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Abstract 
We report a high-level architecture, CoJACK, that provides insights on behavior variability, 
situation awareness, and behavioral moderators.  CoJACK combines Beliefs/Desires/Intentions 
(BDI) agents’ high-level knowledge representation and usability with several aspects of low 
level cognitive architectures, including processing time predictions, errors, and traceability.  
CoJACK explores new areas for cognitive architectures, such as variability arising from 
moderators.  It also allows aspects of situation awareness (SA) in a cognitive architecture to be 
explored.  Its behavior and the effects of moderators on behavior are demonstrated in a simple 
adversarial environment.  It provides lessons for other architectures including how to define, 
measure, and control variability due to individual and temporal aspects of cognition; the 
importance of SA and knowledge representations necessary to support complex SA; the potential 
for parameter sweeps and paths as measures of variability; and some of the complexities that will 
arise when aspects of moderators and SA are added to cognitive architectures.  
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1. Introduction 
Cognitive models have been applied in a variety of places, including as agents in synthetic 
environments (SEs) (e.g., Best, Lebiere, & Scarpinatto, 2002; Jones et al., 1999; Pew & Mavor, 
1998) and for predicting behavior in system design (e.g., Booher & Minninger, 2003; Pew & 
Mavor, 2007).  Cognitive architectures have been used to create these models. However, there 
are many limitations on cognitive models in these applications, including a lack of high-level 
representations and the difficulties in modeling variability in performance.  

This paper details a novel cognitive architecture, CoJACK, that can be used to address 
variability, situation awareness, and moderated behavior, while maintaining usability.  We begin 
by defining and discussing these four major themes.   

1.1 Variability 
We define variability as changes in human performance in three ways: across individuals, by 
situation, and across time.  Variability has been used widely in the area of psychology, 
specifically in the area of individual differences (e.g., Jonassen & Grabowski, 1993; Simon & 
Simon, 1978).  There appear to be many factors that can cause variability in human behavior 
including differences across individuals, differences across time on a task within an individual, 
and the effects of context on a task, such as time pressure, heat, sleep patterns, and food, drink, 
and psychoactive substances such as caffeine. These differences can be because performance is 
influenced by total workload or because other aspects of the environment (such as heat or social 
context) influence performance.  

Although these sources of variability on performance have been studied in many ways in 
psychology, including sleep models (e.g., Belyavin & Spencer, 2004), the effects of these types 
of variability have been less often addressed in cognitive models (although, see Lovett, Daily, & 
Reder, 2000, Gunzelmann, Gross, Gluck, & Dinges, 2009, and Morgan, Morgan, & Ritter, 2010, 
for counter examples). 

  
Variability is important in adversarial problem solving. Variability makes opponents more 

challenging because it makes interpretation more difficult.  It also requires that multiple 
examples have to be taken to see the distribution of behavior.  If an opponent is too predictable 
two problems can arise. One problem, limited learning, is that with time an agent will discover 
every move of the predictable opponent and learn only how to address those fixed responses.  
The other problem is fixed learning, that the agent learns to provide a fixed response because the 
opponent is not variable in their response to your behavior.  These problems can lead to poorer 
learning, a false sense of confidence, and less development of alternatives in the learner’s 
behavior against opponents. However, it can be difficult for analysts for the same reasons. 

We have found one particularly interesting example of individual differences studied in SEs 
with a comparison to data.  Poncelin de Raucourt (1997) studied individual differences in the 
World War II battle of Medenine using the Ironsides simulation (Harrison, Winters, & Anthistle, 
1999).  He also had actual performance based on diary reports of the battle.  He found that 
Ironsides had a relatively flat distribution of tanks destroyed across the Allied crews, that is, each 
anti-tank crew on the Allied team had destroyed roughly an equal number of opponent tanks.  
The diary studies of the battle reported that the number of tanks destroyed per team was 
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significantly and reliably different from a flat distribution.  His work suggests that existing 
simulations need to have variability (however it arises) across agents.   

1.2 Situation awareness 
Situation awareness (SA) is a macrocognitive construct representing how well an operator’s 
representation is matched to the world, including the actors and activities, agents’ goals, and 
future behavior (Endsley, 1995).  SA and its maintenance depend on cognition, particularly the 
processes and mechanisms in an observer and orient phases of the Observe-Orient-Decide-Act 
(OODA) loop (Endsley & Jones, 1997).  Factors that influence cognition will also influence SA 
thus influencing behavior via a secondary route—differences in SA can lead to further variability 
in human performance.  For example, reductions in working memory capacity will not only 
influence performance, they will also influence the ability to perform activities related to SA.  

Aspects of SA can be seen in agent models in SEs. The simple aspects—what are the objects 
in the world—is, of course, included.  What the objects are doing is sometimes included in a 
model.  What they are going to do is difficult, and few agents do this.  It has been done in Soar 
(Laird, 2001), including TacAir-Soar (Nielsen, Crossman, & Jones, 2007), but doing so is an 
exception.  

