
1 

A User Model to Directly Compare Two Unmodified Interfaces: 

A Study of Including Errors and Error Corrections in  

a Cognitive User Model 
Farnaz Tehranchi, School of Engineering Design, Technology and Professional Programs, Penn 

State, farnaz.tehranchi@psu.edu 

Amirreza Bagherzadehkhorasani, Department of Industrial and Manufacturing Engineering, 

Penn State, amir.bagherzadeh@psu.edu 

Frank E. Ritter, College of IST, Penn State, frank.ritter@psu.edu 

Update: 11 May 2023  

Tehranchi, F., Bagherzadehkhorasani, A., & Ritter, F. E. (in press). A user model to directly compare two 
unmodified interfaces: A study of including errors and error corrections in a cognitive user model. Artificial 
Intelligence for Engineering Design, Analysis and Manufacturing.



  2 

Abstract and Keywords 
It would be helpful in interface design to have user models that can use and learn how to do tasks, 

and also, compare task times on interfaces without modifying the interfaces. Including errors in 

user models would also be helpful because users will always make mistakes and generate errors. 

We compare three cognitive models: an existing cognitive model that simulates users' behavior in 

the Dismal spreadsheet in Emacs, a new developed cognitive model that interacts with a Microsoft 

Excel spreadsheet, and a proposed user-errors model that simulates a user's errors in Excel. These 

models are implemented with a set of cognitive mechanisms with eyes and hands extensions using 

a cognitive architecture. All the models complete a 14-step task without modifying the spreadsheet 

tools that participants use to complete the same task. These models predict that doing the task in 

Excel is approximately 20% faster than doing the same task in the Dismal spreadsheet. This result 

suggests where, why, and how much Excel is a better design than Dismal. The Excel model (the 

ACT-R model that performs the spreadsheet task in Microsoft Excel) predictions are compared to 

human data (N=23). The model's predictions of subtask times correlate well with the human data 

(r2 = .71). We also present a preliminary model of human error and correction based on user 

keypress errors, including 25 slips. The model predictions and the user data comparison suggest 

that this interactive cognitive model moves us closer to having a complete user model that can 

directly test interface design by predicting human behavior and performing the task on the same 

interface that users interact with. The errors that arise from the model's hands also allow further 

exploration of error detection, error correction, and different knowledge types in user models.  

Keywords: cognitive models, user experience and usability, design, vision and motor knowledge 
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Introduction 
Computational models that simulate human intelligence and behavior are not yet always complete 

and not always capable of interacting with the environment. Newell (1990), in his Unified Theories 

of Cognition, explains his dream of developing reusable mechanisms for cognitive and 

computational architectures to complete a task. Cognitive architectures are designed explicitly for 

modeling reusable mechanisms, such as Soar (Laird & Nuxoll, 2003; Newell, 1990), ACT-R 

(Anderson, 2007; F. E. Ritter, Tehranchi, & Oury, 2018), EPIC (Kieras & Meyer, 1997), and 

PyIBL (Gonzalez, Lerch, & Lebiere, 2003). A user model combines task knowledge and a 

cognitive architecture with its fixed mechanisms to apply the knowledge and generate behavior.  

Developing a user model at each design step supports the risk-driven spiral system development 

approach that includes human factors concerns (Pew & Mavor, 2007). Also, user models can be 

used to discuss types of users, types of tasks, and the number or complexity of the tasks in the 

system while keeping track of the design requirements (Frank E Ritter, 2019), and has been long 

desired (e.g., Byrne, Wood, Sukaviriya, Foley, and Kieras (1994); Card, Moran, and Newell 

(1983)). 

Different approaches investigate adding interaction to a cognitive architecture to develop cognitive 

models. Developing human-like models that perform users' behavior has been envisioned before 

(e.g., Byrne et al. (1994); Lohse (1997); Pew and Mavor (2007)) but has not been widely applied. 

Some practical approaches that modelers use to have models interact with a simulated world are 

ESegMan (Tehranchi & Ritter, 2017), ACT-R/PM (Byrne & Anderson, 1998), Cognitive code 

(Salvucci, 2009, 2013), JSON ACT-R (2014), and ACT-CV (Halbrügge, 2013). In these 

approaches, it will be difficult to reuse these models (their task knowledge) because of the domain-

specific nature of the models—these models can only interact with the interfaces that are modified 

or created for these tools—the interfaces have been modified to provide the models' access to 

information on the display in that application using mark-up languages or other APIs. Also, the 

interfaces have been adjusted to accept input commands directly from models.  

In contrast, we use the Java Segmentation and Manipulation (JSegMan) tool (Tehranchi & Ritter, 

2018a, 2018b), which works independently of interface design. This tool allows cognitive models 

to see objects on the screen using pattern recognition and execute actions such as clicking and 

typing using the operating system's event queue. With JSegMan, cognitive user models include a 

simulated eye that can see what is on an interface and a simulated hand that allows models to move 

the mouse, click, and type. Models developed with JSegMan and ACT-R theory are called Eyes 

and Hands models. This approach allows models to interact with any unmodified interfaces.  

