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Abstract 

We use a model to explore the implications of ACT-R's learn-
ing and forgetting mechanisms to understand learning and 
retention on a complex task. The model performs a spread-
sheet task that has 14 non-iterated subtasks. The model 
predicts a learning curve and knowledge decay for different 
learning stages. The model's learning curve fits the human 
data well for the first four trials without decay. When decay is 
examined, however, we have to make modifications to the 
retention equation for the model's predictions to match data 
and the shapes predicted by the other learning theories. To fix 
this anomaly, we modified the effect of time on decay 
(adjusting time outside the experiment to less than the effect 
of time in the experiment) and the strength of newly learned 
memories (less well known than the previous default value). 
From these results, we learn that training and testing have 
been confounded in many studies.  

Keywords: learning; decay; ACT-R; cognitive architecture; 
procedural knowledge 

Introduction 

The study of learning theories often presents a three-stage 

framework to describe the progression from novice to 

expert. Kim, Ritter, and Koubek (2013) provided a review 

of learning theories presented as a summary theory. Their 

theory is primarily based on learning theories by Fitts 

(1964), Rasmussen (1986), and VanLehn (1996). Their 

theory is also consistent with further work in that review, as 

well as other theories of learning (e.g., Posner, 1973) and 

other data on learning (e.g., Seibel, 1963). Figure 1 shows a 

diagrammatic representation of this theory.  

    Here, we will test this theory. We use a task model in the 

ACT-R cognitive architecture (Byrne, 2012; Newell, 1990; 

Ritter, Tehranchi, & Oury, 2018) to make predictions about 

learning and forgetting, including where the learning stages 

might appear in short and long decay. We examine and 

illustrate this theory's predictions using existing data (Kim 

& Ritter, 2015) and modify an existing model (Paik, Kim, 

Ritter, & Reitter, 2015; Tehranchi & Ritter, 2018a, 2018b). 

The paper concludes with insights and new predictions 

derived from incorporating new schedules and memory 

types to ACT-R. 

Review of Related Work 

We start with the KRK theory  (Kim, 2008; Kim et al., 

2013) and its predictions. Table 1 summarizes predictions 

from the theory. Figure 1 presents further predictions that 

can be derived. The six predictions are supported by the 

theories and data noted in the Kim et al. (2013) review. We 

review some of the data and theories that support the KRK 

theory and discuss some further empirical and theoretical 

work that may provide further support and limitations for 

the theory. 

Figure 1: The KRK theory and some of its implications. 

Taken from Kim et al. (Kim & Ritter, 2016; 2013). 

Table 1: Predictions for human performance based on the 

KRK theory, including established predictions derived from 

Kim et al. (2013) and Kim and Ritter (2015). 

Predictions (Kim et al., 2013; Kim & Ritter, 2015) 

(1) Learning follows the power-law curve of learning

Time = A + BN-C (A, B, C are constants)

(2) Three stages of knowledge:

Acquiring declarative and procedural knowledge

Consolidating the acquired knowledge

Tuning the knowledge towards overlearning

(3) Retention of declarative knowledge decays quickly and

catastrophically

(4) Retention of mixed declarative and procedural knowledge

decays moderately

(5) Retention of proceduralized knowledge has the least decay

(6) Recognition and perceptual-motor knowledge have

different learning curves than procedural or declarative.

The KRK theory's predictions 

In this paper, we propose two new predictions that are 

developed by considering the inclusion of perceptual-motor 

and recognition memory within the KRK theory: (a) Ideal 

training schedules will vary by knowledge-type; perceptual-
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motor may require minimum training block size and 

(b) Retention of perceptual-motor knowledge appears to 

decay little. We review each of the predictions for human 

performance. 

A major prediction of the KRK theory is the rapid degra-

dation of new declarative memories. This idea has been 

proposed in several theories, such as the ACT-R architecture 

and the levels of processing framework (Craik & Lockhart, 

1972). 

