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Introduction 
We used a complex electrical troubleshooting task shown in 
Figure 1 to study problem solving with learning, the 
BenFranklin Radar System that consists of 36 components, 
versus 7 components in the Klingon Laser Bank task used in 
several previous studies (Friedrich & Ritter, 2020; Ritter & 
Bibby, 2021). MENDS is a simulator created by Charles 
River Analytics for the BenFranklin Radar system, shown in 
the lower figure, used under license.  The participants’ task is 
to find the broken component in the circuit. In MENDS, 
participants can click and open the subsystem (trays) to see 
the components in each subsystem. They can decide and click 
the component that they think is the broken component, based 
on their schematic knowledge, the light and switch 
conditions. Components without power are in grey.  

Figure 1: Upper: Schematic for the BenFranklin Radar. 

Blue lines are power; red lines are signal; purple lines are 

both. Lower: the MENDS simulator’s front panel and one 

subsystem. 

We collected participants’ mouse moves and clicks for our 
modeling and data analysis using the RUI logger (Kukreja et 
al., 2006). To gather data, a user study was run (Ritter et al., 
2022). The goal was to identify strategies and learning with a 
larger number of participants. After data cleaning, we had 
111 participants’ data in the test session, where they were 
asked to finish 20 problems. We collected the component and 
times the participants clicked on. From the mouse clicks of 

the top 6 participants in the test session, we developed and 
implemented four strategies in the BenFranklin Radar task. 
Here we present one, the Grey Upstream strategy. The 
observed time for participants’ performance was compared 
with the predicted time of our strategy models, without and 
with learning.  

Modeling 
Figure 2 shows how we built a simple task model for MENDS 
in Python, also described in (Ritter et al., 2022).  The simple 
task model used a Panda data frame to store and reflect the 
components’ broken status (1: component is fine; 0: broken), 
light status (1: component has light on; 0: light off), 
downstream components to give power, upstream 
components to receive power, switch condition before them 
(1: switch on; 2: switch off), the number of times the required 
schematic knowledge have applied by participants. 

Figure 2. A flowchart for the simple task model and the 

grey-upstream strategy model. An active path refers to 

the components receiving power and that are supposed to 

have lights on.  

The Grey Upstream Strategy 
The Grey Upstream strategy is one of the four strategies that 
may be used to identify the broken component. Here we 
define the strategy in the scope of a task. Those strategies are 
categorized by four features: their starting point, how the 
front panel information was used, degree of schematic 
knowledge used, and degree of interface information used. 
Variations within one strategy are also possible. All strategies 
find the correct fault. The grey upstream strategy (GreyUp), 
shown in Figure 3, is based on participants P324, 420, 451, 
& 453. The strategy involves two major steps, finding a grey 
component as a starting point and tracing upstream in the 
schematic till finding the broken component. To locate the 
starting point, users click into the first grey tray using light 
information from the front panel and identify the first grey 
component by interface order from left to right and up to 
down within the clicked tray. Starting from the first grey 
component, participants use their schematic knowledge to 
trace up until they identify the broken component, which is 
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the only one with its light off but all its upstream components 
in the active path are with their lights on. 

Figure 3. A flowchart of the Grey Upstream strategy, as a 
technical detail example. 

The models take steps to solve the task based on each 
strategy, and time is added with each type of action. The time 
for each step depends on the learning level. Under the learn-
ing condition, we assume that knowledge is transferred to 
later tasks and the participants solve the later tasks faster 
based on the repetitive application of the same knowledge. 
Time parameters used in the models include visual coding, 
0.4 (s); mouse move, 1.1; mouse click, 0.2; mental operation, 
1.35; learning rate, 0.4.  The learning follows ACT-R and the 
power law, and the base times are KLM times.  

Models learn by modifying the mental operation time. We 
do this by having mental operation time as a function and not 
a constant. The function mental(type, var2) gives different 
times for different types of mental operation and learning lev-
els. The type variable includes type 1 and type 0. Type 1 refers 
to the mental operation time retrieving a component by using 
schematic knowledge. Type 0 refers to any other mental pro-
cessing not related to schematic knowledge. Type 1, retriev-
ing a component, can be faster with learnings which indicated 
by var2. For type 0, var2 is a random number because the 
time is assumed to be fixed, and no learning happens. For sit-
uations that assume no learning, the mental operation 
function in models uses a constant 1.35 s. When learning, the 
mental operation time is !. #$ · 	'!", )here n is the number 
of times the component has been checked or the number of 
times the required circuit knowledge has being used. The 
value of l represents the learning rate, 0.4. 

Comparison 
We trained the models with the previous sessions that partic-
ipants experienced before we ran the models for tasks in the 
test session. We compared the predicted time to the observed 
times of the participants. We consider that participants fit 
well to a strategy if they have R2 with a p-value < .05. 14 
participants’ behaviors match a strategy (p < .05; R2 varied) 
without learning in the test session. 69 participants’ behaviors 
match a strategy with learning in the test session.  
    Figure 4 shows the match of PID 413 as an example.  PID 
413 has R2 of .498, without learning and an R2 of .518, with 
learning. The red dotted line is the observed time from human 
data; the blue solid line is the predicted time without learning; 

the black solid line is predicted time with learning and was 
trained with previous sessions’ faults.  

Figure 4: An example of PID 413 as one of the best 
matches. A comparison of human data, our Grey Upstream 

Strategy model with learning, and without learning. 

Discussion and Conclusion 
The strategy that includes learning indeed does better at 
performance prediction. Also, more strategy models could 
have been presented. Variations within strategies and strategy 
switch are not yet modeled. The current strategy models are 
from the top 6 well-performed participants, while the other 
participants made much more errors during the fault-finding 
process. We have not modeled errors, lapses, or changes of 
strategies within the same session. Modeling those can be our 
future steps. If our strategy models consider errors, the match 
between participants and strategies may increase.  
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