The Kim Spreadsheet Task (KST; Kim (2008)), unlike previous research on text editing tasks, can 

give a balanced set of knowledge and skills, including procedural, declarative, and perceptual-

motor knowledge. It also duplicates some common work tasks, such as manipulating spreadsheets. 

It is explained further below.  

Using interactive cognitive models with reliable predictions can be cost-effective in designing 

decision-making processes involving human-computer interaction (F. E. Ritter, Baxter, Jones, & 

Young, 2000) and developing cognitive assistance models (Klaproth, Halbrügge, & Russwinkel, 
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2019). Interactive cognitive models, such as Eyes and Hands models (Tehranchi & Ritter, 2018a), 

will reduce the discrepancy between model and user capabilities, better predict human 

performance in interactive designs, provide more realistic input, simulate error correction, and be 

useful for AI interface agents. Recent models that interact with the Space Fortress video game 

(Anderson, Betts, Bothell, Hope, & Lebiere, 2019; Fincham, Tenison, & Anderson, 2022) both 

interact with a representation of the game state placed directly into working memory by the task 

simulation. A recent model of driving (Held, Rieger, & Borst, 2022) interacted directly with a 

simulation of the car, receiving the ground truth as symbols into visual memory, although it did 

move its visual attention around a simulation of a visual field.  

Interface design can benefit from user models that can predict and compare task times on interfaces 

without modifying the interfaces. It would also be useful to include errors and error corrections 

because users will always make mistakes and generate errors. We present several user models that 

interact directly with interfaces and are able to make errors and correct them. 

The growth of technologies has led to more complex and reliable systems and user interfaces 

(Philippart, 2018; Zhan et al., 2019). This complexity has resulted in the human factor errors, such 

as erroneous behavior, poor judgment, failure to properly follow the standard procedures, and to 

be a primary cause of accidents (Chen, Reniers, & Khakzad, 2019, 2020).  

Different studies have explored the role of human error in reliability analysis and focused on 

various aspects of human performance and cognition but have not been used to extend cognitive 

architectures. For example, Di Pasquale, Miranda, and Neumann (2020) conducted a scoping 

review on aging and human-system errors in manufacturing, and Nor, Pedapati, and Muhammad 

(2021) provided a 20-year review of reliability engineering applications in various industries. In 

addition, recent research has started to acknowledge the importance of understanding human 

factors and their influence on system reliability (Alvarenga & e Melo, 2019; Pan, Lin, & He, 2017; 

Tao, Qiu, Yang, & Duan, 2020). Yet, there is a notable gap regarding using cognitive architecture 

to model the cognitive process of human error in reliability analysis literature. 

A few studies have begun to explore cognitive modeling in reliability analysis, such as Shahab, 

Iqbal, Srinivasan, and Srinivasan (2022a, 2022b) two-part series on HMM-based models of control 

room operator's cognition during process abnormalities, which focused on formalism and model 

identification (Part 1), and application to operator training (Part 2). Furthermore, Zhao and Smidts 

(2021a, 2021b) developed a cognitive modeling and simulation environment for human 

performance assessment (CMS-BN), and applied it in a two-part series on methodology (Part 1) 

and application (Part 2). These studies demonstrate the potential of incorporating cognitive 

architectures in reliability analysis; however, their explicit integration remains limited. 

We present three Eyes and Hands models: a Dismal model, an Excel model, and an Error model. 

These models perform a non-iterative spreadsheet task containing 14 subtasks in two spreadsheet 

tools. The Excel model's predictions are compared to human data (N=23) on the same interfaces. 

The Dismal model performs the same task in the Dismal spreadsheet (Paik, Kim, Ritter, & Reitter, 

2015; F. E. Ritter & Wood, 2005; Tehranchi & Ritter, 2018a, 2018b). The Error model is 

developed to investigate errors and error correction behaviors in the Microsoft Excel environment. 

With a model that can make predictions of usability and correlate with human data very well, we 
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then develop an Error model to move closer to having a complete user model that can predict more 

human behavior while completing a task, including the initial error generation, as well as the 

restorative steps of detection and error correction.  

We conducted a study asking participants to perform the Kim (2008) Spreadsheet Task (KST) in 

Excel. The Excel version has identical subtasks but with different keystrokes and interpretations 

of the visual display (J. W. Kim, 2008; Paik et al., 2015). Our study explores visual attention and 

errors in developing a user model. The mean task completion time of 23 users performing the KST 

in Excel is presented and compared with the model's predictions. The results compared to 

published data show the Excel model is faster, which matches the models' predictions that users 

will take less time to complete the task in Excel than in the Dismal spreadsheet.  

We also present further analysis of input errors. While the time predictions correlate very well 

between the model and data, errors are seen in the data but not in the model. Landauer's (1987) 

analysis suggests that perhaps 35% of the users' task time can be attributable to error generation 

and recovery. This suggests that analysis of the source of errors and their correction is important, 

and that error generation and recovery need to be included in user models.  

