegetation (largely trees and grass).
The purple triangle indicates the drone (facing the bottom of
the image). The red cross indicates the location of the hiker.

The drone is super-imposed on this picture and provides the
drone an explicit representation of its altitude. The column

Figure 5: Top frame: the bars above the egocentric view in-
dicate the salience of the columns in the egocentric view.
Bottom frame: 5x5 unit, egocentric input to the network. This
image corresponds to the allocentric image and changes each
step of the simulation.

on the left-most of the egocentric view corresponds with the
grid-square directly to the right of the drone (from the per-
spective of Figure 4) but corresponds to the square imme-
diately to the left of the drone (from the perspective of the
drone). This is the case because the drone is actually facing
downward in the allocentric view. The column second from
the left in the egocentric view corresponds to the patch of
grass to the diagonal left of the drone (down and to the right
in the allocentric image). The three remaining columns rep-
resent obstacles (trees) surrounding the drone centre and all
the way to the right. If the drone were to fly left, forward,
diagonal right, or right, it would crash into a tree.

The drone exhibits a reasonable capacity to carry out the
two segments of the mission it has been trained on (travers-
ing the map and dropping the package). However, despite
its success, the drone does exhibit unusual behavior: some-
times taking a bizarre path to the hiker, or circling the hiker
many times before dropping a package. This successful yet
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unusual behavior is a good candidate for explanation because
a participant viewing the mission might want to resolve why
the behavior is markedly different from what a human might
do. Explaining this type of behavior can furnish trust in the
system if the human understands (and accepts) the reasoning.

Figure 5 depicts a prototype explanation for the scenarios
presented in Figure 4. Unlike the other examples, the con-
cepts we are associating salience with in this example are pri-
marily spatial. The idea behind egocentric salience, is still,
however, quite abstract. The data is collected under the as-
sumption that the RL drone responds to features at altitude,
trying to avoid crashing, for example, regardless of the spe-
cific identity of the object. The aim of the explanation is to-
wards understanding how the drone responds more generally
to its environment. It would be used, for example, to allow a
user to rewind to a point where they thought the drone started
to behave oddly, and get a sense of what it was ‘attending’ to
considering in its decision.

The egocentric salience is a little more difficult to inter-
pret. The bars above the egocentric view (Figure 5) are meant
to communicate how salient the columns of that view are to-
ward a single decision. This particular example could be in-
terpreted as all dark green objects (obstacles), at altitude 1
(counting from the bottom, from zero), are highly salient,
with the single safe column, with a low degree of salience.
The low-degree of salience was an unexpected result but, with
some interpretation, seems to make sense. The areas where
objects are lower in altitude than the drone’s current altitude
generally will not influence the drone’s behavior. Instead of
thinking about the drone as going to a safe area, per se, the
drone seems to be avoiding dangerous areas (the result of
which is functionally the same, going to a safe area).

As with our other examples the blending process also
makes an action estimate. Because the action space is so large
(15 movement actions), we do not blend for each value. In-
stead we blend a single action value across the range. In this
case, the estimate is 6.8. Rounded to 7 an action of forward
and to the left, which would result in action following the path
in the forest.

Discussion
The work presented here is targeted at explainable AI and
is still in an early phase of development. Our goal builds
upon (Kümmerer, Wallis, & Bethge, 2015) to eventually
unify pixel-level, cognitive-level, and artificial intelligence-
level salience computation in a model-agnostic framework.
Although we have thus far concentrated on explaining AI, we
are interested in exploring salience for human-generated data,
specifically in the context of instance-based learning (IBL)
as IBL models have been used in a wide variety of models
including social dilemmas (Gonzalez, Ben-Asher, Martin, &
Dutt, 2015) and two-person games (West & Lebiere, 2001).
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Abstract
This paper describes a representation to support explanation
of robot navigation based on image schemas, a set of abstrac-
tions closely tied to embodiment. The representation is in-
tended to satisfy two criteria: an explanation must provide a
logical or causal account of the phenomenon to be explained
and be understandable by its audience. Evidence in the litera-
ture of cognitive linguistics and related fields suggests that im-
age schemas satisfy the second criterion. We provide evidence
for the first with an Answer Set Programming formalization of
navigation-related image schemas. Schema-based explanation
representations are generated for a robot navigating through a
simple indoor environment.
Keywords: Image schema; robot navigation; explanation

Introduction
Symbolic representations in artificial agents (robots, in this
paper) are often invaluable—they allow for the concise spec-
ification and communication of potentially complex behav-
iors. This pragmatic, engineering motivation sometimes
leaves open the question of why one representation is better
than another. Our interest is in a related issue that has gained
increasing attention in recent years: the ability of a robot to
explain its actions.

This paper describes a representation, based on image
schemas, for the explanation of robot navigation. “Im-
age schema” is a term coined by Lakoff (1987) and John-
son (1987): a structured, general pattern intended to capture
experience “at the level of our bodily movements through
space, our manipulations of objects, and our perceptual in-
teractions.” The contribution of this paper is to show how
a schematic cognitive structure can be derived from patterns
of navigation actions recorded by a physical robot. Image
schemas appear to be a natural fit for explanation.

Navigation may at first seem to be a trivially easy domain,
for human beings if not for robots, but researchers in human
spatial cognition characterize navigation as being among the
most complex of cognitive operations (Wiener, Büchner, &
Hölscher,2009). For example, an ontology developed for ur-
ban transportation (Timpf,2002) contains concepts for path,
start, goal, connection, transportation mode, map, sign, direc-
tion, distance, and time, plus names of specific entities (e.g.,
streets and subway stations). When we navigate, we draw on
our memories and on external maps. We think about naviga-
tion at different levels of abstraction; we chain together nav-
igation plans and paths; we combine navigation with other
activities. Many navigation tasks may be easy to understand,
but they can grow complex enough to require explanation of
why a specific route is followed or avoided.

What counts as a good explanation? In the philosophy
of science, the standard definition of an explanation has two

parts (Hempel & Oppenheim,1948): a description of a phe-
nomenon to be explained (the explanandum) and the explana-
tory account itself (the explanans). Both parts can be formu-
lated as sentences in logic, with the explanandum being one
sentence and the explanans being a set of sentences for which
the explanandum is a consequence. The sentences in the ex-
planans are of two types, general laws and antecedent con-
ditions specifying applicability, and for a sound explanation
they must be true. In other words, a scientific explanation
captures the causes or logic of a phenomenon.

Lombrozo and Carey (2006, p. 169) broaden the defini-
tion above: the logical or causal process identified in an ex-
planation “can be subsumed under some kind of pattern or
causal schema” that is already understood by a questioner or
introduced as part of the explanation itself. That is, a psy-
chological explanation (which we will henceforth call sim-
ply an explanation) is a bridge between the explanans and
the explanandum that has a foundation in a questioner’s prior
knowledge. An explanation should be understandable by the
audience to whom it is directed (as well as the explainer).
Further, explanations do not exist in a vacuum but are are
typically part of a larger context, which includes the goals
of the audience and the situation in which the explanation is
offered (Mueller, Hoffman, Clancey, Emrey, & Klein,2019).

In the next section we briefly review the relevant literature
on image schemas, as a partial account of spatial reasoning.
Schematic structures alone do not satisfy the causal/logical
requirement of explanations, however; for this we depend on
a formalization in terms of Answer Set Programming (Gebser
et al.,2011), which supports inferences to necessary compo-
nents of an explanation in an abstract, symbolic representa-
tion. We then describe the conversion of sensor and control
data on a physical robot into the abstract representation and
walk through an example.

Related work
In the infant cognition literature, Mandler and Pagán
Cánovas (2014, p. 519) outline a set of spatial primitives that
act as image schemas: “By themselves or in combination they
structure the conceptual representations that describe events.”

These image schemas plausibly underlie infant spatial cog-
nitive capabilities, gained in the first six to seven months af-
ter birth: PATH, START-PATH, END-PATH, PATH-TO; LINK;
THING;±CONTACT; CONTAINER, OPEN, INTO, OUT OF; LO-
CATION; ±MOVE, ANIMATE MOVE, BLOCKED MOVE; BE-
HIND; APPEAR, DISAPPEAR, EYES. It will be useful for our
purposes to expand the set of spatial relationships represented
by BEHIND, to include NEAR/FAR, LEFT/RIGHT, IN FRONT
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OF/BEHIND. This is not a complete set of image schemas,
even for navigation (Croft & Cruse,2004), but provides a rea-
sonable starting point.

For clarity, a PATH is “the way to get [somewhere];” the
most general version of the schema is commonly called
SOURCE-PATH-GOAL (Lakoff,1987), with its components as
given by its name. BLOCKED MOVE is sometimes referred to
as BLOCKAGE (Cervel,1999), with components that include
a path, a moving entity, and another entity acting as an obsta-
cle. THING is an entity that can be perceived in space, which
we will interpret here as a physical object. LINK is a general,
contingent relationship that may come into being between ob-
jects or schemas.

Image schemas exist in a specialization hierarchy. For ex-
ample, a path component of a SOURCE-PATH-GOAL might
involve continuous motion, or it might consist of a sequence
of discrete steps (each of which can be thought of as a PATH
itself, with an atomic transition between locations). Image
schemas can also be related by composition. The end of a
PATH can be a LOCATION; a BLOCKAGE applies to a PATH.

Image schemas are implicitly associated with activities or
events. We call these characteristic operations—informally,
what an image schema is for. For example, a characteris-
tic operation of the SOURCE-PATH-GOAL schema is for some
agent to traverse it in a specific direction. One characteristic
operation of a CONTAINER is that it can contain other ob-
jects, or that an agent can MOVE INTO or OUT OF one. (Some
characteristic operations are schemas themselves, or incorpo-
rate schemas.) In a navigation context, regions are a type of
CONTAINER: one can enter INTO or exit OUT OF a REGION.
Buildings, rooms, and even deadends are CONTAINERs in the
same way.

Image schemas have been adopted as conceptual primi-
tives in many other fields aside from infant spatial reasoning.
Geographic information systems are one example (Walton
& Worboys,2009). In an extensive discussion, Frank and
Raubal (1999, p. 67) observe that image schemas capture ge-
ographical concepts in a way that “comes close to how people
use them in their everyday lives.”

Another area of related work is AI planning. Robots are
closely associated with planning, from the abstract level of
classical planning down to the detailed level of planning
paths. Our own past work used image schemas to capture pat-
terns of behavior in planning agents (St. Amant et al.,2006).
Navigation planning is typically handled as a search problem
with a single operator for moving between locations, rather
than distinct planning actions for reaching different states.
Korpan and Epstein (2018)’s WHY-PLAN explains navigation
plans, by examining differences between a robot’s objective
function and that of a human being, mapping their compo-
nents to natural language phrases. For example, if a robot’s
objective function is sensitive to crowd density, it can con-
trast its solution plan with a human’s: “This path is 〈slightly〉
〈less crowded〉 than the alternative.”

In an area closely related to explanation, Rosenthal et

al. (2016) describe a system that generates narrative “ver-
balizations” to describe a navigation path. Rosenthal et al.’s
navigation paths are representative of most such work we are
familiar with: a path contains a goal location, a starting lo-
cation, and an ordered list of intermediate waypoints (plus
collinear subsequences of waypoints, to facilitate the identi-
fication of turns). Such representations map naturally onto
the SOURCE-PATH-GOAL image schema. Landmarks, with
appropriate semantic tags, and their spatial relationships to
the robot can also be easily interpreted in schematic terms.
None of this is surprising. Most of the other image schemas
remain only implicit in navigation plan representations, how-
ever, though they could plausibly contribute to explanations.
In the next section, we show how they can be made explicit.

Schemas for Navigation Paths
In this section we describe a formalization of image schemas
to support explanation. Our target is a logical representation
sufficient for an explanation, following the lead of other work
in planning (Chakraborti, Sreedharan, Zhang, & Kambham-
pati,2017;Fox, Long, & Magazzeni,2017). Generation of the
text and narrative of explanations, such as carried out by sys-
tems above, is part of the task that we leave for future work.

Answer Set Programming, with roots in knowledge rep-
resentation and reasoning, has become a popular paradigm
for declarative problem solving. ASP has shown promise in
spatial and temporal reasoning (Li,2012) and commonsense
reasoning (Balduccini,2009). Our implementation relies on
the Potassco set of tools for ASP; rules are encoded using the
input language of Gringo (Gebser et al.,2011).

A problem specification is separated into two parts: a spe-
cific problem instance, expressed as predicates; and an encod-
ing, a general set of inference rules that apply to any problem
instance. For explanation of a navigation path, a problem in-
stance consists of locations and objects in environment, the
initial location of the agent, the path it follows, and the com-
mands it issues to follow the path. (We refer to an “agent”
in this context as a reminder that this is a high-level abstrac-
tion of a robot—the agent is not even explicitly represented.)
Time and space, in the form of a set of locations, are dis-
cretized; a time limit M for execution of the planned path
(moves(M)) is also provided.

Locations are named by unique constants, e.g., loc(x1). A
path has a source location and a goal location, path(x0,x f ),
and a sequence of waypoints to be traversed in order. These
are expressed as steps with paired locations; if P is a path,
then step(P,x0,x1), step(P,x1,x2), . . . , step(P,x f−1,x f ).
The agent begins at(x0,1), where 1 is the starting time.
The environment may also include landmarks, obstacles,
or demarcated regions that occupy specific locations, e.g.
land(l1,x6), obst(o1,x3). Landmark locations are disjoint
from path locations; obstacles have a non-empty intersection
with path locations; regions have neither restriction.

An ASP problem encoding is further divided into separate
parts. In the generation part we can specify candidate solu-
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tions, actions taken by the agent. The agent may move from
one location to another along the path by taking a step, a move

action; moves are possible at any time T = 1..M, but no more
than one move can be carried out at a given time.

{ move(Xi,X j,T) :

P = path(Xs,X f ), step(P,Xi,X j) } <= 1 :-

path(Xs,X f ), moves(M), T = 1..M.

The definition part of an encoding defines predicates for in-
ferences contributing to a solution. For example, a change of
location can be inferred based on volitional movement from
the present location.

at(X j,T+1) :- at(Xi,T), cmd move(Xi,X j,T),

move(Xi,X j,T).

The integrity constraint part restricts inferences, including
those related to the agent’s movements. For example, the
agent can move from a location only if it is at that location,
and the agent cannot move to locations occupied by an ob-
stacle. (An underscore, below, is an anonymous variable that
can take on any value.)

:- move(Xi, ,T), at(X j,T), Xi != X j.

:- move( ,X,T), obstacle( ,X,T).

:- move( ,X, ), obstacle( ,X).

Spatial relationships other than at are also accommo-
dated in the representation, though falling short of generality.
(Commonsense reasoning and qualitative spatial reasoning
pose well-known and unresolved challenges.) Our account
is necessarily brief and incomplete, for reasons of space, but
the description should give the flavor. The important point is
what the encoding can produce, summaries of the execution
of a given navigation plan in the form of predicates.

• traversed(path(x0,Xg)), at(Xg,T): The path was fol-
lowed until the agent reached its goal, with the last action
taken at time T.

• blocked(X j,P), at(Xi,T): The path was blocked by some
obstacle at location X j; at time T the agent was left at Xi.

• stopped(X,P), at(X,T): The path was followed until the
agent stopped at X; this predicate lets us distinguish quies-
cence from being prevented from moving.

These mechanics provide for the construction of a set of
ground terms (i.e. predicates containing no variables) that
form the “logic” of an explanation for a navigation problem
instance. The representation is limited in its discretization of
space and time, but it can manage simple changes over time.
For example, obstacles may be permanent or temporary, as
might be presented by a person or object moving across a
path at a specific time steps: obst(o2,x4,3), obst(o2,x4,4).
A strong limitation is that unpredicted errors and deviations
in behavior cannot be explained by our approach.

Image schemas have been formalized in other
mathematical and logical formalisms (Frank &
Raubal,1999;Kuhn,2007;Walton & Worboys,2009). One

subtle issue is the intended application of the formalization.
Most such work aims at description of entitities and their
changing relationships. We have to make an additional
commitment to interpreting image schemas in logical and
even causal terms, because that is what is necessary for
explanations. A move action, for example, does more than
describe what happens; an agent carries out the action in
order to change its location. This is a commonplace as-
sumption in planning but important to make explicit because
logical/causal interpretation is central to explanation.

At the end of the next section we show how this formalism
works for a real navigation problem.

A Navigation Scenario
This section lays out an example navigation scenario, one that
we can use as a target for explanation.

System
The hardware for this work is a K-Bot platform, from Uni-
versity of Pennsylvania. The robot sensor package includes
a microstrain 3DM-GX2 IMU, two Point Grey Firewire
Grasshopper cameras, a Point Grey GigE Blackfly camera,
a Point Grey Bumblebee2 stereo camera, and an ASUS Xtion
pro RGB-D camera, as well as a two Hokuyo UTM-30LX-
EW (Ethernet) Scanning Laser Rangefinder and a Velodyne
HDL-32E LiDAR. Software is built on ROS (Robot Operat-
ing System) Indigo by the Open Source Robotics Foundation,
plus ROS software drivers to read sensor data streams.

ROS’s primary navigation stack is move base, which im-
plements a number of essential capabilities. Cost maps pro-
vide a two-dimensional representation, in the form of a grid,
of the cost to traverse a space. Some cells in the map may
have nominal cost (a constant FREE SPACE), indicating that the
robot may move freely through the location corresponding to
the cell. Physical objects or obstacles also occupy cells in
the grid, which means that the cost recorded in those cells is
the maximum possible (a constant named LETHAL OBSTACLE).
The region of each object is “inflated,” meaning that the cells
surrounding the region occupied by the object have an inter-
mediate cost, to indicate a location with a risk of collision.

Planners supply the robot with a path based on the values
contained in the cost map, given a starting location and a goal
location. The global planner creates a general path to follow,
a discrete sequence of locations, between the start and the
goal. The local planner is responsible for attempting to follow
the global path by generating movement commands for the
robot; this path includes orientation information for the robot.
When we refer to the path planner in the remainder of this
paper, we mean the global planner.

Task Environment and Execution
The robot is tasked with moving across a warehouse floor.
For the purposes of this scenario, a region in the center of
the room is traversable, but it is also considered vulnerable
and should be avoided. In a military scenario such a region
might correspond to an area visible to a hypothetical observer,
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which is undesirable for movement under concealment; in an
urban search and rescue scenario, the region might be where
the ceiling above has been weakened and may fall. This task
was chosen for explanation because an alternative, shorter
path to the goal location on the other side of the room is ob-
vious: a straight line. If the contextual information is absent,
a questioner might reasonably ask the robot to explain.

To implement the navigation task, a custom ROS node was
written to add such regions to the navigation stack via a sep-
arate layer of the cost map, as virtual obstacles, with corre-
sponding lethal obstacle cell costs. A separate layer was used
because the robot updates the cost map as it moves through
the environment. Virtual objects or regions are not detected
by the system’s raytracing algorithm, and the costs associated
with such objects would be overwritten. A separate layer also
limited the need to modify existing ROS move base software.

April tags (Olson,2011) were used to represent the centroid
of a region of vulnerability, mounted on a physical cone for
easy detection. The radius of the region was set program-
matically. This was an alternative to assessing vulnerability
directly; it allows comparable virtual information to be inte-
grated into the physical environment. In our discussion of the
scenario below, we will treat the April tags and the cone as
being invisible to the robot, which would be the case if the
vulnerable region were directly assessed.

In a sample execution of the task, the robot starts at a lo-
cation in the lower right of Figure 1. The goal location is in
the upper left of the figure. The robot begins with an empty
cost map; cells are assigned costs based on sensor informa-
tion about obstacles, in this experiment both real and virtual.
The path planner searches for and returns a path from the start
to the goal, a sequence of a few hundred locations, each with
associated bookkeeping information. The vulnerable region
in this example has been given a LETHAL OBSTACLE cost, but in
a different variation it could be given some lower VULNERABLE
cost. The robot ends at the goal location and its path is shown
as a dashed red line.

The visual representation shows the cost map that the path

Figure 1: Movement around a region of vulnerability

planner accesses to construct the path that the robot follows.
Different colors correspond to different cost values, in partic-
ular yellow for lethal obstacle cost, light gray for free space
cost, and other colors for intermediate values produced by the
“inflation” mentioned above. The outermost color is for re-
gions with unknown cost. The physical borders of the room
are clearly visible on the map; the upper area shows work
tables and equipment. The circle on the map, with a sphere
floating above, is the visual representation of the vulnerable
region, derived from the April tag located at the center of
circle. A physical obstacle would look similar, except that
the region opposite the robot would not be visible to the its
sensors and would thus have unknown cost values. In this
scenario, the robot begins in a location from which all rele-
vant cost values for path planning can be determined directly,
which means that it can follow the path produced by the plan-
ner without the need for replanning.

Generating a representation
Figure 1 might be seen as an explanation: it indicates an ob-
stacle in the center of the room, which the robot will avoid.
By comparing a map with the physical environment it be-
comes clear that the object is virtual, representing a vulnera-
ble region; the robot would presumably plan around it. But
the phenomenon to be explained and the explanation are only
implicit in the visualization. Even the basic vocabulary of
navigation concepts is missing. The robot has no internal
representation of these concepts, to impose an explanation on
the visualization. At best we might say that the image helps
viewers explain the robot’s behavior to themselves.

What we want instead is the generation of an explicit ab-
stract representation that captures the robot’s behavior.

• Locations: All world locations are translated into 2D cells
on the cost map, and those cells generate unique symbols.
Not all locations or cells are used; relevant ones are identi-
fied in translating other kinds of objects.

• Paths: Three different types of paths are generated. A
planned path is constructed from the set of waypoints pro-
duced by the ROS path planner. An external path is gener-
ated by an external process directly on the cost map (e.g.,
a hypothetical straight line path between two locations).
An executed path is constructed from the sequence of the
robot’s sensed locations as it moves through the world.
In the last case locations are sampled whenever a cmd vel

message is issued. After the conversion to cost map cells,
path locations are filtered to remove jitter.

• Commands: For planned and external paths, locations are
walked to create a set of cmd move predicates, with pro-
grammatically generated timestamps. For executed paths,
cmd vel messages are converted to cmd move predicates.

• Landmarks, regions, and obstacles: These are treated sim-
ilarly, and in our navigation scenario, the vulnerable re-
gion can be any one of them, depending on the path and
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cost values. Generation is from an object’s external speci-
fication. A directional relationship is computed to the ob-
ject from each location on the path. These relationships
are determined by a validated cognitive model of spatial
projective terms, AVS (Regier & Carlson,2001), which we
have used in previous robotics projects (Ward, St. Amant,
& Fields,2017). The process that walks an executed path
records the robot’s pose (i.e., its location and the direction
it is facing); for other paths, the direction is determined
by projecting through the locations of future steps. The
robot’s pose plus the relative bounds of a landmark are suf-
ficent for the model to estimate the acceptability rating of a
description—in front of, behind, left, or right—for a spatial
relationship. The highest-rated description is used.

The conversion is straightforward, but we present this level
of detail to highlight the judgment calls necessary to make the
problem of generating an explanation tractable. Locations are
the main issue: the only locations generated for a problem
instance are those relevant to the following of a given path,
producing a few hundred locations in contrast to more than
5 million distinct cost map cells. Similarly, the entire region
occupied by a landmark or an obstacle is not represented ex-
plicitly but only through relationships to path locations.

Explanations
Finally we reach explanations. Explanations can be divided
into two types (Leddo & Abelson,1986). A constructive ex-
planation is a direct application of the definition of scientific
explanation, identifying the causal or logical factors that give
rise to some result. Contrastive explanations make compar-
isons with one or more alternatives that may not be given
explicitly. Generation of alternatives in general is challeng-
ing (Leddo & Abelson,1986) and we will assume that any al-
ternatives are provided as input to the ASP inference process
(as explained in more detail below).

A problem instance is generated as described for the path
above. The ASP inference process fills in other predicates:

path(x4107,x4232),

landmark(vul,x5446),

at(x4107,1), move(x4107,x4108,1), at(x4108,2), ...

right(vul,58), ...

at(x4231,125), move(x4231,x4232,125), at(x4232,126),

finished(arrived(x4232,126))

Because the vulnerable region does not intersect the path,
it is translated into a landmark; from the start until T=58 the
region is in front of the robot; it is to the right until T=90
and thereafter behind. The necessary information for an ex-
planation is provided, in general laws for the domain (e.g., re-
quirements for and constraints on movement) and antecedents
as specified in the problem instance. In words, “Why did the
robot end up at(X4232,126)?” “Because it was at(X4231,125)

[antecedent], there was a step [antecedent], it executed a
cmd move [antecedent], and the result was a move to that loca-
tion [general law].” A set of such statements, working back-

ward to the antecedent of the robot at the start of the path,
constitutes a complete explanation representation.

For contrast, consider accounting for a hypothetical alter-
native path. In navigation, a straight line is a natural default
for a human navigator (Korpan & Epstein,2018). Bresen-
ham’s algorithm is used to generate a straight-line sequence
of cells on the cost map between source and goal locations.
In the navigation scenario, with the vulnerable region given a
LETHAL OBSTACLE cost, the generation process puts obstacles
on path locations inside the region. The inference process
then generates the following:

path(x8037,x8292), obst(vul,x8147), obst(vul,x8148),

at(x8037,1), move(x8037,x8038,1), at(x8038,2), ...

at(x8145,109), move(x8145,x8146,109), at(x8146,110),

finished(blockage(x8147,path(x8037,x8292)))

The inferred predicates describe the robot moving along
the path until reaching a location just outside the vulnerable
region; actions from that point wait until the time limit is
reached. As with a constructive explanation, there exists a
chain of domain laws and antecedents that account for this
result. Said differently, it cannot be inferred that the robot
reaches the goal location; it can be inferred that the robot will
be at a different location at the time limit. The relevant do-
main law is the constraint that the agent cannot move to a
location where there is an obstacle, which results in the infer-
ence of a blockage.

As a final example, we can change the cost of the region to
VULNERABLE and use the same straight path. The explanation
changes. In this case the robot can enter the region and that
the path can be completed. As with the relationship to land-
marks, the information that the robot was inside the vulnera-
ble region is inferred, and this information forms the basis for
comparison with other paths.

Discussion
We have presented a system for producing explanations of a
robot’s path planning and path following behavior. Part of
our work is analytical. We adopted two well-known criteria
for explanations: that they be understandable and that they
provide a logical or causal account of a system’s behavior.
Image schemas satisfy the first criterion, by assumption; we
have also presented evidence from the psychology literature
that this assumption is plausible. Satisfying the second cri-
terion involved showing that combinations of image schemas
could be interpreted in logical or causal terms. The ASP for-
mulation is a good match for the semantics of image schemas.

We are interested in the specific domain of navigation,
though we expect to move next to consider the larger context
of robot planning and acting. ASP supports inferences related
to commonsense reasoning (e.g., that a landmark remains to
my right from one step to the next as I move past).

Tradeoffs and limitions apply to our work. We call our
explanations “lightweight” because the explanation is obser-
vational, not coupled with the robot’s control processes. The
main advantage of this approach is pragmatic: We can make
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many fewer assumptions about whether the robot is being
controlled by a script, a state machine, an AI planner, or some
other possibility. The disadvantage is that “why” inferences
must be based on observations and domain knowledge with-
out limited control information. For example, we can imag-
ine a robot being programmed with a preference to pass on
the left, with obstacles being observable on the right, but if
this preference is not made public, the spatial relationship to
an obstacle is descriptive rather than part of an explanation
for why the robot chose its path.

Among the obvious limitations is the scope of the naviga-
tion task. It is reasonable to ask whether the representation
and processing described in previous sections are necessary
to explain such a simple activity. Activities with a cognitive
component (in this case navigation tasks in general but also
our use of image schemas for representation) do often turn
out to be subtle underneath, but it will require human-robot
interaction studies to evaluate the need for and the adequacy
of explanations in this domain.

This limitation suggests another: representations are diffi-
cult to evaluate in the abstract. Mueller et al. (2019), in an
extensive literature review of explainable AI, identify proper-
ties of good explanations and empirical techniques for evalu-
ation. Our work produces representations but not the surface
form of explanations, and we have not yet subjected them to
evaluation. Once textual (or multimedia) explanations can be
generated, human studies will be needed.
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Abstract

Workload assessment remains a challenging, multi-
dimensional problem. A variety of metrics are available
(behavioral, physiological, subjective), but their relationships
to each other and the underlying cognitive processes produc-
ing workload are not well understood. In the present paper,
we extend an approach known as Cognitive Metrics Profiling
to an unmanned vehicle control simulation. We show how
the model predicts behavioral performance and physiological
indicators of global workload in the task and produces insights
about sources of workload.

Keywords: cognitive workload; ACT-R; EEG

Introduction

Cognitive workload has been the focus of empirical and the-
oretical investigation for many decades (Cain, 2004). Lim-
itations in workload have captured the interest of cognitive
scientists, in part, because its effects pervade a wide range of
tasks, and it has direct practical implications. As an abstract
concept, workload is challenging to measure directly. Several
indirect measures have been used in the literature, including
subjective, behavioral, and physiological measures, each with
advantages and disadvantages.

Subjective or self-reported measures, are straightforward
to implement, but can be obtrusive if administered during
a task, and are vulnerable to biases when assessed retro-
spectively (Matthews et al., 2015). Behavioral measures in-
clude primary task or secondary task performance (e.g., ac-
curacy,reaction time). Primary task performance is unobtru-
sive, but doesn’t indicate how much capacity may remain for
addiitonal tasks. Secondary tasks can indicate spare capac-
ity, but are more obtrusive than primary tasks (Miller, 2001).
Physiological measures such as electroencephalogram (EEG)
and electrocardiography (ECG) have the advantage of being
unobtrusive and capturing changes in workload across time;
however, they are often contaminated with reactions to other
factors such as the environment (Miller, 2001).

The difficulty in defining and measuring workload poses
challenges for theoretical progress (Cain, 2004). Cognitive
architectures have the potential to provide a much needed the-
oretical framework for informing existing workload metrics.
Cognitive architectures have two advantages: (1) as formal
models, they provide precise descriptions of cognitive mech-
anisms and processes that underlie workload, and (2) as in-
tegrative theories, cognitive architectures are applicable to an

array of both simple and complex tasks across many cognitive
domains.

Cognitive Metrics Profiling (CMP) is one of the first ef-
forts to define and measure workload within a cognitive ar-
chitecture (Gray, Schoelles, & Sims, 2005; Gray, Schoelles,
& Myers, 2005). CMP uses the Adaptive Control of Thought
Rational (ACT-R; Anderson et al., 2004) cognitive architec-
ture to characterize the evolving cognitive demands of a task
and link those demands to performance predictions. In CMP,
workload is defined as a weighted sum of activity across mul-
tiple information processing modules (e.g., vision, motor, and
declarative memory).

Initial validation of CMP has been promising. Past work
has indicated a correlation between CMP and behavioral and
subjective indicators of workload (Jo et al., 2012). However,
CMP currently has two major limitations: 1) It has been eval-
uated only in small-scale tasks of short duration (e.g. paired
associates) (Gray, Schoelles, & Sims, 2005; Jo et al., 2012)
and 2) the relationship between CMP estimates and physio-
logical indicators of workload has not been investigated.

In the present paper, we seek to further validate and extend
CMP in two ways: first, we investigate the relationship be-
tween CMP and established EEG metrics of workload to fur-
ther establish convergent validity, and second, we use CMP
in an unmanned vehicle operator task to test its scaleability to
more complex tasks.

Cognitive Metrics Profiling

Theory and Rationale

CMP uses the ACT-R cognitive architecture to quantify the
degree to which cognitive resources (e.g., memory or vision)
are taxed during a given task. A profile detailing cognitive
resource usage can be analyzed to understand how task de-
mands affect cognition. For example, if the declarative mem-
ory module is in use for 80% of the task then the memory
demand of the task would be very high, making it difficult to
take on additional tasks also heavy in memory demand. Al-
ternatively, CMP can be used to measure global workload,
which is defined as a weighted sum of activity across mod-
ules. Jo et al. (2012) found that global workload derived from
CMP is correlated with subjective workload judgments.
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Present work

In the present work, participants completed an UV task and
we compared EEG and ECG metrics to workload profiles
generated from CMP. We used a UV task because it induces
a wide range of workload levels and taxes ACT-R modules to
varying degrees. Together, these factors provide a wide range
of workload conditions with which to validate CMP against
physiological indicators of workload.

Predictions

Figure 3 lists the predicted relationships between physiologi-
cal workload indicators and model-based workload generated
from CMP. Several studies have shown EEG band frequencies
correspond to manipulations of cognitive workload (Borgh-
ini et al., 2014; Lean & Shan, 2012). Alpha and theta have
been shown to decrease and increase with cognitive work-
load, respectively. Research has also suggested that different
frequencies within the alpha band capture different aspects
of workload, with lower alpha (8-10 Hz) reflecting alertness
and upper alpha (10-13 Hz) reflecting information-processing
(Klimesch, 1999). Ratios of band frequencies have also
shown some promise, with the Task Load Index (TLI), a ratio
of theta and alpha, and the Engagement Index (EI), a ratio of
beta to alpha and theta, increasing with increased workload
and task engagement, respectively (e.g., Kamzanova et al.,
2014; Freeman et al., 1999). In addition to EEG metrics, heart
rate variability metrics have been shown to decrease with in-
creased cognitive workload (Lean & Shan, 2012).

Method

Participants

Ten volunteer employees (Mage = 29.30; SDage = 6.99; Rage
= 19-41; Proportionmale = 50.00%) from Wright-Patterson
Air Force Base (WPAFB) who were unfamiliar with the task
completed an informed consent document and participated
in the study. Participants reported normal or corrected-to-
normal vision, normal color vision, and normal hearing. This
study was approved by the Air Force Research Laboratory
(AFRL) Institutional Review Board (IRB).

Task Description

Participants completed two 60-minute missions of varying
difficulty in IMPACT (Intelligent Multi-UxV Planner with
Adaptive Collaborative/Control Technologies; Draper et al.,
2017; Rowe et al., 2015)—a high fidelity UV simulator. We
manipulated the task density of the missions—the number
and difficulty of the tasks—to induce low vs. high levels of
work load. The IMPACT environment consists of an array
of monitors and two modes of communication: a microphone
and headset for auditory communication, and a communica-
tion window for text communication and alerts. Alerts and in-
structions to complete tasks are presented primarily through
the communication window and, to a lesser extent, via the
headset. The primary monitor features a map of the base, a

menu system for selecting and managing UVs, and a com-
munication window. Three secondary monitors provide alter-
native views of the base map, UV sensor and status informa-
tion, and a reference manual instructing participants how to
dispatch UVs for various tasks.

