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Abstract	
  

This paper examines dyadic social tie formation, and how cognitive and environmental factors 
influence the formation of dyadic ties. Using agent models instantiated in ACT-R that interact in a 
large-scale social simulation, we capture the affect of environmental factors including population size, 
running time, and map configurations, as well as memory constraints. To explore and test these 
relationships, we ran simulations using a factorial design and used the simulation data to generate a 
large corpus of networks.  Our analyses suggest five interesting conclusions: first, that the three 
environmental factors all influence both network density and some aspects of network structures; 
second, that agent memory strongly and decisively alters the network’s density and structure; third, the 
growth pattern of these networks approximates a power law distribution; fourth, that the environment 
structure influences the networks’ generation speed; and finally, certain map configurations tend to 
have more asymmetric activation patters.  These findings are interesting in that they imply that the 
size of a social network primarily depends on internal cognitive factors rather than environmental 
factors, providing support for and deepening our understanding of Dunbar’s(1998) number. These 
findings also suggest that future simulations examining generative social networks should account for 
and carefully report these factors.  
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1.	
  Introduction	
  

This paper examines the relationships between cognitive and environmental factors as they pertain to 
the formation of social networks by modeling how these factors affect the formation of dyads. This 
work is motivated by a desire to better understand how socio-cognitive processes influence the 
development of persistent patterns of relations, represented in this paper as network topologies.  By 
socio-cognitive processes, we refer to both those cognitive resources and mechanisms necessary to 
create and sustain social ties, as well as those group-level factors known to moderate human 
decision-making (G. P. Morgan & Carley, 2011; J. H. Morgan, Morgan, & Ritter, 2010; Silverman, 
2004; Yen et al., 2001). We focus on spatial reasoning and retention in this paper because these two 
processes seem foundational to understanding the emergence of social networks in a variety of 
contexts.  

To explore this relationship, we introduce a set of agent-based models and experiments that test the 
influence of:  population size, run time, map configuration, and agent navigation strategies. The 
outputs of this model are interaction networks (whole networks representing the total number of agent 
interactions that occurred within a single run) and ego-nets (declarative representations of the agents 
friends network). For any one run, there is one interaction network and as many ego-nets (networks 
from the agent’s egocentric point of view) as there are agents in the experiment. We also merged the 
individual ego-nets to examine how each factor influence the generation process of the merged 
ego-nets.  

Our model is unusual in that we model social processes using a cognitive architecture (ACT-R) that is 
primarily associated with cognitive science.  To our knowledge, Carley (1991, 1992) and Newell 
(1994; Newell, Rosenbloom, & Laird, 1989) were the first to study organizations using a model based 
on a cognitive architecture (Plural-Soar).  More recently, Gonzalez and Lebiere (2005), Lebiere, 
Gonzales, Dutt, and Warwick (2009), Reitter and Lebiere (Reitter & Lebiere, 2010), and Juvina, 
Lebiere, Martin, and Gonzalez (2011) have used cognitive architectures to model human decision 
making in collaborative tasks. Barrett, Eubank, and Marathe (2006) have developed a large simulation 
with millions of light, non-cognitive agents to model the influence paths in crisis situations. While our 
work builds upon these efforts, our interest in network formation poses some unique challenges.  We 
review these challenge in light of the current literature and our solutions to them in the next three 
sections, and then discuss the results and implications in the final two sections. 

2.	
  Computational	
  Social	
  Models	
  

Researchers have developed agent-based models to explore a variety of questions. We briefly examine 
two major modeling approaches: cognitive and social modeling. These approaches are not necessarily 
mutually exclusive; however, combined socio-cognitive models are relatively rare because they are 
generally expensive to create and run.   

Social simulation models frequently, but not always, use bounded rational agents. Bounded agents are 
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limited both cognitively and socially (Simon, 1991). These agents generally engage in some kind of 
goal-driven time-constrained decision cycle dependent on local information. In addition, agents are 
usually adaptive, though options are generally conditioned upon previous actions. Often, these 
simulations demonstrate aggregate behaviors that are emergent. These complex system-level behaviors 
arise out of the agents’ discrete interactions, but cannot be explained entirely in reference to them. 
Further, at different levels of observation, different kinds of emergent behavior can be seen.  It is 
often these kinds of traits that simulations are uniquely able to capture.  

We treat the topology of interaction networks and their associated characteristics as an emergent 
property of the social system, defined in terms of interaction opportunities and memory constraints.  
Kraut et al. (2002) found that actor proximity fundamentally influences the evolution of network 
topologies by determining the interaction frequencies of actors across the network, while Allen (1977) 
demonstrated that the probability of two people communicating in an environment could be represented 
with a decreasing hyperbolic function of their distance. After a certain distance, the probability that two 
people will communicate decreases rapidly, making tie formation unlikely (Carley, 1991, 1992). We, 
thus, chose to focus on factors that are known to directly affect agent proximity or inter-agent distance: 
population size, run duration, and map configuration.  

Cognitive models have historically focused on modeling human cognition at the symbolic and 
sub-symbolic level (Anderson et al., 2004; Newell, 1994; eg). Providing models of perception and 
memory, we can use cognitive architectures like ACT-R to simulate the formation of social ties in 

declarative memory.  We believe that, as time increases, memory constraints fundamentally influence 
a social network’s topology and capabilities by constraining the network’s ability to process 

information, identify important changes in state, and respond to those changes. 

Here, we look at the processing of social information by exploring the concept of nodal carrying 
capacity, the number of agents an agent can retain in memory. To that end, we examine how 
environmental factors contribute to the consolidation and retention of social ties in memory.   