1.3 Moderators 
A range of external and internal factors, which can be labeled as behavioral moderators, can also 
affect cognition, including the higher level aspects of SA and variability.  These moderators 
include the effects of various types of stress (e.g., time pressure, task importance), the external 
world impinging on the user (e.g., heat, vibration), and substances such as caffeine.  The 
moderators can be grouped into internal and external types, depending on whether their genesis 
is from the operator or from the world.  Moderators have been studied physiologically and 
psychologically but are not often included in computational models due to limitations in 
architecture and as a working assumption about what to model first (e.g., problem solving) and 
what to defer (e.g., emotions and moderators).  There have been cases where moderators have 
been included in architectures (Bach, 2008; Bates, 1994; e.g., Gratch & Marsella, 2004; 
Hudlicka, 2002; Ritter, Reifers, Klein, & Schoelles, 2007).  These are relatively few, however, 
and are not yet widely used.   

1.4 Usability 
A problem related to making a more complete architecture is that of keeping the resulting system 
usable.  Each of these constructs adds to the complexity of the model and its behavior.  At the 
same time, a few authors have noted that models are already not as usable as they could be or 
need to be.  Pew and Mavor (1998) in their review of modeling human behavior include a 
subsection that addresses usability of models.  Pew and Mavor (2007), in their report on using 
user models as a shared representation to reduce risk in system design, explicitly call for making 
models easier to use.  Shakir (2002) in an internal government report noted that it was better to 
build an interface to the JACK® architecture (Busetta, Rönnquist, Hodgson, & Lucas, 1999) and 
extend it rather than use an existing architecture because the existing alternative was too 
unusable.  Usability as an important but fixable limitation of the application of cognitive 
architectures in SEs (Ritter, 2009; Ritter et al., 2003).  Thus, because the usability of models is a 
current and pressing concern in model creation, future work needs to keep usability in mind.  
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One way to address usability in modeling is to use a high-level behavior representation 
language (Haynes, Cohen, & Ritter, 2009; Ritter et al., 2006).  High-level representation 
languages provide several advantages, including clarity of representation and ease of creating 
models.  When referring to high-level representations we mean the ability to describe behavior at 
a composite, structured level.  Many cognitive architectures represent knowledge at the level of 
if-then rules.  This has been a useful representation, but it has also limited the ability to create 
models.  

1.5 Preview of the paper 
To explore these topics, how they interact, and how they can be put to work in synthetic 
environments, we report a novel high-level cognitive architecture called CoJACK (Cognitive 
JACK).  CoJACK directly supports representations of variability, SA, and moderators.  It 
combines the high-level knowledge representation used in Beliefs/Desires/Intentions (BDI) 
agents (Rao & Georgeff, 1995) and their associated high levels of usability with several aspects 
of low level cognitive architectures, including traceability, processing time predictions, working 
memory effects, and errors in behavior.  

CoJACK includes explicit, traceable representations of the basic aspects of SA, including 
external actors and their actions.  Its parameter sets, because it includes parameters that represent 
concepts such as noise in information processing mechanisms, can lead to variability between 
similar agents.  The parameters can also be used to create moderators.  For example, the 
parameters can also be modified to create an overlay to the architecture to describe a particular 
moderator, such as task appraisal stress (Ritter, Reifers, Klein, & Schoelles, 2007).  These 
modifications to JACK implement a generic technique that provides a means of representing the 
influence of internal and external moderators on behaviour.   

2. Materials and Methods 
2.1 JACK 
To describe CoJACK, we first briefly describe JACK (Busetta, Rönnquist, Hodgson, & Lucas, 
1999).  JACK is based on the BDI approach, a paradigm that explicates rational decision-making 
about action. The BDI paradigm was developed in response to a perceived problem with existing 
AI approaches to planning.  Agents are typically situated in a dynamic environment and must 
constantly review their goals and activities. They should also be aware of the resource-bounded 
nature of their reasoning.  Earlier AI approaches to planning only addressed the offline planning 
problem—how to achieve the goal given infinite time and resources. They failed to address the 
temporal pressures that apply when trying to achieve goals within a fluctuating environment that 
presents a multitude of interacting, conflicting, and changing opportunities.   

JACK represents and executes tactics in a manner that maps well to subject matter experts’ 
(SMEs) introspections about their own reasoning. The knowledge representation includes a 
front-end that allows analysts to specify tactics graphically at a high-level (shown in Figure 1).  
The graphical representation is useful for visualizing the logical structure of tactics and 
discussing them with SMEs.  This representation language provides higher level constructs and 
thus direct support for usability.  
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Figure 1.  A simple plan represented in JACK.   

2.2 The CoJACK architecture 
JACK was modified to make a cognitive architecture.  It implements variability, SA, and 
moderators, while maintaining usability through a high-level representation of behavior.   

