
1

Modeling a Strategy with Learning in a Complex Task

Shan N. Wang (sxw820@psu.edu)
Frank E. Ritter (fer2@psu.edu)

College of IST��3HQQ�6VWDWH
University Park, PA 16802 USA

Keywords: individual differences; cognitive modeling

Introduction
We used a complex electrical troubleshooting task shown in
Figure 1 to study problem solving with learning, the
BenFranklin Radar System that consists of 36 components,
versus 7 components in the Klingon Laser Bank task used in
several previous studies (Friedrich & Ritter, 2020; Ritter &
Bibby, 2021). MENDS is a simulator created by Charles
River Analytics for the BenFranklin Radar system, shown in
the lower figure, used under license. The participants’ task is
to find the broken component in the circuit. In MENDS,
participants can click and open the subsystem (trays) to see
the components in each subsystem. They can decide and click
the component that they think is the broken component, based
on their schematic knowledge, the light and switch
conditions. Components without power are in grey.

Figure 1: Upper: Schematic for the BenFranklin Radar.

Blue lines are power; red lines are signal; purple lines are

both. Lower: the MENDS simulator’s front panel and one

subsystem.

We collected participants’ mouse moves and clicks for our
modeling and data analysis using the RUI logger (Kukreja et
al., 2006). To gather data, a user study was run (Ritter et al.,
2022). The goal was to identify strategies and learning with a
larger number of participants. After data cleaning, we had
111 participants’ data in the test session, where they were
asked to finish 20 problems. We collected the component and
times the participants clicked on. From the mouse clicks of

the top 6 participants in the test session, we developed and
implemented four strategies in the BenFranklin Radar task.
Here we present one, the Grey Upstream strategy. The
observed time for participants’ performance was compared
with the predicted time of our strategy models, without and
with learning.

Modeling
Figure 2 shows how we built a simple task model for MENDS
in Python, also described in (Ritter et al., 2022). The simple
task model used a Panda data frame to store and reflect the
components’ broken status (1: component is fine; 0: broken),
light status (1: component has light on; 0: light off),
downstream components to give power, upstream
components to receive power, switch condition before them
(1: switch on; 2: switch off), the number of times the required
schematic knowledge have applied by participants.

Figure 2. A flowchart for the simple task model and the

grey-upstream strategy model. An active path refers to

the components receiving power and that are supposed to

have lights on.

The Grey Upstream Strategy
The Grey Upstream strategy is one of the four strategies that
may be used to identify the broken component. Here we
define the strategy in the scope of a task. Those strategies are
categorized by four features: their starting point, how the
front panel information was used, degree of schematic
knowledge used, and degree of interface information used.
Variations within one strategy are also possible. All strategies
find the correct fault. The grey upstream strategy (GreyUp),
shown in Figure 3, is based on participants P324, 420, 451,
& 453. The strategy involves two major steps, finding a grey
component as a starting point and tracing upstream in the
schematic till finding the broken component. To locate the
starting point, users click into the first grey tray using light
information from the front panel and identify the first grey
component by interface order from left to right and up to
down within the clicked tray. Starting from the first grey
component, participants use their schematic knowledge to
trace up until they identify the broken component, which is

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

277

2

the only one with its light off but all its upstream components
in the active path are with their lights on.

Figure 3. A flowchart of the Grey Upstream strategy, as a
technical detail example.

The models take steps to solve the task based on each
strategy, and time is added with each type of action. The time
for each step depends on the learning level. Under the learn-
ing condition, we assume that knowledge is transferred to
later tasks and the participants solve the later tasks faster
based on the repetitive application of the same knowledge.
Time parameters used in the models include visual coding,
0.4 (s); mouse move, 1.1; mouse click, 0.2; mental operation,
1.35; learning rate, 0.4. The learning follows ACT-R and the
power law, and the base times are KLM times.

Models learn by modifying the mental operation time. We
do this by having mental operation time as a function and not
a constant. The function mental(type, var2) gives different
times for different types of mental operation and learning lev-
els. The type variable includes type 1 and type 0. Type 1 refers
to the mental operation time retrieving a component by using
schematic knowledge. Type 0 refers to any other mental pro-
cessing not related to schematic knowledge. Type 1, retriev-
ing a component, can be faster with learnings which indicated
by var2. For type 0, var2 is a random number because the
time is assumed to be fixed, and no learning happens. For sit-
uations that assume no learning, the mental operation
function in models uses a constant 1.35 s. When learning, the
mental operation time is !. #$ · 	'!",)here n is the number
of times the component has been checked or the number of
times the required circuit knowledge has being used. The
value of l represents the learning rate, 0.4.

Comparison
We trained the models with the previous sessions that partic-
ipants experienced before we ran the models for tasks in the
test session. We compared the predicted time to the observed
times of the participants. We consider that participants fit
well to a strategy if they have R2 with a p-value < .05. 14
participants’ behaviors match a strategy (p < .05; R2 varied)
without learning in the test session. 69 participants’ behaviors
match a strategy with learning in the test session.
 Figure 4 shows the match of PID 413 as an example. PID
413 has R2 of .498, without learning and an R2 of .518, with
learning. The red dotted line is the observed time from human
data; the blue solid line is the predicted time without learning;

the black solid line is predicted time with learning and was
trained with previous sessions’ faults.

Figure 4: An example of PID 413 as one of the best
matches. A comparison of human data, our Grey Upstream

Strategy model with learning, and without learning.

Discussion and Conclusion
The strategy that includes learning indeed does better at
performance prediction. Also, more strategy models could
have been presented. Variations within strategies and strategy
switch are not yet modeled. The current strategy models are
from the top 6 well-performed participants, while the other
participants made much more errors during the fault-finding
process. We have not modeled errors, lapses, or changes of
strategies within the same session. Modeling those can be our
future steps. If our strategy models consider errors, the match
between participants and strategies may increase.

Acknowledgements
Thanks to Sarah Ricupero, Mizzah Tocmo, and Rochelle
Lorraine Clerkin for providing feedback to the longer version
of the paper.

References
Friedrich, M. B., & Ritter, F. E. (2020). Understanding

strategy differences in a fault-finding task. Cognitive

Systems Research, 59, 133–150.
Kukreja, U., Stevenson, W. E., & Ritter, F. E. (2006). RUI:

Recording user input from interfaces under Windows and
Mac OS X. Behavior Research Methods, 38(4), 656–659.

Ritter, F. E., & Bibby, P. (2021). Modeling how and when
learning happens in a simple fault-finding task.
Proceedings of the 2001 Fourth International Conference

on Cognitive Modeling, 330–341.
Ritter, F. E., Workman, D., & Wang, S. (2022). Predicting

learning in a troubleshooting task using a cognitive
architecture-based task analysis. International Conference

on Cognitive Modeling. 222-223.

.

Proceedings of the 21st International Conference on Cognitive Modelling (ICCM 2023)

278

