"‘o,, PennState

Proceedings of

ICCM
2016

14th International Conference on Cognitive Modeling
August 3-6, 2016
The Pennsylvania State University, University Park, Pennsylvania

Edited by
David Reitter
Frank E. Ritter

Papers in this volume may be cited as:

Author, F. (2016). Title. In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on
Cognitive Modeling (ICCM 2016). University Park, PA: Penn State.

Rev. 161216
ISBN 978-0-9985082-0-7

(C) Copyright 2016 retained by the authors.

Rev. 161216
ISBN 978-0-9985082-0-7

Conference Committees

General and Program Chairs

David Reitter
Frank E. Ritter

The Pennsylvania State University
The Pennsylvania State University

Program Committee

Eduardo Alonso
Erik Altmann
Thomas Barkowsky
Martin Baumann
Roman Belavkin
Thierry Bellet
Jennifer Bittner
Jelmer Borst

Mike Byrne

Rick Cooper

Gary Cottrell

Chris Dancy
Vladislav Daniel Veksler
Adele Diederich
Paula Droege
Wai-Tat Fu

Danilo Fum
Francesco Gagliardi
Moojan Ghafurian
Kevin Gluck
Cleotilde Gonzalez
Glenn Gunzelmann
Dan Guzek
Christian Janssen
Gary Jones

lon Juvina

Mark Keane
Matthew Kelly

Bill Kennedy

David Kieras
Joseph Krems
Bernd Kroger
Johan Kwisthout
John Laird
Christian Lebiere
Lyle Long

Luis Macedo

Ralf Mayrhofer
Victor Middleton
Junya Morita
Shane Mueller

City University London

Michigan State University
University of Bremen

University of Ulm

Middlesex University

IFSTTAR France

Air Force Research Laboratory
University of Groningen

Rice University

University of London

University of California, San Diego
Bucknell University

Air Force Research Laboratory
Jacobs University Bremen

The Pennsylvania State University

University of lllinois at Urbana-Champaign

University of Trieste

The Pennsylvania State University
Air Force Research Laboratory
Carnegie Mellon University

Air Force Research Laboratory
The Pennsylvania State University
Utrecht University

Nottingham Trent University
Wright State University
University College Dublin
Carleton University

George Mason University
University of Michigan
Technische Universitat Chemnitz
University Hospital Aachen

Donders Institute for Brain, Cognition and Behaviour

University of Michigan

Carnegie Mellon University

The Pennsylvania State University
University of Coimbra

University of Gottingen

Wright State University

Shizuoka University

Michigan Technological University

iii

Christopher Myers
Josef Nerb
Hansjoerg Neth
David Noelle
Enkhbold Nyamsuren
Alexander Ororbia
David Peebles
Marco Ragni

Nele RuBBwinkel
Dario Salvucci

Ute Schmid

Mike Schoelles

Lael Schooler
Holger Schultheis
Chris Schunn

Barry Silverman
Jennifer Spenader
Robert St. Amant
Christopher Stevens
Terrence Stewart
Andrea Stocco

Ron Sun

Niels Taatgen

Julia Taylor

Manfred Thuering
Greg Trafton

Robert West

Sharon Wood
Xiaolong Luke Zhang
Changkun Zhao
Iraide Zipitria
Hedderik van Rijn
Iris van Rooij
Leendert van Maanen
Marieke van Vugt

Air Force Research Laboratory
University of Education, Freiburg
University of Konstanz
University of California, Merced
The Open University

The Pennsylvania State University
University of Huddersfield
University of Freiburg
Technische Universitat Berlin
Drexel University

University of Bamberg
Rensselaer Polytechnic Institute
Syracuse University

University of Bremen

University of Pittsburgh
University of Pennsylvania
University of Groningen

North Carolina State University
University of Groningen
University of Waterloo
University of Washington
Rensselaer Polytechnic Institute
University of Groningen

Purdue University

Technische Universitat Berlin
Naval Research Lab

Carleton University

University of Sussex

The Pennsylvania State University
IBM Watson

The University of the Basque Country
University of Groningen
Radboud University Nijmegen
University of Amsterdam
University of Groningen

Tutorial Committee

William G. Kennedy (Chair)
lon Juvina

Laura Hiatt

Randolph M. Jones

David Peebles

Rob Thomson

Nele Russwinkel

Matt Walsh

George Mason University
Wright State

Naval Research Laboratory

Soar Technology

University of Huddersfield

US Military Academy, West Point
Technische Universitdt Berlin
Air Force Research Laboratory

v

Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016)

Table of Contents

Introduction to ICCM 2016 X
Frank E. Ritter and David Reitter

Keynotes

A Quantum Probability Framework for Causal Inference 1
Jennifer Trueblood

Modeling Sentence Comprehension |
John T. Hale

Integrative Physiological Modeling: Looking at a Larger Picture 2
W. Andrew (Drew) Pruett

Tutorials

Stream: A Toolkit for Developing High-Precision Experiments 5-6
Brad Wyble & Gregory Wade

ACT-R Phi — ACT-R and a Physiological Model 7-8
Chris Dancy & W. Andrew Pruett

Distributed Adaptive Control: A Theory of the Mind, Brain, Body Nexus 9-10
Paul Verschure

Tools for Cognitive Modeling: Developing tasks for universal access by models and human participants,
exploring a massive parameter space to find the best fit of model to data, and analyzing the persuasiveness

of the best-found fit 11
Viadislav “Dan” Veksler

Long Papers

High Level Languages Re-revisited and Learning Cognitive Code:
An Embedded Approach to Cognitive Modeling 15-20
Dario Salvucci

Microgenetic Analysis of Learning a Task: Its Implications to Cognitive Modeling 21-26
Jong Kim and Frank E. Ritter

Metacognitive Agent for Training Negotiation Skills 27-32
Christopher Stevens, Harmen de Weerd, Fokie Cnossen, and Niels Taatgen

Cognitive Models of Prediction as Decision Aids 33-38
Christian Lebiere, Don Morrison, Tarek Abdelzaher, Shaohan Hu,
Cleotilde Gonzalez, Norbou Buchler, and Viadislav Veksler

Considerations Influencing Human TSP Solutions and Modeling Implications 39-45
Brandon Perelman and Shane Mueller

The Representation of Visual Working Memory 46-51
Bella Veksler, Rachel Boyd, Christopher Myers, Glenn Gunzelmann, Hansjorg Neth, and Wayne Gray

Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016)

An Account of Interference in Associative Memory: Learning the Fan Effect
Robert Thomson, Anthony M Harrison, J. Gregory Trafton, and Laura M Hiatt

Towards Modeling False Memory with Computational Knowledge Bases
Justin Li and Emma Kohanyi

Using Behavior to Decode Allocation of Attention in Context Dependent Decision Making
Michael Shvartsman, Vaibhav Srivastava, Narayanan Sundaram, and Jonathan Cohen

Learning the Dynamics of Prisoner’s Dilemma: Lessons from Modeling and Simulation
Michael Yu and Cleotilde Gonzalez

Adversaries Wising Up: Modeling Heterogeneity and Dynamics of Behavior
Yasaman Dehghani Abbasi, Noam Ben-Asher, Cleotilde Gonzalez, Don Morrison,
Nicole Sintov, and Milind Tambe

Language and models Toward Integrating Cognitive Linguistics
and Cognitive Language Processing
Peter Lindes and John E. Laird

Encoding and Accessing Linguistic Representations in a
Dynamically Structured Holographic Memory System
Dan Parker and Daniel Lantz

Investigating and Simulating the Effect of Word Fragments as
Orthographic Clues in Crossword Solutions
Kejkaew Thanasuan and Shane Mueller

ACT-R 3D: A 3D Simulation Environment for Python ACT-R
Sterling Somers

Efficient Parameter Estimation of Cognitive Models for Real-Time
Performance Monitoring and Adaptive Interfaces

Christopher Fisher, Matthew Walsh, Leslie Blaha,

Glenn Gunzelmann, and Bella Veksler

Using a Cognitive Architecture in Educational and Recreational Games:
How to Incorporate a Model in Your App
Niels Taatgen and Harmen de Weerd

JIVUI: JavaScript Interface for Visualization of User Interaction
Ignacio X. Dominguez, Jayant Dhawan, Robert St. Amant, and David L. Roberts

Explaining Mistakes in Single Digit Multiplication: A Cognitive Model
Trudy Buwalda, Jelmer Borst, Han van der Maas, and Niels Taatgen

The Sum of Two Models: How a Composite Model Explains Unexpected User
Behavior in a Dual-Task Scenario
Marc Halbriigge and Nele Russwinkel

Explaining Inter-individual Variability in Strategy Selection:
A Cue Weight Learning Approach
Hrvoje Stojic, Henrik Olsson, and Pantelis P. Analytis

Effect of Reward Prediction Errors on the Emotional State of an Agent
Vidullan Surendran and Lyle Long

vi

52-57

58-64

65-71

72-78

79-85

86-92

93-99

100-106

107-112

113-118

119-124

125-130

131-136

137-143

144-150

151-156

Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016)

Effects of Guanfacine and Phenylephrine on a Spiking Neuron Model
of Working Memory
Peter Duggins, Terrence C. Stewart, Xuan Choo, and Chris Eliasmith

Capturing the Effects of Moderate Fatigue on Driver Performance
Ehsan Khosroshahi, Dario Salvucci, Bella Veksler, and Glenn Gunzelmann

Using Naturalistic Typing to Update Architecture Typing Constants
Marc Burns, Frank E. Ritter, and Xiaolong Zhang

Exploring the Effects of Different Text Stimuli on Typing Behavior
Ignacio X. Dominguez, Jayant Dhawan, Robert St. Amant, and David L. Roberts

Efficient Computation of Spreading Activation Using Lazy Evaluation
Steven Jones, Arthur Wandzel, and John Laird

Toward a Unified Theory of Learned Trust
ITon Juvina, Michael Collins, Othalia Larue, and Celso de Melo

A Minimal Model of Eye Movement Applied to Visual Search and Change Detection
Shane Mueller, Yin Yin Sarah Tan, Hannah North, and Kelly Steelman

Towards a General Model of Repeated App Usage
Sabine Prezenski and Nele Russwinkel

Modeling Phonological Similarity Effects on the Self-organization of Vocabularies
Javier Vera

Spiking Neural Model of Supervised Learning in the Auditory Localization Pathway of Barn Owls
Michael O. Vertolli and Terrence Stewart
Poster Abstracts

Examining Load-inducing Factors in Instructional Design: An ACT-R Approach
Maria Wirzberger and Giinter Daniel

ACT-Droid: ACT-R Interacting with Android Applications
Lisa-Madeleine Dérr, Nele Russwinkel, and Sabine Prezenski

The Minimalist Interference Model of the Implicit Association Test
Predicts Working Memory Confounds
Michael McDonald and Andrea Stocco

Distinguishing Cognitive Models of Spatial Language Understanding
Thomas Kluth, Michele Burigo, Holger Schultheis, and Pia Knoeferle

Towards Error Recovery Microstrategies in Touch Screen Environments
Prairie Rose Goodwin, Robert St. Amant, and Rohit Arora

Two Methods for Search and Optimising Cognitive Model Parameters
David Peebles

Predicting the Effects of In-Task Instruction During Multi-cue Diagnosis
Phillip Halsey, Christopher Myers, Kevin Gluck, and Jack Harris

Eye-tracking Analysis for Product Recommendation Virtual Agent with Markov Chain Model
Tetsuya Matsui and Seiji Yamada

vii

157-162

163-168

169-174

175-181

182-187

188-193

194-200

201-207

208-213

214-219

223-224

225-227

228-229

230-231

232-233

234-235

236-238

239-240

Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016)

Automatic Generation of Analogous Problems to Help Resolving
Misconceptions in an Intelligent Tutor System for Written Subtraction
Christina Zeller and Ute Schmid

Modeling Autobiographical Memory from Photo Libraries
Junya Morita, Takatsugu Hirayama, Kenji Mase, and Kazunori Yamada

Modeling of Proximity-Based Expectations
Stefan Lindner and Nele Russwinkel

A Proposed Method of Matching ACT-R and EEG-Data
Sabine Prezenski and Nele Russwinkel

Interactions of Declarative and Procedural Memory in Real-Life Tasks:
Validating CPR as a New Paradigm
Florian Sense, Sarah Maass, and Hedderik van Rijn

Intuitive Decision-Making Revisited: A Heuristic and the Feeling of Recognition
William G. Kennedy

A Computational Model of Semantic Convergence in Bilinguals
Shin-Yi Fang, Benjamin Zinszer, Barbara Malt, and Ping Li

Following the Wandering Mind in the Eyes: Tracking Distraction
by the Self in a Complex Working Memory Task
Stefan Huijser, Niels Taatgen, and Marieke van Vugt

Towards the Evaluation of Cognitive Models using Anytime Intelligence Tests
Marc Halbriigge

Analyzing Fatigue, Stress and Human Errors in Emergency Operation Centre Management:

The Consequences of Using Different Cognitive Modelling Frameworks
Robert West, Korey MacDougal, and Lawrence Ward

Connecting Cognitive Models to Interact with Human-Computer Interfaces
Farnaz Tehranchi and Frank E. Ritter

An Update on Automatic Transcription vs. Manual Transcription
Frank E. Ritter, Catherine Bouyat, Kaitlyn Ekdahl, and Dan Guzek

Modeling Human Intention in a Live-Feeling Platform
Martin Lukac, Gaziza Oteniyaz, and Michitaka Kameyama

A Bond Graph Approach for Wellness Management based on the Client-Therapist Model
Abdelrhman Mahamadi and Shivakumar Sastry

Modeling Cognitive Parsimony with a Demand Selection Task
Othalia Larue and Ion Juvina

A Computational Model of Memory for Abstract Associations
Matthew Kelly and Robert West

Concept Learning, Recall, and Blending with Regulated Activation Networks
Alexandre Miguel Pinto and Rahul Sharma Keynotes

viii

241-242

243-245

246-248

249-251

252-253

254-255

256-257

258-260

261-263

264-265

266-267

268-269

270-272

273-275

276-278

279-281

282-284

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

Introduction to ICCM 2016

Frank E. Ritter and David Reitter

It is our pleasure to introduce the proceedings of the 14t International Conference on Cognitive Modeling. We
started in Berlin where we were called the First European Workshop on Cognitive Modeling. This community had
held earlier workshops on the Soar and ACT-R cognitive architectures held in Europe. With later conferences, we
started to go back and forth across the Atlantic, and also setup a pattern of going to mainland Europe and England
alternatively (where proceedings sometimes appeared as ‘modelling’, the British spelling).

14 Penn State U. of Trieste, Italy
13 Groningen, Netherlands Carnegie Mellon U.
12 Carleton U., Canada Bamburg, Germany
11 TU Berlin, Germany George Mason U.

10 Drexel U.
9 U. of Manchester, England
8 U. of Michigan

Groningen, Netherlands
Nottingham, U K.
Berlin, Germany

— N W ks NN

We have been published by Erlbaum and several university presses. Currently, we are self-published on the web,
with several repositories.

In this conference, we start with a useful and lively tutorial program, an aspect of most instances of this
conference. These tutorials are designed to help experienced and inexperienced learn about new and also existing
techniques, and also cover new architectures in detail, enough that potential users can learn about them and
potentially adopt them.

In the past, this conference has preferred model + data + comparison. This year we were somewhat more broad
in what was accepted. The proceedings have interesting papers for the presentations and posters on topics such as
modeling tools, models of learning and memory, the use of models in other systems, models of adversarial systems,
modeling natural language, technology for modeling, and modeling for math. We also have models on physiology
and neural level models.

Out of 65 submissions, 33 papers were accepted as full papers (51 percent). We also include a number of
additional abstracts in these proceedings.

The Allen Newell Award for the best student-led paper was given to Peter Duggins, Terrence C. Stewart,

Xuan Choo, and Chris Eliasmith for their paper titled Effects of Guanfacine and Phenylephrine on a Spiking Neuron
Model of Working Memory. We also note, as honorable mention, the papers by Hrvoje Stojic, Henrik Olsson, and
Pantelis P. Analytis, by Peter Lindes and John E. Laird, by Dan Parker and Daniel Lantz, and by Ehsan Khosroshahi,
Dario Salvucci, Bella Veksler, and Glenn Gunzelmann.

We would like to thank our sponsors, the US National Science Foundation (NSF BCS-1613241), the College of
Information Sciences and Technology (Penn State), Charles River Analytics, Soar Technology, and Applied
Cognitive Systems, LLC. These sponsors have helped make the conference in several ways. In particular, the
college’s support helped run the conference, and the NSF support provided student travel stipends and support for an
invited speaker as well as a mentoring lunch.

ix

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016). University Park, PA: Penn State.

This page intentionally blank.

This page intentionally blank.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

Keynotes

A Quantum Probability Framework for Causal Inference

Jennifer S. Trueblood
Vanderbilt University

Reasoning about the causal relationships between events is an important component of cognition, allowing us to

make sense of the world. Arguably, the most successful models of causal reasoning, causal Bayes nets, perform well
in some situations, but there is considerable variation in how well they are able to account for data, both across

scenarios and between individuals. More generally, decades of research have shown that human decision-making
often violates the rules of classical (Bayesian) probability theory. Quantum probability (QP) theory provides an

exciting new approach for modeling human cognition and decision-making.
In this talk, I will discuss how QP theory can be used to construct a framework for causal reasoning that accounts

for behavior in situations where Bayes nets fail. I will discuss how changing assumptions about compatibility (i.e.,
how joint events are represented) leads to the construction of a hierarchy of models, from ‘fully’ quantum to ‘fully’

classical, that could be adopted by different individuals in different situations.
I will illustrate the approach with new laboratory experiments and model comparisons as well as discuss two factors

that determine the form of the representation, individual differences in cognitive thinking style and familiarity with
the causal reasoning domain. I will conclude by showing how the framework can used to understand real world

causal judgments using a large (N=1200) experiment conducted during the US Presidential primaries involving
judgments about the outcomes of primaries and the eventual nominations.

Automaton Theories of Human Sentence Comprehension
John T. Hale
Cornell University

The ability to understand what other people are saying, in a language that you know, is a impressive feat of
cognition. Within this domain, many fundamental questions remain open. Among them: how does sentence

structure figure in the comprehension process? Why is comprehension so fast & effortless most of the time? And
which parts of the brain do which subtasks? This talk argues that cognitive architecture gives us a good head-start

on these questions. By presenting a few proposals based on Hale (2014) it invites modelers to join in the enterprise.

Hale, J. (2014). Automaton Theories of Human Sentence Comprehension. Stanford, CA: CSLI Press.

http://web.stanford.edu/group/cslipublications/cslipublications/site/9781575867472.shtml

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

Integrative Physiological Modeling: Looking at a Larger Picture
William A. “Drew” Pruett
University of Mississippi Medical Center

One approach to modeling is the use of minimal models that portray only the elements believed to be most causative
of a particular phenomenon. An alternate approach is to connect many such minimal models together through their
inputs and outputs to generate an integrated model in which larger phenomena can emerge. These emergent features
do not belong to the minimal models, but rather are characteristic of their interactions. By integrating well-
understood mechanisms into a consistent whole, the role of the individual pieces can be more fully understood. If
the simple models and their linkages are viewed as the hypothesis of a theory, the integrated model is the testable
part of that hypothesis.

Such models have been used to great effect in physiology to create cohesive scientific theories where no single
causative agent could be found. Examples of this are the role of the kidney in establishing hypertension, and the
complex interplay between the left and right heart in determining cardiac output. These models have been
appreciated for this value for nearly 50 years in physiology, but enormous gaps remain to be studied. Among these is
the relationship between cognitive state and physiological function.

In this talk, I will summarize past and current efforts in integrative physiological modeling from groups around
the world, with special attention paid to the knowledge that flowed from studying the emergent properties of such
models. Additionally, I will discuss domains in physiology that we believe will require cognitive models for deeper
understanding of the physiology.

Tutorials

This page intentionally blank.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Stream: A Toolkit for Rapidly Developing High Precision Experiments
Gregory Wade (GWADE2778@gmail.com)

University of Delaware
Newark, DE 19716 USA

Brad Wyble (BWYBLE@gmail.com)
The Pennsylvania State University
Old Main, State College, PA 16801 USA

Keywords: Psychtoolbox; Stream Toolkit.

Introduction

With the increasing use of technology in the field of
cognitive science there has been a need for software that can
accomplish the tasks needed to further research. Many
experiments require high levels of precision in spatial and
temporal presentation of stimuli as well as the ability to
collect data from participants. Many toolkits have been
created for this purpose ranging different platforms and
purposes. However, most psychologists lack the knowledge
required to use these different toolkits, since they require
substantial experience with programming languages like
Python or MATLAB. Acquiring the necessary skills to use
these toolkits is often practically impossible since the
learning curve can be quite steep before one gets to the point
of being able to use these tools effectively. The Stream
Toolkit was created to bridge this gap. Stream simplifies the
programming side of the experimental design process and
allows people with a relatively basic level of programming
knowledge to create complex experiments. Stream provides
user-friendly scripts as well as many tutorials that will walk
researchers through various aspects of experiment design,
such as creating stimuli, displaying them, collecting
responses, and analyzing data. It is still necessary to
understand basic MATLAB functions and syntax in order to
begin using Stream. The documentation provides a list of
basic commands and topics that should be learned prior to
beginning. Stream can be downloaded at:
[https://bitbucket.org/streamtoolbox/stream_official toolbo
x/downloads].

Psychtoolbox

Stream uses Psychtoolbox-3 (Brainard, 1997; Pelli, 1997,
Kleiner et al, 2007) to interface with hardware, such as the
graphics card, sound card, and mouse and keyboard drivers.
This is essential to provide low-latency stimulus
presentation and response collection. It is not necessary for
the user to know Psychtoolbox, since Stream handles the
interface. However, Psychtoolbox-3 must be installed and
functional on the computer.

Summary of Features

Stream provides a skeletal framework of an experiment
and a series of helper functions so that a user can add their
own stimuli and data collection events. These helper

functions include stimulus generation, event based
presentation, collection of various data types, and simple
analysis scripts. These features have been simplified for the
user in order to streamline the experimental design process.
The users only have to edit a few of the files in Stream
while the brunt of the work happens behind the scenes in
scripts that have already been written. All parts of Stream
are open source, and users can access or modify Stream as
needed.

Tutorials: A Good Place To Start

The Stream Toolkit provides users with a series of tutorials
to teach the researchers how to use Stream. The main
tutorials will walk users through the design of an
experiment including data collection and analysis to become
familiar with the format of Stream. Supplemental tutorials
are provided for features not explained in the main tutorials.
It is suggested that you read through the Main Stream
Documentation before users begin the Stream Tutorials as
the tutorials are meant to coincide with sections of the
documentation.

Block Files

Block files are the main scripts that the user will edit in
Stream. Block files represent the different experimental
blocks in a task. When designing an experimental block,
you will edit these files which will specify what stimuli are
created, how they are to appear on the screen, and what
response data are collected. If your experiment has multiple
different blocks, you will create multiple block files that
define each of them and run them in a specified order.

Stimulus Generation

At the top of your block file you will specify the stimuli that
are used in the block. Stimuli are organized into 'sets'. You
can create any number of stimulus sets that you choose, and
each stimulus set can have as many stimuli as you choose.
The only restriction on how you group stimuli into sets is
that each set has to be comprised of the same kinds of
stimuli (e.g. all of them are images). There are also a
number of properties for each kind of stimulus that can be
defined in order to customize your stimuli. By defining all
of the stimulus properties in a structure you can bypass the
need to understand Psychtoolbox functions, as Stream will
do that work for you, although it will not hurt to become
familiar with Psychtoolbox functions. Stream has many

different stimulus types including images, Psychtoolbox
shapes, text, imagefonts, Gabor patches, and audio files.

Event-Based Presentation

All of the things that happen inside of a trial are called
Events. Events are set up in block file and scheduled to
happen at specific time points relative to the start of a trial.
Once the events are scheduled, Stream takes over and
executes them using a sophisticated timing loop that
integrates stimulus presentation with data collection. All
events are then time stamped with millisecond precision
using the PsychToolbox GetSecs function. Screenshots can
be collected at any point during the experiment, which is
helpful for creating figures. Parallel port triggers can also be
used in Stream.

Collecting response data

Responses are predefined using responsestructs, allowing
you to give certain properties to a response event. These
responsestructs are set up in the block files and then
scheduled to occur at a particular time point. Any number of
responsestructs can be used in an experiment. Stream allows
for keyboard, mouse, and eye gaze responses (from Eyelink
eye trackers).

Data Collection

When you run an experiment, Stream will create data files
automatically. Stream is extensive in its data collection,
such that every stimulus and event will automatically be
saved along with timestamps. This extensive journaling
allows for unanticipated exploratory analyses and also
provides a safety net in case you forget to record condition
labels. Because these files can be large and cumbersome to
analyze, Stream also allows you to create compact data files
containing only specific pieces of information that you
choose. These compact files are a good way to filter only
the information needed for analysis.

Analysis

You can use multiple methods to analyze your data, but if
you choose, Stream has built in analysis scripts that will
help you extract the data you have collected and allow you
to perform analysis using custom code in MATLAB.
Stream’s analysis script is designed to pull information out
of the compact data by looping through each subject, each
block per subject, and each trial per block. Information from
all of these trials is then copied into a structure. You can
also opt to write these values to a text file that can be read
into R, SPSS, or Excel if that is your preferred method of
running statistical tests. Just like the block files, analysis
scripts open-source and completely customizable.

Customer Support

For questions not covered in the documentation, customer
support for the Stream Toolkit can be directed to Stream’s
main website [https://osf.io/tdvxm/]. Here you will find a

Functions wiki as well as links to Google Group discussion
forums where you can report bugs, suggest development
projects, or as a general usage question.

References

Brainard, D. H. (1997) The Psychophysics Toolbox,
Spatial Vision 10:433-436. http://psychtoolbox.org/credits/
[http://color.psych.upenn.edu/brainard/papers/Psychtoolbox.
pdf

Pelli, D. G. (1997) The VideoToolbox software for visual
psychophysics: Transforming numbers into movies, Spatial
Vision10:437-442. http://www.psych.nyu.edu/pelli/pubs/
pellil997videotoolbox.pdf

Kleiner M, Brainard D, Pelli D, 2007, “What’s new in
Psychtoolbox-3?” Perception 36 ECVP Abstract
Supplement.http://psychtoolbox.org/credits/[http://www.per
ceptionweb.com/abstract.cgi?id=v070821

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Integrative computational modeling of physiological and cognitive systems, and
their interactions

Christopher L. Dancy (christopher.dancy@bucknell.edu)
Department of Computer Science, Bucknell University,
Lewisburg, PA 17837 USA

W Andrew Pruett (wpruett@umc.edu)
University of Mississippi Medical Center,
Jackson, MS 39216 USA

Keywords: Physio-cognitive models; cognitive architecture;
ACT-R; HumMod; Hybrid Architecture

Introduction

The mind is embodied, physically and chemically,
receiving and passing information to the body in myriad
physiological feedback loops. The mind-body interface
induces connections between different cognitive functions,
and is an integral part of cognition. Understanding how
physiological and cognitive mechanisms interact to
influence behavior will require exploring the representative
and systematic ways we can connect systems on the
physiological and cognitive levels. As physiological sensors
continue to become cheaper, more pervasive, and more
accurate, computational cognitive modelers will have a
unique opportunity to predict and explain human behavior
using process models with representations on both the
physiological and cognitive levels. This shift will result in
models that more realistically operate over longer periods of
time, allowing modelers access to more mechanistic models
and predictions of behaviors given moderators like sleep
deprivation, caffeine, or stress.

The ACT-R cognitive architecture (Anderson, 2007) can
be used to model cognitive processes and their effects on
behavior. However, ACT-R lacks a comprehensive way to
simulate the effects of several cognitive moderators (Ritter
et al., 2007) and the interactions of these moderators. The
architecture has had its module functionality associated with
certain areas of the brain and brain networks (e.g., see
Anderson et al., 2008), this can make it more
straightforward to understand where in the architecture
certain moderators should affect behavior.

HumMod (Hester, Brown, et al., 2011) is a physiological
model that simulates physiological systems from a middle-
out perspective (i.e., see Hester, Iliescu, et al., 2011). The
model integrates multiple tissue and organ level submodels
along with a responsive cardiovascular system modulated by
hormones and the autonomic nervous system. This allows
one to explore the consequences of physiological
perturbations (e.g., activation of nerves in the peripheral
nervous system) both on the respective local systems and
the overall global physiological system. However, as a
stand-alone system, HumMod does not simulate high-level
behavior.

ACT-R/® is a hybrid physio-cognitive architecture that
combines the ACT-R and HumMod systems. The
architecture can be used to explore interaction between
physiological and cognitive systems and how these
interactions modulate human behavior. A physio module
controls the communication between the ACT-R and
HumMod system, controlling the synchronization of the
timing and also any bottom-up physiological modulation of
cognitive processes. ACT-R/® has been used to explore
several aspects of the physiology-cognition connection,
including homeostatic drives (Dancy & Kaulakis, 2013),
stress (Dancy, Ritter, Berry, et al., 2015) and sleep
deprivation (Dancy, Ritter, & Gunzelmann, 2015).

In this tutorial, we will discuss physiological and
cognitive processes, and interactions between systems at
these levels, that are useful for modeling and simulating
behavior on both the physiological and cognitive levels. We
will use two representative systems (HumMod and ACT-R)
as well as an integrated version of the two systems (ACT-
R/®) to ground the discussed connections and interactions
to a computational system. Tutees will then have the
opportunity to build a hybrid computational physio-
cognitive model, run the model in a simulated experiment,
and interpret the predicted physiological and cognitive
output against existing behavioral data.

About the Authors

Christopher L. Dancy is an assistant professor in computer
science at Bucknell University and chair of the Behavioral
Representation in Modeling and Simulation (BRiMS)
society. His research interests focus on studying how
physiology, affect, and cognition interact and what these
interactions mean for memory, decision-making, and
interfacing with systems. He uses computational process
models and simulations, as well as experimental methods, to
study these interactions and predict consequences for
behavior.

W Andrew Pruett is an instructor in the Department of
Physiology at the University of Mississippi Medical Center.
His research concentration is in silico replication of clinical
trials, especially with respect to hypertension. He uses
population modeling and topological analytic techniques to
advance the science of patient specific medicine.

References

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? New York, NY: OUP.

Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A.
(2008). A central circuit of the mind. Trends in
Cognitive Sciences, 12(4), 136-143.

Dancy, C. L., & Kaulakis, R. (2013). Towards adding
bottom-up homeostatic affect to ACT-R. In
proceedings of the 12th International Conference
on Cognitive Modeling, Ottawa, Canada.

Dancy, C. L., Ritter, F. E., Berry, K. A., & Klein, L. C.
(2015). Using a cognitive architecture with a
physiological substrate to represent effects of a
psychological stressor on cognition. Computational
and Mathematical Organization Theory, 21(1), 90-
114.

Dancy, C. L., Ritter, F. E., & Gunzelmann, G. (2015). Two
ways to model the effects of sleep fatigue on
cognition. /n proceedings of the 13th International
Conference on Cognitive Modeling, Groningen,
Netherlands.

Hester, R. L., Brown, A. J., Husband, L., Iliescu, R., Pruett,
D., Summers, R., & Coleman, T. G. (2011).
HumMod: A modeling environment for the
simulation of integrative human physiology.
Frontiers in physiology, 2(12).

Hester, R. L., Iliescu, R., Summers, R., & Coleman, T. G.
(2011). Systems biology and integrative
physiological modelling. Journal of Physiology,
589(5), 1053-1060.

Ritter, F. E., Reifers, A. L., Klein, L. C., & Schoelles, M. J.
(2007). Lessons from defining theories of stress for
cognitive architectures. In W. D. Gray (Ed.),
Integrated Models of Cognitive Systems (pp. 254-
262). New York, NY: OUP.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

The Distributed Adaptive Control Architecture of the Embodied Situated Mind

Paul F.M.J. Verschure (paul.verschure@upf.edu)
Center of Autonomous Systems and Neurorobotics, University of Pompeu Fabra,
Catalan Institute of Advanced Studies (ICREA)
Barcelona, Spain

Keywords: Cognitive Architecture; Distributed Adaptive
Control (DAC); Mind, Brain, Bode Nexus (MBBN).

Introduction

This tutorial introduces the Distributed Adaptive Control
(DAC) theory of the principles underlying the Mind, Brain,
Body Nexus (MBBN) that has been developed over the last
20 years (Verschure, 2003; Verschure, 2016). DAC assumes
that the brain maintains stability between an embodied
agent, its internal state and its environment through action.
It postulates that in order to act, or know how, the brain has
to optimize 5 fundamental objectives which can be labeled
as: why, what, where, when and who. Thus the function of
the brain is to continuously solve the so-called H5W
problem with ‘H” standing for the ‘How’ an agent acts in the
world. The DAC theory is expressed as a neural-based
architecture implemented in robots and organized in two
complementary structures: layers and columns. The
organizational layers are called: reactive, adaptive and
contextual, and its columnar organization defines the
processing of states of the world, the self and action or the
interaction between the first two.

After an overview of the key elements of DAC, the
mapping of its key assumptions towards the invertebrate and
mammalian brain is described. The general overview of
DAC’s explanation of MBBN is combined with examples of
application scenarios in which DAC has been validated,
including mobile and humanoid robots, neuro-rehabilitation
and the large-scale interactive space Ada. In this tutorial we
will provide the elements necessary to implement an
autonomous control system based on the DAC architecture
and we will explore how the different layers of DAC
contribute to solving a foraging task

Foraging is an advanced, goal-oriented behavior where
prior knowledge of an environment and acquired behavioral
strategies must be matched to the novelty and the hazards
presented by an unpredictable world. DAC is based on the
fundamental assumption that foraging can be explained on
the basis of the interaction of three layers of control:
reactive, adaptive and contextual. DAC was originally
proposed as model for classical and operant conditioning.
The reactive layer provides a set of reflexes allowing the
system to interact with the environment — unconditioned
stimuli to unconditioned responses. The adaptive layer is a
model of classical conditioning and fulfills a twofold task.
On the one hand it learns to associate the conditioned
stimuli to the unconditioned responses, forming the

conditioned responses. On the other hand, it forms internal
representations of the conditioned stimuli, which are used
by the contextual layer. We can define it as acquiring and
shaping the agent-environment specific state space. The
contextual layer is a model of operant conditioning
providing the system with short and long term memory
structures. The sensorimotor contingencies formed at the
level of the adaptive layer are acquired and retained in these
memory structures, forming behavioral sequences or
policies. The representations stored in the contextual layer
are constantly matched against the ongoing perceptions
allowing for the retrieval of successful behavioral sequences
in similar contexts.

The prototypical robot test case for DAC is a foraging
task in an open arena. In this task, the robot, equipped with
proximal and distal sensors, explores the arena in search of
light sources while avoiding collisions with the surrounding
wall. Colored patches on the floor serve as landmarks for
navigation. In the framework of classical conditioning, the
proximal sensors (e.g., distance and light) serve as aversive
and appetitive unconditioned stimuli. Close to the light or
when colliding with the wall an unconditioned response is
triggered such that the robot approaches the light or turns
away from the wall. The colored patches serve as
conditioned stimuli. A visualization of such a task can be
seen in Figure 1.

In this tutorial students will learn how to control the robot
through the DAC architecture implemented using the IQR
neuronal networks simulator (Bernardet et al., 2010)
interfaced with the Gazebo robot simulator (Koenig et al.,
2004) as seen in Figure 2. IQR implements the neuronal
modules of the brain of the agent and Gazebo acts as the
server of the simulated 3D environment. A VirtualBox
Ubuntu virtual machine with a fully configured simulation
setup and the DAC book (available at
http://csnetwork.eu/CSN%20Book%?20Series) accompany
this tutorial.

Presenter

Paul Verschure is a professor at Universitat Pompeu Fabra,
research professor at the Catalan Institute of Advanced
Research and director of the Center of Autonomous Systems
and Neurorobotics in Barcelona (Spain). His scientific aim
is to find a unified theory of mind, brain and body through
the use of synthetic methods and to apply such a theory to
the development of novel cognitive technologies. Paul
Verschure has pursued his research at different institutes in
the US (Neurosciences Institute and The Salk Institute, both

in San Diego) and Europe (University of Amsterdam,
University of Zurich and the Swiss Federal Institute of
Technology-ETH and Universitat Pompeu Fabra in
Barcelona). Prof. Verschure works on Dbiologically
constrained models of perception, learning, behavior and
problem solving that are applied to wheeled and flying
robots, interactive spaces and avatars. He maps these
models to societal impact in the domains of health, cultural
heritage and education. The results of these projects have
been published in leading scientific journals including
Nature, Science, PLoS, Neuron, Proceedings of the Royal
Society and PNAS.

o8 +%Z @™

Ml Sees 1y el T Facter:

Figure 1: Gazebo robot simulator. Screenshot of Gazebo
simulator showing the prototypical top view of a foraging
task used to benchmark DAC with colored patches on the
floor and a source of light represented by a bigger white
patch on top of the screen.

Figure 2: The IQR Neural Simulator. Screenshot of IQR
showing a neural based implementation of the reactive
layer.

10

References

Bernardet, U., & Verschure. P.F.M.J. (2010). "igr: A tool
for the construction of multi-level simulations of brain
and behaviour." Neuroinformatics 8.2, 113-134.

Koenig, N., & Howard, A. (2004). "Design and use
paradigms for gazebo, an open-source multi-robot
simulator." Intelligent Robots and Systems, 2004. (IROS
2004). Proceedings. 2004 IEEE/RSJ International
Conference on. Vol. 3. IEEE.

Verschure, P.F., Voegtlin, T., & Douglas, R.J. (2003).
Environmentally mediated synergy between perception
and behavior in mobile robots. Nature, 425(6958), 620-
624.

Verschure, P.F. (2016). Synthetic consciousness: the
distributed adaptive control perspective. Phil. Trans. R.
Soc. B, 371(1701), 20150448.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling
(ICCM 2016). University Park, PA: Penn State.

Tools for Cognitive Modeling: Developing tasks for universal access by models and
human participants, exploring a massive parameter space to find the best fit of
model to data, and analyzing the persuasiveness of the best-found fit

Vladislav “Dan” Veksler (vdv718@gmail.com)
U.S. Army Research Laboratory,
Human Research & Engineering Directorate
Aberdeen Proving Ground, MD, USA

Keywords: Simple Task-Actor Protocol (STAP);
MindModeling.org; Model Flexibility Analysis.

Introduction

The aim of this tutorial is to walk participants through much
of the cognitive modeling research cycle, from
experiment/simulation ~ development, to parameter
exploration for finding the best fit of model predictions to
empirical results, to determining the persuasiveness of the
found fit (vis-a-vis Roberts & Pashler, 2000). This tutorial
will provide hands-on experience with (1) Simple Task-
Actor Protocol (STAP; Veksler, et al., in press) — a
technology that enables reuse of task software for human
participants in lab, online, and on mobile devices, and
computational participants regardless of computational
framework and programming language; 2)
mindmodeling.org (Harris, 2008) — a free online parallel
computing resource for exploring large parameter spaces;
and (3) Model Flexibility Analysis (Veksler, Myers, &
Gluck, 2015) — a method for estimating model
complexity/flexibility.

Harris, J. (2008). MindModeling@Home: a large-scale
computational cognitive modeling infrastructure. In The
Sixth Annual Conference on Systems Engineering
Research (pp. 246-252). Los Angeles, CA.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? A comment on theory testing. Psychological review,
107(2), 358.

Veksler, V. D., Buchler, N., Lebiere, C., Morrison, D., &
Kelley, T. D. (in press). The performance comparison
problem: Universal task access for cross-framework
evaluation, Turing tests, grand challenges, and cognitive
decathlons. Biologically Inspired Cognitive Architectures.

Veksler, V. D., Myers, C. W., & Gluck, K. A. (2015).
Model Flexibility Analysis. Psychological Review,
122(4), 755-769.

11

This page intentionally blank.

12

Long Papers

13

This page intentionally blank.

14

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Cognitive Code: An Embedded Approach to Cognitive Modeling

Dario D. Salvucci (salvucci@drexel.edu)

Department of Computer Science, Drexel University
3141 Chestnut St., Philadelphia, PA 19104, USA

Abstract

For several decades, production systems have been the
dominant framework in which (primarily) symbolic cognitive
models have been developed. This paper proposes a different
approach, cognitive code, in which behavioral models are
developed directly in a modern programming language.
However, unlike standard code, cognitive code has simulated
timing and error characteristics intended to mimic those of
human cognitive, perceptual, and motor processes. Some of the
benefits of this new approach are illustrated in sample models
of a paired-associates task, reading task, and dual-choice task.

Keywords: Cognitive architectures; ACT-R

Introduction

Since their introduction decades ago, cognitive architectures
(Anderson, 1983; Newell, 1990; see also Gray, 2008) have
provided a rigorous computational framework in which
scientists can build and run cognitive models. Most
importantly, a cognitive architecture represents a “unified
theory of cognition” (Newell, 1990) that allows detailed
exploration of the integration among various human systems,
including cognitive, perceptual, and motor systems.
Cognitive architectures have facilitated major advancements
in cognitive science for specific research domains such as list
memory (Anderson, Bothell, Lebiere, & Matessa, 1998) and
multitasking (Borst, Taatgen, & van Rijn, 2010); at the same
time, architectures have been applied to real-world domains
such as gaming (Laird, 2002) and driving (Salvucci, 2006).

Even considering these successes, adoption of cognitive
models outside of the academic research community' has
been limited. There are arguably several reasons for this
limited adoption:

Programming Paradigm and Language. Production
systems have been the dominant framework in which
(primarily symbolic) cognitive models have been
implemented. Production systems, based on representation of
processes as condition-action production rules, have been key
to certain theoretical claims (e.g., learning from instructions:
Taatgen, Huss, Dickison, & Anderson, 2008). However, from
the perspective of programmers outside the cognitive-
architecture community, production systems are largely an
unknown quantity; instead, modern programmers typically

! Companies such as Carnegie Learning and Soar Technology have
successfully applied cognitive models beyond the walls of the
research community; still, the impact of cognitive modeling pales in

15

develop code using modern procedural and object-oriented
programming languages (Java, C++, Python, etc.). Learning
the very different programming paradigms and patterns used
in production systems is a significant barrier to developing
models, even for those with a significant computer-science or
programming background.

Model-Centered Development. For those in the research
community, the cognitive model is often the centerpiece of
the main research effort, and a great deal of time and care is
taken to develop these models. For this reason, modeling
frameworks often include an integrated user-interface
environment and suite of tools to facilitate model
development. However, for an outsider looking to embed a
cognitive model into their own project—say, a game-engine
programmer who wants to develop a cognitive agent to
embed into a larger game—the model is a peripheral
component rather than a central one. For this audience,
learning an entirely new modeling language and development
environment can be a large investment, often too large to
make it worthwhile.

Lack of Model Integration. Cognitive modelers, especially
those interested in cognitive architectures, have long stressed
the benefits of a community-driven approach to unified
theories of cognition. Over the years, this integration has
largely come about at the architectural level, with a wide set
of models using a single architecture or framework to
generate behavior. Unfortunately, integration among models
themselves—for example, reuse of existing models to
develop new models—has arisen much less frequently, partly
because modeling frameworks have not emphasized rigorous
formal APIs that are crucial for integration.

Modern cognitive architectures and models have much to
offer beyond the boundaries of the research community; with
a blend of psychological theory and computational
simulation, they contain a breadth and depth of predictive
accounts that can be widely useful for other research and
practical domains. Yet, because of the reasons above, the
investment needed to extracting predictions from these
models is often too large for those with less than a primary
interest in cognitive modeling.

comparison to related research methodologies—for instance,
machine learning—that have exploded in popularity.

Cognitive Code

Cognitive code is code embedded in a modern programming
language that aims to simulate and mimic human cognitive,
perceptual, and motor processes. Of course, cognitive models
and architectures have long wused computational
representations to simulate human processes, but they have
(as noted earlier) generally defined their own programming
language for this purpose, and generally relied on production
systems as a central tenet of their representations. In contrast,
cognitive code is embedded and written directly in an existing
programming language, using structures and patterns already
familiar to most programmers. At the same time, cognitive
code differs from standard code in that it includes new
software design patterns and libraries to facilitate the
simulation of timing and errors inherent in human processes.

Before delving into the details, let us illustrate the basic
concept with a simple example. Consider sample cognitive
code (here in Java) that stores a new piece of information into
memory:

memory.store(new Chunk("cat")

.set("owner", "Jane")
.set("name", "Whiskers"));

Here we create a “chunk” of information (as in ACT-R:
Anderson, 2007) that defines knowledge about Jane’s cat,
and we store it into memory. Later, we try to recall this
information from memory with a query:

Chunk chunk memory.recall(new Query("cat")
.add("owner", "Jane"));

In each case, the code uses patterns that would be
straightforward and recognizable by most programmers. At
the same time, this code conceptually differs from standard
code in two ways. First, each step incurs a simulated temporal
cost that corresponds to the time needed to perform this
action in the cognitive system. In our example, the
memory.store() action incurs some time, say a few hundred
milliseconds, to add this knowledge to memory, and the
memory.recall() action also incurs an amount of time that
may depend on many factors (time since learning, number of
times practiced, etc.). Second, each step has some potential
for failure that mimics a true cognitive system; for example,
the memory.recall () action could fail and return a nu/l result
depending on the current state of the cognitive system.

We now describe a prototype system that embodies the
cognitive code approach. The system is implemented in Java
as a library that can be readily integrated into other projects.

Core Simulation System

The core system centers on the concept of an agent that acts
within the simulated world. An agent consists of any number
of modules that define behavior for a particular subsystem
(e.g., memory, vision, etc.) or for a particular domain
(arithmetic, driving, etc.). The basic unit of information
shared across modules is an ifem, which comprises a set of
slot-value pairs, one of which can be the “isa” type of the
item. Modules can utilize workers to perform work for them,
and can share information with other threads through buffers.

16

Because the passage of time is central to the cognitive code
approach, we also require some way to simulate a central
clock within the code. Within a single thread, we simply
maintain a simulated time to be incremented by each
cognitive step. In the general case, though, we need multiple
threads to share a single clock; human multitasking will be
best represented as separate cognitive threads, as discussed
later, and even a single thread may require that certain
operations happen in parallel (e.g., moving a hand while
recalling information).

The core simulation enables the central clock as follows.
The system assumes that individual operators on a particular
thread can define their own delays, effectively stopping
execution until the clock reaches the new time after delay.
For example, let’s say we run the following code on one agent
thread:

agent.wait(1.0);
memory.store(new Chunk("cat"));

and run the following code on another agent thread:

agent.wait(2.0);
Chunk chunk memory.recall(new Query("cat"));

The first thread requests that time advance to 1.0 seconds,
while the second thread requests an advance to 2.0 seconds.
In this situation, the first thread succeeds in advancing the
clock to 1.0 seconds, and then performs the memory store.
The second thread’s wait step will block until 2.0 simulated
seconds have passed, guaranteeing that the subsequent recall
step will happen only after the first thread’s store step.

The underlying implementation of the shared clock uses a
type of cyclic barrier (Java’s Phaser class) to ensure that all
concurrent threads are synchronized as each reaches a new
time step. If desired, the system can be run in real time such
that the clock corresponds to the actual time (or a multiple
thereof). In typical usage, however, simulated time does not
need to correspond to real time; in fact, it is often
advantageous to run the simulation as quickly as possible,
and then examining time after the fact for various purposes
(e.g., to predict how long a particular set of actions might
take).

Memory System

The memory system is based wholly on the ACT-R theory of
declarative memory (Anderson, 2007). In this theory,
memory consists of chunks of knowledge with slot-value
pairs, which over time strengthen or decay with practice or
lack of use. In particular, each chunk has an associated
activation that defines how readily the chunk can be recalled,
as dependent on its prior usage: if a chunk is “used” (recalled
or re-stored) at times tj,, the activation A; for chunk i can be

defined as
Ai =In <Z t,;d>

k

where d is the memory decay factor that determines how
quickly the usages decay. Given the chunk’s activation, we
can determine the probability to recall the chunk as

1

Pr (recall) = e_(Aﬂ—_T)/S

for a retrieval threshold T and noise level s. If the chunk can
be successfully retrieved, the time needed for retrieval is
defined as

Trecau = Fe~4i

In our cognitive code system, chunks are stored using the
memory.store () action, which incurs only a 50 ms time for
a cognitive step—the same 50 ms delay used in many
cognitive architectures for the firing time for a production
rule (e.g., ACT-R, Soar). For recall, our system includes two
types of actions. First, there is a non-blocking action
memory.startRecall() that initiates the recall action but
allows the code to continue past this point after a 50 ms
cognitive step time. A non-blocking action of this type allows
the code to continue and perform other actions while recall is
taking place (e.g., watching for a visual stimulus or typing a
key). The memory.getRecalled() action is then used to
access the recalled information, and this command blocks
until the recall is complete. Second, there is the blocking
command we saw earlier, memory.recall(), which is
equivalent to performing a memory.startRecall() followed
by a memory.getRecalled(). Both types of recall actions
take as an argument a query that partially defines the desired
chunk (as seen earlier with the “cat” example), and both can
fail and return null if the chunk is not successfully recalled.

Chunk rehearsal—that is, the usages defined earlier—can
take several forms. When a chunk is initially created, this is
defined as its first use. If an exact copy of this chunk is stored
later, the copy is merged into the original chunk and becomes
another use of the chunk. Finally, any recall of the chunk
serves as a rehearsal and adds to the use count. Thus, all of
these forms contribute to the gradual increase in a chunk’s
activation; in contrast, the lack of use causes any early uses
to decay away, making the chunk more difficult to recall and
more costly (in terms of time) if successfully recalled.

Perceptual System

The perceptual system is primarily based on ACT-R and
partly based on a related theory of eye movements. The vision
module, following ACT-R, assumes a spotlight of visual
attention that moves according to a two-stage where-what
process of finding objects and encoding objects. The non-
blocking action vision.startFind() attempts to find a
visual location that matches the given query based on
perceptual features available in peripheral vision (like
position, color, etc.), and its complementary command
vision.getFound() returns the found location. Their
blocking counterpart vision.find() achieves the same
effect in a shorthand simpler action. Another command,
vision.waitFor (), waits until a location matching the query
appears in view (e.g., to model waiting for a visual stimulus).

17

Once a location is found, there are analogous actions for
encoding the object at the location and returning information

about the object: the non-blocking action
vision.startEncode() and its associated action
vision.startEncode(), along with their blOCking

counterpart vision.encode().

The movement of visual attention from one object to
another generates movements of the system’s simulated eyes
as defined by the EMMA theory (Salvucci, 2001), which in
turns derives from the E-Z Reader theory of eye movements
in reading (Reichle, Pollatsek, Fisher, & Rayner, 1998). This
provides the system with a powerful predictive dimension:
the code never explicitly moves the eyes, but in moving
attention, the eyes follow and demonstrate several interesting
aspects of eye-movement behavior: the time lag between a
movement of attention and a movement of the eyes; the
possibility of skipping over an encoded object when that
object is easy to encode (e.g., a high-frequency word); and
the possibility of re-fixating an encoded object with multiple
eye fixations when that object is difficult to encode (e.g., a
low-frequency word).

In addition to vision, the system includes audition to model
detection and encoding of aural information. Specifically, the
audition module includes audition.startDetect() and
audition.detect() actions (non-blocking and blocking,
respectively) to detect a sound, and an associated action
audition.waitFor ()that waits for the next sound that
matches a query. It also includes audition.startEncode()
and audition.encode() actions that are analogous to these
actions in the vision module.

Motor System

The motor system is currently focused on using a mouse and
keyboard in a desktop computer environment. The mouse-
movement module uses Fitts’ law in the same manner as
ACT-R and EPIC (Meyer & Kieras, 1997). The module
includes the expected actions to move and click the mouse:
mouse.startMoveTo() and mouse. startClick() as non-
blOCking actions, and mouse.moveTo() and mouse .click()
as blocking actions.

For typing, the motor system is based on the TYPIST
model (John, 1996). Typing is invoked with a typing.type()
action that specifies the text to output. The typing module
breaks up the given text into words and then types each word
as a 50 ms cognitive step followed by the execution of the
motor actions for each keystroke; shifted keys (e.g., capital
letters) require a keystroke for the shift key before the
keystroke for the character. The time for each keystroke was
estimated as a function of typing speed as measured in gross
words per minute. Specifically, a function was fit to Figure 4
of John (1996) to yield the following estimate of keystroke
time Ty, as a function of words per minute wpm:

Tiey = -0000083(wpm)? — .003051(wpm) +.31727

The typing module can thus be set to any typing speed
between 30 and 120 words per minute for an estimate of
typing times at that speed.

String word
Chunk chunk
if (chunk != null)
typing.type(chunk.getString("digit"));
int digit =

(String) vision.encode(vision.waitFor (new Query("word")));
memory.recall(new Query("pair").add("word", word));

(Integer) vision.encode(vision.waitFor (new Query("digit")));

memory.store(new Chunk("pair").set("word", word).set("digit", digit));

Figure 1: Cognitive code for the paired-associates task.

The other component of the motor system is the speech
module, as represented by a speech.say() action that takes
a simple string as input. Roughly like the ACT-R speech
system, this module breaks the string into syllables and
outputs the speech with a delay equal to a base time (200 ms)
plus an execution time per syllable (150 ms). Whereas ACT-
R has a simple assumption of syllables (one syllable per 3
characters), the module here uses a more complex method to
break up syllables according to a number of rules for English
pronunciation tested on a small corpus of common words.

Cognitive Code as Software

The fact that cognitive code is implemented as software in a
mainstream programming language lends it several benefits
over cognitive models developed in a typical cognitive
architecture approach. In contrast to a monolithic cognitive
architecture, modules in cognitive code are instantiated as
needed, and using different implementations of a particular
type of module does not pose a problem. For example, the
following code defines a new agent, the eyes of the agent, and
finally the vision module:
Agent agent = new Agent();

Eyes eyes = new Eyes(agent);
Vision vision = new Vision(agent, eyes);

Various methods for these components are easily accessible:
for instance, a programmer might check aspects of the agent
(e.g., agent.getTime()), move the eyes to a new location
(eyes.moveTo()), or change parameters of the visual system
(vision.setFindTime()). Developers can extend objects to
include additional functions, or can build new objects that use
cognitive-code objects as primitives. In fact, as the approach
evolves, we expect different implementations of the modules
to provide alternative theoretical approaches—in this case,
say, we might have a different visual system based on pixels
and salient features.

Another large benefit is that cognitive code inherits the
many structures and tools already used by modern software
for developing, interfacing, and testing code. Instead of
having specialized IDEs (integrated development
environments), cognitive code allows a programmer to use
their preferred IDE for development. Cognitive code also
inherits the robust APIs (application program interfaces) of
modern programming languages, such as packages, classes,
interfaces, and related constructs—a big advantage in
accessing others’ code and successfully integrating it with
one’s own code. Finally, cognitive code can be tested

2 http://act-r.psy.cmu.edu

18

rigorously utilizing the same tools commonly in use today
(e.g., JUnit tests in Java). In this case, each test can check not
only whether the code runs correctly as a piece of software,
but also whether some cognitive code fits an appropriate
empirical (human) data set; in other words, the code’s
correctness also depends on whether it accurately mimics the
behavior of human behavior in the chosen domain.

Ilustrative Examples

We now provide a few illustrative examples of cognitive
code, all of which represent re-implementations of existing
models developed in a cognitive architecture. Our goal here
is to demonstrate that cognitive code can produce much the
same behavior and predictions as architecture models, but the
code blocks that generate these behaviors are simpler and
more learnable than their architectural counterparts.

Paired Associates

One of the standard models in Unit 4 of the ACT-R tutorial®
is a model of the paired-associates task. In this task,
participants see a word stimulus (e.g., “king”) and must type
a digit that is associated to that word in the experiment (e.g.,
“7”). The participant does not know the associations at the
outset, but over time, they learn them and gradually become
better at recalling the associated digit, improving their
correctness and (for correct responses) improving their
response times. Students studying the ACT-R architecture
might model this task as they learn to understand ACT-R
memory theory and implement their first models of memory
storage and recall. Even after a few prior lessons in the syntax
and semantics of the ACT-R modeling language, the paired-
associates model can be difficult for students to understand
and might take a typical student one to a few hours to work
through and understand.

A cognitive-code model of the paired-associates task is
shown in Figure 1. Starting at line 1, the model first waits for
a word, blocking on the vision.waitFor () command until
the stimulus appears, and then encodes the word. It then tries
to recall a chunk that represents the word-digit pair in
memory; if the chunk is successfully recalled, the model
types the digit as a response. The model then waits for the
digit (which appears in all cases) and stores the word-digit
pair to memory. (Note that if the word-digit pair is already in
memory, this strengthens the pair chunk as described earlier.)
This model behaves essentially the same as the ACT-R
tutorial model, and successfully produces the behavioral

Visual visual =
while (visual != null) {
vision.encode(visual);
agent.wait (MEMORY RECALIL_DURATION);

vision.find(new Query("word"));

visual = vision.find(new Query("word").add(Visual.SEEN, false));
}
Figure 2: Cognitive code for the reading task.
agent.run(() -> {
Object tone = audition.encode(audition.waitFor(new Query("tone")));
if (tone.equals("low"))
speech.say("low");
)i
agent.run(() -> {
Object stimulus = vision.encode(vision.waitFor(new Query("stimulus")));
if (stimulus.equals("0--"))
typing.type("1");
)i

agent.wait(1.0);

vision.add(new Visual("stimulus",
audition.add(new Aural("tone"),
agent.waitForAll();

10, 10,
"low");

10,

10),

"0-=");

Figure 3: Cognitive code for the dual-choice task: blue for the aural-vocal task, green for the visual-manual task.

found {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false}
encode {isa:"stimulus" x:10 y:10 w:10 h:10 seen:false}

0.000 agent wait for {isa=stimulus}

0.050 agent wait for {isa=tone}

1.000 agent.vision

1.000 agent

1.050 agent.audition found {isa:"tone" heard:false}
1.050 agent encode {isa:"tone" heard:false}
1.185 agent.vision encoded O--

1.185 agent type "1"

1.235 agent.hands typing "1"

1.385 agent.audition encoded low

1.385 agent say "low"

1.435 agent.speech saying "low"

1.444 agent.hands typed 1

1.785 agent.speech said "low"

Figure 4: Trace of the cognitive code in Figure 3: blue for the aural-vocal task, green for the visual-manual task.

patterns exhibited by people, namely the increased accuracy
and decreased response time with practice.

Upon learning the cognitive-code approach, arguably the
most difficult aspect of this code is learning the way that
timing works—especially understanding that some actions
will block until a stimulus appears or until a chunk is recalled.
In general, though, a programmer versed in Java can easily
understand the control flow here, and knows how to get this
code to compile correctly and how to access API
documentation when needed. (For example, we have not
explained the details of the Query class used in the visual and
memory requests, but these details are easily discovered in
the documentation through a modern IDE.)

Reading

As part of a validation of the EMMA model of eye
movements, Salvucci (2001) described a parsimonious model
of sentence reading that simply encoded words from left to
right (ignoring any deeper understanding to focus on the eye
movements themselves). This model was a test of EMMA’s

19

ability to predict eye movements directly from
straightforward shifts of visual attention, examining
measures of gaze durations, first-fixation durations, and skip
probabilities as a function of word frequency.

A similarly straightforward snippet of cognitive code that
performs sentence reading is shown in Figure 2. The code
implements a loop that iteratively finds and encodes each
word. The find actions in lines 1 and 5 utilize the property of
the visual system that, by default, vision finds locations
closest to the current eye location; in line 5, the find
command also makes sure to find a word that has yet to be
seen. When a “visual” is found, the model encodes the
contents of the word and fakes the semantic processing of the
word by simply waiting for some time delay intended to
mimic a lexical retrieval. Of course, a more rigorous model
of reading would need to flesh out this aspect of the code, but
for now, this code is sufficient to move attention along from
one word to the next, triggering the predictions of the EMMA
model and its resulting eye movements. The behavior of this
model fits well to the empirical data, with correlations above
.95 and low errors for the three measures mentioned above.

When developing such a model in a production-system
architecture, the control flow of the model can be very
difficult for students to grasp—both the flow within an
individual production rule and the higher-level control flow
among the production rules. In contrast, the iterative loop
here is a familiar construct to programmers, and more clearly
demonstrates the simplicity of the reading model and thus the
predictive power of the underlying model of eye movements.

Dual Choice

Human multitasking has been characterized as the interaction
of separate cognitive threads that interleave their processing
(Salvucci & Taatgen, 2008, 2011). Figure 3 shows a simple
example of how threading would work in a cognitive-code
approach, illustrating a model of a dual-choice task that has
been characterized as “perfect time-sharing” (Schumacher et
al., 2001). This code starts two threads (via the agent.run()
command): the first thread (lines 2-4, blue text) listens for a
tone and then generates a speech response; and the second
thread (lines 7-9, green text) waits for a visual stimulus and
then generates a keystroke response. The task code (lines 11-
14) waits 1 second, presents simultaneous visual and aural
stimuli, and finally waits for all threads to complete.

The resulting simulation trace of this model, including
timing (left-most column), is shown in Figure 4, with trace
events color-coded as belonging to the first thread (blue) or
the second (green). Both threads start waiting for their
respective stimuli at the outset of the simulation. When the
stimuli appear at the 1.0-second mark, the second thread sees
the visual stimulus and begins to encode it; meanwhile, the
first thread requires 50 ms to detect the aural stimulus, and
after this delay it also encodes the sound. The motor
responses—typing for the second thread, speech for the
first—overlap such that neither thread experiences any time
delays. Thus, the overall trace closely resembles the kind of
perfect time-sharing behavior exhibited by more complex
ACT-R models of this task (e.g., Salvucci & Taatgen, 2008).