The forgetting curve and catastrophic decay have been 

demonstrated in several experiments and models. For exam-

ple, the effects of massed or distributed practice on simple 

declarative memory tasks (e.g., word-pair memorization, 

typing) have been modeled using ACT-R in several experi-

ments (Anderson, 1993; Anderson, Fincham, & Douglass, 

1999; Pavlik, 2007; Pavlik & Anderson, 2005).  

Simple declarative tasks will show simple outcomes for 

forgetting (e.g., lack of recall leads to no performance). For 

example, the optimal practice schedule for learning complex 

subjects implies a similar catastrophic memory failure for 

low-practice memories (Pavlik, 2007; Pavlik & Anderson, 

2008). Complex tasks, with multiple knowledge sources 

(Kim et al., 2013), will have more complex outcomes 

(Halverson, Gunzelmann, Moore, & Van Dongen, 2010; 

McKenna & Glendon, 1985).  

While this theory has been proposed within the context of 

ACT-R and Soar (Laird, Newell, & Rosenbloom, 1987), the 

research mostly falls short in reporting and modeling 

catastrophic forgetting for complex, multi-step tasks. In a 

complex task, the results where the task or subtask is 

forgotten are more complex. In the case of memory failure, 

a performer might have several strategies to recover and 

measure small failures, and it may be difficult to understand 

how behavior changes. With decay, the performance may 

slow down, may shift to be environmentally led (rather than 

recall-led), and might skip, invert, or invent steps rather than 

completely fail (Brown & Burton, 1980; Brown & 

VanLehn, 1980; Burton, 1982; VanLehn, 1982). These 

effects will make computing a summary score of perfor-

mance more difficult.  

Anderson (1993) studied learning, retention, and transfer 

of programming algorithms. They assumed that the 

knowledge was (essentially) declarative. They found that 

time on task (thinking time) for the second trial was about 

46% of trial 1 when done immediately, but showed signifi-

cant increases after even a 20-minute delay (56% of trial 1 

with a 20-minute delay) and further performance loss after 

24 hours delay (67% of trial 1). Compared to performing the 

second trial immediately, the delay causes statistically 

significant performance loss after only 20 minutes.  

Paik and Ritter (Paik, 2011; Paik & Ritter, 2016) showed 

the effects of training schedules and training strategies on 

learning varies by knowledge type. Their study investigated 

three knowledge types: declarative, procedural, and 

perceptual-motor. They introduced a hybrid practice that is a 

mixed training schedule that blends distributed and massed 

practice. Then, hybrid-distributed, hybrid-massed, distrib-

uted, and massed training schedules were compared. This 

study's results show hybrid training schedules were able to 

predict and produce better performance than purely distrib-

uted or massed training schedules. In other words, the 

results indicate training schedules with some spacing and 

some intensiveness may lead to better performance. Unlike 

other studies and theories, perceptual-motor and recognition 

were considered in the Paik study. 

Therefore, the types of knowledge used during tasks are 

expected to influence the optimal training schedule appro-

priate for any given task. This differentiation by knowledge 

type is proposed in several theories (e.g., Paik & Ritter, 

2016).  

For declarative memories (e.g., learning new foreign lan-

guage nouns), Pavlik (2007; Pavlik & Anderson, 2008) used 

experimental data and later ACT-R modeling to show that 

the ideal practice schedule is distributed and follows a non-

linear approach. It is determined according to each 

declarative item's expected memory strength on each trial.   

For procedural tasks like solving math problems, the 

ACT-R theory predicts that the distributed practice sched-

ules become superior in the long-term (Anderson et al., 

1999; Pavlik, 2007; Pavlik & Anderson, 2005). 

Work by Anderson, Fincham, and Douglass (1999) 

collected experimental data on the long-term retention of a 

rule-based task (up to 400 days between trials) following 

delays between training sessions. As subjects completed 

upwards of 240 trials, the performance was compared 

within-days and between sessions. They found that ACT-R's 

activation equations could account for performance changes 

within the experimental periods. Still, the scaling of time 

outside of the task was necessary to account for the asymp-

totic forgetting occurring over the significant time between 

trials (Pavlik & Anderson, 2005).  