During a mission, the participant must complete a variety
of tasks that require scheduling and planning, resource man-
agement, multi-stage decision making, communication, and
information search and acquisition. Many tasks require the
participant to dispatch UVs either at predetermined times for
routine surveillance or in response to sporadic security events.
In order to correctly dispatch a UV, the participant must select
a UV with attributes required by the task, such as the destina-
tion, UV type (e.g., aerial vs ground), optional automatic ter-
mination, and maneuver (e.g., inspection or blockade). Par-
ticipants can terminate UV tasks either through scheduled au-
tomation or manually upon receiving instruction via the com-
munication system. Other types of tasks occur periodically
throughout the mission. For example, participants must re-
allocate resources in response to environmental or mechani-
cal problems, and answer information queries, requiring in-
formation to be found within the interface and relayed via the
communication window.

Protocol

Data collection for each participant was performed separately
over the course of a single day. First, participants were trained
to use the IMPACT system and to perform base defense ac-
tions. Training included participants performing a capstone
mission where the experimenter revealed any behavioral er-
rors and allowed the participant to ask questions. After train-
ing, participants were fitted with EEG and heart rate physio-
logical sensors and participant eye gaze was calibrated to an
eye tracking system. Participants then completed a low and a
high task density condition. Both conditions were 60 minutes
in length and were counterbalanced across participants.

Unmanned Vehicle Model

We developed a model of the UV task within the ACT-R cog-
nitive architecture (Anderson et al., 2004). A cognitive ar-
chitecture is a formal, computational framework for simulat-
ing and testing comprehensive theories of cognition (Newell,
1990). The ACT-R cognitive architecture consists of spe-
cialized information processing modules, spanning procedu-
ral and declarative memory, visual and auditory perception,
speech production, and motor execution. Cognition unfolds
over a series of production cycles which coordinates the flow
of information among the modules. Importantly, module ac-
tivity within the architecture forms the basis for workload
measurement within CMP.

In the interest of brevity, we will focus on the high level
strategy employed by the model, such as how it searches the
interface for tasks and how it resolves conflicts between com-
peting goals. The model’s strategy is illustrated as a flow
chart in Figure 1. The strategy is composed of three primary
phases: an active search phase, a passive monitoring/waiting
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phase, and a task execution phase. During the search phase,
the model inspects three locations within the interface for new
tasks: (1) a message window where information queries and
new task alerts appear, (2) a base map where certain problem
events appear, and (3) a list of Random Anti-Terror Measures
(RAMs) with target execution times and deadlines.

When a task is found, the model performs the task and
rechecks the interface for new tasks that might have become
available during the intervening time. When no task is found,
the model proceeds to the next location. At the third location,
the model compares the mission clock to the target times for
the RAMs. The model will perform a RAM if the mission
time is within a parameter we term leading time—a period
of time preceding the deadline, during which the model will
attempt to complete the task. If no RAMs can be completed,
the model enters a passive monitoring phase, in which it waits
for the next RAM and responds to events that pop up in the in-
terface. Periodically, during the monitoring phase, the model
will ”re-calibrate” its internal clock to the mission clock in an
effort to mitigate growing temporal estimation error.

Figure 1: A flow chart of the model’s high-level strategy for
the UV task. Boxes represent processes and diamonds repre-
sent decision points.

The model primarily uses a first come, first served policy
to manage competing task demands. This is why the model
reinspects the interface for new tasks upon the completion of
a current task. One minor exception to the rule occurs when
an audio message is presented during an ongoing task. In this
case, the model briefly suspends the ongoing task to encode
the message, resumes the suspended task, and later attempts
to complete the task associated with the auditory message.

Workload and Performance Measures

Physiological Workload Metrics We collected EEG, heart
rate variability, and eye tracking data for our physiological
workload metrics. Throughout the recordings, the eye track-
ing system had difficulty locating participant’s eyes due to
the experiment environment, producing several missing val-
ues. As a result, the ocular methodology and data are not re-
ported. A list of workload metrics and respective calculations
can be found in Table 1. EEG data was collected with a sam-
pling rate of 500 Hz from a dry electrode Quick-20 Cognion-
ics headset (Cognionics, CA, USA). Electrode locations fol-
lowed the 10-20 system with 19 active channels (Fp1, Fp2,
Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, Pz, P3, P4, P7, P8,
O1, and O2), two grounds located adjacent to Fp1 and Fp2,
and a linked ear reference. Electrode contacts consisted of sil-
ver/silver chloride matrixed for conductivity. EEG data was
cleaned and processed offline with an in-house script utiliz-
ing the MATLAB (The MathWorks, Inc., MA, USA) tool-
box EEGLAB (Delorme & Makeig, 2004). EEG data was
re-referenced to the linked ear reference and filtered using a
Parks-McClellan optimal equiripple finite impulse response
(FIR) band-pass (high-pass cutoff 1 Hz and low-pass cutoff
95 Hz) and notch filter (60 Hz). DC offset was removed and
a recursive least squares adaptive filter was used to remove
eye artifacts. To calculate EEG metrics, average band power
was extracted from 10 second epochs with no overlap using a
modified periodogram spectral estimator with a Hanning win-
dow. Specific metrics were then calculated from these band
power values and log transformed.

Inter-beat (RR interval) data was collected with a sampling
rate of 18 Hz from a Zephyr Bioharness 3.0 (Zephyr Technol-
ogy Corp., MD, USA). RR interval data was cleaned offline
with an in-house script by identifying outliers with a percent
change strategy based on data epochs (e.g., Kemper et al.,
2007; Persson et al., 2005). Outliers were removed and lin-
ear interpolation was utilized to extract values to replace the
outliers (e.g., Peltola, 2012).
Performance Evaluation Due to heterogeneity of the
tasks, we evaluated performance according to criteria that
depended on task-specific requirements. A score of 1 was
recorded if a participant satisfied a criterion and 0 otherwise.
For example, events that required the deployment of a UV
typically included a 3 minute deadline, correct destination,
correct UV attributes (e.g., correct sensor), correct opera-
tion (e.g., aerial inspection) and a category for miscellaneous
situation-dependent constraints (e.g., scheduled termination
of a task). Information queries were evaluated according to a
3 minute deadline and the correctness of the response.
Model Fitting We varied two parameters that exert broad,
cascading effects on the task dynamics and resource engage-
ment: latency factor, which affects overall memory retrieval
times by scaling memory activation, and leading time, which
specifies how far in advance a RAM is completed relative
to its deadline. In order to find the best-fitting parame-
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Table 1: Physiological metrics and respective calculations.

Metric Calculation
Alpha Band power in range of 8 - 13 Hz located

at Pz site.
Lower Alpha Band power in range of 8 - 10 Hz located

at Pz site.
Upper Alpha Band power in range of 10 - 13 Hz located

at Pz site.
Theta Band power in range of 4 - 8 Hz located at

Fz site.
Frontal Theta Calculated as the average of theta at F3 and

F4 sites (e.g., Kamzanova et al., 2014).
TLI Calculated as theta (Fz)/alpha (Pz) (Gevins

& Smith, 2003; Kamzanova et al., 2014).
EI Calculated as beta/(alpha + theta) from

averages of sites Cz, P3, Pz, and P4
(Kamzanova et al., 2014; Freeman et al.,
1999).

Mean HRV Calculated as the mean of RR intervals.
Median HRV Calculated as the median of RR intervals.

ters, we performed a grid search in which latency factor
2 {.5,1.0,1.5} and leading time 2 {2,4,8} were varied in-
dependently. We simulated the model 20 times for each pa-
rameter set 1.

The model predicted the number of participants that sat-
isfied each criterion for each task. The fit of the model was
evaluated according to a normalized root mean squared er-
ror (NRMSE) measure based on the standard deviation of the
binomial distribution. Some advantages of this approach in-
clude: (1) ease of interpretation, (2) it is more stringent at the
boundaries (e.g., 90% correct) where data are less variable,
and (3) it requires no pooling across heterogeneous data.

NRMSE was computed as:

NRMSE =

vuut 1
N

I

Â
i=1

Ci

Â
c=1

✓
x̂i,c � xi,c

si,c

◆2

where i = [1,2..., I] is an event index, c = [1,2...,Ci] is a
criterion index for each event, N = ÂI

i=1 Ci is the total num-
ber of criteria across all events, xi,c is the number of partici-
pants who satisfied criterion c for event i and x̂i,c is the corre-
sponding prediction. The standard deviation is computed as
si,c =

p
S · pi,c · (1� pi,c), where S is the number of partici-

pants and pi,c is the proportion of participants who satisfied
criterion c for event i. In cases where pi,c = 1, we adjusted
the value downward to the next possible value of 9

10 to prevent
division by zero.

1The grid search was small due to simulation times and the fact
that fit was only moderately sensitive to changes in parameter values.

Results

Behavioral Performance

After excluding 8 complex tasks that were difficult to model,
there were 27 and 43 tasks remaining in the low and high
task density conditions, respectively. To assess our workload
manipulation, we averaged across all tasks and their criteria
to yield two overall accuracy scores per subject—one for low
task density and one for high task density. A paired t-test (t(9)
= 5.93, p = .00, d = 1.87) revealed an effect of task density
on accuracy, high (M = .84) vs low (M = .94). As predicted,
mean subjective workload, as measured by the NASA-TLX,
was higher in the high (M = 53.33) vs low (M = 20.58) task
density condition, (paired t-test, t(9) = 8.75, p = .00, d = 2.77).

Model Results

The best-fitting parameters were latency factor = 1 and lead-
ing time = 8 (NRMSE = 2.03), suggesting that subjects were
proactive in setting up RAMs in advance of their deadlines.
The predicted accuracy was .98 and .90 for low and high task
density, respectively. Although the model tended to over-
estimate accuracy, it was able to capture the qualitative drop
in performance.

Workload was computed according to the formulas de-
scribed in (Jo et al., 2012) using consecutive time windows of
10 seconds (see Figure 2). Across the entire mission, mean
workload was higher under high task density (2.30) compared
to low task density (1.59), mirroring the behavioral perfor-
mance results and subjective workload assessments.

Figure 2: A comparison of global workload profiles gener-
ated by the model in the low workload and high workload
conditions.
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Workload Regression

We examined the association of the physiological workload
metrics with workload derived from the cognitive model (val-
ues were rounded to the nearest whole number to create
five workload levels, 0 - 4) and task density condition (low
vs high) using linear mixed effects modeling (LMM). We
performed robust linear mixed effects modeling (RLMM)
from the robustlmm package (Koller, 2016) in R (R Core
Team, 2017) due to violations of residual normality and ho-
moscedasticity assumptions. Baseline models included the
metric of interest and a random intercept for subjects. Aug-
mented models included the workload predictors of interest
(1. Level, 2. Level and Condition, 3. Level, Condition,
and Level x Condition) and a random intercept for subjects.
Robustified estimating equations from RLMM do not corre-
spond to likelihood statistics. As a result, we could not com-
pare the models with an ANOVA or obtain p values for the
fixed effects. However, Wald confidence intervals can be used
to examine the significance of the fixed effects.

RLMM analyses indicate that only EI had significant work-
load level and task density condition effects, suggesting in-
creased task engagement as model workload level increased
and as task density condition increased. The other EEG and
heart rate metrics suggested marginal and trending effects in
the expected directions, except for theta and TLI metrics in
terms of task density condition (see Figure 3).

Figure 3: Predicted direction of relationship and regres-
sion coefficients between physiological workload and model-
based workload. Main effects of level and condition are
shown. Dots represent mean coefficient estimates and hori-
zontal lines represent 95% confidence intervals. HRV coeffi-
cients were re-scaled by .01 for ease of presentation.

Discussion

CMP is a promising technique for characterizing workload,
but it remains untested in complex environments and its con-
vergent validity with other workload indicators, especially
physiological indicators, has not been fully established. In
the present study, we applied CMP to a multiple-vehicle con-
trol task that takes place over an extended time (60 minutes).
Further, we examined the relationship between workload es-
timates generated by CMP and physiological indicators com-
monly associated with cognitive load or global cognitive ac-
tivity. We found preliminary evidence for a relationship with
one such indicator, EI, suggesting that the activity of an ACT-
R model could be a valid way to characterize the cognitive
resources utilized by a task. This is a potentially useful tech-
nique for predicting overall workload levels and the specific
cognitive capacities affected by high workload moments.

We have provided a proof-of-concept here that CMP can
discriminate between low and high workload conditions even
in tasks that involve many complex interrelated subtasks over
a long period of time. The CMP model predicts both an in-
crease in subjective workload and a decrease in performance
across subtasks in high complexity conditions, as was ob-
served here. Future studies should look at CMP predictions
across a wider range of task difficulties to confirm that it ad-
equately captures the shape of the relationship between task
difficulty and predicted workload.

This study adds to previous work relating ACT-R models
to neural activity. It has been shown previously that buffer ac-
tivity in ACT-R can be related to the BOLD signal in fMRI,
suggesting that buffers may be meaningfully associated with
activation of certain populations of neurons in the brain (Borst
& Anderson, 2015; Qin et al., 2003). Moreover, it has been
demonstrated that activity predicted by ACT-R can be recov-
ered using Hidden Semi-Markov modeling of EEG data (An-
derson et al., 2016). The present study adds to that growing
body of research by suggesting that ACT-R activity may also
be associated with neural indicators of cognitive activity.

We believe the tentative relationship between CMP and EI
makes sense given that EI is thought to reflect multiple cog-
nitive processes and resources. However, this is a relation-
ship that warrants further exploration and clarification. The
relationship observed here between model activity and EI is
still very tentative due to noise in the indicator itself and the
absence of a specific physiological model relating the two
quantities. However, we propose these results justify con-
firmatory studies to test the hypothesis that CMP and EI may
both characterize similar cognitive processes associated with
workload. If this relationship is further explored, CMP may
offer a potential integrative framework for behavioral, physio-
logical, and subjective workload metrics, improving our abil-
ity to understand how they relate to each other and to the cog-
nitive operations that they measure.
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Abstract

Cognitive architectures based on neural networks typically use
the Basal Ganglia to model sequential behavior. A challenge
for such models is to explain how the Basal Ganglia can learn
to do new tasks relatively quickly. Here we present a model
in which task-specific procedural knowledge is stored in a
separate memory, and is executed by general procedures in
the Basal Ganglia. In other words, learning happens else-
where. The implementation discussed here is implemented in
the Nengo cognitive architecture, but based on the principles
of the PRIMs architecture. As a demonstration we model data
from a mind-wandering experiment.
Keywords: Spiking neural networks; Mind Wandering; Basal
Ganglia; PRIMS; Nengo; Skill Acquisition
Model code: https://github.com/ntaatgen/NengoPRIMs

Introduction
Symbolic cognitive architectures are very powerful in pro-
ducing flexible task performance. Part of task performance is
the ability to carry out steps in sequence. Although a produc-
tion system, the typical symbolic solution to sequential be-
havior, is a straight-forward solution, it is less clear how it is
carried out by the brain. The brain structures that are typically
implicated in sequential behavior are the Basal Ganglia and
the Thalamus1. For example, numerous ACT-R studies map
model activity onto brain areas, of which procedural memory
is mapped onto the Basal Ganglia (Anderson et al., 2004).
Several neural network architectures that include sequential
behavior have forwarded proposals for possible Basal Gan-
glia implementations (Stocco, Lebiere, & Anderson, 2010;
O’Reilly & Frank, 2006; Eliasmith et al., 2012). However,
these implementations impose quite some constraints on pro-
duction rules. In the Stocco et al. implementation, the amount
of information that can be transferred between modules is
limited to a single item of information. The Eliasmith et al.
solution does allow for the transfer of multiple items, but has
no clear way in which the procedural knowledge is learned.
In addition, one may wonder whether all human procedural
knowledge, which is often quite task-specific, can be stored
in a structure as small as the Basal Ganglia.

The work presented here is not a completely new proposal
for sequential behavior, but builds on the Eliasmith et al.
(2012) solution in Nengo, ACT-R (Anderson, 2007) and the

1To save space and improve readability, I will refer to the Basal
Ganglia/Thalamus combination as just the Basal Ganglia for the rest
of the paper.

PRIMs theory (Taatgen, 2013). A common idea among these
theories is that procedural knowledge involves controlling the
flow of information between different cognitive modules. For
example, in order to perform an Aural-Vocal task in which a
number has to be spoken based on the pitch of a tone (i.e.,
when you hear a low tone you have to say ”One”, when you
hear a middle tone you have to say ”Two”, etc.), an Aural
module determines the pitch, a Declarative memory module
determines the mapping from pitch to number, and a Vocal
module speaks the number. The role of procedural knowl-
edge is to take the result of the Aural module and feed this
into the Declarative module, and once the Declarative module
successfully produces a result, move that result to the Vocal
module.

If we assume that the knowledge to carry out a procedu-
ral task such as the aural-vocal task is encoded in the Basal
Ganglia, we have a problem. Tasks such as the aural-vocal
task, and also more complicated tasks that are typically part
of psychological experiments, can typically be carried out by
subjects after a short instruction and very little practice, even
though they have never done these tasks before. It is there-
fore not very likely that they train their Basal Ganglia in that
short period for this specific purpose. We therefore have to
look for a solution that uses existing representations in the
Basal Ganglia to do new tasks. To develop such a solution, it
is useful to look at the PRIMs architecture (Taatgen, 2013).
In PRIMs, procedural knowledge is decomposed into a fixed
set of primitive operations. Each of these operations either
makes a single comparison, or performs a single action by
transferring one knowledge element from one module to an-
other. Because the set of PRIMs is finite, we can imagine a
Basal Ganglia model that is capable of carrying out any of
the PRIMs, and is therefore in principle capable of perform-
ing any sequential task that can be defined in terms of PRIMs.

In this paper, I will first describe the overall architecture
of the Nengo/PRIMs model. It resembles the Spaun model,
a Nengo model that is capable of carrying out a range of
tasks Eliasmith et al. (2012). The main difference between
the two is that Spaun’s procedural knowledge is hardcoded in
the Basal Ganglia, whereas the Nengo/PRIMs model only en-
codes PRIMs in the Basal Ganglia, and uses a memory system
to trigger the correct PRIM at the right moment. I will then
use it to model an experiment by Smallwood et al. (2011).
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Figure 1: Overview of the Nengo/PRIMs model. Rectangles represent slots that can hold a single semantic pointer. Hexagons
are more complex neural structures. The rounded rectangle provides the inputs to the network at scheduled times.

Overview of the System
Nengo basics: Semantic Pointers
Nengo is a neural network architecture based on spiking neu-
rons. Clusters of neurons are used to represent vectors of
numbers, and mappings between these clusters can calculate
functions. For example, we can define a cluster of 100 spik-

ing neurons to represent the vector
(

x
y

)
, and connect this

to another cluster of spiking neurons that will calculate and

represent
(

x2

y2

)
.

The next level of abstraction is to let these vectors repre-
sent symbols. For example, a particular vector of numbers
can represent the color RED (we use 128 dimensional vec-
tors in the model here). A symbol, represented by a vector
of numbers, is called a semantic pointer in Nengo. Semantic
pointers can represent simple symbols, but can also be con-
volved to create more complex representations. For example,
we can represent a red ball by the following vector:

REDBALL = COLOR�RED+SHAPE�ROUND

Structure of the Model
With semantic pointers Nengo is capable of representing
quite powerful knowledge structures, which can be manipu-
lated with the appropriate mappings between clusters of neu-
rons. The structure we will use is depicted in Figure 1. Each
of the rectangles in the Figure represents a cluster of neurons
that holds a single semantic pointer (we will call them ”slots”
in this paper). The horizontal row of rectangles represents a
set of slots that hold information related to particular cogni-
tive modules, similar to buffer slots in ACT-R. For illustration

purposes, some values have been put into the boxes. They are
related to the experimental task to be discussed later. The
Goal slot represents the current task. It, together with the
visual input, is set by a separate process represented by the
rounded rectangle. This process sets the values in these slots
to particular values at particular times in the task. In the ex-
ample, the goal is set to WMTASK, and the visual input is set
to a red question mark.

The WM (working memory) slot can hold a single item of
information. Contrary to the other buffer slots, where infor-
mation decays away if not fed by another process, the WM
slot maintains its value until replaced. The three Memory
slots represent a limited long-term declarative memory. An
item can be placed in Memory1, after which an associative
memory (Memory) finds the associate memory that is then
placed in Memory2. In the example in the Figure, memory
is used to determine that NINE is ODD. The Action slot is
used to set the model’s action. In the Figure it is not con-
nected to anything, but it should be connected to an appro-
priate motor system, comparable to what has been done in
Spaun (Eliasmith et al., 2012). Finally, PrevPRIM refers to
the previous step the system has executed, because this will
be part of the input for determining the next step.

The model takes cognitive steps by transferring informa-
tion between the slots. These steps are represented by cog-
nitive operations that are basically quite simple: a symbol
(semantic pointer) that represents the source and destination
slots. For example, V1MEM1 means: copy the contents of
Vision1 to Memory1. MEM2AC means: copy the contents of
Memory2 to Action. The desired action is placed in the PRIM
slot, after which the Basal Ganglia carries out that action. The
Basal Ganglia follows the standard Nengo implementation,
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Task

Figure 2: Design of the Smallwood et al. (2011) experiment.

and has a rule for each of the possible PRIMs.
Although the PRIMs architecture also has primitive opera-

tions to test conditions, the Nengo/PRIMs model will achieve
this in a different way. The role of conditions is to determine,
given the state of the system, what actions need to be carried
out. Here we achieve this goal in a slightly different way: by
learning a mapping between the contents of all the slots and
the PRIM slot. We do this by combining all slots in a single
semantic pointer:

Combined=G�WMTASK+V1�Question+V2�RED+...

This combined semantic pointer is then mapped onto a PRIM
semantic pointer.

Learning
The advantage of changing conditions into a more abstract
mapping is that they can be learned instead of programmed.
The current model uses supervised learning, which is why
there is a Correct PRIM slot that is set by the input process.
Whenever the model produces a PRIM on the basis of the
combined state (initially random), that PRIM is compared to
the Correct PRIM, after which the weights that map the com-
bined state onto the PRIM slot are adjusted based on the error
using prescribed error sensitivity (PES) learning (MacNeil &
Eliasmith, 2011).

The design presented here is in principle task-general, al-
though some parts need to be expanded for a fuller function-
ality (e.g., a more faithful Declarative Memory).

A Model of Mind Wandering
As an illustration of the model explained above, I will present
a model of a task by Smallwood et al. (2011). In the experi-
ment, subjects had to do two different tasks. In the Choice Re-
action Task (CRT), subjects were presented with a sequence
of digits that were interleaved with fixation crosses. Digits
were presented for 1000ms, and the fixation cross for a vari-
able duration between 900 and 2100ms. As long as the digits
were black, no response was needed. After 2–5 black dig-
its, a colored digit would appear, to which a response had to

be made depending on whether the digit was odd or even.
In the Working Memory task (WM), subjects were also pre-
sented with a sequence of 2–5 black digits, except that a col-
ored question mark would appear instead of a colored digit.
At that point subjects had to respond whether the last digit
they saw was odd or even. Because subjects do not know
when the question mark would appear, they had to remember
the black digits. Occasionally, instead of the colored digit or
question mark, subjects would be presented with a so-callled
thought probe, to which they had to respond whether or not
they were attending the task, or were thinking about some-
thing else. Smallwood et al. found that in the CRT, subjects
were thinking about something else 68% of the time, whereas
in the WM task they did so in 51% of the cases.

Models of the CRT and WM Task
In order to be able to do the tasks, the Basal Ganglia had to
be prewired to carry out primitive actions. Primitive actions
consisted of a source slot and a destination slot. For example,
V1MEM1 would transfer the contents of the Vision1 slot to
the Memory1 slot, and WMMEM1 would transfer the con-
tents of the working memory slot to the Memory1 slot. For
efficiency reasons, not all possible combinations were imple-
mented, but a modest superset of the operations needed to
do both tasks: V1MEM1, MEM2AC, V1WM, WMMEM1,
MEM2WM, WMAC. A second function of the Basal Gan-
glia is related to learning, and was only active during learn-
ing: whenever a primitive action had completed its action,
the learning signal would be suppressed. The reason is that
we wanted to associate the operation with the state before the
operation had been carried out, and did not want an associ-
ation with the state after the operation (otherwise it would
learn to repeat the operation).

A second piece of knowledge the network needs is which
numbers are odd and which are even. An winner-takes-all
associate memory was implemented in the Memory part of
the model. Therefore, if a Semantic Pointer representing a
number is placed in Memory1, ODD or EVEN would appear
in Memory2.

The input node in the network feeds the input into the Vi-
sion slots of the network, and, during the training period, the
correct PRIM into the Correct PRIM slot. The timing of
the model is not yet completely consistent with the real ex-
periment, but compressed in time, and restricted to just two
black digits before the colored digit or question mark. Table 1
shows the schedule for what is presented by the input node to
both Vision slots, and the correct PRIM operator that needs
to be carried out at that point, which is send to the Correct
PRIM slot to be used in the learning process.

The timing of the experiment is not consistent with human
experiment, because many of the processes in Nengo are a lot
faster in simulated time, but a lot slower in real time. Neither
visual perception nor actions do take any time in this model,
and memory retrieval is extremely fast. On the other hand,
simulating a large model like this takes quite some real time,
which means that for simulation purposes this is a reasonable
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Table 1: Timing of the Inputs node. The V1 and V2 columns
are fed into Vision1 and Vision2, respectively, and the CRT
prim or WM prim is placed in the ”Correct PRIM” slot when
learning is switched on.

tstart tend V1 V2 CRT prim WM prim
0.0 0.3 Digit Black FOCUS V1WM
0.3 0.5 Blank Blank FOCUS FOCUS
0.5 0.8 Digit Black FOCUS V1WM
0.8 1.0 Blank Blank FOCUS FOCUS
1.0 1.3 Digit or Red V1MEM1 WMMEM1

question
1.3 1.6 Digit or Red MEM2AC MEM2AC

question
1.6 1.7 Blank Blank FOCUS FOCUS

compromise.
The general idea in the CRT is that the model does not

need to do anything until it sees a red digit. It then should
execute V1MEM1 to determine whether the digit it sees is
odd or even. After the memory has retrieved ODD or EVEN,
it should execute MEM2AC to make the retrieved parity into
an action. We are assuming here we have an action system
that can interpret this as an action.

The WM model needs to do a bit more work: every time a
black digit is presented, it should store that digit in working
memory with a V1WM action. Once it sees a colored ques-
tion mark, it should transfer the item from working memory
into the memory retrieval system: WMMEM1. Similarly to
the CRT, the result of that retrieval should be transferred to the
action slot, MEM2AC. Whenever the model does not need to
do anything, the table shows FOCUS. This is placed in the
PRIM slot, but there is no rule in the Basal Ganglia to carry
it out (because it doesn’t do anything). However, the Basal
Ganglia are not just waiting, but carries out a ”default” ac-
tion, which will be the basis for Mind Wandering.

Modeling Mind Wandering itself

As has become clear in the previous section, the Basal Gan-
glia are not always engaged in task-related actions. To model
mind wandering, we added a default action to the Basal Gan-
glia that initiates and perpetuates mind wandering as long as
it does not receive a specific instruction from the PRIM slot.
This option is more or less standard in the Nengo Basal Gan-
glia model, because you have to specify a default action for it
to do if no other action is sufficiently supported.

The idea is, following some existing symbolic models
(Taatgen et al., submitted), that Mind Wandering consists of
a train of thought simulated by a sequence of declarative re-
trievals. To mimic this in a simple way, we added a num-
ber of extra associations to the memory that also produces
the mapping between numbers and parity. More specifically,
we added that EPISODE maps onto CRY, CRY maps onto
REDEEM, and REDEEM maps onto LAUGH. The default

Basal Ganglia action is to feed EPISODE to Memory1, and
also copy the contents of Memory2 into Memory1. This
means that if there are no active PRIMs (either because it
is set to FOCUS, or when there is no specific PRIM active),
EPISODE is placed in Memory1, which will in turn lead to
the retrieval of CRY, which is fed back into Memory1 leading
to the retrieval of REDEEM, etc.

Training
Training consisted of 40 learning blocks, each with a CRT
trial and a WM trial. A trial lasted 1.7 simulated seconds fol-
lowing Table 1. After 40 trials the training input was blocked,
after which and additional 20 blocks were simulated and used
to determine the results.

Results
The critical mapping that the model needs to learn is between
the combined state of the system and the PRIM to be exe-
cuted. Figure 3 shows the input to the Basal Ganglia, which
represents the strength of each of the PRIMs in the PRIM
slot. The graphs shows the average of the 20 performance
trials after learning. On the left side of the graph the WM
task is shown, where the V1WM prim becomes active when-
ever there is a black digit. During the short periods between
the digits, there is no PRIM that is active enough to exceed
the 0.3 threshold, which means that the model will initiate
Mind Wandering during this (very brief) period. When the
red question mark is presented, the WMMEM1 PRIM is ac-
tivated, transferring the contents of working memory to a
memory retrieval. When the answer has been retrieved from
memory, the MEM2AC PRIM is activated to transfer the re-
trieval to the action slot. The interesting aspect of last action
is that the PRIM becomes active earlier than during training
(approximately at 1.2 seconds instead of 1.3 seconds), which
indicates that the learning has made sure that the PRIM has
been keyed to a successful retrieval.

For the CRT we can see that the model does nothing when
black digits are presented, even though the V1WM PRIM be-
comes active, but at a subthreshold level (indicating some
transfer from the WM task). When the red digit comes up,
the V1MEM1 PRIM becomes active, initiating the memory
retrieval and subsequently the MEM2AC PRIM. It is clear
that in the CRT the model has much more opportunity to mind
wander. This can be seen slightly more clearly in the Thala-
mus output graph (Figure 4), where a winner-takes-all com-
petition has produced a winning action in each of the stages.

To get an impression of how much Mind Wandering these
decisions produce, we need to look at the activity in Mem-
ory. Figure 5 shows the activity of various memory items in
a sample trial, measured in the Memory2 slot. We can see
mind wandering by the activation of the CRY, REDEEM and
LAUGH semantic pointers, while task-related activity con-
sists of activation of ODD and EVEN. Obviously, there is a
lot more Mind Wandering going on than the Basal Ganglia
results suggest. The reason is that after the Basal Ganglia
initiates Mind Wandering, it can dominate the activity in the
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Figure 4: In the output of the Thalamus we can see which action is selected, which is the highest value of the input.

memory system for a while as long as it is not needed by the
task (following the threaded cognition multitasking theory,
Salvucci & Taatgen, 2008). Nevertheless, in the CRT Mind
Wandering is supported by the Basal Ganglia for a much
longer period, which is reflected in more memory activity.

If we calculate the proportion of Mind Wandering over all
the model output (after training), we see that the Memory out-
put matches the data most closely (Figure 6). We have to take
these results with a grain of salt, though, because the timing
of the experiment does not match the real experiment.

Discussion
The main purpose of this work was to demonstrate that se-
quential tasks can be learned by a spiking neural network
following principles derived from symbolic architectures. In
this model it is no longer necessary to store all procedural

knowledge in the Basal Ganglia, but is stored in an associative
memory that can be located elsewhere, probably in the pre-
frontal cortex (Cole, Bagic, Kass, & Schneider, 2010). A key
difference with regular production models (and also Spaun),
is that it does no test conditions explicitly, but instead learns a
mapping between the cognitive system’s state and the action
to be performed. This has two advantages: sequential match-
ing of production rules in a neural network is cumbersome.
In order to do this in parallel, production rules already need
to be hard-wired in such models, which makes flexibility a
greater challenge. The second advantage is that it is much
easier to learn new productions.

Still, there is a lot of work to be done. The actions this
model can make are elementary PRIMs. However, in the full
PRIM theory, elementary PRIMs cluster together into general
purpose operators. The most probable place for this kind of
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Figure 6: Proportion Mind Wandering in the data, in the
model’s Basal Ganglia action output, and in the model’s
Memory output.

learning are the Basal Ganglia. Moreover, we used supervised
learning in this model. It is unclear where such a learning in-
put would come from, and therefore a form of reinforcement
learning is a better alternative.

The model’s mind wandering is a nice demonstration (also
showing the model can fit some data), but the Mind Wander-
ing itself is now modeled as a ”default strategy”. Instead, it
should also be modeled using primitive operations that com-
pete with task-related operators.
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Introduction 
To act more like a human, current cognitive models require 
a way to see and operate in the world. This methodology 
and access to a world as a requirement were discussed 
before, and several ways have been created. For instance, 
cognitive model interface management systems (CMIMS) 
based on user interface management systems (UIMS) were 
introduced to provide cognitive models with eyes and hands 
to interact with the same interface that users see (Ritter, 
Baxter, Jones, & Young, 2001).   

We report on developments extending JSegMan, which 
supports architectures to interact with uninstrumented 
environments (Tehranchi & Ritter, 2017). JSegMan was 
improved, and new features for the visual module were 
added. JSegMan creates a way to interact with all interfaces 
using an extended Java library (Robot package) to input 
motor commands (keystrokes, mouse moves, and mouse 
clicks), and uses an open source library to help with image 
processing (Sikuli) based on OpenCV.  JSegMan introduced 
visual patterns that are small images that represent the visual 
objects in cognitive architecturesvisual chunks in ACT-R. 
JSegMan parses the screen and uses the Template Matching 
method to find the target, the visual pattern, and area. 
Template Matching is a pattern-matching algorithm that 
compares a template (small image) against the overlapped 
image regions (the computer screen) pixel by pixel; the area 
that has the maximum matching score is the target area. 
JSegMan can identify pre-defined patterns. Visual patterns 
are defined for the cognitive model similar to memory 
chunks (Tehranchi & Ritter, 2018).  

JSegMan has been used with previous models. In all 
applications, JSegMan provides ACT-R (Anderson, Bothell, 
Byrne, Douglass, Lebiere, & Qin, 2004) cognitive models 
with eyes and hands interaction. After describing it, we 
report here two new interfaces it uses.  

JSegMan and the Dismal Task 
JSegMan (Tehranchi & Ritter, 2018) has been used along 
with the Dismal spreadsheet task in Emacs using an existing 
large ACT-R model (Paik, Kim, Ritter, & Reitter, 2015). It 
has 29 rules and 1,152 declarative memory task elements. 
JSegMan illustrates the missing knowledge in the original 
model because with JSegMan the effect of actions on the 
interface are visible and are trackable. For instance, we 

found one missing click in the original model. JSegMan 
allows the model not just to model the task performance but 
actually to perform the task. It conducts a large, 20 min., 
non-iterated task with 14 subtasks. Also, most of the key 
press requests to the motor module required a hand/finger 
adjustment. These differences between the task 
requirements and the model’s performance were visible 
because the results in the interface did not match the 
expected output. Matching behavior in the target interface 
can be an essential way to validate models in the future. We 
adjusted 162 declarative chunks in the original Dismal 
ACT-R model by adding a new slot for visual objects. 
Additionally, to model eye movements, we added 52 new 
visual objects and visual locations. The use of JSegMan also 
provided a better fit to the human data. The model with 
JSegMan predicted the response times more accurately 
while, importantly, using the same, unmodified interface 
that the human subjects used. The correlation improvement 
is not a reliable increase, but the difference in MSE was 
reduced by 47% (Tehranchi & Ritter, 2018). 

