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Frank E. Ritter and David Reitter

It is our pleasure to introduce the proceedings of the 14th International Conference on Cognitive Modeling.  We 
started in Berlin where we were called the First European Workshop on Cognitive Modeling. This community had 
held earlier workshops on the Soar and ACT-R cognitive architectures held in Europe.  With later conferences, we 
started to go back and forth across the Atlantic, and also setup a pattern of going to mainland Europe and England 
alternatively (where proceedings sometimes appeared as ‘modelling’, the British spelling).

14 Penn State   7 U. of Trieste, Italy
13 Groningen, Netherlands   6 Carnegie Mellon U.
12 Carleton U., Canada   5 Bamburg, Germany
11 TU Berlin, Germany   4 George Mason U.
10 Drexel U.   3 Groningen, Netherlands
  9 U. of Manchester, England   2 Nottingham, U.K.
  8 U. of Michigan   1 Berlin, Germany

We have been published by Erlbaum and several university presses.  Currently, we are self-published on the web, 
with several repositories.

In this conference, we start with a useful and lively tutorial program, an aspect of most instances of this 
conference.  These tutorials are designed to help experienced and inexperienced learn about new and also existing 
techniques, and also cover new architectures in detail, enough that potential users can learn about them and 
potentially adopt them.  

In the past, this conference has preferred model + data + comparison.  This year we were somewhat more broad 
in what was accepted.  The proceedings have interesting papers for the presentations and posters on topics such as 
modeling tools, models of learning and memory, the use of models in other systems, models of adversarial systems, 
modeling natural language, technology for modeling, and modeling for math. We also have models on physiology 
and neural level models. 

Out of 65 submissions, 33 papers were accepted as full papers (51 percent). We also include a number of 
additional abstracts in these proceedings.

The Allen Newell Award for the best student-led paper was given to Peter Duggins, Terrence C. Stewart, 
Xuan!Choo, and Chris Eliasmith for their paper titled Effects of Guanfacine and Phenylephrine on a Spiking Neuron 
Model  of Working Memory.  We also note, as honorable mention, the papers by Hrvoje Stojic, Henrik Olsson, and 
Pantelis P. Analytis, by Peter Lindes and John E. Laird, by Dan Parker and Daniel Lantz, and by Ehsan Khosroshahi, 
Dario Salvucci, Bella Veksler, and Glenn Gunzelmann.

We would like to thank our sponsors, the US National Science Foundation (NSF BCS-1613241), the College of 
Information Sciences and Technology (Penn State), Charles River Analytics, Soar Technology, and Applied 
Cognitive Systems, LLC.  These sponsors have helped make the conference in several ways.  In particular, the 
college’s support helped run the conference, and the NSF support provided student travel stipends and support for an 
invited speaker as well as a mentoring lunch.  
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A Quantum Probability Framework for Causal Inference 
Jennifer S. Trueblood
Vanderbilt University

Reasoning about the causal relationships between events is an important component of cognition, allowing us to 
make sense of the world. Arguably, the most successful models of causal reasoning, causal Bayes nets, perform well 
in some situations, but there is considerable variation in how well they are able to account for data, both across 
scenarios and between individuals. More generally, decades of research have shown that human decision-making 
often violates the rules of classical (Bayesian) probability theory. Quantum probability (QP) theory provides an 
exciting new approach for modeling human cognition and decision-making.

In this talk, I will discuss how QP theory can be used to construct a framework for causal reasoning that accounts 
for behavior in situations where Bayes nets fail. I will discuss how changing assumptions about compatibility (i.e., 
how joint events are represented) leads to the construction of a hierarchy of models, from ‘fully’ quantum to ‘fully’ 
classical, that could be adopted by different individuals in different situations. 
I will illustrate the approach with new laboratory experiments and model comparisons as well as discuss two factors 
that determine the form of the representation, individual differences in cognitive thinking style and familiarity with 
the causal reasoning domain. I will conclude by showing how the framework can used to understand real world 
causal judgments using a large (N=1200) experiment conducted during the US Presidential primaries involving 
judgments about the outcomes of primaries and the eventual nominations.

Automaton Theories of Human Sentence Comprehension 
John T. Hale
Cornell University

The ability to understand what other people are saying, in a language that you know,!is a impressive feat of 
cognition. Within this domain, many fundamental questions remain open. !Among them: how does sentence 
structure figure in the comprehension process? Why is comprehension !so fast & effortless most of the time? !And 
which parts of the brain do which subtasks? !This talk argues that cognitive architecture gives us a good head-start 
on these questions. By presenting a few proposals based on Hale (2014) it invites modelers to join in the enterprise. 

Hale, J. (2014). Automaton Theories of Human Sentence Comprehension. Stanford, CA: CSLI Press.
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Integrative Physiological Modeling: Looking at a Larger Picture 
William A. “Drew” Pruett
University of Mississippi Medical Center

One approach to modeling is the use of minimal models that portray only the elements believed to be most causative 
of a particular phenomenon. An alternate approach is to connect many such minimal models together through their 
inputs and outputs to generate an integrated model in which larger phenomena can emerge. These emergent features 
do not belong to the minimal models, but rather are characteristic of their interactions. By integrating well-
understood mechanisms into a consistent whole, the role of the individual pieces can be more fully understood. If 
the simple models and their linkages are viewed as the hypothesis of a theory, the integrated model is the testable 
part of that hypothesis.

Such models have been used to great effect in physiology to create cohesive scientific theories where no single 
causative agent could be found. Examples of this are the role of the kidney in establishing hypertension, and the 
complex interplay between the left and right heart in determining cardiac output. These models have been 
appreciated for this value for nearly 50 years in physiology, but enormous gaps remain to be studied. Among these is 
the relationship between cognitive state and physiological function.

In this talk, I will summarize past and current efforts in integrative physiological modeling from groups around 
the world, with special attention paid to the knowledge that flowed from studying the emergent properties of such 
models. Additionally, I will discuss domains in physiology that we believe will require cognitive models for deeper 
understanding of the physiology.

2
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Stream: A Toolkit for Rapidly Developing High Precision Experiments 
Gregory Wade (GWADE2778@gmail.com)  

University of Delaware 
Newark, DE 19716 USA 

 
Brad Wyble (BWYBLE@gmail.com) 

The Pennsylvania State University 
Old Main, State College, PA 16801 USA 

 
 

Keywords: Psychtoolbox; Stream Toolkit. 

Introduction 
With the increasing use of technology in the field of 

cognitive science there has been a need for software that can 
accomplish the tasks needed to further research. Many 
experiments require high levels of precision in spatial and 
temporal presentation of stimuli as well as the ability to 
collect data from participants.  Many toolkits have been 
created for this purpose ranging different platforms and 
purposes. However, most psychologists lack the knowledge 
required to use these different toolkits, since they require 
substantial experience with programming languages like 
Python or MATLAB. Acquiring the necessary skills to use 
these toolkits is often practically impossible since the 
learning curve can be quite steep before one gets to the point 
of being able to use these tools effectively.  The Stream 
Toolkit was created to bridge this gap. Stream simplifies the 
programming side of the experimental design process and 
allows people with a relatively basic level of programming 
knowledge to create complex experiments. Stream provides 
user-friendly scripts as well as many tutorials that will walk 
researchers through various aspects of experiment design, 
such as creating stimuli, displaying them, collecting 
responses, and analyzing data. It is still necessary to 
understand basic MATLAB functions and syntax in order to 
begin using Stream. The documentation provides a list of 
basic commands and topics that should be learned prior to 
beginning. Stream can be downloaded at: 
[https://bitbucket.org/streamtoolbox/stream_official_toolbo
x/downloads].  

Psychtoolbox 
Stream uses Psychtoolbox-3 (Brainard, 1997; Pelli, 1997; 
Kleiner et al, 2007) to interface with hardware, such as the 
graphics card, sound card, and mouse and keyboard drivers. 
This is essential to provide low-latency stimulus 
presentation and response collection.  It is not necessary for 
the user to know Psychtoolbox, since Stream handles the 
interface. However, Psychtoolbox-3 must be installed and 
functional on the computer.   

Summary of Features 
Stream provides a skeletal framework of an experiment 

and a series of helper functions so that a user can add their 
own stimuli and data collection events.  These helper 

functions include stimulus generation, event based 
presentation, collection of various data types, and simple 
analysis scripts. These features have been simplified for the 
user in order to streamline the experimental design process. 
The users only have to edit a few of the files in Stream 
while the brunt of the work happens behind the scenes in 
scripts that have already been written. All parts of Stream 
are open source, and users can access or modify Stream as 
needed.   

Tutorials: A Good Place To Start 
The Stream Toolkit provides users with a series of tutorials 
to teach the researchers how to use Stream. The main 
tutorials will walk users through the design of an 
experiment including data collection and analysis to become 
familiar with the format of Stream. Supplemental tutorials 
are provided for features not explained in the main tutorials. 
It is suggested that you read through the Main Stream 
Documentation before users begin the Stream Tutorials as 
the tutorials are meant to coincide with sections of the 
documentation.  

Block Files 
Block files are the main scripts that the user will edit in 
Stream. Block files represent the different experimental 
blocks in a task. When designing an experimental block, 
you will edit these files which will specify what stimuli are 
created, how they are to appear on the screen, and what 
response data are collected.  If your experiment has multiple 
different blocks, you will create multiple block files that 
define each of them and run them in a specified order.  

Stimulus Generation 
At the top of your block file you will specify the stimuli that 
are used in the block. Stimuli are organized into 'sets'.  You 
can create any number of stimulus sets that you choose, and 
each stimulus set can have as many stimuli as you choose. 
 The only restriction on how you group stimuli into sets is 
that each set has to be comprised of the same kinds of 
stimuli (e.g. all of them are images).  There are also a 
number of properties for each kind of stimulus that can be 
defined in order to customize your stimuli. By defining all 
of the stimulus properties in a structure you can bypass the 
need to understand Psychtoolbox functions, as Stream will 
do that work for you, although it will not hurt to become 
familiar with Psychtoolbox functions.  Stream has many 
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different stimulus types including images, Psychtoolbox 
shapes, text, imagefonts, Gabor patches, and audio files.  

Event-Based Presentation 
All of the things that happen inside of a trial are called 
Events. Events are set up in block file and scheduled to 
happen at specific time points relative to the start of a trial. 
 Once the events are scheduled, Stream takes over and 
executes them using a sophisticated timing loop that 
integrates stimulus presentation with data collection.  All 
events are then time stamped with millisecond precision 
using the PsychToolbox GetSecs function.  Screenshots can 
be collected at any point during the experiment, which is 
helpful for creating figures. Parallel port triggers can also be 
used in Stream.  

Collecting response data 
Responses are predefined using responsestructs, allowing 
you to give certain properties to a response event. These 
responsestructs are set up in the block files and then 
scheduled to occur at a particular time point. Any number of 
responsestructs can be used in an experiment. Stream allows 
for keyboard, mouse, and eye gaze responses (from Eyelink 
eye trackers).  

Data Collection 
When you run an experiment, Stream will create data files 
automatically.  Stream is extensive in its data collection, 
such that every stimulus and event will automatically be 
saved along with timestamps. This extensive journaling 
allows for unanticipated exploratory analyses and also 
provides a safety net in case you forget to record condition 
labels. Because these files can be large and cumbersome to 
analyze, Stream also allows you to create compact data files 
containing only specific pieces of information that you 
choose.  These compact files are a good way to filter only 
the information needed for analysis.  

Analysis 
You can use multiple methods to analyze your data, but if 
you choose, Stream has built in analysis scripts that will 
help you extract the data you have collected and allow you 
to perform analysis using custom code in MATLAB. 
Stream’s analysis script is designed to pull information out 
of the compact data by looping through each subject, each 
block per subject, and each trial per block. Information from 
all of these trials is then copied into a structure. You can 
also opt to write these values to a text file that can be read 
into R, SPSS, or Excel if that is your preferred method of 
running statistical tests. Just like the block files, analysis 
scripts open-source and completely customizable.  

Customer Support 
For questions not covered in the documentation, customer 
support for the Stream Toolkit can be directed to Stream’s 
main website [https://osf.io/tdvxm/]. Here you will find a 

Functions wiki as well as links to Google Group discussion 
forums where you can report bugs, suggest development 
projects, or as a general usage question.    

References 
Brainard, D. H. (1997) The Psychophysics Toolbox, 

Spatial Vision 10:433-436. http://psychtoolbox.org/credits/ 
[http://color.psych.upenn.edu/brainard/papers/Psychtoolbox.
pdf 
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Introduction 
The mind is embodied, physically and chemically, 

receiving and passing information to the body in myriad 
physiological feedback loops. The mind-body interface 
induces connections between different cognitive functions, 
and is an integral part of cognition.  Understanding how 
physiological and cognitive mechanisms interact to 
influence behavior will require exploring the representative 
and systematic ways we can connect systems on the 
physiological and cognitive levels. As physiological sensors 
continue to become cheaper, more pervasive, and more 
accurate, computational cognitive modelers will have a 
unique opportunity to predict and explain human behavior 
using process models with representations on both the 
physiological and cognitive levels. This shift will result in 
models that more realistically operate over longer periods of 
time, allowing modelers access to more mechanistic models 
and predictions of behaviors given moderators like sleep 
deprivation, caffeine, or stress. 

The ACT-R cognitive architecture (Anderson, 2007) can 
be used to model cognitive processes and their effects on 
behavior. However, ACT-R lacks a comprehensive way to 
simulate the effects of several cognitive moderators (Ritter 
et al., 2007) and the interactions of these moderators. The 
architecture has had its module functionality associated with 
certain areas of the brain and brain networks (e.g., see 
Anderson et al., 2008), this can make it more 
straightforward to understand where in the architecture 
certain moderators should affect behavior. 

HumMod (Hester, Brown, et al., 2011) is a physiological 
model that simulates physiological systems from a middle-
out perspective (i.e., see Hester, Iliescu, et al., 2011). The 
model integrates multiple tissue and organ level submodels 
along with a responsive cardiovascular system modulated by 
hormones and the autonomic nervous system.  This allows 
one to explore the consequences of physiological 
perturbations (e.g., activation of nerves in the peripheral 
nervous system) both on the respective local systems and 
the overall global physiological system. However, as a 
stand-alone system, HumMod does not simulate high-level 
behavior. 

ACT-R/! is a hybrid physio-cognitive architecture that 
combines the ACT-R and HumMod systems. The 
architecture can be used to explore interaction between 
physiological and cognitive systems and how these 
interactions modulate human behavior. A physio module 
controls the communication between the ACT-R and 
HumMod system, controlling the synchronization of the 
timing and also any bottom-up physiological modulation of 
cognitive processes. ACT-R/! has been used to explore 
several aspects of the physiology-cognition connection, 
including homeostatic drives (Dancy & Kaulakis, 2013), 
stress (Dancy, Ritter, Berry, et al., 2015) and sleep 
deprivation (Dancy, Ritter, & Gunzelmann, 2015). 

In this tutorial, we will discuss physiological and 
cognitive processes, and interactions between systems at 
these levels, that are useful for modeling and simulating 
behavior on both the physiological and cognitive levels. We 
will use two representative systems (HumMod and ACT-R) 
as well as an integrated version of the two systems (ACT-
R/!) to ground the discussed connections and interactions 
to a computational system. Tutees will then have the 
opportunity to build a hybrid computational physio-
cognitive model, run the model in a simulated experiment, 
and interpret the predicted physiological and cognitive 
output against existing behavioral data. 

About the Authors 
Christopher L. Dancy is an assistant professor in computer 
science at Bucknell University and chair of the Behavioral 
Representation in Modeling and Simulation (BRiMS) 
society. His research interests focus on studying how 
physiology, affect, and cognition interact and what these 
interactions mean for memory, decision-making, and 
interfacing with systems. He uses computational process 
models and simulations, as well as experimental methods, to 
study these interactions and predict consequences for 
behavior. 

W Andrew Pruett is an instructor in the Department of 
Physiology at the University of Mississippi Medical Center.  
His research concentration is in silico replication of clinical 
trials, especially with respect to hypertension.  He uses 
population modeling and topological analytic techniques to 
advance the science of patient specific medicine. 
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Introduction 

This tutorial introduces the Distributed Adaptive Control 
(DAC) theory of the principles underlying the Mind, Brain, 
Body Nexus (MBBN) that has been developed over the last 
20 years (Verschure, 2003; Verschure, 2016). DAC assumes 
that the brain maintains stability between an embodied 
agent, its internal state and its environment through action. 
It postulates that in order to act, or know how, the brain has 
to optimize 5 fundamental objectives which can be labeled 
as: why, what, where, when and who. Thus the function of 
the brain is to continuously solve the so-called H5W 
problem with ‘H’ standing for the ‘How’ an agent acts in the 
world. The DAC theory is expressed as a neural-based 
architecture implemented in robots and organized in two 
complementary structures: layers and columns. The 
organizational layers are called: reactive, adaptive and 
contextual, and its columnar organization defines the 
processing of states of the world, the self and action or the 
interaction between the first two.  

After an overview of the key elements of DAC, the 
mapping of its key assumptions towards the invertebrate and 
mammalian brain is described. The general overview of 
DAC’s explanation of MBBN is combined with examples of 
application scenarios in which DAC has been validated, 
including mobile and humanoid robots, neuro-rehabilitation 
and the large-scale interactive space Ada. In this tutorial we 
will provide the elements necessary to implement an 
autonomous control system based on the DAC architecture 
and we will explore how the different layers of DAC 
contribute to solving a foraging task 

Foraging is an advanced, goal-oriented behavior where 
prior knowledge of an environment and acquired behavioral 
strategies must be matched to the novelty and the hazards 
presented by an unpredictable world. DAC is based on the 
fundamental assumption that foraging can be explained on 
the basis of the interaction of three layers of control: 
reactive, adaptive and contextual. DAC was originally 
proposed as model for classical and operant conditioning. 
The reactive layer provides a set of reflexes allowing the 
system to interact with the environment – unconditioned 
stimuli to unconditioned responses. The adaptive layer is a 
model of classical conditioning and fulfills a twofold task. 
On the one hand it learns to associate the conditioned 
stimuli to the unconditioned responses, forming the 

conditioned responses. On the other hand, it forms internal 
representations of the conditioned stimuli, which are used 
by the contextual layer. We can define it as acquiring and 
shaping the agent-environment specific state space. The 
contextual layer is a model of operant conditioning 
providing the system with short and long term memory 
structures.  The sensorimotor contingencies formed at the 
level of the adaptive layer are acquired and retained in these 
memory structures, forming behavioral sequences or 
policies. The representations stored in the contextual layer 
are constantly matched against the ongoing perceptions 
allowing for the retrieval of successful behavioral sequences 
in similar contexts. 

The prototypical robot test case for DAC is a foraging 
task in an open arena. In this task, the robot, equipped with 
proximal and distal sensors, explores the arena in search of 
light sources while avoiding collisions with the surrounding 
wall. Colored patches on the floor serve as landmarks for 
navigation. In the framework of classical conditioning, the 
proximal sensors (e.g., distance and light) serve as aversive 
and appetitive unconditioned stimuli. Close to the light or 
when colliding with the wall an unconditioned response is 
triggered such that the robot approaches the light or turns 
away from the wall. The colored patches serve as 
conditioned stimuli. A visualization of such a task can be 
seen in Figure 1. 

In this tutorial students will learn how to control the robot 
through the DAC architecture implemented using the IQR 
neuronal networks simulator (Bernardet et al., 2010) 
interfaced with the Gazebo robot simulator (Koenig et al., 
2004) as seen in Figure 2. IQR implements the neuronal 
modules of the brain of the agent and Gazebo acts as the 
server of the simulated 3D environment. A VirtualBox 
Ubuntu virtual machine with a fully configured simulation 
setup and the DAC book (available at 
http://csnetwork.eu/CSN%20Book%20Series) accompany 
this tutorial. 

Presenter 
Paul Verschure is a professor at Universitat Pompeu Fabra, 
research professor at the Catalan Institute of Advanced 
Research and director of the Center of Autonomous Systems 
and Neurorobotics in Barcelona (Spain). His scientific aim 
is to find a unified theory of mind, brain and body through 
the use of synthetic methods and to apply such a theory to 
the development of novel cognitive technologies. Paul 
Verschure has pursued his research at different institutes in 
the US (Neurosciences Institute and The Salk Institute, both 
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in San Diego) and Europe (University of Amsterdam, 
University of Zurich and the Swiss Federal Institute of 
Technology-ETH and Universitat Pompeu Fabra in 
Barcelona). Prof. Verschure works on biologically 
constrained models of perception, learning, behavior and 
problem solving that are applied to wheeled and flying 
robots, interactive spaces and avatars. He maps these 
models to societal impact in the domains of health, cultural 
heritage and education. The results of these projects have 
been published in leading scientific journals including 
Nature, Science, PLoS, Neuron, Proceedings of the Royal 
Society and PNAS. 
 
 

 
 
Figure 1: Gazebo robot simulator.  Screenshot of Gazebo 
simulator showing the prototypical top view of a foraging 
task used to benchmark DAC with colored patches on the 
floor and a source of light represented by a bigger white 
patch on top of the screen. 
 
 

 
 
Figure 2: The IQR Neural Simulator. Screenshot of IQR 
showing a neural based implementation of the reactive 
layer. 
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Introduction 
The aim of this tutorial is to walk participants through much 
of the cognitive modeling research cycle, from 
experiment/simulation development, to parameter 
exploration for finding the best fit of model predictions to 
empirical results, to determining the persuasiveness of the 
found fit (vis-a-vis Roberts & Pashler, 2000). This tutorial 
will provide hands-on experience with (1) Simple Task-
Actor Protocol (STAP; Veksler, et al., in press) — a 
technology that enables reuse of task software for human 
participants in lab, online, and on mobile devices, and 
computational participants regardless of computational 
framework and programming language; (2) 
mindmodeling.org (Harris, 2008) — a free online parallel 
computing resource for exploring large parameter spaces; 
and (3) Model Flexibility Analysis (Veksler, Myers, & 
Gluck, 2015) — a method for estimating model 
complexity/flexibility. 
 
 
Harris, J. (2008). MindModeling@Home: a large-scale 

computational cognitive modeling infrastructure. In The 
Sixth Annual Conference on Systems Engineering 
Research (pp. 246–252). Los Angeles, CA. 

Roberts, S., & Pashler, H. (2000). How persuasive is a good 
fit? A comment on theory testing. Psychological review, 
107(2), 358. 

Veksler, V. D., Buchler, N., Lebiere, C., Morrison, D., & 
Kelley, T. D. (in press). The performance comparison 
problem: Universal task access for cross-framework 
evaluation, Turing tests, grand challenges, and cognitive 
decathlons. Biologically Inspired Cognitive Architectures. 

Veksler, V. D., Myers, C. W., & Gluck, K. A. (2015). 
Model Flexibility Analysis. Psychological Review, 
122(4), 755–769. 
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Abstract 

For several decades, production systems have been the 
dominant framework in which (primarily) symbolic cognitive 
models have been developed. This paper proposes a different 
approach, cognitive code, in which behavioral models are 
developed directly in a modern programming language. 
However, unlike standard code, cognitive code has simulated 
timing and error characteristics intended to mimic those of 
human cognitive, perceptual, and motor processes. Some of the 
benefits of this new approach are illustrated in sample models 
of a paired-associates task, reading task, and dual-choice task. 

Keywords: Cognitive architectures; ACT-R 

Introduction 
Since their introduction decades ago, cognitive architectures 
(Anderson, 1983; Newell, 1990; see also Gray, 2008) have 
provided a rigorous computational framework in which 
scientists can build and run cognitive models. Most 
importantly, a cognitive architecture represents a “unified 
theory of cognition” (Newell, 1990) that allows detailed 
exploration of the integration among various human systems, 
including cognitive, perceptual, and motor systems. 
Cognitive architectures have facilitated major advancements 
in cognitive science for specific research domains such as list 
memory (Anderson, Bothell, Lebiere, & Matessa, 1998) and 
multitasking (Borst, Taatgen, & van Rijn, 2010); at the same 
time, architectures have been applied to real-world domains 
such as gaming (Laird, 2002) and driving (Salvucci, 2006). 
 Even considering these successes, adoption of cognitive 
models outside of the academic research community1 has 
been limited. There are arguably several reasons for this 
limited adoption: 

Programming Paradigm and Language. Production 
systems have been the dominant framework in which 
(primarily symbolic) cognitive models have been 
implemented. Production systems, based on representation of 
processes as condition-action production rules, have been key 
to certain theoretical claims (e.g., learning from instructions: 
Taatgen, Huss, Dickison, & Anderson, 2008). However, from 
the perspective of programmers outside the cognitive-
architecture community, production systems are largely an 
unknown quantity; instead, modern programmers typically 

                                                             
1 Companies such as Carnegie Learning and Soar Technology have 
successfully applied cognitive models beyond the walls of the 
research community; still, the impact of cognitive modeling pales in 

develop code using modern procedural and object-oriented 
programming languages (Java, C++, Python, etc.). Learning 
the very different programming paradigms and patterns used 
in production systems is a significant barrier to developing 
models, even for those with a significant computer-science or 
programming background. 

Model-Centered Development. For those in the research 
community, the cognitive model is often the centerpiece of 
the main research effort, and a great deal of time and care is 
taken to develop these models. For this reason, modeling 
frameworks often include an integrated user-interface 
environment and suite of tools to facilitate model 
development. However, for an outsider looking to embed a 
cognitive model into their own project—say, a game-engine 
programmer who wants to develop a cognitive agent to 
embed into a larger game—the model is a peripheral 
component rather than a central one. For this audience, 
learning an entirely new modeling language and development 
environment can be a large investment, often too large to 
make it worthwhile. 

Lack of Model Integration. Cognitive modelers, especially 
those interested in cognitive architectures, have long stressed 
the benefits of a community-driven approach to unified 
theories of cognition. Over the years, this integration has 
largely come about at the architectural level, with a wide set 
of models using a single architecture or framework to 
generate behavior. Unfortunately, integration among models 
themselves—for example, reuse of existing models to 
develop new models—has arisen much less frequently, partly 
because modeling frameworks have not emphasized rigorous 
formal APIs that are crucial for integration. 
 
 Modern cognitive architectures and models have much to 
offer beyond the boundaries of the research community; with 
a blend of psychological theory and computational 
simulation, they contain a breadth and depth of predictive 
accounts that can be widely useful for other research and 
practical domains. Yet, because of the reasons above, the 
investment needed to extracting predictions from these 
models is often too large for those with less than a primary 
interest in cognitive modeling. 

comparison to related research methodologies—for instance, 
machine learning—that have exploded in popularity. 
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Cognitive Code 
Cognitive code is code embedded in a modern programming 
language that aims to simulate and mimic human cognitive, 
perceptual, and motor processes. Of course, cognitive models 
and architectures have long used computational 
representations to simulate human processes, but they have 
(as noted earlier) generally defined their own programming 
language for this purpose, and generally relied on production 
systems as a central tenet of their representations. In contrast, 
cognitive code is embedded and written directly in an existing 
programming language, using structures and patterns already 
familiar to most programmers. At the same time, cognitive 
code differs from standard code in that it includes new 
software design patterns and libraries to facilitate the 
simulation of timing and errors inherent in human processes. 
  Before delving into the details, let us illustrate the basic 
concept with a simple example. Consider sample cognitive 
code (here in Java) that stores a new piece of information into 
memory: 

memory.store(new Chunk("cat") 
 .set("owner", "Jane") 
 .set("name", "Whiskers")); 

Here we create a “chunk” of information (as in ACT-R: 
Anderson, 2007) that defines knowledge about Jane’s cat, 
and we store it into memory. Later, we try to recall this 
information from memory with a query:  

Chunk chunk = memory.recall(new Query("cat") 
 .add("owner", "Jane")); 

In each case, the code uses patterns that would be 
straightforward and recognizable by most programmers. At 
the same time, this code conceptually differs from standard 
code in two ways. First, each step incurs a simulated temporal 
cost that corresponds to the time needed to perform this 
action in the cognitive system. In our example, the 
memory.store() action incurs some time, say a few hundred 
milliseconds, to add this knowledge to memory, and the 
memory.recall() action also incurs an amount of time that 
may depend on many factors (time since learning, number of 
times practiced, etc.). Second, each step has some potential 
for failure that mimics a true cognitive system; for example, 
the memory.recall() action could fail and return a null result 
depending on the current state of the cognitive system. 
 We now describe a prototype system that embodies the 
cognitive code approach. The system is implemented in Java 
as a library that can be readily integrated into other projects. 

Core Simulation System 
The core system centers on the concept of an agent that acts 
within the simulated world. An agent consists of any number 
of modules that define behavior for a particular subsystem 
(e.g., memory, vision, etc.) or for a particular domain 
(arithmetic, driving, etc.). The basic unit of information 
shared across modules is an item, which comprises a set of 
slot-value pairs, one of which can be the “isa” type of the 
item. Modules can utilize workers to perform work for them, 
and can share information with other threads through buffers. 

 Because the passage of time is central to the cognitive code 
approach, we also require some way to simulate a central 
clock within the code. Within a single thread, we simply 
maintain a simulated time to be incremented by each 
cognitive step. In the general case, though, we need multiple 
threads to share a single clock; human multitasking will be 
best represented as separate cognitive threads, as discussed 
later, and even a single thread may require that certain 
operations happen in parallel (e.g., moving a hand while 
recalling information). 
 The core simulation enables the central clock as follows. 
The system assumes that individual operators on a particular 
thread can define their own delays, effectively stopping 
execution until the clock reaches the new time after delay. 
For example, let’s say we run the following code on one agent 
thread: 

agent.wait(1.0); 
memory.store(new Chunk("cat")); 

and run the following code on another agent thread: 
agent.wait(2.0); 
Chunk chunk = memory.recall(new Query("cat")); 

The first thread requests that time advance to 1.0 seconds, 
while the second thread requests an advance to 2.0 seconds. 
In this situation, the first thread succeeds in advancing the 
clock to 1.0 seconds, and then performs the memory store. 
The second thread’s wait step will block until 2.0 simulated 
seconds have passed, guaranteeing that the subsequent recall 
step will happen only after the first thread’s store step. 
 The underlying implementation of the shared clock uses a 
type of cyclic barrier (Java’s Phaser class) to ensure that all 
concurrent threads are synchronized as each reaches a new 
time step. If desired, the system can be run in real time such 
that the clock corresponds to the actual time (or a multiple 
thereof). In typical usage, however, simulated time does not 
need to correspond to real time; in fact, it is often 
advantageous to run the simulation as quickly as possible, 
and then examining time after the fact for various purposes 
(e.g., to predict how long a particular set of actions might 
take). 

Memory System 
The memory system is based wholly on the ACT-R theory of 
declarative memory (Anderson, 2007). In this theory, 
memory consists of chunks of knowledge with slot-value 
pairs, which over time strengthen or decay with practice or 
lack of use. In particular, each chunk has an associated 
activation that defines how readily the chunk can be recalled, 
as dependent on its prior usage: if a chunk is “used” (recalled 
or re-stored) at times !", the activation #$ for chunk % can be 
defined as 

#$ & '() !"*+

"

)
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where , is the memory decay factor that determines how 
quickly the usages decay. Given the chunk’s activation, we 
can determine the probability to recall the chunk as 

-.)/.012''3 &
4

0*/56*7389
)

for a retrieval threshold : and noise level ;. If the chunk can 
be successfully retrieved, the time needed for retrieval is 
defined as 

<=>?@AA & B0*56)

 In our cognitive code system, chunks are stored using the 
memory.store() action, which incurs only a 50 ms time for 
a cognitive step—the same 50 ms delay used in many 
cognitive architectures for the firing time for a production 
rule (e.g., ACT-R, Soar). For recall, our system includes two 
types of actions. First, there is a non-blocking action 
memory.startRecall() that initiates the recall action but 
allows the code to continue past this point after a 50 ms 
cognitive step time. A non-blocking action of this type allows 
the code to continue and perform other actions while recall is 
taking place (e.g., watching for a visual stimulus or typing a 
key). The memory.getRecalled() action is then used to 
access the recalled information, and this command blocks 
until the recall is complete. Second, there is the blocking 
command we saw earlier, memory.recall(), which is 
equivalent to performing a memory.startRecall() followed 
by a memory.getRecalled(). Both types of recall actions 
take as an argument a query that partially defines the desired 
chunk (as seen earlier with the “cat” example), and both can 
fail and return null if the chunk is not successfully recalled. 
 Chunk rehearsal—that is, the usages defined earlier—can 
take several forms. When a chunk is initially created, this is 
defined as its first use. If an exact copy of this chunk is stored 
later, the copy is merged into the original chunk and becomes 
another use of the chunk. Finally, any recall of the chunk 
serves as a rehearsal and adds to the use count. Thus, all of 
these forms contribute to the gradual increase in a chunk’s 
activation; in contrast, the lack of use causes any early uses 
to decay away, making the chunk more difficult to recall and 
more costly (in terms of time) if successfully recalled. 

Perceptual System 
The perceptual system is primarily based on ACT-R and 
partly based on a related theory of eye movements. The vision 
module, following ACT-R, assumes a spotlight of visual 
attention that moves according to a two-stage where-what 
process of finding objects and encoding objects. The non-
blocking action vision.startFind() attempts to find a 
visual location that matches the given query based on 
perceptual features available in peripheral vision (like 
position, color, etc.), and its complementary command 
vision.getFound() returns the found location. Their 
blocking counterpart vision.find() achieves the same 
effect in a shorthand simpler action. Another command, 
vision.waitFor(), waits until a location matching the query 
appears in view (e.g., to model waiting for a visual stimulus). 

Once a location is found, there are analogous actions for 
encoding the object at the location and returning information 
about the object: the non-blocking action 
vision.startEncode() and its associated action 
vision.startEncode(), along with their blocking 
counterpart vision.encode(). 
 The movement of visual attention from one object to 
another generates movements of the system’s simulated eyes 
as defined by the EMMA theory (Salvucci, 2001), which in 
turns derives from the E-Z Reader theory of eye movements 
in reading (Reichle, Pollatsek, Fisher, & Rayner, 1998). This 
provides the system with a powerful predictive dimension: 
the code never explicitly moves the eyes, but in moving 
attention, the eyes follow and demonstrate several interesting 
aspects of eye-movement behavior: the time lag between a 
movement of attention and a movement of the eyes; the 
possibility of skipping over an encoded object when that 
object is easy to encode (e.g., a high-frequency word); and 
the possibility of re-fixating an encoded object with multiple 
eye fixations when that object is difficult to encode (e.g., a 
low-frequency word).  
 In addition to vision, the system includes audition to model 
detection and encoding of aural information. Specifically, the 
audition module includes audition.startDetect() and 
audition.detect() actions (non-blocking and blocking, 
respectively) to detect a sound, and an associated action 
audition.waitFor()that waits for the next sound that 
matches a query. It also includes audition.startEncode() 
and audition.encode() actions that are analogous to these 
actions in the vision module. 

Motor System 
The motor system is currently focused on using a mouse and 
keyboard in a desktop computer environment. The mouse-
movement module uses Fitts’ law in the same manner as 
ACT-R and EPIC (Meyer & Kieras, 1997). The module 
includes the expected actions to move and click the mouse: 
mouse.startMoveTo() and mouse.startClick() as non-
blocking actions, and mouse.moveTo() and mouse.click() 
as blocking actions. 
 For typing, the motor system is based on the TYPIST 
model (John, 1996). Typing is invoked with a typing.type() 
action that specifies the text to output. The typing module 
breaks up the given text into words and then types each word 
as a 50 ms cognitive step followed by the execution of the 
motor actions for each keystroke; shifted keys (e.g., capital 
letters) require a keystroke for the shift key before the 
keystroke for the character. The time for each keystroke was 
estimated as a function of typing speed as measured in gross 
words per minute. Specifically, a function was fit to Figure 4 
of John (1996) to yield the following estimate of keystroke 
time <">C as a function of words per minute DEF: 

<">C & ) GHHHHHIJ/DEF3K L GHHJHM4 DEF N GJ4OPO)

The typing module can thus be set to any typing speed 
between 30 and 120 words per minute for an estimate of 
typing times at that speed. 
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 The other component of the motor system is the speech 
module, as represented by a speech.say() action that takes 
a simple string as input. Roughly like the ACT-R speech 
system, this module breaks the string into syllables and 
outputs the speech with a delay equal to a base time (200 ms) 
plus an execution time per syllable (150 ms). Whereas ACT-
R has a simple assumption of syllables (one syllable per 3 
characters), the module here uses a more complex method to 
break up syllables according to a number of rules for English 
pronunciation tested on a small corpus of common words. 

Cognitive Code as Software 
The fact that cognitive code is implemented as software in a 
mainstream programming language lends it several benefits 
over cognitive models developed in a typical cognitive 
architecture approach. In contrast to a monolithic cognitive 
architecture, modules in cognitive code are instantiated as 
needed, and using different implementations of a particular 
type of module does not pose a problem. For example, the 
following code defines a new agent, the eyes of the agent, and 
finally the vision module: 

Agent agent = new Agent(); 
Eyes eyes = new Eyes(agent); 
Vision vision = new Vision(agent, eyes); 

Various methods for these components are easily accessible: 
for instance, a programmer might check aspects of the agent 
(e.g., agent.getTime()), move the eyes to a new location 
(eyes.moveTo()), or change parameters of the visual system 
(vision.setFindTime()). Developers can extend objects to 
include additional functions, or can build new objects that use 
cognitive-code objects as primitives. In fact, as the approach 
evolves, we expect different implementations of the modules 
to provide alternative theoretical approaches—in this case, 
say, we might have a different visual system based on pixels 
and salient features. 
 Another large benefit is that cognitive code inherits the 
many structures and tools already used by modern software 
for developing, interfacing, and testing code. Instead of 
having specialized IDEs (integrated development 
environments), cognitive code allows a programmer to use 
their preferred IDE for development. Cognitive code also 
inherits the robust APIs (application program interfaces) of 
modern programming languages, such as packages, classes, 
interfaces, and related constructs—a big advantage in 
accessing others’ code and successfully integrating it with 
one’s own code. Finally, cognitive code can be tested 

                                                             
2 http://act-r.psy.cmu.edu 

rigorously utilizing the same tools commonly in use today 
(e.g., JUnit tests in Java). In this case, each test can check not 
only whether the code runs correctly as a piece of software, 
but also whether some cognitive code fits an appropriate 
empirical (human) data set; in other words, the code’s 
correctness also depends on whether it accurately mimics the 
behavior of human behavior in the chosen domain. 

Illustrative Examples 
We now provide a few illustrative examples of cognitive 
code, all of which represent re-implementations of existing 
models developed in a cognitive architecture. Our goal here 
is to demonstrate that cognitive code can produce much the 
same behavior and predictions as architecture models, but the 
code blocks that generate these behaviors are simpler and 
more learnable than their architectural counterparts. 

Paired Associates 
One of the standard models in Unit 4 of the ACT-R tutorial2 
is a model of the paired-associates task. In this task, 
participants see a word stimulus (e.g., “king”) and must type 
a digit that is associated to that word in the experiment (e.g., 
“7”). The participant does not know the associations at the 
outset, but over time, they learn them and gradually become 
better at recalling the associated digit, improving their 
correctness and (for correct responses) improving their 
response times. Students studying the ACT-R architecture 
might model this task as they learn to understand ACT-R 
memory theory and implement their first models of memory 
storage and recall. Even after a few prior lessons in the syntax 
and semantics of the ACT-R modeling language, the paired-
associates model can be difficult for students to understand 
and might take a typical student one to a few hours to work 
through and understand. 
 A cognitive-code model of the paired-associates task is 
shown in Figure 1. Starting at line 1, the model first waits for 
a word, blocking on the vision.waitFor() command until 
the stimulus appears, and then encodes the word. It then tries 
to recall a chunk that represents the word-digit pair in 
memory; if the chunk is successfully recalled, the model 
types the digit as a response. The model then waits for the 
digit (which appears in all cases) and stores the word-digit 
pair to memory. (Note that if the word-digit pair is already in 
memory, this strengthens the pair chunk as described earlier.) 
This model behaves essentially the same as the ACT-R 
tutorial model, and successfully produces the behavioral 

[1]   String word = (String) vision.encode(vision.waitFor(new Query("word"))); 
[2]   Chunk chunk = memory.recall(new Query("pair").add("word", word)); 
[3]   if (chunk != null) 
[4]       typing.type(chunk.getString("digit")); 
[5]   int digit = (Integer) vision.encode(vision.waitFor(new Query("digit"))); 
[6]   memory.store(new Chunk("pair").set("word", word).set("digit", digit)); 

Figure 1: Cognitive code for the paired-associates task. 
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patterns exhibited by people, namely the increased accuracy 
and decreased response time with practice. 
 Upon learning the cognitive-code approach, arguably the 
most difficult aspect of this code is learning the way that 
timing works—especially understanding that some actions 
will block until a stimulus appears or until a chunk is recalled. 
In general, though, a programmer versed in Java can easily 
understand the control flow here, and knows how to get this 
code to compile correctly and how to access API 
documentation when needed. (For example, we have not 
explained the details of the Query class used in the visual and 
memory requests, but these details are easily discovered in 
the documentation through a modern IDE.) 

Reading 
As part of a validation of the EMMA model of eye 
movements, Salvucci (2001) described a parsimonious model 
of sentence reading that simply encoded words from left to 
right (ignoring any deeper understanding to focus on the eye 
movements themselves). This model was a test of EMMA’s 

ability to predict eye movements directly from 
straightforward shifts of visual attention, examining 
measures of gaze durations, first-fixation durations, and skip 
probabilities as a function of word frequency. 
 A similarly straightforward snippet of cognitive code that 
performs sentence reading is shown in Figure 2. The code 
implements a loop that iteratively finds and encodes each 
word. The find actions in lines 1 and 5 utilize the property of 
the visual system that, by default, vision finds locations 
closest to the current eye location; in line 5, the find 
command also makes sure to find a word that has yet to be 
seen. When a “visual” is found, the model encodes the 
contents of the word and fakes the semantic processing of the 
word by simply waiting for some time delay intended to 
mimic a lexical retrieval. Of course, a more rigorous model 
of reading would need to flesh out this aspect of the code, but 
for now, this code is sufficient to move attention along from 
one word to the next, triggering the predictions of the EMMA 
model and its resulting eye movements. The behavior of this 
model fits well to the empirical data, with correlations above 
.95 and low errors for the three measures mentioned above. 

[1]   Visual visual = vision.find(new Query("word")); 
[2]   while (visual != null) { 
[3]       vision.encode(visual); 
[4]       agent.wait(MEMORY_RECALL_DURATION); 
[5]       visual = vision.find(new Query("word").add(Visual.SEEN, false)); 
[6]   } 

Figure 2: Cognitive code for the reading task. 
 

[1]   agent.run(() -> { 
[2]       Object tone = audition.encode(audition.waitFor(new Query("tone"))); 
[3]       if (tone.equals("low")) 
[4]           speech.say("low"); 
[5]   }); 
[6]   agent.run(() -> { 
[7]       Object stimulus = vision.encode(vision.waitFor(new Query("stimulus"))); 
[8]       if (stimulus.equals("O--")) 
[9]           typing.type("1"); 
[10]  }); 
[11]  agent.wait(1.0); 
[12]  vision.add(new Visual("stimulus", 10, 10, 10, 10), "O--"); 
[13]  audition.add(new Aural("tone"), "low"); 
[14]  agent.waitForAll(); 

Figure 3: Cognitive code for the dual-choice task: blue for the aural-vocal task, green for the visual-manual task. 
 

     0.000   agent              wait for {isa=stimulus} 
     0.050   agent              wait for {isa=tone} 
     1.000   agent.vision       found {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false} 
     1.000   agent              encode {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false} 
     1.050   agent.audition     found {isa:"tone" heard:false} 
     1.050   agent              encode {isa:"tone" heard:false} 
     1.185   agent.vision       encoded O-- 
     1.185   agent              type "1" 
     1.235   agent.hands        typing "1" 
     1.385   agent.audition     encoded low 
     1.385   agent              say "low" 
     1.435   agent.speech       saying "low" 
     1.444   agent.hands        typed 1 
     1.785   agent.speech       said "low" 

Figure 4: Trace of the cognitive code in Figure 3: blue for the aural-vocal task, green for the visual-manual task. 
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 When developing such a model in a production-system 
architecture, the control flow of the model can be very 
difficult for students to grasp—both the flow within an 
individual production rule and the higher-level control flow 
among the production rules. In contrast, the iterative loop 
here is a familiar construct to programmers, and more clearly 
demonstrates the simplicity of the reading model and thus the 
predictive power of the underlying model of eye movements. 

Dual Choice 
Human multitasking has been characterized as the interaction 
of separate cognitive threads that interleave their processing 
(Salvucci & Taatgen, 2008, 2011). Figure 3 shows a simple 
example of how threading would work in a cognitive-code 
approach, illustrating a model of a dual-choice task that has 
been characterized as “perfect time-sharing” (Schumacher et 
al., 2001). This code starts two threads (via the agent.run() 
command): the first thread (lines 2-4, blue text) listens for a 
tone and then generates a speech response; and the second 
thread (lines 7-9, green text) waits for a visual stimulus and 
then generates a keystroke response. The task code (lines 11-
14) waits 1 second, presents simultaneous visual and aural 
stimuli, and finally waits for all threads to complete. 
 The resulting simulation trace of this model, including 
timing (left-most column), is shown in Figure 4, with trace 
events color-coded as belonging to the first thread (blue) or 
the second (green). Both threads start waiting for their 
respective stimuli at the outset of the simulation. When the 
stimuli appear at the 1.0-second mark, the second thread sees 
the visual stimulus and begins to encode it; meanwhile, the 
first thread requires 50 ms to detect the aural stimulus, and 
after this delay it also encodes the sound. The motor 
responses—typing for the second thread, speech for the 
first—overlap such that neither thread experiences any time 
delays. Thus, the overall trace closely resembles the kind of 
perfect time-sharing behavior exhibited by more complex 
ACT-R models of this task (e.g., Salvucci & Taatgen, 2008). 

Discussion 
Cognitive code aims to strike a balance between the 
theoretical rigor of modern cognitive architectures and the 
practicality of modern programming languages and 
environments. The above examples show how concepts of 
cognitive code can lead to much simpler models, especially 
when compared with production-system architectures, and 
especially for the typical programmer versed in procedural 
and object-oriented languages commonly in use today. 
 There are at least two limitations of cognitive code 
compared to production systems that should be noted. First, 
production systems have the potential to be more flexible in 
their flow of control, whereas the procedural code here has a 
more rigid sequencing of actions. However, one might argue 
that most production-system models do not exploit this 
flexibility, but instead constrain the rules to embody the same 
kind of procedural control flow as the cognitive code here. 
Second, production systems allow for learning of the rules 
themselves (e.g., ACT-R’s production compilation), whereas 

cognitive code is fixed by the developer. Allowing for 
procedural learning through cognitive code is still under 
exploration, but for now, this is perhaps its biggest limitation 
compared to production systems. Nevertheless, we remain 
hopeful that the benefits of the cognitive-code approach will 
ultimately pay dividends in expanding the usability and 
learnability of cognitive modeling to a wider audience. 
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Abstract 
We report a microgenetic and quantitative analysis of a large 
learning data set. We analyzed performance change by four 
practice trials (once per day) and by the 14 different subtasks 
with more than 500 total keystrokes. Specifically, we 
compared performance change across the subtasks—some 
subtasks are cognitive problem-solving and others are 
perceptual-motor driven tasks. This microgenetic approach 
provides an understanding of how a local performance in a 
task affects the global performance of a whole task. We 
computed the learning curve constants for the different 
subtasks. We found evidence to support the KRK theory of 
learning and retention (Kim & Ritter, 2015). The results 
suggest that learning varies by subtask and by its type.  

Keywords: Microgenetic analysis; Learning; Cognitive 
modeling. 

Introduction 
In general, learning can be described as a speed-up or 
practice effect (Ritter, Baxter, Kim, & Srinivasmurthy, 
2013; Seibel, 1963). To help better understand our learning 
performance, it is necessary to focus on a couple of variable 
factors in tasks and their types. Complex tasks may consist 
of different components of subtask skills. Presumably, 
different subtask skills may be learned and retained in our 
memory. This understanding would affect the perspectives 
of learning, learning environments, instructional systems 
(e.g., contents), and interface design of such systems.  

As one small step contributing to learning research, we 
investigated learning and retention of a complex task 
consisting of the 14 subtasks by comparing two input 
modalities (Kim & Ritter, 2015). This investigation suggests 
that the prevalence of GUI interfaces can be attributed to a 
more relearnable design compared with a keystroke-based 
interface, and suggests more investigation on where learning 
(and forgetting) occur during the course of complex tasks.  

In this paper, we conduct a deeper analysis; a 
microgenetic analysis of learning in an attempt to identify 
how learning is different across the 14 subtasks. We look at 
individual subtask skill components over four practice trials. 
This approach is similar to a microgenetic study examining 
sources of change in cognitive development and learning 
(e.g., Agre & Shrager, 1990; Moon & Fu, 2008; Siegler, 
2006). It is expected that our approach can provide a deeper 
understanding of where learning occurs and how different 
knowledge types are learned.  

Learning as a Whole Task 
A considerable amount of literature suggests a consensus 
understanding of learning; a three-stage process of learning 
provides a theoretic account of performance change 
including (a) acquiring declarative knowledge from 
instruction to perform a task in the first stage, 
(b) consolidating the acquired knowledge into a procedural 
form with practice in the second stage, and (c) tuning the 
knowledge toward overlearning exhibiting the speedup 
effect of the knowledge application mental process 
(Anderson, 1982; Fitts, 1964; Rasmussen, 1986). Based on 
this consensus foundation of learning, a study of forgetting 
expands  how an individual learns and retains knowledge 
and skills theoretically, empirically, and computationally 
(Kim & Ritter, 2015), shown in Figure 1. A widely used 
cognitive architecture, ACT-R, implements the 
computational features of the three-stage process by 
proposing that performance change follows a regularity 
known as the power law of practice—the time to complete a 
task speeds up with practice according to a power function 
(e.g., Anderson, Fincham, & Douglass, 1999; Newell & 
Rosenbloom, 1981; Seibel, 1963). An exponential function 
is also widely accepted to summarize the practice effect 
(e.g., Heathcote, Brown, & Mewhort, 2000).  
 

 
 

Figure 1: The KRK three-stage learning and retention theory 
(Kim & Ritter, 2015). 

 
Recent reports provide a predictive analysis of a 

spreadsheet task, the Dismal spreadsheet task (Kim & 
Ritter, 2015; Paik, Kim, Ritter, & Reitter, 2015), using 
KLM-GOMS (Card, Moran, & Newell, 1983) and ACT-R 
(Anderson, 2007). These analyses examine performance 
change from a novice through an intermediate to an expert 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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performing a complex task. The task includes subtasks, and 
the time to complete the task is predicted by the aggregate 
resources subtasks use (i.e., cognitive, perceptual, and 
perceptual-motor skills). These predictions can be 
meaningfully decomposed to each subtask skill and single 
action, and these can be compared with the data on the same 
level, providing an organization for a microgenetic analysis. 

A Baseline Prediction 
As a baseline prediction, a KLM-GOMS model was used to 
predict error-free expert performance on the Dismal task. 
The task completion times were computed to be compared 
with ACT-R predictions and the human data of the whole 
task of the Dismal spreadsheet task. The model includes 
primitive physical-motor operators (K – keystroke, P –
 pointing, H – homing, and D – drawing), mental operators 
(M), and system response time (R), as shown in 
Equation (1). In the interest of simplicity and because of 
relatively fast response times, we ignored the system 
response time (TR=0).   

 
Texecute = TK + TP + TH + TD + TM + TR      (1) 
 
We used three physical-motor operators (K, P, and H) and 

the mental operator (M) for time predictions of the Dismal 
spreadsheet task. The default time was used for homing and 
mental operators. During the mental operator time (TM), 
participants mentally prepare what to press and retrieve 
items from memory including the next step. We followed 
the existing heuristic rules for determining the use of mental 
preparation (Card, Moran, & Newell, 1983, p. 265) and used 
the default time, 1.35 s. We placed a mental operator in 
front of all pointing activities (pointing to a menu item) and 
all key-press activities (pressing a keystroke command). To 
complete the first subtask (Open File), theoretically, 
participants in the keyboard group needed 3 mental 
operators (refer to Table 2). The homing time (TH) for hand 
movements between different physical devices was 0.4 s.   

To calculate the keystroke time (TK), we know that it 
varies across individuals. We, therefore, computed the time 
from the first keystroke to the last in the first subtask for 
both modalities. The average keystroke time ranged from 
0.95 s/keystroke on the first day of learning to 
0.47 s/keystroke on the last day of learning. If we refer to 
the keystroke time in Card et al. (1983, p. 264), our data 
indicate the participants’ keystroke speed resided between 
the worst typist, 1.20 s and the speed of average non-
secretary typist, 0.28 s. We used 0.47 s for the TK parameter 
as an expert performance. Shift and control keys were 
counted as a separate keystroke. The predicted task 
completion time for users in the keyboard group was 
666.67 s as seen in Table 2. We present the details of the 
KLM-GOMS analysis of each subtask in the Microgenetic 
Analysis of Learning section.   

ACT-R Prediction 
Several cognitive architectures predict learning, which is 
beyond the capability of KLM. Particularly, the ACT-R 
architecture provides predictions of performance changes 
due to learning. Furthermore, the ACT-R model can predict 
learning on this task from a novice to an expert, as shown in 
Figure 2. The model consists of production rules and 
declarative memory elements to represent practice effects, 
which can be compared with human learning data (Paik et 
al., 2015).  
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Figure 2: ACT-R models of the Dismal task (dashed lines, 

from fully novice to previously practiced expert), along with 
human aggregate data (X’s and SEM error bars), and the 

KLM prediction (solid line) (taken from Paik et al., 2015). 

The Task and Data 
The task that we apply a microgenetic approach to is a large 
complex office-related task, the Dismal spreadsheet task 
(Kim & Ritter, 2015). Dismal is a spreadsheet that runs 
within Emacs and was initially developed to analyze 
behavioral process models and data (Ritter & Larkin, 1994; 
Ritter & Wood, 2005).  

The Task 
The subtasks include: opening a spreadsheet file, saving the 
file as another name, and completing a complex spreadsheet 
manipulation by calculating and filling in several blank 
cells, including five data normalization calculations, five 
data frequency calculations, ten calculations of length, ten 
calculations of total typed characters, four summations of 
each column, and an insertion of two rows to type in the 
current date and name using Dismal keystroke commands. 
Together, they can be grouped into the 14 subtasks, as 
shown in Table 1. More information about the task (e.g., the 
task environment and the procedure) is available (Kim & 
Ritter, 2015).  
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Table 1: The subtasks in the Dismal spreadsheet task. 
 

Subtasks Keystrokes 
(1) Open File Press C-x C-f 

Type <normalization.dis> ! 
(2) Save As Press C-x C-w 

Type JWK.dis ! 
(3) Calculate Frequency 
     (B6 to B10) 

Move the point to B6 by using C-p, C-n, C-
f, or C-b 
Press e 
Type "(/ (* c6 b12) 100.0)" ! 
Repeat for B7 to B10 

(4) Calculate Total 
Frequency 

  (B13) 

Move to the point to B13 
Press e 
Type "(dis-sum b1:b10)" ! 

(5) Calculate    
    Normalization  

     (C1 to C5) 

Move the point to C1 
Press e 
Type "(/ (* 100.0 b1) b12)" ! 
Repeat for C2 to C5 

(6) Calculate Total  
   Normalization  (C13) 

Move the point to B13 
Press e 
Type "(dis-sum c1:c10)" ! 

(7) Calculate Length  
     (D1 to D10) 

Move to the point D1 
Press e 
Type "(length a1)" !  
Repeat for D2 to D10 

(8) Calculate Total  
   Length (D13) 

Move the point to D13 
Press e 
Type "(dis-sum d1:d10)" ! 

(9) Calculate Typed  
    Characters  

     (E1 to E10) 

Move the point to E1 
Press e 
Type "(* b1 d1)" !  
Repeat for E2 to E10 

(10) Calculate Total  
     Typed Characters  

       (E13) 

Move the point to E13 
Press e 
Type (dis-sum e1:e10) ! 

(11) Insert Two Rows 
 

Move the point to A0 
Press C-u  
type 2 i r  
! 

(12) Type in Name 
        (A0) 

Press e 
Type in Name ! 

(13) Insert Current Date  
      (A1) 

Move the point to A1 
Press e 
Type "(dis-current-date)" ! 

(14) Save As Printable  
      Format 

Press C-x C-w 
Type <normalization-initials.dp >! 

 

The Data 
The data used in this paper is 30 participants' learning 
performance. A learning session consists of a study session 
and a test trial. A study session is when a participant used 
the study booklet to learn. Each study session is limited to 
30 minutes of study. A test trial in the learning session is 
when participants perform the given tasks without the study 
booklet.   

In the first week, participants performed four consecutive 
learning sessions. On Day 1, participants had a maximum of 
30 minutes to study the spreadsheet tasks and then 
performed the tasks. On Days 2 to 4, participants were 
allowed to refresh their acquired knowledge from Day 1, 
using the study booklet, and then performed the tasks. 

The task completion time and every keystroke movement 
were measured by the Recording User Input (RUI) system 
(Kukreja, Stevenson, & Ritter, 2006). The target 
participants in this report used a keystroke-based interface 
to complete the task. The raw data included every keystroke 
and its time (in ms). This allows us to investigate 
performance change on a more microgenetic level by 
examining the time to perform each subtask and unit task 
during the practice trials.  

Microgenetic Analysis of Learning 
We next describe the subtasks and then how learning 
happens by subtask.  

Preliminary Analysis of the Subtasks 
Table 2 shows the KLM actions in the task based on the 
instructions. We initially analyzed the recorded performance 
under the KLM framework as seen in Table 2.  

Each subtask has different mental and keystroke 
operators. The KLM analysis is based on the number of 
each operator in each subtask according to Eq. 1. It provides 
us with a basic quantitative baseline prediction of user 
performance, not performance change. Three practice trials 
is enough to get to the KLM times. With even more practice 
performance is faster than the KLM predictions (Card, 
Moran, & Newell, 1983, p. 285). Approximately half of the 
tasks are as fast as the KLM on trial 3, and all but one are on 
trial 4. 

 
Table 2: KLM-GOMS Prediction of Subtasks (in seconds) 
 

Subtasks Operators  
M H P K Time 

Sub1 3 1 0 33 19.96 
Sub2 3 0 0 26 16.27 
Sub3 20 0 0 158 101.26 
Sub4 4 0 0 27 18.09 
Sub5 20 0 0 169 106.43 
Sub6 4 0 0 37 22.79 
Sub7 39 0 0 194 143.83 
Sub8 4 0 0 27 18.09 
Sub9 40 0 0 186 141.42 

Sub10 4 0 0 27 18.09 
Sub11 2 0 0 39 21.03 
Sub12 2 0 0 9 6.93 
Sub13 4 0 0 24 16.68 
Sub14 3 0 0 25 15.80 

Operators 152 1 0 981  
Time 205.20 0.40 0.00 461.07 666.67 

Statistical Modeling of Performance Change 
The data set used in this paper is longitudinal with repeated 
measurements for each participant and for each subtask over 
time. To deal with non-independency in measurements, we 
choose to use a linear mixed effects model. The response 
variable in the data set is the task completion time.  
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In our linear mixed effects model, the fixed effect is the 
practice trials that is represented as days. As random effects, 
we had intercepts for participants and subtasks, as well as 
by-participants and by-subtasks random slopes for the effect 
of learning trials over time. This statistical model is 
adequate for the question of interest in this paper, 
investigating whether different subtasks have differential 
learning rates by participants over practice trials. Subtasks 
and participants are completely crossed, and the task time 
was repeatedly measured from each participant.  

Results 
Figure 3 shows a preliminary plot of the 14 subtasks. It 
shows different patterns of performance change across four 
days of practice trials. The red dashed horizontal lines are 
the KLM predictions. Figure 3 suggests the practice trials 
for four consecutive days allow participants to 
approximately reach an KLM expert performance except for 
subtasks 7 and 9.  Where the KLM predictions seem to be 

higher than true experts will be, these subtasks have the 
largest number of mental and keystroke operators (refer to 
Table 2). This result casts a question as to whether the 
number of mental operators are over predicted.  

We used the lme4 package (Bates, Mächler, Bolker, & 
Walker, 2014) in R to conduct a linear mixed effects 
analysis of the relationship between the response variable 
and the covariate predictors including fixed and random 
effects.  

We checked the normality assumption of the data. The Q-
Q plot of residuals shows that the residuals are not normally 
distributed. To address this issue, we performed log-
transformation of the data. Our linear mixed effects model 
then meets the assumption of normality of residuals.   

To assess the significance of practice trials (day) as a 
predictor, we looked at the t-value of the fixed effects. The 
t-value of the slope estimate is large enough. Thus, we can 
estimate that the predictor is significant since our dataset is 
fairly large with 1680 observations. 
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Figure 3: Average subtask completion times (N=30) in seconds with mean (solid black) and SEM (as error bars) for each 
subtask. The red dashed lines are the KLM predictions for each subtask.
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We plotted the data to depict all the task completion times 
over practice trials by the 14 subtasks (N=30), and a linear 
regression line for each subtask in a log-log coordinates, as 
shown in Figure 4. There were 48 missing values from 1680 
data points (2.9%), but it can be considered that those 
missing values are acceptable for our model due to the total 
number of data points.  

Besides the fixed effect of practice trials over days, it is of 
interest to determine how the subtasks differ. We compared 
two models: one model is a random intercept model both for 
participants and for subtasks, and the other model is also a 
random intercept model that has only different intercepts of 
participants (i.e., without random intercepts of subtasks). 
The random deviations (residuals, SD=0.17) from the 
predicted values that are not caused by both subtasks and 

participants increased in the case of the random deviations 
(SD = 0.40) only due to participants. This indicates that the 
subtasks have an effect on the performance change. By 
performing ANOVA to compare those two models, we can 
conclude that there is a statistical significance of the subtask 
effect, ! 2 (1) = 2681.4, p < 0.001 .   

As seen in Figure 4, there exist varying slopes by 
subtasks, indicating different learning rates by each subtask. 
With regard to the varying slopes of the subtask effect, we 
compared the model with random intercepts to an 
alternative model with random slopes for the subtask. We 
found there are significant differences in learning rates by 
the random effect of the 14 subtasks, 
! 2 (2) =115.59, p < 0.001 .  
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Figure 4.  Regression lines with scatter plots for each subtask in a log-log scale.  

 
Discussion and Conclusions 

Figure 5 shows differences and similarities in the slope for 
the predicted time by each subtask. Similar slopes are 
observed in the subtasks 1, 2, 7, 9, 14, subtasks 3, 5, 6, and 
subtasks 11, 12. As noted in Table 1, the participants 

retrieve each keystroke command for the corresponding 
subtask, such as the unique key commands, C-x C-f, for 
"Open File", and C-x C-w, for "Save As". In this manner, 
the operators required for subtask 3 and 5, which are 
normalization and frequency calculations, are nearly 
identical. The slopes for the task time predictions are similar 
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as well.  However, it is apparent that the slope of subtask 3 
is steeper than the slope of subtask 1. It is interesting that 
the number of operators of either type in a subtask, 
particularly when there are fewer than 50, is not correlated 
with learning slopes.  

With regard to the subtasks 3, 5 (normalization and 
frequency calculations), and subtasks 7, 9 (calculating 
length and typed characters), those subtasks require a large 
number of keystroke operators in the spreadsheet subtask. 
However, the number of keystroke operators might not be 
what influenced learning because there are other subtasks 
with steeper slopes and fewer keystroke operators.  On the 
other hand, the keystroke skills are learned for four 
consecutive days of practice. All these subtasks required 
participants to repeat 10 calculations per practice trial. This 
can be considered as motor skill practice with a massed 
training regimen.  
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Figure 5: Scatterplot of the varying slopes against operators 

(Keystroke and Mental). (Lower is greater learning.) 

Figure 5 suggests that as mental operators go up, the 
learning rate goes down, but this seems curious. Regarding 
mental operators, some subtasks require participants to 
retrieve a unique keystroke command, and this can lead to 
higher learning rates. Perhaps these have different effects on 
learning. For example, to insert two rows, a participant 
needs to retrieve a declarative memory element, C-u 2 i r 
(the subtask 11). We can consider that the subtasks 11, 12, 
and 4 would lead to higher learning rates due to a weak 
activation of the corresponding element. This notion 
emphasizes the importance of moving the declarative 
memory elements to the procedural stage (Fig 1). 

This analysis shows that the subtasks vary in learning. We 
are now analyzing why learning varies so much across 
subtasks and will be investigating using our existing ACT-R 
models.  
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Abstract

Training negotiators remains a difficult and expensive propo-
sition. Negotiators require complex cognitive skills such as
theory-of-mind to be successful, but these skills can be diffi-
cult to train and measure. Here we present an agent designed to
model theory-of-mind for learners and serve as a practice part-
ner for complex negotiations. This agent employs instance-
based learning to make decisions about its own actions and to
reflect on the behavior of the opponent. This reflection process
is used to provide a source of explicit feedback on the oppo-
nent’s strategy and behavior. In this paper we present evidence
that the model is a plausible opponent for students learning
negotiation. It is expected that practicing with this agent will
improve theory-of-mind abilities in learners and, in turn, im-
prove negotiation performance.
Keywords: Metacognition, Negotiation, Theory-of-mind, Au-
tonomous Agents

Training Negotiation with Artificial Agents
Negotiation is a complex human activity that permeates many
aspects of business, politics, and even daily life. There is a
myriad of possible negotiation settings, and in most of these
settings, there are many possible outcomes. Training ne-
gotiators is difficult because the optimal strategy often de-
pends both on the negotiation setting and on the strategy used
by one’s negotiation partner (Fisher & Ury, 1981; Raiffa,
1982). For instance, an aggressive, unyielding strategy (a.k.a.
the “Boulware” strategy (Cross, 1977)) may work very well
when the partner is agreeable or flexible. However, the same
strategy will lead to stalemate against an aggressive oppo-
nent and could harm the potential for future negotiations with
fair-minded opponents (Tinsley, O’Connor, & Sullivan, 2002)
Therefore, a good negotiator may benefit from using theory-
of-mind to infer an opponent’s preferences, diagnose an op-
ponent’s strategy, and select an appropriate counter strategy.
One promising emerging training technique is practicing with
artificial agents. Although few studies exist that explicitly
evaluate artificial agents as training partners, there is evidence
that training with an artificial agent is at least as good as train-
ing with a human (Lin, Gal, Kraus, & Mazliah, 2014). In this
paper, we present a novel cognitive agent designed to imitate
the strategies and theory-of-mind capabilities of human ne-
gotiators. Further, we present results from a small-scale pilot
study that suggest the agent is capable of performing simi-
larly to humans in a multi-issue bargaining scenario.

Simulation and behavioral studies have shown that theory-
of-mind can improve negotiation outcomes. Specifically,
agents with more complex theory-of-mind can achieve
greater individual and collective outcomes than those with
less complex or no theory-of-mind (de Weerd, Verbrugge,
& Verheij, 2015). Moreover, negotiating with an agent that

has theory-of-mind can encourage humans to use more com-
plex theory-of-mind (de Weerd, Broers, & Verbrugge, 2015).
For this reason, we developed an agent that explicitly reasons
about the preferences and strategies of its opponent. We ex-
pect that practicing with an agent that has these capabilities
will provide better learning outcomes than practicing with an
agent without theory-of-mind.

The Metacognitive Agent
Our negotiation agent is based on ACT-R’s declarative mem-
ory system (Anderson, 2007) and instance-based learning
(IBL) theory (Gonzalez & Lebiere, 2005). Instance-based
learning was chosen as the reasoning mechanism because
it provides a flexible method to reason about novel situa-
tions based on examples from previous interactions. More-
over, we believe that theory-of-mind in this domain requires
explicit, declarative reasoning rather than procedural knowl-
edge. Many negotiation contexts are relatively novel and our
participants were not experienced in professional negotiation,
so it seems unlikely that people in our target population have
sufficient practice to develop a comprehensive set of produc-
tion rules that match each possible situation.

The agent’s memory contains a set of examples (instances)
that represent possible negotiation moves and possible con-
texts in which they may sensibly be used. Each instance is
associated with a particular strategy (cooperative or aggres-
sive). For example, when there is a deadlock, a player using a
cooperative strategy might concede on a minor issue to break
it. However an aggressive player might threaten to quit if
his/her offer is not accepted. The agent uses this same knowl-
edge to choose its own moves, to evaluate the player’s strat-
egy, and to make inferences about the player’s preferences.

The Smoking Ban Negotiation Scenario
The specific setting we consider is a multi-issue bargaining
scenario in which a representative of a city council and a rep-
resentative of small business owners negotiate over the imple-
mentation of new anti-smoking regulations. The negotiation
involves four issues, each with four or five different options.
The task of the negotiators is to reach an agreement which
assigns exactly one option to each issue. Despite this simple
setup, this setting allows for 400 different possible negoti-
ation outcomes in addition to the opt-out outcome. It also
allows a rich set of possible negotiation moves (see Table 1
for definitions of possible moves).

In our setup, each negotiator has preferences that assign a
value to each possible option. Higher values are associated
with more preferable options. The value of a negotiated out-

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
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come is calculated as the sum of the values of the agreed-upon
options. A negotiator therefore aims for a negotiated outcome
that his preferences assign as high a value as possible. Im-
portantly, preferences are private information. That is, each
player knows their own preferences, but not the preferences
of the other.

We pilot-tested this scenario to get a sense of the possible
negotiation moves and strategies used by human negotiators.
In this pilot test, four pairs of human participants negotiated
an agreement for nine different problems with unique prefer-
ence values. From this pilot testing, we made two observa-
tions. Firstly, the people in our sample did not always find
optimal agreements and sometimes even accepted negative
deals. Our measure of optimality is Pareto optimality. An
agreement is Pareto optimal if it there are no possible alter-
native agreements that could raise one player’s score without
reducing the other player’s score. The human dyads found
Pareto optimal agreements in 61% of the problems. More-
over, 21% of the negotiated deals resulted in a negative score
for at least one of the negotiation partners. These results con-
firm that our negotiation setting is sufficiently challenging for
a training intervention.

Our second observation is that unlike automated negoti-
ation agents, which submit offers as binding commitments,
human players often make offers with lower levels of com-
mitment. In other words, players can discuss preferences on
various options without being bound to accept those options
later in the negotiation. To capture this, we designed our ar-
tificial agent so that it can understand moves with differing
levels of commitment. For example, exchanging preferences
on an issue implies a low level of commitment, but accepting
an offer implies a higher level of commitment.

Instance-based Decision-making
Instance-based learning was implemented here using a mod-
ified version of Java ACT-R (Salvucci, 2013). An instance
is a set of slot-value pairs that represents a context, an action,
and a utility value for that action (Gonzalez & Lebiere, 2005).
Table 2 contains the specific slots used in the instances in our
metacognitive agent.

To select a move, the model uses the current negotia-
tion context to retrieve an instance from memory. The in-
stances are retrieved using ACT-R’s partial matching mech-
anism (Anderson, 2007). The more similar the instance is
to the current context, the more active the instance will be
and therefore the more likely the instance will be retrieved.
Each instance also has a base activation level. This base ac-
tivation is constant across all instances in the agent, save for
a very small amount of noise (s=.01). The instances in the
current model were written by the modelers to ensure a sta-
ble, challenging opponent whose cooperative and aggressive
strategies were consistent with those found in the literature
(Fisher & Ury, 1981; Raiffa, 1982).

As an example, suppose the agent retrieves an instance like
the one in Table 3. In this context, the agent is playing ag-
gressively. The agent has proposed an option that is worth a

lot of points (4 is the maximum in this setting), and it believes
that this option is bad for its partner (the option would cause
the partner to lose points). The agent’s partner has proposed
an option that is worth 3 points to the agent, which is still a
very good value for the agent, and it happens to be the agent’s
next best option. Moreover, the agent is already doing well
in the negotiation, because on the other resolved issues, it has
already gained 3 points. In this case, if the agent retrieves
this instance, it will try to pressure its opponent to take a loss
even though a more mutually beneficial option is probably
available. This is indicated by the Insist move. By contrast,
a cooperative instance would likely accept the opponent’s bid
in this situation.

Theory-of-mind
Negotiators strike a delicate balance between cooperation and
competition (Lax & Sebenius, 1986). Cooperation helps en-
courage agreement and trust between negotiators but it can
be exploited by competitive negotiators. A good negotiator is
mindful of this and takes steps to prevent exploitation. One
way to achieve this is to use theory-of-mind to infer the op-
ponent’s strategy. Our agent achieves this by taking the per-
spective of its partner and using its own knowledge to eval-
uate the partner’s strategy. The agent then attempts to match
the toughness level of the opponent. If the partner is coop-
erative, the agent will also be cooperative. But if the partner
is aggressive, the agent will become more aggressive. This
meta-strategy has been observed in humans in negotiation and
coordination games (Kelley & Stahelski, 1970; Smith, Pruitt,
& Carnevale, 1982) and has been shown to be effective at
encouraging cooperation in the Prisoner’s Dilemma (Stevens,
Taatgen, & Cnossen, 2016).

Each time the user makes a negotiation move, the agent as-
sumes the perspective of the user and uses its own instances
and decision processes to infer the user’s strategy and beliefs.
Of course, the agent does not have access to the same infor-
mation when interpreting the opponent’s actions as it does
when it is choosing its own (e.g. exact preference values,
user’s chosen strategy). In these cases, the agent fills in its
best guess or leaves the slot empty. Fortunately, ACT-R’s
declarative memory system is robust to missing information
and memory retrievals can be made without specifying all of
the slots. As more memory retrievals are made, the agent
updates its best guess about the user’s strategy. The agent
evaluates both the user’s reaction to the agent’s move (if ap-
plicable) and the countermove made by the user. This results
in up to two memory retrievals per negotiation turn.

The agent’s memory holds three sets of preference val-
ues: the agent’s own preferences, the agent’s beliefs about
the user’s preferences, and the agent’s beliefs about the user’s
beliefs about the agent’s preference values. At the beginning
of the negotiation, the agent has no beliefs about its oppo-
nent’s preferences or beliefs. As the negotiation progresses,
the agent gradually adds information to these sets based on
the information found in instances retrieved during theory-
of-mind. For example, suppose the agent retrieves the in-
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Table 1: Overview of possible negotiation moves.

Move Explanation
Invite Elicit an offer from the trading partner on at most one issue.

Example: “What would you like for the scope of the smoking ban?”
Inform Inform the trading partner that the player likes or dislikes a single option of a given issue

(can also indicate no preference). Liking an option that the partner has suggested or
liked results in an agreement (see Agree)
Example: “For me, a 10% increase in tobacco taxes would be difficult.”

Suggest Ask the partner to commit to a specific option on 1 or 2 issues.
Subtypes:
Concede - Suggest an option that you haven’t Suggested before;
Insist - Suggest an option that have Suggested before;
Exchange - Suggest one option from two different dimensions. Both options are conditional.
If one is rejected, so is the other.
Example: “Would you agree to all outdoor smoking allowed in exchange for a 25% increase in tobacco taxes?”

Agree Agree to the most recent Suggest or Inform move of the trading partner. This is a non-binding commitment.
Example: “We can do it as you suggested.”

Finalize Commit to a given negotiation outcome. If the partner accepts, this commitment is binding.
Example: “So to summarize, I think we should go for all outdoor smoking allowed, no change in tobacco
taxes, anti-smoking television advertisements, and a ban on tobacco vending machines”

Accept Accept the most recent Finalize move of the trading partner. This is a binding commitment.
Example: “That’s a deal.”

Withdraw Causes immediate negotiation failure.
Example: “We cannot seem to reach agreement. Let’s stop negotiating.”

Final Offer Commit to a given negotiation outcome and force the trading partner to either accept this outcome or
withdraw from negotiation. This is a binding commitment. The negotiator cannot resume the negotiation
if the partner rejects the offer.
Example: “I think we should settle on all outdoor smoking allowed, no change in tobacco taxes,
anti-smoking television advertisements, and a ban on tobacco vending machines. This is my final offer.”

stance in Table 3 to interpret its partner’s move. According
to the instance, one situation in which a player might insist is
when they have a strong preference for their current bid and
a negative preference for the opponent’s bid. Therefore, the
agent guesses that the opponent’s preference for the their bid
is 4.0 and the opponent’s preference for the agent’s bid is -
2.0. These two values are then used to retrieve instances in
later turns by filling in the ”my-bid-value-me” and ”opp-bid-
value-me” slots respectively.

In a similar way, when the agent submits a move, the agent
makes a guess about how its move influences its opponent’s
beliefs. For example, suppose the agent indicates that it likes
a particular option (”Positive Inform”). The instance retrieved
by the agent indicates that the this move is appropriate when
the agent has a positive preference for the option (e.g. the
value in the ”next-bid-value-me” slot is 2.0). Now, the agent
will believe that its partner believes that it has a preference
of 2.0 for the option. This belief is then used to fill in slots
during the agent’s theory-of-mind reasoning process.

The process of inferring the user’s strategy is similar to
that of inferring preferences. As each new instance is re-
trieved, the agent notes whether the instance is cooperative,
aggressive, or neutral. When the instances are cooperative or

aggressive, the agent becomes more confident that the user is
using that strategy. The confidence value for a given strat-
egy is the activation level of that strategy in memory divided
by the total activation of all strategies in memory. When this
value exceeds a certain threshold, the model will switch to
the appropriate counter-strategy. The threshold is a free pa-
rameter of the agent, and can be changed depending on the
negotiation context. By default it is set to 0.55.

The agent adjusts its strategy according to the perceived
aggression of the opponent. The agent has three modes: cau-
tious, cooperative, and aggressive. The agent begins in cau-
tious mode. This mode is designed to encourage cooperation
from the opponent while still guarding against aggression.
In this mode, the model prefers neutral moves, followed by
cooperative, and then aggressive. If the agent believes the
opponent is behaving cooperatively, it will enter cooperative
mode, in which the agent favors cooperative moves, followed
by neutral, and then aggressive. Finally, if the agent is con-
fident that the opponent is unconditionally aggressive, then it
will switch to aggressive mode, in which it favors aggressive
moves, followed by neutral, and then cooperative.
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Table 2: Structure of an instance in the metacognitive agent
Move type Explanation
Strategy The strategy associated with the instance
My-bid-value-me The number of points the agent’s bid is worth to the agent.
My-bid-value-opp The number of points that the agent believes its bid is worth to the user.
Opp-bid-value-me The number of points the user’s bid is worth to the agent.
Opp-bid-greater True if the user’s bid is at least as much as the agent’s current bid, False otherwise.
Next-bid-value-me The number of points that the next best option is worth. The next best option is defined as the option

closest in value to the current one (Not including those that are worth more than the current option.)
Overall-value The total value of all options that have been agreed upon so far. This is a measure of how the

negotiation is going. If it is negative, negotiation is likely to result in an unacceptable outcome.
My-move The move that the agent should take in this context.

Table 3: An example of an aggressive instance.
Slot name Value
Strategy Aggressive
My-bid-value-me 4.0
My-bid-value-opp -2.0
Opp-bid-value-me 3.0
Opp-bid-greater false
Next-bid-value-me 3.0
Overall-value 3.0
My-move Insist

Graphical Interface

Learners can interact with the agent through a graphical in-
terface (see Figure 1). The interface contains five zones. The
top zone shows the state of the negotiation. This includes a
representation of the negotiation agent’s current cooperative-
ness and a transcript of the negotiation. In this transcript,
simulated negotiation dialog is shown in green and simulated
agent dialog is shown in orange. This simulated dialog is
taken from transcripts of human-human dyads participating
in an earlier pilot study on the smoking ban scenario.

The second zone shows the possible ways in which the
learner can respond to an offer made by the agent (if any).
If the agent has made an offer, the learner may give it a posi-
tive, negative, or neutral evaluation. A positive evaluation in-
dicates a tentative agreement, a negative evaluation indicates
that an offer is undesirable, and a neutral evaluation states that
the offer is under consideration. If the agent has not made an
offer, this zone is disabled.

The third zone features the possible actions that can be per-
formed by the user. Actions that are impossible to take at the
moment are disabled. The third zone shows the four issues,
each with its own options. The background color of each op-
tion indicates the evaluation of the option for the user. Darker
red colors indicate options that are increasingly more neg-
ative, while darker blue options indicate increasingly more
positive options. In addition, for each issue, colored triangles
indicate the option most recently offered by the user (green)

and the negotiation agent (orange). The final zone of the in-
terface gives a preview of the move the user is about to make,
and a button to submit that move.

The action selected in the third zone determines what can
be selected in the fourth zone. To help the user, actions are
grouped by their level of commitment. In addition, two sep-
arate buttons are used for proposing and exchanging offers.
Proposing offers are offers that assign a single option to ex-
actly one issue, while exchanging offers are offers that assign
a single option to exactly two issues. Note that an exchanging
offer is interpreted as a temporary offer. If an exchanging of-
fer is not accepted, the triangles indicating the most recently
offered option revert to their previous positions. The interface
is of course more restrictive than a real-life negotiation. For
example, the interface does not allow users to make offers on
more than two separate issues. In addition, the interface auto-
matically handles proper Agree, Accept, Finalize, and Final
Offer moves. This means that a user can only make an Agree
move when the negotiation agent has made an offer and Ac-
cept when the agent has made a Finalize or Final Offer move.
A user can only make a Finalize or Final Offer move if a
green triangle indicates an option for each issue. This means
that users cannot attempt to Agree to offers that have not been
made, or make partial Finalize moves.

Agent Feedback
During the negotiation, the agent accumulates data about the
players’ actions to present as feedback. The agent provides
feedback on two different aspects of the learner’s perfor-
mance: negotiation style and outcomes. Negotiation style
concerns the learner’s strategy (cooperative or aggressive)
and outcomes refers to the utility of the agreement reached
for both players.

Throughout the negotiation, the metacognitive agent eval-
uates its trading partner on his/her negotiation style. After
each action, feedback on the perceived cooperativeness of the
action, the agent’s beliefs about the preferences of the player,
and the accumulated perception of the cooperativeness of the
agent’s trading partner is available immediately to display as
feedback. This includes changing the facial expression of the
agent to happy (cooperative), angry (aggressive), or neutral

30



Figure 1: The graphical interface of the agent.

via a line-drawing of a smiley face. Moreover, a line of text
is added to the transcript showing whether the agent believes
the move was cooperative or aggressive. This line also in-
cludes a representation of the agent’s beliefs about the user’s
preferences (see Figure 1).

Once a negotiation has finished and the outcome is known,
additional feedback is available about the economic outcome.
First, the GUI informs the player how many points he/she
gained or lost as a result of the deal. These points are based
directly on the colors of the preference panel in the GUI. A
good negotiator does not accept a deal that is worse than no
deal (i.e. has a negative score), and the agent will inform the
learner when this occurs. In addition to the individual out-
come, the agent evaluates the Pareto optimality of the agree-
ment and displays it in the GUI.

Pilot experiment
To test the agent’s ability to negotiate rationally with human
users, we conducted a pilot study. In this study, six human
users negotiated with the agent on the same nine problems
we used in the pilot experiment with human dyads. The agent
always represented the business side. Overall, the results of
the pilot study are encouraging, and suggest that the agent is

a competent negotiation partner. The agent did not exploit,
nor was it exploited by the human users. The agent earned
an average of 32.2 (out of 88) possible points while the hu-
man users scored an average of 33.7 (out of 86) points. Thus,
agreements were similarly beneficial for both partners. The
human-human dyads also achieved a relatively even point
distribution, albeit with a slight advantage for the business
side. Moreover, we compared the agent-human dyads to the
human-human dyads on rate of agreement, ability to find
Pareto optimal outcomes, and acceptance of negative out-
comes (see Table 4). We find that the humans reach a simi-
lar number of agreements when negotiating with the agent as
when negotiating with each other. Furthermore, the human-
agent dyads find a similar (though slightly lower) percent-
age of Pareto optimal deals. Finally, the human-agent dyads
reached fewer negative deals than the human-human dyads.
This does not necessarily mean that the human-agent dyads
were superior at avoiding negative deals. It is possible that the
Withdraw option was more salient in the human-agent dyads
due to the GUI. Also, in the human-agent case, the human
users received explicit feedback about their scores after every
round. Therefore it was clearer how the colors mapped onto
overall scores.
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Table 4: Comparison of human-human dyads to human-agent
dyads

Human-Human Human-Agent
(n = 4) (n = 6)

Mean business score 33 (20) 32 (3)
Mean council score 29 (7) 34 (8)
% Agreement 78 74
% Pareto optimal 61 52
% Negative deals 21 2

Note. In the human-agent dyads, the business side was always
played by the agent. All percentages represent percentage of the
total number of trials. SD’s are presented in parentheses.

Future Directions
The present pilot study of course does not test the educational
outcomes resulting from training with the agent. Evaluation
of learning gains is ongoing. In future studies, we aim to
test the extent to which training with the agent improves out-
comes not only in the smoking ban scenario, but also in other
negotiation contexts.

Currently, the agent possesses instances that were hand-
coded by the authors and the base activation level does not
change. However, allowing the agent to learn the utilities of
the instances could result in a more dynamic, and potentially
more intelligent, opponent. This is possible, but challenging,
for a task like negotiation. Instance-based learning requires
a measure of utility, and the utility of a particular negotiation
move is not always immediately clear. Therefore, implement-
ing learning in such an agent requires careful consideration
of the learning and social context of the negotiation to avoid
chaotic agent behavior.

This agent is not designed to be restricted to a point-and-
click interface. Rather, it is meant to be a component of a
larger system known as Metalogue, a large, multimodal ne-
gotiation trainer capable of simulating a real negotiation dia-
logue (Helvert, Rosmalen, Borner, Petukhova, & Alexander-
sson, 2015). In the coming months, the agent will be incorpo-
rated into this system, and will function as a decision engine.
As it does in the GUI setting, the agent will play the role of
a negotiation partner and trainer discussing the options of a
smoking ban. However, in this case, the learner will be able
to interact with the model through speech rather than through
clicking buttons. Moreover, the agent will be portrayed by a
virtual avatar with speech and gestures of its own.

Summary
Here we have presented a novel cognitive agent that reasons
about the goals and strategies of human partners to success-
fully engage in a negotiation task. This agent leverages estab-
lished cognitive theories, namely ACT-R and instance-based
learning, to generate plausible, flexible behavior in this com-
plex setting. Our preliminary results suggest that our cogni-
tive agent could play a role in training effective negotiators.
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Abstract 

We consider the use of cognitive models as both models of 
human cognitive function and human-compatible decision 
aids. The domain of application is prediction based on partial 
information in the context of emergency events where the 
availability and timeliness of information is limited. The 
cognitive model is based on the memory retrieval processes of 
the ACT-R cognitive architecture, most specifically its 
underpinnings in the rational analysis of cognition. The model 
is shown to capture well the temporal and spatial 
characteristics of the data. Finally, we discuss potential issues 
in the application of cognitive models as decision aids and 
recommender systems, in particular the ability to introspect in 
the workings of the model to select data most suitable for the 
human decision making process. 

Keywords: Rational Analysis, Cognitive Architecture, Long-
Term Memory, Decision Making, Decision Aids, 
Recommender Systems. 

Introduction 
In the Age of Big Data, we are confronted with an 
increasingly rich and rapid flow of information. While the 
availability of data is increasing seemingly exponentially in 
our personal and professional lives, our basic human 
capabilities are not keeping pace. Recognizing with his 
customary foresight the increasingly deep disconnect 
between our abilities and the demands placed upon them, 
Herbert A. Simon once said, “Moore’s Law fixes everything 
but us”.1 

Of course, technology has the potential to be the solution 
as well as the problem. Adaptive information retrieval tools 
such as search engines are helping us access and filter vast 
and diverse knowledge resources. In a more proactive way, 
personal electronic assistants such as Siri and Google Now 

                                                             
1 While Moore’s Law might finally be running out of steam, it 

has been replaced by the exponentially increasing availability of 
massively distributed computation and sensor resources (Kurzweil, 
2006). 

offer to manage our data flows and provide us with timely, 
contextual information. 

However, interpreting information and using it to make 
decisions is considerably more complex than simply making 
it available. Decision aids, including recommender systems, 
have been proposed to assist and delegate complex human 
decision-making. Leveraging the Big Data wave itself, those 
systems are typically data-driven, exploiting statistical 
regularities to extrapolate to similar situations. For instance, 
Netflix recently organized a competition to develop better 
algorithms for recommending movies by relying on ratings 
of viewers with similar tastes to a given customer. A 
fundamental problem with this approach is its opaque 
nature. When it fails, it tends to do so in ways unexpected 
and incomprehensible to human users, undermining trust in 
a system that not only performs poorly but cannot explain 
its own failures. 

One potential solution is to design personal assistants that 
work in ways similar to humans, making them both more 
transparent and more compatible. Recently, a number of 
proposals have been made to measure artificial intelligence 
in more effective ways than the classic Turing Test, in 
particular by having it perform more typical tasks in human-
like ways (AI Magazine, 2016). Going even further, the 
suggestion has been made to design intelligent agents based 
on the structure and mechanisms of the human brain (e.g., 
Stocco et al., 2010). For purposes of decision aids, such 
biologically inspired cognitive architectures might be a 
bridge too far. For instance, Google’s PageRank algorithm 
might work in a way roughly similar to human associative 
memory, but few users would presumably care whether it 
mimics the structure of the hippocampus or the posterior 
cortex. 

Cognitive architectures and models have primarily been 
developed as computational instantiations of theories of 
cognition. For purposes of serving as decision aids to human 
users, it is tempting to adopt the traditional AI view of 
treating them as black boxes and arguing that compatibility 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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with the human decision maker is primarily required from a 
functional, behavioral point of view. In terms of the Marr 
levels of analysis (Marr & Poggio, 1976), that would mean 
that what matters is primarily their functionality at the 
computational level rather than the algorithmic level or the 
implementational level. We disagree with that view. 

Instead, we argue that, while the implementational level 
might not be directly relevant other than perhaps for 
purposes of scalability and efficiency, compatibility with the 
human decision maker at the algorithmic level is essential 
for truly effective interaction. Computational equivalence 
only enables a relatively superficial integration of outcomes, 
while algorithmic equivalence enables a deeper integration 
of processes. 

We illustrate the distinction by introducing two functions 
of a cognitive model as decision aid: prediction and source 
selection. Prediction involves generating a recommended 
decision for the user to follow, and as such only requires 
computational compatibility. However, it leaves the user 
with little choice beyond accepting or rejecting the 
recommendation in its entirety. Source selection consists in 
selecting a subset of information on which the human user 
would base his own decision. While this enables richer 
interaction between user and decision aid, it also requires 
deeper compatibility, down to the algorithmic level, because 
the selection process requires integration with the processes 
of the human decision maker. 

In the rest of this paper, we introduce a decision-making 
task based on a real world data set of emergency situations. 
We then describe a model of the task based on a rational 
analysis of cognition, and present quantitative results. 
Finally, we discuss implications for the design of 
cognitively inspired decision aids and recommender 
systems, and point out future work directions. 

Task and Data 
We focus on the problem of data extrapolation in 
participatory sensing applications, where users both use and 
provide information to the system, in the face of disruptive 
pattern changes, such as those that occur during natural 
disasters. We consider cases where resource limitations or 
accessibility constraints prevent attainment of full real-time 
coverage of the measured data space, hence calling for data 
extrapolation. Many time-series data extrapolation 
approaches are based on the assumption that past trends are 
predictive of future values. These approaches do not do well 
when disruptive changes occur. An alternative recourse is to 
consider only spatial correlations. For example, certain city 
streets tend to get flooded together after heavy rain (e.g., 
because they are at the same low elevation), and certain 
blocks tend to run out of power together after a 
thunderstorm (e.g., because they share the same power 
lines). Understanding such correlations can thus help infer 
state at some locations from state at others when disruptive 
changes (such as a flood or a power outage) occur. 

We evaluate our prediction model through a real-world 
disaster response application. In November 2012, Hurricane 

Sandy made landfall in New York City. It was the second-
costliest hurricane in United States history (surpassed only 
by hurricane Katrina) and the deadliest in 2012. The 
hurricane caused widespread shortage of gas, food, and 
medical supplies as gas stations, pharmacies and (grocery) 
retail shops were forced to close. The shortage lasted about 
a month. Recovery efforts were interrupted by subsequent 
events, hence triggering alternating relapse and recovery 
patterns. The daily availability of gas, food, and medical 
supplies was documented by the All Hazard Consortium 
(AHC), which is a state-sanctioned non-profit organization 
focused on homeland security, emergency management, and 
business continuity issues in the mid-Atlantic and northeast 
regions of the United States. Data traces2 were collected in 
order to help identify locations of fuel, food, hotels and 
pharmacies that may be open in specific geographic areas to 
support government and/or private sector planning and 
response activities. The data covered states including WV, 
VA, PA, NY, NJ, MD, and DC. The information was 
updated daily (i.e., one observation per day for each gas 
station, pharmacy, or grocery shop). 

With these points of interest sites and input data as ground 
truth, we evaluate the model predictions. The metrics we use 
are accuracy of inference and amount of data needed. We 
break time into daily cycles to coincide with the AHC trace. 
We then plot the performance of the model when a 
configurable amount of today’s data is available (in addition 
to all historic data since the beginning of the hurricane). 

We evaluate the solutions on November 3rd, and 
November 8th. November 8th corresponds to a period of 
disruptive change due to a second snowstorm that hit after 
Sandy, causing massive temporary relapse of recovery 
efforts due to new power outages, followed by a quick state 
restoration to the previous recovery profile. November 3rd 
is an example of a period of little change, when damage was 
incurred but recovery efforts have not yet been effective. 
The same trend was observed for all datasets, namely, gas, 
pharmacy, and food. 

 

 
 

Figure 1: Data Extrapolation Task Interface. 

                                                             
2 Available at: http://www.ahcusa.org/hurricane-Sandy-

assistance.htm 
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Figure 1 displays a snapshot of the interface that we used to 
display the model results during model development. While 
we will focus in this paper on quantitative results for model 
evaluation, visualizing the spatial and temporal patterns of 
model prediction helped us understand the workings of the 
model and its strengths and shortcomings. It also helped us 
experiment with the model efficiently in exploring 
parameter settings and comparing model versions. Pull-
down menus let the modeler easily select the date of the 
comparison, the category of data (pharmacy, food, gas), the 
sampling rate (percentage of the day’s data to use in 
addition to historical data), the confidence threshold 
(probability to label an outlet as open, defaulting at an 
unbiased 50%) and any two versions of the model (see next 
section) to compare side by side against each other. 
Circles/crosses indicated a prediction that the outlet was 
open/closed. Color indicated the correctness of the 
prediction, with blue and red representing correct and 
incorrect respectively, while grey indicates no prediction 
was made because that data point was sampled. The data 
points were plotted on a Google Maps overlay of the 
geographical area, allowing the modeler to zoom in and out 
on various areas. 

Cognitive Model 
While prediction can be viewed as a specialized exercise 
best left to domain experts and statisticians, e.g., weather 
forecasting, stock market investing, sports betting, it also 
forms the implicit basis of many common everyday tasks. 
Previous models have shown its ubiquity in domains 
ranging from game playing (West & Lebiere, 2001) to 
sports (Lebiere et al., 2003), decision-making (Erev et al., 
2010), and learning event sequences (Wallach & Lebiere, 
2000). 

While prediction can require the use of elaborate 
strategies and expert knowledge, those approaches are 
highly domain-specific and thus generalize poorly and tell 
us little about the basic nature of cognition. More 
fundamentally, complex approaches still seem to rely on a 
common basis of implicit statistical inference (e.g., 
Oaksford & Chater, 2007). The rational analysis of 
cognition (Anderson, 1990) has argued that our cognitive 
mechanisms have evolved to reflect the statistical structure 
of the environment. These regularities are quite pervasive 
and are displayed by our cognitive systems even when they 
are unwarranted and result in cognitive biases (Lebiere et 
al.You, 2013). 

The rational analysis of cognition can offer a 
computational-level account of cognitive prediction. To 
achieve an algorithmic account with constrained 
quantitative predictions, we used the ACT-R cognitive 
architecture (Anderson et al., 2004). The mechanisms of its 
declarative module, in particular, reflect pervasive statistical 
patterns of the environment such as the power laws of 
learning and forgetting. As prediction relies on the 
knowledge of past events, it is logical to base the model on 
retrieval of information from long-term declarative memory. 

In ACT-R, information is represented in declarative 
memory in the form of chunks, which are structured objects 
consisting of a set of attributes (also known as slots) with 
associated values. Chunk complexity (i.e., number of 
attributes) is typically limited, reflecting capacity constraints 
such as the size of working memory (Miller, 1956; Cowan, 
2001). For instance, it would be unreasonable to store the 
entire history of an outlet or a whole day’s data in a single 
chunk. Beyond capacity limitations, theories of chunk 
creation also typically limit their content to information that 
is available simultaneously at a given point in time and thus 
can plausibly be bound together in a new chunk structure. 

Therefore, each chunk in memory represents the 
availability of a given outlet on a given day. Attributes that 
are represented include the identity of the outlet (itself 
represented as another chunk) and its status: open or closed 
(also represented as a chunk). The specific day could have 
been represented as a third attribute, although we decided 
against it for two reasons. First, it is slightly implausible that 
people would explicitly label each memory with the date of 
the day in which it was formed. Second, it would have 
resulted in a proliferation of memory chunks (one for each 
day and outlet) without markedly affecting the model 
predictions when the blending mechanism is used (see 
below). 

Instead, time is represented implicitly in the activation of 
the corresponding chunk. The base-level activation Bi of a 
chunk i reflects its history of (re)creation and access as 
follows: 

 
!! ! !"# !!!!!

!!!  (1) 
 
Where tj is the time lag since the jth occurrence of the 

chunk, n is the total number of occurrences, and d is the 
decay rate (typically fixed at 0.5, as is the case in this 
model). For any given outlet, at most two associated chunks 
exist in memory: one recording that the outlet is closed and 
another recording that it is open on a given day. The base-
level activation of these chunks will be reinforced with each 
occurrence of the respective event. The temporal version of 
the model then obtains a prediction for the status of a given 
outlet by retrieving the most active chunk associated with 
that outlet and returning the status stored in that chunk. 
Because the total activation Ai of chunk i also includes in 
addition to the base-level activation a stochastic component 
controlled by noise parameter s (using the typical value of 
0.25 here), the retrieval process is probabilistic, described 
by the probability P(i) following the Boltzmann (softmax) 
distribution over all candidate chunks j: 
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 (2) 

 
For a given outlet, only two chunks will compete for 

retrieval, and the winning chunk will reflect a combination 
of frequency and recency of the associated outcome, which 
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is generally the temporal properties that are desired for 
prediction. 

However, as mentioned earlier, temporal criteria are of 
limited usefulness when facing sudden disruption such as 
natural disasters. While a given outlet is usually open 
(frequency), and was open yesterday (recency), it may not 
be open today if a disaster event happened in the meantime. 
In that case, spatial factors constitute an additional basis for 
making predictions. Assuming lack of specific event 
knowledge, e.g., where the storm happened to hit, the most 
direct basis for including spatial factors is the limited known 
availability of nearby outlets. In the absence of additional 
semantic information (e.g., the outlet brand), the most direct 
information to use when attempting to generalize across 
outlets is their spatial location. 

Specifically, the spatial component of the model makes 
use of the partial matching mechanism in memory retrieval, 
which allows for chunks that do not exactly match the 
requested pattern to be considered for retrieval, but with a 
penalty that reflects the degree of mismatch. Specifically, 
the activation Ai of chunk i is now the sum of the base-level 
activation and a mismatch penalty term: 

 
!! ! !! !!" ! !"#!!!!!!  (3) 

 
where MP is a mismatch penalty scaling parameter (set in 

this model at a fairly standard value of 2.0) applied over all 
k pattern components specified in the retrieval request (only 
the outlet identity in this case) and Sim(v,d) is the similarity 
penalty between the corresponding value d requested and 
the actual value v present in the chunk. To avoid introducing 
needless free parameters, the similarity between outlet 
chunks is set to a linear function of the geographic distance 
between them, scaled such that a distance of 25 miles 
corresponds to a penalty of 1 unit of activation. 

When making a prediction for a given outlet, the model 
will therefore not only consider the history of that given 
outlet as expressed in the base-level activation of the two 
associated chunks, but also chunks associated with other 
outlets as well, with a preference for those closer to the 
given outlet. Note that unlike that is the target of the 
prediction, some of those outlets will a known status for the 
present day, significantly increasing the base-level 
activation of the corresponding day. Thus the retrieval 
process will reflect a competition between the recency (and 
frequency) of outcomes, as reflected in the base-level 
activation, and its (spatial) relevance, as reflected in the 
mismatch penalty term. 

The final component of the model concerns how to 
aggregate the relevant knowledge. As specified in the 
retrieval equation (2), one could simply select the most 
relevant chunk and return the associated outcome (open or 
closed). However, that would leave the prediction relying on 
a comparatively small piece of information, e.g., a chunk of 
limited relevance being retrieved purely through recency 
bias or simply the stochasticity of the process. To reflect 
people’s ability to weigh a sizable part of their knowledge 

base when making predictions (e.g, Lebiere, 1999), the 
blending retrieval mechanism specifies how to return a 
value V (in this case, the availability prediction of a specific 
outlet) that reflects the consensus of the entire set of 
considered chunks, weighted by their respective probability 
of retrieval P(i): 

 
! ! !"#$%& !!!!! ! !"#!!!!!! ! (4) 

 
Where Sim(V, Vi) is the similarity between the consensus 

value V and the value Vi proposed by chunk i.  In this 
model, those values returned by the retrieval process are the 
outlet availability values: open or closed. Treating those 
values as binary would result in a process where the 
evidence for each outcome in the form of the activation of 
the chunks representing that outcome would be weighted 
against that of the competing outcome, and the greater one 
selected. 

However, a more general decision process is also 
possible. By setting those values as numerical outcomes 
(e.g., 1 for open and 0 for closed) and assuming linear 
similarities in that range (the default, as for distance 
similarities earlier), the consensus value V will be 
somewhere in that interval reflecting the degree of 
preponderance of one outcome over the other. That value 
can then be interpreted as a confidence value in the open 
outcome, and assessed against a probability decision 
threshold (as mentioned in the description of Figure 1). This 
reflects the requirements of real world applications, e.g., 
where one might not want to predict that an outlet is open 
during an emergency without a fairly high certainty. 
However, we will only consider majority decisions (i.e., 
probability threshold of 0.5) in the following results section. 

Results 
In the absence of comparable human data, we examine the 
prediction performance of the model on a functional basis, 
but also looking to assess its cognitive plausibility. We also 
report results for the temporal and spatial versions of the 
model to assess the relative contribution of the two 
mechanisms. 

 

 
Figure 2: Performance of Temporal Model Across Time. 
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Figure 2 reports the aggregate performance of the 
temporal model across the entire range of data for about a 
month after the storm. This is the version of the model that 
only matches chunks for that specific outlet and relies only 
on its history. Performance is very poor on the day 
following the storm because of the lack of relevant data, but 
improves very quickly, with even a single day worth of data, 
because of the importance of the recency factor. 
Performance actually regresses slightly after that, as outlets 
become available again in a pattern that is difficult to 
predict, especially without access to semantic data such as 
outlet brands, which might get resupplied at the same time. 

 

 
Figure 3: Effect of Decay Rate on Temporal Model. 

 
Performance especially degrades on day 8, following a 

secondary storm that disrupts the pattern again. After that, it 
gradually improves over time to about 10% errors. 
Following the strong suggestion of the importance of the 
recency effect, Figure 3 examines the performance of the 
temporal rate as a function of the power law decay rate d for 
each outlet category averaged over all days, separated by 
outlet category. In general, a higher decay rate results in a 
lower error rate, indicating the primacy of recency over 
frequency. The availability of food outlets tends to be harder 
to predict than gas or pharmacy outlets, perhaps because 
their merchandise is more important or more perishable, 
leading to faster depletion, but the pattern is similar. 

 

 
Figure 4: Effect of Decay Rate on Spatial Model. 

Figure 4 reports the effect of the same decay rate, but for the 
spatial3 model, that also reflects generalization across 
outlets using the partial matching and blending mechanisms. 
One can see that there is now a penalty for very high decay 
values that overemphasize recency. When considering a 
broader knowledge base, frequency of occurrence becomes 
more important and balances out against recency around the 
decay rate value of 0.5 that has become the standard value 
in ACT-R models for capturing human performance. 

 

 
Figure 5: Effect of Sampling Size on Spatial Model. 

 
The results of the spatial model presented in Figure 4 are 

actually slightly worse than those of the temporal model 
because we evaluated them on common ground, i.e., without 
including any of the current day’s data for the spatial model 
to generalize from. Figure 5 examines the impact of the 
sampling rate of data for the current day to determine the 
effectiveness of the spatial model to generalize from nearby 
outlets. Generalization is quite effective, reducing the 
probability of error by half with about 20% of the current 
data. Note that more data (up to 50%) doesn’t improve 
generalization further because of the overall unpredictability 
of the task, at least in certain conditions. 
 

 
Figure 6: Effect of Circumstances on Spatial Model. 

                                                             
3 We could refer to it as the integrated model because it also 

includes the temporal aspect through the base-level component, but 
we found the spatial/temporal distinction to be more descriptive. 
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Finally, to examine the impact of conditions on 
generalization, Figure 6 focuses on performance on Day 3 
(2 days after the storm) and Day 8 (the day after a secondary 
storm hit) for food and gas outlets (pharmacy outlets 
omitted but results similar to gas). Because of the difficulty 
of predicting availability immediately after a disruptive 
event, the error rate is consistently and significantly higher 
on Day 8 than Day 3. However, as for the average across all 
days, performance significantly improves with sampling 
rate, becoming almost error-free on Day 3, which relies only 
on a single day of useful complete data (Day 2) and the 
specified proportion of the current day’s data. 

Discussion 
Gu et al. (2014) applied a variety of algorithmic 

approaches to the prediction problem using this data set. 
They similarly differentiated their approaches between 
spatial and temporal algorithms. Their algorithms can be 
seen as specialized version of the cognitive mechanisms 
used here, e.g., the LastKnownState algorithm is simply the 
recency component of base-level activation without 
frequency, while the BestProxy algorithm is effectively 
partial matching without blending (or stochasticity). 
Recognizing the need to reflect both temporal and spatial 
data, they develop an algorithm that combines the best of 
the two approaches, in a way similar to, but more limited 
than, how those factors are combined in chunk activation. 

The compelling argument for cognitive models, however, 
is not that they outperform a given machine learning 
algorithm. Rather, it is that they provide a way to augment 
human cognition in a way that is fundamentally compatible 
with it, for example by selecting a limited set of data to 
provide to the human decision maker that would result in 
the best human performance. In ongoing work, we are 
exploring mechanisms to introspect into the mechanisms of 
our cognitive model to drive data selection that would 
maximize its performance. We plan to then verify the 
model’s predictions by collecting data in situations that 
combine model data selection and human decision making. 
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Abstract 
The visual Euclidean Traveling Salesman Problem (TSP) 
presents participants with nodes, representing cities, and 
requires that the participant trace the shortest closed route 
among the cities. Humans solve a similar problem in every day 
navigation and search tasks. We investigated human TSP 
solutions for considerations other than solution length. We 
found a preference for solutions favoring distance-discounted 
reward and distance to first contact. A hierarchical stochastic 
model parameterizing solution length, distance-discounted 
reward, goodness of fit, and plan complexity showed similar 
effects. The model shows promise for approximating human 
performance in TSP and other TSP-like naturalistic tasks.  

Keywords: TSP; planning; problem solving; visual cognition.  

Introduction 

The Traveling Salesman Problem (TSP) is a spatial 
combinatorial optimization problem used in various forms in 
applied settings, such as operations (e.g., the Vehicle Routing 
Problem; Dantzig & Ramser, 1959) and engineering (Krolak, 
Felts, & Marble, 1971), and basic research on spatial 
cognition and navigation in animals (de Jong, Gereke, 
Martin, & Fellous, 2011) and humans (Tenbrink & Seifert, 
2011). Visual Euclidean TSP requires that the solver plot the 
shortest path through a 2D metric space containing nodes, 
representing cities, beginning and ending in the same 
location. TSP is computationally intractable, with each 
problem having (n � 1)! / 2 solutions. Therefore, brute-force 
approaches to obtaining optimal, shortest path solutions are 
too resource-intensive for many applications. 

