
1

Model-based Evaluation of Cell Phone Menu Interaction

Robert St. Amant and Thomas E. Horton

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
stamant@csc.ncsu.edu tehorton@eos.ncsu.edu

Frank E. Ritter

School of Information Sciences and Technology
The Pennsylvania State University

University Park, PA 16081
ritter@ist.psu.edu

ABSTRACT
Cell phone interfaces are now ubiquitous. In this paper, we
describe concepts to support the analysis of cell phone
menu hierarchies. We present an empirical study of user
performance on five simple tasks of menu traversal on a
cell phone. Two models we tested, based on GOMS and
ACT-R, give very good predictions of behavior. We use the
study results to motivate an effective evaluation process for
menu hierarchies. Our work makes several contributions: a
novel and timely study of a new, very common HCI task;
new models for accurately predicting performance; novel
development tools to support such modeling; and a search
procedure to generate menu hierarchies that reduce tra-
versal time, in simulation studies, by about a third.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology.

Keywords
Mobile telephones, menu traversal, cognitive modeling,
evaluation

INTRODUCTION
There are at least a billion cellular telephones in use today,
and this number is expected to double by 2007 [4]. Cell
phones are used for more than making calls; they include
tools for managing contact information, voice mail, and
hardware settings, and often software for playing games,
browsing the Web, and connecting to specialized
information services. The market penetration of cell phones
is much higher than that of conventional computers, which
raises significant opportunities and challenges for HCI.

The focus of this paper is on techniques for evaluating spe-
cific aspects of cell phone usability, especially the hierar-
chical menus that provide access to most functionality aside
from dialing and data entry. While cell phone menu inter-
faces may appear simple at first glance, they pose a non-
trivial design problem. Consider the menu hierarchy for the

Kyocera 2325 cell phone, shown in Figure 1. If we count as
terminals those selections that open an application (e.g., a
game), a list of data (e.g., recent calls), or the cell phone
equivalent of a dialog box (e.g., for setting the ringer vol-
ume), then this hierarchy contains 98 terminals, reachable
through 22 intermediate selections. The longest menu con-
tains 12 items—all associated with the selection of different
sounds. The shortest menu contains a single item, for
entering a voice memo. Terminals in the hierarchy are up to
four levels deep, and the mean number of actions to reach
an item (scrolling plus selection), over all 98 terminals, is
13.3, taking on the order of 7 s for an experienced user.

This menu hierarchy is as large as that of a moderately-
sized desktop application (e.g., Eudora 5.2 with 103 items).
Designing menu systems for cell phones is made more
difficult by several factors:

• Discrete selection actions in the form of button presses
are usually needed to move from one menu item to any
other, because most cell phones lack more direct
selection capabilities (e.g., a mouse or touch screen).

• Cell phone displays are small, allowing only a few
menu items to be displayed at a single time. Many cell
phones lack functionality for paging up or down,
making display limitations even more significant.

• There is less standardization in hardware supporting
menu traversal for cell phones than for desktop
machines. Some phones have two-way directional
buttons, others four-way; some have a labeled “Menu”
button, while others rely on a button with overloaded
functionality. Button placement can vary significantly,
with “Cancel” and “OK” buttons reversed from one
phone to another. If interfaces are developed for the
lowest common denominator, independently of specific
hardware (which is common practice at the mobile
application level), then even cell phones with elaborate
interaction support become less efficient.

These factors suggest that cell phone menu interfaces
deserve close analysis, and that they may need specialized
techniques for their development and evaluation.

This paper is in two parts. We first describe a small
empirical study of the traversal of cell phone menus, along
with three models for predicting user performance: a Fitts’

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CHI 2004, April 24-29, 2004, Vienna, Austria.

St. Amant, R., Horton, T., & Ritter, F. E. (2004). Model-based evaluation of cell phone menu interaction. In Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI ‘04) (Vienna, Austria). 343-350. NY, NY: ACM.

