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ABSTRACT: Automation is a necessity in modern society. People sometimes are inclined to trust automation too 
much. On the other hand, they sometimes tend to not be willing to use automation. To prevent these mistakes, this 
study explores factors of reaching an appropriate reliance on automation systems by using cognitive modeling. We 
have conducted psychological experiments on this problem using a simple line-tracing (driving) task where the 
participants had to track the line with a circle by pressing the arrow key on the keyboard (manual control) or rely on 
automation (auto control). They could switch between auto and manual control during the task. The success 
probabilities of each control mode were systematically varied. The ACT-R model that simulates these experiments was 
constructed by representing the reliance on the automation as utilities of rules. The model performs this task by firing 
rules that manage the perceptual/motor modules. The perceptual module finds and attends to the vehicle and the road 
on the screen, and the motor module press the keys depending on the current controlling modes or the current 
positional relation between the vehicle and the road. The utilities of these rules are updated based on the rewards in 
every screen update. This utility module is also compatible to a previous computational model of automation reliance. 
A preliminary run of this model simulated several qualitative features of the behavioral data.  The ways it does not fit 
suggest that the model should be more sophisticated in its representation of space and process. 
 
 
1. Introduction 
 
Automation systems are becoming increasingly 
necessary in almost all of human societies. Many 
people unconsciously use these in everyday life. Most 
email clients have a function that automatically sorts 
messages into folders by sender or topics. Some recent 
e-mail software also has automatic spam filters, which 
sometimes cause serious communication trouble. We 
can use Google maps or similar kinds of route-planning 
systems, which automate reading a map or checks 
transportation schedules. Many parts of driving 
behavior are also becoming automated. Drivers can 
now use an automatic transmission, automated cruise 
control, anti-lock braking systems, and even parking 

systems. These automation systems save time and help 
us lead more efficient lives. 
 
Automation system, however, cannot replace human 
cognition in tasks completely. Bainbridge (1983) 
claimed that even highly automated systems need 
human operators to monitor system performance and to 
make decisions on system use. Some researchers have 
also pointed out that human decision-making on system 
use is not optimal. Parasuraman and Riley (1997) 
stated that there are two types of maladaptive use of 
automation: misuse, the overreliance of automation, 
and disuse, the underutilization of automation. Some 
studies indicated that human users have automation 
bias towards misuse of automation systems (Bahner, 
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Huper, & Manzey, 2008; Singh, Molloy, & 
Parasuraman, 1997; Skita, Moiser, & Burdick, 2000). 
On the other hand, other research indicated that human 
users have a manual bias, bias towards disuse of 
automation systems  (Beck, Dzindolet, & Pierce, 2007; 
Beck, McKinney, Dzindolet, & Pierce, 2009; Dzindolet, 
Peterson, Pomranky, Pierce, & Beck, 2003; Dzindolet, 
Pierce, Beck, & Dawe, 2002). 
 
de Vries, Midden, and Bouwhuis, (2003) 
experimentally revealed that the reliance of automation 
use is influenced by both the Capability of Manual 
control (Cm) and the Capability of Auto controls (Ca). 
To explain effects of Ca and Cm on reliance of 
automation, Gao and Lee (2006) proposed the 
Extended Decision Field Theory (EDFT model), which 
extends psychological decision-making theory 
(Busemeyer & Townsend, 1993), including the effect 
of previous decisions in the context of multiple 
sequential decision processes.  
 
Figure 1 shows the basic process of the EDFT model. 
The model is given Ca and Cm values. The model 
constructs belief of Ca and Cm (Bca, Bcm) based on 
partially displayed Ca and Cm values. From the belief 
values, the model constructs trust (T) and self-
confidence (SC). Preference of automation (P) is 
determined by subtracting T from SC. If P exceeds an 
upper threshold (!), then the model turns the current 
control mode to auto. If P falls below a lower threshold 
(-!), then the model turns the current control mode to 
manual. In every cycle, values of Bca, Bcm, T, and SC 
are updated by differential equations.  
 