JSegMan and the Biased Coin 
The biased coin model is based on learning in a probability 
choice experiment in the ACT-R tutorial (Bothell, 2017). 
Figure 1 shows the experiment window implemented in 
ASP.Net. After seeing “Ready,” the model either clicks on 
the “Head” button for heads or the “Tail” button for tails. 
The feedback indicating the correct answer, either "Head" or 
“Tail” is displayed; “Match” is displayed in green, and for 
incorrect answers “Wrong” in red is displayed. Figure 2a. 
illustrates a summary of the model. In this experiment, 
heads are the correct choice on 70% of the trials without 
considering the previous user choices. The ACT-R model 
begins with a 50% chance of heads and tails. Figure 2b 
shows its first choice was a tail. The model adjusts the head 
and tail probability based on what the model, with JSegMan 
eyes, can see on screen through utility learning. Finally, 
after 100 trials the model average responding for heads 
approaches 70%. 

 

 
Figure 1.  The biased coin interface used by JSegMan. 
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Figure 2. (a) The simplified flowchart used by the ACT-R model 

and patterns used by JSegMan. (b) The probability of choosing the 
head, green, and the tail, blue, over 100 trials. 

 
We learned that due to the bidirectional communication 

what the model can see can affect the learning procedure.   

JSegMan and the Excel Spreadsheet Task 
We have started to extend JSegMan to interact with an 
Excel spreadsheet, shown in Figure 3, to perform the Dismal 
task, shown in Table 1 (similar to Paik et al., 2015). When 
compared to the existing dismal model of the task in an 
Emacs spreadsheet, this model will help explore the effect 
of the interface on task and requires JSegMan to be 
extended.  We have (a) added a marker showing the area of 
attention’s location (shown in Figure 4), (b) provided 
bidirectional communication between JSegMan and ACT-R 
model, and (c) reduced further limitations in cognitive 
modeling (e.g., models can directly interact with the same 
environment as a user and made it more realistic).  

It remains to gather data on this version, collect more eye 
movement data to simulate attention shifts more accurately, 
model more of the task, and thus better predict human 
performance. Also, with JSegMan we can show whether the 
eyes follow the hands successfully. 
 

  
Figure 3.  The dismal task starts, on the left side, and on the right 

side, the final task state is in Excel. 
 
Table 1. The dismal task subtasks.  

Tasks 
(1) Open File 
(2) Save As 
(3) Calculate Frequency (B7 To B11) 
(4) Calculate Total Frequency (B14) 
(5) Calculate Normalization (C2 To C6) 
(6) Calculate Total Normalization (C14) 
(7) Calculate Length (D2 To D11) 
(8) Calculate Total Length (D14) 
(9) Calculate Typed Characters (E2 To E11) 
(10) Calculate Total Typed Char. (E14) 
(11) Insert Two Rows 
(12) Type In Name (A1) 
(13) Insert Current Date (A2) 
(14) Save As … 

 

 
 

Figure 4.  JSegMan’s area of attention (the pupil) on an Excel 
spreadsheet. 

Conclusion and Further Research 
These interactive models and agents are essential for 
cognitive science and also important for agent-based 
modeling and computational organizational theories because 
they provide social agents that can interact with the world. 

JSegMan is about adding the capabilities to model the 
details of visual, and motor modules for cognitive 
architectures, and what they can teach us about how the 
human mind works, how an analysis of vision and motor as 
they support and implement cognition might further our 
understanding of the human mind. 
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Abstract

Recent psychological experiments on conditional reasoning in-
dicate the relevance of content, background knowledge and
form on the sort of an individual’s inference. Based on two of
the most prominent theories, probabilistic and mental model
based approaches, we develop a probabilistic mental model
theory based on Pearl’s ε-semantic. By modeling subjective
belief in possible worlds, influenced by form and content of a
conditional, our model is able to express numerically an indi-
viduals’ degree of belief in a conditional, while providing an
explainable semantics applicable to other domains.
Keywords: Probabilistic Cognitive Models; Reasoning; Con-
ditionals; Predictive Modeling

Introduction
A core goal of cognitive science is to develop a unified theory
of cognition. Johnson-Laird’s Mental Model Theory (MMT,
Johnson-Laird, 1983) is a key theory in the area of human rea-
soning, and a good candidate for offering a unified theory for
a broad range of domains. Its intuitive, comprehensible form
allows it to be applied to many domains within reasoning,
and its algorithmic and predictive nature enables a qualitative
evaluation on explored as well as novel tasks. The MMT as-
sumes the creation and transformation of mental models to
describe the scenario.

Another core unified theory for human reasoning are prob-
abilistic approaches. The core assumption is that uncertain
reasoning is the basis for rationality, rather than certain rea-
soning (e.g., Oaksford, Chater, & Larkin, 2000), which leads
to the development of probabilistic reasoning models. These
have been applied to a plenitude of reasoning domains (e.g.,
Elqayam & Over, 2013).

The advantages of probabilistic approaches to modeling
human reasoning are, among others, the inherent ability to
handle uncertain knowledge and the possible incorporation of
a subjective degree of belief (e.g., Elqayam & Over, 2013).

In this paper, we propose a combination of the two ap-
proaches. We take the Mental Model Theory and extend
it with a probabilistic account of the mental models using
Pearl’s ε-semantics (Pearl, 1991). We interpret the mental
models in a conditional task, reported by Singmann, Klauer,
and Beller (2016), as possible worlds in the sense of modal
logic, and calculate their relative probabilities. One of the
factors which define human reasoning is the type of content
and the presentation form. More specifically, the individ-
ual’s background knowledge, and the presentation form of

the premises that participants are presented with, can heav-
ily influence the drawn conclusions (e.g., Singmann et al.,
2016). To account for this, we extend our model to give pre-
dictions for the different contents and presentation forms used
in Singmann et al. (2016). The paper is structured as fol-
lows: First, we give a short introduction to conditionals, fol-
lowed by two probabilistic approaches to conditional reason-
ing. Afterwards we introduce the ε-semantics and our cog-
nitive model for the conditional reasoning task. Finally, we
analyze the model’s performance on the empirical data and
compare it to the model in Singmann et al. (2016).

Reasoning with conditionals

Conditionals are statements of the form ‘If p then q’ (also
written as p→ q), where p is called the antecedent, and q, the
consequent. Given a conditional rule, i.e., ‘if p then q’, (also
called a major premise) and a minor premise that describes
the current situation, for example ‘p is true’ (given as p), in-
dividuals are asked to infer a conclusion. If an individual is
given a conditional ‘p→ q’ and a minor premise p, and they
infer q, they followed the modus ponens inference form. If
instead they were given the minor premise ‘¬q’ (‘q is false’),
and they conclude ‘¬p’, they followed the modus tollens in-
ference form. There are four inference forms: modus ponens
(MP), modus tollens (MT), affirming the consequent (AC),
and denying the antecedent (DA), as shown in Table 1.

Table 1: The four inference forms.

MP AC DA MT
p→ q

p
q

p→ q

q
p

p→ q

¬p
¬q

p→ q

¬q
¬p

When interpreting conditionals as causal relationships, in
the real world we encounter so-called disablers and alterna-
tives. Disablers are events that prevent q from happening,
even if p has occurred, and alternatives describe events that
enable q to happen, even if p has not, e.g.:

If a balloon is pricked with a needle then it will pop.
Disabler: The balloon was not inflated at all.
Alternative: The balloon was pricked with a pen.
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Data
The experiment we modeled in this paper, experiment 1 from
Singmann et al. (2016), tested participant’s endorsements
for each of the four inference forms, depending on relative
amount of disablers and alternatives, and the form of presen-
tation. In the experiment, participants were asked to give an
estimate of the probability, between 0% and 100%, for the
different types of problems. The disablers and alternatives are
expected to influence the estimates given by the participants.
The second independent variable was the form: participants
were given either no major premise (reduced inference), the
major premise in form of a conditional, or the major premise
as a biconditional (i.e., ‘if and only if p, then q.’). In all
three cases they were given a minor premise and a conclusion
whose probability they were supposed to rate. The tasks used
in the experiment are presented in Table 31.

Dual-Source model
Oaksford et al. (2000) proposed a probabilistic interpreta-
tion of conditional rules by using the probabilities of the an-
tecedent (a = P(p)), consequent (b = P(q)), and exception
(ε = P(¬q|p)). Singmann et al. (2016) extended this model
by disentangling the logical form and content of a condi-
tional, by contrasting individuals’ responses to regular con-
ditional inferences, and, reduced inferences (which omit the
conditional, and present only a minor premise). They are
using three types of parameters: ξ(C,x) (knowledge-based
component, depending on the content C and inference x),
τ(x) (form-based component reflecting the subjective degree
of belief in the inference x), and λ (a weight given to the
form-based knowledge). Endorsement of the reduced infer-
ence x with content C is expressed through the knowledge-
based component, as shown in Eq. 1, and endorsement of the
full inference x with content C is shown in Eq. 2.

Er(C,x) = ξ(C,x) (1)

E f (C,x)= λ{τ(x)+(1−τ(x)) ·ξ(C,x)}+(1−λ)ξ(C,x) (2)

ε-semantics
As described by Pearl (1991), ε-semantics is a ‘formal frame-
work for belief revision’, where belief statements are state-
ments of high probability, and belief revision conditions cur-
rent beliefs based on new evidence. Simply put, we have a
probability function P, which is defined over a set of possible
world states, W . A probability P(w) is assigned to each world
state w as a polynomial function of some small, positive pa-
rameter ε. ε-semantics distinguishes between sentences that
describe truths and general tendencies (e.g. ‘Birds fly.’), and
sentences that describe findings or observations in a specific
situation (e.g. ‘All blocks on this table are green.’). This is
reflected in natural language when using the word ‘If’ (Pearl,
1991). A statement like ‘If it’s a bird, it flies’ is reasonable,

1We would like to note that the choice for the conditional con-
tent in the ’Girl’ case can be thought of as slightly controversial,
which unfortunately leads to some inconsistencies and difficulties
when trying to model and/or analyze the data.

while ‘If this block were on this table it would be green.’ is
not. In order to lay basis for our reasoning model, we will
take into consideration the following definition according to
Pearl (1991, p. 5):

Let L be a language of propositional formulas, and let a
truth-valuation for L be a function t, such that t maps the
sentences in L to the set {0, 1} (0 - ‘false’, 1 - ‘true’).
A probability assignment P(w) is defined over the sen-
tences in L, where each truth valuation t is regarded as
a world w, and ∑w P(w) = 1. This way a probability
measure is assigned to each sentence l of L.

Model
In our model we aim to define worlds described by condi-
tional rules following the definition given above. Given a
conditional ‘If p then q’, we take into consideration all the
possible worlds, i.e. all the combinations of truth-values for
p and q, as shown in Table 2. As stated in the definition,
we have a probability distribution P defined over all worlds,
assigning a probability value pi to each one of them.

Table 2: The possible worlds described by ‘If p then q’, the
probability distribution P and probability values pi, 1≤ i≤ 4.

p q P
0 0 p1
0 1 p2
1 0 p3
1 1 p4

For example, in the case of the conditional “If it is a bird,
then it flies”, the probability value assigned to the world
where it is a bird and it is not flying (p = 1,q = 0) is p3.

P(β|α) = P(α∧β)

P(α)
(3)

As mentioned earlier, individuals are asked questions of
the form ‘Given p, how likely is it that q?’, which is actually
conditional probability, in this case noted as P(q|p). Follow-
ing the standard definition of conditional probability (Eq. 3),
we obtain the four equations shown below, which describe
the four inference forms using the probability distribution P
of the conditional’s worlds (Table 2):

MP: P(q|p) = p4

p3 + p4
DA: P(¬q|¬p) =

p1

p1 + p2

AC: P(p|q) = p4

p4 + p2
MT: P(¬p|¬q) =

p1

p1 + p3

Due to individual differences between reasoners, and a di-
vergent background knowledge, it follows that every individ-
ual would have a different probability assignment for a certain
world. Using these four equations, we can model each par-
ticipant individually, and determine their personal probability
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Table 3: Contents used in Singmann et al. (2016) experiments.

Keyword Content Disablers Alternatives
Predator If a predator is hungry then it will search for prey. Few Few
Balloon If a balloon is pricked with a needle then it will pop. Few Many

Girl If a girl has sexual intercourse then she will be pregnant Many Few
Coke If a person drinks a lot of coke then the person will gain weight. Many Many

Figure 1: Box plots depicting individual world probability values pi for every task. Probability values between 0 and 1 – no
conditional (reduced inference) (left), conditional (center), and biconditional (right) case. Labels show the amount of disablers
and alternatives for the task, e.g.: Few/Many→ Few disablers / Many alternatives.

distribution, by taking the probability values p1, p2, p3 and
p4 as our parameters and fitting them to their endorsements
of the inference forms for every task. Since the parameters
are bounded by the sum (∑i pi = 1), we have only three free
parameters in our model.

Parameters

The parameters in our model, p1, p2, p3, p4, describe the
probability values an individual assigns to the possible worlds
described by the conditional. In this section we examine our
parameters in more depth and we aim to show that our model
can account for the effect of disablers and alternatives on con-
ditional reasoning, and, also, for the effect of individuals be-
ing presented with a reduced inference or a (bi)conditional.

Interpretation. Following Table 2, we will first focus on p2
and p3. Through these two parameters the effect of disablers
and alternatives can be shown. p2 is the probability that even
though p happened, q did not, which is interpreted as the out-
come of a disabler preventing q from happening. p3, on the
other hand, is the probability of the world when even though
p did not happen, q did, which is interpreted as the outcome
of an alternative enabling q to happen. The effect of the dif-
ferent presentation forms can be shown through p4 and p1.
p4 is the probability that both p and q happened, can be in-
terpreted as an individual’s degree of belief in the conditional
rule. p1 is the probability of the world where neither p, nor q
happens, which can show an individual’s belief in a rule as a
biconditional (if and only if).

Hypotheses. We have two types of hypotheses about
changes in the parameter values: First, tasks with few alterna-

tives in contrast to tasks with many alternatives (and the same
amount of disablers), may result in an increase in p2. Simi-
larly, we expect p3 to be higher for tasks with many disablers
in contrast to tasks with few disablers (for the same amount of
alternatives). So, both p2 and p3 increase when comparing a
task with few disablers and alternatives with a task with many
disablers and alternatives. Second, the belief in the task’s
rule increases (and so does p4) when individuals receive a
(bi)conditional in contrast to a reduced inference. We expect
an increase of p1 in the biconditional case. In the reduced
inference case, a belief that ‘if p then q’ is not present, which
may lead to a high p1 in some cases, as an expression of the
lack of belief in the influence of disablers/alternatives. In the
conditional case, the conditional still might be interpreted as a
biconditional (e.g. Cummins, Lubart, Alksnis, & Rist, 1991).
So, the change for p1 depends on the type of conditional.

Fitting. The fitting of our model to the data was done using
Python’s scipy.optimize.minimize function, by minimiz-
ing the RMSE with the L-BFGS-B bound-constrained mini-
mization method2.

Figure 1 shows the individual parameter fit for every task in
all three conditions. The first observation that we can make,
when looking at the plots, is that the values of p2 and p3 are
generally higher in the reduced inference case, compared to
the conditional and biconditional case, where p4 and p1 are
higher, as we assumed in our hypothesis. This also leads us
to believe that individuals’ reasoning is more ’logical’ when
they are presented with strict conditional rules, compared

2https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html
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Table 4: Mean percentages of the individuals’ values for p1 and p4 for every task in each condition (reduced inference, condi-
tional, biconditional); Means of the differences between individuals’ values for p1 and p4 for reduced inference - conditional,
and conditional - biconditional, for every task. (D/A - Disablers/Alternatives; F - Few; M - Many; Red. Inf. - Reduced
Inference; Cond. - Conditional; Bicond. - Biconditional)

Task
pi

Red. Inf. Cond. Bicond. Red. vs. Cond. Cond. vs. Bicond.
D/A Mean Mean Mean Mean P-value Mean P-value

FF p1 64.60 60.60 75.20 -4.00 .869 14.60 .039
p4 79.20 87.40 87.20 8.20 .072 -.30 .715

FM p1 74.40 71.40 73.30 -2.90 .981 1.90 .903
p4 50.90 64.20 81.70 13.30 .159 17.40 .079

MF p1 58.60 66.50 63.70 7.90 .304 -2.80 .408
p4 39.20 81.50 71.30 42.30 < .001 -10.20 .229

MM p1 61.80 58.20 73.50 -3.50 .688 15.30 .131
p4 54.50 71.50 81.70 17.00 .004 10.10 .082

to when they have to completely lean on their background
knowledge, and be more creative when thinking about possi-
ble disablers and alternatives. Our next observation is about
the change in values of p2 and p3 between tasks with varying
amounts of disablers and alternatives. As we assumed in our
hypothesis, it can be seen that the tasks with many alterna-
tives have higher values for p2, compared to the other tasks,
and the tasks with many disablers have higher values for p3.

Results and Discussion

Influence of disablers and alternatives. Our first hypoth-
esis was about the influence of disablers and alternatives on
p2 and p3. We first calculated the means of all individuals’
values for p2 and p3, for each task, which are shown in Ta-
ble 5, for the reduced inference case, since that is the case in
which we can observe the application of individuals’ back-
ground knowledge purely without having the influence of the
(bi)conditional. We can immediately see that p2 and p3’s val-
ues have a higher mean in the presence of many alternatives,
or disablers, respectively.

Afterwards, we looked into pairs of tasks that differ in
the amounts of disablers and alternatives, and how the p2
and p3 values change between them. Table 6 shows the
means of the differences between the all pi values of the
pairs of tasks. In order to determine the statistical signifi-
cance of the change of the probability values between tasks
we performed the Wilcoxon signed-rank test on them, us-
ing Python’s scipy.stats.wilcoxon method3. The analy-
sis confirms our hypothesis that when increasing the amount
of alternatives, the value of p2 increases, and when increasing
the amount of disablers, the value of p3 increases.

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.wilcoxon.html

Table 5: The mean percentages of the values for p2 and p3
for every task in the reduced inference case.

Task
pi

Reduced Inference
Disablers Alternatives Mean

Few Few p2 8.70
p3 6.00

Few Many p2 28.30
p3 5.10

Many Few p2 9.00
p3 82.00

Many Many p2 37.50
p3 32.10

Influence of a (bi)conditional. Our second hypothesis was
about the influence of giving a (bi)conditional on p1 and p4.
We first calculated the means of all individuals’ values for p1
and p4, for each task, and every condition, which are shown
in Table 4. The p4 values in the (bi)conditional case are larger
compared to the reduced inference case, as expected. How-
ever, the changes in the p1 values, are not uniform.

Comparison

After fitting our model to the data, we compared its fit to the
Dual-Source model (DSM) on the same data. We obtained the
DSM parameter values for the participants from https://
osf.io/zcdfq/, and used them accordingly in equations 1
and 2, as described above. The DSM uses 22 parameters to fit
all four tasks for all conditions4, and our model uses 3 param-
eters, but is fitted respectively to all problems. Hence, we can
determine changes in the pi across tasks. To determine the
goodness of fit we calculated the RMSE and R2. The mean
RMSE for our model was .020, and R2 was .963, compared
to DSM’s mean RMSE of .049, and R2 of .815. It should be
noted that the DSM has certain limitations – the ξ(C,x) pa-
rameter values can only be obtained when fitting the reduced

416 values for ξ(C,x), 2 values for λ, and 4 values for τ(x)
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inference case, so if the model was presented only with, e.g.,
the conditional case it would not be possible to fit it.

Table 6: Means of percentages of the differences ∆pi between
individuals’ values for all pi for combinations of tasks in the
reduced inference case, calculated as pi(Task 1) - pi(Task 2).
(D/A - Disablers/Alternatives; F - Few; M - Many)

Task 1 Task 2
pi

Reduced Inference
D/A D/A Mean ∆ P-value

p1 9.78 .178

F/F F/M p2 19.60 .001
p3 -9.00 .016
p4 -28.35 .004
p1 -5.97 .347

F/F M/F p2 -7.70 < .001
p3 76.00 < .001
p4 -40.04 <.001
p1 -12.57 .036

F/M M/M p2 9.20 .063
p3 27.00 < .001
p4 3.65 .739
p1 3.17 .769

M/F M/M p2 36.60 < .001
p3 -49.80 < .001
p4 15.34 .011
p1 -2.80 .750

F/F M/M p2 28.80 < .001
p3 26.10 < .001
p4 -24.70 .002

Reducing the number of parameters
By fitting our 3 parameters to each task, we achieved a good
fit, and our next goal will be to try to reduce the fitting to each
task, while still obtaining satisfactory results, by challenging
the predictive capabilities of our model. We tackle this by
taking into consideration the earlier observations of how the
probability distributions change between tasks and also be-
tween conditions, which leads to two different approaches. In
the following, where necessary, a probability value will be de-
noted in the following way: px

i (t), where t is the first letter of
the task’s keyword (p, b, g, c), x is the condition (r for reduced
inference, c for conditional, and b for biconditional), and i is,
as before, the probability value’s index (i ∈ [1,2,3,4]). So,
for example pr

3(g) denotes the p3 value for the ‘girl’ task in
the reduced inference case. To measure the goodness of pre-
diction for every approach we calculated the RMSE5.

Task probability distribution differences. The first ap-
proach focuses on how probability values change between
tasks, especially based on the different number of disablers
and alternatives. This can be done in two different ways
which differ in the number of parameters used.

5In the case of prediction we do not take into consideration the
R2 measure, because, as shown in (Alexander, Tropsha, & Winkler,
2015), RMSE provides a better prediction quality measure.

Constant differences. When we fit the model initially we
calculate the differences of the probability values between
tasks, for the reduced inference, conditional, and bicondi-
tional case. By taking the means of those differences we ob-
tain constant values which describe the general change of the
probabilities among participants. For example, Table 7 shows
the constants for probability value changes from the ‘Preda-
tor’ task to the other three tasks in the conditional case.

Table 7: Constants for probability value changes ∆pi between
tasks for the conditional case. Values between 0 and 1. D/A -
Disablers/Alternatives; F - Few; M - Many

Task 1 (D/A) Task 2 (D/A) ∆p1 ∆p2 ∆p3 ∆p4
F/F F/M .109 .113 .010 -.232
F/F M/F .06 -.035 .141 -.059
F/F M/M -.023 .237 .113 -.159

Now, we fit the participant’s endorsements for one task,
for which we need only three parameters, and predict the
endorsements for the other tasks by using the constants, as
shown in Eq. 4, where f it is the task we have already fitted,
and pred is the task whose endorsements we predict.

px
i (pred) = px

i ( f it)− const( f it, pred) (4)

E.g., if we have fitted the probability values for the ‘Preda-
tor’ task in the conditional case, and we want to predict the
p2 value for the ‘Balloon’ task, we will calculate it by:

pc
2(b) = pc

2(p)−0.113 (5)

The RMSE values for this approach can be found in Ta-
ble 8. Using the mean of the differences encourages an as-
sumption that no matter how different individuals are, and
how diverse their background knowledge is, there are still
some similarities in their reasoning.

Individual differences. We are once again focusing on the
differences in the probability values between tasks among
participants, but now we are taking into consideration the
individual differences. Here we are given the probabil-
ity values for all tasks in the reduced inference/conditional
case, and the probability values for one task in the condi-
tional/biconditional case. Using that information, we aim
to predict the endorsements for the other tasks in the con-
ditional/biconditional case. In this case we need 2×3 (3 pa-
rameters for 2 tasks, reduced inference/conditional) + 3 (3
parameters for 1 task, conditional/biconditional)→ 9 param-
eters. Eq. 6 shows how the calculations of the probability
values for the conditional case are done, and Eq. 7 shows the
same for the biconditional case.

pc
i (t2) = pc

i (t1)− (pr
i (t1)− pr

i (t2)) (6)

pb
i (t2) = pb

i (t1)− (pc
i (t1)− pc

i (t2)) (7)
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Table 8: Prediction results when using constants to obtain
probability values. ‘Task’ is the task to which we fit the
model and use to predict the other three tasks. (D/A - Dis-
ablers/Alternatives; F - Few; M - Many; Red. Inf. - Reduced
Inference)

Red. Inf. Conditional Biconditional
Task (D/A) RMSE RMSE RMSE

F/F .245 .125 .231
F/M .260 .118 .191
M/F .226 .136 .200
M/M .210 .099 .181

E.g., if we have fitted all the parameters for the reduced
inference, and the ‘Girl’ task in the conditional case, and we
want to predict the probabilities for the ‘Coke’ task in the
conditional case, we would follow Eq. 8.

pc
i (c) = pc

i (g)− (pr
i (g)− pr

i (c)) (8)

Table 9: Prediction results when using individual task dif-
ferences to calculate probability values. ‘Conditional’ and
‘Biconditional’ denote predicting for that condition. (D/A -
Disablers/Alternatives; F - Few; M - Many)

Conditional Biconditional
Fitted task (D/A) RMSE RMSE

F/F .336 .255
F/M .327 .238
M/F .222 .336
M/M .263 .203

The RMSE for this approach can be found in Table 9. This
approach makes the assumption that there are similarities in
the individual differences of probability values between tasks
for all conditions.

Condition probability distribution differences
In this approach we focus on how the probability values
change between the reduced inference and the conditional
case and between the conditional and biconditional case. We
are aiming to predict a task in the conditional/biconditional
case, by fitting another task in both, the reduced inference
and conditional/conditional and biconditional case, and the
to-be predicted task in the reduced inference/conditional case,
which totals to 9 parameters (2×3 + 3). We will only take into
consideration individual probability differences. Eq. 9 and 10
show how the calculations of the probability values are done.

pc
i (t2) = pr

i (t2)− (pr
i (t1)− pc

i (t1)) (9)

pb
i (t2) = pc

i (t2)− (pc
i (t1)− pb

i (t1) (10)

E.g., if we have fitted the probability values for the ‘Bal-
loon’ task in the conditional and biconditional case, and the
‘Coke’ task in the conditional case, we can calculate the prob-
ability values for the ‘Coke’ task in the biconditional by 11.

pb
i (c) = pc

i (c)− (pc
i (b)− pb

i (b)) (11)

Table 10: Prediction results when using individual condi-
tion differences to calculate probability values. ‘Fitted task’
is the task that is fitted in both conditions, whose parame-
ter differences are used to predict other tasks. (D/A - Dis-
ablers/Alternatives; F - Few; M - Many; Red. - Reduced In-
ference; Cond. - Conditional; Bicond. - Biconditional)

Red. to Cond. Cond. to Bicond.
Fitted task (D/A) RMSE RMSE

F/F .203 .152
F/M .283 .261
M/F .444 .167
M/M .297 .322

The RMSE values for this approach can be found in Ta-
ble 10. This approach makes the assumption that the individ-
ual differences of probability values when changing the type
of rule are similar among different tasks.

Future work
In this paper we presented a combination of the Mental Model
Theory and Pearl’s ε-semantics. It is able to account for the
influence of disablers and alternatives and the type of condi-
tional. Using three parameters per task, we achieved a good
fit. It is a starting point that will need more exploration to
bring different cognitive computation theories closer together.
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Abstract

We present a cognitively plausible model of non-verbal count-
ing and magnitude estimation. Unlike existing models, the
current model does not use a perfect representation of mag-
nitude, time, or memory. Instead, it calculates a magnitude
based on an imperfect rate of counting and determines when
to stop counting based on an internal timer. Empirical data
at both the individual and average level is matched to show a
range of performance.

Keywords: magnitude-estimation; nonverbal counting; cogni-
tive modeling

Introduction
Numerosity, magnitude, estimation, and counting are fun-
damental aspects to human life. Some researchers have
suggested that numerosity is one of people’s core concepts
(Carey, 2009). Other researchers have shown that animals
can count, even without an explicit (verbal) counting mecha-
nism (Platt & Johnson, 1971).

In fact, magnitude has been explored intensively using a
variety of methods including counting (Whalen, Gallistel,
& Gelman, 1999), size (Moyer & Landauer, 1967), math
(C. Gallistel & Leon, 1991; C. R. Gallistel & Gelman, 2000),
and perception of number (Wynn, 1992). Counting, while
being one of the purest measures of magnitude, has probably
been studied the least, at least in humans. Additionally, there
are relatively few cognitive models of counting, though there
are other models of size, perception and math.

Here, we are concerned with non-verbal counting, where
a person performs an action (e.g., lever-pressing) a specified
number of times without explicit enumeration (Whalen et al.,
1999). Mathematicians and philosophers have argued that
non-verbal counting is the basis of higher-order math (Bell,
1937). Non-verbal counting is also used in many everyday
situations, from determining how much trash is in a garage to
the number of people in a queue to the number of steps on an
escalator.

Previous researchers have suggested that non-verbal count-
ing occurs through an internal, noisy accumulator (Meck &
Williams, 1997; Gibbon, Church, & Meck, 1984; Meck &
Church, 1983). In these accounts, magnitudes have scalar
variability, varying in proportion to the mean of the mag-
nitude (C. R. Gallistel & Gelman, 2000). Because magni-
tudes have scalar variability, the discriminability of the val-
ues obeys Weber’s law because the degree of overlap between
representations remains constant as the ratio of the means is
held constant. Current accounts make these assumptions:

• An accumulator is incremented based on count (Cordes,
Gelman, Gallistel, & Whalen, 2001; Whalen et al., 1999)

or time (Dormal, Seron, & Pesenti, 2006; Meck &
Williams, 1997).

• The accumulator value has a perfect representation, but
when checked internally is noisy; the bigger the value of
the accumulator, the bigger the noise (C. R. Gallistel &
Gelman, 2000; Meck & Church, 1983; Meck, Church, &
Gibbon, 1985).

There are several major concerns with these assumptions,
however.

Over-reliance on perfect accumulators or perfect mem-
ory: First, most accounts that assume that the accumulator is
based on an actual count assume that the counter is perfect
(Cordes et al., 2001; Whalen et al., 1999), which is cogni-
tively implausible. In these approaches, the counter is repre-
sented perfectly, but is retrieved with noise. For accounts that
assume that the accumulator is based on an internal timer, the
assumption is that the timer is perfect (Meck et al., 1985).
We know from many studies of time sense that people do not
have perfect representations of time (Zakay & Block, 1997;
Matell & Meck, 2000) and that people are able to estimate
time more accurately at shorter intervals than longer inter-
vals. At least some of these approaches also assume perfect
memory (Gibbon et al., 1984). These assumptions allowed
early progress to be made on the initial models and theoriz-
ing, which clearly advanced the field. Unfortunately, these
assumptions have continued on through many of the current
models of counting and may lead to an incorrect understand-
ing of how people perform non-verbal counting.

Sampling problem: If a human counter samples mag-
nitude from a Gaussian distribution and periodically checks
that magnitude against a target goal, a trace of the magnitude
across a counting scenario will show it to sometimes become
negative or go backwards (a standard assumption of most ac-
cumulator models and inherent in consecutive random sam-
pling). If a further constraint is added so that the magnitude
must be positive and always increase, the magnitude will con-
sistently under represent the actual count. This under count-
ing will become greater the bigger the target is because there
is more opportunity for skipping a number.

Our goal here is to remove these problems and present a
process model of how people perform these implicit counting
tasks. We assume that people do not have a perfect sense
of memory, time, or magnitude when counting non-verbally.
We describe our model in the context of a classic counting
experiment by Whalen et al. (1999).
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Method (Whalen et al., 1999)
A complete description of the experiment can be found in
Whalen et al. (1999).

Participants
Seven volunteers participated in the experiment over 8 1-hour
sessions (which included other related tasks as well).

Setup and Procedure
A trial began with a ”Ready?” message in the center of the
screen. When the participant pushed a button, the ”Ready?”
message was replaced with an odd number from 7 - 25 (inclu-
sive). Participants were instructed to push a key the specified
number of times, as fast as they could. Participants completed
a trial by pushing a different key. Participants performed 40
trials for each odd number from 7 - 25. No feedback was
given regarding their accuracy.

Participants were specifically instructed not to verbally
count the number of presses made, but to arrive at their target-
goal “by feel.”

Measures
The target-goal and the number of actual keypresses was
recorded and averaged for each participant. The standard
deviation and coefficient of variation was also measured for
each participant.

Results and Discussion
Participants were reasonably accurate for most target-goals.
The average number of presses increased linearly with the
target value. For all participants, the standard deviation of the
number of key presses varied in direct proportion to the target
magnitude.

The most surprising finding, however, concerned the coef-
ficient of variation (the ratio of standard deviation and mean).
Specifically, the coefficient of variation was constant across
target size. Figure 1 shows the averaged data across the seven
participants (digitally extracted from the original article).

Participants were presumably not performing overt or
covert verbal counting because the rate that they were able
to push the key (∼120ms/item), is much faster than subvo-
cal counting can occur (∼240ms; Klahr, 1973). In fact,
when participants were instructed to explicitly subvocalize,
their RT was significantly and consistently longer than when
they performed the non-verbal counting task. The difference
between subvocalizing and non-verbal counting was much
bigger when the numbers had more syllables (e.g., ”nine” vs.
”seventeen”).

Architecture and Model Description
ACT-R is a hybrid symbolic/sub-symbolic production-based
system (Anderson et al., 2004) ACT-R consists of a number of
modules, buffers, and a central pattern matcher. Modules in
ACT-R contain a relatively specific cognitive faculty usually
associated with a specific region of the brain. For each mod-
ule, there are one or more buffers that communicate directly
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Figure 1: Average performance of the seven individuals in
the Whalen et al. (1999) study. The x axis in all three graphs
is the target count (the goal that the participants were given).
The top panel shows the (remarkably accurate) accuracy on
counting. The middle panel shows the increasing standard
deviation the higher the target goal becomes. The bottom
panel shows the flat coefficient of variation. The darker cir-
cles show the data digitally extracted from the original article
while the lighter triangles show the model fit.
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with that module as an interface to the rest of ACT-R. At any
point in time, there may be at most one item in any individual
buffer; thus, the module’s job is to decide what and when to
put a symbolic object into a buffer. The pattern matcher uses
the contents of the buffer to match specific productions.

ACT-R uses if-then rules (productions) that will fire when
their preconditions are met by matching the contents of the
buffers. If there is more than one production that can fire,
the one with the highest utility (production strength) will fire.
Each production can change either internal state (e.g., buffer
contents) or perform an action (e.g., click on a button).

ACT-R interfaces with the outside world through the visual
module, the aural module, the motor module, and the vocal
module. The architecture supports other faculties through in-
tentional, imaginal, temporal and declarative modules.

Because most researchers believe that numerosity is a core
concept (Carey, 2009) and many animals can actually count
non-verbally, we have created a new ACT-R module, called
the magnitude module.

The Magnitude Module
The magnitude module provides a mechanism for performing
non-verbal counting until a specific target-goal is reached.

Instead of relying on a perfect counter or a perfect sense
of time, the magnitude module only has imperfect representa-
tions of time and counting. Note that the magnitude module is
not used for exact, verbal counting, but rather for non-verbal
numeric estimation (exact verbal counting can be performed
easily by traditional ACT-R).