2

law model, a GOMS model,
and an ACT-R model. The
latter two models give good to
very good predictions of user
behavior. In the second part
of the paper, we turn to the
issue of designer-level
support for evaluating cell
phone menus. We use our
empirical results to define a
novel evaluation metric for
cell phone menus. We de-
scribe a search process that
generates improvements to a
menu hierarchy with respect
to a given set of user profiles.
We make several contribu-
tions: a novel and timely
study of a very common new
HCI task, new models for accurately predicting per-
formance, and a simple, theoretically motivated search
procedure that generates menu hierarchies that reduce
traversal time in simulation studies by a third.

A PERFORMANCE STUDY
Our interest is in expert (i.e., practiced and error-free) use
of cell phone menu systems. For control purposes, however,
it was not possible to collect data from experienced users
on their own cell phones, with all their potential differences
in hardware and software. As a compromise, we had users
practice a small number of tasks (so that all tasks could be
remembered easily) and then carry them out on a single cell
phone. Though restrictive, these conditions give a reason-
able starting point for an empirical study.

We used a Kyocera 2325, as in Figure 1. The Kyocera
display shows three menu items at a time, except for the
first level, in which a single selectable item is shown. Each
new menu list is displayed with the top item highlighted.
The OK button selects the currently highlighted item. If the
item is not a terminal, the result is a new list of items. The
CLR button returns to the previous level in the hierarchy.
On the four-way scrolling button, UP and DOWN move
through the item list; except for the first menu, RIGHT and
LEFT are inactive. Downward scrolling is incremental, with
items appearing one at a time at the bottom of the screen.

Procedures
We recruited twelve experienced cell phone users for our
study, all male undergraduates in computer science, who
took part for course credit. All were right handed. All but
one used their right hand to hold the cell phone, and all
used their thumb to press keys.

Participants started with a practice stage, in which they
familiarized themselves with the cell phone and its menu
system. We gave each participant a paper form describing
how five target menu items were to be reached, as follows:

Menu > > > Settings > > Sounds > Ringer Volume
Menu > > > > Tools & Games > > Tip Calculator
Menu, Contacts, View All
Menu > > > > Tools & Games, Scheduler, View Day
Menu > > > > > > Web Browser

Each “>” represents a scrolling action, with commas
separating consecutive selection actions. Reaching each of
the target items (those at the end of each sequence)
constituted a task in the study. Participants practiced each
task until they could carry it out three times in a row
without error.

After the practice stage, we recorded the tone produced by
each key press as transmitted through the earphone jack of
the cell phone. Data collection was initiated by the first key
pressed by the participant. The onset of each key press is
detectable by a threshold test on the waveform, using soft-
ware we wrote for this purpose. Each tone lasts approxi-
mately 0.095 seconds, during which time the display
changes, before the key is released. System responses are
treated as occurring within elementary key press actions and
not contributing to the duration of user actions.

Each trial in the study required reaching one of the target
items from the practice stage without access to the paper
form. Tasks were presented to participants in a randomized
order. We obtained five correct trials per participant (i.e.,
without errors or extraneous actions), discarding fewer than
10 trials across all participants, less than 3% of the data.
This means that our cleaned dataset contains only OK and
DOWN key press actions, 2,280 observations in total
(2,280 = 12 users • 5 repetitions • (10 + 9 + 3 + 8 + 8
actions per task)).

Table 1 shows the mean duration per task, over all
participants in the study. User performance is on the order
of five times slower than for single-level menu selection
with a mouse [3], which highlights the importance of
specialized models for this task, as we discuss below.

Models of user behavior
We predicted performance with three models, each
supported by a considerable background literature. The
models were developed independently of each other based
on a preliminary pilot test with a single user and a single
task. The models were also developed independently of the

Figure 1. Kyocera 2325.

Task N actions Duration

Ringer Volume 10 4.954 (1.077)

Tip Calculator 9 4.027 (0.921)

View All 3 1.271 (0.412)

View Day 8 4.393 (0.971)

Web Browser 8 3.391 (0.827)

Table 1. Task duration in seconds, with mean and
standard deviation shown (in parentheses).

3

actual study data, and none reflect adjustment of model
parameters to fit the data.