2.2.1 CoJACK extends JACK with variability, SA, and Moderators 
One way to view cognitive architectures is to classify them in terms of the constraints they 
impose upon cognitive models. Howes and Young (1997) suggest that cognitive architectures 
consist of soft and hard constraints. Soft constraints can be overridden whereas hard constraints 
enforce particular properties on the models, with no way to circumvent them within the 
architecture. From this perspective, CoJACK is intended to provide hard constraints (because 
they are provided automatically to a JACK model), but because of the Java implementation and 
the ability to extend JACK and CoJACK, the constraints are somewhat soft. This approach offers 
considerable flexibility because the degree of cognitive modelling sophistication and consequent 
behavioral variability can be altered to suit the goals of the simulation study. 

We maintained JACK’s usability while modifying the underlying architecture's performance.  
Thus, users write a JACK agent, and turn on the cognitive architecture features in CoJACK. 
CoJACK augments JACK with a set of cognitive architectural constraints and parameters, as 
well as a moderator layer.  When enabled, the agent’s behavior is modulated by the cognitive 
architecture components embedded in JACK.  The major activities in the JACK architecture, 
such as adding a belief or instantiating a plan have a time cost associated with them.  Based upon 
cognitive parameters’ values, the architectural constraints add latency (either computed or in real 
time) to the current intention’s reasoning steps and to memory access.  

CoJACK also affects the choice of beliefs retrieved in response to a memory access attempt; 
this includes effects such as failure to retrieve a matching belief, retrieval of a belief that only 
partially matches, and retrieval of an alternative matching belief (i.e., not the one that JACK 
would have chosen first). A similar mechanism affects the selection of the next BDI intention to 
execute. Thus, the agent can choose an unanticipated intention or even fail to retrieve one of its 
current intentions, and it has less resources creating a more limited focus of attention.  
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The cognitive parameters can be moderated at runtime, leading to further variation in 
behavior.  For example, a caffeine moderator can be added that decreases the time taken to 
perform reasoning steps, leading to shorter response times, which we demonstrate later.  

2.2.2 Key CoJACK assumptions and features 
CoJACK addresses the following five key aspects of cognition: 

Limited access to procedural and declarative memory—Working Memory (WM) refers to 
the currently active subset of the human cognitive system. WM is the mechanism of human 
cognition that maintains information during processing. It is limited in capacity as evidenced by 
decreased performance in tasks that require many temporary items to be held in memory (e.g., 
Anderson, 2007).  Although the term WM is usually restricted to declarative memory, it should 
also encompass the dynamic aspects of procedural memory. CoJACK incorporates WM access 
limits (termed errors of omission) through an activation-level mechanism similar to ACT-R’s 
mechanisms (Anderson, 2007; Anderson et al., 2004).   

In contrast to its support for declarative memory, ACT-R does not include a theory 
describing how recency and decay apply to dynamic procedural memory.  This is a real issue for 
CoJACK because it represents procedures as plans rather than productions. A plan typically has 
a number of steps, and when a CoJACK model forms an intention from a plan, that intention is 
held in a dynamic memory buffer that enables the agent to step through the plan. CoJACK can 
maintain a number of such intentions (determined by sub-symbolic activation-level equations), 
and switches its focus to the most active intention. This allows it to work on a number of tasks 
concurrently, much as a short-order cook manages multiple dishes (Kirlik, 2006).   

Error-prone retrieval from procedural and declarative memory—In addition to failing to 
access memory elements, errors can occur when the wrong memory item is retrieved.  CoJACK 
adopts a similar approach to ACT-R’s partial-matching mechanism (Anderson & Lebiere, 1998), 
producing errors of commission.  

Cognition takes time—One of the major limitations of most AI-based models is that they 
fail to represent the time taken to think and act.  If, for example, the granularity of the simulation 
is 1 s, a model can, in theory, and often in practice, run through a series of decision-making steps 
in 1 s (simulated or real) that would take a human half an hour.  CoJACK addresses this problem 
by computing the time of reasoning steps (based on its architecture and moderated parameter 
set).   

Limited focus of attention—Resource limitation is a key property of human cognition. The 
allocation of this limited computational resource is generally referred to as attention.  In 
CoJACK, the modelling of attention takes account of the following: 

How an agent deliberately focuses its attention in a particular direction (e.g., focusing on an 
important goal while ignoring distracting environmental stimuli).   