A key component to non-verbal counting is deciding when
to stop. We propose here that the internal temporal module
(Taatgen, Van Rijn, & Anderson, 2007) is used. The tempo-
ral module tracks time intervals and is quite accurate at short
timer scales, becoming progressively less accurate and nois-
ier at longer time scales. The temporal module simply keeps
track of how long it has taken since counting began. A rate
of counting is calculated based on the (noisy) timer and an
updated previous magnitude. Finally, a target amount of time
can be determined based on the rate and the target number.

High level description of the magnitude module
There are three components to each model: start, count, fin-
ish.

Start The model prepares to begin counting by setting a
target-goal (e.g., 17) and preparing to count (e.g., by putting
their finger on the counting key). The rate is undefined at this
point.

Count The model counts by making a call to the magni-
tude module for every count it makes. Every count initiates a
physical keypress as well. Every count, several quantities are
updated.

Rate A current rate is calculated based on the amount of time
that has passed since counting began and the successor of
the last magnitude.

Magnitude The current magnitude is calculated based on cur-
rent time and the current rate. Note that because magnitude
is based on the model’s imperfect sense of time and an im-
perfect rate, it never has a perfect representation of count.
Because the timer is more accurate at short time intervals,
it is frequently (but not always) correct at smaller counts.
Subitizing is not explicitly modeled and in fact previous re-
searchers have suggested that subitizing is not needed dur-
ing non-verbal counting (Cordes et al., 2001).

Time-to-stop Time to stop is based on the rate × target-
goal. Because people have different levels of accuracy
for non-verbal counting, a mean-scalar (m) and a standard-
deviation-scalar (sd) are included in this calculation.

Notice that magnitude ends up having scalar variability. In
this account, scalar variability arises because of the imperfect
time sense that people have.

Finish The model finishes counting when the current time
is greater than or equal to the computed time-to-stop.

These three components occur in the natural order: Start
begins a trial, while Count performs the counting itself, and
then Finish ends the trial.

Model Fit
The data was presented in the original Whalen et al. (1999)
study as a series of graphs of the seven individuals. A sin-
gle graph of average performance by participant was not pre-
sented (presumably to show that the coefficient of variation
was constant across every single participant). The individ-
ual data was digitally extracted and averaged into the graph
shown in Figure 1. A model was fit to every single participant
as well, show in in Figure 2.

Model fits were created by running the model 250 times
for both the overall average and each individual. 250 was se-
lected because it provided stability across the entire range of
participants and variables. All standard ACT-R parameters
were left at their defaults. Two magnitude parameters (m and
sd) were fit for each participant and for the average perfor-
mance. Both parameters stayed within a narrow range (.1 -
.7 for m and .3-.5 for sd); changes to these parameters only
impacted the strength of the individual fit, not the overall pat-
tern.
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Figure 2: Graphs of the data from the seven individuals in the Whalen et al. (1999) study. The x axis in all three graphs is the
target count (the goal that the participants were given). The top panel shows the (remarkably accurate) accuracy on counting.
The middle panel shows the increasing standard deviation the higher the target goal becomes. The bottom panel shows the flat
coefficient of variation. The darker circles show the data digitally extracted from the original article while the lighter triangles
show the model fit.
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Participant R2 RMSD
1 .99 .48
2 .99 7.1
3 .99 3.5
4 .99 2.3
5 .99 4.0
6 .99 1.2
7 .99 4.9
All Participants .99 3.2

Table 1: Model fit table for counting accuracy (top panels).

Participant R2 RMSD
1 .79 .35
2 .87 .70
3 .92 .67
4 .92 .63
5 .90 .53
6 .88 .74
7 .86 .54
All Participants .94 .42

Table 2: Model fit table for counting standard deviation (mid-
dle panels).

R2 and RMSD fit metrics between the empirical and model
data were generated for each individual participant and the
average of all participants. Table 1 shows the fit metrics for
the count data (how accurate the counting was; top panels).
Table 2 shows the fit metrics for the standard deviation data
(how the standard deviation increased across target count;
middle panels). Table 3 shows the fit metrics for the coef-
ficient of variation data (the relatively constant values across
target count; bottom panels). For count data and standard de-
viation, a high R2 and a low RMSD shows a good fit. For
the coefficient of variation fit metrics, R2 should be close to 0
because it is a constant, while RMSD should be low.

As can be seen in the fit tables and the graphs, the model
fits the data quite well on all three primary variables: count,
standard deviation, and coefficient of variation.

Participant R2 RMSD
1 .02 .02
2 .04 .04
3 .02 .04
4 .04 .03
5 .04 .02
6 .00 .04
7 .09 .02
All Participants .06 .02

Table 3: Model fit table for counting coefficient of variation
(bottom panels). Note that the R2 should be close to 0.

General Discussion
We described a process model for non-verbal counting. Our
model has several advantages over existing models. First,
current models typically rely on an internal representation
that is perfect – of magnitude, time, or memory. Consistent
with most of people’s representations, we believe that none
of these are represented perfectly.

The current model does not have a perfect model of time.
Previous models use ’clock time’ to calculate rates and there-
fore magnitude. However, there is a great deal of evidence
that people’s sense of time is quite good for short intervals
and becomes worse at longer intervals (Matell & Meck, 2000;
Taatgen et al., 2007). Thus, this model uses a cognitively
plausible measure of time intervals (Taatgen et al., 2007).

The current model does not have a perfect model of magni-
tude. Magnitude is represented as a scalar value that increases
over time and in the non-verbal counting task we have mod-
eled here it is created directly from the rate of counting. The
model suggests that magnitude estimation is inherently im-
perfect because people do not have a perfect representation
of time.

The current model does not have a perfect representation
of memory, though it inherits that memory imperfection from
ACT-R (Altmann & Trafton, 2002). In the current model,
memory is not explicitly used, but certainly if the model
needed to store, remember, and retrieve a magnitude the ma-
chinery exists to do so.

The current model also solves the sampling problem dis-
cussed earlier. Because this model determines when to stop
based on time, this model never has a negative or backwards-
going magnitude. Nor does this model consistently under-
count because of a greater chance of skipping numbers.

The current model can presumably explain non-verbal
counting in animals as well. Animals seem to represent mag-
nitudes in the same way that people represent non-verbal
magnitudes (Church, 1984; Gibbon et al., 1984; Meck &
Church, 1983), and this model would capture the same fea-
tures (e.g., scalar variability) of animal counting that have
been described in the literature (Platt & Johnson, 1971).

It is interesting to note that both magnitude and time sense
have similar representations: they both have scalar variability,
more accurate at smaller numbers and less accurate at bigger
numbers. This remarkable similarity suggests that both time
and magnitude are intimately connected. In our model, we
connect them directly: people’s sense of time is critical to
how magnitude estimations occur. Without a sense of time
(or if time-sense is being used for something else), the model
suggests that magnitude estimation is exceedingly difficult –
perhaps so difficult that another strategy would need to be
used.

ACT-R is well known for modeling average behavior, and
equally well known for not being able to model variability
very well. A typical model fit, for example, shows empirical
means and model means overlapping. However, these mod-
els very rarely adequately model the variability inherent in
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the empirical data. This model, however, models not only the
mean data, but also the variability. This emphasis on model-
ing the full distribution of behavior is a core strength of our
approach here.

We should emphasize that the current model is for non-
verbal counting only. Other researchers have studied other
forms of numerosity – estimating the number of objects on
a screen; explicit counting; approximate counting, and oth-
ers. Exactly how this model will scale to those other tasks is
for future work. Certainly a similar model could presumably
capture the observed empirical patterns: examining density
and then extrapolating based on how long it took to determine
density may be a method to estimate the number of objects on
a screen.

In summary, the current model emphasizes non-verbal
counting using cognitively plausible – and imperfect – core
mechanisms. We modeled one of the best known empirical
examples of non-verbal counting (Whalen et al., 1999) and it
is the only existing model we know of that captures the full
range of non-verbal counting through a high-fidelity process
model.
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Automatic generation of user-models based on user-task
interactions is the holly grail of Cognitive Modeling and
Human-Computer Interaction fields. Such automatic model
generation would be of great use for behavioral predictions,
better understanding of cognition, and better understanding
of the task-environment. Mapping which environment fea-
tures cause which actions seems like a classification prob-
lem, perfectly suited for machine-learning techniques like
Deep Learning (DL). There are, however, some drawbacks
in current-form Deep Learning approaches that make it less
than ideal for automatic model generations based on limited
user-task interactions. In this paper we bring examples of
DL-like symbolic cognitive framework approaches that have
the potential to overcome such drawbacks.

Deep Learning
Deep Learning is a multi-layer neural network approach
that has received much recent adoration for unprecedented
success in input and situation recognition and classification
(Rusk, 2015). Unfortunately, DL suffers from a few draw-
backs that limit its applicability across domains.

First, DL does not create an observable model. That is,
what deep networks learn cannot be investigated beyond a
general input-output mapping. DL could still be useful in
the domain of user-modeling for predicting user actions, but
not for understanding the cognitive state responsible for that
state-action mapping. This problem falls under the domain
of explainable AI (XAI), and bares additional significance
for accepting/trusting any recommendations derived via DL
methods.

Second, DL is susceptible to catastrophic interference –
where new training examples can break a previously stable
classifier. This issue arises specifically in dynamic domains,
where there is no immutable training set, and the classifier
needs to be constantly updated.

Finally, DL is more suitable to making predictions from
billions of examples than from a few dozens or even hundreds
of observations. This is the greatest limitation of the deep
learning approach, making it unsuitable for small-data do-
mains. This makes DL especially difficult to apply for gener-
ating predictions from experts in narrow domains, where little
data can be obtained from subject-matter experts (e.g. cyber-
security). Additionally, this makes it difficult to employ DL
for learning from individual users, since single-user behavior
usually would not generate enough data for DL classifiers.

However, the multi-layer hierarchical approach to classi-
fication is not exclusive to the big-data AI domains. Many
symbolic cognitive frameworks are based on hierarchical
memory that is very similar to subsymbolic deep neural net-
work approaches, without the aforementioned limitations.

Symbolic Deep Learning
Symbolic Deep Learning (SDL) is promising in that this
method is capable of building classifiers from a small number
of examples, rather than the millions required for more tradi-
tional ML/DL methods (d’Avila Garcez, Dutra, & Alonso,
2018; Dutra, Garcez, & D’Avila Garcez, 2017; Zhang & Sor-
nette, 2017). In this way, SDL learning efficiency is much
closer to that of humans than that of DL. Moreover, SDL
memory is incremental (i.e., does not require a pre-specified
size of the network), and is thus robust against catastrophic
interference. Finally, symbolic memory lends itself to human
interpretation, thus addressing the issues relating to XAI. Es-
sentially, SDL addresses all of the traditional DL limitations,
and is a promising avenue for automatic model generation.

Symbolic hierarchical representations have a long history
in Psychological literature. Some of these were integrated as
models of memory without action-selection (e.g. Feigenbaum
& Simon, 1984; Gobet & Lane, 2005). Such purely declar-
ative models are more useful for predicting recognition than
state-action mapping.

Integrated cognitive architectures that include both state
recognition and action selection often include hierarchical
memory systems, as well. For example, declarative memory
chunks in ACT-R are symbolic memory elements that are, in
fact, sets of links to lower-level chunks (Anderson, 1993; An-
derson & Lebiere, 1998). The ACT-R theory is incomplete
in its description of how chunks are created (beyond those
created upon goal-completion). An integration of cognitive
architectures like ACT-R with learning/memory model like
EPAM/CHREST may ultimately be the solution to automatic
model generation.

The most promising models of hierarchical learn-
ing/memory systems for the purposes of SDL system devel-
opment and automatic model generation may be found in cat-
egorization research domain. Models in the categorization
literature were specifically developed with the purposes of
mapping multi-feature inputs onto participant decisions (e.g.
Gluck & Bower, 1988; Nosofsky, Gluck, Palmeri, McKinley,
& Glauthier, 1994).

The greatest problem facing such hierarchical symbolic
memory systems seem to be those of computational limi-
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tations. For example, the configural-cue model of memory
(Gluck & Bower, 1988) creates a configural node (i.e. chunk)
for every unique set of potential inputs, thus creating a maxi-
mum of (k + 1)n − 1 memory chunks, where n is the number
of input dimensions and k is the number of possible input val-
ues along each input dimension1. Although this exponential
memory growth is concerning for large-input domains (e.g.
image recognition), it should not cause much issue in the do-
main of automatic model generation for most non-graphical
tasks.

For example, let us assume a specific user interface such
as an Intrusion-Detection System (IDS). When cyber-security
professionals employ such a system, each of their observa-
tions constitutes a network alert record, and each observa-
tion is followed by a decision whether to elevate the alert, or
not to (this task-environment is fairly representative of much
non-graphical software UI across domains). Such a record
will comprise 5-10 fields, consisting of a time-stamp and a
few other mostly nominal values such as a port-number, op-
erating system, alert-type, etc. There are only a few port-
ranges that are ever observed, only a few types of alerts, etc.
Assuming five input fields with ≈10 potential values in each
field, the configural-cue memory system would grow to ≈160
thousand nodes. Of course there will less than 10 potential
values for some fields and more than 10 potential values for
others, but it is reasonable to presume that even a low-end
PC can handle this load, much less a modern server using
GPU acceleration. Even with ten input fields (a maximum
of ≈26 billion nodes) we can expect computational power to
no-longer be the limitation that it was decades ago when this
model was first proposed.

Perhaps more important than the raw computational power
available today, there is efficiency to be gained in SDL by cre-
ating memory chunks only when they prove necessary. For
example, Veksler, Gluck, Myers, Harris, and Mielke (2014)
propose to a conservative-rational incremental memory sys-
tem that reduces memory size, especially in noisy environ-
ments. Such memory reduction is exponential, improving ef-
ficiency by several factors of magnitude, and greatly reducing
the concern over computational limitations for SDL.

Summary
Both, symbolic and subsymbolic deep learning methods date
back a half century, and both were shelved for decades due to
a lack of computational resources needed to run these algo-
rithms. The modern era of parallel processing and GPU com-
puting, along with some algorithmic efficiency has revived
Deep Learning as a field. The same technological advances,
including SDL-specific algorithmic efficiency improvements
are ripe to revive the SDL field, as well.

SDL promises to overcome many of the limitations of
subsymbolic DL, enabling applicability in small-data do-
mains, incremental memory processes that are robust to catas-
trophic interference, and observability and explainability of
the learned state-action mapping (XAI). Given this potential,
SDL seems like the right technique for automatically gener-
ating models of user behavior, especially for modeling expert
or individual behavior.
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Learning facts is an inescapable part of education, whether it
be memorising French words or studying US topography. Our
lab has developed a digital learning environment that uses a
cognitive model of human memory to determine when and
how often a fact should be rehearsed during a learning session.
The system tracks how difficult each fact is for a given student,
continually refines this assessment on the basis of the student’s
responses, and adjusts the scheduling of items so that difficult
facts are repeated sooner and more frequently than easy facts.
This adaptive fact learning system has been successfully
applied in various contexts (van Rijn, van Maanen, & van
Woudenberg, 2009; Sense, van der Velde, & van Rijn, 2018).

Currently, all facts are initially assumed to be equally dif-
ficult for all learners. As observations are made, the difficulty
estimate is tuned to the right level for each learner-fact pair.
This means that knowledge about a learner’s general ability or
about a fact’s typical difficulty is not used at all. In this study,
we propose several methods for using data from prior learning
sessions to inform the initial difficulty estimates of the model.
Using such learning history is expected to make the learning
process more efficient, as the model would be better able
to quickly hone in on the appropriate difficulty estimate for
each fact. We use hierarchical Bayesian modelling to make
individualised predictions on the basis of previous learning
sessions and test these predictions in a new session.

Adaptive fact learning model

The scheduling of items within a learning session is de-
termined by an adaptive model that builds on earlier work
by Pavlik and Anderson (2005). This model is described in
more detail in Sense, Behrens, Meijer, and van Rijn (2016).

The model represents each fact by its own memory chunk,
with an activation (a measure of the strength of the memory
trace) that is boosted by each repetition and decays over time.
At time t, and given n previous repetitions at t1,...,tn seconds
ago, the activation A of chunk i is expressed by Equation 1.
The d parameter in this equation controls how quickly a
fact’s activation decays after a repetition, and therefore how
frequently the fact is repeated. Differences in difficulty
between facts are captured in the rate of forgetting parameter
α, a component of d, which is estimated separately for each
learner-fact pair. The more difficult a fact is, the higher its rate
of forgetting will be, and the faster its activation will decay.

Ai(t)= ln
( n

∑
j=1

t−di(t)
j

)
with di(t)=0.25∗eAi(tn−1)+αi (1)

At any given time, the system selects whichever fact has
the lowest estimated activation to be rehearsed, thereby max-
imising the spacing between repetitions while also aiming to
repeat each fact before it is forgotten. A new fact is introduced
only when all activation values are above a threshold of -0.8.

The system currently starts out with the assumption that all
facts have a rate of forgetting of 0.3, and it refines this estimate
over the course of the learning session. It uses the difference
between expected response times (based on the fact’s
activation at the time of presentation; the higher the activation,
the faster the expected response) and observed response times,
as well as response accuracy, to make step-wise adjustments
to the estimate that best reflect the observed behaviour.

Predicting rate of forgetting
In this study, we use previous learning history to predict what
the rate of forgetting of a particular fact will be for a given
learner. We then take this prediction as the initial rate of
forgetting estimate, rather than the default value.

We test four prediction methods and compare them to the de-
fault prediction of 0.3. Fact-level difficulty estimates for a set
of topography facts (names of relatively unknown US cities;
see Figure 1a for an example) were obtained from an initial
experiment in which participants completed a learning session
with the default system. In a follow-up experiment, learner-
level estimates were derived for different participants who stud-
ied a comparable set of facts with the default system. These
participants then completed another learning session in which
they studied the facts from the first experiment with a system
that, depending on the condition to which they were assigned,
initialised new facts with a rate of forgetting that was based
on one of the four prediction methods or on the default value1.

Fact-level prediction As multiple learners study the same
fact, we form an increasingly detailed picture of its difficulty
through the rates of forgetting observed in all these learners.
It is to be expected that a new learner studying this fact will

1A preregistration with a more detailed description of the protocol
and the analysis plan is available at https://osf.io/vwg6u/.
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Figure 1: The process by which a fact-level prediction of the rate of forgetting of the fact shown in (a) is made. (b) In previous
learning sessions, the rate of forgetting of the fact is estimated separately for each learner and refined over the course of the
session. (c) The final estimates (one per learner) are used to train the Bayesian model. (d) The posterior predictive distribution
of the Bayesian model is updated as observations are added. The prior predictive distribution is shown as a dashed grey line,
the final posterior predictive distribution as a black line, with intermediate predictive distributions shown in increasingly dark
colours. The model prediction, indicated by the arrow, is the mode of this final distribution.

find it similarly difficult. For this reason, we use the rates
of forgetting measured in other learners to make a fact-level
prediction of the rate of forgetting that can be used as an
initial estimate when the fact is encountered by a new learner.
Figure 1 shows how such a prediction is made. Predicted
rates of forgetting come from a hierarchical Bayesian model
which models the rate of forgetting using a Normal-Gamma
distribution with a weakly informative prior centered on 0.3:
NG(µ=0.3,κ=3,a=1,b=0.2).
Learner-level prediction Through the same process as
in the fact-level prediction, but instead using the rates of
forgetting of all facts that a given learner has encountered
in the past, we can predict a learner’s rate of forgetting. This
value is then used as the initial estimate for all facts that the
learner encounters.
Fact- and learner-level prediction We also test a method
in which a distinct prediction is made for each learner-fact pair.
Two posterior predictive distributions—one for the fact-level
prediction and another for the learner-level prediction—are
combined using logarithmic opinion pooling (Genest, Weer-
ahandi, & Zidek, 1984) with equal weights. The mode of this
combined distribution becomes the predicted rate of forgetting.
Domain-level prediction The domain-level prediction,
reflecting the general difficulty of the material in a domain
among a certain population, is the mean of all fact-level
predictions for the set of facts. This value is used as the initial
rate of forgetting in all learner-fact pairs, resulting in a domain-
specific alternative to the fixed default prediction of 0.3.

Results & Discussion

Data have been collected from 159 participants for the second
experiment, which tests the predictions made by the Bayesian

model, while a replication in an online sample is still ongoing.
Preliminary results suggest that using learning history to
predict rates of forgetting does affect learning performance,
as participants are more accurate while studying if the system
uses one of the prediction methods (a Bayesian ANOVA
shows strong evidence for an effect of condition on accuracy:
BF10=15.7), potentially with beneficial effects on motivation.
However, this does not appear to translate to higher perfor-
mance on a delayed recall test (a Bayesian ANOVA shows
strong evidence against an effect of condition on test score:
BF01=19.9). We will conduct further analyses to address the
other questions set out in the preregistration1, as well as any
exploratory questions that arise from this rich data set.
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Abstract 
 
This paper investigates to what extent the variations in 
experimental results on the interpretation of Italian subject 
pronouns can be explained by the different discourses used in 
the experimental studies. A cognitive model implemented in 
ACT-R was used to simulate pronoun processing and 
interpretation in discourse, which is influenced by the various 
contexts used in empirical experiments. Our simulations show 
that the discourse contexts used in the experiments strongly 
influence the interpretation of Italian subject pronouns, but not 
to the extent that all data in different experiments can be 
explained by it. We therefore conclude with suggestions for 
further research both on the influence of discourse context and 
the influence of task on the interpretation of Italian pronouns 
and (linguistic) experiments in general. 
 
Keywords: pronoun interpretation; Italian; cognitive modeling; 
null subjects; discourse context 

Introduction 
Referring expressions such as pronouns (he, she) occur 
frequently in daily life. It is therefore essential for 
successful communication that such expressions are 
understood correctly. Nevertheless, experimental studies on 
subject pronoun interpretation in Italian show that healthy 
native adults sometimes have interpretation preferences of 
around 50% (Tsimpli, Sorace, Heycock, & Filiaci, 2004), 
suggesting that they are not sure what the meaning is 
supposed to be. Notably, experimental findings on Italian 
subject pronoun interpretation show a substantial amount of 
variation (compare, e.g., Carminati, 2002; Tsimpli et al., 
2004; Vogelzang, Foppolo, Guasti, Van Rijn, & Hendriks, 
2019). For example, Carminati (2002) and Vogelzang et al. 
(2019) found a strong preference for null pronouns to refer 
back to the subject antecedent, whereas in the experiment of 
Tsimpli et al. (2004) participants only selected the subject 
antecedent for a null pronoun around half of the time.  
 One explanation for the varying results could be that these 
experiments have used different experimental stimuli and 
different tasks and methodologies. It is generally known that 
the interpretation of referring expressions can be influenced 
by the surrounding discourse context. Previous studies have 
identified several discourse factors that can influence the 
interpretation of referring expressions. For example, the 
prominence of discourse referents determines whether they 
are likely antecedents of a referring expression. In general, 

less informative referring expressions such as pronouns  
refer to entities that are highly prominent in the discourse, 
and more informative referring expressions such as full 
noun phrases (NPs) refer to entities that are less prominent 
in the discourse (cf. a.o. Ariel, 1990; Givón, 1983; Gundel, 
Hedberg, & Zacharski, 1993; for an overview see Arnold, 
1998). Additional attention has been given in the literature 
to coherence relation (Kehler, Kertz, Rohde, & Elman, 
2008) and pragmatic plausibility (Carminati, 2002) as 
influencing the interpretation of referring expressions. In the 
case of object pronoun interpretation in Dutch, it has been 
shown that a change in discourse, making the most 
prominent referent (i.e. the discourse topic) more clear, can 
eliminate interpretation difficulties that children typically 
show in other studies (Spenader, Smits, & Hendriks, 2009). 
 Thus, it is known that discourse context influences the 
processing and interpretation of referring expressions. It is 
also known that experimental findings on the interpretation 
of Italian subject pronouns have not been consistent. It is 
therefore a logical next step to investigate to what extent 
differences in discourse can explain variations in 
experimental results on Italian pronoun interpretation. In 
this paper, we will focus solely on the influence of the 
specific experimental stimuli used, putting aside any 
differences in task, participant sample, and so on. To this 
end, we will more extensively examine the discourse 
contexts and experimental results of Tsimpli et al. (2004) 
and Vogelzang et al. (2019). 
 The influence of these experimental discourses will be 
investigated using a cognitive model developed within the 
cognitive architecture ACT-R. The model will be used to 
simulate existing empirical data, which will be discussed in 
the next section. This way, our model simulations will 
examine to what extent the observed variations in 
experimental findings can be explained merely by the 
discourses used. 

Experimental Findings on Italian Pronouns 
Italian, like Spanish, Catalan, Romanian, Arabic and many 
other languages, is a language that knows null pronouns. 
This means that in many cases, a grammatical subject does 
not have to be realized but can be omitted, creating a null 
pronoun or null subject (e.g., corre ‘he/she/it runs’). In 
addition, Italian has overt pronouns such as lui ‘he’, through 
which a grammatical subject is explicitly realized. Null 

277ICCM2019



pronouns are generally used to refer to the most prominent 
referent in a discourse, whereas overt pronouns are 
generally used to refer to a different referent (Carminati, 
2002). 
 Importantly, the influence of discourse prominence on the 
processing and interpretation of null and overt pronouns in 
Italian indicates that differences between the findings of 
different experimental studies (Tsimpli et al., 2004; 
Vogelzang et al., 2019) may be the result of the different 
contexts being used. The results of Tsimpli et al. (Figure 1), 
obtained using a picture selection task, show a much weaker 
preference for subject antecedents for null pronouns than 
would be expected based on Carminati's (2002) classical 
findings. 
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Figure 1. Experimental data from Tsimpli et al. (2004) on 
the interpretation of null and overt pronouns in Italian.1 

 
As stated, this may in part be due to the specific discourses 
used in the experiment. More specifically, Tsimpli et al. 
(2004) used short discourse contexts with two clauses such 
as in (1): 
 
(1) La mamma dà un bacio alla figlia,  

mentre lei/Ø si mette il cappotto.  
 
“The mother kisses the daughter,  
while she/Ø puts on her coat.” 

 
In the example context in (1), the prominence of the two 
referents in terms of frequency is the same, although their 

																																																								
1 The experiments of Tsimpli et al. (2004) were mainly focused on 
language attrition, but this paper will only look at their data on 
monolingual adults. Additionally, Tsimpli et al. (2004) looked at 
both forward and backward anaphora, but only backward anaphora 
will be taken into account in this analysis. Finally, the picture 
selection task of Tsimpli et al. (2004), in which pictures with two 
characters and the mentioned action were shown, contained a third 
answer option, namely an 'other' character, not mentioned in the 
discourse. To allow for a better comparison between the two 
studies, this option was not taken into account in the current 
description of the data, and the percentages of answers were 
adjusted accordingly. 

grammatical roles differ. The grammatical subject of the 
first clause is only mentioned once and therefore it is 
conceivable that this character has not been clearly 
established as the most prominent referent, which is 
generally also the discourse topic. 
 Vogelzang et al. (2019), in contrast, found, using a 
referent selection task, a strong subject preference for null 
pronouns (Figure 2). 
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Figure 2. Experimental data from Vogelzang et al. (2019) on 
the interpretation of null and overt pronouns in Italian.2 

 
The longer discourse contexts with three clauses used by 
Vogelzang and colleagues as in (2) make one referent, 
which occurs as the grammatical subject twice, much more 
prominent than the other referent: 
 
(2) Il riccio compra della moquette per il soggiorno.  

Ieri il riccio ha raccontato al topo una storia, 
mentre lui/Ø si annoiava davanti alla tv. 
 
“The hedgehog is buying some carpet for the living 
room. Yesterday the hedgehog has told the mouse a 
story, while he/Ø was bored in front of the TV.” 

 
Thus, discourse prominence in terms of recency, frequency, 
and grammatical role differs between these two 
experiments, as do the interpretations of participants. In the 
following sections, we will examine the processing of these 
discourses and of the pronouns within these discourses more 
closely with a computational cognitive model. 

																																																								
2 Vogelzang et al. (2019) included a third subject condition in their 
experiment, namely a full noun phrase. To allow for a better 
comparison between the two studies, this option was not taken into 
account in the current description of the data. In the referent 
selection task that Vogelzang et al. (2019) used, pictures of the two 
mentioned characters were shown without any action. 
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Cognitive Model 
The cognitive model we will use to examine the influence of 
different discourses on Italian pronoun processing is 
implemented in the cognitive architecture ACT-R 
(Anderson, 2007; Anderson et al., 2004), which pre-
specifies constraints on human cognition and processing. 
The current model3 builds on the pronoun interpretation 
models of Hendriks et al. (2007), Van Rij et al. (2010) and 
Vogelzang (2017), the latter of which has previously been 
used to fit the data of Vogelzang et al. (2019) on Italian 
pronoun interpretation. The most relevant and important 
aspects of the model will be discussed here; for a more 
elaborate discussion of the mechanisms used in the model 
we refer you to Van Rij et al. (2010) and Vogelzang (2017). 
 The model uses a constraint-based bi-directional approach 
to pronoun processing, in which a listener reasons both from 
his/her own perspective and from the perspective of the 
speaker (cf. Blutner, 2000; Hendriks & Spenader, 2006; 
previously implemented in a computational cognitive model 
in Hendriks et al., 2007; Van Rij et al., 2010). The idea that 
the interpretation of ambiguous referring expressions 
requires listeners to reason about alternative forms from the 
perspective of the speaker was originally proposed by 
Hendriks and Spenader (2006) for Dutch. They formulated 
their perspective-taking account within the constraint-based 
linguistic framework Optimality Theory (OT; Prince & 
Smolensky, 2004), in which hierarchically ranked 
constraints are used to determine the optimal meaning for an 
input form (in interpretation) or the optimal output form for 
a meaning (in production).  
 In order to expand this approach to Italian, the model 
discussed here incorporates a constraint regulating the 
interpretation of null pronouns, stating that null pronouns 
refer to the discourse topic (similarly to overt pronouns in 
non-null subject languages, cf. Beaver, 2004; Grosz, Joshi, 
& Weinstein, 1995; Hendriks, Englert, Wubs, & Hoeks, 
2008; Van Rij et al., 2013). As a consequence, a listener 
would reason that if a speaker would have wanted to refer to 
the discourse topic, they would have used a null pronoun. 
So, if the speaker used an overt pronoun instead, they likely 
wanted to refer to something other than the discourse topic. 
The other constraints incorporated in the model are based on 
referential economy (Burzio, 1998), and reflect the idea that 
speakers prefer to be as efficient as possible and therefore 
prefer shorter linguistic expressions such as null pronouns 
over longer linguistic expressions such as overt pronouns. In 
interpretation, these constraints referring to referential 
economy will not be relevant. However, because the model 
additionally reasons about alternative forms from the 
perspective of the speaker, they will be used to reason about 
which form a speaker would have most likely used for 
reference to the topic (null pronoun) or reference to a non-
topical referent (overt pronoun). 

																																																								
3 full model code is available at 
https://sites.google.com/view/margreetvogelzang/experiment-files 

 In addition to constraints, the discourse also affects 
pronoun processing. More specifically, the model uses a 
discourse processing component based on the model of Van 
Rij et al. (2013), in which the prominence of a referent in 
discourse is determined by the standard ACT-R mechanisms 
of activation (which is based on its frequency and recency in 
the discourse) as well as an additional 'boost' that represents 
additional activation for referents associated with the 
grammatical subject (set to 1.0). This will most likely make 
the previous grammatical subject the referent with the 
highest activation, which can thus be considered the 
discourse topic. In Van Rij et al. (2013), this grammatical 
subject boost is argued to represent working memory (WM) 
capacity, as differences in this activation boost to associated 
information can account for individual differences in WM 
capacity (Daily, Lovett, & Reder, 2001). 

Results 
In this section, different simulations will be described for 
the processing and interpretation of Italian subject pronouns 
in the studies of Vogelzang et al. (2019) and Tsimpli et al. 
(2004). Importantly, every round of simulations uses the 
same model to simulate the data from both studies, only 
varying the input (the discourses) presented to the model. 
Every simulation will differ slightly due to pre-defined 
mechanisms of the cognitive architecture, such as varying 
latencies when retrieving information from memory. 
 In line with the original experiments, the model was run 
on 32 discourses (items) for 40 simulations (participants) to 
simulate the experiment of Vogelzang et al. (2019). The 
model was run on 10 discourses (items) for 20 simulations 
(participants) to simulate the experiment of Tsimpli et al. 
(2004). Half of the discourses contained a null pronoun and 
half contained an overt pronoun. 

Simulation 1 
For the first round of simulations, the activation boost given 
to grammatical subjects, representing WM capacity, and the 
number of practice items presented to the model were kept 
the same as in Vogelzang (2017); the activation boost was 
set to 1.0 and the number of practice items to 2000. The 
results of the simulation for the discourses of Vogelzang et 
al. (2019) and Tsimpli et al. (2004) are presented in Figures 
3 and 4, respectively. 
 As can be seen in Figure 3, the model data shows very 
similar interpretational preferences to the experiment data of 
Vogelzang et al. (2019). The model shows different 
interpretations, however, compared to the experiment data 
of Tsimpli et al. (2004), although the tendency of null 
pronouns referring to the subject and overt pronouns 
referring to the non-subject is present in both the model data 
and the experiment data; this can be seen in Figure 4. 
Specifically, the model shows a higher percentage of subject 
interpretations for both null pronouns and overt pronouns 
than the participants in the experiment. 
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Figure 3. Experimental data from Vogelzang et al. (2019) 
and model output on Italian pronoun interpretation. 
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Figure 4. Experimental data from Tsimpli et al. (2004) and 
model output on Italian pronoun interpretation. 

One possible explanation for this could be that the activation 
boost that is associated with the grammatical subject is 
constant, i.e. is equally strong no matter how many times a 
referent is mentioned in the grammatical subject position. 
Since making the topic of a discourse more clear aids 
pronoun interpretation (Spenader et al., 2009), however, it is 
more likely that this activation boost is gradually increasing 
with each mention rather than a consistently large boost. 
This possibility will be explored in the next simulation.  

Simulation 2 
When examining the discourses used in the experiments 
(see (1) and (2)) more closely, it can be seen that the same 
character is mentioned in the grammatical subject position 
once in the discourses used by Tsimpli et al. (2004) 
compared to twice in the discourses used by Vogelzang et 
al. (2019). We will now assume, following findings of 
Spenader et al. (2009), that the discourse topic becomes 
more clear the more consistent a discourse is, so the more 
often a certain referent occurs in the grammatical subject 

position. Figure 5 shows a proposed stepwise activation 
boost according to the following function: 
 

!""#$	 = 	'(/10	 
 
in which n is the number of consecutive occurrences of a 
referent in the grammatical subject position within a 
discourse.  
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Figure 5. Effect of the number of occurrences of a referent 
in the grammatical subject position on the activation boost. 