This concept is similar to Dunbar’s (1998), where he argues that limitations associated with the 
neocortex limit the number bi-directional ties any one person can retain in memory to approximately 
150 people. Dunbar argues that maintaining stable relationships requires repeated memory activations 
to identify not only one-on-one relationships but also third party relationships (i.e., the knowledge that 
my friend is also friends with other actors who I monitor).  Further, he claims that the cognitive load 
associated with maintaining this set of relationships in memory rises exponentially as group size 
increases (Dunbar, 1998, p. 63). Based on retrospective empirical studies, Dunbar (Dunbar, 1998, pp. 
68-75) argues that this ratio between cognitive load and group size underlies the small-world effect 
observed by Milgram(Milgram, 1967), and others  McCarty, Killworth, Bernard, Johnsen, and Shelley 
(2001) propose a far larger number (n=291) of a person’s social ties. In part, this discrepancy is rooted 
in a difference in definitions. McCarty et al.’s (2001) definition of a social tie requires mutual 
identification as opposed to Dunbar’s stricter definition of mutual identification and placement in the 
network. In this work, the social ties we used are closer to McCarty et al.’s definition because mutual 
identification could be naturally implemented in the declarative memory of ACT-R. Nevertheless, we 
believe that our simulation is still relevant to the effect of Dunbar’s number because both definitions 
bridge between cognitive limitation and number of social ties.   
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In the experiment, we expect that larger populations acting over longer time periods in fully connected 
environments will result in the most connected declarative network structures.  We also expect that 
less connected environment layouts will result in interaction networks that consist of more fragmented 
networks, leading to smaller ego-nets.  We also expect that map configurations characterized by nexus 
points (locations which act as hubs by virtue of being centrally located) will exhibit behaviors similar 
to the water-cooler effect (DiFonzo, 2008). We, however, are less certain where we might see 
thresholds in network formation, where for instance population growth no longer has an effect or run 
time is no longer relevant.   

3.	
   Nodal	
   Carrying	
   Capacity:	
   The	
   Effect	
   of	
  

Agents’	
  Memory	
  and	
  Space	
  

Having summarized our model’s environmental and cognitive factors, we provide both a definition and 
a prediction as to how each factor will influence network formation.  

3.1	
  Interaction	
  Frequency	
  Factors	
  

We model three factors that influence interaction frequency: population size, run time, and map 
configuration.   

Population density: We predict population density will have the greatest impact on social interaction 
frequency. Here, we model shifts in population density by changing the population size, and holding 
the environment size constant. 

Length of simulation (run time): We predict longer run times will lead to more ties and denser 
networks.  Consequently, determining the run time lengths necessary for a network to reach a stable 
state under a given set of conditions (e.g., memory decay of ties) is important for accurately 
representing the formation of a group of interest. 

Environment configuration: We predict the configuration of the environment will influence the 
structure of the simulated social network. We measure the relative connectivity of our three map 
configurations by defining its grid ratio. The grid ratio is the ratio of the number of edges over the total 
number of edges possible for a rectangular grid containing the same number of rooms.  

We tested three map configurations (Figure 1). The first configuration (1a) is a full 5x5 grid with grid 
ratio 1.0. We expect this environment will result in relatively high connectivity. The second 
configuration (1b) has a central area with grid ratio 0.75. We believe this central meeting point will 
lead to network densities and clustering that are less pronounced than those associated with the 5x5 
map but more than those associated with the hallway map. The third configuration (1c) is a 
two-hallway configuration with grid ratio 0.6. This configuration should lead to low connectivity due 
to the large distances between agents. 
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Figure 1. (a) 5by5 grid map, (b) Central Area map, (c) and Hallway grid map 
 

3.2	
  Memory	
  and	
  Nodal	
  Carrying	
  Capacity	
  Factors	
  

Because we are interested in nodal carrying capacity, we needed a theory of memory and its decay.  
We use Anderson’s activation theory (2004) as implemented in ACT-R, as our theoretical framework.  
Each agent may have one or more memory chunks which represent other agents (from an ego 
perspective, these perceived entities are called alters1).  The number of active memory chunks is 
influenced by several factors, including initial memory activation, retrieval threshold, memory decay 
rate, time of retrievals, and practice time.  We use the activation of alters (agents in a dyad with the 
target agent), which is directly related to the likelihood of recalling these alters, to determine whether a 
tie exists in each network.  Thus, as the threshold for determining if a network exists, the semantics 
for identifying another alter as an acquaintance become more and more stringent.   

Figure 2 offers an example of how a single merged ego-network can reveal the strong ties in a network 
as the criteria for inclusion in that network becomes stricter. By stricter, we mean that the activation 
threshold necessary to be considered a tie increases.  While the three networks shown in Figure 4 arise 
from the same set of declarative representations, these networks reflect activation thresholds of -3.5, 
0.0, and 1.0 (ACT-R’s declarative memory activation ranges from negative numbers to small positive 
numbers), corresponding to networks a, b, and c respectively.  In essence, network c identifies the 
agent’s core relationships, those of which the agent has the strongest memory.   

 

Figure 2.  The same ego network at various memory thresholds, (a) -3.5, (b) 0.0, and (c) 1.0.  

                                                             
1 In network science, the term ‘alter’ is often used to indicate that this is the ego’s 
perception of other agents. 
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Other cognitive factors may be important, but we have reserved those for future work.  We are 
particularly interested in considering agent movement patterns, and how that may affect social 
networks.  For example, a policeman walking a beat will have more acquaintances (alters) than a 
person who spends most of their time at home, because the policeman has more opportunities to meet 
people. 

4.	
  Experiment	
  Environment	
  

To model multi-agent social behavior using cognitive architectures, we constructed a simulation 
environment, VIPER. All of our experiments were conducted on a 2GHz eight-core server with 8GB of 
RAM. The server runs Linux 2.6.31 under Ubuntu 11.04, with SBCL 1.0.52 Lisp, and ACT-R 6 
(Anderson et al., 2004). 