 
Figure 1: The process of Extended Decision Field 

Theory (Gao & Lee, 2006), modified and reproduced 
from the original figure. 

 
The EDFT model is an abstract mathematical model 
that clearly explains the reliance on automation in 
dynamic situations. The strength of this model is its 
generality. It can apply to a wide range of situations 
involving automations. This model, however, does not 
have any knowledge about tasks. It cannot interact with 
a task environment, and it provides no prediction of 
human performance.   
 

The present study constructs a cognitive process model 
that interacts with a specific task environment where 
sequential decision-making is made. To construct the 
model, we use ACT-R (Adaptive Control of Thought-
Rational: Anderson, 2007), which is a unified theory of 
cognition combining several independent modules: a 
goal module, a production module, a declarative 
module, perceptual modules, and a motor module. A 
goal module holds the current task goal and other task 
related information. A production module and a 
declarative module hold procedural and declarative 
knowledge, respectively. Perceptual modules include a 
vision and an audio module, which take information 
from an external environment. A motor module 
manipulates devices like a keyboard or a mouse in an 
external environment. Modules other than the 
production module have buffers to hold information, 
called a chunk, temporary. A production module 
integrates the other modules by production rules, which 
consists of a condition / action pair that is used in 
sequence with other productions to perform a task. 
Conditions and actions in production rules are specified 
with buffer contents of each module.  
 
ACT-R also includes sub-symbolic cognitive processes. 
If several rules match to buffer conditions, conflict 
resolution of production rules is made based on utility 
values assigned to production rules. The learning of 
utility is controlled by the following equation: 
 

 
 
! is the learning rate set by a parameter; Ri(n) is the 
reward value given to production i at time n; Ui(0) is 
set by a parameter. The learning occurs when a reward 
is triggered, and all productions that have fired since 
the last reward are updated. This learning is essentially 
same as the process presented in the EDFT model 
using a basic reinforcement learning method.  
 
So far, ACT-R has been used to model many fields of 
human-machine interaction including driving 
(Saluvucci, 2006), teleoperation (Ritter, Kukureja, & St. 
Amant, 2007), water flow control (Lebiere, Gonzalez, 
& Warwick, 2009), and airplane classification tasks 
(Taatgen, 2005). The utility update learning of this 
architecture also has applied to strategy selection 
(Lovett & Anderson, 1996). Therefore, we consider 
that this architecture is suitable to construct a model of 
human-automation interaction. Through this modeling, 
we try to find behavioral constraints in the model of 
automation use and include this topic in a unified 
theory of cognition.  
 
2. The Task 
 
To manipulate auto and manual performance in a 
dynamic situation, and to understand how users change 

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-022

147



to use automation, we developed a simple tracking task, 
similar to driving. We call this task the line-tracing 
task. This environment was developed in Java. Figure 2 
shows the screen shot of the task environment.  

 

 
 

Figure 2: Screenshot of the line-tracing task. The green 
line and the blue dots are not visible in the experiments. 
 
This task requires participants to control the horizontal 
position of the vehicle (red circle) to follow the black 
line that scrolls down at 24 pixels per second. The 
screen is updated every 40 ms. If the vehicle is not on 
the line, a warning is presented outside of the window. 
The line is drawn by randomly combining 48 pixels 
height line patterns of varied angles (30, 45, 90, 135, 
and 150 degrees).  
 
The vehicle is controlled by commands of “left”, 
“straight” or “right”. For example, if the vehicle 
receives a left command, the vehicle moves 1 pixel left 
from the original position.  The command is sampled at 
48 Hz.  Therefore, maximally, the vehicle can move 2 
pixels per one pixel scroll of the line. 
 