Overall, there are several problems with the empirical 

support for the complete set of hypotheses in Table 1. The 

forgetting or retention curves often are from single points of 

learning rather than at different levels of learning (e.g., Kim, 

2008). In addition, most of the studies that are used to 

derive and support these hypotheses consider only simple 

tasks, such as choice reaction times (e.g., Pashler and 

Baylis, 1991; Seibel, 1963), word association and vocabu-

lary (e.g., Bahrick, Bahrick, Bahrick, & Bahrick, 1993; 

Taatgen and Anderson, 2002), mental arithmetic (Tenison & 

Anderson, 2016), and most of the tasks in Newell and 

Rosenbloom (1981).  

Studying and validating the KRK theory predictions could 

be best accomplished with an empirical study of a complex, 

multi-step task with multiple training sessions and longer 

retention intervals. This study would need to explore the full 

set of predictions and would be a significant commitment.  

To prepare for such a study, we use a cognitive model of 

a complex task built-in architecture with learning and for-

getting and multiple skill representations. With this model, 

we explore the study and assess the model's predictions for 

learning and retention under a broader array of situations, 

including variations in practice frequency and schedule.  
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Method 

We next describe the theoretical components used to gener-

ate quantitative predictions as an example of a complex 

task. We first describe the Dismal task. Dismal is used for 

three reasons: (a) it is complex and has been previously used 

to study learning, (b) we already have some human 

performance data on the task for different schedules, and 

(c) there is a functional running model that shows learning.  

We then describe the modeling architecture, a model of a 

person performing the task, and the human data. The data 

provides insights regarding running the model with decay-

scale and predicting learning and retention in a complex task 

using this model.  

The Dismal task 

The Dismal task is a complex spreadsheet task (Table 2) 

that can be used to measure procedural knowledge and skills 

learning and decay (Kim & Ritter, 2015). The revised and 

interactive Dismal model performs the task in the task 

environment using a new tool (JSegMan) that allows 

cognitive models to interact with the same, uninstrumented 

interfaces (Tehranchi & Ritter, 2018a, 2018b). The revised 

Dismal model is used here. The Dismal task consists of 

fourteen unique subtasks such as opening a file in Emacs 

that require attention shifts, encoding information, attending 

to information, key presses, and mouse moves/clicks. This 

range of actions allow us to study different types of 

knowledge: recall of keystroke commands and recognition 

of menu-based commands. Participants completed the task 

each day for 4 days. Then, participants were divided in three 

separate delay groups and completed the task after 6, 12, or 

18 days.  

Table 2: The 14 Dismal spreadsheet subtasks and sequence. 

Dismal Procedure 

(1) 
Open a file, named normalization.dis under the 

"experiment" folder 

(2) Save as the file with your initials 

(3) 
Calculate and fill in the frequency column (B6 

to B10) 

(4) Calculate the total frequency in B13 

(5) 
Calculate and fill in the normalization column 

(C1 to C5) 

(6) Calculate the total normalization in C13 

(7) Calculate the length column (D1 to D10) 

(8) 
Calculate the total of the "Length" column in 

D13 

(9) 
Calculate the Typed Characters column (E1 to 

E10) 

(10) 
Calculate the total of the "Typed Characters" 

column in E13 

(11) Insert two rows at A0 cell 

(12) Type in your name in A0 

(13) Fill in the current date in A1 using a command 

(14) Save your work as a printable format 

ACT-R 

ACT-R is a theory of the mechanisms that make up cog-

nition. It is an example of a unified theory of cognition 

(Byrne, 2012; Newell, 1990; Ritter et al., 2018) that intends 

to predict and explain human behavior by simulating the 

steps of cognition with a fixed set of mechanisms. ACT-R 

predicts behavior and activation of brain regions by using 

mechanisms, including procedural and declarative 

knowledge, and working memory as activation, to perform 

tasks.  