4.1	
  The	
  VIPER	
  Server	
  

VIPER models the constraints associated with embodiment on social networks. It supports multi-agent 
simulations to study network science.  It is lightweight in that it is text-based, but is extendable and 
records agent behaviors. VIPER is designed to be a part of a distributed model that resolves events in 
either real or accelerated time. The network’s speed and frequency of communication are determined 
by its component agents, with no queue of events being enforced. VIPER is designed so variations in 
performance originate from the agents participating in the environment, versus being a function of the 
environment.  The VIPER server is based on NakedMUD, an open-source MUD environment.  It 
communicates with client programs using the Telnet Protocol.    

Within the environment provided by the server, agents or human subjects are situated on maps of 
interconnected rooms. The agents can see and communicate within each room. Agents can walk 
between the rooms, and can interact with objects in the rooms.  

To connect ACT-R to VIPER, we implemented the Telnet Agent Wrapper for ACT-R (TAWA) in 
Common Lisp.  It supports logging in, waiting for synchronization, logging, halting, and writing 
results to CSV files. It also exports a number of functions that provide ways to examine the 
environment, speak, listen, move, and otherwise control a virtual body in VIPER.   

When an ACT-R model is wrapped by TAWA, executions of model code are delayed until a privileged 
administrator agent signals for synchronization.  Error conditions are also caught by TAWA and 
standard UNIX error codes are returned instead of dropping into the more standard debugger. For 
example, a successful run returns 0 to the parent process, while any error (e.g., network errors like the 
server being unreachable) returns a non-0 value. Returning error codes like this allows automated error 
checking in large-scale experiments. 

4.2	
  Synchronization	
  

Because memory decay and networks are strongly temporal, we paid special attention to time. To 
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synchronize the agents, the administrator agent (which does not take part in the experiment) waits for 
all of the TAWA wrapped agents to finish loading and logging in. It then signals to TAWA to begin the 
simulation. Because TAWA delays the evaluation of the model code until synchronization, no agent 
experiences time before the synchronization signal. Further, all ACT-R models are set to run in 
real-time and for the same amount of “real time”, so they all halt after the same perceived period. Thus, 
the total time experienced is the same for all agents. 

4.3	
  Scalability	
  

Early benchmarks showed that ACT-R processes took up about 80MB per process. We would only 
have been able to run about 100 processes on a single 8GB machine before swapping would occur. To 
reduce the per-process footprint, a number of optimizations were implemented. Basic space reductions 
were achieved by using the DECLARE Lisp construct, as well as by pre-compiling the components, 
removing the debugger, and saving the whole system (sans the ACT-R agent model) as a system 
image. This reduced our per-process memory footprint somewhat, but they were not the biggest 
contributions towards memory usage reduction. 

In SBCL Lisp 1.0.52, the “--merge-core-pages” flag was recently added. This flag enables Kernel 
SamePage Merging under recent versions of Linux (Arcangeli, Eidus, & Wright, 2009). This 
optimization flags shared areas of memory as being able to be merged unless modified. Because a 
significant percentage of our agents were replicated, we found that we could reduce the per-process 
memory footprint as low as 8MB per process (with one shared copy of the merged pages excepted). 
Thus, the only activities that increase the size of this footprint are changes within individual agent 
models. Sharing and merging copies increases the number of agents capable, whether on single 
processors or HPC. Together, these optimizations permit orders of magnitude more agents to be run in 
a single experiment than many previous efforts, enabling larger-scale analysis than has been previously 
done. Such large-scale work is planned for future research. 

4.4	
  ACT-­R	
  Agents	
  

We built an ACT-R model to conduct “random walks” in VIPER. The model contains two declarative 
memory types: a “goal” type containing the agent’s current location, remaining steps, total friends 
counts; and a “friend” type used to store friend names. The model consists of four basic components 
with 9 productions. First, the agent’s “walking” component selects an available direction randomly, 
and sends a moving message to VIPER. Second, the “waiting” component utilizes ACT-R’s temporal 
buffer to wait 16 real-time seconds before allowing the agent to enter a new room to simulate transition 
time. Third, the agent’s “checking” component, consisting of 3 productions, checks if the current room 
is empty. Fourth and finally, the “memorizing” component, consisting of 3 productions, first checks 
declarative memory to see if the agent has previously encountered the agent it has just met. If not, the 
model creates a new friend chunk, using the imaginal buffer to store the new agent name.  
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5.	
  Virtual	
  Experiments	
  and	
  Results	
   	
   	
  

In this section, we consider three important questions.  Do these environment topologies influence the 
agent’s perceived social network?  Are cognitive limitations important to understand how 
environments influence an agent’s social network?  How much exposure to a novel environment is 
necessary for agents to reach activation equilibrium?   

To answer these questions, we run two sets of experiments to examine influential factors and activation 
equilibrium separately . 

5.1	
  Experiment	
  1	
  

In the first experiment, we created a dataset of 810 runs to test three environmental factors: population 
density, running time, and environment configuration, shown in Table 1.  

Table 1.  Experiment 1 parameters. 
Variable Values # 
Population 20, 40, 60 3 
Run time 125, 250, 500 s 3 
Environment Full-Grid, Central, Hall (100%, 75%, 60%) 3 
Total possible combinations 27 
Replications per combination 30 
Total Runs 810 

 
The VIPER system generates both simulation logs, which can be used to evaluate movement patterns, 
and also ego files for each agent, showing the activation of each alter chunk, which identifies each 
alter. Each agent represents actors it has met as a working memory element (WME) chunk. The 
activation of each WME can be used to derive the probability of retrieving a chunk and the amount of 
time a human would require to recall the actor. The semantics of each dyadic tie is important in 
interpreting the network.  An activation value of ‘-3’ indicates that the actor will need as much as 200 
ms to recall the chunk (if they can retrieve it at all), whereas an activation of ‘3’ indicates that the actor 
will need less than 5 ms to recall the chunk (but longer to report it because of additional processes 
including planning an utterance and speaking).  Figure 3 shows an example ego network.   