Spreadsheet errors can have costly, even detrimental, consequences (Fisher et al., 2006). Powell, 

Baker, and Lawson (2008) provide a comprehensive review of different types of errors, their 

frequency, and strategies to avoid errors through proper spreadsheet design. R. R. Panko and 

Aurigemma (2010) further refine the understanding of spreadsheet errors by revising the Panko-

Halverson taxonomy, which classifies errors based on their nature and severity. R. Panko (2016) 

explores the cognitive analysis approach to understand spreadsheet errors which include focusing 

on how users think, make decisions, and process information while working with spreadsheets. 

All these processes can lead to error generation in spreadsheet tasks. 

Furthermore, Kankuzi and Sajaniemi (2013, 2014) have shown that experts employ unique mental 

models when interpreting spreadsheet data, identifying errors, and rectifying them. Cunha, Dan, 

Erwig, Fedorin, and Grejuc (2018) leveraged these findings by incorporating different types of 

error proposed by (Bishop & McDaid, 2008) to create a user-friendly interface aimed at facilitating 

spreadsheet authors in comprehending errors and correcting them in spreadsheets created by other 

authors. Recent research, such as (Huang, Xu, Jiang, Wang, & Li, 2020), has focused on 

developing new techniques like WARDER for effective spreadsheet defect detection by utilizing 

validity-based cell cluster refinements. Chalhoub and Sarkar (2022) investigate the user experience 

of structuring data in spreadsheets and provide insights into how users think about data 

organization, which can help inform future spreadsheet design improvements. 

Despite the extensive body of research available on spreadsheet errors, once again, the literature 

on utilizing cognitive architecture to model the cognitive process of human error in spreadsheet 

tasks remains inadequate. 

To start to account for errors in cognitive architectures, a simple Error model is developed to 

demonstrate how a model could generate errors. This model starts to show how time can be 

allocated to error detection, error correction, and different types of knowledge. 
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JSegMan 

If cognitive models interact with user interfaces, then the models will be easier to develop and 

apply. This approach was called a Cognitive Model Interface Management System (CMIMS, F. 

E. Ritter, Baxter, Jones, and Young (2001)), which is an extension of the concept of a User 

Interface Management System (UIMS, Myers (1995)). The CMIMS's research area can be 

exploited to help develop cognitive models and agents and support the users who interact with 

interfaces. It will also help elevate testing user interfaces, making this process more approachable 

and easier to do so that the testing can be successfully completed. Using the model to test interfaces 

and even systems as they are built has been called for by the National Research Council in a report 

about how to build large systems (Pew, 2007). 

Multi-disciplinary aspects of artificial intelligence, computer vision, cognitive science, and 

psychology can be utilized to better shape human-like agents by incorporating new capabilities. 

JSegMan explores how the phenomenon of vision and motor knowledge can be incorporated into 

a novel, improved user modeling approach. 

JSegMan was developed for cognitive models to provide them with access to the world. This is an 

important component for nearly all models of science so that they are completer, and for all 

applications where it would be useful for a user model to interact with an existing, but the 

unmodifiable interface (Frank E Ritter, 2019; Wallach, Fackert, & Albach, 2019). JSegMan takes 

some ideas from SegMan (F. E. Ritter, Kukreja, & St. Amant, 2007; St. Amant, Horton, & Ritter, 

2007), extends them, and moves the system into Java. The only other software that can interact 

with interfaces, like JSegMan, requires the interfaces to be built within specific tools (Byrne, 2001; 

F. E. Ritter et al., 2000; Wallach et al., 2019).  

We start by describing the eyes and hands in more detail. JSegMan is a simulated eyes and hands 

tool that allows an ACT-R user model to receive input by reading the screen and produce output 

by passing commands to the operating system to execute actions such as a mouse click. JSegMan 

has been used to interact with the Dismal spreadsheet (J. W. Kim, 2008; Paik et al., 2015). Using 

JSegMan, we found missing knowledge that needed to be included and adjusted hand positions 

that were not considered. The revised model could complete the task (Tehranchi & Ritter, 2018a, 

2018b). JSegMan was recently revised to see objects on the screen in a more powerful way. The 

new vision simulation is based on the Pyramid TemplateMatching algorithm (Bradski, 2004) that 

reduces visual pattern resolution and size sensitivity (i.e., templates).  

JSegMan thus helps realize a long-held desire to use human performance models more directly in 

computer-aided engineering. The models are either used to test an existing system or are developed 

with the system as it is developed as a way to represent users as an important system component.  

Research Objectives 

The research objectives of this work are to provide a novel approach to improve and integrate 

cognitive models by facilitating how cognitive models interact with the world and, in this regard, 

quantitatively include the perception and actions of cognitive models.  
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First, interaction with an executive platform of models will be investigated with the ACT-R 

architecture. Second, a new type of knowledge and skills with respect to interaction will be 

modeled to explore the necessity of new knowledge for interaction. Third, we will examine if 

including the new knowledge leads to better prediction of the performance time. There are three 

goals to achieve these objectives.  