Despite the aforementioned complexity of TSP, human 
solutions to TSP are typically an order of magnitude shorter 
(i.e., better) than those produced by many heuristic 
algorithms (MacGregor & Ormerod, 1996), and are typically 
no more than 10% longer than the optimal solutions, 
increasing linearly with problem size (Dry, Lee, Vickers, & 
Hughes, 2006; MacGregor & Ormerod, 1996; Pizlo et al., 
2006). Because human solutions are fast and near-optimal, 
understanding the mechanism people use to generate them 
has implications for algorithm development. 

Evidence suggests that humans do not exhaustively solve 
the problem at initial presentation. For example, Kong and 
Schunn (2007) showed that participants perform the majority 
of their global information-seeking saccades after beginning 
to solve the problem. Mueller, Perelman, Tan, and Thanasuan 
(2015) found very short (~4s) planning times (interval 

between initial viewing and beginning to solve the problem) 
that increased linearly with problem size.  

These characteristics have prompted the suggestion that 
humans use a hierarchical approach to problem solving in 
which a rapidly formed global plan guides the local decisions 
(e.g., Best & Simon, 2000). Many computational accounts of 
TSP follow this hierarchical structure, simplifying the 
problem space by grouping individual cities into clusters 
(e.g., Pizlo et al., 2006) or designating a global path through 
the space that starts as a convex hull (MacGregor, Ormerod, 
& Chronicle, 2000).  

This same strategy of following a rapidly produced global 
plan is likely used in similar tasks. One such task, searching 
for a target among candidate locations, requires planning a 
route that optimizes a distance-discounted reward function to 
minimize the estimated time to find (ETF) that target (see 
Wiener, Schnee, & Mallot, 2004). This general task is critical 
in operational domains, such as wilderness search and rescue 
(Perelman & Mueller, 2013) and  military and public safety 
search operations (Antoniades, Kim, & Sastry, 2003), as well 
as for sports such as orienteering (Blum et al., 2007). The 
present study investigates the extent to which a single 
adaptive mechanism could be used to solve TSP and other 
TSP-like problems.   

Investigations of human behavior in naturalistic TSP-like 
tasks (e.g., Blum et al., 2007; Perelman & Mueller, 2013; 
Perelman & Mueller, 2015; Ragni & Wiener, 2012; Tenbrink 
& Seifert, 2011; Tenbrink & Wiener, 2009) suggest that real-
world strategic planning requires considering factors other 
than path length. Many of these tasks require solvers to 
prioritize ETF and distance to first contact (DFC), optimizing 
a function that rewards visiting locations early in the path, 
versus TSP where rewards are uniform. Wiener et al. (2004) 
suggest that certain cluster-based strategies should produce 
this behavior, and Tenbrink and Wiener (2009) found a slight 
bias (roughly 58% of solutions; 8% more than expected) 
toward prioritizing larger over smaller clusters early in 
solutions to a naturalistic TSP-like task. Note that we have 
�����
� ������ ������������ ��������� 	�������� �	����
����������
rather than heuristics as they are not necessarily isolated 
mechanisms, but components of an underlying mechanism.  

If a common mechanism is used to solve TSP and similar 
tasks, then we should see evidence of these alternative 
considerations in TSP solutions. To our knowledge, there is 
no published literature searching for evidence of these 
considerations in traditional TSP solutions. Evidence of a 
common mechanism holds implications for algorithm 
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(ICCM 2016). University Park, PA: Penn State.

39



 

 

development and our understanding of human visual problem 
solving.  

General Method 
The present study consists of analyses of three datasets - two 
derived from experiments presented here, and one generously 
donated by other authors (see below).   

Experiments (Datasets) 1 and 2 
Michigan Technological University students participated in 
Experiments 1 and 2 (n = 29 and 35, respectively). The goal 
of Experiment 2 was to replicate the results of Experiment 1 
using a blocked design to reduce potential fatigue. 

Two participants in Experiment 1 provided incomplete 
data (final n = 27). Participants completed TSP problems 
presented using the Psychology Experiment Building 
Language v. 0.14 (PEBL; Mueller, 2014) TSP. PEBL TSP 
problems begin in a fixed starting location, with the last 
segment automatically completed by the software, and route 
edits are not allowed (see Mueller et al., 2015).  

Participants in Experiment 1 completed 5 6-city practice 
problems, then 15-problem sets presented in random order, 
each containing 10, 20, or 30 cities for 50 total trials. 
Participants in Experiment 2 completed their trials in 2 
blocks, each containing 5 6-city practice problems, then 5-
problem sets each containing 10, 20, and 30 cities presented 
in random order, for a total of 40 trials between both blocks.   

Dataset 3 
Data for this analysis were provided by Chronicle, 
MacGregor, Lee, Ormerod, and Hughes (2008). In that study, 
110 University of Hawaii students completed 9 30-city 
problems by connecting the cities using pen and paper; the 
data were converted into electronic format manually.  

Analyses 
Traditional descriptive statistics of solution lengths relative 
to optimal are reported for the first two experiments. We used 
a novel method, reverse solution analysis, to investigate the 
solutions for bias toward ETF and DFC. ETF was 
operationalized here as the cumulative sum of all segments in 
the solution weighted by serial order of visitation. DFC is 
defined as the length of the first segment.  

Reverse Solution Analysis  
TSP solutions begin and end on the same city; they are closed 
loops. Therefore, a solution and its reverse form are equal in 
solution length (the only consideration by which solutions are 
evaluated in TSP). However, the two solutions may differ in 
terms of ETF or DFC (or other criteria of solution quality). 
We report bias toward a given consideration in the observed 
distribution when the percentage of solutions superior to their 
reverse forms with respect to that consideration exceeds that 
of the expected distribution in which both forms appear with 
equal frequency. The observed percentage over the expected 
percentage (50%) indicates the magnitude of the bias.  

Because the PEBL TSP script automatically completes the 
last segment of solutions, these biases will be calculated for 
both the closed and open solutions, which omit the final 
segment returning to home. Note that Dataset 3 was 
generated using a paper and pencil format and required a 
return to home, and was included to show the extent to which 
automatic solution completion impacts performance. 

Results and Discussion 

Solution Length 
Solution length provides a strong measure of overall 
efficiency (Figure 1). In Experiment 1, across all problem 
������������	����������������������������������������������
than optimal (S.D. = 8.73%). Between set sizes, efficiency 
degraded with increasing problem size. Solutions to the 20-
city problems showed the highest variance in solution length, 
an effect which was mirrored in the Experiment 2 results 
indicating that this likely reflects something about the city 
configurations for those problems.  

 

 
 

Figure 1: Efficiency by Problem Size for All 
Experiments. Error bars indicate standard deviation. 

 
Experiment 2 efficiencies were largely consistent with those 
seen in Experiment 1. On average, p����	�������� �����
solution lengths were 6.76% longer than optimal (S.D. = 
12.67%). Between problem sizes, solution lengths increased 
with problem size, though efficiency in the 20- and 30-city 
problems was not notably different. Finally, participants��
efficiency in solving the 30-city (M = 6.67%, S.D. = 7%) 
problems in Experiment 3 was consistent with Experiment 1 
performance for problems of the same size.  

Other Solution Considerations 
Of all Experiment 1 solutions (n = 1,358), 317 were optimal 
whereas 93 were designated poor (operationalized as 15% 
longer than optimal). Table 1 shows ETF and DFC bias by 
solution quality, measured using reverse solution analysis. 
Each block of cells indicates the percentage of solutions that 
favor that particular criterion given solutions of equal length.  

The ETF bias block presents solutions quantified as either 
closed (complete, as generated by participants) or open 
(without the return to home). These results indicate the 
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presence of ETF bias in the complete solutions. The 
magnitude of this effect appears consistent with that observed 
by Tenbrink and Wiener toward prioritizing larger versus 
smaller clusters earlier in the solution (2009; 58%). However, 
this effect is smaller when considering the solutions without 
the return to home. No clear trend in ETF bias was observed 
with respect to solution quality. DFC bias was also detected 
in these solutions, and the effects are likely related.  

 
Table 1: Experiment 1 RSA Results, ETF and DFC Biases 
 

 
To visualize this effect, we plotted the proportional distance 
of the solution covered by each segment in serial order 
(Figure 2). ETF and DFC biases are evidenced by shorter 
moves earlier in the solutions, or on the first move, 
respectively. Figure 2 shows reasonably uniform segment 
lengths for all except the final segment, indicating that most 
(but not all) of the bias effect appears to be explainable by a 
failure to account for the return to home cost.   

 

 
 

Figure 2: Proportion of problem space covered by each 
segment across Experiment 1 problems, by problem size.  

The results of Experiment 1 show a robust bias toward 
solution forms that visit cities earlier in the solution at the 
expense of costs associated with the return to home.  

In Experiment 2, participants only appeared to fail to 
account for the return to home on the larger 20- and 30-city 
problems, as indicated by their long final segment lengths 
(Figure 3). Aggregated across problem sizes, the results were 
similar to those seen in Experiment 1 with the exception that 
ETF bias disappeared entirely for the open solutions, and was 
not related to solution quality (Table 2).     

 
Table 2: Experiment 2 RSA Results, ETF and DFC Biases 
 

 
 

 
 

Figure 3: Proportion of problem space covered by each 
segment across Experiment 2 problems, by problem size. 

 
Visualizing these data at a coarser grain size reveals ETF bias 
in the 6-city problems, and a trend toward it in the 10-city 
problems, with longer moves generally appearing in the 
second halves of the solution (Figure 4), despite no clear 
failure to return home. 

ETF Bias 
 

Solution Quality 

Percent 
Favoring 

ETF 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 64.98 p < .001* 
All Solutions 63.40 p < .001* 

Poor Solutions 70.97 p < .001* 

Open 
Solutions 

Optimal Solutions 56.80 p = .018* 
All Solutions 52.30 p = .098 

Poor Solutions 45.16 p = .417 

DFC Bias 
 

Solution Quality 

Percent 
Favoring 

DFC 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 67.19 p < .001* 
All Solutions 68.56 p < .001* 

Poor Solutions 80.65 p < .001* 

ETF Bias 
 

Solution Quality 

Percent 
Favoring 

ETF 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 59.84 p < .001* 
All Solutions 60.21 p < .001* 

Poor Solutions 60.74 p = .008* 

Open 
Solutions 

Optimal Solutions 51.71 p = .539 
All Solutions 51.21 p = .378 

Poor Solutions 46.01 p = .347 

DFC Bias 
 

Solution Quality 

Percent 
Favoring 

DFC 
Binomial Test 
Significance 

Closed 
Solutions 

Optimal Solutions 55.64 p = .031* 
All Solutions 65.14 p < .001* 

Poor Solutions 75.46 p < .001* 
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Figure 4: Distance covered by each half of the solution, 
Experiment 2. Lower values in first half indicate ETF bias. 

 
One potential explanation for this effect is that it is an 

artifact of the experimental software. The PEBL TSP 
automatically completes solutions, so it is possible that 
�����	�������� �������� ��� �		����� ���� ���� ������� ����� �������
from the fact that they are not required to complete this 
section of the solution. Therefore, analysis of Dataset 3 tested 
for this effect in a paper and pencil version of TSP.  

Dataset 3 consisted of 975 solutions to 9 30-city problems. 
56.82% of these solutions favored the ETF-superior form 
(binomial test, p < .001) with 63.18% of solutions favoring 
the DFC-superior form (binomial test, p < .001). Figure 5 
shows a strong failure to account for the return to home cost 
in all but one problem (Problem 3044).  

 

 
 

Figure 5. Proportion of problem space covered by each 
segment across each of the Dataset 3 problems. 

 
To estimate the magnitude of the effect of the DFC bias and 
the failure to return home in each of these experiments, we 
divided the first and final segment lengths, respectively, by 
the average segment lengths (Table 3). One-way ANOVAs 
found significant effects of final / average segment length by 

solution quality for both Experiment 1, F(1, 1356) = 94.85, p 
< .001, and Experiment 2, F(1, 953) = 165.1, p < .001.  
 
Table 3: First, Final / Average Relative Segment Length by  

Solution Quality, Mean Percent (S.D.) 
 

Note: Solutions not aggregated by quality for Dataset 3 as 
optimal solutions to these problems were not available. 
 
For Experiments 1 and 2, the average final segment length 
ranged from slightly shorter to over 2.5 times as long as the 
average segment length, with the paper and pencil TSP 
(Dataset 3) producing results falling somewhere in the 
middle. For Experiments 1 and 2, the final segment length 
generally increased as solution quality degraded, with the 
optimal solutions having much shorter final segment lengths 
relative to average than the poor solutions.  

Similar effects were not observed for first / average 
segment lengths in Experiment 1, but the effect of solution 
quality on first / average segment lengths was observed in 
Experiment 2, F(1, 953) = 6.89, p = .008, with the better 
solutions producing shorter first segment lengths relative to 
average. First segment lengths in Dataset 3 were longer than 
average, though a causal mechanism is not readily apparent.  

Finally, in Experiments 1 and 2 the larger problem sizes 
generally produced longer first and final segment lengths 
relative to average (see Table 4). One way ANOVAs revealed 
significant effects of problem size on first, F(1, 1048) = 
11.79, p < .001, and final, F(1, 1048) = 102.60, p < .001, 
segment lengths in Experiment 2. The effect of problem size 
on segment length was observed for the final, F(1, 1356) = 
20.66, p < .001, but not first, F(1, 1356) = 0.07, p = .799, 
segment lengths in Experiment 1.  

 
Table 4: First, Final / Average Relative Segment Length by  

Problem Size, Mean Percent (S.D.) 
 

 Solution 
Quality Experiment 1 Experiment 2 Dataset 3 

First 
Segment 

Optimal 
Solutions 

94.06 %  
(56.04 %) 

85.86 % 
(52.82 %)  

All 
Solutions 

98.01 %  
(63.55 %) 

88.45 % 
(62.53 %) 

120.13 % 
(88.30 %) 

Poor 
Solutions 

100.24 % 
(91.07 %) 

101.89 % 
(96.91 %) 

 

Final 
Segment 

Optimal 
Solutions 

126.89 % 
(61.98 %) 

98.03 %  
(60.89 %) 

176.25 % 
(132.83 %) 

All 
Solutions 

155.54 % 
(98.90 %) 

148.41 % 
(111.09 %) 

Poor 
Solutions 

259.48 % 
(175.10 %) 

226.37 % 
(171.83 %) 

 Problem 
Size Experiment 1 Experiment 2 

First 
Segment 

6 96.97 % (71.42 %) 83.61 % (57.00 %) 
10 97.49 % (59.66 %) 93.44 % (49.89 %) 
20 98.26 % (68.03 %) 69.56 % (61.06 %) 
30 96.06 % (62.04 %) 110.68 % (81.85 %) 

Final 
Segment 

6 145.34 % (77.70 %) 113.43 % (77.11 %) 
10 143.07 % (78.29 %) 102.76 % (58.71 %) 
20 152.12 % (102.05 %) 175.07 % (141.70 %) 
30 175.39 % (129.40 %) 183.84 % (137.20 %) 
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Human Results Summary and Discussion 
The results presented above demonstrate, for the first time to 
our knowledge, the presence of considerations pertinent to 
naturalistic TSP-like tasks in traditional TSP solutions. 
Participants (1) produced solutions that reduce distance to 
first contact and (2) preferred visiting locations early in the 
solution at the expense of overall solution length, resulting in 
higher distance-discounted reward. However, (3) this effect 
is driven largely by a preference for solution forms with a 
longer return to home. (4) This effect is robust to the test 
delivery format (i.e., computer with an automatic return to 
home versus manual pen and paper format) and (5) the 
magnitude of this bias is related to the quality of the closed 
solutions � better solutions reduce the discrepancy between 
final and average segment lengths.  

Points 1 and 2 suggest that humans solve a more general 
problem than TSP task instructions would require; in addition 
to solution length, humans consider ETF and DFC during 
problem solving. And, in light of the constraint of point 3, 
they seem to do so at the expense of task performance, though 
better human solutions tend to consider the problem space 
more globally, therefore accounting for the return home. 

Subject matter expert interviews (Perelman, 2015) indicate 
that ETF and DFC are critical for certain tasks, and prior 
research (Perelman & Mueller, 2015) has shown that humans 
can adapt their solution criteria to fit specific tasks. However, 
the results of the present study show that even when tasked 
with minimizing solution length in a traditional TSP, humans 
still generate solutions that account for considerations 
relevant in naturalistic spatial problem solving tasks. This 
suggests a common mechanism used for both TSP, and for 
naturalistic TSP-like tasks. A simple computational model 
was developed by Perelman (2015) to describe adaptive 
behavior in TSP-like problems, which we apply here to 
investigate an underlying adaptive mechanism capable of 
producing the above effects in TSP.  

Modeling 
In light of the human results, we used a computational model 
designed to permit this flexibility in strategic control that is 
capable of solving TSPs using limited at-a-glance 
information about the problem space. The goal of this model 
was to use a scheme capable of adapting to task requirements 
(i.e., it incorporates strategic considerations such as ETF into 
solution planning) to reproduce human efficiency dynamics 
and solution characteristics, specifically the bias toward ETF-
superior solution forms.  

The model uses a two-layer hierarchical structure: a 
computationally inexpensive local decision making 
algorithm (nearest neighbor) guided by a general plan (see 
Figure 6) that considers multiple criteria that can be tailored 
to specific goals and tasks (i.e., path length minimization, as 
in TSP, versus discounted-rewards used in naturalistic tasks). 
This higher level plan representation consists of a small 
number of segments; the model solves for all the cities within 
each segment in sequence. The plan is initially drawn by 
running K-means clustering over the problem space (k = 6) 

then connecting the cluster centroids from the starting 
position by nearest neighbor. 

  

 
 

Figure 6. The higher level plan (red segments) guides local 
solutions (black lines) among the cities (black dots) from the 

start location (red; first move is green to show direction) 
 

 The plan is then iteratively fit to the data by minimizing a 
cost function comprised of a linear combination of five 
weighted parameters, (1) log number of segments, intended 
to represent plan complexity, (2) goodness of fit, the average 
distance between a plan segment and its constituent cities, (3) 
plan length, (4) distance-discounted reward, the sum of the 
path lengths of all segments discounted by their serial order, 
and (5) the average angle between segments, intended to 
penalize doubling back. This plan is fit to the data using 500 
iterations during which a point in the plan is added, deleted, 
moved, or swapped in serial order with another. This 
optimization process was not intended to duplicate that used 
by humans to solve the problem, but rather to demonstrate 
that a model that incorporates multiple criteria can account 
for some patterns in the human data. 
 
Modeling Results 
The present model solved the 10-, 20-, and 30-city TSP 
problems used in Experiment 1 20 times each, and the 
solutions were analyzed using the methods described above.  
 
Solution Length 
To evaluate model solution efficiency, solution lengths were 
compared to those of the optimal solutions. Across all 
problem sizes, model solutions lengths were 16.08% longer 
than optimal (S.D. = 11.56%). Interestingly, as with the 
human subjects, the model produced the greatest variance in 
solving the 20-city problems (Figure 7), indicating that 
human performance on these problems can be attributed to 
properties of the problem spaces rather than a fluke in our 
particular sample. While the model was less efficient than 
humans, it displayed similar dynamics in the present problem 
set for the change in solution quality at the experimental 
problem sizes, and variance within set sizes.  
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Figure 7. Model solution length by problem size. Error 
bars indicate standard deviation. 

 
The second goal for our model was to replicate the human 

bias toward DFC- and ETF-superior solution forms. We 
investigated the model solutions using the method applied to 
the previous experiments and found that the model favored 
ETF- and DFC-superior solutions more strongly than humans 
(Table 5), preferring a biased solution in nearly every case 
except for the 20-city problems. Figure 8 demonstrates 
qualitatively the effects of ETF and DFC bias in the model�s 
solutions, along with a failure to account for the return to 
home producing segments roughly twice as long as average.  
 

 
 

Figure 8: Proportion of problem space covered by each 
segment across Experiment 1 problems, by problem size. 
 
As with the human solutions, we further quantified the ETF 

and DFC biases, and the effect of the failure to return home, 
by comparing the first and final segment lengths, 
respectively, to the lengths of the average segments on those 
trials. The model produced solutions with values (Table 5) 
similar to those of the poor human solutions (Table 3), 
including comparatively short first segment lengths, and long 
final segment lengths (i.e., the return to home) that increased 
with problem size. However, unlike the human solutions, the 
model produced solutions with first segment lengths that 
decreased with increasing problem size relative to the 
average segment lengths on those trials. Finally, the model 
produced solutions with shorter relative first segment lengths, 
but longer final relative segment lengths, compared to the 
human solutions.  
 

Table 5: Final / Average Segment, Mean Percent (S.D.), and 
Proportion of Solutions Favoring Each Bias 

Last, we investigated a potential criticism of the present 
model � that a nearest neighbor model would be equally 
efficient. We compared model and human solution lengths to 
those generated using nearest neighbor. The present model 
produced solutions to the 10-city problems that were 4.1% 
shorter than nearest neighbor, equal in length for the 20-city 
problems, and 1.1% shorter for the 30-city problems. Human 
solutions in Experiment 1 generally showed a similar pattern 
(6%, 10% and 10%, respectively), though the poor human 
solutions were on average 3-9% longer than those produced 
by nearest neighbor. In summary, the model solutions were 
less efficient than human solutions on average, but more 
efficient than the nearest neighbor and poor human solutions.  

General Discussion 
The behavioral results of the present study show, for the first 
time, that human TSP solutions consider ETF and DFC, 
criteria that are irrelevant to TSP, but critical in the real 
world. This manifested here as a failure to account for the 
return to home, and the magnitude of this bias was related to 
solution quality � poor solutions had longer final segments. 

A model that adjusts a linear plan to fit the problem space 
according to a number of criteria related to TSP, real-world 
TSP-like problems, and plan complexity, exhibits behavior 
similar to humans in this task. We expect that efficiency 
could be greatly improved via dynamic re-planning to match 
the human data. In adapting the present model, the agent 
would adjust its higher level plan after solving for the points 
within each segment in serial order. In this way, a parameter 
estimated from prior eyetracking studies (e.g., Kong & 
Schunn, 2007) would govern the iterations spent in dynamic 
replanning. 

Taken together, the results of the present study hold 
implications for modeling human performance in spatial 
combinatorial optimization problems. Specifically, the 
results speak to the importance of granularity and sequence 
in representing the problem space. Many algorithms, such as 
those implementing a convex hull, solve the problem 
exhaustively at presentation. The behavioral and modeling 
results presented here are consistent with prior work 
suggesting that humans approach these problems using a 
mechanism that provides a means of solving the problem 
efficiently without the mental burden of generating and 
maintaining an exhaustive solution in memory, at the expense 
of efficiency later in the route. Finally, this mechanism is 
consistent with producing solutions to discounted-reward 
problems that are more common than path length 
optimization in naturalistic tasks. 

 10 Cities 20 Cities 30 Cities 
First  / Average 
Segment Length 

79.16 % 
(41.91 %) 

70.85 % 
(31.93 %) 

67.95 % 
(25.90%) 

Final / Average 
Segment Length 

205.85 % 
(56.19 %) 

257.52 % 
(114.72 %) 

327.16 % 
(138.09 %) 

Percent Favoring ETF 99.33 % 89.67 % 100 % 
Percent Favoring DFC 100 % 94.33 % 100 % 
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Abstract

Visual working memory (VWM) is a construct hypothesized
to store a small amount of accurate perceptual information
that can be brought to bear on a task. Much research con-
cerns the construct’s capacity and the precision of the infor-
mation stored. Two prominent theories of VWM representa-
tions have emerged: slot-based and continuous-resource mech-
anisms. Prior modeling work suggests that a continuous re-
source that varies over trials with variable capacity and a po-
tential to make localization errors best accounts for the empir-
ical data. Questions remain regarding the variability in VWM
capacity and precision. Using a novel eye-tracking paradigm,
we demonstrate that VWM facilitates search and exhibits ef-
fects of fixation frequency and recency, particularly for prior
targets. Whereas slot-based memory models cannot account
for the human data, a novel continuous-resource model pro-
vides a better fit and identifies the relevant resource as item
activation.
Keywords: visual working memory; visual search; ACT-R.

Introduction
Visual working memory (VWM) is a construct hypothesized
to be a limited capacity system that maintains representations
of visual information for temporary storage and manipula-
tion for ongoing tasks (Luck & Vogel, 2013). This construct
has garnered much attention and has been the focus of many
studies and computational models. Even so, answers to fun-
damental questions, such as its capacity and representation
precision, remain elusive (van den Berg & Ma, 2014).

Two theories of VWM representations dominate the litera-
ture: slot and continuous resource mechanisms. Slot theories
generally posit a fixed capacity of 3 to 4 items with high to
perfect precision (Luck & Vogel, 2013). A slot is a discrete
memory container filled with an object representation with
bound visual features (Luria & Vogel, 2011). Information
stored within a slot can be accurately applied to a task re-
gardless of its visual complexity, be it a single vertical line or
a complex Chinese character.

By contrast, continuous resource theories of VWM posit
a finite resource that can be spread across di�erent areas of
a scene or item. This resource is seen as a pool of mental
processing power dedicated to VWM, which can be flexibly
distributed across items in a display (Wilken & Ma, 2004).

Fewer objects to be encoded lead to less distributed memory
resources and allow for more precise object representations.

Recently, Donkin, Kary, Tahir, and Taylor (2016) have ar-
gued that a VWM system using a continuous resource may
appear to support a slot interpretation when the number of
items to remember varies from trial to trial. At times highly
precise representations of a small number of objects appear to
favor a slot-based model, but when set size is unpredictable
participants are biased to focus on a small subset of items,
leading to performance suggestive of a slot model. When
set size was predictable (the same across multiple trials), re-
source models best characterized the data.

Van den Berg, Awh, and Ma (2014) varied precision, ca-
pacity, and the potential for spatial binding errors as three
independent factors of VWM to test lingering questions. Us-
ing a 4x4x2 factorial design, all models were tested on 10
previously published empirical results from a change detec-
tion paradigm. The results indicated that a continuous model
which varied both storage capacity and precision across tri-
als, combined with the presence of the potential for spatial
binding errors best accounts for the data. However, questions
regarding the mechanisms behind the variance in precision
and capacity remain unanswered.

A passive, tachistoscopic version of the change detection
paradigm has been the dominant approach to establishing
prominent theories of VWM (Alvarez & Cavanagh, 2004),
and continues to be the paradigm most used in contempo-
rary empirical research on VWM (Donkin et al., 2016). In
this task, a participant is instructed to attend to and remem-
ber information within a stimulus display. The information
is typically a set of unique objects that di�er across features,
such as shape and color. After some time the stimulus dis-
appears and after a delay the object of the possible change is
cued, or a new stimulus appears. If a change occurred, the
participant must indicate the change in some manner, either
by responding yes/no (c.f., Alvarez & Cavanagh, 2004), by
identifying what has changed (c.f., D. E. Anderson, Vogel, &
Awh, 2013), where the change occurred (c.f., Barton, Ester,
& Awh, 2009), or some combination thereof. Researchers

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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vary the number of items in a stimulus (i.e., set size) to eval-
uate VWM capacity and use change identification to evaluate
VWM precision.

There are weaknesses in the passive change detection ap-
proach to understanding VWM (Rouder, Morey, Morey, &
Cowan, 2011). Specifically, many, if not all, VWM studies
rely on a passive approach to understanding VWM rather than
an active one (Findlay & Gilchrist, 2003). Outside the exper-
imental laboratory, visual search does not occur in a vacuum,
but rather in the context of a task where targets contained
in some visual array are distinguished from distractors. We
argue that passive change detection with delayed responses
(~2–3 s) does not tap into the functional importance of VWM
— to facilitate the accurate completion of an active visual
task through the temporary storage of readily available and
accurate visual information.

In the current paper we provide an explanation for the vari-
ance in VWM precision and capacity. To do so, we intro-
duce a new eye-tracking paradigm that moves away from the
change detection tasks commonly used to investigate VWM.
Our new paradigm of repeated serial search (Neth, Gray, &
Myers, 2006) requires an individual to actively search for dif-
ferent (and sometimes repeating) targets within a stable visual
display and thus represents a task that is more realistic and
ecologically valid than a passive change detection paradigm.
Importantly, it allows us to ask questions of VWM that in-
form how VWM drives search behavior and the potential dif-
ferences in depth of encoding between targets and distractors
since we have access to the full history of fixations.

Our empirical and modeling work leads to five important
conclusions: (1) the variability in VWM capacity results from
recency and frequency e�ects from selectively encoding vi-
sual information; (2) VWM precision variability results from
the same recency and frequency e�ects; (3) memory facili-
tates search behavior; (4) targets have a stronger mnemonic
trace than distractors; and (5) the relevant “resource” involved
is memory activation. In the following sections we introduce
our paradigm and present empirical results, followed by a
model analysis of the empirical data.

Experiment
To determine the degree to which VWM facilitates visual
search, we designed an experiment using a novel repeated
serial search paradigm. In this paradigm, participants were
required to search the same spatial configuration of 10 static
items a total of 20 times. This paradigm taps into the
VWM construct, motivating participants to retain a maximum
amount of information in VWM to facilitate future searches.

Paradigm. On each trial, ten circular objects with a di-
ameter of 60 pixels were distributed randomly over a cen-
tered white rectangular display area (measuring 1270-by-970
pixels). The objects were positioned at least 60 pixels away
from any edge and the distance between the centers of any
two objects was constrained to be at least 200 pixels. Each
circle contained a hidden label (upper case letter, number, or
monosyllabic four-letter word) that specified the target sought

Figure 1. Example stimulus used in the experiment. Al-
though all labels are visible here, they were hidden from par-
ticipants’ view until a cursor hovered within the circle.

by the participant. On any given trial only one type of label
was in the circles (letters, numbers, or words). The order
of label types was randomized within each participant’s task
presentation.

Each trial was composed of 20 searches through the dis-
play. At the beginning of each search, the experimental soft-
ware announced the current target label to the participant
(e.g., “cell” in Figure 1). Participants could hover with the
mouse cursor over each circle to uncover its hidden label.
Once the cursor was moved o� the circle, the correspond-
ing label was hidden again. Participants were instructed to
click on the circle corresponding to the target label. If the
clicked circle indeed contained the correct target label, a new
target was announced; however, if a clicked circle contained
a di�erent label the software recorded an error and the cur-
rent target was announced again to provide a reminder to
the searcher. Consequently, searchers typically uncover non-
targets (distractors) in the process of searching for targets and
these distractors may turn into targets in subsequent searches.

There were three within-participants information presenta-
tion types that manipulated the number of intervening targets
between identical targets. While they are of theoretical inter-
est, we collapse across these presentation types for the current
analyses to save space and mitigate complexity.

Participants. A total of 13 Rensselaer Polytechnic Insti-
tute undergraduates (3 females) volunteered for course credit.
Their mean age was 18.92 years (S D = 1.04).

Procedure. Participants signed informed consent forms,
viewed a slideshow of the instructions, and were calibrated to
an LC Technologies eye tracker prior to beginning the study.
Every participant completed 60 trials in total. Each trial con-
sisted of a series of 20 searches. Every search commenced
when a computer generated voice announced the next target
to be found.
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Results
A timeline of the sequence of fixations during every search
within a trial was created for each participant. This was
made possible through the collection of visual point of regard
and mouse click data while participants performed the visual
search task. Given this sequence of fixations, we can deter-
mine the frequency of fixations across labels and how long
ago — in terms of duration and the number of intermediate
items — each label was last viewed to investigate recency and
frequency e�ects in finding a target. We can also determine
di�erences that are due to the functional role of labels (i.e.,
whether labels were previously seen and encoded as targets
or as distractors).

Recency e↵ects. For this analysis we restricted the data
to the first two times an item was a target of a search. A
2 (label-type)-by-10 (recency) ANOVA was performed to
evaluate the e�ect of label encoding and recency of last fixa-
tion. There was an interaction between whether an item was a
target before and how recently it was last fixated, F(9, 108) =
3.76, p < .001, ⇤2=0.24. There was also a significant main
e�ect of recency, F(9, 108) = 11.94, p < .001, ⇤2=0.50 (see
Figure 2 top). This e�ect was greater for labels that had not
been previous targets, F(1, 12) = 73.42, p < .001, ⇤2=0.86.
In general, labels that were prior targets were less impacted
by recency of fixation.

One explanation for the inverted U-shape of the items that
were only distractors prior to the current search is that as
participants are searching the display, they are only encoding
whether or not the current item is the target, rather than the
identity of the item. This depth of encoding may result in an
inhibition of return e�ect for more recently fixated items (2–
5 fixations ago) leading to longer search times than when the
distractor was seen longer ago.

Frequency e↵ects. A 2 (label-type)-by-7 (frequency)
AVOVA was performed to evaluate the e�ect of label en-
coding frequency. There was insu⇥cient data in frequency
bins 1 and 2 (i.e., in cases where a second search for a tar-
get was preceded by one or no fixations on the item prior to
the search), leaving bins 2–8 for analysis (see Figure 2 bot-
tom). Nonetheless, these bins reflect the general trend in the
data. There was a significant interaction between fixation fre-
quency and label-type on the number of fixations to find the
target, F(6, 72) = 5.92, p < .001, ⇤2=0.33, where searches
required fewer fixations when a label had been a target before
despite being seen less than 5 times, F(1, 12) = 38.37, p <
.001, ⇤2=0.76, (Figure 2 bottom). Further, there was a main
e�ect of frequency on number of fixations to find the target,
F(6, 72) = 3.25, p < .01, ⇤2=0.21. In particular, items that
were not prior targets show a benefit of having seen the item
more times, whereas items that were previously targets seem
to be encoded su⇥ciently enough that it takes roughly the
same number of fixations to find the target regardless of the
number of previous fixations.

Recency and frequency e↵ects. In order to provide a
more robust description of the human data, we examined the

Figure 2. Mean number of fixations needed to find a target
as a function of recency and frequency of seeing the target
before.

proportion of all searches in which a target was last seen
R (Recency) fixations ago or was seen F (Frequency) times
prior to the search and was found within N fixations. Figure 3
illustrates the respective distributions generated by analyzing
the human data in this way. In particular, in the recency graph,
the peak of each distribution shifts to the right (more fixations
to find target) as R increases. It should be noted that the hu-
man data exhibits a bell-shaped curve across all recency val-
ues, with the proportion of searches in which target is found
in a higher number of fixations falling o� gradually.

In the frequency graph, when the item has never before
been fixated (F==0), the proportion of all searches in which
the target is found stays at roughly 10% across all N. Items
which have been seen more times (F==9) have a slightly
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Figure 3. Proportions of recency and frequency e�ects in the
human data.

more pronounced peak at N=3 as compared to items which
were fixated fewer times.

Subsequent model runs were compared on the basis of
these distributions. We wanted to be able to capture both the
magnitude of the proportions in both recency and frequency,
as well as the general shape of the distributions as proportions
gradually tapered o� for the higher N. Note that this collapses
across whether or not the item was a prior target.

Experiment Discussion

The results from the study indicated that the number of fixa-
tions to find a target is a�ected by (1) whether that label had
been a prior search target, (2) the recency of a label’s previous
fixation, and (3) the frequency of a label’s previous fixations.
Each of these e�ects contributes to the variability in VWM
capacity and precision. A label more recently encoded will
lead to the appearance of a larger VWM capacity and higher
VWM precision. Similarly, a label more frequently encoded
will lead to the appearance of a a larger capacity with greater

precision. In passive change detection, the probe is chosen at
random and may sometimes select a target that has neither
been recently or frequently encoded. This could naturally
lead to the perception of capacity and precision variability
of VWM. By looking at the selective attention process during
the search, we can more concretely point to the mechanisms
leading to this variability.

Model-based Analysis
Given the debate in the literature between slot based and con-
tinuous resource models of VWM, we chose to run a facto-
rial combination of models and search strategies. The three
classes of models were: No memory, Slot-Based Memory,
and Continuous Resource Memory. The search strategies
were either Nearest First or Random. For each memory-
strategy combination, scan-paths were generated for each of
the 20 searches within a trial. In all models, the assumption is
that once an object was visited, it was removed from the set
of possible next visits until the next target was announced.

No Memory Model
This model served as a theoretical baseline for the other mod-
els and searched the display for every search within a trial
without any memory for previous targets or distractors. In
the random search version, the model searched the display
in a random fashion. In the nearest first version, the model
allocated attention to the closest object to the one currently
being fixated. No parameters were varied in this model.

Slot-Based Memory Models
This class of models had a slot-based memory and the number
of slots available ranged from 0 to 10. Slots were instantiated
as a queue (FIFO) based on the human fixation history prior
to the current search (see Figure 4). Uncovering a label re-
instantiates slot 0 and pushes the labels contained in slot i
into slot i + 1. This corresponds closely to the R denotation
in the Recency human data analysis. At the beginning of ev-
ery search, the model queried its slot-based memory to de-
termine whether the target was already present in one of the
slots. If it was, the model immediately directed its attention
to the location of the target. If it was not in one of the slots,
the model searched the display in either a Random or Nearest
First manner. Only the number of slots parameter was varied
in this model type.

Figure 4. Slots are instantiated corresponding to the timeline
of fixations in the human data.
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Continuous Resource Memory Models
This class of models relied on human eye fixation history of
the trial prior to the current search, taking into consideration
both the time stamps of when the item was fixated and how
many previous fixations were made to the item. The ACT-R
memory equation (J. R. Anderson, 2007) was applied to each
of the items. It specifies the activation of a given item i in
memory as

Ai = ln
nX

j=1

t�d
i j + �i + ⇥i (1)

where j is a fixation on the item and ti j is a time stamp of
how long ago the item was seen on fixation j, �d is a decay
value, � is a base level constant o�set, and ⇥ is logistically
distributed transient noise with a mean of 0 and standard de-
viation of ⌅.

Activation of the target item was recalculated at the be-
ginning of each search and the model checked whether the
activation of the target was above threshold, T , and if so,
moved attention directly to the known location of the item.
If Atarget < T , then the model selected and encoded another
item based on either a random search or a nearest first strat-
egy. If the target item was still not found, activation was re-
calculated for the target at each additional movement of at-
tention.

Four parameters were varied in the context of ACT-R’s
memory equation (d, �, T , and ⌅) to find the best fit to the
human recency and frequency data using MindModeling.org
(Harris, 2008). In particular, we varied the parameters as fol-
lows: d: [0,1], �: [0,10], T : [0,20], and ⌅: [0,5]. This created
a total of 27, 951 combinations of parameters for each search
strategy.

Model Evaluation
Each of the above models was run through all trials (and
searches) obtained from human data. The ACT-R memory
equation uses recency and frequency information as sources
of activation for a given chunk in memory. Thus, we exam-
ined the human data as a function of both the recency and
the frequency of previous fixations to current targets. In this
case, recency refers to how many fixations ago the item was
last fixated, R with respect to the current fixation. For each
parameter set, summary statistics were calculated to deter-
mine the percentage of all trials on which the target was seen
R fixations ago or was previously seen F times and found in
N fixations. This resulted in 10 distributions for recency and
another 10 for frequency, each with 11 data points (one for
each N of fixations to find the target, see Figure 3 for human
data). Then Root Mean Squared Error (RMSE) and R2 scores
were calculated for each target recency curve and for each
target frequency curve.

A composite goodness-of-fit measure was created to com-
bine the R2 and RMSE measures to capture both the shape
and the magnitude of the di�erences between human data and
model predictions. Because best fits according to R2 are val-
ues closer to 1, and best fits according to RMSE are values

Table 1
Best fits for all model types.

Memory Strategy Composite Score*
Continuous resource Nearest first 0.07
Continuous resource Random 0.09
Slot (2) Random 0.35
Slot (2) Nearest first 0.36
None Nearest first 0.37
None Random 0.37
Note: *Lower composite scores indicate better model fits.

closer to 0, we re-scaled the R2 measure (1-R2) and computed
an average of all curves for each parameter setting.

The best fitting slot-based model was one which contained
2 slots (‘remembered’ the last two items previously fixated;
see Table 1). The best fitting continuous resource model
resulted from the following parameter settings: d=1, �=1,
T=10, and ⌅=4.0 (see Figure 5).

The no memory model established a baseline with which
the other memory models could be compared. As can be
seen in Table 1 and Figure 5, the continuous resource memory
model did a much better job of capturing human performance.
In particular, whereas a slot-based memory with 2 slots was
the best fitting in this particular class of models, it failed to
capture the shape of both the recency and frequency distri-
butions. The continuous resource model, on the other hand,
exhibited the bell-shape curve with gradual drop-o� seen in
the human data for both recency and frequency. Furthermore,
a nearest-first search strategy was marginally better at captur-
ing the e�ects than a random search model, suggestive of the
type of strategy participants may have used as they conducted
their search of the display.

We further evaluated the flexibility of all the model types to
determine how convincing the fits actually are (and whether
they could have been achieved merely by searching such a
large space). Model Flexibility Analysis (MFA) was used to
calculate the proportion of all empirical outcomes that each
model could have potentially fit (Veksler, Myers, & Gluck,
2015). Although the slot model only has one parameter (num-
ber of slots), it’s actually more flexible than the continuous
resource model which has 4 parameters. MFA revealed flexi-
bility for the slot model to be ⇧ = .14 and for the continuous
resource model to be ⇧ = .014. Thus the continuous resource
model makes more precise predictions and is less flexible.

Discussion & Conclusions
In the current work, we explored why variability in VWM
capacity may at times exhibit variable precision and capac-
ity. The new paradigm of repeated serial search allowed us
to more readily observe the specific shifts of visual attention
that occur during natural search. Human data suggests that
the variability in VWM precision and capacity is closely tied
to selective attention as search progresses.

Selective attention directly a�ects the ease with which sub-
sequent targets can be found, with both recency and fre-
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Figure 5. Model fits for best fitting slot and continuous re-
source models, nearest first search strategy.

quency playing a role. Items that were previously fixated
more recently resulted in faster search times and boosted the
likelihood of recalling the location of the target. Likewise,
items which had previously been fixated more often were eas-
ier to find. Importantly, there was a stronger mnemonic trace
for items which were previous targets as these items were
found faster than those which were only fixated as distractors
during previous searches.

We compared two models of VWM: a slot-based and a con-
tinuous resource-based model. In the case of the slot-based
model, the recency of an item’s encoding is taken into consid-
eration to facilitate subsequent searches. However, this was
not su⇥cient to account for the human data as it failed to
capture the shapes of the distributions in both recency and fre-
quency domains. A continuous resource model, on the other
hand, directly incorporated both e�ects of selective attention.
The continuous resource was instantiated as the item’s acti-
vation, computed by taking into account both the frequency
and recency of previous item fixations.

One limitation of the current approach is that none of the
models explicitly account for the stronger mnemonic trace for
prior targets. The continuous resource model could poten-
tially account for this di�erence by including an item’s fix-
ation duration in its computation of activation - target items
typically have longer fixations and more opportunity for re-
hearsal. While such models are beyond the scope of the cur-

rent work, they are an interesting avenue for future research.
Another possible concern is that humans may use an ‘adaptive
avoidance‘ strategy in which items known to not be the target
are actively not gazed at. Future work will need to address
the degree to which this type of strategy may drive behavior
in visual search.

In conclusion, the repeated serial search paradigm eluci-
dates the variability seen in VWM capacity and precision by
taking into account selective attention considerations. Fu-
ture work could apply the same continuous resource model
to other data sets to explore the robustness of the model in ac-
counting for various VWM results, as well as incorporating
potentially hybrid models which combine slots and continu-
ous resources.
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Abstract 

Associative learning is an essential feature of human cognition, 
accounting for the influence of priming and interference effects 
on memory recall. Here, we extend our account of associative 
learning that learns asymmetric item-to-item associations over 
time via experience (Thomson, Pyke, Trafton, & Hiatt, 2015) 
by including link maturation to balance associations between 
longer-term stability while still accounting for short-term 
variability. This account, combined with an existing account of 
activation strengthening and decay, predicts both human 
response times and error rates for the fan effect (Anderson & 
Reder, 1999). This represents the highest fidelity replication of 
a human experiment for modeling that we are aware of. 
Keywords: associative learning; interference; cognitive 
models; fan effects 

Introduction 
Associative learning is an essential component of human 
cognition, thought to be part of many mental phenomena such 
as classical conditioning (Rescorla & Wagner, 1972), 
similarity judgments (Hiatt & Trafton, 2013), and memory 
recall (Thomson, Pyke, Trafton, & Hiatt, 2015).  Despite its 
ubiquity, it is difficult to model directly due to its entangled 
ties to other aspects of cognition (e.g., memory decay). 
���������������������������$�������studied effect is that of 

priming (and its converse interference). Priming occurs when 
the retrieval of one memory facilitates the retrieval of 
another. Conversely, interference occurs when a memory 
primes multiple other memories instead of just the ones that 
are useful or relevant to the current situation. Those other 
memories are said to interfere with the useful one. When 
there is high interference, recognition accuracies are 
relatively lower and recognition response times relatively 
longer when compared to situations where there is low 
interference, ostensibly due to having lower overall 
activation in memory. Assuming that the degree of 
interference is positively correlated with the number of 
competing associations, then having more competing 
associations (i.e., a higher fan) will lead to relatively higher 
error rates and latencies than memories having relatively 
fewer competing associations. This effect is most popularly 
known as the fan effect (Anderson, 1974).  

In this paper we will extend our account of associative 
memory embodied in a cognitive architecture (Thomson, 
Bennati & Lebiere, 2014) to account for the fan effect 
experiment. This account of associative memory has already 
successfully predicted the complicated results of a multi-trial 
free and serial recall task, including asymmetric contiguity 
effects that strengthen over time (Thomson et al., 2015).  
Here, we extend our theory to include link maturation to 

balance associations between longer-term stability while still 
accounting for shorter-term variability. We then use the 
theory as part of a cognitive model that performs the fan 
effect experiment using the same stimuli and presentation 
times as the human participants.  

By doing this, we become the first theory of associative 
memory to explain how associations are learned and updated 
throughout the fan effect experiment. Previous models 
considered only associations at the end of the experiment 
(Anderson & Reder, 1999; Schneider & Anderson, 2012; 
Anderson, 1974; Rutledge-Taylor and West, 2008); our 
model enhances their understanding of associative memory 
by describing the process of how these end-state associations 
are reached.  

Associative Learning in Memory Recall 
Our account of associative learning is situated in the 
cognitive architecture ACT-R/E (Adaptive Character of 
Thought-Rational / Embodied; Trafton et al., 2013), an 
embodied version of the cognitive architecture ACT-R 
(Anderson et al., 2004).  ACT-R is an integrated theory of 
human cognition in which a ������������������������������
��������������������� �	���������� ���������!"# $%#&'()*+#
,-./00# /%1# 0/2-%.3# 1-4-%1# 5%# 26,--# 7/8%# .5745%-%29:#
/.28;/285%# 92,-%<26-%8%<+# /.28;/285%# %589-+# /%1# /995.8/28;-#
/.28;/285%"# # (6-9-# 26,--# ;/0=-9# /,-# 9=77-1# 25<-26-,# 25#
���������� ��� ������� ������ ������������ � 
���� �� ������� ���
,->=-92-1+# 26-# 82-7# ?826# 26-# 68<6-92# 252/0# /.28;/285%# 89#
,-2,8-;-1+# 9=@A-.2# 25# /# ,-2,8-;/�� ���������� ��� ��� �������
/.28;/285%#89#/@5;-#26-#26,-96501+#26-#,-2,8-;/0#89#9/81#25# !"#$%
/%1# %5# 82-7# 89# ,-./00-1"# (6-# 0/2-%.3# 5B# 26-# ,-./00# 89# /095#
�����������������������������������������������������#

Activation Strengthening 
ACT-	$�� ���-established theory of activation strengthening 
(also called base-level activation) has been shown to be a 
very good predictor of human declarative memory (Anderson 
et al., 1998; Anderson, 2007). Intuitively, activation 
strengthening depends on how frequently and recently a 
memory has been relevant in the past, and is calculated as: 

	% ? ��@� �&�#(
& � A    (1) 

where n is the number of times an element i has been accessed 
in the past, tj is the time that has passed since the jth access, 
and d is the learning parameter, �����!��������������$�������
of decay.  Importantly, this equation predicts that items that 
have occurred recently, or have been rehearsed more, are 
more likely to be recalled than those that have not. 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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Associative Activation 
In our account, associative strengths are learned, 
strengthened, and weakened over time as new elements are 
learned or prior elements re-experienced. These associations 
are learned between relevant working memory items within 
temporal proximity to one another, leading from earlier to 
later items (Thomson, Bennati, & Lebiere, 2014). The 
strength of the learned association (or how strongly an 
existing association is increased) is influenced by the amount 
of time that passes between when the items were each in 
working memory. If one item is immediately followed by 
another in working memory, they will become very strongly 
associated; on the other hand, if an item has been out of 
working memory for a while before another is added, they 
will be only weakly associated. Additionally, associations are 
asymmetric; an association can be stronger from an item i to 
an item j, for example, than the association from item j to item 
i (or, there could be no association from item j to item i at all). 

To balance the rate of associative learning between long-
term stability and short-term variability, link maturation was 
included as an additional parameter. Associative link 
maturation slows the rate of strengthening and weakening 
based on the number of times the link has been used. This 
supports long-term stability of well-experienced associative 
links while allowing for rapid short-term learning of new 
associative elements. In neural networks, maturation is 
equivalent to the process of settling to reach a stable 
equilibrium (Wills et al., 2005; Eliasmith, 2005). Maturation 
is set using a logistic function: 

    � ? � > �
��$+B,-B:4539/6.76:3<:C�02:;82:47612:3C   (2) 

The maturation rate controls the steepness of the curve, or, in 
other words, controls how quickly links will stabilize.  

To compute associative strength from an item j to an item 
i, the learning mechanism computes an increment Iji: 
�����&% ? �� � � � �         (4) 

where lr is a learning rate parameter, w is the weight of the 
increment determined by the strength of the items in working 
memory (scales from 0 to 1), M is maturation, and R is 
refraction. This increment is used to update link strength as 
follows: 
�����&% ? �&%"*%)* � @� > �&%A = B�&% � ���)       (5) 

where is the strength of the link from j to i, SjiPrior is the prior 
strength of Sji, Iji is the learning increment from above, and 
mas is a parameter controlling the maximum possible 
associative strength. 

When a new link is learned or existing link updated that 
shares a source j with other existing links, then each of those 
other links are discounted proportionally to the weight that 
the original link is updated (e.g., Sji is updated so Sjk is 
discounted): 
������&' ? �&'"*%)* � @� > �&'A        (6) 

where Ijk is computed using the weight from the link from j to 
i, but using the maturation M from the link from j to k. 
Equation 6 normalizes the amount link j to k is discounted 
based on the degree to which it has settled. This allows for 

newer links to rapidly change while providing for long-term 
stability for more mature links.  

This discounting function attenuates link strengths 
consistent with interference accounts of memory. As more 
concepts compete in memory, the amount of associative 
strength from each concept is reduced. In a balanced 
environment, this discounting will approximate the statistical 
likelihood B���), which is the odds of perceiving or 
retrieving i immediately prior to j. 

Armed with an understanding of our modeling framework, 
we now turn to the fan effect experiment itself. 

The Fan Effect Experiment 
To understand the fan effect, we consider Anderson and 
Reder (1999) classical fan experiment They capture the fan 
effect in a recognition task where participants begin by 
learning 48 pairs of people and places. Persons and places 
could appear in multiple pairs, and each pair was shown for 
five seconds. Then, during testing, participants respond yes 
(target) or no (foil) to whether presented statements were 
previously studied: the person is in the place �������#����hippie 
is in the park$). In the testing phase, participants were 
provided a monetary reward based on their total score. The 
score was computed by providing 1 point for each correct 
response, plus an additional point for each 100 ms of response 
times faster than 1500 ms. This induced a speed-accuracy 
trade-off into the experiment. 

The experiment proceeded according to three phases: a 
study phase, drop-out training, and then a testing phase. In 
the study phase, each stimulus pair was presented once on the 
screen for 5 seconds. In the drop-out training phase, 
������������  ���� ����������  ���� ���������� #
��� ��� ��� ����
location�$� ���� #
����� ��� ���� person�$� ������������ ���� ���
respond with all persons associated with the location (or vice 
versa). Participants had to correctly answer all these 
questions for person and location to complete the phase. 
Participants completed two of these drop-out training phases. 
Finally, in the testing phase, participants would respond yes 
or no ��� �������� #���� person was in the location$�  ����
participants receiving feedback on their response.  

The experiment manipulated the test stimuli in two 
different ways. The first was to manipulate the fan of the 
persons and places. In this experiment, fan is the number of 
persons associated with a place, and vice versa. Fan is 
controlled by varying the number of persons in each place, or 
the number of places with each person (e.g., #����hippie is in 
the bank$����#����soldier is in the park�). Here, the fan of one 
term (person/place) was fixed at 2, while the fan of the other 
term (place/person respectively) was varied to be either 2 
(low-fan) or 4 (high-fan).  

The second manipulation was to control the composition of 
the set of test stimuli shown to participants by manipulating 
different target and foil conditions. There were four target 
conditions: facilitation, interference, suppression and control. 
In the facilitation condition, each target (e.g., #the biker is the 
tower$�� ���#����������$��!�������repeated 5 times each in the 
stimuli set. In the interference condition each target was 
repeated only one time in the stimuli set, and was considered 
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�����������������������������$�����������������overlapped 
with a target from the facilitation condition (i.e., #the biker is 
in the factory$, or #the doctor is in the tower$).  

The other two conditions were the suppression and control 
conditions. In these conditions, each target appeared once in 
the stimuli set, and consisted of facts that were seen in the 
interference (but not facilitation) condition, such as factory 
and doctor in the above examples. Examples of suppression 
targets included: #the writer is in the factory$, and #the doctor 
is in the bank$. Due to a particularity in the original study, 
there is limited difference between suppression and control 
stimuli, because the controls were designed such that they 
would functionally suppress stimuli from the suppression 
condition (e.g., #the monk is in the bank$). They are different 
insofar as the suppression stimuli were effectively two steps 
removed from the facilitation condition, while the control 
trials were effectively three steps removed.  

Foils were classified according to three conditions: high-
frequency foils, which used person/place concepts from the 
facilitation condition but with novel pairings, and were 
repeated 4 times each in the stimuli set; low-frequency foils, 
which had novel pairings of person/place concepts from the 
interference, suppression, or control conditions and appeared 
once each in the stimuli set; and mixed foils, which created 
novel pairings using one high-frequency concept from the 
facilitation condition and one low-frequency concept from 
the interference, suppression, or control conditions and were 
repeated only once in the stimuli set. In total, there were 48 
target sentences and 54 foil sentences in the stimuli set. 

The test stimuli set was presented three times in successive 
blocks, and all stimuli were presented in each block. 
Feedback was provided for 1 second ������ �����������$�
responses, with an additional 1 second inter-trial interval1.  

The results of this study were consistent with interference 
effects: there were longer latencies and more errors in the 
high-fan (i.e., fan of 4) conditions relative to the low-fan (i.e., 
fan of 2) conditions for both targets and foils, with both high-
frequency (i.e., facilitation) targets and foils having relatively 
higher accuracy and quicker latencies than their 
corresponding low-frequency counterparts. They also 
predicted lower relative accuracy in the interference 
condition relative to the suppression and control conditions, 
and no difference between suppression and control.   

Prior Modeling of the Fan Effect 
There have been several attempts to mathematically model 
fan effects (Anderson & Reder, 1999). Most prominent is 
Anderson and 	����$��(1999) model whose equations were 
grounded in the ACT-R cognitive architecture (Anderson and 
Lebiere, 1998). This model can be broken down into three 
related equations.  

 

�&% ? � = ���B�����&�C  (7) 
�% ? 	% = � �&�&%& �   (8) 
� ? � = 
��!4    (9) 
 

                                                           
1 This 1 s ITI was not listed in the Anderson & Reder (1999) 

paper, however it was reported in subsequent research.  

Equation 7 describes the spread of activation (Sji) from 
element j to i as a function of associative strength intercept S 
attenuated by the fan of j, which is the number of concepts to 
which j is associated. In Equation 7, �����&�is a 
simplification of B���) assuming equal frequencies of i and 
j. In Anderson and Reder, frequencies were not equal, and 
were instead set ahead of time according to the objective 
probabilities in the model. Equation 8 relates an activation 
function Ai to the base-level activation from Equation 1, and 
the sum of spreading activation from Equation 7 multiplied 
by an attentional weigh Wj. Prior efforts set Bi to 0 on the 
assumption that the drop-out testing would balance out base-
level activation between stimuli. 

Finally, Equation 9 computes retrieval time T based on an 
intercept I, time scale offset F, and the activation function Ai 
from Equation 3. The estimates for each parameter were as 
follows: I was 1197 ms, F was 773 ms, S was 2.5 ms, and W 
was .33 ����������� ��� �����  ��������� ��� #person$ #in$ 
#place$). Using these parameters, Anderson & Reder report a 
strong correlation with response times, r = .956. This model 
did not attempt to fit error patterns. 

This model, while successful, does not focus on modeling 
both latency and error rates, which we believe is an important 
part of understanding priming and interference in associative 
learning. While describing nicely the final average 
performance of participants, they provide little intuition for 
how participants learn the associations via experiencing the 
task. For instance, Equation 7 uses a fixed value for each 
condition that does vary.  

In contrast, our approach grounds our account of 
associative learning within the larger ACT-R/E architecture 
along with the constraints it places on cognition (Trafton et 
al., 2013) by using a production system simulating the time-
course of perception, encoding, retrieval, and response. Once 
base-level activation is included as a factor, then the time-
course of stimulus presentation and training becomes 
important in determining overall accuracy and response time. 
This added fidelity (and complexity) may test assumptions 
made in prior modeling efforts, and also may provide new 
insights or hypotheses about how participants learn the task. 

To that end, our model performs the experiment analogously 
to participants, and learns associations over time. This 
supports our theory of associative memory explaining how 
associations are learned and adapt over time. 

Learning the Fan Effect 
The model starts with only background knowledge of the 
words used in the experiment and is equipped with the 
procedural knowledge necessary to perform the experiment. 
It has no underlying knowledge of the concepts of person and 
place, and thus has no knowledge of targets or foils. As we 
have said, the model is presented with the same experimental 
paradigm as the human participants.  

The model uses the same procedural knowledge at the start 
of each phase to perceive the person and place concepts: 

54



when it sees two concepts on the screen together, then they 
are linked into a common concept-pair, with each constituent 
person and place priming the concept-pair. This concept-pair 
is represented in memory as a single chunk of information 
containing three features: person, place, and was-target. 
Was-target is a binary true/false decision, where true 
indicates that the stimulus was a target and false indicates 
that the stimulus was a foil. 

The external environment is a simulated computer screen. 
When perceiving stimuli, the model randomly encodes one 
symbol first and then the other. The model categorizes these 
symbols according to two features: person-symbols and 
place-symbols. These representations are functionally 
identical and are distinguished only for lexical purposes to 
simply categorize incoming words. Since stimuli are of the 
�����#����person is in the place$� ����������������-symbols 
on the left of the display and place-symbols on the right of 
the display.  

When a concept-pair is learned or updated, then the 
associative strengths between the person/place concepts and 
the pair is strengthened while the strengths between the 
concepts and their other related concept-pairs are weakened. 
Since concepts are related to more concept-pairs on high-fan 
trials than on low-fan trials, high-fan concepts tend to have 
lower associative strengths to their related concept-pairs than 
low-fan concepts. This lower associative strength predicts 
that concept-pairs involving high-fan concepts will have 
slower response latencies and increased error rates.  Also, 
since high-frequency stimuli have been seen more often, their 
strengths will be stronger than low-frequency stimuli, 
however maturation controls the degree to which these 
stimuli increase in strength (e.g., a link seen 4 times as often 
is not 4 times as strong). 

In the study phase, the model automatically encodes all 
concept-pairs as targets. After encoding the stimuli and 
generating a concept-pair representation, the model then 
repeats this encoding until the stimuli are no longer presented 
on the display, averaging 2-3 rehearsals over the 5 second 
presentation time. 

In the drop-out training phase, the model perceives either a 
person or place and attempts to retrieve all places where that 
person is (or all persons in that place). If the model correctly 
perceives all required elements then the model moves onto 
the next stimulus, otherwise it studies those stimuli again and 
returns to the drop-out training. Once the model has 
successfully retrieved all elements in both run-throughs of the 
query phase, the test phase begins. 

The test phase is the critical phase where all response times 
and error rates were recorded. Similar to the study phase, the 
model begins to encode the concept-pair for person and place 
as an analogue to perceiving: was person in the place? The 
model then attempts to retrieve any decision containing said 
person and/or place. This decision is a prior concept-pair 
stored in memory including person, place, and the critical 
was-target decision. A response is then generated according 
to the following criteria: 1) if the model is unable to retrieve 
any concept-pair due to all pairs being below threshold, then 

it responds foil; 2) if the model correctly retrieves the 
matching person, place, and was-target decision then it 
responds with the respective decision: target for true and foil 
for false; or 3) if the model retrieves a mismatching concept-
pair containing one person or place but not both, then it 
assumes that the response is a target. After the model 
responds it receives feedback, which it uses to encode the 
correct concept-pair. This includes encoding foils, which 
allows the model to be capable of correctly retrieving that an 
item was a foil seen in an earlier testing phase. This is a 
unique behavior of our model and reflects the fact that 
������������������#������$�������������!$�����������������
����������������������!$��������  

Finally, if the model was incorrect or had retrieved a 
mismatched element, then for the feedback period it rehearses 
the correct response. This process is repeated across all trials 
through three test phases.  

In the testing phase, response times are recorded from the 
stimulus onset time until the model has responded with the 
appropriate decision (target or foil). It is important to note 
that as a fully-implemented production system model, the 
complete time to respond include two relatively fixed 
durations: approximately 600 ms to encode the stimuli from 
the display, and approximately 350 ms to prime the motor 
command and press the response key. This is in a similar 
range to the structural offset I of 1197 ms that Anderson and 
Reder (1999) used in Equation 9. This means that fan effects 
in latencies occur mainly in the approximately 200 ms " 800 
ms timeframe where the concept-pairs are retrieved. It is the 
retrieval of the concept-pair that determines fan effects in 
both latencies and accuracy. 

One final difference between the present model and prior 
efforts is that our model incorporates base-level activation Bi 
(see Equation 8), but replaces the Sji from Equation 7 with our 
learned Sji from Equation 5. As previously mentioned, base-
level activation reflects the recency and frequency of use of 
elements, and it is not a given that base-level would be 
equivalent for items across the different target and foil 
conditions, especially for the high-frequency vs. low-
frequency elements where frequency is necessarily varied. 

Results 
The present model was run for 200 iterations with the 
parameters described in Table 1 below. As is apparent from 
Figures 1 and 2, the model qualitatively captured fan effects 
in both accuracy and latency, respectively, reflected by 
slower response times and higher error rates for high-fan 
concepts compared to low-fan concepts. We also predicted 
relatively higher accuracy for high-frequency conditions 
(facilitation for targets and high-frequency for foils) to the 
rest of the conditions; lower accuracy in the interference 
condition relative to the control and suppression conditions, 
and no difference between suppression and control target 
conditions. One difference is that we predict a smaller 
average fan (.03 s instead of .09 s) than did Anderson and 
Reder (1999).  

 

55



Table 1. Parameters used in Fan Effect Experiment 
PARAMETER VALUE 
Base-Level Learning (Bi) .4 
Learning Rate (lr) 1.1 
Maturation Rate (M) .5 
Maximum Associative Strength (mas) 7.25 
Mismatch Penalty 4 

 

The model fits target accuracy with an r = .83. Interestingly, 
the source of errors is different between targets and foils. 
Target errors are due to failures in retrieving any concept-
pairs, whereas foil errors are due to confusing foils with 
previously seen similar stimuli.  
 
Table 2. List of Average Base-Level Activation (Bi) and 
Average Associative Strength per Link (Si) per Condition 
across Drop-Out Training and Testing.  

 Drop Test 1 Test 2 Test 3 
 Bi Si Bi Si Bi Si Bi Si 
F2 .44 1.33 .54 .97 .73 .91 .86 .82 
F4 .91 .69 .87 .55 .83 .48 .97 .44 
I2 .40 1.34 .25 .99 .59 .94 .59 .86 
I4 .70 .70 .11 .58 .40 .60 .60 .47 
S2 .32 1.35 .11 1.03 .67 1.00 .34 .95 
S4 .41 .72 .26 .61 .53 .60 .40 .49 
C2 .47 1.40 .08 1.17 .25 1.05 .35 .98 
C4 .44 .71 .37 .59 .60 .52 .60 .52 
L2 N/A N/A .13 1.06 .57 1.00 .40 .92 
L4 N/A N/A -.65 .57 .29 .60 .47 .48 
M2 N/A N/A -.57 1.08 .42 1.01 .44 .92 
M4 N/A N/A -.15 .61 .38 .52 .25 .51 
H2 N/A N/A .63 3.21 .75 3.22 .78 3.20 
H4 N/A N/A .47 2.65 .55 2.69 .55 2.71 

Discussion 
The present model describes the emergence of fan effects in 
both accuracy and latency using a theory of associative 
memory including an account of interference by discounting 
link strengths. As more stimuli (persons or places) are 
presented together (or within a short temporal window) they 

����������  ���� ���� �����$�� ����������� ���������� �educing 
overall activation. This has the effect of lowering overall 
accuracy and increasing response times. While prior 
explanations (Anderson & Reder, 1999; Schneider & 
Anderson, 2012) have presented good fits to static human 
performance, the present model learns both base-level 
activation (reflected recency and frequency of use) and 
associative weights throughout the entire experiment 
(including the testing phase) and predicts the presence of fan 
effects in both latency and accuracy across all target and foil 
conditions.  

An advantage of modeling the fan effect experiment at this 
higher level of fidelity is that we are able to assess some if 
the assumptions made in prior modeling efforts. Most 
interesting is that, while the assumption that base-level would 
be similar between high-fan and low-fan stimuli, while this 
was valid (see Table 2) in aggregate, base-levels were highly 
variable between conditions and throughout the task. The 
present model was able to qualitatively match to human 
performance with associative activation strong enough to 
compensate for the differences. 

While not obvious when examining end-state models, the 
average activation of concept-pairs between conditions (see 
Table 2) changes throughout the testing phase. Many models 
assume a fairly plastic study/learning phase and a fixed 
testing phase; however, our model learns throughout the 
experiment. For instance, the added interference from 
learning novel foils reduces the activation of targets, 
especially in the interference condition.  

A potential concern that our model addresses that was foils 
were not encoded in Anderson and Reder (1999) when they 
were perceived. It seems odd that stimuli seen in training 
were encoded while stimuli seen in testing were not. For 
instance, when a novel foil is perceived it does not increment 
the fan of targets. For instance, if a studied fan-���������#����
biker is in the factory$ was tested after perceiving the novel 
����� #����hippie is in the factory$ then that fan-4 place term 
#factory$ should in fact be incremented to be a fan-5 place 
term. In our model, the notion of fan-4 or fan-5 is solely for 
classification purposes of the various conditions. Link 

Figure 1. Latencies across target and foil conditions. Target 
conditions are Facilitation, Interference, Suppression, 
Control. Foil conditions are Low, Mixed, and High Foils. 
 

Figure 2. Error rates across target and foil conditions. Target 
conditions are Facilitation, Interference, Suppression, 
Control. Foil conditions are Low, Mixed, and High Foils. 
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strengths vary based on their use in the experiment. What is 
important is not whether an item is a fan-2 or fan-4 stimulus, 
but to what degree biker and factory prime the sentence (c.f., 
concept-������#����biker in the factory.$ 

While the present model was able to predict fan effects in 
all conditions, it predicted a much faster response time for 
high-frequency targets and foils than humans exhibited. This 
was because the added frequency increased base-level 
activation too quickly. As seen in Table 2, associative 
strength was comparable between the high-frequency 
facilitation condition and the low-frequency interference/ 
suppression/control conditions. The difference was the 
higher base-level activation. The traditional activation 
equation (Equation 8) sums both base-level activation and 
associative strength, but it may be the case that the relative 
weighting of these factors changes over time based on some 
features of stimuli (such as relative strength, familiarity, or 
some other metacognitive feature). While the existing 
equation is well-justified in the literature, the inclusion of an 
adaptive frequency-based associative learning component 
replacing the fixed Sji (Equation 7) may change the 
underlying balance between base-level and associative 
strength.  

Another difference between the current model and human 
performance is that our model did not model speed-accuracy 
trade-offs reflecting the time-pressure based reward system 
of the original experiment. ACT-R does not have a 
mechanism to distinguish recognition from recall, and recall 
is an all-or-nothing event, thus it was not possible to have a 
meta-awareness of stimulus familiarity build-up throughout 
the retrieval process, something which could be leveraged to 
induce speed-accuracy tradeoffs. This speed-accuracy trade-
off may result in relatively faster performance in the low-
frequency conditions as �����������$� ���������� ��� ��������
��!������ �����������������$��� 

It is fair to argue that our model is substantially more 
complex than prior efforts, but we argue that this complexity 
is necessary to understand how fan effects arise from 
learning. By having our model perform the study equivalently 
to human participants and by having participants learn 
associative weights throughout the experiment, we present a 
model that supports our theory of associative memory and 
explains how associations are learned and adapt over time. 
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Abstract

One challenge to creating realistic cognitive models of memory
is the inability to account for the vast common sense knowledge
of human participants. Large computational knowledge bases
such as WordNet and DBpedia may offer a solution to this
problem, but may pose other challenges. This paper explores
some of these difficulties through a semantic network spreading
activation model of the Deese-Roediger-McDermott false mem-
ory task. In three experiments, we show that these knowledge
bases only capture a subset of human associations, while
irrelevant information introduces noise and makes efficient
modeling difficult. We conclude that the contents of these
knowledge bases must be augmented and, more importantly,
that the algorithms must be refined and optimized, before large
knowledge bases can be widely used for cognitive modeling.
Keywords: False Memory; Spreading Activation; Knowledge
Base.

Introduction
The modeling of human memory phenomena has a long
history, from equations describing the strength of individual
memory elements over time, to the embedded memory
subsystems in modern cognitive architectures. One limitation
of memory models, however, is their failure to account for
how experimental subjects do not come into the laboratory as
a blank slate, but with a large set of common-sense knowledge
and facts about the world, as well as associations built up
from individual experience. This background knowledge is
impossible to fully elicit from subjects and often omitted from
computational models. As a result, these models are over-
simplified and may fail to account for phenomena in which
the contents of memory play a role.

At the same time, the increasing number of artificially
intelligent agents that operate in knowledge-rich environments
has led to the development of large computational knowledge
bases. Knowledge bases such as WordNet (Miller, 1995)
and DBpedia (Bizer et al., 2009) endow artificial agents
with lexical and conceptual knowledge, allowing them to
perform human-like reasoning. These collections of semantic
knowledge, in a form that can be incorporated into the long-
term memory of cognitive architectures, present an opportunity
to build models that match real human memory in scope and
scale. Recent work has adapted DBpedia for factual question-
answering in the ACT-R architecture (Salvucci, 2015), a task
for which the knowledge base is well suited, as it mirrors the
use of DBpedia in artificial intelligence research. Whether
knowledge bases can be used to model cognitive phenomena
outside of reasoning and inference, however, remains an open
question.

In this paper, we explore some of the challenges that
researchers may face when incorporating large computational

knowledge bases into a cognitive model. Specifically, we
use WordNet and DBpedia to model the formation of false
memories through human associations in the Deese-Roediger-
McDermott (DRM) paradigm (Roediger & McDermott, 1995).
We selected the false memory task specifically because it
involves a broad range of knowledge that large knowledge
bases could provide, while requiring associations for which
WordNet and DBpedia may not be particularly well suited.
The partial success of our model suggests that while large
knowledge bases hold promise for general cognitive modeling,
they present representational and algorithmic challenges that
have yet to be overcome.

Background
The DRM task is a well-known procedure for inducing false
memory in humans. Participants are told they are part of a
memory experiment and presented with a list of fifteen stimuli
words at a moderate pace. After the presentation, participants
are occupied with a filler task, before being given two minutes
to recall as many words from the list as possible. Crucially,
the list of words are not random, but are all associated with a
lure, which itself does not appear on the list. For example,
for the lure “needle”, the list of words presented to the
participants includes “pin”, “sharp”, “prick”, “haystack”,

“thorn”, “cloth”. (All words in a DRM list will be in quotes and
italicized, with the lure words underlined; all other words will
be in quotes but unitalicized.) The result is that experiment
participants will recall the lure at roughly the same rate as
the stimuli words, and will further report that the lure was
presented – a false memory. After a break, another list built
around a different lure is presented, for 36 published false
memory word lists (Stadler, Roediger, & McDermott, 1999).
In the original study, participants recalled 62% of the stimuli
words, and falsely recalled the lure 55% of the time.

In a different publication (Roediger, McDermott, & Robin-
son, 1998), the authors suggested that this phenomenon could
be explained through a spreading activation mechanism. They
hypothesized that the semantic concepts represented by the
stimuli words are connected in a semantic network; nodes in
the network represent concepts, while edges between nodes
represent an association of some kind. Thus, every word on
a DRM list would be connected to the lure, possibly with
additional connections between stimuli words. Each word
would also have an activation value that represents its salience
at any particular time; the higher the activation, the more likely
that concept will be recalled at that time. When a stimuli
word is presented, it is hypothesized that not only is the
activation of that concept boosted, but so is the activation

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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of associated concepts, including the activation of the lure.
The presentation of multiple stimuli words would boost the
activation of the lure multiple times, causing its activation at
the end of the presentation phase to be indistinguishable from
the activation values of the stimuli words. Then, during the
recall phase, words with the highest activation are recalled.
Since participants could not determine whether the high
activation of a word is due to its presentation or due to
spreading activation (a source monitoring failure), they report
the lure as having been presented.

Although spreading activation is an intuitive and appealing
explanation for how false memories are induced in the DRM
paradigm, creating a cognitive model of the task requires
capturing human associations between words. The breadth
of the stimuli and lure words – which range from everyday
objects such as “window” and “pen” to relatively obscure
words such as “sash” (a type of window) and “Cross” (a pen
company) – makes the creation of a comprehensive model
challenging. Traditional word-association paradigms cannot
cover a sufficiently large range of words, even when converted
into a “game with a purpose” and crowd-sourced to players on
the internet (Hees, Khamis, Biedert, Abdennadher, & Dengel,
2013).

A previous model of the DRM task estimated word
associations from co-occurrence information in a text corpus,
using the latent semantic structure to “recall” words that
are semantically similar to the stimuli words (Johns &
Jones, 2009). As the authors themselves noted, these lexical-
semantics techniques only capture the structure of memory at
best, but do not shed light on the recall processes. While
the resulting model leads to good fits for the stimuli and
lure recall rates from the original study, the computational
linguistic techniques used were not designed to model recall
tasks, requiring a convoluted process for generating the lure.
Furthermore, these models cannot accommodate complex
reasoning with the encoded concepts, meaning that the
knowledge captured by these associations is unusable for
modeling human inference.

This paper instead directly tests the original hypothesized
spreading activation mechanism, using large computational
knowledge bases as the semantic network. The assumption
is that the organization of these knowledge bases naturally
encode association information, with more strongly associated
concepts represented by nodes separated by a shorter network
distance. Gleaning association information from computa-
tional knowledge bases would be a step towards the ideal
of a single source of semantic knowledge that can be broadly
used to model both human associations and inference.

Model Description
This section first describes the relevant components of the Soar
cognitive architecture, before describing the model built using
Soar.

Soar’s working memory contains knowledge that is avail-
able for immediate reasoning. Working memory is represented

as an edge-labeled directed graph, which is matched on and
modified by procedural rules. In addition to knowledge in
working memory, Soar has a long-term semantic memory,
which contains general knowledge about the world. Each piece
of knowledge (a node) in either memory is known as a memory
element, Knowledge in semantic memory must be retrieved
into working memory before it can be used. To do so, a Soar
agent must create a cue that describes features of the desired
piece of knowledge. Each element in semantic memory is
associated with a base-level activation value, which reflects the
recency and frequency of the retrieval of the element. The more
recently and frequently an element is retrieved, the higher its
activation value; however, the activation automatically decays
over time. When the agent creates a cue, semantic memory
returns the most-activated memory element that matches the
cue, and places it in working memory to be matched on by
procedural rules.

Spreading activation, as the hypothesized mechanism that
leads to false memories, operates on the knowledge in
semantic memory. Unfortunately, there is no standardized
spreading activation algorithm, nor is there consensus on
the meaning of spreading activation. In Soar, every retrieval
of a memory element not only boosts the activation of that
element, but also boosts the activation of neighboring elements
in semantic memory, hence “spreading” the activation (Li &
Laird, 2015). The number of elements that receive a boost is
implicitly defined by a maximum spreading depth parameter,
with a spreading depth of zero meaning that only the retrieved
element receives a boost. All neighboring elements (regardless
of edge direction) receive the same boost – the effect is
not attenuated by distance, nor are there differential effects
due to the strength of the connection between elements. In
fact, the boost due to spreading is indistinguishable from the
boost received by the element retrieved; both changes are to
the base-level activations of the elements and will therefore
affect future retrievals. This is notably different from the
spreading activation in ACT-R, which comes from elements in
working memory, is considered separately from the base-level
activation of memory elements, and only affects the current
retrieval. Since the sources of activation (the stimuli words)
are not present (not in working memory) at the time of recall
in the DRM task, our model uses Soar’s spreading activation
mechanism in order to take advantage of its temporal extent.

Agent Description
A Soar agent plays the role of an experimental participate in
our model. Before a list is presented, the agent’s semantic
memory is pre-loaded with the knowledge base for the
experiment. The base-level activation of each element is
uniform and is not initialized, as there is no consistent method
of doing so for all three database. Once the database is loaded,
the agent is sequentially presented with the stimuli words
as strings. The agent must then retrieve the element that
represents the associated concept from semantic memory,
causing activation to spread to neighboring elements. Only
after this retrieval is the next stimuli word presented, at which
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point the agent removes all previous elements from working
memory. After all fifteen words from a list have been presented,
the agent enters the recall phase. It retrieves the fifteen most
activated words (without repetition) from semantic memory,
from which the recall statistics are calculated. The semantic
memory of the agent, including the activation of the elements,
is then reset for the presentation of the next list.

We note two caveats to this agent. First, the base-level
activation of each element in the knowledge base is not
initialized. Selecting the initial activation is a non-trivial
problem. Using the number of connections from each element
(Salvucci, 2015) means that activation levels are not consistent
between knowledge bases, while using frequency information
from a text corpus (Johns & Jones, 2009) may require
manually mapping concepts to all their synonyms. For this
paper, we do not believe the lack of initialization is the main
cause of model error; as we explain in the general discussion,
the difficulties do not come from differences in retrieval order,
but from whether the correct elements and connections exist
in the knowledge base at all We acknowledge, however, that
initializing activation is an important part of memory models
not captured here, and more exploration into robust algorithms
for consistently initialization activation across knowledge
bases may be necessary.

The second caveat to our agent is the design of the recall
phase. In the human experiments, the participants were given 2
to 2.5 minutes to recall as many words as possible. In contrast,
the agent in this model only retrieves the first 15 words,
equivalent to a retrieval every eight seconds – a slow but not
unreasonable rate. Using ACT-R’s simulated retrieval times to
approximate the procedural constraints would likely lead to the
opposite problem of too many recalled words, since retrievals
take less than a second by default (even with additional time for
rule firings). Additional memory mechanisms – perhaps rules
for determining whether a retrieved word should be reported
as a stimuli – may be needed to model the DRM task with
higher fidelity.

Metrics
We are interested in two key metrics that were used in the
original false memory study:

• The stimuli recall rate, which is the proportion of stimuli
words recalled after the presentation of a list, averaged over
all 36 lists. The original study reports a stimuli recall rate
of 62%, meaning that on average participants recalled 62%
of the fifteen words in a list.

• The lure recall rate, which is the proportion of the 36 lists in
which the lure was (falsely) recalled. Note that this metric is
about a proportion of lists, and not about a proportion of the
stimuli words in a list, and thus has no direct relationship
to the stimuli recall rate. The original study reports a lure
recall rate of 55%, meaning that on average participants had
a false memory of the lure on 55% of the lists.

Before we describe the three experiments with different

knowledge bases and their results, we reiterate that the goal of
this work is not necessarily to perfectly model the stimuli and
lure recall rates. We are not looking for the exact depth limit to
spreading activation that should be used in future false memory
models. Rather, the experiments below should be seen as an
exploration of some of the challenges that cognitive modelers
may face when attempting to leverage large knowledge bases,
especially on tasks for which the knowledge bases are not
designed. Towards this goal, while the metrics above provide
a rough sense of the goodness of fit, the discussion for each
experiment is more focused on properties of the knowledge
base that led to those results.

Experiment 1: Hand-crafted Network
The goal of this experiment is to validate spreading activation
as a viable explanation for false memory in the DRM task.
The semantic network used in this experiment was created
manually from the words in the “needle” and “doctor” lists.
For each list, the fifteen stimuli words are all connected
to the lure, with additional connections created based on
whether the words are intuitively and informally associated.
For example, “pin”, “thimble”, and “prick” are all connected,
while none of the three are connected to “haystack”. Finally,
four connections were added between the stimuli words of
the two lists, such as “injection” (from the “needle” list) and

“medicine” (from the “doctor” list) and “hurt” and “sick”, for
a total of 109 edges between 32 nodes. It is important to note
that the resulting network is representative of how semantic
networks are depicted in non-computational literature.

Only the “needle” and “doctor” lists were presented using
this network, with an activation decay rate of 0.5 and a
spreading depth limit of 1. The results for both lists are
similar. The lure is the first word to be retrieved (as it has the
highest activation), with the stimuli words for the list retrieved
afterwards. As would be expected, since activation spreads
only to the immediate neighbors of the stimuli words, the four
words that bridge the two lists are also activated, but not the
lure of the not-presented list

Although only two lists are used for this experiment, there
is no reason to believe that the results would not generalize
to similar hand-crafted semantic networks for the other lists.
The quantitative results cannot be meaningfully compared to
the stimuli and lure recall rates of the original study; however,
the qualitative results are in line with the description that the
lure is more highly activated than some stimuli words. While
there is a tendency for words towards the end of a list to
be retrieved first – as would be consistent with the decay of
activation over time – the actual order of words retrieved is
also affected by the structure of the semantic network due
to spreading activation. Since the retrieval order would once
again be different if the activation was initialized with other
information, the rest of this paper does not consider the order
in which words are retrieved. Regardless, this experiment
suggests that spreading activation on a naive semantic network
could cause the retrieval of the lure, which in this model
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indicates the formation of a false memory.

Experiment 2: WordNet
WordNet (Miller, 1995) is a database containing lexical
knowledge, and is widely used both independently (for tasks
such as parsing and word sense disambiguation) as well as
in conjunction with other knowledge bases and ontologies.
Nodes in WordNet represent not only words and phrases (for
example, “sewing needle”), but also additional information
about the meaning of those words, including word meanings
(senses), synonym sets (synsets), antonyms, and certain types
of entailments (for example, buying entails paying, so “buy”
is connected to “pay”). WordNet nodes that represent words
can be identified by an outgoing edge labeled string, which
links to a string representation of the word; these edges do
not exist for other concepts (such as synsets). The version of
WordNet imported into Soar’s semantic memory contains over
474,000 nodes and 1.7 million edges.

The Soar agent used in this experiment is roughly the same
as the one used in the first experiment. The only difference is
in the recall phase, when the agent restricts the retrievals to
words by specifying the string edge in the cue. All words
from the DRM lists are used as is, with the exception of “Bic”
and “Cross” from the “pen” list. These pen companies do not
exist in WordNet and were excluded from the experiment; the

“pen” list therefore only contains thirteen stimuli words.
For this experiment, separate trials were run for different

spreading depths (1 through 6) and different decay rates (0.25,
0.5, 0.75, 0.9).

Results
The overall results are shown in Figure 1. For each parameter
setting, we plot both the stimuli recall rate and the lure recall
rate, as well as average proportion of recalled words (out of
15) that are neither stimuli words nor the lure (which we shall
call external words). The human data from the original DRM
study is shown for comparison; the results for depths 1 and 2
are left out for reasons explained below. Across all parameter
settings shown, the stimuli recall rate ranges from 9% to 41%,
well below the reported rate of 62% in humans, while the lure
recall rate ranges from 0% to 72%, compared to the reported
rate of 55% in humans. In particular, using the ACT-R and
Soar default decay rate of 0.5, a spreading depth of 5 results
in a lure recall rate of 56%. In general, however, no parameter
setting accurately matches human data on both stimuli and
lure recall rates.

For spreading depths of 1 and 2, the stimuli words were
consistently retrieved, while the lure was never retrieved. Upon
examination, this is because WordNet is structured with most
words only being connected through word senses and synsets.
The node representing “thorn”, for example, is connected to
three word senses, each of which is connected to a synset –
which means that, within a network distance of two, “thorn”
is not connected to any words at all, never mind the lure

“needle”. Since the retrieval cue used by the agent limits results
to words, the retrieval fails after the stimuli words are retrieved.

This explains both the high stimuli recall rate and why the lure
is never retrieved.

The data shows additional trends regarding the stimuli
and lure recall rates. In general, the spreading depth is
proportional to the lure recall rate but inversely proportional to
the stimuli recall rate. That is, the stimuli recall rate decreases
as spreading activation extends deeper from the stimuli word,
while the lure recall rate increases from the same manipulation.

These results can be explained by the same WordNet
structure mentioned previously. When spreading activation
is limited to nearby nodes, only a small number of words
(as opposed to word senses, synsets, etc.) are boosted, hence
the majority of words retrieved are the stimuli. When the
depth limit is increased, however, spreading activation now
reaches other words in the synsets. These words – which may
include the lure – may in fact receive activation boosts spread
from multiple stimuli words. The word “shot” falls into this
category, as it means both “injection” and “hurt” (as in a solid
shot to the chin). Other external words may simply be boosted
by stimuli words later in the list, and therefore have higher
activation during the recall phase than stimuli words earlier in
the list. Together, this leads to a decrease in the stimuli recall
rate as well as an increase in the lure recall rate.

Discussion
Although the lure recall rate from WordNet spans a range
that includes the human lure recall rate of 55%, the structure
and content of WordNet does not directly match human
associations. The nodes representing the stimuli words in
WordNet are not structured such that activation will spread to
the lure. We discuss two categories of such failure here: cases
where additional edges lead to model errors, and cases where
edges are missing.

First, as we noted, WordNet is structured with individual
words arranged in “spokes” around lexical constructs such as
synsets. While synsets do represent some of the relationships
between stimuli words and the lure – as in “syringe” and

“needle” – they are not the only relationships around which
words are organized. Since WordNet is a dictionary in
knowledge base form, it also contains information about
the derived form of words, such as the relationship between

“inject” and the words “injectable”, “injecting”, “injection”,
and “injector”. With the exception of “sit” and “sitting” in
the “chair” list, derived words do not appear in the DRM
lists, and more importantly, are unlikely to be produced
during human recall. This mismatch may be due to the
lexical relationships encoded in WordNet, as opposed to
the conceptual relationships on which spreading activation
is hypothesized to occur. Human participants would only
produce one word for each concept, but spreading activation
(at least over WordNet) leads to the retrieval of multiple
derived words. Algorithmic changes may be necessary before
spreading activation can correctly model the generation of
false memory; we propose one such change in the general
discussion.

Although WordNet contains connections that extend beyond
61



DRM S!muli

DRM Lure

S!muli 

Lure

External

Figure 1: Results from using WordNet as the knowledge base.

human associations, it fails to capture other relationships that
the DRM lists exploit. A careful examination of the word
lists reveals that they contain multiple types of associations.
Some, such as antonyms (“high” and “low”), are encoded
in WordNet despite being more conceptual. Others, however,
are not captured despite being lexical in nature. For example,
the “high” list contains the word “noon”, clearly intending to
invoke the phrase “high noon”. Crucially, while “high noon”
does exist as a phrase in WordNet, it is not connected to its
component words “high” and “noon”. At the same time, other
idiomatic phrases, such as “needle in a haystack” and “making
a mountain out of a molehill”, are not represented in WordNet.
Also missing are cultural references; the inclusion of “tiger”
and “bear” in the “lion” list appears peculiar, but may be
explained by the lyric lions and tigers and bears, oh my! from
The Wizard of Oz. Unlike the first type of failure due to an over-
abundance of connections, there is no algorithmic solution to
missing data, at least not without expanding the database using
a text corpus, which presents challenges of its own.

Mismatched and missing data is not unexpected in large
knowledge bases, although in this case some of them seem
to arise from WordNet’s specialization in lexical knowledge.
Our third experiment looks at whether a different knowledge
base may lead to a better model of human associations in false
memory.

Experiment 3: DBpedia
DBpedia (Bizer et al., 2009) is a knowledge base created using
information from the online encyclopedia Wikipedia. The
nodes in DBpedia represent articles on Wikipedia (or more
accurately, they represent the concepts that the Wikipedia
articles describe), while the edges come from the categories
to which the articles belong, as well as the infoboxes that
provide basic information. As a result, the type and amount of
information varies between concepts. The version of DBpedia
used in this experiment contains 6 million nodes and 27 million
edges.

The size and scope of DBpedia led to two differences in this
experiment from the previous ones. First, since DBpedia does

not contain a comprehensive dictionary of English words, and
not all words in the DRM lists have their own Wikipedia article,
the stimuli words can no longer be presented as strings. Instead,
we manually mapped each word to a concept in DBpedia,
mostly following the redirections on Wikipedia. This led to
some words being mapped onto the same concept (“waste”
and “refuse” both mapped onto “waste”), while others mapped
onto concepts that are overly specific (“garbage” mapped
onto “municipal solid waste”). More problematic were words
that differed in meaning from their Wikipedia articles. Words
from the “thief” list are good examples: Wikipedia does not
contain articles for “thief”, “robber”, “burglar”, “bandit”, or

“criminal”, only articles for “thievery”, “robbery”, “burglary”,
“banditry”, and “crime”. These words were excluded from this
experiment.

To accommodate the size of DBpedia, a custom Python
script that simulated spreading activation was used instead
of Soar, although the same algorithm as Soar’s semantic
memory is followed. For this experiment, the fifteen “retrieved”
concepts are simply the fifteen most-activated nodes. The
size of DBpedia and the density of its connections remains
daunting; as an example, a fifth of the nodes in DBpedia
are only two connections away from the nodes selected for
the “army” list. This makes spreading beyond a depth of 2
untenable. As a result of these two problems, only about half
the lists (seventeen) were used in this experiment, with an
average of 14.1 concepts.

Results
Due to the reduced dataset, the results in this section should
be treated with some skepticism; however, we believe they are
nonetheless representative of using DBpedia to model false
memory and human associations.

For spreading depth 1 at the default decay rate of 0.5,
spreading activation on DBpedia resulted in stimuli and lure
recall rates of 15% and 0% respectively; for spreading depth
2, the stimuli recall rate decreases to 3%, while the lure recall
rate increases to 12%. These numbers follow the trends found
from the WordNet experiment. To understand the low lure
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recall rate, we found it instructive to look at the “shirt” list,
one of two lists for which the lure was consistently retrieved.
Unlike other DRM lists, the “shirt” list is unique in that the
vast majority of items belong to the same category. This shared
classification means that the lure is only a network distance of
two away from the stimuli words, and is therefore sufficiently
boosted in activation for it to be retrieved. In contrast, the
stimuli words for other DRM lists do not conform as neatly to
the taxonomic structure of DBpedia – the lure is not as directly
connected to the stimuli, causing the lure to not be retrieved.

That the lure is not retrieved, however, does not mean that
the stimuli words are retrieved; the highly connected network
structure also led to the low stimuli recall rate. Page links on
the internet are known to have a small-world structure, where
the pairwise distance between all nodes are small and where
there are many nodes with large degrees. For example, “anger”
is connected to “red”, which in turn is connected to over 600
concepts, mostly organizations whose representational colors
include red. Because these “hub” nodes are often connected to
multiple stimuli words, their activation is boosted above that
of the stimuli words and are retrieved instead, resulting in a
low stimuli recall rate.

Discussion
The failures in both WordNet and DBpedia are representa-
tional; we discuss these issues in the next section. For DBpedia
alone, we faced the additional difficulty of mapping the stimuli
and lure words to a concept. One concern not yet raised is
that the choice of concepts used to represent nodes requires
association and reasoning on the part of the modeler. A number
of words in the DRM lists are polysemous; “prick” and “hurt”,
for example, would fit just as well as “goad” and “heckle” into
a different “needle” list (as a verb instead of as a noun). If
DBpedia is to be used for modeling associations and false
memory, a better protocol would be for unknowing coders
to determine which concepts correspond to the lure and the
stimuli words. This would remove confirmation bias that may
be inherent in how words are currently mapped to concepts.

General Discussion
This paper attempted to use large computational knowledge
bases to model the human associations that lead to false
memory in the DRM paradigm. Our model was able to
qualitatively recreate the DRM false memory phenomenon, but
only on a hand-crafted semantic network that resembles their
traditional depiction. When large computational knowledge
bases such as WordNet and DBpedia are used, however, the
naive spreading activation algorithm fails to simultaneously
match the stimuli and lure recall rates. We believe that
these results are indicative of three general problems with
using large knowledge bases in cognitive modeling: missing
data from the knowledge base, missing connections between
existing data, and finally, the sheer amount of existing data.

Of the three, the missing data problem is the hardest to
solve. The type of common sense knowledge required to make
associations in the DRM task is neither lexical nor conceptual

– it exists neither in a dictionary nor in an encyclopedia.
One example of such knowledge is the fact that “rubber” is

“elastic”, “springy”, “flexible”, and “resilient”. It is infeasible
to manually encode all descriptions for all objects, and it may
be necessary to employ techniques from information retrieval
and natural language processing to extract this knowledge
from text.

Even for concepts/words that exist in the knowledge base,
neither WordNet nor DBpedia fully capture the relationships
between their nodes. Some of these missing relationships,
such as phrases from popular culture, can only be obtained
through similar means as the missing concepts/words; others,
by systematically adding edges to these knowledge bases,
such as connecting phrases to their component words. Perhaps
more relevant for cognitive modelers, however, is that there
is no consensus on the cognitive plausibility of the content
and structure of knowledge bases. In understanding the
experimental results of this paper, we have tried to determine
how the stimuli words relate to the lure, and whether these
relationships generally apply to other concepts. A complete
catalog of human associations would more clearly indicate the
types of connections that knowledge bases currently lack.

The final problem of the scale of the data is only made
worse by the addition of missing knowledge. The solution
here may be more algorithmic in nature, by modifying the
spreading activation algorithm such that it remains valid
as the size of the knowledge base grows. One possibility
is for spreading to occur only on particular edges, perhaps
informed by the context of the retrieval. This is similar to
using theory to extract a smaller, more specialized network
on which the network distance may be more meaningful
(Tenenbaum, Griffiths, & Kemp, 2006). Such an algorithm
would reduce the computational requirements of spreading
activation, while simultaneously filtering out connections that
are irrelevant for fitting human data. The same mechanism may
also allow lexical, conceptual, and other knowledge to exist in
the same knowledge base, as a unified semantic memory to be
used in cognitive modeling, without leading to the confusions
demonstrated in the results of this paper.

With more refined algorithms that can efficiently operate
on millions of concepts and relations, large computational
knowledge bases can become a valuable resource for modeling
the wealth of background knowledge that participants bring
into experiments.
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Abstract

We present a model of the dynamics of adaptive attention al-
location in the AX Continuous Performance Test (AX-CPT),
a simple context dependent decision making task of interest
to the research communities concerned with cognitive control,
schizophrenia, anxiety and aging (Braver et al., 2001; Cohen
et al., 1999; Eysenck et al., 2007). We ground it in our re-
cent theory of decision making under dynamic context, that
assumes humans use sequential Bayesian inference to com-
bine information from multiple sources in perception and (op-
tionally) memory over time. The theory generalizes the well-
known diffusion decision model of single-stimulus decision
making (DDM; Ratcliff, 1978). Our first result is a new anal-
ysis that shows how memory encoding and retention can yield
a variable initial condition for either a single- or multiple-
stimulus decision, providing a theoretical grounding to the as-
sumption of variability in initial condition previously shown to
improve data fits for the DDM. Our second result is using this
model to decode attention allocation from behavioral data in a
novel quantitative payoff manipulation in the AX-CPT, show-
ing that our model can capture the differences in how subjects
encode and retrieve contextual information when the relative
emphasis on task speed and accuracy is changed.
Keywords: decision making; context processing; sequen-
tial inference; Bayesian inference; wiener process; ornstein-
uhlenbeck process;

Introduction

If there is one thing that defines human behavior, it is its per-
vasive adaptive nature. Such a viewpoint is perhaps best un-
derpinned by the seminal work of Swets and colleagues on
signal detection (e.g Tanner and Swets, 1954), who showed
that even the simple task of detecting a flash of light in a uni-
form background is amenable to strategic variation that trades
off correct responses against false alarms in a way sensitive
to reward and the statistics of the environment. The Signal
Detection Theory model of this behavior assumed observers
performed the equivalent of a fixed-sample likelihood ratio
test when asked to respond, and was soon generalized to the
case of variable sample size (Edwards, 1965; Laming, 1968;
Stone, 1960), and to continuous time as the well-known Dif-
fusion Decision Model (DDM; Ratcliff, 1978).

These models naturally capture a second tradeoff in deci-
sion making: that of speed against accuracy, and find support
from a wide range of behavioral and neural data (e.g. Bogacz

et al., 2006; Bogacz and Gurney, 2007; Gold and Shadlen,
2007; Kira et al., 2015; Ratcliff et al., 2004; Turner et al.,
2015; van Vugt et al., 2012).

We consider the above models to be fixed context models
because they treat context, which we operationalize as ad-
ditional task-relevant information, as fixed/known over the
course of the decision. Our theory (Shvartsman et al., 2015)
removes the assumption that the context is known, and con-
siders the dynamics of processing the context simultaneously
with an additional stimulus we term the decision target. The
theory can be stated both as a sequential Bayesian inference
model, and (in the continuum limit) as a nonlinear diffusion
model, and is therefore a formal generalization of the mod-
els discussed above, as well as a previous Bayesian model of
the Flanker task by Yu et al. (2009). In prior work, we used
the same parameters from Yu and colleagues’ paper to gen-
erate plausible behavior patterns in the AX Continuous Per-
formance Task (AX-CPT), a task that differs from the Flanker
task both in the time of stimulus presentation, and in response
rules. The AX-CPT, which we describe in detail below, is ar-
guably the simplest task where participants are required to
combine information seen during different disjoint time in-
tervals to make a decision, and is our focus in this paper.

When deciders include additional contextual information
in their decisions, a third tradeoff naturally arises, that of
allocating processing (attentional or otherwise) between the
available sources of information. In this paper we explicitly
consider this tradeoff. In addition to being a formal gener-
alization to the work on fixed-context decision making dis-
cussed above, it also bears some relation to work on atten-
tion allocation under multi-sensory integration (e.g. Sheppard
et al., 2013), which it extends considering stimuli in memory.
It is also complementary to work on the perception-memory
tradeoff on longer timescales in the prospective memory
paradigm (Einstein and McDaniel, 2005), and mechanistic
work combining multiple sequential samplers in the ACT-R
cognitive architecture (van Maanen et al., 2012).

Our main contributions are as follows: first, we provide
additional insight into of our theory of decision making un-
der dynamic context presented in Shvartsman et al. (2015)
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by providing analytical expressions for the posterior distribu-
tion over context after memory encoding and retention, and
thereby provide a new motivation for the assumption of ini-
tial condition variability previously argued to be necessary to
fit human data in the fixed-context DDM (e.g. Ratcliff and
Rouder, 1998). Second, we apply the model to a dataset of
humans performing the AX-CPT under a novel quantitative
payoff manipulation, and use the model to develop a quanti-
tative understanding of how participant strategy changes with
task goals.

An overview of the theory and application to

the AX-CPT

We assume that decision making can be understood as a
sequential Bayesian inference process, specifically that the
agent uses sequentially-drawn samples from external input
and/or memory to compute the joint posterior probability over
the identity of some true context and decision target over
time. The agent maps from this joint posterior to a response
probability using a known response rule, and uses a fixed
threshold defined over the response probability to stop sam-
pling and respond. We make a crucial distinction between our
theory of decision making and individual task models that can
be derived from the theory by applying it to specific tasks, as
we do here. Our previous work has shown how our formalism
can be used to derive different models when the additional
context stimulus is either in perception or memory, under dif-
ferent response mappings (Shvartsman et al., 2015).

In this paper we focus on the AX Continuous Performance
test (Servan-Schreiber et al., 1998), arguably the simplest
decision making task that conditions responses jointly and
uniquely on a perceptual and memory stimulus. The task is
illustrated in Fig. 1: participants see one of two context stim-
uli (by convention labeled ‘A’ or ‘B’) followed by one of two
targets (‘X’ or ‘Y’), and make one response (e.g. ‘left’) to
AX and BY pairs, and the other (e.g. ‘right’) to AY and BX
pairs.

Formally, we assume the agent conditions a decision based
on her posterior belief over the identity of some unknown true
context and some true target. We denote by C,G random vari-
ables representing the possible draws of context and target,
and r(·) a function from the distribution P(C,G) to a distribu-
tion over responses, which for the AX-CPT is the exclusive-or
function:

r(P(C,G)) =

8
>>><

>>>:

r0, with P(C = ‘A’,G = ‘X’)+
P(C = ‘B’,G = ‘Y’)

r1, with P(C = ‘A’,G = ‘Y’)+
P(C = ‘B’,G = ‘X’).

(1)

The agent receives evidence samples sC and sG drawn i.i.d.
from the environment, and updates her posterior distribution
over the pair (C,G) using Bayes’ rule. We denote by ton

c the
time at which the context appears and toff

c the time at which
it disappears, and likewise ton

g , toff
g for the target. This implies

Figure 1: Top: sequence diagram for one trial of the AX Con-
tinuous Performance Test. Bottom: frequency of each trial
type in the experiment. Actual letters seen were randomized
for each subject.

the following update at timestep t, assuming independence of
the context and target evidence streams:

Pt(C,G | sC,sG) µ P(sC |C)P(sG | G)Pt�1(C,G). (2)

Before the target appears, the target likelihood is uniform over
all the targets. Because there are only two responses (i.e. hy-
potheses), we can rewrite this update as a likelihood ratio up-
date, and convert it into a nonlinear transformation of two
diffusion processes. We refer the reader to the supplement of
(Shvartsman et al., 2015) for the full derivation, and here only
give the final expression:

logZ = log
P0(C = c0,G = g0)ezt

c ezt
g +P0(C = c1,G = g1)

P0(C = c0,G = g1)ezt
c +P0(C = c1,G = g0)ezt

g
. (3)

Here, the target particle zt
g is stationary until the target ap-

pears (ton
g ) and then evolves according to a Wiener process

with drift:

dzt
g = agdt +sgdW. (4)

The context particle zt
c evolves according to a Wiener pro-

cess with drift from when it appears (ton
c ) until it disappears.

Once the context disappears from perception, the memory
system can provide continued samples ŝC after the stimulus
goes away, but with some constant probability d at each time
step it can start to provide uninformative noisy samples sU .
Assuming the agent has a good estimate of d, she also knows
that the probability of receiving an informative sample expo-
nentially decays with time, such that the time-varying likeli-
hood distribution is the following mixture:

f (sC) = (1� exp(�lt)) f (ŝC)+ exp(�lt) f (sU ) (5)

, where f (·) refers to the density of its argument. That is, the
informative component of the likelihood decays – as does its
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Figure 2: Average dynamics of the CDDM model for the AX-
CPT. The ordinate does triple-duty in denoting the position of
all three particles in their own spaces. In this figure, context
almost (but not quite) decayed fully during the retention in-
terval.

variance, if we make the standard assumption that evidence
distributions are Gaussian. We model this retention and for-
getting process in continuous time as a zero-mean Ornstein-
Uhlenbeck (O-U) process, which has the same exponential
decay property, though we leave the derivation of an explicit
connection to future work. Finally, we model the retrieval
process by switching the O-U process to a nonzero-mean pro-
cess at ton

g . Our O-U assumption could be alternatively mo-
tivated by assuming the memory system is implemented us-
ing a leaky competing accumulator model with large leak and
mutual inhibition (Bogacz et al., 2006). The full expression
for the context particle dynamics is as follows:

dzt
c =

8
><

>:

aedt +scdW if ton
c ⇥ t ⇥ toff

c

�lzt
c +scdW if toff

c ⇥ t ⇥ ton
g

�lzt
c +acdt +scdW if ton

g ⇥ t
. (6)

We assume by convention that sg = sc = 1 in order to make
the model identifiable (but cf. Bitzer and Kiebel, 2015, for
possible consequences of this choice). We therefore omit the
Wiener noise coefficients in the notation that follows. Fig. 2
shows the average particle dynamics for the model. The full
set of model parameters and their interpretation is given in
Tab. 1 (we discuss parameters not related to the decision pro-
cess itself later in the paper).

We rely on a number of properties of the AX-CPT that en-
able the analysis that follows (some of which are shared by
other tasks as well). First, the context presentation and reten-
tion interval durations are both independent of the subject’s
actions and usually set a priori. Second, responses are only
allowed when the target is on the screen. Given those two
properties, the context particle distribution at the time of tar-
get appearance can be written in closed form, as follows.

First, define Dte , toff
c � ton

c and Dtr , ton
g � toff

c . Next, let ze
c

denote the position of the context particle at the end of encod-
ing (toff

c ), and zr
c denote the position of the particle when the

target appears and retrieval begins (ton
g ). We can write E [zr

c],

explicitly, recalling that it evolves as an O-U process, and that
therefore its distribution is N

⇣
zc

ee�lDtr , 1
�2l (e

�2lDtr �1)
⌘

1.
We take care to use the law of total expectation, since zc

e is
itself a random variable with distribution N (aeDte,Dte).

E [zr
c] = E [E [zr

c | zc
e]] = E

h
zc

ee�lDtr
i
= aeDtee�lDtr . (7)

We do the same for the variance, using the law of total vari-
ance:

Var [zr
c] = Ezc

e [Var [zr
c | zc

e]]+Varzc
e [E [zr

c | zc
e]] (8)

=
1

�2l
(e�2lDtr �1)+Dtee�lDtr . (9)

In the case where context is not retrieved from memory
once the target appears, the resultant model is a DDM with
initial condition variability (Ratcliff and Rouder, 1998), pre-
viously used to fit fast errors in decision making. Our analy-
sis here formally provides a psychological interpretation for
such fast errors: specifically, it suggests that data that is better
fit using sampling or diffusion models with a variable initial
condition may reflect subjects’ memory of relevant contex-
tual information. Furthermore, it provides an argument on
theoretical grounds for using Gaussian rather than the uni-
form initial condition variability (e.g. Ratcliff and McKoon,
2008), especially if subjects may be using contextual infor-
mation. Such a model may predict instantaneous decisions
(‘ultra-fast guesses’) for some parameter settings that reflect
strong memory encodings, which may be smoothed out to a
multi-modal response distribution if nondecision time vari-
ability is included in the model.

A particularly elegant property of the model is that each
component has both distinct psychological interpretation, and
distinct effects on response time distributions. q reflects the
speed-accuracy tradeoff and therefore affects the shape of the
RT distributions and the error proportion across all trial types.
The three context parameters affect different portions of the
RT distribution: ae reflects encoding of the context, and con-
tributes primarily to the early portion of the RT distributions
due to how it affects the initial condition for the decision;
l reflects memory retention and contributes both to early and
late portion of RT distributions because it persists both during
retention and retrieval; and ac reflects memory retrieval and
primarily contributes to middle and late portions of the RT
distributions because retrieval begins at target onset and satu-
rates over time. All three context parameters will identically
affect trial types that share a context (e.g. AX and AY). On
the other hand, ag reflects perceptual processing of the target
stimulus and therefore affects the RT distribution throughout,
but identically affects same-target pairs (e.g. AX and BX)

Thus, while differences between different trial types help
uncover differences between context and target processing
writ large, differences between different portions of the RT

1Note that we use the N (µ,s2) parameterization.
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distribution may index differences in subcomponents of con-
text processing. For example, high ae will increase the num-
ber of very fast correct responses when the context predicts
the correct target (e.g. AX) but also contribute fast errors
when it does not (e.g. AY). In this way, the model may pro-
vide a more precise characterization of context processing
differences than the behavioral indices in primary use today
(e.g. Braver, 2012).