 

Figure 3.  An example ego network, links are colored by activation value. 
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These ego files thus can be considered analogous to network survey data, with a survey instrument 
used to gather each individual’s view on their social network.  We merge these ego files to create 
merged ego networks.  We have two distinct strategies for merging these ego files to create networks, 
symmetric-necessary and directed-sufficient. 

To merge our ego-nets, we considered two rules for determining whether the tie should exist: 
symmetric-necessary (where threshold, t, must be met by both Aij and Aji) and directed-sufficient 
(where threshold, t, must be met by either Aij or Aji).  In either case, a binary two-way link was formed 
if the necessary conditions were met.  We chose to form binary two-way links to ensure that the 
network measures being used could be compared directly.  The directed-sufficient network merge 
method is less conservative; typically creating more links, differences between the networks generated 
by each method may also offer interesting insights on the ramifications of environmental topology.  
Dunbar’s definition of relationships more closely follows the semantics implied by the 
symmetric-necessary merge method (Dunbar, 1998). 

Given that our alter chunks were inherently weighted by activation value, it was tempting to simply use 
the activation values to inform a weighted network measure analysis.  We chose not to do that for 
three reasons. Firstly, we consider that changes to the threshold value change the meaning of the 
network, which makes such a network analysis problematic. Secondly, ACT-R’s activation values 
range from negative to positive values, spanning zero (0).  Zero is usually reserved in network 
analysis for the absence of a link.  Transforming the data is possible, for example, by converting the 
activation value into the time to recall or probability of recall,, but adds an additional processing step. 
Finally, network measures are sensitive to the edge weighting and may produce non-intuitive 
results—many network analysis tools automatically binaries networks before calculating measures.   

For each simulation run, we created both a symmetric-necessary and directional-sufficient network 
using thresholds between 5 and -5, with intervals of .1.  Thus, we created two networks per run for 
each threshold value of -5.0, -4.9, -4.8, -4.7, and so on to 5.0.  This process created a corpus of (810 
runs * 2 merge methods * 100 threshold values) 160,000 merged ego-networks.  We included isolates, 
egos with no connections, in our networks. 

5.1.1	
  Network	
  Measures	
  

We use these generated networks to evaluate our questions of interest.  We focus on five 
network-level measures to inform this analysis: density, average distance, clustering coefficient, 
average eigenvector, and average betweenness. We define those terms now. 

Density is the number of ties present in the network compared to the maximum number of possible ties, 
excluding self-loops. Network density is a fundamental measure of a network, with implications for the 
interpretation of many other measures.  Networks tend to be less dense as the population grows, but 
should be denser, other factors held equal, as the simulation run-time increases (at least until activation 
equilibrium is achieved for networks with memory decay). 

Average distance is the number of jumps required, on average, for each agent to reach every other 
agent.  If every agent is connected to every other agent (a density of 1) then average distance will also 
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be 1.  Thus, dense networks tend to have average distance near 1.  Isolated nodes report a distance of 
0 to every other agent, which can complicate the interpretation of this measure.  Thus, networks with 
isolated nodes will have their average brought down towards 0. 

Clustering coefficient is a transformation, over all agents, of each ego’s local network density (how 
many alters is that ego connected to of all possible alters).  A high clustering coefficient in a social 
network suggests a decentralized information structure, and one where actors tend to have an accurate 
understanding of the state of their local work-group.  This measure is highly correlated with density. 

Average eigenvector is a measure of the second-order connections an agent has.  For example, a 
person who knows group leaders, but not the group members, has a high eigenvector.  In very dense 
networks, average eigenvector is very low, typically near 0.  In very sparse networks with isolated 
nodes, eigenvector will again be near 0.  In medium density networks, the eigenvector may be large.  
Thus, eigenvector values tend to make an inverse U-shaped curve as network connectivity increases. 

Average betweenness is a measure of a node’s prominence on the paths between other agents.  We 
expect map topology to strongly affect this measure.  In thresholded networks, we would expect that 
betweenness will be higher in environments with the hallway configuration. Betweenness is low on 
highly dense networks, and also tends towards 0 in highly sparse networks with isolated nodes.   
Betweenness, thus, also tends have an inverse U-Shaped curve. 

5.1.2	
  Simulation	
  results	
  

In this section, we examine the results of the simulation with respect to the questions we discussed at 
the introduction of this section. 

5.1.2.1	
  Simple	
  data	
  description	
  

Before entering data analysis section, we discuss some preliminary findings in this section. We plot 10 
figures to display the changes of five network measures along activation threshold. In each figure, 
show the distribution of a network measures instead of showing average measures. To provide a better 
understanding and to compare each plots, we create Figure 4 to combine 10 plots together.  

Figure 4 contains 10 sub figures to show the distribution of five measures when we increase threshold 
value from -5 to 5. It is obvious that all measures change significantly, especially when the threshold 
value is over -1. Comparing the Directed network and Symmetric network analyses, we also find that 
Symmetric network is more sensitive to cognitive limitations because the measures of the Directed 
network change earlier than Symmetric network when we increase the threshold values.    

