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Abstract 

Cognitive modeling techniques provide a way of evaluating 
user interface designs, based on what is known about human 
cognitive strengths and limitations.  Cognitive modelers 
face a tradeoff, however: more detailed models require 
disproportionately more time and effort to develop than 
coarser models.  In this paper we describe a system, G2A, 
that automatically produces translations from abstract 
GOMS models into more detailed ACT-R models. G2A 
demonstrates how even simple AI techniques can facilitate 
the construction of cognitive models and suggests new 
directions for improving modeling tools. 

Introduction 
In cognitive modeling, the concept of cognitive 
architectures has come to play a central role.  From the 
perspective of cognitive psychology a cognitive 
architecture is a theory of human cognition that can be 
realized as a program.  Cognitive architectures commonly 
integrate theories of cognition, visual attention, and motor 
movement into a consistent framework. Models built on 
top of a given architecture provide a way of applying what 
is known about psychology to both explain and reproduce 
human behavior in specific tasks under the fixed 
constraints of the architecture.  Models apply specific 
problem-solving strategies to tasks, reproducing aspects of 
human behavior such as durations for high- and low-level 
actions, occurrences of errors, and abstract strategies for 
exploration and learning. 
Over the past few decades, useful collaborations have been 
established between researchers in cognitive modeling and 
human-computer interaction (HCI).  Models can give 
insight into the behavior of users of interactive systems; 
interactive systems provide realistic, challenging tasks in 
which models can be validated. In some cases, a general 
cognitive architecture such as ACT-R [Anderson and 
Lebiere, 1998] has been the focus of collaboration, with 
extensions to the architecture being tailored to interaction 
with HCI environments.  Other research has relied on HCI-
specific architectures, such as Model Human Processor 
[Card et al., 1980]. 
GOMS modeling for HCI evaluation [John and Kieras, 
1996] is based on the latter architecture. GOMS (Goals, 
Operators, Methods, and Selection Rules) can be thought 
of as a high-level language in which interaction tasks can 
be expressed in a hierarchical form that reflects a 

decomposition of complex tasks into simpler ones.1  
GOMS operators include, for example, storage and 
retrieval of task items, goal establishment, and decision 
points.  GOMS is a well-known formalism that has been 
applied with significant success in critical HCI domains 
[Gray et al., 1993]. 
An example of a general cognitive architecture that has 
been used in HCI research is ACT-R [Anderson and 
Lebiere, 1998]. The ACT-R architecture simulates internal 
cognitive processing, such as changes of attention and 
memory retrievals, as well as external behavior related to 
visual, auditory, and motor processing. As a first 
approximation, we can think of ACT-R models as 
explaining behavior in cognitive terms at a more detailed 
level than GOMS models. 
Because GOMS and ACT-R represent cognitive behavior 
at different levels of abstraction, a practical tradeoff arises: 
detailed models are much more difficult and time-
consuming to build and test than coarser models.  For very 
simple HCI tasks, such as traversing menus on a cell phone 
[St. Amant et al., 2004], a GOMS model might take hours 
to build, while an ACT-R model could take days or weeks 
to build.  The ACT-R model, in compensation, can in 
principle give more insight into the cognitive processes 
operating during the task, including their timing, their 
learning, and their errors in execution. 
In a paper presented at the 2004 International Conference 
on Cognitive Modeling [St. Amant & Ritter, 2004],2 we 
asked the question, “To what extent can the translation 
between GOMS and ACT-R models be automated?”  That 
is, given a coarse GOMS-level representation of human 
behavior, can we automatically build an ACT-R model that 
provides plausible additional detail?  We presented a 
system called G2A with just such a capability. 
In the remainder of this paper we describe the 
representation of GOMS and ACT-R models in more 
detail, to provide context for our work.  We then discuss 
the system G2A and its performance.  We end with an 
account of the relevance of this work to the AI community, 
including opportunities for future work. 