The ACT-R Memory equation to calculate learning for 

chunks during the task procedure that is used in this work is 

Optimized Learning (OL) is shown in Equations 1. Equation 

1 uses variables n, d, L, and βi. 
 

Equation 1: The Optimized Learning Equation (OL) 

𝐵𝑖 = ln (
𝑛

1 − 𝑑
) − 𝑑 ∗ ln(𝐿) + 𝛽𝑖  

n: The number of presentations for chunk i 

d: The decay parameter set using the :bll parameter 

L: The lifetime of chunk i (the time since its creation) 

βi: A constant offset set using the :blc parameter  

 

We previously (Oury, Tehranchi, & Ritter, 2018) 

compared the performance of memory equations in their 

accuracy and computational cost. The OL equation 

simplifies the equation to primarily rely on the number of 

presentations and performance more accurately; a paired-

sample t-test between human task time (N=30) and model 

(N=5) predictions of task time was significant (t=-2.538, 

p<.05). This model has 29 production rules and 1,159 

declarative memory elements. The decay was set to d = 

0.25, and the noise was 0.15 in ACT-R 7.5.  

The Dismal spreadsheet task demonstrated that the 

learning and task knowledge from four practice trials did not 

decay catastrophically after six, twelve, or eighteen days 

without completing the task. 

This paper extends previous work on how time-based 

decay can be more accurately implemented in ACT-R (Oury 

et al., 2018; Tehranchi & Ritter, 2018a). In addition to the 

previous work, we analyze the Dismal Task model under 

different conditions (i.e., training schedules and ACT-R 

parameters). The results below (a) present solutions that can 

make ACT-R more robust and accurate for modeling tasks 

over the course of days or weeks, and (b) extend the theory 

on the cognitive implications of procedural learning and the 

KRK theory.  

Results 

A series of models are run to explore how the ACT-R model 

of the Dismal task predicts learning and decay. The model 

runs using ACT-R's optimized learning (Equation 1).  

We use a two-part naming convention that describes the 

decay conditions on the model. The first part is a proportion 

of the model's decay-time (i.e., internal ACT-R time) to 

real-time (as experienced by participants). For example, a 
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condition labeled 1:4 would have 1 hour of ACT-R time 

decay for every 4 hours of real-time passage (i.e., 1:4 means 

ACT-R time is ¼ of real-time). The second part of the name 

indicates whether decay is applied between the first four 

practice trials. A model labeled "incorporated decay" indi-

cates a 23-hour decay begins after the first trial, and a model 

labeled "delayed decay" indicates decay begins only after 

the fourth training trial.  

Overview of results 

Figure 2 shows that the human data (black X's) for days 1-4 

match the Dismal model predictions (blue triangle) for trials 

1-4 without daily decay. This is how models have typically 

been run for repeated trials (e.g., (Paik et al., 2015); 

Tehranchi and Ritter, 2018a), even when the training 

sessions are on separate days.  

To explore retention, we adjusted the model's knowledge 

by adding corresponding decay periods for days 10, 16, and 

22 to the model and running it again. Figure 2 shows that 

these human data (black X's) at retention are not particularly 

close to the predictions in blue triangles. For example, on 

day 16, the model predicts that performance will be essen-

tially indistinguishable from a novice learning the task for 

the first time (Trial 1 ≈1300s on day 1 vs. Trial 5 ≈1600s on 

day 16). Yet, the human data clearly suggests that more 

knowledge is retained. Thus, the model appears to need 

some correction to how quickly knowledge decays.  

To further understand how realistic decay affects the 

model predictions, we also tested the model when decay 

was added between every single trial, not just after trial 4 

(as shown by the red line with circle icons in Figure 2).  

We added this because the participants did not, in fact, 

perform the task four times in a row but performed the task, 

and then waited a day and performed the task again. This 

curve shows trial 2 for the model—the 1:1 Incorporated 

Decay condition—taking nearly twice as long as trial 1, 

even though the task has already been practiced once. 

 

 
Figure 2: A comparison between human performance 

(N=30) and Dismal model (N=5) predictions when decay 

occurs between trials. 