Evaluating user interfaces: A complete model of a spreadsheet task in two environments (Dismal 

and Excel) will be developed to illustrate the applicability of this approach in the real-world task 

of evaluating two interfaces. We will examine if and how cognitive models can help design and 

evaluate two spreadsheet applications. Which interface is faster to use and why? Which requires 

less knowledge? How many keystrokes/mental operators are needed? What could be done to speed 

up either interface? To answer these questions, we will develop a complete model to interact with 

two unmodified interfaces to compare them. 

Modeling error detection and correction: We will also examine how adding the capability of 

making errors improves cognitive models. What are some of the mechanisms and user knowledge 

needed for modeling errors, and how do they contribute to human performance modeling? To 

answer these questions, we will develop an error model to simulate a user's errors. 

Where does the time go? We will investigate and break down the time allocations among vision 

and motor knowledge to understand the differences between model predictions and human data. 

In summary, our research questions (RQs) are: 

RQ1: Could a user model be demonstrated on two different interfaces and make useful predictions 

about performance on these two systems? 

RQ2: Could cognitive user models be extended to include error detection and correction? 

RQ3: How can the differences between model predictions and human data be improved? 
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Method 
We gathered data to test the model's predictions for Excel. We used existing data (J. W. Kim, 2008; 

J. W. Kim & Ritter, 2015) to test the model's predictions for the task using the Dismal spreadsheet.  

Kim Spreadsheet Task 

Figure 1 shows the Excel task environment and the final state of the KST. The KST was created 

to study learning and retention (J. W. Kim, 2008). Participants start with the initial file for the KST 

and complete the 14-subtasks of the KST. Table 1 lists the 14 subtasks of the KST. These subtasks 

are similar to regular computer tasks in spreadsheet tools. They are more complex than common 

text typing tasks because of the included logic and patterns. In the 2008 study, participants returned 

in four consecutive days to repeat the task and then came back in 6, 12, or 18 days.  

The Dismal spreadsheet of Emacs was carefully chosen because no participants had prior 

knowledge of the task environment. Both that task and task environment have been good 

candidates for investigating learning and retention. The published data contains participants' 

subtask completion times.  

Kim (2008) indicated the existence of errors. But errors were not recorded and considered for 

analysis. KST is a good candidate for model development and further analysis. Because the 

resulting models based on KST support investigations of different types of skills and can be run 

with the two spreadsheet tools (i.e., Dismal and Excel). Their predictions for each of the 14 

subtasks could be computed for each of the two interfaces. 

 

 
Figure 1: The final task state for the Excel version of the Kim Spreadsheet Task (KST). 

Participants open a file, save it with a new name, add new rows, and calculate the value of 36 

cells.  
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Table 1: The 14 subtasks of the KST. These steps are performed in both interfaces, the Dismal 

spreadsheet and Excel. 

Subtasks 

(1) Open File 

(2) Save As 

(3) Calculate Frequency (B7 To B11) 

(4) Calculate Total Frequency (B14) 

(5) Calculate Normalization (C2 To C6) 

(6) Calculate Total Normalization (C14) 

(7) Calculate Length (D2 To D11) 

(8) Calculate Total Length (D14) 

(9) Calculate Typed Characters (E2 To E11) 

(10) Calculate Total Typed Char. (E14) 

(11) Insert Two Rows 

(12) Type in Name (A1) 

(13) Insert Current Date (A2) 

(14) Save As … 

 

Participants 

Twenty-three undergraduate and graduate students at the Pennsylvania State University were 

recruited to participate in this experiment. Participants were paid 12 dollars for a study session and 

successfully completed the study. Table 2 summarizes the demographic information of the 

participants.  

In addition, six Penn State students participated in a pilot study. Their results are used to update 

the instruction and determine the doability of the instruction. Pilot study results suggest we need 

to modify the task instructions and initial file to be performed in Excel. Also, we learned to disable 

formula auto-complete, background error checking, auto-complete for cell values, and disable the 

formula bar to limit participants' options and make the Excel more similar to Dismal.  

Table 2: Participants' demographic information, including the self-reported level of competency 

in using Microsoft Excel, gender, and age. 

Demographic Information 

Level of competency 

in using Microsoft 

Excel (self-reported) 

Basic 4 

Intermediate 17 

Advanced 1 

Never use Excel 1 

Gender Female 5 

Male 18 

Age Average 25.13 

Standard deviation 5.87 

 

Materials 

An initial file was created in Excel for participants to complete the 14 sub-tasks of the KST, similar 

to data gathered in a previous study of the task (J. W. Kim, 2008). A regular mouse and keyboard 
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were used to input commands. Excel was used because of its popularity. Students are more familiar 

with Excel than Dismal. Excel is also an example of an application showing our approach's 

possibility (i.e., eyes and hands models). Using Excel also allows us to illustrate the use of 

JSegMan to compare the usability of two interfaces and show how JSegMan interacts with a 

commercial interface. Users in our study were familiar with the Excel environment, but users in 

Kim's (2008) study did not know the Dismal spreadsheet. In both environments, users had to study 

the task, the initial file, and to a slight extent, the interface. 

