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Abstract 
A fine-grained analysis of errors and their frequency during the 
performance of a mental multi-digit serial subtraction task 
reveals the cognitive processes most prone to failure. Example 
serial subtraction problems from the experimental problem set 
are utilized in illustrating different types of errors and their 
probable causes. A list of considerations is presented for future 
descriptive and computational modeling of the errors 
committed during performance of the task.  
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Introduction 
Mental multi-digit serial subtraction under time pressure, 
performed and evaluated in front of an audience, can easily 
overwhelm the working memory resources of human 
subjects. A fine-grained analysis of the human performance 
produced several categories of errors: subtracting a value 
more than the subtrahend, subtracting a value less then the 
subtrahend, and adding instead of subtracting. These error 
types were decomposed by probable causes—combinations of 
retrieval and procedural failures. Dissection of example serial 
subtraction problems associated with the error types revealed 
the cognitive processes in the solution process prone to 
failure. Lessons learned from this detailed level of error 
analysis can inform the construction of descriptive and 
computational cognitive models of serial subtraction.  

Serial Subtraction 
Serial subtraction is the mental arithmetic stressor portion of 
the Trier Social Stressor Test (TSST, Kirschbaum, Pirke & 
Hellhammer, 1993). The TSST has been used to provide an 
acute physiological stress response in human subjects in 
100’s of studies since the 1960’s. The serial subtraction task 
consists of four 4-minute blocks of mentally subtracting by 7 
and 13 from 4-digit starting numbers. Figure 1 illustrates the 
serial subtraction task with the four starting numbers for each 
subtraction block shaded in gray. The task is performed 
mentally with no visual or paper clues. An experimenter gives 
the subject the starting number; from then on, the subject 
speaks the answer to each subtraction problem. 

Before the task begins, the experimenter explains that the 
subject’s performance is going to be voice recorded and 
reviewed by a panel of psychologists. Subjects sit in a chair 
directly in front and near the experimenter who is holding a 
time keeping device and clipboard of the correct subtraction 

answers that she checks off as the subject performs the task. 
Immediately before the task begins the experimenter 
emphasizes that the task should be preformed as quickly and 
as accurately as possible. The subjects’ subtraction answers 
are scored against the list of correct answers from the starting 
number. For each subject the number of subtraction problem 
attempts are recorded and a percentage correct score is 
calculated by dividing the total number of correct attempts by 
the total number of attempts for each block of the serial 
subtraction. 
 
 

 
 

Figure 1: An illustration of the four blocks of the serial 
subtraction task as in the experiment; subjects perform the 

task mentally without paper or visual cues.  
 

Human Performance 
In this study the serial subtraction performance data from 15 
subjects (age range, 18-30) in the control group were 
analyzed at two levels: as a group and individually (Kase, 
2008). The statistics of primary interest were number of 
attempts and percentage correct for each block of serial 
subtraction. Additionally, the audio recordings of each 
subject were transcribed to obtain data on subtraction pace 
and detailed information about errors. Table 1 shows the 
subtraction rates averaged across subjects’ performance on 
the two 4-minute blocks of subtracting by 7, and Table 2 for 
subtracting by 13. The large standard deviations indicate that 
there is a wide range of performance on this task.  

In Tables 1 and 2 number of errors are represented as 
number of incorrect attempts. Subjects sometimes answered a 
particular subtraction problem incorrectly more than once. In 
this case each of these incorrect attempts was counted as an 
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error even though the incorrect attempts were associated with 
the same subtraction problem. The next section describes the 
serial subtraction solution process in general, as well as, 
working memory’s role in mathematical processing. 
 

Table 1: Human subject (N=15) mean performance and 
standard deviation for serial subtraction on the two 4-minute 

blocks of subtracting by 7. 
 

 7s – 1st block 7s – 2nd block 

Number of Attempts 47.3 (15.2) 56.9 (21.7) 

Percent Correct 82.0 (10.0) 88.0 (7.0) 

Number of Errors 7.1 (2.2) 5.7 (2.5) 
 

Table 2: Human subject (N=15) mean performance and 
standard deviation for serial subtraction on the two 4-minute 

blocks of subtracting by 13. 
 