How factors like caffeine or fatigue moderate an agent’s attention. 
How the properties of memory affect attention.  For example, WM elements have a limited 

life span. If a WM element is essential to the current task, the agent must counteract its natural 
decay through some form of rehearsal.  This rehearsal process consumes attention resources. 
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Cognition can be moderated—Human behavior can be modified (moderated) by a range of 
factors, including temporal, environmental, physiological, and internal factors. Moderators can 
influence entity behavior directly—for example, caffeine increases the ability to focus, allowing 
performance on a vigilance task to remain virtually sustained at its original level instead of 
decreasing over the span of an hour (Boff & Lincoln, 1988, ch. 7, p. 804).  Moderators can also 
influence lower-level mechanisms that give rise to the changed performance—for example, 
caffeine can provide a 5-10% faster reaction time on a simple reaction time task (G. P. Morgan, 
Ritter, Stine, & Klein, 2006), which will influence other aspects of behavior.  By simulating the 
effects of moderators on underlying mechanisms, it is possible to predict behavior variation that 
will occur for a task that has not yet been studied closely. For example, if the effects of caffeine 
on the low-level aspects of cognition and the body are well understood, but the effects of 
caffeine on, say, radar operators had not been specifically studied, it should be possible to 
provide at least initial predictions of caffeine’s effects on the behavior of radar operators based 
on knowing their cognitive mechanisms and the knowledge necessary to perform the task.  

Figure 2 shows the relationship between JACK, CoJACK and the environment.  JACK 
performs meta-level and tactical reasoning.  Its performance is modulated by the cognitive 
architecture, which in turn is affected by the moderator layer. Percepts and other environmental 
data affect the appropriate moderators. 

 
Figure 2. CoJACK’s components and their relationship to JACK. 
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3. Theory and Calculations 
3.1 Design and implementation of variability 
Models in CoJACK are largely built at a high level (specifying an agent’s plans, events and 
beliefs handled).  However, the final behavior of a CoJACK model depends on the sub-symbolic 
properties of the architecture, which are taken from ACT-R. 

In CoJACK, beliefs and intentions are subject to sub-symbolic effects. To unify their 
treatment, they are collectively termed “chunks” in CoJACK. A belief is a declarative memory 
chunk; intentions are procedural memory chunks. From the point of view of working memory, a 
chunk is a single item1. 

Activation is a key aspect of the sub-symbolic properties of CoJACK. Chunks have an 
activation level that changes over time and when the chunk is used. This activation level is one 
of the main influences on the likelihood that a chunk will be retrieved, and how long retrieval 
will take. Given a set of competing chunks (i.e., ones that match retrieval specifications), 
CoJACK will select probabilistically the most activated chunk, subject to the chunk being above 
the retrieval threshold. Recall that CoJACK events govern the agent’s computational flow (i.e., 
internal and external events produce intentions that then drive behavior). When an event is 
processed, it acts as an activation source for chunks. Event activation can be moderated to 
support goals with varying “salience” (e.g., “Stay alive” might have a higher activation than the 
goal “Watch TV”). This provides a straightforward method for the developer to focus the agent’s 
attention on the events that are important to the agent. 

CoJACK has over 30 cognitive parameters taken from ACT-R and adapted for a BDI 
architecture (Norling & Ritter, 2004a, 2004b). ACT-R’s parameters have been experimentally 
validated across a wide range of tasks (see, for example, Anderson, 2007; Anderson et al., 2004; 
Anderson & Lebiere, 1998).  We have found that these parameters are an excellent starting point 
for a novel architecture such as CoJACK. These parameters provide a way to modulate cognition 
by variations in physiology (as represented by the moderator layer; see next section). 

CoJACK’s parameters govern a wide range of sub-symbolic properties including: chunk 
activation, the time taken to retrieve or modify memory elements, and noise factors in chunk 
retrieval time and plan selection.  Individual differences between agents can be represented by 
supplying differing initialization parameter values. Moderators can further affect these cognitive 
parameters at runtime—a “fatigue” moderator can increase the time taken to retrieve or modify 
memory elements. 

JACK and agent architectures do not typically exhibit variability in their performance. It is a 
desirable feature, even, that they solve the problem in the best way every time, which is often the 
same way. Human cognition and performance, however, varies.  It appears to vary across 
individuals, and it appears to be modified by outside factors such as what we eat and drink, and 
by internal processes such as how we appraise a situation.  We will need to include these sources 
of variability in CoJACK.   

                                                
1 Even if an intention has, say, 50 steps, it will be treated as a single WM item. Thus, if the modeler creates a plan 
with 50 steps, it signifies that the plan is “compiled” and therefore its WM burden is low. 
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3.2 Design and implementation of SA 
SA is also an important concept.  There are two general ways in which the SA of CoJACK 
agents can be modified: via the perceptual module and via cognitive processes.  The perceptual 
module primarily affects SA by filtering sense data to account for things such as focus of 
attention and information overload.  Cognitive processes affect higher-level SA because this 
requires cognitive effort.  If the agent is involved in a cognitively intense task, it may delay or 
discard completely the processes related to building higher-level SA.  If too much effort is 
devoted to these processes, the agent also may miss important events at the perceptual level.  

These points will play out in the system based on how the SA is implemented and how well it 
can be interpreted.  