Discussion

Cognitive code aims to strike a balance between the
theoretical rigor of modern cognitive architectures and the
practicality of modern programming languages and
environments. The above examples show how concepts of
cognitive code can lead to much simpler models, especially
when compared with production-system architectures, and
especially for the typical programmer versed in procedural
and object-oriented languages commonly in use today.
There are at least two limitations of cognitive code
compared to production systems that should be noted. First,
production systems have the potential to be more flexible in
their flow of control, whereas the procedural code here has a
more rigid sequencing of actions. However, one might argue
that most production-system models do not exploit this
flexibility, but instead constrain the rules to embody the same
kind of procedural control flow as the cognitive code here.
Second, production systems allow for learning of the rules
themselves (e.g., ACT-R’s production compilation), whereas

20

cognitive code is fixed by the developer. Allowing for
procedural learning through cognitive code is still under
exploration, but for now, this is perhaps its biggest limitation
compared to production systems. Nevertheless, we remain
hopeful that the benefits of the cognitive-code approach will
ultimately pay dividends in expanding the usability and
learnability of cognitive modeling to a wider audience.

References

Anderson, J. R. (1983). The Architecture of Cognition.
Cambridge, MA: Harvard University Press.

Anderson, J. R. (2007). How Can the Human Mind Occur in
the Physical Universe? New York: Oxford University
Press.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38, 341-380.

Borst, J.P., Taatgen, N.A., & van Rijn, H. (2010). The
problem state: A cognitive bottleneck in multitasking.
Journal of Experimental Psychology: Learning, Memory,
& Cognition, 36, 363-382.

Gray, W. D. (2008). Cognitive architectures: Choreographing
the dance of mental operations with the task environment.
Human Factors, 50, 497-505.

John, B. E. (1996). TYPIST: A theory of performance in
skilled typing. Human-computer interaction, 11, 321- 355.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory
of executive cognitive processes and multiple-task
performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

Laird, J. E. (2002). Research in human-level Al using
computer games. Communications of the ACM, 45, 32-35.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence, 33, 1-64.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K.
(1998). Toward a model of eye movement control in
reading. Psychological Review, 105, 125-157.

Salvucci, D. D. (2001). An integrated model of eye
movements and visual encoding. Cognitive Systems
Research, 1,201-220.

Salvucci, D. D. (2006). Modeling driver behavior in a
cognitive architecture. Human Factors, 48, 362-380.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent multitasking.
Psychological Review, 115,101-130.

Salvucci, D. D., & Taatgen, N. A. (2011). The Multitasking
Mind. New York: Oxford University Press.

Schumacher, E. H., et al. (2001). Virtually perfect time
sharing in dual-task perfor- mance: Uncorking the central
cognitive bottleneck. Psychological Science, 12, 101-108.

Taatgen, N. A., Huss, D., Dickison, D. & Anderson, J. R.
(2008). The acquisition of robust and flexible cognitive
skills. Journal of Experimental Psychology: General, 137,
548-565.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Microgenetic Analysis of Learning a Task: Its Implications to Cognitive Modeling

Jong W. Kim (jong.kim@ucf.edu)
University of Central Florida
Orlando, FL 32816 USA

Frank E. Ritter (frank.ritter@psu.edu)
College of Information Sciences and Technology, Pennsylvania State University
University Park, PA 16802 USA

Abstract

We report a microgenetic and quantitative analysis of a large
learning data set. We analyzed performance change by four
practice trials (once per day) and by the 14 different subtasks
with more than 500 total keystrokes. Specifically, we
compared performance change across the subtasks—some
subtasks are cognitive problem-solving and others are
perceptual-motor driven tasks. This microgenetic approach
provides an understanding of how a local performance in a
task affects the global performance of a whole task. We
computed the learning curve constants for the different
subtasks. We found evidence to support the KRK theory of
learning and retention (Kim & Ritter, 2015). The results
suggest that learning varies by subtask and by its type.

Keywords:
modeling.

Microgenetic analysis; Learning; Cognitive

Introduction

In general, learning can be described as a speed-up or
practice effect (Ritter, Baxter, Kim, & Srinivasmurthy,
2013; Seibel, 1963). To help better understand our learning
performance, it is necessary to focus on a couple of variable
factors in tasks and their types. Complex tasks may consist
of different components of subtask skills. Presumably,
different subtask skills may be learned and retained in our
memory. This understanding would affect the perspectives
of learning, learning environments, instructional systems
(e.g., contents), and interface design of such systems.

As one small step contributing to learning research, we
investigated learning and retention of a complex task
consisting of the 14 subtasks by comparing two input
modalities (Kim & Ritter, 2015). This investigation suggests
that the prevalence of GUI interfaces can be attributed to a
more relearnable design compared with a keystroke-based
interface, and suggests more investigation on where learning
(and forgetting) occur during the course of complex tasks.

In this paper, we conduct a deeper analysis; a
microgenetic analysis of learning in an attempt to identify
how learning is different across the 14 subtasks. We look at
individual subtask skill components over four practice trials.
This approach is similar to a microgenetic study examining
sources of change in cognitive development and learning
(e.g., Agre & Shrager, 1990; Moon & Fu, 2008; Siegler,
20006). It is expected that our approach can provide a deeper
understanding of where learning occurs and how different
knowledge types are learned.

21

Learning as a Whole Task

A considerable amount of literature suggests a consensus
understanding of learning; a three-stage process of learning
provides a theoretic account of performance change
including (a) acquiring declarative knowledge from
instruction to perform a task in the first stage,
(b) consolidating the acquired knowledge into a procedural
form with practice in the second stage, and (c) tuning the
knowledge toward overlearning exhibiting the speedup
effect of the knowledge application mental process
(Anderson, 1982; Fitts, 1964; Rasmussen, 1986). Based on
this consensus foundation of learning, a study of forgetting
expands how an individual learns and retains knowledge
and skills theoretically, empirically, and computationally
(Kim & Ritter, 2015), shown in Figure 1. A widely used
cognitive architecture, = ACT-R, implements the
computational features of the three-stage process by
proposing that performance change follows a regularity
known as the power law of practice—the time to complete a
task speeds up with practice according to a power function
(e.g., Anderson, Fincham, & Douglass, 1999; Newell &
Rosenbloom, 1981; Seibel, 1963). An exponential function
is also widely accepted to summarize the practice effect
(e.g., Heathcote, Brown, & Mewhort, 2000).

Catastrophic memory failure
X X
Task - £ 1st stage
Co?ir;r:eetlon Declarative ’/,_ I forgetting
/7
r\v
/ /\I
2nd stage
1st stage forgetting
of learning Declarative + Procedural s -
7
/
/7 /\/
__- 3rd stage
2r}d stage of Procedural _ = = — forgetting
Coggg‘ig]a%ing Learning with all
3rd stage of three stages
learning: Tuning

Practice Trials

Figure 1: The KRK three-stage learning and retention theory
(Kim & Ritter, 2015).

Recent reports provide a predictive analysis of a
spreadsheet task, the Dismal spreadsheet task (Kim &
Ritter, 2015; Paik, Kim, Ritter, & Reitter, 2015), using
KLM-GOMS (Card, Moran, & Newell, 1983) and ACT-R
(Anderson, 2007). These analyses examine performance
change from a novice through an intermediate to an expert

performing a complex task. The task includes subtasks, and
the time to complete the task is predicted by the aggregate
resources subtasks use (i.e., cognitive, perceptual, and
perceptual-motor skills). These predictions can be
meaningfully decomposed to each subtask skill and single
action, and these can be compared with the data on the same
level, providing an organization for a microgenetic analysis.

A Baseline Prediction

As a baseline prediction, a KLM-GOMS model was used to
predict error-free expert performance on the Dismal task.
The task completion times were computed to be compared
with ACT-R predictions and the human data of the whole
task of the Dismal spreadsheet task. The model includes
primitive physical-motor operators (K — keystroke, P —
pointing, H —homing, and D — drawing), mental operators
(M), and system response time (R), as shown in
Equation (1). In the interest of simplicity and because of
relatively fast response times, we ignored the system
response time (73=0).

Texecztte:TK+TP+TH+TD+TM+TR (1)

We used three physical-motor operators (K, P, and H) and
the mental operator (M) for time predictions of the Dismal
spreadsheet task. The default time was used for homing and
mental operators. During the mental operator time (7)),
participants mentally prepare what to press and retrieve
items from memory including the next step. We followed
the existing heuristic rules for determining the use of mental
preparation (Card, Moran, & Newell, 1983, p. 265) and used
the default time, 1.35s. We placed a mental operator in
front of all pointing activities (pointing to a menu item) and
all key-press activities (pressing a keystroke command). To
complete the first subtask (Open File), theoretically,
participants in the keyboard group needed 3 mental
operators (refer to Table 2). The homing time (7%) for hand
movements between different physical devices was 0.4 s.

To calculate the keystroke time (7%), we know that it
varies across individuals. We, therefore, computed the time
from the first keystroke to the last in the first subtask for
both modalities. The average keystroke time ranged from
0.95 s/keystroke on the first day of learning to
0.47 s/keystroke on the last day of learning. If we refer to
the keystroke time in Card et al. (1983, p. 264), our data
indicate the participants’ keystroke speed resided between
the worst typist, 1.20s and the speed of average non-
secretary typist, 0.28 s. We used 0.47 s for the Tx parameter
as an expert performance. Shift and control keys were
counted as a separate keystroke. The predicted task
completion time for users in the keyboard group was
666.67 s as seen in Table 2. We present the details of the
KLM-GOMS analysis of each subtask in the Microgenetic
Analysis of Learning section.

22

ACT-R Prediction

Several cognitive architectures predict learning, which is
beyond the capability of KLM. Particularly, the ACT-R
architecture provides predictions of performance changes
due to learning. Furthermore, the ACT-R model can predict
learning on this task from a novice to an expert, as shown in
Figure 2. The model consists of production rules and
declarative memory elements to represent practice effects,
which can be compared with human learning data (Paik et
al., 2015).

1800
|

—— Human Data
— —a— KLM

--0-- Novice

- 10% Expert
- 50% Expert
- 100% Expert

1400
|

Bo b

1000
|

Task Completion Time (sec.)
600
|

0 200
|

Trials

Figure 2: ACT-R models of the Dismal task (dashed lines,
from fully novice to previously practiced expert), along with
human aggregate data (X’s and SEM error bars), and the
KLM prediction (solid line) (taken from Paik et al., 2015).

The Task and Data

The task that we apply a microgenetic approach to is a large
complex office-related task, the Dismal spreadsheet task
(Kim & Ritter, 2015). Dismal is a spreadsheet that runs
within Emacs and was initially developed to analyze
behavioral process models and data (Ritter & Larkin, 1994;
Ritter & Wood, 2005).

The Task

The subtasks include: opening a spreadsheet file, saving the
file as another name, and completing a complex spreadsheet
manipulation by calculating and filling in several blank
cells, including five data normalization calculations, five
data frequency calculations, ten calculations of length, ten
calculations of total typed characters, four summations of
each column, and an insertion of two rows to type in the
current date and name using Dismal keystroke commands.
Together, they can be grouped into the 14 subtasks, as
shown in Table 1. More information about the task (e.g., the
task environment and the procedure) is available (Kim &
Ritter, 2015).

Table 1: The subtasks in the Dismal spreadsheet task.

Subtasks

Keystrokes

(1) Open File

Press C-x C-f
Type <normalization.dis> |

(2) Save As

Press C-x C-w
Type JWK.dis |

(3) Calculate Frequency
(B6 to B10)

Move the point to B6 by using C-p, C-n, C-

f, or C-b

Press e

Type"(/ (* c6 bl2) 100.0)" J
Repeat for B7 to B10

(4) Calculate Total
Frequency
(B13)

Move to the point to B13
Press e
Type "(dis-sum bl:b10)"

(5) Calculate
Normalization
(C1to C5)

Move the point to C1

Press e

Type"(/ (* 100.0 bl) bl2)" J
Repeat for C2 to C5

(6) Calculate Total
Normalization (C13)

Move the point to B13
Press e
Type "(dis-sum cl:c10)"

(7) Calculate Length
(D1 to D10)

Move to the point D1

Press e

Type "(length al)"
Repeat for D2 to D10

The task completion time and every keystroke movement
were measured by the Recording User Input (RUI) system
(Kukreja, Stevenson, & Ritter, 2006). The target
participants in this report used a keystroke-based interface
to complete the task. The raw data included every keystroke
and its time (in ms). This allows us to investigate
performance change on a more microgenetic level by
examining the time to perform each subtask and unit task
during the practice trials.

Microgenetic Analysis of Learning

We next describe the subtasks and then how learning
happens by subtask.

Preliminary Analysis of the Subtasks

Table 2 shows the KLM actions in the task based on the
instructions. We initially analyzed the recorded performance
under the KLM framework as seen in Table 2.

Each subtask has different mental and keystroke
operators. The KLM analysis is based on the number of
each operator in each subtask according to Eq. 1. It provides
us with a basic quantitative baseline prediction of user
performance, not performance change. Three practice trials
is enough to get to the KLM times. With even more practice
performance is faster than the KLM predictions (Card,
Moran, & Newell, 1983, p. 285). Approximately half of the
tasks are as fast as the KLM on trial 3, and all but one are on
trial 4.

Table 2: KLM-GOMS Prediction of Subtasks (in seconds)

(8) Calculate Total Move the point to D13
Length (D13) Press e
Type "(dis-sum d1:d410)"
(9) Calculate Typed Move the point to E1
Characters Press e
(E1to E10) Type "(* bl d1)"
Repeat for E2 to E10
(10) Calculate Total Move the point to E13
Typed Characters Press e
(E13) Type (dis-sum el:el0) J
(11) Insert Two Rows Move the point to AQ
Press C-u
type2ir
d
(12) Type in Name Press e
(A0) Type in Name
(13) Insert Current Date Move the point to Al
(Al) Press e

Type "(dis-current-date)" J

(14) Save As Printable
Format

Press C-x C-w
Type <normalization-initials.dp >_|

The Data

The data used in this paper is 30 participants' learning
performance. A learning session consists of a study session
and a test trial. A study session is when a participant used
the study booklet to learn. Each study session is limited to
30 minutes of study. A test trial in the learning session is
when participants perform the given tasks without the study
booklet.

In the first week, participants performed four consecutive
learning sessions. On Day 1, participants had a maximum of
30 minutes to study the spreadsheet tasks and then
performed the tasks. On Days 2 to 4, participants were
allowed to refresh their acquired knowledge from Day 1,
using the study booklet, and then performed the tasks.

Operators

Subtasks M o P K Time
Subl 3 1 0 33 19.96
Sub2 3 0 0 26 16.27
Sub3 20 0 0 158 101.26
Sub4 4 0 0 27 18.09
Subs 20 0 0 169 106.43
Sub6 4 0 0 37 22.79
Sub7 39 0 0 194 143.83
Sub8 4 0 0 27 18.09
Sub9 40 0 0 186 141.42
Sub10 4 0 0 27 18.09
Subl1 2 0 0 39 21.03
Subl2 2 0 0 9 6.93
Subl3 4 0 0 24 16.68
Sub14 3 0 0 25 15.80

Operators 152 1 0 981
Time 205.20 0.40 0.00 461.07 666.67

23

Statistical Modeling of Performance Change

The data set used in this paper is longitudinal with repeated
measurements for each participant and for each subtask over
time. To deal with non-independency in measurements, we
choose to use a linear mixed effects model. The response
variable in the data set is the task completion time.

In our linear mixed effects model, the fixed effect is the
practice trials that is represented as days. As random effects,
we had intercepts for participants and subtasks, as well as
by-participants and by-subtasks random slopes for the effect
of learning trials over time. This statistical model is
adequate for the question of interest in this paper,
investigating whether different subtasks have differential
learning rates by participants over practice trials. Subtasks
and participants are completely crossed, and the task time
was repeatedly measured from each participant.

Results

Figure 3 shows a preliminary plot of the 14 subtasks. It
shows different patterns of performance change across four
days of practice trials. The red dashed horizontal lines are
the KLM predictions. Figure 3 suggests the practice trials
for four consecutive days allow participants to
approximately reach an KLM expert performance except for
subtasks 7 and 9. Where the KLM predictions seem to be

higher than true experts will be, these subtasks have the
largest number of mental and keystroke operators (refer to
Table 2). This result casts a question as to whether the
number of mental operators are over predicted.

We used the /me4 package (Bates, Machler, Bolker, &
Walker, 2014) in R to conduct a linear mixed effects
analysis of the relationship between the response variable
and the covariate predictors including fixed and random
effects.

We checked the normality assumption of the data. The Q-
Q plot of residuals shows that the residuals are not normally
distributed. To address this issue, we performed log-
transformation of the data. Our linear mixed effects model
then meets the assumption of normality of residuals.

To assess the significance of practice trials (day) as a
predictor, we looked at the t-value of the fixed effects. The
t-value of the slope estimate is large enough. Thus, we can
estimate that the predictor is significant since our dataset is
fairly large with 1680 observations.

Subtask Completion Time

S3:NormCalc

S1:FileOpen

S2:SaveAs

S8:TotallLength S9:TypdChar S10:TotalTypdChar

Time(s)

S11:InsRows

S4:Sum S5:FreqCalc S6:Sum

S7:Length

S12:Name S13:Date S14:SavePrn

52 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Trials(Day)

Figure 3: Average subtask completion times (N=30) in seconds with mean (solid black) and SEM (as error bars) for each
subtask. The red dashed lines are the KLM predictions for each subtask.

24

We plotted the data to depict all the task completion times
over practice trials by the 14 subtasks (NV=30), and a linear
regression line for each subtask in a log-log coordinates, as
shown in Figure 4. There were 48 missing values from 1680
data points (2.9%), but it can be considered that those
missing values are acceptable for our model due to the total
number of data points.

Besides the fixed effect of practice trials over days, it is of
interest to determine how the subtasks differ. We compared
two models: one model is a random intercept model both for
participants and for subtasks, and the other model is also a
random intercept model that has only different intercepts of
participants (i.e., without random intercepts of subtasks).
The random deviations (residuals, SD=0.17) from the
predicted values that are not caused by both subtasks and

participants increased in the case of the random deviations
(SD = 0.40) only due to participants. This indicates that the
subtasks have an effect on the performance change. By
performing ANOVA to compare those two models, we can
conclude that there is a statistical significance of the subtask
effect, x°(1)=2681.4, p<0.001.

As seen in Figure 4, there exist varying slopes by
subtasks, indicating different learning rates by each subtask.
With regard to the varying slopes of the subtask effect, we
compared the model with random intercepts to an
alternative model with random slopes for the subtask. We
found there are significant differences in learning rates by

Subtask Completion Time in log—log Coordinates

S1:FileOpen S2:SaveAs S3:NormCalc

1000-

100-

o seoee o

S8:TotalLength

S9:TypdChar

S$10:TotalTypdChar

logTime

1000 -

- o ww
-

1 1 1 1

S4:Sum

S11:InsRows

the random effect of the 14 subtasks,
%' (2)=115.59, p< 0.001.
S5:FreqCalc S6:Sum S7:Length
i . -
P
! ; i
N
e
S12:Name S13:Date S14:SavePrn

1 1 1

logDay

Figure 4. Regression lines with scatter plots for each subtask in a log-log scale.

Discussion and Conclusions

Figure 5 shows differences and similarities in the slope for
the predicted time by each subtask. Similar slopes are
observed in the subtasks 1, 2, 7, 9, 14, subtasks 3, 5, 6, and
subtasks 11, 12. As noted in Table 1, the participants

25

retrieve each keystroke command for the corresponding
subtask, such as the unique key commands, C-x C-f, for
"Open File", and C-x C-w, for "Save As". In this manner,
the operators required for subtask 3 and 5, which are
normalization and frequency calculations, are nearly
identical. The slopes for the task time predictions are similar

Slope

“12-

as well. However, it is apparent that the slope of subtask 3
is steeper than the slope of subtask 1. It is interesting that
the number of operators of either type in a subtask,
particularly when there are fewer than 50, is not correlated
with learning slopes.

With regard to the subtasks 3, 5 (normalization and
frequency calculations), and subtasks 7, 9 (calculating
length and typed characters), those subtasks require a large
number of keystroke operators in the spreadsheet subtask.
However, the number of keystroke operators might not be
what influenced learning because there are other subtasks
with steeper slopes and fewer keystroke operators. On the
other hand, the keystroke skills are learned for four
consecutive days of practice. All these subtasks required
participants to repeat 10 calculations per practice trial. This
can be considered as motor skill practice with a massed
training regimen.

Slopes by KLM Operators

0.4~

s10 S1081

S7
S9

[

sy S
S5

$6
Ops

sit
si2si2

Sé S4

0 50 150 200

Figure 5: Scatterplot of the varying slopes against operators
(Keystroke and Mental). (Lower is greater learning.)

Figure 5 suggests that as mental operators go up, the
learning rate goes down, but this seems curious. Regarding
mental operators, some subtasks require participants to
retrieve a unique keystroke command, and this can lead to
higher learning rates. Perhaps these have different effects on
learning. For example, to insert two rows, a participant
needs to retrieve a declarative memory element, C-u 2 i r
(the subtask 11). We can consider that the subtasks 11, 12,
and 4 would lead to higher learning rates due to a weak
activation of the corresponding element. This notion
emphasizes the importance of moving the declarative
memory elements to the procedural stage (Fig 1).

This analysis shows that the subtasks vary in learning. We
are now analyzing why learning varies so much across
subtasks and will be investigating using our existing ACT-R
models.

Acknowledgments

This research was supported by grants from the Division of
Human Performance Training, & Education at ONR

26

(W911QY-07-01-0004, N00014-10-1-0410, and NO0014-
15-1-2275). Ysabelle Coutu provided useful inputs.

References

Agre, P, & Shrager, J. (1990). Routine evolution as the
microgenetic basis of skill acquisition. In Proceedings of the
12th Annual Conference of Cognitive Science Society (pp. 694-
701). Cambridge, MA.

Anderson, J. R. (1982). Acquisition of cognitive
Psychological Review, 89(4), 369-406.

Anderson, J. R. (2007). How can the human mind occur in the
physical universe? New York, NY: Oxford University Press.

Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). Practice
and retention: A unifying analysis. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 25(5), 1120-
1136.

Bates, D., Méchler, M., Bolker, B., & Walker, S. (2014). Fitting
linear mixed-effects models using lmed. Journal of Statistical
Software, 67(1), 1-48.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of
human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W.
Melton (Ed.), Categories of human learning (pp. 243-285). New
York: Academic Press.

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power
law repealed: The case for an exponential law of practicie.
Psychonomic Bulletin & Review, 7(2), 185-207.

Kim, J. W., & Ritter, F. E. (2015). Learning, forgetting, and
relearning for keystroke- and mouse-driven tasks: Relearning is
important. Human-Computer Interaction, 30(1), 1-33.

Kukreja, U., Stevenson, W. E., & Ritter, F. E. (2006). RUI:
Recording user input from interfaces under Window and Mac
OS X. Behavior Research Methods, 38(4), 656-659.

Moon, J. M., & Fu, W.-T. (2008). A situated cognitive model of
the routine evolution of skills. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting (pp. 935-939).
Sage.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill
acquisition and the law of practice. In J. R. Anderson (Ed.),
Cognitive skills and their acquisition (pp. 1-55). Hillsdale, NJ:
Lawrence Erlbaum.

Paik, J., Kim, J. W., Ritter, F., & Reitter, D. (2015). Predicting
user performance and learning in human-computer interaction
with the Herbal compiler. ACM Transactions on Computer-
Human Interaction, 22(5), 1-26.

Rasmussen, J. (1986). Information processing and human-machine
interaction: An approach to cognitive engineering. New York:
Elsevier.

Ritter, F. E., Baxter, G. D., Kim, J. W., & Srinivasmurthy, S.
(2013). Learning and retention. In J. D. Lee & A. Kirlik (Eds.),
The Oxford handbook of cognitive engineering (pp. 125-142).
New York, NY: Oxford University Press.

Ritter, F. E., & Larkin, J. H. (1994). Developing process models as
summaries of HCI action sequences. Human-Computer
Interaction, 9, 345-383.

Ritter, F. E., & Wood, A. B. (2005). Dismal: A spreadsheet for
sequential data analysis and HCI experimentation. Behavior
Research Methods, 37(1), 71-81.

Seibel, R. (1963). Discrimination reaction time for a 1,023-
alternative task. Journal of Experimental Psychology, 66(3),
215-226.

Siegler, R. S. (2006). Microgenetic analyses of learning. In
Handbook of child psychology (pp. 464-510): Wiley.

skill.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

A Metacognitive Agent for Training Negotiation Skills

Christopher A. Stevens (c.a.stevens@rug.nl), Harmen de Weerd (h.a.de.weerd @rug.nl),
Fokie Cnossen (f.cnossen @rug.nl), Niels A. Taatgen (n.a.taatgen @rug.nl)
Department of Artificial Intelligence, Nijenborgh 9
9747AG Groningen, The Netherlands

Abstract

Training negotiators remains a difficult and expensive propo-
sition. Negotiators require complex cognitive skills such as
theory-of-mind to be successful, but these skills can be diffi-
cult to train and measure. Here we present an agent designed to
model theory-of-mind for learners and serve as a practice part-
ner for complex negotiations. This agent employs instance-
based learning to make decisions about its own actions and to
reflect on the behavior of the opponent. This reflection process
is used to provide a source of explicit feedback on the oppo-
nent’s strategy and behavior. In this paper we present evidence
that the model is a plausible opponent for students learning
negotiation. It is expected that practicing with this agent will
improve theory-of-mind abilities in learners and, in turn, im-
prove negotiation performance.

Keywords: Metacognition, Negotiation, Theory-of-mind, Au-
tonomous Agents

Training Negotiation with Artificial Agents

Negotiation is a complex human activity that permeates many
aspects of business, politics, and even daily life. There is a
myriad of possible negotiation settings, and in most of these
settings, there are many possible outcomes. Training ne-
gotiators is difficult because the optimal strategy often de-
pends both on the negotiation setting and on the strategy used
by one’s negotiation partner (Fisher & Ury, 1981; Raiffa,
1982). For instance, an aggressive, unyielding strategy (a.k.a.
the “Boulware” strategy (Cross, 1977)) may work very well
when the partner is agreeable or flexible. However, the same
strategy will lead to stalemate against an aggressive oppo-
nent and could harm the potential for future negotiations with
fair-minded opponents (Tinsley, O’Connor, & Sullivan, 2002)
Therefore, a good negotiator may benefit from using theory-
of-mind to infer an opponent’s preferences, diagnose an op-
ponent’s strategy, and select an appropriate counter strategy.
One promising emerging training technique is practicing with
artificial agents. Although few studies exist that explicitly
evaluate artificial agents as training partners, there is evidence
that training with an artificial agent is at least as good as train-
ing with a human (Lin, Gal, Kraus, & Mazliah, 2014). In this
paper, we present a novel cognitive agent designed to imitate
the strategies and theory-of-mind capabilities of human ne-
gotiators. Further, we present results from a small-scale pilot
study that suggest the agent is capable of performing simi-
larly to humans in a multi-issue bargaining scenario.
Simulation and behavioral studies have shown that theory-
of-mind can improve negotiation outcomes. Specifically,
agents with more complex theory-of-mind can achieve
greater individual and collective outcomes than those with
less complex or no theory-of-mind (de Weerd, Verbrugge,
& Verheij, 2015). Moreover, negotiating with an agent that

27

has theory-of-mind can encourage humans to use more com-
plex theory-of-mind (de Weerd, Broers, & Verbrugge, 2015).
For this reason, we developed an agent that explicitly reasons
about the preferences and strategies of its opponent. We ex-
pect that practicing with an agent that has these capabilities
will provide better learning outcomes than practicing with an
agent without theory-of-mind.

The Metacognitive Agent

Our negotiation agent is based on ACT-R’s declarative mem-
ory system (Anderson, 2007) and instance-based learning
(IBL) theory (Gonzalez & Lebiere, 2005). Instance-based
learning was chosen as the reasoning mechanism because
it provides a flexible method to reason about novel situa-
tions based on examples from previous interactions. More-
over, we believe that theory-of-mind in this domain requires
explicit, declarative reasoning rather than procedural knowl-
edge. Many negotiation contexts are relatively novel and our
participants were not experienced in professional negotiation,
so it seems unlikely that people in our target population have
sufficient practice to develop a comprehensive set of produc-
tion rules that match each possible situation.

The agent’s memory contains a set of examples (instances)
that represent possible negotiation moves and possible con-
texts in which they may sensibly be used. Each instance is
associated with a particular strategy (cooperative or aggres-
sive). For example, when there is a deadlock, a player using a
cooperative strategy might concede on a minor issue to break
it. However an aggressive player might threaten to quit if
his/her offer is not accepted. The agent uses this same knowl-
edge to choose its own moves, to evaluate the player’s strat-
egy, and to make inferences about the player’s preferences.

The Smoking Ban Negotiation Scenario

The specific setting we consider is a multi-issue bargaining
scenario in which a representative of a city council and a rep-
resentative of small business owners negotiate over the imple-
mentation of new anti-smoking regulations. The negotiation
involves four issues, each with four or five different options.
The task of the negotiators is to reach an agreement which
assigns exactly one option to each issue. Despite this simple
setup, this setting allows for 400 different possible negoti-
ation outcomes in addition to the opt-out outcome. It also
allows a rich set of possible negotiation moves (see Table 1
for definitions of possible moves).

In our setup, each negotiator has preferences that assign a
value to each possible option. Higher values are associated
with more preferable options. The value of a negotiated out-

come is calculated as the sum of the values of the agreed-upon
options. A negotiator therefore aims for a negotiated outcome
that his preferences assign as high a value as possible. Im-
portantly, preferences are private information. That is, each
player knows their own preferences, but not the preferences
of the other.

We pilot-tested this scenario to get a sense of the possible
negotiation moves and strategies used by human negotiators.
In this pilot test, four pairs of human participants negotiated
an agreement for nine different problems with unique prefer-
ence values. From this pilot testing, we made two observa-
tions. Firstly, the people in our sample did not always find
optimal agreements and sometimes even accepted negative
deals. Our measure of optimality is Pareto optimality. An
agreement is Pareto optimal if it there are no possible alter-
native agreements that could raise one player’s score without
reducing the other player’s score. The human dyads found
Pareto optimal agreements in 61% of the problems. More-
over, 21% of the negotiated deals resulted in a negative score
for at least one of the negotiation partners. These results con-
firm that our negotiation setting is sufficiently challenging for
a training intervention.

Our second observation is that unlike automated negoti-
ation agents, which submit offers as binding commitments,
human players often make offers with lower levels of com-
mitment. In other words, players can discuss preferences on
various options without being bound to accept those options
later in the negotiation. To capture this, we designed our ar-
tificial agent so that it can understand moves with differing
levels of commitment. For example, exchanging preferences
on an issue implies a low level of commitment, but accepting
an offer implies a higher level of commitment.

Instance-based Decision-making

Instance-based learning was implemented here using a mod-
ified version of Java ACT-R (Salvucci, 2013). An instance
is a set of slot-value pairs that represents a context, an action,
and a utility value for that action (Gonzalez & Lebiere, 2005).
Table 2 contains the specific slots used in the instances in our
metacognitive agent.

To select a move, the model uses the current negotia-
tion context to retrieve an instance from memory. The in-
stances are retrieved using ACT-R’s partial matching mech-
anism (Anderson, 2007). The more similar the instance is
to the current context, the more active the instance will be
and therefore the more likely the instance will be retrieved.
Each instance also has a base activation level. This base ac-
tivation is constant across all instances in the agent, save for
a very small amount of noise (s=.01). The instances in the
current model were written by the modelers to ensure a sta-
ble, challenging opponent whose cooperative and aggressive
strategies were consistent with those found in the literature
(Fisher & Ury, 1981; Raiffa, 1982).

As an example, suppose the agent retrieves an instance like
the one in Table 3. In this context, the agent is playing ag-
gressively. The agent has proposed an option that is worth a

28

lot of points (4 is the maximum in this setting), and it believes
that this option is bad for its partner (the option would cause
the partner to lose points). The agent’s partner has proposed
an option that is worth 3 points to the agent, which is still a
very good value for the agent, and it happens to be the agent’s
next best option. Moreover, the agent is already doing well
in the negotiation, because on the other resolved issues, it has
already gained 3 points. In this case, if the agent retrieves
this instance, it will try to pressure its opponent to take a loss
even though a more mutually beneficial option is probably
available. This is indicated by the Insist move. By contrast,
a cooperative instance would likely accept the opponent’s bid
in this situation.

Theory-of-mind

Negotiators strike a delicate balance between cooperation and
competition (Lax & Sebenius, 1986). Cooperation helps en-
courage agreement and trust between negotiators but it can
be exploited by competitive negotiators. A good negotiator is
mindful of this and takes steps to prevent exploitation. One
way to achieve this is to use theory-of-mind to infer the op-
ponent’s strategy. Our agent achieves this by taking the per-
spective of its partner and using its own knowledge to eval-
uate the partner’s strategy. The agent then attempts to match
the toughness level of the opponent. If the partner is coop-
erative, the agent will also be cooperative. But if the partner
is aggressive, the agent will become more aggressive. This
meta-strategy has been observed in humans in negotiation and
coordination games (Kelley & Stahelski, 1970; Smith, Pruitt,
& Carnevale, 1982) and has been shown to be effective at
encouraging cooperation in the Prisoner’s Dilemma (Stevens,
Taatgen, & Cnossen, 2016).

Each time the user makes a negotiation move, the agent as-
sumes the perspective of the user and uses its own instances
and decision processes to infer the user’s strategy and beliefs.
Of course, the agent does not have access to the same infor-
mation when interpreting the opponent’s actions as it does
when it is choosing its own (e.g. exact preference values,
user’s chosen strategy). In these cases, the agent fills in its
best guess or leaves the slot empty. Fortunately, ACT-R’s
declarative memory system is robust to missing information
and memory retrievals can be made without specifying all of
the slots. As more memory retrievals are made, the agent
updates its best guess about the user’s strategy. The agent
evaluates both the user’s reaction to the agent’s move (if ap-
plicable) and the countermove made by the user. This results
in up to two memory retrievals per negotiation turn.

The agent’s memory holds three sets of preference val-
ues: the agent’s own preferences, the agent’s beliefs about
the user’s preferences, and the agent’s beliefs about the user’s
beliefs about the agent’s preference values. At the beginning
of the negotiation, the agent has no beliefs about its oppo-
nent’s preferences or beliefs. As the negotiation progresses,
the agent gradually adds information to these sets based on
the information found in instances retrieved during theory-
of-mind. For example, suppose the agent retrieves the in-

Table 1: Overview of possible negotiation moves.

Move Explanation

Invite

Elicit an offer from the trading partner on at most one issue.

Example: “What would you like for the scope of the smoking ban?”

Inform

Inform the trading partner that the player likes or dislikes a single option of a given issue

(can also indicate no preference). Liking an option that the partner has suggested or

liked results in an agreement (see Agree)

Example: “For me, a 10% increase in tobacco taxes would be difficult.”

Suggest
Subtypes:

Ask the partner to commit to a specific option on 1 or 2 issues.

Concede - Suggest an option that you haven’t Suggested before;
Insist - Suggest an option that have Suggested before;
Exchange - Suggest one option from two different dimensions. Both options are conditional.

If one is rejected, so is the other.

Example: “Would you agree to all outdoor smoking allowed in exchange for a 25% increase in tobacco taxes?”

Agree
Example: “We can do it as you suggested.”
Finalize

Agree to the most recent Suggest or Inform move of the trading partner. This is a non-binding commitment.

Commit to a given negotiation outcome. If the partner accepts, this commitment is binding.

Example: “So to summarize, I think we should go for all outdoor smoking allowed, no change in tobacco
taxes, anti-smoking television advertisements, and a ban on tobacco vending machines”

Accept
Example: “That’s a deal.”

Withdraw Causes immediate negotiation failure.

Accept the most recent Finalize move of the trading partner. This is a binding commitment.

Example: “We cannot seem to reach agreement. Let’s stop negotiating.”

Final Offer

Commit to a given negotiation outcome and force the trading partner to either accept this outcome or

withdraw from negotiation. This is a binding commitment. The negotiator cannot resume the negotiation

if the partner rejects the offer.

Example: “I think we should settle on all outdoor smoking allowed, no change in tobacco taxes,
anti-smoking television advertisements, and a ban on tobacco vending machines. This is my final offer.”

stance in Table 3 to interpret its partner’s move. According
to the instance, one situation in which a player might insist is
when they have a strong preference for their current bid and
a negative preference for the opponent’s bid. Therefore, the
agent guesses that the opponent’s preference for the their bid
is 4.0 and the opponent’s preference for the agent’s bid is -
2.0. These two values are then used to retrieve instances in
later turns by filling in the “my-bid-value-me” and “opp-bid-
value-me” slots respectively.

In a similar way, when the agent submits a move, the agent
makes a guess about how its move influences its opponent’s
beliefs. For example, suppose the agent indicates that it likes
a particular option (’Positive Inform™). The instance retrieved
by the agent indicates that the this move is appropriate when
the agent has a positive preference for the option (e.g. the
value in the ’next-bid-value-me” slot is 2.0). Now, the agent
will believe that its partner believes that it has a preference
of 2.0 for the option. This belief is then used to fill in slots
during the agent’s theory-of-mind reasoning process.

The process of inferring the user’s strategy is similar to
that of inferring preferences. As each new instance is re-
trieved, the agent notes whether the instance is cooperative,
aggressive, or neutral. When the instances are cooperative or

29

aggressive, the agent becomes more confident that the user is
using that strategy. The confidence value for a given strat-
egy is the activation level of that strategy in memory divided
by the total activation of all strategies in memory. When this
value exceeds a certain threshold, the model will switch to
the appropriate counter-strategy. The threshold is a free pa-
rameter of the agent, and can be changed depending on the
negotiation context. By default it is set to 0.55.

The agent adjusts its strategy according to the perceived
aggression of the opponent. The agent has three modes: cau-
tious, cooperative, and aggressive. The agent begins in cau-
tious mode. This mode is designed to encourage cooperation
from the opponent while still guarding against aggression.
In this mode, the model prefers neutral moves, followed by
cooperative, and then aggressive. If the agent believes the
opponent is behaving cooperatively, it will enter cooperative
mode, in which the agent favors cooperative moves, followed
by neutral, and then aggressive. Finally, if the agent is con-
fident that the opponent is unconditionally aggressive, then it
will switch to aggressive mode, in which it favors aggressive
moves, followed by neutral, and then cooperative.

Table 2: Structure of an instance in the metacognitive agent

Move type Explanation

Strategy
My-bid-value-me
My-bid-value-opp
Opp-bid-value-me
Opp-bid-greater
Next-bid-value-me

The strategy associated with the instance

The number of points the agent’s bid is worth to the agent.

The number of points that the agent believes its bid is worth to the user.

The number of points the user’s bid is worth to the agent.

True if the user’s bid is at least as much as the agent’s current bid, False otherwise.

The number of points that the next best option is worth. The next best option is defined as the option

closest in value to the current one (Not including those that are worth more than the current option.)

Overall-value

The total value of all options that have been agreed upon so far. This is a measure of how the

negotiation is going. If it is negative, negotiation is likely to result in an unacceptable outcome.

My-move

The move that the agent should take in this context.

Table 3: An example of an aggressive instance.

Slot name Value
Strategy Aggressive
My-bid-value-me 4.0
My-bid-value-opp -2.0
Opp-bid-value-me 3.0
Opp-bid-greater false
Next-bid-value-me 3.0
Overall-value 3.0
My-move Insist

Graphical Interface

Learners can interact with the agent through a graphical in-
terface (see Figure 1). The interface contains five zones. The
top zone shows the state of the negotiation. This includes a
representation of the negotiation agent’s current cooperative-
ness and a transcript of the negotiation. In this transcript,
simulated negotiation dialog is shown in green and simulated
agent dialog is shown in orange. This simulated dialog is
taken from transcripts of human-human dyads participating
in an earlier pilot study on the smoking ban scenario.

The second zone shows the possible ways in which the
learner can respond to an offer made by the agent (if any).
If the agent has made an offer, the learner may give it a posi-
tive, negative, or neutral evaluation. A positive evaluation in-
dicates a tentative agreement, a negative evaluation indicates
that an offer is undesirable, and a neutral evaluation states that
the offer is under consideration. If the agent has not made an
offer, this zone is disabled.

The third zone features the possible actions that can be per-
formed by the user. Actions that are impossible to take at the
moment are disabled. The third zone shows the four issues,
each with its own options. The background color of each op-
tion indicates the evaluation of the option for the user. Darker
red colors indicate options that are increasingly more neg-
ative, while darker blue options indicate increasingly more
positive options. In addition, for each issue, colored triangles
indicate the option most recently offered by the user (green)

30

and the negotiation agent (orange). The final zone of the in-
terface gives a preview of the move the user is about to make,
and a button to submit that move.

The action selected in the third zone determines what can
be selected in the fourth zone. To help the user, actions are
grouped by their level of commitment. In addition, two sep-
arate buttons are used for proposing and exchanging offers.
Proposing offers are offers that assign a single option to ex-
actly one issue, while exchanging offers are offers that assign
a single option to exactly two issues. Note that an exchanging
offer is interpreted as a temporary offer. If an exchanging of-
fer is not accepted, the triangles indicating the most recently
offered option revert to their previous positions. The interface
is of course more restrictive than a real-life negotiation. For
example, the interface does not allow users to make offers on
more than two separate issues. In addition, the interface auto-
matically handles proper Agree, Accept, Finalize, and Final
Offer moves. This means that a user can only make an Agree
move when the negotiation agent has made an offer and Ac-
cept when the agent has made a Finalize or Final Offer move.
A user can only make a Finalize or Final Offer move if a
green triangle indicates an option for each issue. This means
that users cannot attempt to Agree to offers that have not been
made, or make partial Finalize moves.

Agent Feedback

During the negotiation, the agent accumulates data about the
players’ actions to present as feedback. The agent provides
feedback on two different aspects of the learner’s perfor-
mance: negotiation style and outcomes. Negotiation style
concerns the learner’s strategy (cooperative or aggressive)
and outcomes refers to the utility of the agreement reached
for both players.

Throughout the negotiation, the metacognitive agent eval-
uates its trading partner on his/her negotiation style. After
each action, feedback on the perceived cooperativeness of the
action, the agent’s beliefs about the preferences of the player,
and the accumulated perception of the cooperativeness of the
agent’s trading partner is available immediately to display as
feedback. This includes changing the facial expression of the
agent to happy (cooperative), angry (aggressive), or neutral

800

[Partner: [like No smoking in public transportation and parl

(Me: We can do it like that

i nd to have 10% in
's think about

ase in tobacco taxes
No change in t
On Was cooperativ
I think my partner's pre

My partner's acti o
[Me: For me, that would be di .

(Me: If it's possible, [would like 5% increase in tobacco taxes.
Partner: That would be ni
Partner thinks “My partn
My partner's action was

action was cooperativ
ssive. I think my partner's p

ks

I'm in favour of Anti-smoking posters at all tobacco
think my partner's p
ferences 2

s are: [[0.0, 0.0, 4.0, 0.0], [0.0,0.0,0.0, 0.0, 0.0], [0.0,0.0,0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]]
0.0], [0.0,0.0,2.0,0.0,0.0], [0.0, 00,00, 0.0], [0.0,0.0,0.0, 0.0, 0.0]]*

les points.
s are: [[0.0, 0.0, 4.0, 0.0], [-4.0, 0.0, 2.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]]
0.0], [-4.0,-1.0,2.0, 00, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]]*

re: [[0.0, 0.0, 4.0

Reaction to partner's offer

| agree 1 will consider it Dislike Impossible
9) L L
My action
| | need] | 1 like]| 1 dislike]| | cannot accept] | What do you like |
| | propose | | Exchange |
_ Withdraw Accept Make deal Final offer

Scope

All outdoor smoking allowed

(' No smoking in public transportation

> @ No smoking in public transportation and parks

| No smoking in public transportation, parks, and open air events

Taxation
|| No change in tobacco taxes
L1 ";' 5% increase in tobacco taxes

@ 10% increase in tobacco taxes

15% increase in tobacco taxes

Campaign

@ Anti-smoking posters at all tobacco sales points

(' Anti-smoking television advertisements

@ Anti-smoking advertisements across all traditional mass media

Enforcement:

@ Police fines for minors in possession of tobacco products

Ban on tobacco vending machines

{ ' Police fines for selling tobacco products to minors

Government-issued tobacco card for all tobacco purchases

Me: Hmm.... What should T do

Submit

Figure 1: The graphical interface of the agent.

via a line-drawing of a smiley face. Moreover, a line of text
is added to the transcript showing whether the agent believes
the move was cooperative or aggressive. This line also in-
cludes a representation of the agent’s beliefs about the user’s
preferences (see Figure 1).

Once a negotiation has finished and the outcome is known,
additional feedback is available about the economic outcome.
First, the GUI informs the player how many points he/she
gained or lost as a result of the deal. These points are based
directly on the colors of the preference panel in the GUIL. A
good negotiator does not accept a deal that is worse than no
deal (i.e. has a negative score), and the agent will inform the
learner when this occurs. In addition to the individual out-
come, the agent evaluates the Pareto optimality of the agree-
ment and displays it in the GUL

Pilot experiment

To test the agent’s ability to negotiate rationally with human
users, we conducted a pilot study. In this study, six human
users negotiated with the agent on the same nine problems
we used in the pilot experiment with human dyads. The agent
always represented the business side. Overall, the results of
the pilot study are encouraging, and suggest that the agent is

31

a competent negotiation partner. The agent did not exploit,
nor was it exploited by the human users. The agent earned
an average of 32.2 (out of 88) possible points while the hu-
man users scored an average of 33.7 (out of 86) points. Thus,
agreements were similarly beneficial for both partners. The
human-human dyads also achieved a relatively even point
distribution, albeit with a slight advantage for the business
side. Moreover, we compared the agent-human dyads to the
human-human dyads on rate of agreement, ability to find
Pareto optimal outcomes, and acceptance of negative out-
comes (see Table 4). We find that the humans reach a simi-
lar number of agreements when negotiating with the agent as
when negotiating with each other. Furthermore, the human-
agent dyads find a similar (though slightly lower) percent-
age of Pareto optimal deals. Finally, the human-agent dyads
reached fewer negative deals than the human-human dyads.
This does not necessarily mean that the human-agent dyads
were superior at avoiding negative deals. It is possible that the
Withdraw option was more salient in the human-agent dyads
due to the GUI. Also, in the human-agent case, the human
users received explicit feedback about their scores after every
round. Therefore it was clearer how the colors mapped onto
overall scores.

Table 4: Comparison of human-human dyads to human-agent
dyads

Human-Human Human-Agent

(n=4) (n=6)
Mean business score 33 (20) 32 (3)
Mean council score 29 (7) 34 (8)
% Agreement 78 74
% Pareto optimal 61 52
% Negative deals 21 2

Note. In the human-agent dyads, the business side was always
played by the agent. All percentages represent percentage of the
total number of trials. SD’s are presented in parentheses.

Future Directions

The present pilot study of course does not test the educational
outcomes resulting from training with the agent. Evaluation
of learning gains is ongoing. In future studies, we aim to
test the extent to which training with the agent improves out-
comes not only in the smoking ban scenario, but also in other
negotiation contexts.

Currently, the agent possesses instances that were hand-
coded by the authors and the base activation level does not
change. However, allowing the agent to learn the utilities of
the instances could result in a more dynamic, and potentially
more intelligent, opponent. This is possible, but challenging,
for a task like negotiation. Instance-based learning requires
a measure of utility, and the utility of a particular negotiation
move is not always immediately clear. Therefore, implement-
ing learning in such an agent requires careful consideration
of the learning and social context of the negotiation to avoid
chaotic agent behavior.

This agent is not designed to be restricted to a point-and-
click interface. Rather, it is meant to be a component of a
larger system known as Metalogue, a large, multimodal ne-
gotiation trainer capable of simulating a real negotiation dia-
logue (Helvert, Rosmalen, Borner, Petukhova, & Alexander-
sson, 2015). In the coming months, the agent will be incorpo-
rated into this system, and will function as a decision engine.
As it does in the GUI setting, the agent will play the role of
a negotiation partner and trainer discussing the options of a
smoking ban. However, in this case, the learner will be able
to interact with the model through speech rather than through
clicking buttons. Moreover, the agent will be portrayed by a
virtual avatar with speech and gestures of its own.

Summary

Here we have presented a novel cognitive agent that reasons
about the goals and strategies of human partners to success-
fully engage in a negotiation task. This agent leverages estab-
lished cognitive theories, namely ACT-R and instance-based
learning, to generate plausible, flexible behavior in this com-
plex setting. Our preliminary results suggest that our cogni-
tive agent could play a role in training effective negotiators.

32

Acknowledgments

This work was funded by European Union Grant 611073:
Multiperspective Multimodal Dialogue (METALOGUE).

References

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press.

Cross, J. G. (1977). Negotiation as a learning process. Jour-
nal of Conflict Resolution, 21(4), 581-606.

de Weerd, H., Broers, E., & Verbrugge, R. (2015). Savvy
software agents can encourage the use of second-order the-
ory of mind by negotiators. In Proceedings of the 37th an-
nual conference of the cognitive science society. (pp. 542—
547). Pasedena, California.

de Weerd, H., Verbrugge, R., & Verheij, B. (2015). Negotiat-
ing with other minds: the role of recursive theory of mind
in negotiation with incomplete information. Autonomous
Agents and Multi-Agent Systems.

Fisher, R., & Ury, W. L. (1981). Getting to Yes: Negotiating
Agreement Without Giving In. London: Penguin Group.
Gonzalez, C., & Lebiere, C. (2005). Instance-based cogni-
tive models of decision-making. In D. Zizzo & A. Courakis
(Eds.), Transfer of knowledge in economic decision mak-

ing. New York: Palgrave McMillan.

Helvert, J. v., Rosmalen, P. V., Borner, D., Petukhova, V., &
Alexandersson, J. (2015). Observing, coaching and reflect-
ing: A multi-modal natural language-based dialogue sys-
tem in a learning context. In Proceedings of the 11th inter-
national conference on intelligent environments (p. 220).

Kelley, H. H., & Stahelski, A. J. (1970). Social interaction
basis of cooperators’ and competitors’ beliefs about others.
Journal of Personality and Social Psychology, 16(1), 66—
91.

Lax, D., & Sebenius, J. (1986). The Manager as Negotiator.
Boston: Harvard Business School Press.

Lin, R., Gal, Y., Kraus, S., & Mazliah, Y. (2014). Training
with automated agents improves people’s behavior in nego-
tiation and coordination tasks. Decision Support Systems,
60(1), 1-9.

Raiffa, H. (1982). The art and science of negotiation. Cam-
bridge: Belknap Press.

Salvucci, D. D. (2013). Integration and reuse in cognitive
skill acquisition. Cognitive Science, 37(5), 829-860.

Smith, D. L., Pruitt, D. G., & Carnevale, P. J. (1982). Match-
ing and mismatching: The effect of own limit, other’s
toughness, and time pressure on concession rate in negotia-
tion. Journal of Personality and Social Psychology, 42(5),
876-883.

Stevens, C. A., Taatgen, N., & Cnossen, F. (2016). Instance-
based models of metacognition in the prisoner’s dilemma.
Topics in Cognitive Science, 8(1), 322-334.

Tinsley, C. H., O’Connor, K. M., & Sullivan, B. a. (2002).
Tough guys finish last: The perils of a distributive reputa-
tion. Organizational Behavior and Human Decision Pro-
cesses, 88(2), 621-642.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Cognitive Models of Prediction as Decision Aids

Christian Lebiere, Don Morrison (cl@cmu.edu, dfm2@cmu.edu)
Department of Psychology, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Tarek Abdelzaher, Shaohan Hu (zaher@illinois.edu, shu7@illinois.edu)

Department of Computer Science, University of Illinois at Urbana Champaign
201 N Goodwin Ave, Urbana, IL 61801 USA

Cleotilde Gonzalez (coty@cmu.edu)

Department of Social and Decision Sciences, Carnegie Mellon University, 5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Norbou Buchler,Vladislav D. Veksler (norbou.buchler.civ@mail.mil, vladislav.d.veksler.ctr@mail.mil)

Cognitive Sciences Branch, Human Resources and Effectiveness Directorate, U.S. Army Research Laboratory
Aberdeen Proving Ground, MD 21005 USA

Abstract

We consider the use of cognitive models as both models of
human cognitive function and human-compatible decision
aids. The domain of application is prediction based on partial
information in the context of emergency events where the
availability and timeliness of information is limited. The
cognitive model is based on the memory retrieval processes of
the ACT-R cognitive architecture, most specifically its
underpinnings in the rational analysis of cognition. The model
is shown to capture well the temporal and spatial
characteristics of the data. Finally, we discuss potential issues
in the application of cognitive models as decision aids and
recommender systems, in particular the ability to introspect in
the workings of the model to select data most suitable for the
human decision making process.

Keywords: Rational Analysis, Cognitive Architecture, Long-
Term Memory, Decision Making, Decision Aids,
Recommender Systems.

Introduction

In the Age of Big Data, we are confronted with an
increasingly rich and rapid flow of information. While the
availability of data is increasing seemingly exponentially in
our personal and professional lives, our basic human
capabilities are not keeping pace. Recognizing with his
customary foresight the increasingly deep disconnect
between our abilities and the demands placed upon them,
Herbert A. Simon once said, “Moore’s Law fixes everything
but us”.'

Of course, technology has the potential to be the solution
as well as the problem. Adaptive information retrieval tools
such as search engines are helping us access and filter vast
and diverse knowledge resources. In a more proactive way,
personal electronic assistants such as Siri and Google Now

! While Moore’s Law might finally be running out of steam, it
has been replaced by the exponentially increasing availability of
massively distributed computation and sensor resources (Kurzweil,
2006).

33

offer to manage our data flows and provide us with timely,
contextual information.

However, interpreting information and using it to make
decisions is considerably more complex than simply making
it available. Decision aids, including recommender systems,
have been proposed to assist and delegate complex human
decision-making. Leveraging the Big Data wave itself, those
systems are typically data-driven, exploiting statistical
regularities to extrapolate to similar situations. For instance,
Netflix recently organized a competition to develop better
algorithms for recommending movies by relying on ratings
of viewers with similar tastes to a given customer. A
fundamental problem with this approach is its opaque
nature. When it fails, it tends to do so in ways unexpected
and incomprehensible to human users, undermining trust in
a system that not only performs poorly but cannot explain
its own failures.

One potential solution is to design personal assistants that
work in ways similar to humans, making them both more
transparent and more compatible. Recently, a number of
proposals have been made to measure artificial intelligence
in more effective ways than the classic Turing Test, in
particular by having it perform more typical tasks in human-
like ways (Al Magazine, 2016). Going even further, the
suggestion has been made to design intelligent agents based
on the structure and mechanisms of the human brain (e.g.,
Stocco et al., 2010). For purposes of decision aids, such
biologically inspired cognitive architectures might be a
bridge too far. For instance, Google’s PageRank algorithm
might work in a way roughly similar to human associative
memory, but few users would presumably care whether it
mimics the structure of the hippocampus or the posterior
cortex.

Cognitive architectures and models have primarily been
developed as computational instantiations of theories of
cognition. For purposes of serving as decision aids to human
users, it is tempting to adopt the traditional Al view of
treating them as black boxes and arguing that compatibility

with the human decision maker is primarily required from a
functional, behavioral point of view. In terms of the Marr
levels of analysis (Marr & Poggio, 1976), that would mean
that what matters is primarily their functionality at the
computational level rather than the algorithmic level or the
implementational level. We disagree with that view.

Instead, we argue that, while the implementational level
might not be directly relevant other than perhaps for
purposes of scalability and efficiency, compatibility with the
human decision maker at the algorithmic level is essential
for truly effective interaction. Computational equivalence
only enables a relatively superficial integration of outcomes,
while algorithmic equivalence enables a deeper integration
of processes.

We illustrate the distinction by introducing two functions
of a cognitive model as decision aid: prediction and source
selection. Prediction involves generating a recommended
decision for the user to follow, and as such only requires
computational compatibility. However, it leaves the user
with little choice beyond accepting or rejecting the
recommendation in its entirety. Source selection consists in
selecting a subset of information on which the human user
would base his own decision. While this enables richer
interaction between user and decision aid, it also requires
deeper compatibility, down to the algorithmic level, because
the selection process requires integration with the processes
of the human decision maker.

In the rest of this paper, we introduce a decision-making
task based on a real world data set of emergency situations.
We then describe a model of the task based on a rational
analysis of cognition, and present quantitative results.
Finally, we discuss implications for the design of
cognitively inspired decision aids and recommender
systems, and point out future work directions.

Task and Data

We focus on the problem of data extrapolation in
participatory sensing applications, where users both use and
provide information to the system, in the face of disruptive
pattern changes, such as those that occur during natural
disasters. We consider cases where resource limitations or
accessibility constraints prevent attainment of full real-time
coverage of the measured data space, hence calling for data
extrapolation. Many time-series data extrapolation
approaches are based on the assumption that past trends are
predictive of future values. These approaches do not do well
when disruptive changes occur. An alternative recourse is to
consider only spatial correlations. For example, certain city
streets tend to get flooded together after heavy rain (e.g.,
because they are at the same low elevation), and certain
blocks tend to run out of power together after a
thunderstorm (e.g., because they share the same power
lines). Understanding such correlations can thus help infer
state at some locations from state at others when disruptive
changes (such as a flood or a power outage) occur.

We evaluate our prediction model through a real-world
disaster response application. In November 2012, Hurricane

34

Sandy made landfall in New York City. It was the second-
costliest hurricane in United States history (surpassed only
by hurricane Katrina) and the deadliest in 2012. The
hurricane caused widespread shortage of gas, food, and
medical supplies as gas stations, pharmacies and (grocery)
retail shops were forced to close. The shortage lasted about
a month. Recovery efforts were interrupted by subsequent
events, hence triggering alternating relapse and recovery
patterns. The daily availability of gas, food, and medical
supplies was documented by the All Hazard Consortium
(AHC), which is a state-sanctioned non-profit organization
focused on homeland security, emergency management, and
business continuity issues in the mid-Atlantic and northeast
regions of the United States. Data traces” were collected in
order to help identify locations of fuel, food, hotels and
pharmacies that may be open in specific geographic areas to
support government and/or private sector planning and
response activities. The data covered states including WV,
VA, PA, NY, NJ, MD, and DC. The information was
updated daily (i.e., one observation per day for each gas
station, pharmacy, or grocery shop).

With these points of interest sites and input data as ground
truth, we evaluate the model predictions. The metrics we use
are accuracy of inference and amount of data needed. We
break time into daily cycles to coincide with the AHC trace.
We then plot the performance of the model when a
configurable amount of today’s data is available (in addition
to all historic data since the beginning of the hurricane).

We evaluate the solutions on November 3rd, and
November 8th. November 8th corresponds to a period of
disruptive change due to a second snowstorm that hit after
Sandy, causing massive temporary relapse of recovery
efforts due to new power outages, followed by a quick state
restoration to the previous recovery profile. November 3rd
is an example of a period of little change, when damage was
incurred but recovery efforts have not yet been effective.
The same trend was observed for all datasets, namely, gas,
pharmacy, and food.

Figure 1: Data Extrapolation Task Interface.

2 Available
assistance.htm

at: http://www.ahcusa.org/hurricane-Sandy-

Figure 1 displays a snapshot of the interface that we used to
display the model results during model development. While
we will focus in this paper on quantitative results for model
evaluation, visualizing the spatial and temporal patterns of
model prediction helped us understand the workings of the
model and its strengths and shortcomings. It also helped us
experiment with the model efficiently in exploring
parameter settings and comparing model versions. Pull-
down menus let the modeler easily select the date of the
comparison, the category of data (pharmacy, food, gas), the
sampling rate (percentage of the day’s data to use in
addition to historical data), the confidence threshold
(probability to label an outlet as open, defaulting at an
unbiased 50%) and any two versions of the model (see next
section) to compare side by side against each other.
Circles/crosses indicated a prediction that the outlet was
open/closed. Color indicated the correctness of the
prediction, with blue and red representing correct and
incorrect respectively, while grey indicates no prediction
was made because that data point was sampled. The data
points were plotted on a Google Maps overlay of the
geographical area, allowing the modeler to zoom in and out
on various areas.

Cognitive Model

While prediction can be viewed as a specialized exercise
best left to domain experts and statisticians, e.g., weather
forecasting, stock market investing, sports betting, it also
forms the implicit basis of many common everyday tasks.
Previous models have shown its ubiquity in domains
ranging from game playing (West & Lebiere, 2001) to
sports (Lebiere et al., 2003), decision-making (Erev et al.,
2010), and learning event sequences (Wallach & Lebiere,
2000).

While prediction can require the use of elaborate
strategies and expert knowledge, those approaches are
highly domain-specific and thus generalize poorly and tell
us little about the basic nature of cognition. More
fundamentally, complex approaches still seem to rely on a
common basis of implicit statistical inference (e.g.,
Oaksford & Chater, 2007). The rational analysis of
cognition (Anderson, 1990) has argued that our cognitive
mechanisms have evolved to reflect the statistical structure
of the environment. These regularities are quite pervasive
and are displayed by our cognitive systems even when they
are unwarranted and result in cognitive biases (Lebiere et
al.You, 2013).

The rational analysis of cognition can offer a
computational-level account of cognitive prediction. To
achieve an algorithmic account with constrained
quantitative predictions, we used the ACT-R cognitive
architecture (Anderson et al., 2004). The mechanisms of its
declarative module, in particular, reflect pervasive statistical
patterns of the environment such as the power laws of
learning and forgetting. As prediction relies on the
knowledge of past events, it is logical to base the model on
retrieval of information from long-term declarative memory.

35

In ACT-R, information is represented in declarative
memory in the form of chunks, which are structured objects
consisting of a set of attributes (also known as slots) with
associated values. Chunk complexity (i.e., number of
attributes) is typically limited, reflecting capacity constraints
such as the size of working memory (Miller, 1956; Cowan,
2001). For instance, it would be unreasonable to store the
entire history of an outlet or a whole day’s data in a single
chunk. Beyond capacity limitations, theories of chunk
creation also typically limit their content to information that
is available simultaneously at a given point in time and thus
can plausibly be bound together in a new chunk structure.

Therefore, each chunk in memory represents the
availability of a given outlet on a given day. Attributes that
are represented include the identity of the outlet (itself
represented as another chunk) and its status: open or closed
(also represented as a chunk). The specific day could have
been represented as a third attribute, although we decided
against it for two reasons. First, it is slightly implausible that
people would explicitly label each memory with the date of
the day in which it was formed. Second, it would have
resulted in a proliferation of memory chunks (one for each
day and outlet) without markedly affecting the model
predictions when the blending mechanism is used (see
below).

