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ABSTRACT 
Cell phone interfaces are now ubiquitous. In this paper, we 
describe concepts to support the analysis of cell phone 
menu hierarchies. We present an empirical study of user 
performance on five simple tasks of menu traversal on a 
cell phone. Two models we tested, based on GOMS and 
ACT-R, give very good predictions of behavior. We use the 
study results to motivate an effective evaluation process for 
menu hierarchies. Our work makes several contributions: a 
novel and timely study of a new, very common HCI task; 
new models for accurately predicting performance; novel 
development tools to support such modeling; and a search 
procedure to generate menu hierarchies that reduce tra-
versal time, in simulation studies, by about a third. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces—Evaluation/methodology. 

Keywords 
Mobile telephones, menu traversal, cognitive modeling, 
evaluation 

INTRODUCTION 
There are at least a billion cellular telephones in use today, 
and this number is expected to double by 2007 [4]. Cell 
phones are used for more than making calls; they include 
tools for managing contact information, voice mail, and 
hardware settings, and often software for playing games, 
browsing the Web, and connecting to specialized 
information services. The market penetration of cell phones 
is much higher than that of conventional computers, which 
raises significant opportunities and challenges for HCI.  

The focus of this paper is on techniques for evaluating spe-
cific aspects of cell phone usability, especially the hierar-
chical menus that provide access to most functionality aside 
from dialing and data entry. While cell phone menu inter-
faces may appear simple at first glance, they pose a non-
trivial design problem. Consider the menu hierarchy for the 

Kyocera 2325 cell phone, shown in Figure 1. If we count as 
terminals those selections that open an application (e.g., a 
game), a list of data (e.g., recent calls), or the cell phone 
equivalent of a dialog box (e.g., for setting the ringer vol-
ume), then this hierarchy contains 98 terminals, reachable 
through 22 intermediate selections. The longest menu con-
tains 12 items—all associated with the selection of different 
sounds. The shortest menu contains a single item, for 
entering a voice memo. Terminals in the hierarchy are up to 
four levels deep, and the mean number of actions to reach 
an item (scrolling plus selection), over all 98 terminals, is 
13.3, taking on the order of 7 s for an experienced user. 

This menu hierarchy is as large as that of a moderately-
sized desktop application (e.g., Eudora 5.2 with 103 items). 
Designing menu systems for cell phones is made more 
difficult by several factors: 

• Discrete selection actions in the form of button presses 
are usually needed to move from one menu item to any 
other, because most cell phones lack more direct 
selection capabilities (e.g., a mouse or touch screen). 

• Cell phone displays are small, allowing only a few 
menu items to be displayed at a single time. Many cell 
phones lack functionality for paging up or down, 
making display limitations even more significant. 

• There is less standardization in hardware supporting 
menu traversal for cell phones than for desktop 
machines. Some phones have two-way directional 
buttons, others four-way; some have a labeled “Menu” 
button, while others rely on a button with overloaded 
functionality. Button placement can vary significantly, 
with “Cancel” and “OK” buttons reversed from one 
phone to another. If interfaces are developed for the 
lowest common denominator, independently of specific 
hardware (which is common practice at the mobile 
application level), then even cell phones with elaborate 
interaction support become less efficient. 

These factors suggest that cell phone menu interfaces 
deserve close analysis, and that they may need specialized 
techniques for their development and evaluation. 

This paper is in two parts. We first describe a small 
empirical study of the traversal of cell phone menus, along 
with three models for predicting user performance: a Fitts’ 
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law model, a GOMS model, 
and an ACT-R model. The 
latter two models give good to 
very good predictions of user 
behavior. In the second part 
of the paper, we turn to the 
issue of designer-level 
support for evaluating cell 
phone menus. We use our 
empirical results to define a 
novel evaluation metric for 
cell phone menus. We de-
scribe a search process that 
generates improvements to a 
menu hierarchy with respect 
to a given set of user profiles. 
We make several contribu-
tions: a novel and timely 
study of a very common new 
HCI task, new models for accurately predicting per-
formance, and a simple, theoretically motivated search 
procedure that generates menu hierarchies that reduce 
traversal time in simulation studies by a third. 