We could also find that the threshold has positive influences on Average Distance, Eigenverctor, and 
Betweenness. It has negative influences on Density, and Clustering Co-efficiency. This result implies 
that when increasing activation threshold, the overall size of the network will shrink but the network 
will split into several smaller and tighter groups with more second-order connections. 
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Figure 4. The distribution of five network measures along threshold  
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5.1.2.2	
  Environment	
  Factors	
  influence	
  network	
  formation	
   	
  

To examine the impact of environmental topology, we used a model selection approach, comparing the 
impact of various terms and whether their inclusion offered sufficient benefit, as calculated by 
Bayesian Information Criterion (BIC)(Schwarz, 1978) and Adjusted R-Square, to justify their presence.  
Environmental Topology, Running Time, and Agent Count were coded as ordinal variables, while 
threshold was, for this analysis, a quantitative independent value.  Each model was applied to each 
dependent variable of interest in turn: density, average distance, clustering coefficient, average 
eigenvector, and average betweenness. In addition to four basic variables that we intended to examine, 
we also added two supplemental variables: a Squared Thresholding variable to allow for matching 
non-linear relations in the data; and a Spline variable to represent the spline difference between the 
range -3 to 3 and the range -5 to5. We present six regression models as: 

Model 1:  The thresholding value alone. 
Model 2:  Model 1 + Running Time 
Model 3:  Model 2 + Agent Count 
Model 4:  Model 3 + Environmental Topology 
Model 5:  Model 4 + Squared Thresholding (to allow for non-linearity) 
Model 6:  Model5+ Spline variable (to represent difference between (-3,3) and (-5,5)) 

We assert that if Model 4 provides a sufficient improvement over Model 3, then the environmental 
topology term is useful for understanding network formation. Typically, a decrease of more than 2 in 
the BIC score indicates that the new variable provides useful information.  The Model 1 column 
shows the actual BIC score, whereas later columns show the relative improvement from the previous 
model. Table 2 shows our model selection results.   
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Table 2. Model selection results using a BIC analysis(Schwarz, 1978).  Directed refers to networks 
generated with the directed-sufficient method.  Symmetric refers to networks generated with the 
symmetric-necessary method. 
 Threshold Time Count Env. Top. Non-Linearity Spline 
Directed 
Density 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .71 .72 .76 .76 .76 0.84 
Δ BIC (from 

prev) 
-249865 -5079 -10354 -62 -993 -31290 

       
Symmetric 
Density 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .7248 .7265 .7603 .7603 .7777 0.8517 
Δ BIC (from 

prev) 
-265634.25 -506.19 -10874.5 -12.85 -6221.33 -33465.49 

Directed AVG 
Distance 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .5448 .5479 .5545 .5546 .6085 0.6489 
Δ BIC (from 

prev) 
-152230.62 -564.22 -1208.89 -12.1 -10660 -8995.77 

       
Symmetric 
AVG Distance 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .3734 .3935 .3948 .3948 .4549 0.4993 
Δ BIC (from 

prev) 
-91075.07 -2696.45 -170.947 -0.697 -8643.49 -7017.06 

       
Directed 
Clustering 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .7588 .7698 .7719 .7720 .7781 0.8581 
Δ BIC (from 

prev) 
-247427.27 -3833.92 -768.43 -8.82 -2242.15 -36971.49 

       
Symmetric 
Clustering 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .8022 .8048 .8092 .8092 .8138 0.9003 
Δ BIC (from 

prev) 
-273429.14 -1101.3 -1858.32 0.34 -2013.1 -51584.97 

       
Directed 
Eigenvector 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .0031 .0084 .0236 .0236 .0798 0.0819 
Δ BIC (from 

prev) 
-335699.46 -441.1 -1269.84 -3.52 -4889.12 -185.21 
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Symmetric 
Eigenvector 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .0066 .0134 .0156 .0156 .133 0.1331 
Δ BIC (from 

prev) 
-303507.63 -567.78 -178.77 -3.72 -10481.4 -8.78 

       
Directed 
Betweenness 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .0111 .0128 .0265 .0272 .0419 0.091 
Δ BIC (from 

prev) 
-475378.96 -140.53 -1154.65 -53.87 -1256.62 -53519.95 

       
Symmetric 
Betweenness 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Adjusted R2 .0053 .0143 .0159 .0159 .0873 0.091 
Δ BIC (from 

prev) 
-524066.57 -750.7 -133.14 0.1 -6223.09 -331.18 

 
From this analysis, we can see that environment topology provide useful information to all of these 
measures except for Symmetric Average Distance, Symmetric Clustering, and Symmetric 
Betweenness. The improvement in information is relatively slight, compared to other factors, but the 
difference is there. 

The BIC score criterion show another pattern – room topology is a more useful term if you consider 
networks where directed ties are sufficient to allow a connection. This suggests, in turn, that some of 
the environmental topologies used in this analysis fostered agents with mismatched activation values, 
while some did not. 

5.1.2.3	
  Cognitive	
  limitations	
  influence	
  network	
  structure	
  

From the previous analysis, we can see strong evidence already that cognitive limitations influence 
network structure.  We, however, did an additional analysis comparing cognitive limited agents at a 
specific threshold value (0) to agents that are able to recall all previous contacts using the 
symmetric-necessary networks.  Those results are in Table 3.  MOVE PROSE TO HERE 
Table 3. network measures for agents with  no memory limits and those limited by a cog arch 

Measure  95% CI + Mean 95% CI - F Sig. 
No Limit 0.781 0.769 0.757 Density 
Limited Recall 0.112 0.106 0.100 

9136.43 < .005 

No Limit 1.033 1.030 1.025 AVG Distance 
Limited Recall 1.889 1.808 1.726 

347.86 < .005 

No Limit 0.909 0.905 0.900 Clustering 
Limited Recall 0.355 0.338 0.320 

720.59 < .005 

No Limit 0.034 0.033 0.031 Eigenvector 
Limited Recall 0.340 0.322 0.304 

3822.25 < .005 
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No Limit 0.006 0.005 0.004 Betweenness 
Limited Recall 0.103 0.097 0.090 

1002.96 < .005 

 
These results tell us, strongly and unambiguously, that cognitive limitations are important for 
understanding these networks.  The density results also suggest that networks of co-occurrence are 
often likely to vastly over-exaggerate the number of meaningful connections between human actors.  
Although two people may have been in the same room (or even the same elevator) at the same time, 
they may not have any memory of each other. 

