
AI Support for Building Cognitive Models

Robert St. Amant and Sean P. McBride
Department of Computer Science
North Carolina State University

Raleigh, NC 27695

Frank E. Ritter
College of Information Sciences and Technology, The

Pennsylvania State University
University Park, PA 16802

Abstract

Cognitive modeling techniques provide a way of evaluating
user interface designs, based on what is known about human
cognitive strengths and limitations. Cognitive modelers
face a tradeoff, however: more detailed models require
disproportionately more time and effort to develop than
coarser models. In this paper we describe a system, G2A,
that automatically produces translations from abstract
GOMS models into more detailed ACT-R models. G2A
demonstrates how even simple AI techniques can facilitate
the construction of cognitive models and suggests new
directions for improving modeling tools.

Introduction
In cognitive modeling, the concept of cognitive
architectures has come to play a central role. From the
perspective of cognitive psychology a cognitive
architecture is a theory of human cognition that can be
realized as a program. Cognitive architectures commonly
integrate theories of cognition, visual attention, and motor
movement into a consistent framework. Models built on
top of a given architecture provide a way of applying what
is known about psychology to both explain and reproduce
human behavior in specific tasks under the fixed
constraints of the architecture. Models apply specific
problem-solving strategies to tasks, reproducing aspects of
human behavior such as durations for high- and low-level
actions, occurrences of errors, and abstract strategies for
exploration and learning.
Over the past few decades, useful collaborations have been
established between researchers in cognitive modeling and
human-computer interaction (HCI). Models can give
insight into the behavior of users of interactive systems;
interactive systems provide realistic, challenging tasks in
which models can be validated. In some cases, a general
cognitive architecture such as ACT-R [Anderson and
Lebiere, 1998] has been the focus of collaboration, with
extensions to the architecture being tailored to interaction
with HCI environments. Other research has relied on HCI-
specific architectures, such as Model Human Processor
[Card et al., 1980].
GOMS modeling for HCI evaluation [John and Kieras,
1996] is based on the latter architecture. GOMS (Goals,
Operators, Methods, and Selection Rules) can be thought
of as a high-level language in which interaction tasks can
be expressed in a hierarchical form that reflects a

decomposition of complex tasks into simpler ones.1
GOMS operators include, for example, storage and
retrieval of task items, goal establishment, and decision
points. GOMS is a well-known formalism that has been
applied with significant success in critical HCI domains
[Gray et al., 1993].
An example of a general cognitive architecture that has
been used in HCI research is ACT-R [Anderson and
Lebiere, 1998]. The ACT-R architecture simulates internal
cognitive processing, such as changes of attention and
memory retrievals, as well as external behavior related to
visual, auditory, and motor processing. As a first
approximation, we can think of ACT-R models as
explaining behavior in cognitive terms at a more detailed
level than GOMS models.
Because GOMS and ACT-R represent cognitive behavior
at different levels of abstraction, a practical tradeoff arises:
detailed models are much more difficult and time-
consuming to build and test than coarser models. For very
simple HCI tasks, such as traversing menus on a cell phone
[St. Amant et al., 2004], a GOMS model might take hours
to build, while an ACT-R model could take days or weeks
to build. The ACT-R model, in compensation, can in
principle give more insight into the cognitive processes
operating during the task, including their timing, their
learning, and their errors in execution.
In a paper presented at the 2004 International Conference
on Cognitive Modeling [St. Amant & Ritter, 2004],2 we
asked the question, “To what extent can the translation
between GOMS and ACT-R models be automated?” That
is, given a coarse GOMS-level representation of human
behavior, can we automatically build an ACT-R model that
provides plausible additional detail? We presented a
system called G2A with just such a capability.
In the remainder of this paper we describe the
representation of GOMS and ACT-R models in more
detail, to provide context for our work. We then discuss
the system G2A and its performance. We end with an
account of the relevance of this work to the AI community,
including opportunities for future work.

1 GOMS is actually a family of techniques; our description
is specific to GOMSL [Kieras, 1999], a representative
approach. This is comparable to writing “Lisp” instead of
referring to a specific dialect.
2 This paper won the Best Applied Paper Prize at ICCM in
2004; at ICCM the work was viewed as an example of
applied cognitive modeling, but it is also a plausible
example of applied AI.

Unknown
In: Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06). 1663-1666. Menlo Park, CA: AAAI Press.