A participant can chose manual or auto controls to send 
commands. In the manual control, participants use left 
and right arrow keys to send commands. If a 
participant’s finger is put on a right arrow key, the 
vehicle keeps receiving a right command at every 20 
ms until this key is released1. In the auto control, 
participants monitor that the auto control moves the 
vehicle. The auto control tries to follow an optimal line 
presented as the green line in Figure 2. An optimal line 
is the shortest line to pass “goals” located on each 
corner. Figure 2 shows goals as blue dots. If the center 
of the vehicle is off the optimal line, the auto control 
system sends a command to correct the vehicle position. 
The command rate of the auto control is same as that of 

                                                             
1 This command rate is not influenced by a key-repeat 
rate setting in OS. The environment monitors a key 
event. If a key-press event is detected, a flag of sending 
commands is on. This flag is off when a key-release 
event is detected. 

the manual control (50 Hz). In our experiment 
presented in the next section, the optimal line and goals 
are not visible to participants. 
 
In both control modes, commands are not always 
successfully sent to the vehicle. Failures occur in a 
stochastically defined variable rate. In this study, we 
define Ca and Cm as such success rates. For example, 
when Ca or Cm is set at 50%, half of commands are 
dropped. Therefore, the vehicle controlled by the 
corresponding mode is lagged, and it becomes hard to 
follow the sharply angled line. To conduct the task 
successfully, participants need to select a suitable mode 
in each situation.  The participants freely change two 
controls by pressing the spacebar during the task. 
 
3. Experiments 
 
Before describing the model, we summarize here two 
experiments that examined the use of automation in 
this task (further details are reported in Maehigashi et. 
al., in press).  
 
In experiment 1, the baseline performance of the 
manual and the auto controls were examined. The 
participants (n = 65) were required to control the 
vehicle only with the manual control mode. There were 
five conditions where Cm values were manipulated 
from 30% to 70%. Every participant conducted the task 
in all of the five conditions. The order of conditions 
was randomized. Each condition lasted 40 seconds. 
The performance of the experiment was compared to 
the auto-mode performance measured in the 
corresponding Ca conditions. The results confirmed 
that the manual performance is lower than the auto 
performance in each condition. 
 
Experiment 2 examined the ratio of automation use 
during the task. The participants (n = 35) conducted the 
task with the auto and manual control modes. They 
could freely change the mode during the task. 
Combining five levels of Ca and Cm values, 25 
experimental conditions were prepared. Every 
participant conducted the task in all of 25 conditions. 
As in experiment 1, each condition lasted 40 seconds. 
The results of experiment 2 indicate that participants 
could adaptively select a suitable mode in a given 
situation. 
 
4. Model 
 
4.1. Simulated task environment 
 
We used the ACT-R 6 architecture (Anderson, 2007) to 
develop a model simulating the above two experiments. 
Our model interacts with a simulated task environment 
developed in the ACT-R graphical user interface that is 
the standard device of the ACT-R 6. The simulated 
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environment is same as the original environment in the 
screen update rates (24 Hz), the line scrolling speed (24 
pixels per sec), the vehicle size (24 pixels), the line 
width (5 pixels), and the screen size (480 pixels x 640 
pixels). The auto control mode is also implemented 
with Common Lisp in the simulated task environment. 
 
There are, however, some differences from the original 
environment. First, the simulated environment provides 
a perceptual cue to a lead optimal line.  Visible goal 
positions are set at each corner to allow the model to 
directly perceive the optimal line. Second, the manual 
controls are slightly modified. The keys used in the 
manual control mode are changed from left and right 
arrow keys to “f” and “j” keys, which are located in a 
keyboard’s home positions. In addition, the relation 
between command sending and key manipulation was 
changed. Unlike the original environment, the vehicle 
keeps receiving move-commands until other keys are 
pressed in the simulated environment. This change is 
because ACT-R 6 does not include a key-release 
function. Basic finger-movement is, however, the same 
as the original task. 
 
4.2. Process of the model 
 
In this study, the model is constructed by using the 
production, goal, vision, and the motor modules of 
ACT-R 6. The model has eleven production rules. 
These rules consist a basic perception-action cycle. 
Figure 3 indicates this cycle, presenting the rules in 
boxes. The cycle consists of a perceptual and motor 
process similar to previous driving models in ACT-R 
(Salvucci, 2006, Ritter, Kukreja, & St. Amant, 2007).  
 