A PERFORMANCE STUDY 
Our interest is in expert (i.e., practiced and error-free) use 
of cell phone menu systems. For control purposes, however, 
it was not possible to collect data from experienced users 
on their own cell phones, with all their potential differences 
in hardware and software. As a compromise, we had users 
practice a small number of tasks (so that all tasks could be 
remembered easily) and then carry them out on a single cell 
phone. Though restrictive, these conditions give a reason-
able starting point for an empirical study. 

We used a Kyocera 2325, as in Figure 1. The Kyocera 
display shows three menu items at a time, except for the 
first level, in which a single selectable item is shown. Each 
new menu list is displayed with the top item highlighted. 
The OK button selects the currently highlighted item. If the 
item is not a terminal, the result is a new list of items. The 
CLR button returns to the previous level in the hierarchy. 
On the four-way scrolling button, UP and DOWN move 
through the item list; except for the first menu, RIGHT and 
LEFT are inactive. Downward scrolling is incremental, with 
items appearing one at a time at the bottom of the screen. 

Procedures 
We recruited twelve experienced cell phone users for our 
study, all male undergraduates in computer science, who 
took part for course credit. All were right handed. All but 
one used their right hand to hold the cell phone, and all 
used their thumb to press keys. 

Participants started with a practice stage, in which they 
familiarized themselves with the cell phone and its menu 
system. We gave each participant a paper form describing 
how five target menu items were to be reached, as follows:  

Menu > > > Settings > > Sounds > Ringer Volume 
Menu > > > > Tools & Games > > Tip Calculator 
Menu, Contacts, View All 
Menu > > > > Tools & Games, Scheduler, View Day 
Menu > > > > > > Web Browser 

Each “>”  represents a scrolling action, with commas 
separating consecutive selection actions. Reaching each of 
the target items (those at the end of each sequence) 
constituted a task in the study. Participants practiced each 
task until they could carry it out three times in a row 
without error. 

After the practice stage, we recorded the tone produced by 
each key press as transmitted through the earphone jack of 
the cell phone. Data collection was initiated by the first key 
pressed by the participant. The onset of each key press is 
detectable by a threshold test on the waveform, using soft-
ware we wrote for this purpose. Each tone lasts approxi-
mately 0.095 seconds, during which time the display 
changes, before the key is released. System responses are 
treated as occurring within elementary key press actions and 
not contributing to the duration of user actions. 

Each trial in the study required reaching one of the target 
items from the practice stage without access to the paper 
form. Tasks were presented to participants in a randomized 
order. We obtained five correct trials per participant (i.e., 
without errors or extraneous actions), discarding fewer than 
10 trials across all participants, less than 3% of the data. 
This means that our cleaned dataset contains only OK and 
DOWN key press actions, 2,280 observations in total 
(2,280 = 12 users • 5 repetitions • (10 + 9 + 3 + 8 + 8 
actions per task)). 

Table 1 shows the mean duration per task, over all 
participants in the study. User performance is on the order 
of five times slower than for single-level menu selection 
with a mouse [3], which highlights the importance of 
specialized models for this task, as we discuss below. 

Models of user behavior 
We predicted performance with three models, each 
supported by a considerable background literature. The 
models were developed independently of each other based 
on a preliminary pilot test with a single user and a single 
task. The models were also developed independently of the 

 
Figure 1. Kyocera 2325. 

 

 

Task N actions Duration 

Ringer Volume 10 4.954 (1.077) 

Tip Calculator 9 4.027 (0.921) 

View All 3 1.271 (0.412) 

View Day 8 4.393 (0.971) 

Web Browser 8 3.391 (0.827) 

Table 1. Task duration in seconds, with mean and 
standard deviation shown (in parentheses). 
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actual study data, and none reflect adjustment of model 
parameters to fit the data.  

The first model is a Fitts’  law model. We use MacKenzie’s 
model of one finger typing for text-entry on mobile phones 
[8], in which movement time (in ms) for thumb input is 

 )1/(2log64176 ++= WDMT , (Eq. 1) 

where D represents the distance (amplitude) of the 
movement and W the width of the target. The value for D in 
our study was 14.5 mm, which separates the OK button and 
the DOWN button area, with widths of 6 mm and 10 mm, 
as measured on the physical device. 