 
Using this function to calculate the boost in activation given 
to grammatical subjects, new simulations were run for the 
experiments. The results show that the model can still 
account for the interpretational preferences of participants in 
the experiment of Vogelzang et al. (2019) with longer 
discourses (Figure 6) and that the same model can now also 
account for the interpretation of null pronouns found in the 
experiment of Tsimpli et al. (2004) (Figure 7). Notably, the 
predictions of the model differ considerably based on the 
discourse used. However, although the interpretational 
preference of overt pronouns referring to the non-subject 
can be seen in both the model data and the experiment data, 
the actual interpretation of overt pronouns in the data of 
Tsimpli and colleagues is not reproduced by the model. 
Possible explanations for this are discussed in the next 
section. 
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Figure 6. Experimental data from Vogelzang et al. (2019) 
and model output on Italian pronoun interpretation. 
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Figure 7. Experimental data from Tsimpli et al. (2004) and 
model output on Italian pronoun interpretation. 

Discussion 
In this paper, we investigated with the help of a cognitive 
model to what extent differences in discourse context can 
explain variations in experimental results on Italian pronoun 
interpretation. We examined the discourses used in 
experiments by Tsimpli et al. (2004) and Vogelzang et al. 
(2019), which differ in the number of clauses used and the 
number of times that the referents are mentioned. We 
simulated pronoun processing in these discourses using an 
ACT-R model which built on previous cognitive models of 
pronoun processing (Hendriks et al., 2007; Van Rij et al., 
2010; Vogelzang, 2017). The model used an activation 
boost to keep referents associated with the grammatical 
subject of the previous sentences active in memory as the 
discourse topic. 
 The results from the first simulation showed that the data 
of Vogelzang et al. (2019) could be simulated accurately, 
but the data of Tsimpli et al. (2004) could not be accounted 
for. In the second model simulation, a function rather than a 
constant was used to determine the activation boost given to 
the referent associated with the grammatical subject of a 
sentence to reflect a gradual increase of certainty about the 
discourse topic, in line with experimental evidence from 
Spenader et al. (2009). The results showed that this 
simulation can account for the data of Vogelzang et al. 
(2019) and can partially account for of the data of Tsimpli et 
al. (2004). More specifically, null pronouns were accurately 
predicted to refer to the subject slightly more than half of 
the time. This indicates that a gradual increase in the 
activation of a recurring grammatical subject is a viable 
possibility, and something that should be seriously 
considered when modeling processes in which prominence 
in discourse plays an important role or when designing 
(linguistic) experiments. However, Tsimpli et al.'s (2004) 
findings for overt pronouns, which referred to the subject 
less than 10% of the time, were not replicated by the model. 
We will discuss three possible causes for this below. 
 First, Serratrice (2007) notes that Tsimpli et al.'s 
experimental results are not in line with the classical null-

pronoun-refers-to-the-subject findings of, a.o., Carminati 
(2002). Additionally, the results from Tsimpli et al. (2004) 
show a stronger interpretation preference for overt pronouns 
than for null pronouns, which is also in contrast to 
Carminati (2002). Serratrice (2007, p. 233) suggests that this 
may be caused by the fact that "In Carminati’s experiment 
the subject and the object interpretation were presented in 
written form, while in this study the two alternatives were 
presented pictorially". However, in Vogelzang et al.'s 
(2019) study the answers were also presented pictorially. 
Therefore, the pictorial presentation can not explain the 
differences in interpretation between Vogelzang et al.'s 
(2019) study, whose results are in line with Carminati 
(2002), on the one hand and the Tsimpli et al.'s (2004) study 
on the other hand. Nevertheless, there were some 
differences between the tasks that should be examined in 
more detail in future research, such as the type of pictures 
presented (pictures with actions, Tsimpli et al. vs. pictures 
without actions, Vogelzang et al.) and the number of answer 
possibilities (3 vs. 2, respectively). 
 A second possible explanation for the strong preference of 
overt pronouns to refer to the non-subject in the study of 
Tsimpli et al. (2004) could be related to aspects of the 
discourse that were not taken into account in the model. 
Discourse prominence was taken into account in terms of 
recency and frequency though standard ACT-R activation 
mechanisms, but it is possible that recency plays a bigger 
role than that, as it is known to influence the accessibility of 
a referent (Arnold, 1998; Givón, 1983). When examining 
the discourses in (1) and (2), we can see that Tsimpli et al. 
introduced the second referent at the end of the pre-critical 
clause, whereas Vogelzang et al. provided linguistic content 
(in (2) a direct object) in between the second referent and 
the end of the pre-critical clause. Thus, it may be possible 
that very recent referents hold a special status, which was 
not taken into account in the model.  
 A third possible explanation stems from the observation 
that for both null and overt pronouns participants showed 
fewer subject interpretations in the study of Tsimpli et al. 
(2004) compared to the study of Vogelzang et al. (2019). 
This might be related to the verbs used in the discourses, as 
verb bias or implicit causality (Garvey & Caramazza, 1974) 
can influence which referent (previous subject or non-
subject) will likely be the actor in the continuation of the 
discourse. Similarly, an event-structure bias (Stevenson, 
Crawley, & Kleinman, 1994) of verbs could trigger the 
preference to continue the story with the end state of an 
action, which was the goal (non-subject) rather than the 
source (subject), of the verb in the pre-critical sentences. 
The model did not take any verb bias into account; potential 
effects of the verbs could be tested using a sentence 
completion task with the verbs used in both experiments. 
 Concluding, we investigated to what extent the variations 
in experimental results on the interpretation of Italian 
subject pronouns can be explained by the different 
discourses used in the experimental studies. Our simulations 
suggest that the discourse contexts used in the experiments 
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crucially influence the interpretation of Italian subject 
pronouns. Thus, discourse prominence in terms of recency, 
frequency, and grammatical role seem to play an important 
role in the processing and interpretation of pronouns, which 
has to be taken into account when interpreting experimental 
results. Nevertheless, the model was not able to account for 
all data, and further research, both on the processing of 
discourse and on the influence of the specific task, is needed 
to investigate variations in experimental results on Italian 
pronoun interpretation. 
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Abstract 

 
This paper presents a family of models of a voting task we 
developed in order to investigate how errors arise from the 
interaction between strategy and knowledge. We crossed four 
task strategies with five different declarative memories and 
two visual strategies to yield a total of 40 different ACT-R 
models, and then tested the models through Monte Carlo 
simulations with 500 runs of each model. The findings 
suggest that some strategies work best when knowledge is 
incomplete, and that more task knowledge can lead to more 
errors in the recall process. These results highlight the 
importance of studying human error using a thorough 
exploration of the strategy space. 
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Introduction 

Human error is important for both theoreticians and 

practitioners to understand human cognition and 

performance. While theoreticians like to collect and classify 

errors, practitioners are more interested in their remediation, 

prevention, and even elimination. However, research on 

how to bridge the gap between the theoretical and practical 

areas is still not particularly common. In this paper, we 

describe an error prediction method that connects theoretical 

and practical work on human errors. This method accounts 

for human performance in routine behaviors using 

computational modeling and ultimately we hope can be used 

to predict human error before a system is implemented. 

Error prediction methods are often based on traditional 

hierarchical task models (e.g., Annett & Duncan, 1967), 

which often assume that the processing system is explicitly 

hierarchical in structure and therefore break down complex 

tasks into hierarchies and sub-goals. Botvinick and Plaut 

(2004) suggested that hierarchical schemas and goals are not 

always necessary, at least in routine behavior. Instead, they 

presented a recurrent network model that uses recurrent 

connections within a network, which map from 

environmental inputs to action outputs, to represent an 

everyday task. However, Cooper and Shallice (2006) 

contrasted this recurrent network model with their more 

traditional, hierarchically structured interactive activation 

model. They criticized Botvinick and Plaut’s recurrent 

network approach, describing a set of problems with the 

approach, such as its behavioral inflexibility, and concluded 

that hierarchical structures are still necessary and play a 

causal role in the control of behavior. 

Another approach to studying human error is to create 

human performance models using ACT-R (Anderson, 

2007). This goes one step beyond models based on a 

traditional hierarchical structure by using cognitive 

architectures. ACT-R is a computational cognitive 

architecture that simulates and integrates human cognition, 

attention, and motor behavior. This helps researchers to 

understand how people organize knowledge and produce 

behavior in different ways. There are several published 

ACT-R models that can make the same errors as people 

(e.g., Anderson, et al., 1998; Halbrügge, Quade, & 

Engelbrecht, 2015; Lebière, Anderson, & Reder, 1994; 

Trafton, Altmann, & Ratwani, 2011). 

However, it is not easy to predict human error using 

ACT-R. First, there are many types of errors, but a human 

performance model usually only makes a specific kind of 

error. If there is a complex working system that contains 

several sub-tasks, it will take time and effort to create 

models that cover all possible errors. Second, in general, 

computational human performance models are fitted to 

and/or make predictions about average human behavior. 

However, predicting errors cannot simply be a question of 

fitting the mean, because even if the average person does 

not make an error, there may still be a substantial number 

who do. 

Our domain for error modeling is voting. People usually 

think that filling out a ballot is a simple task, but, in reality, 

unintentional undervotes, overvotes, or votes for the wrong 

candidate are very common in almost all elections. An 

undervote occurs when the number of votes is less than the 

maximum number allowed in a race, and an overvote occurs 

when the number of votes is more than the maximum 

number allowed. One reason for all these errors lies in the 

poor designs of the ballots, which fail to support human 

perceptual and cognitive limitations. There is clear evidence 

that ballot design problems have affected the outcomes of 

multiple elections in the United States (Laskowski et al., 

2004). For example, more than 2,000 votes intended for 

Gore were cast for Buchanan in Palm Beach County, 

Florida, during the 2000 elections due to the use of the 

infamous butterfly ballot (Wand et al., 2001). 

A standard usability evaluation prior to deployment 

would likely detect poor designs and prevent errors. 

However, usability specialists are rarely asked to perform 

such tests prior to an election. Instead, election officials, 

who have little formal training or the expertise in assessing 
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ballots, are left to the task. In addition, most elections in the 

U.S. are administered at the county level, and there are over 

3,000 counties in the U.S. Within each county, there are 

often hundreds of different precincts, each with a slightly 

different ballot style, meaning that, for each national 

election, tens of thousands of ballot designs are deployed. 

This makes conducting a traditional usability test for every 

single ballot intractable due to the problem scale. 

While it is impossible to perform usability testing on 

every ballot before every election deployment, some initial 

work has been done on predicting errors in voting tasks. In 

Greene (2010), an ACT-R model was presented that could 

sometimes make the same mistake that voters made in 

Sarasota, Florida in 2006. In this case, the first DRE screen 

contained one race, but there were two races presented on 

the second screen. This layout inconsistency led to 13.9% of 

votes being undervotes in the top race on the second screen. 

Greene modeled these first two screens to explore two 

voting strategies. The first strategy was to read the first 

screen from top to bottom before selecting a candidate, and 

then recall a useful location from the first screen to use to 

direct the visual search on the next screen. With this 

strategy, the model used the first screen to set expectations 

about where to find relevant landmarks (e.g., titles of races); 

it could then miss the critical top race on the second screen 

when the model extended those expectations from one 

screen to the next. The second strategy was to read both 

screens from top to bottom, without any recall. In contrast to 

the first strategy, the second strategy did not result in a 

critical top race undervote. 

Greene’s (2010) model offers a meaningful opportunity 

for computational human performance modeling to make a 

unique contribution to the voting field. However, this model 

does not reflect the full complexity of voting. Different 

voters almost certainly approach ballots differently. It is 

therefore critical that the models reflect not just one or two 

voting strategies, but the entire range of behaviors, so that 

specific interactions between voting strategies and ballot 

designs can be uncovered. 

To capture more of the voting complexity, we developed 

a model-based approach that covers a family of voting 

strategies using ACT-R. For each model, the memory 

strategy, ballot knowledge, and visual search strategy were 

considered independently. Memory strategy represents how 

voters access their memories when they cast a vote; ballot 

knowledge defines voters’ level of knowledge of the races 

and candidates; and visual search strategy indicates voters’ 

visual directions when conducting a visual search. In total, 

our system consists of 40 voting models that crossed four 

memory strategies with five kinds of ballot knowledge and 

two visual strategies. 

When it comes to visual search, humans have a 

remarkable ability to organize their perceptual inputs. The 

human visual system tends to group individual items in a 

visual image into larger structures under certain 

circumstances. This allows for the more efficient use of 

attention but sometimes leads to critical errors in executing 

a task. For example, the ballot used in Wisconsin in 2002 

led to many unintentional votes. On this ballot, the race for 

governor was split across two columns, which led many 

voters to consider the two visual groups as two races. Many 

voters voted twice, once in each column. To handle 

situations like this, our system makes use of a visual 

grouping algorithm that enables more realistic visual 

scanning behaviors (Lindstedt & Byrne, 2018). 

In short, our model-based system assessed a ballot layout 

with a family of voting models. Each voting model was 

tested multiple times, and the average across those runs was 

calculated. After running every ballot through each model 

repeatedly, all combinations of strategies and knowledge 

that generated high error rates were identified.  

 

The Voting Task 

Our system was implemented for an emulated voting task 

using the VoteBox task environment. Multiple experiments 

have been published in which human subjects voted using 

VoteBox (e.g., Everett, 2007; Everett, et al., 2008). This 

voting task contains 21 races that share a consistent layout 

(see Figure 1). The layout was designed to be easy to 

understand, with a relatively simple display that comprised 

the voting instructions, title of the race, candidates’ names 

and party affiliations, a “previous page” button, and a “next 

page” button, all clearly arranged and presented across the 

screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mock ballot of a presidential race. 

 

All versions of the model contain two phases. The first is 

a studying phase in which the model studies the display 

thoroughly to retain group information produced by the 

visual grouping algorithm. The second phase is a voting 

phase; after obtaining and storing group information during 

the first phase, the model now has expectations about where 

to look. It directs its gaze to the appropriate place and then 

makes a vote. 
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Modeling Strategies 

A total of 40 voting models were developed. Each model 

includes a memory strategy, ballot knowledge, and a visual 

search strategy. To produce a comprehensive error 

prediction, multiple plausible versions were considered for 

each component. The details of each component are 

described in the sections below. We defined four memory 

strategies, five kinds of ballot knowledge, and two visual 

search strategies. 

 

Memory Strategies 

Voters have to remember their choices, and they access their 

memories in different ways. There are two primary memory 

strategies for simple form-filling tasks like voting: retrieval 

and recognition. Some voters can simply recall the names of 

those for whom they intend to vote, at least in some 

races. For example, many voters, when prompted, can 

retrieve from memory the candidate for whom they intend to 

vote in presidential elections. Other voters may instead scan 

the list of names first to try to recognize their preferred 

candidates. Some voters vote almost exclusively according 

to party affiliation but then have to remember which races, 

if any, have exceptions. Some voters may rely on party 

affiliation if they can neither recall for whom they intended 

to vote nor recognize any of the candidates’ names on the 

list. While some voters may also write out a list and bring it 

into the voting booth, it is not clear how common this is, 

and it is, in fact, illegal in some jurisdictions. So, we did not 

consider this strategy. 

Our models capture four memory strategies one could 

reasonably expect a voter to employ—a strictly retrieval-

based strategy, a strictly recognition-based strategy, a 

retrieval-then-recognition contingency strategy, and a 

simple party-only look-up strategy (in case of exceptions to 

their default party). The first strategy represents the scenario 

in which the model first tries to retrieve the candidate’s 

name from memory. If the model fails to recall the name, 

then it relies simply on a party affiliation. The second 

strategy considers the situations in which the model first 

tries to retrieve their choice, but, if the retrieval fails, it then 

scans the list of names and votes for the one it recognize. If 

recognition also fails, it votes by party affiliation. For the 

third strategy, the model does not even attempt to retrieve; 

rather, it scans the list of names to see if it can recognize 

any of them. If recognition fails, it votes by party. For the 

last strategy, the model simply votes based on party 

affiliation. It first retrieves the specific party affiliation for 

specific races, but, if the retrieval fails, default party 

affiliation becomes the only criterion. The last step of these 

four memory strategies—voting by default party 

affiliation—is used only when all the previous steps fail. 

The default party affiliation could be either the Democratic, 

Republican, or Libertarian Party.  

Other memory strategies are certainly possible, but it is 

unclear how a voter could use the contents of their memory 

to vote in a meaningfully different manner without 

substantial overlap with one of the strategies listed above.  

 

Ballot Knowledge  

Voters have different levels of knowledge about the races 

and candidates. Some voters might have encoded all of the 

candidates’ names, some may only know the names of 

candidates they intend to vote for, and some may only have 

parts of the intended candidates’ names in their memories. 

In addition, ballot knowledge is not always easy to recall. 

Some voters may only remember their choices for the first 

few races because it is much more likely that voters will 

have more frequent exposure to top-of-the-ballot candidates. 

ACT-R represents situations like this using base-level 

activation, which reflects the recency and frequency of a 

specific memory. 

 
Table 1: Ballot Knowledge 

 

Ballot 

Knowledge 

Candidates’ Names  Activations for Intended 

Candidates 

FULL-

MEMORY 

All candidates Races 1 to 7: 0.7 

Races 8 to 14: 0.6 

Races 15 to 21: 0.5  

ALL-

ROLLOFF 

Intended 

candidates only 

Races 1 to 7: 0.7 

Races 8 to 14: 0.6 

Races 15 to 21: 0.5 

ALL-

PERFECT 

Intended 

candidates only 

All races: 0.8 

MOST-

ROLLOFF 

70% of intended 

candidates 

Races 1 to 3: 0.8 

Races 4 to 7: 0.7 

Races 8 to 11: 0.6 

Races 12 to 15: 0.5 

Race 16 to 21: Abstained  

MOST-

PERFECT 

70% of intended 

candidates 

Race 1 to 15: 0.8 

Race 16 to 21: Abstained 

 

Five ballot knowledge types were therefore created (see 

Table 1). First, we defined three levels of how many 

candidates’ names were stored. The models could remember 

all candidates’ names, only the intended candidates’ names, 

or only the first 70% of the intended candidates’ names. 

Then, we assigned two types of activations for intended 

candidates: roll-off activations and constant high-level 

activations. Models with roll-off activations are most 

familiar with the candidates for the first several races; then, 

as they progress down the ballot, their familiarity with 

candidates decreases. In the second condition—constant 

high-level activations—the models are highly familiar with 

all races to the same degree. Note that the various contents 
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and activation levels of memory were not chosen as an 

exhaustive search of all possible knowledge held by voters, 

but rather as an illustrative sample of common voter 

scenarios—some voters have certainly done their homework 

extensively, while others have likely only decided 

“important” races. 

 

Visual Search Strategies 

While reading in a serial order is the most common search 

strategy, eye-tracking studies have demonstrated that it is 

not universal (Aaltonen, Hyrskykari, & Räihä, 1998; 

Fleetwood & Byrne, 2006). People scan displays in different 

ways: some readers read in a serial, item-by-item pattern, 

from one corner to its diagonal opposite; some people scan 

globally and read all the bold, large, or colored headers first; 

and some simply prefer to scan randomly. 

Two visual search strategies were used when looking for 

candidates: a serial search and a random search. The serial 

search strategy is a serial item-by-item search with a left-to-

right, top-to-bottom pattern. With the random search 

strategy, the models conduct a random search. 

 

Model Evaluation 

Method 

The first issue to address is the number of Monte Carlo 

replications. We used the approach outlined in Byrne (2013) 

based on confidence intervals. We expected the overall error 

rate generated by the model to be around 5% and wanted the 

95% confidence intervals for the model predictions to be no 

wider than 2% in either direction. The table in Byrne (2013) 

shows this requires 457 model runs; we ran 500 per model 

to be slightly more conservative. 

 

Error Predictions 

For each model run, the ballot, as completed by the model, 

was compared with the “intent” initialized at the beginning 

of the run, and any discrepancies were noted as errors. 

Errors occurred across the entire voting process. The model 

might have retrieved an unintended name, recognized an 

unintended name, or failed to retrieve and then recognized 

an unintended name. For the model that simply made votes 

based on party affiliation, it may have retrieved an 

unintended party. The model may even have failed to 

retrieve and/or recognize an intended name, and then have 

voted by default party affiliation. We used Democratic as 

the default party affiliation for this model evaluation; 

however, intended candidates’ party affiliations did not 

always match the default party affiliation. The model 

occasionally also mis-clicked on the name above or below 

the intended name.  

Overall, our models generated an average 5% error rate 

across all voting models. This is somewhat higher than 

 

Figure 2: Interaction between memory strategy and ballot knowledge in voting error rates. The bars show voting errors. 

The five ballot knowledge types are written along the top; each shows the error rates for the four memory strategies. The 

three colors of the bars indicate the three kinds of processes the model used when it made an error. Red, green, and blue 

represent the party affiliation, recognition, and retrieval, respectively. 
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observed human error rates of around 1.5% (e.g., Everett, et 

al. 2008) and unfortunately it is impossible to compare our 

models directly to human data since we cannot know the 

strategies used by people in such studies. Instead, we are 

interested in how the model strategies interact to produce 

errors. 

Differences in error rates with visual strategies were not 

found, which means that using either a serial or a random 

scanning pattern did not affect the voting results. The main 

story here is therefore about memory strategy and ballot 

knowledge. We observed differences in voting errors based 

on the interaction between voting strategy and ballot 

knowledge. 

Figure 2 presents five groups of bars that represent the 

error rates of the five kinds of ballot knowledge. For each 

type of ballot knowledge, the percentages of the errors for 

the four memory strategies are displayed. For the FULL-

MEMORY condition, the model generated 9% more errors 

than the other four ballot knowledge types. The model also 

generated more errors with roll-off activations for intended 

candidates. For the MOST-ROLLOFF and ALL-ROLLOFF 

conditions, the voting model was 2% more likely to make 

errors than with the MOST-PERFECT and ALL-PERFECT 

conditions. Additionally, for these four levels of ballot 

knowledge other than FULL-MEMORY, there were clearly 

fewer errors with the three-step “retrieve-recognize-party” 

memory strategy. 

We then investigated the error attributions for each vote 

to determine which process the model was using when it 

made an error. In Figure 2, each bar is partitioned into three 

colors, which represent the three kinds of process the model 

was using when it made an error: retrieval, recognition, or 

party affiliation. For the FULL-MEMORY condition, most 

of the errors occurred in the recognition and/or retrieval 

processes. Within FULL-MEMORY, 7% more voting errors 

were generated with the “recognize-party” memory strategy. 

However, for the other four kinds of ballot knowledge, 

differences in error attributions with memory strategies were 

not apparent; most of the errors were generated in the last 

steps—voting by party affiliation. 

 
Discussion 

The error predictions indicate that extra ballot knowledge 

actually led to more errors, especially with the involvement 

of recognition. Common sense would suggest that a broader 

knowledge base should help to mitigate mistakes, but this is 

not always the case. Another example that also suggests that 

a strategy works best when knowledge is incomplete is the 

recognition heuristic. The recognition heuristic describes a 

situation where, if one of two objects is recognized and the 

other is not, the recognized object is more likely to be 

selected (Goldstein & Gigerenzer, 2002). This strategy 

requires ignorance to make a choice—if people know 

everything or nothing about the options, it simply does not 

work. For example, for the question “which city has a larger 

population?” most people choose Dublin over Nenagh since 

they can recognize Dublin only, but it is harder for people to 

make a selection if the choices become San Diego and San 

Antonio, as they are more likely to recognize both of these 

cities. Similarly, in the voting task in our study, the models 

knew everything in the FULL-MEMORY condition, 

including both the intended and unintended candidates’ 

names. Thus, compared to the other four ballot knowledge 

types, the memory strategies did not work well with FULL-

MEMORY, and more errors occurred in the recognition 

processes. 

Because of the more frequent recognition errors, one 

thing we can expect with the FULL-MEMORY condition is 

a greater impact of candidate name order. Voters who 

cannot recall their intended candidate’s name must scan the 

list of names and see if they can recognize any, and their 

choices can be biased by the order in which candidates’ 

names appear on the ballot (Miller & Krosnick, 1998). In 

our study, the model with “recognize-party” memory 

strategy checks each candidate, sees if it recognizes, and if 

so, votes for it. Since some voters use top-to-bottom visual 

search, an advantage for the top candidate can be predicted. 

Another finding has to do with the interaction between 

task knowledge and recall performance. Schooler and 

Anderson (1997) suggested an association between the 

number of choices and recall performance, positing that the 

more choices we have, the more likely we are to make a 

recall error at each name. We observed the same 

relationship in our models. The FULL-MEMORY condition 

contains both intended names and unintended names, and 

the models could either retrieve an intended name or an 

unintended name for each race in that condition. It was 

therefore more likely to make errors in the retrieval process 

since incorrect answers are available. However, with the 

other four ballot knowledge types, there are only intended 

names available in memory. Wrong names were therefore 

less likely to be retrieved with these four levels of 

knowledge. 

We can also conclude from the error predictions that the 

three-step “retrieve-recognize-party” memory strategy had a 

better performance than the two-step memory strategies. As 

can be seen in Figure 2, a large portion of the errors came 

from the last steps, voting by party affiliation, across five 

levels of knowledge. Comparing to the two-step strategies, 

the additional one step prevented errors that could be made 

in the last step, and so the least amount of errors was 

generated with the three-step memory strategy. 

Note that the errors made here are not the result of poor 

ballot design. However, we believe that further interactions, 

those between strategy, knowledge, and ballot design, will 

show how the visual layout of the ballot can influence error 

rates. Poor layouts may not induce all voters into error, but 

differentially affect those who use particular strategies. 

Furthermore, we believe that these kinds of errors are not 

limited only to filling out ballots, but likely occur in other 
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tasks that are essentially form fill-in, such as interacting 

with electronic health records. 

Our model-based system represents the first use of ACT-

R as an error prediction tool to diagnose if there are 

particular combinations of strategies that lead to error. The 

idea that one can understand the error space by modeling 

only one strategy or predicting mean behavior is likely to 

miss critical combinations of factors that produce errors. 

Our results demonstrate that subtle interactions between 

strategy and knowledge can have substantial effects on error 

rates. Thus, it is critical to consider multiple combinations 

of both when attempting to model errors, even in a task that 

appear as simple as voting. 
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Abstract 

Cognitive models serve the purpose of implementing theories 
of human cognition and give the opportunity to simulate 
reasoning processes for comparing them to participant data. 
Relational reasoning is particularly relevant, because it is 
closely connected to spatial navigation and planning. In 
modeling relational reasoning, findings from neuroscience 
have been largely neglected. As we are showing, the 
connection between neuroimaging and cognitive modeling has 
been elementary so far. We aim at bridging the gap between 
the neurocognitive correlates of relational reasoning and 
cognitive models thereof. Computational models and 
architectures, as well as the recent neuroimaging literature 
investigating relational reasoning are reviewed. By identifying 
functional modules, we postulate the neuroscientific loci which 
a modeler aiming at simulating reasoning should consider 
before conceptualizing a neurocognitive model of relational 
reasoning. 

Keywords: Cognitive modeling, Relational reasoning, 
Neuroimaging, Cognitive architecture 

Introduction 

Cognitive models enable the testing of cognitive theories and 

the comparison to psychological findings. In the last decade, 

the interest in biologically plausible cognitive modeling has 

been rising, not least because of transnational research 

projects such as the Blue Brain Project (Markram, 2006). 

Especially interesting is the modeling of higher cognitive 

processes such as relational reasoning, usually taking the 

form of premises like “Tom is to the right of Sally. Sally is to 

the right of George.”, from which the inference “Tom is to 

the right of George.” can be derived. For successfully solving 

this task, participants are asked to infer explicit knowledge 

about the objects’ relations to each other, which is implicitly 

given in the premises. Relational reasoning is closely linked 

to spatial navigation and hence motor function, as well as to 

analogy and language processing. Thereby, it is more 

versatile than other reasoning types and particularly 

promising for cognitive modeling since multiple cognitive 

abilities are recruited. The expected findings of modeling 

relational reasoning could greatly contribute to fields such as 

Brain-Computer-Interfaces or medical diagnostics. For 

example, if a patient suffers from a brain lesion, the only 

information available so far is a potential function loss in 

cognitive abilities associated with the respective region. 

Detailed information about the region’s function in terms of 

more complex cognitive abilities such as reasoning is not yet 

available. Biologically plausible cognitive model could 

provide details about the wide-ranging cognitive deficits 

resulting from the loss when informed by the lesion site. 

Hence, investigating the connection between models of 

cognition and neuroscience are beneficial for developing 

medically relevant models of neuropathology and diagnostic 

purposes. 

But how do we go about investigating human cognition, 

specifically relational reasoning? According to Marr’s 

analysis, there are three levels to be considered (Marr, 1982, 

see Figure 1). On the computational level, the strategic aim 

of the cognitive effort is evaluated. This involves a formal 

model or theoretical framework of relational reasoning, such 

as mental model theory, as well as cognitive architectures in 

which these can be implemented. On the algorithmic level, 

human performance is assessed. This involves reasoning 

effects and models describing and explaining the processes. 

On an implementation level, the ‘hardware’ in which 

cognitive process are implemented is considered, namely 

neuroanatomy. Regarding relational reasoning, this results in 

finding the neural correlates of these processes and assessing 

their neuroanatomical feasibility. 

 

 

 
 

Figure 1: Representation of the analysis levels. 

 

By modeling cognitive processes, we predominantly work 

on the computational level, but they are inevitable 

intertwined. In the case of relational reasoning, cognitive 

models are described to solve reasoning tasks which have 
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previously been tested on human participants, hence the 

algorithmic and computational level are connected. In 

cognitive neuroscience, the algorithmic and implementation 

levels are conjoined by identifying the relevant brain areas. 

As we are going to show in the following, the link between 

the implementation and computational level is currently 

underdeveloped, although both levels bear important insights 

for the other. Our article serves as a resource for modelers 

aiming at the development of a cognitive model for relational 

reasoning which is based on neuroscientific insights. 

Mutually informing each other: cognitive 

neuroscience and cognitive modeling 

Cognitive neuroscience can greatly benefit from the insights 

of cognitive models, for modeling provides more 

sophisticated analyses of cognitive processes. On this basis, 

neuroscientific hypotheses can be formulated more 

accurately and tested on more precise levels of analysis by 

revealing hidden cognitive processes and fostering more 

accurate study designs (Forstmann et al., 2011). Conversely, 

cognitive modeling likewise benefits from neuroscientific 

findings in using them to restrain and inform the set-up and 

conceptualization of cognitive models, thereby making them 

more viable (Forstmann et al., 2011). This includes 

systematic reviews of cognitive models, some of which can 

be favored based on neuroscientific plausibility (Forstmann 

et al., 2011). 

In this article, we aim at bridging the gap between 

cognitive models and insights from cognitive neuroscience 

about the neural underpinnings of relational reasoning. For 

this, we systematically review cognitive models and 

neuroimaging studies of relational reasoning and identify the 

most central brain regions. We characterize the regions in 

terms of their functionality to the task and summarize by 

establishing a neuroscience-based standard functions and 

brain regions required for modeling relational reasoning. 

Cognitive Models of Relational Reasoning 

Regarding the algorithmic level, Friemann and Ragni (2018) 

have recently published a review of spatial relational 

reasoning models. Their collection of models was adapted to 

review the current state of the art, Further, we conducted an 

online researched via Google Scholar and Pubmed. As Table 

1 displays, the models vary greatly along different parameter 

such as the number of dimensions of processable relations 

and their inclusion of findings from cognitive neuroscience. 

The listed models are going to be categorized in terms of the 

aforementioned dimensionality, working memory capacity 

and whether findings from cognitive neuroscience are 

incorporated in the model.  

Dimensionality 

The lowest dimensionality of one, enabling the processing of 

relational dichotomies is offered by the models of Schlieder 

and Berendt (1998), Bara, Bucciarelli and Lombardo (2001), 

Hummel and Holyoak (2001), Morrison et al., (2004), 

Krumnack, Bucher, Nejasmic, Nebel and Knauff (2011) and 

Dietz, Hölldobler and Höps (2015). An additional dimension, 

allowing for, e.g., the processing of cardinal directions, is 

featured by the models by Ioerger (1994), Schultheis and 

Barkowsky (2011), Wertheim and Stewart (2018) and 

Kounatidou, Richter and Schöner (2018). Only the models by 

Johnson-Laird and Byrne (1991) and Ragni and Knauff 

(2013) provide a three-dimensional space in which relational 

reasoning operations are represented.  

Working memory 

Concerning working memory, most models exhibit a limited 

capacity inspired by human processing. In the models by 

Schlieder and Berendt (1998), Dietz et al. (2015) and 

Kounatidou et al. (2018), the capacity of the working memory 

is unspecified and therefore not explicitly adapted to human 

performance. 

 

Table 1: Overview of cognitive models of spatial 

relational reasoning. 

 

Authors Dim. WM ND  

Johnson-Laird & Byrne, 1991 3 Lim  
Ioerger, 1994 2 Lim  
Schlieder & Berendt, 1998 1 n/a  
Bara et al., 2001 1 Lim  
Hummel & Holyoak, 2001 1 Lim  
Morrison et al., 2004 1 Lim  
Krumnack et al., 2011 1 Lim  
Schultheis & Barkowsky, 2011 2 Lim  
Ragni & Knauff, 2013 3 Lim  
Dietz et al., 2015 1 n/a  
Wertheim & Stewart, 2018 2 Lim  
Kounatidou et al., 2018 2 n/a  
Note. Dim.: Number of dimensions; WM: Working 

memory; Lim: Limited capacity; ND: Inclusion of 

neuroscience data. 

Inclusion of neuroscience data 

Concerning the implementation of neuroscience data, only 

few models appear to be relevant. The model by Morrison et 

al. (2004) includes lesion patient data, whereas the model by 

Schultheis and Barkowsky (2011) is explicitly based on the 

modularity hypothesis. Apart from that, only the models by 

Wertheim and Stewart (2018) and Kounatidou et al. (2018) 

run on artificial neural networks which are (partially) based 

on the mechanisms of actual neurons.  

We conclude that the inclusion of neuroscience data has 

not yet been widely used in the development of cognitive 

models. Nonetheless, cognitive models can theoretically be 

implemented in current cognitive architectures such as the 

Turing-complete ACT-R. Also, this has already been done 

by, e.g., Wertheim and Stewart (2018) in the Neural 

Engineering Framework (NEF). Hence, an online research 

was conducted via Google Scholar and Pubmed to review 

cognitive architecture providing a programming framework 

and to investigate to what extend insights from neuroscience 
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have been used to restrain frameworks or provide predictions. 

A notable review has been on cognitive architectures has 

been published by Samsonovich (2010), but not all aim at 

biological plausibility. 