The first model is a Fitts’ law model. We use MacKenzie’s
model of one finger typing for text-entry on mobile phones
[8], in which movement time (in ms) for thumb input is

)1/(2log64176 ++= WDMT , (Eq. 1)

where D represents the distance (amplitude) of the
movement and W the width of the target. The value for D in
our study was 14.5 mm, which separates the OK button and
the DOWN button area, with widths of 6 mm and 10 mm,
as measured on the physical device.

The second model is a GOMS model [6, 7]. GOMS
methods for task analysis produce hierarchical descriptions
of methods and operators needed to accomplish goals; some
GOMS models have been strikingly successful in critical
HCI domains [5]. In our model we define a method for each
task in the study. Each step within a task corresponds to the
selection of a menu item. Thus the Ringer Volume task
involves the steps of selecting the Menu, Settings, Sounds,
and Ringer Volume items, in sequence. Each of these steps
in turn decomposes into a Select-X task, which involves
scrolling until a given item X in the sequence is reached:

S1 Look at location for X.
S2 If (found-X and not on-OK-button),

 move-to OK-button; select-item; goto S4.
 If (found-X and on-OK-button),
 select-item; goto S4.
 If (not found-X and on-scroll-button), scroll.
 If (not found-X and not on-scroll-button),

 move-to scroll-button; scroll.
S3 Goto S2.
S4 Return with goal accomplished.

Following guidelines established by Kieras in his work on
GOMSL and GLEAN3 [7], all the steps above have a 50
millisecond duration except S2, whose duration is com-
puted from movements, following the Fitts’ law model
above, and button presses lasting 350 ms. Other models are
reasonable, both faster and slower, but we built our model
to be as fast as possible, given what we know about the do-
main. The model assumes negligible system response time,
that there are no verification steps, and that the information
on the display starts in focus and does not require re-
acquisition during scrolling activity.

The third model is based on the ACT-R 5.0 cognitive
architecture [1].1 ACT-R integrates theories of cognition,
visual attention, and motor movement and has been the
basis for a number of models in HCI [10]. ACT-R models
simulate internal cognitive processing, such as changes of

1 We picked ACT-R as a representative cognitive modeling

architecture and as a common choice in HCI work. All
models described in this section, plus the study data, are
at www4.ncsu.edu/~stamant/papers/RSA-TEH-FER-chi04.

attention and memory retrievals, as well as external actions,
such as movement of the fingers, producing changes in the
state of the model and durations for the actions. Roughly
speaking, ACT-R models provide details that can explain
behavior in cognitive terms at a level not addressed by more
abstract GOMS models [11].

In our ACT-R model, a simulated field of view is main-
tained that represents the current menu items in the hierar-
chy. This view changes depending on the selection and
scrolling actions taken by the model. Before running, the
model’s memory is initialized with a set of chunks repre-
senting the hierarchical relationships between intermediate
and terminal menu items. This allows the model to deter-
mine whether a given menu item (e.g., “Settings”) is on the
path to a target item (e.g., “Ringer Volume”) by retrieving
this information from memory.

The model starts with the goal of selecting a specific target
menu item. The simulation environment shows a single
highlighted item, which the model searches for in its field
of view. Once found, the item is attended and then encoded,
so that its text representation becomes accessible. If the text
matches the goal item, then the model initiates motor
actions to press the OK key. If the text does not match,
memory is searched to determine whether the highlighted
text is on the path to the target item. If it is, then the OK key
is pressed, and the process repeats from the beginning with
a new highlighted menu item. If the currently highlighted
item is not on the path to the goal item, then the DOWN
scroll key is pressed, and again the process starts over. In
the model manual scrolling actions can trail behind visual
processing by an unspecified amount (determined by
processing in the model such as memory retrievals); the
visual and manual modules become synchronized when a
new menu is presented. User errors, such as pressing an
incorrect key, are not modeled. Model execution is
deterministic, with no noise parameters used.