Instead, time is represented implicitly in the activation of
the corresponding chunk. The base-level activation B; of a
chunk i reflects its history of (re)creation and access as
follows:

Bi=log¥i,t¢ (1)

Where ¢ is the time lag since the jth occurrence of the
chunk, n is the total number of occurrences, and d is the
decay rate (typically fixed at 0.5, as is the case in this
model). For any given outlet, at most two associated chunks
exist in memory: one recording that the outlet is closed and
another recording that it is open on a given day. The base-
level activation of these chunks will be reinforced with each
occurrence of the respective event. The temporal version of
the model then obtains a prediction for the status of a given
outlet by retrieving the most active chunk associated with
that outlet and returning the status stored in that chunk.
Because the total activation A4; of chunk i also includes in
addition to the base-level activation a stochastic component
controlled by noise parameter s (using the typical value of
0.25 here), the retrieval process is probabilistic, described
by the probability P(i) following the Boltzmann (softmax)
distribution over all candidate chunks j:

Ap
es
A

P =

2)

i |\..

Xje

For a given outlet, only two chunks will compete for
retrieval, and the winning chunk will reflect a combination
of frequency and recency of the associated outcome, which

is generally the temporal properties that are desired for
prediction.

However, as mentioned earlier, temporal criteria are of
limited usefulness when facing sudden disruption such as
natural disasters. While a given outlet is usually open
(frequency), and was open yesterday (recency), it may not
be open today if a disaster event happened in the meantime.
In that case, spatial factors constitute an additional basis for
making predictions. Assuming lack of specific event
knowledge, e.g., where the storm happened to hit, the most
direct basis for including spatial factors is the limited known
availability of nearby outlets. In the absence of additional
semantic information (e.g., the outlet brand), the most direct
information to use when attempting to generalize across
outlets is their spatial location.

Specifically, the spatial component of the model makes
use of the partial matching mechanism in memory retrieval,
which allows for chunks that do not exactly match the
requested pattern to be considered for retrieval, but with a
penalty that reflects the degree of mismatch. Specifically,
the activation A4; of chunk 7 is now the sum of the base-level
activation and a mismatch penalty term:

Ai =Bl+MP*ZkSlm(v,d) (3)

where MP is a mismatch penalty scaling parameter (set in
this model at a fairly standard value of 2.0) applied over all
k pattern components specified in the retrieval request (only
the outlet identity in this case) and Sim(v,d) is the similarity
penalty between the corresponding value d requested and
the actual value v present in the chunk. To avoid introducing
needless free parameters, the similarity between outlet
chunks is set to a linear function of the geographic distance
between them, scaled such that a distance of 25 miles
corresponds to a penalty of 1 unit of activation.

When making a prediction for a given outlet, the model
will therefore not only consider the history of that given
outlet as expressed in the base-level activation of the two
associated chunks, but also chunks associated with other
outlets as well, with a preference for those closer to the
given outlet. Note that unlike that is the target of the
prediction, some of those outlets will a known status for the
present day, significantly increasing the base-level
activation of the corresponding day. Thus the retrieval
process will reflect a competition between the recency (and
frequency) of outcomes, as reflected in the base-level
activation, and its (spatial) relevance, as reflected in the
mismatch penalty term.

The final component of the model concerns how to
aggregate the relevant knowledge. As specified in the
retrieval equation (2), one could simply select the most
relevant chunk and return the associated outcome (open or
closed). However, that would leave the prediction relying on
a comparatively small piece of information, e.g., a chunk of
limited relevance being retrieved purely through recency
bias or simply the stochasticity of the process. To reflect
people’s ability to weigh a sizable part of their knowledge

36

base when making predictions (e.g, Lebiere, 1999), the
blending retrieval mechanism specifies how to return a
value V (in this case, the availability prediction of a specific
outlet) that reflects the consensus of the entire set of
considered chunks, weighted by their respective probability
of retrieval P(i):

V =argminy,; P(i) * (Sim(V,V)))? (4)

Where Sim(V, V;) is the similarity between the consensus
value V and the value V; proposed by chunk i. In this
model, those values returned by the retrieval process are the
outlet availability values: open or closed. Treating those
values as binary would result in a process where the
evidence for each outcome in the form of the activation of
the chunks representing that outcome would be weighted
against that of the competing outcome, and the greater one
selected.

However, a more general decision process is also
possible. By setting those values as numerical outcomes
(e.g., 1 for open and 0 for closed) and assuming linear
similarities in that range (the default, as for distance
similarities earlier), the consensus value V will be
somewhere in that interval reflecting the degree of
preponderance of one outcome over the other. That value
can then be interpreted as a confidence value in the open
outcome, and assessed against a probability decision
threshold (as mentioned in the description of Figure 1). This
reflects the requirements of real world applications, e.g.,
where one might not want to predict that an outlet is open
during an emergency without a fairly high certainty.
However, we will only consider majority decisions (i.e.,
probability threshold of 0.5) in the following results section.

Results

In the absence of comparable human data, we examine the
prediction performance of the model on a functional basis,
but also looking to assess its cognitive plausibility. We also
report results for the temporal and spatial versions of the
model to assess the relative contribution of the two
mechanisms.

Prediction Error Across Time (Temporal Model)

Probability of Error
o
=

10 15 20

Days since Storm

25 30 35

Figure 2: Performance of Temporal Model Across Time.

Figure 2 reports the aggregate performance of the
temporal model across the entire range of data for about a
month after the storm. This is the version of the model that
only matches chunks for that specific outlet and relies only
on its history. Performance is very poor on the day
following the storm because of the lack of relevant data, but
improves very quickly, with even a single day worth of data,
because of the importance of the recency factor.
Performance actually regresses slightly after that, as outlets
become available again in a pattern that is difficult to
predict, especially without access to semantic data such as
outlet brands, which might get resupplied at the same time.

Effect of Decay Rate (Temporal Model)

0.25

0.2

o
e
&

@=(=eFO0D
«=GAS

o
e

Probability of Error)

PHARMACY

o
o
5

0 0.5 1 15 2
Temporal Decay Rate (d)

Figure 3: Effect of Decay Rate on Temporal Model.

Performance especially degrades on day 8, following a
secondary storm that disrupts the pattern again. After that, it
gradually improves over time to about 10% errors.
Following the strong suggestion of the importance of the
recency effect, Figure 3 examines the performance of the
temporal rate as a function of the power law decay rate d for
each outlet category averaged over all days, separated by
outlet category. In general, a higher decay rate results in a
lower error rate, indicating the primacy of recency over
frequency. The availability of food outlets tends to be harder
to predict than gas or pharmacy outlets, perhaps because
their merchandise is more important or more perishable,
leading to faster depletion, but the pattern is similar.

Effect of Decay Rate (Spatial Model)

0.2

0.15 \R\h\k

"'.-"\:_J e ——

0.1 @=(==FOOD

—

@=GAS

Probability of Error

0.05 PHARMACY

0 0.5 1 15 2
Temporal Decay Rate (d)

Figure 4: Effect of Decay Rate on Spatial Model.

Figure 4 reports the effect of the same decay rate, but for the
spatial’ model, that also reflects generalization across
outlets using the partial matching and blending mechanisms.
One can see that there is now a penalty for very high decay
values that overemphasize recency. When considering a
broader knowledge base, frequency of occurrence becomes
more important and balances out against recency around the
decay rate value of 0.5 that has become the standard value
in ACT-R models for capturing human performance.

Effect of Sampling Size on Generalization

0.14 "\

[
-

o
o
~

o
[

@=(meFO0D
@=GAS

=4
o
)

Probability of Error
o
o
(=)

——

PHARMACY

=4
o
R

=4
o
o

o

0 0.1 0.2 0.3 0.4 0.5
Sampling Rate (Proportion of Current Day Data)

Figure 5: Effect of Sampling Size on Spatial Model.

The results of the spatial model presented in Figure 4 are
actually slightly worse than those of the temporal model
because we evaluated them on common ground, i.e., without
including any of the current day’s data for the spatial model
to generalize from. Figure 5 examines the impact of the
sampling rate of data for the current day to determine the
effectiveness of the spatial model to generalize from nearby
outlets. Generalization is quite effective, reducing the
probability of error by half with about 20% of the current
data. Note that more data (up to 50%) doesn’t improve
generalization further because of the overall unpredictability
of the task, at least in certain conditions.

Impact of Circumstances on Generalization

0.5

e=f=sFood Day 3
@@=Food Day 8

Gas Day 3

Probability of Error

@ Gas Day 8

0 0.1 0.2 0.3 0.4 0.5
Sampling Rate (Proportion of Current Day Data)

Figure 6: Effect of Circumstances on Spatial Model.

* We could refer to it as the integrated model because it also
includes the temporal aspect through the base-level component, but
we found the spatial/temporal distinction to be more descriptive.

Finally, to examine the impact of conditions on
generalization, Figure 6 focuses on performance on Day 3
(2 days after the storm) and Day 8 (the day after a secondary
storm hit) for food and gas outlets (pharmacy outlets
omitted but results similar to gas). Because of the difficulty
of predicting availability immediately after a disruptive
event, the error rate is consistently and significantly higher
on Day 8 than Day 3. However, as for the average across all
days, performance significantly improves with sampling
rate, becoming almost error-free on Day 3, which relies only
on a single day of useful complete data (Day 2) and the
specified proportion of the current day’s data.

Discussion

Gu et al. (2014) applied a variety of algorithmic
approaches to the prediction problem using this data set.
They similarly differentiated their approaches between
spatial and temporal algorithms. Their algorithms can be
seen as specialized version of the cognitive mechanisms
used here, e.g., the LastKnownState algorithm is simply the
recency component of base-level activation without
frequency, while the BestProxy algorithm is effectively
partial matching without blending (or stochasticity).
Recognizing the need to reflect both temporal and spatial
data, they develop an algorithm that combines the best of
the two approaches, in a way similar to, but more limited
than, how those factors are combined in chunk activation.

The compelling argument for cognitive models, however,
is not that they outperform a given machine learning
algorithm. Rather, it is that they provide a way to augment
human cognition in a way that is fundamentally compatible
with it, for example by selecting a limited set of data to
provide to the human decision maker that would result in
the best human performance. In ongoing work, we are
exploring mechanisms to introspect into the mechanisms of
our cognitive model to drive data selection that would
maximize its performance. We plan to then verify the
model’s predictions by collecting data in situations that
combine model data selection and human decision making.

Acknowledgments

This research was supported by the Network Science
Collaborative Technology Alliance sponsored by the U.S.
Army Research Laboratory under Cooperative Agreement
No. WO911NF-09-2-0053. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Army
Research Laboratory or the U.S. Government.

References

Al Magazine (2016). Beyond the Turing Test. AAAI Press.
April, 2016.

Anderson, J. R. (1990). The Adaptive Character of Thought.
Hillsdale, NJ: Erlbaum.

38

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of
the mind. Psychological Review 111, (4). 1036-1060.

Cowan, N. (2001). "The magical number 4 in short-term
memory: A reconsideration of mental storage
capacity". Behavioral and Brain Sciences 24 (1): 87-114;
discussion 114-85.

Erev, 1., Ert, E., Roth, A. E., Haruvy, E., Herzog, S., Hau,
R., Hertwig, R., Stewart, T., West, R., Lebiere, C. (2010).
A choice prediction competition, for choices from
experience and from description. Journal of Behavioral
Decision Making 23(1): 15-47.

Gu, S., Pan, C., Liu, H., Li, S., Hu, S., Su, L., Wang, S.,
Wang, D., Amin, T., Govindan, R., Aggarwal, C., Ganti,
R., Srivatsa, M., Bar-Noy, A., Terlecky, P., &
Abdelzaher, T. (2014). Exploitation Data Extrapolation in
Social Sensing for Disaster Response. The [0th IEEE
International Conference on Distributed Computing in
Sensor Systems (DCOSS 2014), Marina Del Rey, CA.

Kurzweil, R. (2006). The Singularity is Near. New york,
NY: Viking Press.

Lebiere, C. (1999). The dynamics of cognitive arithmetic.
Kognitionswissenschaft [Journal of the German Cognitive
Science Society] Special issue on cognitive modelling
and cognitive architectures, D. Wallach & H. A. Simon
(eds.)., 8 (1), 5-19.

Lebiere, C., Gray, R., Salvucci, D. & West R. (2003) Choice
and Learning under Uncertainty: A Case Study in
Baseball Batting. In Proceedings of the 25th Annual
Meeting of the Cognitive Science Society. pg 704-7009.
Mahwah, NJ: Erlbaum.

Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-
Taylor, M., Staszewski, J., & Anderson, J. R. (2013). A
Functional Model of Sensemaking in a Neurocognitive
Architecture. Computational Intelligence Neuroscience.

Marr, D.; Poggio, T. (1976). "From Understanding
Computation to Understanding Neural Circuitry".
Artificial Intelligence Laboratory. A~ Memo.

Massachusetts Institute of Technology. AIM-357.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological Review 63 (2): 81-97.

Oaksford, M. & Chater, N. (2007). Bayesian Rationality:
The Probabilistic Approach to Human Reasoning. Oxford
University Press, Oxford, UK.

Stocco, A., Lebiere, C., & Samsonovich, A. V. (2010). The
B-I-C-A of biologically inspired cognitive architectures.
International Journal of Machine Consciousness, 2(2),
171-192.

Wallach, D., & Lebiere, C. (2000). Learning of event
sequences: An architectural approach. In Proceedings of
International Conference on Cognitive Modeling 2000,
pp. 271-279. NL: Universal Press.

West, R. L., & Lebiere, C. (2001). Simple games as
dynamic, coupled systems: Randomness and other
emergent properties. Journal of Cognitive Systems
Research, 1(4), 221-239.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Considerations Influencing Human TSP Solutions and Modeling Implications

Brandon S. Perelman (Brandon.S.Perelman.CTR@mail.mil)
U.S. Army Research Laboratory, Human Research & Engineering Directorate
Aberdeen Proving Ground

Shane T. Mueller (ShaneM@MTU.edu)
Michigan Technological University, Department of Cognitive and Learning Sciences,
1400 Townsend Drive Houghton, MI 49931

Abstract

The visual Euclidean Traveling Salesman Problem (TSP)
presents participants with nodes, representing cities, and
requires that the participant trace the shortest closed route
among the cities. Humans solve a similar problem in every day
navigation and search tasks. We investigated human TSP
solutions for considerations other than solution length. We
found a preference for solutions favoring distance-discounted
reward and distance to first contact. A hierarchical stochastic
model parameterizing solution length, distance-discounted
reward, goodness of fit, and plan complexity showed similar
effects. The model shows promise for approximating human
performance in TSP and other TSP-like naturalistic tasks.

Keywords: TSP; planning; problem solving; visual cognition.
Introduction

The Traveling Salesman Problem (TSP) is a spatial
combinatorial optimization problem used in various forms in
applied settings, such as operations (e.g., the Vehicle Routing
Problem; Dantzig & Ramser, 1959) and engineering (Krolak,
Felts, & Marble, 1971), and basic research on spatial
cognition and navigation in animals (de Jong, Gereke,
Martin, & Fellous, 2011) and humans (Tenbrink & Seifert,
2011). Visual Euclidean TSP requires that the solver plot the
shortest path through a 2D metric space containing nodes,
representing cities, beginning and ending in the same
location. TSP is computationally intractable, with each
problem having (n — 1)! / 2 solutions. Therefore, brute-force
approaches to obtaining optimal, shortest path solutions are
too resource-intensive for many applications.

Despite the aforementioned complexity of TSP, human
solutions to TSP are typically an order of magnitude shorter
(i.e., better) than those produced by many heuristic
algorithms (MacGregor & Ormerod, 1996), and are typically
no more than 10% longer than the optimal solutions,
increasing linearly with problem size (Dry, Lee, Vickers, &
Hughes, 2006; MacGregor & Ormerod, 1996; Pizlo et al.,
2006). Because human solutions are fast and near-optimal,
understanding the mechanism people use to generate them
has implications for algorithm development.

Evidence suggests that humans do not exhaustively solve
the problem at initial presentation. For example, Kong and
Schunn (2007) showed that participants perform the majority
of their global information-seeking saccades after beginning
to solve the problem. Mueller, Perelman, Tan, and Thanasuan
(2015) found very short (~4s) planning times (interval

39

between initial viewing and beginning to solve the problem)
that increased linearly with problem size.

These characteristics have prompted the suggestion that
humans use a hierarchical approach to problem solving in
which a rapidly formed global plan guides the local decisions
(e.g., Best & Simon, 2000). Many computational accounts of
TSP follow this hierarchical structure, simplifying the
problem space by grouping individual cities into clusters
(e.g., Pizlo et al., 2006) or designating a global path through
the space that starts as a convex hull (MacGregor, Ormerod,
& Chronicle, 2000).

This same strategy of following a rapidly produced global
plan is likely used in similar tasks. One such task, searching
for a target among candidate locations, requires planning a
route that optimizes a distance-discounted reward function to
minimize the estimated time to find (ETF) that target (see
Wiener, Schnee, & Mallot, 2004). This general task is critical
in operational domains, such as wilderness search and rescue
(Perelman & Mueller, 2013) and military and public safety
search operations (Antoniades, Kim, & Sastry, 2003), as well
as for sports such as orienteering (Blum et al., 2007). The
present study investigates the extent to which a single
adaptive mechanism could be used to solve TSP and other
TSP-like problems.

Investigations of human behavior in naturalistic TSP-like
tasks (e.g., Blum et al., 2007; Perelman & Mueller, 2013;
Perelman & Mueller, 2015; Ragni & Wiener, 2012; Tenbrink
& Seifert, 2011; Tenbrink & Wiener, 2009) suggest that real-
world strategic planning requires considering factors other
than path length. Many of these tasks require solvers to
prioritize ETF and distance to first contact (DFC), optimizing
a function that rewards visiting locations early in the path,
versus TSP where rewards are uniform. Wiener et al. (2004)
suggest that certain cluster-based strategies should produce
this behavior, and Tenbrink and Wiener (2009) found a slight
bias (roughly 58% of solutions; 8% more than expected)
toward prioritizing larger over smaller clusters early in
solutions to a naturalistic TSP-like task. Note that we have
termed these alternative solution criteria ‘considerations’
rather than heuristics as they are not necessarily isolated
mechanisms, but components of an underlying mechanism.

If a common mechanism is used to solve TSP and similar
tasks, then we should see evidence of these alternative
considerations in TSP solutions. To our knowledge, there is
no published literature searching for evidence of these
considerations in traditional TSP solutions. Evidence of a
common mechanism holds implications for algorithm

development and our understanding of human visual problem
solving.

General Method

The present study consists of analyses of three datasets - two
derived from experiments presented here, and one generously
donated by other authors (see below).

Experiments (Datasets) 1 and 2

Michigan Technological University students participated in
Experiments 1 and 2 (n =29 and 35, respectively). The goal
of Experiment 2 was to replicate the results of Experiment 1
using a blocked design to reduce potential fatigue.

Two participants in Experiment 1 provided incomplete
data (final n = 27). Participants completed TSP problems
presented using the Psychology Experiment Building
Language v. 0.14 (PEBL; Mueller, 2014) TSP. PEBL TSP
problems begin in a fixed starting location, with the last
segment automatically completed by the software, and route
edits are not allowed (see Mueller et al., 2015).

Participants in Experiment 1 completed 5 6-city practice
problems, then 15-problem sets presented in random order,
each containing 10, 20, or 30 cities for 50 total trials.
Participants in Experiment 2 completed their trials in 2
blocks, each containing 5 6-city practice problems, then 5-
problem sets each containing 10, 20, and 30 cities presented
in random order, for a total of 40 trials between both blocks.

Dataset 3

Data for this analysis were provided by Chronicle,
MacGregor, Lee, Ormerod, and Hughes (2008). In that study,
110 University of Hawaii students completed 9 30-city
problems by connecting the cities using pen and paper; the
data were converted into electronic format manually.

Analyses

Traditional descriptive statistics of solution lengths relative
to optimal are reported for the first two experiments. We used
a novel method, reverse solution analysis, to investigate the
solutions for bias toward ETF and DFC. ETF was
operationalized here as the cumulative sum of all segments in
the solution weighted by serial order of visitation. DFC is
defined as the length of the first segment.

Reverse Solution Analysis

TSP solutions begin and end on the same city; they are closed
loops. Therefore, a solution and its reverse form are equal in
solution length (the only consideration by which solutions are
evaluated in TSP). However, the two solutions may differ in
terms of ETF or DFC (or other criteria of solution quality).
We report bias toward a given consideration in the observed
distribution when the percentage of solutions superior to their
reverse forms with respect to that consideration exceeds that
of the expected distribution in which both forms appear with
equal frequency. The observed percentage over the expected
percentage (50%) indicates the magnitude of the bias.

40

Because the PEBL TSP script automatically completes the
last segment of solutions, these biases will be calculated for
both the closed and open solutions, which omit the final
segment returning to home. Note that Dataset 3 was
generated using a paper and pencil format and required a
return to home, and was included to show the extent to which
automatic solution completion impacts performance.

Results and Discussion

Solution Length

Solution length provides a strong measure of overall
efficiency (Figure 1). In Experiment 1, across all problem
sizes, participants’ mean solution lengths were 5.30% longer
than optimal (S.D. = 8.73%). Between set sizes, efficiency
degraded with increasing problem size. Solutions to the 20-
city problems showed the highest variance in solution length,
an effect which was mirrored in the Experiment 2 results
indicating that this likely reflects something about the city
configurations for those problems.

Efficiency by Problem Size
W Experiment 1

30
O Experiment 2

O Experiment 3

25

Solution 20

Length
Percent
Over
Optimal

15

10

1L .

6 Cities 10 Cities

20 Cities 30 Cities

Figure 1: Efficiency by Problem Size for All
Experiments. Error bars indicate standard deviation.

Experiment 2 efficiencies were largely consistent with those
seen in Experiment 1. On average, participants’ mean
solution lengths were 6.76% longer than optimal (S.D. =
12.67%). Between problem sizes, solution lengths increased
with problem size, though efficiency in the 20- and 30-city
problems was not notably different. Finally, participants’
efficiency in solving the 30-city (M = 6.67%, S.D. = 7%)
problems in Experiment 3 was consistent with Experiment 1
performance for problems of the same size.

Other Solution Considerations

Of all Experiment 1 solutions (n = 1,358), 317 were optimal
whereas 93 were designated poor (operationalized as 15%
longer than optimal). Table 1 shows ETF and DFC bias by
solution quality, measured using reverse solution analysis.
Each block of cells indicates the percentage of solutions that
favor that particular criterion given solutions of equal length.

The ETF bias block presents solutions quantified as either
closed (complete, as generated by participants) or open
(without the return to home). These results indicate the

presence of ETF bias in the complete solutions. The
magnitude of this effect appears consistent with that observed
by Tenbrink and Wiener toward prioritizing larger versus
smaller clusters earlier in the solution (2009; 58%). However,
this effect is smaller when considering the solutions without
the return to home. No clear trend in ETF bias was observed
with respect to solution quality. DFC bias was also detected
in these solutions, and the effects are likely related.

Table 1: Experiment 1 RSA Results, ETF and DFC Biases

ETF Bias
Percent
Favoring Binomial Test
Solution Quality ETF Significance
Optimal Solutions 64.98 p <.001*
Closed i 63.40 <.001*
Solutions All Solutions . p<.
Poor Solutions 70.97 p <.001*
Optimal Solutions 56.80 p=.018*
Open All Soluti 5230 = 098
Solutions olutions ’ p=
Poor Solutions 45.16 p=.417
DFC Bias
Percent
Favoring Binomial Test
Solution Quality DFC Significance
Optimal Solutions 67.19 p <.001*
Closed All Soluti 68.56 <.001*
Solutions olutions ’ P
Poor Solutions 80.65 p <.001*

To visualize this effect, we plotted the proportional distance
of the solution covered by each segment in serial order
(Figure 2). ETF and DFC biases are evidenced by shorter
moves earlier in the solutions, or on the first move,
respectively. Figure 2 shows reasonably uniform segment
lengths for all except the final segment, indicating that most
(but not all) of the bias effect appears to be explainable by a
failure to account for the return to home cost.

6 Cities 10 Cities

0.20

010
000 004 DD DAZ

123456788

20 Cities

H_ D
L] | i L] 5}

139878 1215 18

30 Cities

Il

147 11 18 21 28

Proportion of Problem Space
04

000 002 004 008
002

0.00

Segment Serial Order

Figure 2: Proportion of problem space covered by each
segment across Experiment 1 problems, by problem size.

41

The results of Experiment 1 show a robust bias toward
solution forms that visit cities earlier in the solution at the
expense of costs associated with the return to home.

In Experiment 2, participants only appeared to fail to
account for the return to home on the larger 20- and 30-city
problems, as indicated by their long final segment lengths
(Figure 3). Aggregated across problem sizes, the results were
similar to those seen in Experiment 1 with the exception that
ETF bias disappeared entirely for the open solutions, and was
not related to solution quality (Table 2).

Table 2: Experiment 2 RSA Results, ETF and DFC Biases

ETF Bias
Percent
Favoring Binomial Test
Solution Quality ETF Significance
Optimal Solutions 59.84 p<.001*
Closed All Solutions 60.21 p<.001*
Solutions *
Poor Solutions 60.74 p=.008
Optimal Solutions 51.71 p=.539
Open All Solutions 5121 p=2378
Solutions
Poor Solutions 46.01 p=.347
DFC Bias
Percent
Favoring Binomial Test
Solution Quality DFC Significance
Optimal Solutions 55.64 p=.031*
Closed . 65.14 < 001*
Solutions All Solutions . p<.
Poor Solutions 75.46 p<.001*
6 Cities 10 Cities
@ s -+
Q g b=}
@ <
g 3
w g g
S 1 2 3 4 5 [12345687889
=
e
o
5 20 Cities 30 Cities
(=
8
£
[=] =+
(= =1
e E
o

0.0z

I

147 11 168 21 26

T

13979 1215 18

Segment Serial Order

000 002 004 006 008

0.00

Figure 3: Proportion of problem space covered by each
segment across Experiment 2 problems, by problem size.

Visualizing these data at a coarser grain size reveals ETF bias
in the 6-city problems, and a trend toward it in the 10-city
problems, with longer moves generally appearing in the
second halves of the solution (Figure 4), despite no clear
failure to return home.

6 Cities 10 Cities

— =

T T T
First Half Second Half First Half Second Half

050 0865
N T T B

0.35

r

02 04 06 08

Proportion of Problem Space

Figure 4: Distance covered by each half of the solution,
Experiment 2. Lower values in first half indicate ETF bias.

One potential explanation for this effect is that it is an
artifact of the experimental software. The PEBL TSP
automatically completes solutions, so it is possible that
participants’ failure to account for the return home arises
from the fact that they are not required to complete this
section of the solution. Therefore, analysis of Dataset 3 tested
for this effect in a paper and pencil version of TSP.

Dataset 3 consisted of 975 solutions to 9 30-city problems.
56.82% of these solutions favored the ETF-superior form
(binomial test, p < .001) with 63.18% of solutions favoring
the DFC-superior form (binomial test, p < .001). Figure 5
shows a strong failure to account for the return to home cost
in all but one problem (Problem 3044).

Problem Code - 3004

i

18 16 25

Problem Code - 3011

o

1 8 16 25

Problem Code - 3014

[

18 16 25

000 005

000 005

000 0.04
Ll

Problem Code - 3021 Problem Code - 3024

i

1 8 16 25

Problem Code - 3027

il

1 8 16 25

000 005

Proportion of Problem Space
00 005
1
0.00 004

Problem Code - 3030 Problem Code - 3044

R]

1 8 18 25
Segment Serial Order

Problem Code - 3048

i

1 8 16 25

0.00 004
000 0.03
000 005

LLLLL]

18 16 25

Figure 5. Proportion of problem space covered by each
segment across each of the Dataset 3 problems.

To estimate the magnitude of the effect of the DFC bias and
the failure to return home in each of these experiments, we
divided the first and final segment lengths, respectively, by
the average segment lengths (Table 3). One-way ANOVAs
found significant effects of final / average segment length by

42

solution quality for both Experiment 1, F(1, 1356) =94.85, p
<.001, and Experiment 2, F(1, 953) = 165.1, p <.001.

Table 3: First, Final / Average Relative Segment Length by
Solution Quality, Mean Percent (S.D.)

Solution
Quality Experiment 1 Experiment 2 Dataset 3
Optimal 94.06 % 85.86 %
Solutions (56.04 %) (52.82 %)
First All 98.01 % 88.45 % 120.13 %
Segment Solutions (63.55 %) (62.53 %) (88.30 %)
Poor 100.24 % 101.89 %
Solutions (91.07 %) (96.91 %)
Optimal 126.89 % 98.03 %
Solutions (61.98 %) (60.89 %)
Final All 155.54 % 148.41 % 176.25 %
Segment Solutions (98.90 %) (111.09 %) (132.83 %)
Poor 259.48 % 226.37 %
Solutions (175.10 %) (171.83 %)

Note: Solutions not aggregated by quality for Dataset 3 as
optimal solutions to these problems were not available.

For Experiments 1 and 2, the average final segment length
ranged from slightly shorter to over 2.5 times as long as the
average segment length, with the paper and pencil TSP
(Dataset 3) producing results falling somewhere in the
middle. For Experiments 1 and 2, the final segment length
generally increased as solution quality degraded, with the
optimal solutions having much shorter final segment lengths
relative to average than the poor solutions.

Similar effects were not observed for first / average
segment lengths in Experiment 1, but the effect of solution
quality on first / average segment lengths was observed in
Experiment 2, F(1, 953) = 6.89, p = .008, with the better
solutions producing shorter first segment lengths relative to
average. First segment lengths in Dataset 3 were longer than
average, though a causal mechanism is not readily apparent.

Finally, in Experiments 1 and 2 the larger problem sizes
generally produced longer first and final segment lengths
relative to average (see Table 4). One way ANOV As revealed
significant effects of problem size on first, F(1, 1048) =
11.79, p < .001, and final, F(1, 1048) = 102.60, p < .001,
segment lengths in Experiment 2. The effect of problem size
on segment length was observed for the final, F(1, 1356) =
20.66, p < .001, but not first, F(1, 1356) = 0.07, p = .799,
segment lengths in Experiment 1.

Table 4: First, Final / Average Relative Segment Length by
Problem Size, Mean Percent (S.D.)

Problem
Size Experiment 1 Experiment 2

6 96.97 % (71.42 %) 83.61 % (57.00 %)

First 10 97.49 % (59.66 %) 93.44 % (49.89 %)

Segment 20 98.26 % (68.03 %) 69.56 % (61.06 %)
30 96.06 % (62.04 %) 110.68 % (81.85 %)

6 145.34 % (77.70 %) 113.43 % (77.11 %)

Final 10 143.07 % (78.29 %) 102.76 % (58.71 %)
Segment 20 152.12 % (102.05 %) 175.07 % (141.70 %)
30 17539 % (129.40 %) 183.84 % (137.20 %)

Human Results Summary and Discussion

The results presented above demonstrate, for the first time to
our knowledge, the presence of considerations pertinent to
naturalistic TSP-like tasks in traditional TSP solutions.
Participants (1) produced solutions that reduce distance to
first contact and (2) preferred visiting locations early in the
solution at the expense of overall solution length, resulting in
higher distance-discounted reward. However, (3) this effect
is driven largely by a preference for solution forms with a
longer return to home. (4) This effect is robust to the test
delivery format (i.e., computer with an automatic return to
home versus manual pen and paper format) and (5) the
magnitude of this bias is related to the quality of the closed
solutions — better solutions reduce the discrepancy between
final and average segment lengths.

Points 1 and 2 suggest that humans solve a more general
problem than TSP task instructions would require; in addition
to solution length, humans consider ETF and DFC during
problem solving. And, in light of the constraint of point 3,
they seem to do so at the expense of task performance, though
better human solutions tend to consider the problem space
more globally, therefore accounting for the return home.

Subject matter expert interviews (Perelman, 2015) indicate
that ETF and DFC are critical for certain tasks, and prior
research (Perelman & Mueller, 2015) has shown that humans
can adapt their solution criteria to fit specific tasks. However,
the results of the present study show that even when tasked
with minimizing solution length in a traditional TSP, humans
still generate solutions that account for considerations
relevant in naturalistic spatial problem solving tasks. This
suggests a common mechanism used for both TSP, and for
naturalistic TSP-like tasks. A simple computational model
was developed by Perelman (2015) to describe adaptive
behavior in TSP-like problems, which we apply here to
investigate an underlying adaptive mechanism capable of
producing the above effects in TSP.

Modeling

In light of the human results, we used a computational model
designed to permit this flexibility in strategic control that is
capable of solving TSPs wusing limited at-a-glance
information about the problem space. The goal of this model
was to use a scheme capable of adapting to task requirements
(i.e., it incorporates strategic considerations such as ETF into
solution planning) to reproduce human efficiency dynamics
and solution characteristics, specifically the bias toward ETF-
superior solution forms.

The model uses a two-layer hierarchical structure: a
computationally inexpensive local decision making
algorithm (nearest neighbor) guided by a general plan (see
Figure 6) that considers multiple criteria that can be tailored
to specific goals and tasks (i.e., path length minimization, as
in TSP, versus discounted-rewards used in naturalistic tasks).
This higher level plan representation consists of a small
number of segments; the model solves for all the cities within
each segment in sequence. The plan is initially drawn by
running K-means clustering over the problem space (k = 6)

43

then connecting the cluster centroids from the starting
position by nearest neighbor.

Sample Solution to
20-City Problem

\s .
a3

éﬁi

0 100

300 400
1

200

100

Figure 6. The higher level plan (red segments) guides local
solutions (black lines) among the cities (black dots) from the
start location (red; first move is green to show direction)

The plan is then iteratively fit to the data by minimizing a
cost function comprised of a linear combination of five
weighted parameters, (1) log number of segments, intended
to represent plan complexity, (2) goodness of fit, the average
distance between a plan segment and its constituent cities, (3)
plan length, (4) distance-discounted reward, the sum of the
path lengths of all segments discounted by their serial order,
and (5) the average angle between segments, intended to
penalize doubling back. This plan is fit to the data using 500
iterations during which a point in the plan is added, deleted,
moved, or swapped in serial order with another. This
optimization process was not intended to duplicate that used
by humans to solve the problem, but rather to demonstrate
that a model that incorporates multiple criteria can account
for some patterns in the human data.

Modeling Results

The present model solved the 10-, 20-, and 30-city TSP
problems used in Experiment 1 20 times each, and the
solutions were analyzed using the methods described above.

Solution Length

To evaluate model solution efficiency, solution lengths were
compared to those of the optimal solutions. Across all
problem sizes, model solutions lengths were 16.08% longer
than optimal (S.D. = 11.56%). Interestingly, as with the
human subjects, the model produced the greatest variance in
solving the 20-city problems (Figure 7), indicating that
human performance on these problems can be attributed to
properties of the problem spaces rather than a fluke in our
particular sample. While the model was less efficient than
humans, it displayed similar dynamics in the present problem
set for the change in solution quality at the experimental
problem sizes, and variance within set sizes.

Modeling Efficiency by Problem Size
40
35

30

Solution
Length
Percent
over
Optimal

25

20

10 Cities 20 Cities 30 Cities

Figure 7. Model solution length by problem size. Error
bars indicate standard deviation.

The second goal for our model was to replicate the human
bias toward DFC- and ETF-superior solution forms. We
investigated the model solutions using the method applied to
the previous experiments and found that the model favored
ETF- and DFC-superior solutions more strongly than humans
(Table 5), preferring a biased solution in nearly every case
except for the 20-city problems. Figure 8 demonstrates
qualitatively the effects of ETF and DFC bias in the model’s
solutions, along with a failure to account for the return to
home producing segments roughly twice as long as average.

3 10 Cities 20 Cities 30 Cities
2
w
g £ ©
2 S g s
S © e
o o -
5 3 =
o o
S ©
T 8 3 8
o o S (=]
E 14 7 10 16 11 17 18 16 25
Segment Serial Order

Figure 8: Proportion of problem space covered by each
segment across Experiment 1 problems, by problem size.

As with the human solutions, we further quantified the ETF
and DFC biases, and the effect of the failure to return home,
by comparing the first and final segment lengths,
respectively, to the lengths of the average segments on those
trials. The model produced solutions with values (Table 5)
similar to those of the poor human solutions (Table 3),
including comparatively short first segment lengths, and long
final segment lengths (i.e., the return to home) that increased
with problem size. However, unlike the human solutions, the
model produced solutions with first segment lengths that
decreased with increasing problem size relative to the
average segment lengths on those trials. Finally, the model
produced solutions with shorter relative first segment lengths,
but longer final relative segment lengths, compared to the
human solutions.

44

Table 5: Final / Average Segment, Mean Percent (S.D.), and
Proportion of Solutions Favoring Each Bias

10 Cities 20 Cities 30 Cities
First / Average 79.16 % 70.85 % 67.95 %
Segment Length (41.91%) (31.93 %) (25.90%)
Final / Average 205.85 % 257.52 % 327.16 %
Segment Length (56.19%) (114.72%) (138.09 %)
Percent Favoring ETF ~ 99.33 % 89.67 % 100 %
Percent Favoring DFC 100 % 94.33 % 100 %

Last, we investigated a potential criticism of the present
model — that a nearest neighbor model would be equally
efficient. We compared model and human solution lengths to
those generated using nearest neighbor. The present model
produced solutions to the 10-city problems that were 4.1%
shorter than nearest neighbor, equal in length for the 20-city
problems, and 1.1% shorter for the 30-city problems. Human
solutions in Experiment 1 generally showed a similar pattern
(6%, 10% and 10%, respectively), though the poor human
solutions were on average 3-9% longer than those produced
by nearest neighbor. In summary, the model solutions were
less efficient than human solutions on average, but more
efficient than the nearest neighbor and poor human solutions.

General Discussion

The behavioral results of the present study show, for the first
time, that human TSP solutions consider ETF and DFC,
criteria that are irrelevant to TSP, but critical in the real
world. This manifested here as a failure to account for the
return to home, and the magnitude of this bias was related to
solution quality — poor solutions had longer final segments.

A model that adjusts a linear plan to fit the problem space
according to a number of criteria related to TSP, real-world
TSP-like problems, and plan complexity, exhibits behavior
similar to humans in this task. We expect that efficiency
could be greatly improved via dynamic re-planning to match
the human data. In adapting the present model, the agent
would adjust its higher level plan after solving for the points
within each segment in serial order. In this way, a parameter
estimated from prior eyetracking studies (e.g., Kong &
Schunn, 2007) would govern the iterations spent in dynamic
replanning.

Taken together, the results of the present study hold
implications for modeling human performance in spatial
combinatorial optimization problems. Specifically, the
results speak to the importance of granularity and sequence
in representing the problem space. Many algorithms, such as
those implementing a convex hull, solve the problem
exhaustively at presentation. The behavioral and modeling
results presented here are consistent with prior work
suggesting that humans approach these problems using a
mechanism that provides a means of solving the problem
efficiently without the mental burden of generating and
maintaining an exhaustive solution in memory, at the expense
of efficiency later in the route. Finally, this mechanism is
consistent with producing solutions to discounted-reward
problems that are more common than path length
optimization in naturalistic tasks.

References

Antoniades, A., Kim, H. J., & Sastry, S. (2003, December).
Pursuit-evasion strategies for teams of multiple agents with
incomplete information. In Proceedings of the 42nd IEEE
Conference on Decision and Control, 1, 756-761.

Blum, A., Chawla, S., Karger, D. R., Lane, T., Meyerson, A.,
& Minkoff, M. (2007). Approximation algorithms for
orienteering and discounted-reward TSP. SIAM Journal on
Computing, 37, 653-670.

Chronicle, E. P., MacGregor, J. N., Lee, M., Ormerod, T. C.,
& Hughes, P. (2008). Individual differences in
Optimization Problem Solving: Reconciling Conflicting
Results. The Journal of Problem Solving, 2(1), 41-49.

De Jong, L. W., Gereke, B., Martin, G. M., & Fellous, J.
(2011). The traveling salesrat: Insights into the dynamics
of efficient spatial navigation in the rodent. Journal of
Neural Engineering, 8. doi:10.1088/1741-
2560/8/6/065010.

Dry, M., Lee, M. D., Vickers, D., & Hughes, P. (20006).
Human performance on visually presented traveling
salesperson problems with varying numbers of nodes.
Journal of Problem Solving, 1, 20-32.

Dantzig, G. B. & Ramser, J. H. (1959). The truck dispatching
problem. Management Science, 6, 80-91.

Kong, X. & Schunn, C. D. (2007). Information seeking in
complex problem solving. In Proceedings of the 8th
International Conference on Cognitive Modeling, Oxford:
UK, 261-266.

Krolak, P., Felts, W., & Marble, G. (1971). A man-machine
approach toward solving the Traveling Salesman Problem.
Communications of the ACM, 14, 327-334.

MacGregor, J. N. & Ormerod, T. C. (1996). Human
performance on the Traveling Salesman Problem.
Perception & Psychophysics, 58, 527-539.

MacGregor, J. N., Ormerod, T. C., & Chronicle, E. (2000). A
model of human performance on the traveling salesperson
problem. Memory & Cognition, 7, 1183-1190.

Mueller, S. T. (2014). PEBL: The Psychology experiment
building language (Version 0.14) [Computer experiment
programming language]. Retrieved June 2014 from
http://pebl.sourceforge.net.

Mueller, S. T., Perelman, B. S., Tan, Y., & Thanasuan, K.
(2015). Development of the PEBL Traveling Salesman
Problem Computerized Testbed. The Journal of Problem
Solving, 8, 4.

Mueller, S. T. & Piper, B. J. (2014). The Psychology
Experiment Building Language (PEBL) and the PEBL Test
Battery. Journal of Neuroscience Methods, 222, 250-259.
Doi: 10.1016/j.jneumeth.2014.10.024.Perelman, B. S. &
Mueller, S. T. (2013). A Neurocomputational approach to
modeling human performance in simulated unmanned
aerial search. In Proceedings of the 12" International
Conference on Cognitive Modeling, Ottawa, CA.

Perelman, B. S. (2015). A naturalistic computational model
of human behavior in navigation and search tasks.
Doctoral Dissertation.

45

Perelman, B. S. & Mueller, S. T. (2015). Identifying mental
models of search in a simulated flight task using a
pathmapping approach. In Proceedings of the 18"
International Symposium on Aviation Psychology, OH.

Pizlo, Z., Stefanov, E., Saalweachter, J., Li, Z., Haxhimusa,
Y., & Kropatsch, W. G. (2006). Traveling salesman
problem: A foveating pyramid model. The Journal of
Problem Solving, 1, 8.

Ragni, M. & Wiener, J. M. (2012). Constraints, Inferences,
and the Shortest Path: Which paths do we prefer? In
Proceedings of the Annual Meeting of the Cognitive
Science Society, Sapporo, Japan.

Tenbrink, T. & Seifert, I. (2011). Conceptual layers and
strategies in tour planning. Cognitive Processes, 12, 109-
125.

Tenbrink, T. & Wiener, J. (2009). The verbalization of
multiple strategies in a variant of the traveling salesman
problem. Cognitive Processes, 10, 143-161.

Wiener, J. M., Schnee, A., & Mallot, H. A. (2004). Use and
interaction of navigation strategies in regionalized
environments. Journal of Environmental Psychology, 24,
475-493.

http://pebl.sourceforge.net/

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

The Representation of Visual Working Memory

Bella Z. Veksler, Rachel Boyd
(bellav717 @gmail.com) (rachel.boyd.rbl @gmail.com)
Oak Ridge Institute for Science & Education at AFRL

Christopher W. Myers, Glenn Gunzelmann
(christopher.myers.29 @us.af.mil) (glenn.gunzelmann @us.af.mil)
Air Force Research Laboratory, Wright-Patterson AFB, OH, USA

Hansjorg Neth (h.neth@uni-konstanz.de)
University of Konstanz, Konstanz, Germany

Wayne D. Gray (grayw @rpi.edu)
Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract

Visual working memory (VWM) is a construct hypothesized
to store a small amount of accurate perceptual information
that can be brought to bear on a task. Much research con-
cerns the construct’s capacity and the precision of the infor-
mation stored. Two prominent theories of VWM representa-
tions have emerged: slot-based and continuous-resource mech-
anisms. Prior modeling work suggests that a continuous re-
source that varies over trials with variable capacity and a po-
tential to make localization errors best accounts for the empir-
ical data. Questions remain regarding the variability in VWM
capacity and precision. Using a novel eye-tracking paradigm,
we demonstrate that VWM facilitates search and exhibits ef-
fects of fixation frequency and recency, particularly for prior
targets. Whereas slot-based memory models cannot account
for the human data, a novel continuous-resource model pro-
vides a better fit and identifies the relevant resource as item
activation.

Keywords: visual working memory; visual search; ACT-R.

Introduction

Visual working memory (VWM) is a construct hypothesized
to be a limited capacity system that maintains representations
of visual information for temporary storage and manipula-
tion for ongoing tasks (Luck & Vogel, 2013). This construct
has garnered much attention and has been the focus of many
studies and computational models. Even so, answers to fun-
damental questions, such as its capacity and representation
precision, remain elusive (van den Berg & Ma, 2014).

Two theories of VWM representations dominate the litera-
ture: slot and continuous resource mechanisms. Slot theories
generally posit a fixed capacity of 3 to 4 items with high to
perfect precision (Luck & Vogel, 2013). A slot is a discrete
memory container filled with an object representation with
bound visual features (Luria & Vogel, 2011). Information
stored within a slot can be accurately applied to a task re-
gardless of its visual complexity, be it a single vertical line or
a complex Chinese character.

By contrast, continuous resource theories of VWM posit
a finite resource that can be spread across different areas of
a scene or item. This resource is seen as a pool of mental
processing power dedicated to VWM, which can be flexibly
distributed across items in a display (Wilken & Ma, 2004).

46

Fewer objects to be encoded lead to less distributed memory
resources and allow for more precise object representations.

Recently, Donkin, Kary, Tahir, and Taylor (2016) have ar-
gued that a VWM system using a continuous resource may
appear to support a slot interpretation when the number of
items to remember varies from trial to trial. At times highly
precise representations of a small number of objects appear to
favor a slot-based model, but when set size is unpredictable
participants are biased to focus on a small subset of items,
leading to performance suggestive of a slot model. When
set size was predictable (the same across multiple trials), re-
source models best characterized the data.

Van den Berg, Awh, and Ma (2014) varied precision, ca-
pacity, and the potential for spatial binding errors as three
independent factors of VWM to test lingering questions. Us-
ing a 4x4x2 factorial design, all models were tested on 10
previously published empirical results from a change detec-
tion paradigm. The results indicated that a continuous model
which varied both storage capacity and precision across tri-
als, combined with the presence of the potential for spatial
binding errors best accounts for the data. However, questions
regarding the mechanisms behind the variance in precision
and capacity remain unanswered.

A passive, tachistoscopic version of the change detection
paradigm has been the dominant approach to establishing
prominent theories of VWM (Alvarez & Cavanagh, 2004),
and continues to be the paradigm most used in contempo-
rary empirical research on VWM (Donkin et al., 2016). In
this task, a participant is instructed to attend to and remem-
ber information within a stimulus display. The information
is typically a set of unique objects that differ across features,
such as shape and color. After some time the stimulus dis-
appears and after a delay the object of the possible change is
cued, or a new stimulus appears. If a change occurred, the
participant must indicate the change in some manner, either
by responding yes/no (c.f., Alvarez & Cavanagh, 2004), by
identifying what has changed (c.f., D. E. Anderson, Vogel, &
Awh, 2013), where the change occurred (c.f., Barton, Ester,
& Awh, 2009), or some combination thereof. Researchers

vary the number of items in a stimulus (i.e., set size) to eval-
uate VWM capacity and use change identification to evaluate
VWM precision.

There are weaknesses in the passive change detection ap-
proach to understanding VWM (Rouder, Morey, Morey, &
Cowan, 2011). Specifically, many, if not all, VWM studies
rely on a passive approach to understanding VWM rather than
an active one (Findlay & Gilchrist, 2003). Outside the exper-
imental laboratory, visual search does not occur in a vacuum,
but rather in the context of a task where targets contained
in some visual array are distinguished from distractors. We
argue that passive change detection with delayed responses
(~2-3 s) does not tap into the functional importance of VWM
— to facilitate the accurate completion of an active visual
task through the temporary storage of readily available and
accurate visual information.

In the current paper we provide an explanation for the vari-
ance in VWM precision and capacity. To do so, we intro-
duce a new eye-tracking paradigm that moves away from the
change detection tasks commonly used to investigate VWM.
Our new paradigm of repeated serial search (Neth, Gray, &
Myers, 2006) requires an individual to actively search for dif-
ferent (and sometimes repeating) targets within a stable visual
display and thus represents a task that is more realistic and
ecologically valid than a passive change detection paradigm.
Importantly, it allows us to ask questions of VWM that in-
form how VWM drives search behavior and the potential dif-
ferences in depth of encoding between targets and distractors
since we have access to the full history of fixations.

Our empirical and modeling work leads to five important
conclusions: (1) the variability in VWM capacity results from
recency and frequency effects from selectively encoding vi-
sual information; (2) VWM precision variability results from
the same recency and frequency effects; (3) memory facili-
tates search behavior; (4) targets have a stronger mnemonic
trace than distractors; and (5) the relevant “resource” involved
is memory activation. In the following sections we introduce
our paradigm and present empirical results, followed by a
model analysis of the empirical data.

Experiment

To determine the degree to which VWM facilitates visual
search, we designed an experiment using a novel repeated
serial search paradigm. In this paradigm, participants were
required to search the same spatial configuration of 10 static
items a total of 20 times. This paradigm taps into the
VWM construct, motivating participants to retain a maximum
amount of information in VWM to facilitate future searches.

Paradigm. On each trial, ten circular objects with a di-
ameter of 60 pixels were distributed randomly over a cen-
tered white rectangular display area (measuring 1270-by-970
pixels). The objects were positioned at least 60 pixels away
from any edge and the distance between the centers of any
two objects was constrained to be at least 200 pixels. Each
circle contained a hidden label (upper case letter, number, or
monosyllabic four-letter word) that specified the target sought

47

@00

cell

ball

star

Figure 1. Example stimulus used in the experiment. Al-
though all labels are visible here, they were hidden from par-
ticipants’ view until a cursor hovered within the circle.

by the participant. On any given trial only one type of label
was in the circles (letters, numbers, or words). The order
of label types was randomized within each participant’s task
presentation.

Each trial was composed of 20 searches through the dis-
play. At the beginning of each search, the experimental soft-
ware announced the current target label to the participant
(e.g., “cell” in Figure 1). Participants could hover with the
mouse cursor over each circle to uncover its hidden label.
Once the cursor was moved off the circle, the correspond-
ing label was hidden again. Participants were instructed to
click on the circle corresponding to the target label. If the
clicked circle indeed contained the correct target label, a new
target was announced; however, if a clicked circle contained
a different label the software recorded an error and the cur-
rent target was announced again to provide a reminder to
the searcher. Consequently, searchers typically uncover non-
targets (distractors) in the process of searching for targets and
these distractors may turn into targets in subsequent searches.

There were three within-participants information presenta-
tion types that manipulated the number of intervening targets
between identical targets. While they are of theoretical inter-
est, we collapse across these presentation types for the current
analyses to save space and mitigate complexity.

Participants. A total of 13 Rensselaer Polytechnic Insti-
tute undergraduates (3 females) volunteered for course credit.
Their mean age was 18.92 years (SD = 1.04).

Procedure. Participants signed informed consent forms,
viewed a slideshow of the instructions, and were calibrated to
an LC Technologies eye tracker prior to beginning the study.
Every participant completed 60 trials in total. Each trial con-
sisted of a series of 20 searches. Every search commenced
when a computer generated voice announced the next target
to be found.

Results

A timeline of the sequence of fixations during every search
within a trial was created for each participant. This was
made possible through the collection of visual point of regard
and mouse click data while participants performed the visual
search task. Given this sequence of fixations, we can deter-
mine the frequency of fixations across labels and how long
ago — in terms of duration and the number of intermediate
items — each label was last viewed to investigate recency and
frequency effects in finding a target. We can also determine
differences that are due to the functional role of labels (i.e.,
whether labels were previously seen and encoded as targets
or as distractors).

Recency effects. For this analysis we restricted the data
to the first two times an item was a target of a search. A
2 (label-type)-by-10 (recency) ANOVA was performed to
evaluate the effect of label encoding and recency of last fixa-
tion. There was an interaction between whether an item was a
target before and how recently it was last fixated, F (9, 108) =
3.76,p < .001, 7=0.24. There was also a significant main
effect of recency, F(9,108) = 11.94, p < .001, 772=0.50 (see
Figure 2 top). This effect was greater for labels that had not
been previous targets, F(1,12) = 73.42, p < .001, >=0.86.
In general, labels that were prior targets were less impacted
by recency of fixation.

One explanation for the inverted U-shape of the items that
were only distractors prior to the current search is that as
participants are searching the display, they are only encoding
whether or not the current item is the target, rather than the
identity of the item. This depth of encoding may result in an
inhibition of return effect for more recently fixated items (2—
5 fixations ago) leading to longer search times than when the
distractor was seen longer ago.

Frequency effects. A 2 (label-type)-by-7 (frequency)
AVOVA was performed to evaluate the effect of label en-
coding frequency. There was insufficient data in frequency
bins 1 and 2 (i.e., in cases where a second search for a tar-
get was preceded by one or no fixations on the item prior to
the search), leaving bins 2—-8 for analysis (see Figure 2 bot-
tom). Nonetheless, these bins reflect the general trend in the
data. There was a significant interaction between fixation fre-
quency and label-type on the number of fixations to find the
target, F(6,72) = 5.92,p < .001,)72=0.33, where searches
required fewer fixations when a label had been a target before
despite being seen less than 5 times, F(1,12) = 38.37,p <
.001, 772:0.76, (Figure 2 bottom). Further, there was a main
effect of frequency on number of fixations to find the target,
F(6,72) = 3.25,p < .01, 172=0.21. In particular, items that
were not prior targets show a benefit of having seen the item
more times, whereas items that were previously targets seem
to be encoded sufficiently enough that it takes roughly the
same number of fixations to find the target regardless of the
number of previous fixations.

Recency and frequency effects. In order to provide a
more robust description of the human data, we examined the

48

Fixations to Find given Fixation Recency

©
< To)
6 /I \
o
z \I
o
o
2
: o A4 _EL
£ - 5 13
= s
g8 o |,
E « —=— Not a Prior Target
z I —& - Prior Target

12 3 4 5 6 7 8 9 10

Fixations Back

Fixations to Find given Fixation Frequency

T

[

mlf)

=S

©

£ o |

. e —_——
o]

2

2

s I 4

=

2 e ‘%
[T -

-

o0« L7

[

£

S O

zZ

Times Target ltem Seen Before
Figure 2. Mean number of fixations needed to find a target
as a function of recency and frequency of seeing the target
before.

proportion of all searches in which a target was last seen
R (Recency) fixations ago or was seen F' (Frequency) times
prior to the search and was found within N fixations. Figure 3
illustrates the respective distributions generated by analyzing
the human data in this way. In particular, in the recency graph,
the peak of each distribution shifts to the right (more fixations
to find target) as R increases. It should be noted that the hu-
man data exhibits a bell-shaped curve across all recency val-
ues, with the proportion of searches in which target is found
in a higher number of fixations falling off gradually.

In the frequency graph, when the item has never before
been fixated (F==0), the proportion of all searches in which
the target is found stays at roughly 10% across all N. Items
which have been seen more times (F==9) have a slightly

Human Recency

<]
e o
Fixations Back
- N -e- 0
S o N --o-- 1
c c /5‘\ -m- 2
S ! ©,
T o - ;
s o 7 /X\ 4
2 6
S 7
8
o 9
2 4
01 2 3 456 7 8 910
Fixations to Find
Human Frequency
<
o
Frequency
@ ~e- 0
o 7 -e-- 1
5 =2
£ o —=— 3
o L
s o 4
a A~ 5
- 6
s 7 7
-©- 8
o - 9
S

2 3 45 6 7 8 910

Fixations to Find

Figure 3. Proportions of recency and frequency effects in the
human data.

more pronounced peak at N=3 as compared to items which
were fixated fewer times.

Subsequent model runs were compared on the basis of
these distributions. We wanted to be able to capture both the
magnitude of the proportions in both recency and frequency,
as well as the general shape of the distributions as proportions
gradually tapered off for the higher N. Note that this collapses
across whether or not the item was a prior target.

Experiment Discussion

The results from the study indicated that the number of fixa-
tions to find a target is affected by (1) whether that label had
been a prior search target, (2) the recency of a label’s previous
fixation, and (3) the frequency of a label’s previous fixations.
Each of these effects contributes to the variability in VWM
capacity and precision. A label more recently encoded will
lead to the appearance of a larger VWM capacity and higher
VWM precision. Similarly, a label more frequently encoded
will lead to the appearance of a a larger capacity with greater

49

precision. In passive change detection, the probe is chosen at
random and may sometimes select a target that has neither
been recently or frequently encoded. This could naturally
lead to the perception of capacity and precision variability
of VWM. By looking at the selective attention process during
the search, we can more concretely point to the mechanisms
leading to this variability.

Model-based Analysis

Given the debate in the literature between slot based and con-
tinuous resource models of VWM, we chose to run a facto-
rial combination of models and search strategies. The three
classes of models were: No memory, Slot-Based Memory,
and Continuous Resource Memory. The search strategies
were either Nearest First or Random. For each memory-
strategy combination, scan-paths were generated for each of
the 20 searches within a trial. In all models, the assumption is
that once an object was visited, it was removed from the set
of possible next visits until the next target was announced.

No Memory Model

This model served as a theoretical baseline for the other mod-
els and searched the display for every search within a trial
without any memory for previous targets or distractors. In
the random search version, the model searched the display
in a random fashion. In the nearest first version, the model
allocated attention to the closest object to the one currently
being fixated. No parameters were varied in this model.

Slot-Based Memory Models

This class of models had a slot-based memory and the number
of slots available ranged from O to 10. Slots were instantiated
as a queue (FIFO) based on the human fixation history prior
to the current search (see Figure 4). Uncovering a label re-
instantiates slot 0 and pushes the labels contained in slot i
into slot i + 1. This corresponds closely to the R denotation
in the Recency human data analysis. At the beginning of ev-
ery search, the model queried its slot-based memory to de-
termine whether the target was already present in one of the
slots. If it was, the model immediately directed its attention
to the location of the target. If it was not in one of the slots,
the model searched the display in either a Random or Nearest
First manner. Only the number of slots parameter was varied
in this model type.

10 2 Previous Current
Fixations Ago Fixations Ago Fixation Fixation
Slot Slot Slot

2 1 0

Figure 4. Slots are instantiated corresponding to the timeline
of fixations in the human data.

Continuous Resource Memory Models

This class of models relied on human eye fixation history of
the trial prior to the current search, taking into consideration
both the time stamps of when the item was fixated and how
many previous fixations were made to the item. The ACT-R
memory equation (J. R. Anderson, 2007) was applied to each
of the items. It specifies the activation of a given item i in
memory as

—d
Ai=1In tij +6i+ €

n

ey
J=1

where j is a fixation on the item and #; is a time stamp of

how long ago the item was seen on fixation j, —d is a decay

value, 8 is a base level constant offset, and € is logistically

distributed transient noise with a mean of 0 and standard de-

viation of o

Activation of the target item was recalculated at the be-
ginning of each search and the model checked whether the
activation of the target was above threshold, 7', and if so,
moved attention directly to the known location of the item.
If Ajgrger < T, then the model selected and encoded another
item based on either a random search or a nearest first strat-
egy. If the target item was still not found, activation was re-
calculated for the target at each additional movement of at-
tention.

Four parameters were varied in the context of ACT-R’s
memory equation (d, 8, T, and o) to find the best fit to the
human recency and frequency data using MindModeling.org
(Harris, 2008). In particular, we varied the parameters as fol-
lows: d: [0,1], 8: [0,10], T: [0,20], and o=: [0,5]. This created
a total of 27,951 combinations of parameters for each search
strategy.

Model Evaluation

Each of the above models was run through all trials (and
searches) obtained from human data. The ACT-R memory
equation uses recency and frequency information as sources
of activation for a given chunk in memory. Thus, we exam-
ined the human data as a function of both the recency and
the frequency of previous fixations to current targets. In this
case, recency refers to how many fixations ago the item was
last fixated, R with respect to the current fixation. For each
parameter set, summary statistics were calculated to deter-
mine the percentage of all trials on which the target was seen
R fixations ago or was previously seen F times and found in
N fixations. This resulted in 10 distributions for recency and
another 10 for frequency, each with 11 data points (one for
each N of fixations to find the target, see Figure 3 for human
data). Then Root Mean Squared Error (RMSE) and R? scores
were calculated for each target recency curve and for each
target frequency curve.

A composite goodness-of-fit measure was created to com-
bine the R? and RMSE measures to capture both the shape
and the magnitude of the differences between human data and
model predictions. Because best fits according to R? are val-
ues closer to 1, and best fits according to RMSE are values

50

Table 1
Best fits for all model types.

Memory Strategy Composite Score*
Continuous resource Nearest first 0.07
Continuous resource Random 0.09
Slot (2) Random 0.35
Slot (2) Nearest first 0.36
None Nearest first 0.37
None Random 0.37

Note: *Lower composite scores indicate better model fits.

closer to 0, we re-scaled the R?> measure (1-R?) and computed
an average of all curves for each parameter setting.

The best fitting slot-based model was one which contained
2 slots (‘remembered’ the last two items previously fixated;
see Table 1). The best fitting continuous resource model
resulted from the following parameter settings: d=1, =1,
T=10, and 0=4.0 (see Figure 5).

The no memory model established a baseline with which
the other memory models could be compared. As can be
seen in Table 1 and Figure 5, the continuous resource memory
model did a much better job of capturing human performance.
In particular, whereas a slot-based memory with 2 slots was
the best fitting in this particular class of models, it failed to
capture the shape of both the recency and frequency distri-
butions. The continuous resource model, on the other hand,
exhibited the bell-shape curve with gradual drop-off seen in
the human data for both recency and frequency. Furthermore,
a nearest-first search strategy was marginally better at captur-
ing the effects than a random search model, suggestive of the
type of strategy participants may have used as they conducted
their search of the display.