The SA feature in CoJACK (Evertsz, Ritter, Busetta, & Pedrotti, 2008; Yngling, 2008) 
allows the system modeler to inspect the level of SA, according to Endsley's (1995) model of 
SA.  JACK detects and tags a belief as an Endsley level 1 (perception) or 2 (comprehension) 
when making use of some simple extensions.  Comprehension entails inferring the implications 
of perception for the task at hand. Beliefs are augmented with the origins of beliefs, including the 
level, the name of the plan that generated the belief, and the context (the values of variables in 
the plan at the time of addition of the beliefs).  Level 3 beliefs (projection) have to be explicitly 
tagged by the system modeler, and have to be computed by the model using reasoning. 
Projection is the most complex aspect of situation awareness.  It uses the results of levels 1 and 2 
to predict what will happen in the near term to the objects comprehended in level 2.   Future 
work should help explore how to represent SA using this approach, and what level 3 SA will 
mean in a computational cognitive architecture.  

3.3 Design and implementation of moderators 
Each moderator is represented as a mathematical function denoting its input/output mapping.  
Moderators can also have internal reservoirs and decay functions that determine how the 
reservoir level varies over time (e.g., to model the rate caffeine is absorbed and excreted, but this 
is not used in these examples). Composite moderators can be created that represent the 
interaction between one or more moderators (e.g., the interaction between caffeine and alcohol, 
and how that affects reaction time). The inputs to a moderator can be (i) events from the 
simulation environment, (ii) internal events (e.g., the timing and amount of caffeine dosage 
where the simulation environment does not provide such data), and (iii) outputs from other 
moderators.   

This representation supports creating multiple types of moderators.  In Section 4 we 
demonstrate the use of three moderators to explore variability.   

3.4 Summary 
CoJACK is a novel architecture based on a BDI agent architecture that has been modified to 
include timing predictions, stochastic elements, and a theory of cognitive and behavioural 
moderators.  The timing predictions are created by adding time costs to the agent’s internal and 
external actions.  The time of each action are influenced by a set of parameters taken from ACT-
R and modified slightly to correspond to BDI elements (Norling & Ritter, 2004a, 2004b).  So, 
instead of selecting rules to apply, the mechanisms select plans to apply.  Noise parameters thus 
influence the selection of plans instead of rules.   
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CoJACK is supplied with a library of configurable cognitive parameters (Norling & Ritter, 
2004b; Yngling, 2008).  CoJACK includes GUIs for setting parameters and moderators, 
selecting scenarios, specifying data logging and tracing, and for data monitoring and 
visualization.   It will take further work to understand how well this mapping of the parameters 
works, but a preliminary test is provided in the next section.  

CoJACK includes a range of supportable internal (from the agent) and external (from an 
environment) moderators made from these parameters.  These include task appraisal (challenged 
and threatened) and the effects of caffeine.  We have explored other moderators, including fear 
and fatigue.  

SA in CoJACK is moderated by factors influencing attention and working memory.  The 
decay rate of memory and processing speed both have been shown to influence performance 
(Ritter & Bittner, 2008; Ritter, Kase, Bhandarkar, Lewis, & Cohen, 2007). The moderators tested 
so far show that parameters related to decay of working memory have effects on performance, 
and we can expect that the moderators will have an effect on cognition and the aspects of 
cognition related to each level of SA, which are examined in turn.  

Table 1 provides a summary comparison of CoJACK, JACK, and two prominent cognitive 
architectures, Soar (Laird, 2012) and ACT-R (Anderson, 2007).  CoJACK uses components from 
the other architectures, so as the table suggests, CoJACK is not completely different from them.  
CoJACK is attempting to copy how ACT-R generates timing predictions and errors, so this is not 
intended to represent a large difference.  

There are a few places, however, where CoJACK is different.  The table highlights two 
differences.  The first is that CoJACK uses a higher-level knowledge representation.  This is a 
significant difference.  The second is that CoJACK includes moderators explicitly in its core 
functionality.  This can be implemented in ACT-R, but the moderators are not included in ACT-
R’s graphical interface or textual trace.   

Table 1.  Comparison of CoJACK with ACT-R and Soar.  
 CoJACK ACT-R Soar JACK 
Knowledge 
Representation 

Beliefs, Plans 
(BDI) 

Productions Problem Space 
Computational 
Model (PSCM) 
implied in rules 

Beliefs, Plans 
(BDI) 

Programming 
Elements 

Plans, Beliefs, 
Events  

Rules, 
Declarative 
chunks 

Rules Plans, Beliefs, 
Events 

Timing 
Predictions 

Yes Yes Can be created No 

Retrieval errors Commission, 
Omission 

Commission, 
Omission 

Possible None 

Moderators Yes Can be done Not routinely None 
 

4. Results and Discussion 
To demonstrate the CoJACK architecture and the effects of variability, battles were created in 
dTank (v. 4.4 of March 2008), a lightweight SE designed to support projects like this. These 
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battles involved three types of moderated CoJACK agents as well as versions with a range of 
moderated variables.  