The top part of Figure 3 shows the perceptual process. 
In the perceptual process, the model picks visual 
information from a visual location buffer that holds 
location information of objects in the environment. 
FindVehicle finds the horizontal position of the vehicle 
in the visual location buffer, and places it into the goal 
buffer. FindGoal finds the horizontal position of the 
nearest goal position in the visual location buffer, and 
placed it into the goal buffer.  
 

 
Figure 3: The basic cycle of the model. 

 
The bottom part of Figure 3 shows the rules relating to 
the motor process. All of these rules clear the vehicle 
and the goal position in the goal buffer to begin the 

next cycle. The motor process is different between the 
manual control mode and auto control mode. In each 
mode, there is a rule to switch the current mode 
(ToAuto / ToManual). These mode-switching rules 
send a command to press a spacebar to the motor 
module, and compete with other rules in each condition. 
In the auto mode, ToManual conflicts with KeepA that 
just clears a goal buffer. In the manual mode, ToAuto 
competes with KeepM, ToLeft, ToRight, LtoS, and RtoS. 
These five rules have different conditions specifying 
the vehicle and the goal positions, and current move-
commands (left, right, straight). The action clauses of 
ToLeft, ToRight, LtoS, RtoS send a command to press a 
key to a motor module. There are no action clauses 
relating motor module in KeepM. This rule just clears 
the goal buffer. 
 
Figure 4 presents a time flow diagram showing the 
relations between the screen updates of the 
environment and the model cycles. The environment 
regularly updates the screen every 40 ms. Individual 
rule firings take 50 ms, but the cycle of the model is 
not regulated. There are delays in visual and motor 
processes. The process of the visual location module 
itself has no delay. However, to encode the location 
into the goal buffer, the perceptual process is required. 
As a result, encoding the locations delays 100 ms from 
the actual environment. The delay of the motor control 
is larger than that of the perceptual module. The ACT-
R motor module needs preparation and execution time, 
which depends on the status of the motor module. As a 
result, these delays disadvantage manual control 
compared to automatic control. 
 

 
Figure 4: Time flow. 

 
4.3. Learning and mode switching 
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The model adaptively learns to use a suitable mode in a 
given situation. We used the default reinforcement-
learning algorithm in ACT-R 6 presented in section 1. 
The model receives rewards in every screen update. 
When the vehicle is off the line, rules used in the 
previous screen receive negative rewards (Ri (n) = 0). 
Otherwise, rules used in the previous screen receive 
positive rewards (Ri (n) = 10). This trigger corresponds 
to the warning in the actual task (Figure 2).  
 
In the following simulations, the default learning rate is 
used (!  = .2). The initial utility values of the mode 
switching rules (UToAuto and UToManual ) are set to 5, and 
the initial utility values of other rules are set to 10. This 
initial setting corresponds the cost of mode switching. 
The initial utility values will not change unless the 
vehicle moves off the line because positive rewards 
and the initial values of utility are the same. 
 
In ACT-R, strategy selection is often modeled by 
conflict resolutions based on utility values of rules 
(Lovett & Anderson, 1996). However, our task has 
differences from tasks used in the previous studies. As 
Figure 4 indicates the motor actions have delays. There 
are time-gaps between rule firing and manual control 
execution. These gaps make rewarding difficult 
because the next cycle begins before motor action 
completes. In addition, the structures of conflict are not 
the same between the manual and the auto control 
modes. ToAuto conflicts with five rules in the manual 
mode. On the other hand, ToManual conflicts with 
only KeepM in the auto mode. 
 

Table 1:  Production rule of ToAuto. 
(p to.auto 
   =goal> 
     isa      move-vehicle      
     - vehicle-loc nil 
     - goal-loc nil 
     - previous-rule press-space-m 
     - previous-rule press-space-a 
     current-mode  "M" 
    !eval! (<= *self-conf* *trust*)  
   ==> 
   =goal> 
     vehicle-loc nil 
     goal-loc nil 
     current-mode  nil 
     previous-rule press-space-a 
   +visual-location> 
     isa      visual-location 
     color    red 
    +manual>               
     isa      press-key      
     key      space ) 
 
To solve this problem, we added meta-level decision 
making into the standard conflict resolution. In the 
usual conflict resolution, ToAuto can fire when its 
utility value exceeds a utility value of a competing rule. 