Model performance
Table 2 shows the predictions each model makes of user
performance over all the menu selection tasks. Significant
differences between the user data and model predictions, as
given by Tukey’s HSD (Honestly Significant Difference)
test based on a single run of each model on all tasks, are
shown as starred table entries. There are three different
categories: all actions aggregated together over all tasks,
only selection actions, and only scrolling actions. The Fitts’

 All actions Scrolling Selection

Users 0.547 (0.256) 0.515 (0.254) 0.610 (0.249)

GOMS 0.542 (0.147) 0.505 (0.154) 0.616 (0.098)

ACT-R 0.550 (0.242) 0.561* (0.272) 0.527* (0.174)

Fitts 0.218* (0.050) 0.202* (0.040) 0.248* (0.057)

Table 2. Mean key press duration across all tasks, in
seconds, with mean and standard deviation shown.

4

law predictions are significantly different from user
performance in all categories. The ACT-R model provides
good predictions at the aggregate level, but differs in the
more detailed categories, making a qualitative error in
predicting that scrolling actions take longer than selection
actions. The GOMS model gives predictions within 0.01
seconds (less than 2%) of the user means for all categories.

Figure 2 shows a less-aggregated view of the menu selec-
tion process. We define a “selection run” as a sequence of
scrolling actions up to and including a selection action. The
length of a run is the number of scrolling actions it contains,
e.g., a run of length 0 corresponds to two consecutive se-
lection actions. Figure 2 aggregates selection runs over all
trials, showing the mean duration of runs from lengths 0
through 7 (by oversight our data contained no instances of
runs of length 6.) As in the previous analysis, the GOMS
model is closest to the user data, but here the ACT-R pre-
dictions are almost indistinguishable from the GOMS pre-
dictions. We see that both models produce larger overesti-
mates of scrolling time for shorter runs than for longer runs.
For ACT-R, we interpret this as being due to the additional
visual processing needed when a new menu list is first seen,
in addition to the balancing out of over/underestimates in
scrolling/selection actions (the pattern in Figure 2 is more
complex than can be attributed only to the latter factor.) For
both models, the differences are gradually reduced as
scrolling begins to dominate the longer sequences. The
Fitts’ law model significantly underestimates all durations.

Figure 3 shows performance data broken down by task. One
task, View All, involved only three actions and was omitted
because it is similar to the other tasks. Again, we see that
both the GOMS model and the ACT-R model give good
approximations of user performance.

Discussion
Many models of cell phone interaction, such as keypad
dialing and one-finger text entry [8], have been based on
Fitts’ law, which motivated this aspect of our evaluation.
Our Fitts’ law model performs relatively poorly, however,
despite the success of such models elsewhere. The model
produces times that are about twice as fast as observed in
users. This is actually not surprising—much of the activity
of this menu selection task is outside the scope of the
model. Silfverberg et al. describe a comparable example of
where Fitts’ law models break down, in a discussion of text
entry on mobile phones [13]. For some cell phones, text
entry is aided by lexicon-based word disambiguation. While
typing the user ordinarily refers to the display in order to
decide whether the system has correctly disambiguated the
word being typed. In text entry, such cognitive processing
may be rare for expert users familiar with the disambigua-
tion system, but in menu selection, under the plausible
assumption that users will not have memorized the linear
position of the items in each menu, significant visual and
cognitive processing is needed at each step in the process.
This processing is not captured by Fitts’ law.

The GOMS and ACT-R models perform remarkably well in
our study, with GOMS edging out ACT-R at a detailed
level. As a baseline for performance, we can compare these
models to a linear regression fit to all the data, where T
represents time and n the number of key presses:

 531.0=T 500.0−n 834.02 =R (Eq. 2.)

Neither model accounts for as much variance as the least
squares model, but both are close, with the GOMS model
averaging an R2 of 0.786 and the ACT-R model 0.790 over
the different tasks. Further, from a modeling perspective
they have several compensating advantages over a post hoc
model. First, they are a priori models—neither was tuned
specifically to the data. Second, as seen in Figures 2 and 3,
the models track some of the nonlinear aspects of user
performance, at least qualitatively. Third, and most
important, the GOMS and ACT-R models have theoretical
underpinnings that give them explanatory power. In the
case of GOMS, performance is explained by the specific
tasks that are represented, the hierarchical structure in
which they are combined, and dependence on a cognitive
processing framework that provides specific timing
predictions (e.g., for Fitts’ law movements.) The ACT-R
model extends the level of detail in its explanations, in
accounting for the interval between actions by explicit
visual processing and memory retrievals, and in modeling
visual processing and motor actions as proceeding in
parallel for scrolling actions but synchronizing with
selection actions. Like all model-generated explanations,
these are provisional and subject to further testing, but our
current results make them plausible, worth pursuing in more
detailed experiments.