5.1.3	
  Influential	
  models	
  

As we showed in Table 3, the Model 6 shows the best fit of our simulation data because it has the best 
R-Square outcomes, all R-Square values of Model6 are high. Consequently, we believe that Model 6 
could provide a reasonable influential model to explain the relations between network measures and 
dependent influential variables. 
Directed 
Variables Intercept Threshold Population Running 

length 
Room 
Map 

Square 
threshold 

Spline 

Density 0.28217 -­‐0.09378 -­‐0.08592 0.01921 0.0031 0.00625 -­‐0.08938  

Average 
distance 

0.89594 -­‐0.12322 0.03171 0.12651 -­‐0.00398 -­‐0.02339 -­‐0.13189 

Clustering 
co-efficiency 

0.39878 -­‐0.11005 -­‐0.0347 0.02696 0.00101 0.00346 -­‐0.10868 

Eigenvector 0.1314 -­‐0.00343 0.00911 0.01616 -­‐0.00158 -­‐0.00706 -­‐0.00146 

Betweenness  0.0249 -­‐0.00046956 -­‐0.00207 0.00489 0.00023542 -­‐0.00146 -­‐0.00219 

        
Symmetric  
Variables Intercept Threshold Population Running 

length 
Room 
Map 

Square 
threshold 

Spline 

Density 0.43969 -­‐0.09717 -­‐0.08986 0.06593 0.00686 -­‐0.0031 -­‐0.09632 

Average 
distance 

0.82885 -­‐0.12635 0.05859 0.04028 -­‐0.00625 -­‐0.01794 -­‐0.10208 

Clustering 
co-efficiency 

0.54157 -­‐0.11284 -­‐0.02579 0.05836 0.00304 -­‐0.0049 -­‐0.11085 

Eigenvector 0.08018 -­‐0.00305 0.01979 -­‐0.01177 -­‐0.00108 -­‐0.00399 0.00514 

Betweenness  0.0249 -­‐0.00046956 -­‐0.00207 0.00489 0.00023542 -­‐0.00146 -­‐0.00219 

 
Table4 shows the regression result of Model6. Each number represents the contribution of each 
dependent variable to a specific measure. Based on this table, we could give an influence equation for 
every measure. In Eq1, we show an example equation of symmetric density.  
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SymmetricDensity = 0.28217 !0.09378"Threshold ! 0.08592" Population +
0.0121" RunningTime +0.0031"MapConnectiveness + 0.00625"ThresholdSquare !
0.08938" Spline

          (Eq1) 

 
This equation clearly shows that activation threshold, population, and spline between -3 and 3 has 
negative influence on the symmetric density. This result aligns with our earlier result(Zhao, Kaulakis, 
Morgan, Hiam, & Ritter, 2012) suggesting that density decrease when increase threshold and 
population. The parameter of Spline variable is relatively large suggests that there is a significant 
difference between the range (-5,5) and range (-3,3). This also matches the Figure 4, which shows the 
measures changes mostly between -2 and 2.  

5.2	
  Experiment2	
   	
  

In this section, we show the effects of the models three parameters on the rate of tie formation. Based 
on these figures, we will discuss how memory thresholds, map configurations, and navigation 
strategies influence the formation rates of simulated networks. This section focuses on showing the 
influences of navigation strategies and map configurations.  

5.2.1	
  Experiment	
  parameters	
  

This experiment is a preliminary test, and we only run one set of parameters rather than a full set of 
conditions like Experiment 1. Because drawing the growth curves of activation networks needs to take 
numerous sample points on a curve, which requires nearly thousands of running hours.  

In this preliminary experiment, we use samples’ population size as 40 with a running time of 500s. To 
draw the growth curve, we collected network data at 18 time points, ranging from 10s to 500s. The 
sample points range from 10 s to 500s  

5.2.2	
  Growth	
  patterns	
  of	
  activation	
  network	
  

Figure 6 shows the growth curve of a network consisting of agents using the fixed-path navigation 
strategy within the Hallway map. The lower line represents the network formation rate of a network 
where no memory threshold was applied—if an agent met an agent, they formed a permanent tie (the 
directed-sufficient method). We find that the lower curve increase rapidly and then flattens when it 
reaches 1,336 ties (the maximum is 40*39, or 1,560, if the agents’ paths completely overlap, which 
they do not). This flattening occurs once the network has achieved equilibrium and is fully connected.  

In Figure 6, the top solid line represents the network formation rate of a network where an activation 
threshold of 0.0 was applied. According to the ACT-R theory, the activation threshold represents a 
memory limitation, meaning that memory chunks with an activation value lower than the threshold 
cannot be retrieved. The top curves more gradual progression illustrates the influence of memory on 
the formation rate, multiple exposures are required to remember another agent, while the difference in 



	
  

17	
  

total number of links (800 versus 1,336) illustrates memory’s effect on the network’s density.  In 
addition, this network never achieves a fully connected state, in the sense that the agent’s declarative 
representation at no point includes the total set of possible interactions.  In other words, these agents 
must continue to maintain their relationships because they continue to forget. Nevertheless, this 
network does eventually achieve equilibrium at 150 seconds with a network size of 800 links.  

Comparing the two solid curves in the Figure 6, we noticed another difference, the time at which the 
rate of growth begins to increase.  For the thresholded network, this time happens later than for the 
un-thresholded network.  This is because the agents tie formation requires multiple exposures. 
Initially, agents are busy simply encountering other agents and building their friends list. As they, 
however, begin to meet more “old friends”, the activation values of friendships start to increase.  