In our model, ToAuto and ToManual have an !eval! 
condition that explicitly compares utility values of 
KeepA and KeepM (Table 1).2 These values are stored 
in global variables referred as *trust* and *self-conf*. 
The Lisp function outside of the ACT-R model 
monitors the utility values of KeepA and KeepM, and 
sets these into the global variables in every screen 
update. ToManual fires only when *self-conf* exceeds 
*trust*, and the utility values of ToManual exceeds that 
of KeepA. Similary, ToAuto fires only when *trust* 
exceeds *self-conf*, and the utility values of ToAutol 
exceeds that of the competing production rule. 
 

 
Figure 5. Performance of the model and the data in the 

baseline simulation. Error bars represent standard 
error of means (SEM). 

 
 
5. Simulations 
 
In this paper, we present two simulation experiments 
that aim to simulate the experiments presented in the 
section 3.  
 
5.1. Baseline simulation 
 
First, we conducted a simulation of experiment 1 to 
confirm the correspondence of base performance of the 
auto and manual modes.  
 
5.1.1. Method 
 
In experiment 1, the participants could not use the auto 
control mode (Data-Manual: n = 65).  Similarly, we run 
the model with the initial control mode as the manual, 
and removed ToAuto from the model (Model-Manual: 
n = 100). We also compared baseline auto performance 
between the original environment  (Java-Auto: n = 65) 
and the simulated environment (CL-Auto: n = 100).  
 
5.1.2. Results 
 
Figure 5 indicates the performances of the four 
conditions in each Ca/Cm level, showing the ratio of 

                                                             
2 The !eval! condition is provided to allow the modeler 
to add any arbitrary conditions to a production rule. 
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time that the vehicle is on the line. From this figure, it 
can be observed that the performance of the all four 
lines increases with higher Ca / Cm levels, consisting 
with the manipulations of capability.  In addition, we 
can confirm that the auto controls are better than the 
manual controls in both the experiment data and the 
simulation. This result indicates the manual 
disadvantages in this task. Although the performance 
of model is relatively lower than that of the data, the 
correlations between the experiment and the simulation 
are high [Auto: r2 = .994, p < .01. Manual: r2 = .996, 
p < .01].   
 
5.2. Simulation with two modes 
 
This simulation is conducted to simulate experiment 2, 
which specify the automation use ratio.  
 
5.2.1. Method 
 
In experiment 2, the participant (n = 23) could use the 
auto control mode. They conducted the task in 25 
conditions where Ca and Cm levels were manipulated  
(5 levels of Ca ranging from 30% to 70% vs. 5 levels 
of Cm ranging from 30% to 70%). Similarly, the model 
conducted the task choosing two modes of control in 
the 25 conditions (n = 50). In each condition, the model 
conducted the task for 40 seconds. The initial mode 
was randomly set in this simulation. 
 
5.2.2. Results 
 

Figure 6 presents the performance (on line ratio) of the 
model and the experimental data. Each of the five 
graphs indicates the performance in each Cm level, and 
the horizontal axis of the each graph indicates Ca levels. 
The figure indicates an increase of the performance of 
the model and the experiment data with higher Ca and 
Cm levels.  The correlations of the model and the data 
are high [r2 = .953, p < .01] although some differences 
between the model and the data can be observed. For 
example, the model is lower than the data in 
combination of the low Cm and the high Ca levels (e.g., 
Cm = 30 / Ca = 70). Similarly, the performance of the 
model fell below that of the data in combination of the 
high Cm and the low Ca level (e.g., Cm = 70 / Ca = 30). 
These differences suggest some difference in 
automation use between the model and the data. 
 