To make the Excel environment more similar to the Dismal environment and to reduce interaction 

with previous files, these features were turned off in Excel: formula autocompletes, formula bar, 

cell values autocomplete, and background error checking. Also, the Excel environment is more 

visually cluttered than Dismal. Therefore, the Excel ribbon was collapsed to make it simpler. 

Figure 2 shows the study environment with two Excel windows; the left window is the task 

environment, and the right window is the instruction window.  

 
Figure 2: Screenshot of the study environment containing two Excel windows.  

The initial state (for Excel) is on the left side of the screen, and the KST instructions for Excel 

are on the right side. 

As shown in Figure 1 and Figure 2, the initial Excel file consists of five columns (A to E). Column 

B has frequencies of each command listed from rows 2 to 6. Column C has normalized frequencies 

listed in rows 7 to 11. Five blank cells are filled in by participants in the B and C columns (e.g., 

B7 to B11, and C2 to C6). Columns D and E had ten blank cells that are filled in by participants. 

The total of the frequency column (rows 2 to 11) and the normalization column (rows 2 to 11) are 

provided to the participants. The total frequency is used to calculate normalization and frequency. 
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None of the participants had prior knowledge of the details of the KST. An eye tracker recorded 

keystrokes, mouse clicks, mouse movements, and task completion time (Lankford, 2000).  

Design 

In this within-participants study, the subtask times are the dependent measure. All participants 

used menu-based commands with a mouse and keyboard. Participants were not allowed to use 

key-based commands (e.g., keystroke accelerators such as CTRL+C for copying text). Also, we 

limited some Excel features, such as autocomplete to make the Excel environment similar to the 

Dismal environment.  

Procedure 

Participants were seated at their comfortable reading distance. They were welcomed, and the 

welcoming script was presented. They first went through eye tracker calibration. Participants were 

instructed to use the two Excel windows (Figure 2): one for completing the task and the other 

containing the instruction. Participants then started to complete the 14 subtasks using the 

instruction while being eye-tracked. They opened the initial state spreadsheet and saved the file as 

another name. They then completed the 14-step task by calculating and filling in blank cells using 

equations, including five data normalization calculations, five data frequency calculations, ten 

calculations of length, ten calculations of total typed characters, four summations of each column, 

and finally, an insertion of the current date using an Excel command, ("=today()"). Finally, 

participants were asked to complete a questionnaire that included their demographic information 

and Excel literacy level.  
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Results   
In this section, we report our results. We start with the evaluation of the two spreadsheet tools. We 

then look at the error data and the error model. Finally, we investigated time in models and human 

data.  

Evaluating User Interfaces 

All 23 participants completed their session. As a dependent variable, the task completion time was 

recorded in milliseconds by the GazeTracker eye-tracking system (Lankford, 2000).  

The average task complication time was 717.85 s (standard deviation (SD)=177.89). The 

GazeTracker data for each trial has approximately 10,100 records (data points). Pupil data were 

recorded in 0.25 s periods. All data points recorded within the given time period must change by 

at least the minimum change amount (5 hits, a measure in the eye tracker) and cannot change by 

more than the maximum change amount (50 hits).  

The Excel model was developed using the ACT-R architecture with updated JSegMan. This model 

uses 48 unique visual objects (VO), 29 production rules (PR), and 732 declarative memory chunks 

(DM). The model that makes predictions for this task on the Dismal interface (2018a) has the same 

number of PRs but larger, VO=52 and DM=1,159, sets of knowledge of the interface elements 

than the Excel model. The Excel model interacts with the same KST initial Excel file that the 

participants used (Figure 2). 

Figure 3 shows a comparison of the Excel model subtask time predictions and participants' data, 

resulting in a correlation (Pearson correlation coefficient) of r = .84 (r2=.71) and mean square error 

(MSE) = 792.6 (N=10, Average SD<2). Pearson's r indicates that there is a strong linear 

relationship between the model predictions and the 1-14 subtasks human data. Thus, the ACT-R 

model's time predictions correlate fairly well with the performance of all subtasks in Excel. The 

Excel model predicts noticeably more response time for subtasks containing typing formulas. The 

Excel model has to exactly follow the instructions because it is built based on the knowledge of 

the task. But participants can understand the pattern in the formula and perform without following 

the instructions directly. 

In contrast, the Excel model predicts less performance time for the first two subtasks. For instance, 

the second subtask is 'save as' and contains: go to and select file, go to and select save as, go to 

and select file name area, type subject, and enter. Modeling visual behavior and visual search is 

straightforward with the help of pre-defined visual patterns in JSegMan. Although most 

participants have intermediate knowledge of Excel, they still find it quite challenging to complete 

this subtask.  
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Figure 3: Average time per subtask for participants (N=23) vs. Excel model (N=10) with error bars 

(SD). SD on the Excel model is smaller than the participants. 

The visual elements needed to perform that task are different between the models for the different 

spreadsheet tools. The Excel model needed knowledge of 48 visual objects. The Dismal model 

needed 52 visual objects. The Excel model has to know less visually, and presumably, so do users.  