Parameter Interpretation Prior range

ae Context encoding drift 0 to 5
ac Context retrieval drift 0 to 5
ag Target recognition drift 0 to 5
l Memory decay -0.05 to 0.2
q Decision threshold 0 to 20
µt0 Mean of non-decision time 0 to 1000ms
st0 Standard deviation of non-

decision time
0 to 200ms

pc Probability of contaminant
RT

0 to 1

P0(·) Prior distribution over trial
types

Set to true trial
distribution

Table 1: Model parameters, interpretation, and prior ranges.

A payoff adaptation experiment

To test the ability of our model to precisely estimate atten-
tion allocation from behavioral data, we gathered a dataset of
humans performing the AX-CPT task on Amazon’s Mechan-
ical Turk. Mechanical Turk is a web-based marketplace for
“human intelligence tasks”, short web-based tasks that pay
small sums of money. It is emerging as a standard method for
high-throughput collection of data for psychological experi-
ments (Crump et al., 2013). Our experiment was designed us-
ing custom front-end code, using psiTurk (McDonnell et al.,
2015) for back-end and interfacing with Amazon. Response
times were collected with the JavaScript high resolution timer
API, which theoretically promises at least millisecond-level
accuracy. Experiment code is available at https://github
.com/mshvartsman/axcpt-psiturk-coffeescript.

We searched the parameter space of a preliminary ver-
sion of the model to devise four different payoff schemes in-
tended to differently prioritize speed and accuracy, illustrated
in Tab. 2. The first two were designed to encourage partici-
pants to be particularly fast or accurate relative to each other.
The other two were designed to encourage intermediate be-
havior, with either high or low overall cost.

Each subject started the experiment by reading the instruc-
tions, and then practicing the two A and B contexts separately.
To test that they have learned the task, they next had to com-
plete 10 correct trials in a row. If they failed to do so after
50 trials have passed, they were ejected from the experiment.
If they succeeded, they completed 240 trials of the AX-CPT
divided into 24 blocks. They were told their speed, accuracy,

Cond. Error cost Time cost (/s) Intent

(A) 10 2 Prefer accuracy
(B) 2 10 Prefer speed
(C) 10 10 Balanced (high cost)
(D) 2 2 Balanced (low cost)

Table 2: Quantitative payoffs given to the participants. Cor-
rect responses were always worth 20 points. Both correct and
error responses are penalized for time.

and points gained after every trial, and a running total ev-
ery block. They earned $1 for participating, plus $1 for each
1000 points they earned in the experiment. We collected 20
subjects per condition, and most earned between $3.50 and
$4.50.

Each participant’s actual letters were randomized, but in
the remainder of the paper we label them as A, B, X, and
Y according to their frequencies: each set of 240 trials con-
tained 50% (120) AX trials, 20% (48) AY and BX trials, and
10% (12) BY trials, randomly distributed throughout the ex-
periment. This is conventional in AX-CPT designs, and is
what allows the AX-CPT to behaviorally index the allocation
of attention. The reasoning is as follows: AY and BX tri-
als have the same joint probability, but different probabilities
conditioned on either knowing the true context (A or B) or
target (X or Y). Therefore, any asymmetry between these two
trials is argued to reflect differences in processing the two
stimuli: specifically, better AY performance suggests more
attention to the context, and better BX performance suggests
more attention to the target (but cf. Lositsky et al. 2015 for
evidence that this index may be overly simplistic).

Fig. 3 shows basic behavior summaries in the speed and
accuracy conditions: the manipulation was successful in en-
couraging subjects to adjust their speed and accuracy, as ev-
idenced by the mean behavior. Of more interest is that the
effect was not uniform across the four trial types. When
pressured to respond more quickly while sacrificing accuracy,
subjects sacrifice accuracy in B trials more than in A trials,
with the speedup primarily seen in BY, the rarest trial type.
The two balanced conditions (not shown in the figure) for the
most part showed intermediate behavior, with the high-cost
condition patterning closer to the speed-encouraging condi-
tion, and the low-cost balanced condition patterning with the
accuracy-encouraging condition. We focus the remainder of
the analysis on the two extreme conditions, where the patterns
are clearest.

Model fitting details

While first passage times for diffusion and O-U processes are
known, the nonlinear transformation that forms our model’s
decision variable makes these analytics inapplicable. There-
fore, we derive best fits by simulation, using the EP-ABC
algorithm (Barthelmé and Chopin, 2014, as implemented at
https://github.com/sbitzer/pyEPABC). It bears men-
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Figure 3: Mean accuracies and response times for the sub-
jects across the four trial types and our two conditions of fo-
cus, showing slower speed and higher accuracy overall in the
accuracy-focused condition, but also that these changes do
not affect all trial types equally. Refer to Tab. 2 for payoff
conditions. Error bars are standard errors.

tioning that our use of Bayesian methods for fitting is entirely
orthogonal to our theoretical assertion that decision making
in humans proceeds by Bayesian inference.

The original EP algorithm (Minka, 2001) approximates the
joint posterior density of model parameters by a multivariate
Gaussian, converting the Bayesian inference problem to an
iterative optimization problem. Approximate Bayesian Com-
putation (ABC) methods contend with performing Bayesian
inference when simulation is possible but no likelihood is
available, usually by assuming that parameters under which
the simulator generates data ‘similar enough’ to the real data
have high likelihood. EP-ABC as we apply it here assumes
individual RTs are drawn i.i.d., which allows us to define
‘similar enough’ to mean ‘generates each individual data
point to within 1ms’. We used EP-ABC with 5 passes over
the dataset and a minimum of 3000 accepted samples per hu-
man data point, with EP hyper-parameter a set to 0.3.

The model as described above uses 5 parameters to de-
scribe the decision process (three drifts, one decay, one
threshold). To describe actual response times, we add two
additional assumptions. First, that there is a normally dis-
tributed offset to the decision time – a ‘non-decision time’ re-
flecting early perceptual processing, motor planning, and the
motor response itself. This adds two parameters (mean and
standard deviation of the non-decision time). Second, we as-
sume that with some probability RTs are generated not from
our model, but from a U(0,5s) distribution of ‘contaminant’
RTs. We estimate the proportion of contaminant RTs from the
data, adding another parameter. These assumptions are stan-
dard in parameter fitting for the fixed-context DDM (e.g. Rat-
cliff and Rouder, 1998) and provide a probability floor that
makes it easier for EP-ABC to handle some unusually fast or
slow RTs in our dataset. We used proper uniform priors over

plausible parameter ranges for all the parameters. Tab. 1 lists
all of the parameters and their prior ranges.

To understand condition-level differences, we generated
10000 samples from the multivariate posterior density for
each subject, and produced average parameter estimates for
each condition based on these samples. This heuristic weights
subjects’ posterior means in proportion to their covariances
better than simple averaging of the means as point estimates,
and without the ideal fully-hierarchical treatment that is ex-
tremely challenging in our setting. Because there is stochas-
ticity in both the simulator and the fitting method, we re-
peated the model-based analysis twice. While there was some
variability in the parameters estimated for each subject, the
signs of the difference between parameters for the speed and
accuracy condition was the same across both runs for all
parameters, so we focus our interpretation on those differ-
ences. Model code is available at https://github.com/
mshvartsman/cddm.

Results

Tab. 3 shows the combined parameter estimates. We remark
on a number of properties: first, the contaminant proportion
is low, and similar across the fits. Second, the threshold
is higher in the accuracy-focused than in the speed-focused
condition, consistent with the idea that it governs the speed-
accuracy tradeoff. Non-decision times are shorter and less
variable in the accuracy-focused than in the speed-focused
condition – perhaps an indicator of greater focus overall. This
point is also supported by the fact that the accuracy condition
shows a higher total drift (summed across the three drift vari-
ables) than the speed condition, and by the fact that it shows
slightly less memory decay.

Parameter Accuracy condition Speed condition

ae 3.1701 2.4623
ac 1.0576 0.8088
ag 0.7648 1.1681
l 0.0756 0.0834
q 10.9656 6.1589
µt0 406.2522 435.1687
st0 76.7926 94.8328
pc 0.0513 0.0530

Table 3: Fit parameter values in aggregate across the two sub-
ject groups. See text for fit details.

Most interesting, however, is how this drift is allocated.
In the accuracy-focused group, both context-involving drifts
(encoding ae and retrieval ac) are higher than the correspond-
ing drifts in the speed-focused group, and the pattern is re-
versed in the target drift ag. That is, when incentivized to
be more accurate, participants rely more on their memory
and contextual information and slightly less on the percep-
tual stimulus in front of them. Since the task is designed such
that context and target information is equally useful in being
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able to make the correct response, we suspect that this has to
do with the effort involved in encoding, maintaining, and re-
instating the memory of the contextual rule – something that
is probably worth doing more of when accuracy is more im-
portant.

Discussion and Conclusions

In this work, we applied our theory of decision making un-
der dynamic context to the AX Continuous Performance Test.
First, we showed how the simple memory encoding and re-
tention dynamics of the model map to variability in the initial
condition of a diffusion decision process, providing both fur-
ther theoretical grounding for the use of variable initial con-
ditions in data fits, and a better understanding for the psycho-
logical origin of fast errors in decision making.

We next applied our model to estimate allocation of atten-
tion between perception and memory in a novel quantitative
payoff manipulation in the task as measured on Amazon’s
mechanical turk. This manipulation succeeded in not only
changing participants’ speed-accuracy tradeoff, but also their
attention allocation tradeoff between perception and memory.
The ability to manipulate attention allocation continuously
rather than using discrete task dimensions (e.g. deadlines, dis-
tractors) as used previously may pave the way to more quan-
titative mapping out of the attention allocation strategy space.

Finally, our method of measuring the relative allocation of
attention between the cue and probe stimulus in AX-CPT is
among the first model-based efforts to understand this trade-
off, which has previously been measured as a behavioral in-
dex (the difference between AY and BX performance; e.g.
Braver, 2012). This behavioral index, like our model, in-
dicates that subjects in our accuracy-preferring group focus
more on context, as indexed by a reduction in BX errors.
However, the behavioral index has no way of making the
distinction between encoding-oriented and retrieval-oriented
contextual effects, a distinction that our model captures. Such
multidimensional, quantitative characterization of strategic
variability in the processing of perceptual and memory stim-
uli may pave the way to a richer understanding of context
processing both in normal and in diseased populations.
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Abstract 
Learning to deal with social dilemmas can be difficult as 
outcomes depend not only on a &�'(%$3(�decisions but also on 
%)��'� &�%&"�3(� decisions and on how past decisions have 
changed that environment. We investigate how people might 
learn about social dilemmas by studying how simulated 
players using a cognitive model known as instance-based 
learning (IBL) interact with each other and with a set of fixed 
strategies in the �' (%$�'3(� � "�##� (PD). The current 
simulation study presents systematic variations in the payoff 
structure and the %)��'�&"�.�'3( strategy. Results indicate that 
the IBL model can reproduce predicted patterns of 
cooperation based on the payoff structure and that the model 
is sensitive to the strategies with which it is matched. The 
simulations offer explanations of how cognitive processes 
handle social dilemmas and how the environment of social 
dilemmas can influence this process. 

Keywords: Instance-Based Learning; Cognitive Modeling; 
�' (%$�'3(�� "�##����%%&�'�) %$� 

Introduction 
Instance-based learning (IBL) is a cognitively-inspired, 
descriptive model of how we make decisions in dynamic 
environments, i.e., environments that change over time and 
in which earlier decisions can inform and influence future 
actions (Gonzalez, Lerch, & Lebiere, 2003). Dynamic 
decision making often occurs in repeated social dilemmas, 
when people are asked to decide between actions that 
benefit themselves at a cost to the group or benefits the 
group at a cost to themselves. Past responses can influence 
how members of the group respond in the future, creating a 
dynamically complex learning environment. T����' (%$�'3(�
Dilemma (PD) is a commonly studied social dilemma that 
instantiates this type of situation in a two-person game. 

Classical game theory assumes that players understand 
explicit information about outcomes, reason about the other 
&"�.�'3(� ()'�)��.�� �$�� (%"+�s for the best solution.  
Behavioral game theory assumes a similar understanding 
and ���(� &'���'�$��(� ��%*)� )��� %)��'� &"�.�'3(� ��) %$(� �$��
outcomes (e.g., Fehr & Schmidt, 1999; Rabin, 1993). 
Evolutionary game theory and related models of simulation 
assume no understanding of the game nor consideration of 
the other player, but rather that players follow pre-
determined strategies (Axelrod & Hamilton, 1981; 
Danielson, 1992; Messick & Liebrand, 1995). The game is 

resolved by finding strategies that get better outcomes when 
different combinations of strategies interact in different 
ways. Approaches that consider learning including 
reinforcement learning (C. F. Camerer & Ho, 1998; C. 
Camerer & Ho, 1999) and applying cognitive models to the 
PD (Gonzalez, Ben-Asher, Martin, & Dutt, 2015; Gonzalez 
& Ben-Asher, 2014; Lebiere, Wallach, & West, 2000; 
Stevens, Taatgen, & Cnossen, 2016) ask how learning 
responds to changes in the decision-making environment. 

This paper integrates approaches from these various 
traditions to develop a different perspective on learning in 
the PD. Our primary approach stems from cognitive 
modeling, using an IBL model to study the learning process. 
This contrasts with the common methods in classical and 
behavioral game theory in which the PD can be solved 
before the players interact. Similar to evolutionary game 
theory, IBL models interact with and respond to the 
environment (including payoffs and the strategies of other 
players), prompting questions of how the environment can 
change this interaction.  Contrasted with evolutionary game 
theory, the focus of IBL is on learning by individual agents 
/ rather than populations / using paradigms that are more 
similar to those of repeated interaction in classical and 
behavioral game theory.  Under IBL, changes in behavior 
are a consequence of dynamic learning rather than 
population dynamics. A more fundamental assumption with 
the IBL models that contrasts with much of the classical and 
behavioral economic research is a focus on descriptive 
models rather than optimization.  While IBL models try to 
make better decisions, the goal of this paper is not to find 
)��� 0��()1� ,�.� )%� (%"+�� )��� ����*)� )%� *$��'()�$�� �%,� )���
environment influences the nature of decision-making in the 
PD as well as the stability of those decisions. 

The present focus on environmental variation contrasts 
with much of the previous cognitive modeling research, as 
well.  Similar to evolutionary game theory, the current work 
uses simulations to support studying a broad range of 
environments. We adopt general IBL models with robust 
parameters derived from previous research, but do not 
emphasize creating a specific model to fit a specific set of 
human data, as is commonly the case with past cognitive 
modeling research. The emphasis of the current work is not 
to develop the most comprehensive or best-fitting model of 
human decision-making in the PD, but to develop a clearer 
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understanding of how the environment interacts with 
learning dynamics.  Thus, our comparisons to human data 
are on general trends rather than absolute fit, which may 
require, as in the case of some of the more sophisticated 
cognitive models, integration of additional features beyond 
what a basic IBL learning model provides. 

In brief, this paper asks how systematic changes in 
payoffs and partner strategies influence the learning process 
of an IBL model. We examine how an IBL model interacts 
with other simulated players in a repeated PD under various 
payoff conditions. 

�
�
��
	�������
�������
��� 
�$� )��� �' (%$�'3(� � "�##�� &"�.�'(� & �!� ��),��$� ),%�
options: cooperate or defect. Payoffs are operationalized as 
follows. If both players cooperate, each receives a payoff of 
R (Reward). If one cooperates and the other defects, the 
cooperator receives S (Sucker) and the defector receives T 
(Temptation). If both defect, each receives P (Punishment). 
The PD is defined by the following relationship: � 3 � 3
� 3 �, and the best response for each player is to defect. 
However, if both players cooperate, they would each receive 
more than they would have had both defected. Repeating the 
PD with the same partner makes the game more complex, as 
current decisions can influence future outcomes. Over time, 
players not only learn what outcomes are likely for any 
given decision, but also influence the behavior of the other 
player, changing the likelihood of the different outcomes. 
 
Payoff sensitivity. A common finding in empirical studies 
%�� )��� ���  (� )��)� )��� &"�.�'3(� " !�" �%%�� %�� �%%&�'�) %$�  (�
related to the values of T, R, P, and S. One of the strongest 
representations of this was proposed by Rapoport (1967) as 
the K-index, with a higher K-index predicting higher 
cooperation. The K-index was defined as:  2  ��

"�!
. 

However, rational economic models always predict 
defection and no correlation between cooperation and the K-
index. According to these models, players can reason that 
defection is best in the last round, since reputation has no 
effect after the last round; that defection is the best in the 
second to last round, since reputation has no effect in the 
last round; and so on in a process known as backward 
induction. 

In contrast, learning models, such as IBL, expect players 
to explore their options and learn through trial-and-error. 
Past research predicts that two IBL models acting 
independently of each other would result in a decrease of 
cooperation from early to later rounds (Gonzalez et al., 
2015), and IBL models have also been found to be sensitive 
to the payoffs of the PD, �%$( ()�$)�, )����&�&%')3(��-index 
(Gonzalez & Ben-Asher, 2014). In this research we explore 
these predictions systematically in a wider range of payoff 
values of the PD and when the IBL model is paired against 
various known strategies. 

 
Strategic sensitivity. Outcomes depend not only on 
payoffs, but on the likelihood of each outcome from each 

decision. These likelihoods depend on the &�')$�'3( 
behavior in the game. In contrast to the reasoned approach 
taken by rational economic theory, where each player 
attempts to predict what other will do, evolutionary game 
theorists assume that players follow predetermined 
strategies (Axelrod & Hamilton, 1981). Strategies that are 
successful against other strategies are replicated, whereas 
unsuccessful strategies are removed from the population, 
"��+ $��)���#%()�2'%�*()3�()'�)�� �(. However, this approach 
focuses on population characteristics (groups of agents) with 
2"��'$ $�3� %��*'' $�� %+�'� ��$�'�) %$(, rather than on 
learning of individual members of the population.  

Two better-known strategies in evolutionary game theory 
are tit-for-tat (TFT) and win-stay-lose-shift (WSLS). TFT 
cooperates in the first round and, in all following rounds, 
�%& �(� )��� %)��'� &"�.�'3(� action from the previous round. 
Thus, it cooperates if the other player cooperated and 
defects if the other player defected. WSLS also cooperates 
in the first round. In all subsequent rounds, WSLS will stick 
with the decision it made in the last round if it received 
either R or T; or will change its decision if it received either 
S or P. 

In contrast, IBL models focus on how individuals learn / 
but how IBL models interact with other strategies has not 
been explored. As IBL models learn over time, they may 
adjust to other strategies within one game of the repeated 
PD. 

Instance-based Learning 
In IBL models decisions are stored in memory as a unique 
combination of actions and outcomes. Each pair of action 
and outcome is referred to as an instance. When facing a 
choice, the model estimates a blended value for each action 
being considered. The action with the highest blended value 
is selected. The blended value, �, for an action, �, at a point 
in time, �, is: �'& 2 	 �'%��'%%  [Eq. 1], where �'%&  is the 
retrieval probability of an outcome, �, associated with the 
action, �; and �'% is the utility associated with the action, �, 
and outcome of �. In the PD, the actions can be represented 
�(�� )��'�0�%%&�'�)�1�%'�0�����)�1�and the outcomes as T, R, 
P, and S.  

The retrieval probability of an instance is influenced by 
the activation of that instance relative to the sum of 
instances which include the same action. The retrieval 
probability, �'%&, for action, �, and outcome, �, at a specific 

time, �, is: �'%� 2 �
+.,*
/�) �	 �

+.,*
/�)' �[Eq. 2], where � is a noise 

parameter, �'%& is the activation of the instance with action, 
�, outcome, �, and at time, �. 

Activation is higher for instances that were more frequent 
or more recently observed. The activation, �'%& for an 
option, �, and outcome, �, at time �$ is: �'%& 2
��	5� 1 �'%6�# 0 � �� 7

��(.,-
(.,-

8 [Eq. 3], where � is a decay 
parameter, � is the same noise parameter as in Eq. 2, �'% is 
the set of all times in which the instances with action, �, and 
outcome, � were observed, and �'%&  is a draw from a 
uniform distribution bounded by 0 and 1 for the current 
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action, �, at time �.  �%'� �-�#&"���  �� 0�%%&�'�)�1�  (� #%'��
often and more frequently met with the sucker outcome (S) 
than the reward outcome (R), then the cooperate/sucker 
instance would be higher in activation and retrieval 
probability, and the sucker payoff would more strongly 
influence )����"�$����+�"*��%�� )��� 0�%%&�'�)�1�%&) %$� )��$�
the reward payoff. 

The IBL model often takes standard parameter values 
from ACT-R, the cognitive architecture from which the 
Activation mechanism comes from (Anderson & Lebiere, 
1998): � is set to 0.25 and � is set to 0.5. As people are not 
expected to approach decisions with an empty memory, a 
common approach is to create prepopulated instances that 
represent initial beliefs about the decisions they expect to 
experience (Lejarraga et al., 2012). The utility associated 
with these prepopulated instances is typically set to some 
value higher than the highest possible observable value from 
the actual decisions to allow for initial exploration and are 
entered into memory with a time of 0. 

The IBL model presented above is a model of an 
individual, aware of only (Gonzalez et al., 2015) interacts 
with different PD environments while controlling for 
broader social considerations including other-regarding 
preferences and beliefs. 

Simulation Overview 
In our simulations, we have an IBL model play the repeated 
PD with either another IBL model or another strategy over 
the course of 100 rounds. We simulate 400 pairs of players 
and focus on three measures: individual cooperation rates; 
alternation rates (switches from cooperate to defect or defect 
to cooperate); and how models behave as pairs (mutual 
cooperation, mutual defection, and mixed cases). 

The IBL model follows the definition noted above, with � 
set to 0.25 and � set to 0.5. Prepopulated instances for 
cooperate and defect are included with utilities set higher 
than the temptation payoff to promote exploration. The 
utility is set arbitrarily at 1.5 times T, i.e., at 15.  When 
matched with other IBL models or other strategies, the IBL 
model receives information only about its actions and 
outcomes and no information about the other model3s 
actions or outcomes. 

To examine a range of payoffs, we adapt a method used 
by Moisan, et al. (2015) and inspired by Rapaport and 
Chammah (1965) and Axelrod (1967), where the payoffs of 
the PD are normalized with a fixed value for T and S. In the 
present simulation, T is fixed at 10, S is fixed at 0, and R 
and P vary between 0 and 10 in intervals of 1 such that � 4
�. Our simulations include boundary cases that are not 
strictly version of the PD: � 2 � 2 ��, � 2 � 2 �, and 
� 2 �. These boundary cases give a sense as to how the 
models may behave close to the limits as � 
 �, � 
 �, 
and � 
 �. This method also provides different payoff 
structures that have the same K-index, which occurs for any 
payoff structure in which R and P have the same difference. 

To examine strategic sensitivity, we consider two simple, 
unconditional and two sophisticated, conditional strategies. 

For simple strategies, we match the IBL model with models 
that unconditionally cooperate (All-C) or unconditionally 
defect (All-D). For sophisticated strategies, we match the 
IBL model with another IBL model, a TFT and WSLS 
strategy. 

Simulation Results 
Figure 1 presents the results of simulations in which two 
IBL models are paired with varying levels of R and P. The 
panels indicate the cooperation and alternation rates of one 
of the IBL models from each pair, with the top of each panel 
representing 100% cooperation/alternation and the bottom 
representing 0% cooperation/alternation; and the left of each 
panel representing the 1st round and the right representing 
the 100th round. Panels that are lightly shaded represent the 
�%*$��'.��%$� ) %$(��$���'��$%)�2)'*�3�PD games. 

Across all games, the average cooperation rate starts at 
50% (prepopulated instances cause the models to randomly 
decide to cooperate and defect in the first round), but drift 
towards increased cooperation or increased defection over 
time. Behavior does not necessarily change consistently 
towards cooperation or defection, e.g., the environment in 
which � 2 � and � 2 �, shows a slight increase in 
cooperation before settling at a lower rate of cooperation. 
Final round behavior (at the far right of each panel, 
discussed more below) includes a variety of cooperation 
rates across panels. While this behavior may stabilize at a 
certain cooperation rate, this does not imply that the players 
have settled on cooperation or defection. While alternation 
rates also tend to decrease, for many payoff environments, 
the alternation rates do not trend towards 0. End-of-game 
behaviors include environments where players may switch 
back and forth between cooperation and defection. 

Payoff sensitivity 
Cooperation Rate A logistic regression of the final round 
cooperation relative to the K-index of each simulation 
indicates that cooperation by the IBL models increases as 
the K-index increases, B = 4.225, 95% CI [4.097, 4.355]. 
The coefficient on an ordinary least squares (OLS) 
regression provides a more intuitive estimate of the effect of 
K-index on cooperation, B = 0.681, 95% CI [0.664, 0.698], 
implying a 68.1 percentage point increase from a K-index of 
0 to 1 (or a roughly 6.8% increase for each increase of 0.1). 
These findings are consistent with predictions that 
cooperation should increase with a higher K-index 
(Rapoport, 1967). This is visually confirmed in Figure 1, as 
each diagonal (bottom left to top right) indicates 
environments with the same K-index. For example, R = 2, P 
= 1 and R = 9, P = 8 have the same K-index (0.1) and 
relatively lower cooperation than both R = 5, P = 1 and R = 
9, P = 5 (K-index = 0.4). 

The K-index appears to account for most but not all of the 
influence of payoffs on cooperation. A logistic regression of 
the final round cooperation on the K-index and the R 
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payoff1 shows that the effect of the K-index is an order of 
magnitude larger than that of the R payoff, BK-index = 4.830, 
BR = -0.109; or with OLS, BK-index = 0.732, BR = -0.010. 

 

 
Figure 1: Development of cooperation and alternation for 

paired IBL models with varying levels of R and P (T = 10, S 
= 0) across rounds; boundary conditions shaded in gray 

 
Alternation While cooperation rates indicate the general 
degree of cooperation between players, alternation provides 
an indication of how stable that cooperation is.  Alternation 
rate may be compared to the concept of evolutionarily stable 
strategies (ESS) from the evolutionary game theory 
literature / which suggest how resistant strategies are to 
changes in the environment (and in particular, invasion by 
other strategies).  In contrast to the idea of ESS, however, 
higher alternation, while seemingly less stable, may suggest 
a more robust learning mechanism, allowing agents to adapt 
more quickly from environmental changes. 

While distinct from cooperation, alternation is constrained 
by the cooperation rate. As cooperation rates trend towards 
0 or 1, alternation rates trend towards 0. For example, if 
everyone cooperates in both Round 99 and Round 100, it is 
impossible for anyone to have switched from defect to 
cooperate (since all cooperated in Round 99) or switched 
from cooperate to defect (since all cooperated in Round 
100). The highest possible alternation exists where 
cooperation rates are 50 percent.  Nonetheless, cooperation 
and alternation rates are not perfectly correlated. 
Environments which produce similar cooperation rates (e.g., 
R = 10, P = 3, cooperation = 0.293; R = 9, P = 3, 
cooperation = 0.305) can produce different alternation rates 
(e.g., R = 10, P = 3, alternation = 0.058; R = 9, P = 3, 
alternation = 0.210). 

Given the non-linear constraints placed by cooperation on 
the alternation rate, it is unsurprising that alternation is less 

                                                           
1 Only R or P can be included in addition to the K-index due 
to multicollinearity. 

well predicted by the K-index, although an effect still exists. 
A logistic regression of alternation between the second-to-
last and last rounds on the K-index suggests a positive effect 
of K-index on alternation, B = 1.400, 95% CI [1.277, 
1.525]; or by OLS, B = 0.179, 95% CI [0.164, 0.195]. 
Including both the K-index and R payoff as parameters in 
the regressions we find coefficients for the logistic 
regression of BK-index = 2.728, BR = -0.223; and by OLS, BK-

index = 0.285, BR = -0.021. 
Visual inspection of Figure 1 suggests that the pattern of 

the K-index predicting alternation seems stronger for our 
2&'%&�'3� PDs (non-shaded panels) than for the boundary 
conditions (shaded panels). As we move towards the upper 
left panel and higher K-indices, we see that alternation 
increases. The trend breaks as we approach the boundary 
condition of � 2 �� (top row), which shows lower 
alternation relative to � 2 �. At this point, the R and T 
payoffs are identical and there is no temptation motive to 
draw players from mutual cooperation towards defection. 
This suggests that the dynamics between temptation and 
reward may be particularly critical in driving alternation.  

 
Table 1: Pattern of individual and paired behaviors at corner 

&% $)(�, )� $�( #*"�)����' (%$�'3(�� "�##� 
 

K-index 0.8 0.1 0.1 
(R, P) (9, 1) (9, 8) (2, 1) 

C 44.50 4.25 7.50 
Alt 29.50 3.75 13.25 
CC 25.50 1.50 2.00 
DD 38.25 93.75 87.75 

CD/DC 36.25 4.75 10.25 
 

Paired behaviors. Looking at the strategies of both players 
in a pair provides further insight into the social dynamics of 
the PD. For example, a 50% cooperation rate could be 
achieved if half of the pairs are engaged in mutual 
cooperation (CC) and half in mutual defection (DD); or if 
all pairs include one cooperator and one defector (CD/DC). 

Table 1 provides a deeper analysis of the final round 
behavior for the cases of (R, P) � {(9, 1), (9, 8), (2, 1)}, i.e., 
the simulations involving the highest/lowest K-indices that 
are not the boundary conditions. The top half provide results 
�%'���( $�"��&"�.�'� $������&� '��, )��0�1��(�)���&'%��� " ).�
%�� �%%&�'�) %$� �$�� 0")1� �(� )��� &'%��� " ).� %�� �")�'$�) %$��
and the bottom half provides results for the pair of players. 
The table highlights the differences in the two rightmost 
payoffs, which have identical K-indices, but with an 
implicitly painful sucker payoff but little temptation, (9, 8) 
or a relatively painless sucker payoff but high temptation (2, 
1). While there is low cooperation in both cases, the case 
with high temptation and a low sucker payoff shows more 
alternation that seems to pull people away from mutual 
defection  $���+%'�%�� $�'��(���# -���&� '(��0�����1�� 
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Strategic sensitivity 
Figures 2 and Figure 3 present simulation results of IBL 
models paired with non-IBL strategies. As with the IBL 
models paired with other IBL models, the models received 
$%� $�%'#�) %$���%*)�)���%)��'�&"�.�'3(���) %$(�%'�%*)�%#�(��
but the IBL models outcomes were influenced by the other 
&"�.�'3(���% ��(������� '()�(�)�%��$%$-IBL strategies look at 
unconditional strategies, i.e., strategies that are not 
 $�"*�$�����.� )��� ����#%��"3(���� ( %$��,��'��(� )��� "�))�'�
set of non-IBL strategies look at conditional strategies, i.e., 
strategies ,� ��� �'��  $�"*�$���� �.� )��� ���� #%��"3(�
decisions either directly (TFT) or indirectly (WSLS). They 
include panels for different simulations with varying P and 
R. However, they focus on a subset of P and R (with values 
of 0, 1, 8, 9 and 10) to allow for a more detailed view of the 
panels themselves. 
 
All-C/All-D. Figure 2 shows that IBL models paired with 
strategies that always cooperate or always defect learn to 
defect quickly. Defection yields the best payoff with no risk 
 

 
Figure 2: Development of cooperation and alternation for 
IBL models paired with All-C (top) and All-D (bottom) 

with select levels of R and P (T = 10, S = 0) across rounds; 
boundary conditions shaded in gray  

 
of retaliation from these strategies. In contrast, TFT and 
WSLS would only defect when playing with All-D, but 
would cooperate with a partner who played All-C. 

Exceptions occur only at certain boundary conditions. 
When paired with All-C, this occurs at � 2 � 2 ��; that is, 
when there is no temptation to defect. Cooperating or 
defecting in such an environment yields the same utility 
(� 2 �), making indifference reasonable. When paired with 
All-D, this occurs at � 2 � 2 �. Again, cooperating or 
defecting yields the same utility (� 2 �), and indifference is 
reasonable. This indifference is reflected in the alternation 
rate which approaches 50% towards round 100 and is 
consistent with cooperating and defecting at random. 

These findings are consistent with the behavior of 
individualist human players -- who also defect more against 
unconditional strategies (Kuhlman & Marshello, 1975), and 
contrast with strategies, such as TFT or WSLS which would 
not naturally learn to be opportunistic in these cases.  
 

 

 
Figure 3: Development of cooperation and alternation for 

IBL models paired with Tit-for-tat (top) and Win-stay-lose- 
shift (bottom) with select levels of R and P (T = 10, S = 0) 

across rounds; boundary conditions shaded in gray 
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TFT/WSLS Figure 3 highlights the different response of 
the IBL model when paired with two popular strategies from 
evolutionary game theory, TFT and WSLS. 

Surprisingly, TFT tends towards defection. High 
defection may be associated with research suggesting that 
TFT does not do well when their partner behaves 
inconsistently (Imhof, Fudenberg, & Nowak, 2007), as 
might be expected when IBL models explore their options. 
The exception at � 2 � 2 � suggests that the sucker payoff 
makes cooperation more prohibitive when learning to play 
with TFT. Not being penalized for moving away from 
mutual defection, provides an opportunity for the players to 
arrive at mutual cooperation. 

Results for WSLS are similar to those observed in paired 
IBL models, which may be explained by WSLS having been 
developed as a simple learning model. When paired with a 
WSLS strategy, cooperation is more greatly affected by 
reducing the difference in the temptation and reward payoffs 
(with highest cooperation appearing at the boundary 
condition of � 2 � 2 ��) compared to reducing the 
difference in the punishment and sucker payoffs. 

A comparison of Figures 1 and 3 suggest that alternation 
is higher when an IBL model is paired with WSLS than 
with other strategies. This is clearer in Figure 4, which 
shows the relationship between alternation and cooperation 
in the last round for the different simulations of IBL models 
partnered with TFT, WSLS, and a second IBL strategy. The 
relationship shows an upside-down U-shaped curve with all 
partners, consistent with earlier observations that high and 
low cooperation rates decrease maximum possible 
alternation. However, models partnered with a WSLS 
strategy shows higher alternation at almost all levels of 
cooperation relative to the TFT and IBL strategies. 

 

 
Figure 4: Relationship between cooperation and alternation 
of the IBL model in final round, when partnered with TFT 

(circles/solid), WSLS (triangles/short dash), and second IBL 
(plus/long dash) 

Conclusion 
Applying simulated cognitive models to social dilemmas 

helps us to understand how features of a social dilemma 

specifically impact the learning processes in the absence of 
other factors, such as other regarding preferences and 
expectations.  The focus on learning differs from classical, 
behavioral, and evolutionary game theory which do not treat 
individual learning as a mechanism.  The focus on 
simulation allows us to concentrate on learning more 
cleanly. For example, previous research finds that 
cooperation weakly decreases over time when people are 
paired with a strategy that always cooperates (Lave, 1965; 
Oskamp, 1971). As this decrease is slight, understanding the 
nature of this change, or if it is simply noise, can be 
challenging. By focusing on learning, the results in this 
paper provides clearer evidence that cooperation may 
decrease as a result of learning. 

Simulations also provide some clearer insight into not 
only cooperation but the stability of cooperation as 
highlighted by alternation rates. Our findings suggest that 
the impact of the strategic environment can influence 
cooperation and alternation differently. In the case of 
WSLS, more alternation might draw players out of the 
2��( $�%���))'��) %$3�represented by mutual defection. Future 
work might investigate whether high alternation can help 
players adapt to a changing payoff or strategic environment, 
given that higher alternation suggests consistent exploration. 

The present application of basic cognitive models, such as 
IBL, to the PD is not intended as a substitute for research 
using human data or for more complex models that try to fit 
this data. Indeed, the current research can serve as valuable 
baseline for such models to better highlight the contribution 
of specific mechanisms, such as information (Gonzalez et 
al., 2015), surprise and meta-cognition (C. Camerer & Ho, 
1999; Gonzalez & Ben-Asher, 2014; Stevens et al., 2016), 
and initial beliefs (Lebiere et al., 2000). Altogether, the 
current research suggests additional areas of investigation 
and potential boundary conditions under which those 
models might be tested.  

The present work can also be seen as an application of the 
methods from evolutionary game theory into cognitive 
modelling, in which we study how varying environments 
can impact learning rather than population dynamics. 
Similar to some of that research in that work, we can use 
simulations across multiple levels of variables to develop a 
map of sorts in terms of understanding potential areas of 
investigative interest and guiding our expectations of what 
results may be likely.  The use of basic cognitive models to 
social dilemmas can help us better understand how we learn 
and how our approach to games develops over time. 
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Abstract 

Security is an important concern worldwide. Stackelberg 
Security Games have been used successfully in a variety 
of security applications, to optimally schedule limited 
defense resources by modeling the interaction between 
attackers and defenders. Prior research has suggested 
that it is possible to classify adversary behavior into 
distinct groups of adversaries based on the ways humans 
explore their decision alternatives. However, despite the 
widespread use of Stackelberg Security Games, there has 
been little research on how adversaries adapt to defense 
strategies over time (i.e., dynamics of behavior). In this 
paper, we advance this work by showing how 
adversaries*� ����#���� ������  as they learn the 
�������� *� ����#���� over time. Furthermore, we show 
how behavioral game theory models can be modified to 
capture learning dynamics using a Bayesian Updating 
modeling approach. These models perform similarly to a 
cognitive model known as Instance-Based-Learning to 
predict learning patterns.  
Keywords: Cognitive Models, Decision Making, 
Artificial Intelligence, Game Theory 

Introduction 
Building effective defense strategies requires a profound 

understanding of adversary goals and behaviors. This can be 
achieved by constructing models that predict the adversary*  
attack patterns. For example, to have an optimized patrolling 
strategy for the defender, it is crucial to understand and model 
adversary behavior and defender-adversary interactions. 
Given that defense resources are limited, computational 
models also provide a method for optimizing resource 
allocation to maximize defense efficiency using the 
minimum quantity of resources. 

To this end, researchers have used insights from 
Stackelberg Security Games (SSGs) to offer solutions that 
optimize defense strategies (Korzyk, Conitzer, & Parr, 2010; 
Tambe, 2011). Generally, SSGs model the interaction 
between a defender and an adversary as a leader-follower 
game (Tambe 2011), in which a defender plays a particular 
����� �� !��!��&���������������'�����!��������������������!* �
!������� ������!�������#������ ��#���!�����������* � !��!��&��
the adversary takes an action. Traditionally SSG research 
assumes a perfectly rational model of the adversary* �
behavior, but recent advances have shown this is not a valid 
assumption. To overcome the limitations of this assumption, 
bounded rationality models from behavioral game theory 
have been adopted in recent SSG work, such as the Quantal 
Response behavior model (McFadden 1976, Camerer 2003). 

These models, however, typically assume a homogeneous 
adversary population, creating a single adversary behavior 
model (Kar et al., 2015). 

Again, this assumption has been challenged, and recently 
some researchers modeled heterogeneous behavior by either 
assuming a smooth distribution of the model parameters for 
the entire adversary population (Yang et al., 2014), or by 
using a single behavioral model for each adversary (Haskell 
et al., 2014; Yang et al., 2014). In a recent study, using data 
collected in an Opportunistic Security Games (OSGs), 
Abbasi et al. (2016) demonstrated that a population of human 
attackers can be naturally divided into clusters, according to 
their exploration of the choice options. Furthermore, 
exploration is negatively correlated with utility 
maximization, leading to different attack strategies.  

The current paper addresses possible limitations in Abbasi 
et al. (2016) study. ��!������! *� �%�����!���� ��� !�����
experiment was, to some extent, determined by a random 
termination rule in the game. That is, the number of decisions 
that participants could make was, at least in part, determined 
by chance. This particular effect may have contributed to the 
variability in exploration processes observed. This paper 
presents a new experimental study using the same OSG used 
in Abbasi et al. (2016), but enforced a fixed number of 
decisions for all participants. Furthermore, the larger number 
of trials in the present study enables the study of human 
behavior over-time.  

With new experimental data, we demonstrate that the 
population of human attackers found in Abbassi et al. (2016) 
is robust to the number of decisions that participants make, 
and not determined by chance. We replicate the clusters of 
adversarial behavior. Furthermore, given that all participants 
had a fixed number of decisions in the game, we are able to 
investigate the adversary behavior dynamics. We show that 
the categories of adversarial behavior change over the course 
of the game, and adversary behavior shifts among these 
categories as adversaries learn !�����������* �����#����over 
time.  

To account for the change in adversary behavior, we 
modified traditional economic models of bounded rationality 
models used in Abbassi et al. (2016), with a Bayesian update 
method, so that these models would also be able to predict 
behavior over time. These models are compared to an 
Instance-Based Learning (IBL) model that provides a 
cognitively-plausible account for overtime behavior in the 
OSG. 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
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Experimental Study of Adversarial Behavior in 
an Opportunistic Security Game 

Methods.  
Game Design. To collect data on adversarial behavior in 

the OSG domain, we adopted the experimental design used 
in Abbasi et al. (2015) using a simulation of urban crime in a 
metro transportation system with six stations (Figure 1). The 
���&�� *������� �!����%���'��!����� ������&�������!������$���s 
(represented by stars in Figure 1) in limited time while 
avoiding officers on patrol. Each player can visit any station, 
including the current one. The player can travel to any station 
by train as represented by the dashed lines in Figure 1. 
Visiting a station takes one unit of time, and traveling to a 
new station takes a number of time units equal to the 
minimum distance between source and destination station 
along train routes (i.e. for the transportation system 
represented in Figure 1, if the player is currently at station 1, 
revisiting station 1 will take one unit of time, and visiting 
station station 4 will take three units of time). By traveling to 
a station (or visiting the current station), the player attacks 
that station and collects the rewards.  

Two officers are protecting these six stations. Each officer 
protects three stations where his patrolling strategy (i.e. 
���������!&����������� *���� ������!������station or route,) is 
determined by an optimization algorithm similar to the one 
presented in Zhang et al. (2014). This algorithm utilizes 
opportunistic adversary behavior model to provide optimized 
defender strategies.  

The stationary coverage probabilities for each station and 
trains are provided to the players, so players can determine 
the chance of encountering an officer at a station by 
considering the percentage of the time that officers spend on 
average at each station and on a train. However, during the 
game, the players cannot observe the officers unless they 
encounter the officer at a station. 

The game can finish either if the player uses up all the 250 
units of available time in each game, or the game is randomly 
terminated after the 50th attack with a 10% probability shown 
by the randomized terminator. The randomized terminator is 
shown as a fortune wheel with two parts. One part has 10% 
of the area and colored red, the other part is 90% of the area 
and colored green. If the arrow stops at the red area, the game 
is over, and if it lands on the green area, the participant will 
continue playing the game. 

 
To encourage participants to make each decision 

responsibly, we showed the randomized terminator to players 
from the first attack, but for the first 50 trials, we forced the 
arrow to stop at the green area and start using random number 
generator after the 50th trial.  

In the end, a player*s objective is to maximize his total 
reward in limited time. The player must carefully choose 
which stations to attack considering the available information 
about available time, rewards, and ������� * coverage 
distribution on stations and time spent to attack the station. If 
there is no officer at the station the player has attacked, his 
score will be increased by the number of stars at the station. 
If there is an officer at the station, his score remains the same.  

Procedures. Each participant began by playing two 
practice rounds to become familiar with the game. Next, 
participants played [50+] trials on the main game from which 
data were used in analyses. We constructed four different 
graphs (i.e., layouts), each of which had six stations with a 
different route structure and patrolling strategy. Each 
participant was randomly assigned to play two practice 
rounds and the main game on a single graph. 

Participants. Participants were recruited from Amazon 
Mechanical Turk. They were eligible, if they were living in 
the United States, had previously played more than 500 
games and had an acceptance rate of a minimum of 95%.  

To motivate the subjects to play games, they were 
compensated based on their total score ($0.01 for each gained 
point) in addition to a base compensation ($1). In total, 215 
participants took part in the game and went through a 
validation test (correctly answered all the questions about the 
game at the end of the instructions). Data from 24 participants 
who did not pass validation were excluded from further 
analyses.  

Results: Adversarial Attack Patterns 
Abbasi et al. (2016) showed that attackers can be divided into 
distinct groups based on their exploration behavior (i.e., 
Mobility Score): the ratio of the number of movements 
between stations over the number of trials (total number of 
possible movements) by a participant in the game. Therefore, 
attacking the same station in consecutive trials resulted in a 
low mobility score while attacking a different station in each 
trial resulted in a high mobility score. We define three attack 
patterns: (i) Low Mobility for attackers who did little or no 

 
 

Figure 1: Experiment Game Interface 
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exploration; (ii) High Mobility for attackers who tended to 
explore and frequently move between stations and (iii) 
Medium Mobility for attackers who engaged in a middling 
level of exploration.  

So in this study, in contrast with the previous study, 
participants had the same number of trials, allowing us to 
factor out the (variability in the number of decisions) and test 
whether clusters still emerge from Mobility.  

Following Abbasi et al. (2016), we applied hierarchical 
clustering approach to the data. Participants naturally divided 
into three groups: participants whose mobility score is less 
than or equal to 10% or Low Mobility (i.e. Low), participants 
whose mobility score is greater than or equal to 70%: High 
Mobility (i.e. High), and participants whose mobility score is 
greater than 10% and less than 70%: Medium Mobility (i.e. 
Medium).  

Figure 2 shows the three clusters and their corresponding 
distribution of the Expected Utility Rank of the choices they 
made (EU-rank distribution). Expected Utility is defined as: 

 

�� Z �
`	 Y &'�'�"!�%+��"(�%���a � %�)�%���

'� �  
 
Note that the higher expected utility, the better performance. 
To normalize the utility score among graphs, we have used 
!��� �����������  !�!��� *� "!���!&� �� !������� �! � �� ��"!��#��ue 
(the highest utility in the graph is ranked 1). 

Participants who belong to the Low Mobility Cluster 
focused on the stations with highest expected utility 
(mean=1.2, SD=0.5). On the other hand, participants who 
tended to move frequently between different stations (High 
Mobility) attacked average stations with lower utility 
(mean=3.0, SD=1.3). Participants in Medium Mobility 
Cluster also attacked a variety of stations but were leaning 
(on average) towards higher utility rank stations (mean=1.7, 
SD=1.15). These results replicated those in Abbasi et al., 
(2016). The robustness of these observations is very 
important ����� ��������������� *� !��!���� �� �!��&� ��$�!��!�
attackers that belong to different clusters make decisions 
differently. 

The cluster results are reinforced by Figure 3 that illustrates 
the negative correlation between mobility scores and the 
average utility of the attacked stations by the participant (r= -

0.9, p<.001).  Similarly, there is a significant negative 
correlation (r = -0.36, p <0.001) between the final score of 
the participant and his mobility score. In other words, the 
more participants moved between stations, the lower their 
score was, and the less money they earned in the experiment. 
The main question of interest in this research is the change of 
adversarial behavior over the course of the 50+ trials. We 
expect that as attackers play the game they will learn to 
discover the station with higher EU and the patterns of 
defense behavior, and therefore learn to concentrate in the 
most profitable stations. 

To test this hypothesis we analyzed ���!������! *�����#����
over the course of the 50 trials. Figure 4 demonstrates the 
percentage of attacks on the stations with the highest 
Expected Utility (EU) in each of 5 consecutive blocks of 10 
trials each (each participant was re-assigned to different 
clusters based on his mobility scores in each of the five 
blocks).  

For the participants who belong to Low Mobility and High 
Mobility Clusters, the percentage of attacks has small 
fluctuation over time. On the other hand, this percentage 
increase for the participants in the Medium Mobility Cluster. 
Moreover, the bar charts show the percentage of attacks on 
the highest EU stations by all the participants combined. Over 
the course of the 50 trials, the percentage increases 
significantly as the percentage of Low Mobility participants 
increases over time while the percentage of High Mobility 
participants decreases (Figure 5).  

 

 
 

Figure 5:  Cluster distribution over time 
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Figure 4: % of attacks on the highest EU station 
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In other words, participants* shifts toward clusters with 
lower mobility score and higher rationality level over time. 
These observations provide us with further insights for 
designing de������ *� !��!���� ��� �$�� ��$�!��!��������!����
to classifying attackers by their mobility behavior we also 
need to consider how adversaries become smarter and learn 
the defend strategy with more attack attempts.  

Models of Adversarial Behavior in OSGs 
In the following, we present competing models that represent 
adversarial behavior and focus on a modification to these 
models that capture changes in human behavior over time.   

Quantal Response Model (QR) 
Quantal Response model captures the bounded rationality of 
a human player through the uncertainty in the decisions 
making process (McKelvey & Palfrey 1995; McFadden 
1976). Instead of maximizing the expected utility, QR posits 
that the decision maker chooses an action that gives a high 
expected utility, with a probability higher than another action 
which gives a lower expected utility. In the context of OSG, 
��#��� !��� ��������* �  !��!��&�& (e.g., stationary coverage 
probability at station � (&>) shown in Figure 1), the probability 
of the adversary choosing to attack target � when in 
target��,$>�?`&a, is given by the following equation: 
 

$>�?`&a Z �
�K���79R�S`Ga

 �K���79`T�Sa`Ga05@52
 

 
where - is his degree of rationality (higher val"�� ��� ,�
corresponds to higher rationality level) and ��>�?`&a is the 
expected utility (EU) of the adversary as given by: 
 

��>�?`&a Z
%>

'� ��`�� �a � `	 Y &>a 

 
Where %> is the number of stars at station �� '� ��`�� �a refers 
to time taken to attack station � when a player is in station � 

Subjective Utility Quantal Response (SUQR) 
The SUQR model combines two key notions of decision 
making: Subjective Expected Utility, SEU, (Fischhoff et al., 
1981) and Quantal Response; it essentially replaces the 
expected utility function in QR with the SEU function 
(Nguyen et al., 2013). In this model, the probability that the 
adversary chooses station � when at station j, when the 
��������* �coverage is &� is given by�$>�?`&a. ���>�?�is a linear 
combination of three key factors. The key factors are (a) %>, 
(b) &>, and (c) '� �>�? , ) Z�[)F�)GH:� )H>B= \ denotes the 
weights for each decision making feature: 

$>�?`&a Z �
=ONQR�S

 =ONQR�WW_�P
  where   

������������������������>�? Z �)F� %>�X�)GH:� &>X�)H>B=� '� �>�? 

Bayesian Update of Human Behavior Models 
In the previous study (Abbasi et al., 2016), the human 

behavior models did not have the power to predict how 
human behavior changed over time. On the other hand, our 
results show participants learn to take advantage of the 
defense algorithm, and they attack stations with higher utility 
over the course of the trials (becoming wiser). Thus, it is 
important that models of adversarial behavior account for the 
�������������!������! *�����#���� Furthermore, in Abbasi et 
al. (2016) the QR and SUQR models were compared to a 
process model, a cognitive model that predicts individual 
choices over time (the IBL model). In some way, these 
comparisons did not demonstrate the most important 
advantages of a cognitive model of learning: to predict 
individual choices at each point in time. For this reason and 
given our experimental results, we modified the traditional 
QR and SUQR models described above with a Bayesian 
update method (B-QR and B-SUQR), so that these models 
would make predictions more similar to those that the IBL 
model can make, with individual choices over time.  

To use the Bayesian update method, we focus on 
���!������! *����� �����!������ !����: each participant made a 
decision of selecting one out of the six stations to attack. We 
modeled this problem with a Multinomial distribution over 
six options with a probability vector [ #0� � � #@ \ where #>  
refers to probability of choosing option i in each trial.   

At first, before having any data, we assumed that 
participants can attack any of the six stations with uniform 
probability. Then, after each ten trials, we gathered data on 
the actual number of attacks at each station, yielding data on 
the actual probability of attacking each station. So [
#0� � � #@ \ can be updated in the Multinomial Distribution. 
Luckily, Dirichlet distribution (Bernard, J. M., 2005) is a 
conjugate distribution for the Multinomial distribution which 
leads to generating a distribution for each of the probabilities 
in Multinomial distribution. So in Bayesian-QR and 
Bayesian-SUQR, after each 10 trials, the distribution over 
probabilities of attacks get updated and then 100 random 
samples generated out these probability distributions and 100 
�"���� ����#���� ����� *� ������!�� � $���� �%!���!��� " ����
these samples of probability of attaching each target. 

Instance-Based Learning Model 
The IBL model (Gonzalez & Dutt, 2011; Lejarraga, Dutt & 
Gonzalez, 2013) of an adversary makes a choice about the 
station to go to each trial by using the Blended Value. The 
Blended value V represents the expected value of attacking 
each station (option j ) in a particular trial: 
 

�? Z^#>?*>?
C

>40

 

 
where *>?  refers to the value (payoff) of each station (the 
number of stars divided by time taken) stored in memory as 
instance i for the station j, and #>?  is the probability of 
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retrieving that instance for blending from memory (Gonzalez 
& Dutt, 2011; Lejarraga et al., 2012) defined as: 
 

#>? Z �
6R
L ^ �

6U
L

A
]  

 

Where � refers to the total number of payoffs observed for 
station � up to the last trial, and / is a noise value defined as 
. � �
. The . variable is a free noise parameter. The 
activation of instance i represents how readily available the 
information is in memory: 
 
�> Z �! ^ `' Y 'Ea3<

HV
M�D;G=FJ=<

X ^ �`�6HHF>;IH= Y 	a
6HHF>;IH=�
M�8>HI:H>DC

X .���̀
	 Y ,>�H
,>�H

a 

 
Please refer to (Anderson & Lebiere, 1998) for a detailed 

explanation of the different components of this equation. The 
Activation is higher when instances are observed frequently 
and more recently. For example, if an unguarded, nearby 
station with many stars (high reward) is observed many 
times, the activation of this instance will increase, and the 
probability of selecting that station in the next round will be 
higher. However, if this instance is not observed often, the 
memory of this station will decay with the passage of time 
(the parameter d, the decay, is a non-negative free parameter 
that defines the rate of forgetting). The noise component � is 
a free parameter that reflects noisy memory retrieval. 

Importantly, in addition to the kernel mechanisms of the 
IBL model described above, and used in a multitude of 
studies (see Gonzalez, 2013 for a summary), Abbasi et al. 
(2016) proposed a mechanism that would allow the IBL 
model to account for the various mobility clusters. This 
mechanism was a randomization rule applied at each time 
step, which resulted in making a random selection of a station 
instead of selecting the station with the highest Blended 
value. This randomization rule served the purpose of 
generating the clusters of participants with diverse mobility 
scores. In the current work, this rule was removed given that 
each participant made exactly 50 choices, and the process of 
learning over those should be captured by the kernel 

                                                           
1 For Bayesian-QR (B-QR) and Bayesian-SUQR (B-SUQR), the 

average values over 100 data have reported in the tables 
2 [)F�)GH:� )H>B= \ 

mechanisms of the IBL model without the additional 
randomization rule. 

Modeling Results  
To test the models, we divided the human data set into two 
groups: training and test datasets. For each cluster or block of 
trials, 70% of the participants were randomly selected, and 
their data were used to train the QR, SUQR, and their 
Bayesian versions (B-QR and B-SUQR) and to fit the d and 
the � in the IBL model. The remaining 30% of the 
participants were used for testing the models.  

For comparison of different models, we use Root Mean 
Squared Error (RMSE) representing the deviation between a 
�����* �������!������������!&����an ��#�� ��&* ��!!�ck (#�) and 
the actual proportion of attacks from each station to others in 
the human data (p).  

����`#�a =����`#�a where MSE (#�) = 0
C
`#� Y #a

1
 

Table 1 shows the results on the full data set. Although 
models provide different perspectives, their prediction errors 
are similar. The IBL model captures learning and decision 
dynamics over time while QR and SUQR predict the stable 
state transition probabilities of the attacker while B-QR and 
B-SUQR1 update the transition probabilities of attacker after 
each ten trials.  Table 2 shows the performance of different 
models in different clusters. 

 
Table 1: Metrics and Parameter on the full data set 

 

Model Parameters RMSE 
QR 0.41 0.25 

SUQR <2.9,-2.1,-2.7>2 0.24 
Bayesian-QR (B-QR) 0.34 0.24 

Bayesian-SUQR (B-SUQR) <2.5.-1.9,-2.1> 0.23 
IBL <0.01,0.01>3 0.23 

 
In Low Mobility Cluster, human behavior models 

outperform IBL model, and the Bayesian update on these 
models results in a significant improvement over their 
counterparts models. For the Medium Mobility Cluster the 
improvement � � ��!�  ���������!�� ���� ���� ����� *� ������!����
errors are similar for the High Mobility Cluster.  

3 <!"�&�� ����+> 

   
 

Figure 6: % of attack on the highest 
EU station predicted by IBL 

 
Figure 7: % of attack on the highest 

EU station predicted by B-QR 

 
Figure 8: % of attack on the highest 
EU station predicted by B-SUQR 
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Table 2: Metrics and Parameters on each Cluster 
 

Clusters Model Parameters RMSE 

Low 
Mobility 
Cluster 

QR 1.28 0. 33 
SUQR <5.6,-4.4,-8.9>2 0.35 
B-QR 0.69 0.20 

B-SUQR <2.8,-2.2,-5.1> 0.17 
IBL <0.46, 0.01>3 0.50 

Medium 
Mobility  
Cluster 

QR 0.69 0.27 
SUQR <4.5,-2.3,-5.1>2 0.28 
B-QR 0.49 0.17 

B-SUQR <3.0,-1.7,-2.5> 0.24 
IBL <3.64, 1.82>3 0.35 

High 
Mobility 
Cluster 

QR 0.07 0.25 
SUQR <2.1,-1.7,-0.5>2 0.25 
B-QR 0.14 0.27 

B-SUQR <1.9,-1.5,-1.5> 0.28 
IBL <0.1, 2.71>3 0.27 

 
For the Bayesian models, the reported parameters in the 

tables were averaged over extracted parameters from the 
samples. Further analyses over these parameters are shown in 
Figure 9 which shows the distribution of Quantal Response 
,-value over time. � �  ��$�� ��� !��� ������� !��� ,-value 
increases, which means the participants are becoming more 
rational.  

 

 
 

Figure 9: lambda value over time 
 

This observation is consistent with Figure 4, extracted from 
���!������! *���!���$�����!�����������!� ��$ �!���������!����
of attacks on the highest expected utility stations which 
increase over time.  

Figure 6, Figure 7 and Figure 8 all focus on the percentage 
of attacks on the highest EU stations over time, predicted by 
the IBL, B-QR, and B-SUQR models, respectively. As shown 
in the graphs, all models also predict the increasing 
rationality of the participants over time specifically for Low 
Mobility Cluster and Medium Mobility Cluster. 

Conclusions 
In security game researches, understanding human 

adversary behavior has led to several deployed real-world 
applications (Tambe 2011), for example, PROTECT for the 

protection of major ports in the US by the US Coast Guard 
(Shieh et al. 2012). Although there are a significant amount 
of such researchers, there has been little research of 
heterogeneous adversary and how adversaries adapt to 
defense strategies over time. In this paper, we focus on 
opportunistic adversaries and advance the prior research 
which suggested classifying adversary into distinct groups 
based on the ways humans explore their choice options. More 
specifically, we advance this work by showing how 
adversaries shift among the categories as they learn the 
�������� *�����#�����#��� !�����
"�!���������$�� show how 
behavioral game theory models can be modified to capture 
the learning dynamics using a Bayesian Updating modeling 
approach. These models perform similarly to a process 
model, a cognitive model known as Instance-Based Learning, 
to predict learning patterns. This study provides interesting 
insights into building defense strategies. For example, current 
sophisticated defense algorithms often assume a 
homogeneous adversary population who behave the same 
over time. Given the significant impact of modeling 
adversarial behavior to designing optimum patrolling 
strategies for the defenders, it is critical to account for this 
heterogeneity in behavior also we need to have defenders*�
strategy which adapts to change in human behavior over time.  
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Abstract 

We present a system to comprehend natural language that 
combines cognitive linguistics with known properties of 
human language processing. It is built on Embodied 
Construction Grammar (ECG) and the Soar cognitive 
architecture. Its core is a novel grounded semantic parser. 
Experiments show the system produces actionable meanings 
and fulfills ten cognitive criteria we set out. 

Keywords: language comprehension; construction grammar; 
Soar; grounded semantics; language in robots; cognitive 
linguistics; cognitive architecture. 

Introduction 

This work attempts to combine two separate threads of 
research. One is cognitive linguistics, where formalisms 
have been developed for syntactic and semantic knowledge, 
such as Embodied Construction Grammar (ECG; Bergen & 
Chang, 2013). The second is from research on the cognitive 
modeling of language processing, where the emphasis is on 
modeling how humans process language, independent of 
specific linguistic formalisms for representing syntactic and 
semantic knowledge. In this paper, we develop a system 
called LUCIA that attempts to tie these two threads 
together, developing a novel comprehension system whose 
knowledge of language is specified in the ECG 
formalism (Bryant, 2008) and then translated into 
production rules. Those rules are used in a language 
comprehension process which is designed to fit many of the 
characteristics of human language processing. 

Cognitive Linguistics 

Cognitive linguistics is based on the idea that language is an 
integral part of cognition. Language is closely related to 
perception (Miller & Johnson-Laird, 1976) and action 
(Coello & Bartolo, 2013). To explain language we must 
study categories (Lakoff, 1987), image schemas (Johnson, 
1987; Mandler & Pagán Cánovas, 2014), and metaphor 
(Lakoff & Johnson, 1980). Meaning is seen as being 
represented by frames (Fillmore, 1976, 2013; Fillmore & 
Baker, 2009) or scripts (Schank, 1972). Psychological 
theories attempt to explain comprehension at the discourse 
(Kintsch, 1998) and sentence level (Ferstl, 1994). Looking 
at language usage leads to theories of construction grammar 
(Goldberg, 1995 & 2006; Hoffmann & Trousdale, 2013) 
that integrate semantics and syntax. 

Construction grammars provide a theory for representing 
syntax and semantics (Goldberg, 2013). ECG (Dodge, 2010; 
Feldman, 2006) is a specific formalism in this field based on 
much of the cognitive linguistic research mentioned above. 
Such a representation is necessary to language 
understanding, independent of how the processing is done, 
in order to insure that the language understanding system is 
capable of addressing the scope of human language. Parsers 
have been built for ECG (Bryant, 2008), as well as for a 
related formalism called Fluid Construction Grammar 
(FCG), which has been used for communication with robots 
(Steels & Hild 2012; Steels, 2013). Lindes (2014) used 
ideas from ECG for information extraction. However, none 
of these approaches attempts to model the characteristics of 
human sentence processing.  

Consider the ECG example in Figure 1. On the left we see 
a syntactic construction for a TransitiveCommand, and on 

the right we see a meaning schema called ActOnIt, along 
with its generalization Action. 
 

 
 

Figure 1: ECG example 
 

This example shows several characteristics of ECG. A 
composite construction lists its constituents, in this case 
named verb and object. Each constituent slot is labeled 
with the type of construction that can fill that slot. A 
construction can specify the name of a meaning schema to 
be evoked when it is instantiated, in this case ActOnIt. 
Schemas have roles to be filled. Both constructions and 
schemas can be generalized through the subcase of 
clause, and schemas can inherit roles from their parents. A 
construction can specify constraints that supply values to 
these roles through unification. In the example the 
constraints unify the meanings of the constituents with the 
roles in this construction’s meaning schema. 

This formalism is an abstraction that can describe many 
linguistic structures; however, one unanswered question is: 
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is this type of representation sufficient for representing the 
knowledge needed for modeling human sentence 
processing? 

Cognitive Language Processing 

Cognitive language processing research (Newell, 1990; 
Lewis, 1993; Lewis & Vasishth, 2005) looks at building 
computer models that comprehend language using methods 
that approximate properties of human language processing.  
We have chosen to focus on the following characteristics of 
human-like processing: 
1. Incremental – Processing extracts as much syntactic 

and semantic information as it can from each word, one 
at a time (Lewis, 1993). 

2. Integrated – Syntactic and semantic information are 
extracted jointly during comprehension (Lewis, 1993). 

3. Eclectic – Semantic, pragmatic, and world knowledge 
are used to resolve ambiguities. 

4. Real time – Comprehension proceeds in real time 
(Lewis, 1993). 

5. Useful – The meanings extracted are “actionable 
intelligence” that the agent can use for its purposes. 

6. Repair-based processing – The system greedily builds 
structures that may need to be repaired as more 
information becomes available (Lewis, 1993). 

7. Context-dependent meaning – Words can have multiple 
meanings; the meaning in a particular sentence is 
selected according to the context.  

8. Compositional – Elements with known meanings are 
combined to comprehend novel sentences. 

9. Hierarchical – Both lexical items and higher-level 
constructions contribute elements of meaning 
(Goldberg, 1995, 2006). 

10. Grounded – The meanings derived from a sentence are 
grounded in the agent’s perception, action capabilities, 
and world knowledge. 

Lewis (1993) describes a parser that is incremental (Item 1), 
does local repairs (Item 6), and shows correspondence to 
human processing in terms of its real-time performance 
(Item 4) and the kinds of structures that it has difficulty 
processing. Lewis and Vasishth (2005) extend this work to 
explore more detailed mechanisms of memory retrieval. 
That work, however, does not build full, grounded semantic 
structures that would be useful to an embodied agent. 

Ball et al. (2010), as part of the Synthetic Teammate 
Project, have a model of human language processing 
implemented in ACT-R that attempts “adherence to well-
established cognitive constraints.” This model takes 
advantage of ACT-R’s subsymbolic capabilities to resolve 
some kinds of ambiguities, and it does incremental, 
integrated, and grounded sentence understanding (Items 1, 
2, and 10).  However, the “Double R” theory of grammar it 
uses does not have the same capabilities of ECG (Feldman 
et al., 2009) to recognize many alternative expressions and 
to represent complex semantic structure. 

Cantrell et al. (2010) have a system for natural language 
understanding for robots that is designed to build semantics 

in an incremental and integrated way (Items 1 and 2), and 
ground the language in the robot’s perception (Item 10).  
This system, however, does not take advantage of cognitive 
linguistics or prior work on cognitive language processing. 

Bringing these two research threads together has some 
advantages. Cognitive linguistic theory, and ECG in 
particular, provide a formal way of describing meaning 
representations that is grounded in research on human 
knowledge representation. The formalism also describes 
syntax and the relationships by which form evokes meaning. 
Cognitive language processing attempts to ground this 
theory in actual processing that reflects known 
characteristics of human processing, thus making a theory 
that can be tested in the real world. 

This brings us to our main research question: is it possible 
to implement a comprehension system that uses the ECG 
formalism, that is consistent with human language 
processing, and that produces results that are useful to an 
embodied autonomous agent? Here we take some initial 
steps to answer this question by developing a system based 
on ECG that has many of the characteristic of human 
sentence processing.  

An Integrated Solution 

In this paper we describe LUCIA, which works as part of an 
embodied Soar agent called Rosie (Mohan et al., 2013). We 
show that it produces useful results for directing and 
instructing this robot, and that the method meets the above 
cognitive characteristics. It does not address the immense 
scope of natural language, discourse level understanding, 
the ability to learn new lexical, syntactic, and semantic 
structure, or how the brain implements comprehension. Nor 
have we explored the limits of understandable syntactic 
structures that Lewis (1993) emphasizes. 

We have developed a translator that converts ECG into 
Soar production rules, and we have written by hand a 
collection of rules that provide the infrastructure for 
language comprehension. The ECG grammar for our 
experiments is adequate to comprehend a set of sentences 
that provide directions to a robot, and the results are 
evaluated against a gold standard of meaning structures 
known to be useful to the robot. The outputs from LUCIA 
produce the correct actions with the Rosie simulator. 

In the rest of this paper we explain how LUCIA works, 
show experimental results of its performance, and discuss 
how it satisfies the ten properties of human language 
processing. Then we draw conclusions and propose future 
work. 

Language Processing in LUCIA 

Here we describe the basic principles that LUCIA is built 
on, show some examples, and relate these to our ten items. 

Basic Operation 

The LUCIA comprehension subsystem replaces the 
language comprehension part of Rosie and sends messages 
to the task performance subsystem, which acts on them, as 
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shown in Figure 2. The comprehension subsystem consists 
of rules in Soar’s procedural memory, some generated from 
a grammar and some hand-coded. The hand-coded rules 
encode functionality that is independent of specific language 
structures. 

 

 
 

Figure 2: LUCIA in context 
 

Words of a sentence come into the comprehender, which 
processes them one at a time to create a semantic 
interpretation of the complete sentence. In doing this, 
LUCIA draws on a world model that is assembled from the 
agent’s visual perception and an ontology that defines 
objects, properties, actions, etc.  In Soar the rules are held in 
production memory, the world model in working memory, 
and the ontology in semantic memory. 

When a complete interpretation of a sentence has been 
built, a message is passed to the task performance 
subsystem, labeled “Rosie Operations” in Figure 2, which 
performs the indicated action. This may involve moving the 
robot, manipulating physical objects, or providing natural 
language responses to the human user. As the robot acts, it 
updates its world model, which is always available to the 
language comprehender. 

Linguistic Knowledge 

As shown in Figure 1, an ECG grammar consists of 
“schemas” defining semantic structures and “constructions” 
which relate an input form to a meaning expressed in those 
schemas. Our translator is built based on Bryant’s (2008) 
formal definition of the ECG language. Each construction or 
schema produces one or more Soar rules. In order to have a 
system that could later be extended to learn more grammar 
incrementally, each construction or schema is translated 
independently, without using global knowledge of the 
grammar or interaction with other items. 

The linguistic knowledge that the comprehender depends 
on is represented in Soar production rules: those generated 
by the ECG translator, as well as a smaller set of hand-
coded rules that provide functions that are common over the 
whole grammar. These functions include retrieving 
properties or actions from semantic memory and resolving 
referential expressions to references to particular objects in 
the model of the perceived world in working memory. Still 
others handle bookkeeping tasks. 

Dynamic Processing 

The core of the system is the comprehend-word operator, 
which is applied once for each input word to implement 
incremental processing (Item 1). As part of comprehend-

word, a lexical-access operator is selected for each 
word, and rules generated from ECG apply to create a 
lexical construction along with any evoked semantic 
structures. A match-construction operator is selected 
each time one or more constituents can be composed into a 
larger construction. These operators are applied by other 
ECG-generated rules which fire, sometimes several in 
parallel, to evoke, build, and populate semantic schemas. 
Together, all these rules implement integrated syntactic and 
semantic comprehension (Item 2). Both lexical and 
composite constructions contribute meaning (Item 9). 

At appropriate points, various hand-coded operators are 
selected to ground referring expressions to the current 
perceived world model and the ontology in semantic 
memory (Item 10). Finally, results for this word are returned 
to the higher-level state. Once a complete sentence has been 
comprehended, infrastructure rules interpret it to form a 
message for the task performance subsystem. These results 
are compared to the gold standard developed for the robot, 
so we can verify that they are correct and useful (Item 5). 

These operators and rules do not fire in a fixed sequence, 
but in a dynamic one determined by the word being 
comprehended, the syntactic and semantic context, and the 
knowledge contained in the world model and ontology. 
These dynamics arise from the principle of doing as much 
analysis as possible while processing each word in order, 
without any look-ahead to future words (Item 1). This 
approach can produce good performance, but it often makes 
mistakes. These are corrected by a local repair mechanism 
(Item 6) modeled after the one Lewis (1993) used to 
simulate human sentence processing with Soar. 

We call the complete process Informed Dynamic Analysis 
(IDA) since the syntactic and semantic analyses evolve 
dynamically together by applying whatever linguistic and 
world knowledge is relevant at each moment (Item 3). 

Examples 

Below are examples that illustrate this dynamic process. 
 
Example 1: A Simple Sentence  
A simple example is Pick up the green sphere. Figure 3 
shows the results of the analysis, part of which constitutes 
an instantiation of the ECG items in Figure 1. 

The figure summarizes the operation of the many 
operators needed to comprehend this sentence. Numbers 
indicate when structures were built by the corresponding 
application of comprehend-word. Constructions are shown 
as blue rectangles, their meaning schemas as green ovals, 
the identifiers of structures in semantic memory in red, and 
structures in the world model in orange. The identifiers in 
green and orange are used to make associations between the 
comprehension process and items in the shared memories. 
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Figure 3: Comprehension of a simple sentence 
 

The semantic parse shown here is built up incrementally 
as each word is processed in stages 1 to 5 (Items 1 and 2). 
Each word leads to the retrieval of a lexical construction, 
those with names in capitals. Larger constructions are 
composed whenever possible (Items 8 and 9). As soon as 
the verb is identified in stage 1, its grounded meaning with 
id @A1001 is retrieved from semantic memory (Item 10). 
The PickUp construction in stage 2 attaches to the meaning 
already built for its constituent PICK. (The green arrow 
from PICK to its meaning has been omitted to avoid clutter.) 
In stage 4, a lookup to semantic memory (Item 10) finds the 
id @P1004 to ground the property green. When the 
referential expression is complete in stage 5, it is resolved to 
an object in the world model (Item 10). In stage 5, the 
complete TransitiveCommand construction, a composite 
of the structures for Pick up and the green sphere, is also 
built as soon as its constituents are present. Note that several 
levels of processing are done for one word (Item 1). No 
repairs are needed in this example. 
 
Example 2: Phrase Attachment and Repair  
Figure 4 shows the abbreviated results for Pick up the green 
sphere on the stove. This example illustrates the integration 
of Lewis’s repair mechanisms with the semantics available 
from ECG. 
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Figure 4: Phrase attachment and repair 
 

In this case, the words up through sphere form a valid 
sentence, so the first 5 stages run exactly as before. But the 
end has not yet been reached, as on the stove remains to be 
processed. Stages 6 and 7 are very simple, but a lot happens 
at stage 8. First the process recognizes and resolves the 
stove. Next on is added to form a prepositional phrase. Now 

there is the classic problem of prepositional phrase 
attachment: should the phrase be attached to the command 
that is the current upper-most construction, or to modify the 
green sphere? 

The simplest way to attach this phrase would be as a 
target location for the command, and that is what would 
happen if the sentence were Put the green sphere on the 
stove. But the system can use semantic knowledge to know 
that put needs a target location and pick up does not (Item 
3). A “repair” is done by “snipping” (Lewis, 1993) the items 
shown with dotted lines and attaching on the stove to the 
green sphere (Item 6). Now the reference for the green 
sphere must be resolved again with the new information, but 
in this case the same answer results because in the current 
perceptual model this sphere is in fact on the stove. Finally, 
the semantic structure for the command is rebuilt with the 
revised referential expression. 

Attaching a relative clause, as in Pick up the green block 
that is on the stove., works in a very similar way, except that 
the word that is lexically ambiguous. In this sentence, it is a 
relative pronoun introducing the relative clause. In Put that 
in the pantry. it is a deictic pronoun referring to something 
salient in the context. The grammar has both meanings and 
they both are created during lexical-access. Later 
infrastructure rules select which one to use, and the other is 
discarded. This illustrates Item 7. 

Informed Dynamic Analysis 

The whole process just described is similar to the analysis in 
any semantic parsing system in that it takes a sentence of 
text and produces a semantic representation. However, it 
uses a dynamic process where at every step semantic and 
world knowledge can be applied. Thus, instead of 
generating many parses and ranking their likelihood, it uses 
non-syntactic knowledge to resolve ambiguities and repair 
mistakes dynamically as the analysis proceeds. This 
approach implements Items 1, 2, 3, and 10. 

Experiments 

The Rosie team has built up a corpus of several hundred 
sentences used to instruct the Rosie agent in various tasks. 
A parser has been custom-built that allows the agent to 
understand this corpus. The LUCIA system attempts to 
duplicate the processing of that parser while being more 
general and scalable to a wider variety of linguistic forms 
and problem domains. To evaluate the capability, generality, 
and scalability of LUCIA, we have devised the following 
experiments. 

Experiment 1 

First, we took the entire Rosie sentence corpus and reduced 
it by removing sentences for its game-playing domain, 
which is beyond the scope of this project, and eliminating 
duplicate sentences. Then we selected 50 of the remaining 
209 sentences. Each of the 50 shows a slightly unique 
linguistic pattern and they collectively cover much of the 
linguistic space of all 209 sentences. These 50 sentences fall 
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into several categories which are listed below, with some of 
the language forms covered and an example sentence or two 
for each category: 
 
Declarative statements (8): noun phrases, adjectives, 
properties, states, prepositional phrases 

The red triangle is on the stove. 
 

Manipulation commands (19): manipulation verbs, 
transitive commands, commands with a location target, 
prepositional phrase attachment issues, multi-word 
prepositions 

Put the green sphere in front of the pantry. 
Store the large green sphere on the red triangle. 

 

Relative clauses, etc. (5): relative clauses with properties, 
relative clauses with prepositional phrases, multiple 
prepositional phrases 

Pick [up] a green block that is larger than the green box. 
Move the green rectangle to the left of the large green 
rectangle to the pantry. 
These two examples show a relative clause, a larger than 

relation that is computed during resolution, a to the left of 
relation which is found stored in the world model and picks 
out the correct green rectangle, and the proper attachment 
of the two prepositional phrases with to. 
 

Navigation commands (10): navigation verbs, spatial 
references, absolute and relative directions, abbreviated 
commands, goal phrases 

Follow the right wall. 
Go until there is a doorway. 

 

Yes/no answers (1): Yes. 
 

Definitions of words (2): 
Octagon is a shape. 

 

Conditional commands (1): 
If the green box is large then go forward. 

 

Questions (4): 
What is inside the pantry? 
Is the small orange triangle behind the green sphere? 
 

Together, this set of 50 sentences partially addresses the 
ten distinguishing properties of human sentence processing 
listed earlier. To cover this set, it was necessary to build the 
ECG constructions and schemas they use, both for the 
lexical items and the composite constructions. Then these 
sentences served as the test suite to fully develop the infra-
structure rules that complete the LUCIA comprehender. 

We also built an evaluator that takes the output of LUCIA 
for each sentence and compares it with the gold standard 
semantics provided by the Rosie team. When differences 
were found, the grammar and hand-coded rules were 
corrected as needed to get the desired result. Finally, all 50 
sentences were comprehended correctly. 

Table 1 shows the number of Soar rules that were 
generated automatically and by hand. The ECG column 
counts constructions and schemas, and the Rules column 
counts Soar production rules. Over 60% of the code was 
generated automatically from the grammar, showing that the 
ECG representation is capable of representing the majority 
of the knowledge that is needed.  

 
Table 1: Experiment 1 statistics 

 
Category ECG Rules Proportion 

Grammar 226 487 62.5% 
Hand-coded 0 292 37.5% 

Total 226 779  
 
Another key measure of performance relates to real time, 

our Item 4. The Soar theory (Newell, 1990) maps execution 
time to real time by assuming each decision cycle takes 50 
msec. Lewis (1993, p. 13) points out that humans 
comprehend speech “as quickly as we hear it” and read even 
faster at “~240 words per minute.” Thus an incremental 
comprehender has about 4 to 5 decision cycles, on average, 
to comprehend each word. 

Our run of all 50 sentences processed 284 words in 2,582 
decision cycles, or 9.09 cycles/word and 132 words/minute. 
This is too slow by about a factor of two. However, an 
analysis shows that within a sentence there are 4 decision 
cycles of overhead within each comprehend-word cycle, 
and this overhead could be reduced considerably. 

As we developed the system to comprehend more and 
more of the 50 sentences, new declarative knowledge in the 
form of ECG items and new procedural knowledge in the 
form of the hand-coded rules were added to the system in 
many small steps. Although LUCIA has no built-in learning 
mechanism, this increase of knowledge can be thought of as 
a model of what a true learning system would have to learn. 
Figure 5 shows how this knowledge grows with the number 
of sentences comprehended.  

 

 
 

Figure 5: Code growth with knowledge 
 

The number of rules generated from the grammar is much 
larger than the number of hand-coded ones, and this 
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proportion grows as the grammar grows. However on the 
last step, where four questions were added, only 13 ECG 
items and 29 rules were added to the grammar, while 58 
new hand-coded rules were needed. The grammar changes 
were simple additions, but new ways of attachment, 
grounding, and formatting were also required. An important 
issue is whether the number of hand-coded rules plateaus as 
we extend LUCIA to new constructions. 

Experiment 2 

To test the generality of the system, we applied LUCIA to a 
Spanish translation of the same sentences used for 
Experiment 1, comparing the results to the same gold 
standard semantic structures used for Experiment 1. The 
translation was done by the first author, a fluent Spanish 
speaker, with consultation with a native Spanish speaker. 
Both have extensive English-Spanish translation experience. 

Several linguistic differences needed to be dealt with, in 
addition to the obvious one of a different vocabulary:  
adjectives can come either before or after a noun as in la 
esfera verde (the green sphere); the morphology of 
pronouns attached to the end of verbs as in Levántalo (Pick 
it up) and Oriéntate (Orient [yourself]); no equivalent of 
then in If ... then ..., although entonces could be used with 
some loss of fluency; word order may be different as in all 
the example questions; and the meanings of many words, 
especially prepositions, don’t correspond across languages. 
For example, on may be translated as either en or sobre and 
to be can correspond to either ser or estar. Spanish also has 
morphological variation in verb conjugations that English 
does not have, but that doesn’t affect this corpus since 
everything is in the present tense, all command verbs are in 
the second person familiar imperative form, and all to be 
verbs are in the third person. 

Some new constructions had to be added to handle some 
of the differences from English. Following these extensions, 
all 50 sentences were processed correctly. Table 2 shows the 
relevant code statistics. 
 

Table 2: Experiment 2 statistics 
 

Category ECG Rules Proportion 
Common 140 319 36.3% 
Spanish-specific 114 263 30.0% 
Hand coded 0 296 33.7% 

Total 254 878  
 

Experiment 3 

To evaluate the scalability of the system, we took the exact 
code used for Experiment 1 and ran it on the full original list 
of 209 sentences. With no additional vocabulary, 110 
sentences could not be understood due to 88 unknown 
words. Of the remaining 99 sentences, the system 
understood 82. This shows that the system can often process 
novel sentences that use known words (Item 8). 

We then added lexical items for those 88 words, which 
required adding 113 ECG items that generate 178 Soar 
rules. With these additions, 92 sentences were understood. 
This shows that the system can process even more 
sentences, but also that new constructions must be added to 
understand many new sentences. It doesn’t understand more 
sentences because the original 209 sentences were chosen to 
demonstrate a variety of syntactic constructions, which 
require additional grammatical and semantic knowledge. 

Conclusions and Future Work 

We set out to evaluate whether LUCIA could provide 
language comprehension to Rosie in a way that is both 
useful and cognitively plausible. The above experiments 
show that it is useful, and that it satisfies, at least partially, 
the ten cognitive criteria. It does incremental processing that 
integrates syntax, semantics, and grounding in the perceived 
world. Its grammar is both hierarchical and compositional. 
It can eclectically apply all available knowledge at any stage 
of processing. It has a working repair mechanism and a 
method for handling lexical ambiguity, although so far these 
only cover a limited number of cases. Based on Soar 
assumptions, it comes within a factor of two of real-time 
processing, and it seems clear how to improve that. 

Future work could begin with improving the real-time 
course of comprehension, adding more robust mechanisms 
for repair and handling lexical ambiguity, and exploring the 
correspondence to human limitations that Lewis’s (1993) 
system demonstrates. We can continue on to the much 
larger challenges of learning grammar and concepts, and 
using that learning to expand the scope of understandable 
domains. 
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Abstract 

This paper presents a computational model that integrates a 
dynamically structured holographic memory system into the 
ACT-R cognitive architecture to explain how linguistic 
representations are encoded and accessed in memory. We show 
that a holographic memory system provides a cognitively 
plausible and principled explanation for the processing of 
sentences with negative polarity items (NPIs) like ever and any. 
The original ACT-R model fails to capture the full range of 
human reading times and judgments of grammaticality, 
whereas the integrated holographic memory model achieves 
good quantitative fits to human error rates and response 
latencies. These results provide proof-of-concept for the 
unification of two independent computational cognitive 
frameworks. 

Keywords: Language processing; Memory; Holographic 
Reduced Representations; ACT-R 

Introduction 
A hallmark of human cognition is the ability to encode, 
access, and process compositional structures (Anderson, 
1983; Fodor, 2001; Newell, 1990). A parade case involves 
language processing. For instance, understanding a sentence 
in a discourse requires mechanisms for encoding a structured 
representation of the sentence in memory and for accessing 
specific pieces of information in that representation later. 
However, it remains an open question how these mechanisms 
are neuro-computationally instantiated. 

One model that has received much attention is the Lewis 
and Vasishth (2005) (henceforth LV05) model of sentence 
processing, realized in the Adaptive Control of Thought—
Rational (ACT-R) architecture (Anderson, 1990; Anderson et 
al., 2004). In the LV05 model, sentence processing is 
construed as a series of cue-based memory retrievals, subject 
to similarity-based interference. The model is considered the 
most precise expression of the working memory retrievals 
and associated control structures that support language 
processing, and is commonly used to investigate the timing 
and accuracy of memory retrieval in sentence 
comprehension. 

An initial success of the LV05 model was that it captured 
interference effects observed in the processing of linguistic 
dependencies, such as those involving negative polarity items 
(NPIs). NPIs are words like ever or any, which are generally 
acceptable only in sentences that contain a negative-like word 
in a syntactically higher position, e.g., No bills that the 
senators supported will ever become law. Previous work has 
shown that NPI licensing is highly susceptible to interference 

in sentences like The bills that no senators supported will 
ever become law, due to the presence of the negative 
distractor no that is in a syntactically irrelevant position (e.g., 
Drenhaus, Saddy, & Frisch, 2005). Interference manifests as 
decreased accuracy in judgments of grammaticality and 
decreased reading time disruptions at the NPI, relative to 
sentences that lack negation. Vasishth, Brüssow, Lewis, and 
Drenhaus (2008) argued that such effects are a natural 
consequence of the error-prone memory retrieval 
mechanisms embodied in ACT-R. Under this view, 
encountering an NPI triggers a retrieval for a negative 
licensor, but the wrong item can be retrieved if it matches 
some of the retrieval cues.  

The LV05 model is able to capture many empirical effects, 
but there are cases where the model makes the wrong 
predictions. For instance, Parker and Phillips (2014; 
submitted) showed that NPI interference effects can be 
reliably switched on and off, depending on when the memory 
encoding is probed: interference is observed when the 
encoding of the licensing context is probed early in the 
sentence, but the effect disappears when the licensing context 
is probed from a later point in the sentence (see also Parker, 
2014). These findings are unexpected under the ACT-R 
account, which predicts that interference effects should 
generalize across contexts, based on the assumption that there 
is a single set of principles that governs memory access.  

Parker and Phillips suggested that the contrasting profiles 
observed for NPIs reflect untested assumptions about how 
sentences are encoded in memory. ACT-R assumes that the 
encoding remains fixed over time. However, the finding that 
interference can be switched on/off depending on when the 
encoding is probed suggests that the encoding is not fixed, 
but rather changes over time, such that the internal items 
become opaque as candidates for causing interference.  

This paper presents a computational model that integrates 
a holographic memory system (e.g., Plate, 2003) into the 
ACT-R framework to explain the empirically observed 
effects that the LV05 model fails to capture. Holographic 
memory systems assume that the atomic components of a 
compositional structure are periodically bound together in 
memory to create a single, unitized encoding for 
interpretation. A key prediction of our model is that 
interference effects during linguistic dependency formation 
should be selective, depending on when the encoding is 
probed. Modeling results show good quantitative fits to a 
variety of measures, providing proof-of-concept for the 
unification of two computational cognitive frameworks. 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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The research reported in this paper builds on previously 
published literature on holographic memory models and 
integrating holographic models with ACT-R. Rutledge-
Taylor, Kelly, West, and Pyke (2014) and Kelly, Kwok, and 
West (2015) have shown that a holographic declarative 
memory system similar to the one proposed here can be 
integrated into ACT-R to capture decision-making tasks, the 
fan effect, and delayed learning. Our model demonstrates that 
this unified framework can capture more specialized 
cognitive abilities, such as language processing. 

The ACT-R model of sentence processing 
ACT-R is a cognitive architecture based on independently 
motivated principles of memory and cognitive skills, and has 
been used to study a wide range of cognitive phenomena 
(Anderson, 1990). The LV05 ACT-R model applies those 
principles to the specialized task of sentence processing.  

In the LV05 ACT-R model, linguistic constituents are 
encoded as ‘chunks’ in content-addressable memory, and the 
syntactic representation of a sentence arises as the 
consequence of pointers that index the hierarchical relations 
between chunks. Chunks are encoded as bundles of feature-
value pairs. Features include lexical content (e.g., morpho-
syntactic and semantic features), syntactic information (e.g., 
category, case), and local hierarchical relations (e.g., sister, 
parent). Values for features include symbols (e.g., ±singular, 
±animate) or pointers to other chunks (e.g., NP1, VP2). 

Linguistic dependencies, such as those between an NPI and 
its licensor, are formed using a general retrieval mechanism 
that probes all task-relevant chunks in parallel for the left part 
of the dependency (the target), using a set of retrieval cues. 
Retrieval cues are derived from the current word, the 
linguistic context, and grammatical knowledge, and 
correspond to a subset of the features of the target (Lewis, 
Vasishth, & Van Dyke). Chunks are differentially activated 
based on their match to the retrieval cues. The probability of 
retrieving a chunk is proportional to the chunk’s overall 
activation at the time of retrieval, modulated by decay and 
interference from other items that match the retrieval cues. 

The activation of a chunk i (Ai) is defined as follows.1 
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The first term of Equation 1 describes the baseline 

activation of chunk i, which is calculated according to 
Equation 2. Equation 2 describes the usage history of chunk 
i as the summation of all n successful retrievals of i, where tj 
is the time since the jth successful retrieval of i to the power 
of the negated decay parameter d. The output is passed 
through a logarithmic transformation to approximate the log 
odds that the chunk will be needed given its usage history. 

                                                             
1 Readers familiar with ACT-R may notice the non-standard 

presentation of Equation 1: the sign on the partial match component 
has been flipped to indicate its penalizing nature. 

After a chunk has been retrieved, the chunk receives an 
activation boost, followed by decay.  
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The second term of Equation 1 reflects the degree of match 

between chunk i and the retrieval cues. W is the weight 
associated with each retrieval cue j, which defaults to the total 
amount of goal activation G available divided by the number 
of cues (i.e., G/j). Weights are assumed to be equal across all 
cues. The degree of match between chunk i and the retrieval 
cues is the sum of the (weighted) associative boost for each 
retrieval cue Sj that matches a feature value of chunk i.  The 
associative boost that a cue contributes to a chunk that it 
matches is reduced as a function of the fan of that cue, i.e., 
the number of chunks in memory that match the cue 
(Anderson, 1974), according to Equation 3. 
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The third term of Equation 1 reflects the penalty for a 
partial match between the cues of the retrieval probe and the 
feature values of chunk i. Partial matching makes it possible 
to retrieve a chunk that matches only some of the cues, 
creating the opportunity for retrieval interference (Anderson 
et al., 2004; Anderson & Matessa, 1997). Partial matching is 
calculated as the matching summation over the k feature 
values of the retrieval cues. P is a match scale, and Mki reflects 
the similarity between the retrieval cue value k and the value 
of the corresponding feature of chunk i, expressed by 
maximum similarity and maximum difference. 

Lastly, random noise is added to the activation level of 
chunk i, generated from a logistic distribution with a mean of 
0, controlled by the noise parameter s, which is related to the 
variance of the distribution, according to Equations 4 and 5. 
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Activation Ai determines the probability of retrieving a 

chunk, according to Equation 6. The probability of retrieving 
chunk i is a logistic function of its activation with gain 1/s 
and threshold !. Chunks with higher activation are more 
likely to be retrieved.  
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Activation Ai also determines the retrieval latency Ti of a 
chunk, according to Equation 7. F is a scaling factor that sets 
predictions on an appropriate time scale. Chunks with a 
higher activation value have a faster retrieval latency. 
 

T" # UN"
5OP (7) 

Predictions of the ACT-R model 
The LV05 ACT-R model predicts that retrieval for linguistic 
dependency formation should be subject to interference from 
non-target or syntactically irrelevant items that match some 
of the retrieval cues (partial match interference). This 
prediction is based on the assumptions that retrieval accesses 
all chunks in parallel and that a partial match between the 
retrieval cues and a chunk can result in erroneous retrieval of 
that chunk (see Equation 1). Many studies have shown that 
this prediction is borne out for a range of dependencies, 
including subject-verb agreement (Dillon et al., 2013; 
Wagers et al., 2009; Tanner et al., 2014), anaphora (Parker et 
al., 2015), case licensing (Sloggett, 2013), and ellipsis 
(Martin, 2015). 

For instance, the LV05 model has been used to explain 
interference effects observed in the processing of negative 
polarity items (NPIs). NPIs are words like ever, any, or yet, 
that can be licensed by a negative-like word in a syntactically 
higher position. The NPI ever in (2a) is licensed because it 
appears in the scope of the negative phrase no students. When 
negation is absent, (2b), or is in a syntactically irrelevant 
position, (2c), the NPI is not licensed. 
 
(2) a. No students have ever passed the test. 
 b. The students have ever passed the test. 
 c. The students that no teachers liked ever passed the test.  
 

Previous research has shown that NPI licensing is highly 
susceptible to interference in sentences like (2c), due to the 
presence of the negative distractor, e.g., no teachers, that is 
in a syntactically irrelevant position for the purpose of NPI 
licensing. This effect manifests as decreased accuracy in 
judgment tasks and decreased reading time disruptions when 
processing the unlicensed NPI, relative to sentences that lack 
negation, like (2b).  

Vasishth et al. (2008) argued that such effects are a natural 
consequence of the error-prone retrieval mechanisms 
embodied in ACT-R. Under this account, NPI licensing is 
implemented as an item-to-item dependency by retrieving a 
negative licensor from memory using syntactic and semantic 
cues, e.g., [+scope], [+negative]. In (2a), retrieval finds an 
item that matches both cues. In (2b), retrieval fails to find a 
match to either cue. In (2c), retrieval finds a partially matched 
item, i.e., a semantically appropriate item in a syntactically 
irrelevant position. The activation boost from this partial 
match, combined with stochastic noise, can cause the 
syntactically irrelevant licensor to be retrieved, spuriously 
licensing the NPI. Vasishth et al. showed that Equations 1-6 
achieve good quantitative fits to both human reading times 
and judgements of grammaticality. 

Challenges for the ACT-R model 
The LV05 ACT-R model predicts that interference during 
NPI licensing should generalize across syntactic 
environments, since the effect is attributed to error-prone 
retrieval mechanisms that are engaged whenever an NPI is 
encountered. However, this prediction is not borne out. 
Parker and Phillips (2014; submitted) showed that 
interference effects for NPIs can be reliably switched on/off, 
depending on when the memory encoding of the licensing 
context is probed. They manipulated the position of the NPI 
relative to the potential licensors in sentences like (3), and 
found contrasting profiles: interference was observed when 
the NPI appeared early in the sentence, i.e., in the main clause 
(position 1), replicating previous findings, but not when it 
appeared later in the sentence, i.e., in the embedded clause 
(position 2). These effects were shown using both reading 
time measures and speeded acceptability judgments. 
 
(3) The journalists that no editors recommended (ever1) 

thought that readers would (ever2) understand physics. 
 

These findings suggest that the interference effects 
observed for NPIs cannot simply be due to noisy retrieval 
mechanisms that are engaged whenever an NPI is 
encountered, as assumed in ACT-R. Furthermore, the effects 
cannot reflect decay or faulty encoding of the licensing 
context, since that would predict difficulty in the grammatical 
conditions, contrary to fact.  

Parker and Phillips argued that the contrasting profiles 
observed for NPIs reflect untested assumptions about how 
sentence representations are encoded in memory. ACT-R 
assumes that the encoding of the sentence remains fixed over 
time. However, the finding that interference effects can be 
switched on/off depending on when the encoding is probed 
suggests that the encoding is not fixed, but rather changes 
over time: at one moment, irrelevant items are transparently 
accessible via partial matching; but then at a later point in 
time, those same irrelevant items become opaque as 
candidates for causing interference.  

In the next section, we discuss how such effects are 
predicted in an alternative, dynamically structured 
holographic memory system. 

Multiple-stage encoding schemes 
The LV05 ACT-R model assumes that the encoding of a 
sentence remains fixed over time. However, this is not a 
widespread assumption. Many cognitive models, including 
the entire class of Vector Symbolic Architectures (VSAs), 
e.g., Tensor Product Models (Smolensky, 1990), 
Holographic Memory (Plate, 2003), Binary Spatter Codes 
(Kanerva, 1994), assume that there is a qualitative shift over 
time in the format of an encoding in memory.  

In VSAs, compositional structures are encoded in two 
stages. When a representation is first encoded, it is equivalent 
to its subparts, such that the individual features of the 
representation can be evaluated independently from their 
position in a structured representation, creating the 
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opportunity for partial match interference at retrieval. Then, 
at a later point, those same features may be bound together, 
creating a single, unitized encoding that is dissimilar to its 
sub-parts to conserve memory resources. In this state, 
individual features are no longer independently evaluable, 
and the representation must exhibit an all-or-none match to 
the cues of the retrieval probe in order to be recovered, 
preventing the possibility of partial match interference. This 
idea of “recoding” is based on Miller’s (1956) principle of 
chunking, which provides a central explanation for how 
human memory works. 

Proposal 
An implicit assumption of VSAs is that compositional 
structures are encoded in multiple stages. VSAs make a 
distinction between “atomic” representations that are 
typically randomly generated versus “complex” 
compositional representations that are constructed from 
atomic representations. We propose that these two 
representational stages may be mapped to distinct cognitive 
processing stages as a principled explanation of the 
contrasting profiles observed for NPI licensing. Previously, 
VSA-based cognitive models have not assumed that 
particular cognitive processing stages are associated with the 
two representational schemes. However, if the format of the 
encoding changes over time, as implicitly assumed in VSAs, 
then we should expect different behaviors at different points 
in time, depending on when the encoding is probed, as 
suggested for NPI licensing.  

Encoding linguistic structure in multiple stages 
In VSAs, the feature-values of a linguistic representation may 
be encoded as high-dimensional vectors that are recursively 
bound together by compressing their outer product into a 
single vector. For instance, in a tensor-product scheme (e.g., 
Smolensky, 1990), features are bound together in memory by 
taking the outer product of the vector representations of the 
features, as shown in (4). 

 
(4) a. Feature vectors 
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However, as the structure grows, the size of the code grows 

exponentially, which is undesirable given the stringent limits 
on the amount of information that can concurrently occupy 
working memory (Cowan, 2001). Plate (2003) proposed a 
solution using Holographic Reduced Representations 
(HRRs), which rely on circular convolution to bind features 
together, according to Equation 8.2 Importantly, the size of 

                                                             
2 Convolution is the core mathematical operation behind 

holography, hence the term “holographic”.  

the code does not grow as more features are added, since the 
circular convolution of two n-dimensional vectors using 
modulo subscripts produces a vector with dimensionality n. 
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Figure 1. Circular convolution represented as the 
compressed outer product t of the feature vectors c and x. 

 
Figure 1 shows circular convolution as the (‘reduced’) 

outer product t of the feature vectors c and x, corresponding 
to the linguistic features [+scope] and [+negation] for n=3. 
Convolution is calculated as the summation of the outer 
product values along the paths of the lines.  

In the uncompressed form (encoding stage 1), individual 
features c and x are independently evaluable, making the 
representation susceptible to partial matching. In the 
‘reduced’ form (encoding stage 2), the individual features c 
and x are no longer independently evaluable, preventing the 
possibility of partial matching. In this state, the representation 
must be recovered holistically with an all-or-none match to 
the cues of the retrieval probe.  

Similarity between the retrieval probe p and a memory m 
measured by their normalized dot product, i.e., cosine 
similarity, according to Equation 9. 
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One concern is that encoding n-dimensional bindings using 

circular convolution can be slow, since convolution 
calculates the sum of products (convolution with modulo 
subscripts takes O(n2) time). Processing can be sped up by 
performing convolution in the frequency domain with the 
Fast Fourier Transform, which involves element-wise 
multiplication, as shown in Equation 10. This process 
implements circular convolution in O(n log n) time. 
 
V%AC>WLXy p %3L?;B@>3 s # z{9z _ | z ` < (10) 

 
The most important property of HRRs, for present 

purposes, is that the encoding changes such that the internal 
items become opaque for partial matching with the passage 
of time. This property could provide a principled explanation 
for the contrasting profiles observed for NPIs. If the format 
of the encoding changes over time, as assumed in a 
holographic memory system, then we should see different 
behaviors at different points in time, depending on when the 
encoding is probed. 

In the next section, we show how a holographic memory 
system can be integrated into the LV05 ACT-R model to 
simulate human reading times and judgments of 
grammaticality. 

Integrating HRRs into ACT-R 
A new memory module for the LV05 ACT-R model was 
developed using HRRs replacing traditional ACT-R chunks 
with holographic vectors. Holographic vectors retain the 
same expressive power of the chunks used in the LV05 
model, but allow for dynamic changes in the format of the 
encoding.  

To implement HRRs in the ACT-R system, we made the 
following changes to the original LV05 ACT-R model. First, 
linguistic feature-value specifications and retrieval cues were 
encoded as vectors (one dimensional arrays) of n numbers, 
randomly sampled from a normal distribution. For our 
simulations, n = 10,000. In this format, different feature-
value specifications and the corresponding retrieval cues are 
represented by different patterns in a continuous, high-
dimensional space.  

In encoding stage 1 (expanded representation), feature-
value pairs are superimposed by adding the vectors together 
to create linguistic chunks (bundles of feature-value pairs, as 
defined in the original LV05 ACT-R model). Retrieval probe 
vectors are constructed in the same manner. In this state, the 
individual features of a chunk are independently evaluable at 
retrieval and hence susceptible to partial matching, as 
assumed in the original LV05 model. 

In encoding stage 2 (reduced representation), convolution 
as computed according to Equation 10 is used to bind the 
vectors representing the feature-value pairs within a chunk. 
To enable successful retrieval of a chunk, the cues of the 

retrieval probe must be combined in the same way. In this 
state, a chunk represents a single, unitized encoding that must 
exhibit an all-or-none match to the retrieval probe to be 
recovered, i.e., partial matching is not possible. For present 
purposes, we assumed that feature binding was triggered 
upon encountering the main clause verb of a sentence during 
comprehension. According to Parker and Phillips 
(submitted), encountering a main clause verb may force the 
parser to ‘wrap-up’ and consolidate the encoding of the 
previous context to conserve memory resources. 

Second, we modified the standard ACT-R equation for 
activation values (Equation 1) to accommodate HRR vectors.  
Specifically, we substituted cosine similarity, as computed 
according to Equation 9, for the third term of the standard 
ACT-R equation for activation value, i.e., the term that 
computes the penalty for a partial match between the cues of 
the retrieval probe and the feature values of chunk i. 

Simulations 
We investigated whether the contrasting profiles observed for 
NPIs would be best captured by the original LV05 ACT-R 
model or the integrated HRR/ACT-R model. To achieve this, 
we conducted a side-by-side comparison of the LV05 model 
with the integrated model, without adjusting key model 
parameters. 

Procedure 
Previous implementations of the ACT-R model of sentence 
processing have included a wide range of modules, including 
modules for visual information processing, lexical access, 
memory retrieval, and syntactic parsing (e.g., Lewis & 
Vasishth, 2005; Vasishth et al., 2008). However, the 
simulations reported here focus solely on the module for 
retrieval, and abstract away from the contribution of the 
peripheral modules by stipulating the chunks in memory and 
retrievals required to parse a sentence. There are additional 
processes associated with sentence comprehension that 
contribute to behavioral measures, but for current purposes, 
we adopt the standard assumption that the dynamics and 
output of memory retrieval map monotonically to the 
behavioral measures of interest (Anderson & Milson, 1989).  

We simulated the hypothesized retrievals involved in the 
key manipulations reported in Parker and Phillips 
(submitted). Three conditions were simulated, manipulating 
the presence and location of an NPI licensor (appropriate 
licensor, irrelevant licensor, no licensor) and the position of 
the NPI (main clause, embedded clause), based on the 
sentence structures in (3). For each condition, a schedule of 
constituent creation times and retrievals was estimated from 
the reading times reported in Parker and Phillips (submitted). 
Differences between conditions were modeled only as 
differences in NPI position and the feature composition of the 
licensors (±scope, ±negation).  

To ensure that the modeling results for the LV05 and 
integrated HRR/ACT-R model would be directly 
comparable, all models used the same default parameter 
settings, following Lewis and Vasishth (2005) and Vasishth 
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et al. (2008). The only exception was the scaling parameter 
F, which was optimized to fit the behavioral time scale (in all 
models, F = 0.6). 5,000 Monte Carlo simulations were run for 
each condition. 

We report two measures of interest: (i) Retrieval error rate 
reflects the percentage of runs for which the distractor, rather 
than the target was retrieved. This measure maps 
monotonically to speeded acceptability judgments, with 
higher retrieval error rates corresponding to increased rates 
of judgment errors. (ii) Retrieval latencies reflect the average 
amount of time it took to retrieve the most probable item, and 
map monotonically to reading times, with higher latencies 
corresponding to longer reading times. These measures were 
used to calculate the predicted interference effect as the 
difference in predicted error rates and retrieval latencies 
between the ungrammatical conditions with and without a 
negative distractor (NPI interference is observed only in 
ungrammatical conditions). Thus, for predicted error rates, a 
larger positive value corresponds to a higher rate of 
interference, reflecting increased rates of acceptance for 
sentences with a distractor relative to sentences with no 
distractor. For predicted retrieval latencies, a smaller 
negative value corresponds to a higher rate of interference, 
reflecting facilitated processing for sentences with a 
distractor relative to sentences with no distractor.  

We compared the observed interference effects with those 
predicted by the LV05 model and the HRR/ACT-R model for 
the reading time measures (Figure 1) and judgment data 
(Figure 2) reported in Parker and Phillips (2014; submitted).  

Simulation results 
Across both behavioral measures, the integrated 

HRR/ACT-R model provided a better fit to the observed data, 
without adjusting the key model parameters (fit with the 
HRR/ACT-R model was adjusted R2 = 0.79; fit with the 
LV05 model was adjusted R2 = 0.28). The LV05 model failed 
to capture the observed on/off behavior, predicting similar 
rates of interference across NPI positions. The integrated 
model, on the other hand, captured the basic contrast between 

NPI positions, with significantly less interference for 
embedded clause NPIs (ever2).  

Although the values predicted by the integrated 
HRR/ACT-R model did not match the observed data 
perfectly, the predicted profiles were qualitatively similar to 
the observed data. We could explore different parameter 
values to achieve an even better fit with the observed data, 
but this was not our goal. Rather, our goal was to determine 
whether the ACT-R model enhanced with a holographic 
declarative memory system would predict the basic contrasts 
without adjusting previously fixed parameter values.  

The contrasting profiles predicted by the HRR/ACT-R 
model are consistent with the hypothesis that the contrasting 
profiles observed for NPIs reflect changes over time in the 
encoding of compositional representations in memory. After 
the features of the representation are bound together, the 
representation must exhibit an all-or-none match to the cues 
of the retrieval probe, preventing partial match interference.  

Conclusion 
We presented a computational model that integrates a 
holographic memory system into the ACT-R model of 
sentence processing to explain how compositional linguistic 
structures are encoded and accessed in memory. Modeling 
results showed that the integrated system is better suited to 
capture contrasting profiles of interference effects in sentence 
comprehension, relative to existing models, yeilding a good 
quantitative fit to data from a variety of behavioral tasks. 
These results provide proof-of-concept for the unification of 
two independently developed computational cognitive 
frameworks, and offer new insights into how humans encode 
and access compositional representations in memory.  
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Abstract

A number of models of word structure represent orthography
in terms of features indexing individual letters and adjacent
letter pairs within the word. This permits word parts to be rep-
resented independent of position, but leaves the open question
of whether partial letters arranged in multiple clusters (frag-
ments) provide better memory retrieval cues. To answer this,
we conducted a study in which expert and novice crossword
players completed crossword problems for words of different
lengths and with different numbers of letter cues. Although ex-
pertise, word length and a number of cues provided strong pre-
dictors of accuracy and response times, within each cue/word-
length condition, neither the number of word fragments nor the
maximum size of word fragment provided a consistent advan-
tage. A computational model using letter pairs as features, but
no higher-order representation of orthography, accounted for
effects of expertise, word length, and number of cues, and sim-
ilarly did not produce systematic effects on the number or sizes
of fragments. Results suggest that, to a first approximation,
letter-pair representations are sufficient to account for the per-
formance in word stem and word fragment completion, cross-
word, and potentially other word reading/identification tasks.
Keywords: crossword expertise; memory retrieval; ortho-
graphic clue; crossword recognitional-based decision-making
model

Introduction
Models of reading and word representation in Latin-character
languages have often represented orthography in terms of
features associated with both individual letters and letter
pairs (Grainger & Van Heuven, 2003; Thanasuan & Mueller,
2014). For example, the feature-based representation for
FORCE would include F, O, R, C, and E, along with *F, FO,
OR, RC, CE, and E* (where * indicates a word boundary).
This scheme permits representing a sequence without coding
the absolute position of a letter within a word, and so it en-
ables similarity-based comparisons to be robust to prefixes
and suffixes (ENFORCE, FORCEFIELD) with graded simi-
larity to some grammatical modifications (FORCING). Such
models have been successful at accounting for data in a num-
ber of reading, memory, and word completion paradigms, but
less is known about whether higher-order orthographic rep-
resentations such as trigrams (or “Wickelphones”) are use-
ful, and whether cues involving multiple letter pairs are better
than those involving fewer pairs.