                                                
1 GOMS is actually a family of techniques; our description 
is specific to GOMSL [Kieras, 1999], a representative 
approach.  This is comparable to writing “Lisp” instead of 
referring to a specific dialect. 
2 This paper won the Best Applied Paper Prize at ICCM in 
2004; at ICCM the work was viewed as an example of 
applied cognitive modeling, but it is also a plausible 
example of applied AI. 
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Cognitive Modeling and G2A 
Due to space limitations, we can give only a very 
approximate description of GOMS and ACT-R; in 
particular, most of the details of model execution are 
neglected. 
GOMS models are usually expressed in procedural form. 
Figure 1 shows a sample GOMS method for editing a 
document [Kieras, 1999].  The method breaks down into a 
sequence of steps.  Some steps are primitive operators such 
as storing an item (First, in this case, is just a symbol) in a 
named memory location, <current task name>; looking at 
the screen, pressing keys, and moving the mouse are also 
possibilities.  Steps can also involve execution control, 
such as branching (in Decide forms) and method invocation 
(in Accomplish goal forms).  The duration of operators is 
general across all GOMS models; for example, key presses 
take 280 milliseconds, while method invocations take 50 
milliseconds.  As a model is executed, durations of 
operators and tasks are accumulated. 
ACT-R takes a production system approach to modeling, 
as is obvious from the syntax of ACT-R models.  Figure 2 
shows a sample production, the equivalent of the Get-task-
item-whose step in the GOMS method in Figure 1.  This 
production describes operations on two buffers, goal and 
match.  Each of these buffers has a set of slots whose 
values can be constrained in a standard way; slot names 
prefixed by the ‘=’ sign are variables.  On the left hand 
side of the production, the goal buffer is constrained to 
hold a goal with a given task name and state, and a task 
item matching the name must be found in memory.  On the 
right hand side, the current task and state slots of the goal 
buffer are updated.  As with GOMS models, the durations 
of low-level actions are specified by the ACT-R 
architecture rather than being specialized to a given model; 
durations are collected as productions fire.  
In translating between these representations, there are three 
main issues to be addressed.  First, we expect some 
correspondence between low-level operations in both 
representations: hand movements and button presses, for 

example, are based on similar models of motor behavior, 
and basic memory retrievals should be comparable across 
the representations.  These correspondences must be 
mapped out explicitly.  Second, the procedural structure in 
GOMS model execution must be reproduced in production 
form, managed by buffers that maintain appropriate control 
information.  Third, and most important, some GOMS 
operations underconstrain equivalent behavior in ACT-R.  
For example, ACT-R represents visual processing at a 
level that allows different visual search strategies to be 
carried out through the firing of several productions, while 
in GOMSL such processing is encapsulated in a single 
primitive.  Different possible translations must be 
identified and evaluated. 
As discussed in the next section, G2A translates between 
the representation of GOMS and ACT-R models via 
translation rules, with results produced by a simple hill-
climbing search.  We evaluated G2A in two parts.  First, by 
comparing the execution times of translated ACT-R 
models with their source GOMS models, we can show that 
existing predictive accuracy of a GOMS model is not lost 
in the translation.  Second, by comparing the resulting 
ACT-R models to actual user performance, we can show 
that the translation gives information that is usable in 
practice. For both parts of the evaluation, we used a text 
editing task represented by the most complex model given 
in Kieras's GOMS manual (Kieras 1999). This model takes 
up about four pages—190 lines of code containing 15 
mental object definitions, 11 methods, and two sets of 
selection rules. 
Our evaluation resulted in a few promising findings: 
• We used G2A to generate an ACT-R model that 

matched the duration of the methods in the original 
GOMS model with less than 5% error (less than 1% 
for the duration of the entire task). The ACT-R 
model contained five chunk definitions, 23 chunks, 
79 productions, and various auxiliary constructs 
(over 1500 lines of formatted model code).  This 
model may seem small in comparison with AI 

Method for goal: Edit Document  
Step. Store First under <current task name>.  
Step Check for done.  
Decide: If <current task name> is None, Then  
 Delete <current task>;  
 Delete <current task name>;  
 Return with goal accomplished.  
Step. Get task item whose  
 Name is <current task name>  
 and store under <current task>.  
Step. Accomplish goal: Perform Unit task.  
Step. Store Next of <current task>  
 under <current task name>;  
Goto Check for done. 