A paired-samples t-test is used because each row in the dataset corresponds to one subtask. The  

t-test reveals that we do not have enough evidence to conclude the means of the Excel model and 

participants' data are significantly different from each other, t(13)=-0.2, p >>.05. 

The boxplots in Figure 4 show task performance for subtasks 1-14 for the 23 participants. The 

spread around the mean is higher in subtasks that combine motor and vision skills. Some 

participants understand the formula's pattern of these subtasks; therefore, they complete them 

faster than others who constantly check the instructions.  
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Figure 4: Boxplots showing participants' (N=23) task completion time (in seconds) per subtask. 

Figure 5 shows a comparison of the two models (run 10 times) and the Excel data. The models 

predict that it takes more time to perform the subtasks using the Dismal environment. Inspection 

of the models shows that this difference is because performing the same task requires more actions 

in the Dismal environment.  
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Figure 5: The models' performances on the two interfaces (Dismal and Excel) are compared by 

subtask. The Dismal model predicts that the Dismal interface (light grey, dotted line) is slower. 

This comparison suggests that the KST can be used to evaluate the two interfaces and that 

performing this task in Excel is faster than in Dismal and, thus, may be seen as more user-friendly. 

This different response time is more noticeable in the subtasks that require inserting a cell formula. 

In Dismal, these subtasks require additional steps that do not exist or are not necessary for Excel.  

Predicted times between the two interfaces can be tested to see how different they are. A paired-

samples t-test is used because each row in the dataset corresponds to one subtask and is done by 

the same participant. The t-test reveals that the means of the Dismal model and Excel model data 

sets are significantly different from each other, t(13)=-2.9, p <.05. Therefore, a cognitive user 

model could demonstrate on two different interfaces and made useful predictions about 

performance on these two user interfaces (RQ1). 

Understanding human errors 

We next examine the detail of human behavior not initially seen in the models' predictions to 

answer the second research question (RQ2). The Excel model correlates very well with the 

participants' data but has a high RMSE. These results raise questions on how the quality of 

cognitive models for human behavior can be increased, how keystroke errors can change models' 

performance, and what type of knowledge needs to be added to models when developing 

interactive cognitive models. We have suspicions that it will be worth investigating, including 

keystroke errors in the models, because typists make errors (Landauer, 1987; Salthouse, 1986), 

although the prediction-data fit does not visually support this approach completely clearly.  

Both the Dismal model and Excel model do not predict human errors. Human errors can be defined 

as actions that are not suitable for achieving the desired goal (Reason (1990); F. E. Ritter, Baxter, 
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and Churchill (2014), chapter 10). Building robustness to human errors in a system requires 

acknowledging human behavior, including errors in system design. We designed this study in a 

way to minimize the effect of errors. But participants still made several types of errors.  

Errors are mainly grouped into three categories: skilled-based, rule-based, and knowledge-based 

(Brown, 2004; May, Batiz, & Martinez, 2019; F. E. Ritter et al., 2014). The most common errors 

that are observed in participants' behavior for the KST in the Excel study are slips that are part of 

skilled-based errors. The KST is self-explanatory, and participants are aware of planned actions, 

but they execute incorrect actions such as missing keypresses. Besides, repetitive actions cause 

lapse errors that are due to the inability to correctly remember the stage of planned actions, such 

as skipping a step in the instruction and also entering the wrong key. 

Violations are intentional mistakes that can be grouped into three sets of routing, situational, and 

exceptional. It is important to note in some studies, violations are also considered as a type of error 

(Lawton, 1998).  

ACT-R models generally simulate error-free expert behavior. In the Dismal model, the number of 

mouse clicks during the task performance was counted (125 mouse clicks). Any clicks more than 

125 clicks represent mistakes. However, Kim's analysis (2008) showed that this definition of 

mistake (number of clicks) did not correlate with performance time, meaning the fastest performers 

also made more mistakes (clicks more than 125).  

We evaluated participants' performance by comparing their final output with a correctly completed 

spreadsheet (as shown in Figure 1). The score of a cell is 1 if the cell values in two documents are 

equal. Therefore, the perfect score is 80 when all the cells' values are equal in two documents 

because 80 cells exist in the KST table. Figure 6 presents the participants' scores on a scale of 1 to 

80. 83% of the participants have a score higher than 70. But Figure 6 shows that errors remain in 

the majority of the results.  
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Figure 6: Number of cells (out of 80) correctly filled in. Average score is 67.39, and the SD is 

24.39. Participants 6, 13, 14, respectively, completed the task in 595.61, 581.66, and 1075.14 

seconds. Participant 14 skipped subtask 8. 

In the Excel study, participants made two types of errors: (a) multiple unintentional actions in the 

form of slips and lapses such as typos, and (b) multiple intentional actions in the form of violations 

(deliberately doing the wrong thing), such as using CTRL+Z (undo) when asked not to use Excel 

shortcut keys in the study instructions and which was not taught. 