SUPPORT FOR BUILDING AND USING MODELS
Building detailed models of use for novel interfaces is not
yet a matter of applying simple, off-the-shelf tools. It
requires support for specifying the properties of new
platforms and tasks; models then need to be able to interact

0

1

2

3

4

5

T
im

e
(s

ec
on

ds
)

0 2 4 6 8

Run length (key presses)
User data GOMS ACT-R Fitts' law

Figure 2. Selection runs. User data points (filled circles)
are means of samples of size 240, 60, 120, 60, 120, and 60.

5

with the platforms to carry out the tasks, which may require
customization of modeling architectures. Our work has led
us to develop an environment containing tools that facilitate
this process for cell phone platforms and tasks.

Specifying menu hierarchies in which menu traversal tasks
can be defined is the easiest part. Our environment supports
loading such specifications through a formatted data file.
Once the information is loaded, the modeler can browse and
potentially edit the result, through the simple interface
shown on the left side of Figure 4.

Platform specification, in the form of building new keypads
from scratch, is also straightforward. We have developed a
simple direct manipulation interface in which modelers can
create and name buttons, size them, and drag them into
place. The visual layout of the keypad is automatically
translated into a specification that can act as input to all the

models in the previous section (though not all information
may be used by all the models). The interface is comparable
to conventional user interface development tools; we do not
present it here because of space considerations.

Processing existing phone keypads poses a more interesting
problem. It is possible to reproduce an existing keypad
through the direct manipulation interface, but this is error-
prone and more cumbersome than it need be. Given that
images of most cell phones can easily be found online,
another approach is possible. We have developed image
processing algorithms to give perception capabilities to
cognitive models such as ACT-R, Soar, and EPIC [12]. The
algorithms are elementary but promise to be adequate for
the task of interpreting images of real cell phone keypads.

Keypad processing works as follows. The modeler loads a
bitmap image of a keypad, which appears in a window

0

1

2

3

4

5

6

7

T
im

e
(s

ec
on

ds
)

0 2 4 6 8 10 12

Action# (nth key press)

0

1

2

3

4

5

6

7

T
im

e
(s

ec
on

ds
)

0 2 4 6 8 10 12

Action# (nth key press)

Ringer Volume. Keys: OK > > > OK > > OK > OK Tip Calculator . Keys: OK > > > > OK > > OK

0

1

2

3

4

5

6

7

T
im

e
(s

ec
on

ds
)

0 2 4 6 8 10 12

Action# (nth key press)

0

1

2

3

4

5

6

7

T
im

e
(s

ec
on

ds
)

0 2 4 6 8 10 12

Action# (nth key press)

View Day. Keys: OK > > > > OK OK OK Web Browser . Keys: OK > > > > > > OK

User data GOMS ACT-R Fitts' law

Figure 3. Model prediction by task. Each user data point (filled circle) represents the mean of 60 sample points.
Each graph title gives the target menu item and the sequence of selection (“ OK”) and scrolling (“ >”) actions.

6

(Figure 4, on the right, shows a later stage of the process).
The modeler then identifies an arbitrary button by
“scribbling” over it with the pointer. This serves two
purposes: specifying representative visual properties of a
key, specifically its color, size, and position, and implicitly
describing the background for all the keys. The user can
then associate a specific symbol with this key, such as “1”
or “#” . All keys can be specified in this way, or the system
can be directed to detect and identify all keys automatically.
Results can then be reviewed and modified by the modeler.
Figure 4 shows the result for a sample cell phone, with call
outs generated and laid out by the system.2

Currently the system can detect only buttons that are well-
differentiated from the background, and can identify (i.e.,
associate a symbol with) only the 12 standard keypad keys
(“0” through “9” , plus “*” and “#”). Other keys can be
detected but not automatically identified; naming these keys
is left to the modeler. Once the relevant keys on the keypad
have been identified, the system generates a specification of
key names, sizes, and positions, identical in structure to that
of the direct manipulation keypad builder interface.