 
Figure 1.  Sample GOMS method 

 

;;; Get-task-item-whose ((is name [current-task-name]))  
;;; [current-task]  
(p production86  
   =goal>  
      isa goal  
      [current-task-name] =[current-task-name]  
      %state edit-document-3  
   =match88>  
      isa task-item  
      %id =temp87  
      name =[current-task-name]  
   ==>  
   =goal>  
      [current-task] =temp87  
      %state edit-document-4)  

 
Figure 2.  Sample ACT-R production 

 



systems but is medium to large for models in the 
domain of HCI evaluation. 

• We used the performance of a single user in a pilot 
study to steer G2A’s translation process, in order to 
predict the performance of six other users.  We 
found that the translated model (of comparable size 
to the translation above, but of different structure) 
generated by G2A matched user performance at the 
level of primitive operators with an error rate of 
around 35%.  This accuracy is about average for 
automatically generated models in such tasks (John 
et al, 2004; Salvucci and Lee, 2003).  

G2A as an AI Application 
Much of the processing in G2A is based on simple 
techniques for interpreting and compiling programming 
languages.  Nevertheless, as mentioned in the previous 
section, a GOMS model is at best an incomplete 
specification of an ACT-R model.  The high-level 
abstractions provided by a GOMS model can be 
accomplished by different lower-level productions or 
different sets of productions in ACT-R.  In other words, for 
any given GOMS model, there may be a large number of 
possible translations into ACT-R models. To find the 
“best” ACT-R model, we face a search problem. 
G2A maintains a set of rules for the translation process.  
Simple GOMS operators may have only a single 
translation rule (e.g., storing a value in a memory location 
can be handled by a single GOMS primitive and a single 
production).  Other GOMS operators, however, may hide a 
good deal of complexity: a Look-for-object-whose operator 
could translate into a fixed sequence of productions that 
focus attention on a specific location in the visual 
environment, or a larger set of productions that govern an 
opportunistic visual search of objects in view, among other 
possibilities. 
In G2A, the translation of a given GOMS model is treated 
as a search problem.  To guide the search process, a target 
set of durations is required either for tasks or primitive 
operators.  This target can be provided by the standardized 
durations for GOMS operators.  Alternatively, when pilot 
user data is available, durations can be taken from actual 
user performance.  A state in the search space is a set of 
translation rules, one for each GOMS operator. Evaluating 
a state involves applying the state’s translation rules to the 
given GOMS model in order to generate an ACT-R model.  
The durations of ACT-R productions that correspond to 
primitive GOMS operators or task boundaries, as generated 
by execution of the ACT-R model, are compared with the 
target durations.  G2A performs hill-climbing through this 
space, with state transitions corresponding to single 
substitutions of individual translation rules.  Mean squared 
error over the duration comparisons is minimized.  In 
general, a few hundred iterations are sufficient to identify 
good translations. 
G2A brings some benefits to the cognitive modeling 
process.  The ACT-R models automatically produced by 

G2A reflect straightforward decisions that a human 
modeler might make to capture human performance in this 
domain.  Returning to our example of visual processing 
above, if an ACT-R modeler found that observable actions 
such as key presses were of very short duration, but that 
such actions depended on information on the screen, he or 
she would conclude that an exhaustive visual search of the 
screen is not being carried out and devise appropriately  
efficient ACT-R productions for the activity.  The 
predictions of the translated ACT-R model, as generated 
by the search, can be much more accurate for predicting 
actual behavior than the standardized predictions of the 
source GOMS model. Generating the same ACT-R models 
by hand would be both time-consuming and error-prone, 
even in such a well-understood domain; in one case study 
[St. Amant et al., 2004] we found a difference of several 
hours versus two weeks for the construction of a GOMS 
model and an ACT-R model, respectively. 