Cognitive Modeling and G2A
Due to space limitations, we can give only a very
approximate description of GOMS and ACT-R; in
particular, most of the details of model execution are
neglected.
GOMS models are usually expressed in procedural form.
Figure 1 shows a sample GOMS method for editing a
document [Kieras, 1999]. The method breaks down into a
sequence of steps. Some steps are primitive operators such
as storing an item (First, in this case, is just a symbol) in a
named memory location, <current task name>; looking at
the screen, pressing keys, and moving the mouse are also
possibilities. Steps can also involve execution control,
such as branching (in Decide forms) and method invocation
(in Accomplish goal forms). The duration of operators is
general across all GOMS models; for example, key presses
take 280 milliseconds, while method invocations take 50
milliseconds. As a model is executed, durations of
operators and tasks are accumulated.
ACT-R takes a production system approach to modeling,
as is obvious from the syntax of ACT-R models. Figure 2
shows a sample production, the equivalent of the Get-task-
item-whose step in the GOMS method in Figure 1. This
production describes operations on two buffers, goal and
match. Each of these buffers has a set of slots whose
values can be constrained in a standard way; slot names
prefixed by the ‘=’ sign are variables. On the left hand
side of the production, the goal buffer is constrained to
hold a goal with a given task name and state, and a task
item matching the name must be found in memory. On the
right hand side, the current task and state slots of the goal
buffer are updated. As with GOMS models, the durations
of low-level actions are specified by the ACT-R
architecture rather than being specialized to a given model;
durations are collected as productions fire.
In translating between these representations, there are three
main issues to be addressed. First, we expect some
correspondence between low-level operations in both
representations: hand movements and button presses, for

example, are based on similar models of motor behavior,
and basic memory retrievals should be comparable across
the representations. These correspondences must be
mapped out explicitly. Second, the procedural structure in
GOMS model execution must be reproduced in production
form, managed by buffers that maintain appropriate control
information. Third, and most important, some GOMS
operations underconstrain equivalent behavior in ACT-R.
For example, ACT-R represents visual processing at a
level that allows different visual search strategies to be
carried out through the firing of several productions, while
in GOMSL such processing is encapsulated in a single
primitive. Different possible translations must be
identified and evaluated.
As discussed in the next section, G2A translates between
the representation of GOMS and ACT-R models via
translation rules, with results produced by a simple hill-
climbing search. We evaluated G2A in two parts. First, by
comparing the execution times of translated ACT-R
models with their source GOMS models, we can show that
existing predictive accuracy of a GOMS model is not lost
in the translation. Second, by comparing the resulting
ACT-R models to actual user performance, we can show
that the translation gives information that is usable in
practice. For both parts of the evaluation, we used a text
editing task represented by the most complex model given
in Kieras's GOMS manual (Kieras 1999). This model takes
up about four pages—190 lines of code containing 15
mental object definitions, 11 methods, and two sets of
selection rules.
Our evaluation resulted in a few promising findings:
• We used G2A to generate an ACT-R model that

matched the duration of the methods in the original
GOMS model with less than 5% error (less than 1%
for the duration of the entire task). The ACT-R
model contained five chunk definitions, 23 chunks,
79 productions, and various auxiliary constructs
(over 1500 lines of formatted model code). This
model may seem small in comparison with AI

Method for goal: Edit Document
Step. Store First under <current task name>.
Step Check for done.
Decide: If <current task name> is None, Then
 Delete <current task>;
 Delete <current task name>;
 Return with goal accomplished.
Step. Get task item whose
 Name is <current task name>
 and store under <current task>.
Step. Accomplish goal: Perform Unit task.
Step. Store Next of <current task>
 under <current task name>;
Goto Check for done.

Figure 1. Sample GOMS method

;;; Get-task-item-whose ((is name [current-task-name]))
;;; [current-task]
(p production86
 =goal>
 isa goal
 [current-task-name] =[current-task-name]
 %state edit-document-3
 =match88>
 isa task-item
 %id =temp87
 name =[current-task-name]
 ==>
 =goal>
 [current-task] =temp87
 %state edit-document-4)

Figure 2. Sample ACT-R production

systems but is medium to large for models in the
domain of HCI evaluation.

• We used the performance of a single user in a pilot
study to steer G2A’s translation process, in order to
predict the performance of six other users. We
found that the translated model (of comparable size
to the translation above, but of different structure)
generated by G2A matched user performance at the
level of primitive operators with an error rate of
around 35%. This accuracy is about average for
automatically generated models in such tasks (John
et al, 2004; Salvucci and Lee, 2003).