In an informal test, we downloaded 12 images from the
Web, of a quality comparable to Figures 1 and 4, of cell
phones from different manufacturers and in different
keypad styles. We ran the image processing algorithms on
the keypads to identify the 12 standard keys, following the
interaction described above. Results fell into three
categories. For four of the cell phone images, the system
failed to identify any keys at all. For two of the images, the

2 This side of our research ran in parallel with but slightly

later than the study. The image processing algorithms
handle the Kyocera keypad without problems, but the
numbers used for the study were measured by hand.

system identified 10 out of the 12 keys correctly. Errors
involved the merging of two neighboring keys (e.g., “8” and
“0” .) For the remaining six images, all 12 standard keys
were identified correctly. The more successful results
tended to have good resolution, low variation in back-
ground color, easily differentiated key borders, and few
lighting artifacts. Figure 4, of a Motorola T193, is
representative of an image processed successfully. Work
needs to be done on making the image processing
techniques more robust, but even in their current state they
add value to the modeling process by reducing effort.

Once a menu hierarchy and keypad have been specified,
model execution can proceed. Our modeling environment is
designed as a set of extensions to the ACT-R system. The
PM (perceptual/ motor) component of ACT-R has some
bias toward desktop activities, such as selecting menu items
with the mouse and navigating through windows and dialog
boxes [1,3], so we added two extensions. Our first change
involved increasing flexibility in the existing models of
finger movements and the keyboard, to support finger
movements to target keys of arbitrary size and placement.
Our second change was a limited form of automated model
generation from the menu hierarchy specification. ACT-R
productions (rules) are not modified, but memory structures
are automatically created (on the order of several hundred
chunks) to reflect relationships between intermediate and
terminal menu items.

The GOMS and Fitts’ law models co-exist with ACT-R in
the same environment, sharing a common code base. We
implemented a simple Fitts’ law simulator and a GOMS
interpreter that use the geometry of the keypad specification
for computing movement times. Fitts’ law movement op-
erators are generated from the menu hierarchy, given a
target menu item. Similarly, all of the methods and
operators for the GOMS model except the Select-X method
are automatically generated. Thus given a menu hierarchy,
keypad specification, and target menu item, GOMS and
Fitts’ law models can be built and run without further effort.

To summarize, the tools we have developed assist the
developer in specifying new menu hierarchies, building
descriptions of new or existing cell phone keypads, and
automatically incorporating this information into
specialized models. The process requires no programming
or explicit model construction, from start to finish.

User profiles and search
Once models of menu traversal have been built, they can be
applied toward improving menu hierarchies for end users.
This is a key concern for developers who may be less inter-
ested in modeling details than in the pragmatic issues of
increasing usability.

An evaluation of a menu hierarchy independent of usage
patterns would be uninformative: different users choose
different items, and items are chosen with varying
frequency. In other words, different usage patterns favor

Figure 4. Browsing a menu hierarchy (left); automatic

detection and identification of keys (r ight).

7

different designs. We can incorporate information about
different user categories into an evaluation. We define a
user profile to be a probability distribution over the set of
terminals in the hierarchy (explained below). The coverage
of a profile reflects the ratio of users it represents with
respect to all users of the cell phone (some profiles will be
more common than others), and the usage of a profile gives
the average frequency with which items are chosen (e.g.,
two profiles may contain similar probabilities, but one may
apply to users who access their cell phones several times as
often as the other set of users.) As an example, imagine that
20% of users access two items equally, "Recent Calls" and
"View All Contacts", on average three times a day. These
users would have a profile such that in its probability
distribution, those two item have probability 0.5 (all others
0.0); its coverage is 0.20; and its usage is 3 (a value that
only becomes meaningful in the context of the usage values
of other profiles.)