Although such representations have often been tested in a
general population of readers (who are assumed to have sub-
stantial experience with the problems of memory retrieval

based on orthographic information), another factor to con-
sider is whether extensive deliberate practice with word-
fragment completion changes the level of representation used,
or permits better use of multiple word fragments in cueing a
correct word. Thus, expert word game players may produce
fundamentally different results, showing evidence of differ-
ent or higher-order representations in word completion tasks
in their domains of expertise.

A number of researchers have examined crossword solvers
to identify their memory retrieval and problem-solving abil-
ities and strategies. For example, Nickerson (1977, 2011)
explored crossword puzzle solving processes relating to lex-
ical memory and categorized daily crossword cues in order
to understand information retrieval of the solvers. Moreover,
Toma, Halpern, and Berger (2014) compared visuospatial and
verbal working memory among college students, crossword
and Scrabble experts using a symmetry span task and a read-
ing span task. They found that participants from the two elite
groups performed the cognitive tasks better than the novice
group, but the results between the two groups were not statis-
tically different.

Mueller and Thanasuan (2013); Thanasuan and Mueller
(2014) developed and implemented computational models of
crossword solving based on the Recognitional-primed deci-
sion making model (RPD; Klein, 1993), the Bayesian Recog-
nitional Decision Model (BRDM; Mueller, 2009), and a
computational model of word-stem completion (Mueller &
Thanasuan, 2014). The models used data from a database
of millions of real crossword clues and answers, and used
a letter-pair feature set to represent orthography. Expertise
effects were accounted for in terms of speed, strategy, and
retrieval fluency, and although the models performed better
than novices, they did not achieve as good performance as
did experts. This may have arisen in part because of the
orthographic representation; a computer performing logical
template-based matches of word stems can generally reduce
the candidate set substantially more than our representation
(see Ginsberg, 2011), which would have improved perfor-
mance significantly.

Letter Clusters as Orthographic Clues
Typically, a partially-filled answer in a crossword grid is eas-
ier to solve than one with no letter cues, in part because it
limits the search set in mental lexicon (Nickerson, 2011), and
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provides additional cues for retrieval. Thanasuan and Mueller
(2014) concluded that although crossword experts used se-
mantic information as a primary constraint, they also relied
on orthographic knowledge and visual pattern recognition to
complete the puzzles. Supporting this, Mueller and Thana-
suan (2013) found that when crossword experts were pre-
sented with easy word-stems (i.e. three or fewer missing let-
ters), the accuracy was about 80%, whereas novices were able
to complete them correctly only about 40%.

However, those studies did not examine whether clusters
of two or more letters were more helpful in memory retrieval
than if the same letters are dispersed throughout the clue.
Other tasks, such as the cue-facilitated retrieval paradigm,
have been used to investigate the role of letter clusters in word
completion. For example, Horowitz, White, and Atwood
(1968) used this paradigm to determine whether the type of
letter cluster (the first, middle or last three-letter clusters of
a word) impacted the ability to recall nine-letter words, and
found that the first three-letter fragment was the most helpful.
Likewise, Dolinsky (1973) compared the cue retrieval process
using syllabic and non-syllabic letter clusters as cues. They
found that the middle syllabic units were very helpful on word
retrieval, but the syllabic clues did not facilitate the recall per-
formance more than the non-syllable fragments. In addition,
Goldblum and Frost (1988) studied a cue facilitation effect of
letter clusters using a crossword paradigm task. They hypoth-
esized that different structures of sub-lexical units, which in-
clude syllable, pronounceable non-syllable, unpronounceable
cluster, and nonadjacent letters, might differently influence
word retrieval. They found that the small units of syllabic
fragments were the best retrieval cue. They also found that
the syllables with phonological units such as “- -SEP- - - - - -”
of a target word “INSEPARABLE” assisted the solvers more
than morphemic units (i.e., units linked to meaning) such as
“- - - -PAR- - - -” of the same target answer. This suggests
that the position of letter clusters within a word and within
syllable boundaries may be important.

We suggest that two properties regarding the usefulness of
letter clusters are not well understood. The first is whether,
for a fixed number of letters in the cue, does their arrange-
ment into clusters impact accuracy of retrieval? For exam-
ple, if four letters are given for the word “HOUSECAT”, they
might be “H-U-E-A-”, “HO- -EC- -”, or “HOUS- - - -”. The
first has no clusters (sets of adjacent letter pairs), the second
has two clusters, and the third has one cluster. It may be that,
for either novices or experts, a better or a worse cue is pro-
vided when letters are arranged into more clusters. In terms
of models of representation, if an advantage exists, this may
indicate the use of higher-order representations and require
adapting existing models to account for such results. The sec-
ond property is the maximum length of the cluster—do larger
clusters form better cues than smaller clusters? Regarding the
previous example, the largest cluster size is one, two and four,
respectively. These may differently impact solution probabil-
ity.

Crossword Solving Model
Previously, we have described a cognitive computational
model of crossword solving that accounts for expertise, word
length, clue difficulty, and letter-clue effects (Mueller &
Thanasuan, 2013; Thanasuan & Mueller, 2014), that we will
use in this study. The model simulates crossword answers via
two independent routes: semantic and orthographic memory
associations (see Figure 1). Mueller and Thanasuan (2013)
indicated that the best model representing crossword solving
performance was the dual route model with three different
conditions for novice, expert and best performance simula-
tions. This model first attempts retrieval via the orthographic
route. If it fails, the model searches via semantic associations.
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Figure 1: Example of semantic and orthographic routes

The orthographic route model works by representing or-
thography according to associations between features of a
word and crossword answers. Orthographic features that
were used include letters, letter pairs, and a distributed length
code that helps limit possible answers to words of similar
length to the clue. The model was trained on a lexicon of
more than 4 million crossword clue answers, and so it has rich
associations between these features and existing crossword
answers. The representation does not include any higher-
order letter clusters (sequences of three or more letters). If
there are word fragment effects (depending on size or num-
ber of clusters) that cannot be accounted for by the model, this
may indicate higher-order representations are needed. The
challenge for higher-order representations is that the num-
ber of features required scales with the power of the clus-
ter size, making naive representations unmanageable, espe-
cially when most of these features never appear in a given lan-
guage. The alternative would be to begin incorporating sylla-
ble representations informed by phonology (see Fudge, 1969;
Mueller, Seymour, Kieras, & Meyer, 2003), morphology, or
information-theoretic measures, the present study seeks to de-
termine whether this increased complexity is necessary.

To test the model, we investigated the role that word frag-
ments play in crossword puzzle solutions among both ex-
perts and novices. A crossword paradigm task was used
in which participants were given single clues with partial
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letter hints. Although the task requires matching or re-
trieval from both semantic memory and orthographic mem-
ory, we focused on studying the solving mechanisms associ-
ated with orthographic clues and word fragments. Further-
more, to assess the role of word fragments on representation,
a crossword-solving model based on Mueller and Thanasuan
(2013); Thanasuan and Mueller (2014) was adapted to sim-
ulate crossword answers and response times. Our approach
is to examine whether factors that would be consistent with
the use of higher-order representations improve performance,
and to demonstrate whether the model shows a similar ef-
fect. To do this, we examined whether the size of the largest
cluster, and the number of clusters in a clue had an impact in
retrieval times or accuracy for both novices and experts.

Experiment

Participants

Eighty-five undergraduate students were recruited from
Michigan Technological University (MTU) subject pool as
crossword novices. In addition, 113 crossword experts were
recruited from online crossword communities. Both groups
of participants completed an online crossword study and a de-
mographic survey via web browser. The study protocol was
reviewed and approved by MTU Institutional Review Board.

The survey was given to participants at the beginning of
the experiment. The novices were 19.94 ± 1.5 years old
in average. Eighty-three percent of them rarely or never
solved crossword puzzles, but some of them played other
word games such as Scrabble or Words With Friends. The
experts were 45.07 ± 15.99 years old in average. They re-
ported that they have solved crossword regularly for 16.76
± 15.35 years and 44 percent of them have participated in
crossword tournaments such as American Crossword Puzzle
Tournament (ACPT).

Materials and stimuli

Six sets of 15 crossword paradigm task problems were given
to participants in this study. The answers were limited to only
a set of four, six and eight letter words. In each trial, we
gave participants a crossword clue along with some randomly
filled letters, as shown in Figure 2. The number of present
letters ranged from zero (no letter cue) to only one missing
letter (almost a complete answer). They had 15 seconds to
solve each trial and only one chance to give an answer.

Figure 2: Example of the crossword paradigm task

Experimental Results and Model Simulation
Data from 198 participants were analyzed in this study. Ac-
curacy was assessed by whether the final set of letters were
exactly correct after the enter key was pressed to confirm
the response, whereas response times were measured from
a starting time (when a participant first saw a trial) until the
participants hit the enter key. Average accuracy and response
time of the crossword experts were 0.76 ± 0.19 (67 from 90
trials) and 4.82 ± 2.67 seconds per each trial, respectively.
Meanwhile, a mean of success rate of the novices was 0.53
± 0.15 (47 from 90 trials) and an average response time was
6.69 ± 1.88 seconds per each trial. Retrieval times of both ex-
perts and novices were estimated from the starting time until
the first key was pressed (when the participants typed a first
letter to an answer space). An average retrieval time of the
novices was 5.73 ± 1.56 seconds, so the time for the simula-
tions of the Novice model was 0.57 (5.73 divided by a search
set size of 10). The time of the experts was 3.13 ± 1.01 sec-
onds, then the time for the simulation of the Expert model
was 0.22 (3.13 divided by a search set size of 25). Average
typing speeds of each keystroke of the novices and the experts
were 0.35 seconds and 0.22 seconds, respectively.

Figure 3 shows solving performance across the number of
letter cues for both success rate and response times. It in-
dicates that the experts performed faster and better than the
novices did. Also, both groups of participants performed
better when the number of present letters increased. A one-
way Analysis of Variance (ANOVA) was used to analyze let-
ter cueing effects, which indicated a significant improvement
for both success rates and the response times of both experts
and novices as the number of letter cues increased (p-value
< 0.05).

Model simulation

To simulate data, we compared two model parameter settings
per expertise conditions (Nov=Novice, Exp=Expert), varying
the search set size (10, 10, 25, and 50 for models of Nov1,
Nov2, Exp1 and Exp2, respectively), recovery (0.5, 3, 25
and 100), and retrieval speed (130 ms, 130 ms, 570 ms, 570
ms). We assigned the same value (10�9) to smoothing or-
thographic and semantic parameters in order to optimize and
balance solving performances of these two routes. These pa-
rameters increase chances of getting answers that have been
associated to only one item in the memory activation distri-
bution. All other parameters were fixed to the same levels
used in previous simulations. The search set size parameter
impacts the number of highly-active candidates retrieved dur-
ing solution; the recovery parameter affects the probability
that a response can be generated once a memory trace has
been selected, and the retrieval speed affects the time needed
to retrieve a candidate and verify whether or not it is correct.
Retrieval and typing speeds were determined from the experi-
mental results. Reading speed was taken from Ziefle (1998)’s
study regarding an effect of display resolution, which is about
0.33 seconds per word. Then, a solving time of each trial was
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Figure 3: Dots represent means of correct responses and re-
action times and error bars indicate 95% confidence intervals

estimated from Equation 1:

Tsolving = cl ⇥ treading +n⇥ tretrieval +wl ⇥ ttyping (1)

where cl is the total number of words in a clue, treading
represents the reading speed, n is the number of candidate
answers that the model generates before it gets the first an-
swer that fits the pattern, tretrieval is the retrieval times of the
novices and the experts, wl is word length, and ttyping is the
typing speeds of the novices and the experts, which are 0.35
seconds and 0.22 seconds, respectively. We used two model
settings to enable two bracketed models that can account for
different levels of expertise.

Table 1 shows simulation results from the crossword play
model across the four different settings; two novice models
(Nov1 and Nov2) and two expert models (Exp1 and Exp2).
The Nov2’s success rate and response times were almost the
same as the novice data, whereas Exp1 and Exp2 produced
success rates and response times closely related to the expert
data. Model fits were assessed via Root-Mean-Square Error
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Figure 4: Results for 4, 6, and 8-letter words. Each panel
represents a fixed number of letter cues, and the horizontal
axis represents the effect as the number of clusters increases.

(RMSE), shown Table 1. The Nov2 model was the best fit-
ting model on both accuracy and response times of the novice
data. Meanwhile, Exp2 was the best fitting model in accuracy
and Exp1 was the best fitting model in response times of the
expert data. However, we chose the Exp1 model to represent
the expert data, since an average RMSE of the accuracy and
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the response times of Exp1 was less than the other. Moreover,
Figure 3 compares the results of Nov2 and Exp1 to the human
data.

Table 1: Model results (mean and standard deviation) and
Root-Mean-Square Errors (RMSE)

Parameter Model Mean (SD) RMSE
Novice Expert

Acc.

Nov1 0.38 (0.06) 0.17 0.42
Nov2 0.55 (0.05) 0.09 0.26
Exp1 0.7 (0.04) 0.21 0.1
Exp2 0.77 (0.04) 0.28 0.07

RT (s)

Nov1 4.71(0.46) 1.58 1.9
Nov2 6.0(0.39) 1.24 2.2
Exp1 3.75 (0.22) 3.83 1.4
Exp2 5.49 (0.37) 2.09 1.83

Note: The bold numbers indicate the smallest value in each perfor-
mance.

Effects of number of clusters on completion
accuracy
The number of letter clusters (groups of two or more adjacent
letters) was computed for each orthographic clue. Figure 4
shows means of success rates of each letter cluster for each
word length. Each connected line shows how performance
changed within each cue number and word length condition
as the number of letter clusters increased. Although there
were occasional fluctuations, there were no systematic effects
of the number of letter clusters on either experts and novices,
which was confirmed by a logistic regression and a Chi
square goodness-of-fit test (experts: c2(3) = 6.01, p = .11
and novices: c2(3) = 3.22, p = .36).

The models reasonably replicated human solving abilities
(see Figures 3 and 4), although they somewhat underper-
formed expert performance as a function of number of letters
in the cue. On particular word length/number of cue combi-
nations, the model or the humans saw changes with respect to
number of clusters and these were sometimes shown in both
the model and human data. To the extent that any of these
are systematic, they may have stemmed from the way that for
any particular word, some combinations of letter clues will
do a better job of reducing or eliminating alternative com-
pletions, and these combinations may be covered better or
worse by clusters of letters. Thus, although the number of let-
ters given improves solution performance significantly, nei-
ther the model nor the human data showed systematic effects
of this variable on solution accuracy.

Effects of maximum cluster size on completion
accuracy
The effects of cluster sizes on accuracy are shown in Figure 5.
Similar to the finding with number of clusters, there was little
systematic effect of the size of the largest cluster on solution
accuracy. Participants occasionally performed better when
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Figure 5: Accuracy by maximum size of cluster. Within each
panel (that show a different number of cues) each line shows
novice and expert accuracy for different word lengths, as the
maximum size of a cluster increases.

they were given more adjacent letters, such as for two-letter
and four-letter cues of eight-letter words, and in these cases
similar effects were seen for both the model and the data. The
logistic regression and the Chi-square test were conducted to
determine the effects of maximum cluster sizes. The results
indicated that the effects were non-significant on accuracy for
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novices (c2(6) = 3.19, p = .78), and marginally significant
for experts (c2(6) = 12.25, p = .057). To the extent that the
effect exists among experts, it showed that smaller maximum
cluster size (which is coupled with greater distribution of iso-
lated letters) tended to lead to better performance, although
this was not always the case in each condition.

Discussion
The goals of this study were to investigate the effect of word
fragments to determine whether humans enjoyed an advan-
tage of using word fragments that were not predicted by a
model using letter-pair representations. We hypothesized that
if higher-order orthographic representations were in use, then
for a given word length and number of presented letters, when
the number or size of word fragments increased, both experts
and novices would improve. The findings from the cross-
word paradigm task suggests that although experts performed
crossword solving better than novices did, and the number of
letter cues influenced the solving performances on both ac-
curacy and response times, the properties of word fragments
we looked at had little impact on performance. Similarly, the
model accounted for effects of expertise, word length, and
stem size, but showed no systematic effects on these proper-
ties of letter clusters. This suggests that, to a first approxima-
tion, orthographic models using letter-pairs are still appropri-
ate in representing word retrieval processes.

Nevertheless, we believe that higher-order representations
may prove useful in understanding more complex and ad-
vanced crossword solving behavior. It may be features as-
sociated with morphological, phonological, and syllabically-
consistent clusters will both provide substantial advantages
for solving, as well as be critical for explaining how long
crossword clues are solved. For example, a typical American-
style puzzle published in a Saturday New York Times puz-
zle will have two or more answers that are 15 letters long
(ONCEINALIFETIME has been used at least 20 times), and
such clues are even more common in cryptic-style crossword
puzzles popular outside the United States. More than 5000
such answers have appeared in print1, and almost all of them
are short multi-word phrases. It is likely that the division
between composing multiple words, and composing a sin-
gle word from multiple meaningful lexical units that fit to-
gether according to grammatical rules is not as clear as it
might seem. Regardless, the representations, processes and
mechanisms a model would require to solve multi-word clues
(ie., word-level features) would be similar to what would be
needed to use syllable or morpheme-level features for single-
word clues, and addressing this problem may help understand
segmentation in reading, listening, and non-latin languages
different rules and practices of segmentation. Consequently,
we believe that it may remain useful to consider whether
pronounceable clusters, syllables, or morphological units can
form features, and to test this in future experiments.

1see http://www.xwordinfo.com/Fifteen
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In this paper I describe an implementation of a time-
synchronous middleware for Python ACT-R and the open-
source robotics simulator, MORSE (Echeverria et al., 2012; 
Echeverria, Lassabe, Degroote, & Lemaignan, 2011), an 
updated vision system, and an updated motor system, which I 
collectively call ACT-R 3D. A new vision system and a crude 
body-model robot was added to the MORSE system to 
facilitate modelling of affordance-based research on aperture 
passage (walking through apertures and rotating shoulders as 
needed). Initial experimental results of shoulder rotation are 
presented as a proof of concept 

C69D15E<)& ACT-R; 3D; affordances; motor control; 
cognitive modeling;  

F2051E-@0+12&
ACT-R is typically used to model psychology experiments 
in the lab. Relatively little work has been done modelling 
complex behavior and ACT-R natively has very limited 
architectural components for motor control. The aim of the 
project described here was to provide the capacity to model 
ACT-R models in dynamic, 3D environments. ACT-R 3D 
amalgamates the robotics simulator, MORSE (Echeverria et 
al., 2012, 2011), with the Python implementation of ACT-R 
in a time-synchronous manner. Along with ACT-R 3D is 
introduced a novel vision system for computer vision in 3D 
environments, and a motor control system to control a 
humanoid software robot. As a proof of concept, a model of 
aperture-passage affordance research is presented. The 
aperture-passage research has participants walk through 
apertures (doorways) of various sizes and then measures 
their degree of shoulder rotation to speculate about 
cognitive processing while performing these tasks (Higuchi, 
Seya, & Imanaka, 2012; Stefanucci & Geuss, 2010; 
Wagman & Malek, 2007; Warren & Whang, 1987).  

G/@H;51-2E&
Although ACT-R has mainly been used for modelling 
human behavior in psychology experiments, there has been 
some attempts to model human performance in complex 
tasks such as driving (Salvucci, Monk, & Trafton, 2009), 
wayfinding (Trafton & Harrison, 2011), or piloting aircraft 
(Somers & West, 2013), to name a few. The present work is 
most similar to ACT-R Embodied (ACT-R/E) which uses 
ACT-R to control a robot in real-time (Trafton et al., 2012). 
The aim of the present work was to develop a time-
synchronous ACT-R model with a tightly-controlled motor 
module, sufficient for performing motor control for 
affordance-based research. In particular, the author used 

ACT-R 3D to model aperture-passage work by Warren and 
Whang (Warren & Whang, 1987), where they found that 
participants rotate relative to the ratio between the width of 
the aperture and their frontal body width (i.e. shoulder 
width).  

ACT-R/E (Trafton & Harrison, 2011) uses ACT-R as a 
robot controller and uses the visual system, SECS (Harrison 
& Schunn, 2003). SECS has three main systems: visual, 
manipulative, and configural. The visual system uses 
fiducial and face trackers to provide object identification for 
video camera images. The manipulative system represents 
objects as 3D geons (stored in a database) as well as 
positions and orientation information. The manipulative 
system also supports spatial transformations, such as 
rotations in a manner similar to that proposed by Shepard 
and Metzler (Shepard & Metzler, 1971), supporting motor 
planning. 

ACT-R/E also extends the basic ACT-R motor system. 
Although somewhat vague in description, Trafton and 
Harrison (2011) suggests that the motor system maintains 
real-time limb representations and restricts movements 
based on muscle groups. It is also suggested by Trafton et 
al. (Trafton, Harrison, Fransen, & Bugajska, 2009) and by 
Harrison and Trafton (2010) that motor control is handled 
external to the ACT-R architecture once ACT-R selects a 
motor command. For example, given the description by 
Harrison and Trafton (Harrison & Trafton, 2010), once a 
representation in the manipulative module is associated with 
the objects semantic representation, the central production 
system in ACT-R issues an appropriate grasping command 
to the robot controller, which carries out the grasp. ACT-
R/E has been used in a variety of models. Harrison and 
Trafton (2010) used ACT-R/E to model response times of 
grasp actions, Trafton and Harrison (2011) used it to model 
gaze-following and level-one perspective taking, and SECS 
(the spatial representation system used in ACT-R/E) was 
used to model an egocentric navigation task (Harrison & 
Schunn, 2003). 

The present work is a novel implementation comprised of 
an updated version of Python ACT-R (Python 3), Mobile 
OpenRobots Simulation Engine (MORSE) (Echeverria et 
al., 2012, 2011), and a custom middleware responsible for 
time synchrony and communication between ACT-R and 
MORSE. The remainder of this paper will describe the 
system, and a proof-of-concept experimental task (as well as 
accompanying initial results). 

*9<06,&
The following section describes MORSE and ACT-R 3D.  

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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MORSE simulator is a robotics simulator based in Blender1 
(a free, open-source 3D creation studio). MORSE comes 
with a number of standard sensors and actuators that are 
pairable to a number of robotic bases. Custom 
environments, robots, and sensors can be developed in 
Blender and incorporated into simulations. MORSE is 
written in Python 3 and the Python library supports full 
control of robots through Python script. Communication 
between the robot, sensor, actuators; and the control 
program is handled through sockets. Models built for ACT-
R 3D function as a simulation control script, albeit complex 
ones. At the time of development, MORSE was at version 
1.2. The current version (version 1.4) has a number of 
advances but should be largely supported by ACT-R 3D.  

!"#$%&'(&
890:12& !"#$%& Python ACT-R is a re-implementation of 
ACT-R for the Python programming language (Stewart & 
West, 2005). Because of the constraints of scripting with 
MORSE, Python ACT-R was updated to Python 3 for this 
project. The overall structure and design is largely the same 
as originally described.&
&
I+EE.6D/56&The middleware between MORSE and ACT-R 
is designed primarily to support time-synchrony between 
the ACT-R simulation loop and MORSE. The design of the 
time-synchrony is inspired by Somers and West (2013), 
who, as part of a larger project, created a middleware 
between a popular flight simulator and Python ACT-R. A 
second major component of the middleware is that it 
facilitates communication between the ACT-R and MORSE.  

In the current implementation, the middleware is designed 
to run both MORSE and ACT-R at 100 simulated-Hz, with 
no constraints towards real-time simulation. Although a 
redundant real-time mode is available, in general this project 
differs from previous work such as ACT-R/E (Trafton & 
Harrison, 2011) which control robots in real-time. The 
reasoning behind this is that timing is critical for prediction. 
Since timing is undoubtably one of the biggest behavioural 
measures, it is important that timing is as accurate as 
possible. To avoid any time delays for processing of 
complex information, that might occur in a computer vision 
system, or simply even communication time delays, 
MORSE/ACT-R middleware works in a tick-tock fashion. 
First the ACT-R system ticks 10 ms of simulation time, 
sends information get and set requests to the middleware, 
then, in turn, runs a corresponding 10 ms tock in MORSE. 
At the end of a tick-tock cycle, 10 ms of simulation time has 
elapsed on both simulators. Importantly, any amount of real-
time could have elapsed during the tick-tock cycle. The aim 
is not to have an efficient robot controller but to facilitate 
prediction of behavioural measures. 

 

                                                           
1 https://www.blender.org/ 

K61,605+@& "/,65/ A custom camera class, Geometric 
Camera, was developed, for MORSE, for the purposes of 
this project. The intention behind the camera is to provide a 
single, structured, retinotopic description of the scene from 
the perspective of the agent.  

The camera outputs a dictionary description of the entire 
scene as visible within its field of view. The dictionary is 
primarily organized by screen-coordinate y-values (where y 
is the vertical plane). Each y-value is organized by object 
label for each object visible to the camera. These labels are 
not semantically informative; they simply specify different 
3D objects in the scene. To each label is associated the 
"����'2&� �+'�!&�"!� �!� x-)��(�&� ���!"'�!�� '��� "����'2&� ����&�
at that y-value), and an approximate egocentric distance to 
the edge. The accuracy of the camera can be passed as 
parameters, though there can be significant speed/accuracy 
trade-offs. The overall output is, therefore, a dictionary that 
describes the egocentric edges of every object visible to the 
camera. That information is stored privately on the ACT-R 
side and only accessible through the vision module. 
Modelers are free to develop their own vision modules to 
access the visual information to suit their needs.  

 
L+<+12& I1E-.6& The vision module developed for this 
project assumes an input from the Geometric Camera 
(described above). The control of timing, error rates, etc., 
happen entirely on the ACT-R side.  

The agent can only access visual information through 
requests. However, because the data is largely unstructured, 
 �'�"�&��"%���'��'�!��1���'(%�&2�%���)�!'�'"�'���#%"���'�*�%��
developed. A simple obstacle detector provides the location 
of any visible obstacles. Because the task is to walk through 
a doorway-like aperture an openings detector was also 
developed. The openings detector finds features like doors, 
holes in walls, or openings between multiple objects. The 
output of the openings detector is not semantically laden. 
That is, the agent will not be aware of whether the opening 
is as large as a doorway or as small as a nail hole. The agent 
model must determine a means of attending to appropriate 
features. One of the main goals of modelling the aperture-
passage task, is that the agent is not semantically informed 
about its environment. Absolutely no semantic labels are 
used in the vision system.  

The vision module is based on the SOS Vision System 
(West & Emond, 2002, 2005) in Python ACT-R. Although 
it is far more complex in the terms of the type of data it 
deals with, fundamentally the information requests work the 
same. Requests to the vision system are parameterized in 
order to filter information. For example, when given a 
request for an opening, chunks that describe the minimum 
size of the opening are used as parameters for the request. If 
multiple features match the request (e.g. there are multiple 
openings), the returned chunk is selected based on a 
weighted random choice, weighted by a salience factor, as 
described by West and Emond,  (2002).   
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I1015&I1E-.6&The motor module is one of the features of 
ACT-R 3D that sets it apart from ACT-R/E (Trafton & 
Harrison, 2011). While perhaps similar at a functional level 
(controls limbs, restricts movement), the implementation is 
novel. 

The motor module maintains a hierarchical, symbolic and 
numerical representation of the body parts (currently only 
the ones being modelled), that is synchronized with the 3D 
body-model (robot). For each body part, there are 
representations of their degrees of freedom. At present the 
degrees of freedom are represented as max/min values on an 
axis of rotation. The motor module maintains an internal 
representation of the maximum and minimum rotations 
performed by an agent. As the agent moves its body, the 
maximum and minimum achieved rotations are updated and 
stored in declarative memory. At a functional level, this 
memory of body postures can be considered an 
implementation of body-schema that are theorized to be 
used in motor planning (Coslett, Buxbaum, & Schwoebel, 
2008; J Schwoebel, Coslett, & Buxbaum, 2001; John 
Schwoebel & Coslett, 2005).  

The motor module in ACT-R 3D also includes 
functionality to provide proprioceptive feedback to estimate 
3D body dimensions in a given posture. Evidence for this 
capability comes from a number of sources (Carello & 
Turvey, 2004; Stefanucci & Geuss, 2010; Wagman & 
Taylor, 2005; Warren & Whang, 1987), though anecdotally 
this ability is intuitively obvious: one does not try to fit their 
body in a 1 cm2 hole. We can, at the very least, make crude 
judgments of body volume, and the above cited suggest the 
volumetric representations are fairly accurate. How exactly 
the volumetric representations are achieved are currently 
beyond the scope of motor module and is implemented, 
$(�'�� &� #�,��*�'�� �� ��&(%��"�� '��� ���!'2&� �"(!��!���"+��
The bounding box values are associated and stored with the 
body schema at the time of storage into declarative memory.  

34/.-/0+12&
ACT-R 3D can be evaluated on its ability to model behavior 
and make useful predictions of that behavior. This section 
outlines some preliminary work modelling aperture-passage 
affordance research.  

!M650-56$8/<</;6&!7715E/2@6&
���� '�% � 1���"%��!��2�*�&� ��%&'� (&��� �&� �� !"(!� �,���son 
when he presented an approach to Psychology, Ecological 
Psychology (1986). An affordance can be thought of as a 
property (or a set of properties) of the environment2 that an 
agent uses in order to determine what actions are available. 
Action, of course, is a broad category and there is empirical 
research in support of affordances in a large number of 
domains including grasping (Tucker & Ellis, 1998), 
reaching (Carello, Grosofsky, Reichel, Solomon, & Turvey, 
1989), stair-climbing (Warren, 1984), a number of sports 
abilities (see Fajen, Riley, & Turvey, 2009), and relevant 

                                                           
2 Their ontological status varies, depending on the author. 

here, aperture passage (Warren & Whang, 1987). One of the 
��!'%����"!��#'&��!����"%��!���%�&��%����&���&"!2&�!"'�"!�"��
direct perception.  

Direct perception is the claim that our actions are not 
mediated by strong, internal, sensory-based, semantically-
laden representations of the environment. Instead, direct 
perception holds that actions are presented to us in the 
environment when they are in agreement with our action 
capabilities. For example, a cup is graspable because its 
shape and size agrees with the action capabilities of our 
hands. Realizing an action is a perceptual process and 
actions are said to be directly perceived.  

A common theme in empirical ecological psychology 
research is to identify a body-scaled unit that is used by the 
perceptual system to perceive an affordance directly. 
Researchers identify pi-!( ��%&� �4�� '��'� %���'�� &" ��
dimension of the environment (E) with some dimension of 
the body (A), as a ratio:  

!���������. 
 

The present work is a first attempt at modelling the classic 
affordance-passage work by Warren and Whang (1987). 
Warren and Whang performed a series of experiments 
aimed to show that aperture passage is directly perceived. In 
the experiment relevant here, they had participants walk 
through apertures of different widths, at different speeds 
(fast or slow).  Participants were grouped according to size: 
small or large. Unsurprisingly, smaller agents rotated their 
shoulders less than large agents when passing through the 
same aperture. However, when expressed as an aperture-
width to shoulder-width ratio (A/S), the group differences 
were eliminated, suggesting that the absolute degree of 
shoulder rotation is modulated by the A/S ratio. Warren and 
Whang were able to establish a critical ratio (1.3) at which, 
regardless of size, participants would change from 
maintaining a forward posture, to a posture that included 
shoulder rotation.  

I1E6.&
The aperture-passage agent is inspired by work on steering 
control in a flight-simulator in ACT-R (Somers & West, 
2013) in that it uses the SGOMS (West & Nagy, 2007) 
modelling framework for modelling complex behavior and 
both bottom-up and top-down visual modules. The 
simulation environment reflects the experimental setup in 
Warren and Whang (1987) and is illustrated in Figure 1. 

The agent is illustrated in Figure 2. The agent is a low-
fidelity humanoid. The robot consists of a rectangular 
cuboid base mesh with a single armature that, in turn, 
consists of: a rectangular cuboid pelvic region, a rectangular 
cuboid torso, a spherical joint between the pelvic region and 
the torso (not visible) two rectangular cuboid shoulder, two 
spherical shoulder joints, two cylindrical upper arm 
segments, a spherical neck joint, a spherical head, and the 
Geometric Camera. Figure 2 is a polygon reduced version 
for quicker graphics processing. Each segment of the 
armature has full degrees of freedom. Although Blender 
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does support inverse kinematic solvers for armature control, 
there are no kinematic solvers associated with any of the 
armatures in this project. All joint limb control and position 
representation is controlled by ACT-R 3D, synchronously, 
as described above. Collision sensors are placed on the 
shoulder joint, the shoulders, the upper arm segments, and 
the torso. 
 

 
 
Figure 1: A Snapshot of the modelling environment. Two 
wall segments create an aperture. The wall segments are 

moved to create apertures of different sizes. 
 

. 

 
 

Figure 2: A snapshot of the software robot used in this 
project. The bottom cuboid represents the agent2s legs.  

 
L+<+12& Following the work of Somers and West (2013) a 
bottom-up vision system was implemented that loops 
constantly, in this case, looking for obstacles. The bottom-
up vision system shares a buffer with the top-down vision 
system and both also share the main vision module. The 
buttom-up vision system is implemented using a production 
system3 and loops continuously, extracting information from 
the environment. The bottom-up vision system is 
constrained by the top-down vision system which is 
controlled via the central production system. Top-down 
vision takes priority over the vision module and, as a result, 
the bottom-up vision system must wait until any top-down 
requests are complete before it can continue. 

                                                           
3 Note that Python ACT-R allows for production in 

modules and this should be thought of as an alternative way 
of programming modules, not a departure from standard 
ACT-R. 

 
*KJI* Since an ACT-R implementation of SGOMS has 
been detailed in (Somers & West, 2013), only a limited 
description will be provided here. SGOMS --Socio-technical  
GOMS (Card, Moran, & Newell, 1983).is a framework for 
modeling complex tasks and can be implemented in ACT-R. 
In its ACT-R implementation it uses a hierarchy of buffers 
that represent the levels of control in a complex task. The 
hierarchy consists of a planning unit (highest, slowest level 
of control), the unit task, operators (realized as productions), 
and methods (compiled productions). The model presented 
here uses SGOMS to facilitate task interruption. 
 
(6<+;2 The model can perhaps be best described as going 
through four phases. The first phase is actually a pre-
experiment phase in which the agent stores information 
about its body size in different postures. Essentially, in this 
first phase, the agent rotates its shoulders in each direction 
multiple times, adding the body-schema to declarative 
memory.  

During the second phase, the agent decides whether it can 
pass through the aperture at all. This is achieved with the 
vision system. As described above, the opening detector is 
takes dimensions as parameters and filters openings that are 
too small to accommodate. There are potentially two steps 
to this phase. The first step involves judging the passability 
of the opening relat�)�� '"� '��� ���!'2&� #%�&�!'� ��'� '���
beginning of the simulation) posture. If that fails, a second 
step is taken. The agent then attempts to recall a body-
schema that meets the constraints of the task (e.g. affords 
walking, involves rotating the shoulders). If a body-schema 
is recalled (in this case, a posture with complete rotation 
either to the left or right should be selected), then the 
dimensions of the agent in that posture is used as a 
#�%� �'�%�'"�'���)�&(���&,&'� 2&�openings detector. If there 
is a match, that means that at maximum rotation, the agent 
could pass through the aperture. The agent uses the body-
schema as a goal for the motor module at time of passage.  

During the third phase the agent simply walks towards the 
aperture. It is assumed that there is very little top-down 
vision happening. Instead, the bottom-up vision system is 
cycling for obstacle detection. This phase continues until the 
agent detects one or both of the walls on either side of the 
aperture. The obstacle detection causes a task interruption 
using the SGOMS framework in a similar manner to that 
described in (Somers & West, 2013). The obstacle alert 
ultimately results in the fourth phase, rotation control. 

Since no data on the kinematic control of rotation is 
available in the literature, an instantaneous and constant 
rotation velocity is assumed. Rotation continues until the 
vision system detects an opening l�%��%� '��!� '��� ���!'2&�
frontal width (as the agent rotates its shoulders, its frontal 
width reduces to a point where it is smaller than the width of 
the opening, resulting in the opening being detected).  
 
*+,-./0+12< The experimental conditions (including 
participant sizes) were created as accurately as possible 

110



 

 

based of the description by Warren and Whang (1987). 
There were 5 agents per group condition (large, small) and 
agent sizes were chosen randomly from a normal 
distribution around the reported (human) means for each 
group (40.4 cm, SD = 2.0 cm for small; and 48.4 cm, SD = 
0.7 cm for large). Agents walked at the average speed per 
group as reported in Warren and Whang: 1.29 m/s and 1.61 
m/s for the normal and fast conditions (respectively) in the 
small group; and 1.28 m/s and 1.77 m/s for the normal and 
fast conditions (respectively) in the large group. Each 
software participant did 60 trials in each condition, for each 
aperture. 
	���(&�� '��� "%���!��� ��'�� �%" � ��%%�!� �!�� ���!�2&�

original paper was not available, only a qualitative visual 
comparison is presented. A visual comparison between the 
human data in Warren and Whang (1987) is presented in 
Figures 3 (normal speed) and Figure 4 (fast speed).  
 

 
 

Figure 3: Rotation angle by aperture width for small 
(blue) and large (red) agents. Gray lines represent human 

��'�����'���&��%" �'���1!"% ��2�&#�����"!��'�"!� 
 

 
 

Figure 4: Rotation angle by aperture width for small 
(blue) and large (red) agents. Gray lines represent human 

��'�����'���&��%" �'���1��&'2�&#�����"!��'�"!� 
 

In lieu of comparative statistics, an ANOVA was ran on 
the model data to see if the main effects described in Warren 
�!�����!�2&� "%���!��� �+#�%� �!'� *�%�� %�#����'���� �(&'� �&�

for the human data, participants rotate more for smaller 
apertures (main effect of aperture), larger participants 
rotated more than smaller participants (main effect of group) 
(ps < 0.01). The effect of speed, however, had the opposite 
effect relative to the findings in Warren and Whang such 
that the model rotated less when walking at a faster pace  
(also main effect, p < 0.01). However, as illustrated in 
Figure 5, the group difference in the speed condition is 
dominated by a single aperture (40 cm).  

 
Figure 5: Rotation angle by aperture width for the normal 

(blue) and fast (red) speed conditions. Error bars represent 
95% confidence intervals.  

 

(+<@-<<+12&
ACT-R 3D is designed to support research that involves 
complex, dynamic environments. Although the model of 
aperture-passage as presented here has many open questions 
(some of which have been answered in further analyses, 
forthcoming), the model, even in its early stages, has offered 
strong insight to the domain of aperture-passage (though, 
admittedly it raises more empirical questions than it 
answers). Forthcoming work will see the model performing 
similar experiments. Currently it also models aperture 
passage while carrying an object (Higuchi et al., 2012). Also 
under development with ACT-R 3D is an embedded driving 
model, that uses the geometric camera embedded in a 
simulated car, to drive around a track. Because it uses the 
Blender simulation engine, a large variety of simulation can 
potentially be developed in ACT-R 3D for applied cognitive 
research.  
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Abstract
Real-time monitoring provides an opportunity to examine the
temporal dynamics of cognition, predict future behavior, and
implement adaptive interfaces designed to mitigate declining
performance. However, real-time monitoring poses a practical
challenge because current parameter estimation methods are
prohibitively slow, and real-time monitoring requires param-
eters to be estimated repeatedly as new data arrive. We de-
veloped a real-time parameter estimation method that involves
storing pre-computed predictions in a distributed array and us-
ing it as a large look-up table. We term this method the Pre-
computed Distributed Look-up Table (PDLT). We applied the
PDLT to an ACT-R model of the psychomotor vigilance test.
PDLT estimates model parameters in just over 1 second with
accuracy comparable to that of a much slower simplex method.
We discuss methods for reducing the volatility of parameter es-
timates and the potential to scale up the PDLT method to more
complex models and tasks.
Keywords: ACT-R; Psychomotor Vigilance Test; Fatigue; Pa-
rameter Estimation; Real-Time Monitoring

Introduction
Performance often declines as a result of various cognitive
modifiers or stressors (fatigue, load, etc.; Gluck & Gunzel-
mann, 2013). In contrast to raw performance metrics, such
as mean reaction time, cognitive models provide a principled
method for understanding and predicting performance decre-
ments because they formalize the cognitive processes that
underlie performance. Moreover, because cognitive models
specify the mechanisms underlying performance, predictions
from cognitive models are more likely to show greater gener-
alization across tasks compared to performance metrics. For
these reasons, cognitive models have the potential to play a
prescriptive role in the development of adaptive interfaces
designed to mitigate declining performance. When a per-
formance decrement is predicted, an adaptive interface may
compensate, for example, by increasing the salience of cues,
recommending a multitasking strategy, or prescribing a pe-
riod of rest (e.g., Rouse, 1988).

Standard approaches to model fitting are ill-suited for
implementing cognitive model-based adaptive interfaces, as
they often involve pooling data across subjects and are con-
ducted post-hoc. The practice of pooling data neglects mul-
tiple sources of variation in performance, resulting in poor

individual user prediction and decreased efficacy of adaptive
interfaces. For example, performance varies from individual
to individual, as well as during a task performed by the same
individual. Moreover, performance decrements might be at-
tributable to several causes rather than a single cause, lead-
ing to additional variation across individuals and situations.
Post-hoc model fitting is problematic because it precludes the
ability to predict and mitigate cognitive modifiers.

In contrast, real-time monitoring provides the opportunity
to examine variation in cognitive activity attributable to in-
dividual differences and changes caused by cognitive modi-
fiers as they unfold (Wilson & Russell, 2003). Once param-
eterized, a cognitive model can make individualized perfor-
mance predictions, which in principal could be used to antic-
ipate future performance breakdowns. Individualized inter-
ventions could be administered to effectively mitigate perfor-
mance decrements. With the exception of very simple models
in intelligent tutoring systems (Corbett & Anderson, 1994),
this application of cognitive models has not been realized be-
cause of computational limitations in model fitting.

An important challenge to overcome in using real-time
monitoring is increasing the speed with which model param-
eters can be updated with incoming data. The primary reason
for the reliance on post-hoc model fitting is practical: many
cognitive models require computationally intensive simula-
tions to generate predictions from a given set of parameters,
and the best fitting parameters are often not known in ad-
vance. Thus, the parameters must be calibrated to the data
using an exhaustive grid search or a search algorithm. In both
cases, the process of calibrating the model to data can require
hundreds or even thousands of processor hours on High Per-
formance Computing resources (Harris, 2008), thereby ren-
dering real-time monitoring impractical.

As a first step toward using real-time monitoring and adap-
tive interfaces, we developed a real-time parameter estimation
method for quickly and accurately obtaining maximum like-
lihood estimates for simulation-based cognitive models. We
termed this method Pre-computed Distributed Look-up Table
(PDLT). As its name implies, this method functions much like
a large look-up table in which predictions are pre-computed
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and stored for later use, so they can be evaluated in parallel
during a real-time monitoring task. As such, nearly all of the
computational burden is offloaded prior to the experiment, al-
lowing for the possibility of real-time monitoring.

In the following section, we provide a detailed description
of the PDLT method. Next, we describe two simulations us-
ing an ACT-R model of the psychomotor vigilance test. The
first simulation assessed the speed of the PDLT with different
sampling resolutions and amount of data. The second simu-
lation was designed to compare the speed and accuracy of the
PDLT to the simplex method.

Pre-Computed Distributed Look-up Table
A wide variety of methods exist for parameter estimation, in-
cluding grid search, the simplex algorithm (Nelder & Mead,
1965), and a large class of algorithms based on principles
of biological evolution (Gen & Cheng, 2000). Each method
can be defined as a point in trade-off space in which speed
is sacrificed for accuracy. However, even with the benefit of
distributed computing, these methods are prohibitively slow
for real-time monitoring. The computational bottleneck can
be attributed to (1) the reliance on computationally intensive
simulation, and (2) the repeated evaluation of similar portions
of the parameter space. Together, these factors greatly limit
the speed of parameter estimation.

Our goal in developing the PDLT method was to minimize
the speed-accuracy trade-off inherent in the aforementioned
methods. Our solution was to pre-compute the predictions
associated with plausible parameter combinations and store
these predictions in a distributed look-up table for later use. A
clear advantage of this approach is that it drastically reduces
the computational burden during a real-time monitoring task.
A related advantage is that pre-computation allows the PDLT
to easily scale up to more complex models.

The PDLT method, displayed schematically in Figure 1,
entails the following three steps:

Step 1. As represented by the top distribution, the first
step is to define a distribution over the allowable parameter
space Q, from which parameter combinations q are sampled.
For illustrative simplicity, we display a unidimensional dis-
tribution over the parameter space. However, a distribution
of any dimensionality can be used. The purpose of the pa-
rameter distribution is to sample plausible values of q with a
high probability. The distribution of parameters should be in-
formed by a combination of theory and parameters obtained
from previous studies. The choice of sampling resolution will
depend on the the desired speed and accuracy as well as the
goals of the application. Accuracy depends on the selected
sampling resolution relative to the spread of the parameter
distribution. A more granular sampling resolution will suf-
fice if the goal is to identify qualitative patterns of behavior
or cognition. However, a higher sampling resolution might be
required if the goal is to generate predictions because small
quantitative errors may become larger and larger the further
out the predictions are extended.

Figure 1: A schematic of the PDLT method. At the top, a
distribution is defined over the parameter space. In the mid-
dle, predictions are simulated from the model using specific
parameters. At the bottom, the predictions are summarized
with a statistic and stored in a distributed look-up table.

Step 2. Simulated data are generated from the model for
each q, and predictions are summarized with a statistic. The
middle level of Figure 1 indicates that the behavioral output
of our model is a reaction time (RT) distribution. In general,
a variety of statistics can be used, including means, propor-
tions, quantiles, and kernel density functions.

Step 3. The statistics are stored for later use in any data
structure necessary for a given application. Once the dis-
tributed arrays are stored, steps 1 and 2 can be omitted in
future applications unless the parameter distribution requires
modification due to poor model fit.

Evaluation
We performed two simulations using an ACT-R model of the
psychomotor vigilance test (PVT). In the first simulation, we
examined the speed of the PDLT method as a function of sam-
pling resolution and the number of trials to which the model
was fit. In the second simulation, we validated the PDLT
method with a parameter recovery study comparing its ac-
curacy to that of the simplex method. Note that although we
demonstrate the PDLT on the PVT, the method will extend to
most simulation-based cognitive models and tasks.

Common Methods
Hardware

Simulations were performed on a cluster of four Mac Pro
computers, each with 16 3.0 GHz cores and 32 GB RAM.
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Software
Parameter recovery simulations were programmed in Julia
0.4, a fast, high-level, scientific computing language avail-
able via an open source MIT license (Bezanson et al., 2014).

Task
We used the PVT (Dinges & Powell, 1985) to assess the ade-
quacy of PDLT for real-time parameter estimation. The PVT
is an ideal task for testing real-time parameter estimation as a
proof of concept because of its relative simplicity and its sen-
sitivity to changes in fatigue occurring within 2 to 5 minutes
(Loh et al., 2004). The PVT is a simple 10-minute detection
task that requires subjects to respond as quickly as possible
once the stimulus appears on a test device. The stimulus ap-
pears after a random 2-10 sec inter-stimulus interval (ISI). RT
distributions from the PVT are empirically rich and are often
used to examine the effects of sleep deprivation and fatigue
on sustained attention (Lim & Dinges, 2008). A hallmark of
fatigue is an increase in the mean, variance, and skew of the
RT distribution. Furthermore, an increase in both false starts
(RTs before or within 150 ms of stimulus onset) and lapses
(RTs > 500 ms) is typically observed as fatigue increases.

Model
We used an ACT-R model of the PVT (Gunzelmann et al.,
2009) to demonstrate the use of the PDLT method for two
reasons. First, the PVT is of practical relevance for real-time
monitoring as it is sensitive to fatigue due to sleep depriva-
tion (Walsh et al., 2014) and time on task (Veksler & Gun-
zelmann, Under Review). Second, the model has been vali-
dated as a plausible account of fatigue decrements in the PVT
(Gunzelmann et al., 2015). The model posits that the PVT
performance can be characterized with three productions: (1)
wait for the stimulus to appear; (2) attend to the stimulus;
and (3) respond to the stimulus. During each production cy-
cle, a production is selected stochastically according to partial
matching between production rules and the internal and exter-
nal conditions represented by the model. This partial match-
ing between productions and conditions allows false starts to
occur with some low probability. Two parameters are princi-
pally responsible for the probability of production selection–a
utility scalar (US) and a utility threshold (UT ). Eq. 1 provides
a formal representation of the production utility:

Ui j =US(Ui �MMPi j)+ e (1)

Ui j is the utility of production i in state j, US is the utility
scalar, Ui is the stored utility for production i, MMPi j is the
mismatch penalty for production i in state j, and e is logisti-
cally distributed noise. A value of Ui j is assigned to matches,
and a value of 0 is assigned to mismatches, yielding a sym-
metrical payoff matrix. An important feature of the payoff
matrix is that the mismatch penalty ensures that the incorrect
production is enacted with low probability. The production
with highest utility is selected and enacted if its utility ex-
ceeds the utility threshold, UT :

Production = max(Ui j) if max(Ui j)>UT (2)

In the event that no production utilities exceed the utility
threshold, no production is enacted, resulting in a microlapse.
When a microlapse occurs, utility in Eq. 1 is decremented by
a scalar, FPdec: US = US ·FPdec. The likelihood of micro-
lapses increases in subsequent production cycles. This leads
to behavioral lapses (RTs > 500 ms), and generally length-
ens the right tail of the RT distribution. The difference be-
tween US and UT , denoted as Diff, is an important indicator
of fatigue. Relatively low values of Diff are associated with
greater fatigue. The parameter cycle time controls the dura-
tion of conflict resolution at the start of each production cycle.
The summed duration of each of these processes constitutes
the observed RT. Importantly, the duration of each process is
stochastic, giving rise to the characteristically right-skewed
RT distribution. In summary, the ACT-R model uses four free
parameters: US, UT , FPdec, and cycle time.

PDLT Specification
The first step in implementing the PDLT method is to define a
distribution over the plausible parameter space. We opted for
multivariate Gaussian distributions because they account for
the central tendency and covariance structure in the empirical
parameter estimates, thereby ensuring that unlikely parameter
combinations are not needlessly evaluated (see Table 1). The
model parameters were derived from reported parameters of
related models (Walsh et al., 2014; Veksler & Gunzelmann,
Under Review). The parameters were based on well-rested
and fatigued subjects to capture a wide range of behavior.
One multivariate Gaussian distribution was based on 33 well-
rested subjects (Walsh et al., 2014; Veksler & Gunzelmann,
Under Review) and the other was based on 13 subjects who
underwent 72 hours of sleep-deprivation (Walsh et al., 2014).

We used a high sampling resolution of 150,000 parame-
ter combinations to achieve a relatively high degree of accu-
racy. During parameter estimation, this required about 2.90
GB of RAM on the primary core and about 325 MB for the
remaining cores. The parameter combinations were evenly
sampled from multivariate Gaussian distributions associated
with well-rested subjects and sleep-deprived subjects.

We used kernel density functions as our fit statistic be-
cause they can be used to find maximum likelihood estimates,
which have desirable statistical properties, such as consis-
tency and efficiency (Van den Bos, 2007). A kernel density
function uses empirical or simulated data to approximate a
continuous probability density function. The estimation pro-
cess involves weighting existing data points as a decreasing
function of distance from the target point.

For each parameter combination, a kernel density function
was estimated from 64,000 simulated trials. A large num-
ber of simulations were used with a small bandwidth (.008)
to prevent distortion of the distribution where the false starts
end and alert responses begin. Distortion can otherwise occur
because the kernel density estimator will be weighted heavily
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Table 1: Mean and standard deviations (SD) of parameters
used in the PDLT method.

Utility Threshold FPdec Cycle Time Diff

Well-Rested 5.86 (1.27) 5.04 (1.00) .99 (.01) .05 (.01) .83 (.63)
Fatigued 3.50 (.51) 3.73 (.50) .98 (.01) .04 (.01) -.23 (.16)

toward the more frequent alert RTs. An object was stored in a
distributed look-up table, so the kernel density could be effi-
ciently reconstructed in real time. We used the DistributedAr-
rays package in Julia to spread the computational burden over
a cluster of four desktop computers. The look-up table re-
quired approximately 35 hours to generate.

Simulation 1

Simulation 1 examined the speed of the PDLT method with
different sampling resolutions and number of RTs. The size
of the look-up table was varied from 1 to 150,000 in 10
equally spaced increments. The number of trials was either
100 or 1,000. The results were averaged over 100 repetitions
for each combination of sampling resolution and number of
RTs to produce a stable estimate.

Results

Figure 2 shows the mean completion time for the PDLT
method as a function of sampling resolution and number of
RTs. Across all combinations, the mean completion time was
well below the minimum ISI of 2 seconds in the PVT, indicat-
ing that the PDLT method is suitable for trial-by-trial moni-
toring of task performance on the PVT.

Results indicate that increasing the sampling resolution
produces a modest linear increase in completion time. Ad-
ditionally, increasing the number of trials results in a small
overall increase in completion time. By comparison, the sim-
plex method requires about 1-4 minutes to fit the model using
the same hardware and software, depending on the number of
iterations, number of starting points, and number of simula-
tions per evaluation.

Simulation 2

Simulation 2 was a parameter recovery study designed to
compare the PDLT to the simplex method. Parameter re-
covery involves generating simulated data from a model with
known parameters and fitting the model to the simulated data
to assess the accuracy of the parameter estimates.

A total of 100 parameters were selected as the ground truth.
Half were from the multivariate Gaussian distribution for
well-rested subjects, and half were from the sleep-deprived
subjects’ multivariate Gaussian distribution (Table 1). For
each parameter combination, 50 trials were simulated with
the ACT-R model. The ACT-R model was fit to these simu-
lated data sets using the PDLT and simplex methods.
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Figure 2: Mean completion time as function of look-up table
size and number of trials. Filled circles denote 1,000 trials
and unfilled circles denote 100 trials.

Simplex Method
We compared the PDLT to the simplex (Nelder & Mead,
1965) because it is commonly used, widely available, and ap-
plies to nonlinear models without tractable derivatives, such
as ACT-R. Other algorithms will produce similarly long com-
pletion times due to their reliance on simulation. To ensure
robustness to local maxima, we computed the likelihood of 50
candidate starting points and initialized the simplex with the
three with the highest likelihood. Forty-nine candidate start-
ing points were sampled from the multivariate Gaussian dis-
tributions, and the remaining candidate starting point was the
best-fitting parameters from the PDLT for each correspond-
ing data set. Initializing the simplex algorithm in this manner
provides a rigorous test of the PDLT method because the sim-
plex method has the benefit of fine-tuning the PDLT estimates
in addition to using multiple starting points.

Next, we ran the simplex on three starting points with the
highest likelihood. For each starting point the algorithm per-
formed 100 iterations before recording the best-fitting param-
eters for that particular run. Upon each evaluation (five per
iteration), 10,000 trials were simulated. Proposed param-
eter sets were evaluated with quantile maximum likelihood
estimation, a discrete approximation to maximum likelihood
estimation (Heathcote et al., 2002). Following Walsh et al.
(2014), we binned false starts (RTs < 150 ms) separately and
binned the remaining RTs according to 20 quantiles. The pa-
rameters associated with the best fit were then selected.

Results
Compared to the simplex, the completion times for the PDLT
were faster on average (1.32 vs 49.17 sec) and less variable
(SD = .02 vs SD = 12.26 sec). We computed the correlation
between the time to simulate the model using the recovered
parameters and the corresponding completion times for each
method. As expected, the correlation was nearly zero for the
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PDLT (r = .04) but markedly higher for the simplex (r = .94).
This underscores the inability of the simplex to scale up to
slower models requiring more simulation time.

We assessed the ability of each method to accurately re-
cover the parameters with two metrics: relative bias and cor-
relation. Relative bias provides a standardized measure of the
deviation between the true and recovered parameters using
the following formula: RB = (q̂�q)

q , where q̂ is the estimated
parameter and q is the true parameter. The correlation mea-
sures the degree to which the true and recovered parameters
are linearly related independent of systematic bias. Lower
correlations are indicative of more noise in the parameter es-
timate. As shown in Table 2, mean relative bias was gener-
ally low for both methods, indicating an accurate parameter
recovery. In general, the simplex method exhibited slightly
less bias than the PDLT method.1

Table 2: Mean RB between true and recovered parameters.
Utility Threshold FPdec Cycle Time Diff

PDLT .09 .08 .00 .01 -.47
Simplex .06 .06 .00 .00 -.45

Table 3 shows that the correlations were generally high for
both methods, providing more evidence of accurate parame-
ter recovery. In terms of correlation, the PDLT method per-
formed slightly better than the simplex method. Taken to-
gether, these results indicate that the PDLT can achieve sim-
ilar accuracy as the simplex in just a faction of the time. In
contrast to the simplex, the independence between simulation
time and fit time for the PDLT indicates that it can easily scale
up to slower, more complex models.

Table 3: Correlations between true and recovered parameters.
Utility Threshold FPdec Cycle Time Diff

PDLT .89 .74 .64 .89 .93
Simplex .85 .73 .42 .84 .89

Discussion
Real-time monitoring using cognitive models provides an op-
portunity to examine changes in cognitive processes, pre-
dict performance decrements, and implement adaptive inter-
faces designed to mitigate performance decrements. A practi-
cal challenge in performing real-time monitoring is updating
cognitive models with new data as they arrive. Established
parameter estimation methods are unable to accurately esti-
mate parameters of simulation-based models in real time. To

1The high relative bias for Diff is an artifact of its scale. Small
values in the denominator of the relative bias formula tend to in-
flate the resulting value. Absolute bias for Diff is attenuated because
US and UT are biased in the same direction: Diff= (US +biasUS)�
(UT +biasUT ).

overcome this limitation, we developed a real-time parame-
ter estimation method, and validated it on a simulation-based
ACT-R model of the PVT. PDLT pre-computes the models
predictions in order to offload the computational burden asso-
ciated with simulating model predictions. The results of our
simulations demonstrate several important points. First, the
PDLT is fast, even with a high sampling resolution and large
number of RTs. Second, the PDLT can achieve a similar level
of accuracy compared to the simplex method. Third, unlike
other methods, the PDLT shows potential to scale up to more
complex models due to the separation of simulation time and
parameter estimation time. Together, these findings suggest
that cognitive models can be updated on a trial-by-trial basis
for many tasks.

Scaling Up
Although we used a relatively simple task and model for
demonstration, there is reason to believe the PDLT is scal-
able to more complex models. For example, we demonstrated
that the PDLT is invariant to the time required to simulate
the model, unlike the simplex method. Other methods that
require real-time model simulation for parameter estimation
will likely show limited scalability. The ability of the PDLT
to scale up can be attributed to the use of pre-computation.

There are some situations in which speed-accuracy trade-
offs will be inevitable. For example, complex models that
produce multiple responses will require the storage and eval-
uation of more predictions. In practice, this trade-off may
be relatively small given that many tasks permit only a hand-
ful of responses. Similarly, dynamic models, whose parame-
ters change during a task, require additional predictions to be
stored. We recommend constraining the parameters changes
to be some function of time or trial to reduce the parameter
space and number of stored predictions. For example, our
model could be extended to allow US or UT to change as a
function of trial. It may also be advisable to use quantiles
rather than kernel density functions for dynamic models in
order to reduce computation time. Additionally, some speed-
accuracy trade-offs will occur with models that span large pa-
rameter spaces and have low correlations among parameters.

Parameter Volatility
A potential challenge with real-time monitoring is dealing
with volatility in parameter estimates. One solution might be
to incorporate data from previous sessions during real-time
monitoring. Incorporating previous data would serve as a
sort of quasi-prior, forcing the estimate to stabilize around
an informed value. However, this may have the undesirable
effect of making fatigue-relevant parameters less sensitive to
changes in fatigue. An alternative approach might be to fix
parameters that are invariant to changes in fatigue based on
previous results. For example, Walsh et al. (2014) found ev-
idence that cycle time and FPdec vary across individuals but
are invariant to the effects of fatigue. A drawback of this
approach is that it would require a separate PDLT for each
person. Alternatively, it might be possible to fix certain pa-
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rameters across individuals if they have low variance and/or
do not contribute substantially to the model fit.

Another method for reducing parameter volatility is con-
straining the model with physiological data. Walsh et al.
(2014) integrated a biomathematical model of fatigue with
the ACT-R model, forcing US and UT to vary according to
participants’ sleep/wake history and circadian rhythm. Physi-
ological constraints serve to stabilize parameter estimates and
allow for the detection of meaningful changes.

The quality of an estimate may be improved by leveraging
statistical properties of composite parameters. For example,
Diff —the difference between US and UT —is generally more
important than the absolute values of US and UT for under-
standing and predicting fatigue. From a statistical standpoint,
the difference of two random variables has desirable proper-
ties. Bias in Diff is attenuated because US and UT are biased
in the same direction and tend to cancel out each other. In ad-
dition, the variance of Diff is attenuated because US and UT
are correlated. Thus, the volatility of the parameters can be
mitigated by exploiting the statistical properties of the model
and focusing on key relationships between parameters.

Conclusions
The real-time parameter estimation method that we devel-
oped and validated is an important advance toward real-time
model-based monitoring. Prior to this effort, real-time mon-
itoring was restricted to performance metrics, such as accu-
racy and mean RT, and very simple models, such as those
used in intelligent tutoring systems (Wilson & Russell, 2003).
The PDLT method can be used with any simulation-based
model and easily scales to complex models due to the use
of pre-computation. We believe this new methodology will
enable the use of computational models for real-time moni-
toring of workload and fatigue and in the implementation of
adaptive interfaces. (Rouse, 1988; Green et al., 2009).
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Abstract 
We present a Swift re-implementation of the ACT-R 
cognitive architecture, which can be used to quickly build iOS 
Apps that incorporate an ACT-R model as a core feature. We 
discuss how this implementation can be used in an example 
model, and explore the breadth of possibilities by presenting 
six Apps resulting from a newly developed course in which 
students make use of Swift ACT-R to combine cognitive 
models with mobile applications.  

Keywords: ACT-R, mobile apps, game design 

Introduction 
Cognitive models have proven to be a valuable research tool 
in advancing our understanding of human cognition. 
Because of their ability to model human behavior, cognitive 
models also have a great potential for use outside of 
research, such as in educational or recreational settings. In 
this role, the model is not used to explain human data, but to 
act as a simulated human agent. In previous cases, such as 
the ACT-R model that played SET (Taatgen et al., 2003), 
and DISTRACT-R (Salvucci et al., 2005), the model was 
implemented directly in the target programming language. 
In this paper, we present an ACT-R re-implementation that 
can be used as a component in an iOS App. The 
implementation makes it possible to quickly build Apps 
with ACT-R inside. As a demonstration, we present a Rock-
Paper-Scissors App that the first author built in just one-
and-a-half hour. We further look at the results of a course 
that we taught using the implementation, and the six Apps 
that came out of that course. 

Swift ACT-R 
The re-implementation of ACT-R uses the new Swift 
programming language. Swift is an object-oriented 
programming language similar to Java and C++. The Swift 
implementation of ACT-R consists of a set of classes that 
implement the different components of ACT-R, such as 
Chunks, Declarative Memory, Procedural Memory, and the 
overarching Model class.  

The simplest way to use Swift ACT-R is to write a text-
file with a regular ACT-R model (with some limitations). 
The next step is to build a controller for the App, that 
responds to button presses and other actions the user can 
take. This controller creates an instance of the model class, 
and loads the ACT-R model into that instance: 

 
model = Model() 
model.loadModel("example") 

The model can then be run using the run method: 
 
model.run() 
 

The model communicates with the App through the action 
buffer (a new buffer that takes the role of standard 
perception and action buffers). Whenever a production rule 
takes a +action> action, the model stops, and hands 
control back to the main program. The main program can 
then read out the contents of the action buffer, make 
appropriate changes to the interface, wait for user input, 
place information back into the action buffer, and then run 
the model again. 

There are several alternatives to using ACT-R code, for 
example, it is also possible to access declarative memory 
directly, or even to have no explicit ACT-R model, but 
instead use declarative memory directly. The ACT-R code 
can be downloaded from: 
 https://github.com/ntaatgen/ACT-R  
It has two example models, both of the prisoner's dilemma 
(Lebiere, Wallach & West, 2000 and Stevens, Taatgen, & 
Cnossen, 2016).  

Example model: Rock - Paper - Scissors 
Lebiere and West (1999) built an ACT-R model that can 
play Rock-Paper-Scissors, and adapts itself to its opponent 
by trying to predict the next move based on previous 
experiences. The lag 1 model of Lebiere et al. stores 
sequences of two consecutive moves of the opponent in 
declarative memory and uses these to predict the opponent’s 
next move. For example, the model has the following 
chunks for sequences that start with rock: 

 
(RR isa decision step1 rock step2 rock) 
(RP isa decision step1 rock step2 paper) 
(RS isa decision step1 rock step2 scissors) 

 
Each time the opponent plays rock twice in a row, the RR 

chunk is strengthened, each time rock is followed by paper, 
the RP chunk is strengthened, and each time rock is 
followed by scissors, the RS chunk is strengthened. When 
the model needs to decide what to do in the turn after the 
opponent has played rock, it retrieves the most active chunk 
with rock in step1. The value in step2 is then the model's 
prediction for the next move of the opponent. It only needs 
to decide what move to counter that with. The whole model 
consists of only four production rules (actually, five: one 
more rule to play the first game, when there is no previous 
decision). Figure 1 lists these productions. 
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Figure 1: Productions in the Rock-Paper-Scissors model 

 
The model makes a decision in three steps. It first 

retrieves its prediction for what the opponent will do next 
based on their previous move. Based on that prediction, it 
will retrieve from memory the move that will beat the 
predicted action (e.g. rock beats scissors). It will then put 
this action into the action buffer. Control is then returned to 
the main program, which waits until the human player takes 
an action by pushing one of three buttons in the interface 
(Figure 2). 

 

 
Figure 2. The Rock-Paper-Scissors game on an iPhone 
 
The program itself is straightforward. The function that is 

called when the App is started already loads in the model 
and carries out a first run. The model has therefore made its 
decision, and now waits for the player to tap one of the 
buttons. Once the player has made a decision, the code 
checks who has won, and adjust the scores. Figure 3 shows 
all the basic code that is necessary. Some additional code is 
needed to update the display with appropriate feedback, and 
show the scores.   

To explore the breadth of possibilities of constructing 
Apps with a built-in model, we made this the goal of an 
advanced cognitive modeling course. 

Course outline 
The course ‘Cognitive Modeling: Complex Behaviour’ is 
part of the Master Human-Machine Communication and the 
Master Artificial Intelligence at the University of 
Groningen. It has been set up as a so-called learning 
community. For the purpose of the course, students had 
access to a lab room with several workstations to develop 
apps on, as well as a number of iPads and iPhones for 
testing. The lab room was available to the students for the 
full duration of the ten-week course. In line with the concept 
of a learning community, the focus is on letting the students 
present their work for open discussion among themselves, 
rather than on formal lectures. 
The course followed the plan outlined in Table 1. At the 
first meeting, students divided themselves into three-person 

(p retrieve-decision 
    =goal> 
        isa goal 
        state start 
        playerlast =last 
==> 
    =goal> 
        state retrieve 
    +retrieval> 
        isa decision 
        step1 =last) 
 
 (p retrieve-beats 
    =goal> 
        isa goal 
        state retrieve 
    =retrieval> 
        isa decision 
        step2 =prediction 
==> 
    =goal> 
        state retrieve-beats 
    +retrieval> 
        isa beats 
        slot1 =prediction) 
 
(p make-decision 
   =goal> 
     isa goal 
     state retrieve-beats 
   =retrieval> 
     isa beats 
     slot2 =decision 
==> 
   =goal> 
     state decide 
   +action> 
     isa move 
     choice =decision) 
 
(p restart-after-action 
  =goal> 
    isa goal 
    state decide 
    playerlast =last 
  =action> 
    isa move 
    opponent =decision 
==> 
  +goal> 
     isa goal 
     state start 
     playerlast =decision 
  +imaginal> 
    isa decision 
    step1 =last 
    step2 =decision 
  -action>) 
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project teams, and were encouraged to immediately start 
developing a project proposal. A project proposal was 
subject to two conditions: (1) the App had to be developed 
in Swift, and (2) the core of the App should be the Swift 
implementation of the ACT-R cognitive architecture. No 
further requirements were given, although project proposals 
had to be approved before a team could start. In particular, 
students were free to choose to build a game, an educational 
app, or different applications using an ACT-R model. In 
addition, students were free to make their App for iPad, 
iPhone, Apple Watch, or any combination of the three. 

Each team consisted of three people, with one member 
being responsible for graphical user interface (GUI) design, 
one for cognitive model design, and for programming and 
coordination. The first two weeks were meant for students 
to familiarize themselves with the Swift programming 
language and the Swift ACT-R implementation. Each of 
these topics included a short lecture and a small, ungraded 
assignment. 

Students presented their finalized project proposals in the 
third week. Over the following five weeks, students gave 
weekly progress reports on the status of their project, either 
privately with one of the lecturers, or as a presentation to 
fellow students to encourage discussion of common 
problems and solutions. 

Final presentations and demonstrations of the App were 
due in week 8 and 9, which left the students one additional 
week to write a final report on their App. Mirroring the 
structure of the student projects, the final report was 
required to discuss the graphical user interface, the cognitive 
model, and general programming. 
 

 
Table 1: Course plan for ‘Cognitive Modeling: Complex 

Behavior’. 
 

Week Activity 
1 Introductory lecture on Swift 

Creating project teams 
Assignment: Build simple calculator app 

2 Introductory lecture on Swift ACT-R 
Assignment: Build rock-paper-scissors 
opponent using Swift ACT-R 

3 Presentation final project proposals 
4-7 Progress reports 
8 Final presentation 
9 Demonstration of the App and election of 

the best App 
10 Deadline final report 

 

     override func viewDidLoad() { // This function is called when the App starts up 
    super.viewDidLoad() 
        model.loadModel("rps") 
        model.run() 
    } 
 
 // The following function is called when the player pushed one of the buttons 
 @IBAction func gameAction(sender: UIButton) { 
    // The player action is the title of the button that was pressed 
        let playerAction = sender.currentTitle!        
    // The model action is in the choice slot in the action buffer 
        let modelAction = model.lastAction("choice")! 
    // Determine the outcome of the game 
        switch (playerAction,modelAction) { 
        case ("Rock","rock"),("Paper","paper"),("Scissors","scissors"): 
         // Tie 
         break 
        case ("Rock","scissors"),("Paper","rock"),("Scissors","paper"): 
         // Players wins 
            pScore += 1 
            mScore -= 1 
        default: 
         // Model wins 
  pScore -= 1 
            mScore += 1 
        } 
    // Communicate the player's action back to the model by setting a slot 
    // in the action buffer 
        model.modifyLastAction("opponent", value: playerAction.lowercaseString) 
    // And run the model again for the next trial 
        model.run() 
 } 
 

Figure 3. Code in the App to handle the interaction between the player and the model. 
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Description of developed mobile apps 
Six projects were developed during the course, each with a 
corresponding App. As mentioned in the course outline, 
students were free to choose the topic of their application, as 
long as it included Swift ACT-R as a core mechanism. The 
six projects included three recreational games, two 
educational games, and one other application. In this 
section, we describe each of these apps in more detail. 

Six-Dice game 

 
 

The six-dice game is a recreational game of incomplete 
information played over a number of rounds. Two players 
control three dice each. At the start of each round, each 
player is given a goal that involves a certain number of dice 
that should show a given number of pips. For example, the 
human player in the screenshot above has the goal to have at 
least one of the six dice show a 3, while the cognitive agent 
may have the goal to have one die to have rolled a 6. Note 
that these goals are private information. That is, neither 
player knows the other player's goal. 

Once the goals are revealed, all dice are rolled and 
revealed. Next, one of the players may offer to reroll any 
subset of their own three dice. The other player must decide 
whether or not to accept this proposal. If the proposal is 
rejected, the round ends and each player who has achieved 
his or her goal gains one point. If the second player accepts 
the proposal, the dice selected by the proposing player are 
rerolled, but the second player also has to select the same 

number of their own dice to reroll. Note that the deciding 
player controls which dice are rerolled. 

At the end of the game, the player with the highest score 
wins. However, when the combined score of both players is 
below a certain threshold, the game ends without a winner. 
The game is therefore a game of mixed motives. Especially 
near the end of the game, it may be in the best interest of a 
player to allow the opponent to reach their goal. 

The ACT-R model is used to assess the opponent's 
trustworthiness. Each game, the model would assess the 
outcome of the game, and assign it a trust value between 1 
and 10, and add this as a chunk to declarative memory. 
When it later had to make a decision in which trust of the 
other player played a role, it would perform a blended 
retrieval of the trust value. 

Memory 

 
 
Memory (also known as Concentration) is a recreational 
card game played by placing a number of cards face down 
on a surface. Players take turns revealing two of the cards. If 
these two cards form a pair, the cards are removed from the 
game and the player scores a point. Otherwise, the cards are 
placed back face down. The game continues until no cards 
are left, at which point the player with the most points wins. 

Note that for a computer player, the game of Memory is a 
trivial one. After all, turning the cards face down after 
revealing only presents a challenge for players without a 
perfect memory. The goal of incorporating a cognitive agent 
in Memory is therefore to create a fun and challenging 
competitor, rather than to make an agent that follows an 
optimal strategy in playing Memory. 

The ACT-R Memory player makes use of declarative 
memory to store card information such as the identities and 
positions of previously revealed cards. When the ACT-R 
player believes to have found a pair of cards, it tries to 
retrieve the locations and claim the pair. To simulate 
human-like errors, the model adds noise to the stored 
positions of cards. This causes cards on the edges and 
corners of the surface to be remembered better than interior 
cards.  
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Pyramid game 

 
 
The pyramid game is a recreational game played with a 
standard deck of 52 cards. Ten cards are placed face down 
as a pyramid (see screenshot above). In addition, each 
player receives four facedown cards. At the start of the 
game, each player is allowed to look at their own four cards. 
A player cannot look at the cards of the other player, and 
once the game starts, a player is no longer allowed to review 
their own cards either.  

The game is divided into multiple rounds. In each round, 
a face down pyramid card is turned over, starting at the 
bottom left and moving slowly up the pyramid. The value of 
a card depends on its position in the pyramid. Cards on the 
bottom row are worth 1 point, while the top card is worth 4 
points. Once a card is revealed, both players decide whether 
or not to claim that one of their four cards has the same face 
value. If a player decides to do so, they select one of their 
four cards. The other player may then choose to challenge 
this claim by turning over the selected card and check its 
face value. 

The players’ scores change based on the outcome of a 
round. If no claim is made, scores remain unchanged. When 
a claim remains unchallenged, the claimant adds the value 
of the pyramid card to their score. If the claim is challenged 
and found to be false, the challenger adds twice the value of 
the pyramid card to their score. Finally, if a claim is 
challenged and found to be true, the claimant adds twice the 
value of the pyramid card to his score. 

Independent of whether a claim was challenged, any card 
that was used to claim points are replaced with new cards 
from the deck. Only the owner of a new card is allowed to 
inspect it. 

For the purpose of the app, the human player always starts 
by deciding to make a claim. Once this claim is resolved, 
the computer player takes its turn and the game continues to 
the next pyramid card. When there are no cards left on the 
pyramid to turn over, the player with the highest score wins. 

The ACT-R opponent makes use of declarative memory 
to remember its own cards, and regularly rehearses these 
cards to avoid forgetting. In addition, the ACT-R player 

tries to model the behavior of the human player in terms of 
the likelihood that the human player is bluffing and the 
likelihood that the human player will challenge a claim of 
the ACT-R player. 

Mathgician game 

 
 
Mathgician is an educational App aimed at training addition 
to children in the form of a competitive game. In the game, 
players are presented with a goal number and six tiles. Each 
tile has a number printed on it. Players have to select tiles 
such that the numbers on the selected tiles add up to the goal 
number. For example, to get the goal of 27, as in the 
screenshot above, players could select the tiles with the 
numbers 17, 6, and 4, but also the tiles with the numbers 18, 
6, 2, and 1. 

The game is played against an ACT-R opponent, which 
follows a human-like greedy strategy, in which it tries to get 
to the goal number with high numbers first. If this fails, the 
model tries lower numbers. In addition, the App has the 
option to play against an adaptive opponent, which tries to 
match the search speed of the ACT-R model with the 
behavioral data of the human player. 

OMGLogic game 
OMGLogic is an educational App that is intended to help 
players learn how to construct semantic tableaux. In the app, 
players are presented with formulas from propositional 
logic. They are asked to construct a semantic tableau to 
show that the formula cannot be satisfied. To do so, players 
have to select part of the formula and decide how it should 
be handled to continue the tableau. Whenever a player takes 
a correct action their score increases, while incorrect 
answers decrease a player’s score. 

The ACT-R model presents a competitor that attempts to 
gain points for itself while constructing the semantic 
tableau. The ACT-R model attempts to match the skill level 
of the human player in solving the formulas. If the model 
successfully retrieves a correct course of action before the 
human player, the step is executed and the human player 
loses points.  
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LagMusic app 

 
 

LagMusic is a music player that makes use of ACT-R to 
predict when a listener wants to listen to a previously heard 
song again, given a user-specified mood. The model uses 
the actions of the user as feedback. Skipping a song is 
considered to be an indication that the user is unwilling to 
listen to the song, while a user that listens to a song for the 
full duration is considered to be happy with the model’s 
selection. Finally, a user can indicate that it likes a song, but 
does not want to listen to it at the current moment by 
shaking the device. 

The ACT-R model uses activation of a song chunk to 
determine whether, given the user’s current mood, a song 
has sufficiently faded from memory for the user to 
appreciate hearing it again, as well as whether or not the 
user appreciates the song at all in the current mood. 
Whenever a song is played in full, the positive feedback 
increases activation. Skipping a song provides negative 
feedback by decreasing a song’s activity. In addition, the 
model updates the retrieval threshold, making it more likely 
for the model to retrieve songs with higher activation. The 
neutral feedback, which indicates that the song is 
appreciated but played too soon, adjusts the retrieval 
threshold in the other direction, making it more likely for 
the model to retrieve songs with lower activation. 

Conclusion 
Cognitive models are not only useful to build theories of 
human cognition, but they can also be applied to build 
simulated humans. In this paper we explored possible ways 
in which the ACT-R architecture can be used in the context 
of a mobile application. One of the conclusions we can draw 
at this stage is that for most purposes declarative memory is 
the most useful component in ACT-R. It can model how we 
remember and forget information, and can also model 
decision making through instances-based learning. Further 
potential of incorporating a model in an App is that the App 
can gather its own information to train the model. Again, 
declarative learning is the lowest hanging fruit here, but 
procedural learning is potentially very powerful as well. 
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Abstract
In this paper we describe the JavaScript Interface for Visu-
alization of User Interaction (JIVUI): a modular, Web-based,
and customizable visualization tool that shows an animation of
the trace of a user interaction with a graphical interface, or of
predictions made by cognitive models of user interaction. Any
combination of gaze, mouse, and keyboard data can be repro-
duced within a user-provided interface. Although customiz-
able, the tool includes a series of plug-ins to support common
visualization tasks, including a timeline of input device events
and perceptual and cognitive operators based on the Model Hu-
man Processor and TYPIST. We talk about our use of this tool
to support hypothesis generation, assumption validation, and
to guide our modeling efforts.
Keywords: Typing; Cognitive Modeling; Visualization; Re-
play; Tool; Data Visualization; Input Device; Cognition;
Inter-keystroke Interval; Mouse Clicks; Mouse Motion; Eye-
tracking; Gaze Data; Human-Computer Interaction; Human
Information Processing; Human Behavior.

Introduction
Visually representing data is a common technique used to a)
succinctly summarize and communicate information, and b)
gain a better understanding of the process that generated said
data. In its most common form—charts—data visualization
is generally used for the former. For the latter, however, vi-
sualizations are generally more complex and are built ad-hoc
according to the originating data’s context. This results in an
increased effort required to visualize similar, but not identical
datasets.

Examples of data that are generally visualized to be better
understood come from cognitive modeling and empirical user
interaction with graphical user interfaces. In both cases, the
data correspond to a particular context (e.g., the user interface
being used or modelled), to a particular set of input devices
(e.g., mice, keyboards, eye-trackers, trackpads, etc.), and has
a particular set of spatial and temporal properties (e.g., loca-
tions on the screen or relative to on-screen items, time elapsed
between keyboard or mouse events, etc). A consequence of
this need for specialization is a reduced number of available
tools that are suitable to visualize a specific dataset. In cases
where there exists a suitable tool, an added inconvenience is
that it may not support the researcher’s preferred operating
system, or it may require the installation of dependencies that
the researcher may prefer not to install.

In this paper we present the JavaScript Interface for Visual-
ization of User Interaction (JIVUI)—a modular, Web-based,
and customizable tool that addresses these problems, provid-
ing the ability to visualize and replay a user’s interaction with
a graphical user interface on any platform through any mod-
ern Web browser.

Data produced from cognitive models of input device us-
age is generally similar to that collected from a user, with the
addition of annotations for the cognitive operators related to
the user’s observed interactions. Through a flexible data rep-
resentation, JIVUI supports both. In addition to user and/or
model data, JIVUI is capable of rendering a replay of the in-
teraction over a customizable UI that can be crafted to repre-
sent the task from which the data was collected.

Related and Prior Work
Visualization tools are a staple in cognitive modeling re-
search. Models can grow to be very complex, and understand-
ing the subtleties of their behavior in carrying out specific
tasks often requires more than textual descriptions or traces,
tables of quantitative trace information, or summary statis-
tics. A variety of tools are available for presenting models
and user data in graphical form.

The ACT-R 6.0 Environment (Bothell, 2004) provides con-
trols and information about a model in a graphical user inter-
face. A stepper function is described as the most useful tool
in the environment. It is comparable to a stepper in a con-
ventional programming environment, supporting pauses be-
fore events and a range of choices for running a model until
a specified condition becomes true (when a given duration is
exceeded, a given production fires, or an event is generated
by a given module). A graphical trace is provided, with time
along one axis and events of different types in rows, filling
the other axis. The environment can also display a state chart
diagram, a directed graph showing the productions selected
and fired in a model. Other, more specialized visualizations
are also supported.

SANLab-CM (Patton & Gray, 2010) is a tool for activity
network modeling, specifically models that include stochastic
operators. SANLab-CM gives a modeler the ability to con-
struct and edit a model in the form of a specialized directed
graph that captures elementary cognitive, perceptual, and mo-
tor operators and the dependencies between them, as well as
compositions called interactive routines. The modeler can vi-
sualize the model as a Gantt chart that shows the execution
of operators over time; a histogram shows the distribution of
model execution times. By selecting a specific critical path,
the modeler can focus the visualization on the associated sub-
set of operators.

NAV (Kriete, House, Bodenheimer, & Noelle, 2005) is a
tool for generating animations of cognitive model execution,
showing different visualizations to help non-expert users un-
derstand the dynamics of a model. The focus is on giving a

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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Figure 1: Example of replay and control interfaces illustrating
the playback of typing and gaze data.

modeler the facilities needed to build a presentation-quality
animation to convey the necessary information. For example,
in a semantic network visually represented as nodes and arcs,
the modeler can opt to show node activation levels over time
by changing color or size. Annotations can be added to the
visualization, which can also change over time.

SIMCog-JS (Simplified Interfacing for Modeling Cogni-
tion - JavaScript) (Halverson, Reynolds, & Blaha, 2015) ad-
dresses the continuing challenge of building cognitive models
that can interact with external software, in this case the inter-
action between Java ACT-R and HTML/JavaScript. SIMCog-
JS does not provide visualization facilities per se. Due to
its integration with JavaScript, however, SIMCog-JS makes it
very easy to instrument a Web interface to replay the behavior
of a user interacting with the interface or to simulate a cog-
nitive model using the interface—e.g. Dong and St. Amant
(2016). One novel use of SIMCog-JS in this way has been to-
ward the visualization of eye movements (Balint, Reynolds,
Blaha, & Halverson, 2015). A Model Visualization Dash-
board can play the trace of a model performing tasks in a
given interface, along with other types of visualizations. Fur-
ther, the environment contains an embodied virtual character
that simulates eye and head movements predicted for a human
being carrying out tasks in the interface.

An Overview of JIVUI
JIVUI is a Web framework designed to simplify the visualiza-
tion of gaze, keyboard, and mouse data, and can visually rep-
resent perceptual and cognitive operators associated with the
data on a timeline. It supports data generated by a cognitive
model as well as data collected empirically. The data is pro-
vided to JIVUI in JSON (ECMA International, 2013) format
either in the page’s source or by loading it through the Web
interface. The JSON structure and data flow are explained in
more detail in the JSON DATA DESCRIPTION section.

We designed JIVUI to run completely in a Web browser
without the need for a back-end, making it immediately us-

able on any platform. A typical JIVUI instance will render
a Web page with a replay interface, a playback control inter-
face, and a timeline. The replay interface, illustrated at the
top of Figure 1, renders the animated user interaction over a
user interface that can be customized to look and behave like
the experimental environment seen by participants. The play-
back control interface, illustrated at the bottom of Figure 1,
is used to start, pause, and stop the replay animation, as well
as to specify the playback speed and to move forward and
backward in the animation. Finally, the timeline, shown in
Figure 2, will display interaction events such as keystrokes,
clicks, and gaze fixations, but can also display perceptual
and cognitive operators associated with the interaction events
based on a cognitive model.

JIVUI is designed to be extensible, meaning that all of
the components described above are provided as plug-ins that
can be modified or replaced without modifying JIVUI’s core.
This plug-in-based architecture allows the visualization ex-
perience to be highly customizable to support a wide range
of user interfaces and data attributes. JIVUI’s extensibility
is made possible through its support of plug-ins for almost all
its functionality, as described in the JIVUI’S ARCHITECTURE
section.

JSON Data Description
JIVUI works with millisecond precision. It expects a JSON
string containing a “settings” object and a “data” object
(an example is shown in Listing 1). The “settings” ob-
ject is required to contain a “start” numeric attribute in-
dicating the smallest millisecond contained in the data, and
an “end” numeric attribute indicating the largest millisecond
contained in the data. It can also contain three optional at-
tributes, “title”, “startOffset” and “endOffset”, pro-
viding a label to the data, time padding at the beginning, and
time padding at the end of the visualization, respectively.

The “data” object is where user or model data will be pro-
vided. It is expected to contain an arbitrary number of en-
tries where the keys are milliseconds. Each entry can con-
tain any combination of event types that occurred at that mil-
lisecond, keyed by the event type as follows: “click” for
mouse clicks, “key” for keystrokes, “mouse” for mouse po-
sition, and “gaze” for eye-tracking data. In turn, each of
these event types will include a set of required and optional
attributes. Because multiple clicks can occur at the same time
(e.g. from different mouse buttons), a “click” event is an ar-
ray where each element is expected to contain the x and y
coordinates where the click happened, as well as the button
that was pressed (e.g. “left”, “right”, or “middle”), and it
can also contain an optional “duration” attribute indicating
for how long was the mouse button pressed. If not specified,
a mouse click is assumed to last 100ms for visualization pur-
poses. Multiple keystrokes can also occur at the same time, so
a “key” event is also an array where each element is expected
to contain the key that was pressed, and can also contain op-
tional attributes for the “duration” of the keystroke, whether
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Figure 2: Timeline

{
"settings": {

"title": "Participant 31", // optional

"start": 200,
"end": 250,
"startOffset": 100, // optional

"endOffset": 200 // optional

},
"data": {

"200": {
"click": [{

"button": "left",
"x": 200, "y": 150,
"duration": 60 // optional

}],
"key": [{

"key": "t",
"duration": 88, // optional

"correct": true, // optional

"word": "the" // optional

}]
},
"250": {
"gaze": {

"x": 220, "y": 170,
"fixated": false // calculated

},
"mouse": {

"x": 210, "y": 151,
"drag": true // calculated

}
}

}
}

Listing 1: Example of simple input data in JSON format.

the keystroke correctly matched an expected keystroke (use-
ful for transcription typing, or when the expected keystroke
is otherwise known), and a word context where the keystroke
occurred. If not specified, a keystroke is assumed to last
100ms for visualization purposes. The “gaze” and “mouse”
events are expected to contain the x and y screen coordinates
of the position of the eye-tracking and mouse pointer data,
respectively.

Following the JSON standard, this data representation pro-
vides a few advantages. First, it guarantees that there is only
one data entry per millisecond. Second, it guarantees that ev-
ery entry contains at most one instance of each event type.
Third, attributes and objects can be added to the data either
before it is input to JIVUI, or dynamically by plug-ins, as
discussed in the PLUG-INS section. More importantly, this

representation is a string that can be easily produced from
empirical data as well as from the output of cognitive model-
ing tools, and is supported by virtually all programming lan-
guages either natively or through popular libraries.

JIVUI’s Architecture
At its core, JIVUI consists of a timing engine, a state man-
ager, and a plug-in manager. The timing engine is used on
playback to maintain a stable animation framerate regardless
of any browser’s constraints or performance limitations. Be-
cause JIVUI works with millisecond precision, the default
framerate is 1000 frames per second (FPS) as an attempt to
render the visualization in real-time. This value is config-
urable, even as an animation is being played. When the tim-
ing engine cannot render at the specified speed, it provides the
number of frames that are lagging behind. This allows JIVUI
to compensate for this lost time to ensure that the animation
has accurate timing based on the set speed and the data’s total
duration.

As the name suggests, the state manager keeps track of
JIVUI’s state, which includes the currently loaded dataset (if
any), the playback speed, the current frame, and whether the
animation is playing, paused, or stopped. The state manager
also provides an API to control an animation. Specifically,
through the state manager a module can control the anima-
tion speed, advance and rewind to a specific frame, and can
play, pause, and stop the animation.

The plug-in manager maintains a list of registered plug-ins,
and provides an API to register and remove them.

Plug-ins
JIVUI supports two types of plug-ins: preprocessors and UI
modules. We designed the plug-in API so that a single com-
ponent could serve as a preprocessor and a UI module in the
interest of maximizing JIVUI’s applicability to varied use
cases. Each plug-in is described by a JSON file that lists
all the resources that it depends on, such as JavaScript files,
HTML templates, and/or CSS files.

Preprocessors are exclusively invoked on data load and
their main task is to augment the data by performing calcu-
lations on it. For example, a preprocessor can be used on
gaze data to determine fixations, or work with mouse motion
and click data to add attributes that indicate when the mouse
motion is occurring within the context of a drag operation.

As shown in Figure 3, JIVUI invokes every preprocessor by
calling their “onDataLoaded(settings, data)” method,
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Figure 3: Sequence diagram of the data loading phase, where
preprocessors annotate and augment the data, and UI modules
initialize the Web interface.

Figure 4: Sequence diagram of the playback phase, where UI
modules are provided frame and event data to be rendered.

providing the dataset’s “settings” and “data” objects as ar-
guments. This tells every preprocessor that a new dataset has
been loaded and allows them augment data entries.

UI modules are responsible for rendering elements on the
Web page and providing functionality to the end user. They
are initialized on data load, and are invoked by JIVUI during
playback, following the process illustrated in Figure 4. Ex-
amples of UI modules are a replay area to visually reproduce
keystrokes and mouse motion, playback controls, and time-
lines.

JIVUI’s Included Plug-ins
In order to make JIVUI usable out of the box, and to showcase
its potential, we include with it a set of plug-ins that are suit-
able for the most common user interaction cases. We include
basic preprocessors for gaze, keyboard, and mouse data, as
well as a cognitive preprocessor. For UI modules, we include
a replay region, a set of animation controls, and a timeline.

Preprocessor Modules
Gaze Preprocessors: Two gaze preprocessors are included.
One determines fixations using an implementation of the I-
DT algorithm as described by Salvucci and Goldberg (2000).
For every gaze event, it adds a boolean attribute “fixated”.
The second one uses an implementation of the 1e filter
(Casiez, Roussel, & Vogel, 2012) to stabilize noisy gaze data,

adding numeric “filteredX” and “filteredY” attributes
with smoothed eye position values.

Mouse Preprocessor: The included mouse preprocessor
augments mouse motion data by adding a boolean “dragged”
attribute to every mouse motion event. When a mouse motion
event occurs within the duration window of a click, as spec-
ified by the click’s “duration” attribute, this value is set to
true; otherwise it is set to false.

Keyboard Preprocessor: The keyboard preprocessor
augments keystroke events by adding the number of millisec-
onds elapsed between the start of the current keystroke and
the end of the previous one, as well as between the start of
the current keystroke and the start of the previous one.

Cognitive Preprocessor: This preprocessor annotates
keystroke data with cognitive and perceptual operators based
on the Model Human Processor (MHP) (Card, Moran, &
Newell, 1986) and the TYPIST model (John, 1996). For ev-
ery keystroke, this preprocessor creates a cognitive operator
that precedes it, lasting 50ms. Similarly, before the first cog-
nitive operator of every word, this preprocessor includes an-
other cognitive operator that also lasts 50ms. Also for every
word, a 340ms perceptual operator is created. The TYPIST
model describes a working memory capacity of three words,
thus perceptual operators for three words are created by this
preprocessor at the beginning of the timeline; it waits for the
typing of the first word to be completed before creating the
perceptual operator for the next word, and so on.

UI Modules
Replay Region: This UI module instantiates a text area
where keystrokes appear as key events are received. It also
loads two additional UI modules: one to overlay gaze data
and the other to overlay mouse motion and clicks. The gaze
and mouse UI modules consist of a “canvas” element each,
and render gaze and mouse motion as moving dots overlaid
on the interface. Click events appear as two concentric cir-
cles. To improve visibility, the eye and mouse indicators are
rendered in different colors that contrast with the background,
and are configured to leave a “trail” that fades away as the an-
imation progresses.

Animation Controls: This UI module is used to manipu-
late the animation. It provides controls to move the animation
forward or backward to any particular frame, buttons to start,
stop and pause the animation, and controls to set the anima-
tion’s speed. As the animation is played, this plug-in updates
the current millisecond being visualized to reflect the current
frame in the animation. It also provides two keyboard short-
cuts to control the animation: pressing the space bar will play
and pause the animation, while pressing the backspace key
will stop it.

Timeline: The included timeline plug-in is designed to
look for the augmented data provided by the preprocessors
described above and displays events and operators in five dif-
ferent tracks: gaze, mouse, keyboard, cognitive, and percep-
tual, as shown in Figure 2. Events on each track are displayed
as boxes with their length based on the event’s duration, and

128



Figure 5: Example of JIVUI being used to visualize gaze and
keystroke data collected from The Typing Game.

can sometimes overlap. The gaze track displays fixations,
the mouse track displays clicks, and the keyboard track dis-
plays keystrokes. The cognitive and perceptual tracks display
their corresponding operators. Each element on the timeline
displays a tooltip on mouse hover providing more informa-
tion about the event, such as the millisecond value when it
occurred, its duration, and other corresponding data (e.g., po-
sition of a click, key pressed on a keystroke, etc.), as well
as annotations provided by preprocessors, such as the time
elapsed after the previous event of the same type.

JIVUI in Use
We used JIVUI to visualize the data we collected from a study
involving a computer game, which consisted of participants’
typing and gaze data. We were able to replay players’ experi-
ences from trace data as a simulation of their participation. A
screenshot of one of the play traces is shown in Figure 5. As
our study only collected participants’ typing and gaze data,
we used every plug-in included with JIVUI with the excep-
tion of the mouse preprocessor. In this case, we used a mod-
ified version of the replay region to mimic the game’s user
interface, and to respond appropriately to the simulated key
presses as if it were the real game.

The use of JIVUI facilitated hypothesis generation for our
study. The visualization helped us quickly identify touch typ-
ists among our participants, and to generally assess their typ-
ing skill, by looking at how often a participant’s gaze sud-
denly dropped off the bottom of the screen, indicating that
the participant was looking at the keyboard while typing.

One slightly unexpected discovery in our use of JIVUI
came in the examination of typing patterns in the typing
game. Participants were asked to type the sentence, “The
quick brown fox jumps over the lazy dog,” so that the game
could be adjusted to their approximate typing speed. Our ini-

tial assumption was that this sentence would be typed in a
similar way to transcription typing. Following the TYPIST
model of transcription typing, we would expect a visual atten-
tion shift to a word to occur several keystrokes before the first
letter in the word. Possibly because of the way the interface
is set up, with the text to be typed visible on the screen, over-
written by gray characters as each is correctly typed, a differ-
ent pattern typically emerged: the visualization showed that
their gaze tended to stay on a word until the word was almost
completely typed. We judge that without the animated re-
play provided by the visualization, it would have taken much
longer for us to realize that one of our basic assumptions (the
appropriateness of the model) was incorrect.

As a result, we have a new ACT-R model (still under de-
velopment) with tighter constraints between perceptual and
motor processing. In the model, a visual attention shift (in-
cluding eye movements, using the EMMA (Salvucci, 2000)
extension to ACT-R) occurs at the end of each word. The
model under-predicts the elapsed time between the fixation
on a word and the first keystroke for that word, at around 150
ms, where the elapsed time for participants is closer to 400
ms. Despite this, the model does preserve a general pattern,
a relatively small variance in the distribution of elapsed times
between fixations and the first keystrokes of words. Our mod-
eling effort in this area continues.

JIVUI also allowed us to assess the quality of our gaze data,
helping us identify eye tracker calibration biases, and poor
gaze data in general. Being able to visualize calibration biases
is incredibly helpful as a guide to correct a participant’s gaze
data, making it usable, whereas it would have otherwise been
discarded.

As a Web tool, we deployed JIVUI on a centralized server
allowing multiple researchers to use it simultaneously and on
the same dataset. Some of our ongoing efforts using JIVUI to
visualize our game data include identifying word segmenta-
tion. One approach for doing so is to allow multiple people to
visualize our data and manually label segmentation bound-
aries, resulting in a dataset from which agreement metrics
could be computed to determine word segments.

To showcase JIVUI’s versatility, we also show in Figure 6
a visualization of data we collected from another game. In
this case we visualize mouse motion (overlaid on the game
screen) and mouse clicks (as timeline events.

Discussion and Conclusion
The main contribution of this paper is JIVUI itself, which
is being made available online1. In addition to the source
code, we are also providing basic documentation, example
data files, and a working demo.

The most salient advantages of JIVUI are its flexible data
format, its extensibility, and its portability. With minimal ex-
pectations on data structure, JIVUI can be used with both
simple and complex datasets, where extended attributes could
be easily added to configure the visualization (through the

1
http://go.ncsu.edu/jivui
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Figure 6: Example of JIVUI being used to visualize mouse
motion and click data collected from The Concentration
Game.

“settings” object), and to provide a richer dataset (by
adding elements to the data entries). This allows JIVUI to
support input data generated from different cognitive model-
ing methods, as well as data collected from a real user.

JIVUI’s heavy reliance on plug-ins allows it to be highly
customizable not just to support a wide range of data at-
tributes to visualize, but also to perform calculations on the
data and to completely customize how the data is finally
played back in the Web interface. Additionally, JIVUI’s in-
cluded plug-ins are designed to accommodate the most com-
mon user interaction visualization use cases, making it ap-
proachable for newcomers. The included plug-ins also serve
as examples for end users to build upon when creating more
complex preprocessors and UI modules.

Because JIVUI is based entirely on Web standards, it re-
quires only a modern Web browser to run. This allows JIVUI
to be platform-agnostic. It can be hosted on a local com-
puter or on a server, allowing a single instance to be used by
multiple people simultaneously. JIVUI does not require any
specific dependencies and can be hosted on any Web server.
With appropriate UI modules, JIVUI can be used to visualize
data on mobile devices as well.

In addition to presenting the tool itself, we have also pro-
vided a few examples of how JIVUI has helped us visualize
and obtain insight into data collected from our experiments.
It can also be applied to visually compare predicted user be-
havior as cognitive models with actual user data.
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Abstract 

Error patterns for arithmetic problems are very rich in 
information, but they are hard to investigate systematically 
because of the small number of mistakes made. To be able to 
investigate errors in arithmetic we therefore used an online 
educational application called Math Garden, which teaches 
children arithmetic in the form of several different tasks. 
Because of the large number of users, Math Garden provides 
sufficient data  to investigate errors systematically. Using the 
Math Garden data set, we developed a cognitive model in the 
PRIMs architecture that can give a comprehensible account of 
the errors made in single-digit multiplication problems. The 
model does a relatively good job of explaining errors on easy 
problems, but has difficulties explaining mistakes for harder 
problems. In addition to the current model, we propose some 
approaches to improve the model to explain mistakes in the 
harder problems as well. 

Keywords: Arithmetic, Multiplication, PRIMs, Errors 

Introduction 
Arithmetic is one of the core skills taught in primary 
education. Especially single digit multiplication is 
considered to be one of the core abilities in today’s world. 
This kind of basic skill is hard to study in adults, because it 
is so well trained and automatic that hardly any mistakes are 
made. Even children make few errors. This is unfortunate, 
because errors give great insight in the processes and 
especially the strategies underlying these skills.  

In this paper, we will investigate the different kinds of 
errors children make in multiplication by employing a huge 
data set from a web-based practice program, Math Garden 
(e.g. Klinkenberg, Straatemeier, & Van Der Maas, 2011). 
Math Garden is used by thousands of students every day, 
and the data therefore include a significant amount of errors. 
To explain the errors children make, we will develop a 
comprehensible cognitive model of these error data. Our 
goal is to gain insight into the processes and strategies 
underlying single-digit multiplication.  

Existing Models of Multiplication 
Previously, several models have been built to explain 
patterns found in arithmetic data. We can discern three 
categories in this regard: memory strength models, network 
interference models, and computational efficiency models 
(Ashcraft & Guillaume, 2009). Memory strength models 
and network interference models both put the emphasis on 
memory retrievals, while strategy-based models implement 
the use of algorithmic strategies, such as repeated addition – 
e.g. solving 8 + 8 + 8 instead of 3 x 8 – and counting 

in steps of two, three, or more – e.g. 3, 6, 9 to solve 3 
x 3.  Most models combine a strategy-based approach with 
a memory-based approach: retrieval based models often 
include some kind of computational strategy, and strategy 
based models often also include a rehearsal strategy (e.g. 
Lebiere, 1999; Siegler, 1988).  

An example of a combined model is the model by Siegler 
(1988). The main strategy in this model was retrieval, which 
was tried multiple times. Every trial a random number of 
retrievals was attempted to find an answer to the problem.  
In the model’s declarative memory, each exercise was not 
only connected to the correct answer, but also to incorrect 
answers. The more problem-answer connections there are, 
the harder it is to retrieve a correct answer.  

Because of the associations with incorrect answers, 
retrievals could also result in an incorrect answer. 
Therefore, the associative strength of each successful 
retrieval was compared to a confidence criterion that was set 
at random in each trial. If the associative strength of the 
retrieved answer was lower than the confidence criterion, 
the answer was rejected and a new retrieval was started. 
Only when everything else failed, an alternative strategy 
would be applied. This alternative strategy was an 
algorithmic process, such as repeated addition, in which one 
multiplicand is added the number of times of the other 
multiplicand.  

According to Siegler, the strategies that are initially used 
to solve the problem determine which problem-answer 
connections end up in the declarative memory. In turn, the 
problem-answer combinations in memory influence the 
strategies that are used to solve the problem. Thus, the 
errors children make early on in their development of the 

Figure 1. The multiplication task in Math Garden. 
Responses are given using the keypad. On the bottom of the 
screen the current value of the problem is represented with 

coins. 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.

131



multiplication skill are of great importance for the further 
development of the strategies they use. 

In 1999, Lebiere implemented a combined memory and 
computational strategy model within the constraints of the 
cognitive architecture ACT-R. This model, similar to 
Siegler (1988), tries to retrieve the answer to an arithmetic 
problem, and, if that fails, uses repeated addition to 
calculate the answer. In the model by Lebiere, three sources 
of errors can be discerned. The first source of error stems 
from the use of repeated addition. For example, when 
solving the problem 3 x 8, a student can accidentally do 
one additional step, resulting in 32, or one step too few, 
resulting in 16. Alternatively, an addition mistake in one of 
the steps can result in an answer such as 16 + 8 = 25. 

 When retrieval becomes the main strategy to solve these 
problems, the errors made in repeated addition will still 
have an influence in the form of incorrectly stored 
combinations of a problem and its response. These lingering 
associations are the second source of error. The third source 
of error in the model is that of a partial match between 
stored information and to be retrieved information. For 
example, when the problem 3 x 5 needs to be retrieved, a 
mistake can be made by retrieving a similar problem, such 
as 3 x 4 = 12, and giving the answer to that problem 
instead. 

Current Study 
Both Siegler and Lebiere did analyze the errors in their data. 
However, because of the relatively small datasets they used 
to fit their models, it was hard to examine the error patterns 
in a more systematical way: 
 

“The patterns of errors for multiplication are 
quite rich, but harder to examine systematically 
because they take place over a wider range of 
values and display some characteristics (table 
errors, close misses, etc.), which are difficult to 
average over and plot together. For those 
reasons, let us concentrate on the pattern of 
errors for a single problem” (Lebiere, 1999) 

 
We will continue the work of Lebiere by looking in more 

detail at the errors in a large dataset that gathers the data of 
thousands of primary school students in all age categories. 
Although the proportion of errors is still low, the sheer 
amount of data makes the systematical analysis of these 
errors possible. Using these data, we can make finer grained 
assumptions about the strategies underlying these mistakes. 

In this paper, we will start this endeavor by looking at 
three specific problems. First we will discuss the data and 
the different mistakes we find in the data, then we will 
propose strategies that can have led to these errors. We will 
implement these strategies in the cognitive architecture 
PRIMs (Taatgen, 2013) and discuss the similarities and 
differences between the results of the model and the data. 

Task & Data 
The data were gathered from “Math Garden” (see also: van 
der Ven, Straatemeier, Jansen, Klinkenberg, & van der 
Maas, 2015), an online computer application that is used by 
school children in the Netherlands to practice math and 
arithmetic. It offers problems that are adapted to the 
capabilities of the user, so that each problem has a 
reasonable chance of being solved (the default probability of 
correctly solving a problem is .75, this can be adjusted by 
the user). While the program contains a wide variety of 
different tasks, we will focus here on a standard 
multiplication task (see Figure 1).  

Participants 
Because we only have access to aggregated data from Math 
Garden, the specific distribution of participants is unknown.  
The users of Math Garden are Dutch primary school 
children with ages roughly between 5 and 13 years.  

The Multiplication Task 
The task we focus on in this paper is the multiplication task. 
In this task, a multiplication problem is presented on the 
screen (Figure 1). The student has to solve this problem 
within 20s. The answer is given by clicking on an on-screen 
keypad. Time is represented as a row of coins and every 
second a coin disappears from the screen. The coins that are 
left on the screen when the student has entered the answer 
are the score that is received, in the case of a correct answer, 
or lost, in the case of an incorrect answer. No points are 
awarded or lost when no answer is provided. This way of 
scoring is known as the ‘High Speed High Stakes’ principle 
(Maris & van der Maas, 2012). Students can decide for 
themselves how many trials they want to play and when 
they want to play. 

Data 
The data set we used was obtained on 25 May 2015 and 
contains the data of 8,489,703 attempts of 81 different 
problems (1 x 1 – 9 x 9). The overall percentage of 
errors in the full dataset was 10.42%. This is lower than the 
expected error percentage of 25% because late answers and 
answers in which the student asked for a hint were not taken 
into account. We will give a qualitative overview of the 
types of errors children make. 

The most common errors often fit in one of the following 
categories:  

1. The student has added the numbers instead of 
multiplying them. For example, 3 x 2 = 5. 

2. Operand related mistakes: the answer is consistent 
with the answer to a very similar problem. For 
example, 3 x 4 = 15, which is the answer to the 
problem 3 x 5, or 6 x 7 = 35, which is the 
answer to the problem 5 x 7.  