 13s – 1st block 13s – 2nd block 

Number of Attempts 41.9 (16.0) 47.8 (19.2) 

Percent Correct 82.0 (12.0) 84.0 (10.0) 

Number of Errors 6.0 (2.6) 6.3 (3.0) 

Solving the Problem 
Fluent performance on complex cognitive tasks, such as the 
serial subtraction task, relies on the ability to coordinate and 
integrate stored information with ongoing processes. This 
requires efficient organization and maintenance of 
intermediate results that can be accessed for use at the 
appropriate time. For example, to solve the problem 5964 – 7 
requires the subject to mentally retain both operands in 
memory while processing the following steps. Compare the 
units-column minuend (4) with the subtrahend (7) to 
determine if a borrow operation is required; if so, decrement 
the tens-column minuend by one (i.e., from 6 to 5) and retain 
this decremented value in memory while performing the 
units-column operations. The units-column operations 
involve encoding the values, performing an addition by 
adding 10 to the units-column minuend (i.e., 4 + 10 = 14) 
calculating the units-column difference (i.e., 14 – 7 = 7); and 
then retaining this partial solution in memory. The final 
answer is re-constructed from the thousands- and hundreds-
column values retained from the original minuend (i.e., 59) 
concatenated with the two previous partial solutions, the 
decremented value of the tens-column (i.e., 5), and units-
column solution (i.e., 7). 

For this investigation we adopt the view that mathematical 
cognition involves working memory—referenced as 
"memory" in the previous example. Working memory is 
generally defined as the preservation of information while 
simultaneously processing the same or other information 
(Salthouse & Babcock, 1991). An important concept of 
working memory is that working memory capacity is limited 
(Baddeley, 1986). Researchers have emphasized the 
importance of working memory for understanding 
mathematical processing (Ashcraft & Kirk, 2001; DeStefano 

& LeFevre, 2004). When a cognitive task places extreme 
demands on working memory, accuracy and processing speed 
may decrease (Ashcraft, 1992). The errors subjects make 
while performing complex arithmetic, such as serial 
subtraction, are critical evidence about the underlying 
cognitive processes required to perform the task. The errors 
committed by the subjects during their performance of the 
serial subtraction task are discussed next. 

Frequency of Errors 
A novel approach is utilized in the categorization of the 
errors. The subjects are attempting to subtract by 7 or 13. 
When subjects give an incorrect answer we categorize the 
error as to mathematical operator (– or +) and subtrahend 
value that would have produced the erroneous answer. 
Table 3 shows two example problems with their error 
categorization. The first column shows a serial subtraction 
problem. The second column contains a subject’s incorrect 
answer to the problem. The third column describes the error 
category, for example, “subtraction by 17 error”; because the 
incorrect answer would be produced by subtracting 17 from 
the minuend (9039). It is important to remember that this is a 
method to categorize and discuss particular types of errors 
associated with serial subtraction, and does not mean that the 
subject intended to subtract by 17 instead of 7. Likewise, the 
second row in Table 3 describes the error category “addition 
by 3 error” where the incorrect answer would be produced by 
adding 3 to the minuend (9046). 
 

Table 3: Method of error categorization. 
 

Problem Subject 
Attempts to Solve 

Subject’s incorrect 
answer Error Category 

9039 – 7 9022 Subtraction by 17 Error 
9039 – 17 = 9022 

9046 – 7 9049 Addition by 3 Error 
9046 + 3 = 9049 

 

 
Using the above error categorization, frequencies of errors 

by the subjects when subtracting by 7 and 13 are broken 
down in Tables 4 and 5. Table 4 lists the errors and 
frequencies when subjects subtracted by 7. The table is 
divided into three main sections. The center section lists 
summary frequencies. When subtracting by 7 for two 4-
minute blocks the subjects made a total of 1511 subtraction 
attempts, 1346 correct responses, and 165 errors. The error 
percentage is 10.9% with 56 of the errors categorized as 
additions (see second example, Table 3), and 107 of the errors 
categorized as subtractions other than by 7 (see first example, 
Table 3). Two errors occurred when the minuend of a 
subtraction problem was given as the answer. The leftmost 
section of Table 4 categorizes errors of subtraction that are 
more than 7. Errors with a frequency greater than 3 are listed 
individually; remaining errors with lower frequency are 
grouped under Other. For example, on the left side of Table 4 
under the Value Subtracted column, the value –17 is listed 
with a frequency of 7 and 0.5%. This means that the 
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subtraction by 17 error occurred 7 times which is 0.5% of the 
total errors. The rightmost section of Table 4 lists subtraction 
errors that are less than 7, and addition errors, both with 
frequencies greater than 3. For example, the first value in the 
right Value Subtracted column shows the subtraction by 6 
error occurred 25 times accounting for 1.7% of the total 
errors. Midway down in the right Value Subtracted column, 
12 errors are categorized as the addition by 93 error (+93) for 
0.8% of the total errors.  