These large divergences from the human data suggest that 

the memories and learning modeled in ACT-R are being 

overpowered by time-based decay (red circles), even for 

established memories (blue triangle).  

The human data shows that repeated daily practice leads 

to lower task times and some retention of the task 

knowledge, even after a delay of up to 12 days (on day 16). 

Yet, the model is unable to make useful predictions for that 

type of extended practice schedule. This issue is explored 

further below.  

What happens when the decay length is adjusted?  

We explore the effects of decay by including a 24-hour 

decay period after each practice to simulate the passage of 

real-time as experienced by the participants. The addition of 

time-based decay to the model is intended to provide greater 

accuracy for the simulated performance, and further analysis 

of different time scales may provide a solution.  

We test the model predictions with different time scaling 

factors. Figure 3 shows how different time scales for inter-

trial time affects the model's predictions. Different scales for 

the decay period length are based on the psychological time 

parameter estimates from previous ACT-R research 

(Anderson et al., 1999; Pavlik & Anderson, 2005). 

The addition of decay periods to the model leads to unre-

alistic predictions in later days. Model–1:1 Incorporated 

Decay—shows how 24 hours of decay causes Day 2's time 

to be ≈900s slower than the initial trial (≈1300s to ≈2200s). 

Further tests with adjusted time scaling factors of 1:2 and 

1:4 brought the results closer in line with the human data. 

Still, they did not adequately model the expected results as 

demonstrated by the large spike on Day 2.  

We next adjust the decay time scale even further, as seen 

in some other ACT-R studies (e.g., Anderson et al., 1999; 

Pavlik and Anderson, 2005). Figure 4 expands upon Figure 

3 by including additional time scales, 1:10 and 1:20, 

alongside the 1:1 decay time, 0:1 decay time, and the human 

data.  

The model predictions with the 1:10 and 1:20 time scales 

provide stronger correlations with the human data than 

lower time scale adjustments. It takes reducing the time 

scale from 1:1 to 1:20 to finally model a learning and reten-

tion curve for this task that does not spike upwards on the 

second trial (i.e., day 2 being slower than day 1). RMSE 

between the human and model data showed that the 1:20 

time scale was closest to the human data for OL (Human vs. 

1:20 Incorporated Decay, OL: RMSE = 178.64).  

These findings are consistent with Pavlik and Anderson's 

(2005) ideas that memory decays more slowly between 

trials with regards to time-based decay. After testing up to a 

1:20 time scale adjustment, we find that including a time-

scale adjustment improved the RMSE and correlations.  

We pushed this modification further to assess where the 

optimal time-scale adjustment may be. Table 3 shows the 

additional time scale adjustments that were computed and 

showed that 1:25 incorporated decay had the highest 

correlation and lowest RMSE. Figure 5 shows the model 
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predictions for 1:25 incorporated decay, the best fit of the 

model. In all figures, error bars are smaller than the symbol 

size. 

 

Figure 3: Predictions for task completion time when 

adjusting the length of decay periods. The model simulates 

four consecutive days of trials followed by either 6, 12, or 

18 days without practice.  

 

Figure 4: Predictions for task completion time when 

adjusting the decay periods' length, using optimized learning 

equation. The model simulates four consecutive days of 

trials followed by either 6, 12, or 18 days without practice. 

 

Figure 5: Predictions of task time compared to human 

data for the 1:25 adjusted length of decay period. The 1:1 

decay condition is also shown for comparison. 

What and how the model learns 

To further our analysis, we look into the models' perfor-

mance, and we describe how they learn based on new 

metrics: productions fired, declarative memories (DMs) 

retrieved, and mean chunk activation. Figure 6, in addition 

to response time, shows the number of productions that 

were fired and used in trials, the number of DMs that were 

retrieved, and the average activation value for all chunks in 

trials. The results illustrate the number of fired productions 

only dropped after the first trial, but with a longer decay, 

fewer productions were fired.  