3. Miss 1 errors: the answer is very close to the correct 
answer. For example, 3 x 5 = 14, which is the 
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correct answer minus one, or 6 x 7 = 43, which 
is the correct answer plus one. 

Most of these mistakes can be explained by a mistake in 
the calculation or retrieval procedure. Interestingly, there are 
also mistakes that cannot easily be explained in the same 
manner. While previous models focused mainly on the first 
types of error, the goal of our model is to also explain some 
of the other mistakes. For ease of exposition we will focus 
on the errors in three different problems: 1 x 2, 3 x 4, 
and 9 x 6. These problems are chosen because they fall in 
the first, second, and third tertile of the data, based on the 
Math Garden estimate of the average level of the students 
who have solved the problem correctly. 

Explaining Multiplication Mistakes 
We will discuss the five most commonly made mistakes for 
the abovementioned problems and how they are 
implemented in the model. Reading errors and input errors 
are outside the scope of the current model. We will start out 
by discussing the mistakes (see Figures 2A-4A) and 
hypotheses for the origin of these mistakes. Afterwards we 
will explain the setup of the model, and what the model can 
or cannot explain. 
1 x 2 

The problem 1 x 2 is an easy problem and was recorded 
60,821 times in our dataset. In 91% of the cases the problem 
was solved, in the other 9% errors were made. The most 
common mistakes for the problem 1 x 2 are shown in 
Figure 2A.  

The most common mistake is to give the answer 1, which 
is a pattern of behavior seen in all problems where one of 
the multiplicands is a 1. There are several possible 
explanations for this mistake: (1) It could be caused by 
partial matching, instead of retrieving the required result for 
1 x 2, the result for 1 x 1 is retrieved. However, given 
that we also observe this pattern for 1 x 9, this is unlikely. 
(2) The rule for multiplication by 0 can be overgeneralized. 
When a number is multiplied by 0, the answer is also 0. 
Since the tables for 0 and 1 or often the first multiplication 
tables a student encounters, they might use the rule they 
have learned and used successfully for the table of 0 in the 

table of 1. (3) Finally, this mistake could be due to an 
incorrect application of the 1-rule. For all problems of the 
form 1 x N it holds that the answer is N. If this rule is 
remembered or applied incorrectly, the result may be that 
the other multiplicand, the 1, is considered to be the correct 
response. 

The second, third, and fourth mistakes are 3, 4, and 20. 
All of these answers fall into one of the categories 
mentioned earlier. 3 corresponds to either the addition of 
both multiplicands, an answer that corresponds to a similar 
problem, or miss 1 error. 4 corresponds to an operand 
related mistake, namely 2 x 2 = 4. The most likely 
explanation for 20 is that the 1 is mistaken for a 10. This 
confusion is the third most made mistake in the table of 1, 
but it does not happen in any of the other tables. A likely 
explanation for the confusion is that the multiplication table 
for 10 is taught as one of the first multiplication tables and 
is therefore well known. The 1 is then easily confused with 
the 10. 
3 x 4 
The problem 3 x 4 is a medium level problem; it was 
recorded 148,279 times in our dataset. 90% of the problems 
where solved correctly. In 10% of the cases an error was 
made. A specification of the errors can be found in Figure 
3A. 

The main mistake found in the data is 16. 16 is the 
answer to 4 x 4, an operand related error. It fits with the 
most common error categories we described before. It can 
either be caused by a retrieval that has gone wrong, either 
due to a previous mistake or due to a partial matching error. 
The other possibility is that the mistake is made because of a 
mistake in repeated addition; the student took one step too 
many in the calculation of the answer. 

The next most common mistake is 9. 9 is the answer to 3 
x 3, also an operand related error. Therefore, a similar 
explanation to the previous mistake applies.  

 
The final three mistakes we will discuss here – 8, 7, and 

15 – are made less often, but can be explained in a similar 
way. 8 is the answer to 2 x 4, 7 is the answer to 3 + 4, 
and 15 is the answer to 3 x 5. In all these cases, this is 

Figure 2. Responses given in the data (A) and by the model (B) after a simulation of 25 times 400 trials of the problem  
1 x 2. 
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either a mistake in the retrieval, a mistake in the repeated 
addition procedure, or a wrongly applied procedure (in the 
case of 3 + 4 = 7). 
6 x 9 
6 x 9 is one of the more difficult multiplication problems. 
It was recorded 90,145 times. 88% of the problems were 
solved correctly. The most common mistakes for 6 x 9, as 
shown in Figure 4A, are 45, 56, 63, 36, and 53. Of these 
responses, 45 and 63 are one step earlier and one step later 
in the table of 9. In contrast, earlier and later steps in the 
table of 6 do not show up in the most common answers. 
This could indicate that students learn the commutative 
property relatively early, and apply repeated addition to the 
largest multiplicand. This takes fewer steps and therefore 
there is less opportunity for errors. Other evidence in the 
early learning of the commutative property comes from the 
mistakes made for problems and there exact opposite, such 
as 6 x 9 and 9 x 6. In nearly all cases, the mistakes 
made for these two forms of a problem are exactly the same, 
and made with approximately the same frequency. Since the 
commutative property also holds for addition problems, it 
might be that the concept is learned early on for addition 
problems and transferred to multiplication problems. 
56 is the second most common mistake. This is most 

likely a mistake that is made because of errors in repeated 
addition or because the numbers 54 and 56 are very 
similar. 56 is also the correct answer to another difficult 
problem, 7 x 8. 

The fourth most common mistake, 36, is either an input 
error for the response 63, or the answer to 6 x 6. Finally, 
53 is probably an addition mistake. Independent of where in 
the sequence the mistake is made, it is very easy to arrive at 
a number close to 54. 

Overall, the mistakes made on the problem 6 x 9 seem 
to be less related to retrieval, and more representative of an 
algorithmic strategy, such as repeated addition. 

A PRIMs Model of Single-Digit Multiplication 
Our PRIMs model for multiplication was inspired by 
Lebiere (1999). The model has rules to retrieve the answer 
but also to compute the answer using repeated addition. The 

current model does not give an exhaustive fit of the data, but 
attempts to explain the most common cognitive mistakes. 
Errors in reading or input are outside of the scope of this 
paper. Model results are shown in Figure 2-4B. 

PRIMS 
PRIMs (Taatgen, 2013) is short for PRimitive Information 
processing eleMents. It is based on the ACT-R cognitive 
architecture (Anderson, 2007), but expands it by considering 
knowledge of tasks in a broader context. For our purposes 
this means that if PRIMs lacks task-specific knowledge, for 
example when it does not know a multiplication fact, it may 
try to determine the answer based on other skills it has, 
possibly, or even likely, producing an error. 

PRIMs uses operators instead of production rules. The 
main difference is that PRIMs can use its operators for other 
tasks. This can be beneficial if other operators fill a 
knowledge gap, but it can also result in an error. Because of 
this, a model build in the PRIMs architecture does not only 
resemble someone who is already a perfect problem solver, 
but it can also account for the initial learning process. 

Since PRIMs is based on the ACT-R cognitive 
architecture, it incorporates many of the mechanisms from 
this architecture. The declarative memory in PRIMs is based 
on the declarative memory in ACT-R: it contains chunks 
with related information. When a retrieval request is send to 
the declarative memory, the activation of each chunk is 
determined by the number of previous encounters with that 
chunk, and the time since those encounters.  

The declarative memory of the current model also makes 
use of a mechanism called partial matching. In partial 
matching, chunks that do not completely match a retrieval 
query can also be retrieved. The activation of these chunks 
gets a mismatch penalty that is conversely proportional with 
the similarity to the requested chunk. 

 
 
In PRIMs, the mismatch between numbers is calculated 

by taking the ratio of the smaller number to the larger 
number, minus one (based on Lebiere, 1999, p.48). 

Figure 3. Responses given in the data (A) and by the model (B) after a simulation of 25 times 400 trials of the problem  
3 x 4. 
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The Model 
For the current model, we have chosen to model the 
problems 1 x 2, 3 x 4, and 6 x 9. For each problem, 
we assume that the model does not know the current 
problem at the start of the simulation, but it does know all 
addition facts and multiplication facts up to the current 
problem plus one. So for the problem 3 x 4, all 
multiplication facts up till 4 x 5 are present in memory. 
This setup was chosen to simulate a large group of students 
that each know different problems. 

The model in its current form uses standard parameter 
settings for ACT-R and PRIMs, to achieve these results, no 
parameter fitting was necessary. 

The model first tries to retrieve the answer to the problem 
from memory; if retrieval fails the answer is calculated 
using repeated addition. However, a model that is purely 
based on retrieval and repeated addition cannot explain all 
the error patterns in the data. For example, the answer 1 is 
the predominant mistake made in the table of 1, but cannot 
be explained by a combination of retrieval and repeated 
addition.  

 
1 x 2 
The responses to the problem 1 x 2 are largely explained 
by the partial matching mechanism. The most common 
mistake however, 1, is a mistake in the multiplication table 
1, and it is likely that this mistake represents a wrongly 
applied strategy for solving problems of the form 1 x N or 
N x 1 – as explained above. 

To explain this mistake, our model contains a specific 
strategy that can account for this mistake. This strategy 
represents the incorrect application of the rule for problems 
with the multiplicand 1. When a problem has the 
multiplicand 1, the other multiplicand is the answer to the 
problem. However, when this rule is incorrectly applied, it 
can easily result in the answer 1 being given, as we have 
seen in the data. This strategy is implemented in our model 
by a competition between production rules. When a problem 
in the form of 1 x N is encountered, one of two rules can 
fire. Either the correct rule, which gives the correct response 

N, or the wrong rule which gives the incorrect response 1. 
Over time the model will learn the correct rule through 
utility learning.  

The results for the model on the 1 x 2 problem can be 
seen in Figure 2B. While this model captures the mistakes 
for the problem 1 x 2 relatively well, it still has some 
problems in fitting the error data for the larger problems, 3 
x 4 and 6 x 9. 
3 x 4 
The most common mistakes to the problem 3 x 4 can for 
the most part be explained by the partial matching 
mechanism. However, there is one error that stands out: 15. 
We will explain the model’s bias for this answer below. 

Because the current model has only been applied to 
instance of specific problems, it does not take into account 
the frequency of exposure to previous problems. While it is 
known that problems with smaller multiplicands are 
practiced more often, this is not represented in our model. In 
other words, the current model does not incorporate the 
problem-size effect (e.g. Domahs, Delazer, & Nuerk, 2006). 

Another effect that we do not reproduce is the tie effect. 
The tie effect is the relative ease of problems of the form N 
x N, such as 3 x 3, which can explain the preference for 
the answers 16 (4 x 4), and 9 (3 x 3) over 15 (3 x 
5), which is the main discrepancy between the model and 
the data. Lebiere (1999) did match this effect, by using 
spreading activation in the model. The information on the 
screen and the information in working memory spread 
activation to the chunks in declarative memory. In the case 
of a tie-problem, twice as much activation is spread to each 
slot in declarative memory, making it easier to retrieve these 
facts. The current model does not include spreading 
activation, and therefore does not account for the tie-effect.  

Together, the absence of spreading activation and not 
taking into account the frequency of exposure can explain 
the strange peak we find in the model data for the problem 3 
x 4. While the first four mistakes are relatively well 
matched, the answer 15 is overrepresented in the model 
data. This is a side effect from the way the similarity 
between numbers has been implemented. A number is more 
similar to the number that follows it than to the number that 

Figure 4. Responses given in the data (A) and by the model (B) after a simulation of 25 times 400 trials of the problem  
6 x 9. 
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precedes it. For example, the similarity of the numbers 3 
and 4 is -.25 (3/4 – 1 = -.25), while the similarity 
between the numbers 4 and 5 is -.2 (4/5 – 1 = -.2). 
This would be canceled out by the higher activation of 
chunks that are more practiced (smaller problems) and that 
are easier to retrieve (tie-problems). Both problems will be 
resolved in a future version of the model. 
6 x 9 
The pattern of errors for the problem 6 x 9 deviates 
significantly from the data. One reason for this is that the 
current model relies quite heavily on the retrieval strategy, 
while children probably also use an algorithmic strategy 
(van der Ven et al., 2015). The errors the model makes are 
therefore retrieval related errors, while the errors in the data 
seem to be caused by mistakes in repeated addition. 

One possible explanation for this phenomenon is the 
number of times a student is exposed to a problem. As 
mentioned above, smaller problems, such as 1 x 2 and 3 x 4, 
are more prevalent in schoolbooks, but also outside of 
school. While the current model assumes the same 
frequency of exposure and a similar learning curve for both 
easy and hard problems, this may not necessarily be the 
case. 

Discussion 
In this paper we have presented a basic model for single 
digit multiplication. We have implemented and extended the 
model by Lebiere (1999) in the PRIMs cognitive 
architecture. Our goal is to explain the error patterns found 
in the Math Garden data. With our model we have shown 
that we can fit some of the most common errors found in the 
data. Furthermore, the model also seems to capture the 
learning process from making mistakes to achieving the 
correct responses, since it starts out giving incorrect 
answers, but gradually gives more correct responses. 
However, the current model has difficulties explaining the 
data of the harder problems, which seem to be solved using 
different strategies than easier problems. 

Because the amount of data from Math Garden, we 
assume that the errors are not specific to this dataset. When 
we compare the data from Math Garden to, for example, the 
data from Siegler (1988), there seem to be discrepancies in 
the kinds of errors that are made and in the relative 
frequency of the errors. However, because the data in the 
study by Siegler only comprises a small subset of students 
of a small age group, we believe that the math garden 
dataset is better suited to use as a basis for modeling errors. 

While the model is not yet complete in the sense that it 
captures all of the effects found in the literature, it can 
capture the error patterns that children make while doing 
easy single digit multiplication problems and is therefore a 
first step in the understanding of the strategies and 
misconceptions that lead to mistakes. Our goal is to build a 
model that can fully explain our current data with regard to 
errors and correct responses, and which is able to predict the 
outcomes on new problems accordingly. 

The model we present here is still work in progress. 
Future endeavors will focus on incorporating the effects 
found in the data, such as the problem size effect and the tie 
effect. As suggested above, the model will benefit from the 
implementation of spreading activation. Furthermore, 
instead of a model of specific problems, the goal is to build 
a model that is exposed to the full range of multiplication 
problems will give a better indication of the relative 
importance of specific multiplication facts in memory.  

Another goal is to show the relationship between the 
multiplication skill and other skills that are taught at school, 
such as arithmetic skills. The choice of the cognitive 
architecture is therefore not a coincidence: the PRIMs 
architecture is specifically developed to be able to 
systematically investigate interactions and relationships 
between different tasks. By investigating the relationship 
between different tasks, we hope to elucidate the existence 
of different strategies that are used to solve relatively simple 
tasks. 
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Abstract
Maintaining cognitive control while pursuing several tasks at
the same time is hard, especially when the current problem
states of these tasks need to be represented in memory. We
are investigating the mutual influence of a self-paced and a
reactive task with regard to completion time and error rates.
Against initial expectations, the interruptions from the reac-
tive task did not lead to more errors in the self-paced task, but
only prolonged the completion time. Our understanding of this
result is guided by a combined version of two previously pub-
lished cognitive models of the individual tasks. The combined
model reproduces the empirical findings concerning error rates
and task completion times, but not an unexpected change in the
error pattern. These results feed back into our theoretical un-
derstanding of cognitive control during sequential action.
Keywords: Human Error; Memory for Goals; Working Mem-
ory Updating; Multi-Tasking; Threaded Cognition

Introduction
Multi-tasking and handling interruptions are very common in
daily life. Both have been linked to reduced performance
and increased error rates, even to road accidents (Altmann,
Trafton, & Hambrick, 2014; Kujala & Salvucci, 2015). Ac-
cording to Borst, Taatgen, and van Rijn (2015), the central
problem is the necessity to maintain several problem states
at once. This can lead to interference between the respec-
tive memory traces, which manifests itself as error in one or
several of the concurrently processed tasks.

Starting from this premise, we augmented an existing
paradigm for error research during instruction following with
a working memory updating (WMU) task. The WMU task
should interfere with the primary task by a) periodically in-
terrupting the user and b) additional memory strain. We hy-
pothesized that this would result in increased error rates in the
dual-task condition compared to a single-task baseline (Byrne
& Bovair, 1997). In a previous study by Ament, Cox, Bland-
ford, and Brumby (2010) using a comparable paradigm, high
memory load was connected to higher error rates especially
for device-specific tasks.

Another reason for the choice of the specific WMU task
was the availability of a validated cognitive model of this task
(Russwinkel, Urbas, & Thüring, 2011) that could be com-
bined with the existing model of the primary instruction fol-
lowing task (Halbrügge, Quade, & Engelbrecht, 2016). This
allowed to test the generalizability of the models to the new

paradigm and at the same time provided the possibility to
quantify the expectations from the memory interference ef-
fect that has qualitatively been layed out above.

This paper has two aims. First, we want to replicate the
findings of Byrne and Bovair (1997), Ament et al. (2010) and
others in an applied scenario. Second, we want to explore
how much effort in terms of model development is needed
to combine two existing cognitive models and how well the
resulting model fits to the human data. Before presenting the
empirical evidence, let us first clarify the basic concepts that
are used in this paper.

Sequential Action and Procedural Error
Error research is usually concerned with failures on Ras-
mussen’s rule-based level of action control (Rasmussen,
1983), i.e., well-learned routine activities like commuting to
work or preparing breakfast. Errors on this level of control
are relatively rare (below 5%), but pervasive (Reason, 1990).
They are defined as the violation of the optimal path to the
current goal, either by adding an unnecessary action (called
intrusion), or by skipping an action (called omission).

A promising model for cognitive control during rule-based
behavior is the Memory for Goals theory (MFG; Altmann &
Trafton, 2002). It proposes that the steps that lead to the com-
pletion of a task are represented as subgoals in declarative
memory (as defined within ACT-R, Anderson et al., 2004).
Whether these subgoals can be retrieved and come into action
depends on general memory effects like gradually decaying
activation, interference, and priming. These effects are suf-
ficient to explain important features of sequential action like
postcompletion errors (Byrne & Bovair, 1997) and have been
successfully implemented as computational cognitive mod-
els (e.g., Trafton, Altmann, & Ratwani, 2011; Tamborello &
Trafton, 2015; Halbrügge, Quade, & Engelbrecht, 2015).

Postcompletion errors occur when an action sequence con-
tains a final step after the goal already has been achieved, e.g.,
taking the original from a photocopier (the final step) after
making a copy (the goal). What is so special about this final
step? It does not contribute to the users’ goal, but stems from
the design of the device operated by them. This property of
a task has been coined device-orientation, its opposite being
task-orientation (Ament, Cox, Blandford, & Brumby, 2013;

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
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Gray, 2000). Within the MFG theory, higher omission rates
for device-oriented tasks can be explained by lower activa-
tion of the corresponding subgoals. While task-oriented sub-
goals receive priming from the overall goal, device-oriented
subgoals do not. Previous modeling studies have shown that
this differentiation is sufficient to explain disadvantages of
device-orientation both in the completion time and the error
domain (Halbrügge & Engelbrecht, 2014; Halbrügge et al.,
2015).

Because of the downsides of device-oriented tasks, they are
usually avoided during the design of user interfaces (UI). In
case this is not possible, device-oriented tasks are often made
obligatory, i.e., the users are forced to perform them by the
application logic. Examples for this practice are the login but-
ton that users have to press after entering their credentials, or
teller machines that return the card before delivering money.
Making a step obligatory is quite effective. In a previous
study, the expected error increase for device-oriented steps
did only occur if the respective step was also non-obligatory
(Halbrügge et al., 2015). Task necessity is therefore an im-
portant factor for the genesis of errors.

According to the MFG and Byrne and Bovair’s (1997) pre-
ceding work, procedural error is caused by goal forgetting
which in turn can be stimulated by high working memory
load. In the context of this paper, we introduce memory load
based on the WMU concept.

Working Memory Updating (WMU)
WMU is a task characteristic rather than a task itself. This
concept describes the ability to maintain accurate repre-
sentations of information changing over time (see Ecker,
Lewandowsky, Oberauer, & Chee, 2010). Ecker et al. identi-
fied three putative phases of WMU – Retrieval (R), Transfor-
mation (T) and Substitution (S) of information.

The complexity of a WMU task can vary on two dimen-
sions: coordinative complexity increases with the number of
representations that have to be maintained at the same time
while sequential complexity increases with update frequency
(Mayr, Kliegl, & Krampe, 1996).

In the case of Ament et al. (2010), a low and a high memory
demand condition was created by manipulating the coordina-
tive complexity of the secondary (WMU) task. During the
course of their experiment, the participants produced virtual
doughnuts (main task) and had to count the amount of pro-
duced items of either one (low coordinative complexity) or
two (high coordinative complexity) specific kinds of dough-
nuts.

For the present purpose, we considered the increase in
complexity from one to several WMU targets as being too
large. Instead, only one target (a pictogram) had to be counted
and the sequential complexity was varied depending on how
quickly the count had to be updated.

Experiment
We examined our assumptions using a kitchen assistant that
has been created by computer scientists of TU Berlin as part

of a smart home project (Feuerstack, 2009). The assistant aids
in the preparation of meals by suggesting recipes, calculating
ingredients and maintaining shopping lists. Its UI features
all four possible combinations of device-orientation and task
necessity, examples are given in Figure 1.

Method

Participants Twelve members of the Technische Univer-
sität Berlin paid participant pool took part in the experiment.
There were four men and eight women, with their age rang-
ing from 18 to 51 (M=33.7, SD=9.5). As the instructions
were given in German, only fluent German speakers were al-
lowed to take part. Written consent was obtained from all
participants.

Materials The experiment was conducted in a neutral lab-
oratory. A personal computer with 23” (58.4 cm) monitor
with optical sensor ‘touch’ technology was used to display
the interface of the kitchen assistant. Seven pictograms of
common household interruptions (e.g., phone ringing, door-
bell, baby crying; see Figure 2) served as stimuli of the WMU
task. The stimuli were superimposed on the UI of the kitchen
assistant using dedicated Javascript code running within the
browser that displayed the assistant. All user actions were
recorded by the computer system. The subjects’ performance
was additionally recorded on videotape for subsequent error
identification.

Figure 2: Examples of the pictograms used in the experiment.
Image credits: Baby © UN OCHA, CC-BY 3.0; Door, Cup
with tea bag © Freepik, CC-BY 3.0

Design We applied a three-factor within-subjects design,
the factors being device- vs. task-orientation, task necessity
(non-obligatory vs. obligatory), and secondary task difficulty
(none vs. onset to onset stimulus intervals 5s, 4s, 3s). User
tasks were grouped into four blocks of eleven to twelve in-
dividual tasks. Each participant was randomly assigned to
one of eight pre-selected block sequences so that block po-
sition and block succession were counterbalanced across par-
ticipants as well. The secondary WMU task was always intro-
duced after the completion of the first block and its sequential
demand was gradually increased from 5s stimulus interval in
the second to 3s in the fourth and last block. Each interval
was split into equally long stimulus and and blank phases.

Procedure Every block started with comparatively easy
recipe search tasks, e.g., “search for German main dishes
and select lamb chops”. Users would then have to change
the search attributes, e.g., “change the dish from appetizer to
dessert and select baked apples”. The second half of each
block was made of more complex tasks that were spread over
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Figure 1: Screenshot of the English version kitchen assistant. Search attributes on the left are task-oriented and non-obligatory.
The “Start Search” button is device-oriented and obligatory. The entries of the search results list on the right unhide subsequent
options, they are therefore task-oriented and obligatory.

more screens of the interface and/or needed memorizing more
items. The subjects either had to create ingredients lists for a
given number of servings, or had to make shopping lists using
a subset of the ingredients list, e.g., without salt and flour. All
instructions were read to the subjects by the experimenter.
Every individual trial was closed by a simple question the
subjects had to answer to keep them focused on the kitchen
setting, e.g., “how long does the preparation take?” During
each instruction phase the complete screen was blanked (see
Figure 3).

? 5

Recipe Task

Instruction

Present

WMU Target

Perform

Recipe Task

Ask

WMU Count

WMU

Feedback

Figure 3: Sequence of screens within a single trial in the dual
task condition.

In the dual-task condition, one of the seven WMU stim-
uli was selected as target for the current trial and presented
to the participants after the instructions for the next trial had
been given. Subsequently, the UI of the kitchen assistant was
uncovered. WMU stimuli appeared in random order on the
lower right of the screen and the participants had to count
the number of appearances of the target stimulus. After the
completion of the trial, the screen was blanked again and the
participants were asked how often they had seen the WMU
target. With an initial training phase and exit questions the
whole procedure took approximately one hour.

Results

We recorded a total of 3464 user actions and 407 minutes of
video. The system logs were synchronized with the videos
and semi-automatically annotated using ELAN (Wittenburg,
Brugman, Russel, Klassmann, & Sloetjes, 2006).

Recipe Task We recorded a 88 (2.5%) omissions and 133
(3.8%) intrusions. Contrarily to our assumptions, the error
rate did not increase in the dual-task condition, nor when
interruptions by the secondary task became more frequent.
Adding the block (A–D in Figure 4) to a mixed logit model
with task block and subject as random factors (Bates, Maech-
ler, Bolker, & Walker, 2013) did not explain more variance
(c3 = 1.30, p = .730). Descriptively, the error rate even de-
creased while the memory updating task became harder.
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Figure 4: Error probabilities for the recipe task per exper-
iment block. Error bars denote 95% confidence intervals
based on the Agresti-Coull method.
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There was a significant influence of the WMU task on the
time needed to perform the recipe task. In the dual-task con-
dition, participants needed approximately 100 ms longer per
individual click (mixed model with click type1 and subject as
random factors, t2695 = 2.31, p = .021)

The influence of device-orientation and task necessity on
errors was analyzed separately for omissions and intrusions
(see Figure 5). Obligatory tasks led to fewer omissions than
non-obligatory ones (logit mixed model with subject and task
block as random factors, z = �2.56, p = .011). We ob-
served fewer intrusions for obligatory tasks (z = �4.16, p <
.001) and for device-oriented tasks as well (z = �3.01, p =
.003). The significant interaction between both factors (z =
2.41, p = .016) is due to non-obligatory task-oriented actions
(i.e., search attributes, left part of Figure 1) showing the high-
est intrusion rates.

Working Memory Updating Task Contrarily to our as-
sumptions, the error rate in the memory updating task did
not increase with the demand of task. Adding the block to
a mixed logit model with task block and subject as random
factors did not explain more variance (c2 = 0.12, p = .942).
Descriptively, we see a small increase, but the overall error
rate is very high (see Figure 6).
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Figure 6: Error Probabilities per Block for the WMU Task.
Error bars denote 95% confidence intervals based on the
Agresti-Coull method.

Discussion
Interruptions are often used in error research as a means to
increase the error base rates (e.g., Trafton et al., 2011; Li,
Blandford, Cairns, & Young, 2008). In line with this thinking
and based on the results of previous research (e.g., Byrne &
Bovair, 1997; Ament et al., 2010), we expected that the in-
creased memory load due to the WMU task would result in
degraded performance in the main recipe task. But the empir-
ical data tells a different story. While the participants needed
more time to complete the recipe tasks, they did not make
significantly more errors. Why is this the case?

First, the baseline error rate of 7% is already quite high, in
particular compared to the 1.3% observed during a previous

1Four click type groups: same button, same group of buttons, dif-
ferent group of buttons, buttons on different UI screens; see Quade,
Halbrügge, Engelbrecht, Albayrak, and Möller (2014) for reference.

study using a similar paradigm (Halbrügge et al., 2015). This
could be due to the blanking of the screen during the instruc-
tion phase that was added to the procedure in the present ex-
periment. The blanking should have impaired the learning of
the UI of the kitchen assistant. In previous studies, the partic-
ipants could visually plan their actions during the instruction
phase, while the current experiment demanded memorizing
all subgoals without any visual reference.

Second, the high error rate of the WMU task suggests that
the participants spent most attention on the recipe task. But
as we only observed a very slight decrease of WMU perfor-
mance with increased difficulty, this point remains unsatisfac-
tory.2 The analysis of the tasks based on the cognitive model
presented below will provide additional insights.

The prolongation of the time needed to perform the recipe
task in the dual-task condition is in line with the expected
interference between both tasks. The real effect is probably
underestimated by our analysis, because we found learning
effects of approximately -50 ms per block in previous studies
(Halbrügge & Engelbrecht, 2014). Assuming that learning
still took place in the current study, it should have counter-
acted the prolongation effects of increasing WMU complex-
ity.

Cognitive Model
Based on the well-established MFG theory, we proposed that
having to perform two memory-intensive tasks would lead
to more errors, but the data did not confirm our hypothesis.
Does this disprove the theory, or was our understanding of
it insufficient? In order to elaborate on the second option,
we combined an existing MFG-based model of sequential
behavior (Halbrügge et al., 2015) with an existing model of
WMU (Russwinkel et al., 2011) using the threaded cognition
extension of ACT-R (Anderson et al., 2004). The threaded
cognition theory (Salvucci & Taatgen, 2008) assumes that
task switching is not necessarily conscious behavior, but may
emerge as concurrent tasks have to wait for cognitive re-
sources (e.g., memory, vision) that are currently held by other
tasks.

Recipe Task Model
The recipe task model extends on the MFG theory (Altmann
& Trafton, 2002) by highlighting the importance of environ-
mental cues during sequential behavior. Whenever the purely
memory-based process as proposed by the MFG fails, the
model reverts to a vision-based strategy that searches the en-
vironment for appropriate cues for the next action to take (see
flowchart in Figure 7). This addition has been shown to be ex-
plain the effects of obligatory vs. non-obligatory steps with
regards to omissions (Halbrügge et al., 2015), it has expanded
MFG-based models to intrusion errors, and it has recently
been confirmed by gaze data (Halbrügge et al., 2016).

For the current paper, the model was adapted to threaded
cognition by adding extra checks for the current availability

2Unfortunately, Ament et al. (2010) give no results of the sec-
ondary task that could be used for comparison.
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Figure 5: Omission and intrusion probabilities per UI element type. Error bars denote 95% confidence intervals based on the
Agresti-Coull method.

of the declarative module to several productions. All numeri-
cal ACT-R parameters remained unchanged.
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Figure 7: Simplified Flow Chart of the recipe task model.
Dashed arrows denote retrieval errors, the dotted arrow de-
notes visual search failure.

Working Memory Updating Model

The code was adapted from an existing model that has been
tested in different kind of tasks and settings (Russwinkel et
al., 2011; Pape & Urbas, 2009; Russwinkel & Schinkmann,
2011). The WMU model uses a single representation (i.e.,
memory chunk) for each target that pairs it with its current
count. This representation is manipulated using the three Re-
trieval, Transformation, and Substitution phases as proposed
by Ecker et al. (2010). After its retrieval (R), the count slot
of the chunk is updated (T). The resulting new representation
is encoded in declarative memory (S), where it may interfere
with older versions featuring outdated count values.

In the combined model, buffer stuffing is used to detect
the visual targets of the WMU task. In case a new object is
found at the right bottom of the screen and both the visual
and the declarative modules are available, the model attends
the new object and at the same time retrieves the most highly
activated WMU count chunk. Because of activation noise, the
declarative module may return an older copy of that chunk
which subsequently leads to an error.

Goodness-of-Fit
The combined model3 was run 500 times and all resulting
errors and completion times were recorded. Contrarily to our
expectations, but consistent with the empirical findings, the
combined model does not show an increased error rate when
the WMU task is present (odds ratio = 1.04, well within the
empirical 95% CI from 0.62 to 1.20).

Regarding the effects of device-orientation and task ne-
cessity, the overall model fit is not good with R2=.174 and
RMSE=.029. This is mainly due to the unexpectly high in-
trusion rate for non-obligatory task-oriented steps (see Fig-
ure 8). When regarding only omissions, the fit is much better
with R2=.789 and RMSE=.014.
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Figure 8: Model Predictions and Empirical Error Rates.

The combined model does show longer click times in the
dual-task condition. Here, each click takes 120 ms longer on
average, which is close to the empirical effect of 94 ms (95%
CI from 14 ms to 174 ms).

Discussion
When the combined model performs both the recipe and the
WMU task, the number of errors in the recipe task does not
increase, it just takes longer to perform the individual ac-
tions. This means that our empirical results, although being
unexpected, fit with the theoretical underpinnings presented
above. Close inspection of the model traces shows that the

3The source code of the cognitive model is available for down-
load at http://dx.doi.org/10.5281/zenodo.55224
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model predictions are caused by both tasks demanding vi-
sual and memory ressources. Only during the motor phase
of the recipe task model (i.e., when a click is performed,
“select/click-element” in Figure 7), the WMU task can take
over. This observation is also consistent with the high error
rate of the WMU task during the experiment.

Combining both models using threaded cognition was less
easy than expected. A central assumption of threaded cog-
nition is that ACT-R buffers are shared between all running
tasks. In our case, this made some states ambigous. Es-
pecially retrieval errors could not easily be attributed to the
recipe or the WMU task (R phase of the WMU model vs.
dashed arrows in Figure 7). This problem was solved by us-
ing the visual system. Retrieval errors are only attributed to
the WMU task if the model visually attends a WMU target at
the same time.

General Discussion and Conclusions
We have presented empirical data and a cognitive model of
human performance and error in a dual-task scenario. Con-
trarily to our expectations, the dual-task condition did not
lead to more errors, but longer task completion times, only.
These results are nonetheless consistent with the Memory for
Goals theory that had led to our expectations, as shown by the
cognitive model simulations. The good fit is remarkable as no
numerical parameter fitting was applied to achieve it. To our
knowledge, this is also the first time that a MFG model has
been combined with the threaded cognition theory.

The model has several limitations. First, the increased
overall error rate, especially concerning intrusions, is not cov-
ered by the model. Second, the model does not show any
specific visual behavior during the instruction phase, but only
listens to the experimenter. Compared to previous studies
that did not use a blank screen during the instruction phase
(Halbrügge et al., 2015, 2016), the current data show rela-
tively high error rates even in the single-task condition. This
suggests that the human participants visually prepared their
action sequence while listening to the experimenter in pre-
vious studies. More research is needed to elaborate on this
point. We are therefore planning to examine the visual pro-
cessing of the screen during sequence planning using eye-
tracking.

As final remark we would like to highlight how the ap-
proach taken here exemplifies the benefits of computational
cognitive modeling as a method. Because of the use of ACT-
R as common denominator, is was possible to take two cog-
nitive models created by different researchers and to com-
bine them to something new that created new evidence and
sparked new questions.
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Abstract
Do people integrate all the information at hand when they
make choices or do they employ heuristics that ignore some
of it? Recent research indicates that people’s behavior should
and does depend on the statistical properties of the environ-
ments within which cognition operates. However, in a sin-
gle environment there are always decision makers who rely
on less effective strategies. The source of this inter-individual
variation has not been identified yet. In this article we postu-
late that it can be largely explained by differences in the speed
of learning. We designed an experiment where participants
first made choices between three multi-cue alternatives and re-
ceived feedback about their quality. In a second stage, they
predicted the quality of alternatives without receiving feed-
back. The quality was a linear combination of cue weights and
cue values. To employ heuristics the participants had to learn
at least weight directions and ranks, while for the integrative
strategy they needed to learn the cue weights. We find that par-
ticipants who showed evidence of learning cue weights rather
than the ordering performed well in the estimation task that
followed decisions, with cue weight knowledge being strongly
related to decision performance. Further, we find that differ-
ences in how fast participants learn the cue weights explain the
variability in regards to what strategy they adopted within an
environment.
Keywords: decision making; heuristics; cue weight learning;
function learning; strategy selection.

Introduction
Consider the following problem: you want to decide which
hotel to book for your next vacation and you have access
to information such as the facilities of the hotel, average re-
views, cleanliness etc. To make an educated choice you could
weight and add all the information at hand for each alterna-
tive and then choose the one that achieved the highest score.
This is a weighted additive strategy (WADD; Payne et al.,
1993). Alternatively, you could compare the hotels accord-
ing to the most important cue and choose the one with the
largest cue value. If some alternatives are tied on the first
cue, you could move to the next cue in the ranking until you
reach a decisive cue and stop your search. This corresponds
to a heuristic strategy called take-the-best (TTB; Gigerenzer
& Goldstein, 1996). On average take-the-best would ignore
most of the information, as your decision would often be
based on a single cue. Researchers have investigated theo-
retically the conditions under which it is well-advised to rely
on integrative strategies such as WADD or heuristic strategies
like TTB (e.g., Hogarth & Karelaia, 2007, 2005; Martignon &
Hoffrage, 2002). Empirically, however, there is a large inter-
individual heterogeneity and substantial proportion of people
still seem to use an inferior strategy (Bröder, 2003; Rieskamp
& Otto, 2006; Pachur & Olsson, 2012).

Strategy performance primarily depends on the statistical
properties of the relationship between cues and alternative
quality. TTB fares well in comparison to WADD when the
most informative cues are much more valuable than the less
informative ones (Hogarth & Karelaia, 2007), or when the
cue inter-correlations are high (Hogarth & Karelaia, 2005).
In environments with binary cue values, when the weights
of the cues with higher weight rankings are larger or equal
to the sum of weights of the cues with lower rankings, TTB
cannot be outperformed by WADD. When this property does
not hold, a WADD model with well-calibrated weights is
expected to outperform TTB. The former environments are
called non-compensatory and the latter compensatory (Mar-
tignon & Hoffrage, 2002).

Several experiments have demonstrated that over time most
people converge to the best performing strategy. For exam-
ple, people tend to adopt TTB in non-compensatory environ-
ments and WADD in compensatory environments (Bröder,
2003; Rieskamp & Otto, 2006). Similarly, in non-linear en-
vironments, when none of the aforementioned two strategies
performs well, many people employ memory-based exemplar
strategies (Pachur & Olsson, 2012). Further, people prefer
heuristic strategies over integrative strategies when they are
under time pressure or when the cost of learning cue values is
high (Rieskamp & Hoffrage, 2008).

Within a single environment, however, there is always a
substantial portion of participants that use inferior strategies.
For example, in a non-compensatory environment there are
always participants that continue using WADD, or TTB in
the compensatory environment. The source of this inter-
individual variation has not been identified yet, although it is
widely reported (e.g., Brehmer, 1994; Einhorn, 1970; Bröder,
2003; Rieskamp & Otto, 2006). Bröder (2012) provides a
summary of existing research on inter-individual differences
in adoption of TTB and WADD strategies. The only variable
that shows some correlation is the intelligence score. TTB
users in the non-compensatory environment tend to score
higher on an intelligence test than WADD users, although the
effect is rather small. None of the personality measures, such
as the “Big Five”, show a substantial correlation with strategy
adoption. Similarly, motivational variables, cognitive styles,
working memory capacity, and working memory load do not
seem to influence adoption of TTB or WADD. Hence, the
variation within an environment remains largely unexplained.

In this article we propose a solution to this puzzle. Strate-
gies like TTB and WADD rely on cue weights. While in some

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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experiments participants are given the cue validity weights di-
rectly (e.g., Rieskamp & Otto, 2006), in most of them partic-
ipants have to learn the weights (e.g., Bröder, 2003; Bergert
& Nosofsky, 2007). Hence, besides figuring out which strat-
egy to use, they also need to learn the statistical properties
that are input to the strategies. Importantly, strategies differ
with respect to the amount of knowledge they require about
the validity weights. While WADD requires exact quantita-
tive estimates, TTB only requires the ranking and directions.
Under reasonable theoretical assumptions, heuristic strategies
like TTB are largely insensitive to the gap between estimated
and objective validity weights, while performance of WADD
is heavily affected (Hogarth & Karelaia, 2007; Katsikopou-
los et al., 2010). As a result, in many environments peo-
ple can leverage WADD’s improved performance only after
some learning has occurred, and the estimated weights are
relatively close to the objective ones. When coupled with
usual individual differences in speed of learning, this expla-
nation can address the observed variability in strategy selec-
tion. For example, in an environment favoring WADD, this
leads to the prediction that slower learners will stick longer to
the TTB heuristic, while faster learners will have more pre-
cise knowledge about the cue validity weights and will adopt
WADD in greater numbers.

Our article suggests a novel approach in the study of de-
cision making strategy by examining decision processes and
cue weight learning in tandem. In our experiment, partic-
ipants complete two tasks, a decision making and an esti-
mation task. By adding an estimation task where partici-
pants make predictions about values of alternatives we can
model their cue weight learning and infer the evolution of
their knowledge about cue weights. Thus, we can identify the
role of cue weight learning in strategy selection and test the
predictions made above.

Method1

Participants
Seventy-eight participants (49 women, 29 men, M

age

= 21.8,
age range: 17–54 years), recruited from the Universitat Pom-
peu Fabra subject pool, took part in the study. They were
paid a show-up fee of five euros and a performance depen-
dent bonus of 6.8 euros on average. The experiment lasted 43
minutes on average.

Stimuli and procedure
The experiment consisted of two tasks: the participants first
completed a decision making task and then an estimation
task. In the decision task they repeatedly faced three alter-
natives, each described by the same four cues (Figure 1, left).
The task was presented as a cheese game. Each alternative
represented a cheese, the cues were “Lactic”, “Acetic”, “Ca-
sein” and “Texture”, while the alternative values represented
enjoyment units (EU).

1The raw data is publicly available on Figshare:
http://dx.doi.org/10.6084/m9.figshare.1609680.

Figure 1: Left: Decision task. Right: Estimation task.

The criterion value, Y , of each alternative was a noisy lin-
ear combination of cue values and cue validity weights with
weights fixed at 4,-3,2 and -1. These cue validity weights
strongly favors WADD over TTB. Cue values were sampled
from uniform distribution U(10,90). A normally distributed
error term, e ⇧ N(0,30), was added to each alternative. We
created 480 unique alternatives in this manner and allocated
them randomly across 160 trials, three alternatives per trial.
Cue inter-correlations were zero on average. The stimuli were
drawn only once and all participants received the same stim-
uli. The earnings were determined by the criterion value Y of
the chosen alternative, which was also shown as feedback in
each trial.

After every 40 trials in the decision task participants an-
swered questions that probed their knowledge about the cue
weights. Following Speekenbrink & Shanks (2010), we asked
them to rate the strength of the relation between each cue
and the value of the cheese on a scale from -10 (highly nega-
tive) to 10 (highly positive). Questions for all four cues were
shown on the same screen, in the same order that was used to
present the stimuli.

In the estimation task participants received a single alter-
native in each trial and their task was to predict the criterion
value (Figure 1, right). No feedback was provided. We incen-
tivized truthful reporting by computing the payoff as a func-
tion of a difference between the prediction P and the criterion
value, 200� |P�Y |.

The stimuli for the estimation task were generated with the
same cue validity weights as in the decision task. We gen-
erated 20 alternatives for interpolation trials by drawing cue
values from the same range as in the decision task, U(10,90),
and multiplying them with weights. We generated extrapola-
tion trials in an analogous way by drawing cue values from
two intervals at the extreme ends, U(0,10) and U(90,100)
that have not been experienced during the decision task. Af-
ter a single draw was made, trials were randomly ordered and
all participants received the same set of stimuli.

In the decision task the participants were informed about
the cues and the range of values they could take, and that
they could use this information in making their choices. They
were not told about the functional relationship between cue
values and value of the cheese, nor that the weights differ for
different cues. It was stressed that in each trial they would get
three new cheeses that differ in their cue values. The estima-
tion task was announced at the beginning in the instructions,
but without specifying details.
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Figure 2: Mean accuracy over trial blocks. Each block result is a
mean of individual means across 32 trials.

We told participants that it takes 60 minutes on average
to complete the experiment. Each participant was presented
with a unique random order of alternatives and cues. The four
cue labels were also randomly attached to underlying cues
separately for each participant.

Behavioral results
Choices in the decision task
Participants’ performance, measured as percentage of correct
choices per block, improved over time (Figure 2). Choice ac-
curacy is much higher than the random level of 0.33 already
in the first five trials (marked with number five in the figure),
with 46% accuracy. People have a strong prior for positive
linear relationships (Brehmer, 1994), which matches well the
function that we used to construct the stimuli. Participants
achieved a mean accuracy of 0.48 in the first block and by
the end of the training phase they were close to choosing cor-
rectly the alternative with the highest criterion value two out
of three times, 0.63. Although mean choice accuracy is sim-
ilar to the accuracy achieved by TTB with ideal knowledge,
0.59 on average, the variance in individual choice accuracy
curves is quite large. The shaded region around the mean per-
formance indicates the range of accuracies, from 10th to 90th

percentile. Hence, there are many individuals with accuracies
far above what could be achieved with TTB.

Insight questions provide us with a first indication of how
well participants have learned the cue validity weights. Previ-
ous research using such questions has shown that people have
good insight into what they have learned (Speekenbrink &
Shanks, 2010). Figure 3 shows mean ratings for all four cues.
Participants got the relative ordering and directions right on
average already after 40 trials and it got clearer as the train-
ing progressed. They learned that the second cue has a larger
weight (although negative) than the third cue only at the end,
and failed to detect that the fourth cue had a small negative
weight. This is not surprising as negative linear relationships
are more difficult to learn than positive linear ones (Brehmer,
1994). Although insight questions use an arbitrary scale and it
is difficult to identify exact cue weights that participants have

acquired, they do suggest that people learn more than order-
ing and directions. This is supported by changes in ratings
over the course of the decision task, even though the ordering
and directions were mostly established already after first time
participants answered the insight questions.
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Figure 3: Average insight ratings across trials. Error bars represent
standard errors of means across participants.

Predictions in the estimation task

We can also assess knowledge about cue validity weights by
examining the performance in the estimation task. We com-
puted mean absolute deviation (MAD) and correlation be-
tween participants’ predictions and criterion values as a mea-
sure of performance. Mean MAD across participants is 120
(SD = 30.8), which means that on average predictions were
120 EU’s away from criterion values. Mean (median) Spear-
man correlation is 0.63 (0.70; SD = 0.24). The participants
are doing a good job in predicting criterion values of test
items, but as expected, inter-individual variation in learning is
substantial, with MAD ranging from 51 to 189. While most
people are doing quite well, having very high correlations and
low MAD’s, some people do very poorly.

How would a decision maker that only learned the ranking
of cues fare in the estimation task? Such a decision maker
could take a mean of the criterion values experienced in the
decision task and use it as a fixed prediction for all items in
the estimation task. This is our baseline prediction perfor-
mance. The MAD between baseline predictions and criterion
values was 172, much larger than for observed MAD.

We get more complete insight by examining mean predic-
tions across participants for each of the 40 items in the estima-
tion task. Figure 4 shows that in the range of item values from
about zero to 200, mean predictions correspond very closely
to the criterion values. More deviations occur for more ex-
treme values, with somewhat poorer predictions for extrap-
olation items than interpolation items. Importantly, predic-
tions correspond much better to criterion values than baseline
predictions. Thus, most participants do acquire more precise
knowledge about cue validity weights, rather than only the
ordering and directions.
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Figure 5: Relation between performance in the estimation task
(mean absolute deviation (MAD) between predictions and criterion
values) and the decision task (proportion of correct choices in the
last two blocks).

We examine the relationship between individual perfor-
mances in the two tasks to obtain model-free evidence that
cue weight learning plays an important role in strategy se-
lection. We find a strong relationship between choice accu-
racy in the decision task and MAD in the estimation task,
as indicated by a Spearman correlation of �0.78 (Figure 5).
This suggests that participants with good prediction perfor-
mance know the cue weights well, which allowed them to
employ WADD and achieve good decision performance. Sur-
prisingly, many participants who had poor prediction perfor-
mance also had decision performance far below 0.59 which
is possible to achieve with very little knowledge for TTB in
this environment. They either relied on WADD in spite of
their poor knowledge or those participants simply paid less
attention and performed close to random in both tasks.

Modeling
Next we turn to identifying the strategies used by each par-
ticipant in the decision task. We first describe the cue weight
learning model that will produce trial-by-trial predictions of
participants’ knowledge of cue weights. These weights will

in turn be used in fitting TTB and WADD models to partic-
ipants choice data. Finally, we will examine whether par-
ticipants that were best fitted by TTB have less developed
knowledge of cue weights than those best fitted by WADD,
as predicted.

Modeling the cue weight learning
We used a least mean squares model to model the cue weight
learning process (Gluck & Bower, 1988). The LMS model
predicts the criterion value of an alternative on trial t as

P

t

=
4

Â
i=1

x

i,tui,t ,

where u

i,t are cue utilization weights and x

i,t are cue values of
cue i in each trial t. Utilization weights are updated in every
trial through the delta rule, based on a prediction error de-
fined as the difference between the predicted criterion value,
P

t

and the true criterion value, Y

t

, that a participant receives
as a feedback in the decision task

u

i,t+1 = u

i,t +
h
t

g (Yt

�P

t

)x
i,t ,

where 0 ⇤ h ⇤ 1 is a learning rate parameter shared by
all four cues and g ⌅ 0 is a decay parameter. We initialized
the weights to u

i0 = 0, i = 1, ...,N. Note that the cue weight
learning process is based only on the alternative for which
participants receive feedback, the rest is ignored by the LMS
model.

We fitted two different versions of LMS model. LMS

d

where both h and g are free parameters and LMS where g
is set to 0. Parameters were initialized at the beginning of
the decision task and in each trial cue values and criterion of
the chosen alternative were used to update the weights. The
weights from the last trial were used to make model based
predictions in the estimation task. To estimate the model pa-
rameters we minimized the mean squared error between the
participant’s and model’s predictions. The LMS model was
fitted separately from the choice models.
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Modeling the choices
Random Choice Model We used a random choice model
(RCM) as a baseline. RCM predicts the same probability,
.33, for each alternative.

WADD Model Our version of WADD linearly combines
the cue utilization weights learned by the LMS model with
cue values to produce predicted value of each alternative k in
trial t

R

k

t

=
4

Â
i=1

x

k

i,tui,t ,

where u

i,t are cue utilization weights learned by the LMS
model based on trials 1 : t �1. WADD then deterministically
decides by maximizing among the alternatives. To fit WADD
to data we assume an additional “tremble” error. If a strategy
produces a probability that alternative k is chosen, P(C = k),
then the probability of choosing k after taking into account
the tremble error, e, is given by

P(C
t

= k;e) = (1� e)⇥P(C
t

= k)+
e
3

TTB Model Our version of TTB uses the cue weight infor-
mation from the LMS model, u

i,t , to order the absolute value
of the weights from the largest weight to the lowest, produc-
ing a ranking r

t

. The ranking is done on absolute values be-
cause a strong negative weight is as predictive as a strong pos-
itive weight. TTB then chooses an alternative with the largest
cue value of the most predictive cue according to ranking r

t

.
If values of the first cue according to the ranking are the same
for all alternatives2, TTB inspects the second cue and so on,
until it finds a cue that discriminates between the alternatives.
If no cue discriminates, a choice is made at random. If the
deciding cue had a negative weight according to the u

t

, cue
values of all three alternatives were multiplied with �1, to
maintain the correctness of the rule of choosing the alterna-
tive with larger cue value. Same as in the WADD model, we
add a “tremble” error term to arrive at the final choice proba-
bility, P(C

t

= k;e).

Modeling results
Table 1 shows the mean Bayesian Information Criterion
(BIC) score across participants for LMS models and choice
models. Both LMS and LMS

d

fit the predictions equally well,
both in terms of mean BIC (368 and 366) and number of par-
ticipants best fitted (39 for both). However, LMS

d

fits results
better in a qualitative sense. It emulates better the insight
questions results where most people acquire ordering and di-
rections very fast. Hence, we used weights from LMS

d

in
the choice models. Moreover, LMS

d

based predictions for
estimation task items correspond closely to participants’ pre-
dictions (Figure 4).

2Ties are rare in environments with continuous cue values, mak-
ing this version of TTB quasi-equivalent to a single-variable strat-
egy, which uses only the most important cue.

Table 1: Mean Bayesian Information Criterion (BIC) scores of mod-
els (standard deviation in the parenthesis), number of participants
best fitted the model and mean parameter values.

Model # BIC N h g e
LMS 1 368 (25) 39 2e-5 - -
LMS

d

2 366 (24) 39 2e-4 .61 -

WADD 1 283 (40) 56 - - .62
T T B 1 302 (40) 11 - - .74
RCM 0 355 (2) 11 - - -

Note. # = Number of parameters in the model; N = number
of participants best fitted by the model; h = learning rate in
LMS; g = decay rate in LMS; e = tremble error.

In terms of choice models, as expected, WADD has better
mean BIC score (283) than TTB (302). Similarly, most par-
ticipants were best fitted by WADD (56), followed by TTB
(11) and RCM (11). As has been widely observed in pre-
vious studies, although it pays better to adopt WADD, and
indeed most people do so, there is substantial inter-individual
variability.There are substantial differences between the three
groups. As expected, WADD users reached the highest ac-
curacy, they were choosing the best alternative on average in
0.63 proportion of trials. TTB users performed worse, hav-
ing a choice accuracy of 0.55. Although RCM users were the
worst, reaching mean accuracy of 0.42, their performance is
somewhat higher than the random level and they do exhibit
some learning by the end of the training phase.

Next we examine our prediction that participants best fit-
ted with TTB are those that learn slower and did not man-
age to arrive at sufficiently good utilization weights to switch
to WADD. We plot the evolution of utilization weights esti-
mated with the LMS

d

model, separately for participants best
fitted with each model (Figure 6). We see that WADD users
have a well developed knowledge of all four cues, while TTB
users have less developed knowledge. Notably, TTB users
have very good estimates for the most important cue and do
not distinguish that well between the other three cues. Their
adoption of the TTB strategy is well justified by their subjec-
tive knowledge of the cue weights. RCM users’ knowledge is
very poor, capturing unmotivated or inattentive participants.

We can also examine estimated learning rate parameters
of the LMS

d

model. Learning rates are higher for WADD
users than TTB users, and lowest for RCM users (Figure 6).
Median learning rate for WADD users was 0.00015, while
for TTB users it was lower for an order of magnitude,
0.000027. Median decay rates are correspondingly higher for
the WADD users, 0.69, than for the TTB users, 0.54. Per-
formance of TTB users in the estimation task (M

MAD

= 133)
was expectedly worse than that of WADD users (M

MAD

=
112), but importantly, substantially better than of RCM users
(M

MAD

= 155) or baseline (M
MAD

= 172). Similar differences
can be seen in the insight questions results, with knowledge
of TTB users evolving over time. This suggest that even a
TTB user learns more than just the ordering and the direction
of cues.
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Figure 6: Left: Estimated learning h and decay rate g parameters for the LMS

d

model. Right: Smoothed median cue validity weights
estimated with the LMS model for participants best fitted with WADD, TTB, and RCM.

Finally, we conducted a logistic regression with mean ab-
solute difference between LMS obtained utilization weights
in the last block and objective weight as a predictor of strat-
egy use. We obtained a negative coefficient, as predicted, at
a value of �1.466, with p = 0.0139 and CI[�2.743,�0.367]
(WADD users were coded as 1 and TTB users as 0, while
RCM users were not included). In odds ratio terms, for one
unit increase in mean difference, the odds of using WADD de-
crease by 76%. Odds of using WADD for the perfect knowl-
edge (zero difference) is very high, 50.85, which amounts to
a probability of 0.975. Although this outcome was already
suggested by behavioral results illustrated in Figure 5, this
analysis establishes the link between the knowledge of cue
weights and strategy selection more clearly, in a model based
manner. Since WADD users achieve greater decision perfor-
mance, it explains the large correlation between estimation
and decision performance seen in Figure 5.

Discussion & Conclusion
In our experiment participants differed in how fast they ac-
quired knowledge of cue weights, and we predicted this het-
erogeneity to be responsible for the variability in strategy
selection. Our results showed support for our predictions –
WADD users had better developed knowledge of cue weights
than TTB users and the performance in the estimation task is
consistent with the strategy adoption. Our learning rate ac-
count suggests that, given time, TTB users would learn the
weights sufficiently well and switch to the better performing
WADD strategy.

Where do inter-individual differences in learning rates
come from in the first place? These differences might be akin
to traits like intelligence or personality factors investigated
by Bröder (2012). This would require the learning rates to
be stable across time and tasks within people. To our knowl-
edge, there is no study that examines the stability of learning
rates and is difficult to generalize beyond our task.

In our study we set out to test a specific hypothesis and to
inform the debate on whether people are better described by
the WADD or TTB model. We have to note that the mod-
els do not perform particularly well in our task. This can be
witnessed in the high values of the e parameter in Table 1,

meaning that models on average predict the choices of the
participants half of the time. Given our modest goals we did
not try to look for models that would explain behavior even
better. Our results, however, indicate that we should look for
such models within the probabilistic rather than deterministic
class of models (Bergert & Nosofsky, 2007).

Our results could be also explained if some participants
first adopted TTB and as a consequence learned cue weights
differently. With our current experimental design we can-
not, unfortunately, determine the direction of the causal ar-
row. However, our evidence indicates that TTB users acquire
more than ordinal information about cue weights and that this
knowledge becomes more precise over time. This suggests
that, if such interdependence exists, at most it slows down
the learning. This evidence comes from three sources – the
insight questions, the estimation task and the joint modeling
of cue weight learning and decision making. The continuous
evolution of our participants’ knowledge of cue weights goes
against the frugality and robustness justifications of TTB. The
argument against using cue weights hinges on their vulnera-
bility to overfitting – relying on ordinal information instead
leads to better generalization. From our perspective, TTB and
other heuristic strategies are used either due to cognitive lim-
itations or when the structure of the environment is known
better and these strategies are the rational thing to do (also
see Davis-Stober et al., 2010; Davis-Stober, 2011).

In this decision-making task, our evidence suggests that
learning the properties of the environment is predominant,
and strategy selection is influenced by it. Different decision
making tasks, however, may lead to distinct linkages between
cue weight learning and decision making processes. Explor-
ing the nature of these interactions opens an exciting direction
for future research (see Stojic et al., 2015, 2016).
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Abstract 

A goal-based dynamic action selection mechanism 
incorporating a model for emotions and temperament was 
developed for use with small and inexpensive mobile robots. 
A mobile robot was developed to test the action selection 
mechanism by recreating the scenario of an animal foraging for 
food while avoiding predators. Four emotions of anger, fear, 
happiness, and surprise were modelled which were affected by 
events such as finding food, encountering a predator, 
encountering a boundary wall, finding a safe area, and being in 
a state of low health. The model incorporated a reward 
prediction module that altered the effect of an event based on 
the error between when an event occurred and when it was 
predicted to occur. The model also included a decay term that 
resulted in the emotions returning to their steady state values 
unless there was continual reinforcement through the 
occurrence of events. The effect of differing temperaments on 
the emotions was studied by defining an irate temperament. 

Keywords: Emotions; temperament; affective computing; 
robotics; action selection. 

Introduction 
Affective computing seeks to understand and develop 

systems that can recognize and simulate human emotions. 
R.W. Picard (2000) highlighted the importance of the field by 
exploring neurological studies that indicated human 
cognition was intrinsically linked with emotions. She also 
argues that that the development of affective computing is 
critical to advancing emotion and cognition theory.  

Breazeal and Brooks (2005) considered cognition and 
emotions to be two distinct systems that evolved in intelligent 
creatures under social and environmental processes to aid in 
optimal functioning. Cognition is deemed to be responsible 
for interpreting the world whereas emotions are deemed to be 
responsible for evaluating the value of events. Emotions thus 
help prioritize concerns while minimizing distractions.  

The simulation of human emotions is greatly complicated 
by the fact that there is no accepted model that explains and 
predicts the wide range of emotions we experience.  There 
still is no consensus in the literature on the number of base 
emotions. Paul Ekman (1999) proposes a list of 15 emotions, 
each representing a family of emotions. A study on dynamic 
facial expressions of emotion by Jack et al. (2015) challenges 
this notion by suggesting that basic emotion communication 

comprises fewer categories. It is clear that our understanding 
of the subject is still in its infancy.  

A study on momentary subjective well-being by Rutledge 
et al. (2014) resulted in a model of happiness referred to as 
!��� *�������  �	�"�!���+� ��� ���"���� �"�!"�������&�  ��$���
that momentary happiness in response to a probabilistic 
reward is explained by the combined influence of the reward 
expectations and the prediction errors from the expectations; 
not by current task earnings as one would naively conclude. 
Long et al. (2015) and Long (2015) adapted this model to 
simulate the eight *"��#�� ��+� ���!��� � ��� ������ ������ 
sadness, happiness, disgust, surprise, trust, and interest in 
cognitive mobile robots. The emotion and temperament 
engine they developed was incorporated into SS-RICS which 
is a cognitive architecture developed at the Army Research 
Laboratory (Troy D. Kelley, 2006). Surendran (2015) built 
upon this emotional model by incorporating a reward 
prediction error component with a focus on developing a 
model that could be executed with limited computational 
resources. This model did not use SS-RICS and implemented 
a new action selection mechanism (ASM) capable of running 
on a small mobile robot with a Raspberry Pi processor. 

Test Setup 
A client-server architecture was used with an autonomous 

agent acting as the client, and a computer running the ASM 
and affective model acting as the server. A robotic platform 
was developed specifically for this study with an emphasis on 
a form factor under 400 cm2 and reduced cost. It was based 
on the Raspberry Pi microprocessor and is capable of image 
processing at an average of 5 frames a second, orientation 
sensing, collision detection through infrared sensors, and 
battery operation for an hour. 

The behavior and emotional state changes of a small rodent 
foraging for food while avoiding predators was chosen to be 
simulated. Differently colored balls having a diameter of 10 
centimeters were used to represent food sources (green), 
predators (red), and safe areas (purple). The agent was placed 
inside an enclosed space containing the three types of balls 
which were randomly placed. One of the purple objects 
representing a safe area was chosen as the starting position of 
the robot.  

The behavior that was simulated can be described as 
�����$ �����������������!�*�� ! +��!��� ���������until its health 

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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decays below a threshold level triggering a search for food; 
this simulates hunger. The robot then searches the 
surrounding area until it identifies a green ball which it tracks 
!�$��� �� �!� !���� *��� "�� +� !��� ����� �&� ������ ��� ��� ��
proximity (within 5 centimeters) of the ball. The satiation of 
hunger is simulated as a time dependent increase in the 
����!+ �����!������� ������� ��!� !�& ������� �����%���!&�!��!���
object. When its health has been completely recharged it then 
 ��� ��"!��� ���������!��*�� !+��!, until its health drops below 
the threshold triggering a repeat of the cycle. Throughout the 
simulation, the mobile robot constantly avoids red danger 
balls and collisions with the boundary walls. Whenever a 
danger is identified, the robot abandons its current task and 
instead takes evasive manoeuvers to avoid the danger. Only 
stationary predators were considered in this study. A linear 
decrease in health with respect to time was assumed in this 
study. It is to be noted that the framework allows one to 
implement more complex models of health and consumption. 

Action Selection Mechanism (ASM) 
In order for the system to be autonomous it had to decide what 
to do. In order for it to be successful it had to intelligently 
select appropriate actions based on external and internal 
stimuli. Dynamic planning methods compute the next action 
to be taken based on the current internal and external state. 
This type of ASM is ideal when limited computational 
resources are available. On the other hand, to replicate the 
behavior required a goal driven architecture was used (Brom 
& Bryson, 2015). To this end a new hybrid architecture was 
implemented in the final system. 

The behavior implemented was decomposed into goals and 
subgoals. Goals were namely finding food, finding a safe 
area, avoiding danger and resting. These goals were then 
decomposed into subgoals such as finding a ball, tracking a 
ball, eating a ball, avoiding a ball, etc. Each of these subgoals 
was associated with a dynamic plan that the ASM selects in 
order to accomplish the goal. This modular structure 
permitted reuse of plans as the goals had similar subgoals. 
Condition-action rules similar to those used in expert systems 
were used to implement the dynamic plans. Rules defined the 
*���$�����+� !���  & !��� ��  �  �d and in this system are 
either factual or procedural. Factual knowledge as the name 
suggests consists of facts such as the color of a ball defining 
if it relates to food, danger, or a safe area. Procedural rules 
govern how actions the robot take will be carried out. Conflict 
resolution in case of competing goals is handled using 
priorities with certain goals having a higher priority. For 
example, if a danger ball is seen in front of an objective ball, 
the robot would avoid the danger instead of moving towards 
the objective. 

An event handling function and an interrupt mechanism 
implemented in software handle flow control. The event 
handler executes the appropriate plan based on the current 
goal, subgoal, and system state. The interrupt handler allows 
the currently executing goal to be paused when a goal with a 
higher priority is to be executed. Once complete, it reloads 
the previous goal and subgoal. 

Time Step Each time step is defined to be one cycle of the 
mobile robot sending data to the command center and 
receiving control commands. This was chosen over time as 
hardware limitations prevented real time image processing 
and consequently governed the rate of data transmission. This 
ensured consistency as otherwise a slower system would 
experience quicker decays in health and emotions due to 
processing time. If enough processing power is available, the 
framework allows clock time to be used instead.  

Emotions Engine 
The computational model obtained by Rutledge et al. 

(2014) is shown in Equation (1). In the model 	 represents 
certain rewards, 
� their expected value and �
 the reward 
prediction error. 

���������E F > #+ < #, C%806
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61,
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(1) 

Long et al. (2015) modified this model as shown in 
Equation (2) to incorporate emotions and temperaments into 
cognitive mobile robots. The winner-take-all approach they 
implemented meant that the emotion with the highest value 
$� ���� �������� �!�������!+ ����!������ !ate. In this model 
56

/  represents positive reinforcements while 56
0  represents 

negative reinforcements. 
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(2)  
 

The emotional model used in this research study is shown 
in Equation (3) and incorporates the RPE term from equation 
(1) into equation (2).  
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(3) 

  
The positive or negative effect of an event on the emotion 

is represented by the term 6. The reward prediction error is 
represented by the term �
. #+, #,� and #- are weighting 
factors. % is a decay factor that governs the impact of past 
events on the current emotional state. Together these values 
define the temperament of an agent. 
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Emotions and Temperament Constants  
A distinction has to be made between temperaments and 

emotional states. Temperaments are considered to be 
biologically based and derived from genetic predispositions, 
maturation, and experience. They are expected to be 
relatively stable over time. Emotions from a functionalist 
��������� ���� �������� � � �� ��� ��+ � �������  � !�� � tablish, 
����!�����������������+ �����!��� ����!���� ��r her changing 
circumstances. In contrast to temperamental variability, 
emotional reactions can be enduring or brief (Thompson & 
Winer, 2015). 

Four emotional states of anger, fear, happiness, and 
surprise deemed to most likely be affected by the test scenario 
were modelled in this study. Each emotion is assigned 
weighting factors and a decay factor that correspond to 
Equation (3) as shown in Table 1. To better illustrate the 
system, the weighting factors were experimentally selected to 
result in significant changes in emotional values within a 
range of ±50. The steady state value (#+F of the emotions was 
set as zero for the same reason. Future work will address how 
to optimize these constants to make the robot as effective as 
possible. 

 
Table 1: Emotion constants 

 
Emotion &( &) &* ' 
Anger 0 1.9 0.15 0.92 
Fear 0 1.9 0.15 0.92 
Happiness 0 2.3 0.15 0.92 
Surprise 0 1.7 0.15 0.88 

 
Table 2: Emotion modifiers 

 
 Anger Fear Happiness Surprise 

Danger 
encountered 0 +12 -5 +10 

Found Food -1 -1 +5 0 
Returned to 

safe area -5 -5 +5 -5 
Wall 

encountered +3 0 0 +5 

Health too low 0 +2 -2 0 

Components 
The emotions engine is made up of three major 

components; short term memory, the RPE module, and the 
command modifier. 
 
Short Term Memory The emotional state of an agent is 
deemed to depend on its internal state and external stimuli 
such as events. Events are defined as interactions with the 
environment that result in a change of the ASM goal or 
subgoal. Table 2 lists all defined events along with their 
reward values. The emotions engine records registered 
events, the reward value for the event, and the time steps 
taken to complete the ASM goal that led to it. Due to the 
decay component (%) of the emotional model, it was found 

that a memory length of six events was optimal as the 
exponential decay meant that the value of any previous events 
was negligibly small. 
 
Reward Prediction Error (RPE) Module Momentary 
subjective well-being was found to depend not only on an 
event but errors in predicting the occurrence of said event. 
Unexpected events have a higher impact on the value of an 
emotion (Rutledge et al., 2014). Due to a lack of long term 
memory and learning capabilities, the average number of 
time steps taken for an event to occur in the past is used to 
predict future expectations. The difference between this 
prediction and the actual time taken for the event to occur is 
considered to be the RPE. �!�!��� !��!�����������!+ �����������
type of events is predicted to take 25 time steps to occur. An 
�%���!����� �!���*����!��!�����$+ event which is considered 
to take 300 time steps to occur. These values were chosen as 
they were found to be the average number of time steps taken 
in the majority of tests. As events of a type occur during 
operation, the prediction for that event is updated.  
 
Command Modifier Data stored by the short term memory 
module is sent to the RPE module to calculate the RPE. Using 
Equation (3) the instantaneous value of the four emotions are 
then calculated and in combination define the emotional state 
of the robot. These calculations are carried out every time 
step regardless of an event being registered. The command 
modifier allows the emotions engine to modify the ASM 
commands generated and the internal state of the agent, based 
on the current emotional state. Conditional logic and 
statements are used for this purpose. In this study we have 
chosen to apply the following modifiers, 
 

� ����� > �!���� ������ < "��!�2 < "��!�3 =
"��!�4 

Where "��!�2, "��!�3, and "��!�4 denote the numeric 
values of the emotions anger, fear, and happiness 
respectively. This modifier increases the speed of the robot 
when the value of anger or fear increases and decreases it 
when happiness increases. This shows how all emotions can 
compete against each other to affect behavior. 
 

� �������� ? ��� ��������� > �� 

This modifier sets a lower bound on the speed of the robot. 
 

� ���"��!�3 @
��� �����������$�� ��� ������� D���� ��� 

This simulates a timid robot by randomly sending it stop 
commands if the value of fear becomes greater than 40. The 
is similar to the tendency of an animal to momentarily freeze 
when frightened. 
 

� ����!������ @ ��� ���������������� !�� 

This simulates a surprised robot by making it turn around 
if the value of surprise gets larger than 40. This is similar to 
an animal being startled and a robot spinning around was not 
only amusing, but easily observable. 
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Results 
The effects of the different type of events, the RPE module, 

and varying temperaments were considered. The test scenario 
pictured in Figure 1 consisted of two safe balls, three food 
balls, and three danger balls. It was run for 300 time steps.  

 

 

 
Events are signified on the plots using the letters shown in 

Table 3. A negative RPE denotes an unexpected event while 
a positive RPE denotes an event that was predicted to occur 
earlier than observed. Table 4 lists all events that were 
registered along with their time steps and the calculated RPE. 

 
Table 3: Events and their signifiers 

 
Event Denoted by 

Danger encountered a 
Found Food f 

Returned to safe area b 
Wall encountered w 

Health too low h 
 

 
Table 4 Time steps, Event type, and RPE value of all events 
 

Effect of Events on the Emotional State 
Figure 1 shows the variation in the individual emotions 

whereas Figure 2  ��$ �!���#����!�������!�������!+ � ���������
its health. From the data we can infer that, once the health 

dropped below the threshold of 75 at time step 10, the agent 
began searching for food and found it at time step 22, that is 
in 12 steps. The RPE led to a larger spike in happiness and a 
large reduction in robot speed. During its search for a safe 
area it had to avoid the boundary walls, food balls, and the 
danger balls each of which affected the emotions as seen in 
the previous scenarios. The robot finally found a safe area at 
time step 214. The initial prediction by the RPE module was 
that a safe area would be reached in 25 time steps. In this case 
since that led to an RPE of 164, instead of an increase in 
happiness and reduction in anger, surprise, and fear, we see 
the opposite effect. Since the robot took a large number of 
time steps to return to a safe area, when it did its health had 
dropped below the threshold of 75. This caused it to 
immediately start searching for a food ball. At approximately 
time step 241 there was an anomaly where the robot 
incorrectly identified a food ball as a boundary wall 
momentarily before correctly recognizing it as a food ball. 

Effect of the RPE Module 
Figure 3 shows the effect of the RPE on the emotional state 

value of anger. Using Table 4 we study some key events that 
illustrate the effect of the RPE module: 

 
Food event at time step 22 (RPE of -13) This event 
happened sooner than predicted by 13 time steps. The effect 
of the RPE module was a greater reduction in anger than 
would have been without it. 
 
Wall event at time step 35 (RPE of +10) This event 
happened later than predicted by 10 time steps and thus its 
impact was reduced. This is seen as anger values not being as 
large as they would have without the RPE module. 
 
Wall event at time step 43, 51, 59 (RPE of -22, -11, -5) We 
observe that the impact of the wall at step 43 is greater than 
that at step 51 and so on. When the RPE module was disabled, 
the impact of all 3 wall events was exactly the same. 
 
Safe area ball at time step 214 (RPE of 164) The extremely 
large prediction error meant that instead of a decrease in 
anger that would have been expected when the robot returned 
to a safe area, there was an increase in anger. Basically the 
opposite of the effect the event would have had on the 
emotions had the RPE module been disabled.  
 

We can thus conclude that the RPE module is crucial in 
modelling the psychological effect of expectations governing 
the effect of an event. Without it, an event would affect the 
emotional state exactly the same way regardless of when it 
occurs. 

Effect of Varying Temperaments 
Temperaments are defined by the weighting factors shown 

in Table 1. 

Step 22 23 24 35 43 51 59 
Event f f f w w w w 
RPE -13 -5 -1 10 -22 -11 -5 
Step 85 92 107 146 158 181 204 

Event a w w a w w w 
RPE 60 23 -6 6 33 -11 -4 
Step 214 217 225 231 241 242 248 

Event b w w w f w f 
RPE 164 -14 -11 -7 12 2 13 
Step 249 255 256 260 266 294  

Event w f w f f w  
RPE -3 14 -1 12 12 31  

Figure 1: Test Scenario 
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Figure 1: Shows the variation in the values of the four emotions 
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Figure 2: Shows the variation in the speed and health of the robot for a test scenario 
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Figure 3: Compares the variation of anger with and without the RPE module 
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Figure 4: Compares the value of anger for an irate and a neutral temperament 
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Figure 4 shows the change in the value of the emotion 
anger for an irate temperament which was defined by 
modifying the weighting factors affecting the emotion anger. 

 
Irate: The weighting factors used for anger were: 

 
We observe that the steady state value of the affected 

emotion is offset from 0 by the value of the weighting factor 
w0. The factor w1 controls the instantaneous effect of an event 
��� !������!��� ��� �-� � � ������ ���$�� ��� !hat an emotion 
takes longer to decay to its steady state value. Thus an irate 
temperament causes the robot to have a higher steady state 
value of anger and remain angry for longer once an event 
angers it.  

Conclusions 
By adapting a model for momentary well-being (Rutledge 

et al., 2014) as done by Long et al. (2015), and incorporating 
a reward prediction error, an action selection mechanism with 
an integrated emotions engine has been implemented in 
addition to the development of a low cost robot to test the 
mechanism (Surendan, 2015). The ASM developed was a 
hybrid of a goal-based and a dynamic planning action 
selection mechanism. Each goal was associated with 
subgoals, and each subgoal with a dynamic plan. Different 
events were defined that affected the individual emotions and 
the ASM provided means by which the emotional state could 
be used to modify the internal state of the robot through 
means of command modifiers. Command modifiers also 
allowed the modification of dynamic plans and the value of 
emotions to be coupled through suitable models. 
Temperaments and emotional variability were defined using 
a matrix of constants. Varying the temperaments was 
observed to result in a different emotional state over the time 
period of the experiment even when the scenario was kept 
constant. Finally, the importance of the reward prediction 
error was highlighted by showing that without it events 
affected the emotions by the same amount regardless of when 
they occurred. With the RPE, it was possible to mimic the 
emotional response observed in humans by Rutledge et al 
(2014).  

Additional tests should be conducted by specifying a more 
comprehensive list of command modifiers and fine tuning the 
temperament values based on the observation of an animal 
foraging for food in the wild. Since the temperament is 
specified by means of constants shown in Table 1, this leads 
to the possibility of an agent with a time-variant temperament 
that can alter its emotional sensitivity during run time. The 
emotional model could also be modified to introduce a time 
lag between the occurrence of an event and it affecting the 
emotional state. This would allow the simulation of the four 
classic temperaments, namely, melancholic, phlegmatic, 
choleric, and sanguine theorized by Greek philosophers 
�(
�"���"��� � - ����!����+ � !����"������� �!������ ������

����!�����"���"��� �) 2012). Another approach would be the 
specification of the temperament in terms of the (�����) traits 
of extraversion, agreeableness, openness, conscientiousness, 
and  neuroticism often described in the literature (Digman, 
1990).  The low cost of the robot also permits the acquisition 
of a non-homogeneous robot swarm with varying 
temperaments to explore if emotions increase the 
effectiveness of the swarm. 
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Abstract

We utilize a spiking neural network model of working mem-
ory (WM) capable of performing the spatial delayed response
task (DRT) to investigate the functional effects of two drugs
that affect WM: guanfacine (GFC); and phenylephrine (PHE).
In this model, the loss of information over time results from
changes in the spiking neural activity due to recurrent con-
nections. We reproduce the standard forgetting curve, then
show that this curve changes in the presence of GFC and PHE,
whose application is simulated by manipulating various neuron
properties. In particular, applying GFC causes increased firing
in neurons that are sensitive to the information currently be-
ing remembered, while applying PHE leads to decreased firing
in these same neurons. Interestingly, these memory-specific
effects emerge from network-level interactions, because GFC
and PHE affect all neurons equally. We compare our model to
both electrophysiological data from neurons in monkey dorso-
lateral prefrontal cortex and to behavioral evidence from mon-
keys performing the DRT.
Keywords: working memory; delayed response task; guan-
facine; phenylephine; Neural Engineering Framework

Introduction

Working memory (WM) is a central component of cognitive
systems which use it to temporarily store information during
the execution of complex tasks. Models of WM differ greatly
between contemporary cognitive architectures, leading to di-
verse predictions about how information is represented and
altered over time. Because WM is biologically realized in
networks of neurons, one goal for researchers studying WM
is to understand how networks of spiking neurons implement
information storage and retrieval in the brain. In so doing,
such models can be used to characterize deficits of WM asso-
ciated with mental disorders, such as attention deficit hyper-
activity disorder (ADHD) and Tourettes syndrome (Scahill et
al., 2014), and be used to understand the biochemical mech-
anisms behind drugs used to treat such deficits (Avery, Fra-
nowicz, Studholme, van Dyck, & Arnsten, 2000). Due to
the complexity of the interactions involved, few studies have
characterized the relationships between drug chemistry, neu-
robiology, and cognitive abilities, including working mem-
ory.

In this paper we present a spiking neural network model
of WM and action selection applied to a mnemonic cognitive
test, the delayed response task (DRT). Computational models
are well-suited to investigate multilevel interactions, includ-
ing those between drugs that alter the brain’s biochemistry
and the resulting disruptions in cognitive abilities. We con-
struct such a model using the Neural Engineering Framework

(NEF) (Eliasmith & Anderson, 2003), a general method for
building cognitive models from spiking neurons. The NEF
has previously been used to create biologically-constrained
models of list memory (Choo & Eliasmith, 2010) and action
selection (Stewart, Choo, & Eliasmith, 2010) that are con-
sistent with neural and behavioral data. This paper extends
these models by simulating the effects of two drugs, guan-
facine (GFC) and phenylephrine (PHE), which enhance and
inhibit WM respectively.

In the next sections we describe the biological and com-
putational basis of WM in the brain, examine the biophysi-
cal mechanisms of the applied drugs on neural activity, and
advance a hypothesis for the relationship between them. We
then present our model, describing how information is stored,
forgotten, and retrieved in the delayed response task. When
GFC (PHE) is applied to the model, we observe a shifted
firing rate in those neurons whose spatial mnemonic tuning
(preferred space/time direction) is aligned with the cue’s lo-
cation. This in turn affects the value stored in WM, leading to
an increase (decrease) in performance on the DRT. The mag-
nitude and timing of this effect is comparable to empirical
data from monkeys. We conclude by proposing biophysical
and anatomical extensions of the model.

Biological Background

WM is realized in the prefrontal cortex (PFC), a brain region
whose prominent size in highly-evolved primates suggests its
importance in complex cognitive tasks that require a flexi-
ble mental workspace. The PFC represents information that
is temporarily held in mind and used to guide behavior and
decision-making, and is thought to be maintained through re-
current excitatory connections between neurons with similar
tuning properties (Goldman-Rakic, 1995). Computationally,
this recurrence realizes an extended temporal integration that
preserves the represented item without external stimulation
(Singh & Eliasmith, 2006).

The stable representation of items stored in WM is particu-
larly sensitive to the synaptic connections of intra-PFC loops
and the biochemical environment of PFC neurons. Drugs
that are used to treat WM disorders such as ADHD and
Tourette’s Syndrome target these biophysical mechanisms
and have been shown to affect WM in healthy animals (Avery
et al., 2000; Scahill et al., 2014). For example, guanfacine
(GFC), an agonist for the a2A-adrenoreceptor, influences

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
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WM in PFC neurons expressing Hyperpolarization-activated
Cyclic Nucleotide-gated (HCN) ion channels (Franowicz et
al., 2002). At rest, HCN channels permit the influx of non-
specific cations, but deactivate in response to depolarization.
HCN channels are unevenly distributed along the dendritic
tree, with an almost sevenfold increase in density from the
somatic to distal end of the dendrites. These properties allow
HCN channels to reduce the temporal variability of dendritic
excitatory postsynaptic potentials (EPSPs) that exists due to
spatial distribution along the dendritic tree (Magee, 1999). It
is believed that these channels control the excitability of pyra-
midal neurons in PFC by modulating the temporal dendritic
summation and resting potential (Poolos, Migliore, & John-
ston, 2002).

GFC, acting through a cAMP-mediated intracellular sig-
nalling cascade, closes HCN channels, resulting in less damp-
ing of excitatory dendritic spikes and increasing the overall
excitability of the neuron. A study by Wang et al. (2007)
showed that GFC increased the firing rate of PFC neurons
with weak mnemonic tuning in the direction of spatial cues
on the delayed response task, while having no effect on
cells tuned in the opposite direction. Similarly, the a2A-
adrenoreceptor antagonist PHE opened HCN channels and
decreased firing rates of preferred-direction cells. These re-
sults are consistent with increased (decreased) behavioral per-
formance on the delay-response task (Mao, Arnsten, & Li,
1999; Ramos, Stark, Verduzco, van Dyck, & Arnsten, 2006).
We hypothesize that GFC raises the firing rate of spatially
tuned neurons, causes a slower decay of items stored in PFC
neural integrators, induces lower rates of forgetting, and con-
sequently increases performance on the delay-response task.
We test this hypothesis in a spiking neuron model.

A Spiking Neuron Model of Working Memory

The core requirement in a neural model of WM is a popu-
lation of neurons that can maintain its state over time. That
is, given a brief input, the internal connectivity should cause
the neural activity pattern that results from that input to per-
sist after the input has stopped. This persistence will not be
perfect – over time the neural activity will drift away from its
initial value.

However, this population of neurons cannot maintain any

possible pattern of firing: we expect there to be correlations
in the structure of this neural activity. Indeed, it has become
common to analyze neural activity in WM areas (and else-
where in the brain) by performing dimensionality reduction
through techniques such as jPCA (Shenoy, Sahani, & Church-
land, 2013). These approaches characterize the underlying
patterns of correlation between the spiking neurons, identi-
fying a lower-dimensional subspace that the neural activity
represents. That is, rather than treating each neuron indepen-
dently, we assume there is some vector x that is being repre-
sented by the population of neurons. The dimensionality of
this vector is much smaller than the number of neurons, which
means the information is redundantly encoded across these

neurons. In particular, each neuron i will have some particular
vector e

i

for which that neuron fires most strongly (these are
often known as “preferred direction vectors” or “encoders”
and have been widely used as a useful way of characterizing
cortical activity (e.g. Georgopoulos, Kalaska, Caminiti, and
Massey (1982)). We can consider the total overall current go-
ing into a neuron to be proportional to e

i

·x (the similarity be-
tween x and the preferred vector e

i

). To produce a variety of
tuning curves and firing rates that matches those in PFC, we
randomly chose a gain a

i

and bias current b
i

for each neuron,
resulting in a total input current of a

i

e

i

· x+b
i

. This current
can be fed into any neuron model, but here we simply use the
standard leaky integrate-and-fire (LIF) model.

Given that the neural spiking activity encodes some vector
x, it should be possible to recover that information by ob-
serving the spikes. The simplest method is to “decode” this
spiking information via a weighted sum of the spikes, such
that x̂(t) = Â

i

a

i

(t)d
i

⇥h(t), where a

i

(t) is the spiking activity
of the ith neuron, h(t) is the shape of the post-synaptic cur-
rent1 caused by the spikes, and d

i

is the weighting factor for
each neuron. The decoder (i.e., d

i

) values can be found by
performing a least-squares optimization that minimizes the
difference between x (the original vector) and x̂ (the vector
recovered by observing the spiking activity). This method
of characterizing neural representation is the first principle of
the Neural Engineering Framework (NEF) (Eliasmith & An-
derson, 2003).

Now that we have defined how a population of neurons can
represent a value x, we can construct recurrent connections
within this population such that the neural activity continues
to represent x over time. To realize such a WM, we must find
recurrent connection weights that stabilize dynamical neural
activity, regardless of the value x being represented. Using
the third principle of the NEF, this can be characterized as
another least-squares minimization problem: previous work
has shown that the optimal weights from neuron i to neuron j

are w

i j

=a
j

e

j

N
d

i

(Eliasmith & Anderson, 2003). The result
is a population of spiking neurons that maintains its activity
over time, and has been the basis of multiple WM models
(Singh & Eliasmith, 2006; Choo & Eliasmith, 2010).

To simulate the WM component of the delayed response
task, we let x be two-dimensional, where the first dimension
is the value to be remembered, and the second dimension is
the amount of time it has been remembered for. Empirical
and modeling evidence are consistent with the claim that PFC
neurons explicitly encode the passage of time (Lewis & Mi-
all, 2006; Bekolay, Laubach, & Eliasmith, 2014; Singh &
Eliasmith, 2006). For example, some PFC neurons start fir-
ing only after a given amount of time has passed, while others
gradually decrease their firing rate over time (Romo, Brody,
Hernández, & Lemus, 1999). These “positive monotonic”
and “negative monotonic” neurons can be thought of as neu-
rons that are sensitive to both the value being represented and

1For this model, we use an exponential synapse with a decay
constant of 100 ms consistent with NMDA-type glutamate receptors.
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Figure 1: Recurrent spiking of WM neurons with and with-
out added noise. Top spike rasters show 100 neurons (out of
3000). The represented value is computed from the spiking
activity with x̂ = Â

i

a

i

(t)d
i

⇥h(t). With random injected noise
the memory is more unstable and decays towards zero.

the amount of time the memory has been held; in other words,
these are spatial mnemonic neurons whose e

i

values are large
for both the first and second dimension. Other neurons may
only be sensitive to one or the other dimension (i.e. would
have small e

i

values for one of those two dimensions). This
variability in e

i

matches well to the observed variability in
WM tuning curves (Singh & Eliasmith, 2006).

Variability and Drug Effects

The WM model used here is based on that in Singh and Elia-
smith (2006), with the addition of randomly varying back-
ground current to each neuron, to reflect the stochastic vari-
ability found in the brain. Without this random “noise”, the
information stored in WM is stable for a very long time (min-
utes to hours). However, with a small amount of background
current added, the memory decays over tens of seconds as
shown in Figure 1, consistent with decay rates of human WM
(Choo & Eliasmith, 2010)

We use this model to investigate how WM is affected by
the drugs GFC, which increases the excitability of neurons,
and PHE, which decreases excitability. We simulate their ef-
fects using two alternative methods which simplify the afore-
mentioned biophysics while maintaining the core functional
properties in the NEF. In the first method, we model excitabil-
ity as a global increase (or decrease) in somatic current to all
WM neurons. Importantly, even though Wang et al. (2007)
showed that, in vivo, an increase in firing activity was only
observed for neurons whose preferred direction was aligned
with the stimulus being remembered, we do not apply this
extra current only to those neurons. This is because there is
no direct mechanism by which GFC or PHE could affect only
those neurons that are actively encoding information. Rather,
we apply the simulated drug effect to all the neurons in the
WM model. While this seems counter-intuitive, we show be-
low that when we simulate this system, the network effects of
the recurrent connections are sufficient to cause the observed
differential response (Mao et al., 1999).

Figure 2: Subtheshold resting membrane potential as a func-
tion of applied current for normal (left) and HCN-knockout
mice (right). Closing HCN channels lowers the neuron’s rest-
ing potential (lower value of E

m

at I = 0) while increasing the
neuron’s response to subsequent input (higher slope of E

m

vs.
I). Image reproduced from Nolan et al. (2004).

In the second method, we attempt to more faithfully re-
produce the biophysical effects of HCN channel closure by
manipulating the neurons’ internal properties. HCN chan-
nels allow positive ions to flow into the cell, so closing HCN
effectively induces a negative current, lowering the resting
membrane potential. We model this effect by lowering the
bias current b

i

of each neuron in the WM. Additionally,
closing HCN channels modulates neurons’ dendritic summa-
tion, such that small, desynchronized dendritic spikes more
strongly influence the somatic membrane potential. This ef-
fectively increases neurons’ response to a given synaptic in-
put, which we model by increasing the gain a

i

of each neuron.
We calibrate the competing effects of these manipulations us-
ing data from Nolan et al. (2004), which compares the sub-
threshold voltages of HCN-knockout mice and normal mice
as a function of input current, Figure 2.

Modeling the Delayed Response Task

In the spatial delayed-response task (DRT), monkeys are pre-
sented with a brief (1s) visual cue positioned relative to their
fixed gaze. The cue is removed. During the delay period
(2, 4, 6, or 8s), the monkey stores the cue location in WM,
then recalls that location in the response period by pressing
the corresponding button or making a saccade. In terms of
our model, the cue is considered to be a numerical value be-
tween -1 and 1 (the first dimension of the vector x). This
value is fed into the model by directly injecting current into
the WM neurons, causing them to spike with frequency de-
termined by the similarity between their preferred vector e

i

and the represented value x, computed as e

i

· x. This exter-
nal current is injected for the duration of the cue period (1s)
then removed; after this, the memory must be maintained by
activity fed back through the WM recurrent connections.

To produce a response, the model must access that stored
value and produce one of two outputs (-1 or +1). While a
mechanism to perform this is straightforward to design with
the NEF (Sharma, Kromer, Stewart, & Eliasmith, 2016), this
part of the model does not alter the drug effects, so for sim-
plicity we do not consider it here. Instead, we take the neural
activity of the WM neurons and compute their weighted sum,
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giving an estimate of the original value (x̂(t) = Â
i

a

i

(t)d
i

⇥
h(t)). Since a neural mechanism to convert this value into a
decision will include some degree of variability, we approxi-
mate this by adding normally distributed noise to this value.
If the result is above zero we interpret this as the model giv-
ing the first response, and if it is below zero we interpret it as
giving the second response.

Results

To simulate the cellular effects of GFC and PHE, we tested
two methods for perturbing the neurons, as described above.
In the first, we injected a noisy signal2 into neurons in the
WM population, essentially using additive bias to increase
(decrease) neural excitability. In the second, we manipulated
the gains and biases of the LIF neurons used in the simu-
lation, effectively decreasing each neuron’s resting potential
while increasing its gain to synaptic inputs3. Both perturba-
tions produced the desired effects; we hereafter report results
from the first method.

We began by comparing delay-related neural firing rates
in the WM population4 with activity from neurons in mon-
key dorsolateral PFC (Wang et al., 2007). We selected model
neurons that were tuned to the preferred direction during con-
trol conditions, as per their hypothesized importance in rep-
resenting the cue’s location during the delay period. Wang
et al failed to provide a precise definition of “weak spatial
mnemonic tuning” or their procedure for choosing such neu-
rons, so we selected model neurons based on the magnitude
of their encoders (e), the change in their firing rate when pre-
sented with preferred-direction stimuli (da/dt), and their dif-
ferential response to drug application (Da). Figures 3 and 4
show the normalized firing rate of neurons before and after
the simulated application of GFC and PHE. Both empirically
and in simulation, GFC increased the firing rate of preferred-
direction neurons while having little effect on neurons in the
nonpreferred direction. Similarly, PHE decreased the firing
rate of preferred, but not nonpreferred, neurons.

Next, we investigated whether the firing rate of preferred-
direction neurons encoded the location of the cue stored in
WM. Using the NEF, we decoded, from the neural activities,
the value stored in the WM during the delay period. As the
model forgot the original stimulus, this value decayed expo-
nentially. In response to GFC (PHE), and concurrent with
the increased (decreased) firing rate of preferred neurons, the
WM value decayed less (more) rapidly, Figure 5.

Lastly, we tested whether the value stored in the WM co-
incided with the accuracy of the model on the DRT. Figure 6
shows the likelihood of correct response as a function of de-
lay period length for a one-dimensional DRT (left-right cues).
Both for monkeys (solid line) and the model (dashed line),

2Normally distributed and proportional to the maximum firing
rate, N(0.002,0.09) for GFC, N(�0.002,0.09) for PHE

3GFC: b
i,pre

= 0, b
i,post

=�0.04, a
i,pre

= 1.00, a
i,post

= 1.036;
PHE: b

i,pre

= 0, b
i,post

= 0.046, a
i,pre

= 1.00, a
i,post

= 0.960
4
N = 3000 neurons, neuron noise s = 0.009, synaptic time con-

stant t=0.1, dimension D = 2 (stimulus, time).

Figure 3: Normalized firing rate of neurons with spatial
mnemonic tuning in response to Guanfacine. Top: data
from monkey dlPFC while performing the DRT (Wang et al.,
2007). Bottom: spikes from model neurons in the integrator
population smoothed using Gaussian convolution (s = 0.04
every t = 0.2s). GFC only increases the response of neurons
that encode mnemonic information in the preferred direction.
Preferred direction neurons: 0.3 < e < 0.7, 0 < da/dt < 0.5,
7 < Da < 50, N = 25. Nonpreferred direction neurons:
�0.7 < e <�0.3, �0.5 < da/dt < 0.5 �1 < Da < 1, N = 5.

Figure 4: Normalized firing rate of neurons with spatial
mnemonic tuning in response to a2A-adrenoreceptor antago-
nists yohimbine (top) (Wang et al., 2007) and phenylephrine
(bottom). These drugs decrease the response of neurons with
encoders in the preferred direction. Preferred direction neu-
rons: �0.7 < e <�0.3, 0 < da/dt < 0.5, �50 < Da <�10,
N = 17. Nonpreferred direction neurons: 0.3 < e < 0.7,
�1 < da/dt < 1 �2 < Da < 2, N = 2.
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Figure 5: Value stored in WM during the delay period. Ap-
plying GFC (PHE) results in higher (lower) neural firing rates
that shifts the curve up (down), altering the model’s ability
to distinguish the represented value from zero following the
delay period. Reported values are averaged over N = 50 real-
izations with confidence intervals plotted in gray.

accuracy decreased steadily from 2-6s then dropped sharply
at 8s5. Our model shows increased (decreased) performance
on the DRT following application of these drugs that fits the
baseline empirical data with root mean-squared error between
0.0001�0.005. The accuracy dropoff occurs when the value
stored in the WM become indistinguishable from zero to the
model’s noisy decision procedure following the delay period.

Discussion

In this paper, we presented a minimal model of WM applied
to the DRT that reproduces neural spiking and behavioral re-
sults under various drug manipulations with surprising accu-
racy. The model extends classical works on WM dynamics
and the effects of neuromodulation (Brunel & Wang, 2001)
by (a) incorporating the NEF, an approach that allows for the
principled decoding of information represented in large-scale
spiking neural networks, and (b) demonstrating that neuro-
modulation of WM (and its behavioral effects) can be studied
through simple manipulation of neuron properties, bypassing
the need to build complex circuits using Hodgkin-Huxley-
type neurons.

Future work will address several simplifying assumptions
made in the study. First, a detailed sensitivity analysis would
reveal the robustness of the model to parameter variation. Ex-
ploratory experiments showed the decision noise and synap-
tic time constant altered the shape of the recall curves and
increased the RMSE, but a more systematic investigation is
needed to discover interactions between the remaining free
parameters.

Second, the use of LIF point neurons to represent delay-
related activity in WM necessitated an approximation of HCN
opening and closing. Surprisingly, we found that both sim-
ple manipulations (biasing neurons or increasing their gain)
produced changes in firing rate and behavioral response that

5To capture the inaccuracy of monkeys after a 2s delay, we intro-
duced a 7% chance of misperceiving/ignoring the stimulus.

Figure 6: Accuracy on the DRT as a function of delay pe-
riod length. Consistent with empirical results from monkeys
performing the DRT, GFC increases accuracy while PHE de-
creases it. The outlier datapoint, experimental GFC at t = 4,
probably arises from the small samplesize of the dataset: a
single (unique) monkey was used for each experimental con-
dition. RMSE: root mean square error between the empirical
and model data. Reported values are averaged over N = 50
realizations with confidence intervals plotted in gray. Deci-
sion noise was fixed at s

decide

= 0.19 for all simulations.

match the empirical data. This suggests that biophysical sim-
ulations of drug-neuron interactions may be unnecessary, so
long as the qualitative effect of the drugs on firing rate can
be discerned from electrophysiological data. That said, re-
placing LIF neurons with more detailed neurons that include
explicit HCN channels (which can be closed or opened by
GFC or PHE) would expand the range of biochemical pro-
cesses we could simulate. To progress in this direction, we
have integrated the NEURON simulation package with the
NEF-style modeling performed here.

Finally, while our model focused on the representational
aspects of WM, the processes by which information is placed
in, and retrieved from, WM are equally important for its im-
plementation in unified cognitive systems. Adding input and
output neural subsystems to the model, such as a visual hi-
erarchy and a basal ganglia, would greatly expand the range
of cognitive tasks that our model could potentially perform,
avoid the use of arbitrary parameters such as the “misper-
ception probability” and “decision noise”, and present new
targets for drugs that affect different aspects of cognition.6
Many of these systems have already been built using the NEF
(Eliasmith et al., 2012). In future work, we plan to implement
both these extensions in pursuit of a deeper understanding of
the neural basis, psychological dysfunction, and pharmaceu-
tical modulation of working memory.

6For example, dopamine (D1) receptors are present both in PFC
and hippocampus, and abnormal neurotransmitter/receptor levels
have been implicated in WM deficits related to Parkinson’s and
schizophrenia (including performance on the spatial DRT).
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Abstract 

There is no doubt that fatigue plays an important role in driver 
performance and potential crashes. One way to understand the 
effects of fatigue on driving performance that has not been 
rigorously explored is to use cognitive modeling as a 
performance predictor. In this paper, we integrate existing 
models of driving and fatigue to make a general model of 
driving under the influence of moderate fatigue, caused by 
repeated bouts of nighttime driving. Empirical studies on the 
effects of moderate fatigue have shown that it affects two 
measures of performance: steering variability and lane 
variability. Moderate fatigue also tends to have an effect on 
night-shift conditions but not on day-shift conditions due to 
circadian rhythms. We describe our integrated model of a 
moderately fatigued driver and we analyze the model’s 
performance in the context of a recent study of driving under 
conditions of moderate fatigue. 

Keywords: Driving; fatigue; computational model; ACT-R 

Introduction 
Fatigue has always been one of the main contributors to car 
crashes (National Transportation Safety Board, 1999). This 
has been a motivation for numerous studies to document the 
effects of fatigue on driving performance. Although there 
have been a few previous attempts to model human 
performance under the influence of fatigue (e.g. 
Gunzelmann et al., 2011), these efforts were generally 
concerned with high levels of fatigue that arise from 
multiple days of sleep deprivation, which is unusual in 
naturalistic settings, and where crashes become prevalent. In 
our work here, we aim to develop a model of drivers with 
moderate levels of fatigue caused by nighttime driving, 
where dangerous incidents may happen with increased 
frequency but are not inevitable. 

In this study, we integrate an existing model of driving 
(Salvucci, 2006) with a fatigue mechanism (Walsh, 
Gunzelmann, & Van Dongen, 2014), both implemented in 
ACT-R cognitive theory and architecture (Anderson, 2007). 
Then we evaluate the capacity of the integrated model to 
predict driving performance under moderate levels of 
fatigue. Based on the previous studies (Forsman et al., 2013; 
Van Dongen & Belenky, 2010; Van Dongen, Belenky, & 
Vila, 2011; Van Dongen, Jackson & Belenky 2010), we 
discuss which metrics or combination of metrics would be 
the most sensitive to driver drowsiness (moderate levels of 
fatigue) and how they change based on the time awake. We 
look at the same metrics in the model and examine fatigue-
related effects as compared to behavior in a simple reaction-
time task (PVT: Psychomotor Vigilance Test). This research 
expands on a previous integration (Gunzelmann et al., 2011) 
by modifying the mechanisms to reflect the current version 
of the ACT-R theory, and by exploring more detailed 
performance metrics to assess the model’s performance. 

Model of Fatigue 
The model of fatigue used here is based on the work of 
Walsh et al. (2014), which is derived from the state 
instability hypothesis (Doran et al., 2001). State instability 
characterizes a person’s fatigue as the switching between 
sleep and awake states, which may fluctuate second by 
second and can eventually progress to a physiological sleep 
state; the state instability hypothesis accounts, in general 
terms, for changes in performance associated with fatigue, 
including delayed response times, false alarms, and non-
responses (see Doran et al., 2001). To represent the state 
instability hypothesis, Gunzelmann et al. (2009) introduced 
“micro-lapses” into a computational model to account for 
changes in behavioral performance. The concept of micro-

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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lapses heavily relies on ACT-R’s procedural memory 
system and its sub-symbolic properties. The procedural 
memory is represented as productions, which represent 
condition-action if-then rules. During each production cycle 
in ACT-R, the conditions of the productions are evaluated to 
identify one that matches the current state, which is 
executed (fired) and changes ACT-R’s internal state and 
possibly the external world. In cases where more than one 
production’s conditions match the state of the world, values 
associated with each production rule, called utility, are used 
to determine which rule to fire. 

By manipulating the utility of the productions and the 
utility threshold, the system is able to produce micro-lapses: 
if the utility (!") of the selected production is less than the 
utility threshold (!#), a micro-lapse occurs. Micro-lapses 
are production cycles during which no rule actually fires. 
Changes in !" and !# influence the probability of micro-
lapses occurring. To control changes in these values 
associated with fatigue, a biomathematical model is used to 
reflect time awake and circadian rhythms, whereas a time-
on-task model is used to impose vigilance-related changes 
in the model.  

Biomathematical models are based on neurophysiological 
and behavioral changes associated with sleep loss (e.g. 
McCauley et al., 2013; Achermann, 2004; Borb & 
Achermann, 1999). These models posit a two-process theory 
of alertness, specifically using time awake (homeostatic 
process) and time of day (circadian process) to determine 
the alertness level for a particular point in time. Despite the 
fact that biomathematical models do not give any insight to 
the specific cognitive and other components involved in task 
performance (like the changes in reaction time with the 
motor module), the integration with a cognitive architecture 
has given promising results (see Gunzelmann et al., 2009; 
Walsh et al., 2014). Following Walsh et al. (2014), the 
fatigue mechanism in ACT-R uses the alertness prediction 
of the biomathematical model to control dynamic 
fluctuations in production utilities and the utility threshold. 
For this study a recently updated biomathematical model 
developed by McCauley et al. (2013) was used. Time-on-
task in the model is based on an exponential performance 
decline as the amount of time that is spent on a task 
increases (Giambra & Quilter, 1987). Based on these 
biomathematical and time-on-task models, and using the 
time of day that the task is taking place, the utility 
manipulations in ACT-R are formulated as follows:  

 
$!" % !" & $' ( )*+,- 

 
$' % $'.-/0-)1 & 2 3 $'456 & 7+*891:

& ;2 ( 8.#+8-<=>?@  
 
The 7+*891: parameter is derived from the alertness 
prediction of the biomathematical model (McCauley et al., 
2013) based on the sleep schedule and the hour that the task 
is happening. The 8.#+8- parameter represents the time 
(in minutes) that has passed since the start of each task. 

$'456, $'56, are constants that are computed by 
regression coefficients and relate time awake and time of the 
day (biomathematical model) and time on task (time-on-task 
model) to produce a utility attenuation that is further 
moderated by $'.-/0-)1 parameter. $'.-/0-)1 represent 
the accumulated effect of micro-lapses on the utility 
calculations. The initial setting is 1 and has no effect before 
any micro-lapses occur. When a micro-lapse occurs, 
$'.-/0-)1 is reduced by a decay parameter which reduces 
overall utility value and increases the likelihood of another 
micro-lapse.  

As described by Gunzelmann et al. (2009), since any task 
delay will cause $'.-/0-)1 to quickly decay to the point 
that will be too low to fire any production, there is a 
counterbalancing effect that resets $'.-/0-)1 (akin to 
awakening the model). For this reason, after any stimulus 
presentation, $'.-/0-)1 is reset back to 1. 

A compensatory mechanism is in place to counteract the 
diminishing utility of the productions. The fatigue 
mechanism also manipulates the utility threshold based on a 
similar equation used for manipulating the utility: 
 

!# % !#A & 2 3 !#456 & 7+*891:
& ;2 ( 8.#+8-<BC?@  

 
where the 7+*891: parameter is derived from the alertness 
prediction of the biomathematical model the same way as it 
was computed in the utility calculation, !#A is an initial 
utility threshold parameter, and !#456 and !#56 are 
again constants provided to the mechanism. 

Micro-lapses last for the duration of an ACT-R cognitive 
cycle (approximately 50 ms, plus noise). When micro-lapses 
happen, the model skips firing any production regardless of 
the state of the world. Individual micro-lapses are 
responsible for small increases in reaction times, while 
longer sequences produce more dramatic breakdowns in 
performance. As a result, they can be considered as the core 
of our model’s account of driver behavior under fatigue. 

Model of Driver Behavior and Fatigue 
The model of driver behavior (Salvucci, 2006) was 
developed using ACT-R, and had the required cognitive 
processes for lane-keeping, lane-changing, and passing 
other vehicles. This model is based on a control model of 
steering behavior (Salvucci & Gray, 2004) which explains 
how drivers encode two points on the road: a near point in 
the lane center immediately in front of the vehicle, and a far 
point (such as vanishing point on a straight road) that 
provides stability while steering. The control law within the 
driver model aims to keep the far point stable while keeping 
the near point stable and centered, and these three 
components serve well as a theoretical account of both lane-
keeping and lane-changing. 

The core of the model uses a loop of four ACT-R 
production rules that (1) encode the near point, (2) encode 
the far point, (3) update steering and acceleration based on 
the position of the near and far points, and (4) check the 
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vehicle’s stability and repeat this loop. Based on the ACT-R 
theory’s 50 ms firing time for a production rule, the driver 
model results in a control cycle that requires roughly 200 ms 
for these four steps. 

We integrated this driver model with the fatigue 
mechanisms described earlier, simply by running the driver 
model in the new version of the ACT-R architecture 
modified by the fatigue mechanism. Because of this 
integration, micro-lapses can occur between the cycles of 
the driver model. Since micro-lapses are cognitive cycles 
with no production executed, the driver model with micro-
lapses takes longer to complete the control loop, negatively 
affecting performance. Our model also resets the 
$'.-/0-)1 parameter at the end of each loop to 
counterbalance the effects of decay caused by micro-lapses 
as discussed earlier. The skipped rule firings then are a 
reflection of the basic prediction that such micro-lapses 
represent fatigued behavior. 
 

 
Figure 1: The experimental study protocol for the night shift 

(top) and day shift condition (bottom) in study A. Blue 
indicates the sleeping time. The three X’s indicate the 

PVT/driving/PVT sessions. The protocol for study B was 
equivalent to the night shift of study A (top), except for one 
extra day at the beginning and one extra day in the break. 

 

Experiment and Model Results 
Forsman et al. (2013) used data from two laboratory 
experiments with the same driving scenario to measure the 
changes in driving performance metrics with the levels of 
driver drowsiness. The experiment included 41 participants 
in two studies (A and B): study A (Van Dongen & Belenky, 
2010; Van Dongen et al., 2011) had a night and a day shift 
(14 days); study B (Van Dongen et al., 2010) had only the 
night shift (16 days). The night shift of study A and study B 
were basically equivalent, except for an extra baseline day 

(added between days 1 and 2) and an extra restart day 
(added between days 7 and 8). The study protocols are 
illustrated in Figure 1. Participants completed driving 
sessions at 21:00, 00:00, 03:00, and 06:00 for the night shift, 
and at 9:00, 12:00, 15:00, and 18:00 for the day shift (we 
refer to these session times as time points 1 to 4, 
respectively, for both night and day shifts). Every session 
included a 30-minute driving session with a 10-minute 
psychomotor vigilance test (PVT) before, and another 
following, the driving session. 