Table 5 is similar in format to Table 4 and lists the 
subtraction by 13 errors and frequencies. When subtracting 
by 13 for two 4-minute blocks the subjects made a total of 
1306 subtraction attempts (205 less than the subtraction by 7 
attempts), with 1141 correct responses, and 165 errors (same 
number of errors as subtraction by 7). The error percentage is 
12.6% compared to 10.9% when subtracting by 7. Of the 165 
errors 131 of the errors were categorized as subtractions other 
than 13, and 33 of the errors were categorized as additions (a 
smaller percentage than subtracting by 7, 13.9% less).  

 

Table 4: Frequency of errors when subtracting by 7s for two 4-minute blocks. 
 

Subtracting More Than 7 
Value Subtracted      Frequency       Percent    Summary      Frequency    Percent Subtracting Less Than 7 or Adding 

Value Subtracted       Frequency       Percent 
 

-907 
-207 
-17 
-13 
-10 
-9 
-8 

Other 
 

Total 

 
4 
4 
7 
4 
4 
4 

27 
7 

 

61 

 
0.3 
0.3 
0.5 
0.3 
0.3 
0.3 
1.8 
0.6 

 

4.4 

 
Total Attempts     1511 

       Correct     1346        89.1% 
       Errors         165       10.9% 
 

Error Breakdown 
Subtracting 

    Other Than 7      107        64.8% 
     Additions        56        33.9% 
     Duplicates        2          1.3% 

 
-6 
-5 
+3 

+93 
+893 
Other 

 

Total 

 
25 
18 
12 
12 
5 

30 
 

102 

 
1.7 
1.2 
0.8 
0.8 
0.3 
2.0 

 

6.8 

 
Table 5: Frequency of errors when subtracting by 13s for two 4-minute blocks. 

 
Subtracting More Than 13 

Value Subtracted      Frequency      Percent    Summary     Frequency    Percent Subtracting Less Than 13 or Adding 
Value Subtracted       Frequency       Percent 

 
-113 
-23 
-17 
-14 

Other 
 

Total 

 
5 
15 
4 
7 
25 

 

56 

 
0.4 
1.1 
0.3 
0.5 
2.4 

 

4.7 

 
Total Attempts    1306 

       Correct     1141        87.4% 
       Errors         165        12.6% 

 
Error Breakdown 

Subtracting 
    Other Than 13     131        79.4% 

     Additions        33         20.0% 
     Duplicates         1          0.6% 

 
-12 
-11 
-10 
-3 

+87 
+987 
Other 

 

Total 

 
19 
11 
6 

34 
15 
7 

23 
 

108 

 
1.5 
0.8 
0.5 
2.6 
1.1 
0.5 
1.6 

 

8.6 

 

 

Error Types 
The performance of cognitive arithmetic tasks requires 
accessible representations of information specific to the 
problem (i.e., elementary subtraction or addition facts) as 
well as efficient procedures enabling the problem solving 
process (i.e., counting, carry, and borrow) (Ashcraft, 1992; 
Cocchini, Logie, Della Sala, MacPherson, & Baddeley, 
2002). The next two sections discuss the errors listed in 
Tables 4 and 5 in reference to their retrieval and procedural 
causes. 

Fact Retrieval Errors 
Generally, errors were most frequently clustered around the 
intended subtrahend. For example, during subtraction by 7 
over one third of the total errors resulted from subtraction 
by 8, 6, and 5 errors (see Table 4). These types of errors 

accounted for 70 of the 165 total errors, or 42%. Likewise a 
similar pattern is observed during subtraction by 13, 
subtraction by 14, 12, and 11 errors, accounted for 37 of the 
165 errors, or 22%, almost a quarter of the total errors. 