The x-axis of the Figure 6 represents the simulation running time in real seconds. In our experiment, 
we set the travel interval between rooms at 16 seconds to make the effect of memory decay more 
prominent. Nevertheless, this interval is still not long enough to be realistic because people might take 
minutes or hours to find another person. As this work only focuses on the growth pattern of the social 
network, we would argue that the measurement of time is a secondary factor of our study because over 
80 percent of the decay happens in the first 16 seconds according to ACT-R’s decay function, with 
little additional decay occurring at greater time scales. Consequently, we believe total running time of 
500 seconds and a short travel interval of 16 seconds are acceptable for initial explorations simulating 
the growth pattern.  

 
Figure 6:  The effect of memory threshold on network formation over time for the fixed path 
navigation strategy in the hallway map (n=40). 
Figure 7 shows the growth curve of a network of agents moving through the Hallway map using the 
random navigation strategy. Comparing Figure 6 with Figure 7, the non-threshold curves have the same 
growth pattern, but the threshold curves appear to be different.  Memory appears to have different 
effects based on the setting in which the agents operate.   
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Figure 7:  The effect of memory threshold on network formation over time for the random walk 
strategy in the hallway map (n=40). 
 
Figure 8 compares the growth curves of two networks where a memory retrieval threshold of 0.0 was 
applied; these networks differ with respect to the navigation strategy used by their members. The fixed 
path-strategy (dash line) forms ties more quickly than the random-path strategy.  We suspect that the 
fixed-path strategy achieves equilibrium sooner because it is more localized, and thus provides more 
chances for agents to meet their “old friends”.  On the other hand, both networks achieve equilibrium 
at about 800 links, suggesting that the navigation strategies in this simulation do not constrain the 
number of relations an agent can maintain in memory.  

 
Figure 8:  The effect of navigation strategy on network formation over time in the hallway map with 
threshold (n=40). 
 
Figure 9 compares the network formation rates of networks occurring in each of the three map 
configurations (full grid, central, and hallway); all these networks consist of agents with a memory 
activation threshold of 0.0. We find that the map configurations have a similar influence on the 
networks’ growth curves as the navigation strategies. Again, the map configurations influence the rate 
of formation but not the network’s density at equilibrium. 
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Figure 9:  The effect of map configuration on network formation over time (n=40). 
 
Comparing the three curves, we find the Hallway map (grid ratio=60%) is associated with the longest 
delay in network formation and the lowest rate of increase; the full grid map (grid ratio=100%) has the 
shortest delay and the fastest rate of link formation. These results show that delay in the network’s 
growth rate is negatively correlated with map configuration (operationalized as grid ratio), while the 
network’s growth rate during its growth spurt is positively correlated.  

5.3.4	
  Interaction	
  Density	
  on	
  Locations	
  

Additionally, environment configurations can create loci of interaction or activity spaces (Brantingham 
& Brantingham, 1993). These locations are where the majority of all interactions occur.  Brantingham 
and Brantingham use this concept to study crime densities, but this idea can be expanded to other 
activities, such as co-occurrence or socialization. When traveling to or between these spaces, people 
tend to take routine paths. Costanzo et al. (1986) demonstrated that people near one another tend to 
travel along the same paths to activity hotspots. Therefore, we expect that agents will also tend to take 
high frequency paths to common locations because they are constrained by the world’s geometry.   

These high activity spaces for one of our environments are shown in Figures 10a and 10b. Figure 10a 
shows a heat map of room activity, while Figure 10b shows the connectivity between all agents and the 
rooms in which they have interacted. Given the concentration and degree of these spaces, we show that 
agents who traveled between activity spaces tended to travel along the same path. This result is similar 
to the water-cooler effect (DiFonzo, 2008), which suggests that interaction happens naturally in shared 
public locations.  
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Figure 10. (a) Hallway map’s heatmap; (b) Agents-by-location network. 

6.	
  Discussion	
  and	
  Future	
  Work	
  

In this study, we created a multi agent social network simulation that provides a flexible platform to 
examine several influential factors in social networks. Based on the existing literature (Brantingham & 
Brantingham, 1993; DiFonzo, 2008), we distinguish between environmental and cognitive factors. Our 
environmental factors included population size, run time, and map configuration.  We focused on one 
cognitive factor, memory activation. Our experiments’ results show the impact of these factors on the 
network topologies of our agents’ interaction networks and on the growth patterns of these networks.  

We first examined whether and how these factors influenced the topologies of our agent networks by 
using five independent variables, specifically threshold, threshold square, environmental topology, 
running time, and agent count to determine how much each of these factors could account for variation 
in five network measures of interest.  The five network measures of interest were density, average 
distance, clustering, average eigenvector, and average betweenness. We used a model selection 
procedure to determine whether each independent term was useful in accounting for variation in each 
dependent term.  We found that all three environmental factors were useful, although the environment 
topology term was the least useful. Our cognitive factor, memory thresholding, accounted for a large 
amount of the variation as well.  We found that network that all three factors explained variation in 
these measures, and that these measures significantly differed with respect to cognitive threshold.  

The usefulness of the environmental topology term differed depending on what semantic was used to 
generate the network.  When one-way perceptions were sufficient to suggest a tie, environmental 
topology was a more useful term.  This suggests that certain environmental configurations allow more 
asymmetry in the perceptions of the agents within them.  

To test the influence of cognitive limit, we also did an additional analysis to compare the network 
without a cognitive limit and the network with an activation threshold 0. From Table 3, we can find 
that the comparison results are very significant (p < 0.005) in all five measures. This means the 
cognitive limitations are important for understanding these networks. It also suggests that networks of 
co-occurrence that do not represent the limits of memory are likely to vastly over-exaggerate the 
proliferation of connections between human actors.  