Psychomotor Vigilance Test (PVT) 
As mentioned, each driving session in the experiment was 
preceded and followed by a 10-minute Psychomotor 
Vigilance Test (PVT). The PVT is a simple reaction time 
task that can be an independent measure of fatigue (Van 
Dongen et al., 2011). The main dependent measure in the 
PVT was the number of lapses in the experiment which are 
reaction times longer than 500 ms. Only the pre-driving 
PVT lapses were used by Forsman et al. (2013) in their data 
analysis to have a measure of fatigue of participants just 
before the driving test. The experimental results for the PVT 
lapses based on the time points are shown in Figure 2. The 
result is based on the two 5-day shift period separated by 
34-hour break, averaged on the time points. Clearly, the 
number of lapses increases as a function of the number of 
hours awake in the night shifts. This increase illustrates the 
use of PVT test as a measurement of fatigue. 
 

 

 
Figure 2: Experimental result for PVT lapses. 

 
We developed a cognitive model of the 10-minute PVT 

test in Java ACT-R [http://cog.cs.drexel.edu/act-r/] using the 
fatigue model explained earlier. The schedule of the 
biomathematical model’s sleep schedule was set to exactly 
match the experiment. At each session of the test, the model 
looks at the stimuli and responds as soon as possible. When 
using the fatigue mechanism, the response times reflect the 
number of micro-lapses that occurred during the firing of 
productions between seeing the stimuli and responding to it. 
The model was run 100 times and the corresponding results 
are shown in Figure 3. The numbers of lapses were 
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aggregated based on the time points used in the empirical 
studies. 

 
 

 
Figure 3: Model result for PVT lapses. 

 
From the experimental data (Figure 2) we can clearly 

observe that that the PVT lapses increase during night shifts 
but not during day shifts. This fact led Forsman et al. to use 
the day shift in study A as the control condition (study B did 
not have a day shift). We see the same effect more strongly 
in the model’s results (Figure 3). The correlation of the 
experimental data and model results also showed a 
significant correspondence (/ % DEFF; . G DEDD2), 
providing further validation for Gunzelmann et al. (2009)’s 
fatigue mechanisms and also giving us settings for the 
critical fatigue-related parameters used in the driving task 
described in the next section. 

Driving Experiment 
The driving scenario was in daylight with a clear view on a 
rural highway with no wind and without other cars. During 
each driving sessions, participants drove about 30 minutes 
on a 28-mile track. They were instructed to maintain their 
speed at 55 mph. Along the 28-mile track, there were ten 
half-mile straight segments during which the primary 
signals were captured. Forsman et al. (2013) extracted 87 
driving metrics from the time series of the concatenated 
straight segments for each session.  

When performing principal component analysis (PCA) on 
the values for these metrics, they discovered that there were 
two dominant dimensions in both studies (A & B). The first 
dimension, which explained the highest portion of both 
studies’ total variance in the driving datasets, showed high 
factor loading for metrics capturing steering variability, 
which they referred to as the steering variability component. 
The second dimension, which explained the second-highest 
proportion of the variance, showed high factor loading for 
the metrics capturing the variability in lateral lane position, 
which they referred to as the lane variability component.1 

                                                             
1 Although steering and lane variability are certainly related, 

Forsman et al. (2013) argue that they are “statistically orthogonal” 

The results revealed that among the 87 metrics, these two 
components captured the largest portion of the total variance 
in the fatigued condition (47% for study A and 44% for 
study B).  

Interestingly, they found that although the first dimension 
(steering variability) explained more variance than the 
second dimension (lane variability), the latter correlated 
more to the PVT performances at the time points within 
each day, which are critical as independent markers of 
fatigue in our data analysis here. Specifically, the proportion 
of steering wheel movements exceeding three degrees in 
angle (H#IJK;H<) had a very high factor loading in steering 
variability (highest in study A and fourth in study B), and 
standard deviation of lateral lane position (HL;M<) had the 
highest in both studies’ lane variability. This led us to use 
these two metrics as representative of steering and lane 
variability in our model’s data. Their result also showed 
between the metrics having high factor loading in the first 
two dimension, there were not any metrics capturing speed 
variability. The factor loading for the speed related metrics 
were not reported in the experiment, so we picked standard 
speed deviation (HL;N<) as a representative for speed 
variability.  

Driving Model 
These findings from the driving experiment led us to build a 
model of driving and examine its performance on metrics 
related to steering, lane, and speed on a similar experimental 
driving scenario. We developed a cognitive model using the 
driving model in Java ACT-R (Salvucci, 2006) and 
integrated the fatigue mechanism as mentioned before with 
the same sleep schedule as in the experiment. The only 
difference between the model’s scenario and the 
experimental scenario was that we extracted driving metrics 
for 30 minutes of straight driving on the highway without 
any other cars, compared to the concatenated straight 
segments in the experiment. During every session, the 
model drove on a straight highway without changing lanes.  
The estimated fatigue parameters for the driver model were 
taken directly from the earlier PVT model with no changes. 
The model was run 20 times and we averaged the driving 
metrics by time points. We particularly concentrated on 
extracting HL M , H#IJK;H<, and HL;N< as defined above. 
The corresponding results for these variables are shown in 
Figures 4, 5, and 6. By looking at these figures, we can 
easily see changes in HL M , H#IJK;H<, and HL;N< across 
time points. Comparing the PVT result, the model captured 
a slightly higher correlation of HL M  and H#IJK;H< (/ %
DEOPQ  for both) compared to HL;N< (/ % DEORF). More 
interestingly, the correlation of these variables and PVT 
results for each study (Table 1), indicates that both HL M  
and H#IJK;H<, correlate strongly on night-shift conditions 
whereas this relationship is much weaker in day-shift 
condition for HL M  and slightly weaker for H#IJK;H<. The 

                                                                                                       
in their analysis because of the filtering effect of the vehicle’s 
physical dynamics. 
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relationship of HL;N< and PVT, showed a reverse result, 
meaning that day shift had a stronger relationship than the 
night shifts. By looking at Figures 4, 5, and 6, we can also 
see an upward trend across the time points (higher levels of 
these variables indicate worse performance) in the night 
shifts compared to the day shift, which has a much more 
moderate increase.  This is an indicator of the moderate 
fatigue effects in driving performance as a function of time 
of day in night-shift conditions as compared to the day-shift 
condition. 

 

Table 1: Correlations coefficient (/) between variables and 
independent indices of fatigue (PVT) in the model. 

 Study A 
night shift 

Study B 
night shift 

Study A 
day shift 

HL M  vs PVT 0.968 0.972 0.392 
H#IJK H  vs 

PVT 
0.980 0.972 0.917 

HL N  vs PVT 0.928 0.964 0.977 
 
 
 

 
Figure 4: Model result for lane variability. 

 
 

 
Figure 5: Model result for steering variability. 

 

 

 
Figure 6: Model result for speed variability. 

 

Discussion 
One important way to understand and prevent driver error 
and crashes is to detect driver's drowsiness before the high 
level of fatigue makes crashes more likely. Previous work 
(Forsman et al., 2013) has revealed that among a large 
number of driving performance metrics, there were two 
independent components that capture significant variance 
that reflect the effects of moderate fatigue: steering-related 
metrics and lane-related metrics. Thus, accounting for 
changes in driver behavior related to these two metrics is a 
good way to understand driver performance and potential 
sources of problems. 

In this paper, we developed a model of driving using a 
cognitive architecture and tested it with moderate levels of 
fatigue. Overall, the model captured the broad pattern of 
variance in steering metrics and lane position metrics based 
on the levels of fatigue. The model also captures the night-
shift changes versus the day-shift. Thus, the model has 
shown promise in accounting for moderate levels of fatigue, 
extending previous results (Gunzelmann et al., 2011) by 
updating the model and mechanisms to the latest version of 
ACT-R and extending the earlier validation for more severe 
levels of fatigue. One of the more interesting parts of the 
model is the fact that the variables for the fatigue model 
were directly taken from the pre-driving PVT model. This 
shows the capacity of the integration in capturing different 
performances for different levels of fatigue. Ultimately, this 
is a nice step toward finding a general model of fatigue in 
driving, without free parameters and without the need for 
empirical driving studies that include precise measurements 
of fatigue. Such a model would then be  applicable to 
challenges such as interface system design and evaluation 
(see Gunzelmann, Veksler, Walsh, & Gluck, 2015). 

One of the main limitations and potential areas for future 
work on the driving model is the need of a better simulation 
of mechanics and dynamics of an actual car to predict 
fatigued performance for a particular driver and vehicle 
  

!"#$$

!"#$$%

!"#$&

!"#$&%

!"#$'

!"#$'%

# ( ) * )*+,+
-./01

# ( ) *

!"
#$
%

234/+563789+:38,37+;0<9

!"##% =/.>6.407?/9+@A07/+B0.30-3C38<D

E3F,8+G E3F,8+H I0<+G

!"#

$"%

$"!

#

#"&

#"#

'"%

( % ) & )&*+*
,-./0

( % ) &

!"
#$
%&
!'

123.*452678*927+26*:/;8

!"#$%&!' <.-=5-3/6>.8*?@7..-26A*B/-2/,2C27;D

E2A+7*F E2A+7*G H/;*F

!

!"#

!"$

!"%

!"&

#

! # ' $ '$()(
*+,-.

! # ' $

!"
#$
%

/01,(230456(705)04(8-96

!&#$% :,+;3+1-4<,6(=>2,,8(?-+0-*0@059A

B0C)5(D B0C)5(E F-9(D



pairing. For example, we faced problems in adapting the 
model to a driver trying drive at a constant speed without 
any automatic cruise controls. The acceleration pedal in the 
current model cannot capture the dynamics of car speed 
changes as well as in real cars, and assumes that the driver is 
in complete control of speed—whereas, with modern 
systems like automatic cruise control, fatigue may affect 
driver performance in very different ways than examined 
here. As models of driver behavior adapt to these new 
technologies, we expect that these initial steps in modeling 
fatigue will still largely generalize to more complex driving 
situations. 
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Abstract 

Despite the near-ubiquity of graphic user interfaces for navi-
gating the digital and virtual space, relatively little is known 
about their naturalistic usage.  We start to address two ques-
tions. First, how do people use computers outside of labora-
tory studies? This includes what we can we determine about 
user behavior by analyzing detailed user logs.  Second, can 
we update the constants in user and cognitive models for 
predicting typing time based on naturalistic behavior?  We 
thus recorded naturalistic logs of 45 users over 219 sessions 
providing 1,865 hours of behavior (average session=8.18 
hours).  The analyses of keystroke times are sensitive to the 
definition of typing (e.g., how close keys are to be counted as 
continuous typing), and comparisons will need to provide 
clear definitions or tradeoff curves.  Using this data, we 
updated the typing and homing constants of the Keystroke-
Level Model (Card, Moran, & Newell, 1983), a theory of 
interface behavior used to provide constants for many 
cognitive architectures.  The results suggest that people are 
typing faster than previously believed based on the 1983 
KLM predictions; homing (moving one’s hand from mouse to 
keyboard and keyboard to mouse) occur frequently, and now 
appear to be different events and thus require separate 
constants.   
Keywords: GOMS, KLM, Typing Rates 

Introduction 
How do people use keyboards when they are not working in 
the lab?  To investigate this, we performed a naturalistic 
study of how users interact with their computers in their 
natural settings.  Because users are spending increasing time 
interacting with their computers earlier in life, the need to 
understand how users interact is increasingly important.   

This study differs from previous research by analyzing the 
results from users’ natural computer usage.  By studying 
users in a variety of settings where they use their own 
computers, in participants’ offices and homes, we are able to 
log users’ actual behaviors as they occur.  This behavior 
differs from previous laboratory studies due to the 
naturalistic approach to this study.  

Studies focusing on how users perform tasks in labs risk 
diminished authenticity of the data collected because users 
may be working on unfamiliar computers in an unfamiliar 
context (the laboratory setting) using an unfamiliar key-
board to do a new, prescribed task.  For example, few if any 
studies in our experience ask participants to set the keyboard 
settings to their preference.  This study addresses these 
issues through a naturalistic study of human-computer 
interaction (HCI).   

Users’ interaction with their computer interfaces is 
significant for several reasons.  First, one can develop an 

understanding of users’ inefficiencies and capabilities.  
Second, targeting users’ fundamental inefficiencies and 
building from their capabilities can provide developers 
insight into designing easier and more efficient interfaces.  
It may be necessary to study users’ natural interaction 
tendencies to predict accurate interface times.   

Lastly, a remaining challenge facing the study of users, 
and more broadly HCI, is that of accurately mapping what 
users actually do, when they do it, and why they do it.  Lab 
studies like Card et al. (1983) can help us gain accurate 
understanding of user interaction behaviors, but this method 
assigns tasks to users, rather than lets users organically 
select their own tasks.  While their experimental design was 
highly effective in quantifying specific tasks, it is probably 
inaccurate to assume that modern computer users follow the 
same single tasked-ness (e.g., Salvucci & Taatgen, 2011; 
Spink, Ozmutlu, & Ozmutlu, 2002).  Additionally, 
experiment-driven research cannot account for patterns of 
user task selection, task switching behavior, and users’ 
breaks in natural computer use.  For example, few 
experiments account for users watching videos during the 
completion of their task.  Thus, to gain an accurate 
representation of how users act in their day-to-day usage, 
naturalistic research is required.  Furthermore, little research 
has been completed since Card, et al. (1983) to update the 
constants in the KLM; these may have changed with 
increased usage and with a broader population of users. 

Previous Studies and the KLM Model 
We note here several studies that make suggestions about 
how we should proceed with this work. 

Early Studies and the KLM 
Kinkead (1975) investigated the differences in keyboard 
layouts, and found that there is a nominal difference across 
layouts, suggesting that the speed of typing is based more 
on how practiced a keyboardist is, rather than an “optimal” 
keyboard layout.  Kinkead concluded that a vast majority, 
95%, of keystrokes occur in 2/3 s, or 667 ms, which is much 
slower than the times defined later in Card et al. (1980).  
However, similar to Card el al., these users performed 
prescribed tasks. 

In 1980, Card et al. published a paper outlining the 
Keystroke-Level Model (KLM), a simple tool to aid in the 
designing of interactive computer systems.  The KLM used 
the time required to perform the sub-steps that make up a 
task on a computer to predict the time it takes an expert to 
perform said task (Card et al., 1980).  The original purpose 
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of the KLM was a rough calculation for system design.  
However, in creating the KLM, Card et al. extensively 
studied the sub-tasks, including physical-motor operators 
that make up the task, as well as the mental priming 
required to perform the task.   

Keystroking is the time required to strike one key.  The 
KLM treats all keystrokes the same, regardless of the key.  
These times range from 0.4 s per character for the best typist 
to 1.20 s per character for the worst typist on an unfamiliar 
keyboard. 

 Homing time is defined as the time for a user to move 
their hand between devices.  This motion is from the 
keyboard to the mouse, or vice-versa.  Card et al. reported 
homing time as 0.4 s during a text-editing task.   

Surprisingly, despite dramatic changes in the early 
adoption, frequency of use and format of computers, we 
find few recent studies in this area.  Additionally, even at 
the time of Card et al., the rate-limiting step of computer 
users in text-editing tasks was not the interface of their 
computer, but rather the information-processing capacity of 
the user (Card & Moran, 1986). 

The first challenge is to expand the applicability of the 
research by Card et al. (1980).  To simplify the process of 
creating models that accurately describe computer user 
behavior, Card et al. solely studied the task of text editing 
under several strict restrictions: 

• Users could only be expert computer users 
• The task must be routine 
• Performance must be without errors. 

This contextual rigidity allowed Card et al. to develop the 
Keystroke-Level Model and GOMS (Goals, Operators, 
Methods, and Selection rules), two widely used human-
information processor models.  However, these models do 
not apply to all users, tasks, and metrics.  Both the 
Keystroke-Level Model and GOMS focus on time required 
by experts to complete a task as the unit of measurement.  
These constants are used in ACT-R and EPIC, and 
sometimes with Soar models to check timing predictions.  
These models are unable to address other fundamental 
metrics such as the quality of work.  They also did not study 
users doing tasks that users complete outside of lab 
experiments.  

Thus, this paper focuses on the physical-motor tasks of 
typing and homing, and the time required to perform these 
tasks.  Despite the KLM model allowing 1.35 s mental 
preparation at the beginning and ending of tasks, as well as 
system response time, which is dependent upon the system 
being used, our study examines what constitutes continuous 
typing, the time to perform a keystroke within continuous 
typing, what comprises of a homing, and the time to 
complete a home.   

Card and Moran (1986) 
Three years after the publication of The Psychology of 
Human-Computer Interaction, Card and Moran (1986) 
revisited some of the assumptions and building blocks upon 

which their book was written.  They outlined four interfaces 
for modeling the interaction between humans and comput-
ers: physical, cognitive, conceptual, and task.  These four 
interfaces constitute the foundation of the literature that this 
paper updates. 

Later Updates  
Since the studies of Card, Moran, and Newell, many 
researchers have moved to answer remaining questions, on 
how users interact with computers.  Unfortunately, studies 
to answer these questions typically and nearly exclusively 
occur in carefully controlled, task-oriented contexts  
(MacKenzie, Sellen, & Buxton, 1991; Whisenand & 
Emurian, 1999).   

To that end, we study participants in a naturalistic 
environment to obtain data more representative of actual 
behavior and to build a comprehensive representation of 
how GUIs are used in daily computer interactions. 

Summary 
Thus, the constants in the KLM theory have been used for a 
while and could be updated based on users’ increased 
experience with interfaces.  The data used in the KLM have 
been obtained from experimental studies, as opposed to 
taken from users performing their own tasks on their own 
devices in a naturalistic setting.  To improve our 
understanding, we will record users’ mouse movements and 
keystrokes while they perform their normal daily tasks on 
their own computers.   

Method 
Data was collected by recording the users’ keystrokes and 
mouse movements while they performed their typical tasks 
at home and at work.  We used an anonymizing keystroke 
logger for privacy. 

With this data, we start to determine what constitutes 
typing, and the naturalistic typing speed; a rich area that we 
are just beginning to explore.  We also provide an update to 
the typing constants from Card et al. (1983). 

The input logger records mouse clicks, mouse 
movements, and keystrokes across all tasks. Furthermore, 
such information is useful for inferring patterns of natural 
behavior, such as how long participants use a computer at a 
session, total daily usage, number of keystrokes, typing 
speed, etc. 

Participants encounter the logger only upon the start and 
conclusion of a session, without artificial tasks, distractors, 
or external observers or apparatus. 

Participants  
Of the 45 unpaid participants 18 were male, 12 female, and 
15 declined to report.  In addition, 3 participants were left-
handed, 17 were right-handed, and 25 declined to report 
handedness; however, each participant used their preferred 
hand for using the mouse.  Participants were members of the 
Penn State community, with a majority (20) being 
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undergraduate students in the College of IST, 16 employees 
including office staff and professors, and 9 graduate 
students.  We assigned subjects IDs between 1 and 100.   

Apparatus 
Participants used their own hardware: 44 used Windows on 
PCs, while one used OS-X on Apple hardware.   

We recorded the users’ inputs with Recording User Input 
ver. 2.03 (RUI), a keystroke and mouse logging tool 
(Kukreja, Stevenson, & Ritter, 2006; Morgan, Cheng, Pike, 
& Ritter, 2013) that runs on Windows and Macintosh 
computers.  This modified version of RUI anonymized most 
keystrokes.  Individual keystrokes were replaced with the 
asterisk character; combination key keystrokes (chords), 
including shift, alt, and control preserved the special key 
being pressed with an asterisk to signify a keystroke. 

Design and Procedure 
Participants were provided a thumb drive with RUI or had 
RUI installed on their computer by an experimenter.  RUI 
ran in the background while participants used their comput-
ers.  Sessions typically lasted a workday (mean of 8.18 
hours), ending when the participant terminated RUI and the 
thumb drive was returned to the experimenter.  Participants 
typically recorded four sessions. 

Keystrokes included as continuous typing in later 
analyses met the criteria in Table 1, while user actions 
included as homing in further analysis met the criteria 
defined in Table 2. 

 Table 1: Criteria for including keystrokes 
in continuous typing calculations. 

• Contiguous (no intervening mouse events) 
• Not the first of its action, e.g. must follow a 

keystroke 
• Not an alt or control key chord 
• Occur within 2 s of the previous keystroke 

 
Table 2: Criteria for Homing. 

• Mouse movement following a keystroke; or 
keystroke followed by a mouse movement 

• An additional mouse movement occurs following 
the initial mouse movement of 10 or more pixels; or 
an additional keystroke must follow the initial 
keystroke 

• Occurred in 2 s or less from previous action 

Results and Discussions 
Overall, our 45 participants logged 1,816 hours of 
interaction including over 1.5 million keystrokes.  From the 
~60.3 million records (over 3 GB), we computed derived 
measures that we present in two sections: (a) the naturalistic 
typing behaviors, (b) homing actions.   

Analysis of Keystroke Data 
What is continuous typing?  The typing rate can be 
calculated as the total number of keys divided by time for a 

fixed amount of text.  Analysis of the raw data showed an 
average typing speed over the whole sessions (including all 
pauses) of 13.7 characters per minute or 2.25 words per 
minute (wpm) assuming 82% of characters typed are word 
characters with a word of 5 characters (MacKenzie, 2002; 
Salthouse, 1984). 

Because our data is naturalistic, it is not possible to know 
when the intention to type starts.  So we needed to deter-
mine a cutoff for when typing begins and ends.  In our 
analysis, we define typing as two or more contiguous key-
strokes non-interrupted by mouse movements or button 
clicks.  We computed and plotted the mean time between 
keystrokes.  Figure 1 shows how the typing rate varies as 
the time threshold allowed between keystrokes varies from 
1 ms to 30,000 ms across all users.  At 0 ms, one cannot 
compute a typing rate, and 30 s represents a relatively long 
time between keystrokes.  

In Figure 1, at around 10 s, the mean keystroke time starts 
to flatten.  Ten seconds is still probably too large to consider 
being a dwell time between keystrokes in continuous typing.  
Card, Moran, and Newell (1983) in the KLM and Kieras in 
GOMS (Kieras, 1988) note 1.20 s per keystroke for an 
inexperienced typist on unfamiliar devices.  We thus round 
up and use 2 s as a threshold in the remainder of this paper, 
although Figure 1 shows that the computation of keystroke 
time is sensitive to this threshold. 

 

 
Figure 1: Mean time for keystroke (ms) vs. cutoff time (ms). 
 

Figure 2a shows that the distribution of the times between 
keystrokes (with < 2 s separation) has a long tail.  Figure 2b 
shows that individual distributions also have long tails.  This 
effect is likely caused by distractions, such as leaving the 
keyboard, other task actions performed on other devices 
such as phones, or other events occurring while the user was 
typing or entering short strings. 
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Figure 2a: Keystroke time distribution 2 s threshold  

in 2 ms bins across all users. 
 

 
Figure 2b: Subject 6’s keystroke distribution  

with 2 s cutoff in 20 ms bins. 
 

Using a 2 s threshold (arbitrarily chosen based on 
examining Figures 1 and 2), we observed that the overall 
mean keystroke time is around 195 ms, which falls between 
average (200 ms) and good (120 ms) typists.  Some latency 
in keystroke times may be attributed to interruptions or 
other externalities not controlled in this environment.   

Keystrokes 
Figure 3 shows the distribution of the 1.512 million 
keystrokes by users meeting the criteria in Table 1 (95.6% 
meet the criteria). It shows that users type different amounts.  
Table 3 shows the relationship of dwell time between 
keystrokes and the words per minute.  The mean keystroke 
time was 195.5 ms, equal to 296.7 characters per min. and 
48.3 wpm.  The median keystroke time was 191.2 ms.  
Figure 4 shows the distribution of keystroke times per user, 
with a minimum average time of 76.5 ms (128.5 wpm) and 
a maximum of 291.7 ms (33.7 wpm).  For comparison, the 
base keystroke time of the KLM is 200 ms (49.2 wpm) for 
secretaries (professional) and 280 ms (35.1 wpm) for non-
secretary (non-professional) typists (Card et al., 1983).  Our 
findings suggest that users type faster than their cohorts in 
1983.   

 
Table 3: Relationship of keystroke times to words per 

minute (wpm) 

Keystroke 
Time (ms) 

Keys / 
Minute 

Word Chars / 
Minute 

Words / 
Minute 

50 1200   984 197 
75 800   656 131 

100 600   492 98 
150 400   328 65 
200 300   246 49 
250 240   197 39 
300 200   164 33 
350 171   141 28 

 

 
Figure 3:  Distribution of keystrokes by user using 2-s 

cutoff.  X-axis labels indicate participant IDs.  
 

 
Figure 4: Distribution of mean keystroke times by user. 

 

Homing 
Users homed (moved their hand) from keyboard to mouse 
51,989 times, and from mouse to keyboard 45,302 times 
(total: 97,291 times).  Table 2 shows the criteria constituting 
homing.  Combined, this rate is 53.6/hour or 0.89/minute.  
This action occurs once for every 15.4 keystrokes (using all 
keystrokes).   

Figure 5a and 5b shows the distribution of homing times 
between the keyboard to mouse and vice-versa.  The time to 
home took less time in either direction than the 0.40 s 
predicted by the KLM (Card et al., 1983).  Homing had a 
mean value of 0.16 s for keyboard-to-mouse and 0.32 s for 
mouse-to-keyboard.  The combined mean is 0.230 s.  The 
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difference in the times between directions implies that the 
user needs additional time to return hands to the keyboard to 
continue typing; while when starting to mouse, the user may 
often be still typing while the hand is moving towards the 
mouse.  These results suggest that the direction of homing 
(mouse to keyboard vs keyboard to mouse) are different 
actions, do not occur equally often, and could be separated 
into two distinct constants to give more accurate predictions. 

We also observed a large number of occurrences—
8051—of 0 ms homings (combined).  These times may 
indicate co-joint typing and mousing or typing, or accidental 
trackpad movements.  

Figure 5b and to a lesser extent Figure 5a, show a small 
peak in the distribution around 500-700 ms.  The second 
peaks of the distribution were not expected; their existence 
might be due to two different user behaviors.  We speculate 
that the 0-100 ms response time represents homing when 
one hand is on the keyboard and the other is simultaneously 
on the mouse, allowing near instantaneous homing, while 
the other response time represents a short delay between 
keystroke and homing.  

Therefore, we see that movements between keyboard and 
mouse occur about once for every 15.4 keystrokes, and that 
this time is likely now done in two strategies: (a) while 
typing one moves the mouse with the other hand, and (b) 
stop typing to use the mouse with the last hand to type.  The 
former is somewhat faster.  We also saw that time to key-
board and time to mouse might be different actions.  It 
might be useful to separate these two actions into separate 
actions to improve predictions where this is desirable. 

 

 
 

Figure 5a: Distribution of keyboard to mouse times;  
mean of the whole distrbution is 0.16 s.  

 

 
Figure 5b: Distribution of mouse to keyboard times;  

mean of the whole distrbution is 0.32 s. 
 

We also saw that from the relative frequency of the two 
types of homing behaviors, that users tend to end a short set 
of unit tasks on the keyboard (there are more mouse to 
keyboard actions) than end a session with using the mouse 
(there are fewer keyboard to mouse actions).   

There can be some ambiguity to what constitues homing, 
as the user may have their hand on the mouse causing a 
stream of mouse and keyboard data that still adheres to the 
criteria we proposed.  Knowledge of the keys typed as well 
as the preferred mousing hand of the user could lessen this 
ambiguity.  Furthermore, if the user is using a laptop with 
built in trackpad, the user could be mousing with their 
thumb and the remaining fingers not leaving the keys. 

Conclusions 
This study can only be a start to exploring naturalistic 
behavior with computers—there is a much greater range of 
environments and types of users than we could cover here.  
However, we were able to provide a general summary of 
naturalistic user behavior and to update several user 
constants used by many cognitive architectures.  Naturalistic 
user studies of computer interaction can provide a new 
domain for large data analyses.  

We found the definitions of these measures more 
important than we initially thought.  For example, the 
definition of typing or homing depends on more than just 
dwell time.  There were many additional hidden aspects. For 
instance, how do we detect when a user was away from the 
keyboard?  When did the user switch from the keyboard to 
the mouse?  Was the user moving the mouse and typing at 
the same time or was there desk instability that lead to the 
mouse appearing to have moved whilst the user was typing? 

Updating the KLM Constants 
We saw in this naturalistic study that the typing rate is 
sensitive to typing threshold.  We can use this approach in 
later analyses.  This result also reminds us that typing speed 
is not a fixed rate but a distribution, and that the tails of this 
distribution might be important for some analyses.  

The amount of typing over a workday is not very large, 
(average of about 7,700 keystrokes).  Subsequently, the 
typing rate over a workday is not fast (about 2 wpm).  While 
the amount of typing varied by user by over a factor of 20, 
the typing rate varied by only a factor of 2.   

These results suggest that users are typing faster than 
Card et al.’s (1980) KLM expert times, and that current 
naturalistic typing is not much slower than previous timed 
typing.   

We suggest that architectures that use these constants 
(e.g., ACT-R, EPIC) (a) update their typing rate, (b) allow 
for additional concurrent motor commands, (c) split homing 
actions into two distinct actions, and (d) use these shorter 
times for homing tasks.  

Limitations 
While we include a range of faculty, staff, and students, our 
participants were all from the same university environment.  
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A wider selection of users is likely to provide a wider range 
of behavior.  Users from different work domains, a greater 
number of users using computers more at home or in other 
environments, and older and younger users might lead to a 
different constants and different results.  It may be useful to 
rerun this study with those more varied types of users.   

While we analyzed a large amount of data, observing 
additional users could provide more support for these 
conclusions.   

We were limited by the anonymization of the data: the 
keystroke logger anonymized many of the details of the data 
making it difficult to determine what, task the users were 
performing.  While anonymization was necessary for the 
protection of participants’ privacy, with non-character key 
data such as return, arrow keys, whitespace, home key, etc., 
we would have determined more conclusively the tasks 
performed.  For example, was the user typing a document, 
or programming; playing a game that required the use of 
arrow keys, or browsing a webpage and pressing page down 
to browse?  The difference between tasks could assist in 
explaining the differences in rate and quantity between 
users.  For example, space and enter key laden tasks can be 
more time consuming from a typing perspective, as the 
space and enter keys require more time to type (300 ms and 
550 ms on average respectively) (Kinkead, 1975; Ostry, 
1983).  Alternatively, users who are browsing may home 
more frequently. 

 Furthermore, anonymization made it impossible to 
determine error rate, another interesting result that could 
help design systems.  Logging editing keys may have 
provided context that would indicate when errors occurred, 
through a series of delete or backspace keys following a 
number of character and space keystrokes.   

Further Studies 
Our analyses performed led to further questions concerning 
how users interact with computers.  Further research that 
would yield valuable insight includes studies of the use of 
shortcut key chords and non-anonymized or less 
anonymized keystrokes.  Having associated details with 
semi-non-anonymized keystroke data could eliminate 
potential artifacts of simple document browsing, web 
browsing, or game playing and provide novel insights into 
how people multitask.   

  As wireless devices become increasingly prolific, 
research centered on touchscreen input and touchscreen 
typing would also be fascinating.  The difference in these 
devices between manufacturers and the lack of a quality 
keystroke logger would constitute a limiting factor for 
completing this research, however. 
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Abstract

In this work we explore how different cognitive processes af-
fected typing patterns through a computer game we call The
Typing Game. By manipulating the players’ familiarity with
the words in our game through their similarity to dictionary
words, and by allowing some players to replay rounds, we
found that typing speed improves with familiarity with words,
and also with practice, but that these are independent of the
number of mistakes that are made when typing. We also found
that users who had the opportunity to replay rounds exhibited
different typing patterns even before replaying the rounds.
Keywords: Typing; Cognitive Model; Keyboard; Input De-
vice; Cognition; Speed-Accuracy Trade-off; Speed; Accuracy;
Inter-keystroke Interval; Typing Mistakes; Human-Computer
Interaction; Human Information Processing; Human Behavior.

Introduction
In this paper we present early exploratory work toward cre-
ating cognitive models of interaction from patterns in typing
that can be applied to, among other things, identifying the
cognitive processes at play when users are typing on key-
boards. In particular, we focus on the use of a keyboard as
a window into interaction patterns that are reflective of the
user’s cognitive state. By mining for patterns on the usage
of input devices we aim to unobtrusively obtain a snapshot of
users’ perception and decision-making processes in real-time.

To explore typing patterns and their relationship to cogni-
tion we created a computer game that involved typing words
of different lengths with varying word shapes (Bouwhuis &
Bouma, 1979). Some participants were able to replay rounds.
We recorded typing speed and accuracy expecting an im-
provement as the rounds were replayed, as well as better
speed and accuracy while typing words more similar to dic-
tionary words. By changing the nature of the words being
typed, we were able to alter the cognitive process required to
type them, allowing us to measure how the differences in cog-
nition are reflected in typing patterns. Our overarching goal
beyond this paper is to be able to create models of interaction
that would allow real-time detection of the user’s cognitive
state across a wide variety of tasks and interfaces.

Related and Prior Work
Computational Cognitive Modeling
When typing or pointing at targets in a graphical user inter-
face, users exhibit distinctive patterns in the timing of their
keystrokes (Monrose & Rubin, 1997) and the movement of
the mouse (Ahmed & Traore, 2007). At a more abstract level,
human decision-making has also been studied. A range of
“microstrategies” (Gray & Boehm-Davis, 2000) applied to

low-level HID usage have been identified. Microstrategies
are characteristic choices that users make, without extensive
deliberation, between different actions to achieve their goals.

A representative example of research on microstrategies is
due to Gray and Fu (2004), where participants were given a
task to perform in a user interface that contained an informa-
tion box, with a variable cost of accessing that information
in different conditions: the information could be permanently
visible or it could require a mouse click (with a temporary
lockout) to see. They found patterns in completion times, er-
ror rates, and decisions made by participants across the con-
ditions, which could be explained in terms of trade-offs be-
tween perceptual/motor and memory retrieval effort. Partici-
pants’ behaviors depended in subtle ways on cognitive biases
(e.g., a preference for “knowledge in the head” rather than
perfect knowledge in the world).

Models of Typing
Transcription typing has been well-studied, with some work
looking at how typing speed varies with unfamiliar material.
Salthouse (1986) observes 12 ”basic phenomena” about typ-
ing, one of which describes the reduction in the typing speed
when the typist is presented with random sequences of letters.

John (1996) introduced the TYPIST model that “can be
used to make quantitative predictions of performance on typ-
ing tasks”. This model is based on the Model Human Proces-
sor (MHP) (Card, Moran, & Newell, 1986). TYPIST applies
the MHP to human typing tasks for skilled transcription typ-
ists in order to quantitatively predict the performance of the
typists. It processes text at the level of chunks, which could
be words, syllables, or letters. TYPIST is applied to several
common typing tasks, and its predictions of the performance
of the typists come to within 20% of empirical measurements.

While previous work has focused on skilled or “expert”
typists, little work has explored typing patterns of average
users. While Feit, Weir, and Oulasvirta (2016) recently ex-
plored the mechanics and strategies of everyday typists, the
cognitive processes involved in typing different types of con-
tent remains largely unexplored.

Method
Because of the exploratory nature of this work, we focused
primarily on establishing internal validity. Our main goal was
to get insight into how the cognitive processes associated with
typing change in relation to changes in what is being typed
and previous exposure to the material. Our approach focuses
on the use of computer games that elicit examples of different
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typing behaviors. In particular, we designed and implemented
The TypingGame—a casual game that we present below.

Using a computer game provides some advantages at this
early stage of our research. First, because game mechanics
often result in changes to the details of tasks, users tend to
be more accepting of changes to an interface or expectations
on their performance. Second, and perhaps more importantly,
computer games provide motivational context. In order to get
reasonable data, users had to have an incentive to perform the
task well. The “gameification” of the task enabled us to study
users under experimental conditions with relatively higher en-
gagement when compared to a stand-alone typing task.

Target Population and Sampling
We targeted computer users of at least 18 years of age, and
recruited using a combination of convenience and snowball
sampling. We advertised our study primarily to the Com-
puter Science student body at the authors’ institution, but also
posted fliers on nearby bulletin boards. Participants were of-
fered a base compensation of $5.00 and a maximum of an
additional $2.00 for each game round they completed, for a
total maximum of up to $25.00 based on their gameplay per-
formance. Interested individuals were asked to sign up online
for an available time slot and location.

Our sample consisted of 43 participants, of which 14 were
female and 29 were male. Before the game, we asked the
participants to rate their typing skills by choosing one of these
options: Beginner, Intermediate, Advanced, or Expert. Of
the females, 8 reported their skills as intermediate, and 6 as
advanced. In the case of the male participants, 2 reported their
skills as beginner, 14 as intermediate, and 13 as advanced.
The average age of the female participants was 23.57 (SD =
2.53) years, and for the males, it was 23.90 (SD= 2.13) years.

The Typing Game
Our implementation of The Typing Game was written in
Adobe Flash CS5.5 and was designed to run on a Web
browser. The goal of the game is to type words that are shown
on a 4⇥ 4 game board grid as fast as possible. Sets of be-
tween 1 and 4 words, initially shown on the first row of the
grid, one per column, drop down one row at periodic intervals
until they are correctly typed or fall off the board. Words that
are correctly typed immediately disappear from the board. If
a mistake is made while typing a word, the word resets and
must be typed again starting with the first letter.
The Game Experience Upon launch, our game randomly
assigned the player to one of three experimental conditions.
To ensure that the game screen had input focus and that the
keyboard input was received by our game interface, the first
screen prompted the player to press the SHIFT-N key com-
bination to begin and presented a small demographics sur-
vey. The following screen presented a small survey that asked
about the player’s background and typing habits. Next, the
game asked the participant to type the sentence “the quick
brown fox jumps over the lazy dog”. This sentence was used
to ensure that the keyboard was working properly. Once this

Table 1: Description of the rounds in our Typing Game.
Round Round Word Length Word Type

Practice Practice Short Dictionary word1 DictM Medium

2 ShapeS Short Transposed letters
preserving word shape3 ShapeM Medium

4 ShapeL Long

5 NoShapeS Short Transposed letters
breaking word shape6 NoShapeM Medium

7 NoShapeL Long

8 RandS Short
Random letters9 RandM Medium

10 RandL Long

sentence was correctly typed, the player was prompted to
press the SHIFT-N key combination to proceed to an in-game
tutorial. The player was asked to press the space key to begin
the tutorial, which started by explaining the game mechan-
ics in an interactive manner prompting the player to type the
word “go” in order to move to the next screen. This illus-
trated how words were removed from the game board once
they were correctly typed. The next screen in the tutorial il-
lustrated how sets of words would drop from the row on every
time interval, and how drops affected scoring.

Next, the game introduced participants to a practice round
that accurately simulated the mechanics that the player would
experience in the game rounds. In order to advance to the
game rounds, the player was required to earn at least $1.70
during the practice, and was required to replay the round until
she did. The money earned during the practice round did not
count towards the participant’s final compensation.

To ensure that players were ready, each round had a stag-
ing screen that prompted the participant to press the space key
to begin. After each round, a summary screen presented the
round number, the amount earned, and a prompt to press the
SHIFT-N key combination in order to proceed (some condi-
tions also displayed a prompt to press the SHIFT-R key com-
bination to replay the round, as described below). In addi-
tion to the practice round, participants completed a total of
10 game rounds, which did not require a minimum score.
Rounds A single game round contains multiple word sets that
initially appear on the first row, but on different columns, of
the game board grid. Our game consisted of 10 rounds vary-
ing the type of words and their length (see Table 1).

We designed our rounds with four types of words, all in
lowercase: 1) dictionary words (e.g., “quit”) , 2) dictionary
words with one or more transposed letters, preserving the
general shape of the word (e.g., “tiem” for time), 3) dictio-
nary words with one or more transposed letters, breaking the
general shape of the word (e.g., “gluf” for gulf), and 4) words
composed of random letters, filtering out common bi-grams
and tri-grams to avoid confounding our variables. The idea
behind the differences in word choices was to explore how
the similarity of the word being typed to a real word affected
the typing patterns. For the same reason, our rounds had dif-
ferent word lengths (short, medium, and large, as shown in
Table 1, with 3-4, 4-5, and 5-6 characters, respectively).
Scoring Every round begins at the highest score ($2.00) and
decreases by $0.05 (until it reaches $0) for every time a set of
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untyped words drops down one row. For a player to earn the
maximum score, she has to type every word correctly while
they are still on the first row. The amount to be earned for a
round is displayed at the bottom right of the game screen and
is updated as the words drop.

Depending on the experimental condition, some players
had the option to replay rounds by pressing the SHIFT-R key
combination during a round’s summary screen. The score
earned for a round would be the one obtained on the last
replay of that round, regardless of whether it was lower or
higher than the score obtained in previous attempts.
Visual Design The 4⇥ 4 game board grid has a black back-
ground, where each cell is 200px wide and 100px tall. A cell
with an untyped word will have a gray background. Every
word uses the Consolas font in 18 point. The color of the font
is initially black, but as a word is typed, the color of correctly-
typed letters changes to a dark gray to show progress.

Experimental Procedure
The researchers asked participants to meet them at a desig-
nated room during a time slot previously agreed upon. After
providing informed consent, participants were given the op-
portunity to ask questions before moving on to the data col-
lection phase. At this time, the researchers would instruct par-
ticipants to sit in front of a computer that was previously set
up to run our game using the Google Chrome browser in full-
screen mode. This computer was instrumented with a USB
Microsoft Wired Keyboard 600 configured with US Ameri-
can visual and functional keyboard layouts. The researchers
asked participants to notify them once they reached the final
screen of the game and stepped out of the room, leaving the
participants alone with no distractions.

Once they completed the game, participants would notify
the researchers who would then record the participant’s earn-
ings and a unique game-generated code from the last game
screen onto a paper form that participants would later use to
collect their compensation. The purpose of this last step was
to avoid associating participants with the data that was col-
lected from their participation.

Experimental Conditions
Participants were randomly assigned to one of three experi-
mental treatments.
• Replay not allowed: Participants were not allowed to vol-

untarily replay any rounds. The practice round could only
be replayed until the minimum score of $1.70 was ob-
tained. The summary screen of every round only allowed
participants in this treatment to advance to the next round.

• Replay encouraged: Participants were allowed to vol-
untarily replay any round an unlimited amount of times,
including the practice round after the minimum score of
$1.70 was obtained. The summary screen of every round
showed both the key combination to press in order to ad-
vance to the next round and the key combination to press
in order to replay the round.

• Replay allowed: Participants were allowed to voluntarily
replay any round an unlimited amount of times, including
the practice round after the minimum score of $1.70 was
obtained. The summary screen of every round showed both
the key combination to press in order to advance to the next
round and the key combination to press in order to replay
the round, but the latter was displayed as if it were inactive
(grayed out) despite being functionally equivalent to the
replay encouraged treatment.
We found that participants in the Replay allowed treat-

ment never attempted to replay a game round and therefore
behaved in the same way as participants in the Replay not
allowed treatment. We believe that displaying the replay
prompt as inactive was enough to make participants believe
that they did not have the ability to use that feature. For
the purpose of our analyses, we will treat all participants
in these two treatments as a single group. We will refer to
these groups as the replay (16 participants) and no replay
(27 participants) conditions based on whether they voluntar-
ily replayed rounds or not, respectively.

Logs and Analytics
We had three independent variables in our experiment: 1) the
Round of our game being played, which modified the length
and type of words that players had to type, 2) the Condition,
which dictated player’s ability to replay rounds, and 3) the
Attempt, which indicates how many times the round is being
replayed. In the case of the no replay condition, the value of
the Attempt of a game round is always 1.

Our implementation of The Typing Game captured the “key
down” and “key up” keyboard events, causing each keystroke
to be recorded as two events. In addition to the key that gen-
erated the event, our game also collected a timestamp, with
millisecond precision, of when each event occurred. Each key
event was also associated to the round or screen active when
it occurred, to any word on the board to which it may have
corresponded, whether the keystroke was correct or not, and
whether it completed a word on the board. These low-level
data allow us to calculate higher level metrics. In particular,
in this paper we define the following analytics:
• Inter-keystroke interval (IKI): the number of millisec-

onds elapsed between the “key down” events of each con-
tiguous pair of keystrokes in a correctly-typed word. For
the purposes of this metric, we excluded events from words
that were typed with mistakes.

• Number of mistakes: the count of keystrokes during a
round that did not clear the game board, or that did not
result in the board being one character closer to being
cleared. For the purposes of this metric, we did not count
whitespace characters as mistakes.
The IKI is a common metric for typing speed (Salthouse,

1986), while the number of mistakes is a natural metric for
typing accuracy. We will refer to typing speed as the inverse
of the IKI, where a smaller IKI represents an increase in speed
(and vice versa), and to typing accuracy as the inverse of the
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number of mistakes made, where fewer mistakes indicate a
higher accuracy (and vice versa).

Formally, our hypotheses are:
H1: Practice increases speed – The average IKI in a round will

be smaller when replaying.
H2: Practice increases accuracy – The average number of

mistakes in a round will be smaller when replaying.
H3: Familiar words are typed faster – The average IKI of a

word will be smaller the closer the word is to a dictionary
word.

H4: Familiar words are typed more accurately – The aver-
age number of mistakes made when typing a word will be
smaller the closer the word is to a dictionary word.

Analysis and Results
To ground the internal validity of our study with respect
to both speed and accuracy, we compared the first attempt
of the practice round between both the replay and no re-
play conditions. Because the game experience for both
conditions is identical at this point in the game, we ex-
pected no substantial difference between the two. To eval-
uate the significance of the difference in the average IKI be-
tween the replay (M = 164.32,SD = 92.45) and no replay
(M = 163.62,SD = 121.77) conditions on the first attempt
of the practice round, we conducted a Welch’s independent-
samples t-test, which revealed no significant difference in
speed (t(1170.2) = �0.12995, p = 0.8966). To evaluate the
significance of the difference in the average number of mis-
takes between the replay (M = 5.44,SD= 5.51) and no replay
(M = 5.78,SD = 5.89) conditions on the first attempt of the
practice round, we conducted a Welch’s independent-samples
t-test, which revealed no significant difference in accuracy
(t(33.331) = 0.19074, p = 0.8499).

Having established the first attempt of the practice round
as a valid baseline across our experimental conditions, we
used the individual player’s averages of IKI and number of
mistakes on this attempt of this round to normalize their game
rounds’ IKI and number of mistakes, respectively, by dividing
the measured value by the average. We use these normalized
values for the rest of our analyses. Descriptive statistics for
IKI and number of mistakes made in each round by attempt
are shown in Table 2 and Table 3, respectively.

Improvement with Practice
This part of the analysis focuses on the replay condition as it
was the only one that allowed replaying rounds. Even though
participants in the replay condition were allowed to replay as
many times as they wanted, the most participants replayed a
single round was 8 times. However, because at most 3 partic-
ipants replayed a single round more than 4 times, we decided
to focus on the first 4 attempts in our analysis.

Our hypothesis H1 expects there to be an improvement
in speed as rounds are replayed. We conducted a facto-
rial ANOVA to examine the effects of Attempt and Round

Table 2: Normalized mean and standard deviation of the
inter-keystroke interval of participants on the ”replay” con-
dition on each of the first four attempts of every round.

Attempt 1 Attempt 2 Attempt 3 Attempt 4

M SD M SD M SD M SD

DictM 1.03 0.58 1.02 0.61 0.96 0.63 0.96 0.41

ShapeS 1.22 0.69 1.18 0.60 1.12 0.77 1.15 0.48

ShapeM 1.29 0.90 1.24 0.95 1.13 0.70 1.05 0.55

ShapeL 1.52 1.07 1.40 0.92 1.36 0.86 1.25 0.75

NoShapeS 1.21 0.65 1.15 0.55 1.06 0.50 1.05 0.60

NoShapeM 1.37 0.94 1.26 0.72 1.19 0.72 1.11 0.68

NoShapeL 1.46 0.99 1.42 0.82 1.21 0.64 1.22 0.75

RandS 1.41 0.89 1.25 0.72 1.18 0.55 1.24 0.80

RandM 1.68 1.36 1.58 1.03 1.37 0.85 1.54 1.50

RandL 1.95 1.49 1.91 1.45 1.77 1.14 1.56 1.03

Table 3: Normalized mean and standard deviation of the num-
ber of mistakes made by participants on the ”replay” condi-
tion on each of the first four attempts of every round.

Attempt 1 Attempt 2 Attempt 3 Attempt 4

M SD M SD M SD M SD

DictM 2.85 2.74 2.98 2.86 2.98 3.15 2.2 N/A

ShapeS 3.17 3.85 2.40 1.69 2.24 1.043 2.2 0.28

ShapeM 2.13 2.07 5.07 4.20 3.39 2.94 5 N/A

ShapeL 5.68 7.47 5.09 3.35 3.08 1.88 4.38 4.14

NoShapeS 2.46 2.18 2.69 1.54 2.65 2.07 4.65 5.93

NoShapeM 3.767 3.48 3.30 1.97 3.06 1.65 5.05 0.64

NoShapeL 6.19 6.63 4.10 2.34 5.17 3.10 6.44 5.24

RandS 1.91 2.06 1.99 1.90 1.87 1.46 2.18 1.78

RandM 4.94 3.94 4.03 2.13 5.48 1.90 4.37 4.20

RandL 4.72 4.89 2.71 1.81 4.03 3.52 6 2.83

on the IKI. The results yielded a main effect for the at-
tempt (F(1,15471) = 102.4765, p < 0.001), indicating that
the typing speed of participants significantly increased (i.e.,
the IKI decreased) the more rounds were replayed. The
main effect of the round was also significant (F(9,15471) =
102.4765, p < 0.001). The interaction effect was non-
significant (F(9,15471) = 0.8436, p > 0.1). This results is
consistent with our hypothesis H1.

Our hypothesis H2 expects there to be an improvement
in accuracy as rounds are replayed. As before, we con-
ducted a factorial ANOVA to examine the effects of At-
tempt and Round on the number of mistakes made. The
results yielded a main effect for the round (F(9,284) =
3.2348, p< 0.001), indicating that the typing accuracy of par-
ticipants is significantly dependent on the round that was be-
ing played. The main effect of the attempt was not significant
(F(1,284) = 0.0693, p> 0.1). The interaction effect was also
non-significant (F(9,284) = 0.4621, p > 0.1). This results
contradicts our hypothesis H2.

Familiarity with Words
For this analysis we look at how the different types of words
in our game rounds affected speed and accuracy. In particu-
lar, we expected words that are more similar to real words to
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be typed faster (H3) and more accurately (H4). In decreas-
ing order of similarity to real words we have dictionary words
(DictM), dictionary words with transposed letters preserving
the shape of the word (ShapeS, ShapeM, and ShapeL), dictio-
nary words with transposed letters breaking the shape of the
word (NoShapeS, NoShapeM, and NoShapeL), and random
letters (RandS, RandeM, and RandL).

(a) Inter-keystroke interval

(b) Number of mistakes

Figure 1: Comparison of the average normalized inter-
keystroke interval and normalized number of mistakes by
word type on the first attempt of every round.

The average IKI increases as the words participants typed
resembled less real words (see Figure 1(a)), as predicted
by H3. To evaluate significance of this difference we con-
ducted a factorial ANOVA that explored the effects of word
length, word type, and condition on IKI. The results yielded
statistically significant interactions between the word type
and word length (F(4,28374) = 22.9631, p < 0.001), be-
tween word length and condition (F(2,28374) = 9.2675, p <
0.001), and between word type and condition (F(3,28374) =
10.4835, p < 0.001). The interaction between word length,
word type, and condition was not significant (F(4,28374) =
0.1962, p > 0.1). Simple main effects analysis showed sig-
nificant differences in speed dependent on word length (p <
0.001), word type (p < 0.001), and condition (p < 0.001).
This result is consistent with hypothesis H3.

Our hypothesis H4 expects participants to be more accu-
rate on words that are closer to dictionary words. Figure 1(b)
shows the number of mistakes made by our participants ac-
cording to the type of word being typed. To evaluate these
differences we conducted a factorial ANOVA that explored
the effects of word length, word type, and condition on the
number of mistakes made. The results yielded a statistically
significant interaction between the word type and word length

(F(4,554) = 3.0836, p = 0.01578). All the other interactions
were not significant. Simple main effects analysis showed a
significant difference in accuracy dependent on word length
(F(2,554) = 16.8025, p < 0.001). We found no statistically
significant difference in accuracy dependent on the type of
the word. The lack of significance of the effect of the word
type contradicts our hypothesis H4.

Additional Analyses
To obtain more insight we ran additional tests to compare the
replay and no replay conditions on both speed an accuracy
metrics, both on the first attempt of every round, and with up
to 4 replays (for the replay condition; the no replay condition
only had one attempt per round).

(a) Inter-keystroke interval

(b) Number of mistakes

Figure 2: Comparison of the average normalized inter-
keystroke interval and normalized number of mistakes by
condition on the first attempt of every round. The vertical
lines separate rounds by word type.

When comparing the first attempt of every round be-
tween conditions we found that the mean IKIs of the re-
play condition were consistently smaller than those of the
no replay condition (see Figure 2(a)). Using a Welch’s
independent-samples t-test, we found a significant difference
in speed on the first attempt of every round between condi-
tions (t(18384) = 10.236, p < 0.001).

In contrast, as shown on Figure 2(b), we don’t see a clear
distinction when comparing the number of mistakes made
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on the first attempt of every round between conditions. To
determine significance difference we conducted a Welch’s
independent-samples t-test, which revealed no significant dif-
ference in accuracy on the first attempt of every round be-
tween conditions (t(350.59) =�0.59744, p = 0.5506).

Discussion
The above analysis confirms that typing speed improves with
practice and when the words are more familiar. Surprisingly,
we find that this improvement in speed is not accompanied by
an improvement in typing accuracy neither with practice nor
with familiarity with the words being typed. The number of
mistakes made cannot be used to explain the reduction in IKI.

We saw that on the first attempt of the practice round,
where the game experience is identical between conditions,
all of our participants behave similarly. However, as the game
progresses, participants in the replay condition significantly
increase their typing speed without any improvement in the
number of mistakes they make, indicating that the speed im-
provement is not attributable to an increase in accuracy. Be-
cause the only difference between conditions is the ability
to replay rounds, a plausible explanation for this behavior
lies in the fact that the cost (in terms of mathematical util-
ity) of making mistakes is smaller than the reward of earn-
ing a higher compensation by typing faster, because the op-
portunity to replay the round is always there. This behav-
ior is consistent with research on task accomplishment strate-
gies, where there exists a trade-off between speed and accu-
racy (Barik, Chakraborty, Harrison, Roberts, & Amant, 2013;
Gerjets, Scheiter, & Tack, 2000; Heitz, 2014). We find sup-
port for this explanation in our data when we compare the
typing speed on the first attempt of every level between the
replay and no replay conditions (see Figure 2(a)). On these
first attempts, players in both conditions have had the same
exposure to the words on each round, ruling out familiarity as
an explanation for the significant difference in speed between
conditions. We see that participants in the replay conditions
are consistently and significantly faster than participants in
the no replay condition after being exposed to the possibility
of replaying, whereas this difference is non-existent on the
first attempt of the practice round where they have not been
exposed to this game mechanic.

Our results show that speed has a more direct relationship
to the nature of what is being typed than the number of mis-
takes that are made while typing. This suggests that by in-
specting typing speed a system can be more effective at de-
tecting anomalies (and possibly identifying the cause of the
anomaly) than looking at the number of incorrect attempts
alone. Similarly, our results indicate that typing speed can be
used to identify the familiarity to the text being typed, which
can be used to compare to a known baseline.

Conclusions
In this work we explored how different cognitive processes
affected typing patterns by manipulating the similarity of

words to dictionary words, and by allowing participants to
replay rounds of The Typing Game. We found that the typing
speed improves with familiarity with words and with practice,
but that these are independent of the number of mistakes that
are made when typing. We also found that users exhibit dif-
ferent typing patterns when they are made aware of a penalty
for mistakes than when they don’t expect consequences for
mistakes. Our results allow us to better understand the cogni-
tive processes involved in typing.

There are several limitations to consider when interpreting
our results. As mentioned earlier, we focused on establish-
ing internal validity of our study, giving our first steps toward
building cognitive models of input device interaction patterns.
Firstly, because our sample was comprised mostly of Com-
puter Science students, the typing proficiency of our partici-
pants is probably well above average, which is a threat to the
external validity of our findings. Secondly, our game did not
attempt to establish ecological validity, but was instead de-
signed to elicit specific behaviors that manipulated the cogni-
tive processes required to complete the game rounds. Thirdly,
the nature of the words included in our game was also in-
tentionally limited, and did not include numbers, uppercase
letters, nor special characters. Despite these limitations, the
empirical data we collected will allow us to generate cogni-
tive models from interaction patterns of real users that can
then be validated with a more representative sample and on
multiple domains, pointing to avenues for future work.

Future Work
The data we collected from The Typing Game is incredibly
rich, and this work presents preliminary results that we will
use as stepping stones toward creating the cognitive models
we discussed. We have already started working on a playback
and visualization tool that will enable us to not only inspect
and tag our data in more detail, but also to tweak and vali-
date our assumptions as our models are created. We would
like to explore how typing patterns differ with a more diverse
character set, such as including capitalization, special char-
acters and punctuation, and texts of different lengths (e.g., a
paragraph instead of a single word).

With a better understanding of typing phenomena and their
relationship to cognition, we expect to validate our models on
multiple domains. In particular, we aim to validate our mod-
els in domains that more closely resemble real-world tasks.

We also plan to investigate cognitive models of different
input device usage. We expect that certain domains would
benefit from models of multiple input devices simultaneously
in order to improve the accuracy of their predictions, but also
in order to provide a richer characterization of usage patterns.
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Abstract

Spreading activation is an important component of many com-
putational models of declarative long-term memory retrieval
but it can be computationally expensive. The computational
overhead has led to severe restrictions on its use, especially in
real-time cognitive models. In this paper we describe a series
of successively more efficient algorithms for spreading acti-
vation. The final model uses lazy evaluation to avoid much
of the computation normally associated with spreading acti-
vation. We evaluate its efficiency on a commonly-used word-
sense disambiguation task where it is significantly faster than
a naive model, achieving an average time of 0.43ms per query
for a spread to 300 nodes.

Keywords: cognitive architecture; context-sensitive re-
trieval; Soar; semantic memory; spreading activation.

Introduction
As cognitive modeling moves to more complex and real-
world tasks, there is a challenge of maintaining efficient, scal-
able, context-sensitive access to long-term knowledge. In
prior research, our group developed efficient and scalable
algorithms for context-free cue-based retrievals (Derbinsky,
Laird, & Smith, 2010). In this paper, we extend that work to
context-sensitive retrievals by developing efficient and scal-
able algorithms for spreading activation (Anderson, 1983b).

In cognitive architectures, such as Soar (Laird, 2012) and
ACT-R (Anderson, 1983a), working memory defines the con-
text—the agent’s task-relevant knowledge. Spreading acti-
vation supports context-sensitive retrieval by biasing the re-
trieval of elements from long-term declarative memory to
those that have direct and possibly indirect long-term asso-
ciations to structures in working memory. Previous work has
focused on mitigating the cost of spreading activation through
using high-performance computers, external data-base tech-
nology, and parallelism (Douglass & Myers, 2010; Chen,
Petrovic, & Clark, 2014; Edmonds, Atahary, Taha, & Dou-
glass, 2015). The expense of spreading activation has led
cognitive modelers to severely limit the depth of spread or to
avoid it completely. Efficient spreading could dramatically
increase its use in cognitive models and decrease the time
it takes to run simulations. It could also enable spreads to
greater depth, so as to extract knowledge that is latent within
the structure of an agent’s long-term memory. Finally, effi-
cient spreading would support its use in real-time cognitive
models and AI agents.

As in our prior work, our investigations are within Soar.
Soar provides an efficient platform, both in terms of overall
performance, but more specifically in terms of an efficient

implementation of long-term declarative memory. For cogni-
tive modeling, Soar’s decision cycle corresponds to the pro-
duction firing cycle of ACT-R, which maps to approximately
50ms of human behavior. However, on a standard work-
station, Soar’s decision procedure runs at less than 0.3ms,
even with large numbers of rules and declarative memory el-
ements. The essence of this paper is adding spreading ac-
tivation to Soar with a simple naive algorithm, then recon-
ceptualizing that algorithm through a series of optimizations.
Those optimizations take advantage of important regularities
in the dynamics of Soar’s long-term semantic memory. The
ratio of changes to the context (working memory) to the to-
tal number of elements in the context is small. The ratio of
long-term memory changes to the total number of elements
in the long-term memory is even smaller. Many queries of
long-term memory are unambiguous and even those with am-
biguity are often constrained to only a few possibilities. We
evaluate these optimizations on a word-sense disambiguation
task that has proven usual for evaluating efficiency of long-
term memory retrieval in the past (Derbinsky & Laird, 2011).

Background
In the Soar cognitive architecture, working memory main-
tains an agent’s current knowledge of its task and environ-
ment, including active goals, results of perception, inferences,
and retrievals from long-term memory. Behavior is condi-
tional on the contents of working memory, so that for infor-
mation to influence behavior, it must be in working memory.

Semantic memory contains the agent’s long-term declar-
ative knowledge, such as facts about the world, and corre-
sponds to ACT-R’s long-term declarative memory. Informa-
tion can be retrieved from semantic memory into working
memory via a query. A query is initiated using a cue that
is composed of a single-level symbolic directed graph, an-
chored in a single node. Consider an example where there
has previously been a retrieval for the word “activation” that
returned a result with substructure ˆmeaning A1437. The
agent may then decide to retrieve a second word sense of
“activation” using the following cue: (<cue>ˆword-string

activation ˆmeaning A1437 -), where “-” is used to
prohibit the retrieval of the previous word sense. All nodes
in semantic memory that match the cue are found. If no node
matches, then the query fails. If more than one node matches,
a bias term is computed for every cue matching node and the
node with the highest bias term is the result. One important
component of the bias term is base-level activation (BLA).
BLA combines information on the recency and frequency of

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
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a node’s previous accesses. Although BLA is useful, it does
not support context-sensitive retrieval, where structures in the
context (the contents of working memory) influence the bias
term. One approach to incorporating context into the bias
term is to use spreading activation (SA) as another compo-
nent. Adding together the BLA component blam and the SA
component sam for every cue matching node m gives us an
overall bias term BTm.

Naive Spreading Activation
Activation spreads out from semantic memory nodes that are
in working memory to adjoining nodes in semantic memory.
One point of variability is whether activation spreads in the
direction of edges (forward), opposite that direction (back-
ward), or in both directions. Our algorithms are agnostic on
spread direction and support all three directions. For sim-
plicity and ease of analysis, our implementations track and
record the SA- and BLA- component independently. Their
only interaction is during the calculation of the overall bias
term, simply related: blam + sam = BTm

For the Naive Algorithm, spreading begins whenever a
node n enters the context and becomes a source of spread. In
Figure 1, node A is the source and spreads activation of .45
forward to the two nodes labeled B and C. Nodes that receive
activation are spread recipients, and they can accumulate ac-
tivation from many sources or even from the same source at
varying depths, such as nodes E and F. The total accumulated
activation for recipient r, is denoted as sT .

The calculation of the activation of a recipient depends on
three factors. The first is the initial activation of the source,
which we set to 1. Second, as activation spreads deeper, there
is a decay factor, p < 1. In this example, the decay fac-
tor is .9. Third, the activation of a parent node is divided
equally among all of its children nodes, leading to the fan
effect through the spread of activation (Anderson, 1983b).
Thus, the calculation for the activation of a recipient node r,
where there are a total of k children nodes from parent node
sn is sr =

1
k ⇥ p⇥ sn. For the children of A (nodes B and C),

the calculation is 1
2 ⇥ .9⇥1 = .45. If a recipient receives ac-

tivation from two distinct parents, the activations from both
parents are summed together. Thus, for node F, C and G are
both parents that respectively issue .45 and .135 to result in
an activation value of .19575 for F.

We denote the activation that accumulates in a spread re-
cipient, r, from a source, c, as sr,n, so that the total activation
for node sT = �

c2C
sr,c where C is the set of all context nodes

that are sources. If a node does not receive any activation,
then sT = 0.

The total spread from a source can be controlled in multi-
ple ways. For example, a spread can be restricted to a fixed
distance from the source node, called the depth limit or there
can be a limit to the total number of nodes traversed, termed
the spreading size limit. In our experiments, for simplicity
we use a fixed spreading size limit, which is 300. The spread-
ing size limit is applied within the context of a breadth-first
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Figure 1: An example network, with forward spread from a
single source A. Initial activation is 1, decay factor is .9, and
depth limit is 3.

traversal of the graph, so that activation is spread to all nodes
at the current depth before it is spread to nodes at the next
depth level. With a size limit, it is possible to not spread to
every node at the same depth. For example, if we use a size
limit of 300 and we assume a regular graph where every node
has exactly five children, after depth 1, 5 nodes will be vis-
ited; after depth 2, 5+25= 30 nodes will be visited; and after
depth 3, 5+ 25+ 125 = 155 nodes will be visited. An addi-
tion 145 nodes at depth 4 (out of 625) will be explored, but
480 nodes at depth 4 will not.

Observations on Naive Spreading Activation
In order to compute the overall bias term, a naive algorithm
spreads from every context node when it is introduced into
working memory and updates the SA component of every re-
cipient per each spread. In such an implementation, the pri-
mary cost of spreading activation is the breadth-first traver-
sal that computes the activation for nodes that receive spread
from a given source. A secondary cost is updating the new
value of the SA component and recalculating the overall bias
term, which for the naive algorithm is performed for every
spread recipient. In a naive algorithm, these costs scale with
the number of source nodes multiplied by the spread size
limit.

In the following sections, we identify properties of pro-
cessing that suggest ways of reducing the costs of a naive
algorithm. Many of these shortcuts are obvious, while others
are more subtle, but in general the unnecessary computation
can be avoided by one major approach: avoid calculations of
spread until it is necessary, because it is possible they may
never be necessary. This approach is called lazy evaluation
and attempts to only compute activations that play a role in
determining which candidate is retrieved from memory. In
the naive algorithm, a significant proportion of nodes that re-
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ceive spread do not influence which candidate is retrieved
from memory. It is because of this that lazy evaluation can
reduce computation while resulting in no change to which
candidates are retrieved.

Our final algorithm incorporates optimizations made pos-
sible by the following observations.

There are Consistent Elements Shared Between Old
and New Context
If there are no changes in the set of context elements, the
results of spread will be exactly the same on subsequent cy-
cles. Thus, spread only has to be computed when context
elements change, which we call Change-Only Processing.
This optimization is expected to have a large impact because
working memory remains largely unchanged from one cycle
to another. For an architecture where working memory has
rapid changes, this may not be much of an improvement.

The Long-Term Memory Network Changes Slowly
The knowledge in semantic memory is not expected to change
rapidly. Thus, the breadth-first traversal that computes the
spread is relatively stable. We can take advantage of this sta-
bility by explicitly caching a trace of the breadth-first traver-
sals and the activation values they produce. These can be used
to directly access these values for updating the SA compo-
nent without performing the breadth-first traversals. When-
ever an edge is added to or removed from semantic mem-
ory, the traversals containing the parent of that edge are no
longer valid. Under these circumstances, if these traversals
are needed in the future, they will be recomputed. This im-
provement is simply referred to as Caching.

One implication is that we can compute traversals during
task initialization. Thus, if the agent starts with a large knowl-
edge base pre-loaded into its long-term semantic memory, it
can pre-compute and cache the traversals for future use. Nev-
ertheless, the agent must still recalculate traversals when the
network changes according to the invalidation cases we out-
lined above. This is Precalculation.

Queries are Less Frequent than Context Changes
Even when there are context changes during a cycle, spread
does not need to be computed unless there is a query. Even
when the calculation of spread is tied to only changes in the
context, this modification eliminates calculations for cases
where context elements become active and then become in-
active without any intervening queries. This improvement
is called Query-Deferred Calculation and exists in ACT-R.
This improvement also supports implementation of two fur-
ther improvements.

A Query’s Cue can be Unambiguous
If a cue is used that is constraining enough so that only one
long-term memory node matches, there is no need to spread.
We call this improvement Ambiguity-Only Processing.

The Number of Cue Matches is Small
A naive approach to spreading activation normally computes
the activation of all recipients of a spread. However, it is rare
that more than a small percentage of those nodes match the
cue, and the SA component is needed only for those nodes
that match. Thus, if a node does not match the cue, it is
unnecessary to calculate the overall bias term for that node.
Even when only a few constraints are included in a cue, they
can eliminate a substantial proportion of the nodes from con-
sideration.

In response to this observation, our approach flips the nor-
mal way of thinking about computing spread. Instead of up-
dating the SA component of every recipient, our algorithm
only computes the overall bias term for nodes that match the
cue. This improvement is named Candidate-Only Process-
ing and it is included in ACT-R. Note that if a cue has so little
constraint such that every node is a candidate, this optimiza-
tion will not help.

While this series of improvements generates our final algo-
rithm, we restate the final algorithm explicitly below.

Algorithm Review
We reconceptualize spreading activation as the calculation re-
quired to provide the bias term necessary for context-sensitive
retrieval. In algorithm 1, we follow the procedure PROCES-
SAGENTCYCLE() every cycle. The first step is to check
whether or not a query is present. If not, processing stops.
This corresponds to our Query-Deferred Calculation im-
provement. If a query is present, then there is a check as
to whether there is only one node that matches the cue. If
so, all spreading activation calculation is skipped and that
node is returned. This is called Ambiguity-Only Processing.
However, if the cue is ambiguous, then spreading activation is
computed using DOTRAVERSALS() and DOAPPLICATIONS().

In DOTRAVERSALS(), if there are changes to the con-
text elements then the following processing occurs. If a
source’s traversal has never been calculated or there has
been a change to the network that invalidates the traversal,
then it is necessary to recalculate the traversal via breadth-
first search (TRAVERSE()). A map from node to traversal,
cachedSpread, maintains a history of currently usable traver-
sals. If these conditions do not hold, then a cached traversal
is retrieved to bypass additional calculation.

After all source node traversals are calculated and re-
trieved, DOAPPLICATIONS() updates the SA component of
all the recipients in these traversals that also match the cue
as looked up against a recorded history of currently usable
traversals. Updating the SA component of only the cue-
matched nodes corresponds to Candidate-Only Processing.

Finally, the cue-matched node with the highest overall bias
term is returned as the result to the query.

The worst case for this algorithm is when there are frequent
changes to declarative memory that invalidate the cached
traversals, and when there are frequent changes to context ele-
ments that require continual recalculation of the traversals. In
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Algorithm 1 : Lazy algorithm for spreading activation
cachedSpread � global variable

1: function DOTRAVERSALS(contextChanges)
2: for source 2 contextChanges do
3: if source /2 cachedSpread OR

ISINVALID(cachedSpread[source]) then
4: spread  TRAVERSE(source)
5: cachedSpread[source] spread

1: function DOAPPLIES(cueMatches,contextChanges)
2: for match 2 cueMatches do
3: if match 2 cachedSpread[contextChanges] then
4: UPDATEBIASTERMOF(match)

1: procedure PROCESSAGENTCYCLE()
2: if agent issues a query command then
3: cueMatches DOQUERY(cue)
4: if SIZEOF(cueMatches) == 1 then
5: ADDTOWMEM(match)
6: else
7: DOTRAVERSALS(contextChanges)
8: DOAPPLIES(cueMatches,contextChanges)
9: contextChanges /0

10: ADDTOWMEM(MAX(cueMatches))

this worst case, our algorithm essentially performs the naive
algorithm.

Evaluation
Our hypothesis is that our proposed algorithm can result in a
significant reduction in the time spent computing spreading
activation and that each component of the algorithm provides
some benefit. To test these claims, we evaluate the time ef-
ficiency as we incrementally incorporate each component of
the final algorithm.

The task we use is the word sense disambiguation (WSD)
task that we previously used for evaluating implementations
of base-level activation (Derbinsky & Laird, 2011). In this
task, the agent must disambiguate the word senses used in a
sentence. Each input word is annotated with its name and
part-of-speech (e.g. noun) but not its sense. When an agent
encounters and issues a query for the word, such as the word
“English” with part-of speech “noun”, it must choose one
of the following possible senses: 1) the West Germanic lan-
guage; 2) the humanities discipline; 3) the people of England;
4) the spin given to a ball in pool or billiards. The agent keeps
retrieving senses until the retrieved sense matches the correct
sense.

The test sentences and the ground truth are provided by
SemCor, a popularly used sense-tagged corpus. SemCor con-
sists of 352 texts from the Brown corpus (Kucera & Fran-
cis, 1967), with every word linked to its correct sense in
the English lexical database WordNet, version 3.0 (Miller,

1995). Our construction of WordNet 3.0 includes all synset
and lemma links for every part-of-speech, and our construc-
tion of SemCor includes all available sense-tagged words,
numbering 217,918, of which approximately 75% are multi-
sense1.

In our experiment, there are seven different agents, corre-
sponding to different spreading activation algorithms. These
are listed in Table 1. All agents are preloaded with our con-
struction of WordNet 3.0 in their semantic memory and they
all use Soar’s existing base-level activation mechanism in ad-
dition to spreading activation. We compare as well to one
agent that does not use spreading activation, instead using
only base-level activation.

All agents iterate through all SemCor sentences, maintain-
ing in working memory the retrieved correct word sense for
all words previously encountered within a paragraph as con-
text. Table 1 displays the time spent on spreading activation
during the task. The execution of the task is deterministic
with negligible variance in execution times. All spreading
activation agents have a spread size limit of 300, and they all
compute exactly the same spread values (and bias terms) for
all the candidate retrievals, and they retrieve the same node
from semantic memory. Thus, the seven algorithms differ
only in the efficiency of computing the retrieved nodes.

All agents ran for a total of 1,644,058 decision cycles
while issuing a total of 565,223 queries. The naive algorithm,
omitting all improvements, took over 100,000 seconds. Ev-
ery change to the algorithm decreased execution time. The
amount of time our final algorithm took on spreading activa-
tion alone was 245 seconds. On average, the amount of time
spent on the rest of the agent’s processing was 290 seconds
(not shown in Table 1). When examined at the individual
query level, the final algorithm spent an average of 0.43ms per
query on spreading activation compared compared to 5.87ms
for the naive algorithm with change-only processing.

We confirm that precalculation (and thus the correspond-
ing reduction in the breadth-first traversals during the task)
speeds up the agent. The memory cost to precalculation is
storage of the traversal to 300 nodes for each node. While
query-deferred processing has little direct impact, it sup-
ports candidate-only processing and ambiguity-only process-
ing. While the effect of ambiguity-only processing is modest,
candidate-only processing shows a significant improvement
associated with selectively updating only spread recipients
that are potential query results. The naive algorithm, which
omits all improvements, is the slowest.

The amount of time to calculate spread from a single node
is expected to scale linearly with spreading size limit. As
a check, we used a test agent that first randomly selects a
word and then adds new word information to the network.
The randomly-selected word serves as a context element. The
agent then initiates an artificially constrained query, such that

1The SemCor and WordNet 3.0 data sets are available to down-
load at http://web.eecs.umich.edu/

˜

mihalcea/downloads

.html#semcor and http://wordnet.princeton.edu, respec-
tively.
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Spreading Activation Mechanism Spread Time (s) Spread Time Per Query (ms)
Naive Algorithm > 100,000
+ Change-Only Processing 3,316 5.87
+ Caching 1,200 2.12
+ Precalculation 810 1.43
+ Query-Deferred Processing 803 1.42
+ Ambiguity-Only Processing 778 1.38
+ Candidate-Only Processing 245 .43

Table 1: Timed performance on the WSD task across seven spreading activation variants. Rows with prefaced with “+” denote
incremental cumulative improvements to our algorithm.

the breadth-first traversal must be calculated for the new con-
text element and that query has a sufficiently general cue such
that the candidate set includes all spread recipients. The test
agent thus induces the maximum cost of a single network
change. As expected, the maximum spreading times shown
in this figure are significantly greater than the average times
achieved in the WSD task.

The timing results for this test are found in Figure 2. Graph
points that fall below the linear trend reflect spread traversals
that exhaust the network before reaching the spread size limit.
We note that given our random selection of words, there is
some noise and furthermore that a traversal of a given size
can have variable cost depending on whether repetition in the
traversal reduces the number of elements requiring applica-
tion further below the spread size limit. However, it is over-
whelmingly the spread size limit that determines the total cost
and we observe the expected linear scaling.

While the termination criterion of spreading size limit al-
lows for direct control over computational cost and is conve-
nient for the above analysis, we add an additional termination
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Figure 2: The maximum time spent on spreading activation
from a single context node, with varying spread size limit, for
randomly selected words.

criterion. A spreading size limit of 300 does not provide a
meaningful bound in terms of the influence spreading has on
retrieval. In the presence of noise or uncertainty, small values
of spreading activation may be irrelevant. We thus introduce
a threshold termination criterion such that spreading traver-
sals terminate if spreading activation values generated in the
traversal are below the threshold. In other words, we assume
a minimum acceptable spreading activation value as an ad-
justable parameter. We also change the traversal so that in-
stead of breadth-first traversal, the traversal is biased to where
there is still the most spread to distribute.

The intuition is to pick a value such that spreading activa-
tion is not applied if it would be “lost in the noise.” Note that
in ACT-R, such a noise term is added to activation. Consider
an ACT-R noise set to .1. A threshold of .0025 in Figure 3
represents a 95% chance that such a noise magnitude is larger
than the terminated spread. Figure 3 shows that such a termi-
nation criterion would result in spread sizes of approximately
65 nodes. Per query, a spread size of 65 nodes is expected to
take an average of .094ms. The threshold has the potential to
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Figure 3: The average sizes of spreading traversals are plot-
ted with varying thresholds for termination. The vertical line
denotes a threshold value of .0025.
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change which candidates are retrieved.

Conclusion and Future Work
A central motivation of implementing spreading activation is
to support context-sensitive retrieval for cognitive agents. To
satisfy the constraints of a cognitive architecture while meet-
ing the demands of complex, dynamic, or real-world envi-
ronments, spreading activation must be efficient and reactive.
We have developed an optimized algorithm for spreading ac-
tivation that has an average time of .43ms for a spread to
300 nodes. Although optimized, there is no compromise in
correctness – results of the spread are exactly the same as
the results of a straightforward (naive) algorithm. Adding
a threshold-based termination criterion for spread based on
noise or confidence further reduces the cost to .094ms, al-
beit potentially changing query results. We expect that such
efficient spreading activation will change how spreading is
used in cognitive architectures. It will be possible to explore
deeper spreads where there are more indirect associations be-
tween concepts, and it will be possible to use it for real-world
applications.

In the future, we plan to further evaluate this algorithm on
much larger networks and networks with more varied struc-
ture to get a better profile of its performance characteristics
for different network organization and dynamics.

We also plan to extend our algorithm so that it includes a
temporal decay for spreading activation. Our plan is to ini-
tialize the magnitude of the spread from a source node with
that source node’s base-level activation. Additionally, we
plan to extend the representation of semantic memory so that
it includes association strengths between nodes. These two
changes should have only minimal impact on the spreading
algorithm and its efficiency while allowing us to study algo-
rithms that dynamically modify those association strengths
based on the co-occurrence of nodes in working memory.
This suite of changes has the potential to allow spreading ac-
tivation to adapt to an agent’s experience, which is lacking in
our current implementation.
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Abstract 

A proposal for a unified theory of learned trust is presented. A 
number of limitations of a published computational cognitive 
model of learned trust are discussed. A solution is proposed to 
overcome these limitations and expand the model’s scope of 
applicability. The revised model integrates several seemingly 
unrelated categories of findings from the literature and makes 
unintuitive predictions for future studies. The implications of 
the model for the advancement of the theory on trust are 
discussed.    

Keywords: trust; trustworthiness; trust propensity; learned 
trust; computational cognitive model; unified theories   

Introduction and Background 
Newell (1990) called for unified theories of cognition 
specified computationally as cognitive architectures. A 
cognitive architecture is a single system of cognitive 
mechanisms that operate together to produce the full range 
of human cognition. Unified theories are the quintessence of 
scientific progress. They constrain the myriad of possible 
interpretations of empirical data, facilitate communication 
among theorists, and motivate new avenues for empirical 
research. Here we focus on the field of trust research, 
particularly on what has been referred to as learned trust 
(Hoff & Bashir, 2015), and attempt to integrate it in the 
ACT-R cognitive architecture (Anderson, 2007). Although 
the field of trust already comprises an impressive volume of 
empirical findings, micro-theories, meta-analyses, and 
integrative accounts (e.g., Rousseau, Sitkin, Burt, & 
Camerer, 1998; Mayer, Davis, & Schoorman, 1995; 
Schoorman, Mayer, & Davis, 2007; Lee & See, 2004; Hoff 
& Bashir, 2015; Schaefer, Chen, Szalma, & Hancock, 
2016), it could benefit from the kind of integration that is 
afforded within a cognitive architecture. Studying trust from 
a cognitive architecture perspective allows not only 
integration of various empirical findings from the trust 
literature but also understanding how trust relates to other 
cognitive mechanisms and phenomena.     

The starting point for the effort reported here is a 
published model of learned trust (Juvina, Lebiere, & 
Gonzalez, 2015; referred to as “the published model” in the 
remainder of the paper). In the next section we briefly 
review the key features of the published model and discuss 
its main strengths and limitations. Then, we devote another 
section to a revised model (referred to as “the revised 
model” in the remainder of the paper) that is intended to 
overcome the limitations of the published model. 
Subsequently, we show that the revised model can account 

for a number of results from the trust literature. In the last 
section, we discuss possible ways to further improve the 
revised model and suggest that it has the potential to 
integrate a wide range of empirical findings and thus it can 
inform the development of a unified theory of learned trust.   

Critique of the Published Model 
The published model (Juvina et al., 20151) was built in the 
ACT-R architecture and was intended to account for 
learning within and between two games of strategic 
interaction – Prisoner’s Dilemma (PD) and Chicken Game 
(CG). The model is not hardwired to play a particular game; 
it learns to play any 2X2 game (Rapoport, Guyer, & 
Gordon, 1976) based on the payoff matrix that it 
experiences as it plays. Initial attempts to account for the 
transfer of learning effects between the two games in both 
directions (PD-CG and CG-PD) observed in the human data 
(Juvina, Saleem, Martin, Gonzalez, & Lebiere, 2013) based 
solely on the existing learning mechanisms of the ACT-R 
architecture were unsuccessful. A novel trust learning 
mechanism had to be added to the model to account for all 
the learning and transfer of learning effects in the data. 
Essentially, this trust mechanism allows models to learn not 
only about the task at hand but also about other models with 
which they interact. Although learning in individual settings 
has been extensively studied, learning about others has not 
received much attention in the cognitive modeling field. It is 
not clear whether learning about other agents uses the same 
cognitive mechanisms as learning about inanimate entities. 
Yet, empirical evidence suggests that learning from others 
and learning about others can influence task specific 
learning (Biele, Rieskamp, & Gonzalez, 2009; Yaniv & 
Kleinberger, 2000; Harris & Corriveau, 2011). The 
published model uses instance-based learning (Gonzalez, 
Lerch, & Lebiere, 2003) for opponent modeling and 
reinforcement learning for action selection. In addition, the 
reward changes as the game unfolds depending on the 
dynamics of the interaction between the two models. The 
players learn to trust each other and this affects their reward 
structure and subsequently their strategies. The trust 
mechanism consists of a “trust accumulator” that represents 
the perceived trustworthiness of the other model and a 
“trust-invest accumulator” that represents the perceived 
necessity to develop trust – a characteristic of the situation. 
For example, when the two models find themselves in a 

                                                             
1 Model code available at: http://psych-

scholar.wright.edu/astecca/software  

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.

188



self-reinforcing cycle of mutual defection, the perceived 
necessity to develop trust increases. This was a necessary 
addition to the model to overcome situations in which both 
players strongly distrust each other and persist in choosing a 
mutually destructive outcome. Humans are able to identify 
and (sometimes) overcome those situations.  

The two accumulators (trust and trust-invest) are used to 
determine the dynamics of the reward structure. Each 
accumulator starts at zero. When they both are less than or 
equal to zero, the model will act selfishly by trying to 
maximize the difference between their own payoff and the 
opponent’s payoff. This quickly leads to the mutually 
destructive outcome continually occurring during the game, 
which decreases trust in the other model but increases the 
model’s perception of trust necessity. Once the latter is 
positive, a model acts selflessly, trying to maximize the 
opponent’s payoff. This can lead to mutual cooperation and 
development of trust or models may relapse into a mutual 
destructive choice. When the trust accumulator is positive, a 
player tries to maximize joint payoff and avoid exploitation. 
Thus, the model switches between three reward functions 
depending on the dynamics of trust between the two players.  

Strengths of the published model   
The main contribution of the published model was to show 
that trust learning interacts with task specific learning to 
account for a range of learning effects in the human data. 
This model has the potential to inform a unified theory of 
learned trust because it is implemented in a cognitive 
architecture and it specifies how various learning 
mechanisms interact with (and constrain) each other. In 
agreement with the literature on trust, the published model’s 
trust is learned as a function of perceived trustworthiness 
(Mayer et al., 1995; Hoff & Bashir, 2015). In addition, the 
published model suggests that a player’s learned trust also 
depends on perceived trust necessity, which is in and of 
itself an important contribution to the literature. A validation 
study based on predictions of the published model showed 
that both perceived trustworthiness and perceived trust 
necessity are important antecedents of trust formation 
(Collins, Juvina, & Gluck, 2016).    

Limitations of the published model   
Most of the limitations of the published model stem from 
the fact the model was initially not intended to be 
comprehensive model of learned trust. Instead, the model 
had to learn trust in order to account for transfer of learning 
effects observed in the human data. The published model 
assumes that trust starts at zero and only the trust developed 
during the interaction between the two players matters. 
However, there is overwhelming evidence that a player may 
trust another player even in the absence of any interaction 
between the two players (McKnight, Cummings, & 
Chervany, 1998) and this initial propensity to trust 
determines to some extent the trust that develops during the 
interaction (Berg, Dickhaut, & McCabe, 1995; Dirks & 
Ferrin, 2001). In addition, trust propensity may be (at least 

in part) the result of learning that occurred prior to the 
current interaction (Collins et al., 2016) and a 
comprehensive model of learned trust should not ignore 
prior learning, particularly because prior learning may 
interact with current learning. This aspect was not relevant 
in the published model because the model interacted with 
only one other model, but it becomes very relevant in the 
context of learning from interacting with multiple agents in 
sequence and transfer of learning from one agent to another 
(see the black-hat-white-hat effect in the next section).   

The published model’s learning equation is a linear 
function that increases with every instance of evidence of 
trustworthiness and decreases with every instance of 
evidence of untrustworthiness (and similarly for evidence of 
trust necessity). The rate of accumulation is equal for 
positive and negative evidence and is constant throughout 
the entire history of interaction. The following is the 
equation for state trust learning that was used in the 
published model, 

 
!"! ! ! !"!!! ! !!"#!                       (1) 

 
where STt is state trust at time t, STt-1 is state trust at time t-
1, and PETt is perceived evidence of trustworthiness at time 
t. A similar equation was used for trust necessity.      

This equation worked well in the context of the published 
model but is problematic because it is not in full agreement 
with what is known about the dynamics of trust. Trust is 
hard to gain and easy to lose, a characteristic that has been 
referred to as trust asymmetry (Slovic, 1993). Trust learners 
exhibit the same negativity bias that is described in the 
impression formation literature (Skowronski & Carlston, 
1989; Yaniv & Kleinberger, 2000), that is, unfavorable 
information tends to be more influential than favorable 
information. In addition, early evidence has a stronger 
impact on trust formation than late evidence (Lount, Zhong, 
Sivanathan, & Murnighan, 2008). In general, learning 
equations tend to be power functions (Newell & 
Rosenbloom, 1981; Anderson, 2007) and it would be 
surprising if trust learning were an exception.    

Another limitation of the published model is that it 
assumes that all trustors are able to assess equally well 
trustworthiness and trust necessity. However, a trustor’s 
cognitive ability to assess a trustee’s trustworthiness has 
been proposed to be an important antecedent of trust 
(Lyons, Stokes, & Schneider, 2011; Sturgis, Read, & Allum, 
2010; Yamagishi, Kikuchi, & Kosugi, 1999). In general, 
cognitive ability is an important predictor of learning, thus it 
is not surprising that it is also related to learned trust.             

The Revised Model    
Before introducing our revisions to the published model, we 
specify the terminology used in this model. Trait trust is the 
term we use for trust propensity (also called dispositional 
trust in the literature). State trust is the trust that develops 
during a particular interaction in a particular situation, thus, 
is a function of the perceived evidence of trustworthiness 
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and perceived evidence of trust necessity. In our view, 
learned trust includes both trait and state trust; trait trust is 
learned from the ensemble of past interactions and state trust 
is learned from the current interaction. The starting value of 
state trust at the beginning of the current interaction is the 
trustor’s trait trust. This reflects the finding that humans 
place a certain amount of trust in strangers that they know 
nothing about (Berg, Dickhaut, & McCabe, 1995). State 
trust is updated during an interaction depending on 
perceived evidence of trustworthiness and perceived 
evidence of trust necessity. At the end of the current 
(repeated) interaction, trait trust is updated with an 
increment that is a function of the state trust developed in 
the current (just ended) interaction. This reflects the finding 
that trait trust changes as a function of experience (Collins 
et al., 2016). Trait trust deviation is the difference between 
the trait trust value at the end of the current interaction and 
the trait trust value at the beginning of the interaction. The 
trustor’s cognitive ability is indicated by the accuracy of the 
trustor’s judgments of trustworthiness and trust necessity.    

The revision2 of the published model consists of replacing 
the linear function that was used to update the trustor’s state 
trust with the following power function,    
 

!"! ! ! !"!!!! ! !!"#! ! ! ! !!"                   (2) 
 

where STt is state trust at time t, STt-1 is state trust at time t-
1, a is a constant power exponent with a value less than 1 
(a<1), PETt is perceived evidence of trustworthiness at time 
t, TTD is the trait trust deviation computed after the 
previous interaction with another person, and b is the 
perception bias that scales how much PETt is adjusted as a 
function of the trustor’s previous experience with another 
trustee. A similar equation was used for trust necessity.      

In the revised model, both trait and state trust are positive 
or zero. A value of zero signifies the absence of trust. The 
evidence of trustworthiness can be positive (indicating a 
degree of trustworthiness) or negative (indicating a degree 
of untrustworthiness). The initial value of state trust is the 
value of trait trust that was updated after the previous 
interaction with another person (STt0 = TT). In our 
simulations, we set the initial trait trust somewhere in the 
middle of the range of values that state trust can take during 
a repeated interaction with a specific person, depending on 
the range of values that the evidence of trustworthiness can 
take. We assume that weighting of the evidence is task 
specific.  

The continuous value of state trust can be used to make 
categorical judgments (i.e., trust or distrust) by comparing it 
against the value of trait trust. If the current value of state 
trust is greater than the value of trait trust, then the trustor is 
said to trust the trustee. If the current value of state trust is 
less than the value of trait trust, then the trustor is said to 
distrust the trustee.   

                                                             
2 Model code available at: http://psych- 

scholar.wright.edu/astecca/software   

The power exponent (a) is currently set to 0.99 in all our 
simulations. The assumption behind this component of the 
equation is that the more recent values are more important 
than the older values of state trust. A consequence of this 
assumption is that trust decays in time if new evidence of 
trustworthiness is not perceived. Note that for a = 1 and 
TTD = 0, equations (1) and (2) are identical.      

Figure 1 shows a hypothetical case in which a trustor 
repeatedly interacts with a trustee for 200 rounds. The 
trustor perceives evidence of trustworthiness (PET = 1) for 
the first 100 rounds, then evidence of untrustworthiness  
(PET = -1) for 5 rounds, and then again evidence of 
trustworthiness  (PET = 1) for the remaining 95 rounds. 
State trust accumulates rapidly in the first 50 rounds after 
which it starts to approach an asymptote, that is, a state of 
diminishing returns for every new piece of evidence of 
trustworthiness. In addition, the state trust that was 
accumulated over 100 rounds is lost almost entirely in 5 
rounds, manifesting trust asymmetry (Slovic, 1993).        

 
Figure 1: A hypothetical case illustrating how state trust 

changes over the course of 200 rounds of interaction with 
another player. The trustor perceives evidence of 

trustworthiness for the first 100 rounds, then evidence of 
untrustworthiness for 5 rounds, and again evidence of 

trustworthiness for 95 rounds. 
 
The term trait trust deviation (TTD in equation 2) becomes 
relevant when a trustor interacts with multiple trustees in 
sequence. In such cases, empirical studies suggest that the 
experience from a previous interaction influences how the 
trustor perceives the evidence of trustworthiness in the 
current interaction. For example, De Melo, Carnevale, and 
Gratch (2011) review evidence and possible explanations 
for the black-hat/white-hat (or bad-cop/good-cop) effect 
from the negotiation literature: playing a first game with an 
opponent with a competitive stance (black-hat) followed by 
a second game with an opponent with a cooperative stance 
(white-hat) is more effective in reducing distance to 
agreement than any other pairing of the black-hat and white-
hat opponents (Hilty & Carnevale, 1993). We implemented 
the explanation of the black-hat/white-hat effect that is 
based on the concepts of adaptation and comparison level 
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(Helson, 1964). Theories of adaptation propose that people 
become accustomed to a reference point as a result of prior 
experience; this point then serves as a comparison for the 
judgment of subsequent experiences. Thus, a cooperative 
second bargainer should be judged as more cooperative if 
the first bargainer was competitive rather than cooperative. 
In terms of our learned trust theory, the prior experience of 
untrustworthiness shifted the trustor’s reference point 
toward low values of trustworthiness. In this context, 
evidence of trustworthiness from a new interaction is 
perceived as outside of the expected range which gives it a 
larger subjective weight. In our model, we assume that the 
change in the subjective perception of the new evidence is 
proportional to the adjustment (i.e., adaptation in Helson’s 
terms) of the reference point caused by the previous 
experience. The reference point is the trustor’s trait trust. 
For example, if the trustor’s previous experience with an 
untrustworthy trustee caused a large shift in her trait trust, 
the corresponding bias in her subjective perception of a new 
trustee will also be large (and vice-versa). Thus, a trustor’s 
previous trait trust deviation (TTD) determines the extent to 
which the perceived evidence of trustworthiness (PET) is 
adjusted. 

To conclude the description of the revised model, only the 
trust learning mechanism has been revised, all the other 
mechanisms of the published model (learning to anticipate 
the opponent’s move and to select the best move in each 
context, see Juvina et al., 2015) have been left unchanged.                

Model Validation  
We expect that the revised model is able to generalize to a 
wide range of empirical phenomena while maintaining the 
ability of the published model to explain the learning and 
transfer of learning effects from the original dataset.  

Learning and transfer of learning effects in 
Prisoner’s Dilemma and Chicken Game    
Juvina et al. (2013) recruited 120 participants to play 
Prisoner’s Dilemma and Chicken Game for 200 rounds 
each. The participants were paired with one another and 
assigned to play the two games in one of two order 
conditions: PD-CG and CG-PD. The results revealed a wide 
range of within-game learning and between-game transfer of 
learning effects. The published model was fit in its entirety 
to this dataset by tweaking 11 free parameters (see Table 4 
in Juvina et al., 2015). With regard to the revised model, 
only the six free parameters associated with the trust 
mechanism were refit to the human data reported in Juvina 
et al. (2013). Four of the six parameters are associated with 
the “trust accumulator” that represents the perceived 
trustworthiness of the other player and the other two are 
associated with the “trust-invest accumulator” that 
represents the perceived necessity to develop trust. The 
values of these parameters specify how much perceived 
evidence of trustworthiness (PET in equations 1 and 2) is 
added to (or subtracted from) the trust accumulator for each 
outcome of the game. Two of the six parameters (i.e., the 

parameter with the lowest absolute value for each 
accumulator) were kept at their values from the published 
model, thus, allowing only four model parameters to 
fluctuate. The fit procedure maximized the correlation (r) 
and minimized the root mean squared deviation (RMSD) 
between the model data and the human data3.  

Table 1 shows the best fitting parameter values for the 
revised model and the published model. They did not 
change dramatically; as a matter of fact, one of them did not 
change at all, even though it was allowed to vary freely. 
Thus, only three parameters have been readjusted in the 
revised model. These parameters were held constant for all 
but one of the simulations reported below. They were 
readjusted for Lount et al. (2008) data because a very 
different payoff matrix was used in that study.    

 
Table 1. The best fitting parameter values for the revised 

model and the published model for each of the four game 
outcomes, mutual cooperation (CC), unilateral cooperation 

(CD), unilateral defection (DC), and mutual defection (DD).  
An asterisk (*) indicates that a particular value was held 

constant during the model fitting procedure. 
 

Outcome Published model Revised model 
 Trust Invest Trust Invest 

CC 3 NA 6 NA 
CD -10 -1 -7 -1 
DC 10 NA 9 NA 
DD -1 .18 -1* .18* 

 
The fit of the revised model to the human data (r = .90, 

RMSD = .07) was slightly (but not significantly) better than 
the fit of the published model (r = .89, RMSD = .09). The 
revised model also exhibited the same transfer of learning 
effects observed in the human data.  

Collins et al. (2016) conducted a follow-up study in which 
320 participants recruited from the website Amazon 
Mechanical Turk played PD and CG for 50 rounds each in 
one of four possible game orders (PD-PD, PD-CG, CG-PD, 
or CG-CG). Participants were paired with computerized 
confederate agents whose behavior (i.e., strategy & 
trustworthiness) was manipulated to result in 16 different 
experimental conditions. The published model (Juvina et al., 
2015) was used to generate a priori predictions for Collins 
et al. (2016) study. The predictions were published before 
the data were collected (Collins, Juvina, Douglas, & Gluck, 
2015). A majority of the model predictions across all of the 
sixteen experimental conditions was confirmed and the trust 
mechanism was proven to be a necessary component of the 
published model (see Collins et al., 2016, for details). Here 
we test the revised model against the dataset from Collins et 
al. (2016) without any parameter tweaking. The data 
includes round-by-round proportions for five outcomes in 

                                                             
3 High performance computing facilities at the Air Force 

Research Laboratory and the web service mindmodeling.org 
(Harris, 2008) were used for the model fitting procedure.   
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16 conditions. The revised model accounts for the human 
data slightly (but not significantly) better (r = .68, RMSD = 
.33) than the published model (r = .64, RMSD = .33).  

Unified account of trust and distrust effects    
It has been proposed that trust and distrust are different 
constructs (Lewicki, McAllister, & Bies, 1998; Sitkin & 
Roth, 1993). Here we suggest that the different dynamics of 
trust and distrust can be modeled by a single equation. In the 
previous section we showed how equation 2 produces trust 
asymmetry (Slovic, 1993; see Figure 1). A consequence of 
trust asymmetry is the fact that early trust breaches are more 
influential than late trust breaches for the overall trust that 
develops in a repeated interaction, which is exactly what 
Lount et al. (2008) found. Lount et al. (2008) conducted two 
experiments in which participants played an iterated game 
of Prisoner’s Dilemma for 30 rounds. Participants were 
assigned to 1 of 4 experimental conditions (control, 
immediate, early, and late) and played the game with a 
confederate agent whom they were told was another 
participant. During the control condition, the confederate 
agent cooperated on all 30 rounds. In the other three 
conditions, the confederate agent cooperated on each round 
except for two consecutive trials on which it defected. These 
trust breaches occurred immediately (rounds 1 and 2), early 
(rounds 6 and 7), or late (rounds 11 and 12). The main 
finding revealed that the immediate and early breaches 
significantly decreased the frequency of cooperation during 
the last ten rounds of the game as compared to the late 
breach. 

Our revised model is able to account for the basic pattern 
of results, that is, the different amounts of cooperation in 
control, immediate, early, and late conditions (r = 0.99, 
RMSD = 0.33). One possible explanation for the large 
RMSD is a manipulation in the experiment that was not 
modeled: participants read a passage about the importance 
of cooperation before the start of the game. Our revised 
model is able to explain Lount et al.’s findings based on the 
dynamics of state trust. Reestablishing trust after a breach is 
a long process. In the case of early breaches, most of the 
rounds of the interaction are used to (slowly) reestablish 
trust. In the case of late breaches, most of the trust 
accumulates before the breach, leaving a smaller number of 
rounds of interaction to be damaged by the breach. This is 
consistent with results from the impression formation 
literature, emphasizing the importance of making a good 
first impression (Ambady & Rosenthal 1993).           

Black-hat/white-hat effect   
De Melo, Carnevale, and Gratch (2011) had participants 
play Prisoner’s Dilemma with two different computerized 
confederate agents (cooperative & individual). Each agent 
was represented by a different animated face. Both agents 
used the same strategy (Tit-for-Tat), but displayed different 
facial expressions, representing different emotional 
reactions, to particular outcomes during the game (e.g., the 
cooperative agent expressed joy after instances of mutual 

cooperation and the individual agent expressed joy after 
instances unilateral defection). The authors suggested that 
participants used reverse appraisal to identify, from the 
agents’ emotional displays, what the intentions of the agent 
were. The cooperative agent expressed emotions congruent 
with attempting to maximize the joint payoff of both 
players, whereas the individual agent expressed emotions 
congruent with attempting to maximize its own payoff. 
Participants played 25 rounds with each of the confederate 
agents in one of two orders, the cooperative agent then the 
individual agent (C-I), or the individual agent and then the 
cooperative agent (I-C). Given that the strategy of the two 
agents was identical, trustworthiness could only be inferred 
from facial expressions. Other authors have also shown that 
the pattern of trust learning can be influenced by incidental 
learning from facial expression, eye gaze, etc. (e.g., 
Strachan, Kirkham, Manssuer, & Tipper, 2016). De Melo et 
al. (2011) found that participants were sensitive to the 
emotions displayed by the two agents: they cooperated more 
with the cooperative agent than with the individual one. In 
addition, they found evidence for the black-hat/white-hat 
effect, as defined in the previous section. We did not 
explicitly model the process of inferring trustworthiness 
from facial expressions. Instead, we added 12 parameters 
that translated particular emotions into specific amounts of 
evidence of trustworthiness and trust necessity. However, 
these parameters by themselves did not make the model 
exhibit the black-hat/white-hat effect. The key difference 
was made by the trait trust deviation parameter (TTD in 
Equation 2), which allowed the model to fit the human data 
(r = .86, RMSD = .11) and reproduce the black-hat/white-hat 
effect.    

Conclusion and Future Work 
We presented a cognitive model of learned trust that 
integrates several seemingly unrelated categories of findings 
from the literature and thus makes headway toward a unified 
theory of learned trust. The model cumulates learning from 
its history of interactions with multiple other models (trait 
trust), learning from its current interaction (state trust), and 
(sometimes) incidental learning from facial expressions. The 
model predicts that trust decays toward distrust in the 
absence of evidence of trustworthiness or untrustworthiness. 
Our future empirical work will aim to test this novel model 
prediction. Our future modeling work will focus on better 
specifying the relationship between the dynamics of trait 
trust in past interactions and the perception of 
trustworthiness in the current interaction.  
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Abstract
We describe the Eye Movement Minimal Model-Modified
(EM4), a lightweight minimally-sufficient model of eye move-
ments that accounts for visual search times in several distinct
paradigms. The model allows visual search to be guided by
probe-item similarity in different foveal zones, which enables
the model to be used as a front-end for various models of vi-
sual saliency. We apply the model to four distinct paradigms
to demonstrate its flexibility and utility.
Keywords: eye movements; visual search; change detection

Background
In recent years, detailed models of visual processing that rep-
resent or are inspired by the human visual system have prolif-
erated, providing many alternate computational approaches
to investigating properties of visual attention, saliency, im-
age analysis, and the like (Bruce & Tsotsos, 2009; Itti, Koch,
& Niebur, 1998; Wolfe, Cave, & Franzel, 1989). Currently,
more than 60 distinct methods of evaluating visual saliency
have been compared using on popular benchmark (Bylinskii
et al., 2016). In contrast, relatively less attention has been
paid to modeling the mechanisms and strategies involved in
directing visual attention via eye movements to perform vi-
sual search. Although some models of visual saliency have
included foveated eye movements (e.g. Itti et al., 1998), mod-
els of visual saliency that ignore foveation and eye move-
ment may make either unnecessary or unrealistic assump-
tions. Hornoff & Halverson (2003; 2004a, 2004b, 2007,
2011), developed and enhanced models of visual search via
foveated eye movements using the EPIC computational archi-
tecture (Kieras & Meyer, 1997). As part of this effort, they
described a “Minimal Model” involving the assumptions they
felt most necessary and sufficient for modeling visual search
in applied settings. Subsequently, more advances have been
made to these models, both at the architectural and strategic
level (Kieras, 2011; Kieras, Hornof, & Zhang, 2015), and
these developments have been mirrored by a series of models
using the ACT-R architecture (e.g. Salvucci, 2001; Nyam-
suren & Taatgen, 2013; Choi, Han, Oh, & Myung, 2015). Yet
the minimal model is an attractive target for practical simula-
tion modeling outside the context of a cognitive architecture.
Its notions have been adopted by several applied models of
visual attention (e.g. Teo & John, 2008), but the model was
not designed to handle visual search based on saliency and
similarity cues, and so its lessons have not been widely as
adopted in the broader field of computational vision that has
otherwise led to dozens of visual and image-processing mod-
els that identify saliency.

In this paper, we describe the Eye Movement Mini-
mal Model-Modified (EM4), which takes the Halverson &
Hornoff model as a starting point, implements it as a stand-
alone simulation model. To handle search in more general
situations, the model incorporates search based on probe-item
similarity, a quantity akin to what many visual saliency mod-
els produce naturally as an output, either via an activation or
posterior probability distribution. After describing the model,
we will show its ability to capture data in several related vi-
sual search and flicker change detection paradigms, illustrat-
ing its flexibility and utility.

The Eye Movement Minimal Model-Modified
The EM4 is intended as a simple implementation and exten-
sion of the core assumptions of the “Minimal Model” pro-
posed by (Halverson & Hornof, 2007), with the goal of ac-
counting for major phenomena in visual search paradigms.
The EM4 is implemented as a standalone software routine
in the statistical computing language R, so that it can be re-
purposed and adapted to work with other models of visual
processing or human performance, and serve as a lightweight
modeling and teaching tool. The source code for the model is
available via https://github.com/stmueller/em4. The basic
stages of the model are shown in Figure . The model operates
by simulating the timing of a series of eye movements and
other decisions that produce a response in the task.

Primary assumptions
We assume that visual search involves a repeated set of stages
in which a target object is selected based on its similarity
to the probe and its potential for information gain, follow-
ing which objects are eliminated or selected based on their
similarity to the probe. This repeats (fixation target is se-
lected and foveated, items are eliminated or selected based on
similarity) until either the probe object is found or a decision
is made to stop search. These probe-item similarity values
are inputs to the model and we treat them as free parameters.
This is a departure from the original description of the mini-
mal model, which used identity-match, and subsequent EPIC
visual search models, which have also used feature-level de-
scriptions to represent how different types of information are
available at difference eccentricities. Use of similarity pro-
vides a useful mid-level representation, such that low-level
feature-based visual processing models could produce simi-
larity as an output, perhaps without even requiring those mod-
els to be directly embedded within the simulation. The basic
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Figure 1: Schematic stages of model. Once fixated (0), target locations are eliminated and selected (1) based on similarity-to-
probe. Here, color mismatches may be quickly eliminated in the periphery. Next, (2) targets in the fovea and parafovea are
examined, and neighboring targets not eliminated are examined. Once no more targets appear in the parafovea, a new location
is selected based on available similarity-to-probe and information gain. The process is repeated until search is complete.
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assumptions of the model include:

Information is represented as probe-to-item similarity.
The main paradigms investigated by Halverson & Hornoff
involved locating a text-based menu item that was always
present. Yet even Latin characters have a well-described sim-
ilarity space (Mueller & Weidemann, 2012), such that simi-
lar characters are confusable and take longer to discriminate.
In more traditional visual search tasks, targets that are distin-
guished by a single feature can produce visual ‘pop-out’, such
that the number of distractors does not impact search time.
Furthermore, some items in the periphery might be selected
or ignored based on similarity to the probe–if the search tar-
get is an “O”, any “X” in the periphery might be ignored, but
a “U” might require more investigation. Consequently, the
EM4 represents this information as a similarity score, whose
values may differ foveally, parafoveally, and peripherally.