Cognitive Architectures 

Some frameworks consider brain function on either a level of 

restraining implementation possibilities or in modeling 

neurocognitive processes. These include the architectures 

4CAPS (Just, Carpenter & Varma, 1999) and conceptually 

also the precursor 3CAPS (Just & Carpenter, 1992) by 

approximating the BOLD response. ACT-R (Anderson, 

2007) and EPIC (Meyer & Kieras, 1999) incorporate 

anatomically and functionally plausible correspondents to 

brain regions. The NEF (Eliasmith, 2013) simulates neuronal 

activity and connectivity, whereas SOAR (Newell, 1992) 

restrains working memory to a neurobiologically plausible 

time span. CLARION (Sun, 2002) is based upon the 

modularity hypothesis and Sigma (Rosenbloom, 2013) 

features neural networks. In Table 2, we evaluate the 

cognitive architectures towards features essential to 

biologically plausible computation of relational reasoning. 

 

Table 2: Overview of cognitive architectures suitable for 

processing relational reasoning 

 

Model Module BOLD 

3CAPS   
SOAR   
4CAPS   
EPIC   
CLARION   
ACT-R   
NEF   
Sigma   

Note. Module: Does it feature separate interacting modules?; 

BOLD: BOLD function predicted? 

Modularization 

Modularization of functional components has been a 

common practice when designing cognitive architectures. 

This is based upon the modularity hypothesis stemming from 

evolutionary psychology which claims that cognition is 

facilitated by function-specific brain regions serving as 

modules (Fodor, 1985). We have found that almost all 

architectures share this basic trait, except for Sigma 

(Rosenbloom, 2013). 

BOLD prediction 

A common approach in biologically plausible cognitive 

modeling is the prediction and approximation of the BOLD 

response derived from fMRI studies. So far, his has only been 

accomplished in the framework 4CAPS (Just et al., 1999) and 

ACT-R (Anderson, 2007). 

Functional Brain Regions for Relational 

Reasoning 

The meta-analysis by Wertheim and Ragni (2018) examines 

the neural correlates of relational reasoning and was used to 

identify the brain regions active during task solving. In the 

following, the regions are examined based on their 

involvement in cognitive processes with regard to their 

relevance to cognitive modeling. 

Frontal lobe 

The most wide-spread activation was found in the bilateral, 

but mostly left prefrontal cortex. According to O'Reilly and 

Munakata (2000), this region is functionally responsible for 

active and flexible maintenance of complex mental 

representations, as well as goal-directed executive control, 

especially regarding the monitoring of overall processing 

(Eriksson et al., 2015). Further, a left-sided activation in 

reasoning has been previously assumed and supported by 

lesion studies. For example, Goel et al. (2006) showed that 

left-, in contrast to right-sided lesions hinder participants to 

correctly decide whether determinate tasks are correct. 

Particularly relevant to relational reasoning is the 

dorsolateral prefrontal cortex and middle frontal gyrus 

(DLPFC/MFG, BA 9, 8). It is active during executive 

functioning and cognitive monitoring (Prabhakaran, Smith, 

Desmond, Glover & Gabrieli, 1997) and in maintaining 

multiple relations (Waltz et al., 1999), which is proposed to 

translate to the entertainment of a mental model and 

integration of several relations (Wertheim & Ragni, 2018). 

For example, the MFG is used in the architecture ACT-R 

serving as a declarative memory module (Anderson, 2007). 

BA 6 (Supplementary motor area, SMA) is involved in task 

planning (Hanakawa et al., 2002), whereas the precentral 

gyrus (PreCG, BA 9, 8) facilitates attention management 

(Acuna, Eliassen, Donoghue & Sanes, 2002). 

Parietal lobe 

The posterior parietal cortex (PPC) is typically associated 

with the (repetitive) processing of spatial information and 

scenarios, such as mental rotation (O'Reilly & Munakata, 

2000). Specifically, activation was found in the bilateral 

superior parietal lobule (SPL), inferior parietal lobule (IPL), 

precuneus (PCUN, BA 7, 40). It is involved in executive 

working memory and sustained attention (Koenigs, Barbey, 

Postle & Grafman, 2009) and linked to the selection of the 

attention focus (Awh, Vogel & Oh, 2006). From a modeling 

perspective, this region is specifically involved in the 

construction and manipulation of mental models (Ragni, 

Franzmeier, Maier, & Knauff, 2016). Concerning the 

precuneus, neuroimaging studies have found its specific 

involvement in abstract tasks, as well as episodic memory 

retrieval (Cavanna & Trimble, 2006). Henceforth, the PPC 

facilitates a mental space in which model representation and 

manipulation takes place.  
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Basal ganglia 

The right claustrum shares extensive structural connections 

to the prefrontal cortex (Ullman, 2006). In a computational 

sense, the selection of actions is assigned to this region 

(O'Reilly & Munakata, 2000). This assumption is supported 

by further neuroimaging studies of reasoning, e.g., Jia et al. 

(2011) assign rule induction to the basal ganglia. From a 

computational perspective, O’Reilly (2006) specified its role 

of gating of mental representations coming from the PFC. 

  

Table 3: Overview of brain regions central to relational 

reasoning found by Wertheim and Ragni (2018). 

 

Regions BA Function 

SPL 7 Processing spatial information, 

construction and manipulation of 

mental models 
IPL 40 

SMA 6 Task planning 

DLPFC 9, 8, 

46 

Executive functioning, cognitive 

monitoring, maintaining of 

complex information, attention 

management 

Declarative memory 

Claustrum - Action selection, representation 

gating 

Note. BA: Brodmann area; SPL: Superior parietal lobule, 

IPL: Inferior parietal lobule, SMA: Supplementary motor 

area, DLPFC: dorsolateral prefrontal cortex. 

Occipital lobe 

Although Wertheim and Ragni (2018) did not find any 

significant clusters in the occipital lobe, processing-wise it is 

interesting because it shares connections with the PPC 

(Culham & Kanwisher, 2001). As it is active during the 

processing and abstraction of visual input (O'Reilly & 

Munakata, 2000), it should be considered for processing 

visual inputs and redirecting information to the PPC. 

Discussion 

In this article, we reviewed the current state of the art of 

cognitive models, architectures and the neuroscience of 

relational reasoning and hence provide a guideline for 

programmers aiming at building biologically plausible 

models of relational reasoning. Although there exists a 

considerable selection of models explaining the cognitive 

mechanisms underlying reasoning on the algorithmic level, 

only few have been implemented. Hence, we continued by 

reviewing cognitive architectures and found that there have 

been various approaches to including neuroscience results by 

either restraining programming environments or deriving 

predictions relevant for neuroscience. Nonetheless, the 

interface between cognitive architectures and cognitive 

neuroscience is sparse and only a synthesis of different 

approaches could foster the current state of the art. 

Concerning cognitive models, this would be by assuming 

three dimensions on which relations can be represented, a 

psychologically plausible constraint on working memory, 

was well as the potential implementation with neural 

networks. Regarding cognitive architectures, starting points 

are anatomically and functionally specified modules, as well 

as the prediction of the BOLD response (for examples see, 

Anderson et al., 2008 and Borst & Anderson, 2015). 

Cognitive modeling would benefit from conjoining 

preexisting approaches to integrating neuroscience. 

Similarly, cognitive neuroscience can benefit by informing 

experimental set ups from cognitive simulations. For 

example, O’Doherty, Hampton and Kim (2007) developed 

model-based neuroimaging for correlating assumed cognitive 

processes with actual scanning data. Concerning our review 

of neuroimaging studies, the most relevant regions which 

need to be considered in cognitive models have been 

identified and examined for their involvement in functions 

relevant to relational reasoning (see Figure 2). These include 

the PPC for abstracting and processing spatial information 

and working memory and the basal ganglia for action 

selection and information gating. The basal ganglia have 

already been implemented as an action selection system in 

the NEF (Senft, Stwart, Bekolay, Eliasmith & Kröger, 2016), 

whereas the imaginal buffer in ACT-R serves as a 

correspondent to the PPC (Anderson, 2007). Further 

identified regions are the SMA for task planning, and DLPFC 

for meta-cognitive functions such as cognitive monitoring 

and attention management. This region-function matching 

can inform cognitive models by a precise selection of actions 

and associated brain regions. Since we did not only identify 

the relevant regions but also their function specifically in 

relational reasoning, modelers can either only include the 

regions’ respective function or decide to consider 

neuroanatomical details as well. 

We initially claimed that there exists a gap between the 

implementation and computational level of investigating 

cognition. We have contributed to closing this gap by 

identifying biologically relevant features of architectures 

which should be merged and extended, as well the most 

functionally relevant brain regions from neuroimaging. By 

this, we have established a first example of a necessary 

precondition to neurocognitive modeling and proposed 

guidelines from which both domains can benefit. Cognitive 

models could be improved by this localization of activation 

foci by constraining the models based on the cognitive 

succession of cognitive demands needed to fulfill a task 

which is examined by data derived from neuroimaging and 

corresponding cognitive theories.  

From a practical perspective, biologically plausible 

cognitive models could be used for diagnostic purposes in 

medical environments. From these models, we could infer 

more detailed cognitive impairments in higher cognitive 

functions. So far, it is only possible to identify basic 

impairments following the damage of brain tissue, such as 

impairments in processing language and working memory. 

By developing a more detailed account of the neurological, 

as well as cognitively functional subunits of the mind-brain, 

diagnoses and decisions can be improved and more elaborate 
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restorative and preventive therapies can be developed. 

Potentially, this program might develop into a resource for 

the structure-function mapping between brain regions and 

their involvement in specific tasks which would foster the 

mutual exchange between these two vibrant fields of 

research, as well as increase the practical usage of 

neuroscientific data for cognitive modeling. 

 

 

 
 

Figure 2: Representation of the brain regions active during 

relational reasoning and associated functions thereof. 

 

The merging of the computational and implementation 

domains can be deepened and fostered by analyzing further 

meta-analyses on the neurocognitive correlates of reasoning 

tasks which can be theoretically or have been practically 

implemented in cognitive architectures. This would improve 

the specificity of determining which brain regions subserve 

cognitive functions, thus merging the approaches by brain 

mapping via neuroimaging and bypassing the difficulties of 

small sample sizes in neuroimaging studies (by meta-

analyses) and cognitive modeling (by task specificity). 

Another domain of future work could be the more in-depth 

connection between implementation and computation by 

investigating the structural properties of the respective 

regions (e.g., arrangement of layer cells, interaction between 

inhibitory and excitatory mechanisms) for examining 

potential structure-function dependencies relevant to 

cognitive architectures per se and for spatial relational 

reasoning in particular. 
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Abstract  
Feelings are potentially conscious experiences that 
inform us about brain/body states related to drives (e.g., 
feeling hungry), emotions (e.g., feeling angry) and 
knowledge states (e.g., feeling unsure). In this paper we 
propose a unified computational definition of feelings 
that can be used to add feelings to cognitive models. 

Accounting for feelings in cognitive models is 
important since feelings have strong effects on human 
performance and decision-making. However, there is 
considerable disagreement over what feelings are and 
how, or if, they can be incorporated into cognitive 
models. We address this issue by providing a functional, 
computational definition of feelings. 

Computational Theory of Mind (CTM) is an area of 
philosophy that argues that the brain is a form of 
computer. There are a variety of arguments in favour of 
this view, likely the most well known belong to Fodor 
(2000). Likewise, there are a variety of criticisms of this 
view, probably the most well known are Searle’s 
(1984). Internally, CMT theorists argue about the right 
way to map computation to cognition. Mostly these 
discussions revolve around knowledge and language, 
but the question of how to relate feelings to 
computation has been broached, so this is one source of 
ideas about how to computationally implement feelings.  

Another source of ideas is Cognitive Modeling itself. 
Cognitive modeling can be considered an empirical 
endeavour. The goal of Cognitive Modeling is to use 
computational modeling to represent cognitive theories 
and to test these theories through comparisons to data. 
The ultimate goal of Cognitive Modeling is to build a 
Unified Cognitive Architecture capable of simulating 
all or most human cognitive abilities (Newell, 1990). 
Cognitive architectures, such as ACT-R (Anderson & 
Lebiere, 1998) and SOAR (Laird, 2012) have been very 
successful in modeling knowledge driven behaviour but 
it is not clear how to add feelings to these architectures. 
However, by examining the structure of these 
architectures, the options for adding feelings can be 
elucidated. 

What are Feelings? 
CTM debates are focused around concepts such as 
symbolic representation, referents, semantics, 
propositions, qualia, and meaning. CTM is intended to 
describe the relationship between computation and the 

brain, but because most of the discussion is based 
around knowledge and language, it is unclear if these 
concepts are meant to apply beyond this domain 
(Rescorla, 2015). In particular, there seems to be an 
intuition that feelings are not the same as thought or 
language, and so must be computationally represented 
in a different way. 

According to Damasio (2019) feelings are mental 
representations of non-symbolic bodily states, which 
are used for decision making. According to Alston 
(1969) feelings are, “spontaneously-emerging occurrent 
phenomenal experiences,’’ which he refers to as 
“datable states of consciousness.” However, Arango-
Muñoz & Michaelian (2014) indicate that feelings do 
not involve "properly propositional content."   

Overall, there seems to be agreement that a feeling is 
a unitary phenomena that we have potential conscious 
awareness of. Feelings can factor into decision making 
but there is an intuition that feelings are somehow 
different from propositional, symbolic knowledge. 
Finally, feelings are derived from more complex, 
distributed phenomena, such as emotions and drives. 

Noetic Feelings 
In addition to drives and emotions, feelings can also be 
derived from states of knowing or learning. These 
feelings have been referred to by terms such as, feelings 
of knowing or FOK (Hart, 1965), metamemory (Flavell, 
1971), knowledge judgements (Schneider, 2000), 
cognitive emotions (Standish, 1992), and epistemic 
feelings (Arango-Muñoz & Michaelian, 2014). In the 
following paper we will subsume this lexicon under the 
term “noetic feelings.” This follows Metcalfe’s (2013) 
identification of “noetic” to mean cognitive phenomena 
in which the referent concerns an internal state or 
internal representation.  

Research indicates that noetic feelings drive memory 
search as subjects take more time to search their 
memory if they “feel” they know it (Barnes et al., 
1999). Studies also show that noetic feelings are a 
reliable signal of the likelihood of memory retrieval 
(Hart, 1965), and feelings of probable retrieval success 
or retrieval failure affect the strategy used to engage the 
problem (Conway, 2009; Singer & Tiede, 2008). Noetic 
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feelings have also been reliably correlated with 
improved learning outcomes (Wang, Haertel, & 
Walberg, 1990). Subjects will also spend more time 
learning words previously considered to be difficult to 
remember (Nelson & Leonesio, 1988). Moreover, the 
“feeling of rightness” has been studied in the rapid 
solving of complex, real-world problems (Thompson et 
al., 2011). 

Models associated with noetic phenomena include 
Reder’s (1996) use of the source of activation confusion 
(SAC) model, Dougherty’s (2001) multiple-trace 
memory model, Metcalfe’s (1993) holographic 
associative model, and Sikström and Jönsson’s (2005) 
stochastic dri model of memory strength to explain 
delayed judgement of learning. 

Thus research indicates that noetic feelings are a 
guidance system integral to directing cognitive 
processes. Progress toward accurately describing 
human cognition requires integrating noetic feelings 
into cognitive modeling. 

Reasoning from Architectures 
There is a tendency in CTM papers to focus on 
foundational issues. In the case of emotions, for 
example, this manifests as a concern over establishing 
what emotions are before considering how they can be 
computationally represented. For example, emotions are 
defined variously as bodily states (Damasio, 2019), 
perception (Prinz, 2006), and natural kinds (Barrett, 
2006). However, since there is no agreement on the 
status of emotions we have no foundational basis to 
reason about the nature of the feelings that are derived 
from emotions.  

In contrast to this foundational approach, we ground 
our work on the function of feelings within cognitive 
models. That is, we take a top down functional 
approach as opposed to a bottom up foundational 
approach. Ideally, these two different approaches can 
inform each other, but it is important not to confound 
the two. 

We take the ability of cognitive models to account for 
data as evidence that the model embodies something 
true about the computational functionality of the brain. 
One criticism that can be levelled at this approach is 
that there are many different cognitive models. 
However, our focus is not on the differences between 
the models, but rather on their similarities. We argue 
that there are significant convergences in cognitive 
modeling at the level of the architecture. More 
generally, we interpret unified cognitive architectures as 
a way of grounding theory in functional coherence, 
without engaging with foundational issues. In 
particular, we focus on the Common Model 

Architecture. 

Common Model of Cognition 
The Common Model of Cognition (formerly known as 
the Standard Model of Cognition) is a conceptual 
architecture put forward by Laird et al. (2017). The 
concept of a common model is based on Laird et al.’s 
claim that there has been significant convergence across 
cognitive architectures over time, to where we are now 
at the point that we can talk about a common cognitive 
architecture. The common model describes a conceptual 
architecture that is common to most, if not all, cognitive 
architectures capable of modelling complex human 
behaviour.  

The basic structure of the common model is shown in 
Figure 1. The common model describes a production 
system (corresponding to procedural memory) that 
interacts with different modules through a buffer system 
that corresponds to working memory. The architecture 
is parallel and asynchronous, with the production 
system acting as a control system. There are significant 
divergences in terms of how components are 
implemented in different common model-type 
architectures (e.g., spiking neurons, neural networks, 
high dimensional vectors, semantic networks, Bayesian 
networks, graph theory, etc.). However, the common 
model describes the common functionality across 
different implementations. 

The common model is not meant to describe all of 
human cognition, it is a model of cognitive control and 
decision making. As Newell (1990) noted, this is one 
possible starting point for understanding cognition. In 
contrast, CTM appears to have knowledge and language 
as its starting point. In other words, CTM is based on 
knowing while the common model is based on doing. 
Bridging the two is conceptually tricky, not least 
because they use the same terms in different ways. In 
this paper we will attempt to merge CTM work on 
feelings with the common model. Specifically, we argue 
that feelings are best modelled as non propositional 
representations in buffers (related to this see West & 
Young, 2017, for a discussion of representing amygdala 
states in the buffers). 

Qualia 
Qualia refers to the qualitative differences between our 
conscious experience of thoughts, senses, emotions, and 
drives. Explaining how different patterns of neural 
activity can produce these qualitatively different 
experiences is part of what Chalmers (1996) referred to 
as the hard problem of consciousness (Chalmers, 1996). 
There continues to be much debate on the subject and  
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Figure 1. The Common Model of Cognition 

the matter is far from settled. Given that there is no 
agreed upon definition of consciousness we will not 
make any strong claims about what parts of the 
common model are conscious. However, because the 
architecture can report the buffer contents it is clear that 
the buffer contents are potentially conscious, and are 
definitely conscious when reported. For example, if a 
model reports remembering a brown cat this would 
correspond to a conscious awareness of this cat in 
memory. Likewise, feelings can be consciously 
experienced but are not necessarily always consciously 
experienced (Redder & Schunn, 1996; Metcalfe & Son, 
2012; Son & Kornell, 2005). 

Modules and mechanisms 
Fodor (1983) has greatly influenced how to think about 
the brain in terms of modules. However, cognitive 
modellers almost universally ignore Fodor ’s 
foundational requirements for modularity. So we will 
not follow Fodor on this. Instead we take modules in 
cognitive models to represent mechanisms in the brain 
(Betchel, 1994). 
  The mapping between a module in a model and a 
module in the brain can occur in different ways. It could 
be one to one, where a module in the architecture maps 
directly to an area of the brain, as suggested by J. 
Anderson (e.g.; Anderson et al., 2004). In terms of 

emotion, this approach is represented by theories of 
basic emotions, which postulate distinct neural modules 
for processing specific emotions. For example, 
(Panksepp, 1998) postulates areas for basic emotions 
based on comparisons of mammalian brains.   

However, a computational module could also map to 
a network of multipurpose modules assembled to 
generate a higher level function, as suggested by M. 
Anderson (2010). In terms of emotion, this approach is 
represented by theories of complex emotions and 
emotional networks. Such networks could produce 
complex sets of feelings or blended feelings. 

Brain wide states, such as neurotransmitter levels or 
hormones can also be modeled. For example, Ritter et 
al. (2006) describe a system for the ACT-R architecture 
that specifies the effects of hormones and 
neurotransmitter levels on modules in the architecture. 
Likewise, Core Affect theory (Russell et al, 1999) 
models brain wide chemical states in terms of a two 
dimensional valence/arousal model. We assume that 
brain wide states contribute to feelings through their 
impact on modules. 

Propositions, Symbols and Feelings 
Cognitive models either use symbolic propositional 
knowledge or, in the case of neural networks and 
spiking neuron models, they act as if they do. This 
makes sense for modelling knowledge driven 
processing but it raises a concern because consciously 
experienced feelings seem to possess qualia without 
associated propositional content. This can evoke 
complex philosophical questions (as represented by the 
thought experiment of Mary the colour blind scientist). 
However, we hope to avoid questions related to qualia 
by focusing on function. We begin by considering if the 
role of buffer representations is necessarily symbolic or 
propositional. 

The buffer contents could be considered as 
representing propositional knowledge in the sense that 
the buffers are considered to contain true information. 
The buffer contents could also be considered to be 
symbolic representations in that they can correspond to 
things in the real world. However, what the buffers 
actually contain is the outputs of a module. How this 
relates to the state of the world is dependent on the 
relationship between the module and the world. If we 
consider the immediate function of the buffer contents 
for choice or decision making, they do not refer to 
anything except the matching code in the if condition of 
a production rule.  

Whether or not the buffer contents should be 
considered propositional or symbolic is hard to answer 
because there is very little agreement on how to define 
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these terms. Many people (but not all) would agree that 
the linguistic representation of the statement "there is a 
black cat" is both propositional and symbolic. However, 
if we change it to a visual representation of a black cat 
then some would argue that it is no longer propositional 
or symbolic, while others would maintain that this 
changes nothing.  

The key is to distinguish between the status of a 
representation conferred by being in a buffer versus the 
status of a representation conferred by its syntactic or 
representational structure. We argue that being in a 
buffer does not directly imply that a representation is 
symbolic or propositional as the only essential 
requirement is that the code in a buffer can match the 
code in the if part of a production. What could 
potentially distinguish a buffer containing a feeling 
from a buffer containing knowledge is the 
computational structure of the representation itself.  

Here it is important to note that buffer contents in the 
brain are represented by neural firing patterns. 
However, these neural patterns can be represented by a 
symbol in a model without implying that the pattern has 
a symbolic function in the brain. For example, if the 
average spiking rate of a group of neurons was 
expressed as 42, although 42 is a symbol, it is without 
meaning unless you know the question that it answers. 
Even the numerical value of 42 is meaningless without 
knowing the units of measurement. Using symbols in a 
model may be merely a convenience for the modeller, it 
does not necessarily imply a theoretical commitment. 
For example, if the feeling of anger was represented by 
putting the word “anger” in a buffer, this would not 
imply anything. 

Following this we can ask — what would it mean if a 
buffer contained a word (or neural pattern) 
corresponding to a qualia, such as anger, or tired, or 
unsure? Functionally, because feelings can be 
experienced consciously, we know from experience that 
we use them to make decisions. Whether or not they are 
propositional or symbolic seems to depend on the 
extent of the conceptual framing of the decision. If it is 
simply the moment of matching to a production then it 
can be argued that they are neither propositional nor 
symbolic. If the question is “why did you hit that man?” 
then the function of the feelings involved could be 
argued to be propositional and symbolic, in terms of 
their role in larger decision. 

Mentalese 
Mentalese is a concept invented by Fodor (2000) to 
distinguish between language and the language of 
thought. However, we use the term in the broader sense 
outlined by Pinker (1997), in which different modalities 

have their own mentalese. For example, Pinker 
proposed that we have visual mentalese. We interpret 
the contents of the buffers to be mentalese and propose 
there are different types of mentalese. The implication 
of this is that the mentalese used in one buffer may not 
be directly translatable to the mentalese used in another.  

This is an important issue for the common model. If 
two buffers use the same mentalese, then a single 
production can transfer information directly from one 
buffer to another without reference to the content, but if 
they use different mentalese there needs to be a 
translation. Minimally, this would require a different 
production for each object of translation. For example, 
if a representation of a stop sign is in the visual buffer, 
to put a representation of “stop” in the goal buffer 
requires a production recognizing the visual mentalese 
representation of the stop sign on the if side and, on the 
then side, puts a goal mentalese representation of “stop” 
in the goal buffer. Alternatively, it is possible that there 
is a common mentalese for knowledge and the different 
modalities translate information into this common 
language before it arrives in the buffer. Most common 
model models are programmed as if the second option 
is true. Ideally, it will be possible to empirically answer 
this question.  

However, our common experience with feelings 
indicates that, although we can label them, we often 
have difficulty putting them into words. The entire field 
of poetry is arguably dedicated to this effort. Another 
distinguishing factor is that we cannot alter our feelings 
in the same way we can alter our knowledge or goals. 
For example, if I have stopped at a stop sign and there 
is no traffic, I can quickly alter the content of my goal 
buffer from “stop” to “go.” In contrast, if I am angry 
and I realize that it is unwise to be angry, I cannot 
simply change the feeling in the buffer to another 
emotion. These examples suggest that feelings have 
their own mentalese and that the production system 
cannot directly alter this mentalese. Combined with the 
fact that some people have difficulty labeling their 
feelings, this suggests that the production system learns, 
through experience, to associate knowledge-mentalese 
labels with different feeling-mentalese representations. 
This suggests that, feeling-mentalese functions more 
like a sign system, similar to what animals are capable 
of.  

Feelings are also associated with phenomena such as 
facial expressions and hormonal release. However, at 
the 50 millisecond time scale of productions we are 
talking about choice. For example, in an approach 
avoidance scenario such as a monkey contemplating 
food left out in a clearing, we simultaneously 
experience the feelings of hunger for food and fear of 
predators in the clearing. The result is a vacillating, 
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back and forth behavior accounted for by opposing 
productions firing back and forth.  

Related to this, mindfulness training in Cognitive 
Therapy can be understood as learning to translate 
feelings to knowledge in order to use the more 
advanced properties of knowledge to gain a better 
purchase on our behavior. Once a feeling is labeled it 
has been translated to knowledge, but this new 
representation is not a feeling, and our experience tells 
us that the feeling still independently exists. For 
example, if you are walking home in the dark after a 
watching a vampire movie, you might experience fear. 
By translating the fear-feeling to knowledge, you can 
reason that vampires are not real and so you are not in 
danger. However, while this will help, and may 
decrease the fear feeling, the fear feeling will 
independently persist in the short term. 

Feelings as Metadata 
We propose that feelings are metadata and that feeling-
mentalese is a language appropriate for expressing 
metadata, whereas knowledge-mentalese is a language 
appropriate for expressing knowledge. This makes 
sense since we know that, computationally, metadata 
expressions are typically different from knowledge 
expressions. For example, metadata is often best 
expressed through statistics and high dimensional 
spaces, whereas knowledge is often best expressed 
through propositional statements and logical operators. 
This also accounts for the fuzzy, non-verbal qualia of 
feelings.  

To maintain the distinction between knowledge and 
metadata, we argue that knowledge statements about 
feelings, such as, I feel angry, or, I feel confused, are 
translations performed by productions that recognize 
metadata states and create knowledge based statements 
about them. So, as such, these statements are 
knowledge and not feelings. Questions about whether 
feeling-metadata can be considered propositional or 
symbolic, we believe, depends on how the data is used 
in the model. 

Another computational distinction we think we can 
make is that feelings are bottom-up, read-only 
statements. That is, feeling-representations are placed in 
buffers by their associated modules and the central 
production system cannot alter them. Only the module 
that created them can alter them. The production system 
may or may not have direct access to the module. In 
contrast, knowledge representations in the buffers can 
be altered directly by the production system, as is 
common in common model architectures. 

Conclusion 
We have presented a computational theory of feelings 
based on the common model architecture. More 
broadly, we have shown how cognitive architectures 
can be applied to clarify philosophical issues, 
particularly in CTM. We believe this type of work is 
important as conceptual confusion over issues, such as 
the difference between knowledge and feelings, can 
conceptually impede the creation or acceptance of 
cognitive models involving these phenomena. Finally, 
by stating our ideas in terms of a cognitive architecture 
we have made them computationally unambiguous. 
Other, different models are possible, but they should be 
stated clearly, in computational terms, and grounded in 
a viable cognitive architecture.  
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Abstract 

In this publication an adaptation of the ACT-R visual module 
is presented based on the SEEV theory on attention allocation. 
By including this theory into the methodology of how the 
visual module works, a top-down control of attention guidance 
and bottom-up processing capabilities were implemented. The 
visual field of the model shifts according to current fixations, 
mimicking human behavior. Finally, we introduce a possibility 
of linking this new visual module with environmental sensors 
of a vehicle to generate data for the model without the need of 
a modeler generating environmental data. As of now the 
interpretation of the environment could be visualized 
differently depending on the understanding of the modeler. 
Now, the modeler benefits by having a time efficient 
reproducible source for data generation for driver modeling. 

Keywords: ACT-R; Visual Module; SEEV theory; External 
Sensory Data; Driver Modeling  

Introduction 

Cognitive architectures, which are based on theoretical 

constructs with the objective to model real-world thoughts 

and interactions, offer a possibility to abstract human 

cognition. While these architectures deploy a method to test 

applied tasks, these tasks are also required to validate the 

implemented theory (Russwinkel, et al., 2018). At the same 

time, with abstraction, there is also a loss of information 

when forcing data into the required format of these cognitive 

architectures to create cognitive models. ACT-R (Anderson, 

et al., 2004), as an established cognitive architecture, offers 

the abovementioned complexity of separated modular 

modalities. Especially the visual module, as a main modality 

delivering information to most cognitive models and 

interpreting the environment, limits the applied tasks 

significantly. Currently, visual information is presented in a 

GUI (Graphical User Interface) and needs configuration. As 

the modeler dictates the position and characteristics of 

objects in the GUI, subjective interpretation of these 

characteristics can make the environment of a model 

inherently differently. This can affect the outcome of the 

model. 

A task that has been addressed manifold in research is the 

modelling of the driving task and the ambition to model 

driver behavior (Salvucci, 2005; Salvucci & Taatgen, 2008). 

This task mainly consists of knowledge and experience that 

is applied with motoric outputs based on visual and auditory 

information. Therefore, multiple ACT-R modules are 

required to interact during modeling. Especially since 

(conditional) automated driving, Level 3, is prospected in 

near future, effects of attention and distraction (Haring, 

2012), of driver drowsiness (Gunzelmann, et al., 2011), 

multi-tasking (Kosanke & Russwinkel, 2016) as well as 

insights on non-driving related tasks (Salvucci, 2009) have 

been modeled. Ultimately, combination of a human driver 

model in ACT-R with the possibility of a direct connection to 

a vehicle, to possibly adjust vehicle behavior according to the 

needs of the driver, is a promising vision. This proposal is 

similar to the ACT-Droid approach (Doerr, et al., 2016), in 

which a direct connection of a computational model in ACT-

R to a system is configured. Also, the interpretation of 

simulation data through computer vision, ACT-CV 

(Halbrügge, 2013), has been presented as a means to develop 

visual information for ACT-R. While ACT - Droid connects 

to a self-contained system or interface, our new approach 

utilizes the vehicle as a means to monitor the real-world 

environment similarly to ACT-CV. Secondly, through the 

connection with the vehicle it is possible to model driver 

behavior and direct results to driver assistance systems, to 

increase system acceptance and possibly assist drivers in 

difficult situations. 

Building rich environments with the default ACT-R device 

system is difficult. Standard ACT-R provides too few visual 

object types, making it near impossible to build real world 

scenes without defining a notation for object connotation like 

mapping colors to semantic meaning. This makes models 

hard to understand and extend. The difficulty of designing 

interfaces within the ACT-R toolchain can be bypassed by 

using external tools to generate the world around the agent or 

the interface, such as with abovementioned ACT-Droid. Thus 

far, the implementation of vehicle environments is tedious. 

Additionally, the environmental configuration underlies 

personal interpretation of the modeler and one task can be 

programmed in multiple ways, yielding the possibility of 

different calculated results. This drawback is addressed in the 

present concept by introducing a new adaptation of the 

301ICCM2019

mailto:sebastian.wiese@tu-berlin.de
mailto:rene_alexander.lotz@daimler.com
mailto:nele.russwinke@tu-berlin.de


ACT- R visual module. Additionally, a framework for the 

connection of ACT-R to vehicle data is presented, in which 

the data of external sensors are interpreted and scaled to allow 

to feed the visual module with information, evading the 

necessity to model the environment. A detailed description of 

this process is presented in this publication. 

A new vision module – SEEV-VM 

Perceiving real world scenes is a hard task for a cognitive 

model. It requires the model to comprehend the scene, extract 

meaning and make assumptions about location and type of 

information. There is a lot of uncertainty involved, where to 

precisely find requested information or whether it is present 

at all. Henderson (2003) identified three different kinds of 

knowledge that are involved in a gaze guiding mechanism. 

That are: episodic scene knowledge, remembering where 

objects were seen lastly or, on a long term, where to expect 

task-relevant information, but about a specific scene. Scene-

schema knowledge provides generalized semantic and 

context information, e.g. we know how car interfaces look 

like and can easily orientate oneself in a yet unknown car 

cockpit. The third is task-related knowledge. This type of 

knowledge includes learned fixation sequences, e.g. 

monitoring traffic before and while changing lanes with a car. 

They have in common that they encode a location with a 

meaning. This idea, also present in the works of (Oliva, et al., 

2003), constitutes the foundation of our proposed visual 

module: SEEV-VM.  

The SEEV approach (Wickens, 2015) can predict a scan path 

in rich visual environments like airplane cockpits. The visual 

workspace consists of displays, also called areas of interest 

that attract attention and contain task relevant information. 

Every display is defined by four numeric factors: salience, 

effort, expectancy and value. The SEEV algorithm decides 

which display will be attended by summing up factors for all 

displays and comparing the results. This approach combines 

bottom-up and top-down factors. Wickens (2015) describes 

salience as the physical properties of a display that increase 

its attraction for the human eye, e.g. high contrasts or bright 

colors. Effort correlates to the distance between the target 

display and the current point of fixation. Expectancy and 

value form the top-down factors: value describes the 

relevance of information in a display and expectancy the 

frequency with which information updates. I.e. a high 

frequency and a high value display will be attended more 

often, because its information is important and changes 

frequently, therefore needs to be sampled often.  

The proposed visual module (SEEV-VM) is based on the 

ideas of the SEEV theory and existing vision modules like 

EMMA (Salvucci, 2000) and PAAV (Nyamsuren & Taatgen, 

2013). EMMA extends ACT-R with realistic eye movements 

by integrating physiological constraints of the human eye. 

PAAV extends the attention guidance mechanism itself. It 

integrates bottom-up factors into the existing top-down 

control of attention. 

The SEEV theory provides not only an algorithm for guiding 

visual attention, but also a representation for top-down 

control of the attention guidance mechanism. Information is 

expected to be found in certain places in the environment. In 

the SEEV-VM these locations are called areas of relevance 

(AoR) to differentiate from AoI in eye tracking experimental 

set ups. Both PAAV and SEEV integrate top-down and 

bottom-up processing into their algorithms, both use numeric 

values and calculate an attraction value (SEEV) or an 

activation value (PAAV). It is a reoccurring idea to fuse all 

factors into a single parameter to base an attention selection 

decision on. The SEEV-VM module uses a very similar 

approach and calculates a guidance value for each visual 

object and AoRs.  