The second model is a GOMS model [6, 7]. GOMS 
methods for task analysis produce hierarchical descriptions 
of methods and operators needed to accomplish goals; some 
GOMS models have been strikingly successful in critical 
HCI domains [5]. In our model we define a method for each 
task in the study. Each step within a task corresponds to the 
selection of a menu item. Thus the Ringer Volume task 
involves the steps of selecting the Menu, Settings, Sounds, 
and Ringer Volume items, in sequence. Each of these steps 
in turn decomposes into a Select-X task, which involves 
scrolling until a given item X in the sequence is reached: 

S1 Look at location for X.  
S2 If (found-X and not on-OK-button), 

  move-to OK-button; select-item; goto S4. 
 If (found-X and on-OK-button), 
  select-item; goto S4. 
 If (not found-X and on-scroll-button), scroll. 
 If (not found-X and not on-scroll-button), 

  move-to scroll-button; scroll. 
S3 Goto S2.  
S4 Return with goal accomplished.  

Following guidelines established by Kieras in his work on 
GOMSL and GLEAN3 [7], all the steps above have a 50 
millisecond duration except S2, whose duration is com-
puted from movements, following the Fitts’  law model 
above, and button presses lasting 350 ms. Other models are 
reasonable, both faster and slower, but we built our model 
to be as fast as possible, given what we know about the do-
main. The model assumes negligible system response time, 
that there are no verification steps, and that the information 
on the display starts in focus and does not require re-
acquisition during scrolling activity. 

The third model is based on the ACT-R 5.0 cognitive 
architecture [1].1 ACT-R integrates theories of cognition, 
visual attention, and motor movement and has been the 
basis for a number of models in HCI [10]. ACT-R models 
simulate internal cognitive processing, such as changes of 
                                                           
1 We picked ACT-R as a representative cognitive modeling 

architecture and as a common choice in HCI work. All 
models described in this section, plus the study data, are 
at www4.ncsu.edu/~stamant/papers/RSA-TEH-FER-chi04. 

attention and memory retrievals, as well as external actions, 
such as movement of the fingers, producing changes in the 
state of the model and durations for the actions. Roughly 
speaking, ACT-R models provide details that can explain 
behavior in cognitive terms at a level not addressed by more 
abstract GOMS models [11]. 

In our ACT-R model, a simulated field of view is main-
tained that represents the current menu items in the hierar-
chy. This view changes depending on the selection and 
scrolling actions taken by the model. Before running, the 
model’s memory is initialized with a set of chunks repre-
senting the hierarchical relationships between intermediate 
and terminal menu items. This allows the model to deter-
mine whether a given menu item (e.g., “Settings”) is on the 
path to a target item (e.g., “Ringer Volume”) by retrieving 
this information from memory.  

The model starts with the goal of selecting a specific target 
menu item. The simulation environment shows a single 
highlighted item, which the model searches for in its field 
of view. Once found, the item is attended and then encoded, 
so that its text representation becomes accessible. If the text 
matches the goal item, then the model initiates motor 
actions to press the OK key. If the text does not match, 
memory is searched to determine whether the highlighted 
text is on the path to the target item. If it is, then the OK key 
is pressed, and the process repeats from the beginning with 
a new highlighted menu item. If the currently highlighted 
item is not on the path to the goal item, then the DOWN 
scroll key is pressed, and again the process starts over. In 
the model manual scrolling actions can trail behind visual 
processing by an unspecified amount (determined by 
processing in the model such as memory retrievals); the 
visual and manual modules become synchronized when a 
new menu is presented. User errors, such as pressing an 
incorrect key, are not modeled. Model execution is 
deterministic, with no noise parameters used. 

Model performance 
Table 2 shows the predictions each model makes of user 
performance over all the menu selection tasks. Significant 
differences between the user data and model predictions, as 
given by Tukey’s HSD (Honestly Significant Difference) 
test based on a single run of each model on all tasks, are 
shown as starred table entries. There are three different 
categories: all actions aggregated together over all tasks, 
only selection actions, and only scrolling actions. The Fitts’  

 

 All actions Scrolling Selection 

Users 0.547  (0.256) 0.515  (0.254) 0.610  (0.249) 

GOMS 0.542  (0.147) 0.505  (0.154) 0.616  (0.098) 

ACT-R 0.550  (0.242) 0.561* (0.272) 0.527* (0.174) 

Fitts 0.218* (0.050) 0.202* (0.040) 0.248* (0.057) 

Table 2. Mean key press duration across all tasks, in 
seconds, with mean and standard deviation shown. 
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law predictions are significantly different from user 
performance in all categories. The ACT-R model provides 
good predictions at the aggregate level, but differs in the 
more detailed categories, making a qualitative error in 
predicting that scrolling actions take longer than selection 
actions. The GOMS model gives predictions within 0.01 
seconds (less than 2%) of the user means for all categories. 