Zones of detection. In reality, the availability of color,
shape, size, and location of objects degrade differentially and
smoothly as an object’s eccentricity increases, with serious
degradation starting to occur 30�–45�from the fovea (Boff &
Lincoln, 1988). Many recent models have used an eccen-
tricity function (Kieras, 2010; Nyamsuren & Taatgen, 2013),
which parametrically defines the availability of different fea-
tures at different eccentricities, but the EM4 retains just three
visual zones: the fovea with radius 1�; the parafovea with typ-
ical radius 3.5�; and the periphery which involves the remain-
ing visual field. We assume that the location of visual ob-
jects is available everywhere, insofar as any object can be se-
lected as an eye movement destination. Foveated targets can
be identified explicitly (with some chance of error), whereas
parafoveal targets with high probe-item similarity are more
likely than those with low similarity to be selected for sub-
sequent eye movements. In practice, because relevant ob-
jects can be detected or rejected parafoveally, the size of the
parafovea maps roughly onto the useful field of view (UFOV;
Edwards et al., 2006), and the size may depend on properties
of the task. In addition, just as peripheral objects that are high
in probe-item similarity might direct subsequent eye move-
ments to that location, those high in probe-item dissimilarity

can be used to eliminate targets from consideration and thus
make fast rejection responses (see Chun & Wolfe, 1996). In
the fovea, the similarity represents the probability that a par-
ticular object is identified as the target. For true targets, this
maps onto the probability of misdetection used by Halverson
& Hornoff, but also permits false alarms if the value is non-
zero for foils.

Movement and decision times. We assume that after each
fixation, a decision is made about whether the searched-for
target has been identified, following which a choice is made
about the next eye movement destination. The timing of this
decision-action cycle constitutes one of the main free parame-
ters of the model, which we assume is impacted by the nature
of the stimuli, as well as dynamic aspects of the environment.
Although the original EPIC models attempted to use fixed ar-
chitectural parameters to determine this timing, different data
sets require using some very different decision timing. In ad-
dition, this time incorporates all time that is constant with
each foveation. A saccadic eye movement is assumed to take
place at 4 ms/degree of visual angle.

Accepting and rejecting matches. In general, the exis-
tence of visual pop-out is taken as evidence that some deci-
sions can be made based on information in the visual periph-
ery. In the tasks described here, detection of high-similarity
targets outside of the fovea lead to a subsequent eye move-
ment to the target to confirm and localize the target (partly
because most of the tasks we examine require a selection of
the target via mouse movement). However, just as a target
can be identified in the periphery or parafovea, we also as-
sume that targets can be rejected from consideration based on
information in the periphery or parafovea. In the parafovea
and periphery, the similarity score represents an activation
level, such that values above 0.5 represent greater similar-
ity to a probe, indicating a possible match; values below 0.5
indicate dissimilarity to a probe great enough eliminate from
search. Targets with periphery similarity greater than 0.5 each
need to be examined and either eliminated or responded to
if found to be identical to the target. If all peripheral targets
with similarity above 0.5 are examined and eliminated, a neg-
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ative response can be made. However,for peripheral targets,
we assume that target-probe values below 0.5 permit elimi-
nating the target without eye movement (i.e., preattentively),
allowing for fast responses. This accounts for findings such
as the ability to make a probe-absent decision without exam-
ining each target, or (when a probe should produce pop-out)
to make a target-absent decision quickly even when nothing
is detected (Chun & Wolfe, 1996). Importantly, only probe-
item similarity is used directly, and the model is not impacted
by target-distractor similarity, which may provide additional
gestalt cues for helping to identify and classify oddball search
targets or possibly make search less efficient.

Selecting subsequent locations for search. Deciding
where to search next (including in cognitive search of mem-
ory, physical search of environments, and other domains) in-
volves cost-benefit analysis (Perelman & Mueller, 2015), be-
cause the costs of moving must be weighed against the po-
tential gain in information (Drury, 1975; Bruce & Tsotsos,
2009). For search constrained by eye movements, the time
needed to move the eye to a new destination is relatively in-
sensitive to the distance moved (only 4 ms/degree), in contrast
to the fixed cost of 100 ms or more required to program and
execute the movement, and the time required to classify an
item once it is foveated. However, deliberate short eye move-
ments help avoid repeated search of a location by making the
task of keeping track simpler; this may improve time-to-find,
even if a more distant location could offer maximum gain in
information, so that a new location with more potential tar-
gets may be better than a closer location with only one target.

The present model balances these by first looking for high-
similarity unidentified targets in the parafovea; if this fails, it
computes a neighborhood activation score for each unvisited
target (the sum of the exponentially-discounted similarity of
all unvisited nearby targets), and deciding the next eye move-
ment based on a mixture of the normalized inverse neighbor-
hood similarity scores and noisy distance-to-target, so that the
next target may (at one extreme) be the next-most-similar, or
(at the other extreme), be based purely on the distance selec-
tion scheme proposed by Hornoff & Halverson. When target
decisions are made based on discounted neighborhood activa-
tion, this favors movements to targets in dense regions where
a single fixation is able to eliminate several objects.

In summary, the model implements a stand-alone version
of the minimal model that operates by repeatedly selecting
objects, fixating on them, and eliminating them from con-
tention, until the selected target is found or all targets are
eliminated. Next, we will examine how the model fits sev-
eral related visual search paradigms.

Model Fits to Data
In this section, we will describe the model’s fit to several
empirical data sets. These include a menu search task, a vi-
sual search task, and two flicker-based change detection tasks.
The parameter values and goodness-of-fit values (both R and

Figure 2: Tasks modeled in this paper. A. Menu selection
task; B. feature search; C. Dot-flicker change detection; D.
Sparse change detection.
! "

# $

Figure 3: Model and data from menu search task. Left panel
shows search time (in ms); center panel shows mean number
of fixations; right panel shows mean distance of saccades.
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percent deviation, where appropriate) are shown in Table 1.
We will examine a menu search task, a feature-search task;
and two flicker-change blindness tasks whose performance
profiles differ substantially.

Menu Search Task

The primary task used by Halverson & Hornoff to inform rec-
ommendations for a minimal model involved menu search, in
which blocks of contiguous text-labeled targets needed to be
searched to find a specific target (see Figure 1a). In this task,
aside from target location, no information in the parafovea or
periphery is useful for localizing the target menu, as the la-
bels were 3-letter strings that could not be easily identified
without foveating on or near the menu.

Method This task involved search conditions involving 1,
2, 4, or 6 blocks of menu items, where each block consisted
of five items spaced vertically at .66�, arranged in up to three
columns, two blocks per column, with a vertical separation of
1.33�and horizontal separation of 7.5�between blocks. Each
target had a unique 3-letter label, and on each trial, a par-
ticipant searched for a specific labeled target. Three critical
dependent measures were examined: mean time to find, mean
number of fixations, and mean saccade distance. Full param-
eters are shown in Table 1. Model fits are shown in Figure 3.
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Discussion This simulation produced good fits, using pa-
rameters and assumptions similar to Halverson and Hornof
(2007), the one major exception is the noise parameter used
to select subsequent target locations, which was much larger
for the present model, primarily because in the present model,
eye movements are first made to nearby locations in the
parafovea, rather than solely on a noisy-distance scheme.
This gives the model a natural preference for nearby objects,
and so to counteract this, a larger default noise parameter was
required. This illustrates that the EM4 captures the major
phonemonon or which the original minimal model was de-
signed to account for.

Visual search of simple targets with pop-out
Although the previous task is a useful starting point, it differs
from the most commonly-used visual search paradigms typi-
cally used within vision science and psychology. Such search
tasks typically differ in three ways from this menu search: (1)
they involve haphazard stimulus arrangement, making sys-
tematic search more difficult; (2) they often involve search for
a specific target character amongst a field of distractors that
may be either similar or dissimilar to the target (i.e., search-
ing for a T in a field of Ls or Os); and (3) they are often used
to demonstrate visual pop-out or feature search, the finding
that the presence or absence of some features can be detected
peripherally. Thus, the next step in developing the model was
to examine how it can account for a more traditional visual
search task.

Method This study involves an implementation of a vi-
sual search task with several search targets producing visual
popout (Mueller & Piper, 2014, see Figure 1b), in a cross-
national study (Tan, 2016) that involved 136 participants. In
this task, participants searched for a specified target on each
trial (a white or green O or X) in a field of either 10, 20, or
30 round white characters (C, D, G, Q, and U) on a black
background that was approximately 15�x 10�of visual angle.
On different trials, 0, 1, or five targets were present. These
conditions parametrically varied the efficiency of search, the
number of distractors, and the number of targets, and pro-
vided a systematic data set for modeling search times. On
each trial, the field of elements was presented until the partic-
ipant clicked the mouse button; after which the elements were
each replaced by a circle, and the participant was instructed to
either indicate the location of an object matching the probe,
or a label marked “none” if no objects matched the probe.

Results Accuracy for the task was high (98.5%) and so we
will consider only search times, which are shown in Figure 4.
The human results (left column) show that response time for
rejecting pop-out targets tended to become longer with larger
search sets, with a clear ordering from most difficult to least
of white O, white X, green O, and green X. The same ordering
occurred regardless of whether a target was present or absent,
but the times were faster (and the slope with respect to num-

Figure 4: Model fits to the visual search task.
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ber of distractors was smaller) when a target was present, and
this diminished further when multiple targets were present.

The fits to data were good (see Table 1), with several dif-
ferences in parameter values from the first model being (1)
smaller detection/rejection time parameters were used, and
(2) eye movements locations were selected based on probe-
item similarity, rather than by distance alone; and (3) failure-
to-detect was reduced to 0.0. The smaller detection times are
reasonable because the current task required detecting a sin-
gle letter instead of a 3-letter sequence. The use of probe-
item similarity (or a similar concept) is necessary to fit these
data, and this required making assumptions about probe-item
similarity for each target class (green and white Xs, Os, and
D/G/U/Q/C) in each zone. The slope of the response time
to each target class (with respect to number of distractors) is
primarily controlled by the peripheral probe-item similarity.
These similarity values were assigned with a uniform distri-
bution having a range of 0.3 units, with the minimum values
of .45 (when color and shape match), .3 (when either color
or shape match) and .25 (when color and shape mismatch).
Thus, the small but positive slope for target-absent responses
arises because as the number of distractors increase, the num-
ber of distractors with a probe-target similarity above 0.5 in-
creases, requiring additional eye movements to eliminate. To-
gether, these assumptions accounts for search times with a
mean proportional absolute deviation of 0.16 and a correla-
tion of .94.
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Discussion The visual search data shows that the EM4 can
provide a credible account of a more traditional search task,
including pop-out effects, target-absent effects, and effects of
the number of distractors. Thus, the model is capable of pre-
dictions in two major visual search paradigms, including one
in which involves parallel feature-based selection and elim-
ination of targets. The model predicts timing of the search
task well, but without recording eye movements, there is of-
ten a potential for trading off zone size (fovea and parafovea)
with dwell time. For example, if the parafovea were twice as
large but the dwell time was doubled, a similar fit might be
obtained. Along with measuring eye movements directly, an-
other way to constrain the model is with a flicker-based search
task, a commonly-used search paradigm that yokes eye move-
ment times to a fixed frequency of presentation. We will next
examine two flicker tasks to demonstrate the model’s flexibil-
ity and help constrain its assumptions about timing of move-
ment. On their surface, the two tasks appear very similar, but
produce performance profiles that differ substantially. Thus,
it will be important to examine the aspects of the model that
change in order to account for these across-task differences.

Flicker-paradigm change detectione
A commonly used paradigm involving visual search is the
flicker change detection task (see Rensink, O’Regan, &
Clark, 1997), in which two visual stimuli (either artificial or
natural) that differ in some small way are shown repeatedly
in succession, with a brief empty ‘flash’ between them (e.g.,
50 ms) that prevents low-level visual change detection and
requires deliberate search among the targets to find the dif-
ference. Here, even if detection can be done quickly, partici-
pants often cannot benefit from more than one eye movement
per flash, which constrains the rate of information search. In
this experiment, we examined a relatively difficult version of
the task that incorporated four different types of change while
varying the number of distractors.

Methods. The present data was collected on the same
groups of participants as the visual search task. This task
used a modified version of the PEBL dot-flicker change blind-
ness task (changeblindness), and involved three stimulus con-
ditions with 5, 10, or 50 distractors. Each trial involved one
of four change types: a color change, a size change, a position
change, or a target disappearance. The entire stimulus visual
field was approximately 20�x 15�. Each display frame ap-
peared for approximately 450 ms, followed by a 50 ms blank
flash, which was sufficient to disrupt low-level visual cues of
change. Participants were permitted a maximum of 30s to
find the change, which they then indicated by clicking with
the mouse at the location of change.

Modeling the task differs from the previous models in that
there is no known a priori probe, so the notion probe-item
similarity is not applicable. Consequently, for the model, we
interpret the zone similarity values to indicate the available
evidence for a change across the flicker mask. The model

assumes that no real information is available in the periph-
ery, but evidence for a flicker-change will often be detectable
in the parafovea (targets have similarity around .8 whereas
non-targets have similarity around .6), which can then direct
a foveation to confirm and localize the change. Because the
rate of search is constrained, the main dependent timing mea-
sures are constrained by the effective size of the parafovea,
which we adjusted to improve fit to data.

Results. Although small differences were observed in time
and accuracy between 5 and 10-target displays, participants
were considerably less accurate and slower on the 50-target
display. As shown in Figure 5, the flash condition was slower
and less accurate than the move condition (a move is essen-
tially a double-flash), and size-change tended to be about as
difficult as the flash condition. Color change was by far the
most difficult condition. The model produced reasonable fits
to the data, although it overpredicted the time needed to find
the target on the smaller displays. The model assumes that the
difficulty of different conditions arises because of a failure to
detect changes of different types once a potential change is
foveated, as shown in Table 1. In addition, the parafovea
zone had a radius of 5.5�. This indicates that such changes
may be available quite far from the fovea, but may often go
undetected, which would require frequent revisits to previous
locations.

Before discussing the results of the change detection task,
we will examine a second study using an alternate version
of the task that employs top-down cueing, and thus permits
probe-item similarity to play a role in the search task.

Figure 5: Model fits to dot-flicker task.
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Top-down control in flicker-based change detection
Methods The final data set also used the flicker paradigm,
but differed from the previous task in several ways. First,
the field of view was larger (28�x 28�), and only one type of
change occurred (a single target appeared and disappeared).
On each trial 40 symbols appeared, drawn randomly from
a set of four colored symbols (red, green, blue, and yellow
squares). The larger field of view and more uniform targets
made the task substantially easier, perhaps because of crowd-
ing and spacing effects (see Pelli, 2008). On half the trials, a
color cue was given indicating the color of the change.
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Figure 6: Model fits accounting for top-down control in
change detection task
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Results The single change type, coupled with the more dis-
persed display, produced a much easier task than the previous
one: mean time to find in the 40-target task was under 4 s,
comparable to the 10-target condition in the previous experi-
ment. Furthermore, accuracy was close to 100%; in contrast
to the 50-80% accuracy produced in the 50-target condition
of the previous study. In addition, when cued, the time was
reduced further, although the advantage for different colors
differed, depending on the color.

To model these data, we assumed that different colors pro-
duce a different probability of detecting a change in the fovea,
similar to the previous model. However, on cued trials, probe-
item similarity is used to eliminate potential targets and con-
strain search. The best case scenario reduces target locations
to around 10, but because of random sampling and layout of
points, this does not reduce the time-to-find to 1/4 of the orig-
inal. The model accurately predicts the that scale of this re-
duction is about 1/3. Differences in the color cue conditions
were modeled by adjusting the peripheral similarity of dif-
ferent colors to the cue, so that in the case of red, typically
10/40 targets needed to be searched, but in the case of yellow
and green, closer to 20/40 targets needed to be searched (be-
cause of their similarity). In these models, yellow and green
often cannot be distinguished rapidly in the periphery, and
so more of these targets were foveated to eliminate the foils.
Overall, although some of the detection parameters were sub-
stantially different from the previous experiment, the model
produces reasonable fits for both with interpretable changes
in parameters (see Table 1). As in the previous change blind-
ness model, parafovea size was slightly larger than the search
task–in this case 4.0�. This is a consequence of the fact that
search times on the order of 3-4 s necessarily involve at most
6 to 8 foveations, and the only way to reliably cover the visual
field is if each foveation obtains information from this area.
Thus, both change detection models suggest that change can

be detected at 4 or more degrees from fixation, and that color-
changes can be especially easy to miss (with failure rates af
around 40% when fixated).

Parameters of models
Table 1 summarizes the main parameters used across tasks.
Results are mainly impacted by assumptions about how long
each detection/decision phase take, and the probability of de-
tecting information in different visual zones-especially prob-
ability of detection failure in the fovea.

Discussion
The EM4 adopts and adapts the minimal model assumptions
proposed by Halverson & Hornoff (2002), and extends the
model to capture primary effects of several visual search
paradigms. We have demonstrated the effectiveness of the
model against four data sets, and the parameter settings for
these models provide insight into the timing, accuracy, and
availability of information. We will conclude by identifying
some of the main lessons we have learned from these models.

Lessons of the models
Fovea zones. Accurate prediction of times and accuracies
in search tasks require accounting for the information avail-
able in different foveal zones, and decisions about both pres-
ence and absence of this information.

Peripheral information. Substantial information about
both presence and absence of information is available in the
visual periphery (i.e., for pop-out tasks) and parafovea (for all
tasks), and search is often guided by presence and absence of
this information in all three zones.

Target rejection. Rejection of targets frequently occurs
without foveation; identification of targets often is coupled
with foveation.

Parafoveal preference. Search times can typically be ade-
quately accounted for by a model that attempts to first confirm
any high-likelihood targets parafoveally, and then maximize
information gained in each subsequent movement.

Probe-item similarity. Probe-item similarity is useful in
predicting a number of effects of visual search, sot that mod-
els of visual salience may benefit from incorporating probe
information.

Conclusions. The EM4 intends to be a simple minimalistic
model of foveated eye movement search. It is a standalone
model, and so it may be useful for lightweight practical eval-
uation in human factors domains, as a simulation model edu-
cation contexts, and as a lightweight front end for visual pro-
cessing models that produce activation or posterior probabil-
ity scores that can be interpreted as a probe-item similarity.
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Abstract

This work describes the formation of a language under phono-
logical similarity constraints. Classical studies on human sub-
jects show that in recalling experiments short-term memory
performance was impaired for phonologically similar words
versus dissimilar ones. Here, artificial individuals confound
phonologically similar words according to a predefined param-
eter: the more the parameter, the more the confusion. Theoret-
ical results present proofs of convergence for a particular case
of the model within a worst-case complexity framework. Com-
puter simulations describe the evolution of an energy function
that measures the amount of local agreement between individ-
uals. The main finding is the appearance of sudden consensus
changes at critical parameters.
Keywords: Phonological similarity; Short-term memory; Au-
tomata networks; Vocabulary.

Introduction

In natural language, a typical linguistic interaction is not a
simple sequence of individual actions, but also a form of joint
activity that involves cooperation and coordination between
participants (Tomasello, 2008). What is more, inside the dia-
logue language users tend to converge in their choice of con-
structions. This mutual convergence process, or alignment,
has been extensively studied within computational studies of
the formation of language through the Naming Game (Steels,
1995, 2011; Baronchelli, Felici, Caglioti, Loreto, & Steels,
2006; Loreto, Baronchelli, Mukherjee, Puglisi, & Tria, 2011).
It attempts to ask how on a population of agents only from lo-
cal interactions it arises a shared word-meaning association
(the simplest version of a vocabulary). This model consid-
ers a finite population of agents, where each one is endowed
with a memory in which it stores an in principle unlimited
number of words. At each discrete time step, a pair of agents
is selected: one plays the role of speaker, one plays the role
of hearer. First, the speaker refers to an object by using a
word. Next, the hearer tries to identify the referent. For this
purpose, the hearer inspects its own memory: (1) if the word
belongs to the memory of the hearer, both speaker and hearer
cancel all the words in their memories, except such word; or
(2) if the word does no belong to its memory, the hearer adds
the word to its memory. The Naming Game only is possible
if pairwise interactions are a kind of joint activity. In a more
realistic scenario, both agents interact in a context where the
object is located and share focus on the object by means of
pointing or eye-gazing. The interaction continues until both
agents reach a common word associated to the object, a word-
meaning association.

Here, it is assumed that the development of word-meaning
associations is founded on self-organization mechanisms aris-
ing only from local interactions between agents (Steels, 1995,

1996; Baronchelli et al., 2006). Given this self-organized na-
ture, Automata Networks (AN) (Neumann, 1966; Wolfram,
2002) provide the adequate framework to explore alignment
from a computational (and mathematical) point of view. AN
are extremely simple models where each vertex of a network
evolves following a local rule based on the states of “nearby”
vertices. Despite of the simplicity of the defining rules, AN
exhibit astonishing rich patterns of behavior. Thus, a word-
meaning association can be considered as a complex pattern.

What is the relationship between cognitive mechanisms
of the individuals and the emergence of language on artifi-
cial populations? The question entails the study of compu-
tational machines which exhibit limitations and constraints
of human language users. This work stresses a novel ques-
tion related to models of the self-organization of language:
To what extent do working memory constraints influence the
alignment of shared conventions on artificial populations of
agents? Language users (and therefore agents playing com-
putational games of the formation of language) suffer lim-
ited short-term memory constraints (A. Baddeley & Hitch,
1974; A. Baddeley, 2007). Particularly, phonological simi-
larity effects suppose that individuals confound word items
sharing large portions of phonological content. A classical
work (A. D. Baddeley, 1966) reports experiments where sub-
jects heard sequences of unrelated words and tried to recall
in the correct order. The results suggest that memory perfor-
mance was impaired for phonologically similar words (man,
cad, mat, cap, can) versus dissimilar ones (pen, sup, cow,
day, hot). This effect is a strong evidence for the existence
of the phonological loop, understood as part of the short-
term (working) memory system (A. Baddeley & Hitch, 1974;
A. Baddeley, 2007).

This paper does not attempt to develop a “realistic” model,
but rather an abstract symbolic approach that extracts the es-
sential elements of the problem. The simulations described
here are based on a parameter that measures the amount of
phonological confusion between words (considered as a way
to describe the influence of working memory limits): the
more the parameter, the more the confusion. The work ex-
plores the hypothesis of there being a critical range of the pa-
rameter that implies drastic changes in the shared conventions
of the entire population. Therefore, the features of language
(in particular, the consensus on word-meaning associations)
emerge abruptly at some critical range of phonological con-
fusion (Hauser, 1996). This hypothesis is strongly related to
previous work on on the absence of stages in the formation
and evolution of human languages (Bickerton, 1998; Calvin
& Bickerton, 2001; Ferrer-i-Cancho & Solé, 2003).

The work is organized as follows. Section “Description
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of the model” explains basic notions on AN, the instrumen-
talization of phonological similarity and the rules of interac-
tion. Section “Theoretical issues” reports simple mathemati-
cal results related to the convergence of particular cases of the
model. The next section (“Simulations”) describes simulation
tasks based on an energy operator, over a parameter that mea-
sures the amount of similarity confusion between words. A
brief discussion of the results is presented in the final section.

Description of the model

Elements of the AN model

Roughly speaking, the AN model involves the following ele-
ments:

• A regular grid graph: vertices represent individuals; edges
represent possible communicative interactions. More gen-
erally, as in the section “Theoretical results”, the graph can
be a connected, undirected and simple network.

• Each individual is associated to a state that eventually
changes along time. This state is a way to represent the
language of the individual at some time frame.

• A set of local rules that define how the system changes.
The local rule associated to one individual considers as in-
puts the states of the nearby individuals (the neighbors).

• A function, the updating scheme, that indicates the order in
which the individuals are updated. Two updating schemes
are considered in this work: (1) the fully-asynchronous
scheme, where at each time step one individual is choosen
uniformly at random; and (2) the sequential scheme, de-
fined as a permutation of the set of vertices.

In what follows, some of the previous elements will be
treated in greater depth.

Basic notions

The set P= {1, ...,n} represents the population of individuals,
located on the vertices of the regular grid graph G = (P,E),
where E is the set of edges. The vertex u ⌥ P only inter-
acts (or “talks”) with the set of adjacent vertices Vu = {v ⌥
P : (u,v)⌥ E} (the neighborhood). Each individual considers
four neighbors: up, down, left and right ones (Von Neumann
neighborhood). The individual u⌥ P is endowed with a mem-
ory set Mu in which it stores words belonging to a finite set
W , with p elements.

Let � = {a1, ...,as} be a set of sounds. Each word of W
is constructed by a combination of sounds taken from �. For
instance, a3a1a8 ⌥ W . The length of the word x is its num-
ber of sounds. For the sake of simplicity, all the words have
the same length L. x(k), with k 6 L, denotes the k�th sound
(or position) of the word x. To explicitly measure the amount
of phonological similarity between words, the Hamming dis-
tance H(x,y) between the words x and y is defined as the
number of positions in which they differ. Consider two words
a4a6a5 and a7a6a3, then H(a4a6a5,a7a6a3) = 2.

Confusion parameter

To explicitly measure the ability to distinguish between
words, the confusion parameter ⇥ ⌥ [0,1] is defined. Suppose
that the vertex u faces two words x,y. Then,

if H(x,y)> ⇥L, u distinguishes the words x and y

else u confounds the words x and y (or simply “x = y”)

For instance, the individual u ⌥ P is confronted with the
words x = a1a8a6a4 and y = a1a8a6a3. Two values of ⇥ are
considered, 0 and 0.5:

• (⇥ = 0) H(x,y) = 1 > ⇥L = 0⇥4 = 0, then u distinguishes
the words x and y

• (⇥ = 0.5) H(x,y) = 1 < ⇥L = 0.5⇥4 = 2, then u confounds
the words x and y

Local rules

Inspired in the Naming Game (Baronchelli et al., 2006), the
local rule associated to the individual u ⌥ P is based on two
possible actions on the memory Mu:

• u updates its memory Mu by the addition of words; or

• u collapses its memory if Mu is updated by cancelling all
its words, except one of them.

Both actions attempt to take into account lateral inhibi-
tion strategies (Steels, 1995, 2011) in the alignment process:
the individuals add words in order to increase the chance of
future agreements (local consensus), and defect the words
that do not cooperate with mutual understanding. In a col-
lapse, the individuals prefer the minimal word, according to
the lexicographic order over the set of words. The lexico-
graphic order, denoted ⇧, is a generalization of the typical
alphabetical order of words on the alphabetical order of their
component letters (or sounds). For example, in the dictio-
nary the word “Me” appears before “My” because the letter
e comes before the letter y in the alphabet. In some sense,
the word “Me” is lower than the word “My”. Formally, the
order < is defined on the set �. Two words x and y of length
L are considered. Then, x ⇧ y (x is lexicographically lower
than y) if the first position in which they differ, say k 6 L,
satisfies x(k) < y(k). For instance, given the set of sounds
� = {a,b,c,d}, with a < b < c < d, the words abc, bcd and
cda satisfy abc < bcd < cda. Therefore, abc is the minimal
word or, in other terms, min({abc,bcd,cda}) = abc. Associ-
ated to the previous words “Me” and “My”, it is possible to
write min({“Me”,“My”}) = “Me”.

The preference for the minimal words can be viewed in
accordance with the following hypothetical scenario (Nowak
& Krakauer, 1999). It is possible to think in a population
of early hominids for which leopards represents a higher risk
than cows. So, the word “leopard” may be more valuable
than “cow”. In the terms of this paper, “leopard” can be the
minimal word.
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At time step t, the vertex u ⌥ P is selected according to
the updating scheme (fully asynchronous or sequential). Con-
sider a simple population P= {1,2,3,4,5} (each number rep-
resents one individual). For a fully asynchronous scheme, at
each time step any individual of P can be selected (for in-
stance, the individual 3). In the next step, the individual 3 can
be selected again. For a sequential scheme, a permutation of
the set P is defined, for instance, the order 5-4-3-2-1. The in-
dividual 5 updates first, then the individual 4 updates, taking
into account the effects of the changes in the first individual,
and so on. At time step 6, the dynamics starts in the same pre-
vious way. In other terms, a sequential scheme supposes that
each individual is updated after that all the other individuals
of the population have been updated.

The individual u ⌥ P is completely characterized by its
state (Mu,xu), where Mu is the memory to stores words (Mu
is a subset of W ) and xu ⌥ Mu is a word that u conveys to the
vertices of Vu. The model induces specific communication
roles: the vertex u plays the role of “hearer” (it receives the
words conveyed by its neighbors); the neighbors of u play the
role of “speaker” (they convey words to the vertex u). The
set of all words conveyed by the speakers can be re-written as
two subsets: Nu and Bu. Roughly speaking, Nu includes the
unknown words, and Bu includes the known ones.

The state pair (Mu,xu) changes according to the following
steps, which define the local rule of the automata (see Fig.
1):

step 1 the vertex u defines two sets:

Nu = {xv : (v ⌥Vu)⌦ ( y ⌥ Mu,H(xv,y)> ⇥L)}
Bu = {xv : (v ⌥Vu)⌦ ( y ⌥ Mu,H(xv,y)6 ⇥L)}

step 2

if Nu �= /0, Mu adds the words of Nu

else Mu collapses in the word x̄, selected at random from
the set {x ⌥ Bu : H(x,min(Bu)) 6 ⇥L} (that is, the new
state is ({x̄}, x̄))

Step 1 comprises (1) the speaker’s behavior (the neighbors
convey words to the vertex u); and (2) the definition by the
hearer of the sets Nu and Bu. Given a conveyed word xv, v ⌥
Vu, the hearer u decides between: either xv is added to Nu if
for all y ⌥ Mu,H(xv,y)> ⇥L; or xv is added to Bu, otherwise.

Step 2 summarizes the behavior of the hearer in order to
align itself with the speakers. In the case that Nu �= /0, the
hearer simply adds to its memory the words of Nu. Otherwise
(Nu = /0), the hearer collapses its memory in the word x̄ ⌥ Bu.
The word x̄ is selected uniformly at random from {x ⌥ Bu :
H(x,min(Bu))6 ⇥L}. Thus, the preferred word min(Bu) can
be confused by “similar” ones (with H(·,min(Bu))6 ⇥L).

Dynamics of the automata

As initial configuration each individual receives a word con-
structed by a random combination of L sounds from the set
of symbols �. Thus, at t = 0 each individual is associated

to a state of the form ({x},x), with x ⌥ W . Each discrete
time step t > 0 supposes that one individual, say u, is selected
uniformly at random (the fully-asynchronous scheme) or ac-
cording to a permutation of the set of vertices (the sequential
scheme). The individual receives the words conveyed by its
neighbors: it plays the role of hearer, the neighbors play the
role of speaker. Regarding to the conveyed words the individ-
ual follows the two defined steps in order to decide possible
changes in its own language state:

step 1 the individual defines the sets Nu (unknown words)
and Bu (known words).

step 2 the individual either adds words if Nu is non empty
or collapses its memory in the minimal word of Bu, if Nu
is empty.

Both steps involve the possibility of confusion between
similar words. In the next time step t + 1 another individual
(possibly the same one) is selected, and so on.

A fixed point is a configuration invariant under the appli-
cation of local rules, which can be interpreted as a final con-
sensus configuration, where all individuals agree about some
linguistic convention.

Theoretical issues

Convergence under ⇥ = 0
An interesting problem related to the formation of consen-
sus on linguistic conventions is to propose a proof of con-
vergence. Given the mathematical framework of this paper,
the problem becomes to count (in the worst case) the num-
ber of simulation steps whom the dynamics needs to stop,
that is, to prove that after a finite number of time steps the
population reaches a shared word-meaning association. De-
spite that other works have solved related tasks (DeVylder
& Tuyls, 2006), the novelty of the rest of this section is to
develop a convergence proof based on the worst-case com-
plexity, which measures the amount of resources (running
time) needed by the system if it is considered as an algorithm.
Running time, defined as the number of steps until the entire
population reaches a global consensus language, indicates the
largest dynamics performed by the automata given the size n
of the population (denoted O( f (n)), where f (n) is a function
of n). For instance, O(n2) means that in the worst-case the
running time has a growth rate scaling as n2.

In this section, individuals are located on a general undi-
rected and connected network (not necessarily a regular grid),
and they do not confound words, that is, ⇥ = 0.

It is straightforward to notice that at ⇥ = 0 ( y ⌥
Mu,H(xv,y)> ⇥L) is equivalent to (xv /⌥Mu). Roughly speak-
ing, the expression ( y ⌥ Mu,H(xv,y)> ⇥L) means that xv is
“different” to every word in Mu and, therefore, xv /⌥ Mu. As a
consequence, the two steps of the rule take a simpler form:

step 1 the vertex u defines two sets:

Nu = {xv : (v ⌥Vu)⌦ (xv /⌥ Mu)}
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({abcd,bacd},bacd)

bacd cabd

dabc

({abcd,bacd,cabd,dabc},bacd)
addition

({abcd,bacd,cabd},bacd)

bacd cabd

abcd

({abcd},abcd)
collapse

Figure 1: Example of the two actions at ⇥ = 0. The order a < b < c < d is defined on the set � = {a,b,c,d}. W =
{abcd,bacd,cabd,dabc}. The lexicographic order establishes abcd ⇧ bacd ⇧ cabd ⇧ dabc. The confusion parameter is
set to ⇥ = 0 (that is, the individuals do not confound words). The central vertex (u ⌥ P) has been choosen. Four individuals
participate in the interaction: the central vertex u and its three neighbors of Vu. Two different configurations are showed. First
row (addition): Bu = {bacd} and Nu = {cabd,dabc}. Second row (collapse): Bu = {abcd,bacd,cabd} and Nu = /0.

Bu = {xv : (v ⌥Vu)⌦ (xv ⌥ Mu)}

step 2

if Nu �= /0, Mu adds the words of Nu

else Mu collapses in the word min(Bu) (the new state is
({min(Bu)},min(Bu)))

First of all, a sequential updating scheme is considered.
This means that a permutation of the vertices is defined. As
previously noted, each individual is updated after that all the
other individuals of the population have been updated. In
the worst case, each time step supposes that one individual
adds one word. This process ends when some individual
has all possible words, that is, after p� 1 steps (there are p
words). Since the population has size n, after n(p� 1) steps
the individuals must collapse their memories. Then, at step
t⇤= n(p�1) all individuals have been collapsed at least once.
As the next theorem shows in detail, the minimum conveyed
word at t⇤ propagates in the system until it reaches a fixed
point where all individuals convey this minimum word.

Theorem 1 (Goles, Montealegre, & Vera, 2016)
Consider a population of n individuals playing the au-

tomata model with the set of p words W and confusion pa-
rameter ⇥ = 0. Then,

(I) for the sequential scheme, the system converges to fixed
points in at most O(n2 p) steps;

(II) for the fully-asynchronous scheme, the system con-
verges to a fixed point in expected time O(n2 p log(n)).

Proof 1 (I) Initially there are p words. Then, in at most p�1
updates a vertex has collapsed for the first time (in the worst
case the vertex must add every possible word, one at a time).
This implies that in n(p� 1) steps (p� 1 updates of each
vertex) all vertices have collapsed at least one time. Let m

be the minimum conveyed word at step t⇤ = n(p� 1), and
let u be a vertex such that xu = m (in more precise terms,
m = min({xu}u⌥P)).

Since u has collapsed at least one time, the updating
scheme is sequential, and m is the minimum word, then u
must have another neighbor v ⌥ Vu conveying m. In conse-
quence, after t⇤ both vertices u and v will remain conveying
m, and at each time a neighbor of any of these two vertices
will necessarily collapse in the word m. The graph has a di-
ameter of O(n) and each np steps it occurs a collapse. There-
fore, in at most O(n2 p) steps the system converges to a fixed
point where all vertices convey the same word m.

(II) In the fully-asynchronous scheme, at each time step a
single vertex is picked independently and uniformly at ran-
dom. The expected convergence time grows by a factor of
O(log(n)) with respect to the sequential scheme. Notice that
in the proof of the part (I) it is shown that after updating
[O(np) times] [each vertex], a fixed point is reached. From
the well known coupon collector’s problem (see, for instance,
(Grimmett & Stirzaker, 2001)), the expected number of steps
required to update [at least once][every vertex in the graph
(or pick every coupon)] is O(n log(n)). Since in a fully asyn-
chronous updating scheme each step is independent to the
others, the result follows.

A brief note on dynamics under ⇥ = 1
At ⇥ = 1, individuals confound any pair of words x,y ⌥ W .
Indeed, for all x,y ⌥ W H(x,y) 6 ⇥L 6 L. A simple result
says:

Proposition 1 Consider the automata model with confusion
parameter ⇥ = 1. Suppose that the individual u ⌥ P has been
selected at some time step. Then,

1. Nu = /0; and

2. Bu �= /0
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A relevant consequence of Proposition 1 is that additions

are not allowed. This fact requires further work.

Simulations

Protocol

To describe the amount of agreement between individuals,
an “energy” operator is defined. This energy-based ap-
proach arises from a “physicist” interpretation, related to
(Regnault, Schabanel, & Thierry, 2009): the energy measures
the amount of local unstability of the system. At each neigh-
borhood Vu, the function ⇤v⌥Vu H(xu,xv) is defined, which
measures the Hamming distance between the word xu and the
words conveyed by the neighbors of the individual u. This
function is bounded by 0 (in case of agreement, that is, the
individual u and its neighbors convey the same word) and
4L (disagreement, which means that the individual u and its
neighbors convey radically different words). Summing over
all individuals defines the total energy function at some time
step t:

E(t) =
1

4Ln ⇤
u⌥P

⇤
v⌥Vu

H(xu,xv) (1)

The function E(t) is bounded: 0 6 E(t)6 1. Thus, the dy-
namics of the AN model can be understood as the trajectory
between initial configurations associated to large amounts of
unstability (with E(0)⌅ 1) and final consensus configurations
where E(t) ⌅ 0, or equivalently, all individuals convey simi-
lar -in the sense defined by the Hamming distance- words.

The analysis focuses on two-dimensional periodic lattices
of size n = 1282 with Von Neumann neighborhood. The
simulations describe 500n steps of the energy function E(t).
At each time step, one vertex (playing the role of hearer) is
selected uniformly at random (fully-asynchronous scheme).
The plots show average values over 20 initial conditions. An
initial condition is defined as follows: each individual re-
ceives uniformly at random a word constructed by a random
combination of L sounds from the set of symbols �, |�|= 10.
Word-length L varies from: {2,4,8,16,32,64}. ⇥ is varied
from 0 to 1 with an increment of 10%.

Given the worst-case complexity approach to theoretical
aspects of convergence, it is important to notice that on low-
dimensional lattices it seems hard that one individual adds
O(np) words after it collapses, because lattices are low-
connected. This intuition suggests that running times on lat-
tices will be lower than theoretical bounds (O(n2 p log(n)) for
the fully-asynchronous scheme).

Results

There are several remarkable aspects, as shown in Fig. 2 and
Fig. 3. First of all, E(t = 500n) versus ⇥ exhibits at ⇥ = 1 a
maximum which is close to 0.5 for all values of L (Fig. 2).
Secondly, to the extent L grows, E(t = 500n) versus ⇥ evolves
more “smoothly”: L 6 8 supposes “ladder” steps which mean
that different values of the confusion parameter ⇥ lead to the
same energy. Finally, focusing the description on L= 32 (Fig.

3), it is interesting to notice that at ⇥ = 0.7 the average value
of E(t) stops approximately after t = 200n steps. This fact
exhibits that only a few set of runs does not converge to the
global minimum of the E(t) = 0. This strongly suggests the
appearance of a critical parameter ⇥⇤ ⌅ 0.7 which clearly de-
fines two phases in the evolution of E(t = 500n) versus ⇥:
(1) ⇥ < ⇥⇤ implies the convergence to the global minimum
E(t) = 0, where all individuals convey the same word; and
(2) for ⇥> ⇥⇤ the dynamics changes drastically until it reaches
local minima of the energy function (E(t)⌃ 0.5).

Figure 2: E(t = 500n) versus ⇥. On a two dimensional grid
of size n= 1282, the figure shows the final value of the energy
function versus the parameter ⇥, after 500n steps or until they
reach the global minimum E(t) = 0. The plots show averages
over 20 initial conditions: for an initial condition, each vertex
receives a word constructed by a random combination of L
sounds from the set of symbols �, |�| = 10. Word-length
varies from: {2,4,8} (top); and {16,32,64} (bottom). ⇥ is
varied from 0 to 1 with an increment of 10%.

Discussion

This work summarizes an AN approach to the formation
of linguistic conventions under phonological similarity (and,
in general, short-term memory) mechanisms. The paper
presents the evolution of an energy functional, defined as a
word “confusion” average, during the alignment game. Two
aspects are remarkable. On the one hand, the appearance
of drastic transitions can be related to previous works that
focus on the absence of stages in the formation and evolu-
tion of human languages (see, for instance, (Bickerton, 1998;
Calvin & Bickerton, 2001; Ferrer-i-Cancho & Solé, 2003)).
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Figure 3: E(t) versus t, L = 32, for different values of ⇥.
On a two dimensional grid of size n = 1282, the figure shows
evolution of the energy function E(t) versus t, for different
values of the parameter ⇥. Simulations run 500n steps or until
it reaches the global minimum E(t) = 0. The plot shows av-
erages over 20 initial conditions: for an initial condition, each
vertex receives a word constructed by a random combination
of L sounds from the set of symbols �, |�|= 10. L = 32 and
⇥ is varied from {0,0.7,0.8,0.9,1}.

On the other hand, the proposed model becomes an alter-
native (mathematical) framework for agent-based studies on
language formation.

As a first approach to the convergence of the formation of
linguistic conventions, this paper presents within an AN ac-
count simple results of the number of steps needed to reach
fixed points. As the main tool, the proofs are based on the
worst case of convergence.

Many extensions of the proposed model should be studied
with the purpose to describe the role of cognitive constraints
on the formation of word-meaning associations. First, within
a mathematical point of view it seems interesting to explore
convergence bounds on regular lattices. Also, a comparison
between theoretical and numerical convergence times should
be carried out. Second, AN allow to study new aspects of
the formation of linguistic conventions. Indeed, the model
can be extended to other updating schemes, for example, the
synchronous one, where at each time step all individuals are
updated. Third, the results should be compared with larger
word lengths (L) and several number of symbols (�). Finally,
future work should involve more realistic ways to measure
the amount of phonological confusion and its effects on the
formation of conventions.
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Abstract

We propose a large-scale system, with minimal global topolog-
ical structure, no local internal structure, and a simple online
biologically plausible local learning rule that captures super-
vised learning in the barn owl. We outline how our computa-
tional model corresponds to both the underlying neuroscience
and the experimental paradigm used in the relevant prism stud-
ies of the barn owl. We show that our model is able to capture
the basic outcomes of this experimental research despite learn-
ing the initial tuning curves, which is not done in other compu-
tational models, and a much more restricted time frame relative
to the original experimental condition. We outline some vari-
ations between our model and the neuroscience outcomes and
suggest future extensions in terms of larger models and time
frames, more detailed analyses of the learning parameters, and
richer model designs.
Keywords: supervised learning, spiking neural network, audi-
tory localization, barn owl

Introduction
Supervised learning in the brain is generally viewed as a
learning episode where one neuron ensemble acts as an in-
structive signal that modulates connectivity and activity in
another neuron ensemble (Knudsen, 1994). The auditory lo-
calization pathway in the brain has been used as a model sys-
tem for studying how the brain performs supervised learning
both because experience can alter auditory localization and
because the pathways are relatively well studied (Knudsen,
2002). The species that has been studied most extensively in
this context is the barn owl (Tyto alba; Knudsen, Blasdel, &
Konishi, 1979).

There are a number of computational models that have
been used to compliment the neuroscience research on su-
pervised learning in the barn owl auditory localization path-
way (D’Souza, Liu, & Hahnloser, 2010; Fischer, Anderson,
& Peña, 2009; Huo & Murray, 2009; Huo, Murray, & Wei,
2012; Witten, Knudsen, & Sompolinsky, 2008). All of these
models are small in scale (under 100 neurons), use highly
structured systems that are determined by the modelers, and
a rather complex learning rule (usually spiking-time depen-
dent plasticity). We propose a larger-scale (and scalable) sys-
tem, with minimal global topological structure, no local in-
ternal structure, and a simple online biologically plausible lo-
cal learning rule that captures supervised learning in the barn
owl.

Neuroscience Background
The optic tectum of the barn owl (analogous to the superior
colliculus in humans) hosts the neurophysiological associa-
tions between the auditory localization cues and locations in
visual space (Knudsen, 2002). Locations in the optic tectum
respond maximally to auditory or visual stimuli located at a
specific region of space or the receptive field. The associ-
ated neurons are tuned to auditory localization cues that cor-
respond to visual field locations (Brainard, Knudsen, & Es-
terly, 1992).

Audio-visual pairings in the optic tectum are learned
through early experience. Studies have shown that expos-
ing juvenile barn owls to prismatic spectacles that displace
the visual field horizontally (most commonly 23⇥) results in a
learned displacement in the tuning curves of the correspond-
ing auditory neurons over a number of months (Knudsen,
1985). Learned changes primarily occur in the efferent con-
nections of the external nucleus of the inferior colliculus
(ICx): an earlier auditory processing step in the auditory lo-
calization pathway that directly connects to the optic tectum
(Brainard & Knudsen, 1993). These changes occur on the ba-
sis of an error signal projected back from the corrective visual
input in the deeper layers of the optic tectum (Peña & De-
Bello, 2010). It is this re-tuning phenomenon of the auditory
ICx neurons on the basis of visual input in the deeper layers
of the optic tectum that the proposed model will capture.

Computational Background
We use the Neural Engineering Framework (NEF; Eliasmith
& Anderson, 2004). The NEF is used to represent, transform,
and add dynamics to vectors of numbers via populations of
spiking neurons, their synapses, and recurrence connections
in the network.

NEF representations are an n-dimensional extension of the
population coding work of Georgopoulos, Schwartz, and Ket-
tner (1986). Neurons in the population are described in terms
of an encoder and decoder that translate neural activity (a fil-
tered spike train) to and from the vector space. The activity
of a neuron can be expressed as:

a = G[ae ·x+ Jbias], (1)

where G is the activation function, a is a scaling factor, e

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling 
(ICCM 2016). University Park, PA: Penn State.
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is the encoder, x is the vector to be encoded, and Jbias is the
background current. The decoded estimate x̂ is described by
the following equation:

x̂(t) = Â
i

diai(t), (2)

where di is the decoder and ai is the activity of neuron i.
Neural activity overall is computed as a spike train:

ai(t) = Â
s

H(e�(t�ts)/tPSC), (3)

where H is the Heaviside step function, s is the set of
all spikes occurring before the current time, and tPSC is the
post-synaptic time constant for the connection (a neural prop-
erty). The decoders are computed through a least-squares
minimization of the difference between the decoded estimate
and the encoded vector:

d = °�1G

Gi j =
Z

aia jdx

° =
Z

a jxdx

(4)

We use the Prescribed Error Sensitivity (PES) supervised
learning rule described in MacNeil and Eliasmith (2011) that
performs the described least-squares minimization online.

Dwi j = ka je j ·Eai, (5)

where wi j is the connection weights between the ith and jth
neurons, k is a scalar learning rate, and E is the error vec-
tor that will be minimized. The other symbols are consistent
with the previous formulas. This rule is analogous to classic
perceptron delta rule with the exception that only a portion of
the error signal that each neuron is sensitive to is computed
for a given neuron.

The Model
We use a highly simplified model of the auditory input, visual
input, ICx, and optic tectum in order to capture supervised
learning in the auditory localization pathway of the barn owl.
Both the auditory and visual input are described in terms of a
180⇥ arc on the unit circle in the horizontal plane from -1.0 to
1.0.1 This arc was represented by two values in the network
corresponding to the x and y values. Though the input could
vary fully over this continuous space, assessment occurred in
4⇥ increments as we describe later.

Three ensembles of neurons describe the basic model: the
ICx, the shallow optic tectum, and the deep optic tectum.
Each ensemble was comprised of 400 leaky-integrate-and-fire
(LIF) neurons. This neuron model is widely used for its flexi-
bility as an approximation of a broad range of neuron models
(Koch, 2004). It also functions as a limiting case of more
complex models like the Hodgkin-Huxley model (Partridge,

1This gets rotated to the left by 23⇥ in the second training block.

1966). To set the a and Jbias parameters (Equation 1) we
randomly chose these values such that the resulting ideal tun-
ing curves generated by the LIF neuron model would involve
neurons that fired over a range of inputs between ±15⇥ and
±35⇥.

Figure 1: Ideal desired neuron tuning curves (used to generate
neuron gain a and bias Jbias parameters).

The auditory input enters via the ICx, projects to the shal-
low optic tectum then to the deep optic tectum. The latter
receives the visual input and projects the difference between
the shallow optic tectum and the visual input as an error sig-
nal back to the ICx connections (see Fig. 2).

Figure 2: Basic structure of the model, where OTs is the shal-
low optic tectum, OTd is the deep optic tectum, and the dotted
line is an error signal.

Unlike all other computational models of supervised learn-
ing in the barn owl, our model did not provide any internal
structure. This means that the signal from the ICx to the shal-
low optic tectum originally had random weights (i.e., com-
puted the function f (x) = 0). The system, therefore, had to
learn the initial spatial representation prior to learning the
modified representation (i.e., the introduction of the prism).
It also lends a certain symmetry to the model: initial connec-
tions from the ICx to the optic tectum in the early life of the
owl (i.e., before experimentation) have an identical learning
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procedure to subsequent learning. However, this does over-
simplify some of the details in the underlying neuroscience
(e.g., differences between neurotransmitters used in different
learning situations).

In what follows, we describe the training and assessment
procedure we used on the model.

Method
The methodological design of the study is based off of the
work of Brainard and Knudsen (1998) and Linkenhoker and
Knudsen (2002). We outline it, below.

The basic setup is comprised of 4 blocks: two training and
two assessment. They occurred in alternating order with one
of the training blocks first. Both training blocks lasted 200s
(3.33min) of simulation time during which randomly selected
stimuli along the 180⇥ arc of the unit circle were presented for
500ms intervals. This resulted in 400 random stimuli being
presented during each training block.

The assessment blocks determined the average activity of
each neuron in 4⇥ increments along the 180⇥ arc of the unit
circle. Each stimuli is presented for 50ms resulting in a total
of 2.25s of simulation time across 45 stimuli. No learning oc-
curred during each assessment block. The tuning curves were
quantified in terms of the best tuning, which is calculated as
the center of the range of values that elicited greater than 50%
of the maximum response. The second assessment block used
the same best tuning location as its zero point in order to see
the difference across assessments.

As many more neurons were examined in the model than
in the neuroscience study, we assumed that neurons with
the same best tuning location were proximate to one an-
other (consistent with their tonotopic arrangement in the ICx;
Knudsen, 2002). Thus, each neuron was normalized relative
to the maximum activity elicited by the pool of neurons with
the same best tuning location. For example, if 4 neurons had
the their best tuning (as described above) 16⇥ left of the zero
point, they would all be normalized relative to the maximum
activity among them.

The second training block occurred with the prism signal
present and a deviation in the visual input of 23⇥ to the left.
During the second assessment block the prism was removed,
but no learning occurred to stabilize the original output. This
was consistent with the original study.

Results
The results of the model were as expected. The model was
able to accommodate the prism with appropriate adaptations
in the ICx connections. We used the average interaural time
difference (ITD; the standard measurement unit in the litera-
ture) to arc angle conversion of 2.5us to 1⇥ of the unit circle
(Linkenhoker & Knudsen, 2002).

Neurons in the first assessment developed tuning curves
approaching a normal curve when normalized and centered
to their best tuning (see Fig. 3). The mean tuning curve was
an even better approximation of normality (see Fig. 4). The
maximum of the mean tuning curve had a score of 0.73.

Figure 3: The learned tuning curves of 10 random neurons
during the first assessment.

Figure 4: The mean learned tuning curve of 112 random neu-
rons during the first assessment.

Neurons in the second assessment adapted to the prism
condition by narrowing their range of activity slightly from
the first training condition (see Fig. 6). The maximum activ-
ity score was 0.73. Figure 5 shows the neuron tuning curves
relative to their own best tuning rather than the best tuning of
the initial assessment (Fig. 7). The mean tuning curve of this
population achieved a peak angle rotation of 50us and 20⇥ as
a consequence of the prism (see Fig. 6).

Discussion
Recall that the goal was to model supervised learning in the
localization pathway of barn owls using a simplified spiking
neural network and learning rule. Given that the owls in the
original empirical study had their initial training (birth un-
til assessment) and re-training (prism adaptation) occur on
the order of months instead of minutes, the results are very
promising. The average tuning curve was more regular in
shape than that expected by the original experiment (see Fig.
4 and 9, respectively). Nevertheless, the model’s results are
consistent with the corresponding empirical research on the
whole.
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Figure 5: The learned tuning curves of 10 random neurons
during the second assessment relative to their own best tuning
curves (i.e., within the context of the prism).

Figure 6: The learned tuning curves of 105 random neurons
during the second assessment relative to their own best tuning
curves (i.e., within the context of the prism).

In the original study, juvenile owls achieved a median ro-
tation of 43us (17⇥) with an ideal rotation of 57us for a 23⇥
prism deviation (Brainard & Knudsen, 1998; Linkenhoker &
Knudsen, 2002). Our score of 50us is placed in between these
two values. We expect that this is a consequence of hav-
ing our learning rate too high. Lower learning rates require
longer time lines, which often require specialized hardware
as the model’s requirements increase both with the size of the
neuron populations and the length of time that is simulated.

The current model is a preliminary prototype to determine
whether it would be worthwhile to commit the computational
effort to run this model at a much larger scale. Our results
suggest that it is worth scaling up the model in future work.
This would then allow us to more deeply explore effects of
the learning rate as well as the learning trajectory during the
prism condition.

The generalizability of this technique is much stronger than
all of the other computational models. Many of the models,
including Witten et al. (2008), require that the individual neu-

Figure 7: The learned tuning curves of 10 random neu-
rons during the second assessment relative to the best tuning
curves from the first assessment.

Figure 8: The learned tuning curves of the same 112 neurons
from the first assessment during the second assessment rela-
tive to the best tuning curves from the first assessment.

rons are already sensitized to a given location and often only
that location. This model learns to represent a distribution of
values with a simple learning rule (PES). The system, based
on its training input, manages to capture tuning curves that,
on average, are very similar to what one would expect a real
neuron to have. It is then able to accommodate the prism de-
viations from within this learned framework.

The current model uses a post-synaptic time constant in
the scale of a-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onic acid (AMPA; 5ms), which is known to be a contributing
factor for the learned signals (e.g., prior to the prism con-
dition; Knudsen, 2002). Research suggests that there are at
least two other neurotransmitters that contribute to supervised
learning in the barn owl: N-methyl-D-aspartate (NMDA) and
g-aminobutyric acid type A (GABAA). AMPA contributes
to learning the new signals (during the prism condition) and
GABAA regulates between the two. GABAergic inhibition
also seems to have a gating-like effect on the learning pro-
cess overall. It determines when the error signal is propagated
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Figure 9: Original graph of the interaural time differences
across the prism and no prism conditions, included with per-
mission from Brainard and Knudsen (1998).

from the deeper layers of the optic tectum to the ICx (Peña &
DeBello, 2010). We would like to begin incorporating these
more detailed aspects into future instantiations of the model.

A number of additional extensions from the neuroscience
literature are readily amenable to the model. The learning
trajectories associated with larger time frames, in particular,
show a number of interesting details. First, juvenile barn
owls do not learn to adapt to the prism spectacles until af-
ter they are 60 days old, even if they are attached to them at
as early as 13 days (Brainard & Knudsen, 1998). Our cur-
rent research suggests that this property might be a conse-
quence of changes in the initial tuning curves exemplified in
Fig. 1. Second, after about 200 days learning tapers off such
that effectively no learning occurs after about a year in the
standard paradigm (Brainard & Knudsen, 1998; Linkenhoker
& Knudsen, 2002). However, as a third detail, learning is
actually possible in yearling owls and older if a special incre-
mental learning paradigm is used (Linkenhoker & Knudsen,
2002). Adaptations in the learning parameters are particu-
larly amenable to this situation, with a general trend towards
higher tolerance learning rates over time. Using dedicated
neural simulation hardware, we intend to explore these crit-
ical periods and paradigms at full-scale (i.e., day for day of
simulation to real time).

Conclusion
Recall that the goal was to model a large-scale system, with
minimal global topological structure, no local internal struc-
ture, and a simple biologically plausible online local learning
rule that captures supervised learning in the barn owl. As a
model organism for supervised learning, the barn owl lends
itself to computational models of learning. We outlined in
broad strokes how the deeper layers of the optic tectum moti-
vates this learning in the neural projections from the external
nucleus of the inferior colliculus (ICx) via discrepancies be-
tween auditory input and visual input. We outlined the NEF

framework, and described how it can be used to map neural
activity to vector representations. We also described a simple
learning rule for our system (PES).

In subsequent sections, we outlined how our computational
model corresponds to both the underlying neuroscience and
the experimental paradigm used in the relevant prism studies
on the barn owl. We showed that our model is able to cap-
ture the basic outcomes of this experimental research despite
learning the initial tuning curves (the first training block) and
a much more restricted time frame. We outlined some vari-
ations between our model and the neuroscience outcomes,
mainly in terms of an overly strong learning rate. We then
suggested some future extensions of the research in terms of
larger models and time frames, more detailed analyses of the
learning parameters, and more detailed model designs. Just as
the barn owl is a (simple) model organism for the complexity
of supervised learning in general, our model also functions
as a simple but powerful computational instantiation of the
complexity of the model organism.
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Introduction 
In multimedia-based learning settings, limitations in 

mental resource capacity have to be taken into account to 
avoid impairing effects on learning performance. Despite 
the enhanced potential in capturing motivation and 
engagement, the multimodal, interactive and often 
distributed presentation of information within such settings 
��� �	������ ����	� �����	������ �	���	�����	����� 
�������	������
be able to handle the arising challenges, factors and effects 
related to the associated resource demands should be 
investigated in a more detailed way.  

Theoretical background 
A prominent and influential theory that provides versatile 

advice for the conducive design of media-transmitted 
instructional content from a cognitive perspective is the 
Cognitive Load Theory (Sweller, 1988; Sweller, Ayres, & 
Kalyuga, 2011). It is concerned with the question in what 
way learning scenarios demand learners� cognitive 
resources, since without knowing anything about underlying 
human cognition, instructional design is blind (Sweller et 
al., 2011). Amongst its basic assumptions, the theory 
postulates a practically unlimited storage capacity of long-
term memory, the mental representation and organization of 
knowledge via schemata, and a limitation of working 
memory in terms of duration and capacity. Mental resource 
demands related to learning situations arise from three 
sources: ����	����������	��������	������	���	������	������
knowledge constitutes intrinsic load, effects of 
inappropriate instructional presentation add to extraneous 
load. Both aspects affect performance on a structural and 
short-term level. By contrast, schema acquisition and 
automation, characterizing germane load, have to be 
considered on processual and long-term accounts. 
According to the theory, learning performance is impaired if 
the total amount of processing requirements exceeds the 
limited capacity of human working memory. 

Project focus 
This project focusses on the question, how load induced 

due to schema acquisition changes over time while working 
on a learning task. Besides of distinct cognitive mechanisms 

in different stages over the learning process, the influence of 
structural load facets in this context will be investigated. 

 
Fig. 1. Schematic trial structure. Presentation of second symbol 
analog and both separated by clear screen.  

Task setting 
In the first instance, a basic learning task is used to 

approach the focus of interest. Compared to comprehensive 
learning settings, such facilitates a more concise and 
controllable inspection of underlying cognitive mechanisms 
and processes. The chosen task (see Fig. 1) requires 
participants to figure out and memorize combinations of 
arbitrary geometric symbols. They are presented one or two 
symbols one after another and have to indicate which 
symbol completes the combination by selecting the correct 
symbol from an offered choice on the screen. For instance, a 
circle and a square being displayed would result in choosing 
a star. Such combinations have to be remembered and 
constitute the knowledge schema obtained over the task. 
The number of symbols determining the following symbol 
represents the intrinsic load component that is varied 
between subjects. An interrupting secondary task induced at 
defined stages during the assignment characterizes the 
extraneous load component that is included as within-
subjects variable. Within the secondary task, participants 
have to search for and count instances of two selected types 
of geometric symbols from a picture, for example all circles 
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and stars, and indicate their numbers afterwards. Both 
structural load components are considered as independent 
variables in this setting. Learning performance is recorded 
continuously via correctness and duration of responses. The 
resulting efficiency score reflects the amount of mental 
resources invested to acquire the task-related schema 
(germane load component) and serves as dependent 
variable.  

Experimental results 
Preliminary results from an already conducted human 

experimental setting with 116 student participants (93 
female, Mage = 23.25 years, range: 18-44 years) confirm 
influences of both structural load features on the observed 
learning performance. Apart from differing patterns of 
performance for easy and difficult versions of the task, they 
indicate a specific loss pattern in performance due to the 
interruptions especially in the easy condition. Based on that 
findings, various open questions on relevant cognitive 
mechanisms underlying the aspired temporal model of load 
progression arise.  

Load measurement 
In general, when attempting to investigate such issue, 

common approaches of load measurement by subjective 
questionnaires or physiological indicators face limitations in 
terms of diagnosticity and sensitivity. Experimentally 
manipulated performance measurement indeed provides a 
controlled way of assessment, but merely operates on 
indirect means as well and therefore lacks accessibility. On 
that point, the cognitive architecture ACT-R (Anderson & 
Lebiere, 1998; Anderson, 2007) offers the opportunity to 
clarify cognitive determinants that potentially underlie the 
observed performance. Implementing such a model structure 
raises the need to clearly think about each step relating to a 
given task, to ensure compatibility with founded 
psychological theories on human information processing. 

Model development 
The developed cognitive model will take into account 

existing work on the acquisition of complex cognitive skills 
(Anderson, 1982; Van Merriënboer, 1997; Taatgen & Lee, 
2003). In correspondence with Bartlett (1932) and Gagné 
and Dick (1983), the formation of schemata will be 
addressed in both declarative and procedural manners, 
emphasizing the relevance of subsymbolic mechanisms like 
activation, production compilation or reward. Additionally, 
the model will base upon research on interruption and 
resumption during task processing (Trafton, Altmann, 
Brock, & Minz, 2003; Wirzberger & Russwinkel, 2015), 
since the disruptiveness of an interruption at a time is 
influenced by the amount and accessibility of available 
cognitive resources. On technical accounts, a milestone will 
consist in establishing a direct connection between the 
ACT-R model and the already existing Python-based 
experimental task via a JSON network interface (Hope, 

Schoelles, & Gray, 2014). Such methodology provides the 
option to link the developed model to more complex and 
lifelike multimedia-based learning settings prospectively. In 
doing so, predictions and observations from the basic 
scenario can be validated in richer knowledge domains, as 
already planned within the next step.  

Conclusion 
Overall, this project constitutes a fine step forward in 
understanding cognitive processes while acquiring 
knowledge from media-transmitted instructional content. In 
doing so, it provides relevant insights into a so far rather 
vague defined theoretical framework, and additionally 
contributes to interconnect approaches from different fields 
of research. 
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Abstract 
A tool for directly connecting ACT-R with Android 
applications on smartphones or tablets is introduced. The 
advantage of this tool is that no prototyping of the 
application is needed. This tool is especially useful to 
evaluate applications according to usability by using general 
modeling approaches. 

Motivation 
The number of Smartphone applications is growing rapidly. 
Likewise the demand for efficient usability testing methods 
is increasing. Cognitive models have the potential to meet 
this demand. Cognitive models developed for one 
application can be reused for testing similar applications 
(Prezenski & Russwinkel, in submission). Thus, costs of 
intensive user testing can be reduced to a minimum. 

Nevertheless, the necessity of connecting the interface to 
ACT-R remains a major issue. The interface has to be 
translated into a format the ACT-R model can interact with. 
A number of tools have been developed to connect ACT-R 
to simulations (e.g. ACT-CV: Halbrügge, 2013, Hello Java: 
Büttner, 2009; Agimap: Urbas et al., 2009; SIMCog-JS: 
Halverson, Reynolds & Blaha, 2015, JNI: Hope, Schoelles 
& Gray, 2014 and others). 

For tasks involving interactions with an interface one 
solution is to develop prototypes as, for example, in 
CogTool (John, Prevas, Salvucci, & Koedinger, 2004). The 
solution of creating prototypes of apps for the cognitive 
model is problematic for three reasons. First, it is a time 
consuming process. Second, the granularity of the prototype 
can affect the validity of the results. And third, depending 
on the specific usability questions new prototypes might be 
necessary, e.g. for questions addressing finer granularity. 

This paper introduces ACT-Droid, a tool that allows 
ACT-R models to directly interact with Android smartphone 
applications. Thus, prototyping of applications becomes 
obsolete and testing usability with cognitive models a 
realistic goal. 

With ACT-Droid no artificial tools need to be developed, 
ACT-Droid is a further development of Hello Java (Büttner, 
2009). It directly connects to the Android app, identifies 
buttons and other items and can interact with them. 

Technical Details 
The two main tasks ACT-Droid fulfills are: performing 
motor output of ACT-R at the app and updating the visicon 
of ACT-R according to the changing app screen. These 
functionalities are provided by the model interface and the 
app interface, which communicate with each other.

 
Figure 1: Architecture of ACT-Droid. 

 
The app installed on a smartphone communicates with 

ACT-R over TCP/IP sockets. If the extended app is started, 
the app interface establishes a server socket and the model 
interface connects ACT-R as a client. 

Motor 
Currently, ACT-R’s mouse commands are interpreted as 
fingertip touches by the Android app. So, each time the 
cursor is moved by the model, the model interface sends the 
new cursor position to the app interface. The app interface 
saves the current position of the cursor. Furthermore, if the 
command to click is received, the app interface performs a 
click at the saved cursor position. 

Visual 
The most important functionality of the app interface is to 
provide all visible information whenever the visicon of 
ACT-R requires updating. All visible information is 
recursively searched and descriptions of any visible 
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checkboxes, buttons and textfields are generated. This 
description consists of: kind, value (usually its text), color, 
size and position. 

For the FiguRapp example (Lindner & Russwinkel, 2015) 
included in the figure above, the description contains four 
buttons (which in ACT-R is considered of the kind “oval”) 
with their respective values “Fuellung”, “Peripherie”, 
”Zurueck” and “Menue” and a triangle of the kind 
“triangle” with the color “red” and no specified value. 

The description provided by the app interface is send to 
the model interface. The model interface then reloads the 
visicon according to the received information. 

What is Possible 
With ACT-Droid the ACT-R model interacts with the actual 
Android app, the interaction is fully automated. 

Furthermore, in the case of uncommon GUI elements, 
ACT-Droid enables the modeler to define how these 
elements should appear in the visicon. In the FiguRapp, for 
example, the image of a red triangle is defined to be of the 
kind “triangle” and of the color “red”. But alternatively, it 
could also be of the kind “figure”, of the color “red” and 
have the value “3” (for the nodes). Thus, the content of the 
screen can be described as detailed as necessary. The 
granularity is only limited by the structure of the visicon. 

Due to different encodings, problems often occur with 
German umlauts. ACT-Droid replaces these by their 
respective two “normal” letters. This approach can easily be 
applied to other characters. 

How to 
The prerequisites for using ACT-Droid are the following: a 
computer with Lisp environment (e.g. Lispworks), ACT-R 
source files (the standalone does not work) and Android 
Studio with the source files of the app. Furthermore, an 
Android smartphone to run the extended app on is needed, 
because the emulator will not work. 

ACT-Droid can be downloaded from 
http://dx.doi.org/10.14279/depositonce-5181

Furthermore, a few modifications of the apps source code 
are necessary, i.e. adding the lispcom package and three 
lines of code to the apps main activity. All this is described 
in the material. Once the description in ACT-R's visicon is 
satisfying, there is no need for editing the app any further. 

. Detailed 
instructions in “Readme.txt” and the FiguRapp example are 
also included. A very basic ACT-R model that will also run 
on the FiguRapp is provided. This simple model will 
randomly explore and click on everything. To use other 
ACT-R models with ACT-Droid, model-interface.lisp has to 
be loaded and parameters have to be defined at the 
beginning of the model, e.g. the IP address of the 
smartphone. 

After everything is set up, the app on the smartphone has 
to be started first and then the ACT-R model can be run 
using the command do-experiment. The model will directly 
interact with the app. 

Outlook 
Until now, implementing scrolling with ACT-Droid has not 
been considered and a thorough test with different apps is 
pending. Another objective is the further simplification of 
the set-up and usage, e.g. when having more than one 
Android activity (common). 

Currently, we are working on replacing mouse commands 
with the touch commands of ACT-Touch (Greene, 
Tamborello, & Micheals, 2013). This is the next step 
towards an adequate tool for efficient usability testing of 
apps. 
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Introduction

The Implicit Association Test (IAT; Greenwald, McGhee,
& Schwartz, 1998) is an indirect measure of association
between concepts (e.g. race) and attributes (e.g. pleas-
ant/unpleasant). Subjects classify concepts by category and
attributes by valence as rapidly and accurately as possible,
using the same response keys for concepts and attributes.
Typically one key pairing is easier accomplished than with
the other. It is assumed that this facility is due to an asso-
ciation in the subject’s mind between the concepts and at-
tributes. For instance, subjects who perform more rapidly
using the white/pleasant and black/unpleasant key mapping
on a Race IAT are assumed to have a positive association
with White and/or a negative association with Black. This is
termed an implicit preference for White over Black.

However, research employing the IAT has dramatically
outpaced research on the IAT. The method yields scores with
favorable psychometric properties (Cunningham, Preacher,
& Banaji, 2001; Greenwald, Nosek, & Banaji, 2003), and
analyses have demonstrated predictive validity by corre-
lating IAT scores with behavioral outcomes (Greenwald,
Poehlman, Uhlmann, & Banaji, 2009; Greenwald, Banaji,
& Nosek, 2015). However, fundamental questions remain
about the mechanism of e�ect, and the degree to which
scores on the IAT represent underlying associations or atti-
tudes. Understanding the mechanism of e�ect will allow us
to better interpret D scores generated by the IAT.

Assumptions and Limitations

The end result of the IAT is the D score, constructed to re-
flect an indirect measurement of relative association strength
between the target concepts and attributes. The scores are
assigned positive or negative signs to indicate the direction
of association. The magnitude indicates strength of e�ect. In
the case of a Race IAT, a D near 0 would suggest neutrality,

while a substantially positive D score would indicate implicit
White preference, and a substantially negative score would
indicate implicit Black preference.

This interpretation rests on the assumption that the IAT
e�ect is enabled, or at least predominately contributed to, by
underlying relative associations between the concepts and at-
tributes in the subjects’ minds. That is, for a subject to have
a highly positive D score on the Race IAT, they must have a
greater association of the concept “White” with positive than
“Black” with positive, or an equivalent negative pairing.

The IAT is perhaps the most widely completed cognitive
task ever developed. Through the Project Implicit website,
tens of thousands of IATs are conducted each month. Com-
plete experimental data for millions of IATs may be used for
comparison to computational model results.

Presented here is a minimalist computational model of the
IAT, using associations within declarative memory as the pri-
mary source of response interference.

The Minimalist Interference Model of the IAT

The minimalist interference model of the IAT (MIMI)
generates an IAT e�ect by constructing associative interfer-
ence between chunks in declarative memory. Each stimulus
chunk is directly associated with its category, and the concept
and attribute categories are also associated (see Figure 1).
Spreading activation di�erentially primes the associated at-
tribute when classifying target stimuli, thus making retrieval
of the correct category more di⇥cult. The IAT e�ect pro-
duced is a function of retrieval interference, and the extrem-
ity of the resulting D score is monotonic with the magnitude
of disparity between underlying associations.

The e�ect produced yields mean latencies, but lacking
SDs and realistic human noise, a D score cannot be produced
(the D score, modeled after Cohen’s d, is a ratio of the mean
di�erences to the pooled standard deviation). Response time
in the compatible condition is 771ms, and 819ms in the in-
compatible condition, with the overall mean response time at
795ms - comparable to the mean response time observed in
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Figure 1. Diagram of associations between chunks, cate-
gories, attributes, and rules. In the compatible condition, the
association created by the rules is congruent with the under-
lying associations in the subject’s mind. In the incompatible
condition, the associations created by the rules are incongru-
ent with those in the subject’s mind. This association facil-
itates retrieval of the rule category in the compatible con-
dition, and detracts from performance in the incompatible
condition.

the lab, about 790ms (Greenwald et al., 2003).
The modeled e�ect relies specifically on the underlying

associations between the concepts and attributes (e.g. White
and pleasant). Associations between stimuli and their par-
ent classes are flat. The IAT e�ect has been shown to de-
pend on the association between the concept category and
the attributes, rather than between the exemplars and at-
tributes (De Houwer, 2001). For example, in subjects that
display automatic White preference, this preference is still
evident when using uniformly negative White stimuli (e.g.
Ted Bundy) and positive Black stimuli (e.g. Nelson Man-
dela).

When the model perceives a stimulus, it retrieves a rule
with a property in common with the properties of the stim-
ulus. This retrieval can be complicated by lingering activa-
tion from previous retrievals. For instance, if a White stim-
ulus appears after classifying a pleasant word, the White-
pleasant association may trigger a retrieval of an incorrect
rule (e.g. Black-pleasant > respond with right key). Even if
this doesn’t cause an incorrect retrieval, the closer levels of
activation make the retrieval more di⇥cult (i.e. take longer)

than in the compatible condition.

Discussion

The minimalist model approximates normal subject per-
formance, but does not adequately explain the interference
e�ect. MIMI assumes that the underlying strategy used by
subjects is unchanged, and that di�erential latency between
conditions is a result only of retrieval interference. While
this model provides useful insight into the role of retrieval
interference caused by spreading activation, it is not expected
that this model accurately reflects reality. For instance, this
model does not reproduce more extreme D scores in subjects
that experience the compatible condition first (seen in human
subjects), as the interference produced is be the same regard-
less of order of experience (since no learning is involved).

It is hoped that these models will lead to a more cogent
understanding of the underpinning mechanisms of the IAT
and other implicit interference e�ects. This understanding
will in turn give greater insight into the proper interpretation
of metrics such at the IAT’s D score.
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Introduction
Consider the following sentence: “The picture (located ob-
ject, LO) is above the desk (reference object, RO).” Given the
locations of the picture and the desk – how acceptable is the
use of “above”? Regier and Carlson (2001) proposed a cogni-
tive model that computes an acceptability rating for the spatial
preposition “above” in describing the spatial relation between
a RO and a LO: the Attentional Vector Sum (AVS) model. In
line with Logan and Sadler (1996), the AVS model assumes a
shift of attention from the RO to the LO. However, in a study
by Burigo and Knoeferle (2015) overt gaze shifts from the
RO to the LO were infrequent during the comprehension of
spatial relation utterances. By contrast, shifts in line with the
mention of objects (from the LO to the RO) were highly fre-
quent, suggesting they may be sufficient for understanding a
spatial description (see also Roth & Franconeri, 2012).

Accordingly, Kluth, Burigo, and Knoeferle (2016) propose
the reversed AVS (rAVS) model in which attention shifts from
the LO to the RO (instead of shifting from the RO to the LO).
The rAVS model accounts as well as the AVS model for the
empirical data from Regier and Carlson (2001; see Kluth et
al., 2016, for details). Thus, using these already existing data
the two models cannot be distinguished, despite their differ-
ent implementation of the attentional shift.

In order to assess whether one of these two models reflects
human ratings of spatial language better than the other, we de-
signed stimuli for which we hypothesized the models predict
different acceptability ratings (see Fig. 1). With these stimuli,
we conducted an empirical study to test the predictions.

Model Predictions
Based on the mechanisms of the models, we hypothesized
two types of predictions for the stimuli in Fig. 1. The first type
concerns the influence of asymmetrical ROs on the accept-
ability of spatial prepositions. Consider two LOs with equal
horizontal distance d from the center-of-mass of an asymmet-
rical RO, as shown in Fig. 1a. The rAVS model predicts no
difference in ratings for these LOs, because its computation
is based on the center-of-mass of the RO. The AVS model,
however, seems to predict higher ratings for the LO above the
mass of the RO compared to the LO above the cavity of the

�⇥

d d

(a) Asym. “C”

�⇥

d d

(b) Asym. “L”

h�⇥

(c) “Thin” rect.

6 ·h�⇥

(d) “Tall” rect.

Figure 1: Stimuli used for the computational and empirical
studies. ( = LO; � = center-of-mass, ⇥ = center-of-object).

RO. This is because the AVS model defines its population of
vectors based on all points of the RO and thus gives more im-
portance to the mass of the RO. The same reasoning applies
for the LOs above the asymmetrical RO in Fig. 1b.

For the second type of predictions consider the two rectan-
gular ROs in Figs. 1c and 1d. Here, the rAVS model predicts
a lower rating for the LO above the “thin” rectangle compared
to the LO above the “tall” rectangle. This is because the rAVS
model explicity uses the relative distance of an LO from an
RO. Here, relative distance is defined as absolute distance di-
vided by the dimensions of the RO. Due to the free parameters
of the AVS model, the prediction of the AVS model for this
condition is unclear.
Empirical Study We were interested to see whether hu-
mans follow these hypothesized predictions. Thus, we con-
ducted an empirical rating study with 28 LOs above each of
the ROs in Fig. 1. Participants had to rate how well the Ger-
man sentence “Der Punkt ist über dem Objekt.” (“The dot
is above the object.”) describes a depicted RO-LO configu-
ration. We also tested “unter” (“below”) but do not report
the results here. For the relative distance condition, we found
that LOs above the “tall” rectangle were rated higher than
LOs above the “thin” rectangle (mean difference: 0.078; 95%
confidence intervals: 0.151, 0.007). This is in line with the
prediction of the rAVS model.

For the asymmetrical ROs, however, we found an effect
that falsifies both models: LOs above the mass of an RO were
rated lower than LOs above the cavity of an RO (mean differ-
ence: 0.518; 95% confidence intervals: 0.619, 0.428). This
effect contradicts the influence of the center-of-mass orienta-
tion as suggested by Regier and Carlson (2001). Neither the
AVS model nor the rAVS model can account for this empiri-
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Figure 2: Results of the landscaping method (�) and fits of
the models to empirical data ( ).

cal finding, although both models account successfully for the
data from Regier and Carlson (2001; see Kluth et al., 2016).
In order to better understand the performance of both models
on our stimuli, we analyzed the outcomes of the models for
these stimuli using three different methods.
Parameter Space Partitioning Analysis To verify whether
the two models actually generate our hypothesized predic-
tions, we applied the PSP algorithm proposed by Pitt, Kim,
Navarro, and Myung (2006; using their MATLAB implemen-
tation) with the ROs shown in Fig. 1 and up to 28 LOs above
each RO. This analysis confirmed the hypothesized predic-
tions for the rAVS model but disconfirmed the hypothesized
predictions for the AVS model: The AVS model is able to
generate the same patterns as the rAVS model but interest-
ingly none of the patterns hypothesized above. Arguably
then, the mechanisms of the AVS model are harder to trans-
late into testable predictions. Moreover, the AVS model gen-
erates a greater range of possible outcomes, i.e., it is more
flexible than the rAVS model. However, neither model gener-
ates the empirical pattern for the asymmetrical ROs.

Model Mimicry The PSP analysis revealed that both mod-
els are able to generate the same qualitative patterns for the
stimuli in Fig. 1. To investigate the relative performance of
the models on these stimuli, we used the landscaping analysis
as proposed by Navarro, Pitt, and Myung (2004). Apart from
assessing the ability of each model to mimic the other, this
method also gives us another measure of model flexibility.
We generated 1000 data sets from each model and fitted both
models on these artificial data by minimizing the normalized
Root Mean Square Error (nRMSE). The results are shown in
Fig. 2. Model fits to the empirical data (nRMSE) are plotted
as filled circles. There is a slight trend that the rAVS model
fits the data generated by the AVS model worse than the AVS
model fits the data generated by the rAVS model (maximal
rAVS fit in Fig. 2a is greater than maximal AVS fit in Fig. 2b).
However, overall, both models fit their own data better than
the other data and thus, no model mimics the other model.

Model Flexibility Analysis The AVS model showed
greater flexibility in the PSP analysis but not in the land-
scaping method. The MFA proposed by Veksler, Myers, and
Gluck (2015) provides a quantitative measure of model flexi-
bility (see Veksler et al., 2015, for the relation of the MFA to
PSP and landscaping). We computed the MFA for the stimuli

Table 1: f values of the Model Flexibility Analysis (MFA).
The lower the f value, the less flexible the model.

stimuli from Fig. 1 stimuli from Regier
and Carlson (2001)

AVS f = 0.000899 f = 0.000420
rAVS f = 0.000544 f = 0.000292

in Fig. 1 as well as for the stimuli used by Regier and Carlson
(2001). We split the range of each of the four free param-
eters in 50 intervals and followed the procedure outlined by
Veksler et al. (2015). As indicated by the lower f values in
Table 1, the rAVS model is less flexible than the AVS model.

Future Work In contrast to the landscaping results, the
PSP and the MFA suggest that the AVS model is more flexi-
ble than the rAVS model. At the moment, we are investigating
the cause of these differences in the model results.

More importantly, some of our empirical findings corrobo-
rate the rAVS model (effect of relative distance) while other
findings falsify both models (effect of asymmetrical ROs).
Currently, we are developing slightly modified models incor-
porating our suggestion that people base their acceptability
ratings on the center-of-object (see ⇥ in Fig. 1) instead of on
the center-of-mass (as suggested by Regier & Carlson, 2001).
Preliminary simulation results support the use of the center-
of-object over the center-of-mass.
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Abstract

Touch screens have seen widespread adoption in the last
decade due to the rise of smartphones, tablets, and touch
screen laptops. While interface designs for this new inter-
action paradigm have improved, errors cannot be eliminated.
Using an unmodified tablet and an infrared eye tracker, this
paper identifies microstrategies that occur naturally during er-
ror recovery and evaluates their occurrences in low, medium,
and high error environments. Cognitive modelers interested
in touch screen interactions can use this information to better
simulate real human performance.

Keywords: microstrategies; strategies; error; touch;

Introduction and Related Work

Current Computer Science research in touch screen errors can
be broadly categorized into two areas: guideline solutions
and auxiliary solutions. Guideline solutions focus on using
a design that minimizes the occurrence of errors (Ng, Brew-
ster, & Williamson, 2014) while auxiliary solutions compen-
sate for an error after it occurs (Rudchenko, Paek, & Badger,
2011). Psychologists have used fMRIs to see what parts of
the brain are involved in error recovery (Garavan, Ross, Mur-
phy, Roche, & Stein, 2002), but to our knowledge, there is
no research on the behavioral steps a person takes to recover
from common errors.

Microstrategies are the low-level processes that describe
the interactive behavior between the design of the available
artifacts, and the cognitive, perceptual and motor proces-
sors (Gray & Boehm-Davis, 2000). When multiple strate-
gies can be employed, the space of microstrategies can
be explored to find the best explanation of human perfor-
mance (Zhang & Hornof, 2014). This paper enumerates mi-
crostrategies observed during error recovery.

Microstrategies are well suited to be modeled in CPM-
GOMS, because it has a straight forward notation that allows
the model to be implemented more easily than it would be
in a cognitive architecture like ACT-R, EPIC, or SOAR. We
used a performance calculator called Cogulator (Corporation,
2014) for preliminary modeling. Like SANLab-CM (Patton
& Gray, 2010) or Apex (John, Vera, Matessa, Freed, & Rem-
ington, 2002), Cogulator creates CPM-GOMS models to es-
timate performance.

Two new technology trends have converged in the past few
years: mobile touch devices in wide use, and eye tracking
technology becoming smaller and inexpensive. Modeling re-
searchers have recently begun to explore this intersection,
building and validating models of users as they carry out tasks
on mobile devices. We set forth an experimental apparatus
that can identify areas of interest within one degree of visual
angle during bi-manual touch interactions on an unmodified
tablet and an infrared eye tracker.

Methodology

Task Ten men and three women between the ages of 16 and
34 were recruited by word of mouth or volunteered at an open
house. No compensation was offered to participants. Three
trials were thrown out (all male) because the eye tracker’s
calibration did not last through the entire experiment. All
glasses or contacts were removed before beginning.

Participants were told that this experiment focused on how
users perceive error on a touch screen device. When the pro-
gram started, a start button appeared. Once pressed, they
would see five red targets to select with touch input. When
a target was successfully selected, it turned grey. When all
targets were selected, the screen cleared itself. After each
screen, participants were asked to guess the total error rate
for that screen. When a screen had been successfully cleared,
ten buttons appeared with decile percentages. Participants se-
lected the button corresponding to what they felt was the clos-
est value. The start button then reappeared, and the process
repeated for a total of 21 screens.

In this task, there were two possible kinds of errors: real
target selection errors, and introduced errors. During the ex-
periment, the system manipulated the perceived error rate.
For example, if the system introduced 10% error, 1 out of 10
successful touches was ignored, simulating a missed touch.

No participant made a real target selection error. This could
be because we disclosed that we were studying errors in the
instructions which made people more careful, or because tar-
gets were large and spread out. Thus, all errors discussed are
artificially introduced.

Experimental Apparatus Our experimental apparatus
consisted of the EyeTribe eye tracker attached to the bottom-
front of the Surface Pro 2 tablet using the EyeTribes propri-
etary harness and connected with a short cord in the USB
on the left side. Both devices were attached to an adjustable
height tripod with a universal 10” tablet tripod mount. The
neck of the tripod was adjusted to the participant’s height as
needed. Participants held their hands on the side of the tablet
and used their thumbs and index-finger for interactions.

This experiment followed two pilot studies that reduced
noise in the eye tracking data. Like all the other eye trackers
in this price range, the EyeTribe eye tracker must be placed
below the screen to avoid eye lash occlusion. Some webcam-
based solutions also require the tablet to be flipped so that
the camera is below the screen (Wood & Bulling, 2014). Our
setup specifically minimized hand occlusion during interac-
tion. Following the examples of related work (Holland & Ko-
mogortsev, 2012), the setup was fixed on a tripod.
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Microstrategies

Event logs were graphed on a timeline and patterns were
found first by manual review and later parsing the log files.
We divided our task into three distinct stages. We found three
reoccurring microstrategies in each stage as described below.

Stage 1. Searching for target

Visual-Search (VS) Consists of multiple fixations in a row
with no touch input. This microstrategy is indicative of some
cognitive decision making about what action to perform next.
VS occurs in 50% of all screens, and the number of fixations
in the search versus its occurrence decreases in a logarithmic
pattern. It is not correlated with error rate.
No-Visual-Search (NVS) Defined as the absence of VS.
Peripheral-Focus (PF) Consists of a single, unmoving fixa-
tion in the center of the screen during multiple touch-events.
Unlike the other microstrategies, this is likely a conscious
strategy by the user to keep their eyes still and only use their
peripheral vision. Seen in “twitch” gaming, the user is trying
to minimize reaction time by eliminating eye movement. It
was only used by one participant three times, all in low-error
situations. The PF microstrategy in Stage 2 is a continuation
of this one.

Stage 2. Shifting attention away from target

No-Visual-Feedback (NVF) Consists of fixation-start,
fixation-end, touch event. Both successful and unsuccessful
touches are grouped together in this strategy, because they are
cognitively the same action. The user anticipates the comple-
tion of a touch action without waiting for visual feedback on
its success. It is seen most in low-error environments, used
approximately 20% of the time.
With-Visual-Feedback (WVF) Consists of fixation-
start, successful-touch, fixation-end, or fixation-start,
unsuccessful-touch, repeat-touch, etc. This microstrategy is
by far the most common one identified in all error levels. It
occurs in 96% of all screens.
Peripheral-Focus (PF) Shift of attention is entirely cognitive,
and the eyes do not move. Can result in either NVF or WVF.

Stage 3. Choosing next action

Success-With-Feedback (SWF) Consists of fixation-start,
successful-touch, fixation-end. In this case, there is no need
for error recovery, and the user will either return to Stage 1 to
choose the next target or the task will end.
Delayed-Error-Recovery (DER) Consists of unsuccessful-
touch, fixation-end, ..., touch on different target. This micros-
trategy is defined by some indication that the user has noticed
the error but has chosen to move on and come back to it later.
It is seen most in high-error environments, used 34% of the
time.
Immediate-Error-Recovery (IER) In this microstrategy, fixa-
tions can be in many places. Therefore, it is only defined by
an unsuccessful-touch followed by another touch on the same
target indicating that they saw the error and attempt to fix it
immediately. This strategy is used twice as often as IER, and

is most seen in high-error environments and accounts for 66%
of all error recoveries.

Discussion

This experiment was exploratory to identify microstrategies
that occur naturally. Future studies will be designed to isolate
a microstrategy to define what conditions make it more likely
to occur and its duration under those circumstances.

Microstrategies and full models of some trials have been
implemented in Cogulator. If the length of each fixation is
specified, performance time is overestimated by roughly 10%
for low-error environments. Variation increases with error
rate and will be explored more in the future.
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Introduction
Searching for the best set of parameter values is a key com-
ponent of cognitive modelling and one in which a great deal
of uncertainty lies. Parameter search can be a slow, labori-
ous process when done by hand, particularly when a model
has several interacting parameters, and can be challenging
when models are non-differentiable, non-continuous, non-
linear, stochastic, or have many local optima.

There a several methods for searching parameter spaces for
such models. Here I present two: differential evolution (DE)
and using a High Throughput Computing (HTC) environment
managed by HTCondor. The two methods are similar in that
they both explore parameter spaces by generating populations
of models, but there the similarity ends. Below I describe
both, explain the circumstances where choosing one may be
preferable over the other, and provide an example of each
using a simple ACT-R model for the reader to investigate.

Differential evolution
Differential evolution is an evolutionary strategy for real
numbers that has been used and refined extensively for mul-
tidimensional numerical optimisation since it was devised in
the mid 1990s (Storn & Price, 1995, 1997). The main attrac-
tions of DE are its simplicity, wide applicability, relatively
few control parameters (three: NP, the population size, F , a
scale factor applied to the mutation process, and Cr, a con-
stant that regulates the crossover process), and the accuracy,
convergence rate and robustness of its performance. To use
DE for optimising cognitive model parameters, the model is
conceptualised as an objective function of the parameters be-
ing optimised that produces a single fitness value (e.g., R2) to
be maximised.

The DE algorithm
In common with many evolutionary algorithms, DE applies
repeated cycles of mutation, recombination, and selection on
an initial, randomly generated population of vectors to create
a single vector that produces the best solution to a problem.
The DE process is started by creating an NP sized population
of real-valued vectors of D dimensions, one dimension for
each of the model parameters to be optimised. The vectors are
initialised with uniformly distributed random numbers within
maximum and minimum bounds set for each dimension.

To create the next population of vectors, each vector i in
the current population is selected in sequence, designated as
the target vector, and subjected to a competitive process. The

competition involves the three mutation, recombination, and
selection steps described below.
Mutation Mutation randomises the search process, but un-
like many other evolutionary strategies that mutate vectors
by adding Gaussian noise, DE does so by computing the
weighted difference between two vectors in the current popu-
lation. This ensures that differences in the scale and sensitiv-
ity of different vector parameters are taken into account and
that the search space is explored equally on all dimensions.

A mutated donor vector is created by randomly selecting
three unique vectors, j, k and l, which are not equal to i,
from the population and adding the difference between j and
k (scaled by the F parameter) to l.
Recombination Once the donor vector has been created it
is crossed with the target vector to create the trial vector. This
recombination allows successful solutions from the previous
generation to be incorporated into the trial vector.

Crossover is achieved by a series of Bernoulli trials which
determine for each of D � 1 dimensions which parent will
donate its value. The process is moderated by the crossover
rate parameter Cr (where 0 Cr  1.). For each dimension,
a uniformly distributed random number, x between 0 and 1
is generated and compared to Cr. If x  Cr, the donor vec-
tor’s parameter is passed on to the trial vector, otherwise the
parameter comes from the target vector. To ensure that the
trial vector does not emerge identical to the target vector, one
dimension is selected at random to inherit its value from the
donor vector.
Selection The model is then run with the parameter values
from the trial vector and if the resulting fitness value is bet-
ter than or equal to that of the target vector, the trial vector
replaces it in the next generation, or else the target vector is
retained in the next generation. This process of mutation, re-
combination, and selection is carried out for each vector in
the current population until the next population is created and
the evolutionary process continues for a user-defined number
of cycles. The vector with the highest fitness is recorded for
each population and the winning vector in the final population
is considered the best solution to the problem.

Setting DE parameters

The performance of the DE algorithm is quite sensitive to its
three control parameters and numerous attempts have been
made to determine the optimal values for various problems
(e.g., Pedersen, 2010; Neri & Tirronen, 2010; Gämperle,
Müller, & Koumoutsakos, 2002). For example in the muta-
tion process the F constant scales all of the vector parameters
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equally and determines the size of the distance between the
target and trial vectors. Effective values for F are generally
regarded to fall between 0.4 and 1.0 with a good initial value
being 0.5 (Das & Suganthan, 2011; Storn & Price, 1995).

The crossover rate parameter Cr affects the search process
by regulating the probability that noisy random values enter
the trial vector (raising Cr increases the likelihood that di-
mension values will come from the donor vector). Although
views differ, Cr values between 0.3 and 0.9 are generally con-
sidered reasonable for the majority of functions.

Recommendations for the optimum population size, NP
are generally specified as a function of the number of vector
parameters, D, and also vary but typically range between 3D
and 10D (e.g., Storn & Price, 1995; Gämperle et al., 2002).

Research into DE is very active and a number of vari-
ants and adaptations have been developed (Neri & Tirronen,
2010). The standard version described here is still widely
used and performs well on many problems.

High throughput computing and HTCondor
While DE is useful for optimising models with relatively
few parameters or short run times on a single computer,
if models are large, complex, or are simulating the be-
haviour of many participants, then the computational re-
quirements may be such that this option becomes impracti-
cal. In these circumstances, an alternative is to search the
parameter space by running a population of models over
a computer network and one relatively accessible and in-
creasingly popular way to do this is by using HTCondor
(https://research.cs.wisc.edu/htcondor).

HTCondor is an open source, cross-platform software sys-
tem for managing and scheduling computationally intensive
tasks across computer networks developed over many years
at the University of Wisconsin-Madison (Litzkow, Livny, &
Mutka, 1988). It can be employed on dedicated server clus-
ters or to schedule tasks over idle desktop computers on a
network and it is widely used in universities and research in-
stitutions worldwide, including CERN, Fermilab, and NASA.

Using HTCondor for exploring parameter spaces for cogni-
tive models can be achieved by submitting multiple versions
of the model, each with a different set of randomly generated
parameter values, analysing the returned outputs, and then it-
erating. The process for doing so is relatively straightforward.
All that is required is the creation of a submit description file
which specifies details about the job such as the executable to
be run and upon which platform, the model files to be loaded
by the executable, the command to start the program running,
and the number of times to run the program. As each program
may also use the standard streams, files must be defined that
will substitute for stdin, stdout and stderr.

For example, the extract below is from a submit description
file for a job to run 100 instances of an ACT-R model defined
in the file paired.lisp. It specifies that only 64-bit Windows
machines in the network should be used, that the executable
is ACT-R for 64-bit Windows, and that the arguments to the

executable are to load the model file, run it for 20 participants,
and then quit. In addition, output, error, and log files are de-
fined that will be created for each instance of the model and
specifications made that both the executable and the model
file should be transferred to each machine. Finally, the last
command sets the job to run 100 instances of the model.
requirements = (OpSys == "WINNT61" && Arch == "INTEL") ||

(OpSys == "WINDOWS" && Arch == "INTEL") ||
(OpSys == "WINDOWS" && Arch == "X86_64"))

executable = actr-s-64.exe
arguments = "-l ’paired.lisp’ -e ’(collect-data 20)’ -e ’(quit)’"

transfer_executable = ALWAYS
transfer_input_files = paired.lisp

output = out.stdout.$(Cluster).$(Process)
error = out.err.$(Cluster).$(Process)
log = out.clog.$(Cluster).$(Process)

queue 100

When all of the model instances have been run, their out-
puts will be available in numbered output files which can then
be collected together and analysed.

Example code
To enable further investigation of these methods, code to op-
timise an ACT-R model of paired associate learning taken
from Unit 4 of the ACT-R tutorials (available from the
ACT-R website), together with full instructions is avail-
able on GitHub. The repository for differential evolution
can be found at https://github.com/peebz/actr-paired-de while
that for running the model on HTCondor is available at
https://github.com/peebz/actr-paired-htc.

References
Das, S., & Suganthan, P. N. (2011). Differential evolution: A

survey of the state-of-the-art. IEEE Transactions on Evo-
lutionary Computation, 15(1), 4–31.

Gämperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A
parameter study for differential evolution. Advances in in-
telligent systems, fuzzy systems, evolutionary computation,
10, 293–298.

Litzkow, M. J., Livny, M., & Mutka, M. W. (1988, June).
Condor—A hunter of idle workstations. In Proceedings of
the 8th international conference on distributed computing
systems (pp. 104–111).

Neri, F., & Tirronen, V. (2010). Recent advances in differen-
tial evolution: A survey and experimental analysis. Artifi-
cial Intelligence Review, 33(1-2), 61–106.

Pedersen, M. E. H. (2010). Good parameters for differential
evolution (Tech. Rep. No. HL1002). www.hvass-labs.org:
Hvass Laboratories.

Storn, R., & Price, K. (1995). Differential evolution: A simple
and efficient adaptive scheme for global optimization over
continuous spaces (Tech. Rep. No. TR-95-012). Berkeley,
CA: ICSI Berkeley.

Storn, R., & Price, K. (1997). Differential evolution: A sim-
ple and efficient heuristic for global optimization over con-
tinuous spaces. Journal of global optimization, 11(4), 341–
359.

235

https://research.cs.wisc.edu/htcondor
http://act-r.psy.cmu.edu/software/
https://github.com/peebz/actr-paired-de
https://github.com/peebz/actr-paired-htc


���
�	������������	��������-�����������	����������������-	����������� 
 

Andrew Halsey1, Christopher W. Myers2, Kevin Gluck2, & Jack Harris2 
phillip.halsey.1.ctr@us.af.mil, christopher.myers.29@us.af.mil, kevin.gluck@us.af.mil, jack.harris.3@us.af.mil 

 
1Oak Ridge Institute for Science and Education at AFRL 2Air Force Research Laboratory 

 

Keywords: cognitive modeling; ACT-R; fast and frugal trees 

Introduction 
In this research we examine a specific type of human-

machine teaming, decision support systems (DSS; Power, 
2008), to facilitate decision-making in an uncertain 
environment (Eom, Lee, Kim, and Somarajan, 1998). We 
extended a previously reported instance-based learning 
cognitive model (Myers, Gluck, Harris, Veksler, Mielke, 
and Boyd, 2015) to receive decision support from a machine 
learning algorithm. To date, no models have integrated 
instance-based learning and decision support, though both 
are well represented individually in the literature (e.g., 
Power, 2008; Thomson, Lebiere, Anderson, and Staszewski, 
2015). We are interested in examining the strengths and 
deficits of integrating these as a predictive model of human-
machine teaming in the context of a multi-cue diagnosis 
decision task. 

Multi-cue Diagnosis Task 
The multi-cue diagnosis task is a two-alternative forced 
choice task where a response is made based on available 
cues. In the current task, individuals diagnose "patients# for 
heart attacks according to three binary cues available each 
�����������������������������������������������"� �����#!the 
presence of which is probabilistic!and this information may 
help determine whether the patient should go to the 
������� � ����� ����� ��� ��������� �����$�� ��� (Green and 
Mehr, 1997; Marewski and Gigerenzer, 2012; Myers, et al., 
2015). Feedback is provided based on the final decision. 
The next trial begins after delivery of feedback. 

The learning difficulty within a particular multi-cue 
���������� ������������ ��� ���������  � ���� �����������$��
rule consistency and the symptom base rates. Rule 
consistency is the probability that using the underlying rule 
results in a correct diagnosis. The rule for the current 
experiment was: if and only if cue2 is true and cue3 is true, 
then it is a heart attack and the correct response is Coronary 
Care Unit. Given the current rule consistency, choosing 
Coronary Care Unit in the presence of these symptoms 
would result in a correct response 80% of the time. The 
�����������������������"� �����#��������������������������
was: cue1=0.25, cue2=0.40, and cue3=0.75. 

Instance-Based Learning Theory and Model 
Gonzalez, Lerch, and Lebiere (2003) proposed Instance-
based Learning Theory (IBLT) as a process account of 
human learning during repeated decision-making. IBLT 
posits how humans identify, store, and retrieve information 
for the explicit purpose of making decisions within a 

dynamic, uncertain environment when performance 
feedback is provided (Gonzalez, et al., 2003).  

IBLT has successfully accounted for human behavior in 
two-alternative forced-choice tasks (e.g., Gonzalez, and 
Dutt, 2011), classification tasks (Gagliardi, 2011), and 
dynamic tasks (Gluck, Stanley, Moore, Reitter, and 
Halbrugge, 2010; Reitter, 2010). We developed an IBLT 
model in ACT-R (Anderson, 2007; Thomson, et al., 2015) 
to make a decision based on a particular context (i.e., the 
presence of symptoms) and prior experience.  

The model does not generate a response according to 
explicitly defined rules indicating the number and order of 
cues to check. Rather, the model generates its decision by 
using ACT-	$s blending mechanism to blend over chunks 
and to determine cue encoding order and a stopping rule 
according a particular context. In the current paper, the 
IBLT model encoded decision support instruction similarly; 
rather than providing an explicit rule, decision support was 
represented as a collection of high feedback chunks that 
suggested a response given a particular context. Previous 
research has shown that the IBLT model is capable of 
predicting human behavior on a multi-cue diagnosis task 
(Myers, et al., 2015). 

Model Evaluation 
To simulate human-machine teaming, the IBLT model 
received decision support from a machine learner using a 
constrained version of the A* algorithm that constructed a 
decision rule with maximum expected reward. Three 
decision support types were tested across a single rule 
consistency: correct DSS (optimal rule), incorrect DSS 
(non-optimal rule), and no DSS. Each decision support 
condition completed 20 runs of 267 trials. Decision support 
was delivered at trial 60 to allow the machine learner to 
settle on an environmentally consistent optimal rule and to 
ensure the IBLT model had not reached asymptotic response 
accuracy performance. 

The IBLT model goes through three different stages 
across the experiment: exploration, instruction, and 
exploitation.  The focus in the current paper was on the 
exploration and exploitation phase, each with unique 
questions concerning model performance. During the 
exploration stage, we were interested in model behavior 
according to rule acquisition, rule adherence, and accuracy. 
Specifically, because the model generates a rule based on 
learning and experience, does the model find the underlying 
rule or does it generate an alternative rule? We examined 
optimal rule-adherence with respect to accuracy for insights 
into these questions.  
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After the machine learner delivers decision support 
instruction, it would be unsurprising that rule adherence and 
accuracy change. However, of interest is how the model 
behaves during the exploitation stage when the decision 
support rule is encoded in declarative memory. Two primary 
questions need to be addressed during this stage. First, to 
what extent does the model appropriately use the provided 
rule? Second, does the decision support coerce or force the 
model into a pattern of inflexible responding by suppressing 
exploratory behavior? In other words, if the environment 
transitioned to a new rule, would the model continue 
responding according to the provided decision support rule, 
or would the model still be able to detect environmental 
changes and subsequently adjust its strategy?  

Model Predictions 
Trial data from each run was binned to 9 blocks for ease of 
interpretation. Decision support instruction occurred at the 
beginning of block 3 (trial 60; indicated in Figure 1 as a 
dashed vertical line). Data from model accuracy and reward 
across blocks were identical and therefore we used model 
accuracy to examine model performance. 

During the exploratory stage of blocks 1 and 2, the IBLT 
model began to learn and respond according to a self-
generated rule that, according to the model, appeared to best 
explain the environment. Given accuracy and rule 
adherence, the rule generated by the model during these 
blocks was sub-optimal and as a result accuracy was unable 
to match the probability associated with the environment 
rule consistency.  

After receiving decision support from the machine learner 
at block 3, the model was responsive in incorporating the 
provided instruction into its rule strategy (Figure 1). Correct 
DSS instruction resulted in increased model accuracy and 
rule adherence by following the underlying environmental 
rule. Thus, not only was the model making appropriate 
responses, but these were a result of adherence to the 
decision support rather than a decision strategy or rule self-
generated by the model. Incorrect DSS and no DSS also 
responded expectedly according to the type of rule  (or lack 
thereof) provided. 

During the exploitation phase, after delivery of decision 
support, model behavior remains!to a degree!flexible and 
exploratory. For example, in the correct DSS condition, rule 
adherence of the model increases to nearly 100% then 
begins to drift lower in subsequent blocks. The reason for 
this behavioral variability is a result of the model forgetting 
the rule over time. Rule forgetting across blocks is gradual; 
rule adherence and accuracy both remain higher relative to 
the same metrics during the exploratory stage. However, 
some degree of forgetting behavior can be advantageous. It 
allows the model to continue responding dynamically 
according to the environment, and should an environmental 
change occur (i.e., rule change or change in probabilities), 
the model can detect these changes and adjust the response 
strategy accordingly.  

Response time predictions corroborated documented 
deficits of the IBLT model (Myers, et al., 2015). 

Infrequently used chunks in declarative memory increased 
response time due to lower probability of recall. Response 
time decreased at block 7 because the chunks used thereafter 
included only frequently or recently used chunks. Based on 
the current results and previous findings (Myers et al., 
2015), the IBLT model may not be capable of accurately 
accounting for human response times in a two-alternative 
forced choice task. 

IBLT Model Performance 

Figure 1. Performance data for the three models (+/- 1 
SEM). The dashed line represents decision support. 

Conclusions 
The integration of the IBLT model with a machine learning 
decision support system demonstrated several strengths and 
weaknesses. The IBLT model is capable of taking 
instruction and incorporating it within its rule discovery 
strategy, as evidenced by accuracy and rule adherence 
changes between the exploratory and exploitation stages. 
The incorporation of the rule strategy does not suppress 
future learning. In fact, the model resumes some amount of 
exploratory behavior after instruction, thereby allowing the 
model to remain flexible and adaptive to possible 
environmental changes. These core strengths demonstrate a 
model with explanatory potential when validated against 
human behavior. The main weakness of the model relates to 
�������
������$��������� �����������������������s, such as 
those demonstrated by humans engaged in a similar task 
(Myers, et al., 2005). Future research will tackle issues such 
as direct human to model comparisons according to 
instruction-taking, and determining the timing and 
frequency of instruction delivery. 
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Introduction

PRVAs, product recommendation virtual agents, are agents
that are designed for virtual clerks in online shopping.
Prendinger et al. investigated the effect of virtual clerks by
eye tracking analysis (Prendinger, Ma, & Ishizuka, 2007).
In their experiment, participants were introduced real estate
properties by text, speech, and an animated agent. They
showed that the agent’s use of deictic gestures had the effect
of attracting a participant’s gaze. Terada et al. studied what
appearance was the most suitable for PRVAs (Terada, Jing, &
Yamada, 2015). They showed that one of the most effective
appearances were dog, robot, and young woman. In this pa-
per, we investigated the effect of PRVA’s emotion transition
to user’s gaze by eye tracking analysis.

A Markov chain model is widely used for constructing a
model of eye tracking transition. Liechty et al. showed local
and global covert visual attention by adapting a Bayesian hid-
den Markov model (Liechty, Pieters, & Wedel, 2003). He et
al. suggested investigating hidden user behaviors that occur
when a user is using a search site by using a partially ob-
servable Markov model with duration (POMD) (He & Wang,
2011). This model is derived from the hidden Markov model
(HMM). The difference was that POMD contained a partially
observable event. He et al. suggested that only seeing without
clicking links was the hidden user behavior.

In this paper, our goal was to improve the PRVA de-
sign methodology by analyzing user eye-tracking data. We
focused on transition-based analysis. In prior research on
human-agent interaction, eye-tracking data were mainly an-
alyzed on the basis of fixation durations. This is the most
important method in this paper.