We further evaluated the flexibility of all the model types to
determine how convincing the fits actually are (and whether
they could have been achieved merely by searching such a
large space). Model Flexibility Analysis (MFA) was used to
calculate the proportion of all empirical outcomes that each
model could have potentially fit (Veksler, Myers, & Gluck,
2015). Although the slot model only has one parameter (num-
ber of slots), it’s actually more flexible than the continuous
resource model which has 4 parameters. MFA revealed flexi-
bility for the slot model to be ¢ = .14 and for the continuous
resource model to be ¢ = .014. Thus the continuous resource
model makes more precise predictions and is less flexible.

Discussion & Conclusions

In the current work, we explored why variability in VWM
capacity may at times exhibit variable precision and capac-
ity. The new paradigm of repeated serial search allowed us
to more readily observe the specific shifts of visual attention
that occur during natural search. Human data suggests that
the variability in VWM precision and capacity is closely tied
to selective attention as search progresses.

Selective attention directly affects the ease with which sub-
sequent targets can be found, with both recency and fre-

Slot Memory Recency Slot Memory Frequency

@ @
o o
© ° Fixations Back © Frequency
S P -- 0 S -e 0
o o 1 o 1
g g - b w2 8 g 7 S 2
£ - - 3 e - - 3
8 S 4 8 S 3 4
S o -a- 5 o « -a- 5
o S i E 6 o o 6
- O o 2004, 7 - 7
s 1 g/g ?1%-&98 Si5:8 -o- 8 S 2 '§-$=8=85§s$59 o8
24 9% o0.0000000 ° g4 o® e
0 2 4 6 8 10 0 2 4 6 8 10
Fixations to Find # Fixations to Find
Continuous Memory Recency Continuous Memory Frequency
@ @
o o
© Fixations Back o Frequency
2) = s+ 0
. o 1 o 1
5 g ! v“° - 2 5 g ! --- 2
€ o i - 3 € o - 3
g < Pl 4 8 S - 4
o TR -4-5 o A\ -4- 5
a 34 &55\] o 3 ‘8, 6
- i .00 7 - * "gig. 7
s 2 o‘gfﬁ\am - S a%:g:@ 5 o8
: 0:8:8: , “9:8:
2 & . -.‘.'..%9 e e - 9
0 2 4 6 8 10 0 2 4 6 8 10

Fixations to Find # Fixations to Find

Figure 5. Model fits for best fitting slot and continuous re-
source models, nearest first search strategy.

quency playing a role. Items that were previously fixated
more recently resulted in faster search times and boosted the
likelihood of recalling the location of the target. Likewise,
items which had previously been fixated more often were eas-
ier to find. Importantly, there was a stronger mnemonic trace
for items which were previous targets as these items were
found faster than those which were only fixated as distractors
during previous searches.

We compared two models of VWM: a slot-based and a con-
tinuous resource-based model. In the case of the slot-based
model, the recency of an item’s encoding is taken into consid-
eration to facilitate subsequent searches. However, this was
not sufficient to account for the human data as it failed to
capture the shapes of the distributions in both recency and fre-
quency domains. A continuous resource model, on the other
hand, directly incorporated both effects of selective attention.
The continuous resource was instantiated as the item’s acti-
vation, computed by taking into account both the frequency
and recency of previous item fixations.

One limitation of the current approach is that none of the
models explicitly account for the stronger mnemonic trace for
prior targets. The continuous resource model could poten-
tially account for this difference by including an item’s fix-
ation duration in its computation of activation - target items
typically have longer fixations and more opportunity for re-
hearsal. While such models are beyond the scope of the cur-

51

rent work, they are an interesting avenue for future research.
Another possible concern is that humans may use an ‘adaptive
avoidance‘ strategy in which items known to not be the target
are actively not gazed at. Future work will need to address
the degree to which this type of strategy may drive behavior
in visual search.

In conclusion, the repeated serial search paradigm eluci-
dates the variability seen in VWM capacity and precision by
taking into account selective attention considerations. Fu-
ture work could apply the same continuous resource model
to other data sets to explore the robustness of the model in ac-
counting for various VWM results, as well as incorporating
potentially hybrid models which combine slots and continu-
ous resources.

References

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual
short-term memory is set both by visual information load and
by number of objects. Psychological Science, 15(2), 106—11.

Anderson, D. E., Vogel, E. K., & Awh, E. (2013). Selection and stor-
age of perceptual groups is constrained by a discrete resource
in working memory. Journal of Experimental Psychology:
Human Perception and Performance, 39(3), 824—835.

Anderson, J. R. (2007). How can the human mind exist in the phys-
ical universe? (F. E. Ritter, Ed.). Oxford University Press.

Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource al-
location in visual working memory. Journal of Experimen-
tal Psychology: Human Perception and Performance, 35(5),
1359-67.

Donkin, C., Kary, A., Tahir, F,, & Taylor, R. (2016). Resources
masquerading as slots: Flexible allocation of visual working
memory. Cognitive Psychology, 85, 30-42.

Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychol-
ogy of looking and seeing. Oxford Univ. Press.

Harris, J. (2008). Mindmodeling@home: a large-scale computa-
tional cognitive modeling infrastructure. In Proceedings of
the sixth annual conference on systems engineering research
2008 (pp. 246-252).

Luck, S. J., & Vogel, E. K. (2013). Visual working memory ca-
pacity: from psychophysics and neurobiology to individual
differences. Trends in Cognitive Sciences, 17(8), 391-400.

Luria, R., & Vogel, E. K. (2011). Shape and color conjunction
stimuli are represented as bound objects in visual working
memory. Neuropsychologia, 49(6), 1632-9.

Neth, H., Gray, W. D., & Myers, C. W. (2006). Memory mod-
els of visual search - searching in-the-head vs. in-the-world.
Journal of Vision, 5(8), 8-9.

Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011).
How to measure working memory capacity in the change de-
tection paradigm. Psychonomic Bulletin & Review, 18(2),
324-30.

van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial com-
parison of working memory models. Psychological Review,
121(1), 124-149.

van den Berg, R., & Ma, W. J. (2014). "plateau"-related summary
statistics are uninformative for comparing working memory
models. Attention, Perception, & Psychophysics.

Veksler, V. D., Myers, C. W., & Gluck, K. A. (2015). Model flexi-
bility analysis. Psychological Review, 122(4), 755-769.

Wilken, P, & Ma, W. J. (2004). A detection theory account of
change detection. Journal of Vision, 4(12), 1120-35.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

An Account of Interference in Associative Memory: Learning the Fan Effect

Robert Thomson (robert.thomson@usma.edu)'-2
"United States Military Academy, West Point, NY 10928 USA

Anthony M. Harrison? (anthony.harrison@nrl.navy.mil)
J. Gregory Trafton? (greg.trafton@nrl.navy.mil)
Laura M. Hiatt? (laura.hiatt@nrl.navy.mil)

Naval Research Laboratory, Washington, DC 20375 USA

Abstract

Associative learning is an essential feature of human cognition,
accounting for the influence of priming and interference effects
on memory recall. Here, we extend our account of associative
learning that learns asymmetric item-to-item associations over
time via experience (Thomson, Pyke, Trafton, & Hiatt, 2015)
by including link maturation to balance associations between
longer-term stability while still accounting for short-term
variability. This account, combined with an existing account of
activation strengthening and decay, predicts both human
response times and error rates for the fan effect (Anderson &
Reder, 1999). This represents the highest fidelity replication of

a human experiment for modeling that we are aware of.
Keywords: associative learning; interference;

models; fan effects

cognitive

Introduction

Associative learning is an essential component of human
cognition, thought to be part of many mental phenomena such
as classical conditioning (Rescorla & Wagner, 1972),
similarity judgments (Hiatt & Trafton, 2013), and memory
recall (Thomson, Pyke, Trafton, & Hiatt, 2015). Despite its
ubiquity, it is difficult to model directly due to its entangled
ties to other aspects of cognition (e.g., memory decay).

Perhaps associative learning’s most studied effect is that of
priming (and its converse interference). Priming occurs when
the retrieval of one memory facilitates the retrieval of
another. Conversely, interference occurs when a memory
primes multiple other memories instead of just the ones that
are useful or relevant to the current situation. Those other
memories are said to inferfere with the useful one. When
there is high interference, recognition accuracies are
relatively lower and recognition response times relatively
longer when compared to situations where there is low
interference, ostensibly due to having lower overall
activation in memory. Assuming that the degree of
interference is positively correlated with the number of
competing associations, then having more competing
associations (i.e., a higher fan) will lead to relatively higher
error rates and latencies than memories having relatively
fewer competing associations. This effect is most popularly
known as the fan effect (Anderson, 1974).

In this paper we will extend our account of associative
memory embodied in a cognitive architecture (Thomson,
Bennati & Lebiere, 2014) to account for the fan effect
experiment. This account of associative memory has already
successfully predicted the complicated results of a multi-trial
free and serial recall task, including asymmetric contiguity
effects that strengthen over time (Thomson et al., 2015).
Here, we extend our theory to include link maturation to

52

balance associations between longer-term stability while still
accounting for shorter-term variability. We then use the
theory as part of a cognitive model that performs the fan
effect experiment using the same stimuli and presentation
times as the human participants.

By doing this, we become the first theory of associative
memory to explain how associations are learned and updated
throughout the fan effect experiment. Previous models
considered only associations at the end of the experiment
(Anderson & Reder, 1999; Schneider & Anderson, 2012;
Anderson, 1974; Rutledge-Taylor and West, 2008); our
model enhances their understanding of associative memory
by describing the process of how these end-state associations
are reached.

Associative Learning in Memory Recall

Our account of associative learning is situated in the
cognitive architecture ACT-R/E (Adaptive Character of
Thought-Rational / Embodied; Trafton et al., 2013), an
embodied version of the cognitive architecture ACT-R
(Anderson et al., 2004). ACT-R is an integrated theory of
human cognition in which a “production system operates on
a declarative memory” (Anderson et al., 1998). In ACT-R,
recall and latency depend on three main components:
activation strengthening, activation noise, and associative
activation. These three values are summed together to
represent an item’s total activation. When a recall is
requested, the item with the highest total activation is
retrieved, subject to a retrieval threshold; if no item’s
activation is above the threshold, the retrieval is said to fail
and no item is recalled. The latency of the recall is also
inversely correlated to the recalled item’s activation.

Activation Strengthening

ACT-R’s well-established theory of activation strengthening
(also called base-level activation) has been shown to be a
very good predictor of human declarative memory (Anderson
et al., 1998; Anderson, 2007). Intuitively, activation
strengthening depends on how frequently and recently a
memory has been relevant in the past, and is calculated as:

B; =In(¥}., t;¢ (1
where 7 is the number of times an element i has been accessed
in the past, ¢ is the time that has passed since the jth access,
and d is the learning parameter, specifying an element’s rate
of decay. Importantly, this equation predicts that items that

have occurred recently, or have been rehearsed more, are
more likely to be recalled than those that have not.

Associative Activation

In our account, associative strengths are learned,
strengthened, and weakened over time as new elements are
learned or prior elements re-experienced. These associations
are learned between relevant working memory items within
temporal proximity to one another, leading from earlier to
later items (Thomson, Bennati, & Lebiere, 2014). The
strength of the learned association (or how strongly an
existing association is increased) is influenced by the amount
of time that passes between when the items were each in
working memory. If one item is immediately followed by
another in working memory, they will become very strongly
associated; on the other hand, if an item has been out of
working memory for a while before another is added, they
will be only weakly associated. Additionally, associations are
asymmetric; an association can be stronger from an item i to
an item j, for example, than the association from item to item
i (or, there could be no association from item j to item i at all).

To balance the rate of associative learning between long-
term stability and short-term variability, link maturation was
included as an additional parameter. Associative link
maturation slows the rate of strengthening and weakening
based on the number of times the link has been used. This
supports long-term stability of well-experienced associative
links while allowing for rapid short-term learning of new
associative elements. In neural networks, maturation is
equivalent to the process of settling to reach a stable
equilibrium (Wills et al., 2005; Eliasmith, 2005). Maturation
is set using a logistic function:

M=1- :

1+e—(n(timesInContext)*MaturationRate)

2

The maturation rate controls the steepness of the curve, or, in
other words, controls how quickly links will stabilize.

To compute associative strength from an item j to an item
i, the learning mechanism computes an increment J;:

Li=lrxw=M

“4)
where /r is a learning rate parameter, w is the weight of the
increment determined by the strength of the items in working
memory (scales from 0 to 1), M is maturation, and R is
refraction. This increment is used to update link strength as
follows:

Sii = Sjiprior * (1 — 1) + (I;; * mas) (5)
where is the strength of the link from j to i, Sjiprioris the prior
strength of S, ;; is the learning increment from above, and
mas is a parameter controlling the maximum possible
associative strength.

When a new link is learned or existing link updated that
shares a source j with other existing links, then each of those
other links are discounted proportionally to the weight that
the original link is updated (e.g., S; is updated so Sj is
discounted):

Sk = Skprior * (1= L) (6)
where [is computed using the weight from the link from to
i, but using the maturation M from the link from j to £.
Equation 6 normalizes the amount link ;j to k is discounted
based on the degree to which it has settled. This allows for

53

newer links to rapidly change while providing for long-term
stability for more mature links.

This discounting function attenuates link strengths
consistent with interference accounts of memory. As more
concepts compete in memory, the amount of associative
strength from each concept is reduced. In a balanced
environment, this discounting will approximate the statistical
likelihood P(i/j), which is the odds of perceiving or
retrieving i immediately prior to ;.

Armed with an understanding of our modeling framework,
we now turn to the fan effect experiment itself.

The Fan Effect Experiment

To understand the fan effect, we consider Anderson and
Reder (1999) classical fan experiment They capture the fan
effect in a recognition task where participants begin by
learning 48 pairs of people and places. Persons and places
could appear in multiple pairs, and each pair was shown for
five seconds. Then, during testing, participants respond yes
(target) or no (foil) to whether presented statements were
previously studied: the person is in the place (e.g., ‘the hippie
is in the park’). In the testing phase, participants were
provided a monetary reward based on their total score. The
score was computed by providing 1 point for each correct
response, plus an additional point for each 100 ms of response
times faster than 1500 ms. This induced a speed-accuracy
trade-off into the experiment.

The experiment proceeded according to three phases: a
study phase, drop-out training, and then a testing phase. In
the study phase, each stimulus pair was presented once on the
screen for 5 seconds. In the drop-out training phase,
participants were presented with questions ‘Who is in the
location?’ and ‘Where is the person?’ Participants had to
respond with all persons associated with the location (or vice
versa). Participants had to correctly answer all these
questions for person and location to complete the phase.
Participants completed two of these drop-out training phases.
Finally, in the testing phase, participants would respond yes
or no to queries ‘the person was in the location’ with
participants receiving feedback on their response.

The experiment manipulated the test stimuli in two
different ways. The first was to manipulate the fan of the
persons and places. In this experiment, fan is the number of
persons associated with a place, and vice versa. Fan is
controlled by varying the number of persons in each place, or
the number of places with each person (e.g., ‘the hippie is in
the bank’ or ‘the soldier is in the park’). Here, the fan of one
term (person/place) was fixed at 2, while the fan of the other
term (place/person respectively) was varied to be either 2
(low-fan) or 4 (high-fan).

The second manipulation was to control the composition of
the set of test stimuli shown to participants by manipulating
different target and foil conditions. There were four target
conditions: facilitation, interference, suppression and control.
In the facilitation condition, each target (e.g., ‘the biker is the
tower’) was ‘facilitated’ by being repeated 5 times each in the
stimuli set. In the interference condition each target was
repeated only one time in the stimuli set, and was considered

interference because the target’s person or place overlapped
with a target from the facilitation condition (i.e., ‘the biker is
in the factory’, or ‘the doctor is in the tower”).

The other two conditions were the suppression and control
conditions. In these conditions, each target appeared once in
the stimuli set, and consisted of facts that were seen in the
interference (but not facilitation) condition, such as factory
and doctor in the above examples. Examples of suppression
targets included: ‘the writer is in the factory’, and ‘the doctor
is in the bank’. Due to a particularity in the original study,
there is limited difference between suppression and control
stimuli, because the controls were designed such that they
would functionally suppress stimuli from the suppression
condition (e.g., ‘the monk is in the bank’). They are different
insofar as the suppression stimuli were effectively two steps
removed from the facilitation condition, while the control
trials were effectively three steps removed.

Foils were classified according to three conditions: high-
frequency foils, which used person/place concepts from the
facilitation condition but with novel pairings, and were
repeated 4 times each in the stimuli set; low-frequency foils,
which had novel pairings of person/place concepts from the
interference, suppression, or control conditions and appeared
once each in the stimuli set; and mixed foils, which created
novel pairings using one high-frequency concept from the
facilitation condition and one low-frequency concept from
the interference, suppression, or control conditions and were
repeated only once in the stimuli set. In total, there were 48
target sentences and 54 foil sentences in the stimuli set.

The test stimuli set was presented three times in successive
blocks, and all stimuli were presented in each block.
Feedback was provided for 1 second after participants’
responses, with an additional 1 second inter-trial interval'.

The results of this study were consistent with interference
effects: there were longer latencies and more errors in the
high-fan (i.e., fan of 4) conditions relative to the low-fan (i.e.,
fan of 2) conditions for both targets and foils, with both high-
frequency (i.e., facilitation) targets and foils having relatively
higher accuracy and quicker latencies than their
corresponding low-frequency counterparts. They also
predicted lower relative accuracy in the interference
condition relative to the suppression and control conditions,
and no difference between suppression and control.

Prior Modeling of the Fan Effect

There have been several attempts to mathematically model
fan effects (Anderson & Reder, 1999). Most prominent is
Anderson and Reder’s (1999) model whose equations were
grounded in the ACT-R cognitive architecture (Anderson and
Lebiere, 1998). This model can be broken down into three
related equations.

A =B+ X;W;S; (8)
T=1+Fe ™)

U This 1 s ITI was not listed in the Anderson & Reder (1999)
paper, however it was reported in subsequent research.

54

Equation 7 describes the spread of activation (S;) from
element j to i as a function of associative strength intercept S
attenuated by the fan of j, which is the number of concepts to
which j is associated. In Equation 7, 1/fan;is a
simplification of P(i/j) assuming equal frequencies of i and
j- In Anderson and Reder, frequencies were not equal, and
were instead set ahead of time according to the objective
probabilities in the model. Equation 8 relates an activation
function 4; to the base-level activation from Equation 1, and
the sum of spreading activation from Equation 7 multiplied
by an attentional weigh ;. Prior efforts set B; to 0 on the
assumption that the drop-out testing would balance out base-
level activation between stimuli.

Finally, Equation 9 computes retrieval time 7 based on an
intercept /, time scale offset F, and the activation function 4;
from Equation 3. The estimates for each parameter were as
follows: I was 1197 ms, F' was 773 ms, S was 2.5 ms, and W
was .33 (reflecting an even weighting of ‘person’ ‘in’
‘place’). Using these parameters, Anderson & Reder report a
strong correlation with response times, » = .956. This model
did not attempt to fit error patterns.

This model, while successful, does not focus on modeling
both latency and error rates, which we believe is an important
part of understanding priming and interference in associative
learning. While describing nicely the final average
performance of participants, they provide little intuition for
how participants learn the associations via experiencing the
task. For instance, Equation 7 uses a fixed value for each
condition that does vary.

In contrast, our approach grounds our account of
associative learning within the larger ACT-R/E architecture
along with the constraints it places on cognition (Trafton et
al., 2013) by using a production system simulating the time-
course of perception, encoding, retrieval, and response. Once
base-level activation is included as a factor, then the time-
course of stimulus presentation and training becomes
important in determining overall accuracy and response time.
This added fidelity (and complexity) may test assumptions
made in prior modeling efforts, and also may provide new
insights or hypotheses about how participants learn the task.
To that end, our model performs the experiment analogously
to participants, and learns associations over time. This
supports our theory of associative memory explaining how
associations are learned and adapt over time.

Learning the Fan Effect

The model starts with only background knowledge of the
words used in the experiment and is equipped with the
procedural knowledge necessary to perform the experiment.
It has no underlying knowledge of the concepts of person and
place, and thus has no knowledge of targets or foils. As we
have said, the model is presented with the same experimental
paradigm as the human participants.

The model uses the same procedural knowledge at the start
of each phase to perceive the person and place concepts:

when it sees two concepts on the screen together, then they
are linked into a common concept-pair, with each constituent
person and place priming the concept-pair. This concept-pair
is represented in memory as a single chunk of information
containing three features: person, place, and was-target.
Was-target is a binary frue/false decision, where true
indicates that the stimulus was a target and false indicates
that the stimulus was a foil.

The external environment is a simulated computer screen.
When perceiving stimuli, the model randomly encodes one
symbol first and then the other. The model categorizes these
symbols according to two features: person-symbols and
place-symbols. These representations are functionally
identical and are distinguished only for lexical purposes to
simply categorize incoming words. Since stimuli are of the
form ‘the person is in the place’ we present person-symbols
on the left of the display and place-symbols on the right of
the display.

When a concept-pair is learned or updated, then the
associative strengths between the person/place concepts and
the pair is strengthened while the strengths between the
concepts and their other related concept-pairs are weakened.
Since concepts are related to more concept-pairs on high-fan
trials than on low-fan trials, high-fan concepts tend to have
lower associative strengths to their related concept-pairs than
low-fan concepts. This lower associative strength predicts
that concept-pairs involving high-fan concepts will have
slower response latencies and increased error rates. Also,
since high-frequency stimuli have been seen more often, their
strengths will be stronger than low-frequency stimuli,
however maturation controls the degree to which these
stimuli increase in strength (e.g., a link seen 4 times as often
is not 4 times as strong).

In the study phase, the model automatically encodes all
concept-pairs as targets. After encoding the stimuli and
generating a concept-pair representation, the model then
repeats this encoding until the stimuli are no longer presented
on the display, averaging 2-3 rehearsals over the 5 second
presentation time.

In the drop-out training phase, the model perceives either a
person or place and attempts to retrieve all places where that
person is (or all persons in that place). If the model correctly
perceives all required elements then the model moves onto
the next stimulus, otherwise it studies those stimuli again and
returns to the drop-out training. Once the model has
successfully retrieved all elements in both run-throughs of the
query phase, the test phase begins.

The test phase is the critical phase where all response times
and error rates were recorded. Similar to the study phase, the
model begins to encode the concept-pair for person and place
as an analogue to perceiving: was person in the place? The
model then attempts to retrieve any decision containing said
person and/or place. This decision is a prior concept-pair
stored in memory including person, place, and the critical
was-target decision. A response is then generated according
to the following criteria: 1) if the model is unable to retrieve
any concept-pair due to all pairs being below threshold, then

55

it responds foil; 2) if the model correctly retrieves the
matching person, place, and was-target decision then it
responds with the respective decision: farget for true and foil
for false; or 3) if the model retrieves a mismatching concept-
pair containing one person or place but not both, then it
assumes that the response is a target. After the model
responds it receives feedback, which it uses to encode the
correct concept-pair. This includes encoding foils, which
allows the model to be capable of correctly retrieving that an
item was a foil seen in an earlier testing phase. This is a
unique behavior of our model and reflects the fact that
participants cannot ‘ignore’ decisions they’ve made and must
encode feedback that they’ve seen.

Finally, if the model was incorrect or had retrieved a
mismatched element, then for the feedback period it rehearses
the correct response. This process is repeated across all trials
through three test phases.

In the testing phase, response times are recorded from the
stimulus onset time until the model has responded with the
appropriate decision (target or foil). It is important to note
that as a fully-implemented production system model, the
complete time to respond include two relatively fixed
durations: approximately 600 ms to encode the stimuli from
the display, and approximately 350 ms to prime the motor
command and press the response key. This is in a similar
range to the structural offset 7 of 1197 ms that Anderson and
Reder (1999) used in Equation 9. This means that fan effects
in latencies occur mainly in the approximately 200 ms — 800
ms timeframe where the concept-pairs are retrieved. It is the
retrieval of the concept-pair that determines fan effects in
both latencies and accuracy.

One final difference between the present model and prior
efforts is that our model incorporates base-level activation B;
(see Equation 8), but replaces the Sj; from Equation 7 with our
learned Sj; from Equation 5. As previously mentioned, base-
level activation reflects the recency and frequency of use of
elements, and it is not a given that base-level would be
equivalent for items across the different target and foil
conditions, especially for the high-frequency vs. low-
frequency elements where frequency is necessarily varied.

Results

The present model was run for 200 iterations with the
parameters described in Table 1 below. As is apparent from
Figures 1 and 2, the model qualitatively captured fan effects
in both accuracy and latency, respectively, reflected by
slower response times and higher error rates for high-fan
concepts compared to low-fan concepts. We also predicted
relatively higher accuracy for high-frequency conditions
(facilitation for targets and high-frequency for foils) to the
rest of the conditions; lower accuracy in the interference
condition relative to the control and suppression conditions,
and no difference between suppression and control target
conditions. One difference is that we predict a smaller
average fan (.03 s instead of .09 s) than did Anderson and
Reder (1999).

Table 1. Parameters used in Fan Effect Experiment

PARAMETER VALUE
Base-Level Learning (B)) 4
Learning Rate (Ir) 1.1
Maturation Rate (M) 5
Maximum Associative Strength (mas) \ 7.25
Mismatch Penalty 4

The model fits target accuracy with an »= .83. Interestingly,
the source of errors is different between targets and foils.
Target errors are due to failures in retrieving any concept-
pairs, whereas foil errors are due to confusing foils with
previously seen similar stimuli.

Table 2. List of Average Base-Level Activation (B;) and
Average Associative Strength per Link (S;) per Condition
across Drop-Out Training and Testing.

Drop Test 1 Test 2 Test 3

B; S; B; S; B S B S
F2 | 44 133 .54 97 |.73 91 | .86 .82
F4 | 91 69 | .87 55 | .83 48 | .97 .44
2 | .40 134125 99 |.59 94 | .59 .86
4 |70 .70 | .11 .58 | .40 .60 | .60 .47
S2 .32 135].11 1.03|.67 1.00 .34 .95
S4 |41 72 | 26 .61 |.53 .60 | .40 .49
Cc2 | .47 140 .08 1.17|.25 1.05| .35 .98
Cc4 | 44 71 | 37 59 | .60 .52 | .60 .52
L2 | N/A N/A | .13 1.06 | .57 1.00 | .40 .92
L4 | N/A N/A | -65 57 | .29 .60 | .47 .48
M2 | NJA N/A|-57 1.08| .42 1.01 | .44 .92
M4 | NJA N/A | -15 .61 | .38 .52 | .25 .51
H2 | NJA N/A| .63 321 |.75 322|.78 3.20
H4 | NJA N/A | 47 2.65|.55 2.69 | .55 2.71

Discussion

The present model describes the emergence of fan effects in
both accuracy and latency using a theory of associative
memory including an account of interference by discounting
link strengths. As more stimuli (persons or places) are
presented together (or within a short temporal window) they

17" o
L. 0 - Lo
S el
(en]
© o Low Fan
g;o-— o High Fan
5 * Model
3«
< s
N
o
F I S C L M H
Condition

Figure 2. Error rates across target and foil conditions. Target
conditions are Facilitation, Interference, Suppression,
Control. Foil conditions are Low, Mixed, and High Foils.

interfere with each other’s associative strength, reducing
overall activation. This has the effect of lowering overall
accuracy and increasing response times. While prior
explanations (Anderson & Reder, 1999; Schneider &
Anderson, 2012) have presented good fits to static human
performance, the present model learns both base-level
activation (reflected recency and frequency of use) and
associative weights throughout the entire experiment
(including the testing phase) and predicts the presence of fan
effects in both latency and accuracy across all target and foil
conditions.

An advantage of modeling the fan effect experiment at this
higher level of fidelity is that we are able to assess some if
the assumptions made in prior modeling efforts. Most
interesting is that, while the assumption that base-level would
be similar between high-fan and low-fan stimuli, while this
was valid (see Table 2) in aggregate, base-levels were highly
variable between conditions and throughout the task. The
present model was able to qualitatively match to human
performance with associative activation strong enough to
compensate for the differences.

While not obvious when examining end-state models, the
average activation of concept-pairs between conditions (see
Table 2) changes throughout the testing phase. Many models
assume a fairly plastic study/learning phase and a fixed
testing phase; however, our model learns throughout the
experiment. For instance, the added interference from
learning novel foils reduces the activation of targets,
especially in the interference condition.

A potential concern that our model addresses that was foils
were not encoded in Anderson and Reder (1999) when they
were perceived. It seems odd that stimuli seen in training
were encoded while stimuli seen in testing were not. For
instance, when a novel foil is perceived it does not increment
the fan of targets. For instance, if a studied fan-4 target ‘the
biker is in the factory’ was tested after perceiving the novel
foil ‘the hippie is in the factory’ then that fan-4 place term
‘factory’ should in fact be incremented to be a fan-5 place
term. In our model, the notion of fan-4 or fan-5 is solely for
classification purposes of the various conditions. Link

o

Q-

0 | ™ o2 o° [
3 o o|®
cC o
L <
©
-

0 o Low Fan

o 2 High Fan

* Model
= [TITTIT]

© F | s ¢ L M H

Condition

Figure 1. Latencies across target and foil conditions. Target
conditions are Facilitation, Interference, Suppression,

6Control. Foil conditions are Low, Mixed, and High Foils.

strengths vary based on their use in the experiment. What is
important is not whether an item is a fan-2 or fan-4 stimulus,
but to what degree biker and factory prime the sentence (c.f.,
concept-pair) ‘the biker in the factory.’

While the present model was able to predict fan effects in
all conditions, it predicted a much faster response time for
high-frequency targets and foils than humans exhibited. This
was because the added frequency increased base-level
activation too quickly. As seen in Table 2, associative
strength was comparable between the high-frequency
facilitation condition and the low-frequency interference/
suppression/control conditions. The difference was the
higher base-level activation. The traditional activation
equation (Equation 8) sums both base-level activation and
associative strength, but it may be the case that the relative
weighting of these factors changes over time based on some
features of stimuli (such as relative strength, familiarity, or
some other metacognitive feature). While the existing
equation is well-justified in the literature, the inclusion of an
adaptive frequency-based associative learning component
replacing the fixed Sj (Equation 7) may change the
underlying balance between base-level and associative
strength.

Another difference between the current model and human
performance is that our model did not model speed-accuracy
trade-offs reflecting the time-pressure based reward system
of the original experiment. ACT-R does not have a
mechanism to distinguish recognition from recall, and recall
is an all-or-nothing event, thus it was not possible to have a
meta-awareness of stimulus familiarity build-up throughout
the retrieval process, something which could be leveraged to
induce speed-accuracy tradeoffs. This speed-accuracy trade-
off may result in relatively faster performance in the low-
frequency conditions as participants’ threshold to respond
may be lower than the model’s.

It is fair to argue that our model is substantially more
complex than prior efforts, but we argue that this complexity
is necessary to understand how fan effects arise from
learning. By having our model perform the study equivalently
to human participants and by having participants learn
associative weights throughout the experiment, we present a
model that supports our theory of associative memory and
explains how associations are learned and adapt over time.

Acknowledgments

This work was supported by the Office of the Secretary of
Defense / Assistant Secretary of Defense for Research and
Engineering (LH) and the Office of Naval Research (LH).
The views and conclusions contained in this paper do not
represent the official policies of the U.S. Navy.

References
Anderson, J. R. (2007) How Can the Human Mind Occur in the
Physical Universe. Oxford University Press: Oxford.
Anderson, J. R. (1974). Retrieval of propositional information
from long-term memory. Cognitive Psychology, 6, 451-474.

57

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., Qin, Y. (2004). An integrated theory of mind.
Psychological Review, 111, 1036-1060.

Anderson, J. R., & Reder, L. M. (1999) The fan effect: New
results and new theories. Journal of Experimental
Psychology: General, 128, 186-197.

Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998).
An integrated theory of list memory. Journal of Memory and
Language, 38, 341-380.

Berry, M. J., & Meister, M. (1998). Refractoriness and neural
precision. The Journal of Neuroscience, 18 (6), 2200-2211.
Eliasmith, C. (2005). A unified approach to building and
controlling spiking attractor networks. Neural Computation,

17 (6), 1276-1314.

Hiatt, L. M., & Trafton, J. G. (2015). An Activation-Based
Model of Routine Sequence Errors. Proceedings of the
International Conference on Cognitive Modeling.

Hiatt, L. M., & Trafton, J. G. (2013). The Role of Familiarity,
Priming and Perception in Similarity Judgments. Proceedings
of the Conference of the Cognitive Science Society.

Pyke, A., West, R. L., & LeFevre, J. A. (2007). How Readers
Retrieve Referents for Nouns in Real Time: A Memory-based
Model of Context Effects on Referent Accessibility. In
Proceedings of the International Conference on Cognitive
Modeling.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian
conditioning: Variations in the effectiveness of reinforcement
and nonreinforcement. Classical Conditioning II: Current
Research and Theory, 2, 64-99.

Thomson, R., Pyke, A., Trafton, J. G., & Hiatt, L. M. (2015). An
Account of Associative Learning in Memory Recall. In
Proceedings of the 37th Annual Conference of the Cognitive
Science Society. Austin, TX: Cognitive Science Society.

Thomson, R., Bennati, S., & Lebiere, C. (2014). Extending the
Influence of Contextual Information in ACT-R using Buffer
Decay. In Proceedings of the Conference of the Cognitive
Science Society. Austin, TX: Cognitive Science Society.

Thomson, R., Lebiere, C., Anderson, J. R., & Staszewski, J.
(2014). A general instance-based learning framework for
studying intuitive decision-making in a cognitive architecture.
Journal of Applied Research in Memory and Cognition
Special Issue on Intuitive Decision-Making.

Thomson, R. & Lebiere, C. (2013a). Constraining Bayesian
Inference with Cognitive Architectures: An Updated
Associative Learning Mechanism in ACT-R. In Proceedings
of the Conference of the Cognitive Science Society.

Thomson, R. & Lebiere, C. (2013b). A Balanced Hebbian
Algorithm for Associative Learning in ACT-R. In
Proceedings of the International Conference on Cognitive
Modeling.

Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello, F. II,
Khemlani, S. S., & Schultz, A. C. (2013). ACT-R/E: An
embodied cognitive architecture for human-robot interaction.
Journal of Human-Robot Interaction, 2 (1), 0-55.

Wills, C. L., Cacucci, F., Burgess, N., & O'Keefe, J. (2005).
Attractor dynamics in the hippocampal representation of the
local environment. Science, 308, 873 — 876.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Towards Modeling False Memory with Computational Knowledge Bases

Justin Li (justinnhli @ oxy.edu)
Emma Kohanyi (kohanyi@ oxy.edu)
Occidental College, 1600 Campus Road
Los Angeles, CA 90041 USA

Abstract

One challenge to creating realistic cognitive models of memory
is the inability to account for the vast common sense knowledge
of human participants. Large computational knowledge bases
such as WordNet and DBpedia may offer a solution to this
problem, but may pose other challenges. This paper explores
some of these difficulties through a semantic network spreading
activation model of the Deese-Roediger-McDermott false mem-
ory task. In three experiments, we show that these knowledge
bases only capture a subset of human associations, while
irrelevant information introduces noise and makes efficient
modeling difficult. We conclude that the contents of these
knowledge bases must be augmented and, more importantly,
that the algorithms must be refined and optimized, before large
knowledge bases can be widely used for cognitive modeling.

Keywords: False Memory; Spreading Activation; Knowledge
Base.

Introduction

The modeling of human memory phenomena has a long
history, from equations describing the strength of individual
memory elements over time, to the embedded memory
subsystems in modern cognitive architectures. One limitation
of memory models, however, is their failure to account for
how experimental subjects do not come into the laboratory as
a blank slate, but with a large set of common-sense knowledge
and facts about the world, as well as associations built up
from individual experience. This background knowledge is
impossible to fully elicit from subjects and often omitted from
computational models. As a result, these models are over-
simplified and may fail to account for phenomena in which
the contents of memory play a role.

At the same time, the increasing number of artificially
intelligent agents that operate in knowledge-rich environments
has led to the development of large computational knowledge
bases. Knowledge bases such as WordNet (Miller, 1995)
and DBpedia (Bizer et al., 2009) endow artificial agents
with lexical and conceptual knowledge, allowing them to
perform human-like reasoning. These collections of semantic
knowledge, in a form that can be incorporated into the long-
term memory of cognitive architectures, present an opportunity
to build models that match real human memory in scope and
scale. Recent work has adapted DBpedia for factual question-
answering in the ACT-R architecture (Salvucci, 2015), a task
for which the knowledge base is well suited, as it mirrors the
use of DBpedia in artificial intelligence research. Whether
knowledge bases can be used to model cognitive phenomena
outside of reasoning and inference, however, remains an open
question.

In this paper, we explore some of the challenges that
researchers may face when incorporating large computational

58

knowledge bases into a cognitive model. Specifically, we
use WordNet and DBpedia to model the formation of false
memories through human associations in the Deese-Roediger-
McDermott (DRM) paradigm (Roediger & McDermott, 1995).
We selected the false memory task specifically because it
involves a broad range of knowledge that large knowledge
bases could provide, while requiring associations for which
WordNet and DBpedia may not be particularly well suited.
The partial success of our model suggests that while large
knowledge bases hold promise for general cognitive modeling,
they present representational and algorithmic challenges that
have yet to be overcome.

Background

The DRM task is a well-known procedure for inducing false
memory in humans. Participants are told they are part of a
memory experiment and presented with a list of fifteen stimuli
words at a moderate pace. After the presentation, participants
are occupied with a filler task, before being given two minutes
to recall as many words from the list as possible. Crucially,
the list of words are not random, but are all associated with a
lure, which itself does not appear on the list. For example,
for the lure “needle”, the list of words presented to the
participants includes “pin”, “sharp”, “prick”, “haystack”,
“thorn”, “cloth”. (All words in a DRM list will be in quotes and
italicized, with the lure words underlined; all other words will
be in quotes but unitalicized.) The result is that experiment
participants will recall the lure at roughly the same rate as
the stimuli words, and will further report that the lure was
presented — a false memory. After a break, another list built
around a different lure is presented, for 36 published false
memory word lists (Stadler, Roediger, & McDermott, 1999).
In the original study, participants recalled 62% of the stimuli
words, and falsely recalled the lure 55% of the time.

In a different publication (Roediger, McDermott, & Robin-
son, 1998), the authors suggested that this phenomenon could
be explained through a spreading activation mechanism. They
hypothesized that the semantic concepts represented by the
stimuli words are connected in a semantic network; nodes in
the network represent concepts, while edges between nodes
represent an association of some kind. Thus, every word on
a DRM list would be connected to the lure, possibly with
additional connections between stimuli words. Each word
would also have an activation value that represents its salience
at any particular time; the higher the activation, the more likely
that concept will be recalled at that time. When a stimuli
word is presented, it is hypothesized that not only is the
activation of that concept boosted, but so is the activation

of associated concepts, including the activation of the lure.
The presentation of multiple stimuli words would boost the
activation of the lure multiple times, causing its activation at
the end of the presentation phase to be indistinguishable from
the activation values of the stimuli words. Then, during the
recall phase, words with the highest activation are recalled.
Since participants could not determine whether the high
activation of a word is due to its presentation or due to
spreading activation (a source monitoring failure), they report
the lure as having been presented.

Although spreading activation is an intuitive and appealing
explanation for how false memories are induced in the DRM
paradigm, creating a cognitive model of the task requires
capturing human associations between words. The breadth
of the stimuli and lure words — which range from everyday
objects such as “window” and “pen” to relatively obscure
words such as “sash” (a type of window) and “Cross” (a pen
company) — makes the creation of a comprehensive model
challenging. Traditional word-association paradigms cannot
cover a sufficiently large range of words, even when converted
into a “game with a purpose” and crowd-sourced to players on
the internet (Hees, Khamis, Biedert, Abdennadher, & Dengel,
2013).

A previous model of the DRM task estimated word
associations from co-occurrence information in a text corpus,
using the latent semantic structure to “recall” words that
are semantically similar to the stimuli words (Johns &
Jones, 2009). As the authors themselves noted, these lexical-
semantics techniques only capture the structure of memory at
best, but do not shed light on the recall processes. While
the resulting model leads to good fits for the stimuli and
lure recall rates from the original study, the computational
linguistic techniques used were not designed to model recall
tasks, requiring a convoluted process for generating the lure.
Furthermore, these models cannot accommodate complex
reasoning with the encoded concepts, meaning that the
knowledge captured by these associations is unusable for
modeling human inference.

This paper instead directly tests the original hypothesized
spreading activation mechanism, using large computational
knowledge bases as the semantic network. The assumption
is that the organization of these knowledge bases naturally
encode association information, with more strongly associated
concepts represented by nodes separated by a shorter network
distance. Gleaning association information from computa-
tional knowledge bases would be a step towards the ideal
of a single source of semantic knowledge that can be broadly
used to model both human associations and inference.

Model Description

This section first describes the relevant components of the Soar
cognitive architecture, before describing the model built using
Soar.

Soar’s working memory contains knowledge that is avail-
able for immediate reasoning. Working memory is represented

59

as an edge-labeled directed graph, which is matched on and
modified by procedural rules. In addition to knowledge in
working memory, Soar has a long-term semantic memory,
which contains general knowledge about the world. Each piece
of knowledge (a node) in either memory is known as a memory
element, Knowledge in semantic memory must be retrieved
into working memory before it can be used. To do so, a Soar
agent must create a cue that describes features of the desired
piece of knowledge. Each element in semantic memory is
associated with a base-level activation value, which reflects the
recency and frequency of the retrieval of the element. The more
recently and frequently an element is retrieved, the higher its
activation value; however, the activation automatically decays
over time. When the agent creates a cue, semantic memory
returns the most-activated memory element that matches the
cue, and places it in working memory to be matched on by
procedural rules.

Spreading activation, as the hypothesized mechanism that
leads to false memories, operates on the knowledge in
semantic memory. Unfortunately, there is no standardized
spreading activation algorithm, nor is there consensus on
the meaning of spreading activation. In Soar, every retrieval
of a memory element not only boosts the activation of that
element, but also boosts the activation of neighboring elements
in semantic memory, hence “spreading” the activation (Li &
Laird, 2015). The number of elements that receive a boost is
implicitly defined by a maximum spreading depth parameter,
with a spreading depth of zero meaning that only the retrieved
element receives a boost. All neighboring elements (regardless
of edge direction) receive the same boost — the effect is
not attenuated by distance, nor are there differential effects
due to the strength of the connection between elements. In
fact, the boost due to spreading is indistinguishable from the
boost received by the element retrieved; both changes are to
the base-level activations of the elements and will therefore
affect future retrievals. This is notably different from the
spreading activation in ACT-R, which comes from elements in
working memory, is considered separately from the base-level
activation of memory elements, and only affects the current
retrieval. Since the sources of activation (the stimuli words)
are not present (not in working memory) at the time of recall
in the DRM task, our model uses Soar’s spreading activation
mechanism in order to take advantage of its temporal extent.

Agent Description

A Soar agent plays the role of an experimental participate in
our model. Before a list is presented, the agent’s semantic
memory is pre-loaded with the knowledge base for the
experiment. The base-level activation of each element is
uniform and is not initialized, as there is no consistent method
of doing so for all three database. Once the database is loaded,
the agent is sequentially presented with the stimuli words
as strings. The agent must then retrieve the element that
represents the associated concept from semantic memory,
causing activation to spread to neighboring elements. Only
after this retrieval is the next stimuli word presented, at which

point the agent removes all previous elements from working
memory. After all fifteen words from a list have been presented,
the agent enters the recall phase. It retrieves the fifteen most
activated words (without repetition) from semantic memory,
from which the recall statistics are calculated. The semantic
memory of the agent, including the activation of the elements,
is then reset for the presentation of the next list.

We note two caveats to this agent. First, the base-level
activation of each element in the knowledge base is not
initialized. Selecting the initial activation is a non-trivial
problem. Using the number of connections from each element
(Salvucci, 2015) means that activation levels are not consistent
between knowledge bases, while using frequency information
from a text corpus (Johns & Jones, 2009) may require
manually mapping concepts to all their synonyms. For this
paper, we do not believe the lack of initialization is the main
cause of model error; as we explain in the general discussion,
the difficulties do not come from differences in retrieval order,
but from whether the correct elements and connections exist
in the knowledge base at all We acknowledge, however, that
initializing activation is an important part of memory models
not captured here, and more exploration into robust algorithms
for consistently initialization activation across knowledge
bases may be necessary.

The second caveat to our agent is the design of the recall
phase. In the human experiments, the participants were given 2
to 2.5 minutes to recall as many words as possible. In contrast,
the agent in this model only retrieves the first 15 words,
equivalent to a retrieval every eight seconds — a slow but not
unreasonable rate. Using ACT-R’s simulated retrieval times to
approximate the procedural constraints would likely lead to the
opposite problem of too many recalled words, since retrievals
take less than a second by default (even with additional time for
rule firings). Additional memory mechanisms — perhaps rules
for determining whether a retrieved word should be reported
as a stimuli — may be needed to model the DRM task with
higher fidelity.

Metrics

We are interested in two key metrics that were used in the
original false memory study:

e The stimuli recall rate, which is the proportion of stimuli
words recalled after the presentation of a list, averaged over
all 36 lists. The original study reports a stimuli recall rate
of 62%, meaning that on average participants recalled 62%
of the fifteen words in a list.

The lure recall rate, which is the proportion of the 36 lists in
which the lure was (falsely) recalled. Note that this metric is
about a proportion of /ists, and not about a proportion of the
stimuli words in a list, and thus has no direct relationship
to the stimuli recall rate. The original study reports a lure
recall rate of 55%, meaning that on average participants had
a false memory of the lure on 55% of the lists.

Before we describe the three experiments with different

60

knowledge bases and their results, we reiterate that the goal of
this work is not necessarily to perfectly model the stimuli and
lure recall rates. We are not looking for the exact depth limit to
spreading activation that should be used in future false memory
models. Rather, the experiments below should be seen as an
exploration of some of the challenges that cognitive modelers
may face when attempting to leverage large knowledge bases,
especially on tasks for which the knowledge bases are not
designed. Towards this goal, while the metrics above provide
a rough sense of the goodness of fit, the discussion for each
experiment is more focused on properties of the knowledge
base that led to those results.

Experiment 1: Hand-crafted Network

The goal of this experiment is to validate spreading activation
as a viable explanation for false memory in the DRM task.
The semantic network used in this experiment was created
manually from the words in the “needle” and “doctor” lists.
For each list, the fifteen stimuli words are all connected
to the lure, with additional connections created based on
whether the words are intuitively and informally associated.
For example, “pin”, “thimble”, and “prick” are all connected,
while none of the three are connected to “haystack”. Finally,
four connections were added between the stimuli words of
the two lists, such as “injection” (from the “needle” list) and
“medicine” (from the “doctor” list) and “hurt” and “sick”, for
a total of 109 edges between 32 nodes. It is important to note
that the resulting network is representative of how semantic
networks are depicted in non-computational literature.

Only the “needle” and “doctor” lists were presented using
this network, with an activation decay rate of 0.5 and a
spreading depth limit of 1. The results for both lists are
similar. The lure is the first word to be retrieved (as it has the
highest activation), with the stimuli words for the list retrieved
afterwards. As would be expected, since activation spreads
only to the immediate neighbors of the stimuli words, the four
words that bridge the two lists are also activated, but not the
lure of the not-presented list

Although only two lists are used for this experiment, there
is no reason to believe that the results would not generalize
to similar hand-crafted semantic networks for the other lists.
The quantitative results cannot be meaningfully compared to
the stimuli and lure recall rates of the original study; however,
the qualitative results are in line with the description that the
lure is more highly activated than some stimuli words. While
there is a tendency for words towards the end of a list to
be retrieved first — as would be consistent with the decay of
activation over time — the actual order of words retrieved is
also affected by the structure of the semantic network due
to spreading activation. Since the retrieval order would once
again be different if the activation was initialized with other
information, the rest of this paper does not consider the order
in which words are retrieved. Regardless, this experiment
suggests that spreading activation on a naive semantic network
could cause the retrieval of the lure, which in this model

indicates the formation of a false memory.

Experiment 2: WordNet

WordNet (Miller, 1995) is a database containing lexical
knowledge, and is widely used both independently (for tasks
such as parsing and word sense disambiguation) as well as
in conjunction with other knowledge bases and ontologies.
Nodes in WordNet represent not only words and phrases (for
example, “sewing needle”), but also additional information
about the meaning of those words, including word meanings
(senses), synonym sets (synsets), antonyms, and certain types
of entailments (for example, buying entails paying, so “buy”
is connected to “pay’’). WordNet nodes that represent words
can be identified by an outgoing edge labeled string, which
links to a string representation of the word; these edges do
not exist for other concepts (such as synsets). The version of
WordNet imported into Soar’s semantic memory contains over
474,000 nodes and 1.7 million edges.

The Soar agent used in this experiment is roughly the same
as the one used in the first experiment. The only difference is
in the recall phase, when the agent restricts the retrievals to
words by specifying the string edge in the cue. All words
from the DRM lists are used as is, with the exception of “Bic’
and “Cross” from the “pen” list. These pen companies do not
exist in WordNet and were excluded from the experiment; the
“pen” list therefore only contains thirteen stimuli words.

For this experiment, separate trials were run for different
spreading depths (1 through 6) and different decay rates (0.25,
0.5,0.75, 0.9).

>

Results

The overall results are shown in Figure 1. For each parameter
setting, we plot both the stimuli recall rate and the lure recall
rate, as well as average proportion of recalled words (out of
15) that are neither stimuli words nor the lure (which we shall
call external words). The human data from the original DRM
study is shown for comparison; the results for depths 1 and 2
are left out for reasons explained below. Across all parameter
settings shown, the stimuli recall rate ranges from 9% to 41%,
well below the reported rate of 62% in humans, while the lure
recall rate ranges from 0% to 72%, compared to the reported
rate of 55% in humans. In particular, using the ACT-R and
Soar default decay rate of 0.5, a spreading depth of 5 results
in a lure recall rate of 56%. In general, however, no parameter
setting accurately matches human data on both stimuli and
lure recall rates.

For spreading depths of 1 and 2, the stimuli words were
consistently retrieved, while the lure was never retrieved. Upon
examination, this is because WordNet is structured with most
words only being connected through word senses and synsets.
The node representing “thorn”, for example, is connected to
three word senses, each of which is connected to a synset —
which means that, within a network distance of two, “thorn”
is not connected to any words at all, never mind the lure
“needle”. Since the retrieval cue used by the agent limits results
to words, the retrieval fails after the stimuli words are retrieved.

61

This explains both the high stimuli recall rate and why the lure
is never retrieved.

The data shows additional trends regarding the stimuli
and lure recall rates. In general, the spreading depth is
proportional to the lure recall rate but inversely proportional to
the stimuli recall rate. That is, the stimuli recall rate decreases
as spreading activation extends deeper from the stimuli word,
while the lure recall rate increases from the same manipulation.

These results can be explained by the same WordNet
structure mentioned previously. When spreading activation
is limited to nearby nodes, only a small number of words
(as opposed to word senses, synsets, etc.) are boosted, hence
the majority of words retrieved are the stimuli. When the
depth limit is increased, however, spreading activation now
reaches other words in the synsets. These words — which may
include the lure — may in fact receive activation boosts spread
from multiple stimuli words. The word “shot” falls into this
category, as it means both “injection” and “hurt” (as in a solid
shot to the chin). Other external words may simply be boosted
by stimuli words later in the list, and therefore have higher
activation during the recall phase than stimuli words earlier in
the list. Together, this leads to a decrease in the stimuli recall
rate as well as an increase in the lure recall rate.

Discussion

Although the lure recall rate from WordNet spans a range
that includes the human lure recall rate of 55%, the structure
and content of WordNet does not directly match human
associations. The nodes representing the stimuli words in
WordNet are not structured such that activation will spread to
the lure. We discuss two categories of such failure here: cases
where additional edges lead to model errors, and cases where
edges are missing.

First, as we noted, WordNet is structured with individual
words arranged in “spokes” around lexical constructs such as
synsets. While synsets do represent some of the relationships
between stimuli words and the lure — as in “syringe” and
“needle” — they are not the only relationships around which
words are organized. Since WordNet is a dictionary in
knowledge base form, it also contains information about
the derived form of words, such as the relationship between
“inject” and the words “injectable”, “injecting”, “injection”,
and “injector”. With the exception of “sit” and “sitting” in
the “chair” list, derived words do not appear in the DRM
lists, and more importantly, are unlikely to be produced
during human recall. This mismatch may be due to the
lexical relationships encoded in WordNet, as opposed to
the conceptual relationships on which spreading activation
is hypothesized to occur. Human participants would only
produce one word for each concept, but spreading activation
(at least over WordNet) leads to the retrieval of multiple
derived words. Algorithmic changes may be necessary before
spreading activation can correctly model the generation of
false memory; we propose one such change in the general
discussion.

Although WordNet contains connections that extend beyond

Stimuli, Lure, and External Recall Rates for WordNet

Recall Rate

Decay Rate = 0.25

Decay Rate = 0.5

Stimuli

= Lure
External

==DRM Stimuli
DRM Lure

Decay Rate = 0.75 Decay Rate = 0.9 ‘

Parameter Setting (spreading depth on top, decay rate on bottom)

Figure 1: Results from using WordNet as the knowledge base.

human associations, it fails to capture other relationships that
the DRM lists exploit. A careful examination of the word
lists reveals that they contain multiple types of associations.
Some, such as antonyms (“high” and “low”), are encoded
in WordNet despite being more conceptual. Others, however,
are not captured despite being lexical in nature. For example,
the “high” list contains the word “noon”, clearly intending to
invoke the phrase “high noon”. Crucially, while “high noon”
does exist as a phrase in WordNet, it is not connected to its
component words “high” and “noon”. At the same time, other
idiomatic phrases, such as “needle in a haystack” and “making
a mountain out of a molehill”, are not represented in WordNet.
Also missing are cultural references; the inclusion of “figer”
and “bear” in the “lion” list appears peculiar, but may be
explained by the lyric lions and tigers and bears, oh my! from
The Wizard of Oz. Unlike the first type of failure due to an over-
abundance of connections, there is no algorithmic solution to
missing data, at least not without expanding the database using
a text corpus, which presents challenges of its own.

Mismatched and missing data is not unexpected in large
knowledge bases, although in this case some of them seem
to arise from WordNet’s specialization in lexical knowledge.
Our third experiment looks at whether a different knowledge
base may lead to a better model of human associations in false
memory.

Experiment 3: DBpedia

DBpedia (Bizer et al., 2009) is a knowledge base created using
information from the online encyclopedia Wikipedia. The
nodes in DBpedia represent articles on Wikipedia (or more
accurately, they represent the concepts that the Wikipedia
articles describe), while the edges come from the categories
to which the articles belong, as well as the infoboxes that
provide basic information. As a result, the type and amount of
information varies between concepts. The version of DBpedia
used in this experiment contains 6 million nodes and 27 million
edges.

The size and scope of DBpedia led to two differences in this
experiment from the previous ones. First, since DBpedia does

62

not contain a comprehensive dictionary of English words, and
not all words in the DRM lists have their own Wikipedia article,
the stimuli words can no longer be presented as strings. Instead,
we manually mapped each word to a concept in DBpedia,
mostly following the redirections on Wikipedia. This led to
some words being mapped onto the same concept (“waste”
and “refuse” both mapped onto “waste”), while others mapped
onto concepts that are overly specific (“garbage” mapped
onto “municipal solid waste”). More problematic were words
that differed in meaning from their Wikipedia articles. Words
from the “thief” list are good examples: Wikipedia does not
contain articles for “thief”, “robber”, “burglar”, “bandit”, or
“criminal”, only articles for “thievery”, “robbery”, “burglary”,
“banditry”, and “crime”. These words were excluded from this
experiment.

To accommodate the size of DBpedia, a custom Python
script that simulated spreading activation was used instead
of Soar, although the same algorithm as Soar’s semantic
memory is followed. For this experiment, the fifteen “retrieved”
concepts are simply the fifteen most-activated nodes. The
size of DBpedia and the density of its connections remains
daunting; as an example, a fifth of the nodes in DBpedia
are only two connections away from the nodes selected for
the “army” list. This makes spreading beyond a depth of 2
untenable. As a result of these two problems, only about half
the lists (seventeen) were used in this experiment, with an
average of 14.1 concepts.

Results

Due to the reduced dataset, the results in this section should
be treated with some skepticism; however, we believe they are
nonetheless representative of using DBpedia to model false
memory and human associations.

For spreading depth 1 at the default decay rate of 0.5,
spreading activation on DBpedia resulted in stimuli and lure
recall rates of 15% and 0% respectively; for spreading depth
2, the stimuli recall rate decreases to 3%, while the lure recall
rate increases to 12%. These numbers follow the trends found
from the WordNet experiment. To understand the low lure

recall rate, we found it instructive to look at the “shirt” list,
one of two lists for which the lure was consistently retrieved.
Unlike other DRM lists, the “shirt” list is unique in that the
vast majority of items belong to the same category. This shared
classification means that the lure is only a network distance of
two away from the stimuli words, and is therefore sufficiently
boosted in activation for it to be retrieved. In contrast, the
stimuli words for other DRM lists do not conform as neatly to
the taxonomic structure of DBpedia — the lure is not as directly
connected to the stimuli, causing the lure to not be retrieved.

That the lure is not retrieved, however, does not mean that
the stimuli words are retrieved; the highly connected network
structure also led to the low stimuli recall rate. Page links on
the internet are known to have a small-world structure, where
the pairwise distance between all nodes are small and where
there are many nodes with large degrees. For example, “anger”
is connected to “red”, which in turn is connected to over 600
concepts, mostly organizations whose representational colors
include red. Because these “hub” nodes are often connected to
multiple stimuli words, their activation is boosted above that
of the stimuli words and are retrieved instead, resulting in a
low stimuli recall rate.

Discussion

The failures in both WordNet and DBpedia are representa-
tional; we discuss these issues in the next section. For DBpedia
alone, we faced the additional difficulty of mapping the stimuli
and lure words to a concept. One concern not yet raised is
that the choice of concepts used to represent nodes requires
association and reasoning on the part of the modeler. A number
of words in the DRM lists are polysemous; “prick” and “hurt”,
for example, would fit just as well as “goad” and “heckle” into
a different “needle” list (as a verb instead of as a noun). If
DBpedia is to be used for modeling associations and false
memory, a better protocol would be for unknowing coders
to determine which concepts correspond to the lure and the
stimuli words. This would remove confirmation bias that may
be inherent in how words are currently mapped to concepts.

General Discussion

This paper attempted to use large computational knowledge
bases to model the human associations that lead to false
memory in the DRM paradigm. Our model was able to
qualitatively recreate the DRM false memory phenomenon, but
only on a hand-crafted semantic network that resembles their
traditional depiction. When large computational knowledge
bases such as WordNet and DBpedia are used, however, the
naive spreading activation algorithm fails to simultaneously
match the stimuli and lure recall rates. We believe that
these results are indicative of three general problems with
using large knowledge bases in cognitive modeling: missing
data from the knowledge base, missing connections between
existing data, and finally, the sheer amount of existing data.
Of the three, the missing data problem is the hardest to
solve. The type of common sense knowledge required to make
associations in the DRM task is neither lexical nor conceptual

63

— it exists neither in a dictionary nor in an encyclopedia.
One example of such knowledge is the fact that “rubber” is
7, “springy”, “flexible”, and “resilient”. It is infeasible

“elastic”,
to manually encode all descriptions for all objects, and it may
be necessary to employ techniques from information retrieval
and natural language processing to extract this knowledge
from text.

Even for concepts/words that exist in the knowledge base,
neither WordNet nor DBpedia fully capture the relationships
between their nodes. Some of these missing relationships,
such as phrases from popular culture, can only be obtained
through similar means as the missing concepts/words; others,
by systematically adding edges to these knowledge bases,
such as connecting phrases to their component words. Perhaps
more relevant for cognitive modelers, however, is that there
is no consensus on the cognitive plausibility of the content
and structure of knowledge bases. In understanding the
experimental results of this paper, we have tried to determine
how the stimuli words relate to the lure, and whether these
relationships generally apply to other concepts. A complete
catalog of human associations would more clearly indicate the
types of connections that knowledge bases currently lack.

The final problem of the scale of the data is only made
worse by the addition of missing knowledge. The solution
here may be more algorithmic in nature, by modifying the
spreading activation algorithm such that it remains valid
as the size of the knowledge base grows. One possibility
is for spreading to occur only on particular edges, perhaps
informed by the context of the retrieval. This is similar to
using theory to extract a smaller, more specialized network
on which the network distance may be more meaningful
(Tenenbaum, Griffiths, & Kemp, 2006). Such an algorithm
would reduce the computational requirements of spreading
activation, while simultaneously filtering out connections that
are irrelevant for fitting human data. The same mechanism may
also allow lexical, conceptual, and other knowledge to exist in
the same knowledge base, as a unified semantic memory to be
used in cognitive modeling, without leading to the confusions
demonstrated in the results of this paper.

With more refined algorithms that can efficiently operate
on millions of concepts and relations, large computational
knowledge bases can become a valuable resource for modeling
the wealth of background knowledge that participants bring
into experiments.

References

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R., et al. (2009). DBpedia — a crystallization
point for the web of data. Web Semantics: Science, Services
and Agents on the World Wide Web, 7(3), 154-165.

Hees, J., Khamis, M., Biedert, R., Abdennadher, S., & Dengel,
A. (2013). Collecting links between entities ranked by
human association strengths. In Proceedings of the 10™
European semantic web conference.

Johns, B. T., & Jones, M. N. (2009). Simulating False Recall

as an Integration of Semantic Search and Recognition. In
Proceedings of the 31*' annual conference of the Cognitive
Science Society (CogSci).

Li, J., & Laird, J. E. (2015). Spontaneous retrieval from long-
term memory for a cognitive architecture. In Proceedings of
the 29" AAAI conference on artificial intelligence (AAAI).

Miller, G. A. (1995). WordNet: A lexical database for English.
Communications of the ACM, 38(11), 39-41.

Roediger, H. L., & McDermott, K. B. (1995). Creating
false memories: Remembering words not presented in lists.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 21(4), 803-814.