Figure 2 shows a less-aggregated view of the menu selec-
tion process. We define a “selection run”  as a sequence of 
scrolling actions up to and including a selection action. The 
length of a run is the number of scrolling actions it contains, 
e.g., a run of length 0 corresponds to two consecutive se-
lection actions. Figure 2 aggregates selection runs over all 
trials, showing the mean duration of runs from lengths 0 
through 7 (by oversight our data contained no instances of 
runs of length 6.) As in the previous analysis, the GOMS 
model is closest to the user data, but here the ACT-R pre-
dictions are almost indistinguishable from the GOMS pre-
dictions. We see that both models produce larger overesti-
mates of scrolling time for shorter runs than for longer runs. 
For ACT-R, we interpret this as being due to the additional 
visual processing needed when a new menu list is first seen, 
in addition to the balancing out of over/underestimates in 
scrolling/selection actions (the pattern in Figure 2 is more 
complex than can be attributed only to the latter factor.) For 
both models, the differences are gradually reduced as 
scrolling begins to dominate the longer sequences. The 
Fitts’  law model significantly underestimates all durations. 

Figure 3 shows performance data broken down by task. One 
task, View All, involved only three actions and was omitted 
because it is similar to the other tasks. Again, we see that 
both the GOMS model and the ACT-R model give good 
approximations of user performance. 

Discussion 
Many models of cell phone interaction, such as keypad 
dialing and one-finger text entry [8], have been based on 
Fitts’  law, which motivated this aspect of our evaluation. 
Our Fitts’  law model performs relatively poorly, however, 
despite the success of such models elsewhere. The model 
produces times that are about twice as fast as observed in 
users. This is actually not surprising—much of the activity 
of this menu selection task is outside the scope of the 
model. Silfverberg et al. describe a comparable example of 
where Fitts’  law models break down, in a discussion of text 
entry on mobile phones [13]. For some cell phones, text 
entry is aided by lexicon-based word disambiguation. While 
typing the user ordinarily refers to the display in order to 
decide whether the system has correctly disambiguated the 
word being typed. In text entry, such cognitive processing 
may be rare for expert users familiar with the disambigua-
tion system, but in menu selection, under the plausible 
assumption that users will not have memorized the linear 
position of the items in each menu, significant visual and 
cognitive processing is needed at each step in the process. 
This processing is not captured by Fitts’  law. 

The GOMS and ACT-R models perform remarkably well in 
our study, with GOMS edging out ACT-R at a detailed 
level. As a baseline for performance, we can compare these 
models to a linear regression fit to all the data, where T 
represents time and n the number of key presses: 

 531.0=T 500.0−n     834.02 =R  (Eq. 2.) 

Neither model accounts for as much variance as the least 
squares model, but both are close, with the GOMS model 
averaging an R2 of 0.786 and the ACT-R model 0.790 over 
the different tasks. Further, from a modeling perspective 
they have several compensating advantages over a post hoc 
model. First, they are a priori models—neither was tuned 
specifically to the data. Second, as seen in Figures 2 and 3, 
the models track some of the nonlinear aspects of user 
performance, at least qualitatively. Third, and most 
important, the GOMS and ACT-R models have theoretical 
underpinnings that give them explanatory power. In the 
case of GOMS, performance is explained by the specific 
tasks that are represented, the hierarchical structure in 
which they are combined, and dependence on a cognitive 
processing framework that provides specific timing 
predictions (e.g., for Fitts’  law movements.) The ACT-R 
model extends the level of detail in its explanations, in 
accounting for the interval between actions by explicit 
visual processing and memory retrievals, and in modeling 
visual processing and motor actions as proceeding in 
parallel for scrolling actions but synchronizing with 
selection actions. Like all model-generated explanations, 
these are provisional and subject to further testing, but our 
current results make them plausible, worth pursuing in more 
detailed experiments. 