G2A as an AI Application
Much of the processing in G2A is based on simple
techniques for interpreting and compiling programming
languages. Nevertheless, as mentioned in the previous
section, a GOMS model is at best an incomplete
specification of an ACT-R model. The high-level
abstractions provided by a GOMS model can be
accomplished by different lower-level productions or
different sets of productions in ACT-R. In other words, for
any given GOMS model, there may be a large number of
possible translations into ACT-R models. To find the
“best” ACT-R model, we face a search problem.
G2A maintains a set of rules for the translation process.
Simple GOMS operators may have only a single
translation rule (e.g., storing a value in a memory location
can be handled by a single GOMS primitive and a single
production). Other GOMS operators, however, may hide a
good deal of complexity: a Look-for-object-whose operator
could translate into a fixed sequence of productions that
focus attention on a specific location in the visual
environment, or a larger set of productions that govern an
opportunistic visual search of objects in view, among other
possibilities.
In G2A, the translation of a given GOMS model is treated
as a search problem. To guide the search process, a target
set of durations is required either for tasks or primitive
operators. This target can be provided by the standardized
durations for GOMS operators. Alternatively, when pilot
user data is available, durations can be taken from actual
user performance. A state in the search space is a set of
translation rules, one for each GOMS operator. Evaluating
a state involves applying the state’s translation rules to the
given GOMS model in order to generate an ACT-R model.
The durations of ACT-R productions that correspond to
primitive GOMS operators or task boundaries, as generated
by execution of the ACT-R model, are compared with the
target durations. G2A performs hill-climbing through this
space, with state transitions corresponding to single
substitutions of individual translation rules. Mean squared
error over the duration comparisons is minimized. In
general, a few hundred iterations are sufficient to identify
good translations.
G2A brings some benefits to the cognitive modeling
process. The ACT-R models automatically produced by

G2A reflect straightforward decisions that a human
modeler might make to capture human performance in this
domain. Returning to our example of visual processing
above, if an ACT-R modeler found that observable actions
such as key presses were of very short duration, but that
such actions depended on information on the screen, he or
she would conclude that an exhaustive visual search of the
screen is not being carried out and devise appropriately
efficient ACT-R productions for the activity. The
predictions of the translated ACT-R model, as generated
by the search, can be much more accurate for predicting
actual behavior than the standardized predictions of the
source GOMS model. Generating the same ACT-R models
by hand would be both time-consuming and error-prone,
even in such a well-understood domain; in one case study
[St. Amant et al., 2004] we found a difference of several
hours versus two weeks for the construction of a GOMS
model and an ACT-R model, respectively.

Discussion
While G2A represents perhaps the simplest possible
application of a well-known AI technique to the problem
of cognitive model translation, it is nevertheless interesting
from an AI perspective: an important contribution of our
work was to identify and formalize this problem in the first
place. One view of the elaboration of cognitive models to
greater levels of detail was that the process would be
largely deterministic, with little freedom in mapping
operations from one representation into another. Our
experience with G2A showed that the differences between
models at different levels of abstraction were greater than
expected. Along with Howes et al. [2005] and others
[Ritter et al., in press], our work shows something that is
relatively obvious but that had not been widely
acknowledged earlier: moving from an abstract model to a
more detailed model of human performance, even if both
models are based on a largely consistent set of assumptions
about cognition, involves traversing a search space of
significant size, and empirical results only weakly
constrain the search. As AI researchers, we find that this
area allows us to explore interesting and important
questions for cognitive modeling, including what makes a
good theory, how to represent and compute differences
between strategies, and how to represent the complexities
of human behavior. In future work, we would like to
answer the following questions in more general terms:
To what extent can cognitive model development be
supported by automated search? We have found that the
model translation process can be managed by an automated
search process, with many solutions covered by better
solutions. Still, there are still different “best” answers. To
paraphrase Hamming [1962], the purpose of modeling is
insight, not performance measurements. G2A allows
cognitive modelers to move through a larger space of
modeling decisions than is feasible without assistance, but
it remains an open question exactly how much G2A
contributes to the understanding of behavior.