Figure 7 indicates the auto use ratio in each Ca and Cm 
level, which represents how long the auto mode is used 
during the task. Comparison of the five graphs reveals 
decreases of auto use ratio with increases of the Cm 
level. We can also see an increase of the auto use ratio 
with increases of the Cm level from each graph. The 
model shares these tendencies with the data, and we 
obtained a significant correlation between the data and 
the model [r2 = .718, p < .01]. These results suggest 
that the adaptive learning on the mode selection was 
made in both the experiment and the simulation. The 
model is, however, less adaptive compared to the data. 
The auto use ratio of the model is lower in the low Cm 
levels such as Cm = 30, and the model’s lines is flatter 
than the data’s line in Cm = 50.  

Figure 6. Performance of the simulation 2. Error bars represent standard error of means (SEM). 

Figure 7. Auto use ratio of the simulation 2. Error bars represent standard error of means (SEM). 
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6. Implications and Future work 
 
The results of the simulations show overall 
correspondence with the experimental data, suggesting 
some validity of the assumptions made in our model. 
This study presents an ACT-R model that simulates 
human-automation interaction. We consider that this 
study is characterized as the connection of the 
cognitive process model (ACT-R) to an abstract model 
(EDFT). Utility update equation of ACT-R is almost 
same to Belief and Trust update equation used in the 
EDFT model. Unlike the previous model, our model 
has knowledge to execute a task and simulates 
performing the task.  
 
Figure 8 summarizes the process of our model 
comparing the EDFT model presented in Figure 1.  As 
the figure indicates, our model does not receive Ca/Cm 
directly. Randomized course conditions influence the 
performance (success / failure) of the task. Moreover, 
complex perceptual / motor factors are involved in the 
manual mode performance. As Bainbridge (1983) 
implied, to understand decision-making about the use 
of automation one needs to consider monitoring the 
auto and manual performance. This study is a first step 
to include performance factors into a modeling use of 
automation. We believe that our approach is useful to 
understand human-automation interaction because the 
performance and the auto use ratio usually interact with 
each other in many situations involving automation. 
 

 
Figure 8: Correspondence with the EDFT model. 

 
Our model is also different from previous models of 
strategy selection in ACT-R. Unlike the previous 
studies, our task requires and uses a complex 
perceptual / motor process. In such a situation, 
rewarding behavior is not easy problem. We introduced 
a function to monitor self-confidence and trust to solve 
this problem. We consider that the condition 
comparing utility values represents a type of meta-
cognitive decision-making. Our model suggests the 
default sub-symbolic computation is not enough for 
explaining the use of this automation. 
 

However, using an !eval! condition is not supported by 
ACT-R theory. ACT-R is designed as a unified 
cognitive theory that combines sub models from 
various fields (Anderson, 2007). It is difficult to 
combine sub models using !eval! conditions. Therefore, 
we need to consider other methods of modeling this 
mechanism, which can contribute the development of a 
unified theory of cognition, particularly meta- 
cognition. 
 
In this study, there are several other limitations as a 
model of automation reliance. First, as shown in Figure 
7, the human participants made better choice in each 
experimental condition compared to the model. This 
result indicates the need to explore more adaptive 
learning mechanisms to simulate and predict human-
automation interaction. Second, this paper did not show 
detailed analysis concerning automation use. To 
confirm validity of the model, we need to examine  
matching of the model and the data in frequency and 
timing of mode switching during the task. Third, the 
simulation presented in this paper did not directly 
address the problem of misuse and disuse biases 
discussed in section 1. To address this problem, we 
need to develop a transformation technique of the auto 
use ratio to adjust a manual disadvantage of our task, 
and to obtain an optimal auto use ratio. Maehigashi et 
al. (in press) conducted a transformation of human auto 
use ratio using a non-linear regression technique. Our 
future study will apply this method to our model data.  
Finally, there is a limitation concerning a task setting. 
The task used in this study is relatively simple and 
artificial. Connecting to more complex tasks is required 
to extend our model to more realistic situaion. The 
factors involved in automation use are broad. In the 
future study, we explore other factors of automation 
use such as cognitive load, emotion, mental model, and 
individual differences. 
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