Again, we notice the same pattern for the number of 

declarative memories retrieved. The model gets faster while 

with lower activation values. For instance, in the second 

trial, the model uses the trial one activation values and new 

production rules that are generated by the first trial.  

So, this model suggests that after proceduralization, the 

model gets faster in later trials through increased declarative 

memory strengthening (tuning in DM), not further rule 

learning. This is a single model of a single task, so we can 

only speculate about learning in other tasks, which we 

suspect may differ. The model's learning is almost entirely 

ascribable to declarative memory decay is apparent in 

Figure 6, showing the number of fired production rules and 

chunks being used by the model do not change with 

practice. Chunk's activation and the associate time to 

retrieve chunks mostly changed. 

Table 3: Comparing the fit of learning and retention 

curves to human data for the Dismal task with time scale 

adjustments and the OL equation. The best fit is in bold. 

Model Condition 

RMSE  

(Human vs. 

Model) 

Correlation  

(Human vs. 

Model) 

1:10 Incorporated Decay 236.45 .60 

1:20 Incorporated Decay 178.64 .66 

1:25 Incorporated Decay 168.73 .70 

1:30 Incorporated Decay 177.17 .68 

1:40 Incorporated Decay 185.94 .68 

Discussion and Conclusions  

This model provides several insights about learning and the 

ACT-R memory procedure that helps to understand gradu-

ally how to model memory and what to model in memory 

during learning and decay.  

There are many models of memory that do not include 

default decay outside of experiments or across days between 

sessions. Here, we show at a ratio of 1:25, the effect of 

outside-lab time on decay is small. ACT-R's decay function 

does not appear to predict cognition and decay when the 

model is applied across multiple days of a task. While 

realistic memory decay is expected to affect task perfor-

mance, the model predictions demonstrate that ACT-R's 

decay model exaggerates the performance loss found in 

human data for tasks trained over consecutive days.  

These effects may be caused by ACT-R's linkage between 

activation of a memory and its associated decay rate. 

Because activation drives both recall probability and decay 

rate for a memory chunk, ACT-R's current memory 

equations fail to account for spacing effects on relearning 

during multi-day learning. An alternate model of learning 

and relearning called the predictive performance equation 

(PPE) separates storage strength from retrieval strength in 

determining activation, and this may account for ACT-R's 
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deficiencies described here (Walsh, Gluck, Gunzelmann, 

Jastrzembski, & Krusmark, 2018; Walsh, Gluck, 

Gunzelmann, Jastrzembski, Krusmark, et al., 2018). Future 

work should consider whether ACT-R's memory equations 

would be improved by separating recall probability and 

decay similar to Bjork and Bjork's new theory of disuse 

(Bjork & Bjork, 1992).  This effect might also be caused by 

interference of other memories and processing, which these 

models do not have.   

As a final exploratory analysis on improving the Dismal 

Model's predictions, a pattern of parameter manipulations 

for parameters in ACT-R was generated that affect the 

declarative module and is compared with the 1:25 model 

predictions. Manipulating these parameters individually did 

not lead to a better fit than the default parameters that were 

used in the Dismal model. These manipulations were done 

one at a time. It is possible that combinations would lead to 

better fits or would be more appropriate, and there are tools 

that could be used to do this fit. Finally, Figure 6 raises 

interesting questions about how the model learns. 

Participants must be learning continually, but the model 

changes procedural knowledge only on the first day without 

any major strategy or knowledge representation changes in 

later days. These results do not illustrate the clear division in 

the learning stages shown in the KRK theory. However, it 

suggests that this task can be proceduralized at trial 1. 

Looking at the subtask level model can provide more 

insights about where and when participants are learning 

complex tasks. Participants are not mastering the same sub-

tasks each session. Still, they are often learning different 

subtasks each session or a different mix, but this suggests 

that perhaps individual subtasks follow the KRK theory 

better than the full task. Also, this work does not address 

retention decay and the task environment decay problem. 

New experiments are needed to examine this phenomenon, 

and more complex and additional tasks are required to test 

the KRK theory. 
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