4.1 Tank commanders 
The tank platforms are represented separately from their commanders.  As a simplification, the 
commanders manipulate the tanks directly (rather than through crew members).  These 
commanders, then, represented the cognition and internal performance of the tanks. The use of 
multiple models allows for analysis of variability based on the model parameters and 
effectiveness.  

4.1.1 Java, JACK, and default CoJACK commanders 
The Java commander implements the basic dTank tactics, which were taken from the simple 
default knowledge used to create previous tanks (Ritter et al., 2007).  The basic subtasks are 
shown in Figure 3. This knowledge makes the commander capable of moving forward, turning, 
rotating its turret, aiming at a target, and firing.  This strategy relies on a directed form of 
wandering that prevents it from merely rotating in place.  After it spots an enemy, it attacks.  

 
Figure 3.  Default knowledge in the tank commanders.  

This is a simplistic knowledge set.  It includes stochastic elements, which have the potential 
to obscure results.  However, this knowledge set has several advantages.  It is based on 
observations of how people play dTank; it can be implemented in most architectures fairly 
quickly; it is easily understood and has been used in previous work (Ritter et al., 2007).   

The JACK tank commander provides a comparison with a non-cognitive agent. This 
commander is included in the CoJACK v2 distribution. The other commanders use the same 
plans and belief sets.  The default CoJACK tank commander was created using the CoJACK 
architecture (Norling & Ritter, 2004a).  Parameter settings for the CoJACK commander were 
created using the default values of the CoJACK system.  Table 2 shows the parameter values for 
the default CoJACK commander and the moderated commanders.  These parameters in CoJACK 
are based on the corresponding ACT-R parameters and applied to declarative memory elements, 
plans, and instantiated plans.   
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Table 2.  CoJACK commander settings.  
(AR: Adjustment Ratio between default values and moderated values) 

Caffeine Challenged Threatened  
Memory Parameter 

Default  
CoJACK AR Value AR Value AR Value 

Activation noise 0.3 -0.05 0.285 -0.1 0.27 1.0 0.6 
Base level constant 1.0 nc 1.0 0.2 1.2 -0.15 0.85 
Decay rate 0.5 -0.05 0.475 nc 0.5 0.2 0.60 
Default action time (s) 0.05 -0.05 0.0475 -0.1 0.045 0.3 0.065 

 

4.1.2 Moderated CoJACK commanders 
The basic CoJACK commander was modified using static moderator overlays representing the 
effects of Caffeine, a Challenged task appraisal, and a Threatened task appraisal.  The same 
knowledge set was used for each commander type, however, parameter values were manipulated 
dependent upon the agent. The Caffeine agent’s changes to performance were taken from a 
review of caffeine’s effects on cognition prepared for a similar project (Morgan et al., 2006) for a 
fixed, moderate amount of caffeine. The effects of task appraisal for Challenged and Threatened 
agents were similar to and taken from previous work for representing changes from stress to 
ACT-R and applied, broadly defined, to CoJACK (Ritter, Reifers, Klein, & Schoelles, 2007) 
based on task appraisal theory (e.g., Cannon, 1932; Lazarus & Folkman, 1984; Selye, 1976). 
There may be better sets of parameter changes.   

4.2 Battles 
Battles took place on an empty 5 km X 5 km dTank terrain, shown in Figure 4, and consisted of a 
four on four battle of Sherman tanks. Each battle lasted until a side won by destroying all of the 
other tanks (times range was typically 1,000-8,000 simulated seconds).  Ties resulted when the 
last remaining tanks would destroy each other simultaneously.  Forty runs were performed for 
each agent scenario. 

   
Figure 4.  dTank terrain used for testing.   

Two control conditions were used as comparison baselines for CoJACK agents.  These were 
Java tanks versus JACK agents and JACK versus JACK agents.  This created non-varying and 
non-cognitive matched comparisons.  To test for variability effects with the addition of a 
cognitive component, JACK versus default CoJACK battles were conducted. Additionally, the 
moderated CoJACK agents were tested at various ratios of their moderator against JACK agents.  
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4.3 Model comparisons 
There are many types of variables that could be chosen for analysis of the battles listed. We 
chose the number of tanks destroyed because it appeared sensitive to changes and is easy to 
interpret. The paths of agents are also analyzed as they are another way that differences and 
variability can be measured.  