Roediger, H. L., McDermott, K. B., & Robinson, K. J. (1998).
The Role of Associative Processes in Producing False
Remembering. In M. A. Conway, S. E. Gathercole, &
C. Cornoldi (Eds.), Theories of Memory II.

Salvucci, D. D. (2015). Endowing a Cognitive Architecture
with World Knowledge. In Proceedings of the 37" annual
conference of the Cognitive Science Society (CogSci).

Stadler, M. A., Roediger, H. L., & McDermott, K. B. (1999).
Norms for word lists that create false memories. Memory
and Cognition, 27(3), 494-500.

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-
based Bayesian models of inductive learning and reasoning.
Trends in Cognitive Sciences, 10(7), 309-318.

64

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Using behavior to decode allocation of attention in context dependent decision
making

Michael Shvartsman (ms44 @princeton.edu)
Princeton Neuroscience Institute, Washington Rd., Princeton, NJ 08544 USA

Vaibhav Srivastava (vaibhavs @ princeton.edu)
Department of Mechanical and Aerospace Engineering, 41 Olden St., Princeton, NJ 08544 USA

Narayanan Sundaram (narayanan.sundaram@intel.com)
Intel Parallel Computing Lab, 2200 Mission College Blvd., Santa Clara, CA 95054 USA

Jonathan D. Cohen (jdc@princeton.edu)
Princeton Neuroscience Institute, Washington Rd., Princeton, NJ 08544 USA

Abstract

We present a model of the dynamics of adaptive attention al-
location in the AX Continuous Performance Test (AX-CPT),
a simple context dependent decision making task of interest
to the research communities concerned with cognitive control,
schizophrenia, anxiety and aging (Braver et al., 2001; Cohen
et al., 1999; Eysenck et al., 2007). We ground it in our re-
cent theory of decision making under dynamic context, that
assumes humans use sequential Bayesian inference to com-
bine information from multiple sources in perception and (op-
tionally) memory over time. The theory generalizes the well-
known diffusion decision model of single-stimulus decision
making (DDM; Ratcliff, 1978). Our first result is a new anal-
ysis that shows how memory encoding and retention can yield
a variable initial condition for either a single- or multiple-
stimulus decision, providing a theoretical grounding to the as-
sumption of variability in initial condition previously shown to
improve data fits for the DDM. Our second result is using this
model to decode attention allocation from behavioral data in a
novel quantitative payoff manipulation in the AX-CPT, show-
ing that our model can capture the differences in how subjects
encode and retrieve contextual information when the relative
emphasis on task speed and accuracy is changed.

Keywords: decision making; context processing; sequen-
tial inference; Bayesian inference; wiener process; ornstein-
uhlenbeck process;

Introduction

If there is one thing that defines human behavior, it is its per-
vasive adaptive nature. Such a viewpoint is perhaps best un-
derpinned by the seminal work of Swets and colleagues on
signal detection (e.g Tanner and Swets, 1954), who showed
that even the simple task of detecting a flash of light in a uni-
form background is amenable to strategic variation that trades
off correct responses against false alarms in a way sensitive
to reward and the statistics of the environment. The Signal
Detection Theory model of this behavior assumed observers
performed the equivalent of a fixed-sample likelihood ratio
test when asked to respond, and was soon generalized to the
case of variable sample size (Edwards, 1965; Laming, 1968;
Stone, 1960), and to continuous time as the well-known Dif-
fusion Decision Model (DDM; Ratcliff, 1978).

These models naturally capture a second tradeoff in deci-
sion making: that of speed against accuracy, and find support
from a wide range of behavioral and neural data (e.g. Bogacz

65

et al., 2006; Bogacz and Gurney, 2007; Gold and Shadlen,
2007; Kira et al., 2015; Ratcliff et al., 2004; Turner et al.,
2015; van Vugt et al., 2012).

We consider the above models to be fixed context models
because they treat context, which we operationalize as ad-
ditional task-relevant information, as fixed/known over the
course of the decision. Our theory (Shvartsman et al., 2015)
removes the assumption that the context is known, and con-
siders the dynamics of processing the context simultaneously
with an additional stimulus we term the decision target. The
theory can be stated both as a sequential Bayesian inference
model, and (in the continuum limit) as a nonlinear diffusion
model, and is therefore a formal generalization of the mod-
els discussed above, as well as a previous Bayesian model of
the Flanker task by Yu et al. (2009). In prior work, we used
the same parameters from Yu and colleagues’ paper to gen-
erate plausible behavior patterns in the AX Continuous Per-
formance Task (AX-CPT), a task that differs from the Flanker
task both in the time of stimulus presentation, and in response
rules. The AX-CPT, which we describe in detail below, is ar-
guably the simplest task where participants are required to
combine information seen during different disjoint time in-
tervals to make a decision, and is our focus in this paper.

When deciders include additional contextual information
in their decisions, a third tradeoff naturally arises, that of
allocating processing (attentional or otherwise) between the
available sources of information. In this paper we explicitly
consider this tradeoff. In addition to being a formal gener-
alization to the work on fixed-context decision making dis-
cussed above, it also bears some relation to work on atten-
tion allocation under multi-sensory integration (e.g. Sheppard
et al., 2013), which it extends considering stimuli in memory.
It is also complementary to work on the perception-memory
tradeoff on longer timescales in the prospective memory
paradigm (Einstein and McDaniel, 2005), and mechanistic
work combining multiple sequential samplers in the ACT-R
cognitive architecture (van Maanen et al., 2012).

Our main contributions are as follows: first, we provide
additional insight into of our theory of decision making un-
der dynamic context presented in Shvartsman et al. (2015)

by providing analytical expressions for the posterior distribu-
tion over context after memory encoding and retention, and
thereby provide a new motivation for the assumption of ini-
tial condition variability previously argued to be necessary to
fit human data in the fixed-context DDM (e.g. Ratcliff and
Rouder, 1998). Second, we apply the model to a dataset of
humans performing the AX-CPT under a novel quantitative
payoff manipulation, and use the model to develop a quanti-
tative understanding of how participant strategy changes with
task goals.

An overview of the theory and application to
the AX-CPT

We assume that decision making can be understood as a
sequential Bayesian inference process, specifically that the
agent uses sequentially-drawn samples from external input
and/or memory to compute the joint posterior probability over
the identity of some true context and decision target over
time. The agent maps from this joint posterior to a response
probability using a known response rule, and uses a fixed
threshold defined over the response probability to stop sam-
pling and respond. We make a crucial distinction between our
theory of decision making and individual fask models that can
be derived from the theory by applying it to specific tasks, as
we do here. Our previous work has shown how our formalism
can be used to derive different models when the additional
context stimulus is either in perception or memory, under dif-
ferent response mappings (Shvartsman et al., 2015).

In this paper we focus on the AX Continuous Performance
test (Servan-Schreiber et al., 1998), arguably the simplest
decision making task that conditions responses jointly and
uniquely on a perceptual and memory stimulus. The task is
illustrated in Fig. 1: participants see one of two context stim-
uli (by convention labeled ‘A’ or ‘B’) followed by one of two
targets (‘X or ‘Y’), and make one response (e.g. ‘left’) to
AX and BY pairs, and the other (e.g. ‘right’) to AY and BX
pairs.

Formally, we assume the agent conditions a decision based
on her posterior belief over the identity of some unknown true
context and some true rarget. We denote by C, G random vari-
ables representing the possible draws of context and target,
and r(-) a function from the distribution P(C, G) to a distribu-
tion over responses, which for the AX-CPT is the exclusive-or
function:

ro.with P(C="A",G="X’)+
P(C=B,G="Y
r(P(C,G)) = . (N . ,) nH
ri, with P(C="A",G="Y")+
P(C="B’,G="X)

The agent receives evidence samples s¢ and s¢ drawn i.i.d.
from the environment, and updates her posterior distribution
over the pair (C,G) using Bayes’ rule. We denote by 7" the
time at which the context appears and tgff the time at which

. . . . ff . . .
it disappears, and likewise 75", 75" for the target. This implies

66

Cue
(Context encoding)

500ms

2000ms

Retention Interval
Probe Response Y Free response
(Target) (5000ms timeout)
50%
37.5%
25%
12.5%
0%
AX AY BX BY

Figure 1: Top: sequence diagram for one trial of the AX Con-
tinuous Performance Test. Bottom: frequency of each trial
type in the experiment. Actual letters seen were randomized
for each subject.

the following update at timestep T, assuming independence of
the context and target evidence streams:

Pi(C,G | s€,59) o< P(sC | C)P(sC | G)P._1(C,G). (2)
Before the target appears, the target likelihood is uniform over
all the targets. Because there are only two responses (i.e. hy-
potheses), we can rewrite this update as a likelihood ratio up-
date, and convert it into a nonlinear transformation of two
diffusion processes. We refer the reader to the supplement of
(Shvartsman et al., 2015) for the full derivation, and here only
give the final expression:

Py(C = = Zeols 4 P (C = —
logZ = log 0(C€ = ¢o,G = goJe e TR(C=c1,G=21)

; - (3
Py(C=cp,G=g1)e%+Py(C=rc1,G=gp)e%

Here, the target particle z’g is stationary until the target ap-
pears (7g") and then evolves according to a Wiener process
with drift:

dzy = agdt +G,dW.)
The context particle z.. evolves according to a Wiener pro-
cess with drift from when it appears (#") until it disappears.
Once the context disappears from perception, the memory
system can provide continued samples § after the stimulus
goes away, but with some constant probability d at each time
step it can start to provide uninformative noisy samples sU.
Assuming the agent has a good estimate of d, she also knows
that the probability of receiving an informative sample expo-
nentially decays with time, such that the time-varying likeli-
hood distribution is the following mixture:

£(s) = (1 —exp(—M)) f(55) +exp(~M) f(s7) (5)

, where f(-) refers to the density of its argument. That is, the
informative component of the likelihood decays — as does its

e _

Context/Cue Enc. | Retention Interval Probe / Target + Response

AIXI

Context Retrieval
(drift+diffusion+decay)
(eq.6 bot,)

Context Encoding
(drift+diffusion)
(eq.6 top)

Context Retention
(diffusion+decay)
(eq.6 mid.)

= Context statistic z'

T
t(: 0

T T
toff 1000 2000

time

Figure 2: Average dynamics of the CDDM model for the AX-
CPT. The ordinate does triple-duty in denoting the position of
all three particles in their own spaces. In this figure, context
almost (but not quite) decayed fully during the retention in-
terval.

variance, if we make the standard assumption that evidence
distributions are Gaussian. We model this retention and for-
getting process in continuous time as a zero-mean Ornstein-
Uhlenbeck (O-U) process, which has the same exponential
decay property, though we leave the derivation of an explicit
connection to future work. Finally, we model the retrieval
process by switching the O-U process to a nonzero-mean pro-
cess at #g". Our O-U assumption could be alternatively mo-
tivated by assuming the memory system is implemented us-
ing a leaky competing accumulator model with large leak and
mutual inhibition (Bogacz et al., 2006). The full expression
for the context particle dynamics is as follows:

a,dt + 6. dW if £ < <o
—\L+G.dW if 0T <t < "
—Azl+acdt +-0.dW if 1" <t

dz. = (©6)

We assume by convention that 6, = 6. = 1 in order to make
the model identifiable (but cf. Bitzer and Kiebel, 2015, for
possible consequences of this choice). We therefore omit the
Wiener noise coefficients in the notation that follows. Fig. 2
shows the average particle dynamics for the model. The full
set of model parameters and their interpretation is given in
Tab. 1 (we discuss parameters not related to the decision pro-
cess itself later in the paper).

We rely on a number of properties of the AX-CPT that en-
able the analysis that follows (some of which are shared by
other tasks as well). First, the context presentation and reten-
tion interval durations are both independent of the subject’s
actions and usually set a priori. Second, responses are only
allowed when the target is on the screen. Given those two
properties, the context particle distribution at the time of tar-
get appearance can be written in closed form, as follows.

First, define Az, £ 10" — 10" and Ar, £ 19" — 10, Next, let 22
denote the position of the context particle at the end of encod-
ing (t2), and 7/ denote the position of the particle when the
target appears and retrieval begins (z;"). We can write E [z],

67

explicitly, recalling that it evolves as an O-U process, and that
therefore its distribution is A((zGe 41, L+ (e 7244 — 1)) L
We take care to use the law of total expectation, since z¢ is
itself a random variable with distribution A/ (aAf,,At,).

ElZZ)=E[E[Z |]| =E {de%zr} — a,Ae M (7

We do the same for the variance, using the law of total vari-
ance:

Var [z¢] = E¢ [Var z; | z¢]] + Varz [E [z | z¢]] (8)
1 _
=— 27»(e A1) 4 Arpe M)

In the case where context is not retrieved from memory
once the target appears, the resultant model is a DDM with
initial condition variability (Ratcliff and Rouder, 1998), pre-
viously used to fit fast errors in decision making. Our analy-
sis here formally provides a psychological interpretation for
such fast errors: specifically, it suggests that data that is better
fit using sampling or diffusion models with a variable initial
condition may reflect subjects’ memory of relevant contex-
tual information. Furthermore, it provides an argument on
theoretical grounds for using Gaussian rather than the uni-
form initial condition variability (e.g. Ratcliff and McKoon,
2008), especially if subjects may be using contextual infor-
mation. Such a model may predict instantaneous decisions
(‘ultra-fast guesses’) for some parameter settings that reflect
strong memory encodings, which may be smoothed out to a
multi-modal response distribution if nondecision time vari-
ability is included in the model.

A particularly elegant property of the model is that each
component has both distinct psychological interpretation, and
distinct effects on response time distributions. 0 reflects the
speed-accuracy tradeoff and therefore affects the shape of the
RT distributions and the error proportion across all trial types.
The three context parameters affect different portions of the
RT distribution: a, reflects encoding of the context, and con-
tributes primarily to the early portion of the RT distributions
due to how it affects the initial condition for the decision;
A reflects memory retention and contributes both to early and
late portion of RT distributions because it persists both during
retention and retrieval; and a. reflects memory retrieval and
primarily contributes to middle and late portions of the RT
distributions because retrieval begins at target onset and satu-
rates over time. All three context parameters will identically
affect trial types that share a context (e.g. AX and AY). On
the other hand, a, reflects perceptual processing of the target
stimulus and therefore affects the RT distribution throughout,
but identically affects same-target pairs (e.g. AX and BX)

Thus, while differences between different trial types help
uncover differences between context and target processing
writ large, differences between different portions of the RT

Note that we use the A (u, %) parameterization.

distribution may index differences in subcomponents of con-
text processing. For example, high a, will increase the num-
ber of very fast correct responses when the context predicts
the correct target (e.g. AX) but also contribute fast errors
when it does not (e.g. AY). In this way, the model may pro-
vide a more precise characterization of context processing
differences than the behavioral indices in primary use today
(e.g. Braver, 2012).

Parameter Interpretation Prior range

de Context encoding drift 0to5

ac Context retrieval drift 0to5

ag Target recognition drift Oto5

A Memory decay -0.05t0 0.2

0 Decision threshold 0to20

Ui, Mean of non-decision time 0 to 1000ms

o™ Standard deviation of non- 0 to 200ms
decision time

De Probability of contaminant 0Oto 1
RT

Py(+) Prior distribution over trial ~ Set to true trial
types distribution

Table 1: Model parameters, interpretation, and prior ranges.

A payoff adaptation experiment

To test the ability of our model to precisely estimate atten-
tion allocation from behavioral data, we gathered a dataset of
humans performing the AX-CPT task on Amazon’s Mechan-
ical Turk. Mechanical Turk is a web-based marketplace for
“human intelligence tasks”, short web-based tasks that pay
small sums of money. It is emerging as a standard method for
high-throughput collection of data for psychological experi-
ments (Crump et al., 2013). Our experiment was designed us-
ing custom front-end code, using psiTurk (McDonnell et al.,
2015) for back-end and interfacing with Amazon. Response
times were collected with the JavaScript high resolution timer
API, which theoretically promises at least millisecond-level
accuracy. Experiment code is available at https://github
.com/mshvartsman/axcpt-psiturk-coffeescript.

We searched the parameter space of a preliminary ver-
sion of the model to devise four different payoff schemes in-
tended to differently prioritize speed and accuracy, illustrated
in Tab. 2. The first two were designed to encourage partici-
pants to be particularly fast or accurate relative to each other.
The other two were designed to encourage intermediate be-
havior, with either high or low overall cost.

Each subject started the experiment by reading the instruc-
tions, and then practicing the two A and B contexts separately.
To test that they have learned the task, they next had to com-
plete 10 correct trials in a row. If they failed to do so after
50 trials have passed, they were ejected from the experiment.
If they succeeded, they completed 240 trials of the AX-CPT
divided into 24 blocks. They were told their speed, accuracy,

68

Cond. Error cost Time cost (/s) Intent
(A) 10 2 Prefer accuracy
B) 2 10 Prefer speed
<© 10 10 Balanced (high cost)
D) 2 2 Balanced (low cost)

Table 2: Quantitative payoffs given to the participants. Cor-
rect responses were always worth 20 points. Both correct and
error responses are penalized for time.

and points gained after every trial, and a running total ev-
ery block. They earned $1 for participating, plus $1 for each
1000 points they earned in the experiment. We collected 20
subjects per condition, and most earned between $3.50 and
$4.50.

Each participant’s actual letters were randomized, but in
the remainder of the paper we label them as A, B, X, and
Y according to their frequencies: each set of 240 trials con-
tained 50% (120) AX trials, 20% (48) AY and BX trials, and
10% (12) BY trials, randomly distributed throughout the ex-
periment. This is conventional in AX-CPT designs, and is
what allows the AX-CPT to behaviorally index the allocation
of attention. The reasoning is as follows: AY and BX tri-
als have the same joint probability, but different probabilities
conditioned on either knowing the true context (A or B) or
target (X or Y). Therefore, any asymmetry between these two
trials is argued to reflect differences in processing the two
stimuli: specifically, better AY performance suggests more
attention to the context, and better BX performance suggests
more attention to the target (but cf. Lositsky et al. 2015 for
evidence that this index may be overly simplistic).

Fig. 3 shows basic behavior summaries in the speed and
accuracy conditions: the manipulation was successful in en-
couraging subjects to adjust their speed and accuracy, as ev-
idenced by the mean behavior. Of more interest is that the
effect was not uniform across the four trial types. When
pressured to respond more quickly while sacrificing accuracy,
subjects sacrifice accuracy in B trials more than in A trials,
with the speedup primarily seen in BY, the rarest trial type.
The two balanced conditions (not shown in the figure) for the
most part showed intermediate behavior, with the high-cost
condition patterning closer to the speed-encouraging condi-
tion, and the low-cost balanced condition patterning with the
accuracy-encouraging condition. We focus the remainder of
the analysis on the two extreme conditions, where the patterns
are clearest.

Model fitting details

While first passage times for diffusion and O-U processes are
known, the nonlinear transformation that forms our model’s
decision variable makes these analytics inapplicable. There-
fore, we derive best fits by simulation, using the EP-ABC
algorithm (Barthelmé and Chopin, 2014, as implemented at
https://github.com/sbitzer/pyEPABC). It bears men-

https://github.com/mshvartsman/axcpt-psiturk-coffeescript
https://github.com/mshvartsman/axcpt-psiturk-coffeescript
https://github.com/sbitzer/pyEPABC

Proportion Correct RT(ms)

0.975 4
650 o

0.950 4

600 4
0.925 o

b4

0.900 o
550 4

4 a

0.875 o

f 1

AX AY BX

A

AX AY BX

500 o

v v v
Mean BY Mean

Trial Type

¥
BY

Condition Cond. A (prefer accuracy) + Cond. B (prefer speed)

Figure 3: Mean accuracies and response times for the sub-
jects across the four trial types and our two conditions of fo-
cus, showing slower speed and higher accuracy overall in the
accuracy-focused condition, but also that these changes do
not affect all trial types equally. Refer to Tab. 2 for payoff
conditions. Error bars are standard errors.

tioning that our use of Bayesian methods for fitting is entirely
orthogonal to our theoretical assertion that decision making
in humans proceeds by Bayesian inference.

The original EP algorithm (Minka, 2001) approximates the
joint posterior density of model parameters by a multivariate
Gaussian, converting the Bayesian inference problem to an
iterative optimization problem. Approximate Bayesian Com-
putation (ABC) methods contend with performing Bayesian
inference when simulation is possible but no likelihood is
available, usually by assuming that parameters under which
the simulator generates data ‘similar enough’ to the real data
have high likelihood. EP-ABC as we apply it here assumes
individual RTs are drawn i.i.d., which allows us to define
‘similar enough’ to mean ‘generates each individual data
point to within 1ms’. We used EP-ABC with 5 passes over
the dataset and a minimum of 3000 accepted samples per hu-
man data point, with EP hyper-parameter o set to 0.3.

The model as described above uses 5 parameters to de-
scribe the decision process (three drifts, one decay, one
threshold). To describe actual response times, we add two
additional assumptions. First, that there is a normally dis-
tributed offset to the decision time — a ‘non-decision time’ re-
flecting early perceptual processing, motor planning, and the
motor response itself. This adds two parameters (mean and
standard deviation of the non-decision time). Second, we as-
sume that with some probability RTs are generated not from
our model, but from a 7I(0,5s) distribution of ‘contaminant’
RTs. We estimate the proportion of contaminant RTs from the
data, adding another parameter. These assumptions are stan-
dard in parameter fitting for the fixed-context DDM (e.g. Rat-
cliff and Rouder, 1998) and provide a probability floor that
makes it easier for EP-ABC to handle some unusually fast or
slow RTs in our dataset. We used proper uniform priors over

69

plausible parameter ranges for all the parameters. Tab. 1 lists
all of the parameters and their prior ranges.

To understand condition-level differences, we generated
10000 samples from the multivariate posterior density for
each subject, and produced average parameter estimates for
each condition based on these samples. This heuristic weights
subjects’ posterior means in proportion to their covariances
better than simple averaging of the means as point estimates,
and without the ideal fully-hierarchical treatment that is ex-
tremely challenging in our setting. Because there is stochas-
ticity in both the simulator and the fitting method, we re-
peated the model-based analysis twice. While there was some
variability in the parameters estimated for each subject, the
signs of the difference between parameters for the speed and
accuracy condition was the same across both runs for all
parameters, so we focus our interpretation on those differ-
ences. Model code is available at https://github.com/
mshvartsman/cddm.

Results

Tab. 3 shows the combined parameter estimates. We remark
on a number of properties: first, the contaminant proportion
is low, and similar across the fits. Second, the threshold
is higher in the accuracy-focused than in the speed-focused
condition, consistent with the idea that it governs the speed-
accuracy tradeoff. Non-decision times are shorter and less
variable in the accuracy-focused than in the speed-focused
condition — perhaps an indicator of greater focus overall. This
point is also supported by the fact that the accuracy condition
shows a higher total drift (summed across the three drift vari-
ables) than the speed condition, and by the fact that it shows
slightly less memory decay.

Parameter Accuracy condition Speed condition
de 3.1701 2.4623
ac 1.0576 0.8088
ag 0.7648 1.1681
A 0.0756 0.0834
0 10.9656 6.1589
Ui, 406.2522 435.1687
Gy 76.7926 94.8328
De 0.0513 0.0530

Table 3: Fit parameter values in aggregate across the two sub-
ject groups. See text for fit details.

Most interesting, however, is how this drift is allocated.
In the accuracy-focused group, both context-involving drifts
(encoding a, and retrieval a.) are higher than the correspond-
ing drifts in the speed-focused group, and the pattern is re-
versed in the target drift a,. That is, when incentivized to
be more accurate, participants rely more on their memory
and contextual information and slightly less on the percep-
tual stimulus in front of them. Since the task is designed such
that context and target information is equally useful in being

https://github.com/mshvartsman/cddm
https://github.com/mshvartsman/cddm

able to make the correct response, we suspect that this has to
do with the effort involved in encoding, maintaining, and re-
instating the memory of the contextual rule — something that
is probably worth doing more of when accuracy is more im-
portant.

Discussion and Conclusions

In this work, we applied our theory of decision making un-
der dynamic context to the AX Continuous Performance Test.
First, we showed how the simple memory encoding and re-
tention dynamics of the model map to variability in the initial
condition of a diffusion decision process, providing both fur-
ther theoretical grounding for the use of variable initial con-
ditions in data fits, and a better understanding for the psycho-
logical origin of fast errors in decision making.

We next applied our model to estimate allocation of atten-
tion between perception and memory in a novel quantitative
payoff manipulation in the task as measured on Amazon’s
mechanical turk. This manipulation succeeded in not only
changing participants’ speed-accuracy tradeoff, but also their
attention allocation tradeoff between perception and memory.
The ability to manipulate attention allocation continuously
rather than using discrete task dimensions (e.g. deadlines, dis-
tractors) as used previously may pave the way to more quan-
titative mapping out of the attention allocation strategy space.

Finally, our method of measuring the relative allocation of
attention between the cue and probe stimulus in AX-CPT is
among the first model-based efforts to understand this trade-
off, which has previously been measured as a behavioral in-
dex (the difference between AY and BX performance; e.g.
Braver, 2012). This behavioral index, like our model, in-
dicates that subjects in our accuracy-preferring group focus
more on context, as indexed by a reduction in BX errors.
However, the behavioral index has no way of making the
distinction between encoding-oriented and retrieval-oriented
contextual effects, a distinction that our model captures. Such
multidimensional, quantitative characterization of strategic
variability in the processing of perceptual and memory stim-
uli may pave the way to a richer understanding of context
processing both in normal and in diseased populations.

References

Barthelmé, S. and Chopin, N. (2014). Expectation Propa-
gation for Likelihood-Free Inference. Journal of the
American Statistical Association, 109(505):315-333.

Bitzer, S. and Kiebel, S. J. (2015). The Brain Uses Reliability
of Stimulus Information when Making Perceptual De-
cisions. In Advances in Neural Information Processing
Systems 28, pages 1-9.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen,
J. D. (2006). The physics of optimal decision making:
a formal analysis of models of performance in two-
alternative forced-choice tasks. Psychological Review,
113(4):700-65.

Bogacz, R. and Gurney, K. N. (2007). The basal ganglia and

70

cortex implement optimal decision making between al-
ternative actions. Neural Computation, 19(2):442-77.

Braver, T. S. (2012). The variable nature of cognitive control:
a dual mechanisms framework. Trends in Cognitive
Sciences, 16(2):106-13.

Braver, T. S., Barch, D. M., Keys, B. a., Carter, C. S., Co-
hen, J. D., Kaye, J. A., Janowsky, J. S., Taylor, S. F,,
Yesavage, J. a., Mumenthaler, M. S., Jagust, W. J., and
Reed, B. R. (2001). Context processing in older adults:
Evidence for a theory relating cognitive control to neu-
robiology in healthy aging. Journal of Experimental
Psychology: General, 130(4):746-763.

Cohen, J. D., Barch, D. M., Carter, C., and Servan-Schreiber,
D. (1999). Context-processing deficits in schizophre-
nia: Converging evidence from three theoretically mo-
tivated cognitive tasks. Journal of Abnormal Psychol-
ogy, 108(1):120-133.

Crump, M. J. C., McDonnell, J. V., and Gureckis, T. M.
(2013). Evaluating Amazon’s Mechanical Turk as a
tool for experimental behavioral research. PLoS ONE,
8(3):e57410.

Edwards, W. (1965). Optimal Strategies for Seeking informa-
tion : Models for Statistics , Choice Reaction Times ,
and Human Information Processing. Journal of Math-
ematical Psychology, 329:312-329.

Einstein, G. O. and McDaniel, M. a. (2005). Prospective
Memory. Multiple Retrieval Processes. Current Direc-
tions in Psychological Science, 14(6):286-290.

Eysenck, M. W., Derakshan, N., Santos, R., and Calvo, M. G.
(2007). Anxiety and cognitive performance: Atten-
tional control theory. Emotion, 7(2):336-353.

Gold, J. I. and Shadlen, M. N. (2007). The neural basis
of decision making. Annual Review of Neuroscience,
30:535-74.

Kira, S., Yang, T., and Shadlen, M. N. (2015). A Neural
Implementation of Wald’s Sequential Probability Ratio
Test. Neuron, 85(4):861-873.

Laming, D. R. J. (1968). Information theory of choice-
reaction times. Academic Press, London.

Lositsky, O., Wilson, R. C., Shvartsman, M., and Cohen,
J. D. (2015). A Dirift Diffusion Model of Proac-
tive and Reactive Control in a Context-Dependent
Two-Alternative Forced Choice Task. In The Multi-
disciplinary Conference on Reinforcement Learning
and Decision Making, pages 103—-107.

McDonnell, J. V., Martin, J. B., Markant, D. B., Coenen, A.,
Rich, A. S., and Gureckis, T. M. (2015). psiTurk.
Minka, T. P. (2001). Expectation Propagation for Approxi-
mate Bayesian Inference. In Proceedings of the Sev-
enteenth Conference on Uncertainty in Artificial Intel-
ligence, UAI’0O1, pages 362-369, San Francisco, CA,

USA. Morgan Kaufmann Publishers Inc.

Ratcliff, R. (1978). A theory of memory retrieval. Psycho-
logical Review, 85(2):59-108.

Ratcliff, R., Gomez, P., and McKoon, G. (2004). A diffusion

model account of the lexical decision task. Psycholog-
ical Review, 111(1):159-82.

Ratcliff, R. and McKoon, G. (2008). The Diffusion Deci-
sion Model: Theory and Data for Two-Choice Decision
Tasks. Neural Computation, 20(4):873-922.

Ratcliff, R. and Rouder, J. N. (1998). Modeling Response
Times for Two-Choice Decisions. Psychological Sci-
ence, 9(5):347-356.

Servan-Schreiber, D., Bruno, R. M., Carter, C. S., and Co-
hen, J. D. (1998). Dopamine and the mechanisms
of cognition: Part I. A neural network model predict-
ing dopamine effects on selective attention. Biological
Psychiatry, 43(10):713-722.

Sheppard, J. P., Raposo, D., and Churchland, A. K. (2013).
Dynamic weighting of multisensory stimuli shapes
decision-making in rats and humans. Journal of Vision,
13(6):1-19.

Shvartsman, M., Srivastava, V., and Cohen, J. D. (2015). A
Theory of Decision Making Under Dynamic Context.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama,
M., and Garnett, R., editors, Advances in Neural Infor-
mation Processing Systems 28, pages 2485-2493. Cur-
ran Associates, Inc.

Stone, M. (1960). Models for choice-reaction time. Psy-
chometrika, 25(3):251-260.

Tanner, W. P. J. and Swets, J. A. (1954). A decision-
making theory of visual detection. Psychological Re-
view, 61(6):401-409.

Turner, B. M., van Maanen, L., and Forstmann, B. U. (2015).
Informing cognitive abstractions through neuroimag-
ing: The neural drift diffusion model. Psychological
Review, 122(2):312-336.

van Maanen, L., van Rijn, H., and Taatgen, N. (2012).
RACE/A: An Architectural Account of the Interactions
Between Learning, Task Control, and Retrieval Dy-
namics. Cognitive Science, 36(1):62—101.

van Vugt, M. K., Simen, P., Nystrom, L. E., Holmes, P., and
Cohen, J. D. (2012). EEG oscillations reveal neural
correlates of evidence accumulation. Frontiers in Neu-
roscience, 6(July):106.

Yu, A.J.,, Dayan, P., and Cohen, J. D. (2009). Dynamics of
attentional selection under conflict: toward a rational
Bayesian account. Journal of Experimental Psychol-
0gy: Human Perception and Performance, 35(3):700—
17.

71

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Learning the dynamics of Prisoner’s Dilemma: Lessons from modeling and
simulation

Michael Yu (msyu@cmu.edu)
Department of Social and Decision Sciences, 5000 Forbes Ave
Pittsburgh, PA 15213 USA

Cleotilde Gonzalez (coty@cmu.edu)
Department of Social and Decision Sciences, 5000 Forbes Ave
Pittsburgh, PA 15213 USA

Abstract

Learning to deal with social dilemmas can be difficult as
outcomes depend not only on a person’s decisions but also on
other people’s decisions and on how past decisions have
changed that environment. We investigate how people might
learn about social dilemmas by studying how simulated
players using a cognitive model known as instance-based
learning (IBL) interact with each other and with a set of fixed
strategies in the Prisoner’s Dilemma (PD). The current
simulation study presents systematic variations in the payoff
structure and the other player’s strategy. Results indicate that
the IBL model can reproduce predicted patterns of
cooperation based on the payoff structure and that the model
is sensitive to the strategies with which it is matched. The
simulations offer explanations of how cognitive processes
handle social dilemmas and how the environment of social
dilemmas can influence this process.

Keywords: Instance-Based Learning; Cognitive Modeling;
Prisoner’s Dilemma; Cooperation.

Introduction

Instance-based learning (IBL) is a cognitively-inspired,
descriptive model of how we make decisions in dynamic
environments, i.e., environments that change over time and
in which earlier decisions can inform and influence future
actions (Gonzalez, Lerch, & Lebiere, 2003). Dynamic
decision making often occurs in repeated social dilemmas,
when people are asked to decide between actions that
benefit themselves at a cost to the group or benefits the
group at a cost to themselves. Past responses can influence
how members of the group respond in the future, creating a
dynamically complex learning environment. The Prisoner’s
Dilemma (PD) is a commonly studied social dilemma that
instantiates this type of situation in a two-person game.
Classical game theory assumes that players understand
explicit information about outcomes, reason about the other
player’s strategy, and solves for the best solution.
Behavioral game theory assumes a similar understanding
and adds preferences about the other player’s actions and
outcomes (e.g., Fehr & Schmidt, 1999; Rabin, 1993).
Evolutionary game theory and related models of simulation
assume no understanding of the game nor consideration of
the other player, but rather that players follow pre-
determined strategies (Axelrod & Hamilton, 1981;
Danielson, 1992; Messick & Liebrand, 1995). The game is

72

resolved by finding strategies that get better outcomes when
different combinations of strategies interact in different
ways. Approaches that consider learning including
reinforcement learning (C. F. Camerer & Ho, 1998; C.
Camerer & Ho, 1999) and applying cognitive models to the
PD (Gonzalez, Ben-Asher, Martin, & Dutt, 2015; Gonzalez
& Ben-Asher, 2014; Lebiere, Wallach, & West, 2000;
Stevens, Taatgen, & Cnossen, 2016) ask how learning
responds to changes in the decision-making environment.

This paper integrates approaches from these various
traditions to develop a different perspective on learning in
the PD. Our primary approach stems from cognitive
modeling, using an IBL model to study the learning process.
This contrasts with the common methods in classical and
behavioral game theory in which the PD can be solved
before the players interact. Similar to evolutionary game
theory, IBL models interact with and respond to the
environment (including payoffs and the strategies of other
players), prompting questions of how the environment can
change this interaction. Contrasted with evolutionary game
theory, the focus of IBL is on learning by individual agents
— rather than populations — using paradigms that are more
similar to those of repeated interaction in classical and
behavioral game theory. Under IBL, changes in behavior
are a consequence of dynamic learning rather than
population dynamics. A more fundamental assumption with
the IBL models that contrasts with much of the classical and
behavioral economic research is a focus on descriptive
models rather than optimization. While IBL models try to
make better decisions, the goal of this paper is not to find
the “best” way to solve the PD but to understand how the
environment influences the nature of decision-making in the
PD as well as the stability of those decisions.

The present focus on environmental variation contrasts
with much of the previous cognitive modeling research, as
well. Similar to evolutionary game theory, the current work
uses simulations to support studying a broad range of
environments. We adopt general IBL models with robust
parameters derived from previous research, but do not
emphasize creating a specific model to fit a specific set of
human data, as is commonly the case with past cognitive
modeling research. The emphasis of the current work is not
to develop the most comprehensive or best-fitting model of
human decision-making in the PD, but to develop a clearer

understanding of how the environment interacts with
learning dynamics. Thus, our comparisons to human data
are on general trends rather than absolute fit, which may
require, as in the case of some of the more sophisticated
cognitive models, integration of additional features beyond
what a basic IBL learning model provides.

In brief, this paper asks how systematic changes in
payoffs and partner strategies influence the learning process
of an IBL model. We examine how an IBL model interacts
with other simulated players in a repeated PD under various
payoff conditions.

Repeated Prisoner’s Dilemma

In the Prisoner’s Dilemma players pick between two
options: cooperate or defect. Payoffs are operationalized as
follows. If both players cooperate, each receives a payoff of
R (Reward). If one cooperates and the other defects, the
cooperator receives S (Sucker) and the defector receives T
(Temptation). If both defect, each receives P (Punishment).
The PD is defined by the following relationship: T > R >
P > S, and the best response for each player is to defect.
However, if both players cooperate, they would each receive
more than they would have had both defected. Repeating the
PD with the same partner makes the game more complex, as
current decisions can influence future outcomes. Over time,
players not only learn what outcomes are likely for any
given decision, but also influence the behavior of the other
player, changing the likelihood of the different outcomes.

Payoff sensitivity. A common finding in empirical studies
of the PD is that the player’s likelihood of cooperation is
related to the values of T, R, P, and S. One of the strongest
representations of this was proposed by Rapoport (1967) as
the K-index, with a higher K-index predicting higher

. . R—P
cooperation. The K-index was defined as: K = P
However, rational economic models always predict

defection and no correlation between cooperation and the K-
index. According to these models, players can reason that
defection is best in the last round, since reputation has no
effect after the last round; that defection is the best in the
second to last round, since reputation has no effect in the
last round; and so on in a process known as backward
induction.

In contrast, learning models, such as IBL, expect players
to explore their options and learn through trial-and-error.
Past research predicts that two IBL models acting
independently of each other would result in a decrease of
cooperation from early to later rounds (Gonzalez et al.,
2015), and IBL models have also been found to be sensitive
to the payoffs of the PD, consistent with Rapaport’s K-index
(Gonzalez & Ben-Asher, 2014). In this research we explore
these predictions systematically in a wider range of payoff
values of the PD and when the IBL model is paired against
various known strategies.

Strategic sensitivity. Outcomes depend not only on
payoffs, but on the likelihood of each outcome from each

73

decision. These likelihoods depend on the partner’s
behavior in the game. In contrast to the reasoned approach
taken by rational economic theory, where each player
attempts to predict what other will do, evolutionary game
theorists assume that players follow predetermined
strategies (Axelrod & Hamilton, 1981). Strategies that are
successful against other strategies are replicated, whereas
unsuccessful strategies are removed from the population,
leaving the most ‘robust’ strategies. However, this approach
focuses on population characteristics (groups of agents) with
‘learning’ occurring over generations, rather than on
learning of individual members of the population.

Two better-known strategies in evolutionary game theory
are tit-for-tat (TFT) and win-stay-lose-shift (WSLS). TFT
cooperates in the first round and, in all following rounds,
copies the other player’s action from the previous round.
Thus, it cooperates if the other player cooperated and
defects if the other player defected. WSLS also cooperates
in the first round. In all subsequent rounds, WSLS will stick
with the decision it made in the last round if it received
either R or T; or will change its decision if it received either
S orP.

In contrast, IBL models focus on how individuals learn —
but how IBL models interact with other strategies has not
been explored. As IBL models learn over time, they may
adjust to other strategies within one game of the repeated
PD.

Instance-based Learning

In IBL models decisions are stored in memory as a unique
combination of actions and outcomes. Each pair of action
and outcome is referred to as an instance. When facing a
choice, the model estimates a blended value for each action
being considered. The action with the highest blended value
is selected. The blended value, V, for an action, x, at a point
in time, t, is: Vit = X0 PxotUxo [EQ. 1], Where p,,; is the
retrieval probability of an outcome, o, associated with the
action, x; and u,, is the utility associated with the action, x,
and outcome of 0. In the PD, the actions can be represented
as either “cooperate” or “defect,” and the outcomes as T, R,
P, and S.

The retrieval probability of an instance is influenced by
the activation of that instance relative to the sum of
instances which include the same action. The retrieval
probability, p,,., for action, x, and outcome, o, at a specific

Axot Axot
time, t, iS: Pyor = € o2 / 31, e v2 [Eq. 2], where o is a noise
parameter, A, is the activation of the instance with action,
x, outcome, o0, and at time, t.

Activation is higher for instances that were more frequent
or more recently observed. The activation, A, for an
option, x, and outcome, o0, at time t; is: Ay =
InY(t—-T,) *+oln (%) [Eq. 3], where d is a decay

xot
parameter, o is the same noise parameter as in Eq. 2, T}, is

the set of all times in which the instances with action, x, and
outcome, o were observed, and y,,; is a draw from a
uniform distribution bounded by 0 and 1 for the current

action, x, at time t. For example, if “cooperate” is more
often and more frequently met with the sucker outcome (S)
than the reward outcome (R), then the cooperate/sucker
instance would be higher in activation and retrieval
probability, and the sucker payoff would more strongly
influence the blended value of the “cooperate” option than
the reward payoff.

The IBL model often takes standard parameter values
from ACT-R, the cognitive architecture from which the
Activation mechanism comes from (Anderson & Lebiere,
1998): o is set to 0.25 and d is set to 0.5. As people are not
expected to approach decisions with an empty memory, a
common approach is to create prepopulated instances that
represent initial beliefs about the decisions they expect to
experience (Lejarraga et al., 2012). The utility associated
with these prepopulated instances is typically set to some
value higher than the highest possible observable value from
the actual decisions to allow for initial exploration and are
entered into memory with a time of 0.

The IBL model presented above is a model of an
individual, aware of only (Gonzalez et al., 2015) interacts
with different PD environments while controlling for
broader social considerations including other-regarding
preferences and beliefs.

Simulation Overview

In our simulations, we have an IBL model play the repeated
PD with either another IBL model or another strategy over
the course of 100 rounds. We simulate 400 pairs of players
and focus on three measures: individual cooperation rates;
alternation rates (switches from cooperate to defect or defect
to cooperate); and how models behave as pairs (mutual
cooperation, mutual defection, and mixed cases).

The IBL model follows the definition noted above, with o
set to 0.25 and d set to 0.5. Prepopulated instances for
cooperate and defect are included with utilities set higher
than the temptation payoff to promote exploration. The
utility is set arbitrarily at 1.5 times T, i.e., at 15. When
matched with other IBL models or other strategies, the IBL
model receives information only about its actions and
outcomes and no information about the other model’s
actions or outcomes.

To examine a range of payoffs, we adapt a method used
by Moisan, et al. (2015) and inspired by Rapaport and
Chammah (1965) and Axelrod (1967), where the payoffs of
the PD are normalized with a fixed value for T and S. In the
present simulation, T is fixed at 10, S is fixed at 0, and R
and P vary between 0 and 10 in intervals of 1 such that R >
P. Our simulations include boundary cases that are not
strictly version of the PD: T=R =10, P =5 =0, and
R = P. These boundary cases give a sense as to how the
models may behave close to the limits as R—> T, P - S,
and P = R. This method also provides different payoff
structures that have the same K-index, which occurs for any
payoff structure in which R and P have the same difference.

To examine strategic sensitivity, we consider two simple,
unconditional and two sophisticated, conditional strategies.

74

For simple strategies, we match the IBL model with models
that unconditionally cooperate (All-C) or unconditionally
defect (All-D). For sophisticated strategies, we match the
IBL model with another IBL model, a TFT and WSLS
strategy.

Simulation Results

Figure 1 presents the results of simulations in which two
IBL models are paired with varying levels of R and P. The
panels indicate the cooperation and alternation rates of one
of the IBL models from each pair, with the top of each panel
representing 100% cooperation/alternation and the bottom
representing 0% cooperation/alternation; and the left of each
panel representing the 1 round and the right representing
the 100" round. Panels that are lightly shaded represent the
boundary conditions and are not ‘true’ PD games.

Across all games, the average cooperation rate starts at
50% (prepopulated instances cause the models to randomly
decide to cooperate and defect in the first round), but drift
towards increased cooperation or increased defection over
time. Behavior does not necessarily change consistently
towards cooperation or defection, e.g., the environment in
which R=9 and P =1, shows a slight increase in
cooperation before settling at a lower rate of cooperation.
Final round behavior (at the far right of each panel,
discussed more below) includes a variety of cooperation
rates across panels. While this behavior may stabilize at a
certain cooperation rate, this does not imply that the players
have settled on cooperation or defection. While alternation
rates also tend to decrease, for many payoff environments,
the alternation rates do not trend towards 0. End-of-game
behaviors include environments where players may switch
back and forth between cooperation and defection.

Payoff sensitivity

Cooperation Rate A logistic regression of the final round
cooperation relative to the K-index of each simulation
indicates that cooperation by the IBL models increases as
the K-index increases, B = 4.225, 95% CI [4.097, 4.355].
The coefficient on an ordinary least squares (OLS)
regression provides a more intuitive estimate of the effect of
K-index on cooperation, B = 0.681, 95% CI [0.664, 0.698],
implying a 68.1 percentage point increase from a K-index of
0 to 1 (or a roughly 6.8% increase for each increase of 0.1).
These findings are consistent with predictions that
cooperation should increase with a higher K-index
(Rapoport, 1967). This is visually confirmed in Figure 1, as
each diagonal (bottom left to top right) indicates
environments with the same K-index. For example, R =2, P
=1 and R =9, P = 8 have the same K-index (0.1) and
relatively lower cooperation than both R=5,P=1and R =
9, P =5 (K-index = 0.4).

The K-index appears to account for most but not all of the
influence of payoffs on cooperation. A logistic regression of
the final round cooperation on the K-index and the R

payoff' shows that the effect of the K-index is an order of
magnitude larger than that of the R payoff, Bx.index = 4.830,
Br=-0.109; or with OLS, B-indgex = 0.732, Bz =-0.010.

P
0 1 2 3 4 5 6 7 8 9

e e

10

oo A k] B
= R] -
TEEETwTwsww ~
i o | N -
R
k]

Ew

| "

| s
|
|

[
f
[

Cooperation (solid), Alternation (dashed) [0%, 100%]

I
:

Round [1, 100]
Figure 1: Development of cooperation and alternation for
paired IBL models with varying levels of R and P (T =10, S
= 0) across rounds; boundary conditions shaded in gray

Alternation While cooperation rates indicate the general
degree of cooperation between players, alternation provides
an indication of how stable that cooperation is. Alternation
rate may be compared to the concept of evolutionarily stable
strategies (ESS) from the evolutionary game theory
literature — which suggest how resistant strategies are to
changes in the environment (and in particular, invasion by
other strategies). In contrast to the idea of ESS, however,
higher alternation, while seemingly less stable, may suggest
a more robust learning mechanism, allowing agents to adapt
more quickly from environmental changes.

While distinct from cooperation, alternation is constrained
by the cooperation rate. As cooperation rates trend towards
0 or 1, alternation rates trend towards 0. For example, if
everyone cooperates in both Round 99 and Round 100, it is
impossible for anyone to have switched from defect to
cooperate (since all cooperated in Round 99) or switched
from cooperate to defect (since all cooperated in Round
100). The highest possible alternation exists where
cooperation rates are 50 percent. Nonetheless, cooperation
and alternation rates are not perfectly correlated.
Environments which produce similar cooperation rates (e.g.,
R 10, P = 3, cooperation 0293; R =9, P = 3,
cooperation = 0.305) can produce different alternation rates
(e.g., R = 10, P = 3, alternation = 0.058; R =9, P = 3,
alternation = 0.210).

Given the non-linear constraints placed by cooperation on
the alternation rate, it is unsurprising that alternation is less

"' Only R or P can be included in addition to the K-index due
to multicollinearity.

75

well predicted by the K-index, although an effect still exists.
A logistic regression of alternation between the second-to-
last and last rounds on the K-index suggests a positive effect
of K-index on alternation, B = 1.400, 95% CI [1.277,
1.525]; or by OLS, B = 0.179, 95% CI [0.164, 0.195].
Including both the K-index and R payoff as parameters in
the regressions we find coefficients for the logistic
regression of Bi.index = 2.728, Br = -0.223; and by OLS, Bk.
index = 0.285, Br =-0.021.

Visual inspection of Figure 1 suggests that the pattern of
the K-index predicting alternation seems stronger for our
‘proper’ PDs (non-shaded panels) than for the boundary
conditions (shaded panels). As we move towards the upper
left panel and higher K-indices, we see that alternation
increases. The trend breaks as we approach the boundary
condition of R =10 (top row), which shows lower
alternation relative to R = 9. At this point, the R and T
payoffs are identical and there is no temptation motive to
draw players from mutual cooperation towards defection.
This suggests that the dynamics between temptation and
reward may be particularly critical in driving alternation.

Table 1: Pattern of individual and paired behaviors at corner
points within simulated Prisoner’s Dilemma

K-index 0.8 0.1 0.1
(R, P) 9,1) (9, 8) 2, 1)
C 44.50 4.25 7.50
Alt 29.50 3.75 13.25
CcC 25.50 1.50 2.00
DD 38.25 93.75 87.75
CD/DC 36.25 4.75 10.25

Paired behaviors. Looking at the strategies of both players
in a pair provides further insight into the social dynamics of
the PD. For example, a 50% cooperation rate could be
achieved if half of the pairs are engaged in mutual
cooperation (CC) and half in mutual defection (DD); or if
all pairs include one cooperator and one defector (CD/DC).
Table 1 provides a deeper analysis of the final round
behavior for the cases of (R, P) € {(9, 1), (9, 8), (2, 1)}, i.e.,
the simulations involving the highest/lowest K-indices that
are not the boundary conditions. The top half provide results
for a single player in each pair, with “C” as the probability
of cooperation and “Alt” as the probability of alternation;
and the bottom half provides results for the pair of players.
The table highlights the differences in the two rightmost
payoffs, which have identical K-indices, but with an
implicitly painful sucker payoff but little temptation, (9, 8)
or a relatively painless sucker payoff but high temptation (2,
1). While there is low cooperation in both cases, the case
with high temptation and a low sucker payoff shows more
alternation that seems to pull people away from mutual
defection in favor of increased mixed pairs (“CD/DC”).

Strategic sensitivity

Figures 2 and Figure 3 present simulation results of IBL
models paired with non-IBL strategies. As with the IBL
models paired with other IBL models, the models received
no information about the other player’s actions or outcomes,
but the IBL models outcomes were influenced by the other
player’s choices. The first set of non-IBL strategies look at
unconditional strategies, i.e., strategies that are not
influenced by the IBL model’s decision; whereas the latter
set of non-IBL strategies look at conditional strategies, i.c.,
strategies which are influenced by the IBL model’s
decisions either directly (TFT) or indirectly (WSLS). They
include panels for different simulations with varying P and
R. However, they focus on a subset of P and R (with values
of 0, 1, 8, 9 and 10) to allow for a more detailed view of the
panels themselves.

All-C/All-D. Figure 2 shows that IBL models paired with
strategies that always cooperate or always defect learn to
defect quickly. Defection yields the best payoff with no risk

I3
o
=}
S
=
1=A
o
L]
£
&
2
ol &
P
| S\ | \
RN [\ | B
E \ \
2% \ \
= Y s o
il et e M —— —] N | E—
z
2 |
<N \ =
5\ \
B
@
o
©
o
(&} ‘1 =
\&M_.
Round [1, 100]
P
0 1 : 8] 10
\ | B
e \ :“ 1 \
= \ - | \
8 \ :‘w\‘—— \L\— \‘Vh.__
2 Nl ih
- =
£ -
S ! s
ey S g |
g \ K] |
= . N\ |
g h— R ([
] :
0 = ¥
= 5§\ | -
Ed £ [NEELE 1 B
e \ X! e A
g L
el T e
T
= |y |
[=]
Nt 1
8 \
= !
o
a8
218
P R I—

Round [1, 100]

Figure 2: Development of cooperation and alternation for
IBL models paired with All-C (top) and All-D (bottom)
with select levels of R and P (T = 10, S = 0) across rounds;
boundary conditions shaded in gray

76

of retaliation from these strategies. In contrast, TFT and
WSLS would only defect when playing with All-D, but
would cooperate with a partner who played All-C.

Exceptions occur only at certain boundary conditions.
When paired with All-C, this occurs at T = R = 10; that is,
when there is no temptation to defect. Cooperating or
defecting in such an environment yields the same utility
(T = R), making indifference reasonable. When paired with
All-D, this occurs at P =S = 0. Again, cooperating or
defecting yields the same utility (P = S), and indifference is
reasonable. This indifference is reflected in the alternation
rate which approaches 50% towards round 100 and is
consistent with cooperating and defecting at random.

These findings are consistent with the behavior of
individualist human players -- who also defect more against
unconditional strategies (Kuhlman & Marshello, 1975), and
contrast with strategies, such as TFT or WSLS which would
not naturally learn to be opportunistic in these cases.

F
o
=]
-
Ed
=5
=
L
]
=
5 € -
S c §
25 \ i -
il \ Al
FE s [Iv - =
o r— \t~____._='\‘
= s
e L L R e
z i
2\ \ §
2% \ -
S\~ \
g8 ===\~
o mEs
[
@
(=
8
\
(SRR =
o
Round [1, 100]
P
] 1 8 9 10

£ \ e
8 [REEErRRRGE e R = S \~
£ H
e 2 d\ \
E g : 1)
= B \ ‘N \
L = e \."—""'\;L‘_x- \
P & ;| ==
o B : e
8= g
] c
g2 | | 3
% By 1
L P—— \ =l *
£g 7 g\
gl cn s L | | SRR
=)
B \
Zh | =
c \ \
= o, S [
g -
@
(=8
&
[-3}
a1 =
\
N
Round [1, 100]

Figure 3: Development of cooperation and alternation for
IBL models paired with Tit-for-tat (top) and Win-stay-lose-
shift (bottom) with select levels of R and P (T =10, S =0)
across rounds; boundary conditions shaded in gray

TFT/WSLS Figure 3 highlights the different response of
the IBL model when paired with two popular strategies from
evolutionary game theory, TFT and WSLS.

Surprisingly, TFT tends towards defection. High
defection may be associated with research suggesting that
TFT does not do well when their partner behaves
inconsistently (Imhof, Fudenberg, & Nowak, 2007), as
might be expected when IBL models explore their options.
The exception at P = S = 0 suggests that the sucker payoff
makes cooperation more prohibitive when learning to play
with TFT. Not being penalized for moving away from
mutual defection, provides an opportunity for the players to
arrive at mutual cooperation.

Results for WSLS are similar to those observed in paired
IBL models, which may be explained by WSLS having been
developed as a simple learning model. When paired with a
WSLS strategy, cooperation is more greatly affected by
reducing the difference in the temptation and reward payoffs
(with highest cooperation appearing at the boundary
condition of T =R =10) compared to reducing the
difference in the punishment and sucker payoffs.

A comparison of Figures 1 and 3 suggest that alternation
is higher when an IBL model is paired with WSLS than
with other strategies. This is clearer in Figure 4, which
shows the relationship between alternation and cooperation
in the last round for the different simulations of IBL models
partnered with TFT, WSLS, and a second IBL strategy. The
relationship shows an upside-down U-shaped curve with all
partners, consistent with earlier observations that high and
low cooperation rates decrease maximum possible
alternation. However, models partnered with a WSLS
strategy shows higher alternation at almost all levels of
cooperation relative to the TFT and IBL strategies.

50-

s
o
!

©
=]
'

partner
— TFT
== WSLS

N
o
f

== IBL

Alternation [0%, 100%)]

o
1

Cooperatio:‘io%, 1(3!(3!%}5
Figure 4: Relationship between cooperation and alternation
of the IBL model in final round, when partnered with TFT
(circles/solid), WSLS (triangles/short dash), and second IBL
(plus/long dash)

Conclusion

Applying simulated cognitive models to social dilemmas
helps us to understand how features of a social dilemma

77

specifically impact the learning processes in the absence of
other factors, such as other regarding preferences and
expectations. The focus on learning differs from classical,
behavioral, and evolutionary game theory which do not treat
individual learning as a mechanism. The focus on
simulation allows us to concentrate on learning more
cleanly. For example, previous research finds that
cooperation weakly decreases over time when people are
paired with a strategy that always cooperates (Lave, 1965;
Oskamp, 1971). As this decrease is slight, understanding the
nature of this change, or if it is simply noise, can be
challenging. By focusing on learning, the results in this
paper provides clearer evidence that cooperation may
decrease as a result of learning.

Simulations also provide some clearer insight into not
only cooperation but the stability of cooperation as
highlighted by alternation rates. Our findings suggest that
the impact of the strategic environment can influence
cooperation and alternation differently. In the case of
WSLS, more alternation might draw players out of the
‘basin of attraction’ represented by mutual defection. Future
work might investigate whether high alternation can help
players adapt to a changing payoff or strategic environment,
given that higher alternation suggests consistent exploration.

The present application of basic cognitive models, such as
IBL, to the PD is not intended as a substitute for research
using human data or for more complex models that try to fit
this data. Indeed, the current research can serve as valuable
baseline for such models to better highlight the contribution
of specific mechanisms, such as information (Gonzalez et
al., 2015), surprise and meta-cognition (C. Camerer & Ho,
1999; Gonzalez & Ben-Asher, 2014; Stevens et al., 2016),
and initial beliefs (Lebiere et al., 2000). Altogether, the
current research suggests additional areas of investigation
and potential boundary conditions under which those
models might be tested.

The present work can also be seen as an application of the
methods from evolutionary game theory into cognitive
modelling, in which we study how varying environments
can impact learning rather than population dynamics.
Similar to some of that research in that work, we can use
simulations across multiple levels of variables to develop a
map of sorts in terms of understanding potential areas of
investigative interest and guiding our expectations of what
results may be likely. The use of basic cognitive models to
social dilemmas can help us better understand how we learn
and how our approach to games develops over time.

Acknowledgments

This research was supported by the Network Science
Collaborative Technology Alliance sponsored by the U.S.
Army Research Laboratory under Cooperative Agreement
No. WO1INF-09-2-0053. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Army
Research Laboratory or the U.S. Government.

References

Axelrod, R. (1967). Conflict of Interest: An Axiomatic
Approach. The Journal of Conflict Resolution, 11(1),
87-99.

Axelrod, R., & Hamilton, W. D. (1981). The evolution of
cooperation. Science, 211, 1390—1396.

Camerer, C. F., & Ho, T. (1998). Experience-Weighted
Attraction Learning in Coordination Games:
Probability Rules, Heterogeneity, and Time-Variation.
Journal of Mathematical Psychology, 42(2/3), 305—
26.

Camerer, C., & Ho, T.-H. (1999). Experience-weighted
attraction learning in normal form games.
Econometrica.

Danielson, P. (1992). Artificial morality: Virtuous robots for
virtual games. Routledge.

Fehr, E., & Schmidt, K. M. (1999). A theory of fairness,
competition, and cooperation. The Quarterly Journal
of Economics, 114(3), 817-868.

Gonzalez, C., & Ben-Asher, N. (2014). Learning to
cooperate in the Prisoner’s Dilemma: Robustness of
predictions of an instance-based learning model. In
35th Annual Neeting of the Cognitive Science Society
(CogSci2014) (pp. 2287-2292).

Gonzalez, C., Ben-Asher, N., Martin, J. M., & Dutt, V.
(2015). A cognitive model of dynamic cooperation
with varied interdependency information. Cognitive
Science, 39(3), 457-495.

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive
Science, 27(4), 591-635.

Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2007). Tit-
for-tat or win-stay, lose-shift? Journal of Theoretical
Biology, 247(3), 574-580.

Kuhlman, D. M., & Marshello, A. F. (1975). Individual
differences in game motivation as moderators of
preprogrammed strategy effects in prisoner’s
dilemma. Journal of Personality and Social
Psychologyocial Psychology, 32(5), 922-931.

Lave, L. B. (1965). Factors affecting Co-operation in the
Prisoner’s Dilemma. Behavioral Science, 10(1), 26—
38.

Lebiere, C., Wallach, D., & West, R. L. (2000). A memory
based account of the Prisoner’s Dilemma and other
2x2 games. In Proceedings of International
Conference on Cognitive Modeling (pp. 185-193).

Messick, D. M., & Liebrand, W. B. G. (1995). Individual
heuristics and the dynamics of cooperation in large
groups. Psychological Review, 102(1), 131-145.

Oskamp, S. (1971). Effects of programmed strategies on
cooperation in the Prisoner’s Dilemma and other
mixed-motive games. Journal of Conflict Resolution,
15(2), 225-259.

Rabin, M. (1993). Incorporating Fairness into Game Theory
and Economics. The American Economic Review,
83(5), 1281-1302.

Rapoport, A. (1967). A note on the “index of cooperation”

78

for Prisoner’s Dilemma. Journal of Conflict
Resolution, 11(1), 100—103.

Rapoport, A., & Chammah, A. M. (1965). Prisoner’s
dilemma: A study in conflict and cooperation.
University of Michigan Press.

Stevens, C. A., Taatgen, N. A., & Cnossen, F. (2016).
Instance-Based Models of Metacognition in the
Prisoner’s Dilemma. Topics in Cognitive Science,

8(1), 322-334.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Adversaries Wising Up: Modeling Heterogeneity and Dynamics of Behavior

Yasaman Dehghani Abbasi', Noam Ben-Asher?, Cleotilde Gonzalez?,
Don Morrison?, Nicole Sintov!, Milind Tambe!
lfydehghan,sintov,tambe}@usc.edu; *{coty, dfm2}@cmu.edu; *nbenash@us.ibm.com
1941 Bloomwalk, SAL 300, University of Southern California, SAL (300), Los Angeles, CA 90089, USA
2 Social and Decision Sciences, 5000 Forbes Avenue, BP 208, Carnegie Melon University, Pittsburg, PA 15213, USA
3US Army Research Labs & IBM T.J.Watson Research, 1101 Route 134 Kitchawan Rd, Yorktown Heights, NY 10598

Abstract

Security is an important concern worldwide. Stackelberg
Security Games have been used successfully in a variety
of security applications, to optimally schedule limited
defense resources by modeling the interaction between
attackers and defenders. Prior research has suggested
that it is possible to classify adversary behavior into
distinct groups of adversaries based on the ways humans
explore their decision alternatives. However, despite the
widespread use of Stackelberg Security Games, there has
been little research on how adversaries adapt to defense
strategies over time (i.e., dynamics of behavior). In this
paper, we advance this work by showing how
adversaries’ behavior changes as they learn the
defenders’ behavior over time. Furthermore, we show
how behavioral game theory models can be modified to
capture learning dynamics using a Bayesian Updating
modeling approach. These models perform similarly to a
cognitive model known as Instance-Based-Learning to
predict learning patterns.