Do general heuristics apply to the transformation between
modeling architectures? In GOMS, visual and cognitive
operators have the longest durations, which means that
when encoding them as ACT-R productions their
translation has the greatest potential for modifying the
resulting predictions. There are many choice points when
going from GOMS specifications to ACT-R implications,
and yet they are modeling the same mechanisms and
behavior. The question of which theoretical level is most
appropriate is likely to be the cause of difficulties.
To what extent can AI representations support cognitive
modeling? Roughly speaking, a cognitive architecture can
be characterized by its modeling language and its behavior
in processing models expressed in that language. What
this means in practice is that most GOMS modelers can
ignore the internal representation of cognitive processing
that is used by the GOMS architecture, focusing instead on
models written in the external language, whereas ACT-R
users more often need to keep the mechanisms in mind
(this observation is reminiscent of the resolved debate
about the value of higher-level languages versus assembly
language).
In order to build G2A, we developed an ad hoc internal,
intermediate representation that captures some of the
commonalities between the architectures. In our current
work we are revising the system to rely instead on PDDL.
We expect that a formal representation of cognitive
modeling operations in planning terms will facilitate
formal analysis of cognitive models, to answer questions
about, for example, the size of the space traversed in
principle by a cognitive architecture in the execution of a
given model, and the changes to this space that arise from
changes to the model.
Can AI techniques improve tools for cognitive modeling?
Current environments for developing cognitive models are
comparable to software development environments,
supporting a tight loop of development, execution, and
testing. They tend to work at a lower level of
programming than modelers find desirable, and at a lower
and slower level than most AI programmers would
tolerate. This may be inherent in the task of modeling
detailed human behavior, but the modeling process could
plausibly be improved if AI tools were to migrate to
modeling environments. Given an internal PDDL
representation of a model, for example, a modeler could
ask whether a given set of primitive operators could be
combined so as to reach a specific goal, something that
ACT-R modelers must currently evaluate without
automated assistance.
In general, we believe that there are interesting
opportunities for the application of AI concepts to the field
of cognitive modeling, in particular to aid cognitive
modelers in their development. Given the shared historical
background and interests of the cognitive modeling and AI
communities, this appears to be a natural area for
collaboration.

References
Anderson, J. R., & Lebiere, C. 1998. The Atomic
Components of Thought. Lawrence Erlbaum. Mahwah, NJ.
Card, S., Moran, T., & Newell, A. 1983. The psychology of
human-computer interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc.
Gobet, F., & Baxter, G. D. 2003. Techniques for modeling
human performance in synthetic environments: A
supplementary review. Wright Patterson AFB: Human
Systems Information Analysis Center. WWW:
//iac.dtic.mil/hsiac/S-docs/SOAR-Jun03.pdf
Gray, W. D., John, B. E., & Atwood, M. E. 1993. Project
Ernestine: Validating a GOMS analysis for predicting and
explaining real-world task performance. Human-Computer
Interaction, 8(3), 237-309.
Hamming, R. W. 1962. Numerical Methods for Scientists
and Engineers. Dover, New York.
Howes, A., Lewis, R. L., Vera, A., & Richardson, J.
(2005). Information-Requirements Grammar: A theory of
the structure of competence for interaction. In Proceedings
of the 27th Annual Meeting of the Cognitive Science
Society, 977-983. Hillsdale, NJ: Lawrence Erlbaum.
John, B. E., & Kieras, D. E. 1996. The GOMS family of
user interface analysis techniques: Comparison and
contrast. ACM Transactions on Computer-Human
Interaction, 3(4), 320-351.
John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
2004. Predictive human performance modeling made easy.
Proceedings of Chi '04, 455–462. ACM.
Kieras, D. 1999. A Guide to GOMS Model Usability
Evaluation using GOMSL and GLEAN3. University of
Michigan, Ann Arbor, MI.
Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R. M.,
St. Amant, R., Freed A., and Ritter, F. E. (2004).
Specifying ACT-R models of user interaction with a
GOMS language. Cognitive Systems Research. 6(1): 71-88.
Ritter, F. E., Haynes, S. R., Cohen, M. Howes, A., John,
B., Best, B., Lebiere, C., Jones, R. M., Crossman, J.,
Lewis, R. L., St. Amant, R., McBride, S. P., Urbas, L.,
Leuchter, S., Vera, A. (in press). High-level Behavior
Representation Languages Revisited. In Proceedings of
ICCM - 2006- Seventh International Conference on
Cognitive Modeling. Mahwah, NJ: Lawrence Erlbaum.
St. Amant, R., Horton, T. E., and Ritter, F. E. (2004).
Model-based evaluation of cell phone menu interaction. In
Proceedings of CHI'04. 343-350. NY, NY: ACM.
St. Amant, R. and Ritter, F. E. 2004. Automated GOMS to
ACT-R model translation. Proceedings of the Sixth
International Conference on Cognitive Modeling, 26-31.
Salvucci, D. D. and Lee, F. J. 2003. Simple Cognitive
modeling in a complex cognitive architecture. In
Proceedings of the ACM Conference on Human Factors in
Computing Systems, pp. 265-272.