SUPPORT FOR BUILDING AND USING MODELS 
Building detailed models of use for novel interfaces is not 
yet a matter of applying simple, off-the-shelf tools. It 
requires support for specifying the properties of new 
platforms and tasks; models then need to be able to interact 
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Figure 2. Selection runs. User  data points (filled circles) 
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with the platforms to carry out the tasks, which may require 
customization of modeling architectures. Our work has led 
us to develop an environment containing tools that facilitate 
this process for cell phone platforms and tasks. 

Specifying menu hierarchies in which menu traversal tasks 
can be defined is the easiest part. Our environment supports 
loading such specifications through a formatted data file. 
Once the information is loaded, the modeler can browse and 
potentially edit the result, through the simple interface 
shown on the left side of Figure 4. 

Platform specification, in the form of building new keypads 
from scratch, is also straightforward. We have developed a 
simple direct manipulation interface in which modelers can 
create and name buttons, size them, and drag them into 
place. The visual layout of the keypad is automatically 
translated into a specification that can act as input to all the 

models in the previous section (though not all information 
may be used by all the models). The interface is comparable 
to conventional user interface development tools; we do not 
present it here because of space considerations. 

Processing existing phone keypads poses a more interesting 
problem. It is possible to reproduce an existing keypad 
through the direct manipulation interface, but this is error-
prone and more cumbersome than it need be. Given that 
images of most cell phones can easily be found online, 
another approach is possible. We have developed image 
processing algorithms to give perception capabilities to 
cognitive models such as ACT-R, Soar, and EPIC [12]. The 
algorithms are elementary but promise to be adequate for 
the task of interpreting images of real cell phone keypads.  

Keypad processing works as follows. The modeler loads a 
bitmap image of a keypad, which appears in a window 
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Figure 3. Model prediction by task. Each user  data point (filled circle) represents the mean of 60 sample points. 
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(Figure 4, on the right, shows a later stage of the process). 
The modeler then identifies an arbitrary button by 
“scribbling”  over it with the pointer. This serves two 
purposes: specifying representative visual properties of a 
key, specifically its color, size, and position, and implicitly 
describing the background for all the keys. The user can 
then associate a specific symbol with this key, such as “1”  
or “#” . All keys can be specified in this way, or the system 
can be directed to detect and identify all keys automatically. 
Results can then be reviewed and modified by the modeler. 
Figure 4 shows the result for a sample cell phone, with call 
outs generated and laid out by the system.2 

Currently the system can detect only buttons that are well-
differentiated from the background, and can identify (i.e., 
associate a symbol with) only the 12 standard keypad keys 
(“0”  through “9” , plus “*”  and “#” ). Other keys can be 
detected but not automatically identified; naming these keys 
is left to the modeler. Once the relevant keys on the keypad 
have been identified, the system generates a specification of 
key names, sizes, and positions, identical in structure to that 
of the direct manipulation keypad builder interface. 

In an informal test, we downloaded 12 images from the 
Web, of a quality comparable to Figures 1 and 4, of cell 
phones from different manufacturers and in different 
keypad styles. We ran the image processing algorithms on 
the keypads to identify the 12 standard keys, following the 
interaction described above. Results fell into three 
categories. For four of the cell phone images, the system 
failed to identify any keys at all. For two of the images, the 

                                                           
2 This side of our research ran in parallel with but slightly 

later than the study. The image processing algorithms 
handle the Kyocera keypad without problems, but the 
numbers used for the study were measured by hand. 

system identified 10 out of the 12 keys correctly. Errors 
involved the merging of two neighboring keys (e.g., “8”  and 
“0” .) For the remaining six images, all 12 standard keys 
were identified correctly. The more successful results 
tended to have good resolution, low variation in back-
ground color, easily differentiated key borders, and few 
lighting artifacts. Figure 4, of a Motorola T193, is 
representative of an image processed successfully. Work 
needs to be done on making the image processing 
techniques more robust, but even in their current state they 
add value to the modeling process by reducing effort. 