Error detection and correction 

There have been limited attempts to understand and simulate error detection and correction in 

cognitive models and architectures. A sample study investigates error recovery in touch screen 

environments (Goodwin, St. Amant, & Rohit, 2016). Their work suggests identifying strategies 

that occur naturally during error recovery and evaluates their occurrences in low, medium, and 

high error environments. Also, this work proposed errors mainly happen while searching for a 

target, shifting attention away from the target, and choosing the following action. 

In the Excel study, we observed that participants used the primary detection mechanism, which is 

self-monitoring. We chose to explore participant 19's behavior as an example in detail to 

investigate error detection and correction. This participant's score is near 80, and this participant 

made skill-based errors in some subtasks that affected the final score but did not make any rule-

based or knowledge-based errors. This choice is arbitrary, and we believe other participants could 

have been chosen and led to the same results. 



  18 

Participant 19 made 25 slips. Twenty-four slips were detected and corrected using backspaces. 

Only one slip, typing "*" instead of ":", was not detected and therefore was never corrected by the 

participant. This participant spent 17.6s on detecting and correcting errors, which is about 3% of 

the time spent on completing the task.  

The Excel environment assisted participants in detecting errors by highlighting the selected cells 

in formulas, pop-up error notifications, and formula format notifications. We disabled the auto-

correction and filling in Excel, so participants needed to correct their errors manually. 

Modeling error detection and correction 

We developed an Error model that produces errors. The Error model is an Eyes and Hands model 

that generates errors and error corrections. The Error model injects participant 19's errors and 

corrects them in the same locations and orders the participant did. But this built-in error-generating 

and error-correcting model also can be extended to inject errors randomly. New declarative chunks 

are added for new pressing key actions in the Error model. The Error model has 777 declarative 

knowledge chunks, which is 45 chunks more than the Excel model, including extra chunks 

(memory items) to implement backspaces as a correction strategy. 

The Error model's predictions are compared with both participant 19's behavior and the Excel 

model's predictions. Figure 7 shows this comparison. The Error model and Excel model's 

performances are summarized in Table 3. Both models correlate very well but have a very high 

MSE and RMSE. The Error model does not correlate well with the time predictions, but it includes 

an important aspect of behavior. Further refinements are required that will be likely to make it 

better besides including errors and correcting errors and can make more accurate time predictions. 
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Figure 7: The Error model predicts more time for performing subtasks than the Excel model 

(without errors). This can be expected, given the new additional steps of error correction. 

Table 3: Error model (N=5) and Excel models (N=10) compared with participant 19's performance 

by subtask. 

 
Correlation  MSE RMSE 

Error model .678 1877.734 43.33 
Excel model .689 1482.701 40.25 

 

Where does the time go? 

These results raise a new research question (RQ3) because the model's correlation with 

performance time has not been improved despite adding errors. The Error model does not better 

fit the timing data but now predicts errors and their correction. In some subtasks, the Error model 

predicts more time than the Excel model, such as in subtask 6 that the Error model detects and 

corrects seven slips. Thus, just adding users' errors will not improve the model's time predictions. 

Investigating the proportion of time spent and predicted can answer where the time goes.  

Figure 8 shows the model's prediction time and participant 19. Each subtask time is divided into 

three main categories: vision knowledge, motor knowledge of mouse movements, and motor 

knowledge of keypress. Subtasks 1, 2, 7, and 9 in Figure 8 illustrate the noticeable differences 

between the Error model predictions and participant 19.  
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The recorded video and eye movement data of participant 19 shows that for subtasks 1 and 2 (as 

shown in Table 1), more time was spent searching for visual objects. Therefore, the Error model 

underestimates the needed time for these two subtasks. In contrast, for subtasks 7 and 9, participant 

19 could estimate the location of the following visual object (e.g., the cell below) without 

searching. The ACT-R visual module shifts attention at a constant rate for all objects. To include 

the additional search time, the retrieval time of visual objects for subtasks 1 and 2 are increased 

from the default 0.05 s to 5, 42, and 43 s for the three difficult-finding visual objects to fit the 

human data. The retrieval time remains the same for other subtasks. The adjusted Error model 

reflects the new retrieval time. Table 4 demonstrates the adjusted Error model improves 

performance (correlation and error rate).  

  
Figure 8: The response time breakdown of KST for participant 19 (left bars) and the Error model 

(right bars) into three main categories: Vision, Motor Mouse (includes moving the cursor and 

clicking), and Motor Keypress (typing).  

ACT-R estimates more time for subtasks 3-9 and subtasks 12-14 completion time than the time 

participant 19 spent on these subtasks. There is a noticeable difference between ACT-R estimated 

times and the time spent by the user for actions within each subtask. Actions are movements that 

their aggregation completes the whole subtask, such as shifting attention, moving a mouse, click, 

and pressing a keystroke. The time spent by participant 19 to switch among actions, is significantly 

shorter than what ACT-R predicts (i.e., the retrieval time of chunks needs to be adjusted). The 

retrieval time in ACT-R is calculated by formula 1. 