Keywords: Cognitive Models, Decision Making,
Artificial Intelligence, Game Theory

Introduction

Building effective defense strategies requires a profound
understanding of adversary goals and behaviors. This can be
achieved by constructing models that predict the adversary’s
attack patterns. For example, to have an optimized patrolling
strategy for the defender, it is crucial to understand and model
adversary behavior and defender-adversary interactions.
Given that defense resources are limited, computational
models also provide a method for optimizing resource
allocation to maximize defense efficiency using the
minimum quantity of resources.

To this end, researchers have used insights from
Stackelberg Security Games (SSGs) to offer solutions that
optimize defense strategies (Korzyk, Conitzer, & Parr, 2010;
Tambe, 2011). Generally, SSGs model the interaction
between a defender and an adversary as a leader-follower
game (Tambe 2011), in which a defender plays a particular
defense strategy (e.g., randomized patrolling of an airport’s
terminals) and then, having observed the defender’s strategy,
the adversary takes an action. Traditionally SSG research
assumes a perfectly rational model of the adversary’s
behavior, but recent advances have shown this is not a valid
assumption. To overcome the limitations of this assumption,
bounded rationality models from behavioral game theory
have been adopted in recent SSG work, such as the Quantal
Response behavior model (McFadden 1976, Camerer 2003).

79

These models, however, typically assume a homogeneous
adversary population, creating a single adversary behavior
model (Kar et al., 2015).

Again, this assumption has been challenged, and recently
some researchers modeled heterogeneous behavior by either
assuming a smooth distribution of the model parameters for
the entire adversary population (Yang et al., 2014), or by
using a single behavioral model for each adversary (Haskell
et al., 2014; Yang et al., 2014). In a recent study, using data
collected in an Opportunistic Security Games (OSGs),
Abbasi et al. (2016) demonstrated that a population of human
attackers can be naturally divided into clusters, according to
their exploration of the choice options. Furthermore,
exploration is negatively correlated with utility
maximization, leading to different attack strategies.

The current paper addresses possible limitations in Abbasi
et al. (2016) study. Participants’ exploration in their
experiment was, to some extent, determined by a random
termination rule in the game. That is, the number of decisions
that participants could make was, at least in part, determined
by chance. This particular effect may have contributed to the
variability in exploration processes observed. This paper
presents a new experimental study using the same OSG used
in Abbasi et al. (2016), but enforced a fixed number of
decisions for all participants. Furthermore, the larger number
of trials in the present study enables the study of human
behavior over-time.

With new experimental data, we demonstrate that the
population of human attackers found in Abbassi et al. (2016)
is robust to the number of decisions that participants make,
and not determined by chance. We replicate the clusters of
adversarial behavior. Furthermore, given that all participants
had a fixed number of decisions in the game, we are able to
investigate the adversary behavior dynamics. We show that
the categories of adversarial behavior change over the course
of the game, and adversary behavior shifts among these
categories as adversaries learn the defender’s behavior over
time.

To account for the change in adversary behavior, we
modified traditional economic models of bounded rationality
models used in Abbassi et al. (2016), with a Bayesian update
method, so that these models would also be able to predict
behavior over time. These models are compared to an
Instance-Based Learning (IBL) model that provides a
cognitively-plausible account for overtime behavior in the
OSG.

mailto:dfm2%7d@cmu.edu
mailto:nbenash@us.ibm.com

- o " o e 3 ’ -
L Station1 lﬁa/::l?; i Station2 _D"DZ% }I'.meb iy 7 station3
g " i s f ; N ~ is travelling between : : N
I:,M%hme is here | station182_| -:l 68% time is here sation283__| [:,0.01%tlme is here
7 Stars J e 10 Stars g § 2 Stars "
. Tokokk - \t***‘k***y/ S L
e L2 2) I S s B
oA . R 18% time officer2 is ~ 2 o P ~
i:’ 30%:_“"‘"? Jishen™ traveling betveen station 5 M tl%“rl‘l‘_“l;e'z's 5~ Stations
ime officer2 is here 4 1 g ~ travelling between -7 s o ~
| stationa&s__[48% time officer2 is here Lstauons&ﬁ I:| 3% time officer2 is here
7 Stars I
S S I 8 Stars o L 6 Stars !
S ook k- IR 2033 8,09 2 . *kkkokk
~ o = o

Figure 1: Experiment Game Interface

Experimental Study of Adversarial Behavior in
an Opportunistic Security Game

Methods.

Game Design. To collect data on adversarial behavior in
the OSG domain, we adopted the experimental design used
in Abbasi et al. (2015) using a simulation of urban crime in a
metro transportation system with six stations (Figure 1). The
players’ goal is to maximize their score by collecting rewards
(represented by stars in Figure 1) in limited time while
avoiding officers on patrol. Each player can visit any station,
including the current one. The player can travel to any station
by train as represented by the dashed lines in Figure 1.
Visiting a station takes one unit of time, and traveling to a
new station takes a number of time units equal to the
minimum distance between source and destination station
along train routes (i.e. for the transportation system
represented in Figure 1, if the player is currently at station 1,
revisiting station 1 will take one unit of time, and visiting
station station 4 will take three units of time). By traveling to
a station (or visiting the current station), the player attacks
that station and collects the rewards.

Two officers are protecting these six stations. Each officer
protects three stations where his patrolling strategy (i.e.
probability of officers’ presence at each station or route,) is
determined by an optimization algorithm similar to the one
presented in Zhang et al. (2014). This algorithm utilizes
opportunistic adversary behavior model to provide optimized
defender strategies.

The stationary coverage probabilities for each station and
trains are provided to the players, so players can determine
the chance of encountering an officer at a station by
considering the percentage of the time that officers spend on
average at each station and on a train. However, during the
game, the players cannot observe the officers unless they
encounter the officer at a station.

The game can finish either if the player uses up all the 250
units of available time in each game, or the game is randomly
terminated after the 50" attack with a 10% probability shown
by the randomized terminator. The randomized terminator is
shown as a fortune wheel with two parts. One part has 10%
of the area and colored red, the other part is 90% of the area
and colored green. If the arrow stops at the red area, the game
is over, and if it lands on the green area, the participant will
continue playing the game.

80

To encourage participants to make each decision
responsibly, we showed the randomized terminator to players
from the first attack, but for the first 50 trials, we forced the
arrow to stop at the green area and start using random number
generator after the 50 trial.

In the end, a player’s objective is to maximize his total
reward in limited time. The player must carefully choose
which stations to attack considering the available information
about available time, rewards, and officers’ coverage
distribution on stations and time spent to attack the station. If
there is no officer at the station the player has attacked, his
score will be increased by the number of stars at the station.
If there is an officer at the station, his score remains the same.

Procedures. Each participant began by playing two
practice rounds to become familiar with the game. Next,
participants played [50+] trials on the main game from which
data were used in analyses. We constructed four different
graphs (i.e., layouts), each of which had six stations with a
different route structure and patrolling strategy. Each
participant was randomly assigned to play two practice
rounds and the main game on a single graph.

Participants. Participants were recruited from Amazon
Mechanical Turk. They were eligible, if they were living in
the United States, had previously played more than 500
games and had an acceptance rate of a minimum of 95%.

To motivate the subjects to play games, they were
compensated based on their total score ($0.01 for each gained
point) in addition to a base compensation ($1). In total, 215
participants took part in the game and went through a
validation test (correctly answered all the questions about the
game at the end of the instructions). Data from 24 participants
who did not pass validation were excluded from further
analyses.

Results: Adversarial Attack Patterns

Abbasi et al. (2016) showed that attackers can be divided into
distinct groups based on their exploration behavior (i.e.,
Mobility Score): the ratio of the number of movements
between stations over the number of trials (total number of
possible movements) by a participant in the game. Therefore,
attacking the same station in consecutive trials resulted in a
low mobility score while attacking a different station in each
trial resulted in a high mobility score. We define three attack
patterns: (i) Low Mobility for attackers who did little or no

= 7 100% R PO
& > 6 Corr =03 80% - EE All
o 3’2 ()]
2 =5 M~ p<0.001 o] _
= 5. SNy £ 60% B 2 R O R SR
) o ~ <C =
3 L3 S 2 "’6 40% - o) = Mediumg
I bt ~ ° =
3 L% 2 X 20% ven 3
[;3 ; 0% | 1.} <
. O O O O O
Low Medium High 0 02 04 06 08 1 Trials: &> & & & &
Mobility Cluster Mobility Score v

Figure 2: Utility Rank by Cluster

exploration; (ii) High Mobility for attackers who tended to
explore and frequently move between stations and (iii)
Medium Mobility for attackers who engaged in a middling
level of exploration.

So in this study, in contrast with the previous study,
participants had the same number of trials, allowing us to
factor out the “variability in the number of decisions” and test
whether clusters still emerge from Mobility.

Following Abbasi et al. (2016), we applied hierarchical
clustering approach to the data. Participants naturally divided
into three groups: participants whose mobility score is less
than or equal to 10% or Low Mobility (i.e. Low), participants
whose mobility score is greater than or equal to 70%: High
Mobility (i.e. High), and participants whose mobility score is
greater than 10% and less than 70%: Medium Mobility (i.e.
Medium).

Figure 2 shows the three clusters and their corresponding
distribution of the Expected Utility Rank of the choices they
made (EU-rank distribution). Expected Utility is defined as:

EU = (1 — stationary coverage) = reward

time

Note that the higher expected utility, the better performance.
To normalize the utility score among graphs, we have used
the ranking of stations’ utility instead of its absolute value
(the highest utility in the graph is ranked 1).

Participants who belong to the Low Mobility Cluster
focused on the stations with highest expected utility
(mean=1.2, SD=0.5). On the other hand, participants who
tended to move frequently between different stations (High
Mobility) attacked average stations with lower utility
(mean=3.0, SD=1.3). Participants in Medium Mobility
Cluster also attacked a variety of stations but were leaning
(on average) towards higher utility rank stations (mean=1.7,
SD=1.15). These results replicated those in Abbasi et al.,
(2016). The robustness of these observations is very
important in designing defenders’ strategies as they show that
attackers that belong to different clusters make decisions
differently.

The cluster results are reinforced by Figure 3 that illustrates
the negative correlation between mobility scores and the
average utility of the attacked stations by the participant (r= -

Figure 3: Clustering Distribution

81

Figure 4: % of attacks on the highest EU station

0.9, p<.001). Similarly, there is a significant negative
correlation (r = -0.36, p <0.001) between the final score of
the participant and his mobility score. In other words, the
more participants moved between stations, the lower their
score was, and the less money they earned in the experiment.
The main question of interest in this research is the change of
adversarial behavior over the course of the 50+ trials. We
expect that as attackers play the game they will learn to
discover the station with higher EU and the patterns of
defense behavior, and therefore learn to concentrate in the
most profitable stations.

To test this hypothesis we analyzed participants’ behavior
over the course of the 50 trials. Figure 4 demonstrates the
percentage of attacks on the stations with the highest
Expected Utility (EU) in each of 5 consecutive blocks of 10
trials each (each participant was re-assigned to different
clusters based on his mobility scores in each of the five
blocks).

For the participants who belong to Low Mobility and High
Mobility Clusters, the percentage of attacks has small
fluctuation over time. On the other hand, this percentage
increase for the participants in the Medium Mobility Cluster.
Moreover, the bar charts show the percentage of attacks on
the highest EU stations by all the participants combined. Over
the course of the 50 trials, the percentage increases
significantly as the percentage of Low Mobility participants
increases over time while the percentage of High Mobility
participants decreases (Figure 5).

80%
B 1st 10
2 ®2nd 10 60%
° Trials: B3rd 10
S M 4th 10 N
= ms5th 10 § 40%
o
: N = \
2 N 1SN N 20%
g NIl =EN N
E \ i \ 0%

Clusterl Cluster2 Cluster3

Figure 5: Cluster distribution over time

In other words, participants’ shifts toward clusters with
lower mobility score and higher rationality level over time.
These observations provide us with further insights for
designing defenders’ strategies, as we show that in addition
to classifying attackers by their mobility behavior we also
need to consider how adversaries become smarter and learn
the defend strategy with more attack attempts.

Models of Adversarial Behavior in OSGs

In the following, we present competing models that represent
adversarial behavior and focus on a modification to these
models that capture changes in human behavior over time.

Quantal Response Model (QR)

Quantal Response model captures the bounded rationality of
a human player through the uncertainty in the decisions
making process (McKelvey & Palfrey 1995; McFadden
1976). Instead of maximizing the expected utility, QR posits
that the decision maker chooses an action that gives a high
expected utility, with a probability higher than another action
which gives a lower expected utility. In the context of OSG,
given the defender’s strategy s (e.g., stationary coverage
probability at station i (s;) shown in Figure 1), the probability
of the adversary choosing to attack target i when in
targetj ,q; ;(s), is given by the following equation:

eﬂ * EUiJ'(S)

q”() Yi<k<6 e EVup(®)

where A is his degree of rationality (higher value of A
corresponds to higher rationality level) and EU; ;(s) is the
expected utility (EU) of the adversary as given by:

EU;;(s) = (1-sy)

i
_ %
time (i,)
Where r; is the number of stars at station i, time (i, j) refers
to time taken to attack station i when a player is in station j

Subjective Utility Quantal Response (SUQR)

The SUQR model combines two key notions of decision
making: Subjective Expected Utility, SEU, (Fischhoff et al.,
1981) and Quantal Response; it essentially replaces the
expected utility function in QR with the SEU function
(Nguyen et al., 2013). In this model, the probability that the
adversary chooses station i when at station j, when the
defender’s coverage is s, is given by q; ;(s). SEU; ; is a linear
combination of three key factors. The key factors are (a) 73,
(b) s;, and () time; j, W = <Wy., Werq, Wiime > denotes the
weights for each decision making feature:

oSEULj
q;,;(s) = ST where
t'er ’

SEUL"]' = WT.T'L' + WSta'Si+ Wtime' timei_]-

82

Bayesian Update of Human Behavior Models

In the previous study (Abbasi et al., 2016), the human
behavior models did not have the power to predict how
human behavior changed over time. On the other hand, our
results show participants learn to take advantage of the
defense algorithm, and they attack stations with higher utility
over the course of the trials (becoming wiser). Thus, it is
important that models of adversarial behavior account for the
change in participants’ behavior. Furthermore, in Abbasi et
al. (2016) the QR and SUQR models were compared to a
process model, a cognitive model that predicts individual
choices over time (the IBL model). In some way, these
comparisons did not demonstrate the most important
advantages of a cognitive model of learning: to predict
individual choices at each point in time. For this reason and
given our experimental results, we modified the traditional
QR and SUQR models described above with a Bayesian
update method (B-QR and B-SUQR), so that these models
would make predictions more similar to those that the IBL
model can make, with individual choices over time.

To use the Bayesian update method, we focus on
participants’ decision at each trial: each participant made a
decision of selecting one out of the six stations to attack. We
modeled this problem with a Multinomial distribution over
six options with a probability vector < py, ..., pr > where p;
refers to probability of choosing option i in each trial.

At first, before having any data, we assumed that
participants can attack any of the six stations with uniform
probability. Then, after each ten trials, we gathered data on
the actual number of attacks at each station, yielding data on
the actual probability of attacking each station. So <
P1, .-, Px > can be updated in the Multinomial Distribution.
Luckily, Dirichlet distribution (Bernard, J. M., 2005) is a
conjugate distribution for the Multinomial distribution which
leads to generating a distribution for each of the probabilities
in Multinomial distribution. So in Bayesian-QR and
Bayesian-SUQR, after each 10 trials, the distribution over
probabilities of attacks get updated and then 100 random
samples generated out these probability distributions and 100
human behavior models’ parameters were extracted using
these samples of probability of attaching each target.

Instance-Based Learning Model

The IBL model (Gonzalez & Dutt, 2011; Lejarraga, Dutt &
Gonzalez, 2013) of an adversary makes a choice about the
station to go to each trial by using the Blended Value. The
Blended value V represents the expected value of attacking
each station (option j) in a particular trial:

n
Vi = Z DijXij
i=1
where x;; refers to the value (payoff) of each station (the

number of stars divided by time taken) stored in memory as
instance i for the station j, and p;; is the probability of

100% 100% ,100%
2 gou e £80% £ 80% ce®ee High
o . o, o 9, oo @
S 60% . * o ef amp 4‘360/) .o ce@e e @ B 60% . oo @
2 10% ¥ Z40% gu B 2 < 40% g L = A= Medium
w209 %5 20% ‘5 20%
5 20% o<V s} °
< 0% 0% < 0%)
5 oW
O O O O O SRS SRS
R S R WA o 8

Figure 6: % of attack on the highest
EU station predicted by IBL

retrieving that instance for blending from memory (Gonzalez
& Dutt, 2011; Lejarraga et al., 2012) defined as:

_ef/z

Where [refers to the total number of payoffs observed for
station j up to the last trial, and 7 is a noise value defined as
o-V2. The o variable is a free noise parameter. The
activation of instance i represents how readily available the
information is in memory:

A =n Z t—t) "+ P(Mattribute — 1)
ty Attribute
€ observed € Situation
+ Jln(Y —Tth
Yit

Please refer to (Anderson & Lebiere, 1998) for a detailed
explanation of the different components of this equation. The
Activation is higher when instances are observed frequently
and more recently. For example, if an unguarded, nearby
station with many stars (high reward) is observed many
times, the activation of this instance will increase, and the
probability of selecting that station in the next round will be
higher. However, if this instance is not observed often, the
memory of this station will decay with the passage of time
(the parameter d, the decay, is a non-negative free parameter
that defines the rate of forgetting). The noise component G is
a free parameter that reflects noisy memory retrieval.

Importantly, in addition to the kernel mechanisms of the
IBL model described above, and used in a multitude of
studies (see Gonzalez, 2013 for a summary), Abbasi et al.
(2016) proposed a mechanism that would allow the IBL
model to account for the various mobility clusters. This
mechanism was a randomization rule applied at each time
step, which resulted in making a random selection of a station
instead of selecting the station with the highest Blended
value. This randomization rule served the purpose of
generating the clusters of participants with diverse mobility
scores. In the current work, this rule was removed given that
each participant made exactly 50 choices, and the process of
learning over those should be captured by the kernel

! For Bayesian-QR (B-QR) and Bayesian-SUQR (B-SUQR), the
average values over 100 data have reported in the tables
2 <Wy, Weta, Weime >

Figure 7: % of attack on the highest
EU station predicted by B-QR

83

Figure 8: % of attack on the highest
EU station predicted by B-SUQR

mechanisms of the IBL model without the
randomization rule.

additional

Modeling Results

To test the models, we divided the human data set into two
groups: training and test datasets. For each cluster or block of
trials, 70% of the participants were randomly selected, and
their data were used to train the QR, SUQR, and their
Bayesian versions (B-QR and B-SUQR) and to fit the d and
the o in the IBL model. The remaining 30% of the
participants were used for testing the models.

For comparison of different models, we use Root Mean
Squared Error (RMSE) representing the deviation between a
model’s predicted probability of an adversary’s attack (p) and
the actual proportion of attacks from each station to others in
the human data (p).

RMSE () =MSE (p) where MSE (p) = %Z(ﬁ —p)’

Table 1 shows the results on the full data set. Although
models provide different perspectives, their prediction errors
are similar. The IBL model captures learning and decision
dynamics over time while QR and SUQR predict the stable
state transition probabilities of the attacker while B-QR and
B-SUQR! update the transition probabilities of attacker after
each ten trials. Table 2 shows the performance of different
models in different clusters.

Table 1: Metrics and Parameter on the full data set

Model Parameters RMSE
OR 0.41 0.25
SUQR <2.9,-2.1,-2.7>? 0.24
Bayesian-OR (B-OR) 0.34 0.24
Bayesian-SUQR (B-SUQR) <2.5.-1.9,-2.1> 0.23
IBL <0.01,0.01>3 0.23

In Low Mobility Cluster, human behavior models
outperform IBL model, and the Bayesian update on these
models results in a significant improvement over their
counterparts models. For the Medium Mobility Cluster the
improvement is not significant, and all models’ prediction
errors are similar for the High Mobility Cluster.

3 <noise, decay>

Table 2: Metrics and Parameters on each Cluster

Clusters | Model | Parameters RMSE
OR 1.28 0.33
Low SUQR <5.6,-4.4,-8.9>2 0.35
Mobility B-OR 0.69 0.20
Cluster B-SUQR <2.8,-2.2,-5.1> 0.17
IBL <0.46, 0.01>3 0.50
OR 0.69 0.27
Medium SUQR <4.5,-2.3,-5.1>2 0.28
Mobility B-QOR 0.49 0.17
Cluster | B-SUQR <3.0,-1.7,-2.5> 0.24
IBL <3.64,1.82>3 0.35
OR 0.07 0.25
High SUQR <2.1,-1.7,-0.5>2 0.25
Mobility B-OR 0.14 0.27
Cluster | B-SUQR <1.9,-1.5,-1.5> 0.28
IBL <0.1,2.71>3 0.27

For the Bayesian models, the reported parameters in the
tables were averaged over extracted parameters from the
samples. Further analyses over these parameters are shown in
Figure 9 which shows the distribution of Quantal Response
A-value over time. As shown in the graph, the A-value
increases, which means the participants are becoming more
rational.

12 All @ e [ow eeeeee Medium == High
: 1
-—

308 ;- -|-
T0.6 -
. ”IQooooooa:ooooaoooI
<0.4 %}__ i—r

0.2

0

Trials:

1st10 2nd10 3rd10 4th10 5th10

Figure 9: lambda value over time

This observation is consistent with Figure 4, extracted from
participants’ data, where the bar chart shows the percentage
of attacks on the highest expected utility stations which
increase over time.

Figure 6, Figure 7 and Figure 8 all focus on the percentage
of attacks on the highest EU stations over time, predicted by
the IBL, B-QR, and B-SUQR models, respectively. As shown
in the graphs, all models also predict the increasing
rationality of the participants over time specifically for Low
Mobility Cluster and Medium Mobility Cluster.

Conclusions

In security game researches, understanding human
adversary behavior has led to several deployed real-world
applications (Tambe 2011), for example, PROTECT for the

84

protection of major ports in the US by the US Coast Guard
(Shieh et al. 2012). Although there are a significant amount
of such researchers, there has been little research of
heterogeneous adversary and how adversaries adapt to
defense strategies over time. In this paper, we focus on
opportunistic adversaries and advance the prior research
which suggested classifying adversary into distinct groups
based on the ways humans explore their choice options. More
specifically, we advance this work by showing how
adversaries shift among the categories as they learn the
defenders’ behavior over time. Furthermore, we show how
behavioral game theory models can be modified to capture
the learning dynamics using a Bayesian Updating modeling
approach. These models perform similarly to a process
model, a cognitive model known as Instance-Based Learning,
to predict learning patterns. This study provides interesting
insights into building defense strategies. For example, current
sophisticated defense algorithms often assume a
homogeneous adversary population who behave the same
over time. Given the significant impact of modeling
adversarial behavior to designing optimum patrolling
strategies for the defenders, it is critical to account for this
heterogeneity in behavior also we need to have defenders’
strategy which adapts to change in human behavior over time.

Acknowledgments

This research was partly supported by the Army Research
Laboratory under Cooperative Agreement Number
WOII11NF-13-2-0045 (ARL Cyber Security CRA) to Cleotilde
Gonzalez. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. This research is also supported by
MURI grant W911NF-11-1-0332, and award no. 004525-
00001 by US-Naval Research Laboratory.

References

Abbasi, Y. D., Short, M., Sinha, A., Sintov, N., Zhang, Ch.,
Tambe, M. (2015). Human Adversaries in Opportunistic
Crime Security Games: Evaluating Competing Bounded
Rationality Models. Advances in Cognitive Systems.

Abbasi, Y., Ben-Asher, N., Gonzalez, C., Kar, D., Morrison,
D., Sintov, N., Tambe, M. (2016). Know Your Adversary:
Insights for a Better Adversarial Behavioral Model.
Proceeding of the Conference of Cognitive Science Society.

Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Lawrence Erlbaum Associates.
Mathway, NJ.

Bernard, J. M. (2005). An introduction to the imprecise
Dirichlet model for multinomial data. [International
Journal of Approximate Reasoning, 39(2), 123-150.

Camerer, C.F. (2003) Behavioral game theory, Experiments
in strategic interaction. Princeton University Press

Fischhoff, B., Goitein, B., & Shapira, Z. (1981). Subjective
expected utility: A model of decision-making. Journal of

the American Society for Information Science, 32(5), 391-
399.

Gonzalez, C., & Dutt, V. (2011). Instance-based learning:
Integrating sampling and repeated decisions from
experience. Psychological review, 118(4), 523.

Gonzalez, C., Ben-Asher, N., Martin, J. & Dutt, V. (2015). A
cognitive model of dynamic cooperation with varied
interdependency information. Cognitive Science, 39(3),
457-495.

Gonzalez, C., Ben-Asher, N., Oltramari, A., & Lebiere, C.

(2015). Cognition and Technology. Cyber defense and

situational awareness.

Gonzalez, C., Lerch, F. J., & Lebiere, C. (2003). Instance-
based learning in dynamic decision making. Cognitive
Science, 27(4), 591-635.

Haskell, W., Kar, D., Fang, F., Tambe, M., Cheung, S., &
Denicola, L. E. (2014). Robust protection of fisheries with
compass. [AAI (pp. 2978-2983).

Kar, D., Fang, F., Delle Fave, F., Sintov, N., & Tambe, M.
(2015). A game of thrones: when human behavior models
compete in repeated Stackelberg security games. In
Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems (pp. 1381-
1390). International Foundation for Autonomous Agents
and Multiagent Systems.

Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance-
based learning: A general model of repeated binary choice.
Journal of Behavioral Decision Making, 25(2), 143-153.

McFadden, D. L. (1976). Quantal choice analysis: A survey.
In Annals of Economic and Social Measurement, Volume
5, number 4 (pp. 363-390). NBER.

McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response
equilibria for normal form games. Games and economic
behavior, 10(1), 6-38.

Nguyen, T.M., Yang R., Azaria A., Kraus S., Tambe M.
(2013). Analyzing the Effectiveness of Adversary
Modeling in Security Games, In A4AI.

Shieh, E. A., An, B., Yang, R., Tambe, M., Baldwin, C.,,
DiRenzo, J., ... & Meyer, G. (2012). PROTECT: An
Application of Computational Game Theory for the
Security of the Ports of the United States. In A4AL

Tambe, M. (2011). Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge
University Press.

Yang, R., Ford, B., Tambe, M., & Lemieux, A. (2014).
Adaptive resource allocation for wildlife protection against
illegal poachers. In Proceedings of the 2014 International
Conference on Autonomous agents and multi-agent
systems (pp. 453-460). International Foundation for
Autonomous Agents and Multiagent Systems.

Zhang, C., Jiang, A. X., Short, M. B., Brantingham, P. J., &
Tambe, M. (2014). Defending against opportunistic
criminals: New game-theoretic frameworks and
algorithms. In Decision and Game Theory for Security (pp.
3-22). Springer International Publishing.

85

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Toward Integrating Cognitive Linguistics and Cognitive Language Processing

Peter Lindes (plindes@umich.edu)
University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

John E. Laird (laird @umich.edu)
University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121 USA

Abstract

We present a system to comprehend natural language that
combines cognitive linguistics with known properties of
human language processing. It is built on Embodied
Construction Grammar (ECG) and the Soar cognitive
architecture. Its core is a novel grounded semantic parser.
Experiments show the system produces actionable meanings
and fulfills ten cognitive criteria we set out.

Keywords: language comprehension; construction grammar;
Soar; grounded semantics; language in robots; cognitive
linguistics; cognitive architecture.

Introduction

This work attempts to combine two separate threads of
research. One is cognitive linguistics, where formalisms
have been developed for syntactic and semantic knowledge,
such as Embodied Construction Grammar (ECG; Bergen &
Chang, 2013). The second is from research on the cognitive
modeling of language processing, where the emphasis is on
modeling how humans process language, independent of
specific linguistic formalisms for representing syntactic and
semantic knowledge. In this paper, we develop a system
called LUCIA that attempts to tie these two threads
together, developing a novel comprehension system whose
knowledge of language is specified in the ECG
formalism (Bryant, 2008) and then translated into
production rules. Those rules are used in alanguage
comprehension process which is designed to fit many of the
characteristics of human language processing.

Cognitive Linguistics

Cognitive linguistics is based on the idea that language is an
integral part of cognition. Language is closely related to
perception (Miller & Johnson-Laird, 1976) and action
(Coello & Bartolo, 2013). To explain language we must
study categories (Lakoff, 1987), image schemas (Johnson,
1987; Mandler & Pagin Cénovas, 2014), and metaphor
(Lakoff & Johnson, 1980). Meaning is seen as being
represented by frames (Fillmore, 1976, 2013; Fillmore &
Baker, 2009) or scripts (Schank, 1972). Psychological
theories attempt to explain comprehension at the discourse
(Kintsch, 1998) and sentence level (Ferstl, 1994). Looking
at language usage leads to theories of construction grammar
(Goldberg, 1995 & 2006; Hoffmann & Trousdale, 2013)
that integrate semantics and syntax.

86

Construction grammars provide a theory for representing
syntax and semantics (Goldberg, 2013). ECG (Dodge, 2010;
Feldman, 2006) is a specific formalism in this field based on
much of the cognitive linguistic research mentioned above.
Such a representation is necessary to language
understanding, independent of how the processing is done,
in order to insure that the language understanding system is
capable of addressing the scope of human language. Parsers
have been built for ECG (Bryant, 2008), as well as for a
related formalism called Fluid Construction Grammar
(FCG), which has been used for communication with robots
(Steels & Hild 2012; Steels, 2013). Lindes (2014) used
ideas from ECG for information extraction. However, none
of these approaches attempts to model the characteristics of
human sentence processing.

Consider the ECG example in Figure 1. On the left we see
a syntactic construction for a TransitiveCommand, and on
the right we see a meaning schema called ActOnIt, along
with its generalization Action.

construction TransitiveCommand schema Action

subcase of Imperative roles
constructional action
constituents location

verb: ActionVerb

object: RefExpr schema ActOnIt
meaning: ActOnIt subcase of Action
constraints roles
self.m.action <--> verb.m object

self.m.object <--> object.m
Figure 1: ECG example

This example shows several characteristics of ECG. A
composite construction lists its constituents, in this case
named verb and object. Each constituent slot is labeled
with the type of construction that can fill that slot. A
construction can specify the name of a meaning schema to
be evoked when it is instantiated, in this case ActOnIt.
Schemas have roles to be filled. Both constructions and
schemas can be generalized through the subcase of
clause, and schemas can inherit roles from their parents. A
construction can specify constraints that supply values to
these roles through unification. In the example the
constraints unify the meanings of the constituents with the
roles in this construction’s meaning schema.

This formalism is an abstraction that can describe many
linguistic structures; however, one unanswered question is:

is this type of representation sufficient for representing the
knowledge needed for modeling human sentence
processing?

Cognitive Language Processing

Cognitive language processing research (Newell, 1990;
Lewis, 1993; Lewis & Vasishth, 2005) looks at building
computer models that comprehend language using methods
that approximate properties of human language processing.
We have chosen to focus on the following characteristics of
human-like processing:
1. Incremental — Processing extracts as much syntactic
and semantic information as it can from each word, one
at a time (Lewis, 1993).

2. Integrated — Syntactic and semantic information are
extracted jointly during comprehension (Lewis, 1993).

3. Eclectic — Semantic, pragmatic, and world knowledge
are used to resolve ambiguities.

4. Real time — Comprehension proceeds in real time
(Lewis, 1993).

5. Useful — The meanings extracted are “actionable
intelligence” that the agent can use for its purposes.

6. Repair-based processing — The system greedily builds
structures that may need to be repaired as more
information becomes available (Lewis, 1993).

7. Context-dependent meaning — Words can have multiple
meanings; the meaning in a particular sentence is
selected according to the context.

8. Compositional — Elements with known meanings are
combined to comprehend novel sentences.

9. Hierarchical — Both lexical items and higher-level
constructions contribute elements of meaning
(Goldberg, 1995, 2006).

10. Grounded — The meanings derived from a sentence are

grounded in the agent’s perception, action capabilities,

and world knowledge.
Lewis (1993) describes a parser that is incremental (Item 1),
does local repairs (Item 6), and shows correspondence to
human processing in terms of its real-time performance
(Item 4) and the kinds of structures that it has difficulty
processing. Lewis and Vasishth (2005) extend this work to
explore more detailed mechanisms of memory retrieval.
That work, however, does not build full, grounded semantic
structures that would be useful to an embodied agent.

Ball et al. (2010), as part of the Synthetic Teammate
Project, have a model of human language processing
implemented in ACT-R that attempts “adherence to well-
established cognitive constraints.” This model takes
advantage of ACT-R’s subsymbolic capabilities to resolve
some kinds of ambiguities, and it does incremental,
integrated, and grounded sentence understanding (Items 1,
2, and 10). However, the “Double R” theory of grammar it
uses does not have the same capabilities of ECG (Feldman
et al., 2009) to recognize many alternative expressions and
to represent complex semantic structure.

Cantrell et al. (2010) have a system for natural language
understanding for robots that is designed to build semantics

87

in an incremental and integrated way (Items 1 and 2), and
ground the language in the robot’s perception (Item 10).
This system, however, does not take advantage of cognitive
linguistics or prior work on cognitive language processing.

Bringing these two research threads together has some
advantages. Cognitive linguistic theory, and ECG in
particular, provide a formal way of describing meaning
representations that is grounded in research on human
knowledge representation. The formalism also describes
syntax and the relationships by which form evokes meaning.
Cognitive language processing attempts to ground this
theory in actual processing that reflects known
characteristics of human processing, thus making a theory
that can be tested in the real world.

This brings us to our main research question: is it possible
to implement a comprehension system that uses the ECG
formalism, that is consistent with human language
processing, and that produces results that are useful to an
embodied autonomous agent? Here we take some initial
steps to answer this question by developing a system based
on ECG that has many of the characteristic of human
sentence processing.

An Integrated Solution

In this paper we describe LUCIA, which works as part of an
embodied Soar agent called Rosie (Mohan et al., 2013). We
show that it produces useful results for directing and
instructing this robot, and that the method meets the above
cognitive characteristics. It does not address the immense
scope of natural language, discourse level understanding,
the ability to learn new lexical, syntactic, and semantic
structure, or how the brain implements comprehension. Nor
have we explored the limits of understandable syntactic
structures that Lewis (1993) emphasizes.

We have developed a translator that converts ECG into
Soar production rules, and we have written by hand a
collection of rules that provide the infrastructure for
language comprehension. The ECG grammar for our
experiments is adequate to comprehend a set of sentences
that provide directions to a robot, and the results are
evaluated against a gold standard of meaning structures
known to be useful to the robot. The outputs from LUCIA
produce the correct actions with the Rosie simulator.

In the rest of this paper we explain how LUCIA works,
show experimental results of its performance, and discuss
how it satisfies the ten properties of human language
processing. Then we draw conclusions and propose future
work.

Language Processing in LUCIA

Here we describe the basic principles that LUCIA is built
on, show some examples, and relate these to our ten items.

Basic Operation

The LUCIA comprehension subsystem replaces the
language comprehension part of Rosie and sends messages
to the task performance subsystem, which acts on them, as

shown in Figure 2. The comprehension subsystem consists
of rules in Soar’s procedural memory, some generated from
a grammar and some hand-coded. The hand-coded rules
encode functionality that is independent of specific language

structures.
Grammar
Rules

1@

Infra-
structure
Rules

Action
Messages

Pick up the
green sphere
on the stove.

Rosie

Files
Comprehender Operations

Input
Words

Figure 2: LUCIA in context

Words of a sentence come into the comprehender, which
processes them one at a time to create a semantic
interpretation of the complete sentence. In doing this,
LUCIA draws on a world model that is assembled from the
agent’s visual perception and an ontology that defines
objects, properties, actions, etc. In Soar the rules are held in
production memory, the world model in working memory,
and the ontology in semantic memory.

When a complete interpretation of a sentence has been
built, a message is passed to the task performance
subsystem, labeled “Rosie Operations” in Figure 2, which
performs the indicated action. This may involve moving the
robot, manipulating physical objects, or providing natural
language responses to the human user. As the robot acts, it
updates its world model, which is always available to the
language comprehender.

Linguistic Knowledge

As shown in Figure 1, an ECG grammar consists of
“schemas” defining semantic structures and “constructions”
which relate an input form to a meaning expressed in those
schemas. Our translator is built based on Bryant’s (2008)
formal definition of the ECG language. Each construction or
schema produces one or more Soar rules. In order to have a
system that could later be extended to learn more grammar
incrementally, each construction or schema is translated
independently, without using global knowledge of the
grammar or interaction with other items.

The linguistic knowledge that the comprehender depends
on is represented in Soar production rules: those generated
by the ECG translator, as well as a smaller set of hand-
coded rules that provide functions that are common over the
whole grammar. These functions include retrieving
properties or actions from semantic memory and resolving
referential expressions to references to particular objects in
the model of the perceived world in working memory. Still
others handle bookkeeping tasks.

88

Dynamic Processing

The core of the system is the comprehend-word operator,
which is applied once for each input word to implement
incremental processing (Item 1). As part of comprehend-
word, a lexical-access operator is selected for each
word, and rules generated from ECG apply to create a
lexical construction along with any evoked semantic
structures. A match-construction operator is selected
each time one or more constituents can be composed into a
larger construction. These operators are applied by other
ECG-generated rules which fire, sometimes several in
parallel, to evoke, build, and populate semantic schemas.
Together, all these rules implement integrated syntactic and
semantic comprehension (Item 2). Both lexical and
composite constructions contribute meaning (Item 9).

At appropriate points, various hand-coded operators are
selected to ground referring expressions to the current
perceived world model and the ontology in semantic
memory (Item 10). Finally, results for this word are returned
to the higher-level state. Once a complete sentence has been
comprehended, infrastructure rules interpret it to form a
message for the task performance subsystem. These results
are compared to the gold standard developed for the robot,
so we can verify that they are correct and useful (Item 5).

These operators and rules do not fire in a fixed sequence,
but in a dynamic one determined by the word being
comprehended, the syntactic and semantic context, and the
knowledge contained in the world model and ontology.
These dynamics arise from the principle of doing as much
analysis as possible while processing each word in order,
without any look-ahead to future words (Item 1). This
approach can produce good performance, but it often makes
mistakes. These are corrected by a local repair mechanism
(Item 6) modeled after the one Lewis (1993) used to
simulate human sentence processing with Soar.

We call the complete process Informed Dynamic Analysis
(IDA) since the syntactic and semantic analyses evolve
dynamically together by applying whatever linguistic and
world knowledge is relevant at each moment (Item 3).

Examples

Below are examples that illustrate this dynamic process.

Example 1: A Simple Sentence

A simple example is Pick up the green sphere. Figure 3
shows the results of the analysis, part of which constitutes
an instantiation of the ECG items in Figure 1.

The figure summarizes the operation of the many
operators needed to comprehend this sentence. Numbers
indicate when structures were built by the corresponding
application of comprehend-word. Constructions are shown
as blue rectangles, their meaning schemas as green ovals,
the identifiers of structures in semantic memory in red, and
structures in the world model in orange. The identifiers in
green and orange are used to make associations between the
comprehension process and items in the shared memories.

large-green-spherel

object
block
° Property

Descriptor.

@P1004
greenl

greenl largel spherel

color

block spherel

(:) THE ° °
¥ v ¥ ¥ v
Pick up the green sphere.

Figure 3: Comprehension of a simple sentence

The semantic parse shown here is built up incrementally
as each word is processed in stages 1 to 5 (Items 1 and 2).
Each word leads to the retrieval of a lexical construction,
those with names in capitals. Larger constructions are
composed whenever possible (Items 8 and 9). As soon as
the verb is identified in stage 1, its grounded meaning with
id @A1001 is retrieved from semantic memory (Item 10).
The PickUp construction in stage 2 attaches to the meaning
already built for its constituent PICK. (The green arrow
from PICK to its meaning has been omitted to avoid clutter.)
In stage 4, a lookup to semantic memory (Item 10) finds the
id @p1004 to ground the property green. When the
referential expression is complete in stage 5, it is resolved to
an object in the world model (Item 10). In stage 5, the
complete TransitiveCommand construction, a composite
of the structures for Pick up and the green sphere, is also
built as soon as its constituents are present. Note that several
levels of processing are done for one word (Item 1). No
repairs are needed in this example.

Example 2: Phrase Attachment and Repair

Figure 4 shows the abbreviated results for Pick up the green
sphere on the stove. This example illustrates the integration
of Lewis’s repair mechanisms with the semantics available
from ECG.

large-
green

spherel

Prep

fi

Oor .
Descriptor.
‘ l a ocation

stove

= Descriptor, -

------- %

put-down1

large-
green-

spherel

@A1000

green sphere on

Figure 4: Phrase attachment and repair

In this case, the words up through sphere form a valid
sentence, so the first 5 stages run exactly as before. But the
end has not yet been reached, as on the stove remains to be
processed. Stages 6 and 7 are very simple, but a lot happens
at stage 8. First the process recognizes and resolves the
stove. Next on is added to form a prepositional phrase. Now

89

there is the classic problem of prepositional phrase
attachment: should the phrase be attached to the command
that is the current upper-most construction, or to modify the
green sphere?

The simplest way to attach this phrase would be as a
target location for the command, and that is what would
happen if the sentence were Put the green sphere on the
stove. But the system can use semantic knowledge to know
that put needs a target location and pick up does not (Item
3). A “repair” is done by “snipping” (Lewis, 1993) the items
shown with dotted lines and attaching on the stove to the
green sphere (Item 6). Now the reference for the green
sphere must be resolved again with the new information, but
in this case the same answer results because in the current
perceptual model this sphere is in fact on the stove. Finally,
the semantic structure for the command is rebuilt with the
revised referential expression.

Attaching a relative clause, as in Pick up the green block
that is on the stove., works in a very similar way, except that
the word that is lexically ambiguous. In this sentence, it is a
relative pronoun introducing the relative clause. In Put that
in the pantry. it is a deictic pronoun referring to something
salient in the context. The grammar has both meanings and
they both are created during lexical-access. Later
infrastructure rules select which one to use, and the other is
discarded. This illustrates Item 7.

Informed Dynamic Analysis

The whole process just described is similar to the analysis in
any semantic parsing system in that it takes a sentence of
text and produces a semantic representation. However, it
uses a dynamic process where at every step semantic and
world knowledge can be applied. Thus, instead of
generating many parses and ranking their likelihood, it uses
non-syntactic knowledge to resolve ambiguities and repair
mistakes dynamically as the analysis proceeds. This
approach implements Items 1, 2, 3, and 10.

Experiments

The Rosie team has built up a corpus of several hundred
sentences used to instruct the Rosie agent in various tasks.
A parser has been custom-built that allows the agent to
understand this corpus. The LUCIA system attempts to
duplicate the processing of that parser while being more
general and scalable to a wider variety of linguistic forms
and problem domains. To evaluate the capability, generality,
and scalability of LUCIA, we have devised the following
experiments.

Experiment 1

First, we took the entire Rosie sentence corpus and reduced
it by removing sentences for its game-playing domain,
which is beyond the scope of this project, and eliminating
duplicate sentences. Then we selected 50 of the remaining
209 sentences. Each of the 50 shows a slightly unique
linguistic pattern and they collectively cover much of the
linguistic space of all 209 sentences. These 50 sentences fall

into several categories which are listed below, with some of
the language forms covered and an example sentence or two
for each category:

Declarative statements (8): noun phrases, adjectives,
properties, states, prepositional phrases
The red triangle is on the stove.

Manipulation commands (19): manipulation verbs,
transitive commands, commands with a location target,
prepositional phrase attachment issues, multi-word
prepositions

Put the green sphere in front of the pantry.

Store the large green sphere on the red triangle.

Relative clauses, etc. (5): relative clauses with properties,
relative clauses with prepositional phrases, multiple
prepositional phrases

Pick [up] a green block that is larger than the green box.

Move the green rectangle to the left of the large green

rectangle to the pantry.

These two examples show a relative clause, a larger than
relation that is computed during resolution, a fo the left of
relation which is found stored in the world model and picks
out the correct green rectangle, and the proper attachment
of the two prepositional phrases with 7o.

Navigation commands (10): navigation verbs, spatial
references, absolute and relative directions, abbreviated
commands, goal phrases

Follow the right wall.

Go until there is a doorway.

Yes/no answers (1): Yes.

Definitions of words (2):
Octagon is a shape.

Conditional commands (1):
If the green box is large then go forward.

Questions (4):
What is inside the pantry?
Is the small orange triangle behind the green sphere?

Together, this set of 50 sentences partially addresses the
ten distinguishing properties of human sentence processing
listed earlier. To cover this set, it was necessary to build the
ECG constructions and schemas they use, both for the
lexical items and the composite constructions. Then these
sentences served as the test suite to fully develop the infra-
structure rules that complete the LUCIA comprehender.

We also built an evaluator that takes the output of LUCIA
for each sentence and compares it with the gold standard
semantics provided by the Rosie team. When differences
were found, the grammar and hand-coded rules were
corrected as needed to get the desired result. Finally, all 50
sentences were comprehended correctly.

90

Table 1 shows the number of Soar rules that were
generated automatically and by hand. The ECG column
counts constructions and schemas, and the Rules column
counts Soar production rules. Over 60% of the code was
generated automatically from the grammar, showing that the
ECG representation is capable of representing the majority
of the knowledge that is needed.

Table 1: Experiment 1 statistics

Category ECG Rules Proportion
Grammar 226 487 62.5%
Hand-coded 0 292 37.5%

Total 226 779

Another key measure of performance relates to real time,
our Item 4. The Soar theory (Newell, 1990) maps execution
time to real time by assuming each decision cycle takes 50
msec. Lewis (1993, p. 13) points out that humans
comprehend speech “as quickly as we hear it” and read even
faster at “~240 words per minute.” Thus an incremental
comprehender has about 4 to 5 decision cycles, on average,
to comprehend each word.

Our run of all 50 sentences processed 284 words in 2,582
decision cycles, or 9.09 cycles/word and 132 words/minute.
This is too slow by about a factor of two. However, an
analysis shows that within a sentence there are 4 decision
cycles of overhead within each comprehend-word cycle,
and this overhead could be reduced considerably.

As we developed the system to comprehend more and
more of the 50 sentences, new declarative knowledge in the
form of ECG items and new procedural knowledge in the
form of the hand-coded rules were added to the system in
many small steps. Although LUCIA has no built-in learning
mechanism, this increase of knowledge can be thought of as
a model of what a true learning system would have to learn.
Figure 5 shows how this knowledge grows with the number
of sentences comprehended.

e Total
800l == Grammar
e Hand-coded
% 600}
&
§ 400} .___*/’—"KX
w2
2004 kk_—k‘l/'.
0 . . N . N
25 30 35 40 45 50

Sentences Comprehended
Figure 5: Code growth with knowledge

The number of rules generated from the grammar is much
larger than the number of hand-coded ones, and this

proportion grows as the grammar grows. However on the
last step, where four questions were added, only 13 ECG
items and 29 rules were added to the grammar, while 58
new hand-coded rules were needed. The grammar changes
were simple additions, but new ways of attachment,
grounding, and formatting were also required. An important
issue is whether the number of hand-coded rules plateaus as
we extend LUCIA to new constructions.

Experiment 2

To test the generality of the system, we applied LUCIA to a
Spanish translation of the same sentences used for
Experiment 1, comparing the results to the same gold
standard semantic structures used for Experiment 1. The
translation was done by the first author, a fluent Spanish
speaker, with consultation with a native Spanish speaker.
Both have extensive English-Spanish translation experience.

Several linguistic differences needed to be dealt with, in
addition to the obvious one of a different vocabulary:
adjectives can come either before or after a noun as in la
esfera verde (the green sphere); the morphology of
pronouns attached to the end of verbs as in Levdntalo (Pick
it up) and Oriéntate (Orient [yourself]); no equivalent of
then in If ... then ..., although entonces could be used with
some loss of fluency; word order may be different as in all
the example questions; and the meanings of many words,
especially prepositions, don’t correspond across languages.
For example, on may be translated as either en or sobre and
to be can correspond to either ser or estar. Spanish also has
morphological variation in verb conjugations that English
does not have, but that doesn’t affect this corpus since
everything is in the present tense, all command verbs are in
the second person familiar imperative form, and all fo be
verbs are in the third person.

Some new constructions had to be added to handle some
of the differences from English. Following these extensions,
all 50 sentences were processed correctly. Table 2 shows the
relevant code statistics.

Table 2: Experiment 2 statistics

Category ECG Rules Proportion
Common 140 319 36.3%
Spanish-specific 114 263 30.0%
Hand coded 0 296 33.7%

Total 254 878

Experiment 3

To evaluate the scalability of the system, we took the exact
code used for Experiment 1 and ran it on the full original list
of 209 sentences. With no additional vocabulary, 110
sentences could not be understood due to 88 unknown
words. Of the remaining 99 sentences, the system
understood 82. This shows that the system can often process
novel sentences that use known words (Item 8).

91

We then added lexical items for those 88 words, which
required adding 113 ECG items that generate 178 Soar
rules. With these additions, 92 sentences were understood.
This shows that the system can process even more
sentences, but also that new constructions must be added to
understand many new sentences. It doesn’t understand more
sentences because the original 209 sentences were chosen to
demonstrate a variety of syntactic constructions, which
require additional grammatical and semantic knowledge.

Conclusions and Future Work

We set out to evaluate whether LUCIA could provide
language comprehension to Rosie in a way that is both
useful and cognitively plausible. The above experiments
show that it is useful, and that it satisfies, at least partially,
the ten cognitive criteria. It does incremental processing that
integrates syntax, semantics, and grounding in the perceived
world. Its grammar is both hierarchical and compositional.
It can eclectically apply all available knowledge at any stage
of processing. It has a working repair mechanism and a
method for handling lexical ambiguity, although so far these
only cover a limited number of cases. Based on Soar
assumptions, it comes within a factor of two of real-time
processing, and it seems clear how to improve that.

Future work could begin with improving the real-time
course of comprehension, adding more robust mechanisms
for repair and handling lexical ambiguity, and exploring the
correspondence to human limitations that Lewis’s (1993)
system demonstrates. We can continue on to the much
larger challenges of learning grammar and concepts, and
using that learning to expand the scope of understandable
domains.

Acknowledgments

The work described here was supported by the National
Science Foundation under Grant Number 1419590. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressly or implied, of the NSF
or the U.S. Government.

References

Ball, Jerry, Mary Freiman, Stuart Rodgers and Christopher
Myers (2010). Toward a Functional Model of Human
Language Processing. Presented as a poster at 32nd
Annual Conference of the Cognitive Science Society.
Portland, OR.

Bergen, Benjamin and Nancy Chang (2013). Embodied
Construction Grammar. In Thomas Hoffman and
Graeme Trousdale, eds, The Oxford Handbook of
Construction Grammar. Oxford University Press, New
York, pp. 168-190.

Bryant, John Edward (2008). Best-Fit Constructional
Analysis. PhD dissertation in Computer Science,
University of California at Berkeley.

Cantrell, Rehj, Matthias Scheutz, Paul Schermerhorn, and
Xuan Wu. (2010). Robust spoken instruction
understanding for HRI. In 2010 5th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), pp. 275-282. IEEE.

Coello, Yann and Angela Bartolo, eds. (2013). Language
and Action in Cognitive Neuroscience. Psychology
Press, New York.

Dodge, Ellen Kirsten (2010). Constructional
Conceptual Composition. PhD dissertation
Linguistics, University of California at Berkeley.

Feldman, Jerome A. (2006). From Molecule to Metaphor:
A Neural Theory of Language. MIT Press, Cambridge,
MA.

Feldman, Jerome, Ellen Dodge, and John Bryant (2009).
Embodied Construction Grammar. In Bernd Heine and
Heiko Narrog, eds., The Oxford Handbook of Linguistic
Analysis. Oxford University Press, New York.

Ferstl, Evelyn C. (1994). The Construction-Integration
Model: A Framework for Studying Context Effects in
Sentence Processing. In Proceedings of the Sixteenth
Annual Conference of the Cognitive Science Society,
289-293.

Fillmore, Charles J. (1976). Frame Semantics and the
Nature of Language. In Annals of the New York
Academy of Science, Vol. 280, Origins and Evolution of
Language and Speech, pp. 20-32.

Fillmore, Charles J. (2013). Berkeley Construction
Grammar. In Thomas Hoffman and Graeme Trousdale,
eds, The Oxford Handbook of Construction Grammar.
Oxford University Press, New York, pp. 112-132.

Fillmore, Charles J. and Collin Baker (2009). A Frames
Approach to Semantic Analysis. In Bernd Heine and
Heiko Narrog, eds., The Oxford Handbook of Linguistic
Analysis, 313-340.

Goldberg, Adele E. (1995). Constructions: A
Construction Grammar Approach to Argument
Structure. The University of Chicago Press.

Goldberg, Adele E. (2006). Constructions at work: The
nature of generalization in language. Oxford
University Press.

Goldberg, Adele E. (2013). Constructionist Approaches. In
Thomas Hoffman and Graeme Trousdale, eds, The
Oxford Handbook of Construction Grammar. Oxford
University Press, New York, pp. 15-31.

Hoffman, Thomas and Graeme Trousdale, eds. (2013).
The Oxford Handbook of Construction Grammar.
Oxford University Press, New York.

Kintsch, Walter (1998). Comprehension: A paradigm for
cognition. Cambridge University Press.

Johnson, Mark (1987). The Body in the Mind: The Bodily
Basis of Meaning, Imagination, and Reason. The
University of Chicago Press, Chicago.

Lakoff, George (1987). Women, Fire, and Dangerous
Things: What Categories Reveal About the Mind.
University of Chicago Press.

and
in

92

Lakoff, George and Mark Johnson (1980). Metaphors We
Live By. University of Chicago Press.

Lewis, Richard Lawrence (1993). An Architecturally-
based Theory of Human Sentence Comprehension. PhD
dissertation in Computer Science, Carnegie Mellon
University.

Lewis, Richard L. and Shavran Vasishth (2005). An
Activation-Based Model of Sentence Processing as
Skilled Memory Retrieval. Cognitive Science 29, 375-
419.

Lindes, Peter (2014). OntoSoar: Using Language to Find
Genealogy Facts. Linguistics master's thesis, Brigham
Young University.

Mandler, Jean M. and Cristébal Pagdn Canovas (2014).
On defining image schemas. Language and Cognition
0, 1-23.

Miller, George A. and Philip N. Johnson-Laird (1976).
Language and Perception. Belknap Press.

Mohan, Shiwali, Aaron H. Mininger, and John E. Laird
(2013). Towards an indexical model of situated
language comprehension for real-world cognitive
agents. Advances in Cognitive Systems 3, 163-182.

Newell, Allen (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Schank, Roger C. (1972). Conceptual Dependency: A

Theory of Natural Language Understanding. In
Cognitive Psychology 3, 552-631.
Steels, Luc (2013). Fluid Construction Grammar. In

Thomas Hoffman and Graeme Trousdale, eds, The
Oxford Handbook of Construction Grammar. Oxford
University Press, New York, pp. 153-167.

Steels, Luc and Manfred Hild, eds. (2012). Language
Grounding in Robots. Springer.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Encoding and Accessing Linguistic Representations in a Dynamically Structured
Holographic Memory System

Dan Parker (dparker@wm.edu)
Daniel Lantz (dflantz@email.wm.edu)
Computational & Experimental Linguistics Laboratory
College of William & Mary, Williamsburg, VA 23187, USA

Abstract

This paper presents a computational model that integrates a
dynamically structured holographic memory system into the
ACT-R cognitive architecture to explain how linguistic
representations are encoded and accessed in memory. We show
that a holographic memory system provides a cognitively
plausible and principled explanation for the processing of
sentences with negative polarity items (NPIs) like ever and any.
The original ACT-R model fails to capture the full range of
human reading times and judgments of grammaticality,
whereas the integrated holographic memory model achieves
good quantitative fits to human error rates and response
latencies. These results provide proof-of-concept for the
unification of two independent computational cognitive
frameworks.

Keywords: Language processing; Memory; Holographic
Reduced Representations; ACT-R

Introduction

A hallmark of human cognition is the ability to encode,
access, and process compositional structures (Anderson,
1983; Fodor, 2001; Newell, 1990). A parade case involves
language processing. For instance, understanding a sentence
in a discourse requires mechanisms for encoding a structured
representation of the sentence in memory and for accessing
specific pieces of information in that representation later.
However, it remains an open question how these mechanisms
are neuro-computationally instantiated.

One model that has received much attention is the Lewis
and Vasishth (2005) (henceforth LV05) model of sentence
processing, realized in the Adaptive Control of Thought—
Rational (ACT-R) architecture (Anderson, 1990; Anderson et
al., 2004). In the LVO5 model, sentence processing is
construed as a series of cue-based memory retrievals, subject
to similarity-based interference. The model is considered the
most precise expression of the working memory retrievals
and associated control structures that support language
processing, and is commonly used to investigate the timing
and accuracy of memory retrieval in sentence
comprehension.

An initial success of the LV05 model was that it captured
interference effects observed in the processing of linguistic
dependencies, such as those involving negative polarity items
(NPIs). NPIs are words like ever or any, which are generally
acceptable only in sentences that contain a negative-like word
in a syntactically higher position, e.g., No bills that the
senators supported will ever become law. Previous work has
shown that NPI licensing is highly susceptible to interference

93

in sentences like The bills that no senators supported will
ever become law, due to the presence of the negative
distractor no that is in a syntactically irrelevant position (e.g.,
Drenhaus, Saddy, & Frisch, 2005). Interference manifests as
decreased accuracy in judgments of grammaticality and
decreased reading time disruptions at the NPI, relative to
sentences that lack negation. Vasishth, Briissow, Lewis, and
Drenhaus (2008) argued that such effects are a natural
consequence of the error-prone memory retrieval
mechanisms embodied in ACT-R. Under this view,
encountering an NPI triggers a retrieval for a negative
licensor, but the wrong item can be retrieved if it matches
some of the retrieval cues.

The LVO0S5 model is able to capture many empirical effects,
but there are cases where the model makes the wrong
predictions. For instance, Parker and Phillips (2014;
submitted) showed that NPI interference effects can be
reliably switched on and off, depending on when the memory
encoding is probed: interference is observed when the
encoding of the licensing context is probed early in the
sentence, but the effect disappears when the licensing context
is probed from a later point in the sentence (see also Parker,
2014). These findings are unexpected under the ACT-R
account, which predicts that interference effects should
generalize across contexts, based on the assumption that there
is a single set of principles that governs memory access.

Parker and Phillips suggested that the contrasting profiles
observed for NPIs reflect untested assumptions about how
sentences are encoded in memory. ACT-R assumes that the
encoding remains fixed over time. However, the finding that
interference can be switched on/off depending on when the
encoding is probed suggests that the encoding is not fixed,
but rather changes over time, such that the internal items
become opaque as candidates for causing interference.

This paper presents a computational model that integrates
a holographic memory system (e.g., Plate, 2003) into the
ACT-R framework to explain the empirically observed
effects that the LV05 model fails to capture. Holographic
memory systems assume that the atomic components of a
compositional structure are periodically bound together in
memory to create a single, unitized encoding for
interpretation. A key prediction of our model is that
interference effects during linguistic dependency formation
should be selective, depending on when the encoding is
probed. Modeling results show good quantitative fits to a
variety of measures, providing proof-of-concept for the
unification of two computational cognitive frameworks.

The research reported in this paper builds on previously
published literature on holographic memory models and
integrating holographic models with ACT-R. Rutledge-
Taylor, Kelly, West, and Pyke (2014) and Kelly, Kwok, and
West (2015) have shown that a holographic declarative
memory system similar to the one proposed here can be
integrated into ACT-R to capture decision-making tasks, the
fan effect, and delayed learning. Our model demonstrates that
this unified framework can capture more specialized
cognitive abilities, such as language processing.

The ACT-R model of sentence processing

ACT-R is a cognitive architecture based on independently
motivated principles of memory and cognitive skills, and has
been used to study a wide range of cognitive phenomena
(Anderson, 1990). The LV0O5 ACT-R model applies those
principles to the specialized task of sentence processing.

In the LV0O5 ACT-R model, linguistic constituents are
encoded as ‘chunks’ in content-addressable memory, and the
syntactic representation of a sentence arises as the
consequence of pointers that index the hierarchical relations
between chunks. Chunks are encoded as bundles of feature-
value pairs. Features include lexical content (e.g., morpho-
syntactic and semantic features), syntactic information (e.g.,
category, case), and local hierarchical relations (e.g., sister,
parent). Values for features include symbols (e.g., £singular,
+animate) or pointers to other chunks (e.g., NP, VP,).

Linguistic dependencies, such as those between an NPI and
its licensor, are formed using a general retrieval mechanism
that probes all task-relevant chunks in parallel for the left part
of the dependency (the target), using a set of retrieval cues.
Retrieval cues are derived from the current word, the
linguistic context, and grammatical knowledge, and
correspond to a subset of the features of the target (Lewis,
Vasishth, & Van Dyke). Chunks are differentially activated
based on their match to the retrieval cues. The probability of
retrieving a chunk is proportional to the chunk’s overall
activation at the time of retrieval, modulated by decay and
interference from other items that match the retrieval cues.

The activation of a chunk i (4,) is defined as follows."

m 14
Ai =BL+ZVV}S]L_ZPM,“+E
=1 k=1

The first term of Equation 1 describes the baseline
activation of chunk i, which is calculated according to
Equation 2. Equation 2 describes the usage history of chunk
i as the summation of all n successful retrievals of i, where ¢
is the time since the jth successful retrieval of i to the power
of the negated decay parameter d. The output is passed
through a logarithmic transformation to approximate the log
odds that the chunk will be needed given its usage history.

(M

! Readers familiar with ACT-R may notice the non-standard
presentation of Equation 1: the sign on the partial match component
has been flipped to indicate its penalizing nature.