Once a menu hierarchy and keypad have been specified, 
model execution can proceed. Our modeling environment is 
designed as a set of extensions to the ACT-R system. The 
PM (perceptual/ motor) component of ACT-R has some 
bias toward desktop activities, such as selecting menu items 
with the mouse and navigating through windows and dialog 
boxes [1,3], so we added two extensions. Our first change 
involved increasing flexibility in the existing models of 
finger movements and the keyboard, to support finger 
movements to target keys of arbitrary size and placement. 
Our second change was a limited form of automated model 
generation from the menu hierarchy specification.  ACT-R 
productions (rules) are not modified, but memory structures 
are automatically created (on the order of several hundred 
chunks) to reflect relationships between intermediate and 
terminal menu items. 

The GOMS and Fitts’  law models co-exist with ACT-R in 
the same environment, sharing a common code base. We 
implemented a simple Fitts’  law simulator and a GOMS 
interpreter that use the geometry of the keypad specification 
for computing movement times. Fitts’  law movement op-
erators are generated from the menu hierarchy, given a 
target menu item.  Similarly, all of the methods and 
operators for the GOMS model except the Select-X method 
are automatically generated.  Thus given a menu hierarchy, 
keypad specification, and target menu item, GOMS and 
Fitts’  law models can be built and run without further effort. 

To summarize, the tools we have developed assist the 
developer in specifying new menu hierarchies, building 
descriptions of new or existing cell phone keypads, and 
automatically incorporating this information into 
specialized models. The process requires no programming 
or explicit model construction, from start to finish. 

User profiles and search 
Once models of menu traversal have been built, they can be 
applied toward improving menu hierarchies for end users. 
This is a key concern for developers who may be less inter-
ested in modeling details than in the pragmatic issues of 
increasing usability. 

An evaluation of a menu hierarchy independent of usage 
patterns would be uninformative: different users choose 
different items, and items are chosen with varying 
frequency. In other words, different usage patterns favor 

 
Figure 4. Browsing a menu hierarchy (left); automatic 

detection and identification of keys (r ight). 
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different designs.  We can incorporate information about 
different user categories into an evaluation. We define a 
user profile to be a probability distribution over the set of 
terminals in the hierarchy (explained below). The coverage 
of a profile reflects the ratio of users it represents with 
respect to all users of the cell phone (some profiles will be 
more common than others), and the usage of a profile gives 
the average frequency with which items are chosen (e.g., 
two profiles may contain similar probabilities, but one may 
apply to users who access their cell phones several times as 
often as the other set of users.) As an example, imagine that 
20% of users access two items equally, "Recent Calls" and 
"View All Contacts", on average three times a day.  These 
users would have a profile such that in its probability 
distribution, those two item have probability 0.5 (all others 
0.0); its coverage is 0.20; and its usage is 3 (a value that 
only becomes meaningful in the context of the usage values 
of other profiles.) 

These concepts can be used to produce a very 
straightforward performance measure that represents the 
cost of traversing a menu hierarchy, over different possible 
user profiles, for all menu items that are accessed. 
Specifically, we define the expected cost of making item 
selections in a menu hierarchy as follows. Let Th be the set 
of terminals in hierarchy h.  Then 

 �
∈

=
hTt

h tptchEC )()()(  (Eq. 3.) 

where p(t) gives the probability of the occurrence of a 
particular terminal t in hierarchy h, and ch(t) gives an 
estimate of the cost of reaching that terminal in the 
hierarchy. This measure is used by an automated search 
algorithm to identify alternative designs of the menu 
hierarchy that improve user performance. 

The starting point for the search algorithm is provided by 
the designer, who enters information about terminal item 
occurrences.  The designer can enter these directly (e.g., 
such-and-such an action occurs four times per day, week, or 
month) through a simple fill-in form that is generated from 
a given menu hierarchy.  Alternatively, the designer can 
provide such information for specific user profiles.  The 
system searches through modifications to the menu 
hierarchy, producing alternatives that can be interactively 
browsed, as shown earlier in Figure 4, to be accepted, 
rejected, or modified. 

To compute p(t), one component of the expected cost 
measure, the system uses the information from the designer 
to construct a probability distribution of the occurrence of 
terminals in Th. This distribution may be directly supplied 
by the designer as described above, in the form of item 
access frequencies.  If profile-based information is provided 
instead (i.e., distributions of  terminal occurrences 
conditioned on different user profiles), then an overall 
distribution is computed using Monte Carlo sampling, 
based on the usage and coverage values of the profiles. 