These concepts can be used to produce a very
straightforward performance measure that represents the
cost of traversing a menu hierarchy, over different possible
user profiles, for all menu items that are accessed.
Specifically, we define the expected cost of making item
selections in a menu hierarchy as follows. Let Th be the set
of terminals in hierarchy h. Then

 �
∈

=
hTt

h tptchEC)()()((Eq. 3.)

where p(t) gives the probability of the occurrence of a
particular terminal t in hierarchy h, and ch(t) gives an
estimate of the cost of reaching that terminal in the
hierarchy. This measure is used by an automated search
algorithm to identify alternative designs of the menu
hierarchy that improve user performance.

The starting point for the search algorithm is provided by
the designer, who enters information about terminal item
occurrences. The designer can enter these directly (e.g.,
such-and-such an action occurs four times per day, week, or
month) through a simple fill-in form that is generated from
a given menu hierarchy. Alternatively, the designer can
provide such information for specific user profiles. The
system searches through modifications to the menu
hierarchy, producing alternatives that can be interactively
browsed, as shown earlier in Figure 4, to be accepted,
rejected, or modified.

To compute p(t), one component of the expected cost
measure, the system uses the information from the designer
to construct a probability distribution of the occurrence of
terminals in Th. This distribution may be directly supplied
by the designer as described above, in the form of item
access frequencies. If profile-based information is provided
instead (i.e., distributions of terminal occurrences
conditioned on different user profiles), then an overall
distribution is computed using Monte Carlo sampling,
based on the usage and coverage values of the profiles.

To compute ch(t), the other component of the expected cost
of traversing the menu hierarchy, we use our study results.
For pragmatic reasons, we use the easiest metric we have
available to compute cost, the linear regression given in
Equation 2 (the GOMS or ACT-R model could have been
used, though with a significant increase in processing time.)
The factors that make the linear regression less appropriate
for modeling do not apply here. Our choice for ch means
that EC(h) produces the expected duration of choosing an
arbitrary menu item in h.

An automated, search-based modification of a menu hierar-
chy cannot arbitrarily rearrange its structure purely for effi-
ciency. Changes must respect the semantic relationships
between the items. That is, “Ringer Volume” is under the
“Settings” category rather than vice versa for good reason.
To avoid the difficulties of representing and reasoning
about menu item semantics (we leave this for future work),
we rely on two search operators that produce only small
changes. For a target item with non-zero probability in
some user profile, these operators can be applied:

• Promote item: This operator moves a target item to the
beginning of its menu list, to reduce scrolling time.

• Promote subtree: This operator moves an ancestor of
the target item up one level in the hierarchy, to reduce
selection of intermediate items to reach the target.

An item or subtree rooted at an ancestor may only be pro-
moted once. Even with these constraints, the search space
size is exponential in the number of target items with non-
zero probability in any profile (e.g. if all non-zero items in a
user profile are in one menu list, then all permutations of
these items will be considered.) Exhaustive search is thus
impractical. A best-first search algorithm, however, gives
good results after as few as 100 steps.

Lacking real user profiles, we can only illustrate the search
procedure in practice, but our results are promising. Based
on the Kyocera menu hierarchy, we defined random profiles
of different sizes, where size refers to the number of non-
zero probability menu items contained in the profile. The
probabilities for each profile were drawn from a uniform
random distribution and normalized. Because these profiles
were randomly generated, we used only a single profile for
the search, rather than composing arbitrary probabilities
from different random profiles. Table 3 shows the results
for user profiles of size 20, 30, and 40, each given 10 runs
in a best-first search bounded at 500 steps. The cost values
are means of the time estimates produced by the linear

Profile size Initial cost Final cost Savings

20 7.325 4.530 37.5%

30 6.962 4.762 31.5%

40 7.009 4.940 29.4%

Table 3. Improvement of menu traversal times.

8

model. The last column gives the time savings in traversing
the reordered menus, as a percentage of the duration of the
traversals in the original menu hierarchy. Because these
results are based on random probabilities of accessing menu
items, rather than actual user experiences, they can only be
viewed as suggestive.