94

After a chunk has been retrieved, the chunk receives an
activation boost, followed by decay.

n

Bi =In Z t]'_d

j=1

2

The second term of Equation 1 reflects the degree of match
between chunk 7 and the retrieval cues. W is the weight
associated with each retrieval cue j, which defaults to the total
amount of goal activation G available divided by the number
of cues (i.e., G/j). Weights are assumed to be equal across all
cues. The degree of match between chunk 7 and the retrieval
cues is the sum of the (weighted) associative boost for each
retrieval cue S; that matches a feature value of chunk i. The
associative boost that a cue contributes to a chunk that it
matches is reduced as a function of the fan of that cue, i.c.,
the number of chunks in memory that match the cue
(Anderson, 1974), according to Equation 3.

S;; =S — In (fany) 3)

The third term of Equation 1 reflects the penalty for a
partial match between the cues of the retrieval probe and the
feature values of chunk i. Partial matching makes it possible
to retrieve a chunk that matches only some of the cues,
creating the opportunity for retrieval interference (Anderson
et al., 2004; Anderson & Matessa, 1997). Partial matching is
calculated as the matching summation over the k& feature
values of the retrieval cues. P is a match scale, and M}, reflects
the similarity between the retrieval cue value k and the value
of the corresponding feature of chunk i, expressed by
maximum similarity and maximum difference.

Lastly, random noise is added to the activation level of
chunk 7, generated from a logistic distribution with a mean of
0, controlled by the noise parameter s, which is related to the
variance of the distribution, according to Equations 4 and 5.

e~logistic(0,0?) 4)
w2 5
o? = ?52 ©)

Activation 4; determines the probability of retrieving a
chunk, according to Equation 6. The probability of retrieving
chunk 7 is a logistic function of its activation with gain 1/s
and threshold t. Chunks with higher activation are more
likely to be retrieved.

1 6
P(recall) = TEoCaon (©)

Activation A4; also determines the retrieval latency 7; of a
chunk, according to Equation 7. F'is a scaling factor that sets
predictions on an appropriate time scale. Chunks with a
higher activation value have a faster retrieval latency.
Fe "

L

T; (7

Predictions of the ACT-R model

The LV05 ACT-R model predicts that retrieval for linguistic
dependency formation should be subject to interference from
non-target or syntactically irrelevant items that match some
of the retrieval cues (partial match interference). This
prediction is based on the assumptions that retrieval accesses
all chunks in parallel and that a partial match between the
retrieval cues and a chunk can result in erroneous retrieval of
that chunk (see Equation 1). Many studies have shown that
this prediction is borne out for a range of dependencies,
including subject-verb agreement (Dillon et al.,, 2013;
Wagers et al., 2009; Tanner et al., 2014), anaphora (Parker et
al.,, 2015), case licensing (Sloggett, 2013), and ellipsis
(Martin, 2015).

For instance, the LV0O5 model has been used to explain
interference effects observed in the processing of negative
polarity items (NPIs). NPIs are words like ever, any, or yet,
that can be licensed by a negative-like word in a syntactically
higher position. The NPI ever in (2a) is licensed because it
appears in the scope of the negative phrase no students. When
negation is absent, (2b), or is in a syntactically irrelevant
position, (2c¢), the NPT is not licensed.

(2) a. No students have ever passed the test.
b. The students have ever passed the test.
c. The students that no teachers liked ever passed the test.

Previous research has shown that NPI licensing is highly
susceptible to interference in sentences like (2c), due to the
presence of the negative distractor, e.g., no teachers, that is
in a syntactically irrelevant position for the purpose of NPI
licensing. This effect manifests as decreased accuracy in
judgment tasks and decreased reading time disruptions when
processing the unlicensed NPI, relative to sentences that lack
negation, like (2b).

Vasishth et al. (2008) argued that such effects are a natural
consequence of the error-prone retrieval mechanisms
embodied in ACT-R. Under this account, NPI licensing is
implemented as an item-to-item dependency by retrieving a
negative licensor from memory using syntactic and semantic
cues, e.g., [tscope], [tnegative]. In (2a), retrieval finds an
item that matches both cues. In (2b), retrieval fails to find a
match to either cue. In (2¢), retrieval finds a partially matched
item, i.e., a semantically appropriate item in a syntactically
irrelevant position. The activation boost from this partial
match, combined with stochastic noise, can cause the
syntactically irrelevant licensor to be retrieved, spuriously
licensing the NPI. Vasishth et al. showed that Equations 1-6
achieve good quantitative fits to both human reading times
and judgements of grammaticality.

95

Challenges for the ACT-R model

The LV05 ACT-R model predicts that interference during
NPI licensing should generalize across syntactic
environments, since the effect is attributed to error-prone
retrieval mechanisms that are engaged whenever an NPI is
encountered. However, this prediction is not borne out.
Parker and Phillips (2014; submitted) showed that
interference effects for NPIs can be reliably switched on/off,
depending on when the memory encoding of the licensing
context is probed. They manipulated the position of the NPI
relative to the potential licensors in sentences like (3), and
found contrasting profiles: interference was observed when
the NPI appeared early in the sentence, i.e., in the main clause
(position 1), replicating previous findings, but not when it
appeared later in the sentence, i.e., in the embedded clause
(position 2). These effects were shown using both reading
time measures and speeded acceptability judgments.

(3) The journalists that no editors recommended (ever;)
thought that readers would (ever,) understand physics.

These findings suggest that the interference effects
observed for NPIs cannot simply be due to noisy retrieval
mechanisms that are engaged whenever an NPI is
encountered, as assumed in ACT-R. Furthermore, the effects
cannot reflect decay or faulty encoding of the licensing
context, since that would predict difficulty in the grammatical
conditions, contrary to fact.

Parker and Phillips argued that the contrasting profiles
observed for NPIs reflect untested assumptions about how
sentence representations are encoded in memory. ACT-R
assumes that the encoding of the sentence remains fixed over
time. However, the finding that interference effects can be
switched on/off depending on when the encoding is probed
suggests that the encoding is not fixed, but rather changes
over time: at one moment, irrelevant items are transparently
accessible via partial matching; but then at a later point in
time, those same irrelevant items become opaque as
candidates for causing interference.

In the next section, we discuss how such effects are
predicted in an alternative, dynamically structured
holographic memory system.

Multiple-stage encoding schemes

The LV05 ACT-R model assumes that the encoding of a
sentence remains fixed over time. However, this is not a
widespread assumption. Many cognitive models, including
the entire class of Vector Symbolic Architectures (VSAs),
e.g., Tensor Product Models (Smolensky, 1990),
Holographic Memory (Plate, 2003), Binary Spatter Codes
(Kanerva, 1994), assume that there is a qualitative shift over
time in the format of an encoding in memory.

In VSAs, compositional structures are encoded in two
stages. When a representation is first encoded, it is equivalent
to its subparts, such that the individual features of the
representation can be evaluated independently from their
position in a structured representation, creating the

opportunity for partial match interference at retrieval. Then,
at a later point, those same features may be bound together,
creating a single, unitized encoding that is dissimilar to its
sub-parts to conserve memory resources. In this state,
individual features are no longer independently evaluable,
and the representation must exhibit an all-or-none match to
the cues of the retrieval probe in order to be recovered,
preventing the possibility of partial match interference. This
idea of “recoding” is based on Miller’s (1956) principle of
chunking, which provides a central explanation for how
human memory works.

Proposal

An implicit assumption of VSAs is that compositional
structures are encoded in multiple stages. VSAs make a
distinction between ‘“atomic” representations that are
typically randomly generated versus “complex”
compositional representations that are constructed from
atomic representations. We propose that these two
representational stages may be mapped to distinct cognitive
processing stages as a principled explanation of the
contrasting profiles observed for NPI licensing. Previously,
VSA-based cognitive models have not assumed that
particular cognitive processing stages are associated with the
two representational schemes. However, if the format of the
encoding changes over time, as implicitly assumed in VSAs,
then we should expect different behaviors at different points
in time, depending on when the encoding is probed, as
suggested for NPI licensing.

Encoding linguistic structure in multiple stages

In VSAs, the feature-values of a linguistic representation may
be encoded as high-dimensional vectors that are recursively
bound together by compressing their outer product into a
single vector. For instance, in a tensor-product scheme (e.g.,
Smolensky, 1990), features are bound together in memory by
taking the outer product of the vector representations of the
features, as shown in (4).

(4) a. Feature vectors
[+scope] = [123]; [+negation] = [abc]

b. Tensor-product feature binding
1 a la 1b 1c
<2> ® (b) = <2a 2b 20)
3 c 3a 3b 3¢
However, as the structure grows, the size of the code grows
exponentially, which is undesirable given the stringent limits
on the amount of information that can concurrently occupy
working memory (Cowan, 2001). Plate (2003) proposed a
solution wusing Holographic Reduced Representations

(HRRs), which rely on circular convolution to bind features
together, according to Equation 8.2 Importantly, the size of

2 Convolution is the core mathematical operation behind
holography, hence the term “holographic”.

96

the code does not grow as more features are added, since the

circular convolution of two n-dimensional vectors using

modulo subscripts produces a vector with dimensionality 7.
n=1 (8)

t] = Cka_k

k=0

forj=0ton—1
(subscripts are modulo-n)

Binding; = [+scope]; ® [+negation],

to = CoXg + CrXq + C1Xy
tl = (C1Xp + CoX1 + CrXop
tz = CXy + C1X1 + CoXp

©

encoding stage 2
(reduced representation)

®

encoding stage 1
(expanded representation)

Figure 1. Circular convolution represented as the
compressed outer product ¢ of the feature vectors c and x.

Figure 1 shows circular convolution as the (‘reduced’)
outer product ¢ of the feature vectors ¢ and x, corresponding
to the linguistic features [+scope] and [+negation] for n=3.
Convolution is calculated as the summation of the outer
product values along the paths of the lines.

In the uncompressed form (encoding stage 1), individual
features ¢ and x are independently evaluable, making the
representation susceptible to partial matching. In the
‘reduced’ form (encoding stage 2), the individual features ¢
and x are no longer independently evaluable, preventing the
possibility of partial matching. In this state, the representation
must be recovered holistically with an all-or-none match to
the cues of the retrieval probe.

Similarity between the retrieval probe p and a memory m
measured by their normalized dot product, i.e., cosine
similarity, according to Equation 9.

p-m 2o pimy
Hpllllmll _ _)
(Ziivr Jsiim?

One concern is that encoding n-dimensional bindings using
circular convolution can be slow, since convolution
calculates the sum of products (convolution with modulo
subscripts takes O(n’) time). Processing can be sped up by
performing convolution in the frequency domain with the
Fast Fourier Transform, which involves element-wise
multiplication, as shown in Equation 10. This process
implements circular convolution in O(n log n) time.

sim(p,m) =

[+scope]c ® [+negation], = f'(f(c) © f(x)) (10)

The most important property of HRRs, for present
purposes, is that the encoding changes such that the internal
items become opaque for partial matching with the passage
of time. This property could provide a principled explanation
for the contrasting profiles observed for NPIs. If the format
of the encoding changes over time, as assumed in a
holographic memory system, then we should see different
behaviors at different points in time, depending on when the
encoding is probed.

In the next section, we show how a holographic memory
system can be integrated into the LV05 ACT-R model to
simulate human reading times and judgments of
grammaticality.

Integrating HRRs into ACT-R

A new memory module for the LV05 ACT-R model was
developed using HRRs replacing traditional ACT-R chunks
with holographic vectors. Holographic vectors retain the
same expressive power of the chunks used in the LVO0S5
model, but allow for dynamic changes in the format of the
encoding.

To implement HRRs in the ACT-R system, we made the
following changes to the original LV05 ACT-R model. First,
linguistic feature-value specifications and retrieval cues were
encoded as vectors (one dimensional arrays) of » numbers,
randomly sampled from a normal distribution. For our
simulations, n = 10,000. In this format, different feature-
value specifications and the corresponding retrieval cues are
represented by different patterns in a continuous, high-
dimensional space.

In encoding stage 1 (expanded representation), feature-
value pairs are superimposed by adding the vectors together
to create linguistic chunks (bundles of feature-value pairs, as
defined in the original LV05 ACT-R model). Retrieval probe
vectors are constructed in the same manner. In this state, the
individual features of a chunk are independently evaluable at
retrieval and hence susceptible to partial matching, as
assumed in the original LV05 model.

In encoding stage 2 (reduced representation), convolution
as computed according to Equation 10 is used to bind the
vectors representing the feature-value pairs within a chunk.
To enable successful retrieval of a chunk, the cues of the

97

retrieval probe must be combined in the same way. In this
state, a chunk represents a single, unitized encoding that must
exhibit an all-or-none match to the retrieval probe to be
recovered, i.e., partial matching is not possible. For present
purposes, we assumed that feature binding was triggered
upon encountering the main clause verb of a sentence during
comprehension. According to Parker and Phillips
(submitted), encountering a main clause verb may force the
parser to ‘wrap-up’ and consolidate the encoding of the
previous context to conserve memory resources.

Second, we modified the standard ACT-R equation for
activation values (Equation 1) to accommodate HRR vectors.
Specifically, we substituted cosine similarity, as computed
according to Equation 9, for the third term of the standard
ACT-R equation for activation value, i.e., the term that
computes the penalty for a partial match between the cues of
the retrieval probe and the feature values of chunk i.

Simulations

We investigated whether the contrasting profiles observed for
NPIs would be best captured by the original LV05 ACT-R
model or the integrated HRR/ACT-R model. To achieve this,
we conducted a side-by-side comparison of the LV05 model
with the integrated model, without adjusting key model
parameters.

Procedure

Previous implementations of the ACT-R model of sentence
processing have included a wide range of modules, including
modules for visual information processing, lexical access,
memory retrieval, and syntactic parsing (e.g., Lewis &
Vasishth, 2005; Vasishth et al.,, 2008). However, the
simulations reported here focus solely on the module for
retrieval, and abstract away from the contribution of the
peripheral modules by stipulating the chunks in memory and
retrievals required to parse a sentence. There are additional
processes associated with sentence comprehension that
contribute to behavioral measures, but for current purposes,
we adopt the standard assumption that the dynamics and
output of memory retrieval map monotonically to the
behavioral measures of interest (Anderson & Milson, 1989).

We simulated the hypothesized retrievals involved in the
key manipulations reported in Parker and Phillips
(submitted). Three conditions were simulated, manipulating
the presence and location of an NPI licensor (appropriate
licensor, irrelevant licensor, no licensor) and the position of
the NPI (main clause, embedded clause), based on the
sentence structures in (3). For each condition, a schedule of
constituent creation times and retrievals was estimated from
the reading times reported in Parker and Phillips (submitted).
Differences between conditions were modeled only as
differences in NPI position and the feature composition of the
licensors (£scope, £negation).

To ensure that the modeling results for the LV0O5 and
integrated HRR/ACT-R model would be directly
comparable, all models used the same default parameter
settings, following Lewis and Vasishth (2005) and Vasishth

m
£« _
o o
(0]

> o |
8 o
3
"5]

3 =
[o
[[}

)

< ©
g -
= LV05 ACT-R HRR/ACT-R Observed

@ main clause ever4 O embedded clause ever,

Figure 1. Comparison of predicted and observed
interference effects for reading time measures of main
clause ever; vs. embedded clause ever,.

et al. (2008). The only exception was the scaling parameter
F, which was optimized to fit the behavioral time scale (in all
models, F'=0.6). 5,000 Monte Carlo simulations were run for
each condition.

We report two measures of interest: (i) Retrieval error rate
reflects the percentage of runs for which the distractor, rather
than the target was retrieved. This measure maps
monotonically to speeded acceptability judgments, with
higher retrieval error rates corresponding to increased rates
of judgment errors. (ii) Retrieval latencies reflect the average
amount of time it took to retrieve the most probable item, and
map monotonically to reading times, with higher latencies
corresponding to longer reading times. These measures were
used to calculate the predicted interference effect as the
difference in predicted error rates and retrieval latencies
between the ungrammatical conditions with and without a
negative distractor (NPI interference is observed only in
ungrammatical conditions). Thus, for predicted error rates, a
larger positive value corresponds to a higher rate of
interference, reflecting increased rates of acceptance for
sentences with a distractor relative to sentences with no
distractor. For predicted retrieval latencies, a smaller
negative value corresponds to a higher rate of interference,
reflecting facilitated processing for sentences with a
distractor relative to sentences with no distractor.

We compared the observed interference effects with those
predicted by the LV05 model and the HRR/ACT-R model for
the reading time measures (Figure 1) and judgment data
(Figure 2) reported in Parker and Phillips (2014; submitted).

Simulation results

Across both behavioral measures, the integrated
HRR/ACT-R model provided a better fit to the observed data,
without adjusting the key model parameters (fit with the
HRR/ACT-R model was adjusted R* = 0.79; fit with the
LV05 model was adjusted R> = 0.28). The LV05 model failed
to capture the observed on/off behavior, predicting similar
rates of interference across NPI positions. The integrated
model, on the other hand, captured the basic contrast between

98

50

40

30

20

10

—

Observed

Interference effect (error rate)

LVO5 ACT-R

@ main clause ever

HRR/ACT-R

O embedded clause ever,

Figure 2. Comparison of predicted and observed
interference effects in judgment accuracy for main
clause ever; and embedded clause ever,.

NPI positions, with significantly less interference for
embedded clause NPIs (ever,).

Although the values predicted by the integrated
HRR/ACT-R model did not match the observed data
perfectly, the predicted profiles were qualitatively similar to
the observed data. We could explore different parameter
values to achieve an even better fit with the observed data,
but this was not our goal. Rather, our goal was to determine
whether the ACT-R model enhanced with a holographic
declarative memory system would predict the basic contrasts
without adjusting previously fixed parameter values.

The contrasting profiles predicted by the HRR/ACT-R
model are consistent with the hypothesis that the contrasting
profiles observed for NPIs reflect changes over time in the
encoding of compositional representations in memory. After
the features of the representation are bound together, the
representation must exhibit an all-or-none match to the cues
of the retrieval probe, preventing partial match interference.

Conclusion

We presented a computational model that integrates a
holographic memory system into the ACT-R model of
sentence processing to explain how compositional linguistic
structures are encoded and accessed in memory. Modeling
results showed that the integrated system is better suited to
capture contrasting profiles of interference effects in sentence
comprehension, relative to existing models, yeilding a good
quantitative fit to data from a variety of behavioral tasks.
These results provide proof-of-concept for the unification of
two independently developed computational cognitive
frameworks, and offer new insights into how humans encode
and access compositional representations in memory.

Acknowledgments

The code for the LV05 ACT-R model of sentence processing
was generously provided by Rick Lewis. We thank Alan Du
for his revisions and additions to this code. We thank Brian
Dillon, Dave Kush, Colin Phillips, and Matt Wagers for
helpful discussion related to this work.

References
Anderson, J. R. (1974). Retrieval of propositional
information from long-term memory. Cognitive

Psychology, 6, 451-474.

Anderson, J. R. (1983). The architecture of cognition.
Harvard University Press.

Anderson, J. R., & Milson, R. (1989). Human memory: an
adaptive perspective. Psychological Review, 96, 703-719.

Anderson, J. R. (1990). The Adaptive Character of Though.
Hillsdale, NJ: Erlbaum.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111, 1036-60.

Cowan, N. (2001). The magical number 4 in short-term
memory: A reconsideration of mental storage capacity.
Behavioral and Brain Sciences, 24, 87-185.

Dillon, B., Mishler, A, Sloggett, S., & Phillips, C. (2013).
Contrasting intrusion profiles for agreement and anaphora:
Experimental and modeling evidence. Journal of Memory
and Language, 69, 85-103.

Drenhaus, H., Saddy, D., & Frisch, S. (2005). Processing
negative polarity items: When negation comes through the
backdoor. In S. Kepser, & M. Reis (Eds.), Gradience in

grammar: Generative perspectives. NY: Oxford
University Press.
Fodor, J. A. (2001). Language, Thought, and

Compositionality. Mind & Language, 16, 1-15.

Kanerva, P. (1994). The binary spatter code for encoding
concepts at many levels. In M. Marinaro, & P, Morasso
(Eds.), ICANN ’94: Proceedings of the International
Conference on Artificial Neural Networks, London,
Springer-Verlag.

Kelly, M. A., Kwock, K., & West, R. L. (2015). Holographic
Declarative Memory and the Fan Effect: A Test Case for A
New Memory Module for ACT-R. In the Proceedings for
the 2015 International Conference on Cognitive Modeling
(ICCM).

Lewis, R. L., & Vasishth, S. (2005). An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive Science, 29, 375-419.

Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (20006).
Computational principles of working memory in sentence
comprehension. Trends in Cognitive Science, 10, 447-454.

Martin, A. E. (2015). Cue-based interference from illicit
attractors: ERP evidence from VP ellipsis. Poster at the
2015 Architectures and Mechanisms for Language
Processing (AMLAP) Conference.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological Review, 63, 81-97.

Newell, A. (1990). Unified theories of cognition: The
William James lectures. Harvard University Press.

Parker, D. (2014). The cognitive basis for encoding and
accessing linguistic structure. Unpublished doctoral
dissertation.

99

Parker, D., & Phillips, C. (2014). Time heals semantic
illusions, but not syntactic illusions. Talk at the 27" CUNY
Conference on Human Sentence Processing.

Parker, D., Lago, M., & Phillips, C. (2015). Interference in
the processing of adjunct control. Frontiers in Psychology,
6, 1-13.

Parker, D., & Phillips, C. (submitted). Linguistic illusions
and the encoding of compositional representations.

Plate, T. (2003). Holographic Reduced Representation:
Distributed Representation for Cognitive Structures. CA:
CSLI Publications.

Rutledge-Taylor, M. F., Kelly, M. A., West, R. L., & Pyke,
A. A. (2014). Dynamically structured holographic
memory. Biologically inspired Cognitive Architectures, 9,
9-32.

Sloggett, S. (2013) Case licensing in processing: Evidence
from German. Poster at the 26" CUNY Conference on
Human Sentence Processing.

Smolensky, P. (1990). Tensor Product Variable Binding and
the Representation of Symbolic Structures in Connectionist
Systems. Artificial Intelligence, 46, 159-216.

Tanner, D., Nicol, J., & Brehm, L. (2014). The time-course
of feature interference in agreement comprehension:
Multiple mechanisms and asymmetrical attraction. Journal
of Memory and Language, 76, 195-215.

Vasishth, S., Briissow, S., Lewis, R. L., Drenhaus, H. (2008).
Processing Polarity: How the Ungrammatical Intrudes on
the Grammatical. Cognitive Science, 32, 685-712.

Wagers, M., Lau, E. F., & Phillips, C. (2009). Agreement
attraction in comprehension: Representations and
processes. Journal of Memory and Language, 61,206-237.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Investigating and Simulating the Effect of Word Fragments as Orthographic Clues
in Crossword Solutions

Kejkaew Thanasuan (kejkaew.tha@kmutt.ac.th)
Learning Institute, King Mongkut’s University of Technology Thonburi
Bangkok, 10140 Thailand

Shane T. Mueller (shanem @mtu.edu)
Department of Cognitive and Learning Sciences, Michigan Technological University
Houghton, MI 49931 USA

Abstract

A number of models of word structure represent orthography
in terms of features indexing individual letters and adjacent
letter pairs within the word. This permits word parts to be rep-
resented independent of position, but leaves the open question
of whether partial letters arranged in multiple clusters (frag-
ments) provide better memory retrieval cues. To answer this,
we conducted a study in which expert and novice crossword
players completed crossword problems for words of different
lengths and with different numbers of letter cues. Although ex-
pertise, word length and a number of cues provided strong pre-
dictors of accuracy and response times, within each cue/word-
length condition, neither the number of word fragments nor the
maximum size of word fragment provided a consistent advan-
tage. A computational model using letter pairs as features, but
no higher-order representation of orthography, accounted for
effects of expertise, word length, and number of cues, and sim-
ilarly did not produce systematic effects on the number or sizes
of fragments. Results suggest that, to a first approximation,
letter-pair representations are sufficient to account for the per-
formance in word stem and word fragment completion, cross-
word, and potentially other word reading/identification tasks.

Keywords: crossword expertise; memory retrieval; ortho-
graphic clue; crossword recognitional-based decision-making
model

Introduction

Models of reading and word representation in Latin-character
languages have often represented orthography in terms of
features associated with both individual letters and letter
pairs (Grainger & Van Heuven, 2003; Thanasuan & Mueller,
2014). For example, the feature-based representation for
FORCE would include F, O, R, C, and E, along with *F, FO,
OR, RC, CE, and E* (where * indicates a word boundary).
This scheme permits representing a sequence without coding
the absolute position of a letter within a word, and so it en-
ables similarity-based comparisons to be robust to prefixes
and suffixes (ENFORCE, FORCEFIELD) with graded simi-
larity to some grammatical modifications (FORCING). Such
models have been successful at accounting for data in a num-
ber of reading, memory, and word completion paradigms, but
less is known about whether higher-order orthographic rep-
resentations such as trigrams (or “Wickelphones™) are use-
ful, and whether cues involving multiple letter pairs are better
than those involving fewer pairs.

Although such representations have often been tested in a
general population of readers (who are assumed to have sub-
stantial experience with the problems of memory retrieval

100

based on orthographic information), another factor to con-
sider is whether extensive deliberate practice with word-
fragment completion changes the level of representation used,
or permits better use of multiple word fragments in cueing a
correct word. Thus, expert word game players may produce
fundamentally different results, showing evidence of differ-
ent or higher-order representations in word completion tasks
in their domains of expertise.

A number of researchers have examined crossword solvers
to identify their memory retrieval and problem-solving abil-
ities and strategies. For example, Nickerson (1977, 2011)
explored crossword puzzle solving processes relating to lex-
ical memory and categorized daily crossword cues in order
to understand information retrieval of the solvers. Moreover,
Toma, Halpern, and Berger (2014) compared visuospatial and
verbal working memory among college students, crossword
and Scrabble experts using a symmetry span task and a read-
ing span task. They found that participants from the two elite
groups performed the cognitive tasks better than the novice
group, but the results between the two groups were not statis-
tically different.

Mueller and Thanasuan (2013); Thanasuan and Mueller
(2014) developed and implemented computational models of
crossword solving based on the Recognitional-primed deci-
sion making model (RPD; Klein, 1993), the Bayesian Recog-
nitional Decision Model (BRDM; Mueller, 2009), and a
computational model of word-stem completion (Mueller &
Thanasuan, 2014). The models used data from a database
of millions of real crossword clues and answers, and used
a letter-pair feature set to represent orthography. Expertise
effects were accounted for in terms of speed, strategy, and
retrieval fluency, and although the models performed better
than novices, they did not achieve as good performance as
did experts. This may have arisen in part because of the
orthographic representation; a computer performing logical
template-based matches of word stems can generally reduce
the candidate set substantially more than our representation
(see Ginsberg, 2011), which would have improved perfor-
mance significantly.

Letter Clusters as Orthographic Clues
Typically, a partially-filled answer in a crossword grid is eas-
ier to solve than one with no letter cues, in part because it
limits the search set in mental lexicon (Nickerson, 2011), and

provides additional cues for retrieval. Thanasuan and Mueller
(2014) concluded that although crossword experts used se-
mantic information as a primary constraint, they also relied
on orthographic knowledge and visual pattern recognition to
complete the puzzles. Supporting this, Mueller and Thana-
suan (2013) found that when crossword experts were pre-
sented with easy word-stems (i.e. three or fewer missing let-
ters), the accuracy was about 80%, whereas novices were able
to complete them correctly only about 40%.

However, those studies did not examine whether clusters
of two or more letters were more helpful in memory retrieval
than if the same letters are dispersed throughout the clue.
Other tasks, such as the cue-facilitated retrieval paradigm,
have been used to investigate the role of letter clusters in word
completion. For example, Horowitz, White, and Atwood
(1968) used this paradigm to determine whether the type of
letter cluster (the first, middle or last three-letter clusters of
a word) impacted the ability to recall nine-letter words, and
found that the first three-letter fragment was the most helpful.
Likewise, Dolinsky (1973) compared the cue retrieval process
using syllabic and non-syllabic letter clusters as cues. They
found that the middle syllabic units were very helpful on word
retrieval, but the syllabic clues did not facilitate the recall per-
formance more than the non-syllable fragments. In addition,
Goldblum and Frost (1988) studied a cue facilitation effect of
letter clusters using a crossword paradigm task. They hypoth-
esized that different structures of sub-lexical units, which in-
clude syllable, pronounceable non-syllable, unpronounceable
cluster, and nonadjacent letters, might differently influence
word retrieval. They found that the small units of syllabic
fragments were the best retrieval cue. They also found that
the syllables with phonological units such as “- -SEP- - - - - - ”
of a target word “INSEPARABLE” assisted the solvers more
than morphemic units (i.e., units linked to meaning) such as
“- - - -PAR- - - -7 of the same target answer. This suggests
that the position of letter clusters within a word and within
syllable boundaries may be important.

We suggest that two properties regarding the usefulness of
letter clusters are not well understood. The first is whether,
for a fixed number of letters in the cue, does their arrange-
ment into clusters impact accuracy of retrieval? For exam-
ple, if four letters are given for the word “HOUSECAT”, they
might be “H-U-E-A-”, “HO- -EC- -7, or “HOUS- - - -”. The
first has no clusters (sets of adjacent letter pairs), the second
has two clusters, and the third has one cluster. It may be that,
for either novices or experts, a better or a worse cue is pro-
vided when letters are arranged into more clusters. In terms
of models of representation, if an advantage exists, this may
indicate the use of higher-order representations and require
adapting existing models to account for such results. The sec-
ond property is the maximum length of the cluster—do larger
clusters form better cues than smaller clusters? Regarding the
previous example, the largest cluster size is one, two and four,
respectively. These may differently impact solution probabil-

1ty.

101

Crossword Solving Model

Previously, we have described a cognitive computational
model of crossword solving that accounts for expertise, word
length, clue difficulty, and letter-clue effects (Mueller &
Thanasuan, 2013; Thanasuan & Mueller, 2014), that we will
use in this study. The model simulates crossword answers via
two independent routes: semantic and orthographic memory
associations (see Figure 1). Mueller and Thanasuan (2013)
indicated that the best model representing crossword solving
performance was the dual route model with three different
conditions for novice, expert and best performance simula-
tions. This model first attempts retrieval via the orthographic
route. If it fails, the model searches via semantic associations.

Orthographic Semantic
Associations Answer Associations
QUICK
o* 0
QU-
U
Ul
1
1z
*Z
VA

Figure 1: Example of semantic and orthographic routes

The orthographic route model works by representing or-
thography according to associations between features of a
word and crossword answers. Orthographic features that
were used include letters, letter pairs, and a distributed length
code that helps limit possible answers to words of similar
length to the clue. The model was trained on a lexicon of
more than 4 million crossword clue answers, and so it has rich
associations between these features and existing crossword
answers. The representation does not include any higher-
order letter clusters (sequences of three or more letters). If
there are word fragment effects (depending on size or num-
ber of clusters) that cannot be accounted for by the model, this
may indicate higher-order representations are needed. The
challenge for higher-order representations is that the num-
ber of features required scales with the power of the clus-
ter size, making naive representations unmanageable, espe-
cially when most of these features never appear in a given lan-
guage. The alternative would be to begin incorporating sylla-
ble representations informed by phonology (see Fudge, 1969;
Mueller, Seymour, Kieras, & Meyer, 2003), morphology, or
information-theoretic measures, the present study seeks to de-
termine whether this increased complexity is necessary.

To test the model, we investigated the role that word frag-
ments play in crossword puzzle solutions among both ex-
perts and novices. A crossword paradigm task was used
in which participants were given single clues with partial

letter hints. Although the task requires matching or re-
trieval from both semantic memory and orthographic mem-
ory, we focused on studying the solving mechanisms associ-
ated with orthographic clues and word fragments. Further-
more, to assess the role of word fragments on representation,
a crossword-solving model based on Mueller and Thanasuan
(2013); Thanasuan and Mueller (2014) was adapted to sim-
ulate crossword answers and response times. Our approach
is to examine whether factors that would be consistent with
the use of higher-order representations improve performance,
and to demonstrate whether the model shows a similar ef-
fect. To do this, we examined whether the size of the largest
cluster, and the number of clusters in a clue had an impact in
retrieval times or accuracy for both novices and experts.

Experiment
Participants

Eighty-five undergraduate students were recruited from
Michigan Technological University (MTU) subject pool as
crossword novices. In addition, 113 crossword experts were
recruited from online crossword communities. Both groups
of participants completed an online crossword study and a de-
mographic survey via web browser. The study protocol was
reviewed and approved by MTU Institutional Review Board.

The survey was given to participants at the beginning of
the experiment. The novices were 19.94 £+ 1.5 years old
in average. FEighty-three percent of them rarely or never
solved crossword puzzles, but some of them played other
word games such as Scrabble or Words With Friends. The
experts were 45.07 £ 15.99 years old in average. They re-
ported that they have solved crossword regularly for 16.76
+ 15.35 years and 44 percent of them have participated in
crossword tournaments such as American Crossword Puzzle
Tournament (ACPT).

Materials and stimuli

Six sets of 15 crossword paradigm task problems were given
to participants in this study. The answers were limited to only
a set of four, six and eight letter words. In each trial, we
gave participants a crossword clue along with some randomly
filled letters, as shown in Figure 2. The number of present
letters ranged from zero (no letter cue) to only one missing
letter (almost a complete answer). They had 15 seconds to
solve each trial and only one chance to give an answer.

05

Heighten

Al | o]

Figure 2: Example of the crossword paradigm task

102

Experimental Results and Model Simulation

Data from 198 participants were analyzed in this study. Ac-
curacy was assessed by whether the final set of letters were
exactly correct after the enter key was pressed to confirm
the response, whereas response times were measured from
a starting time (when a participant first saw a trial) until the
participants hit the enter key. Average accuracy and response
time of the crossword experts were 0.76 £ 0.19 (67 from 90
trials) and 4.82 + 2.67 seconds per each trial, respectively.
Meanwhile, a mean of success rate of the novices was 0.53
=+ 0.15 (47 from 90 trials) and an average response time was
6.69 £ 1.88 seconds per each trial. Retrieval times of both ex-
perts and novices were estimated from the starting time until
the first key was pressed (when the participants typed a first
letter to an answer space). An average retrieval time of the
novices was 5.73 & 1.56 seconds, so the time for the simula-
tions of the Novice model was 0.57 (5.73 divided by a search
set size of 10). The time of the experts was 3.13 + 1.01 sec-
onds, then the time for the simulation of the Expert model
was 0.22 (3.13 divided by a search set size of 25). Average
typing speeds of each keystroke of the novices and the experts
were 0.35 seconds and 0.22 seconds, respectively.

Figure 3 shows solving performance across the number of
letter cues for both success rate and response times. It in-
dicates that the experts performed faster and better than the
novices did. Also, both groups of participants performed
better when the number of present letters increased. A one-
way Analysis of Variance (ANOVA) was used to analyze let-
ter cueing effects, which indicated a significant improvement
for both success rates and the response times of both experts
and novices as the number of letter cues increased (p-value
< 0.05).

Model simulation

To simulate data, we compared two model parameter settings
per expertise conditions (Nov=Novice, Exp=Expert), varying
the search set size (10, 10, 25, and 50 for models of Novl,
Nov2, Expl and Exp2, respectively), recovery (0.5, 3, 25
and 100), and retrieval speed (130 ms, 130 ms, 570 ms, 570
ms). We assigned the same value (1072) to smoothing or-
thographic and semantic parameters in order to optimize and
balance solving performances of these two routes. These pa-
rameters increase chances of getting answers that have been
associated to only one item in the memory activation distri-
bution. All other parameters were fixed to the same levels
used in previous simulations. The search set size parameter
impacts the number of highly-active candidates retrieved dur-
ing solution; the recovery parameter affects the probability
that a response can be generated once a memory trace has
been selected, and the retrieval speed affects the time needed
to retrieve a candidate and verify whether or not it is correct.
Retrieval and typing speeds were determined from the experi-
mental results. Reading speed was taken from Ziefle (1998)’s
study regarding an effect of display resolution, which is about
0.33 seconds per word. Then, a solving time of each trial was

Accuracy and response times of the human data and the simulations
for each length and the number of present letters

1.00
Length: 4]
Z 10 Length: 4
] B ength:
075 e g
e g
; :
80504 2
2 1)
> =3
w 7]
~
0.254
0 i 2 3
Present letter
1.00
Length: 6 —
.
e @
© 0.754 7~ %
2
e g
2 2
80504 2
2)
> =3
v 7]
&
0.254
o 1 2 3 4 5 o 1 2 3 4 5
Present letter Present letter
LO0T L ength: 8
en; .
g Az =
VAR Z 10 Length: 8
- » N~ T .
g 0.75 ~7, E
= 4 -8
2 / # b O~ ‘
5] - 2
8 050+ 2 " g, \ [N
Z 2 5- = A
@ 3 o~ N
~ ~ NS
J « S
025 N
-
01 2 3 4 5 6 71 0 1 2 3 4 5 6 7

Present letter Present letter

Expert —#— Novice

wmmm Human = = Simulation

Figure 3: Dots represent means of correct responses and re-
action times and error bars indicate 95% confidence intervals

estimated from Equation 1:

ey

where cl is the total number of words in a clue, frading
represents the reading speed, n is the number of candidate
answers that the model generates before it gets the first an-
swer that fits the pattern, ¢, ievq; 1S the retrieval times of the
novices and the experts, wl is word length, and #y,;e is the
typing speeds of the novices and the experts, which are 0.35
seconds and 0.22 seconds, respectively. We used two model
settings to enable two bracketed models that can account for
different levels of expertise.

Table 1 shows simulation results from the crossword play
model across the four different settings; two novice models
(Novl and Nov2) and two expert models (Expl and Exp2).
The Nov2’s success rate and response times were almost the
same as the novice data, whereas Expl and Exp2 produced
success rates and response times closely related to the expert
data. Model fits were assessed via Root-Mean-Square Error

Tsolving =clx* treading + Nk Lrerrieval + W Tryping

103

Word fragment analysis: Accuracy rate for each word length
Word length: 4

2-letter cues
0.8
a ..-.-_____--
< L .
s -
2
L
30.7-
-
«n
0.6
0 i
Letter cluster
Word length: 6
2-letter cues 3-letter cues
1.04
—
0.8- .
0.6- It
g fnmmeel
© 0.4-
g =
2
9 4-letter cues 5-letter cues
Q1.0+
% .- Tl
0.8+
A= 4
0.6
0.4+
0 1 2 0 i 2
Letter cluster
Word length: 8
2-letter cues 3-letter cues 4-letter cues
1.0+
08 — -:
0.6 - te—-
= £, AT
204- ~=A e
£ ~-a
2
8 S-letter cues 6-letter cues 7-letter cues
3 1.0- — z
7 = vy F T =t
0.8
&4
0.6 -
0.4+
o 1 2 3 o 1 2 3 o 1 2 3
Letter cluster
Expert A Novice = Human = = Simulation

Figure 4: Results for 4, 6, and 8-letter words. Each panel
represents a fixed number of letter cues, and the horizontal
axis represents the effect as the number of clusters increases.

(RMSE), shown Table 1. The Nov2 model was the best fit-
ting model on both accuracy and response times of the novice
data. Meanwhile, Exp2 was the best fitting model in accuracy
and Expl was the best fitting model in response times of the
expert data. However, we chose the Expl model to represent
the expert data, since an average RMSE of the accuracy and

the response times of Exp1 was less than the other. Moreover,
Figure 3 compares the results of Nov2 and Exp1 to the human
data.

Table 1: Model results (mean and standard deviation) and
Root-Mean-Square Errors (RMSE)

Parameter Model Mean (SD) RMSE
Novice Expert

Novl 0.38(0.06) 0.17 0.42

Acc Nov2 0.55(0.05) 0.09 0.26

’ Expl 0.7 (0.04) 0.21 0.1

Exp2 0.77(0.04) 0.28 0.07

Novl 4.71(0.46) 1.58 1.9

Nov2 6.0(0.39) 1.24 22

RTG) ppt 375022) 383 14
Exp2 5.49(0.37) 2.09 1.83

Note: The bold numbers indicate the smallest value in each perfor-
mance.

Effects of number of clusters on completion
accuracy

The number of letter clusters (groups of two or more adjacent
letters) was computed for each orthographic clue. Figure 4
shows means of success rates of each letter cluster for each
word length. Each connected line shows how performance
changed within each cue number and word length condition
as the number of letter clusters increased. Although there
were occasional fluctuations, there were no systematic effects
of the number of letter clusters on either experts and novices,
which was confirmed by a logistic regression and a Chi
square goodness-of-fit test (experts: %2(3) = 6.01,p = .11
and novices: x>(3) = 3.22,p = .36).

The models reasonably replicated human solving abilities
(see Figures 3 and 4), although they somewhat underper-
formed expert performance as a function of number of letters
in the cue. On particular word length/number of cue combi-
nations, the model or the humans saw changes with respect to
number of clusters and these were sometimes shown in both
the model and human data. To the extent that any of these
are systematic, they may have stemmed from the way that for
any particular word, some combinations of letter clues will
do a better job of reducing or eliminating alternative com-
pletions, and these combinations may be covered better or
worse by clusters of letters. Thus, although the number of let-
ters given improves solution performance significantly, nei-
ther the model nor the human data showed systematic effects
of this variable on solution accuracy.

Effects of maximum cluster size on completion
accuracy

The effects of cluster sizes on accuracy are shown in Figure 5.
Similar to the finding with number of clusters, there was little
systematic effect of the size of the largest cluster on solution
accuracy. Participants occasionally performed better when

104

Maximum size of clusters: Accuracy rate for each word length

Word length: 4
2-letter cues 3-letter cues
A\
0.9- AR
\ -~
-~
-~
-~
-~
A
2os-
= -
Q
5
©n 0.7+
0.6 A{:
1 2 3 i 2 3
Maximum cluster size
Word length: 6
2-letter cues 3-letter cues
1.0+
e @
038- el
0.6 *
8047 peh)
= e
£
2
9 4-letter cues 5-letter cues
Q1.0+
& _\ —_— e 2
0.8 - kI
AL I ” A
0.6 -
0.4+
i 2 3 4 5 i 2 3 4 5
Maximum cluster size
Word length: 8
2-letter cues 3-letter cues 4-letter cues
1.0+
—
0.8~ - e —o =
L.
06- " SR
. A A
204- ~Ae =A ke
5 ~A)
-
2
8 S-letter cues 6-letter cues 7-letter cues
1.0 — —
3 o= LS ===
0.8 -
061 AR S
0.4+
1234567 1234567 12345617
Maximum cluster size
Expert A Novice = Human = = Simulation

Figure 5: Accuracy by maximum size of cluster. Within each
panel (that show a different number of cues) each line shows
novice and expert accuracy for different word lengths, as the
maximum size of a cluster increases.

they were given more adjacent letters, such as for two-letter
and four-letter cues of eight-letter words, and in these cases
similar effects were seen for both the model and the data. The
logistic regression and the Chi-square test were conducted to
determine the effects of maximum cluster sizes. The results
indicated that the effects were non-significant on accuracy for

novices (x2(6) = 3.19, p = .78), and marginally significant
for experts (x>(6) = 12.25, p = .057). To the extent that the
effect exists among experts, it showed that smaller maximum
cluster size (which is coupled with greater distribution of iso-
lated letters) tended to lead to better performance, although
this was not always the case in each condition.

Discussion

The goals of this study were to investigate the effect of word
fragments to determine whether humans enjoyed an advan-
tage of using word fragments that were not predicted by a
model using letter-pair representations. We hypothesized that
if higher-order orthographic representations were in use, then
for a given word length and number of presented letters, when
the number or size of word fragments increased, both experts
and novices would improve. The findings from the cross-
word paradigm task suggests that although experts performed
crossword solving better than novices did, and the number of
letter cues influenced the solving performances on both ac-
curacy and response times, the properties of word fragments
we looked at had little impact on performance. Similarly, the
model accounted for effects of expertise, word length, and
stem size, but showed no systematic effects on these proper-
ties of letter clusters. This suggests that, to a first approxima-
tion, orthographic models using letter-pairs are still appropri-
ate in representing word retrieval processes.

Nevertheless, we believe that higher-order representations
may prove useful in understanding more complex and ad-
vanced crossword solving behavior. It may be features as-
sociated with morphological, phonological, and syllabically-
consistent clusters will both provide substantial advantages
for solving, as well as be critical for explaining how long
crossword clues are solved. For example, a typical American-
style puzzle published in a Saturday New York Times puz-
zle will have two or more answers that are 15 letters long
(ONCEINALIFETIME has been used at least 20 times), and
such clues are even more common in cryptic-style crossword
puzzles popular outside the United States. More than 5000
such answers have appeared in print!, and almost all of them
are short multi-word phrases. It is likely that the division
between composing multiple words, and composing a sin-
gle word from multiple meaningful lexical units that fit to-
gether according to grammatical rules is not as clear as it
might seem. Regardless, the representations, processes and
mechanisms a model would require to solve multi-word clues
(ie., word-level features) would be similar to what would be
needed to use syllable or morpheme-level features for single-
word clues, and addressing this problem may help understand
segmentation in reading, listening, and non-latin languages
different rules and practices of segmentation. Consequently,
we believe that it may remain useful to consider whether
pronounceable clusters, syllables, or morphological units can
form features, and to test this in future experiments.

Isee http://www.xwordinfo.com/Fifteen

105

Acknowledgments

The experiment was conducted while KT was a graduate stu-
dent at Michigan Technological University.

References

Dolinsky, R. (1973). Word fragments as recall cues: Role
of syllables. Journal of Experimental Psychology, 97(2),
272-274.

Fudge, E. C. (1969). Syllables. Journal of linguistics, 5(2),
253-286.

Ginsberg, M. L. (2011). Dr. fill: Crosswords and an imple-
mented solver for singly weighted csps. Journal of Artifi-
cial Intelligence Research, 851-886.

Goldblum, N., & Frost, R. (1988). The crossword puzzle
paradigm: The effectiveness of different word fragments
as cues for the retrieval of words. Memory & Cognition,
16(2), 158-166.

Grainger, J., & Van Heuven, W. (2003). Modeling letter
position coding in printed word perception. The mental
lexicon, 1-24.

Horowitz, L. M., White, M. A., & Atwood, D. W. (1968).
Word fragments as aids to recall: the organization of a
word. Journal of Exp. Psychology, 76(2), 219-226.

Klein, G. A. (1993). A recognition-primed decisions (rpd)
model of rapid decision making. In G. A. Klein, J. Orasanu,
R. Calderwood, & C. E. Zsambok (Eds.), Decision making
in action (pp. 138-147).

Mueller, S. T. (2009). A bayesian recognitional decision
model. Journal of Cognitive Engineering and Decision
Making, 3(2), 111-130. doi: 10.1518/155534309x441871

Mueller, S. T., Seymour, T. L., Kieras, D. E., & Meyer, D. E.
(2003). Theoretical implications of articulatory duration,
phonological similarity, and phonological complexity in
verbal working memory. Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 29(6), 1353—-1380.

Mueller, S. T., & Thanasuan, K. (2013). A model of con-
strained knowledge access in crossword puzzle players. In
R. West & T. Stewart (Eds.), The 2013 international con-
ference on cognitive modeling (iccmi2) (p. 275).

Mueller, S. T., & Thanasuan, K. (2014). Associations and
manipulations in the mental lexicon: A model of word-
stem completion. Journal of Mathematical Psychology, 59,
30-40.

Nickerson, R. S. (1977). Crossword puzzles and lexical mem-
ory. In S. Dornic (Ed.), Attention and performance vi (pp.
699-718). Hillsdale, N.J: Lawrence Erlbaum.

Nickerson, R. S. (2011). Five down, absquatulated: Cross-
word puzzle clues to how the mind works. Psychonomic
Bulletin & Review, 18(2), 217-241.

Thanasuan, K., & Mueller, S. T. (2014). Crossword expertise
as recognitional decision making: an artificial intelligence
approach. Frontiers in Psychology, 5. doi: 10.3389/fp-
syg.2014.01018

Toma, M., Halpern, D. E,, & Berger, D. E. (2014). Cognitive
abilities of elite nationally ranked scrabble and crossword
experts. Applied Cognitive Psychology, 28(5), 727-737.

Ziefle, M. (1998). Effects of display resolution on visual
performance. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 40(4), 554-568.

106

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

ACT-R 3D: A 3D Simulation Environment for Python ACT-R

Sterling Somers (sterling@sterlingsomers.com)
Institute of Cognitive Science, 1125 Colonel By Drive
Ottawa, ON K1S 5B6 Canada

Abstract

In this paper I describe an implementation of a time-
synchronous middleware for Python ACT-R and the open-
source robotics simulator, MORSE (Echeverria et al., 2012;
Echeverria, Lassabe, Degroote, & Lemaignan, 2011), an
updated vision system, and an updated motor system, which I
collectively call ACT-R 3D. A new vision system and a crude
body-model robot was added to the MORSE system to
facilitate modelling of affordance-based research on aperture
passage (walking through apertures and rotating shoulders as
needed). Initial experimental results of shoulder rotation are
presented as a proof of concept

Keywords: ACT-R; 3D;
cognitive modeling;

affordances; motor control;

Introduction

ACT-R is typically used to model psychology experiments
in the lab. Relatively little work has been done modelling
complex behavior and ACT-R natively has very limited
architectural components for motor control. The aim of the
project described here was to provide the capacity to model
ACT-R models in dynamic, 3D environments. ACT-R 3D
amalgamates the robotics simulator, MORSE (Echeverria et
al., 2012, 2011), with the Python implementation of ACT-R
in a time-synchronous manner. Along with ACT-R 3D is
introduced a novel vision system for computer vision in 3D
environments, and a motor control system to control a
humanoid software robot. As a proof of concept, a model of
aperture-passage affordance research is presented. The
aperture-passage research has participants walk through
apertures (doorways) of various sizes and then measures
their degree of shoulder rotation to speculate about
cognitive processing while performing these tasks (Higuchi,
Seya, & Imanaka, 2012; Stefanucci & Geuss, 2010;
Wagman & Malek, 2007; Warren & Whang, 1987).

Background

Although ACT-R has mainly been used for modelling
human behavior in psychology experiments, there has been
some attempts to model human performance in complex
tasks such as driving (Salvucci, Monk, & Trafton, 2009),
wayfinding (Trafton & Harrison, 2011), or piloting aircraft
(Somers & West, 2013), to name a few. The present work is
most similar to ACT-R Embodied (ACT-R/E) which uses
ACT-R to control a robot in real-time (Trafton et al., 2012).
The aim of the present work was to develop a time-
synchronous ACT-R model with a tightly-controlled motor
module, sufficient for performing motor control for
affordance-based research. In particular, the author used

107

ACT-R 3D to model aperture-passage work by Warren and
Whang (Warren & Whang, 1987), where they found that
participants rotate relative to the ratio between the width of
the aperture and their frontal body width (i.e. shoulder
width).

ACT-R/E (Trafton & Harrison, 2011) uses ACT-R as a
robot controller and uses the visual system, SECS (Harrison
& Schunn, 2003). SECS has three main systems: visual,
manipulative, and configural. The visual system uses
fiducial and face trackers to provide object identification for
video camera images. The manipulative system represents
objects as 3D geons (stored in a database) as well as
positions and orientation information. The manipulative
system also supports spatial transformations, such as
rotations in a manner similar to that proposed by Shepard
and Metzler (Shepard & Metzler, 1971), supporting motor
planning.

ACT-R/E also extends the basic ACT-R motor system.
Although somewhat vague in description, Trafton and
Harrison (2011) suggests that the motor system maintains
real-time limb representations and restricts movements
based on muscle groups. It is also suggested by Trafton et
al. (Trafton, Harrison, Fransen, & Bugajska, 2009) and by
Harrison and Trafton (2010) that motor control is handled
external to the ACT-R architecture once ACT-R selects a
motor command. For example, given the description by
Harrison and Trafton (Harrison & Trafton, 2010), once a
representation in the manipulative module is associated with
the objects semantic representation, the central production
system in ACT-R issues an appropriate grasping command
to the robot controller, which carries out the grasp. ACT-
R/E has been used in a variety of models. Harrison and
Trafton (2010) used ACT-R/E to model response times of
grasp actions, Trafton and Harrison (2011) used it to model
gaze-following and level-one perspective taking, and SECS
(the spatial representation system used in ACT-R/E) was
used to model an egocentric navigation task (Harrison &
Schunn, 2003).

The present work is a novel implementation comprised of
an updated version of Python ACT-R (Python 3), Mobile
OpenRobots Simulation Engine (MORSE) (Echeverria et
al., 2012, 2011), and a custom middleware responsible for
time synchrony and communication between ACT-R and
MORSE. The remainder of this paper will describe the
system, and a proof-of-concept experimental task (as well as
accompanying initial results).

System
The following section describes MORSE and ACT-R 3D.

MORSE

MORSE simulator is a robotics simulator based in Blender!
(a free, open-source 3D creation studio). MORSE comes
with a number of standard sensors and actuators that are
pairable to a number of robotic bases. Custom
environments, robots, and sensors can be developed in
Blender and incorporated into simulations. MORSE is
written in Python 3 and the Python library supports full
control of robots through Python script. Communication
between the robot, sensor, actuators; and the control
program is handled through sockets. Models built for ACT-
R 3D function as a simulation control script, albeit complex
ones. At the time of development, MORSE was at version
1.2. The current version (version 1.4) has a number of
advances but should be largely supported by ACT-R 3D.

ACT-R 3D

Python ACT-R Python ACT-R is a re-implementation of
ACT-R for the Python programming language (Stewart &
West, 2005). Because of the constraints of scripting with
MORSE, Python ACT-R was updated to Python 3 for this
project. The overall structure and design is largely the same
as originally described.

Middleware The middleware between MORSE and ACT-R
is designed primarily to support time-synchrony between
the ACT-R simulation loop and MORSE. The design of the
time-synchrony is inspired by Somers and West (2013),
who, as part of a larger project, created a middleware
between a popular flight simulator and Python ACT-R. A
second major component of the middleware is that it
facilitates communication between the ACT-R and MORSE.

In the current implementation, the middleware is designed
to run both MORSE and ACT-R at 100 simulated-Hz, with
no constraints towards real-time simulation. Although a
redundant real-time mode is available, in general this project
differs from previous work such as ACT-R/E (Trafton &
Harrison, 2011) which control robots in real-time. The
reasoning behind this is that timing is critical for prediction.
Since timing is undoubtably one of the biggest behavioural
measures, it is important that timing is as accurate as
possible. To avoid any time delays for processing of
complex information, that might occur in a computer vision
system, or simply even communication time delays,
MORSE/ACT-R middleware works in a fick-tock fashion.
First the ACT-R system ticks 10 ms of simulation time,
sends information get and set requests to the middleware,
then, in turn, runs a corresponding 10 ms fock in MORSE.
At the end of a tick-tock cycle, 10 ms of simulation time has
elapsed on both simulators. Importantly, any amount of real-
time could have elapsed during the tick-tock cycle. The aim
is not to have an efficient robot controller but to facilitate
prediction of behavioural measures.

!https://www.blender.org/

108

Geometric Camera A custom camera class, Geometric
Camera, was developed, for MORSE, for the purposes of
this project. The intention behind the camera is to provide a
single, structured, retinotopic description of the scene from
the perspective of the agent.

The camera outputs a dictionary description of the entire
scene as visible within its field of view. The dictionary is
primarily organized by screen-coordinate y-values (where y
is the vertical plane). Each y-value is organized by object
label for each object visible to the camera. These labels are
not semantically informative; they simply specify different
3D objects in the scene. To each label is associated the
object’s extension in x-values (denoting the object’s edges
at that y-value), and an approximate egocentric distance to
the edge. The accuracy of the camera can be passed as
parameters, though there can be significant speed/accuracy
trade-offs. The overall output is, therefore, a dictionary that
describes the egocentric edges of every object visible to the
camera. That information is stored privately on the ACT-R
side and only accessible through the vision module.
Modelers are free to develop their own vision modules to
access the visual information to suit their needs.

Vision Module The vision module developed for this
project assumes an input from the Geometric Camera
(described above). The control of timing, error rates, etc.,
happen entirely on the ACT-R side.

The agent can only access visual information through
requests. However, because the data is largely unstructured,
methods for detecting ‘features’ relevant to the project were
developed. A simple obstacle detector provides the location
of any visible obstacles. Because the task is to walk through
a doorway-like aperture an openings detector was also
developed. The openings detector finds features like doors,
holes in walls, or openings between multiple objects. The
output of the openings detector is not semantically laden.
That is, the agent will not be aware of whether the opening
is as large as a doorway or as small as a nail hole. The agent
model must determine a means of attending to appropriate
features. One of the main goals of modelling the aperture-
passage task, is that the agent is not semantically informed
about its environment. Absolutely no semantic labels are
used in the vision system.

The vision module is based on the SOS Vision System
(West & Emond, 2002, 2005) in Python ACT-R. Although
it is far more complex in the terms of the type of data it
deals with, fundamentally the information requests work the
same. Requests to the vision system are parameterized in
order to filter information. For example, when given a
request for an opening, chunks that describe the minimum
size of the opening are used as parameters for the request. If
multiple features match the request (e.g. there are multiple
openings), the returned chunk is selected based on a
weighted random choice, weighted by a salience factor, as
described by West and Emond, (2002).

Motor Module The motor module is one of the features of
ACT-R 3D that sets it apart from ACT-R/E (Trafton &
Harrison, 2011). While perhaps similar at a functional level
(controls limbs, restricts movement), the implementation is
novel.

The motor module maintains a hierarchical, symbolic and
numerical representation of the body parts (currently only
the ones being modelled), that is synchronized with the 3D
body-model (robot). For each body part, there are
representations of their degrees of freedom. At present the
degrees of freedom are represented as max/min values on an
axis of rotation. The motor module maintains an internal
representation of the maximum and minimum rotations
performed by an agent. As the agent moves its body, the
maximum and minimum achieved rotations are updated and
stored in declarative memory. At a functional level, this
memory of body postures can be considered an
implementation of body-schema that are theorized to be
used in motor planning (Coslett, Buxbaum, & Schwoebel,
2008; J Schwoebel, Coslett, & Buxbaum, 2001; John
Schwoebel & Coslett, 2005).

The motor module in ACT-R 3D also includes
functionality to provide proprioceptive feedback to estimate
3D body dimensions in a given posture. Evidence for this
capability comes from a number of sources (Carello &
Turvey, 2004; Stefanucci & Geuss, 2010; Wagman &
Taylor, 2005; Warren & Whang, 1987), though anecdotally
this ability is intuitively obvious: one does not try to fit their
body in a 1 cm? hole. We can, at the very least, make crude
judgments of body volume, and the above cited suggest the
volumetric representations are fairly accurate. How exactly
the volumetric representations are achieved are currently
beyond the scope of motor module and is implemented,
quite simply, with a measure of the agent’s bounding box.
The bounding box values are associated and stored with the
body schema at the time of storage into declarative memory.

Evaluation

ACT-R 3D can be evaluated on its ability to model behavior
and make useful predictions of that behavior. This section
outlines some preliminary work modelling aperture-passage
affordance research.

Aperture-Passage Affordance

The term ‘affordance’ was first used as a noun by Gibson
when he presented an approach to Psychology, Ecological
Psychology (1986). An affordance can be thought of as a
property (or a set of properties) of the environment? that an
agent uses in order to determine what actions are available.
Action, of course, is a broad category and there is empirical
research in support of affordances in a large number of
domains including grasping (Tucker & Ellis, 1998),
reaching (Carello, Grosofsky, Reichel, Solomon, & Turvey,
1989), stair-climbing (Warren, 1984), a number of sports
abilities (see Fajen, Riley, & Turvey, 2009), and relevant

2 Their ontological status varies, depending on the author.

109

here, aperture passage (Warren & Whang, 1987). One of the
central concepts in affordance research is Gibson’s notion of
direct perception.

Direct perception is the claim that our actions are not
mediated by strong, internal, sensory-based, semantically-
laden representations of the environment. Instead, direct
perception holds that actions are presented to us in the
environment when they are in agreement with our action
capabilities. For example, a cup is graspable because its
shape and size agrees with the action capabilities of our
hands. Realizing an action is a perceptual process and
actions are said to be directly perceived.

A common theme in empirical ecological psychology
research is to identify a body-scaled unit that is used by the
perceptual system to perceive an affordance directly.
Researchers identify pi-numbers (m) that relate some
dimension of the environment (£) with some dimension of
the body (4), as a ratio:

T =E/A.

The present work is a first attempt at modelling the classic
affordance-passage work by Warren and Whang (1987).
Warren and Whang performed a series of experiments
aimed to show that aperture passage is directly perceived. In
the experiment relevant here, they had participants walk
through apertures of different widths, at different speeds
(fast or slow). Participants were grouped according to size:
small or large. Unsurprisingly, smaller agents rotated their
shoulders less than large agents when passing through the
same aperture. However, when expressed as an aperture-
width to shoulder-width ratio (4/S), the group differences
were eliminated, suggesting that the absolute degree of
shoulder rotation is modulated by the A4/S ratio. Warren and
Whang were able to establish a critical ratio (1.3) at which,
regardless of size, participants would change from
maintaining a forward posture, to a posture that included
shoulder rotation.

Model

The aperture-passage agent is inspired by work on steering
control in a flight-simulator in ACT-R (Somers & West,
2013) in that it uses the SGOMS (West & Nagy, 2007)
modelling framework for modelling complex behavior and
both bottom-up and top-down visual modules. The
simulation environment reflects the experimental setup in
Warren and Whang (1987) and is illustrated in Figure 1.

The agent is illustrated in Figure 2. The agent is a low-
fidelity humanoid. The robot consists of a rectangular
cuboid base mesh with a single armature that, in turn,
consists of: a rectangular cuboid pelvic region, a rectangular
cuboid torso, a spherical joint between the pelvic region and
the torso (not visible) two rectangular cuboid shoulder, two
spherical shoulder joints, two cylindrical upper arm
segments, a spherical neck joint, a spherical head, and the
Geometric Camera. Figure 2 is a polygon reduced version
for quicker graphics processing. Each segment of the
armature has full degrees of freedom. Although Blender

does support inverse kinematic solvers for armature control,
there are no kinematic solvers associated with any of the
armatures in this project. All joint limb control and position
representation is controlled by ACT-R 3D, synchronously,
as described above. Collision sensors are placed on the
shoulder joint, the shoulders, the upper arm segments, and
the torso.