We also generated the distribution plots of five measures when we increase the threshold value from -5 
to 5. The plots align with the result we found in Table 3, and we also found Symmetric network is more 



	
  

21	
  

sensitive to cognitive limitation. Another interesting finding is that five measures started to 
decrease/increase when the threshold is around -1. Based on ACT-R theory, we believe this turning 
point should be related to memory decay speed and other mental noise factors. Examining the relations 
between this turning point and other cognitive factors will be a important topic in our future work.   

When examining the formation of our networks, the effect of running time was not as significant as we 
expected, and shows plateauing after 250s run for these configurations. The large running time also 
weakens the effect that map configurations have because it provides agents sufficient time to travel 
around the whole map.  By examining interaction density on locations, we also found that the shared 
public locations have higher interaction densities, resembling Brantingham and Brantinham’s (1993) 
focal loci.  

Taking advantage of the ACT-R memory mechanism, we were able to create an egocentric view of our 
agents’ interaction networks in memory by reconstructing the declarative representations used by our 
agents to recall past associations. We then merged these egonets to create a system wide representation 
of our agent’s recalled interactions.  We found the structure and density of these merged egocentric 
networks to depend heavily on the criteria for tie formation, directed-sufficient and symmetric 
necessary.  

By examining the activation values between agents, we also found that our model’s four factors 
influenced the activation values of agent ties.  The agent activation logs show that the population size 
has a negative influence on the average activation (smaller groups have stronger ties); that running time 
has a positive influence on the average activation value; and that map configuration has some influence 
on the average activation but that this change does not correspond to changes in the grid ratio. This 
suggests that grid ratio is not a sufficient measure of map configuration at least with these maps, and 
we need to find a more accurate measure in the future.  We also found that navigation strategies do 
influence activation values, with the Fixed Path strategy resulting in a neighborhood effect (strong 
localized ties).  Further, we found that environmental factors did impact our network measures, 
finding running time to be the chief main effect explaining the variance in our density, average 
distance, clustering, and eigenvector across all the networks.  For betweenness, population size 
contributed more information, but this is not surprising as betweenness is a path measure.  Population 
size, more generally, was the most influential parameter for our thresholded networks (activation 
values of 0).  This is as expected because thresholded agents must maintain ties in memory through 
repeated exposures.   

Examining network formation, we found that navigation strategies and map configurations did 
influence network formation.  Holding population size and run time constant, we examined to what 
degree cognitive limitations (represented by a memory activation threshold) influenced a network’s 
generative process. The results suggest that cognitive limitations influence both the rate of network 
formation and the network’s size at equilibrium. These findings roughly mirror empirical studies 
(Brantingham & Brantingham, 1993).   

We can view the progression of the curves in Figures 6-9 as corresponding to three stages in network 
formation, though at abbreviated time scales. Between 0 and 100 seconds, the size of the network does 
not grow significantly, and the average number of relations stays constant at 60. This represents the 
tendency of people to initially remain in localized relations with a few people. Between approximately 
100 to 150 seconds, there is a rapid increase in ties as they become more familiar with a new activity 
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space. Finally, between 150 to 500 seconds, the network stops growing because the agents have shifted 
from primarily establishing to maintaining their friends network. In the stable state, the number of total 
links stays around 800 in these networks, meaning that the average number of relations in these 
networks is about 20. 

In the second analysis, we examined the influences of two navigation strategies. The results suggest 
that navigation strategies do not influence the ultimate densities of our networks over time, with 
non-thresholded networks reaching a higher density than thresholded networks. Navigation strategies 
do, however, change the growth pattern of both networks. Figure 6 showed that the network using the 
fixed-path strategy grows much faster. This is because the fixed-path strategy is a more focused 
strategy that provides more chances for people to meet their “old friends”.  In this case, people more 
easily form small groups associated with their starting location, such as people living on the same street 
or attending the same school. We see that the fixed-path strategy facilitates the rapid creation of smaller 
tighter groups than the random-walk strategy.  

The third analysis focused on examining the influences of spatial configurations on generative 
networks. We operationalized map configurations using a constant (grid ratio).  We defined grid ratio 
as the ratio of the number of edges over the total number of possible edges to quantify the connectivity 
of the map configurations. We find that delay increment is negatively correlated with grid ratio, while 
the formation rate during the growth phase is positively correlated with the grid ratio. This result 
validates our definition of grid ratio, because it shows the grid ratio does have influence on network 
formation; it also proves that lower grid ratio maps with more gaps and obstacles decrease the 
network’s growth rate. We also found that our map configurations did not influence the final density of 
the network over time, but did influence its rate of growth.  

Comparing the two rounds of analyses, we noticed an interesting conflict: the environmental topology 
showed relatively slight influence on network measures in the first round of experiment, but it 
exhibited significant influences on the growth pattern of networks. After examining Figure 9, we 
noticed that the significant differences between map configurations happened between 150 seconds and 
250 seconds, however, the first round of experiments used 125 seconds and 250 seconds as running 
time, which do not include the influence of map configurations. Combining these two experiments, we 
may conclude that the influence of map configuration changes over time. It is slight at the beginning, 
but will increase at a point (approximately 150 seconds) and the influence will diminish when the 
networks reach an equilibrium. We will rerun the experiment with different running times to verify this 
conclusion in the future work.  

Future avenues of work will build upon some of the more interesting issues. First, we would look at 
analysis of normalized thresholds to see if there are regularities in their effects on network topology. 
Second, we should run more agents and more runs (Ritter, Schoelles, Quigley, & Klein, 2011), because 
the system to demonstrate these effects was kept deliberately small. Finally, we would extend our 
analysis on the effects of cognition on network measures analogous to Dunbar’s Number. 
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