Markov chain

In our research, we used the Markov chain model for ana-
lyzing the fixation transitions between areas of interest (AOI
sequence). The Markov chain satisfies the following equa-
tion, where Xn is a random variable and n means time step
(Brooks, Gelman, Jones, & Meng, 2011).

P(Xn+1 = xn+1 | Xn = xn, · · · ,X0 = x0)

= P(Xn+1 = xn+1 | Xn = xn)
(1)

In this research, our goal was to compare the transition en-
tropy and the stationary entropy of the AOI sequence

Experiment
Participants
Fifteen Japanese participants joined in the experiment. There
was eight males and seven females, and they were aged be-
tween 20 and 39, for an average of 29.3 (SD = 6.9). Due to
not getting sufficient gaze data, we omitted the data of one
male participant.

Task
The PRVA recommended 10 package tours to Japanese cas-
tles. These castles were built in the Japanese Middle Ages,
from about the 13th to 16th century. The PRVA made recom-
mendations successively, and the recommendation order was
random. For the first half of the recommendations, the PRVA
kept a poker face without making any gestures. We defined
this agent as the apathy agent. In the latter half, the PRVA
smiled and made cute gestures. We defined this agent as the
positive agent. This change in facial expressions and gestures
expressed the agent’s emotion transition, and we aimed for
the agent’s positive emotion to infect participants.

The PRVAs were executed with MMDAgent1. This is a
free toolkit for constructing agent systems with speech. It
contains the agent character “Mei” and is distributed by the
Nagoya Institute of Technology. We also used the text to
speech software VOCELOID+ Yuduki Yulari EX22 for the
agent’s voice.

Apparatus
We carried out experiments with Tobii Pro X2-60 and a 30-
inch LCD monitor (1920 � 1200 resolution). Eye move-
ments were recorded at a 60-Hz sampling rate. All partici-
pants were requested to sit down in a chair at a 60-cm dis-
tance from the monitor during the experiment. All stimuli

1http://www.mmdagent.jp/
2http://www.ah-soft.com/voiceroid/yukari/
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Figure 1: Defined AOIs

were presented on the monitor, and all participants listened to
the recommendations with headphones. To construct a transi-
tion matrix and stationary distribution, we used the R package
“markovchain” (Spedicato, Kang, & Yalamanchi, n.d.).

Analysis method

We defined the AOIs as shown in Figure 1. We divided the
presented stimuli area into five areas (“background,” “body,”
“face,” “image,” and “text”). We analyzed based on the fixa-
tion order. Fixation order meant the path of a participant’s fix-
ations, and we counted the number of transitions of the AOIs
that the participants fixed on (including self transitions). We
constructed the transition matrix and stationary distribution
from this analysis. The minimum fixation duration was 60
ms, and transition advanced one step when fixation occurred.

Results

We constructed the transition matrix and stationary distribu-
tion from the fixation order of the first half of the recommen-
dations. We calculated each transition matrix from each rec-
ommendation. We got 10 transition matrices from one partic-
ipant and got 140 transition matrices in total. We calculated
the average of all matrix elements. This was for the “transi-
tion matrix derived apathy agent”.

Also, we calculated the stationary distribution from this
matrix. This was for the “stationary distribution derived ap-
athy agent” (πa = (0.22,0.11,0.05,0.26,0.37)). On the ma-
trix, each coordinate means these AOIs: 1 = “background,”
2 = “body,” 3 = “face,” 4 = “image,” and 5 = “text.” In the
stationary distribution, the same coordinate means the same
AOI .

We constructed the transition matrix and stationary dis-
tribution from the latter half of the recommendations in the
same way. These were for the “transition matrix derived
positive agent” and “stationary distribution derived agent”
(πp = (0.22,0.16,0.098,0.21,0.31)). The same coordinate
means the same AOI in πa.

Discussion
From πa and πp, we can find few definite differences. The
most different element was p3 between these two matrices.
In πa this means 0.05, and in πp, this means0.098. This coor-
dinate means the percentage of probability that fixation tran-
sitions to “face” when the fixation is on “face” one time-step
before. This shows that implementing the positive emotion
caused participants’ fixations to stay on the agent’s face. This
phenomenon proves that the participants felt more human-
likeness with the agent (Strait, Vujovic, Floerke, Scheutz, &
Urry, 2015).

Conclusion
There is demand for PRVAs that have the ability to attract
a user’s attention to products or to themselves. This can be
rephrased as the ability to attract and keep a user’s fixation on
the images of products or agents. We investigated the effect
of implementing a positive emotion in a PRVA by analyz-
ing eye-tracking and aimed to adapt the result to the model
of designing PRVAs that attract a user’s fixation. From our
experiment, a positive emotion attracted participants’ gaze to
the agent’s face. This suggest a methodology of attracting or
keeping a user’s gaze and buying motivations.
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Introduction

Learning in domains such as mathematics or programming,
involves the acquisition of procedural knowledge (Young &
O’Shea, 1981). For example, when learning written subtrac-
tion, students need to understand and apply an algorithm for
calculation of differences column by column. Erroneous so-
lutions most often are the result of procedural bugs (Brown
& Burton, 1978) such as missing or faulty rules or the appli-
cation of a rule in the wrong context. If such a procedural
bug is diagnosed, a strategy is needed to support the student
resolving this bug. Such strategies can be: written explana-
tions, presenting additional problems, or giving bug-related
feedback such as an explanation together with a worked-out
example (Narciss & Huth, 2006).

A worked-out example can be considered as an analogy to
the given problem which a student could not solve correctly
(Gick & Holyoak, 1983). That is, for the current (target)
problem a structurally isomorphic base problem is provided
where the correct solution can be demonstrated step by step.
While Narciss and Huth (2006) make use of this feedback ap-
proach, they rely on predefined analogies stored together with
an—also predefined—set of student problems. However, the
automatic generation of such analogous problems for written
subtraction can improve and facilitate feedback generation.

Written Subtraction

In Figure 1 the visualization of the subtraction algorithm us-
ing the decomposition method, which is implemented in Pro-
log and described in Zinn (2014), is shown.1

Subtraction is realized by five production rules:

• subtract [C
n

,C
n�1, ...,C1]: subtracts a subtrahend from a

minuend. The procedure gets as input a non empty list of
columns with C

i

= (m
i

,s
i

,d
i

) where m

i

stands for minuend,
s

i

for subtrahend and d

i

for the difference of the column
i. C1 belongs to the rightmost and C

n

to the leftmost col-
umn. If the subtrahend has fewer positions than the minu-
end, leading zeros are added.

• process column C

i

: starts with the rightmost column
and compares m

i

and s

i

. If m

i

6 s

i

the production rule
take difference is applied immediately. Otherwise, a
borrowing procedure is needed previously, which is the ap-
plication of decrement and add ten to minuend. After
processing column i the next column (i+ 1) is inspected.
The process column rule ends the subtraction algorithm
after processing the last column (i = n, cf. Fig. 1a).

1In contrast to Zinn (2014) we label columns from right to left.

subtract [C
n

,C
n�1, . . . ,C1]

i = 1

C

i

decrement C

i

add ten to minuend C

i

take differenceC

i

end

i ⇥ i+1

m, m�1m+10, m+10
�1

m

i

< s

i

m

i

> s

i

i < n

i = n

(a) Subtraction algorithm
decrementC

i

j = i

j ⇥ j+1

m

j

⇥ 9

m

j

⇥ m

j

�1

end

(m
j

�1)> s

j

(m
j

�1)< s

j

m

j

= 0

0+10
�1

m

j

⇤= 0

m�1 ⇤=0+10
�1

(b) decrement procedure

Figure 1: Schema of the written subtraction algorithm (a) and
a closer look on the decrement rule (b) (Zinn, 2014), en-
riched with the column cases (m, m�1, ...; Zeller, 2015).

m
m�1

Start m+10

m+10
�1

m

m+10

m+10
�1

m�1

Figure 2: Automaton to describe the generation of a written
subtraction problem, starting with the rightmost column using
the column cases annotated in Figure 1.
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• decrement C

i

: borrows ten from the minuend m

i+1. If
m

i+1 = 0, further borrowing is needed in C

i+2 (cf. Fig. 1b).
• add ten to minuendC

i

: adds the borrowed ten to m

i

.
• take difference C

i

: takes the difference m

i

� s

i

and
stores the difference in d

i

.

Consider the following subtraction problem:

C3 C2 C1
3 0 5

� 2 0 6

The algorithm starts with the rightmost column (C1). Because
of m1 = 5 and s1 = 6 process column calls the borrowing
procedure. The minuend of C2 is 0 and therefore borrowing
is needed in C3. Afterwards, take difference is applied.
The application of decrement (left), add ten to minuend
(middle), and take difference (right) results in:

2 9 5
� 2 0 6

2 9 15

� 2 0 6
2 9 15

� 2 0 6
9

Next C2 is processed (take difference with m2 = 9 and
s2 = 0). After that take difference is applied to the last
column (C3). The correct difference is 99.

Analogies for Written Subtraction

The algorithm in Figure 1 induces an automaton for the gen-
eration of arbitrary subtraction problems given in Figure 2. A
subtraction problem starts with the rightmost column. A col-
umn either needs borrowing (arrow m+10) or not (arrow m).
From the second column onward a column can be borrowed
from (arrow m�1) or be borrowed from and need borrowing
simultaneously (arrow m+10

�1 ). For this most complex case,
it can be discriminated whether the value of the minuend
is 0 (0+10

�1 ) or not ( ⇤=0+10
�1 , cf. Fig. 1b). The states of the

automaton constitute column cases, that is, they characterize
the structural relation between minuend and subtrahend in
each column. All subtraction problems generated with this
automaton can be solved by the subtraction algorithm given
in Figure 1 with the restriction that only such problems are
allowed where the result is greater or equal to zero. This au-
tomaton was implemented as Prolog program (Zeller, 2015)
and generated for instance the following analogous examples:

Problem 1 Problem 2
C3 C2 C1
m�1 0+10

�1 m+10

3 0 5
� 2 0 6

C3 C2 C1
m�1 m+10 m

4 3 7
� 3 7 4

Analogy 1 Analogy 2
1 0 6

� 0 3 8
3 1 0

� 1 8 0

The column cases of the problem define the structure of the
analogy. For example, if C1 of the problem is of case m+10

then this holds also for the analogy.

Conclusion

The proposed approach was integrated in an intelligent tutor
system. There analogous problems were created to specifi-
cally address students’ errors. That is, the analogous example
preserved that characteristics of the given problem where the
error occurred.

As a next step we plan an empirical study, where we want
to compare automatic generated analogies with analogies cre-
ated by human tutors. Here, we will start with a set of gen-
erated erroneous student solutions. These solutions will be
presented to teachers in elementary schools who are experi-
enced in teaching written subtraction. The teachers are in-
structed (a) to identify the error in the solution, and (b) to
propose an analogues problem for which they assume that it
helps the student to understand the error. Teacher solutions
are analyzed with respect to the constraints of our automatic
generation approach.

Furthermore, we plan to transfer the concepts to other do-
mains. On the one hand, we are interested in transfer to
related domains, such as teaching other mathematical oper-
ations (written addition, multiplication, and division). On
the other hand, we are interested in transfer to other do-
mains strongly depending on procedural skills such as teach-
ing computer programming.
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Abstract

Assuming that photographs accumulated on a personal com-
puter reflect the life history of a person, a model of that per-
son’s autobiographical memory could be constructed. Such a
model would be useful to overcome memory problems caused
by factors such as aging. On the basis of this idea, we
constructed a photo slideshow system comprising an ACT-R
model with a private photo library.

Keywords: Photographs, Autobiographical Memory, ACT-R.

Introduction
Recalling autobiographical memory engenders a state of con-
sciousness, called mental time travel, in which relevant mem-
ories of past events are evoked (Schacter, Addis, & Buckner,
2007; Tulving, 1985). Memory recall of a personal golden
age is also said to bring psychological health and well-being
(Routledge, Wildschut, Sedikides, & Juhl, 2013). On the ba-
sis of these assumptions, activities such as life reviews and
reminiscences are conducted to support the elderly.

Our long-term goal is to develop a model-based method of
life review and reminiscences, in which a computerized user-
model guides user’s mental time travel. To establish this, we
developed a photo slideshow system by using ACT-R as a
user-modeling platform (Anderson, Boyle, & Reiser, 1985;
Anderson, 2007). In this framework, a cognitive model of
a user’s autobiographical memory is developed by extracting
user-specific knowledge from a private photo database.

In this framework, the model and user simultaneously ob-
serve a photo retrieved by the model. When a memory re-
called by the model satisfactorily fits that of the user, the
photo presented by the model can generate a positive feel-
ing in the user through synchronization effects (Chartrand &
Bargh, 1999). Such synchronization effects can be strength-
ened by modulating parameters of the model utilizing feed-
backs from users. Therefore, we assume that this slideshow
can be used for not only motivating a user by presenting fa-
vored photos but also diagnosing mental states through user
feedback of the presented photos.

The model
This document briefly presents the construction of the model,
which uses the visual, declarative, goal and production mod-
ules of ACT-R to retrieve photos from a photo library.

Photo data and Visual Module

The outputs from a consumer-based image processing engine
are used as inputs to the model. Many recent photo libraries
have face detection modules. They can also recognize per-
sonal names through human-in-the-loop training. We used
these functions implemented in iPhoto of Mac OSX. We also
used ReKognition API (https://rekognition.com) to analyze
the scenes in photos. ReKognition API is an image recogni-
tion engine that has already learned connections between vi-
sual features and scene tags such as “cats,” “cars,” and “peo-
ple.” The faces and scenes extracted from the photos are
displayed on an AGI (ACT-R Graphical Interface) screen as
“texts” to make the ACT-R model observe the photo.

Declarative Module

Figure 1a presents examples of declarative chunks. In the
examples, *** represents arbitral strings for labeling each
chunk, and < GUID > corresponds to photo ID. The top
three chunks represent the meaning of the texts displayed on
AGI. The bottom three chunks represent attributes of photos.
We coded four types of attributes corresponding to “What,”
“Who,” “Where,” and “When,” following a psychological
study of autobiographical memory (Wagenaar, 1986).

The “Who” attribute Using iPhoto face recognition, the
two types of chunks signified in I and IV in Figure 1a were
constructed. The chunk I associates the text “face753” with
a face whose ID is 753. The chunk IV states that the photo
with ID < GUID > includes face753. The first type of chunk
is used to recognize a face from a text on the AGI display.
The second type is used to retrieve a photo that includes a
recognized face.

The “What” attribute The two types of chunks were con-
structed from outputs of ReKognition API. As in the case of
faces, the chunk II in the Figure 1b is used to recognize a
scene from the AGI screen. The chunk V is used to retrieve a
photo including s-broom.

The “Where” attribute This attribute signifies the geo-
graphical locations in which the photo was taken. Although
recent digital photos have geotag information embedded in
their Exif metadata, symbolization of continuous values of
latitude and longitude is needed to construct the where at-
tribute for ACT-R. We used the x-means clustering algorithm
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to symbolize the location data. Once clusters are made, each
location is encoded into the chunk VI. The geo30 in the chunk
represents a cluster ID. Using this chunk, the model retrieve
a photo that shares a geo cluster with the current photo.

The “When” attribute Like the where attribute, the when
attribute can be constructed by clustering date-time informa-
tion embedded in the Exif metadata (the chunk VII). In the
case of the when attribute, we used k-means with the number
of clusters determined by x-means for the where attribute to
uniform resolutions of the two attributes.

Figure 1: The ACT-R model of autobiographical memory
constructed from a photo Library

Goal Module
The ACT-R’s goal module is used to hold information asso-
ciated with the four attributes recognized from the photos. It
also holds the current photo ID (the current-photo slot), next
photo ID (the next-photo slot), and the state of the model (the
state slot). Figure 1b shows an example state of the goal mod-
ule. The slots for the who and what attributes are defined as
pushdown stacks with a size of three.

Production Module
Using the visual input and the declarative memories ex-
plained above, the model observes information on the cur-
rent photo, and retrieves the next photo from a declarative

memory. This process corresponds to a free recall of episode
memory.

Figure 1c shows the production rules of the model as 19
sets of boxed texts. The rules make up several independent
processes where arrows connect them. When any process ter-
minates, the state slot of the goal module is changed to start-
process, and the next process begins. The process has differ-
ent triggering conditions described as “always” or “when...”
on the figure. When the several processes simultaneously
have conditions that correspond to the current state, the cur-
rent model randomly starts one of the processes. In the future
implementation, feedbacks from users would enable the mod-
ulation of the probability of a process being selected.

The box at the top of the figure includes processes recog-
nizing visual objects on the AGI screen. The start-perceive
rule starts this process by randomly choosing one set of texts
from the screen. The ensuing three rules, remember-photo-
ID, remember-scene, and remember-face, retrieve chunks that
connect visual texts to corresponding chunks (the chunks I
to III). If the retrieval succeeds, the model places the chunk
on the corresponding slots of the goal module (photoID-to-
goal, scene-to-goal, face-to-goal). The middle box in the
figure corresponds to the recognition process for the where
and when attributes. This information does not directly on
the screen. We assume that these attributes are recognized
from an intrinsic visual feature of the photo, namely the
photo ID. When the current photo ID is in the goal buffer,
the remember-time and remember-place rules retrieve chunks
that describe date-time (the chunk VII) and location (the
chunk VI), respectively. The box at the bottom indicates the
retrieval process for the next photo. Each process is triggered
by the state of the corresponding slots of the goal module.
The tag information in the goal module is used as a query to
retrieve chunks including photo ID (the chunks IV to VII).
Once these chunks are retrieved, the retrieved photo ID is
stored in the next-photo slot of the goal module.

The model repeats these processes in a trial, with the same
photo is presented on the screen. During the trial, every time
the processes in the boxes at the top and in the middle are trig-
gered, the slots in the goal module are filled. The next-photo
slot of the goal module also changes every time the processes
in the bottom box are triggered, but it decides which photo
to present in the next trial at the end of each trial. Thus, the
longer the duration of the trial or the faster the cycle of the
model, the richer the information for the retrieval of photos
becomes.

Summary

This document described how an ACT-R model of autobio-
graphical memory could be developed from a photo library.
In the future paper, we will describe the subsymbolic compu-
tation of the model. We are currently developing an interface
modulating model parameters by user’s behavioral and phys-
iological reactions.
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Abstract 
Expectations play a crucial role in many domains, including 
HMI. In this paper we examine a specific type of expectations 
resulting from the proximity of interface control elements. We 
briefly present the results of an experimental smart phone task 
that manipulated the relationship between control element 
proximity and the closeness of the corresponding goals. We 
present a modeling approach for proximity-based expectations 
and compare model predictions from an ACT-R model and 
experimental results. 

Keywords: expectations, interface design, cognitive 
modeling, ACT-R, HMI 

Introduction 
Expectations are hugely important in everyday life. They 

are an important element of learning about, dealing with and 
ultimately mastering our environment. More specifically 
expectations allow us to anticipate future states of the 
environment. This allows both for better mental and action 
preparation (Umbach et. al. 2012) but also for improved 
action-feedback learning loops (Friston & Kiebel 2009, 
Gallistel, 2005). 

In the case of proximity and causality a type of expectation 
might have evolved that lead us (largely subconsciously) to 
expect similar or close objects in our environment to be 
functionally or causally related. We will refer to them as 
proximity-based expectations. Modeling these expectations is  
an important puzzle piece in the quest towards making 
quantitative predictions about usability. By quantifying their 
exact impact, we can improve future models of user 
interaction with technical interfaces by adding expectations 
to them.  

We created a cognitive modeling approach in ACT-R that 
utilizes one of the possible implementations of proximity-
based expectations and compared its output with 
experimental data. 

We also devised an experimental setup that aims to 
empirically capture the effect of a specific design decision - 
here spatial proximity of control elements - on reaction times 
and user errors. To this purpose we created a smart phone app 
that enabled the construction and configuration of 
geometrical shapes. 

Experiment 
Participants were asked to recreate three geometrical shapes 
of varying shape, filling color and periphery color. Each trial 
started with the app presenting a screen that contained the 

three shapes to be recreated and buttons that could be used to 
initiate the manipulation of each shape (see figure 1, left 
panel). 

 
Figure 1: Starting screen (left) and exemplary menu state 
for the congruent condition (left) and the incongruent 

condition (right). 
 

The participants first had to choose the shape (square or 
triangle) and then had the choice between manipulating the 
color of periphery or interior. The participants were given 
constant feedback about the state of the shape so that they 
could track the effects of their manipulations. The menu 
always contains four buttons, with two spatially close buttons 
on the top and the bottom of the screen respectively. 
	����������������������
���������������������"����������

��������#�- in accordance with the proximity compatibility 
principle -  buttons that were used for similar purposes (like 
the button for manipulating shape and the button for 
manipulating color in figure 1, middle panel) were situated 
������ ��� �
��� ������� ��������� �� ��� ���� "������������
��������#�������������������
��������������������ated away 
from each other (figure 1, right panel). The participants had 
to finish a total of ten trials, each starting with the 
presentation of the three shapes and ending with the correct 
creation and configuration of all three shapes. 

 

ACT-R expectation model 
Two model approaches for modeling proximity-based 
expectations were proposed by Lindner & Russwinkel 
(2015). In the current paper we will present one of them, the 
action tendency approach). 

Both for the model implementation and the concept 
description in this paper we made use of the cognitive 
architecture ACT-R (Anderson et al., 2004) and its terms, 
respectively.  
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The goal of the modeling approach is to quantify both the 
processes involved in building up expectations and those that 
translate those expectations into changes in overt behavior. 
The main idea consists in linking co-occurring goals and 
actions and to create action tendencies from these links. 

In the experimental task let us assume that a participant has 
the goal to configure the border of a shape and then 
����������� � ���� ��� � � ��������� ���� ������� $����������
�����#�� ������������ �����������
���� ������������������ ��� ����
�������$���������������"�������from now on be associated 
����� ���� ��
�� $���������� ���� �����"�� ��� � ������ 
���� ���

�����
��� ����� ���
��� ��
��� ����� "���������� ���� ��
��#�
(which is a meta-��
�� ��� $���������� ���� �����") and 
"�����������������#�����������
����-goal of this meta-goal). 

More technically speaking, if a goal/sub-goal G is achieved 
by using control element E the following processes occur: 
First, the elements close to E, including E itself, C(E) are 
associated with the goals close to G, including G itself, C(G) 
(e.g. sub-goals, sub-goals of the meta-goal) (see figure 2). 
������� 
������ ���������� 
��� ���
��� ��
�� "������
��#� ����
use of elements from C(E) when the goals from C(G) or 
reoccur.  

 
Figure 2: Associations between closely related goals and 

spatially close control elements 
 
���� "
������ ������ #� ���������
����� ���������� ����

direct and immediate creation of all specific action tendencies 
related to the current goals and interface elements. In ACT-R 
this translates into the creation of precise productions that 
couple the present goal and related goals with spatially close 
control elements anytime a control element is successfully 
used. The starting utilities of the productions (and thus the 
probability of them being used) grow with closeness to the 
original goal G and spatial closeness to the original control 
element E. 

So far, in ACT-R production utilities only change after a 
reward is given at the end of a successful action sequence that 
contained the production. In order to implement the utility 
needed for our expectation approach, we had to extend the 
utility mechanism to also include the change of utilities of 
production that were not previously fired.  

One important implementation decision is what the action 
tendency actually entails. In our model we conservatively 
stuck the interpretation that the participant will first look to 
an expected position when encountering a new screen. They 

will also prepare to ������ ����"�������#��������������� ��� ���
visually encoded. 

General Model Predictions 
The expectations will lead to more frequent visual encoding 
of the correct control element first if the interface is 
constructed following PCP. This should result in overall 
faster completion time of tasks. On the one hand, visual 
search is cut short if the expectation already points to the 
correct control element. On the other hand, the motor 
preparation for the expected button should also lead to a 
decrease in motor action, as both movement and motor 
preparation can be skipped. 

We also expect fewer errors to be committed in an interface 
following PCP compared to one that does not. Our model, 
however will not address this hypothesis. In the discussion 
we will elaborate on a model extension that could reflect this 
phenomenon. 

 
Experimental and modeling results  

 
 n Model w/o 

expectations 
Model w/ 
expectations Experiment 

Congruent 
Condition 19 29,2 29,0 29,3 

Incongruent 
Condition 17 29,5 29,6 36,9 

 

 
Figure 3: Total Completion Times in s (first trial excluded) 

Discussion and Outlook 
 
In order to better reflect experimental reaction times - 
especially in the incongruent condition - the model is 
currently being altered to include the tendency to click screen 
elements that are expected to be helpful for the task without 
double checking its function first. This could also help to 
better fit the experimental results concerning errors 
committed, since participants committed a substantial overall 
amount of errors and errors were more frequent in the 
incongruent condition.  
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Introduction 
In the learning and memory literature, there is a clear 

distinction between procedural and declarative memory. We 
know that they develop differently in  children (Finn et al., 
2016) and that they are dissociated anatomically and this 
distinction is reflected in cognitive architectures as well 
(Anderson et al., 2004). In the lab, most tasks tap into and 
measure either one of those components. In most complex 
real-life skills, however, both declarative and procedural 
memory are required to perform well. 

Here we will look at the learning of a complex real-life 
skill: cardiopulmonary resuscitation (CPR). More 
specifically, we will teach participants basic life support 
skills meant to be performed on an adult victim suffering 
from cardiac arrest. CPR has both declarative and 
procedural components and there are clear guidelines 
prescribing the sequence of steps that need to be executed 
(Perkins et al., 2015). This sequence needs to be 
remembered (e.g., I need to call am ambulance before I 
initiate CPR) which draws on declarative memory. Learning 
to administer correct compressions, on the other hand, is 
probably closer to a procedural skill. 

CPR is an ideal task for various reasons. It is clearly 
constrained and can be performed and monitored in a 
controlled (lab) environment while staying close to how it 
would be trained in a real-life setting. Publicly accessible 
guidelines provide clear learning criteria against which the 
obtained measures can be compared. The skill can be 
learned in a single session and pilot data suggest that there 
are individual differences in how quickly CPR performance 
decreases after initial learning and that not all aspects of 
CPR are retained equally well. Therefore, CPR is an ideal 
testbed to investigate the interaction between declarative 
and procedural learning in a real-life setting. In this 
exploratory study, we will investigate which aspects of CPR 
performance are best predicted by someone’s declarative 
learning or procedural learning ability.  

Tasks 
To address the research question, we will have each 

participant perform three tasks. Each task is intended to 
measure one of the three components of interest: acquisition 
and performance of CPR, procedural learning, and 
declarative learning. 

Learning CPR 
Each participant is taught “adult basic life support” skills 

in accordance with the guidelines of the European 
Resuscitation Council (Perkins et al., 2015). Hereto, 
participants watch an instructional video and then practice 
CPR with a Laerdal Resusci Anne QCPR manikin. Data is 
recorded using the Laerdal SimPad SkillReporter. This 
setup allows detailed recordings of the skill development 
during the acquisition of basic life support skills: both the 
order of the steps that were taken can be recorded as well as 
detailed measures of each compression and rescue breath 
that is administered. After an initial training phase (with 
corrective feedback), CPR performance will be assessed 
about 45 minutes later and either one or four weeks later. 

Procedural Learning 
To assess a participant’s expertise in procedural learning, 
we selected separate implicit and explicit procedural 
knowledge tasks. 

Serial Reaction Time Task. In the serial reaction time 
task (SRTT) visual cues appear over four response options 
and the participant needs to respond with one of four fingers 
that are mapped to the response options. The task can be 
used as a measure of implicit procedural learning by 
presenting the participant with different blocks of trials: one 
block in which the order of responses is random and one in 
which the order is a repeating sequence (Robertson, 2007). 
The participant is (usually) not aware of the sequence but 
their reaction times become markedly faster. A learning 
measure can be computed by subtracting the mean reaction 
time in the sequenced block from the mean in the random 
block (e.g., Willingham, Salidis, & Gabrieli, 2002). 
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Mirror Tracing. In the mirror tracing task, the 
participant sees a line with 12 corners connecting two points 
and needs to trace the line. However, they can only see the 
line and their own hand through a mirror. With practice, 
both the completion time and the number of errors 
decreases, indicating procedural learning. Quantifying the 
improvement provides a learning measure that is linked to 
individual differences (e.g., Finn et al., 2016). 

Declarative Learning 
To derive a learning measure for someone’s ability to 

learn declarative information, we use a fact learning system 
developed in our lab. The system uses retrieval practice to 
quiz learners on a trial-by-trial basis. This allows recordings 
of accuracy and response latencies which are used to 
estimate the current memory strength of the test item, which 
are used to schedule a repetition of the item before it is 
forgotten (Van Rijn, van Maanen, & van Woudenberg, 
2009). As more information is gathered, an estimate of how 
quickly an item is forgotten is fine-tuned. After studying 35 
Swahili-English word-pairs for 15 minutes, an estimated 
rate of forgetting can be obtained for each participant. This 
learning measure indicates how quickly, on average, a 
participant forgets this type of material. We have shown that 
this measure can be measured reliably (Sense, Behrens, 
Meijer, & Van Rijn, 2016) and is not related to common 
measures of executive attentional functioning (Sense, 
Meijer, & Van Rijn, accepted). 

Procedure 
A total of 40 participants with no prior CPR experience 

will be invited to participate. So far, data from 20 
participants has been collected. Participants will be invited 
for two sessions. In the first, they will be taught CPR and 
will complete the 15-minute word-learning session, 768 
trials of the SRTT (half random, half sequenced), and nine 
mirror-tracing trials. At the end of session one, they will be 
tested on the CPR performance. Either one or four weeks 
later, in session two, participants will be tested on the 
Swahili words they learned as well as on their CPR 
performance. Also, they will complete another round of 768 
SRTT and nine mirror-tracing trials. 

Planned Analyses 
This is an exploratory study to verify whether the 

acquisition and forgetting of CPR skills can be captured in 
this paradigm and how CPR performance is related to 
established declarative and procedural learning tasks.  

The computation of learning measures for the declarative 
and procedural tasks is straightforward, however, valid 
measures for CPR still need to be developed. As a large 
number of measures are recorded, the main challenge will 
be to construct suitable learning measures. We will report a 
first exploration of various options and discuss their merits. 

The derived learning measures can then be correlated with 
the learning measures for the declarative and procedural 
tasks. Multiple regression can be used to determine which 

(combination of) measures can best explain variance in 
overall CPR performance. Furthermore, we will look at 
which aspects of CPR are forgotten more quickly than 
others and lead to a decrease in overall CPR performance.  

Hopefully, this project will provide useful information 
with regards to CPR’s relationship to declarative and 
procedural learning as well as indications that might be 
helpful to optimize (re-)learning of CPR. Furthermore, steps 
will be taken to establish CPR as a complex real-life task 
that involves both declarative and procedural components. 
As such, modeling human behavior in this task can shed 
more light on the relative contributions of declarative 
knowledge and procedural skills in complex human 
behavior.  
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Abstract 

At a previous International Conference on Cognitive 
Modeling (ICCM) a simple model of intuitive decision-
making was presented. The task was to learn and then 
recognize strings that had a hidden structure. The model did 
well a matching of human performance on hits, misses, 
correct rejections, and false alarms. A deeper look reveals not 
just more details about the context and challenge of the 
memory task, but an explanation of the associated heuristic 
and the feeling of recognition. 

Keywords: Intuitive decision-making; Recognition Heuristic; 
feeling of recognition. 

Introduction 
With and without conscious effort we train our 
subconscious mind and we can use that learning to improve 
performance on explicit tasks (Lehrer, 2010). This is the 
fundamental idea behind the bestselling books on the topic 
each describing many examples of the phenomena 
(Gladwell, 2007; Gigerenzer, 2007). Intuitive decision-
making refers to implicit pattern recognition that is not 
thought to involve symbolic rules (Klein, 1998).  

The ACT-R theory (Anderson, 2007; Anderson, et al., 
2004) represents memory tasks by the building activations 
for the discrete, symbolic things we want to remember. The 
theory and architecture compares the activation of items in 
memory against a threshold to determine whether a retrieval 
attempt is successful thus making of remembered item 
consciously available.  

A previous ICCM conference paper (Kennedy & 
Patterson, 2012) described a model of the process on an 
intuitive learning task (Reber, 1967), i.e., below the level of 
individual object recognition. The idea was that instead of 
training increasing the activation for the discrete items to be 
learned, another process was taking place, which noted the 
structure of the objects to be learned. This deeper, 
unconscious, intuitive learning supported the performance at 
the higher, explicit level. The model did very well at 
matching the human subjects’ performance, the hits, misses, 
correct rejections, and false alarms. See Table 1 for updated 
results.  

 
Table 1: Human and Model Performance. 

 
Response type Human (SEM) Model 
Hits 31.5/44(2.7) 34/44 
Misses 12.5/44(2.2) 11/44 
Correct Rejections 35.6/44(2.7) 39/44 
False Alarms   8.4/44(2.2)   5/44 

 

The learning and retrieval process described in the 
previous paper appears to be related to the Recognition 
Heuristic described by Gigerenzer’s group (Gigerenzer, 
Todd, & the ABC Research Group, 1999; Gigerenzer, 
Hertwig, & Pachur, 2011). That Recognition Heuristic relies 
on a discriminatory level of recognition: one of two choices 
being recognized, the other not. The selection criterion is 
useful because it is often correlated with recognition goal. 
The algorithm implemented in the ACT-R model was to 
consider each sequential pair of letters, a bigram, in turn 
through to the end and for each bigram to decide. If the 
bigram is recognized, the next one is considered. If not, the 
string is not recognized. If the process reaches the end and 
each bigram had been recognized, then the string is 
considered recognized and therefore presumed to be valid. 

Here I present a deeper description of the task, the 
training, the testing, and the performance of the human 
subjects and the model providing additional support for the 
capabilities of the ACT-R architecture to represent intuitive 
learning and performance with some effort by the modeler.  

Deeper into the Task 
At one level, the Reber task is a standard memory task with 
training (presentation of the objects to be remembered) 
followed by tests of recall of those and similar objects. 
However, the purpose of the scenario is not the explicit 
memory for the specific objects used in the training, but the 
development and testing of the patterns within the objects. 
The objects, specifically, strings of letters, have the structure 
presented in Figure 1. The subjects are not shown nor 
explicitly trained on the structure itself, but it is implicitly 
presented through the strings presented in training. The 
testing evaluates the learning of the underlying structure 
because the training does not present the full set of the 
strings to be recognized.  

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Finite state diagram defining a grammar of letter 
strings. (From Reber, 1967.) 
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Deeper into the Training 
The training protocol presents a randomly selected set of 18 
strings of length 8 or fewer. However, what needs to be 
learned is the structure. The ACT-R model made the 
structure explicit by noting the sequencing of the letters in 
the training strings as bigrams. In the model, each training 
string is treated as a series of bigrams to be learned as 
discrete objects (chunks) for which activations were 
developed. 

 Analysis of the grammar determined that the full set of 
40 valid strings is made up of only 14 bigrams. As an 
example, the strings “TPPTS”, “TPPPTS”, “TPPPPTS”, and 
“TPPPPPTS” are made up of only 4 bigrams: “TP”, “PP”, 
“PT”, and “TS”. Analysis of the number of repetitions of the 
14 bigrams in 1,000 training sets of 18 strings found that all 
the bigrams are likely to be presented to each participant 
(although some with high variance) even though less than 
half (41%) of the full strings are included in the training. 

Deeper into the Testing 
The testing protocol used 22 randomly selected valid strings 
and 22 randomly generated invalid strings using the same 
letters. Each member of the test set is presented twice 
resulting in 44 possible hits/misses and 44 possible correct 
rejections/false alarms. Analysis of 1,000 sets of 22 valid 
strings revealed that all of the bigrams were used, but again 
the more rare ones having high variance. 

Deeper into the Performance 
The performance of the human subjects and the model can 
be discussed below the string level as well. The data 
available on the human subjects includes the specific 
training sets and testing sets, with performance on the test 
set at the individual string level. The analysis of the human 
and model’s performance at the string and bigram levels 
shows the strings for each type of response (hits, misses, 
correct rejections, and false alarms) are very similar. 

Discussion 
The similarity of the performance on this task at the deeper 
level is further evidence that the model and the human 
subjects are using the same process (heuristic) to intuitively 
learn and decide the questions in this task. This is 
considered relying on intuitive or “gut” feelings because the 
only thing used in the ACT-R memory retrieval process is 
only the status of whether the retrieval was successful or 
not. This is a new, beyond rational representation of 
cognition already supported within the ACT-R theory and 
architecture, although the topic is not new (Lebiere & 
Wallach 2001). It also supports the concept of the transfer of 
basic cognitive skills below the symbolic level of ACT-R 
(Taatgen, 2013). As such, it has the potential to represent 
many of the variety of intuitive decisions we make every 
day.   
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Abstract 

Patterns of object naming were influenced by the language of 
the people used. In this study, we aimed to simulate the 
bilinguals' naming patterns and investigate the underlying 
mechanisms. Our results replicated the empirical findings that 
(1) bilingual speakers develop converged naming patterns in 
their two languages that are distinct from those of 
monolingual speakers of each language and (2) how the 
bilingual semantic convergence was manifested in their 
lexical representations.  We also demonstrated that both 
orthography and connections between two languages are 
important to establish converged naming patterns in 
bilinguals. Furthermore, our modeling data suggested that the 
strength of name agreement in the two languages are involved 
in the cooperation and competition relationships on the object 
naming. Our model provides a foundation for examining the 
factors contributed to the patterns of object naming in 
bilinguals. 
 

Keywords: object naming; lexical categories; modeling; self-
organizing map; bilingual lexicon 

Introduction 
Across languages, objects are not always been classified 

into the same categories. For example, Malt, Sloman, 
Gennari, Shi, and Wang (1999) asked speakers of American 
English, Argentinean Spanish, and Mandarin Chinese to 
name 60 common household containers and found that the 
naming patterns differ substantially as a function of the 
language spoken. For speakers of two languages, how they 
dealt with the inconsistent mapping relationships between 
objects and names could enhance our understanding about 
language learning. Ameel, Storms, Malt, and Sloman (2005) 
investigated the naming patterns of adult Dutch-French 
simultaneous bilinguals, Dutch monolinguals, and French 
monolinguals. They found that object naming patterns by 
the bilingual speakers converge toward a pattern that is 
different from the naming patterns of monolinguals of each 
language, suggesting that simultaneous bilinguals do not 
behave like monolinguals in lexical categorization and the 
bilingual lexical representations are not simply the sum of 
two separate monolingual representations. 

Ameel, Malt, Storms, and Van Assche (2009) further 
investigated the naming patterns in Ameel et al. (2005) and 
the typicality ratings between language groups. They 
examined �� ���� 	���������"� �������
� 
��������
�� ����
manifested in the centers and/or at the boundaries of lexical 
categories. Ameel et al. (2009) found that the translational 
equivalents have closer category centers in the naming 
patterns of the bilinguals than those of the monolinguals and 
the closeness in bilinguals were contributed by more than 
the boundary exemplars alone. Ameel et al. also found that 
bilinguals needed fewer dimensions to separate categories 
than monolinguals, suggesting that the category structures 
were less complex for bilinguals and that naming were more 
likely to be based on similarity to the prototypes. 

In this study, we build a model based on self-organizing 
maps (SOM; Kohonen, 2001) to study bilingual object 
naming. By building and testing this computational model 
against existing data of Ameel et al. (2005; 2009), this work 
will provide the foundation to investigate underlying 
mechanism and further modeling study to manipulate 
learner characteristics such as age of exposure, frequency of 
input and  proficiency  in  each  language,  as  well  as 
lexical  input  variables  such  as  similarities  between  the 
lexical items.  

Method  
We constructed is a multi-layer SOM network, which 

includes three basic SOMs (i.e., semantic, phonological, or 
orthographic). The three SOMs are connected via 
associative links updated by bi-directional Hebbian 
learning. In addition to the basic SOM architecture, we 
added lateral between languages in the model to simulate 
between-language interactions. The lateral connections are 
implemented with the nodes that are fully connected with 
each other. The connection weights are updated via Hebbian 
learning rule. We used the monolingual naming data from 
Ameel et al. (2005) as the basis of input to the model. We  
trained  the  model  on  representations  of  pictures  of  73 
bottle-like objects that are typically named as bottle, jar, or 
container in American English or else to have one or more 
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salient  properties  in  common  with  objects  called  by  
those names. We call th������� ��������!������� 

In order to identify the role of orthographic information 
and the effects of lateral connections, we constructed two 
comparison models to contrast with the standard model, 
respectively. The comparison models are identical to the 
standard model in every respect, except that in each 
comparison model one component is removed: Comparison 
Model A was constructed without orthographic information 
and Comparison Model B was constructed without lateral 
connections between languages.  

Results 
We found that, similar to Ameel et al. (2005), our 

computational model shows higher correlation between 
	���������"� ���� ��������� ������� ����� 	������� ����
monolingual languages (0.63), indicating that our model 
simulated empirical naming patterns and captured 
	���������"� ����
��� 
�������������� Both comparison Model 
A and B showed significantly worse performance than 
standard Model, suggesting that the both orthography and 
�������� 
����
������ ����� ���������� ��� ���� �����"� object 
naming. Furthermore, the Model B performed worse than 
Model A suggesting that the role of lateral connection is 
more critical than the role of orthography. We also 
replicated that the main findings in Ameel et al. (2009), 
indicating that the translational equivalents have closer 
category centers in the naming patterns of the bilinguals 
than those of the monolinguals and bilinguals have less 
complex category structures than monolinguals. 

We further examined the model to explore what 
properties in the model might have influenced the naming 
patterns. Our model shows that if an object elicited a strong 
level of activation for a word in the target language, the 
output name of the model for bilingual naming will be the 
same as the name for monolingual naming. However, if the 
activation level is weak in the target language and the cross-
activation from the non-target language is strong, the output 
names of the model could be different between bilingual 
naming and monolingual naming. For example, if a bottle-
like object elicited strong activation of the word fles in 
Dutch, both the monolinguals and bilinguals will produce 
fles in Dutch; whereas the activation of fles in Dutch is 
weak and the activation of bus in Dutch outperformed fles, 
due to combination of its original activation from Dutch and 
the strong lateral activation from  French. In this example, 
the monolinguals will produce fles, but the bilinguals will 
produce bus. 

Discussion 
In this study, we successfully built a bilingual lexical 

categorization model based on connectionist SOM 
architecture that has been previously tested in other domains 
of language acquisition and processing. Our model 
simulated bilingual semantic convergence in the naming of 
common household objects as reported in the empirical 
literature (Ameel et al., 2005; 2009).  

Our standard model performed significantly better than 
the two comparison models in which either lateral 
connection or orthography components not included. This is 
particularly important as our model is designed to simulate 
the dynamic interactions between two languages, and the 
orthography and the lateral connections play a critical role 
in bilingual lexical categorization.  Our results demonstrate 
how, for simultaneous bilinguals, the processing of one 
language can be influenced by the other language (i.e., bi-
directional influences between languages). Our simulation 
also showed that the strength of name agreement is an 
important factor to determine lexical naming patterns for 
bilinguals. If the object has high name agreement in one 
language, the influence from other language through lateral 
connection cannot easily change its category and vice versa.  

The viability of our model paves the way to use modeling 
to study a wide range of learner and object name variables 
that may influence behavioral outcomes for simultaneous 
and sequential bilinguals (such as variables discussed 
before, including age of onset, proficiency, and frequency of 
input).  

Conclusion 
This study used a connectionist self-organizing model to 

simulate object naming patterns in bilinguals and to identify 
mechanisms of lexical semantic convergence. We 
successfully replicated the lexical convergence patterns 
reported in empirical data from Ameel et al. (2005), and we 
further investigated the mechanisms and important factors 
that modulate bi��������" naming categorization. We 
demonstrated that the lateral connections play an important 
role in lexical convergence. Finally, we have identified the 
����� �� ����� ���������� ��������� ��� 	���������"� �	��
��
naming. This study provides a first computational model 
that examines the dynamic interaction between two lexicons 
in the process of naming objects using single versus 
multiple languages.   
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Introduction 
Do you recognize the experience of being distracted by your 
own thoughts? Your answer is very likely to be ‘yes’. 
Indeed, a self-report study by Killingsworth and Gilbert 
(2010) has shown that people spent on average half of their 
daily activities on thought processes that distract them from 
their current task. This phenomenon is commonly known as 
mind-wandering and refers to a process of self-generated 
thought, uncoupled from the external (task) environment 
(e.g. Smallwood & Schooler, 2015). Although prominent in 
our lives, cognitive scientists have long ignored it as a 
subject of study. Until recently, mind-wandering was 
viewed as a contamination of data and has only been 
considered as noise in cognitive models (see 
Vandekerckhove & Tuerlinckx, 2007). This negative view, 
however, is not entirely ungrounded. According to 
Smallwood (2015), there are three core challenges that 
complicate investigating mind-wandering. First of all, it is 
difficult to experimentally induce due to its, oftentimes, 
spontaneous occurrence. Moreover, when you do have a 
working manipulation, the occurrence of mind-wandering is 
hard to track as it produces little observable overt behavior.  
Lastly, because it is difficult to measure, self-report is 
oftentimes resorted to as the only ‘valid’ measuring 
technique. However, with mental states such as mind-
wandering, there is always a risk that the introspection 
involved in self-report changes it as well, effectively 
reducing the validity of this introspection measure 
(Schooler, 2002). From these three core challenges, we 
conclude that there is demand for valid experimental 
manipulations to induce mind-wandering, and for objective 
measures to capture it. In this paper, we introduce a novel 
experimental method to track mind-wandering, which can 
help to validate the specific predictions of a PRIMs model 
of this process.  

Related work 
A recent study that tackled the aforementioned issues comes 
from Daamen, van Vugt, and Taatgen (in press). In this 
study, an adapted version of a verbal complex working 
memory (CWM) task was designed to measure and induce 
mind-wandering. Although many variations of CWM tasks 
exist, all share the key characteristic that a to-be-
remembered item (e.g., a letter) is interleaved by a 
processing task (e.g., is ‘BLICK’ a word yes/no) that makes 

it harder to memorize the items. What is interesting about 
this study is that a novel manipulation for mind-wandering 
was introduced: a self-referential processing (SRP) task.  
SRP refers to a process of thinking about the self (Rogers, 
Kuiper, & Kirker, 1999) and was induced by asking the 
participant to judge if a presented trait adjective described 
themselves yes or no. Alongside the SRP condition, a 
control condition was used in which participants had to 
decide whether a presented object word fitted in a shoebox. 
The results of this study showed a decline in performance 
for the SRP condition compared to the shoebox condition, 
possibly reflecting that mind-wandering caused by self-
referential processing interfered with rehearsal of the items. 
This idea was formalized in a cognitive model using the 
primitive elements model of skill (PRIMs; Taatgen, 2013), 
which is a symbolic architecture like ACT-R, but is unique 
in the fact that it supports having multiple competing goals. 
A key characteristic of the proposed model is that during the 
processing phase, there is a chance for trait information to 
remain in working memory where it can initiate 
productions, or recruit operators in PRIMs terms, that 
trigger elaborating thoughts on the traits. These ‘distraction’ 
operators are modeled to compete with task goal operators 
to rehearse the items, hence mind-wandering is caused by 
distraction operators winning the competition. Results 
showed that the model accounted well for the behavioral 
data, suggesting that elaborating thoughts on the traits (i.e., 
mind-wandering) likely interfered with rehearsal and 
therefore resulted in reduced performance. 

The study of Daamen et al. (in press) proposed an 
interesting and novel way to manipulate and measure the 
occurrence of mind-wandering. However, there are still 
some important open issues. First of all, it was only 
measured indirectly, leaving the question whether the 
decline in performance in the SRP condition was really due 
to mind-wandering. Furthermore, although the rehearsal 
interference mechanism of the model explained the 
behavioral results well, there was no empirical data to 
support this mechanism. Therefore, in order for SRP to be 
confirmed as an objective manipulation for mind-
wandering, research is needed to examine if rehearsal 
interference is an occurring mechanism. Moreover, valid 
direct measures of mind-wandering need to be identified to 
follow the occurrence of it across conditions. 

Research aims and approach 
In the present study, we aim to provide more insight in how 
mind-wandering can be measured in an objective way. 
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Specifically, we will attempt to track rehearsal in a CWM 
task similar to the one employed by Daamen et al. (in 
press). We test the model prediction that as participants 
mind-wander, rehearsal will be absent.  

Study approach 
Behavioral To be able to track rehearsal, we will examine 
eye movements in a spatial variant of the CWM task. In this 
task, participants have to memorize the locations of targets 
(an ‘X’) in a 4x4 matrix interleaved with a processing sub-
task. On every trial, a storage target will be presented first 
for 1 second. This allows participants to encode the targets’ 
position and to perform rehearsal. Thereafter, a 4 seconds 
self-paced processing phase will start. Similar to the study 
of Daamen et al. (in press), this phase will include a SRP 
and shoebox condition, with the main difference being that 
the processing words will be presented on the same matrix 
as the targets. The locations of the words will be random 
and change every second from position to ensure 
interference with rehearsal during the processing task itself 
(thereby restricting it to the 2-s blank periods immediately 
after the processing phase, which is the rehearsal period 
according to our model).  

The storage phase, processing phase, and blank will be 
repeated a number of times equal to the span (three and four 
in this experiment). Thereafter the trial ends with a prompt 
to recall the storage target locations in the order of 
presentation.  

Thought probes This study will also use thought probes, 
which are self-report questions aimed at assessing current 
thought content at various moments in the task. The thought 
probes will be presented at equally but randomly distributed 
moments throughout the experiment (48 in total, 9 every 
block). Although we mentioned that self-report has issues 
regarding validity, we have chosen to include them 
alongside eye movement and pupil size, to have a second 
measure of mind-wandering as control (see section Eye 
Tracking below). Combining both self-report and 
physiological measures will allow us to give an account on 
mind-wandering without being tied to one measuring 
technique.  

In this study, we will use an adapted version of the probe 
question used by Unsworth and Robison (2016). The 
question is, ‘What were you thinking about before you were 
prompted to answer?’, with the following response options: 
(1) I tried to remember the location of the X’s’; (2) I was 
still thinking about the words from the decision task; (3) I 
was evaluating aspects of the task (e.g. my performance, 
how long it takes, difficulty task), (4) I was distracted by my 
environment (sound/ temperature etc.) or by my physical 
state (hungry/thirsty); (5) I was daydreaming/ I thought 
about task-unrelated things, (6) I wasn’t paying attention, 
but I didn’t think about anything specifically. Response 
options 2 to 6 will be counted as attentional lapses, with 
options 2 and 5 as indicators of mind-wandering.  

Eye Tracking The main advantage of using a spatial 
version of the CWM task is that rehearsal is shown in overt 

behavior. Memory researchers have found that rehearsal of 
spatial locations is accompanied with eye movements to 
these locations (see e.g. Logie, 1995), and that the eye 
movements can be measured with an eye tracker (Tremblay, 
Saint-Aubin, & Jalbert, 2006). In this study, eye movements 
in accordance with the location of previous target locations 
would be indicative of an active effort to rehearse the target 
locations from memory. On the other hand, random or 
absent eye movements would imply that rehearsal is not 
performed, but that other, possibly goal-irrelevant, 
processes interfere with rehearsal. Mind-wandering can also 
be inferred from patterns in the pupil dilation (PD), which is 
claimed to reflect changes in the attentional state through an 
indirect link with the norepinephrine system of the locus 
coeruleus (LC-NE; see e.g, Aston-Jones & Cohen, 2005). 
Research from e.g. Unsworth and Robison (2016) has 
indicated that off-task thinking is correlated with low pre-
stimulus baseline PD, reflecting a state of relative low 
arousal and alertness. Moreover, evoked increase in PD due 
to stimulus processing was found to be lower, further 
supporting this claim. In this study, we therefore expect that 
the baseline PD during blanks will be lower on SRP trials 
and that evoked PD will also be lower during storage. Novel 
in this study will be that such patterns in PD will be used to 
predict if participants reported either being on-task (option 1 
on thought probe) or off-task (options 2-6).  

Conclusion 
We have previously shown that a SRP manipulation can 
impair performance on a CWM task. We have modeled this 
effect as arising from mind-wandering instigated by the SRP 
words, which prevents rehearsal. Here we presented a 
method to test this model by tracking participants’ eye 
movements and pupil size during a spatial analogue of 
Daamen’s CWM task. When successful, this allows us to 
track mind-wandering by following the eyes. 
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Abstract

Cognitive models are usually evaluated based on their fit to
empirical data. Artificial intelligence (AI) systems on the other
hand are mainly evaluated based on their performance. Within
the field of artificial general intelligence (AGI) research, a new
type of performance measure for AGI systems has recently
been proposed that tries to cover both humans and artificial
systems: Anytime Intelligence Tests (AIT; Hernández-Orallo
& Dowe, 2010). This paper explores the viability of the AIT
formalism for the evaluation of cognitive models based on data
from the ICCM 2009 “Dynamic Stocks and Flows” modeling
challenge.
Keywords: Anytime Intelligence Test; Model Evaluation; De-
cision Making; Stock-Flow Problems;

Introduction
Cognitive modeling as a field, although being rooted in AI,
has diverged from AI research in recent years because both
fields pursue different goals. While modelers try to under-
stand human behavior by creating systems that act as human-
like as possible, AI researchers strive for systems that act as
perfect as possible, or in Legg and Hutter (2007)’s words:
universal intelligence. At the same time, parts of the cog-
nitive modeling community are suggesting to direct the field
towards more generic models of human behavior (”cognitive
supermodels”; Salvucci, 2010) as opposed to task-specific
models. Such supermodels did not come into existence yet,
but given the methodological advances in the AI field, it may
be worthwhile to think about how the abilities (i.e., intelli-
gence) of generic cognitive models should be evaluated. A
promising approach to this question are anytime intelligence

tests (AIT; Hernández-Orallo & Dowe, 2010).

Anytime Intelligence Tests
These intelligence tests are crossing the boundaries between
the modeling and the AI field because they are targeting both
biological and artificial systems. Based on the work of Legg
and Hutter (2007), they intend to measure intelligence of an
agent (i.e., ‘model’ in the terms of the ‘other’ field) as the ac-
cumulated amount of reward1

r it receives through interaction
with a set of (deterministic) environments of varying (compu-
tational) complexity. The validity of this accumulated reward
is achieved through several means: a) The reward is bound
to the range [-1;1]; b) All environments must be balanced,
i.e., a random agent will on average receive a reward of zero;

1Note: In reinforcement learning, reward functions are a cru-
cial part of the learning agents themselves (Singh, Lewis, & Barto,
2009). In the context of this paper, rewards come from an external
‘critic’ and were not available to the agents (i.e., human participants
and cognitive models) during exploration and learning.

and c) The aggregated reward is scaled by the computational
complexity of the transition function of the environment. An
example of such an intelligence test that was applied to both
humans and AI agents can be found in Insa-Cabrera, Dowe,
España-Cubillo, Hernández-Lloreda, and Hernández-Orallo
(2011).

Besides the construction of new environments that follow
the AIT formalism, one can try to analyze published data and
models from the literature. This way, potential insights from
the AIT procedure can be compared to fit-based evaluations
that have been performed before. It is often possible to trans-
form existing tasks into AIT environments by constructing
new reward functions for the tasks.

Dynamic Stock and Flow Task
A promising candidate for such a reward reconstruction is the
Dynamic Stock and Flow task (DSF; Dutt & Gonzalez, 2007)
that has been used for the modeling challenge of the same
name (Lebiere, Gonzalez, & Warwick, 2009). The task for
this challenge was to maintain the level (i.e., stock) in a wa-
ter tank at a given target value in the presence of dynamically
changing water in- or outflow from an external source. There
were four training conditions with monotonously changing
inflow (Lin-, Lin+, NonL-, NonL+) and five transfer condi-
tions. Two of these featured linearly increasing inflow (like
Lin+), but the agents’ actions were delayed by one (Del2) or
two (Del3) additional time steps. The remaining conditions
featured two (Seq2, Seq2Nos) or four (Seq4) time steps long
repeating sequences of inflow; in case of Seq2Nos the pat-
tern was masked by additional noise. The evaluation of the
models in the competition was based on the goodness-of-fit
to human data in all nine conditions. The crucial variable for
this fit was the time-dependent water level.

Besides convenience (i.e., availability of data and models),
the DSF task is especially suited as an AIT because it is deter-
ministic and open-ended (in contrast to, e.g., robotic soccer),
and the computational complexity of the environment should
be both easily scalable and easily quantifiable. Whether and
how this task can be transformed to an AIT will now be re-
viewed regarding possible reward functions for the task. The
question of the complexity of the different task conditions
will be discussed in a later contribution.

Possible Reward Functions

In the following, r

t

denotes the reward for time step t, amount

t

denotes the water level for t, env

t

the external inflow for t, and
goal denotes the target water level.
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Scaled Absolute Difference. For every time step, the ab-
solute difference to the target water level is multiplied with
some constant c and mapped to the range from -1 to 1.

r

t

= max(�1,1� c|amount

t

�goal|)

This is the most straightforward solution with the highest
face-validity. The agent’s proximity to the target level is
represented very well. On the other hand, c is arbitrary.
Most problematic is that the function is not balanced. Be-
cause all task conditions feature external water inflow, ran-
dom agents would receive an accumulated reward close to
the lower boundary of -1.

Relative Progress. A balanced environment could be cre-
ated by concentrating on the relative progress to the target
level. The most simple option is a binary decision whether
the water level has improved.

r

t

=

(
1 if |amount

t

�goal|⇥ |amount

t�1 �goal|
�1 otherwise

This solution has the downside of the current water level be-
ing underrepresented. Getting from anywhere to the exact
target level would be as good as getting an arbitrarily small
amount closer to it. At the same time, environments with ex-
ternal in- or outflow would still not result in random agents
receiving a reward of zero.

Relative Progress with Weighting. This can be solved us-
ing the following rationale: A perfect agent would always
bring the water level to the goal amount in the next step.
If this maps to a reward of 1 and no action maps to 0, then
the agent should be awarded a reward that is proportional to
the stock change made by the agent compared to the two ex-
tremes. The result is clipped at -1 in order to stick to the
properties of AIT.

r

t

= max(�1,
|amount

t

�goal|
|amount

t�1 + env

t

�goal| )

Boxplots of the human data collected for the DSF chal-
lenge recoded using the proposed reward functions together
with the results achieved by a random agent ( f low⇤N(0,5)),
a null agent ( f low = 0), and an ACT-R model2 (Halbrügge,
2010) are given in Figure 1. Of the three proposed reward
functions, ‘weighted relative progress’ provides the best fit to
the AIT requirement of balanced rewards.

Discussion and Conclusions
The accumulated reward for the human sample provides inter-
esting evidence about the different difficulty of the nine task
conditions. While the four monotonous conditions on the left

2The source code of the cognitive model is available for down-
load at http://dx.doi.org/10.14279/depositonce-5163
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Figure 1: Average reward in the DSF task after recoding using
the three proposed reward functions. Boxplots: Human Data.
Squares: Null Agent (no action). Crosses: Random Agent.
Triangles: ACT-R model (Halbrügge, 2010).

(Lin- to NonL+) are all comparatively easy, the delay condi-
tions are very hard. In the Del3 condition, the median of the
human sample is close to random performance. The difficulty
of the sequence conditions lies between the monotonous and
the delay conditions.

The performance of both humans and the model will be
compared to the computational complexity of the respective
environments. Then, the models that had entered the com-
petition can be evaluated with respect to their intelligence as
opposed to their fit to the human data.3 Such an evaluation
should consider the computational complexity of the mod-
els as well (Halbrügge, 2007). Complexity metrics based on
the source code could be accompanied by Model Flexibility
Analysis (Veksler, Myers, & Gluck, 2015), which tries to es-
timate the range of possible model behavior through simula-
tion (see also Gluck, Stanley, Moore, Reitter, & Halbrügge,
2010). Together with the AIT formalism, this could lead to a
new evaluation criterion that would be complementary to fit
measures like R2 and RMSE and could also provide a step to-
wards reuniting the fields of cognitive modeling and artificial
(general) intelligence.

3Especially the delay conditions often lead to oscillating stock
levels, which renders averaging across participants questionable.
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Emergency Operation Centres (EOCs) are responsible for 
planning and responding to large scale disasters, such as 
Katrina, Fukushima, or any large earthquake. An EOC is a 
central command for coordinating the different field assets 
(e.g., fire, police, ambulance, social services). It is usually 
composed of several individuals (EOC managers), each of 
whom has a designated set of tasks, such as communication, 
logistical support, mapping events, writing reports, as well 
as a manager who is in charge of coordinating everything. 
EOC mangers normally do not directly control field assets; 
instead the managers pass on information and make 
strategic recommendations. 

EOC organization and training is based on guidelines 
issued by government bodies, such as FEMA in the US. 
However, EOC performance is very difficult to study 
because massive disasters are infrequent and there is very 
little data available afterwards. Also, it is highly problematic 
and expensive to realistically simulate disasters in the lab. 
Cognitive modelling provides a pragmatic avenue for 
addressing this issue in lieu of directly studying EOC 
managers under realistic conditions. 

However, all cognitive modelling is not the same and 
different cognitive modelling frameworks are likely to 
generate different types of recommendations. Because of 
this it is important to consider the range of cognitive 
modelling frameworks at the outset of a project, to avoid 
using a single framework that might generate poor or 
dangerous recommendations. Different cognitive modelling 
frameworks can be treated as different ontological and/or 
epistemological systems (i.e., what is the  nature  of  the 
object of study and how best  to understand  the  object of 
study, respectively). By conceptually analyzing how each 
framework applies to the project a better sense of the project 
as a whole can be developed and cognitive modelling can be 
deployed more effectively.  

In this short paper we have applied this methodology to 
understanding how to tackle the problem of fatigue in 
EOCs. One of the main principles of EOC management is to 
protect the first responders (e.g., firemen, police, 
ambulance). So, if a building has collapsed and is unstable, 
first responders should not be sent in if there is a chance of 
further collapse, even if this means that those needing 
immediate help will die. The reasoning behind this is that if 
the first responders die then there will be no one to help the 
others. This reasoning can be extended to fatigue and stress 
within the EOC. That is, although they are not in physical 

danger, EOC managers are in danger of mental fatigue, 
which could lead to serious mistakes or misjudgments.  

General Guidlines 
One solution that has been proposed is to use models of 
fatigue to generate generalized guidelines for breaks and 
then enforce the breaks. This would involve having a mental 
health professional, or someone trained to monitor for 
fatigue on the team, and giving them the authority to enforce 
breaks.  

Cost/Benefit 
Using enforced breaks could reduce fatigue but, even if we 
assume mental health professionals can effectively discern 
fatigue and that the other EOC workers will obey them, 
there is still an issue. The model  should be framed in terms 
of a cost benefit analysis, where the benefit is avoiding 
errors caused by cognitive fatigue and the cost is the 
information lost when a manager is replaced with another 
manager. That is, loss of information can also result in 
serious errors. 

Human Factors/HCI 
A major component of EOC management is logging the 
ongoing flow of information. In theory this should mitigate 
the problem of information loss when an EOC manager 
needs to rest. Information logging is an area where Human 
Factors studies and Human Computer Interaction 
evaluations can be used to develop more efficient systems 
for logging information. This would both improve 
information transfer and reduce fatigue due to poorly 
designed systems. 

However, focusing on individual systems instead of 
looking at the whole picture can lead to premature 
optimization (Knuth, 1974). That is, improving the 
efficiency of the parts may only produce small, insignificant 
improvements overall, and it could even make the whole 
system worse (Gray et al, 1993). In the case of the EOC, 
although logging information is an important part of EOC 
management, the purpose of the EOC is to integrate 
information and maintain a functional awareness of the 
overall situation. This is not something that cannot be 
logged in the same way as specific events. Therefore, 
improving the efficiency of logging specific events needs to 
be done within the context of maintaining a common ground 
(Klein et al, 2004) situational awareness. 
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Unit Tasks 
Cognitive modelling methodology often proceeds by first 
identifying the unit task structure and then modelling the 
individual unit tasks. Unit tasks are theorized to divide up a 
task into parts, such that the cognitive system is not 
overloaded and down time is avoided (Card et al, 1983). 
Specifically, unit tasks are designed so that all of the 
information needed can be processed by the cognitive 
system in real time (avoid overload), and so that unit tasks 
do not get hung up waiting for something to happen when 
the agent could be getting something else done (avoid 
downtime). More recently, it has been proposed that unit 
tasks are also designed to avoid interruptions. That is, a unit 
task will be of a size such that it is likely that it will be 
finished without interruption (West & Nagy, 2007). 

If we take the unit task concept seriously, it provides an 
important insight. Specifically, if EOC managers consider 
resting as downtime, and not an integrated part of the 
management task, then they will tend to have unit task 
structures that avoid it. This makes sense as many EOC 
managers are drawn from police, fire, or ambulance services 
where it is unusual to have emergencies that last more than a 
few hours, so they can normally rest after completing their 
tasks. Under these conditions, treating rest as downtime and 
minimizing it makes sense. These professionals are often 
chosen as EOC managers because EOCs need people who 
are fast and efficient when required. So anything that 
interferes with that could be problematic. Importantly, this 
may include enforced breaks and unfamiliar logging 
methods.  

Macro Cognition 
Macro cognition can involve a number of different methods 
and theoretical approaches, however, we will focus on the 
SGOMS modelling framework, as it seems particularly 
useful for understanding EOC management. A planning unit 
is an SGOMS structure that serves a similar purpose as the 
unit task. Whereas, unit tasks are a control structure (Card et 
al, 1983) for protecting the integrity and efficiency of the 
micro cognitive architecture (e.g., memory, attention, motor 
actions, perception, etc.) planning units are a control 
structure (West & MacDougal, 2015) for protecting the 
integrity and efficiency of the macro cognitive architecture 
(e.g., planning, cooperation, interruptions, reacting to 
unexpected events, etc.). Planning units can be thought of as 
a way of managing unit tasks in that the appropriate unit 
tasks need to be completed to complete a planning unit. In 
this sense, planning units control the flow of unit tasks. 
However, unlike unit tasks, planning units are designed to 
be interrupted and restarted. Importantly, planning unit 
choice is based on context and situation awareness. 

From this perspective, the problem is that EOC managers 
do not have a rest-break planning unit. As noted above, 
there is no reason why they would since extended rest-
breaks are not part of the normal routine in police, fire, or 
ambulance services. Resting should be a specific planning 
unit, just as logging information would be a specific 
planning unit. A model of how best to do this could be used 
as the basis for designing a training program. A resting 

planning unit would be triggered by downtime and would 
contain relevant unit tasks such as: locate a place to rest, 
inform colleagues about rest, arrange for someone to cover 
your post, arrange for when your rest should end, and pass 
on any important information. 

Conclusions 
We have analyzed the problem of fatigue in EOC workers 
using various different modelling frameworks as ontological 
and epistemological tools. Each solution seems reasonable 
when viewed in isolation but, in fact, they may produce 
solutions that are problematic. Using a model to say when a 
rest break should be enforced is a responsible and principled 
way to implement this policy, but this policy could lead to 
serious problems if information transfer is ignored. Using 
Human Factors and HCI to improve information logging 
could ameliorate this, but these solutions need to be 
evaluated in the broader context of maintaining a common 
ground situational awareness. Applying the unit task 
concept shows why EOC operators avoid downtime but also 
demonstrates that this is a necessary consequence of having 
fast, efficient responses. One consequence of this is that care 
needs to be taken that an isolated solution or improvement 
doesn't lead to a less efficient overall system (e.g., as in 
Gray et al, 1993). Finally, the planning unit concept 
suggests that the focus should be first on training rather than 
enforcement or systems efficiency. 

The more general point we are making is that applied 
cognitive modelling should involve an initial assessment of 
the whole task to get a broad understanding of how 
modelling can be best applied. As we have shown, this can 
be done by applying concepts drawn from the field of 
cognitive modelling itself. 
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Introduction 
Cognitive modeling goals include understanding and 
predicting human behavior. In fact, the main objective of 
cognitive science is understanding the nature of the human 
mind to develop a model that predicts and explains human 
behavior.  Cognitive architectures are infrastructures for 
cognitive science theory and provide computational 
frameworks to execute theories. 

ACT-R is an architecture of cognition (Anderson, 2007): 
a platform that is used to implement cognitive  models. 
ACT-R communicates with the outside world by using 
modules such as visual perception and motor control. In this 
paper, we propose a model that will provide an environment 
for ACT-R to interact with the world. For this purpose, we 
use EMACS as an interactive text editor that includes 
extensions to read email, browse the web, and work with 
spreadsheets (Ritter & Wood, 2005). Both ACT-R and 
Emacs are written in Lisp. It allows us to extend them and 
design a bridge between them. This bridge will enable ACT-
R to communicate with an interactive environment. Further 
steps within this work involve expanding the model to be 
more human-like. 

The two main needs for a cognitive model to interact with 
a task environment are 1) the ability to pass commands, and 
2) the ability to access the information on the screen. There 
are two main approaches for interaction. The first approach 
to meeting these needs is to use a graphic language library 
such as MCL, Tcl/Tk, Java, or SL-GMS to define objects 
and pass them from an interface to simulated hands and eyes 
(Ritter, Baxter, Jones, & Young, 2000) such as ACT-R/PM 
(Byrne & Anderson, 1998). The second approach is using 
the ���

��������� and transforming the image into objects 
and symbols that a cognitive model can manipulate. For 
example, SegMan (St. Amant, Riedel, Ritter, & Reifers, 
2005) provides domains in which SegMan applies to 
support cognitive model-based interaction and evaluation. 
However, SegMan is not yet user-friendly and easy to 
extend. It still does not recognize everything on the display.  

In addition, there are several other approaches for 
providing models access to tasks, such as simulating the 
task in ��
���	
��� heads, being passed a list of inputs from 
a program that reads from a file of input sets, and 
instrumenting a particular task interface.  

In this report, we extend a previous attempt to provide 
ACT-R access to the world (Kim, Ritter, & Koubek, 2006) 
by enabling ACT-R to interact with the Emacs text editor. In 
this work, ACT-R can communicate with a task 
environment by instrumenting a graphical library, in this 
case the Emacs text editor.   

The ESegman Approach 
ACT-R has been introduced by Anderson (1993) for 
implementing cognitive models. In fact, it is an architecture 
of cognition that makes precise predictions about behaviors. 
Any ACT-R cognitive model has a loop with three 
components: the task environment, the model, and the 
results (see Figure 1).  The cognitive model receives its 
perspective as input from the visual (and auditory) module 
and outputs actions through the motor module. The 
cognitive architecture within this process understands the 
external world this way.  
 

 
Figure 1: Cognitive model structure. 

 
Figure 2 shows that the first step in the modeling process 

could be collecting data from the real world (although some 
would argue for and start at block 3). This process can be 
performed using the Dismal spreadsheet task. Humans have 
directly performed the Dismal spreadsheet tasks (Kim & 
Ritter, 2015), and their performance is recorded using the 
Recording User Input (RUI) software (Kukreja, Stevenson, 
& Ritter, 2006; Morgan, Cheng, Pike, & Ritter, 2013).  

In particular, for our connection between the architecture 
and the world, we will use Emacs functions to take the user 
commands from the main process (ACT-R will be a sub-
process of the Emacs process) and insert them into the target 
buffer. Therefore, the model will be aware of the user 
commands and can execute them. Whether it is a keystroke 
command or a mouse action, the model will be capable of 
using the Emacs Lisp language to execute them. After 
collecting the commands from ACT-R and receiving 
�
��
����������������	����
���
�
�
���
������

	����-R  
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Figure 2: Model process. 

with the information about the world by inserting target 
buffer contexts into its visual module. This implements 
parts of block 3 in Figure 2 and the connection in Figure 1.  

We will also be able to use an existing ACT-R model to 
interact with Emacs.  Paik et al. (2015) created this set of 
ACT-R models to perform the Dismal spreadsheet task.  
These models generate the actions to perform the task, but 
the actions are not implemented in the world�they are 
simply generated.  Enacting them in the world (Emacs in 
this case) would help test the timing, and with the actions 
passed in the world, one could turn on errors in the 
perceptual-motor component in ACT-R and start to explore 
how errors are generated, noticed, and recovered from.  

The main challenge will be the communication step. In 
particular, ACT-R can load data into Lisp. For sending and 
receiving data it needs to communicate through the main 
Lisp application process with Emacs. 

In our approach, we are going to load ACT-R within a 
buffer managed by SLIME, which is an Emacs mode for 
Common Lisp development. Our objectives will be 
connecting the ACT-R process with the Emacs that is 
already managing ACT-R. One of the potentials of Emacs 
would be allowing an ACT-R model to edit files in the 
Emacs environment that it is running in.  

Another method would be sending a request to an already 
running Emacs that is waiting for a socket request (using the 
Swank library), and setting its output as one of the 
parameters of make-network-process function for opening a 
client TCP/IP connection. 

From a security perspective, we should consider a Swank 
address that is not wide open to the world because it can 
make the computer vulnerable to intrusion attacks. 
However, in our connection scenario, we will not access 
Swank from another computer. Therefore, establishing a 
secure channel to the Swank server will not be necessary. 

Conclusion and Further Research 
Cognitive models have struggled connecting to the world.  
This approach of connecting through and with Emacs will 
provide another opportunity for providing models access to 
more interesting tasks.   
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Abstract 

Cognitive modelers have long used verbal protocol analysis 
to gather data to test their models.  Recently developed tools 
offer support for automatic transcription of audio.  In this 
short paper, we compare the time it takes to transcribe a video 
done (a) exclusively with Google’s subtitle tool, (b) corrected 
from Google’s subtitle tool, and (c) done completely by hand.  
We found that using the subtitle tool alone can yield too high 
an error rate, correcting Google subtitles took about 2.5x the 
video length, and transcribing completely by hand took 
approximately 11x the video length. We can thus recommend 
using Google subtitles as a starting point for verbal 
transcription as it offers a useful speed up in transcription. In 
addition, we can recommend when and how to use Google 
subtitles, and the use of headphones and automatic spelling 
correction in text editors.   

Keywords: Transcription, Google closed captioning, 
YouTube, Verbal protocol analysis 

Introduction 
Cognitive modelers have long used verbal protocols 
(Larkin, McDermott, Simon, & Simon, 1980; Newell & 
Simon, 1972). The transcription of these protocols can be 
problematic, often taking 10x longer to transcribe than 
record (Ericsson & Simon, 1993; Ritter & Larkin, 1994).  
Thus, there is interest in automatic protocol transcription 
systems.  

In this paper we examine a new tool to perform automatic 
verbal protocol transcription: YouTube’s automated closed 
captioning service.  We start to explore how to use the 
service more efficiently by examining how long it takes to 
transcribe an example video and note some lessons about 
how to assist transcription.   

Method 
In this pilot study, we took an example 47-minute video and 
used three approaches to transcribe its content: we copied 
the transcript created by YouTube’s closed captioning (CC) 
service directly from YouTube; we copied YouTube’s 
transcript and had a human coder manually correct it while 
listening to the video; and we manually transcribed a portion 
of the video from scratch. The human coder stopped out of 
frustration after approximately three hours of manual 
transcription, having successfully transcribed only 15 
minutes of content, so we use that amount in our analyses.   

Apparatus and Material 
We used Google’s CC service on YouTube to transcribe a 
video of a seminar presentation 
(https://www.youtube.com/watch?v=RcZU-fb0Q10), 
chosen somewhat arbitrarily as an example of naturalistic, 
public speech rather than a strictly concurrent verbal task 
protocol.  

The coders each accessed the video on a PC and Mac 
laptop. They used either a Google Chrome (Mac) or Mozilla 
Firefox (PC) browser to view the video, and Microsoft 
Word (PC) or TextEdit (Mac) to hold and edit the 
transcripts.   

Participants/Coders 
The two coders were undergraduates in the College of IST 
at Penn State, whose first language is English.  They have 
taken multiple courses in HCI and worked as research 
assistants for at least six months.   

Design and Procedure 
Both coders were each given the link and asked to transcribe 
the audio.  Coder 1 (PC, arbitrarily chosen) worked first 
with the YouTube CC-generated transcription and edited the 
transcription as they watched the video. Coder 2 (Mac, 
arbitrarily chosen), transcribed by hand.   

During the transcription process, the coders each used two 
windows—a browser and a text editor—on their own 
laptops. Headphones were also used, and both transcriptions 
were done in quiet spaces.  

Results and Discussions 
Table 1 shows an example of the automatic transcription for 
both speakers involved in the example video.  
 

Table 1. Example of the unedited automatic transcription.  

Example of unedited transcription from Speaker 1 
0:03 ok once we get started my neighbors call for a research 

professor I have been 
0:16 here for various events if you are out for those of you that 

don't have a lot 
Example of unedited transcription from Speaker 2 

3:17 this point it becomes how could I ever that confused but I was 
very green at 

3:20 that point and so I'm just gonna talk a little bit about who's 
who in the zoo is 
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Table 2 presents the time to transcribe the video, 
including that the transcription time using the YouTube CC 
editing is nearly instantaneous and would be constant across 
length.   

The time to correct the video’s transcript takes about 4x 
the video’s length.  The time to manually transcribe, 
however, is about 11.4x the video’s length, which is 
consistent with previous estimates.  
 
Table 2. Time to transcribe the first 15 min. of the sample 
video.  

Transcription 
Method 

Time 
(min.) 

Ratio to 
video 
length 

Ratio to 
Manual 

YouTube CC   
   Transcript 

  2* 0.14 0.01 

YouTube CC  
   Edited  
   Transcript 

67 4.4 0.39 

Manual  
   Transcription 

   171** 11.4  1.0 

* Does not include time to upload the video (32 min.) on ~6 
Mbps link. Time to provide an automatic transcription is 
variable and may take several hours or a day. 
** Only the first 15 min. were transcribed.  
 

The YouTube CC transcript does not include the time 
needed to correct most grammatical errors (as YouTube’s 
closed captions lack punctuation). 

We also noticed that audio quality impacted error rates in 
the generated transcription.  Fixing the generated transcript 
of the video’s first speaker (0:00-2:13) took 27 min.  The 
correction rate of 12.2 min./1 min. of audio is roughly on 
par with previous rates. This audio portion was less 
structured, consisted of more informal dialogue, and was 
articulated less clearly because the podium microphone was 
farther from the speaker. 

Fixing the generated transcript of the second speaker 
(2:14-15:03) took only 46 min., or 3.6 min./min.  This 
speaker wore a clip microphone, with clearer audio. Addi-
tionally, his speech was more practiced and steadily paced, 
which contributed to more correct grammar in the generated 
transcription. 

Discussion and Conclusions 
Based on this process, we can make several suggestions for 
how to do further verbal protocol transcriptions.  (a) It can 
be useful to run a block of audio through YouTube’s closed 
captioning tool to generate an automatic transcript. This 
may be possible using YouTube’s private settings or using 
publicly available video. Editing the automatic transcript 
appears to save a lot of time if the audio is as clear as in our 
single example.   

(b) We recommend using headphones to provide better 
quality sound. Headphones allow transcribers to better 
understand the speaker in the video.   

(c) YouTube’s video settings allow the user to adjust the 
speed of the video. By adjusting the speed manually, the 
audio can be slowed down to better recognize the words 
being spoken.  

(d) Modern text editors can assist transcription efforts 
because they can autocorrect many typos. Coder 2 found 
that TextEdit was superior to Word and that the tradeoff 
between corrections vs. over-corrections (or lack of 
corrections) was worthwhile.  

There may be a few limitations to this approach.  Auto-
correction in text editors could be a drawback in some cases 
if non-standard speech is being analyzed. Also, the video we 
analyzed might not be representative of verbal protocols.  
Future work should test more naturalistic verbal protocol 
material.  

In addition, we can note a second, even more automatic 
method for obtaining a transcript from videos on YouTube. 
This method uses a Python-based command-line utility, 
youtube-dl, which works on Unix and Windows systems as 
long as a Python interpreter is present. The utility when 
passed the argument "--write-auto-sub" will download the 
video file in .mkv format and the automated captions in vtt-
format.  The .vtt file provides resolution to millisecond 
precision about when YouTube should highlight each word. 

While the first method provided less timestamp informa-
tion, it sufficed for our purposes.  The .vtt file would have 
needed parsed to extract the transcript and discard all text 
coloring metadata, a task for which no such tool publicly 
exists at this time. 

It appears now possible to automatically transcribe verbal 
protocols, at least approximately, using YouTube’s closed 
captioning with a few errors, or with about a 4x cost to 
correct errors.  The ability to use verbal protocols seems to 
have become easier, particularly where the audio is clear.   
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Abstract
There is an urgent need to represent and reason about human
behavior to enable a large number of emerging applications.
Our interest is to understand how to encourage behaviors that
result in promoting wellness management for individuals. In
this short paper, we present a bond graph model for mod-
eling human behavior. We demonstrate that these versatile
models are useful to represent energy transfer across multiple
domains. The approach offers us a systematic method to an-
alyze the models and derive dynamic equations to represent
the behaviors.

Keywords: Bond Graph, Human Behavior.

Introduction
Exploring human behavior is a critical problem in several do-
mains. Several theories have been developed by psycholo-
gists and social scientists over the last few decades to ex-
plain human behavior at the scale of a population. No-
table among these theories are The Theory of Planned Be-
havior (Ajzen, 1991), Social Cognitive Theory (Bandura,
1986), Self-Determination Theory (Ryan & Deci, 2000) and
the Transtheoretical Model for Stages of Change (Prochaska,
2008). There are several other theories that are specialized to
different domains such as the Health Behavior Model (Cohen,
Scribner, & Farley, 2000). While such models can explain ag-
gregate behaviors at the scale of a population, these models
are not actionable at the level of individuals.

Another efforts have resulted in fluid analogy models for
human behavior that aim to operationalize the above theories
in a control systems framework (Navarro-Barrientos, Rivera,
& Collins, 2010; C. A. Martin et al., 2014; C. Martin, Desh-
pande, Hekler, & Rivera, 2015; Navarro-Barrientos, Rivera,
& Collins, 2011; Dong et al., 2012). These models provide
an intuitive and easy approach to separate the state variables
and system parameters that drive the models. Such models
have been effectively used in socially relevant programs for
smoking cessation and health management (Lai, Cahill, Qin,
& Tang, 2010). Despite their simplicity and effectiveness,
there can be ambiguities in these models that limit their full
exploitation in automated tools. For this reason, we are ex-
amining the utility of domain independent models that can be
used to represent and reason about human behaviors.

Bond Graphs
Bond graphs were introduced in (Paynter, 1961) as a do-
main independent graphical representation to reason about

systems involving mechanical, chemical and electrical com-
ponents in a unified framework. In this approach, a system
is viewed as comprising several components; each compo-
nent has ports through which energy can be exchanged with
other components. Every component is identified as being
one that generates energy in the system or one that consumes
energy. Components are connected through bonds between
corresponding ports. Every bond has a half arrow that denotes
which element in the bidirectional relationship generates en-
ergy and which element consumes energy. Energy transfer
between components is viewed as a bidirectional exchange of
effort and flow (Gawthrop, 1991; Broenink, 1999; Breedveld,
2008).

Client-Therapist Interaction Model
We view human behavior as one that involves complex en-
ergy transfers across multiple domains. In the context of
our ongoing investigation into modeling human behavior for
wellness management (Chippa, Whalen, Douglas, & Sastry,
2014; Mahamadi & Sastry, 2016b, 2016a), our interest is to
develop actionable models for human behavior that can guide
the decision-support. In this section, we present a model for
the interaction between a Client and a Therapist that is in-
spired by the work in (Liebovitch, Peluso, Norman, Su, &
J.M., 2011).

Figure 1 illustrates a fluid analogy model that represents
the interaction between a client and a therapist. In this
model, there are two tanks — one representing the client
(right) and the other representing the therapist (left). Follow-
ing (Liebovitch et al., 2011), the level of fluid in each of the
tanks represent the valence, or affect, of the client (I2 ) and the
therapist (I1 ), respectively. The valence of the therapist is a
function of his or her training and is represented by the valve
N1. We assume that a better trained therapist, i.e., more flow
in N1, would have higher valence. The valence of the client
is affected by the environmental conditions as represented by
N2. Through the interaction, the valence of the client and the
therapist is changed because of the flows through the valves
that are labeled Therapy (R1) and Feedback (R2).

We follow the procedure in our earlier work (Mahamadi
& Sastry, 2016b) to construct the bond graph model, that is
shown in Figure 2.

We derive the dynamic equations of the system :

d
dt
(I1) = N1 ⇥S1 �R1 ⇥ I1 +R2 ⇥ I2, (1)
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Figure 1: Fluid Analogy Model for the interaction between a
Therapist and a Client.

Figure 2: Bond Graph representation for the Therapist-Client
model

and
d
dt
(I2) = N2 ⇥S2 �R2 ⇥ I2 +R1 ⇥ I1. (2)

Maintaining Client Valence
The model in this paper is developed form the model in our
previous work (Mahamadi & Sastry, 2016a) by adding a feed-
back from the client to the therapist. Now to maintain the
Client valence, a well trained therapist should be able to con-
trol the flow of therapy to the client and the flow of feedback
from the client. To model this interaction, we designed a con-
troller to regulate the valves R1 and R2.

There are many options of controllers to be chosen for this
control problem. However, we chose the proportional con-
troller for the simplicity and the advantage of faster tuning.

After integrating the controller to the system, the transfer
function of the system is demonstrated in Equation 3.

H(s) =

2

4
20.02s

25s2+10s+20
0.1s+20.02

25s2+10s+20

3

5 (3)

In order to test the design of the client valence regulator
described above, we chose reasonable values for the training
and the environment variables, then the response of the sys-
tem to a unit set point is depicted in Figure 3.

We can conclude form Figure 3 a well trained therapist, has
the ability to regulate the valence of the client by manipulat-
ing the rates of both the therapy and the feedback.

Examining the Client-Therapist Relationship
The model shown in Equation 1 and Equation 2 was also used
to analyze the stability of the system. For example, we iden-
tified the critical points and plotted the system trajectories

Figure 3: The step response of the client valence under the
proportional controller

starting from different initial conditions, i.e., different initial
states of both the client and the therapist. For example, if the
therapist has initially positive valence, how is that going to
affect the initially negative, neutral or positive client. Using
the parameters from (Liebovitch et al., 2011) we obtained the
phase portraits shown in Figure 4.

Figure 4: The phase portraits for the psychotherapy relation

Notice from Figure 4 that there are two critical points
— the first is the stable point, Attractor, which is the point
reached as a conclusion of a successful therapy program. The
other point is the saddle point that represents a failed therapy.
The figure shows that, when the therapist has a positive va-
lence, the therapy sessions can lead a client with a negative
or positive valence to the attractor. On the other hand a when
the therapist has a negative valence, the session will conclude
in the saddle point. These two stable points are similar to the
ones reported in (Liebovitch et al., 2011).

Conclusions

The bond graph approach presented here to model human be-
havior is encouraging. Starting from a fluid analogy model
for the interaction between a client and a therapist, we demon-
strated that the bond graph approach yields a dynamic sys-
tems model that is similar to the one reported in the literature.
As with any other model, one can analyze the behavior of the
system and design controllers to achieve specific objectives.
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Introduction 
The law of less work (Hull, 1943) is our natural tendency 

given two alternatives with equal incentives to pick the less 
demanding one. This notion also appears in the field of 
judgment and decision making (Gigerenzer & Goldstein, 
1996; Tversky & Kahneman, 1974), it is referred to as 
internal cost of effort. Cognitive parsimony is our tendency 
to favour low-effort strategies that help us to decide faster 
and simple strategies to approach a complex problem. An 
experimental paradigm for this phenomenon has been 
developed by Kool, McGuire, Rosen, & Botvinick (2010) 
and referred to as the demand selection task. In this poster, 
we present a model of this task developed in the ACT-R 
architecture (Anderson, 2007), which offers an hypothesis 
as to which cognitive mechanisms might participate in this 
phenomenon.  

Demand Selection Task  
In the demand selection task (Kool et al., 2010), two 

decks of cards are placed symmetrically left and right of the 
center of the screen. The keyboard is used to select one of 
the decks and uncover the card upon which a digit, between 
1 and 9, will be displayed. According to the color of the 
number, the subject has to perform a different type of 
judgement. Blue calls for a magnitude judgment: if the 
number is less than five, subjects should say yes, otherwise 
no. Yellow calls for a parity judgment: if the number is 
even, subjects should say yes, otherwise, no. Unbeknownst 
to the participants, one deck leads to a low demand task and 
the other deck to a high demand task. Participants are 
instructed to ‘Feel free to move from one deck to the other 
whenever you choose’ and ‘if one deck begins to seem 
preferable, feel free to chose that deck the more often’. In 
the low demand task, the color of each numeral matches the 
previous color on 90% of trials, whereas in the high demand 
task, the color of each numeral matches the previous color 
on 10% of trials. Overall, response times (RT) and error 
rates showed that task switching was cognitively costly, and 
that subjects mostly choose to pick the less cognitively 
demanding deck. While some subjects demonstrated their 
awareness of this effect, the effect did not depend on their 

awareness of it, thus making the DST an interesting task to 
evaluate implicit behaviour. 

Experimental procedure 
We reproduced Experiment 1 from Kool et al’s paper 
(2010). The simulation included 50 runs of 500 trials of the 
Demand Selection Task (DST). The task was self-paced 
with a maximum limit of time of 1h (which was never 
reached by the model or the participants). Subjects had to 
pick between two decks, by pressing a key (“F” for left, “J” 
for right). According to the color of the number (yellow or 
blue), participants had to either produce a parity judgment 
(even or odd) or a magnitude judgment (less or greater than 
five) on the number. Depending on the deck selected, the 
color of the number switched with a probability of 0.9 
(making it a higher demand task) or 0.1 (making it a lower 
demand task) at each trial.  

Model 
The model1 was built in the computational cognitive 
architecture and theory of human cognition ACT-R 
(Adaptive Control of Thought - Rational) (Anderson, 1990; 
2007). In ACT-R, different modules, including two memory 
modules (procedural and declarative) interact to complete a 
cognitive task. The modules are accessed via their 
associated buffers. ACT-R has been used to model several 
tasks. Declarative memory stores facts about the 
environment (know what). The procedural memory, through 
procedural rules (know how), allows for action selection. 
ACT-R is a hybrid cognitive architecture composed of 
symbolic and subsymbolic components: the retrieval of a 
fact (symbol) from declarative memory depends on 
subsymbolic retrieval equations (pondering the context and 
history of retrieval of the fact), and, the selection of a rule 
(symbol) depends on utility subsymbolic equations (which 
computes costs and benefits associated to the rule). The 
memory elements (chunks) are reinforced through patterns 
of occurrence within the environment.  Learning processes 
act at both subsymbolic and symbolic levels.  
The preference of a deck over another one relies on implicit 
mechanisms: mainly base-level and spreading activation 
with the participation of utility learning. Base-level learning 

                                                             
1 Model code available at: http://psych-

scholar.wright.edu/astecca/software 
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determines how patterns of use affect chunk activation and 
decay. Spreading activation provides context to the retrieval 
since chunks will spread an amount of activation to other 
chunks in declarative memory, based on the relationship 
they have with other chunks. The choice between the two 
decks is represented by two procedures. After the model 
picks one deck, it perceives a number and a color, and then 
it retrieves the chunks associated to the color and the 
number. Chunks of the yellow color are associated with a 
‘parity’ chunk, chunks of the ‘blue’ color are associated 
with a ‘magnitude’ chunk. The retrieved chunk is placed in 
the imaginal module. A judgement is produced based on the 
retrieved chunk, and an answer is vocalized. The chunk 
placed in the imaginal buffer will spread activation and 
influence the next retrieval request. A reward is back 
propagated after the answer has been produced. The failure 
to retrieve a judgment chunk will lead to errors which are 
also signaled to the model by backpropagation.  

 
Figure 1: Mean RT by options. 

 
Therefore, the gradual selection of the lower demanding 
deck occurs through two mechanisms: the retrieval of 
elements in the higher demanding deck (with high 
probability of switch) will take longer (representing the 
expended effort required) as activation from the previous 
trial will have spread less to the current trial. And, the 
longer this process takes, the less reward gets back-
propagated to the selection of this deck (as the reward gets 
discounted with time). Thus, gradually, the selection of the 
less demanding deck is the one that is going to be reinforced 
the most. Errors encountered will be due to the failure of 
retrieval of judgment chunks.  

Results 
As in the original experiment, we measured the verbal RT 

for the two decks (low demand vs. high demand) and trial 
types (task switch vs. task repetition). Figure 1 shows the 
means of medians for each trial types and deck types.   
Table 1 shows the parameters used in the ACT-R model. An 
ANOVA indicated as in the original experiment significant 

effects for trial types (F (1,50) = 9.940; p < 0.002) and deck 
types (F (1,50) = 3.691; p < 0.05). Average selection of the 
lower demanding task is 63% in our experiment (68% in the 
original experiment). 

 
Table 1: Model parameters. 

Parameters Value 
:rt  -1.0 
:alpha 0.1 
:lf 1.5   
:mas 3.0 
:imaginal-activation 0.41 
:ans 0.1 
:bll 0.21 

Discussion and conclusion 
The demand selection task is aimed at evaluating the 
tendency to avoid cognitively demanding tasks. 
Computational cognitive models have been made of  
“minimal control” (Taatgen, 2007) and “least effort” 
(Anderson, 1990), but this is to our knowledge the first 
model of the DST. We were able to reproduce the results of 
Experiment 1 of Kool et al.’s paper (2010) with a simple 
ACT-R model. The performance at the DST in our 
explanation relies mainly on implicit mechanisms (utility 
learning and base-level and spreading activation), in 
accordance with experimental results showing that the 
participants did not need to be aware of the type of task (low 
demanding or high demanding) for the effect to be 
observed. The DST is interesting to correlate subjects’ 
individual differences with their performance at different 
cognitive tasks. Having a model of such a task will allow us 
in future work to model individual differences as captured in 
the DST model and as they transfer into other tasks and 
might affect performance there (e.g. we are currently using 
this task in an ongoing research studying the relationship 
between cognitive parsimony and vulnerability to 
exploitation in interpersonal transactions).  
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Abstract
How do humans learn the syntax and semantics of words 
from language experience?  How does the mind discover 
abstract relationships between concepts? Computational 
models of distributional semantics can analyze a corpus to 
derive representations of word meanings in terms of each 
word’s relationship to all other words in  the corpus. While 
these models  are sensitive to topic (e.g., tiger and stripes) and 
synonymy (e.g., soar and fly), the models have limited 
sensitivity  to part of speech (e.g., book and shirt are both 
nouns). By augmenting a holographic model  of semantic 
memory with additional  layers of representations, we 
demonstrate that sensitivity to syntax relies on exploiting 
higher-order associations between words. Our hierarchical 
holographic memory model  bridges the gap between models 
of distributional semantics and unsupervised part-of-speech 
induction algorithms, providing evidence that semantics and 
syntax exist on a continuum and emerge from a unitary 
cognitive system.

Keywords: semantic memory; mental lexicon;  latent 
semantic analysis;  statistical learning; holographic models; 
memory; cognitive models; semantic space.

Orders of Association
Saussure (1916) defines two types of relationships between 
words: paradigmatic and syntagmatic. A syntagmatic 
relationship is the syntactic relationship a word has with 
other words that surround it. A paradigmatic relationship is 
when a pair of words can be substituted for each other. 
Building on Saussure, we define the term order of 
association as a measure of the degree of separation of two 
words in an agent’s language experience.
 First order association is when two words appear 
together. In the sentence “eagles soar over trees”, the words 
eagles and trees have first order association. Words with 
strong first order association (i.e., frequently appear in the 
same sentence) are often related in topic.
 Second order association is when two words appear with 
the same words. In the sentences “airplanes soar through 
skies” and “airplanes fly through skies”, soar and fly have 
second order association. Words with strong second order 
association are often synonyms, or have a paradigmatic 
relationship in Saussure’s terms.
 Third order association is when two words appear with 
words that appear with the same words. Given the sentences 
in Table 1, the words eagles and birds have neither first nor 
second order association, but do have third order.
 One can keep abstracting to higher-level orders of 
association indefinitely. At sufficiently higher orders of 
association, all words are related to all other words. 
Sensitivity to increasingly higher-order associations allows 

one to identify increasingly abstract relationships between 
items, such as syntactic categories. We hypothesize that to 
properly capture the syntagmatic relationships between 
words in the English language, it is necessary for a cognitive 
model to be sensitive to at least third-order associations.

Table 1: Artificial data set for Simulation 1.

Sentences

eagles soar over trees
birds fly above forest
airplanes soar through skies
airplanes fly through skies
airplanes glide through skies
dishes are over plates
dishes are above plates
dishes are atop plates
squirrels live in trees
squirrels live in forest
squirrels live in woods

Distributional Models of Semantics
Computational models of distributional semantics in the 
literature, such as LSA (Landauer & Dumais, 1997), HAL 
(Burgess & Lund, 1997), MINERVA 2 (Kwantes, 2005), the 
Topics Model (Griffiths, Steyvers, & Tenenbaum, 2007), 
and BEAGLE (Jones & Mewhort, 2007), are sensitive to 
only first and second-order associations. Jones and Mewhort 
observe clusters of vectors in semantic space that seem to 
correspond, roughly, to part of speech of information. Such 
clusters are suggestive of higher order associations, though 
BEAGLE does not exploit these higher order associations.
 We have developed a model capable of detecting 
associations of arbitrarily high order. Using BEAGLE 
(Jones & Mewhort, 2007; but see also Kelly, Kwok, & West, 
2015; Rutledge-Taylor et al., 2014, for variants on the 
model), a holographic model (Plate, 1995) of semantic 
memory, as a basis, we present a hierarchical model that 
layers multiple BEAGLE models. The memory vector 
outputs of one layer serve as the environment vector inputs 
to the next layer. The model roughly resembles a deep 
neural network in structure, but unlike a neural network, the 
model is not trained and the data is not subject to 
dimensional reduction at higher layers.

Simulation 1
Higher layers of the model are sensitive to higher orders of 
association (Figures 1 and 2), as demonstrated by an 
artificial data set (Table 1). The memory vectors for words 
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with second order association, such as soar and fly, are close 
on Layer 1 (cosine = 0.44) and draw closer in higher layers 
(Layer 4, cosine = 0.71). Whereas eagle and bird, which 
have only third order association, are distant on Layer 1 (see 
Figure 1, cosine = -0.08) but are close on Layer 2 (cosine = 
0.16) and draw closer in higher layers (see Figure 2, Layer 
4, cosine = 0.47). Figures show cosine distances between 
256 dimensional vectors, the distances compressed to 3 
dimensions by multi-dimensional scaling.

Figure 1: Cosine distances between vectors for Layer 1.

Figure 2: Cosine distances between vectors for Layer 4.

Simulation 2
We ran the model on 15 out of copyright books from the 
The Bobbsey Twins series of children’s novels, available 
through Project Gutenberg. The corpus consists of 441 476 
words and 9062 unique words. The model was run using 
256 dimensional vectors and four layers. The model read the 
corpus one sentence at a time. Within each sentence, the 
model used a moving window of 21 words, 10 words to the 
left and right of a target word. Within that window, all n-
grams are encoded as convolutions of environment vectors 
and summed into the target word’s memory vector.

 We find that higher layers of the model exploit higher-
order associations to strengthen semantically and 
syntactically correct relationships only weakly present in 
Layer 1 (see Figure 3) and to suppress erroneously strong 
relationships present in Layer 1 (see Figure 4).

Figure 3: Cosine similarities between word pairs.

 Word pairs are selected from the top 100 most similar 
word pairs on Layer 3 (Figure 3) or Layer 1 (Figure 4). 
Open marker and solid line indicates the 5 word pairs that 
increased in similarity the most from Layer 1 to Layer 3. 
Filled marker and dotted line indicates the 5 word pairs that 
increased in similarity the least from Layer 1 to Layer 3.
 In Figure 3, we see a dramatic increase in similarity 
between word pairs such as the determiners my and your, 
from a cosine of 0.26 at Layer 1 to 0.99 at Layer 4. 
Conversely, word pairs such as the verbs ’ll (contraction of 
will) and can or the titles Mr. and Mrs. are already highly 
similar at Layer 1 and so increase little across layers.
 In Figure 4, we see that the similarity between dialogue 
tags exclaimed and said or the proper names of the twins 
Bert and Nan are strengthened by the higher order 
associations, whereas the erroneous relationship between the 
adjective few and burgulor (sic) or thank and the contraction 
where’d is suppressed.

Figure 4: Cosine similarities between word pairs.
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Herein we present the cognitive model Regulated Acti-
vation Networks (RANs), which aims at unifying the three
perspectives (symbolic, connectionist, and geometric feature-
space) of conceptual representations. It learns new concepts
from input data, dynamically builds a hierarchy of abstract
concepts, and learns the associations among them, both be-
tween different levels, and within the same level of the hier-
archy. Its recall mechanism, the geometric backpropagation
algorithm, allows the understanding of the meaning of higher
level concepts in terms of input level features. The regulation
mechanism we also introduce has a de-noising effect over the
results obtained from the recall mechanism.

Keywords: Cognitive modeling, connectionism, dynamic
systems, conceptual representations.

Design, Methodology and Approach
The Regulated Activation Networks (RANs) model is based
upon the Principles laid out in (Pinto & Barroso, 2014),
and its geometric interpretation is inspired from the theory
of conceptual spaces(Gärdenfors, 2004) whereby concepts
are regions in multidimensional spaces (dimension = fea-
ture). Topologically, a RAN is a connectionist model where
each node represents one dimension/feature and its activa-
tion value represents the concept’s value (in the interval [0,1])
along that dimension. An instance of the model is initialized
with one layer of nodes – one node per input data feature
– and dynamically builds new nodes and new layers solely
driven by the complexity in the input data.

Inter-Layer Learning As the model’s instance is exposed
to input data, it resorts to some user-specified clustering algo-
rithm to identify centroids of clusters in the data. The RANs
model then creates one new node per centroid in a higher
layer. The coordinates of each centroid are encoded as the
inter-layer weights w

m,n associated to the edges between the
newly created centroid-node n and the nodes m in the lower
input layer. After the creation of the second layer of nodes,
each input datum (with values in the first layer of feature/node
space) can be re-represented in the second layer of centroid/n-
ode space – we obtain this re-representation via our upward

activation propagation algorithm.

Upward activation propagation This algorithm takes an
activation pattern, i.e., the coordinate values, at layer L and
calculates its normalized squared euclidean distance to each
centroid in layer L + 1. These distances are then passed
through a non-linear radial basis function (in this paper we
used f (x) = (1� 3⌃

x)2 but it can be replaced by any other
similarly behaving function) that behaves as an activation/-
transfer function – the smaller the distance, the higher the
activation of the corresponding centroid. This results in an

activation pattern in layer L+1 with one activation value for
each of its centroid nodes. Figure 1 illustrates a RANs in-
stance with two layers: L and L + 1, where L has i nodes
(n1,n2, . . . ,ni

) with (a1,a2, . . . ,ai

) corresponding activation
values; and layer L + 1 has j nodes (N1,N2, . . . ,Nj

) with
(a1,a2, . . . ,a j

) activations.

Figure 1: Learning in RANs

Intra-Layer Learning As lower layer L activation patterns
get re-represented in the upper layer L+1 via upwards propa-
gation, a pairwise correlation calculation takes place ate layer
L+ 1: the intra-layer learning. These correlations are calcu-
lated via equation 1 and their values are stored as weights of
the connections between the corresponding nodes.

W
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k⇧input�set

[1� (1�a
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)⇥ (1�a

k
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(1)
In the numerator the part (1� |ak

m

�a

k

n

|) calculates the sim-
ilarity of activations among nodes m and n, and the product
(1�a

k

m

)⇥ (1�a

k

n

) is used to reduce the impact of the similar-
ity when both activations are very close to 0 albeit similar.

Recall Concept recall amounts to obtaining, at the input
feature space level, the representation of the selected higher
concept node(s). Our geometric downward propagation algo-
rithm works as follows: the user selects how strongly (s)he
wishes to recall which higher layer concept(s) by injecting
the corresponding activations A j in their layer L+ 1; the al-
gorithm generates a random activation pattern in layer L be-
low, propagates it upward to obtain actual activation A

⌅
j

, and
calculates the error e

j

= A

⌅
j

�A

j

; we use these individual er-
rors to adjust the activation a

i

of each node i in layer L below

via D
a

i

= (
j

Â
1

D
a

i

,A
j

)/(# j) where D
a

i

,A
j

= (W
j,i�a

i

)⇥ (e
j

), with

W

j,i being the coordinate of centroid j in layer L+ 1 along
dimension-node i in layer L. The overall impact of a

i

on
all A

j

is summed together and normalized by dividing with
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maximum possible impact i.e. # j. Finally, the geometric er-
ror correction at node i of layer l is obtained by : if D

a

i

>=
0 then a

i

= a

i

+D
a

i

⇥ (1� a

i

); otherwise a

i

= a

i

+D
a

i

⇥ (a
i

).
The cycle <upwards propagation; error calculation; lower
layer activation pattern correction via the error> is repeated
until convergence of the lower layer activation pattern.

Regulation The recall results obtained are reasonable, but
noisy. To denoise recall results a complementary Intra-Layer
(IL) activation formula is developed which uses intra-layer
weights to estimate each node’s expected activation according
to its same-layer companion nodes via

IL(a
n

) =
Â
m

s
m⇤n

[(a
m

⇥W

m⇤n

)+(1�a

m

)⇥ (1�W

m⇤n

)]

Â
m

s
m⇤n

(2)
Here W

m⇤n

is the intra-layer weight learned as in equation
(1), and s

m⇤n

(= [2 ⇥ |W
m⇤n

� 0.5|]2) is the impact factor
of each correlation: W

m⇤n=0.5 indicates high probability that
node m has minimal (or no) impact over node n.

Our regulation mechanism uses IL activation producing a
regulated activation pr(a

n

) = (1�r)⇥a

n

+r⇥ IL(a
n

), where
r is regulation-factor(a constant in [0,1]).

Experiments and Observations
First experiment We generated an artificial data set of 300
2-dimensional data points, c.f. Fig. 2.

Figure 2: Observations on 2-D artificial data set

Setup The artificial data was generated such that it had 3
distinct clusters. We used K-means (MacQueen, 1967) to
identify the clusters. The RANs model created 3 nodes in
the first new layer (2nd layer), and 1 node in the second new
layer (3rd layer), c.f., Fig. 3. To simulate recall we input the

Figure 3: 3 layered model for artificial data

activation pattern [1,0,0] in the second layer as expected ac-
tivation (in Fig. 2 black circles represents centers of clusters

and their sizes depict expected activations) and initiate the
downwards propagation experiment.

Table 1: Observation of Artificial Data
Starting
Layer 1 Act.

Expected
Layer 2 Act.

Regulation
Factor (%)

Obtained
Layer 2 Act.

[0.28 0.58] [1 0 0 ] 0 [ 0.60 0.1 0.12]
7.5 [ 0.68 0.21 0.25]

Observations The algorithm randomly chooses a starting
point ([0.28,0.58]) and then repeats the ¡upwards activation
propagation; error geometric downpropagation¿ cycle up to
a maximum of 1000 iterations times; we did this for both
with and without regulation. Fig. 2 shows the trajectories
(each trajectory is a succession of points in the 2-D input
feature space corresponding to the activations of the 2 bot-
tom layer nodes) in 2-D. As per the expectation the trajectory
obtained from regulation converges closer to the highly ac-
tive center. Table 1 shows the activation at nodes in layer
2 corresponding to the converged points (without regulation
[1,0.52], with regulation [0.78,0.47]) in layer 1.

Blending Experiment with the MNIST data set We per-
formed the experiment for blending (simultaneous recall of
multiple concepts resulting in their fusion) using the MNIST
(The MNIST database of handwritten digits, n.d.) data set
with 250 images, and K-means which identified 31 clusters
whose centroids are shown in Fig. 4. We create just two lay-
ers to show the concept blending operation – layer 1 has 784
nodes representing the pixels, layer 2 has 31 nodes.

Figure 4: Images represented by nodes in layer 2

Blends are obtained by injecting full activation (1) at nodes
in layer 2 representing the concepts to blend, and by down-
wards geometric backpropagation. E.g., injecting 1 at nodes
6, 8, 25, 27, and 28 (these nodes correspond to images of dig-
its 2 and 5, c.f., Fig. 4), and zeros in others we obtain the
blend shown in the left-most image of Fig.5. In Fig. 5, the
2nd left image is a blend of 4’s and 9’s, the 3rd is a blend of
8’s and 3’s, and the last is a blend of 5’s and 3’s. These are
not mere superpositions of the original clusters.

Figure 5: Blend of different centers
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