Discussion 
While G2A represents perhaps the simplest possible 
application of a well-known AI technique to the problem 
of cognitive model translation, it is nevertheless interesting 
from an AI perspective: an important contribution of our 
work was to identify and formalize this problem in the first 
place.   One view of the elaboration of cognitive models to 
greater levels of detail was that the process would be 
largely deterministic, with little freedom in mapping 
operations from one representation into another. Our 
experience with G2A showed that the differences between 
models at different levels of abstraction were greater than 
expected. Along with Howes et al. [2005] and others 
[Ritter et al., in press], our work shows something that is 
relatively obvious but that had not been widely 
acknowledged earlier: moving from an abstract model to a 
more detailed model of human performance, even if both 
models are based on a largely consistent set of assumptions 
about cognition, involves traversing a search space of 
significant size, and empirical results only weakly 
constrain the search.  As AI researchers, we find that this 
area allows us to explore interesting and important 
questions for cognitive modeling, including what makes a 
good theory, how to represent and compute differences 
between strategies, and how to represent the complexities 
of human behavior.  In future work, we would like to 
answer the following questions in more general terms: 
To what extent can cognitive model development be 
supported by automated search?  We have found that the 
model translation process can be managed by an automated 
search process, with many solutions covered by better 
solutions.  Still, there are still different “best” answers.  To 
paraphrase Hamming [1962], the purpose of modeling is 
insight, not performance measurements.  G2A allows 
cognitive modelers to move through a larger space of 
modeling decisions than is feasible without assistance, but 
it remains an open question exactly how much G2A 
contributes to the understanding of behavior. 



Do general heuristics apply to the transformation between 
modeling architectures?  In GOMS, visual and cognitive 
operators have the longest durations, which means that 
when encoding them as ACT-R productions their 
translation has the greatest potential for modifying the 
resulting predictions.  There are many choice points when 
going from GOMS specifications to ACT-R implications, 
and yet they are modeling the same mechanisms and 
behavior.  The question of which theoretical level is most 
appropriate is likely to be the cause of difficulties. 
To what extent can AI representations support cognitive 
modeling? Roughly speaking, a cognitive architecture can 
be characterized by its modeling language and its behavior 
in processing models expressed in that language.  What 
this means in practice is that most GOMS modelers can 
ignore the internal representation of cognitive processing 
that is used by the GOMS architecture, focusing instead on 
models written in the external language, whereas ACT-R 
users more often need to keep the mechanisms in mind 
(this observation is reminiscent of the resolved debate 
about the value of higher-level languages versus assembly 
language). 
In order to build G2A, we developed an ad hoc internal, 
intermediate representation that captures some of the 
commonalities between the architectures.  In our current 
work we are revising the system to rely instead on PDDL.  
We expect that a formal representation of cognitive 
modeling operations in planning terms will facilitate 
formal analysis of cognitive models, to answer questions 
about, for example, the size of the space traversed in 
principle by a cognitive architecture in the execution of a 
given model, and the changes to this space that arise from 
changes to the model. 
Can AI techniques improve tools for cognitive modeling?  
Current environments for developing cognitive models are 
comparable to software development environments, 
supporting a tight loop of development, execution, and 
testing.  They tend to work at a lower level of 
programming than modelers find desirable, and at a lower 
and slower level than most AI programmers would 
tolerate.  This may be inherent in the task of modeling 
detailed human behavior, but the modeling process could 
plausibly be improved if AI tools were to migrate to 
modeling environments.  Given an internal PDDL 
representation of a model, for example, a modeler could 
ask whether a given set of primitive operators could be 
combined so as to reach a specific goal, something that 
ACT-R modelers must currently evaluate without 
automated assistance. 
In general, we believe that there are interesting 
opportunities for the application of AI concepts to the field 
of cognitive modeling, in particular to aid cognitive 
modelers in their development.  Given the shared historical 
background and interests of the cognitive modeling and AI 
communities, this appears to be a natural area for 
collaboration. 
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