The algorithm selects an object to attend based on the 

guidance values, see Figure 1, then shifts attention towards 

this object and starts encoding. After encoding, the algorithm 

immediately repeats the process, searching for an object to 

fixate. This mechanism runs in an endless loop without 

directing instructions through the buffer interface. It is 

assumed that the human eyes always look at something and 

provide information about the visually perceivable 

environment. Only when the production system accesses this 

information, which is using the vision module buffer content, 

attention is directed at the given object. 

Arbitrary visual objects  

SEEV-VM supports two different modes of operation: In the 

traditional mode of operation, the SEEV-VM module 

manages visual objects with function calls. Functions can 

create, modify (also their semantic meaning, e.g. a traffic 

Figure 1: For the module to work, it needs some input data. In this case an annotated camera image. The field of 

view (red) does not span the entire image. The agent only perceives the color-coded parts, i.e. road surface is 

invisible to it. The first step is to setup a world simulation and stream data into the ACT-R runtime.  

The cognitive model manages AoRs (orange). Together they move attention to a car in front (white). 

302ICCM2019



light can turn green) and remove objects (removing an object 

makes it invisible to the vision module). The attention 

guidance algorithm works the same in both modes. The 

difference is, that in this mode the algorithm iterates over all 

objects, checking whether an object is inside the current field 

of view and calculating attraction values. This mode does not 

support occlusion of objects, if an object is added, it should 

be visible. For very complex 3D environments, another mode 

was implemented. In the pixel-based mode the module 

receives a semantically annotated map of the world that 

matches the current field of view of the agent. The external 

data source produces images (like in a video game), but 

instead of pixels with color values, every pixel contains a 

numeric object identifier. Sensors, such as vehicular external 

sensors, with internal object identification algorithms can 

provide this information.  

As of the time of implementation, the ACT-R architecture did 

not provide a standardized and easy way to integrate external 

data into the simulation runtime. Hence, the SEEV-VM 

module provides its own communication protocol. The world 

simulation is linked bidirectional with the vision module, as 

the SEEV-VM module interacts directly with the world by 

moving the field of view.  

The SEEV-VM module allows a modeler to define visual 

objects that are not bound to a limited number of categories 

such as geometric forms, text or buttons. A visual object can 

be everything, ranging from a smartphone display or other 

complex objects to its content like icons or lines. The result 

of the encoding process is a chunk that is placed into the 

vision modules buffer. This chunk holds characteristics that 

the modeler can define and physical properties of the object 

(i.e. location and dimension). The chunk can contain 

information like distance to the object or other information 

that is expected to be processed or calculated by the vision 

system. Figure 1 displays an exemplary scenario of a head-

mounted camera with an automatic object recognition that 

can be passed to the SEEV-VM module. The module can 

process every color-coded object. The red dot is the center of 

fixation, the red box the field of view. Orange boxes show 

areas of relevance. In the example, the vision system manages 

AoRs to monitor the traffic in front of the car, the instruments 

and a display for a non-driving related task.  

The encoding time is the amount of time the vision system 

fixates an object until it can place its chunk into the buffer. A 

modeler can also choose to set this value. This allows the 

module to adapt to the scope of the simulation. The 

environment can be made up of several displays that take 

longer to encode but also provide more information; similar 

to SEEV approach it takes one long fixation to sample a 

display. Or, in a more detailed simulation, the content of each 

display is modelled, these items take less time to encode but 

only provide their information (their semantic chunks). That 

means to sample all information of a display, every object of 

this display needs to be attended. 

In order to enable the module to function properly, the 

modeler must define salience values of objects. Unlike the 

PAAV module salience is not calculated by the module, 

because not every object has features like color or shape. It’s 

optional to specify these features. The vision system can be 

instructed to look for certain features, but there is no 

guarantee that only objects that match are attended. This 

works very similar to the PAAV module: feature selection is 

one factor of many that form the guidance value. 

Figure 2: Same situation as in figure 1. Field of view is red, AoRs are orange, additionally relevance values of every AoR 

are shown next to the AoR. Numbers show the relevance before attention is shifted; red dot shows the result of the attention 

shift. In the example, attention is directed at the white car in front, reducing relevance value of its AoR to 0.7. After the 

white car was encoded, the attention guidance mechanism starts again. Inhibition of return prevents the module from looking 

at the same object again, hence the orange car is attended. On the last part, a production fired that increases relevance of the 

instruments AoR. Based on salience and effort influences, attention is directed at the speed indicator instead of other 

instruments. 
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Using SEEV-VM 

The SEEV-VM requires an external world simulation, the 

device interface is no longer used for vision. This world 

simulation can use many ways to produce semantically 

annotated maps or lists of objects, that are then 

communicated with the ACT-R environment and translated 

to function calls (adding, modifying or removing objects). 

E.g., the world simulation can use computer vision 

algorithms to annotate camera images or be a virtual world 

entirely, similar to ACT-CV (Halbrügge, 2013).  

The communication protocol guarantees that both cognitive 

model and world simulation are synchronized. Hence, 

besides object extraction, the simulation must allow to stop 

and advance simulation time. 

On the cognitive model side, the visual organization buffer 

allows to instruct the visual system by providing chunks to 

create, modify or remove areas of relevance and to set a 

feature search vector. AoRs have a location and a dimension, 

they form a rectangular space (orange AoRs in Figure 2), 

have a relevance value and two additional values that 

correspond closely to the expectancy value of the SEEV 

theory. It is possible that an AoR encompasses multiple 

objects. To sample all information inside this AoR all objects 

need to be attended. Unlike the original SEEV approach, 

relevance (in the SEEV approach called value) here changes 

over time: once an object is attended, relevance of its AoR is 

reduced (or consumed) for a certain amount of time (based 

on its refresh rate). The consumption value relates to the 

number of expected objects, the refresh value to the 

frequency with which changes are expected. These values are 

optional. By setting these values to zero the module will not 

update relevance values of AoRs, but relevance values can be 

updated via the production system. The SEEV approach is an 

abstraction of the whole cognitive process, in ACT-R this 

process is subdivided into smaller, parallel executable 

processes. Therefore, it is possible to update relevance of an 

AoR once all information is sampled. This is done by 

defining productions that count the number of objects in a 

given AoR. After a certain number of objects attended, 

another production reduces this AoRs relevance via the visual 

organization buffer. Later a production fires that increases 

relevance value again. This approach is more akin to the 

ACT-R way of modelling cognition. And requires a very 

detailed modelling of involved processes. 

The attention guiding functionality works in three steps: (1) 

a guidance value is calculated for every visual object and 

AoR by adding up salience, relevance, feature weights, 

inhibition of return and effort. (2) A guidance value race 

determines the object with the highest guidance value. This 

allows the agent to look at areas that are not currently in the 

field of view, e.g. to look at the passenger’s door mirror (see 

Figure 2). (3) An attention shift is then initiated, it follows the 

EMMA model in three stages: (1) preparation of a saccade, 

(2) execution of the saccade and (3) encoding of the object. 

Figure 3 shows the workflow of the module. 

Attending an AoR forms a special case, which allows the 

agent to look at an area that is not currently visible. Because 

there is no object to encode, the module immediately starts to 

search for objects to attend. The algorithm can initiate a head 

movement, as the default motor module of the ACT-R system 

cannot move the agents head, the vision module simulates 

head movements. A shift of the field of view (red bounding 

box in Figure 2) simulates this movement. In some cases, a 

movement of the whole body is needed to look at certain 

locations; in these cases, the module assumes that it can 

control the body entirely. This allows the model to visually 

perceive rich 3D environments regardless of these missing 

functionalities. SEEV-VM uses parameters to control when 

to make a head or body movement and how fast these 

movements are executed.  

Vehicular data generation 

As described previously, complex 3D environments are 

difficult to model and the proposed second mode SEEV-VM 

can receive semantically annotated maps. Modern vehicles 

Figure 3: Process diagram of the attention guidance algorithm. The algorithm starts with a recalculation of relevance and 

inhibition. Inhibition decays over time and relevance increases over time. In the example, an object won the guidance value 

race, that is a comparison of all guidance values, and an eye movement is necessary to reach its location. 
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are equipped with multiple internal and external sensors to 

allow advanced driver assistance systems to function. This 

information is available within a vehicle on CAN-Bus (ISO 

11898-1:2015), Ethernet or FlexRay (ISO 17458-1:2013, 

2013) networks for microcontroller communication and 

holds semantic information about surrounding objects. 

Depending on the sensor and data definition, multiple value 

signals are calculated and retrievable within these networks. 

Sensor types that can observe and classify objects in the 

proximity of the vehicle are radar, lidars and cameras. These 

sensors function as the ‘eyes’ of modern vehicles to provide 

environmental data for assistance systems (e.g. Adaptive 

Cruise Control, Lane Keep Assist and Emergency Brake 

Assistance). 

Typically, these sensors are capable of identifying several 

vehicles, objects or pedestrians during driving, similarly to 

the way ACT-R models these objects in its environment. 

Apart from the classification, precise speed, distance and 

trajectories are calculated as properties of the objects. This 

information is communicated within the networks and 

updated rapidly (approximately 0.01-0.1 seconds). In order to 

model driver behavior, it would be ideal to make this data 

available to ACT-R. This has three major benefits: (1) 

modelling of environmental objects would be automated and 

several different scenarios could be analyzed through the 

proposed second mode of SEEV-VM operation. (2) Obtained 

data would only vary depending on sensor setups and are 

reproducible (attributes are not defined by modelers). (3) A 

framework could work with offline data after drives or online 

with a model predicting driver behavior. 

 
Figure 4: Adapted ACT-R framework with direct link to 

vehicle and modified visual module. 

 

The adaptations of the proposed data generation enable 

interpretation of environmental data through sensors of a 

vehicle, airplane or robot, as presented in Figure 4. In this 

form, the bus data is interpreted and is available as CSV-files 

(Comma Separated Values). These CSV-files include the 

relevant data in lists with timestamps and the values of sensor 

data (e.g. distance to object, object type, speed of object). 

Data is interpreted through a parser to translate the data into 

the three function types included in the SEEV-VM (i.e. add-

visual-object, modify-visual-object and remove-visual-

object). The adapted ACT-R framework does not connect the 

motor module to the environment and motoric actions do not 

alter the environment. This is because the ACT-R motoric 

module would need an upgrade to allow for extensive motoric 

control needed during driving. However, if an online 

interface were implemented the possibility of connecting 

ACT-R to a prototypic vehicle would be possibly. 

Nevertheless, the integration of external sensory data does 

allow simpler modeling of real-world environments with 

reproducible interpretation of data according the SEEV 

theory. 

Discussion 

SEEV-VM is far from finished, there are still some open 

issues. The module does not support some features found in 

the default ACT-R vision module. E.g. it has no explicit 

attended field but introduces inhibition of return to reduce 

changes to fixate the same object repeatedly. SEEV-VM aims 

to offer a less precise way to instruct visual attention, giving 

the model more flexibility to react to variations and dynamics 

in known situations. As an example, the model does not know 

precisely where a traffic light is located, but it knows where 

to expect one. Combined with bottom-up processing 

capabilities the vision system will find a certain traffic light. 

The productions can work with a special chunk for the object 

type of a traffic light, reducing the burden to share 

productions with different models. It is possible to establish 

a library of object chunk definitions.  

Arbitrary vision chunks not only increase maintainability 

of a model, but also allow vastly different simulation 

environments and affordances to connect to an ACT-R agent. 

This flexibility might also have a downside, as it does not 

restrict modelers to plausible models: A vision object chunk 

can contain unrealistically complex information. 

In a future version, we plan to standardize the 

communication protocol to provide an easy to use API to 

establish a connection between SEEV-VM and simulation 

environments. It can be envisioned that many different 

modules (motor, audio) connect to the same simulation 

server, that delegate commands and information between 

agent and world. JNI (Hope, Schoelles & Gray, 2014) already 

provides this functionality and could be modified to support 

SEEV-VM. 

The module has not yet been validated. The SEEV model 

works well (Wickens, McCarley & Steelman-Allen, 2009), 

but it’s less detailed than its SEEV-VM adaption. In SEEV-

VM attention is directed at objects and not at displays that 

could span entire scenes (e.g. rear window of a car). The 

module is able to work in the same way, but in regard to ACT-

R, cognition is modelled on a finer resolution, requiring 

chunks of information at a certain point in time. The next step 

will be to conduct a validation study to evaluate SEEV-VMs 

approach to modelling visual attention. 

Predicting a scan path is essential in determining whether 

unexpected visual stimuli were recognized or not. In the 

module, it is very easy to guide attention towards a visual 

location (not necessary towards an object) by setting 
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relevance of an AoR. However, finding plausible relevance 

values is not trivial. Relevance and expectancy (consumption 

and refresh values) can be seen as results of a learning 

process, allowing to model experts and novices. In a future 

work, SEEV-VM has to be validated and we expect to change 

some parts of the implementation like the default set of 

parameters. While the SEEV-VM benefits from large 

flexibility, the subsymbolic parameters need to restrain it in 

such a way that realistic behavior is generated. 

Conclusions 

The SEEV-VM module adaptation offers unique 

development by incorporating the SEEV theory as a 

foundation for visual attention in ACT-R. While the modeler 

holds the task of attributing the salience of objects in the 

environment, SEEV-VM enables ACT-R modes to perceive 

semantically annotated real-world scenes. By integrating top-

down and bottom-up processing it allows the model to react 

to unexpected events. Setting up AoRs is an easy and abstract 

way to instruct the visual system, thereby allowing the model 

to see unexpected things or process objects that are not 

explicitly represented by productions.  

The current substantial effort necessary of modeling visual 

information in ACT-R needs to be improved to increase the 

applicability of cognitive modeling to real-world usability 

testing and to integrate it into applications. Especially tasks 

and environments that require a lot of visual information are 

thus far difficult to analyze with ACT-R. This includes the 

automotive sector in which rich environments can influence 

drivers in a plethora of facets. The SEEV-VM module 

adaptation provides the possibility of connecting vehicular 

BUS-communication to ACT-R and therein deliver semantic 

data from the surrounding. Multiple and quickly changing 

scenes are far easier to incorporate into cognitive models, 

offering the possibility of modeling human-machine-

interaction in the vehicular context. 

References  

Anderson, J. R. et al., 2004. An Integrated Theory of the 

Mind. Psychological Review, 111(4), pp. 1036-1060. 

Doerr, L., Russwinkel, N. & Prezenski, S., 2016. ACT-Droid: 

ACT-R interacting with Android applications. In: 

Proceedings of the 14th International Conference on 

Cognitive Modeling. University Park, PA: Penn State: s.n. 

Gunzelmann, G., Moore, L. R., Salvucci, D. & Gluck, K. A., 

2011. Sleep loss and driver performance: Quantitative 

predictions with zero free parameters. Cognitive Systems 

Research, 12(2), pp. 154-163. 

Halbrügge, M., 2013. ACT-CV: Bridging the Gap between 

Cognitive Models and the Outer World. In: E. 

Brandenburg, et al. eds. Grundlagen und Anwendung der 

Mensch-Maschine-Interaktion - 10. Berliner Werkstatt 

Mensch-Maschine-Systeme. Berlin: Universitätsverlag der 

TU Berlin, pp. 205-210. 

Haring, K. S., 2012. A Cognitive Model of Drivers Attention. 

In: Russwinkel, Drewitz & van Rijn, eds. Proceedings of 

the 11th International Conference on Cognitive Modeling, 

Berlin. Berlin, Germany: Universitaetsverlag der TU 

Berlin. 

Henderson, J. M., 2003. Human gaze control during real-

world scene perception. Trends in cognitive sciences, 

7(11), pp. 498-504. 

Hope, R. M., Schoelles, M. J., & Gray, W. D., 2014. 

Simplifying the interaction between cognitive models and 

task environments with the JSON Network Interface. 

Behavior research methods, 46(4), pp. 1007-1012. 

ISO 11898-1:2015, 2015. Road vehicles - Controller area 

networt (CAN) - Part 1: Data link layer and physical 

signaling. 

ISO 17458-1:2013, 2013. Road vehicles - FlexRay 

communications system. 

Kosanke, H. & Russwinkel, N., 2016. Doing all at once? 

Modeling driver workload in an abstract multitasking 

scenario. Abstractband der 58. Tagung experimentell 

arbeitender Psychologen (TeaP).  

Nyamsuren, E. & Taatgen, N. A., 2013. Pre-attentive and 

attentive vision module. Cognitive Systems Research, 

Issue 24, pp. 62-71. 

Oliva, A., Torralba, A., Castelhano, M. S. & Henderson, J. 

M., 2003. Top-down control of visual attention in object 

detection. Proceedings 2003 International Conference on 

Image Processing, pp. 253-256. 

Russwinkel, N., Prezenski, S., Dörr, L. & Tamborello, F., 

2018. ACT-Droid Meets ACT-Touch: Modelling 

Differences in Swiping Behavior with Real Apps. 

Proceedings of the 16th International Conference on 

Cognitive Modeling (ICCM 2018), 21-24 07, pp. 120-125. 

Salvucci, D. D., 2000. A model of eye movements and visual 

attention. Proceedings of the International Conference on 

Cognitive Modeling, pp. 252-259. 

Salvucci, D. D., 2005. Modeling tools for predicting driver 

distraction. Proceedings of the Human Factors and 

Ergonomics Society 49th Annual Meeting. 

Salvucci, D. D., 2009. Rapid prototyping and evaluation of 

in-vehicle interfaces. ACM Transactions on Human-

Computer Interaction, 16(2). 

Salvucci, D. D. & Taatgen, N. A., 2008. Threaded cognition: 

An integrated theory of concureent multitasking. 

Psychological Review, 115(1), pp. 101-130. 

Wickens, C. D., 2015. Noticing events in the visual 

workplace: The SEEV and NSEEV models. In: R. R. 

Hoffman, et al. eds. Part VI - Perception and Domains of 

Work and Professional Practice. Cambridge: Cambridge 

University Press, pp. 749-768. 

Wickens, C., McCarley, J., & Steelman-Allen, K., 2009. NT-

SEEV: A model of attention capture and noticing on the 

flight deck. In Proceedings of the human factors and 

ergonomics society annual meeting. Sage CA: Los 

Angeles, CA: Sage Publications. Vol. 53, No. 12, pp. 769-

773. 

306ICCM2019



Syntactic Priming Depends on Procedural, Reward-Based Computations:
Evidence from Experimental Data and a Computational Model

Yuxue Cher Yang (chery@uw.edu)
Department of Psychology, University of Washington

Campus Box 351525, Seattle, WA 98195 USA

Andrea Stocco (stocco@uw.edu)
Department of Psychology and Institute for Learning and Brain Sciences (I-LABS), University of Washington

Campus Box 351525, Seattle, WA 98195 USA

Abstract

Syntactic priming (SP) is the effect by which, in a dialogue, the
current speaker tends to re-use the syntactic constructs of the
previous speakers. SP has been used as window into the na-
ture of syntactic representations within and across languages.
Because of its importance, it is crucial to understand the mech-
anisms behind it. Currently, two competing theories exist. Ac-
cording to the surprisal theory, SP is driven by the mismatch
with internal predictions and enhanced by factors that enhance
surprise (i.e., use of low-frequency verbs). According to the
declarative theory, SP is driven by the re-activation of declara-
tive memory structures that encode template structures. Here,
we propose a third and novel hypothesis, namely, that SP is
driven by the successful application of procedural knowledge,
in agreement with Ullman’s model. This hypothesis makes
the unique prediction that SP will be reversed when the prime
sentence includes grammatical errors, but not semantic errors.
The theory is supported by a computational model. An exper-
iment confirmed the prediction of the theory.
Keywords: Syntactic Priming, Procedural Knowledge, Rein-
forcement Learning, Computational Modeling

Introduction
Syntactic Priming (SP, also known as “Structure Priming”) is
the linguistic phenomenon by which speakers tend to re-use
syntactic structures across utterances (Bock,1996). Its exis-
tence is often touted as the strongest evidence that the same
syntactic mechanisms are used in both language comprehen-
sion and language production. As such, manipulations that
affect SP can be used to gather insight into how brain per-
ceives, represents, and applies syntactic structures. For ex-
ample, two notable studies (Loebell & Bock,2003;Hartsuiker,
Pickering, & Veltkamp,2004) have show that that SP effects
occur across languages, demonstrating that syntactic struc-
ture is represented in a way that is language-independent.

In this paper, we will use a novel manipulation of SP ef-
fects to investigate whether syntactic structures are repre-
sented within declarative or procedural memory. Our results,
backed by computational models, strongly suggest that SP is
based on procedural representations, and that these represen-
tation are learned and refined through Reinforcement Learn-
ing.

Background
In the past few decades, many researchers have attempted
to determine the most likely mechanistic explanation for SP
(Hartsuiker et al.,2004;Reitter, Keller, & Moore,2011;Chang,
Dell, & Bock,2006). Experimental studies show that a range

of factors could impact the strength of priming. For example,
the priming effect is enhanced by the presentation of multiple
primes, which is referred as the cumulativity of SP (Jaeger
& Snider,2008). Not only the occurrence of primes mat-
ters, the lexical overlapping between prime and target also en-
hances priming, which is known as the lexical boosting effect
(Pickering & Branigan,1998). Moreover, there is evidence
for an inverse frequency interaction, showing that that the less
frequently used syntactic structures are associated with with
stronger priming effects (Jaeger & Snider,2008).

These effects have been used to support different un-
derlying mechanisms that might account for SP. A main
source of disagreement between these putative mechanisms
is whether syntactic processing is relying on declarative or
procedural representations. A group of researchers, for exam-
ple, advocate a short-term residual activation mechanism ac-
count (Snider,2008;Jaeger & Snider,2008;Pickering & Brani-
gan,1998) that implies a declarative representation, while
another group of researchers believe that syntactic persis-
tence is depending on implicit learning mechanisms (Chang
et al.,2006;Bock & Griffin,2000) that point to a procedural
representation. By incorporating both short-term activation
account and long-term implicit account, a further dual mech-
anism account, Declarative/Procedural model of language is
proposed by (Ullman,2004). Based on different mechanisms,
different computational models have been developed to ac-
count for structural priming effects.

Most psycholinguistic studies have investigated syntactic
priming effects using carefully controlled experimental items,
ensuring that the linguistic stimuli have no mistakes and are
produced flawlessly. However, in natural conversation, disflu-
encies and errors are very common when people are speaking.
Usually, erroneous message is considered as interference that
either slows down the processing or impedes peoples compre-
hension. Speech errors include ungrammatical construction,
inappropriate word choice, ambiguous meaning, or absolute
nonsense. Even though people may ignore minor speech er-
rors in daily conversation, there is evidence that erroneous
information does affect language processing, and might pro-
vide a further cue to the underlying representation of syn-
tax. For example, people often change their mind and correct
themselves mid-sentence while speaking. Slevc and Ferreira
(2013) examined the priming effect in the context of correct-
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ing speech errors. They found that SP is significantly reduced
when primes are corrected to the alternative syntactic struc-
ture.

The prediction error (i.e., surprise) associated with the syn-
tactic structure of prime also affects subsequent language pro-
cessing. There was evidence that the more surprising the
prime is, which means higher prediction errors, the more
likely to expect the same structure would occur later (Jaeger
& Snider,2008).

The role played by errors in SP introduces a third point
of view on the nature of SP, which can be catalogued un-
der the “procedural” account. According to this point of
view, syntactic structures are represented procedurally and
their selection is guided by their perceived utility in terms of
Reinforcement Learning, i.e., their estimated future amount
of “rewards” or positive feedback signals (Sutton, Barto, et
al.,1998). It is widely accepted that procedural knowledge,
in general, is refined in a Reinforcement Learning-like man-
ner through the backpropagation of reward or feedback sig-
nals. In fact, procedural knowledge and reward signals share
the same computational substrate, in the dopamine-rich basal
ganglia (Schultz, Dayan, & Montague,1997;Yin & Knowl-
ton,2006). Furthermore, although the basal ganglia are not
considered part of the cortical language network, an increas-
ing number of studies have shown their involvement in lan-
guage processing (Friederici,2006;Stocco, Yamasaki, Natal-
enko, & Prat,2014).

The connection between reward signals and procedural
knowledge is apparent in some prominent general theories of
cognition. For example, in the ACT-R cognitive architecture
(Anderson,2009;Anderson et al.,2004), procedural knowl-
edge is represented as production rules or simply produc-
tions, and productions are typically used to represent syn-
tactic micro-operations in ACT-R models of language pro-
cessing (Lewis & Vasishth,2005;Stocco & Crescentini,2005).
But, in ACT-R, productions are selected on the basis of their
expected , a scalar quantity that represents future rewards and
is updated through repeated feedback signals according to a
standard Reinforcement Learning rule:

Ut+1(p) =Ut(p)+α× (Rt −Ut(p)) (1)

where Ut(p) represents the utility U of production p at time
point t.

In the case of linguistic phenomena, feedback signals could
be provided directly by the process of successfully compre-
hending or producing a sentence. Thus, according to this
view, SP would be the effect of increased utility of a syntactic
structure following its successful use in comprehension.

If that is the case, we expect that ungrammatical sentences,
in which rules are applied unsuccessfully and lead to a error
signal and a re-analysis of a sentence, would result in negative
feedback signals. These negative feedback signals would ul-
timately decrease the utility of the corresponding production,
thus making the application of the same syntactic structure
less likely to occur.

In this study, we set forward to test this alternative, RL-
based account for syntactic priming, and to answer the ques-
tion of whether perceiving incorrect linguistic information
such as ungrammatical syntactic constructions would affect
peoples subsequent language representation, particularly in
syntactic choices of production. Furthermore, we will attempt
to explain the observed patterns under Reinforcement Learn-
ing theory and simulate the behavioral results using ACT-R
model.

Theoretical Hypotheses
Based on the proposed theories of SP, we can derive three
different predictions about the effect of syntactically incor-
rect primes (See Figure 1). Across all predictions, we expect
that syntactic priming effect will occur regardless of syntactic
correctness. Specifically, the proportion of producing same
construction is expected to be higher than producing alterna-
tive construction. We also expect that the priming effect will
be different depending on whether the syntactic structure of
prime is correct or not.

According to a purely declarative model (as exemplified,
for instance, by Reitter’s 2011 model), an ungrammatical
prime should not have any differential SP effect than a gram-
matical one. In as much as the prime sentence can be cor-
rectly interpreted despite the syntactic error (and, in our ex-
periment, we made sure this is the case), the same grammat-
ical structure would be retrieved, thus causing the same ac-
tivation boost for subsequent use. Thus, our Hypothesis 1,
driven by the repetition between prime and target, states that
there is no difference between grammatical and ungrammati-
cal primes.

According to procedural, prediction-driven model (as
exemplified by Jaeger & Snider,2008 and Snider,2008’s
exemplar-based model), the ungrammatical prime, being
a low-frequency and unexpected structure, would generate
greater surprisal and therefore enhance priming effect for
same constructions production, but to weaken priming in al-
ternative construction production. Specifically, Hypothesis 2
states that priming with ungrammatical sentence makes peo-
ple more likely to produce same constructions, and less likely
to produce alternative constructions than priming with gram-
matical one. Finally, according to our procedural/RL account,
SP is due to the update of the perceived utility of a procedural
syntactic structure, which is increased for successfully parsed
(grammatical) sentences and decreased following unsuccess-
fully parsed (ungrammatical) ones. Driven by reward, Hy-
pothesis 3 predicts an opposite pattern as Hypothesis 2, stat-
ing that, priming ungrammatical sentences is expected to in-
crease the likelihood of producing alternative structures than
those used in the priming sentences.

To explicitly formulate our hypothesis, we implemented it
as an ACT-R model1. The model performs a simplified ver-
sion of canonical SP task, first comprehending a sentence (in

1The code for all the models described in this pa-
per is available on our laboratory’s GitHub page:
http://github.com/UWCCDL/SyntaxPriming
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Figure 1: Three hypotheses driven by on different predic-
tions. (white indicates active-form prime., gray indicates
passive-form prime). Hypothesis 1: Declarative, driven by
activation, predicts no effect of syntactic errors. Hypothe-
sis 2: Driven by expectations, it predicts enhanced priming
for (unexpected) ungrammatical sentences. Hypothesis 3:
Driven by reward, it predicts reduced priming for ungram-
matical sentences.

either active or passive form) and then producing a sentence
to describe a picture. Both comprehension and production
depend on the use of two production rules that implement
the active and the passive sentence structures. In compre-
hension, these rules are used to mediate from the underlying
sentence to its higher-level semantic representation. In lan-
guage production, these rules are used to create a mental plan
of the sequence of words to produce a description of the pic-
ture. Feedback signals are generated by detecting whether
the comprehended sentence is grammatically correct or not.
For simplicity, the process of parsing a sentence is drastically
simplified (not unlike in Reitter et al.,2011), so that all the
sentence information is available at once in a single visual
“chunk” of information in ACT-R and feedback signals are
only generated at the end of the comprehension process.

To examine the predictions of our model, we conducted a
parameter space partitioning analysis of the model’s behav-
ior, and found that, across different initial utility values of
the two syntactic structures and different reward values, the
model produces the qualitative pattern of Figure 4.

To test between these alternative hypothesis, we conducted
a novel SP experiment, introducing the novel manipulation of
syntactic grammaticality of the priming sentences.

Materials and Methods
Participants
Ninety participants (35 female, 54 male, 1 other) were re-
cruited online through Amazon Mechanical Turk, and per-
formed the experiment in exchange for monetary compensa-
tion. Ethnicity includes 51.1% White, 36.7% Asian, 6.7%
African American, 3.3% Latino or Hispanic American, and
2.2% Others. All participants were screened through a pre-
experimental survey that gathered information about their
language experience and background; only native English

Figure 2: Two priming examples of the simple Reinforcement
Learning model. Left: modeling AI priming. Right: model-
ing PI priming. White rectangles represents chucks encoding
words. The blue rounded rectangles represents productions:
parsing - parse in the prime; retrieving syntax - retrieve cor-
responding syntactic structure of the prime; checking error -
check whether there is grammar errors in the prime. Diamond
shapes represent feedback, either positive or negative. R indi-
cates the reward term in Eq. 1, and δ reflects the reward pre-
diction error term Rt −Ut(p). When the model detects error,
it sends a negative feedback signal to all the previous produc-
tions that have fired since the last reward. The predictions of
this model are illustrated in Fig. 6
.

speakers without any history of brain damage, reading prob-
lems, nor language-related disorder were allowed to proceed
to the experiment. Twenty-one were later excluded for failing
to construct complete sentences in the language production
task. The experimental protocol and inclusion criteria were
approved by the Institutional Review Board at the University
of Washington.

Materials
This picture description task is modified based on Hardy,
Messenger, and Maylor’s experiment (2017). A total of 36
trials with prime target pairs were created. Each picture is
depicting a ditransitive action involving an agent and a pa-
tient. The verb of the action is printed under each picture.
The prime sentence is either active-tense form grammatically
correct (AC), passive-tense form grammatically correct (PC),
active-tense form grammatically incorrect (AI) or passive-
tense form grammatically incorrect (PI).

Ungrammatical prime sentences in the Passive Incorrect
syntax condition (PI) were generated using seemingly cor-
rect but non-existing past participles modeled after existing
verbs, such as “chasen” instead of “chased”, “slapt” instead
of “slapped”, and “shooted” instead of “shot”. In half of the
trials within each condition, (N = 18 total), the prime picture
and prime sentence are perfectly matched, while in the other
half, the prime sentence is modified as semantically incorrect
by which the identity of either agent or patient is wrong. This
latter manipulation was designed to both make sure that par-
ticipants were performing the task correctly and to separately
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measure the effect of syntactic errors from semantic errors.

Design

This study is a 2 × 2 × 2 within-subject design, with three the
factors being prime syntax (active vs. passive), grammatical
correctness (correct vs. incorrect), and semantic correctness
(correct vs. incorrect). In our notation, 4 syntax conditions:
AC, AI, PC, PI x 2 semantic conditions: SC (semantically
correct) and SI (semantically incorrect). Because, previous
studies have demonstrated a stronger syntactic priming ef-
fect as prime and target are overlapping (Pickering & Brani-
gan,1998), in this study prime and target always share the
same action verb. The combination of three independent vari-
able pairs are pseudo-randomized so in each syntax condition
(AC, AI, PC, PI), each verb only occurs once, and each verb
is modified as both semantic-correct and semantic-incorrect
form.

Procedure

Most SP experiments make use of realistic, in-person dia-
logue between two participants, one of which is a confed-
erate. The confederate verbally utters the primes and the par-
ticipants responses are recorded for transcription. To simulate
this seemingly realistic dialog situation online, the study de-
scribed here used deception to convince participants that they
were paired with another online “partner” and they were to
take turns providing a description for a sentence and verify-
ing the accuracy of their partner’s description. In fact, there
was no paired partner and all sentences typed by the partner
were decided beforehand. At the end of the study, participants
were fully debriefed about the use of deception.

In the online task, participants see a prime picture and are
asked to verify whether the sentence constructed by the part-
ner was correctly describing the picture or not. Followed by
the verification task, there is a picture description task (see
Figure 3). In the picture description phase, a picture and an
appropriate verb are given, and participants need to type a
sentence to describe the picture using the given verb. Partici-
pants are told that the game is proceeding in which the partner
and the participant alternate between verifying if sentence-
picture pair is matching, and constructing a sentence to de-
scribe the picture to the other. The game sets a randomly
generated waiting time to simulate the amount of time needed
by the fictional partner to type their own description.

The participant needs to complete a pre-screen survey that
only eligible ones can continue. After giving consent, par-
ticipants begin with a three-trial practice phase to familiar-
ize themselves with the procedure. Between verification task
and picture description task, the game sets a randomly gen-
erated waiting time to simulate verifying period of the “part-
ner”. At the end of the study, participants are given the de-
brief about the deception involved and are asked to complete
a post-experiment survey.

Figure 3: Example trial from the Online ASP Task. Left:
During the Verification phase, subjects are asked to verify the
congruence between the sentence and the picture. Right: Dur-
ing the Production phase, participants are asked to describe
the target picture by typing a complete sentence that contains
the given verb.

Results

The responses typed by participants were automatically an-
alyzed with the Natural Language Toolkit (NLTK) package
in Python and double-checked manually. Thirteen responses
that could not be coded as neither active nor passive sentence
were removed for data analysis.

The total of 2507 responses yield 75.79% active descrip-
tions, 24.21% passive-voice. The analysis is conducted with
the proportion of producing active out of active and passive
responses. As expected, there is a significant effect of syn-
tactic priming (Active vs. Passive), F(1, 69) = 59.52, p <
0.001 , and a significant main effect of syntactic correctness
(Syntax-Correct vs. Syntax-Incorrect), F(1, 69) = 13.28, p =
0.001. As expected, we find that there is no significant effect
of semantic correctness on syntactic production. F(1, 69) =
1.37, p = 0.25.