Figure 5 shows the number of JACK tanks destroyed by each modeled agent. The Java 
results are reliably different from all the agents, (p<.05, two-tailed).  CoJACK agents destroyed 
less tanks than JACK2, which is quite acceptable because these agents are supposed to be slower 
and make more errors.  Default CoJACK agents should and do destroy less tanks than CoJACK 
Caffeine agents (p<.05), and destroy less than the CoJACK Challenged agents.  CoJACK 
Threatened agents do not destroy fewer tanks, and it should be lower according to appraisal 
theory.  This effect could be due to the task, where being aggressive is not always better 
(shooting slightly later is slightly more accurate because the target is closer); it could be 
stochastic variation; and it could be that we have not implemented the effects of threatening 
appraisal correctly.  

Overall, these differences show that CoJACK performs differently than an AI agent, and that 
the moderated versions are different from the AI agent and each other.  While the results are not 
final, they are promising.   
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Figure 5.  Basic comparison between agents (N=40).  (Error bars show SEM) 

Figure 6 shows the effects of CoJACK moderator overlays across a range of ratio 
adjustments. The specific parameter values were calculated by applying a weighting to the 
original ratio such that a ratio of 1.0 reflects the changes shown previously in Table 2, a ratio of 
2.0 doubles the adjustment ratio (thus doubling the effects on the agent), and so forth.  Each level 
contains 40 runs versus 4 JACK tanks.   

                                                
2 This effect is only marginally reliable, but with additional runs it is likely to become reliable.  Differences where 
the error bars do not overlap are reliable differences on 1-tailed t-tests at .05.  
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Figure 6.  Effects of CoJACK Moderator Overlays. SEM shown as error bars.  Bars that do 

no overlap are marginally significant to significant (p<.05, two tailed).  
Although the overall performance of each moderator in terms of tanks destroyed is in the 

same general range (shown here from 2.0 to 3.5 tanks destroyed per battle), three distinct 
patterns arise across parameter modifications. As the moderator ratio approaches zero, the tanks 
destroyed value should reach the default CoJACK result (which is about 2.5, shown in Figure 5).  
Here it appears that CoJACK Caffeine and Threatened do just that.  However, CoJACK 
Challenged as it approaches the default CoJACK settings produces a result that appears to be 
greater than that of the default value.  We have checked our moderator settings (which correctly 
approach the default settings) and are investigating this anomaly.  It does show that a useful test 
for moderators is that as they decrease they should approach the architectural default.   

As was hypothesized for caffeine, the default effect (for an optimal amount of caffeine) led to 
better performance.  An inverted U-shaped curve appears to be emerging across the various 
caffeine values.  This may be due to the effect of the parameters.  It could also be due to the task 
having a non-linear response to performance speed.  Additional testing is required to fully 
understand this relationship, but this moderator at least changes performance. 

CoJACK Challenged moderation produces a different pattern. It appears that as the effect of 
the Challenged task appraisal increases between 0.1 and 1.0 a drop off in performance occurs 
followed by consistent performance across the higher levels.  This is somewhat surprising, as the 
parameter changes should represent better processing, yet, the effects are a decrement in 
performance.  This could reflect that caution in this environment lead to better performance.   

CoJACK Threatened moderation should lead to poorer performance. Performance initially 
decreases as the agent is more threatened, and then performance improves. This increase in 
performance for higher levels of the threatened moderator may be caused by changes in 
performance similar to where higher levels of the default action time (which also occur here) 
lead to improved performance because shots are more accurate.   

These moderators touch just a few of the parameters in CoJACK and even fewer of their 
combinations.  Work with ACT-R has suggested that parameters are related, and we know that 
they interact (Ritter et al., 2007).  Moderators in CoJACK will influence performance, and they 
influence a range of mechanisms.  For a single moderator, it might not influence all the 
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mechanisms and thus might have a limited or more limited effect on SA.  In particular, 
moderators that affect motor performance are more likely to have little direct effect on SA.  

We did not combine these moderators as we do not have intuitions let alone data for testing 
the combination.  We would, however, predict that caffeine would lead to a less threatening 
appraisal because many studies report that caffeine leads to greatly improved measures of self-
reported alertness (Morgan et al., 2006).   

Figure 7 shows another way to understand variability, single run traces of each tank by each 
CoJACK agent.  Path patterns vary across agent types.  Anecdotally, CoJACK (the default and 
the moderated versions) generally has a wider and less consistent set of movement patterns than 
the corresponding JACK agents.  The default CoJACK agent appears to have the greatest 
variability within and between tank paths while CoJACK Caffeine has the smallest spread and 
variability within tanks.  Caffeine tanks appear to choose the same general direction and pattern 
as each other.  CoJACK Threatened is generally like the CoJACK Caffeine agents, however, 
there is greater variability within the tank paths.  CoJACK Challenged shows greater spread and 
variability between tanks.   

This type of analysis is yet another way to demonstrate how differences and variability can 
be measured within and across moderator overlays.  It is only preliminary, but it suggests that 
there are interesting differences that arise as part of variability.  

 
(a) Default CoJACK   (b) Caffeine CoJACK 

 
(c) Challenged CoJACK   (d) Threatened CoJACK 

Figure 7.  Example traces of tank paths for CoJACK agents (in red) versus JACK (in blue).   