(1)                                    𝑅𝑇 = 𝐹𝑒−(𝑓∗𝐴𝑖) 
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where parameter F is the latency factor parameter (presented by :lf in ACT-R). In the original 

KST experiment (J. W. Kim, 2008; Jong W Kim, Koubek, & Ritter, 2007) this parameter was set 

to 0.31. The latency factor in the modified Error model is set to 0.2, which significantly improves 

the estimated time for subtasks 5, 12 and, 14. There is a minor decrease in the accuracy of the 

estimated time for subtasks 10 and 11. However, the improvement in MSE and r2 suggests an 

overall improvement in the model. 

Table 4: Error model (N=5) and adjusted Error model (N=5) compared with participant 19. 

 Correlation MSE RMSE 

Error model .678 1877.734 43.33 

Adjusted 
Error model  

.840 343.377 18.53 
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Discussion and Conclusions 
We have demonstrated how to test interfaces without modifying them using a model that interacts 

with them. We used an artificial eye and a simulated hand to develop Eyes and Hands models. 

JSegMan was used to develop Eyes and Hands models (Tehranchi & Ritter, 2018a). It performs a 

sample task, the Kim spreadsheet task (KST), in two spreadsheet tools, Dismal and Excel. The 

KST contains 14 non-iterative subtasks, each of which has multi-steps and is complicated and long 

enough to be modified to support investigations of different skills.  

The revised KST task allowed us to examine two sets of knowledge and skills, procedural or 

declarative and cognitive or perceptual-motor skills. We used published data on the Dismal 

interface and conducted a new study with Excel. The Excel model was compared with the previous 

Dismal model. The Excel model predicted human performance well, r=.84 and MSE=792.6. The 

predictions were supported with human data from performing the KST with an uninstrumented 

spreadsheet (Excel). Both theoretically and experimentally, performing the KST in the Dismal 

environment takes more time than performing the KST in the Excel environment.  

This result represents scientific and engineering contributions. The scientific contribution is that 

performance on a whole task on two interfaces was modeled without modifying the interfaces. 

Nearly all models of interaction use scaffolding to see the task and to interact with the task 

environment. These models use a task modified for them, and interaction is based on a function 

call from them to the modified interface. The presented models did the whole task without 

modifying the task environment. The engineering contribution is that performance on interfaces 

doing a non-trivial 14 subtasks can be predicted. The predictions can be used to test and validate 

interfaces. Pew and Mavor's (2007) National Research Council report called for such user models 

to be created to develop, test, and design interfaces. Future work could extend the interface design 

in this way. 

Next, the existence and impact of errors on and in performance have often been forgotten and not 

included in nearly all user models. In this study, we also collected new data on errors for forgetting 

keystrokes and missing keys to investigate errors, error type, error detection, and error correction 

strategies. The new error knowledge was added to the model to improve predictions and show that 

it is possible to start to model errors.  

Participant 19 spent 3% of the task time correcting errors. This can be contrasted with Landauer's 

(1987) 35% of keystrokes. Clearly, there will be differences between tasks and individuals. Further 

work can be performed using this approach to examine errors in interface usage. Also, the Error 

model overestimates the typing time. For instance, participant 19 spent less time pressing a 

keystroke than the next keypress object that the Error model estimates to retrieve. Finger 

movements are included in ACT-R that are unnecessary or do not represent the user's keypress 

behavior. We presented an analysis of the types of errors that occurred in one participant and 

presented one of the first models that can generate errors.  

Finally, we then adjust that model to understand where the time goes. Further analysis showed that 

visual skills such as visual search take longer than cognitive models currently predict. Our analysis 

suggests visual search and shifting attention need to be separated and have different retrieval times. 



  23 

The model introduced different aspects of the relationship between time and knowledge and raised 

other research questions.  

There are limitations to this work. The number of errors analyzed is not large; it is mostly a proof 

of concept. The types of errors are not very large and should be expanded by analyzing further 

data and expanding the mechanism for error generation and correction. Also, the demographics of 

the participants used to test this approach are somewhat narrow, particularly in age and gender. 

Future work should include a wider range of participants.  

Future work will involve applying this approach to a more extensive set of interfaces. The 

application can serve science with more accurate models of interaction, learning, and memory 

because the models can use the same interface. This work provides an engineering advantage (less 

model to implement) and a scientific advantage (the model sees more like what humans see). The 

model of vision individually can be reused and supports science and engineering in this regard. 

This model of vision can also be extended to include the ability to learn to recognize more visual 

patterns. 

Including interaction with uninstrumented interfaces and errors opens up a new world for 

predicting human behavior and applications to improve interactive design and apply intelligent 

agents as models of humans. In the future, we may be able to test interfaces automatically. Also, 

error generation and correction need not be excluded as an aspect of behavior and predictions for 

design. Eyes and Hands models will also help support generating automatic quantitative, 

qualitative and subjective predictions of interface use. A model that interacts with an interface can 

start to model the time and time course of use. The time course can be compared with expectations 

and also moderated by the stress and novelty of the interface or task. The generation of errors 

provides another way to measure design performance.  
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