Post-hoc analyses for significance indicate that the mean
proportion of active descriptions is significantly lower in PC
condition (M = .64, SD = .32) than that in PI (M = .69, SD
= .34), F(1, 69) = 5.05, p = 0.03. The mean proportion of
active descriptions is also significantly lower in the AC prime
condition (M = .84, SD = .24) than in the AI conditions (M =
.8, SD = .21), F(1, 69) = 6.09, p = 0.01.

As for the accuracy in verification task, overall accuracy
rate is 79.92%. We find a significant effect of syntactic cor-
rectness on the accuracy rate F(1, 68) = 57.66, p < 0.001 .
People tend to verify picture more accurately when the sen-
tence is grammatically correct (M = .8796, SD = .16) than the
sentence is grammatically incorrect (M = .72, SD = .21). We
also find that there is a significant effect of syntactic voice on
the accuracy rate F(1, 69) = 16, p = 0.001. The accuracy of
verification is significantly higher for active sentences (M =
.83, SD = .19) than for passive sentences (M = .77, SD = .21).
Interestingly, there is significant interaction effect on accu-
racy rate between syntactic correctness and syntactic voice,
F(1, 69) = 12.33, p = 0.001.
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Figure 4: The proportion of active structures across con-
ditions Asterisks “*” denote significant differences between
conditions.

Summary
Taken together, the results of our experiment provide a pic-
ture that is not entirely consistent with any of the previously
discussed models, while the SP was present and robust (albeit
less dramatic that in previous studies). Contrary to Reitter’s
model, there was a robust effect of syntactic grammatical-
ity. These effects, however, did not comply precisely with
either of the two competing accounts, that is, the procedu-
ral/expectancy and the procedural/RL hypotheses. In the pas-
sive sentences, an ungrammatical prime increased the likeli-
hood of producing another active sentence, consistent. How-
ever, the data also show that semantic errors do not produce
any effect, and, therefore, that the effect of errors can be lo-
calized to the processes of syntactic parsing.

A Sequential Procedural Model
One possible explanation for the lack of correspondence be-
tween the experimental results and our model is that the our
procedural model was too naı̈ve and did not appropriately
take into account the different ways in which active and pas-
sive sentences are parsed. To explore this issue, we created a
second computational model (See Figure 5).

This second model closely follows the structure of the pro-
cedural model described above. However, the new model
simulates, at least partially, the sequential and incremental
nature of sentence parsing. In particular, while the first model
immediately detects the structure of the sentence (active vs.
passive) and generates all feedback signals at the very end
of the comprehension process, the second model delays the
choice of the correct syntactic form until the first verb is en-
countered, and generates feedback signals both the end (when
all sentences are successfully understood) and as soon as the
first incorrect word is found (for ungrammatical ones).

This creates a novel asymmetry between the ungrammati-
cal, active (AI) and ungrammatical, passive (PI) sentences. In
the case of passive sentences, the first verb form encountered

Figure 5: Two examples of the Sequential Procedural model.
Left: Parsing of an ungrammatical, active sentence (AI).
Right: parsing of an ungrammatical, passive (PI) sentence.
This revised model explains both the activation boost found
in AI priming and the activation drop in PI priming (see Fig.
6, Right)

by the model is the word “is” (as in “the robber is chased
(...)”); when the word “is” is encountered, the model can con-
fidently select the production rule that encodes the passive
structure. The grammatical mistake is then detected immedi-
ately thereafter (as in “the robber is chasen (...)”), thus gen-
erating an negative feedback that decreases the utility of the
passive form. In this condition, therefore, the effect of gram-
maticality is identical to what was predicted by the previous
model.

In the case of ungrammatical active sentences, however,
the first verb form is also the first word for which a nega-
tive feedback signal can be generated (as in “the robber chase
(...)”). In this case, the negative feedback is generated at the
same time as the active sentence structure is selected, and,
thus, does not affect the utility of the corresponding produc-
tion. When the model successfully completes the sentence
comprehension goal, a positive feedback signal is generated
that propagates back to active form, thus increases its utility
even if the sentence was ungrammatical.

This dynamic is further complicated by the fact that, to
be selected in the face of a grammatically incorrect verb, a
mechanisms of procedural partial matching had to be en-
abled. With this mechanism, productions are allowed to be
selected even if their requirements are not perfectly satisfied.
The price to pay for this imperfect selection is a temporary
reduction in the associated utility. That is, instead of using a
production’s “true” utility Ut(p), Eq. 1 uses the the reduced
term U∗

t (p):

U∗
t (p) =Ut(p)−MP(p) (2)

where MP(p) is the mismatch penalty, a fixed cost asso-
ciated to applying a production rule to a condition in which
not all the requirements are verified. This reduction reflects
an intuitive greater uncertainty in the predicted future rewards
for cases (such as ungrammatical sentences) in which produc-
tions are applied outside of their ideal conditions.
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In turn, this reduced expectation affects the RL-based ad-
justments of utility. This is because these adjustments, ac-
cording to the ACT-R theory and Eq. 1), reflect the mag-
nitude of the reward prediction error δt , which is the differ-
ence between effective feedback signal and expected utility:
δt = α× (Rt −Ut(p)). It is easy to see that, for ungrammat-
ical sentences, U∗

t <Ut (because of the penalty match in Eq.
2) and, therefore, δ∗t > δt : the as the utility U gets smaller, the
adjustment δt gets larger, resulting in even greater benefit for
the active form when it is selected while successfully parsing
an ungrammmatical sentence.

To test our theory, we simulated the behavior of this model
under different parameters. We found that the model consis-
tently yields results consistent with our data. Fig. 6 depicts
prototypical results (using R = 1.0, α = 0.2, and MP = 0.2).
Specifically, while the effect of grammaticality on the SP of
passive sentences remains unchanged, the effect of grammat-
icality for active sentences either disappears (yielding equal
probabilities of using the active form after a grammatical and
an ungrammatical sentence) or results in higher rates of active
sentences following ungrammatical primes.

Figure 6: Simulation results from the two Reinforcement
Learning models of syntactic priming. Left: Predictions of
the simple, naı̈ve models. Right: prediction of the Sequential
model. The sequential model correctly predicts the general
pattern of the experimental findings in Fig. 4.

Discussion
As demonstrated in many syntactic priming studies, people
tend to re-use the same syntactic structures they are primed
with. Consistent with this body of literature, our experiment
shows a overall syntactic priming effect for active and passive
structures, regardless of syntactic correctness and semantic
correctness. This implies that the tendency of reproducing
primed syntactic structures persists even if the linguistic in-
formation is noisy and erroneous.

In addition, our experimental results showed that syntactic
priming is modulated by the grammaticality of the priming
sentence. This result poses difficulty for purely declarative
accounts (Reitter et al.,2011), which ascribe priming effects
to the frequency and recency of syntactic structure retrieval.
Furthermore, we found that this effect was specific to gram-
matical errors, and not to semantic errors (i.e., incorrectly
labelled figures), thus restricting the effect to syntactic pro-
cesses and excluding a general effect of surprise or attention

to errors.
In general, these results support the idea that the prim-

ing effect of syntactic structures is dependent on procedural,
rather than declarative memory, thus suggesting that syntactic
structures are represented procedurally (Ullman,2004).

However, contrary to our expectations, our results show
that participants actually always produce more active sen-
tences following an ungrammatical sentence, regardless of
the syntactic voice of the prime. This interesting pattern is
at odds with both the declarative memory accounts (Hypoth-
esis 1), the Activation Spreading account (Hypothesis 2), and
a naı̈ve procedural memory account (Hypothesis 3).

We found that this effect could be accounted for if our orig-
inal naı̈ve procedural model is expanded to included sequen-
tial parsing. Under these conditions, the order in which syn-
tactic forms are selected and grammatical feedback signals
are delivered becomes important. In particular, in ungram-
matical active sentences, the negative feedback signal is de-
livered before the active form is selected, and the adjustment
to the expected rewards of active structures is greater, thus
reproducing the effects we found in our data.

Although successful, our second model is limited by the
fact of having being designed post-hoc. To test its validity, the
same experiment should be replicated using different syntac-
tic structures, so that new predictions can be made and tested.
Even within these limitations, however, the models describe
herein have two important implications. First, they highlight
the role of basic reinforcement learning mechanisms in learn-
ing, whose contribution might shed light on the basic com-
putations underlying syntactic parsing as well as the contri-
butions of subcortical structures to language (Hernandez et
al.,2019). Second, our results highlight the importance of de-
tailed computational models to explain psycholinguistic ef-
fects.
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Introduction 

The Multi-Arm Bandit (MAB) Problem captures a 

dilemma in decision-making under uncertainty. Agents 

are faced with n choices that have various unknown 

rewards, in which they can either exploit choices with 

greater certainty for rewards or explore the unknown 

choices hoping for a better result. Ultimately the goal of 

each agent is to maximize the total rewards as much as 

possible.  

In our current project, we develop a new algorithm 

based on the resilience of a belief each agent has 

towards the expected reward. As more information 

accumulates, the agent’s belief becomes more resilient 

and consequently helps the agent to make better choices. 

 

Existing Algorithms 

The Multi-Armed Bandit problem is a well-researched 

problem in reinforcement learning. To test the 

performance of our new algorithm, we will compare it 

with the following previously developed algorithms: 

Epsilon Greedy 

1 - 𝜺 probability of exploitation 

Epsilon First 

𝜺 * N number of random trials (exploration) followed by 

a phase of exploitation 

Epsilon Decreasing  

Same as epsilon greedy, but with a decreasing 𝜺: 

(𝜺 = 1 / n + 1) 

Pure Random 

Arm is selected at random on each trial. 

Upper Confidence Bound 

Probability of choosing an arm is proportional to the 

probability of that arm giving the highest payoff. 

 

Belief Resilience Algorithm 

This algorithm is built on the assumption that a belief 

towards an expected reward falls on a spectrum of 

resiliency. Resiliency in beliefs relates to the amount of 

evidence and strength of justification. If a belief is low 

resilience, it has a high chance to be changed based on 

future evidence.   

According to this algorithm, both the belief resiliency and 

estimation for reward are used in decision making. The 

exploration phase aims at increasing belief on all bandits, 

and the exploitation phase aims at optimizing robust, high 

rewards. The algorithm is formulated in Figure 1. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Belief Resilient Algorithm 

Initialize Agent: 

𝐵𝑒𝑙𝑖𝑒𝑓: 𝑏1, … 𝑏𝑛 = 0 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑒1, … , 𝑒𝑛 = 1 

H = 1 

 

 

Choose Arm k: 

𝑯% 𝑬𝒙𝒑𝒍𝒐𝒓𝒂𝒕𝒊𝒐𝒏: 
𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑏1, … , 𝑏𝑛} 

𝟏 − 𝑯% 𝑬𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒕𝒊𝒐𝒏: 

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑏1𝑒1
𝑞

, … , 𝑏𝑛𝑒𝑛
𝑞

}  

Update Belief and Estimate: 

𝑏𝑘 = 𝑏𝑘 +
1

|𝑟 − 𝑒| + 1
+ 𝑛2 

𝑒𝑘 =
(𝑛 − 1)𝑒𝑘 + 𝑟

𝑛
 

 

 

Decrease H: 

𝐻 = 𝐻 −
100𝜇

𝑁
, such that H 

decrease from 1 to 0 over 
𝑁

𝜇
 runs 

 

 

Repeat for N times 
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Results and Discussion 

First, we tested the undetermined parameters q and 𝜇 in 

the Belief-Resiliency Algorithm, generating the reward 

graph as a function of q and 𝜇, shown in Figure 2. 

Therefore, we conclude the best parameter for the 

algorithm. 

After determining the parameters in the algorithm, we 

tested the Belief-Resilient Algorithm against the existing 

MAB algorithms. Results shown in Figure 3, 4 and 5. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

After implementing and testing the Belief-Resilience 

Algorithm, we conclude that this algorithm competes 

with the standard existing reinforcement learning 

algorithms, with the optimal parameter q=10 and 𝜇 = 8. 

In some cases, the new algorithm outperforms the 

leading algorithms in MAB paradigm. Generalizing the 

idea of belief resiliency in decision making, the 

robustness of belief can play a crucial role in evaluating 

a certain decision. Finally, we argue that the Belief-

Resilience Algorithm, inspired by human beliefs and 

decision-making, is potentially an efficient algorithm of 

human decision making. 

Future Directions 

In further research, we would like to construct a more 

sophisticated relationship between b and the estimated 

reward in the Belief Resilience Algorithm. In addition, 

we would like to further expand the Multi-Armed Bandit 

problem to more diverse settings to model real-life 

decision-making situations. 
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Abstract

Humans are not mere observers, passively receiving the infor-
mation provided by their environment; they deliberately en-
gage with their environment, actively participating in the in-
formation acquisition stage to improve their learning perfor-
mance. Despite being a hallmark of human cognition, the
computational underpinnings of this active (or self-directed)
mode of learning have remained largely unexplored. Drawing
on recent advances in machine learning, we present a neural-
network model simulating the process of learning how to ac-
tively learn. To our knowledge, our work is the first neural-
network model of learning to actively learn. Extensive simu-
lations demonstrate the efficacy of our model, particularly in
handling high dimensional domains. Notably, our work serves
as the first computational account of the recent experimental
finding by MacDonald and Frank (2016) showing that prior
passive learning improves subsequent active learning. Our
work exemplifies how a synergistic interaction between ma-
chine learning and cognitive science helps develop effective,
human-like artificial intelligence.
Keywords: Active learning; deep neural networks; deep rein-
forcement learning; example generation

1 Introduction
Humans are not mere passive observers of their environment,
but actively search for information which helps to improve
their learning performance (Gureckis & Markant, 2012). For
example, we purposefully search for information online to
learn about a topic of interest, decide how to interact with an
unfamiliar device to learn its functionality, or ask questions
from people around us to learn more about them, helping us
to interact with them more effectively in the future. Relatedly,
past educational research shows that people learn better if the
flow of experience is under their control (e.g., Cherney, 2008;
Michael, 2006).

Although active (aka self-directed) information acquisition
is a fundamental and extensively studied topic in the educa-
tional sciences (e.g., Bruner, Jolly, & Sylva, 1976; National
Research Council, 1999), it has been comparably under-
studied in the psychological literature (Gureckis & Markant,
2012; Markant & Gureckis, 2014), with the psychologi-
cal processes underpinning this mode of learning remaining
largely unexplored (Gureckis & Markant, 2012). Experimen-
tal studies of human learning are predominantly passive in
that the experimenter tightly controls what information is pre-
sented to the learner on every trial.

A growing, but highly theoretical, research area in com-
puter science, called active learning, aims to formally charac-
terize the extent to which self-directed information acquisi-
tion can speed up learning (see Hanneke, 2014, for a survey).

Despite notable theoretical successes (e.g., Hanneke, 2016),
this research area has made little contact with the psycholog-
ical literature, primarily focused on highly abstract learning
problems amenable to theoretical investigations, and predom-
inantly investigated mathematically the performance gain ob-
tained by following specific active learning strategies, paying
no attention to the key problem of how learners learn their
active learning strategies in the first place.

Drawing on recent advances in machine learning (particu-
larly deep reinforcement learning), we present a novel neural-
network model of active learning aiming to simulate the pro-
cess of learning how to actively learn. By conceptualizing the
problem as a reinforcement learning task, our neural-network
model learns, during the passive phase of learning (wherein
the learner passively receives information from their environ-
ment) an effective active learning strategy allowing for faster
learning. As an instantiation of our active learning model,
in this work we focus on the task of category learning (aka
classification).

Our model has several notable features elevating its cog-
nitive plausibility. First, our model uses Markov-adjusted
Langevin (MAL) (Savin & Deneve, 2014; Moreno-Bote,
Knill, & Pouget, 2011; Nobandegani & Shultz, 2017, 2018),
a well-known gradient-based Markov chain Monte Carlo
(MCMC) method, allowing active search for maximally in-
formative examples in a computationally-efficient manner.
Notably, recent work in theoretical neuroscience has shown
that MAL can be implemented in a neurally-plausible manner
(Savin & Deneve, 2014; Moreno-Bote et al., 2011). MCMC
methods are a family of algorithms for sampling from a de-
sired probability distribution, and have been successful in
simulating important aspects of a wide range of cognitive
phenomena, e.g., temporal dynamics of multistable percep-
tion (Gershman, Vul, & Tenenbaum, 2012; Moreno-Bote et
al., 2011), developmental changes in cognition (Bonawitz,
Denison, Griffiths, & Gopnik, 2014), category learning (San-
born, Griffiths, & Navarro, 2010), causal reasoning in chil-
dren (Bonawitz, Denison, Gopnik, & Griffiths, 2014), and
cognitive biases (Dasgupta, Schulz, & Gershman, 2016).

Second, to improve its active learning strategy, our model
uses memory replay: the idea of accessing memories of mul-
tiple past events and integrating them to make useful predic-
tions about an action’s consequences (e.g., Káli & Dayan,
2004; Lengyel & Dayan, 2008; Momennejad, Otto, Daw,
& Norman, 2018). Mounting evidence shows that memory
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replay supports reinforcement learning and planning (e.g.,
Ólafsdóttir, Bush, & Barry, 2017; Momennejad et al., 2018).

Finally, our model effectively adapts its learned active-
learning strategy as it gradually acquires more knowledge
about a learning task. This feature of our model is sup-
ported by mounting evidence suggesting that people adapt
their strategies according to their knowledge and environ-
mental conditions (e.g., Rieskamp & Otto, 2006; Hoffart,
Rieskamp, & Dutilh, 2018; Payne, Bettman, & Johnson,
1988; Bröder, 2003; Pachur, Todd, Gigerenzer, Schooler, &
Goldstein, 2011; Lieder & Griffiths, 2017).

Our paper is organized as follows. We begin by introducing
our neural-network model, and proceed to show the efficacy
of our model with extensive simulations. We conclude by dis-
cussing the implications of work for active learning research
and point out several fruitful lines of future work.

2 Neural Network Model
Our model consists of three neural network modules:

• Encoder Network (E-Net): This neural network module
takes a raw input xi and ouputs a corresponding state rep-
resentation si. As such, this module simulates perception
systems, mapping a stimulus to its representation in psy-
chological space.

• Classification Network (C-Net): This neural network
module takes state representation si and outputs a class la-
bel yi. As such, this module simulates information process-
ing cortices in the brain supporting concept categorization.

• Action-Value Network (Q-Net): For each representation
state si (corresponding to raw input xi), this neural network
module, parameterized by a set of weights θ, outputs an
affinity score Q(xi,θ) modeling the learner’s confidence in
choosing xi to boost learning. That is, a higher Q(xi,θ) cor-
responds to a higher confidence level. Crucially, the net-
work’s output, i.e., affinity scores, encodes information en-
abling our MCMC method, MAL, to actively search for ex-
emplars most helpful for improving the classification per-
formance of the C-Net.

When searching actively for an informative example x
which is likely to maximally improve learning accuracy, our
model samples from a target distribution π(x) given by:

π(x) ∝ exp(βQ(x,θ)) (1)

where θ denotes the parameters of the Q-network (i.e., the set
of network weights), and β ∈ R>0 is a damping factor.

By assigning higher probabilities to those examples x the
Q-network believes to maximally improve learning accuracy
(i.e., the classification accuracy of the C-Net), Eq. (1) ensures
that sampling from π(x) yields effective active learning.

To jointly train the E-Net, C-Net, and Q-Net modules of
our neural networks model, we use a novel variant of the well-
known Deep Q-learning Algorithm (Mnih et al., 2015); see

Algorithm 1. Our novel variant of the Deep Q-learning Algo-
rithm has the added advantage of incorporating MCMC in its
functionality (Algorithm 1, Line 8), ensuring that sampling
from the target distribution π(x) would likely yield informa-
tive examples x whose knowledge maximally improves the
learner’s classification accuracy, thus yielding effective active
learning.

Algorithm 1 MCMC-Enhanced Deep Q-Learning Algorithm

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Q̂ with weights θ− = θ

4: Initialize classifier C and encoder E with random weights wc and we, respectively
5: for episode = 1 to M do
6: Randomly pick an input x0 and encoded state representation s0
7: for t=1 to T do
8: With probability ε sample a random data point xt

9: Sample a new data point xt via MCMC with the affinity function:

π(xt ) ∝ exp(βQ(xi,θ))

10: Compute q0 = Q(st ,a0;θ) and q1 = Q(st ,a1;θ)

11: If q0 > q1, discard these data and go to step T +1. Otherwise, feed st into
C and update its parameters wc.

12: Do evaluation on C and obtain reward rt
13: Set st+1 = st , store transition pair (st ,at ,rt ,st+1) in memory D.
14: Sample minibatch of transitions (s j ,a j ,r j ,s j+1) from D
15: Set y j = r j + γmaxa′ Q̂(s j+1,a′, ;θ−)

16: Perform a gradient descent step on (y j−Q(s j ,a j ;θ))2 with respect to θ

17: For every NQ steps reset Q̂ = Q

The rationale behind Algorithm 1 is as follows. Line 1
initializes the memory replay capacity of our model. Lines
2-4 randomly initialize the weights of E-Net, C-Net, and Q-
Net modules. Crucially, by so doing, we assume no prior
knowledge on the part of the learner at the onset of learning.
Lines 5-9 (except Line 8) use MCMC to effectively guide the
active search toward informative samples, the knowledge of
which likely maximally improves learning performance. Line
8, for only a small fraction of times, performs random explo-
ration of the input space during the active learning phase. Be-
ing a standard approach in machine learning, Line 8 aims to
achieve an effective exploration-exploitation trade-off. Lines
10-12 compute the reward associated with each active learn-
ing episode by evaluating learning accuracy on a held-out
evaluation set: A higher reward implies that the learning per-
formance of our model has considerably improved by using
the samples recommended by the Q-Net module. Line 15 up-
dates the model parameters according to the reward obtained
in Line 12. Finally, Lines 12-17 (except Line 15) implement
the well-known Q-learning process widely used in modeling
model-free reinforcement learning in the machine learning,
psychology, and neuroscience literatures (Watkins & Dayan,
1992).

3 Simulations
In this section, we demonstrate with simulations the effi-
cacy of our neural network model in learning how to actively
learn. We tackle several learning tasks, ranging from simple
(the continuous-XOR Problem) to moderate (the Two-Spirals
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Problem) to quite demanding (recognizing high-dimensional
images of hand-written digits).

To experimentally investigate optimal scheduling for the
active learning phase (i.e., the phase in which the learner be-
gins actively looking for informative examples to improve
learning performance), we simulate three types of active
learners: Early-Starter, Intermediate-Starter, and Late-Starter.
As a learner, by definition, has no control over the informa-
tion provided passively by the environment, and this passive
flow of information can continue indefinitely, we assume that
these three types of active learners are constantly engaged
in passive learning; that is, they are constantly engaged in
improving their learning performance using the information
that is passively, yet constantly, provided by the environ-
ment. The Early-Starter begins the active learning phase right
at the start, together with the passive learning phase. The
Intermediate-Starter begins the active learning phase with
some delay, at an intermediate stage of passive learning (i.e.,
when the learner has already acquired some knowledge of the
learning task of interest). Finally, the Late-Starter does not
begin the active learning phase until a very late stage of pas-
sive learning (i.e., when the learner has nearly mastered the
learning task at hand). As such, the Early-, Intermediate-, and
Late-Starters are constantly engaged in passive learning (us-
ing the information passively provided by the environment)
even during their active learning phase—they only differ in
terms of when their active learning phase begins.

Although being simultaneously engaged in both passive
and active learning (as our three Early-Starter, Intermediate-
Starter, and Late-Starter learners are) is a more psycholog-
ically plausible assumption—compared to having learners
who either only perform pure active learning or pure pas-
sive learning—the foregoing three learners, due to benefiting
from different amounts of information, do not provide a fair
characterization of the potential boost in learning accuracy
afforded by active vs. passive learning.

To provide a completely fair comparison between active

and passive modes of learning, and, furthermore, to theoret-
ically corroborate several experimental findings on the effi-
cacy of active learning, in Sec. 3.3 we simulate two new learn-
ers (the Active-Passive (AP) learner and Passive-Active (PA)
learner), allowing us to directly investigate how active learn-
ing fares against passive learning.

3.1 Continuous-XOR Problem
As our first learning task, in this subsection we consider the
continuous-XOR classification problem (see Fig. 1(a)). For
the passive learning phase, the training set consists of 1000
samples, generated uniformly at random, in the input square
[0,1]2, paired with their corresponding labels. The learner
receives these training samples in the form of batches of size
32. We implement the C-Net module by a 3-layer perceptron
neural network (Rumelhart, Hinton, & Williams, 1985).

a) b)

Figure 1: (a) The continuous-XOR learning task. the two
blue quadrants correspond to the positive category and the
two white quadrants correspond to the negative category, with
the two solid black lines indicating the boundaries of the two
categories. (b) The two-spirals learning task. The solid black
spiral corresponds to the negative category and the dashed
blue spiral corresponds to the positive category.

To quantitatively evaluate the efficacy of our model
in learning to actively learn, we simulate the Early-,

a) b) c)

Figure 2: Classification accuracy on a held-out evaluation set by the Early-Starter, Intermediate-Starter, Late-Starter, and a
purely passive learner. In each subfigure, the leftmost and the rightmost vertical dashed lines indicate the onset of the active
learning phase for the Intermediate-Starter and Later-Starter, respectively. Error bars indicate ± 1 SEM. (a) The continuous-
XOR problem. (b) The two-spirals problem. (c) The MNIST hand-written digits recognition task.
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Figure 3: Left: An intermediate learning stage of the Intermediate-Starter learner in the continuous-XOR task. Red and green
dots indicate examples that the learner classifies as negative and positive patterns, respectively. Right: The guidance provided
by the Q-Net module at the stage of learning indicated in the Left subfigure. By assigning higher affinity scores (indicated by
darker blue dots) to those regions of the input space about which the knowledge of the C-Net is lacking/incorrect, the Q-Net
ensures that, by actively selecting those darker blue dots, the learning performance of the C-Net module likely improves.

Intermediate-, and Late-Starter learners, and compare their
learning accuracy against a purely passive learner (as a base-
line condition); see Fig. 2(a). As a measure of learning ac-
curacy, we report percent of correct classification on a held-
out evaluation set of size 100. The evaluation set comprises
100 samples, selected uniformly at random from the input
square [0,1]2. Note that the training and evaluation sets do
not overlap—their intersection is an empty set.

As Fig.2(a) shows, the Early-Starter predominantly ob-
tains the highest learning accuracy; this performance is later
matched by the Intermediate-Starter when it begins its active
learning phase. Fig. 2(a) also suggests that any form of ac-
tive learner (Early-, Intermediate, or Late-Starter) generally
outperforms, in learning accuracy, a purely passive learner.

Next, we provide intuition into how the Q-Net module
helps the C-Net improves its classification accuracy, by ac-
tively guiding the C-Net module toward those input re-
gions the knowledge of which likely maximally improves the
learner’s classification accuracy. Fig. 3(left) depicts an in-
termediate learning stage of the Intermediate-Starter learner.
As Fig. 3(left) shows, our classifier, i.e., the C-Net module,
has already learned some knowledge about the task (that, the
top-left quadrant likely corresponds to the negative patterns),
but its knowledge about the decision boundaries is still lack-
ing. Fig.3(right) shows the guidance provided by the Q-Net
module at this stage of learning: By assigning higher affin-
ity scores (indicated by darker blue dots) to those regions of
the input space about which the knowledge of the C-Net is
lacking/incorrect, the Q-Net ensures that, by actively select-
ing those darker blue dots, the learning performance of the
C-Net module improves.

3.2 Two-Spirals Problem
As our second learning task, in this subsection we consider
the famously difficult Two-Spirals classification problem (see
Fig. 1(b)). For the passive learning phase, the training set
consists of 2000 samples (1000 samples per spiral), selected
uniformly at random, on the two input spirals. The learner
receives these training samples in the form of batches of size
32. As was the case in the previous subsection, we imple-
ment the C-Net module by a 3-layer perceptron neural net-
work (Rumelhart, Hinton, & Williams, 1985).

To quantitatively evaluate the efficacy of our model
in learning to actively learn, we simulate the Early-,
Intermediate-, and Late-Starter learners, and compare their
learning accuracy against a purely passive learner (as a base-
line condition); see Fig. 2(b). As a measure of learning ac-
curacy, we report percent of correct classification on a held-
out evaluation set of size 100. The evaluation set comprises
100 samples, selected uniformly at random on the two in-
put spirals. Note that the training and evaluation sets do not
overlap—their intersection is an empty set.

As Fig.2(b) shows, the Early-Starter predominantly ob-
tains the highest learning accuracy; this performance is later
matched by the Intermediate-Starter when it begins its active
learning phase. Fig. 2(b) also suggests that any form of ac-
tive learner (Early-, Intermediate, or Late-Starter) generally
outperforms in learning accuracy a purely passive learner.

3.3 Hand-written Digits Recognition Task
As our last (and hardest) learning task, in this subsection we
consider the problem of recognizing high-dimensional im-
ages of hand-written digits, using the MNIST dataset, a pop-
ular dataset in the deep learning community (Fig. 4). For the
passive learning phase, the training set consists of 60,000 ex-
amples of 28× 28-pixel hand-written digits. The learner re-
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Figure 4: Hand-written digit examples from the widely used
MNIST dataset.

ceives these training samples in the form of batches of size 32.
We implement the C-Net module by a 6-layer convolutional
neural network (LeCun & Bengio, 1995).

Figure 5: A 28×28-pixel digit actively selected by our model
to improve learning performance. More precisely, the Q-Net
believes that the classification accuracy of the C-Net can be
improved by informing the C-Net that the shown 28× 28-
pixel image (as a whole) is a 5. Numbers on the vertical and
horizontal axes indicate pixel number.

Fig. 5 shows an example produced in the active learning
phase of our model; our model believes that, at this stage of
learning, informing the C-Net about this example (i.e., that
this 28× 28-pixel image, as a whole, belongs to the class of
Digit 5) significantly boosts the classification accuracy of the
C-Net module. To visualize the example depicted in Fig. 5,
we used a decoder neural-network module, allowing us to
map the corresponding representation from the psychological
space into the original 28× 28-dimensional space of hand-
written digits.

To quantitatively evaluate the efficacy of our model

in learning to actively learn, we simulate the Early-,
Intermediate-, and Late-Starter learners, and compare their
learning accuracy against a purely passive learner (as a base-
line condition); see Fig. 2(c). As a measure of learning ac-
curacy, we report percent of correct classification on a held-
out evaluation set of size 1000. The evaluation set comprises
1000 samples, selected uniformly at random from the origi-
nal MNIST test set of size 10,000. Note that the training and
evaluation sets do not overlap.

As Fig.2(c) shows, the Early-Starter predominantly ob-
tains the highest learning accuracy; this performance is later
matched by the Intermediate-Starter when it begins its active
learning phase. Fig. 2(c) also suggests that any form of ac-
tive learner (Early-, Intermediate, or Late-Starter) generally
outperforms a purely passive learner in learning accuracy.

Recently, MacDonald and Frank (2016) showed that
passive-first learning yields better learning performance com-
pared to active-first learning. More specifically, they showed
that a passive learning phased followed by an active learn-
ing phase yields better ultimate learning performance, com-
pared to the reversed order. As our three Early-, Intermediate-
, and Late-Starter learners are constantly engaged in passive
learning, even during their active learning phase, we cannot
directly investigate the key question of which sequence of
passive/active learning would ultimately yield better learning
performance.

Next, we directly test the effect of passive/active learn-
ing sequence on learning. To this end, a la MacDonald
and Frank (2016), we simulate two new types of learners:
Passive-Active (PA) and Active-Passive (AP). PA performs
passive learning during the first stage of his learning and then
switches into a purely active learning phase (wherein PA only
considers the samples recommended by the Q-Net module).
Conversely, AP performs purely active learning during the
first stage of his learning and then switches into a passive
learning phase.

Fig. 6 clearly shows the superiority of PA, in learning ac-
curacy, over AP. This finding theoretically corroborates, and
serves as the first computational account of, the experimental
finding by MacDonald and Frank (2016) showing that prior
passive learning improves subsequent active learning.

Additionally, our finding that, during the first block of
learning (Fig. 6, on the left-hand side of the vertical dashed
line), AP performs worse, in learning accuracy compared to
PA, is supported by the recent experimental study by Markant
and Gureckis (2014) revealing that the quality of active learn-
ing is sub-optimal early in learning.

4 General Discussion
Humans are not mere passive observers of their environment,
but actively search for information which helps to improve
their learning performance. Despite being a hallmark of hu-
man cognition, the computational underpinnings of this ac-
tive (or self-directed) mode of learning have remained largely
unexplored (Gureckis & Markant, 2012).
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𝑡 19 = 5.4275
𝑃 < .001
Cohen’s 𝑑 = 1.2136

𝑡 19 = 13.9471
𝑃 < .001
Cohen’s 𝑑 = 3.1187

Figure 6: Investigating the effect of passive/active learning
sequence on learning. Passive-Active (PA) performs pas-
sive learning first and then switches to active learning. Con-
versely, Active-Passive (AP) performs active learning first
and then switches to passive learning. The vertical dashed
line indicates the onset of the transition from one mode of
learning to the other. Error bars indicate ± 1 SEM.

Building on recent advances in machine learning, particu-
larly deep reinforcement learning, we present a novel neural-
network model simulating the process of learning how to ac-
tively learn. Importantly, our neural-network model starts
from scratch, having no a priori knowledge of the learning
task, nor having any preset active learning heuristic(s) to
choose from or to follow. To the contrary, by conceptualiz-
ing the problem as a reinforcement learning task, our neural-
network model learns, during the passive phase of learning,
an effective active learning strategy allowing for faster learn-
ing. Extensive simulations demonstrate the efficacy of our
model, particularly in handling the high-dimensional learn-
ing task of MNIST hand-written digits.

Additionally, our model serves as the first computational
account of the recent experimental finding by MacDonald and
Frank (2016) showing that prior passive learning improves
subsequent active learning, and provides a mechanistic ex-
planation of why the quality of active learning is sub-optimal
early in learning, as experimentally demonstrated by Markant
and Gureckis (2014).

Markant and Gureckis (2014) also showed that passive
learners did not benefit from being “yoked" to active learn-
ers’ data. Future work should investigate whether our model
can also account for this finding.

There is a growing consensus in the artificial intelligence
and cognitive science communities that the two fields should
establish stronger ties, much like at the dawn of the two fields.
Several articles have recently called for bringing the fields
of artificial intelligence, cognitive science, and neuroscience
closer together (Hassabis et al., 2017, Gershman et al., 2015).
Pursuing this approach, our work, like the work of many be-
fore us, attests to the effectiveness of this idea by exemplify-

ing how a synergistic interaction between machine learning
and cognitive science helps develop effective, human-like ar-
tificial intelligence.
Acknowledgments: This works was supported by an operating
grant to TRS from Natural Sciences and Engineering Research
Council of Canada (NSERC).
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