FUTURE WORK
One aspect of our future work will involve testing with
ACT-Simple [11], to see whether the simpler GOMS model
might be automatically translated into an improved, more
detailed cognitive model based on ACT-R. As obvious as
this direction may seem now, we did not pursue it initially,
partly because we did not expect the ACT-R and GOMS
models to perform as well as they did, and partly because
we thought of GOMS as a baseline against which we would
demonstrate an ACT-R improvement. (That the ACT-R
model produces inferior detailed predictions is
disappointing, indicating that our understanding of the task
is incomplete at the lower levels. We expect to address its
shortcomings in follow-on work.) A comparison of different
detailed models, including ACT-R, ACT-Simple, and other
possibilities, is now appropriate at this stage.

CONCLUSION
In this paper we have described a set of evaluation concepts
and tools to support cell phone menu design. Our work has
both theoretical and practical implications. Novice user
actions, learning, error recovery behavior, and generality
across different devices are now areas ripe for further
exploration. From a practical standpoint, developers have
models that are ready for use—they are general enough that
they do not require cognitive modeling expertise or pro-
gramming skill to apply them to different traversal tasks, in
different menu hierarchies, or on different cell phones. Our
longer-term goals for this research include building an inte-
grated environment to support the definition of new inter-
active environments, the application of modeling techniques
to provide insights into usability issues [9], and the applica-
tion of intelligent tools that can contribute information to
aid design. We believe that as modeling concepts and tech-
niques become more accessible to HCI developers, they
will become increasingly significant in their contribution to
improving interfaces.

ACKNOWLEDGMENTS
The authors wish to thank David Golightly and five anony-
mous reviewers for their helpful comments. This effort was
supported by the National Science Foundation under award
IIS-0083281 and by the Space and Naval Warfare Systems
Center, San Diego. The information in this paper does not

necessarily reflect the position or policies of the U.S. gov-
ernment, and no official endorsement should be inferred.

REFERENCES
1. Anderson, J., & Lebiere, C. (1998). The atomic compo-

nents of thought. Mahwah, NJ: LEA.

2. Byrne, M. D., & Gray, W. D. (2003). Returning human
factors to an engineering discipline: Expanding the sci-
ence base through a new generation of quantitative
methods—Preface to the special section. Human Fac-
tors, 45, 1-4.

3. Byrne, M. D. (2001). ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. Int. J. Hu-
man-Computer Studies, 55(1):41-84.

4. Charney, B. (2003). Cell phone use to double. CNET
News.com, http://news.com.com/2100-1039-5060745.html,
August 6, 2003.

5. Gray, W. D., John, B. E., and Atwood, M. E. (1993).
Project Ernestine: Validating a GOMS analysis for pre-
dicting and explaining real-world task performance,
Human-Computer Interaction, 8(3): 237-309.

6. John, B. (2003). Information processing and skilled be-
havior. HCI models, theories, and frameworks, Carroll,
J. (ed), SF, CA: Morgan Kaufman.

7. Kieras, D. (1999). A Guide to GOMS Model Usability
Evaluation using GOMSL and GLEAN3, ftp://www.
eecs.umich.edu/people/kieras/GOMS/GOMSL_Guide.pdf.

8. MacKenzie, I. S. (2003). Motor behavior models for
human-computer interaction. HCI models, theories, and
frameworks, Carroll, J. (ed), SF, CA: Morgan Kaufman.

9. Nichols, S., & Ritter, F. E. (1995). A theoretically moti-
vated tool for automatically generating command ali-
ases. In Proceedings of CHI, 393-400. NY, NY: ACM.

10. Ritter, F. E., and Young, R. M. (2001). Embodied mod-
els as simulated users: Introduction to this special issue
on using cognitive models to improve interface design.
Int. J. Human-Computer Studies, 55(1):1-14.

11. Salvucci, D. D., and Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. Proceed-
ings of CHI, 265-272. New York, NY: ACM.

12. St. Amant, R., and Riedl, M. O. (2001). A perception/
action substrate for cognitive modeling in HCI. Int. J.
Human-Computer Studies, 55(1):15-39.

13. Silfverberg, M., MacKenzie, I. S., and Korhonen, P.
(2000). Predicting text entry speed on mobile phones,
Proceedings of CHI, 9-16. New York, NY: ACM.