To compute ch(t), the other component of the expected cost 
of traversing the menu hierarchy, we use our study results. 
For pragmatic reasons, we use the easiest metric we have 
available to compute cost, the linear regression given in 
Equation 2 (the GOMS or ACT-R model could have been 
used, though with a significant increase in processing time.) 
The factors that make the linear regression less appropriate 
for modeling do not apply here. Our choice for ch means 
that EC(h) produces the expected duration of choosing an 
arbitrary menu item in h. 

An automated, search-based modification of a menu hierar-
chy cannot arbitrarily rearrange its structure purely for effi-
ciency. Changes must respect the semantic relationships 
between the items. That is, “Ringer Volume” is under the 
“Settings”  category rather than vice versa for good reason. 
To avoid the difficulties of representing and reasoning 
about menu item semantics (we leave this for future work), 
we rely on two search operators that produce only small 
changes. For a target item with non-zero probability in 
some user profile, these operators can be applied: 

• Promote item: This operator moves a target item to the 
beginning of its menu list, to reduce scrolling time.  

• Promote subtree: This operator moves an ancestor of 
the target item up one level in the hierarchy, to reduce 
selection of intermediate items to reach the target. 

An item or subtree rooted at an ancestor may only be pro-
moted once. Even with these constraints, the search space 
size is exponential in the number of target items with non-
zero probability in any profile (e.g. if all non-zero items in a 
user profile are in one menu list, then all permutations of 
these items will be considered.) Exhaustive search is thus 
impractical. A best-first search algorithm, however, gives 
good results after as few as 100 steps. 

Lacking real user profiles, we can only illustrate the search 
procedure in practice, but our results are promising. Based 
on the Kyocera menu hierarchy, we defined random profiles 
of different sizes, where size refers to the number of non-
zero probability menu items contained in the profile. The 
probabilities for each profile were drawn from a uniform 
random distribution and normalized. Because these profiles 
were randomly generated, we used only a single profile for 
the search, rather than composing arbitrary probabilities 
from different random profiles. Table 3 shows the results 
for user profiles of size 20, 30, and 40, each given 10 runs 
in a best-first search bounded at 500 steps. The cost values 
are means of the time estimates produced by the linear 

 

Profile size Initial cost Final cost Savings 

20 7.325 4.530 37.5% 

30 6.962 4.762 31.5% 

40 7.009 4.940 29.4% 

Table 3. Improvement of menu traversal times. 
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model. The last column gives the time savings in traversing 
the reordered menus, as a percentage of the duration of the 
traversals in the original menu hierarchy. Because these 
results are based on random probabilities of accessing menu 
items, rather than actual user experiences, they can only be 
viewed as suggestive.  

FUTURE WORK 
One aspect of our future work will involve testing with 
ACT-Simple [11], to see whether the simpler GOMS model 
might be automatically translated into an improved, more 
detailed cognitive model based on ACT-R. As obvious as 
this direction may seem now, we did not pursue it initially, 
partly because we did not expect the ACT-R and GOMS 
models to perform as well as they did, and partly because 
we thought of GOMS as a baseline against which we would 
demonstrate an ACT-R improvement. (That the ACT-R 
model produces inferior detailed predictions is 
disappointing, indicating that our understanding of the task 
is incomplete at the lower levels. We expect to address its 
shortcomings in follow-on work.) A comparison of different 
detailed models, including ACT-R, ACT-Simple, and other 
possibilities, is now appropriate at this stage. 

CONCLUSION 
In this paper we have described a set of evaluation concepts 
and tools to support cell phone menu design. Our work has 
both theoretical and practical implications. Novice user 
actions, learning, error recovery behavior, and generality 
across different devices are now areas ripe for further 
exploration.  From a practical standpoint, developers have 
models that are ready for use—they are general enough that 
they do not require cognitive modeling expertise or pro-
gramming skill to apply them to different traversal tasks, in 
different menu hierarchies, or on different cell phones. Our 
longer-term goals for this research include building an inte-
grated environment to support the definition of new inter-
active environments, the application of modeling techniques 
to provide insights into usability issues [9], and the applica-
tion of intelligent tools that can contribute information to 
aid design. We believe that as modeling concepts and tech-
niques become more accessible to HCI developers, they 
will become increasingly significant in their contribution to 
improving interfaces. 
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