5. Conclusions 
We have introduced a novel cognitive architecture based on BDI agents.  CoJACK adds a set of 
constraints to the JACK agent architecture to provide predictions of time, errors, and the effects 
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of moderators while retaining the high level representation of a BDI architecture.  The result is a 
cognitive architecture with usability provided by an existing high-level language, as well as 
GUIs and support materials for setup, data monitoring, recording and analysis of the cognitive 
architecture mechanisms that have been added. We included an explicit, traceable representation 
of agent SA, initially based on Endsley’s (1995) representation of levels of situation awareness. 

The resulting approach of modified agent mechanisms provides a generic technique for 
representing individual differences and the influence of internal and external moderators of 
cognition, and the effect of variation in that state on behavior.  The resulting behavior can be 
extended to be empirically-based (e.g., on caffeine and task appraisal studies) or used to explore 
difficult to validate effects, such as fear and group cohesion, applied to create agents in SEs, or a 
combination of these.  

We have used CoJACK in other tasks.  We have used CoJACK to explore the effect of rules 
of engagement (ROE) on performance (Evertsz, Ritter, Russell, & Shepherdson, 2007).  There, 
we found that applying ROEs slow down behavior and would be influenced by factors that 
influence cognition.  We have also used CoJACK in a demonstration at the Combined Arms 
Tactical Trainer at Warminster, UK showing how different task appraisals would lead to 
different behavior in a tank squadron ambush scenario.  And, we have used CoJACK to model 
how fear and morale vary and lead to action and inaction in an improvised explosive device 
scenario (Evertsz, Pedrotti, Busetta, Acar, & Ritter, 2009).   

5.1  Implications for modeling variability 
The development of CoJACK so far has shown that including variability in an architecture is not 
just having it behave randomly.  We started to add more realistic variability by modifying the 
information processing mechanisms in the agent and adding noise to how declarative knowledge 
was retrieved and which procedural knowledge was applied.  Further work is needed to include a 
wider range of knowledge in the agent so that the effects of these choices are larger.  We have 
seen how reasonable variability appears to include variability in choice between reasonable 
strategies, variation in pace of decisions and accuracy of choice, and how these lead to variations 
in physical paths.   

Figure 8 shows a relationship we can hypothesize between variation and performance in a 
competitive environment.  With low variability, behavior is predictable.  As long as the opponent 
does not learn enough, then low variability may lead to good performance.  When the opponent 
learns, such as users of SEs in training situations, then the opponent knows what will happen and 
counteracts that behavior.  With increased variability, an agent becomes more difficult to predict, 
and we can hypothesize that there is an amount of variability that is optimal.  Above that amount, 
variability reduces your ability to carry out your own tasks and also makes it difficult to 
coordinate behavior across teams. 
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Figure 8.  An inverted U-shaped curve of variability in behavior and performance.   

This curve of variability versus performance seems to have been little studied in current 
competitive environments.  This might be for two reasons.  One reason is that very few agents in 
SEs learn, so variability is neither rewarded nor required.  The other reason is that teamwork in 
agent teams has probably mostly existed through set performances and cannot easily vary.  Thus, 
it is difficult to include variability in this type of teamwork, so variability has been discouraged.  
This hypothesized relationship lays the theoretical groundwork for the study of variability, which 
we only started to explore in this paper.  

Opposing agents will need learning to be able to recognize and take advantage of the lack of 
variability.  Otherwise, they can always be surprised by what they see.  So, an implication of this 
is not that only that training against a fixed agent leads to gaming by the learner, where they 
know what the agent will do, the lack of learning in the opponent will also lead to the learner 
producing a fixed response, and performing predictably.  While this result is useful in early 
training, it is less useful at higher levels of expertise.   

5.2  Implications for moderated architectures 
CoJACK provides several lessons for developing cognitive architectures.  First, it suggests that a 
way forward for creating easy to use cognitive architectures is to modify existing agent 
architectures to create cognitive architectures.  Our example, CoJACK, appears to be a more 
useful architecture, but one that needs to be tested further.  These architectures may be 
particularly useful in simulations where only static or predictable agents were used before.   

The example runs provide lessons for testing cognitive architectures.  The first lesson is that 
architectures with stochastic elements will need to run their models multiple times (Ritter, 
Schoelles, Quigley, & Klein, 2011), which we have done.  The second lesson is that the 
parameter settings will need to be explored before the architecture is deployed.  Work exploring 
parameter spaces (Gluck, 2008; Kase, 2008; Kase, Ritter, & Schoelles, 2008; Ritter, 1991) 
suggests that the range of parameters that modelers use, and the way that they find these 
parameters, might not be finding the right parameters.  Thus, the developers for CoJACK and 
similar architectures will want to explore their architecture’s parameter spaces.  
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