Figure 1: A Snapshot of the modelling environment. Two
wall segments create an aperture. The wall segments are
moved to create apertures of different sizes.

Figure 2: A snapshot of the software robot used in this
project. The bottom cuboid represents the agent’s legs.

Vision Following the work of Somers and West (2013) a
bottom-up vision system was implemented that loops
constantly, in this case, looking for obstacles. The bottom-
up vision system shares a buffer with the top-down vision
system and both also share the main vision module. The
buttom-up vision system is implemented using a production
system® and loops continuously, extracting information from
the environment. The bottom-up vision system is
constrained by the top-down vision system which is
controlled via the central production system. Top-down
vision takes priority over the vision module and, as a result,
the bottom-up vision system must wait until any top-down
requests are complete before it can continue.

3 Note that Python ACT-R allows for production in
modules and this should be thought of as an alternative way
of programming modules, not a departure from standard
ACT-R.

110

SGOMS Since an ACT-R implementation of SGOMS has
been detailed in (Somers & West, 2013), only a limited
description will be provided here. SGOMS --Socio-technical
GOMS (Card, Moran, & Newell, 1983)—is a framework for
modeling complex tasks and can be implemented in ACT-R.
In its ACT-R implementation it uses a hierarchy of buffers
that represent the levels of control in a complex task. The
hierarchy consists of a planning unit (highest, slowest level
of control), the unit task, operators (realized as productions),
and methods (compiled productions). The model presented
here uses SGOMS to facilitate task interruption.

Design The model can perhaps be best described as going
through four phases. The first phase is actually a pre-
experiment phase in which the agent stores information
about its body size in different postures. Essentially, in this
first phase, the agent rotates its shoulders in each direction
multiple times, adding the body-schema to declarative
memory.

During the second phase, the agent decides whether it can
pass through the aperture at all. This is achieved with the
vision system. As described above, the opening detector is
takes dimensions as parameters and filters openings that are
too small to accommodate. There are potentially two steps
to this phase. The first step involves judging the passability
of the opening relative to the agent’s present (at the
beginning of the simulation) posture. If that fails, a second
step is taken. The agent then attempts to recall a body-
schema that meets the constraints of the task (e.g. affords
walking, involves rotating the shoulders). If a body-schema
is recalled (in this case, a posture with complete rotation
either to the left or right should be selected), then the
dimensions of the agent in that posture is used as a
parameter to the visual system’s openings detector. If there
is a match, that means that at maximum rotation, the agent
could pass through the aperture. The agent uses the body-
schema as a goal for the motor module at time of passage.

During the third phase the agent simply walks towards the
aperture. It is assumed that there is very little top-down
vision happening. Instead, the bottom-up vision system is
cycling for obstacle detection. This phase continues until the
agent detects one or both of the walls on either side of the
aperture. The obstacle detection causes a task interruption
using the SGOMS framework in a similar manner to that
described in (Somers & West, 2013). The obstacle alert
ultimately results in the fourth phase, rotation control.

Since no data on the kinematic control of rotation is
available in the literature, an instantancous and constant
rotation velocity is assumed. Rotation continues until the
vision system detects an opening larger than the agent’s
frontal width (as the agent rotates its shoulders, its frontal
width reduces to a point where it is smaller than the width of
the opening, resulting in the opening being detected).

Simulations The experimental conditions (including
participant sizes) were created as accurately as possible

based of the description by Warren and Whang (1987).
There were 5 agents per group condition (large, small) and
agent sizes were chosen randomly from a normal
distribution around the reported (human) means for each
group (40.4 cm, SD = 2.0 cm for small; and 48.4 cm, SD =
0.7 cm for large). Agents walked at the average speed per
group as reported in Warren and Whang: 1.29 m/s and 1.61
m/s for the normal and fast conditions (respectively) in the
small group; and 1.28 m/s and 1.77 m/s for the normal and
fast conditions (respectively) in the large group. Each
software participant did 60 trials in each condition, for each
aperture.

Because the original data from Warren and Whang’s
original paper was not available, only a qualitative visual
comparison is presented. A visual comparison between the
human data in Warren and Whang (1987) is presented in
Figures 3 (normal speed) and Figure 4 (fast speed).

—e— Human-Small
—s—Human-Large
—=— ACT-R-Small

—=— ACT-R-large

N

Rotation (Deg.)

0 45 50 55 60 65 70 75 80
Aperture Width (cm)

Figure 3: Rotation angle by aperture width for small
(blue) and large (red) agents. Gray lines represent human
data. Data is from the ‘normal’ speed condition.

—e—Human-5mall
—e—Human-Large
—=—ACT-R-Small

&0 —=— ACTR-R-Large

A\

Rotation (Deg.)

0 45 50 55 60 65 70 75 80
Aperture Width (cm)

Figure 4: Rotation angle by aperture width for small
(blue) and large (red) agents. Gray lines represent human
data. Data is from the ‘fast’ speed condition.

In lieu of comparative statistics, an ANOVA was ran on
the model data to see if the main effects described in Warren
and Whang’s original experiment were replicated. Just as

11

for the human data, participants rotate more for smaller
apertures (main effect of aperture), larger participants
rotated more than smaller participants (main effect of group)
(ps < 0.01). The effect of speed, however, had the opposite
effect relative to the findings in Warren and Whang such
that the model rotated less when walking at a faster pace
(also main effect, p < 0.01). However, as illustrated in
Figure 5, the group difference in the speed condition is
dominated by a single aperture (40 cm).

\

—e— Normal

Rotation (Deg.)

—a—Fast

40 50 60

Aperture Width (cm)

Figure 5: Rotation angle by aperture width for the normal
(blue) and fast (red) speed conditions. Error bars represent
95% confidence intervals.

Discussion

ACT-R 3D is designed to support research that involves
complex, dynamic environments. Although the model of
aperture-passage as presented here has many open questions
(some of which have been answered in further analyses,
forthcoming), the model, even in its early stages, has offered
strong insight to the domain of aperture-passage (though,
admittedly it raises more empirical questions than it
answers). Forthcoming work will see the model performing
similar experiments. Currently it also models aperture
passage while carrying an object (Higuchi et al., 2012). Also
under development with ACT-R 3D is an embedded driving
model, that uses the geometric camera embedded in a
simulated car, to drive around a track. Because it uses the
Blender simulation engine, a large variety of simulation can
potentially be developed in ACT-R 3D for applied cognitive
research.

References

Card, S. K., Moran, T. P., & Newell, A. (1983). The
keystroke level model for user performance with
interactive systems. Communications of the ACMI,
23,396-410.

Carello, C., Grosofsky, A., Reichel, F. D., Solomon, H. Y.,
& Turvey, M. T. (1989). Visually Perceiving What is
Reachable. Ecological Psychology, 1(1), 27-54.
http://doi.org/10.1207/s15326969eco0101 3

Carello, C., & Turvey, M. T. (2004). Physics and
Psychology of the Muscle Sense. Current Directions

in Psychological Science, 13(1), 25-28.
http://doi.org/10.1111/j.0963-7214.2004.01301007.x

Coslett, H. B., Buxbaum, L. J., & Schwoebel, J. (2008).
Accurate reaching after active but not passive
movements of the hand: Evidence for forward
modeling. Behavioural Neurology, 19(3), 117-125.
http://doi.org/10.1155/2008/972542

Echeverria, G., Lassabe, N., Degroote, A., & Lemaignan, S.
(2011). Modular open robots simulation engine:
MORSE. In 2011 IEEE International Conference on
Robotics and Automation (pp. 46-51). IEEE.
http://doi.org/10.1109/ICRA.2011.5980252

Echeverria, G., Lemaignan, S., Lacroix, S., Karg, M., Koch,
P., Lesire, C., & Stinckwich, S. (2012). Simulating
Complex Robotic Scenarios with MORSE. In
SIMPAR (pp. 197-208).

Fajen, B. R., Riley, M. A., & Turvey, M. T. (2009).
Information, affordances, and the control of action in
sport. [International Journal of Sport Psychology,
40(1), 79-107.

Gibson, J. J. (1986). The ecological approach to visual
perception. Hillsdale, NJ: Erlb.

Harrison, A. M., & Schunn, C. (2003). ACT-R/S: Look Ma,
no “cognitive map”! In Proceedings of the Fifth
International Conference on Cognitive Modeling (pp.
129-134). Bamberg, Germany: Universitats-Verlag
Bamberg.

Harrison, A. M., & Trafton, J. G. (2010). Cognition for
action: an architectural account for “grounded
interaction.” Proceedings of the 32nd Annual
Conference of the Cognitive Science Society (CogSci
2010),200-205.

Higuchi, T., Seya, Y., & Imanaka, K. (2012). Rule for
Scaling Shoulder Rotation Angles while Walking
through Apertures. PLoS ONE, 7(10), 1-8.
http://doi.org/10.1371/journal.pone.0048123

Salvucci, D. D., Monk, C. A., & Trafton, J. G. (2009). A
Process-Model Account of Task Interruption and
Resumption: When Does Encoding of the Problem
State Occur? In Proceedings of the Human Factors
and Ergonomics Society 53rd Annual Meeting (pp.
799-803). Santa Monica, CA: Human Factors and
Ergonomics Society. Retrieved from
http://pro.sagepub.com/content/53/12/799.short

Schwoebel, J., & Coslett, H. B. (2005). Evidence for
Multiple, Distinct Representations of the Human
Body. Cognitive Neuroscience, 17(4), 543-553.

Schwoebel, J., Coslett, H. B., & Buxbaum, L. J. (2001).
Compensatory coding of body part location in
autotopagnosia: Evidence for extrinsic egocentric
coding. Cognitive Neuropsychology, 18(4), 363-381.

Shepard, R. N., & Metzler, J. (1971). Mental Rotation of
Three-Dimensional Objects. Science, 171(3972), 701—
703. http://doi.org/10.1126/science.171.3972.701

Somers, S., & West, R. (2013). Steering Control in a Flight
Simulator Using ACT-R. In R. L. West & T. C.
Stewart (Eds.), Proceedings of the 12th International

112

Conference on Cognitive
Carleton University.

Stefanucci, J. K., & Geuss, M. N. (2010). Duck! Scaling the
height of a horizontal barrier to body height.
Attention, Perception & Psychophysics, 72(5), 1338—
49. http://doi.org/10.3758/APP.72.5.1338

Stewart, T. C., & West, R. L. (2005). Python ACT-R: A
New Implementation and a New Syntax. In 12t
Annual ACT-R Workshop.

Trafton, J. G., & Harrison, A. M. (2011). Embodied Spatial
Cognition. Topics in Cognitive Science, 3(4), 686—
706. http://doi.org/10.1111/j.1756-8765.2011.01158.x

Trafton, J. G., Harrison, A. M., Fransen, B. R., & Bugajska,
M. D. (2009). An embodied model of infant gaze-
following. International Conference of Cognitive
Modeling, (2003).

Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello II,
F. P., Khemlani, S. S., & Schultz, A. C. (2012). ACT-
R/E: An embodied cognitive architecture for Human-
Robot Interaction. Journal of Human-Robot
Interaction, 1(1), 78-95.

Tucker, M., & Ellis, R. (1998). On the relations between
seen objects and components of potential actions.
Journal of Experimental Psychology. Human
Perception and Performance, 24(3), 830—46.

Wagman, J. B., & Malek, E. A. (2007). Perception of
Whether an Object Can Be Carried Through an

MOdelling. Ottawa:

Aperture Depends on Anticipated Speed.
Experimental Psychology (formerly “Zeitschrift Fiir
Experimentelle Psychologie”), 54(1), 54-61.

http://doi.org/10.1027/1618-3169.54.1.54

Wagman, J. B., & Taylor, K. R. (2005). Perceiving
Affordances for Aperture Crossing for the Person-
Plus-Object System. Ecological Psychology, 17(2),
105-130. http://doi.org/10.1207/s15326969eco01702_3

Warren, W. H. (1984). Perceiving affordances: visual
guidance of stair climbing. Journal of Experimental
Psychology. Human Perception and Performance,
10(5), 683-703.

Warren, W. H., & Whang, S. (1987). Visual guidance of
walking through apertures: body-scaled information
for affordances. Journal of Experimental Psychology.
Human Perception and Performance, 13(3), 371-83.

West, R. L., & Emond, B. (2002). SOS: A Simple Operating
System for modeling HCI with ACT-R. In Seventh
Annual ACT-R Workship. Pittsburg, PA.

West, R. L., & Emond, B. (2005). The Environment as
Theory: An Example Using the ACT-R / SOS
Environment. Proceedings of the Sixth International
Conference on Cognitive Modeling, 398-399.

West, R. L., & Nagy, G. (2007). Using GOMS for Modeling
Routine Tasks Within Complex Sociotechnical
Systems : Connecting Macrocognitive Models to
Microcognition. Joural of Cognitive Engineering and
Decision Making, 1(2), 186-211.
http://doi.org/10.1518/155534307X232848.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Efficient Parameter Estimation of Cognitive Models for Real-Time Performance
Monitoring and Adaptive Interfaces

Christopher R. Fisher (christopher.fisher.27.ctr @us.af.mil)
711" Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA

Matthew M. Walsh (mmw188 @ gmail.com)
Tierl Performance Solutions, Covington, KY, USA

Leslie M. Blaha (leslie.blaha @pnnl.gov)
Visual Analytics, Pacific Northwest National Laboratory, Richland, WA, USA

Glenn Gunzelmann (glenn.gunzelmann @us.af.mil) & Bella Veksler (bellav717 @gmail.com)
711" Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA

Abstract

Real-time monitoring provides an opportunity to examine the
temporal dynamics of cognition, predict future behavior, and
implement adaptive interfaces designed to mitigate declining
performance. However, real-time monitoring poses a practical
challenge because current parameter estimation methods are
prohibitively slow, and real-time monitoring requires param-
eters to be estimated repeatedly as new data arrive. We de-
veloped a real-time parameter estimation method that involves
storing pre-computed predictions in a distributed array and us-
ing it as a large look-up table. We term this method the Pre-
computed Distributed Look-up Table (PDLT). We applied the
PDLT to an ACT-R model of the psychomotor vigilance test.
PDLT estimates model parameters in just over 1 second with
accuracy comparable to that of a much slower simplex method.
We discuss methods for reducing the volatility of parameter es-
timates and the potential to scale up the PDLT method to more
complex models and tasks.

Keywords: ACT-R; Psychomotor Vigilance Test; Fatigue; Pa-
rameter Estimation; Real-Time Monitoring

Introduction

Performance often declines as a result of various cognitive
modifiers or stressors (fatigue, load, etc.; Gluck & Gunzel-
mann, 2013). In contrast to raw performance metrics, such
as mean reaction time, cognitive models provide a principled
method for understanding and predicting performance decre-
ments because they formalize the cognitive processes that
underlie performance. Moreover, because cognitive models
specify the mechanisms underlying performance, predictions
from cognitive models are more likely to show greater gener-
alization across tasks compared to performance metrics. For
these reasons, cognitive models have the potential to play a
prescriptive role in the development of adaptive interfaces
designed to mitigate declining performance. When a per-
formance decrement is predicted, an adaptive interface may
compensate, for example, by increasing the salience of cues,
recommending a multitasking strategy, or prescribing a pe-
riod of rest (e.g., Rouse, 1988).

Standard approaches to model fitting are ill-suited for
implementing cognitive model-based adaptive interfaces, as
they often involve pooling data across subjects and are con-
ducted post-hoc. The practice of pooling data neglects mul-
tiple sources of variation in performance, resulting in poor

113

individual user prediction and decreased efficacy of adaptive
interfaces. For example, performance varies from individual
to individual, as well as during a task performed by the same
individual. Moreover, performance decrements might be at-
tributable to several causes rather than a single cause, lead-
ing to additional variation across individuals and situations.
Post-hoc model fitting is problematic because it precludes the
ability to predict and mitigate cognitive modifiers.

In contrast, real-time monitoring provides the opportunity
to examine variation in cognitive activity attributable to in-
dividual differences and changes caused by cognitive modi-
fiers as they unfold (Wilson & Russell, 2003). Once param-
eterized, a cognitive model can make individualized perfor-
mance predictions, which in principal could be used to antic-
ipate future performance breakdowns. Individualized inter-
ventions could be administered to effectively mitigate perfor-
mance decrements. With the exception of very simple models
in intelligent tutoring systems (Corbett & Anderson, 1994),
this application of cognitive models has not been realized be-
cause of computational limitations in model fitting.

An important challenge to overcome in using real-time
monitoring is increasing the speed with which model param-
eters can be updated with incoming data. The primary reason
for the reliance on post-hoc model fitting is practical: many
cognitive models require computationally intensive simula-
tions to generate predictions from a given set of parameters,
and the best fitting parameters are often not known in ad-
vance. Thus, the parameters must be calibrated to the data
using an exhaustive grid search or a search algorithm. In both
cases, the process of calibrating the model to data can require
hundreds or even thousands of processor hours on High Per-
formance Computing resources (Harris, 2008), thereby ren-
dering real-time monitoring impractical.

As a first step toward using real-time monitoring and adap-
tive interfaces, we developed a real-time parameter estimation
method for quickly and accurately obtaining maximum like-
lihood estimates for simulation-based cognitive models. We
termed this method Pre-computed Distributed Look-up Table
(PDLT). As its name implies, this method functions much like
a large look-up table in which predictions are pre-computed

and stored for later use, so they can be evaluated in parallel
during a real-time monitoring task. As such, nearly all of the
computational burden is offloaded prior to the experiment, al-
lowing for the possibility of real-time monitoring.

In the following section, we provide a detailed description
of the PDLT method. Next, we describe two simulations us-
ing an ACT-R model of the psychomotor vigilance test. The
first simulation assessed the speed of the PDLT with different
sampling resolutions and amount of data. The second simu-
lation was designed to compare the speed and accuracy of the
PDLT to the simplex method.

Pre-Computed Distributed Look-up Table

A wide variety of methods exist for parameter estimation, in-
cluding grid search, the simplex algorithm (Nelder & Mead,
1965), and a large class of algorithms based on principles
of biological evolution (Gen & Cheng, 2000). Each method
can be defined as a point in trade-off space in which speed
is sacrificed for accuracy. However, even with the benefit of
distributed computing, these methods are prohibitively slow
for real-time monitoring. The computational bottleneck can
be attributed to (1) the reliance on computationally intensive
simulation, and (2) the repeated evaluation of similar portions
of the parameter space. Together, these factors greatly limit
the speed of parameter estimation.

Our goal in developing the PDLT method was to minimize
the speed-accuracy trade-off inherent in the aforementioned
methods. Our solution was to pre-compute the predictions
associated with plausible parameter combinations and store
these predictions in a distributed look-up table for later use. A
clear advantage of this approach is that it drastically reduces
the computational burden during a real-time monitoring task.
A related advantage is that pre-computation allows the PDLT
to easily scale up to more complex models.

The PDLT method, displayed schematically in Figure 1,
entails the following three steps:

Step 1. As represented by the top distribution, the first
step is to define a distribution over the allowable parameter
space ®, from which parameter combinations 0 are sampled.
For illustrative simplicity, we display a unidimensional dis-
tribution over the parameter space. However, a distribution
of any dimensionality can be used. The purpose of the pa-
rameter distribution is to sample plausible values of 6 with a
high probability. The distribution of parameters should be in-
formed by a combination of theory and parameters obtained
from previous studies. The choice of sampling resolution will
depend on the the desired speed and accuracy as well as the
goals of the application. Accuracy depends on the selected
sampling resolution relative to the spread of the parameter
distribution. A more granular sampling resolution will suf-
fice if the goal is to identify qualitative patterns of behavior
or cognition. However, a higher sampling resolution might be
required if the goal is to generate predictions because small
quantitative errors may become larger and larger the further
out the predictions are extended.

114

o€—

t
N

RT RT

| |

Store Model Predictions

Figure 1: A schematic of the PDLT method. At the top, a
distribution is defined over the parameter space. In the mid-
dle, predictions are simulated from the model using specific
parameters. At the bottom, the predictions are summarized
with a statistic and stored in a distributed look-up table.

Step 2. Simulated data are generated from the model for
each 0, and predictions are summarized with a statistic. The
middle level of Figure 1 indicates that the behavioral output
of our model is a reaction time (RT) distribution. In general,
a variety of statistics can be used, including means, propor-
tions, quantiles, and kernel density functions.

Step 3. The statistics are stored for later use in any data
structure necessary for a given application. Once the dis-
tributed arrays are stored, steps 1 and 2 can be omitted in
future applications unless the parameter distribution requires
modification due to poor model fit.

Evaluation

We performed two simulations using an ACT-R model of the
psychomotor vigilance test (PVT). In the first simulation, we
examined the speed of the PDLT method as a function of sam-
pling resolution and the number of trials to which the model
was fit. In the second simulation, we validated the PDLT
method with a parameter recovery study comparing its ac-
curacy to that of the simplex method. Note that although we
demonstrate the PDLT on the PVT, the method will extend to
most simulation-based cognitive models and tasks.

Common Methods
Hardware

Simulations were performed on a cluster of four Mac Pro
computers, each with 16 3.0 GHz cores and 32 GB RAM.

Software

Parameter recovery simulations were programmed in Julia
0.4, a fast, high-level, scientific computing language avail-
able via an open source MIT license (Bezanson et al., 2014).

Task

We used the PVT (Dinges & Powell, 1985) to assess the ade-
quacy of PDLT for real-time parameter estimation. The PVT
is an ideal task for testing real-time parameter estimation as a
proof of concept because of its relative simplicity and its sen-
sitivity to changes in fatigue occurring within 2 to 5 minutes
(Loh et al., 2004). The PVT is a simple 10-minute detection
task that requires subjects to respond as quickly as possible
once the stimulus appears on a test device. The stimulus ap-
pears after a random 2-10 sec inter-stimulus interval (IST). RT
distributions from the PVT are empirically rich and are often
used to examine the effects of sleep deprivation and fatigue
on sustained attention (Lim & Dinges, 2008). A hallmark of
fatigue is an increase in the mean, variance, and skew of the
RT distribution. Furthermore, an increase in both false starts
(RTs before or within 150 ms of stimulus onset) and lapses
(RTs > 500 ms) is typically observed as fatigue increases.

Model

We used an ACT-R model of the PVT (Gunzelmann et al.,
2009) to demonstrate the use of the PDLT method for two
reasons. First, the PVT is of practical relevance for real-time
monitoring as it is sensitive to fatigue due to sleep depriva-
tion (Walsh et al., 2014) and time on task (Veksler & Gun-
zelmann, Under Review). Second, the model has been vali-
dated as a plausible account of fatigue decrements in the PVT
(Gunzelmann et al., 2015). The model posits that the PVT
performance can be characterized with three productions: (1)
wait for the stimulus to appear; (2) attend to the stimulus;
and (3) respond to the stimulus. During each production cy-
cle, a production is selected stochastically according to partial
matching between production rules and the internal and exter-
nal conditions represented by the model. This partial match-
ing between productions and conditions allows false starts to
occur with some low probability. Two parameters are princi-
pally responsible for the probability of production selection—a
utility scalar (Us) and a utility threshold (Ur). Eq. 1 provides
a formal representation of the production utility:

Uij = Us(U; — MMP;j) +¢ 1))
U;j is the utility of production i in state j, Us is the utility
scalar, U; is the stored utility for production i, MMP;; is the
mismatch penalty for production i in state j, and € is logisti-
cally distributed noise. A value of U;; is assigned to matches,
and a value of 0 is assigned to mismatches, yielding a sym-
metrical payoff matrix. An important feature of the payoff
matrix is that the mismatch penalty ensures that the incorrect
production is enacted with low probability. The production
with highest utility is selected and enacted if its utility ex-
ceeds the utility threshold, Ur:

115

Production = max(U;;) if max(U;j) > Ur (2)

In the event that no production utilities exceed the utility
threshold, no production is enacted, resulting in a microlapse.
When a microlapse occurs, utility in Eq. 1 is decremented by
a scalar, FPy,.. Us = Us-FP;.. The likelihood of micro-
lapses increases in subsequent production cycles. This leads
to behavioral lapses (RTs > 500 ms), and generally length-
ens the right tail of the RT distribution. The difference be-
tween Us and Ur, denoted as Diff, is an important indicator
of fatigue. Relatively low values of Diff are associated with
greater fatigue. The parameter cycle time controls the dura-
tion of conflict resolution at the start of each production cycle.
The summed duration of each of these processes constitutes
the observed RT. Importantly, the duration of each process is
stochastic, giving rise to the characteristically right-skewed
RT distribution. In summary, the ACT-R model uses four free
parameters: Us, Ur, F Py, and cycle time.

PDLT Specification

The first step in implementing the PDLT method is to define a
distribution over the plausible parameter space. We opted for
multivariate Gaussian distributions because they account for
the central tendency and covariance structure in the empirical
parameter estimates, thereby ensuring that unlikely parameter
combinations are not needlessly evaluated (see Table 1). The
model parameters were derived from reported parameters of
related models (Walsh et al., 2014; Veksler & Gunzelmann,
Under Review). The parameters were based on well-rested
and fatigued subjects to capture a wide range of behavior.
One multivariate Gaussian distribution was based on 33 well-
rested subjects (Walsh et al., 2014; Veksler & Gunzelmann,
Under Review) and the other was based on 13 subjects who
underwent 72 hours of sleep-deprivation (Walsh et al., 2014).

We used a high sampling resolution of 150,000 parame-
ter combinations to achieve a relatively high degree of accu-
racy. During parameter estimation, this required about 2.90
GB of RAM on the primary core and about 325 MB for the
remaining cores. The parameter combinations were evenly
sampled from multivariate Gaussian distributions associated
with well-rested subjects and sleep-deprived subjects.

We used kernel density functions as our fit statistic be-
cause they can be used to find maximum likelihood estimates,
which have desirable statistical properties, such as consis-
tency and efficiency (Van den Bos, 2007). A kernel density
function uses empirical or simulated data to approximate a
continuous probability density function. The estimation pro-
cess involves weighting existing data points as a decreasing
function of distance from the target point.

For each parameter combination, a kernel density function
was estimated from 64,000 simulated trials. A large num-
ber of simulations were used with a small bandwidth (.008)
to prevent distortion of the distribution where the false starts
end and alert responses begin. Distortion can otherwise occur
because the kernel density estimator will be weighted heavily

Table 1: Mean and standard deviations (SD) of parameters
used in the PDLT method.

Utility Threshold FPg. Cycle Time Diff
Well-Rested 5.86 (1.27) 5.04 (1.00) .99 (.01) .05 (.01) .83(.63)
Fatigued 3.50 (.51) 3.73(.50) .98 (.01) .04 (.01) -.23(.16)

toward the more frequent alert RTs. An object was stored in a
distributed look-up table, so the kernel density could be effi-
ciently reconstructed in real time. We used the Distributed Ar-
rays package in Julia to spread the computational burden over
a cluster of four desktop computers. The look-up table re-
quired approximately 35 hours to generate.

Simulation 1

Simulation 1 examined the speed of the PDLT method with
different sampling resolutions and number of RTs. The size
of the look-up table was varied from 1 to 150,000 in 10
equally spaced increments. The number of trials was either
100 or 1,000. The results were averaged over 100 repetitions
for each combination of sampling resolution and number of
RTs to produce a stable estimate.

Results

Figure 2 shows the mean completion time for the PDLT
method as a function of sampling resolution and number of
RTs. Across all combinations, the mean completion time was
well below the minimum ISI of 2 seconds in the PVT, indicat-
ing that the PDLT method is suitable for trial-by-trial moni-
toring of task performance on the PVT.

Results indicate that increasing the sampling resolution
produces a modest linear increase in completion time. Ad-
ditionally, increasing the number of trials results in a small
overall increase in completion time. By comparison, the sim-
plex method requires about 1-4 minutes to fit the model using
the same hardware and software, depending on the number of
iterations, number of starting points, and number of simula-
tions per evaluation.

Simulation 2

Simulation 2 was a parameter recovery study designed to
compare the PDLT to the simplex method. Parameter re-
covery involves generating simulated data from a model with
known parameters and fitting the model to the simulated data
to assess the accuracy of the parameter estimates.

A total of 100 parameters were selected as the ground truth.
Half were from the multivariate Gaussian distribution for
well-rested subjects, and half were from the sleep-deprived
subjects’ multivariate Gaussian distribution (Table 1). For
each parameter combination, 50 trials were simulated with
the ACT-R model. The ACT-R model was fit to these simu-
lated data sets using the PDLT and simplex methods.

116

1 12 14

Time (seconds)

0 02 04 06 08

[T T T T T 1
1 25,000 50,000 75,000 100,000 125,000 150,000

Look-up Table Size

Figure 2: Mean completion time as function of look-up table
size and number of trials. Filled circles denote 1,000 trials
and unfilled circles denote 100 trials.

Simplex Method

We compared the PDLT to the simplex (Nelder & Mead,
1965) because it is commonly used, widely available, and ap-
plies to nonlinear models without tractable derivatives, such
as ACT-R. Other algorithms will produce similarly long com-
pletion times due to their reliance on simulation. To ensure
robustness to local maxima, we computed the likelihood of 50
candidate starting points and initialized the simplex with the
three with the highest likelihood. Forty-nine candidate start-
ing points were sampled from the multivariate Gaussian dis-
tributions, and the remaining candidate starting point was the
best-fitting parameters from the PDLT for each correspond-
ing data set. Initializing the simplex algorithm in this manner
provides a rigorous test of the PDLT method because the sim-
plex method has the benefit of fine-tuning the PDLT estimates
in addition to using multiple starting points.

Next, we ran the simplex on three starting points with the
highest likelihood. For each starting point the algorithm per-
formed 100 iterations before recording the best-fitting param-
eters for that particular run. Upon each evaluation (five per
iteration), 10,000 trials were simulated. Proposed param-
eter sets were evaluated with quantile maximum likelihood
estimation, a discrete approximation to maximum likelihood
estimation (Heathcote et al., 2002). Following Walsh et al.
(2014), we binned false starts (RTs < 150 ms) separately and
binned the remaining RTs according to 20 quantiles. The pa-
rameters associated with the best fit were then selected.

Results

Compared to the simplex, the completion times for the PDLT
were faster on average (1.32 vs 49.17 sec) and less variable
(SD = .02 vs SD = 12.26 sec). We computed the correlation
between the time to simulate the model using the recovered
parameters and the corresponding completion times for each
method. As expected, the correlation was nearly zero for the

PDLT (r = .04) but markedly higher for the simplex (r = .94).
This underscores the inability of the simplex to scale up to
slower models requiring more simulation time.

We assessed the ability of each method to accurately re-
cover the parameters with two metrics: relative bias and cor-
relation. Relative bias provides a standardized measure of the

deviation between the true and recovered parameters using
(6-6)

the following formula: RB = 7> where 8 is the estimated
parameter and 0 is the true parameter. The correlation mea-
sures the degree to which the true and recovered parameters
are linearly related independent of systematic bias. Lower
correlations are indicative of more noise in the parameter es-
timate. As shown in Table 2, mean relative bias was gener-
ally low for both methods, indicating an accurate parameter
recovery. In general, the simplex method exhibited slightly
less bias than the PDLT method.!

Table 2: Mean RB between true and recovered parameters.
Utility Threshold FPj. Cycle Time Diff
.09 .08 .00 .01 -47
.06 .06 .00 .00 -45

PDLT
Simplex

Table 3 shows that the correlations were generally high for
both methods, providing more evidence of accurate parame-
ter recovery. In terms of correlation, the PDLT method per-
formed slightly better than the simplex method. Taken to-
gether, these results indicate that the PDLT can achieve sim-
ilar accuracy as the simplex in just a faction of the time. In
contrast to the simplex, the independence between simulation
time and fit time for the PDLT indicates that it can easily scale
up to slower, more complex models.

Table 3: Correlations between true and recovered parameters.
Utility Threshold FPg. Cycle Time Diff

PDLT .89 74 .64 .89 .93
Simplex .85 73 42 .84 .89
Discussion

Real-time monitoring using cognitive models provides an op-
portunity to examine changes in cognitive processes, pre-
dict performance decrements, and implement adaptive inter-
faces designed to mitigate performance decrements. A practi-
cal challenge in performing real-time monitoring is updating
cognitive models with new data as they arrive. Established
parameter estimation methods are unable to accurately esti-
mate parameters of simulation-based models in real time. To

I'The high relative bias for Diff is an artifact of its scale. Small
values in the denominator of the relative bias formula tend to in-
flate the resulting value. Absolute bias for Diff is attenuated because
Us and Ur are biased in the same direction: Diff= (Us + biasyy) —
(Ur + biasy,).

117

overcome this limitation, we developed a real-time parame-
ter estimation method, and validated it on a simulation-based
ACT-R model of the PVT. PDLT pre-computes the models
predictions in order to offload the computational burden asso-
ciated with simulating model predictions. The results of our
simulations demonstrate several important points. First, the
PDLT is fast, even with a high sampling resolution and large
number of RTs. Second, the PDLT can achieve a similar level
of accuracy compared to the simplex method. Third, unlike
other methods, the PDLT shows potential to scale up to more
complex models due to the separation of simulation time and
parameter estimation time. Together, these findings suggest
that cognitive models can be updated on a trial-by-trial basis
for many tasks.

Scaling Up
Although we used a relatively simple task and model for
demonstration, there is reason to believe the PDLT is scal-
able to more complex models. For example, we demonstrated
that the PDLT is invariant to the time required to simulate
the model, unlike the simplex method. Other methods that
require real-time model simulation for parameter estimation
will likely show limited scalability. The ability of the PDLT
to scale up can be attributed to the use of pre-computation.
There are some situations in which speed-accuracy trade-
offs will be inevitable. For example, complex models that
produce multiple responses will require the storage and eval-
uation of more predictions. In practice, this trade-off may
be relatively small given that many tasks permit only a hand-
ful of responses. Similarly, dynamic models, whose parame-
ters change during a task, require additional predictions to be
stored. We recommend constraining the parameters changes
to be some function of time or trial to reduce the parameter
space and number of stored predictions. For example, our
model could be extended to allow Us or Ur to change as a
function of trial. It may also be advisable to use quantiles
rather than kernel density functions for dynamic models in
order to reduce computation time. Additionally, some speed-
accuracy trade-offs will occur with models that span large pa-
rameter spaces and have low correlations among parameters.

Parameter Volatility

A potential challenge with real-time monitoring is dealing
with volatility in parameter estimates. One solution might be
to incorporate data from previous sessions during real-time
monitoring. Incorporating previous data would serve as a
sort of quasi-prior, forcing the estimate to stabilize around
an informed value. However, this may have the undesirable
effect of making fatigue-relevant parameters less sensitive to
changes in fatigue. An alternative approach might be to fix
parameters that are invariant to changes in fatigue based on
previous results. For example, Walsh et al. (2014) found ev-
idence that cycle time and F Py, vary across individuals but
are invariant to the effects of fatigue. A drawback of this
approach is that it would require a separate PDLT for each
person. Alternatively, it might be possible to fix certain pa-

rameters across individuals if they have low variance and/or
do not contribute substantially to the model fit.

Another method for reducing parameter volatility is con-
straining the model with physiological data. Walsh et al.
(2014) integrated a biomathematical model of fatigue with
the ACT-R model, forcing Us and Ur to vary according to
participants’ sleep/wake history and circadian rhythm. Physi-
ological constraints serve to stabilize parameter estimates and
allow for the detection of meaningful changes.

The quality of an estimate may be improved by leveraging
statistical properties of composite parameters. For example,
Diff—the difference between Us and Ur—is generally more
important than the absolute values of Us and Ur for under-
standing and predicting fatigue. From a statistical standpoint,
the difference of two random variables has desirable proper-
ties. Bias in Diff is attenuated because Us and Ur are biased
in the same direction and tend to cancel out each other. In ad-
dition, the variance of Diff is attenuated because Us and Ur
are correlated. Thus, the volatility of the parameters can be
mitigated by exploiting the statistical properties of the model
and focusing on key relationships between parameters.

Conclusions

The real-time parameter estimation method that we devel-
oped and validated is an important advance toward real-time
model-based monitoring. Prior to this effort, real-time mon-
itoring was restricted to performance metrics, such as accu-
racy and mean RT, and very simple models, such as those
used in intelligent tutoring systems (Wilson & Russell, 2003).
The PDLT method can be used with any simulation-based
model and easily scales to complex models due to the use
of pre-computation. We believe this new methodology will
enable the use of computational models for real-time moni-
toring of workload and fatigue and in the implementation of
adaptive interfaces. (Rouse, 1988; Green et al., 2009).

Acknowledgments

The views expressed in this paper are those of the authors and
do not reflect the official policy or position of the Department
of Defense or the U.S. Government. This research was sup-
ported by a 711" Human Performance Wing Chief Scientist
Seedling grant to G.G. and L.M.B. Distribution A: Approved
for public release; distribution unlimited. 88ABW Cleared
06/06/2016; 88ABW-2016-2869.

References

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B.
(2014). Julia: A fresh approach to numerical computation.
arXiv preprint arXiv:1411.1607.

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
Modeling and User-adapted Interaction, 4(4), 253-278.

Dinges, D. F., & Powell, J. W. (1985). Microcomputer anal-
yses of performance on a portable, simple visual RT task

during sustained operations. Behavior Research Methods,
Instruments, & Computers, 17(6), 652—655.

Gen, M., & Cheng, R. (2000). Genetic algorithm and engi-
neering optimization. New York: John Wily and Sons.

Gluck, K. A., & Gunzelmann, G. (2013). Computational
process modeling and cognitive stressors: Background and
prospects for application in cognitive. The Oxford hand-
book of cognitive engineering, 424.

Green, T. M., Ribarsky, W., & Fisher, B. (2009). Building
and applying a human cognition model for visual analytics.
Information Visualization, 8(1), 1-13.

Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F.
(2009). Sleep deprivation and sustained attention perfor-
mance: Integrating mathematical and cognitive modeling.
Cognitive Science, 33(5), 880-910.

Gunzelmann, G., Veksler, B. Z., Walsh, M. M., & Gluck,
K. A. (2015). Understanding and predicting the cogni-
tive effects of sleep loss through simulation. Translational
Issues in Psychological Science, 1(1), 106.

Harris, J. (2008). Mindmodeling@home: A large-scale com-
putational cognitive modeling infrastructure. In Proceed-
ings of the 6th annual conference on systems engineering
research.

Heathcote, A., Brown, S., & Mewhort, D. J. (2002). Quantile
maximum likelihood estimation of response time distribu-
tions. Psychonomic Bulletin & Review, 9(2), 394-401.

Lim, J., & Dinges, D. E. (2008). Sleep deprivation and vig-
ilant attention. Annals of the New York Academy of Sci-
ences, 1129(1), 305-322.

Loh, S., Lamond, N., Dorrian, J., Roach, G., & Dawson, D.
(2004). The validity of psychomotor vigilance tasks of
less than 10-minute duration. Behavior Research Methods,
36(2), 339-346.

Nelder, J. A., & Mead, R. (1965). A simplex method for
function minimization. The Computer Journal, 7(4), 308—
313.

Rouse, W. B. (1988). Adaptive aiding for human/computer
control. Human Factors: The Journal of the Human Fac-
tors and Ergonomics Society, 30(4), 431-443.

Van den Bos, A. (2007). Parameter estimation for scientists
and engineers. John Wiley & Sons.

Veksler, B., & Gunzelmann, G. (Under Review). Functional
equivalence of sleep loss and time on task effects in sus-
tained attention.

Walsh, M. M., Gunzelmann, G., & Van Dongen, H. P. (2014).
Comparing accounts of psychomotor vigilance impairment
due to sleep loss. In Proceedings of the 36th annual
conference of the cognitive science society (p. 877-882).
Pasadena, California.

Wilson, G. F., & Russell, C. A. (2003). Real-time assessment
of mental workload using psychophysiological measures
and artificial neural networks. Human Factors: The Jour-
nal of the Human Factors and Ergonomics Society, 45(4),
635-644.

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

Using a cognitive architecture in educational and recreational games:
How to incorporate a model in your App

Niels A. Taatgen (n.a.taatgen@rug.nl) and Harmen de Weerd (h.a.de.weerd@rug.nl)
Institute of Artificial Intelligence, Nijenborgh 9
9747 AG Groningen, The Netherlands

Abstract

We present a Swift re-implementation of the ACT-R
cognitive architecture, which can be used to quickly build i0S
Apps that incorporate an ACT-R model as a core feature. We
discuss how this implementation can be used in an example
model, and explore the breadth of possibilities by presenting
six Apps resulting from a newly developed course in which
students make use of Swift ACT-R to combine cognitive
models with mobile applications.

Keywords: ACT-R, mobile apps, game design

Introduction

Cognitive models have proven to be a valuable research tool
in advancing our understanding of human cognition.
Because of their ability to model human behavior, cognitive
models also have a great potential for use outside of
research, such as in educational or recreational settings. In
this role, the model is not used to explain human data, but to
act as a simulated human agent. In previous cases, such as
the ACT-R model that played SET (Taatgen et al., 2003),
and DISTRACT-R (Salvucci et al., 2005), the model was
implemented directly in the target programming language.
In this paper, we present an ACT-R re-implementation that
can be used as a component in an iOS App. The
implementation makes it possible to quickly build Apps
with ACT-R inside. As a demonstration, we present a Rock-
Paper-Scissors App that the first author built in just one-
and-a-half hour. We further look at the results of a course
that we taught using the implementation, and the six Apps
that came out of that course.

Swift ACT-R

The re-implementation of ACT-R uses the new Swift
programming language. Swift is an object-oriented
programming language similar to Java and C++. The Swift
implementation of ACT-R consists of a set of classes that
implement the different components of ACT-R, such as
Chunks, Declarative Memory, Procedural Memory, and the
overarching Model class.

The simplest way to use Swift ACT-R is to write a text-
file with a regular ACT-R model (with some limitations).
The next step is to build a controller for the App, that
responds to button presses and other actions the user can
take. This controller creates an instance of the model class,
and loads the ACT-R model into that instance:

model Model ()
model.loadModel ("example")

119

The model can then be run using the run method:
model.run()

The model communicates with the App through the action
buffer (a new buffer that takes the role of standard
perception and action buffers). Whenever a production rule
takes a +action> action, the model stops, and hands
control back to the main program. The main program can
then read out the contents of the action buffer, make
appropriate changes to the interface, wait for user input,
place information back into the action buffer, and then run
the model again.

There are several alternatives to using ACT-R code, for
example, it is also possible to access declarative memory
directly, or even to have no explicit ACT-R model, but
instead use declarative memory directly. The ACT-R code
can be downloaded from:
https://github.com/ntaatgen/ACT-R
It has two example models, both of the prisoner's dilemma
(Lebiere, Wallach & West, 2000 and Stevens, Taatgen, &
Cnossen, 2016).

Example model: Rock - Paper - Scissors

Lebiere and West (1999) built an ACT-R model that can
play Rock-Paper-Scissors, and adapts itself to its opponent
by trying to predict the next move based on previous
experiences. The lag 1 model of Lebiere et al. stores
sequences of two consecutive moves of the opponent in
declarative memory and uses these to predict the opponent’s
next move. For example, the model has the following
chunks for sequences that start with rock:

(RR isa decision stepl rock step2 rock)
(RP isa decision stepl rock step2 paper)
(RS isa decision stepl rock step2 scissors)

Each time the opponent plays rock twice in a row, the RR
chunk is strengthened, each time rock is followed by paper,
the RP chunk is strengthened, and each time rock is
followed by scissors, the RS chunk is strengthened. When
the model needs to decide what to do in the turn after the
opponent has played rock, it retrieves the most active chunk
with rock in stepl. The value in step2 is then the model's
prediction for the next move of the opponent. It only needs
to decide what move to counter that with. The whole model
consists of only four production rules (actually, five: one
more rule to play the first game, when there is no previous
decision). Figure 1 lists these productions.

(p retrieve-decision
=goal>
isa goal
state start
playerlast =last

=goal>
state retrieve
+retrieval>
isa decision
stepl =last)

(p retrieve-beats
=goal>
isa goal
state retrieve
=retrieval>
isa decision
step2 =prediction

=goal>

state retrieve-beats
+retrieval>

isa beats

slotl =prediction)

(p make-decision
=goal>
isa goal
state retrieve-beats
=retrieval>
isa beats
slot2 =decision
==>
=goal>
state decide
+action>
isa move
choice =decision)

(p restart-after-action
=goal>
isa goal
state decide
playerlast =last
=action>
isa move
opponent =decision
==>
+goal>
isa goal
state start
playerlast =decision
+imaginal>
isa decision
stepl =last
step2 =decision
-action>)

Figure 1: Productions in the Rock-Paper-Scissors model

The model makes a decision in three steps. It first
retrieves its prediction for what the opponent will do next
based on their previous move. Based on that prediction, it
will retrieve from memory the move that will beat the
predicted action (e.g. rock beats scissors). It will then put
this action into the action buffer. Control is then returned to
the main program, which waits until the human player takes
an action by pushing one of three buttons in the interface
(Figure 2).

Carrier ¥ 9:39 PM -
4

D

Figure 2. The Rock-Paper-Scissors game on an iPhone

The program itself is straightforward. The function that is
called when the App is started already loads in the model
and carries out a first run. The model has therefore made its
decision, and now waits for the player to tap one of the
buttons. Once the player has made a decision, the code
checks who has won, and adjust the scores. Figure 3 shows
all the basic code that is necessary. Some additional code is
needed to update the display with appropriate feedback, and
show the scores.

To explore the breadth of possibilities of constructing
Apps with a built-in model, we made this the goal of an
advanced cognitive modeling course.

Course outline

The course ‘Cognitive Modeling: Complex Behaviour’ is
part of the Master Human-Machine Communication and the
Master Artificial Intelligence at the University of
Groningen. It has been set up as a so-called learning
community. For the purpose of the course, students had
access to a lab room with several workstations to develop
apps on, as well as a number of iPads and iPhones for
testing. The lab room was available to the students for the
full duration of the ten-week course. In line with the concept
of a learning community, the focus is on letting the students
present their work for open discussion among themselves,
rather than on formal lectures.

The course followed the plan outlined in Table 1. At the
first meeting, students divided themselves into three-person

override
super
model.
model

.viewDidLoad ()
loadModel ("rps")
.run()

func viewDidLoad() { // This function is called when the App starts up

// The following function is called when the player pushed one of the buttons
@IBAction func gameAction(sender: UIButton) {
// The player action is the title of the button that was pressed

let playerAction

sender.currentTitle!

// The model action is in the choice slot in the action buffer

let modelAction

// Determine the outcome of the game
switch (playerAction,modelAction) {
case ("Rock","rock"), ("Paper","paper"), ("Scissors","scissors"):

// Tie
break

model.lastAction("choice")!

case ("Rock","scissors"), ("Paper","rock"),("Scissors", "paper"):

// Players wins
pScore += 1

mScore -= 1
default:

// Model wins

pScore -= 1

mScore += 1

}

// Communicate the player's action back to the model by setting a slot

// in the action buffer

model.modifyLastAction("opponent", value: playerAction.lowercaseString)
// And run the model again for the next trial

model.run()

Figure 3. Code in the App to handle the interaction between the player and the model.

project teams, and were encouraged to immediately start
developing a project proposal. A project proposal was
subject to two conditions: (1) the App had to be developed
in Swift, and (2) the core of the App should be the Swift
implementation of the ACT-R cognitive architecture. No
further requirements were given, although project proposals
had to be approved before a team could start. In particular,
students were free to choose to build a game, an educational
app, or different applications using an ACT-R model. In
addition, students were free to make their App for iPad,
iPhone, Apple Watch, or any combination of the three.

Each team consisted of three people, with one member
being responsible for graphical user interface (GUI) design,
one for cognitive model design, and for programming and
coordination. The first two weeks were meant for students
to familiarize themselves with the Swift programming
language and the Swift ACT-R implementation. Each of
these topics included a short lecture and a small, ungraded
assignment.

Students presented their finalized project proposals in the
third week. Over the following five weeks, students gave
weekly progress reports on the status of their project, either
privately with one of the lecturers, or as a presentation to
fellow students to encourage discussion of common
problems and solutions.

121

Final presentations and demonstrations of the App were
due in week 8 and 9, which left the students one additional
week to write a final report on their App. Mirroring the
structure of the student projects, the final report was
required to discuss the graphical user interface, the cognitive
model, and general programming.

Table 1: Course plan for ‘Cognitive Modeling: Complex

Behavior’.
Week Activity
1 Introductory lecture on Swift
Creating project teams
Assignment: Build simple calculator app
2 Introductory lecture on Swift ACT-R
Assignment: Build rock-paper-scissors
opponent using Swift ACT-R
3 Presentation final project proposals
4-7 Progress reports
8 Final presentation
9 Demonstration of the App and election of
the best App
10 Deadline final report

Description of developed mobile apps

Six projects were developed during the course, each with a
corresponding App. As mentioned in the course outline,
students were free to choose the topic of their application, as
long as it included Swift ACT-R as a core mechanism. The
six projects included three recreational games, two
educational games, and one other application. In this
section, we describe each of these apps in more detail.

Six-Dice game

The six-dice game is a recreational game of incomplete
information played over a number of rounds. Two players
control three dice each. At the start of each round, each
player is given a goal that involves a certain number of dice
that should show a given number of pips. For example, the
human player in the screenshot above has the goal to have at
least one of the six dice show a 3, while the cognitive agent
may have the goal to have one die to have rolled a 6. Note
that these goals are private information. That is, neither
player knows the other player's goal.

Once the goals are revealed, all dice are rolled and
revealed. Next, one of the players may offer to reroll any
subset of their own three dice. The other player must decide
whether or not to accept this proposal. If the proposal is
rejected, the round ends and each player who has achieved
his or her goal gains one point. If the second player accepts
the proposal, the dice selected by the proposing player are
rerolled, but the second player also has to select the same

122

number of their own dice to reroll. Note that the deciding
player controls which dice are rerolled.

At the end of the game, the player with the highest score
wins. However, when the combined score of both players is
below a certain threshold, the game ends without a winner.
The game is therefore a game of mixed motives. Especially
near the end of the game, it may be in the best interest of a
player to allow the opponent to reach their goal.

The ACT-R model is used to assess the opponent's
trustworthiness. Each game, the model would assess the
outcome of the game, and assign it a trust value between 1
and 10, and add this as a chunk to declarative memory.
When it later had to make a decision in which trust of the
other player played a role, it would perform a blended
retrieval of the trust value.

Memory

1188

‘Behold

-l

Ut l."',:
Jﬁa{ﬂu i

BEEE
EEERE

i
——
—

l_’]ﬁ
o

y?

Model: 2 pairs

-~
\:

|

Memory (also known as Concentration) is a recreational
card game played by placing a number of cards face down
on a surface. Players take turns revealing two of the cards. If
these two cards form a pair, the cards are removed from the
game and the player scores a point. Otherwise, the cards are
placed back face down. The game continues until no cards
are left, at which point the player with the most points wins.

Note that for a computer player, the game of Memory is a
trivial one. After all, turning the cards face down after
revealing only presents a challenge for players without a
perfect memory. The goal of incorporating a cognitive agent
in Memory is therefore to create a fun and challenging
competitor, rather than to make an agent that follows an
optimal strategy in playing Memory.

The ACT-R Memory player makes use of declarative
memory to store card information such as the identities and
positions of previously revealed cards. When the ACT-R
player believes to have found a pair of cards, it tries to
retrieve the locations and claim the pair. To simulate
human-like errors, the model adds noise to the stored
positions of cards. This causes cards on the edges and
corners of the surface to be remembered better than interior
cards.

Pyramid game

g % I do not trust you! You are bluffing! .
The great Horus was right, as always. | get 4 points
4 | 8 4
You Horus
Your actions:

The pyramid game is a recreational game played with a
standard deck of 52 cards. Ten cards are placed face down
as a pyramid (see screenshot above). In addition, each
player receives four facedown cards. At the start of the
game, each player is allowed to look at their own four cards.
A player cannot look at the cards of the other player, and
once the game starts, a player is no longer allowed to review
their own cards either.

The game is divided into multiple rounds. In each round,
a face down pyramid card is turned over, starting at the
bottom left and moving slowly up the pyramid. The value of
a card depends on its position in the pyramid. Cards on the
bottom row are worth 1 point, while the top card is worth 4
points. Once a card is revealed, both players decide whether
or not to claim that one of their four cards has the same face
value. If a player decides to do so, they select one of their
four cards. The other player may then choose to challenge
this claim by turning over the selected card and check its
face value.

The players’ scores change based on the outcome of a
round. If no claim is made, scores remain unchanged. When
a claim remains unchallenged, the claimant adds the value
of the pyramid card to their score. If the claim is challenged
and found to be false, the challenger adds twice the value of
the pyramid card to their score. Finally, if a claim is
challenged and found to be true, the claimant adds twice the
value of the pyramid card to his score.

Independent of whether a claim was challenged, any card
that was used to claim points are replaced with new cards
from the deck. Only the owner of a new card is allowed to
inspect it.

For the purpose of the app, the human player always starts
by deciding to make a claim. Once this claim is resolved,
the computer player takes its turn and the game continues to
the next pyramid card. When there are no cards left on the
pyramid to turn over, the player with the highest score wins.

The ACT-R opponent makes use of declarative memory
to remember its own cards, and regularly rehearses these
cards to avoid forgetting. In addition, the ACT-R player

123

tries to model the behavior of the human player in terms of
the likelihood that the human player is bluffing and the
likelihood that the human player will challenge a claim of
the ACT-R player.

Mathgician game

0 PLAYER 27/

Games left: 7

Mathgician is an educational App aimed at training addition
to children in the form of a competitive game. In the game,
players are presented with a goal number and six tiles. Each
tile has a number printed on it. Players have to select tiles
such that the numbers on the selected tiles add up to the goal
number. For example, to get the goal of 27, as in the
screenshot above, players could select the tiles with the
numbers 17, 6, and 4, but also the tiles with the numbers 18,
6,2,and 1.

The game is played against an ACT-R opponent, which
follows a human-like greedy strategy, in which it tries to get
to the goal number with high numbers first. If this fails, the
model tries lower numbers. In addition, the App has the
option to play against an adaptive opponent, which tries to
match the search speed of the ACT-R model with the
behavioral data of the human player.

OMGLogic game

OMGLogic is an educational App that is intended to help
players learn how to construct semantic tableaux. In the app,
players are presented with formulas from propositional
logic. They are asked to construct a semantic tableau to
show that the formula cannot be satisfied. To do so, players
have to select part of the formula and decide how it should
be handled to continue the tableau. Whenever a player takes
a correct action their score increases, while incorrect
answers decrease a player’s score.

The ACT-R model presents a competitor that attempts to
gain points for itself while constructing the semantic
tableau. The ACT-R model attempts to match the skill level
of the human player in solving the formulas. If the model
successfully retrieves a correct course of action before the
human player, the step is executed and the human player
loses points.

Carrier ¥ 9:00 PM 100% W

P Q
Q
P
LagMusic app

il 3

>

LagMusic is a music player that makes use of ACT-R to
predict when a listener wants to listen to a previously heard
song again, given a user-specified mood. The model uses
the actions of the user as feedback. Skipping a song is
considered to be an indication that the user is unwilling to
listen to the song, while a user that listens to a song for the
full duration is considered to be happy with the model’s
selection. Finally, a user can indicate that it likes a song, but
does not want to listen to it at the current moment by
shaking the device.

The ACT-R model uses activation of a song chunk to
determine whether, given the user’s current mood, a song
has sufficiently faded from memory for the user to
appreciate hearing it again, as well as whether or not the
user appreciates the song at all in the current mood.
Whenever a song is played in full, the positive feedback
increases activation. Skipping a song provides negative
feedback by decreasing a song’s activity. In addition, the
model updates the retrieval threshold, making it more likely
for the model to retrieve songs with higher activation. The
neutral feedback, which indicates that the song is
appreciated but played too soon, adjusts the retrieval
threshold in the other direction, making it more likely for
the model to retrieve songs with lower activation.

124

Conclusion

Cognitive models are not only useful to build theories of
human cognition, but they can also be applied to build
simulated humans. In this paper we explored possible ways
in which the ACT-R architecture can be used in the context
of a mobile application. One of the conclusions we can draw
at this stage is that for most purposes declarative memory is
the most useful component in ACT-R. It can model how we
remember and forget information, and can also model
decision making through instances-based learning. Further
potential of incorporating a model in an App is that the App
can gather its own information to train the model. Again,
declarative learning is the lowest hanging fruit here, but
procedural learning is potentially very powerful as well.

Acknowledgments

The underlying research project is funded by the Metalogue
project; a Seventh Framework Programme collaboration
funded by the European Commission, grant agreement
number: 611073.

We want to thank the following students for their efforts
in bringing the ACT-R Apps to life: Harmke Alkemade,
Roberto De Cecilio De Carlos, Andrija Curganov, Thomas
Derksen, Annemarie Galetzka, Joram Koiter, Michael
LeKander, Milena Mandic, Rick van der Mark, Hugo van
Plateringen, Tom Renkema, Jordi Top, Teun van Tuijl, Olaf
Visker, Alex de Vries, Evert van der Weit, Marco Wirthlin,
and Maikel Withagen.

References

Anderson, J.R. (2007). How Can the Human Mind Occur in
the Physical Universe? Oxford, USA: Oxford University
Press.

Lebiere, C., Wallach, D., & West, R. (2000). A memory-
based account of the prisoner’s dilemma and other 2x2
games. In N. Taatgen, & J. Aasman (Eds.), Proceedings
of the Third International Conference on Cognitive
Modeling (pp. 185-193). Veenendaal: Universal Press.

Lebiere, C., & West, R.L. (1999). Using ACT-R to
model the dynamic properties of simple games. In
Proceedings of the Twenty-first Conference of the
Cognitive Science Society (pp. 296-301).

Salvucci, D.D., Zuber, M., Beregovaia, E., & Markley, D.
(2005). Distract-R: Rapid prototyping and evaluation of
in-vehicle interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(pp. 581-589).

Stevens, C.A., Taatgen, N.A., & Cnossen, F. (2016).
Instance-based models of metacognition in the prisoner's
dilemma. Topics in Cognitive Science, 8(1), 322-334.

Taatgen, N.A., van Oploo, M., Braaksma, J. &
Niemantsverdriet, J. (2003). How to construct a
believable opponent using cognitive modeling in the
game of Set. In Proceedings of the Fifth International
Conference on Cognitive Modeling (pp. 201-206).

In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th International Conference on Cognitive Modeling

(ICCM 2016). University Park, PA: Penn State.

JIVUI: JavaScript Interface for Visualization of User Interaction

Ignacio X. Dominguez (ignacioxd @ncsu.edu), Jayant Dhawan (jdhawan2 @ncsu.edu),
Robert St. Amant (stamant@csc.ncsu.edu), David L. Roberts (robertsd @csc.ncsu.edu)
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206 USA

Abstract

In this paper we describe the JavaScript Interface for Visu-
alization of User Interaction (JIVUI): a modular, Web-based,
and customizable visualization tool that shows an animation of
the trace of a user interaction with a graphical interface, or of
predictions made by cognitive models of user interaction. Any
combination of gaze, mouse, and keyboard data can be repro-
duced within a user-provided interface. Although customiz-
able, the tool includes a series of plug-ins to support common
visualization tasks, including a timeline of input device events
and perceptual and cognitive operators based on the Model Hu-
man Processor and TYPIST. We talk about our use of this tool
to support hypothesis generation, assumption validation, and
to guide our modeling efforts.

Keywords: Typing; Cognitive Modeling; Visualization; Re-
play; Tool; Data Visualization; Input Device; Cognition;
Inter-keystroke Interval; Mouse Clicks; Mouse Motion; Eye-
tracking; Gaze Data; Human-Computer Interaction; Human
Information Processing; Human Behavior.

Introduction

Visually representing data is a common technique used to a)
succinctly summarize and communicate information, and b)
gain a better understanding of the process that generated said
data. In its most common form—charts—data visualization
is generally used for the former. For the latter, however, vi-
sualizations are generally more complex and are built ad-hoc
according to the originating data’s context. This results in an
increased effort required to visualize similar, but not identical
datasets.

Examples of data that are generally visualized to be better
understood come from cognitive modeling and empirical user
interaction with graphical user interfaces. In both cases, the
data correspond to a particular context (e.g., the user interface
being used or modelled), to a particular set of input devices
(e.g., mice, keyboards, eye-trackers, trackpads, etc.), and has
a particular set of spatial and temporal properties (e.g., loca-
tions on the screen or relative to on-screen items, time elapsed
between keyboard or mouse events, etc). A consequence of
this need for specialization is a reduced number of available
tools that are suitable to visualize a specific dataset. In cases
where there exists a suitable tool, an added inconvenience is
that it may not support the researcher’s preferred operating
system, or it may require the installation of dependencies that
the researcher may prefer not to install.

In this paper we present the JavaScript Interface for Visual-
ization of User Interaction (JIVUI)—a modular, Web-based,
and customizable tool that addresses these problems, provid-
ing the ability to visualize and replay a user’s interaction with
a graphical user interface on any platform through any mod-
ern Web browser.

125

Data produced from cognitive models of input device us-
age is generally similar to that collected from a user, with the
addition of annotations for the cognitive operators related to
the user’s observed interactions. Through a flexible data rep-
resentation, JIVUI supports both. In addition to user and/or
model data, JIVUI is capable of rendering a replay of the in-
teraction over a customizable UI that can be crafted to repre-
sent the task from which the data was collected.

Related and Prior Work

Visualization tools are a staple in cognitive modeling re-
search. Models can grow to be very complex, and understand-
ing the subtleties of their behavior in carrying out specific
tasks often requires more than textual descriptions or traces,
tables of quantitative trace information, or summary statis-
tics. A variety of tools are available for presenting models
and user data in graphical form.

The ACT-R 6.0 Environment (Bothell, 2004) provides con-
trols and information about a model in a graphical user inter-
face. A stepper function is described as the most useful tool
in the environment. It is comparable to a stepper in a con-
ventional programming environment, supporting pauses be-
fore events and a range of choices for running a model until
a specified condition becomes true (when a given duration is
exceeded, a given production fires, or an event is generated
by a given module). A graphical trace is provided, with time
along one axis and events of different types in rows, filling
the other axis. The environment can also display a state chart
diagram, a directed graph showing the productions selected
and fired in a model. Other, more specialized visualizations
are also supported.

SANLab-CM (Patton & Gray, 2010) is a tool for activity
network modeling, specifically models that i