In the cognitive arithmetic literature, errors involving 
answers that would be correct if one of the operands were 
changed by ±1 are typically called ‘near errors’ (Ashcraft, 
1992). This type of error is thought to be caused by a fact 
retrieval failure. For example, when subtracting by 7, the 
units-column operation involves a simple number fact (i.e., 
9 – 7). These simple subtractions, would rely heavily on fact 
retrieval from long-term memory (Ashcraft & Battaglia, 
1978; Widaman, Geary, Cormier, & Little, 1989). Subjects 
skilled in arithmetic would have memory representations of 
arithmetic facts that specify the result of applying a 
mathematical operator (i.e., – or +) to particular operands 
(e.g., the fact 9 – 7 = 2). The problem elements, operator 
and operand symbols, serve the role as retrieval cues 
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(Siegler & Shrager, 1984). The retrieval process might 
begin only when a subject has encoded all of the problem’s 
elements. Alternatively, the retrieval process might begin 
earlier on the basis of partial cues provided by individual 
problem elements (Campbell, 1994). Near errors may be the 
result of an incorrect partial match on one of the operands 
near in the counting sequence to the intended subtrahend. 
For example, when subtracting by 7 under time pressure, the 
subject might easily retrieve the 9 – 6 = 3 fact instead of the 
9 – 7 = 2 fact. 

Another explanation of fact retrieval errors is the 
phenomenon called error priming. Campbell (1991) found 
that errors frequently match the correct answer to a problem 
solved earlier in the experimental session. In some cases a 
recently used subtraction fact might be more active in 
working memory than the fact that needs to be used in the 
current subtraction problem resulting in an incorrect fact 
retrieval.  

In general, direct retrieval of arithmetic facts is thought to 
utilize little working memory as the operands and operator 
are encoded and the solution quickly retrieved. This is not 
the case for more complex subtractions requiring a borrow 
operation, or multi-digit minuends and subtrahends where a 
mixture of fact retrieval and procedural operations are 
needed to solve the problem. 

Procedural Errors 
Research on multi-digit arithmetic problems supports the 
view that working memory is related to the number of steps 
required to solve problems—more steps require more 
working memory resources (Ashcraft & Kirk, 2001; Fürst & 
Hitch, 2000). These studies found that errors, especially 
those attributable to working memory failures, were most 
frequent at points in the problem solving process where the 
demands for retaining intermediate results were highest. 
Salthouse (1992) and Hitch (1978) described the borrow 
operation as an in-context working memory manipulation. 
Therefore, we would expect working memory demands to 
be greater for serial subtraction problems requiring a borrow 
(e.g., 8101 – 7) than for non-borrow problems (e.g., 8157 – 
7). 

Over half (57%) of the serial subtraction problems used in 
the experimental problem set required a borrow operation in 
the calculation of the solution. Broken down by subtrahend: 
70% of the subtraction by 7 problems required a borrow, 
and 37.4% of the subtraction by 13 problems required a 
borrow. Several of the serial subtraction problems required 
more than one borrow as shown in Table 6. The 1 Borrow 
column in Table 6 shows the number of problems that 
required one borrow operation in calculating the solution. 
The 3 Borrow column shows that two of the subtraction by 
7 and three of the subtraction by 13 problems required three 
borrow operations to solve. 

Figure 2 confirms that a borrow operation increases both 
error rate and mean reaction time when subtracting by 7 and 
13 during the four 4-minute blocks of serial subtraction. The 
No Borrow and Borrow problem categories are shown on 

the x-axis. The top two plots compare the error rate when 
subtracting by 7 (upper left) and subtracting by 13 (upper 
right). The bottom two plots compare the mean reaction 
time in seconds when subtracting by 7 (bottom left) and 13 
(bottom right). The upward sloping lines in all the plots 
indicate that the procedural complexity of performing a 
borrow operation increases both the error rate and mean 
reaction time most likely by placing a greater demand on 
working memory during the problem solving process. 
 

Table 6: Frequencies by number of borrow operations 
required on a per problem solution for subtraction by 7 and 

subtraction by 13 problem sets. 
 

 Number of Borrow Operations per Problem 

Number of Problems 1 Borrow 2 Borrows 3 Borrows 

Subtraction by 7  189 18 2 

Subtraction by 13  60 8 3 
 
 
 

 
 

Figure 2: Borrow operation effects on error rate and mean 
reaction time for subtraction by 7 and 13.  

 
The borrow operation and its utilization of working 

memory capacity appears to contribute to the misreporting 
of intermediate results and digits in the minuend yet to be 
processed. Borrow-inducted errors may involve, for 
instance, forgetting the thousands- or hundreds-column 
values during the processing of a lower-order borrow; or 
forgetting the tens-column digit of the subtrahend while 
adding 10 to the units-column as first step in the borrow 
operation; or forgetting to complete the last step of the 
borrow operation with the decrement of one. Misreporting 
intermediate results may also stem from placekeeping 
failures such as retrieving the wrong intermediary result at 
specific points in the problem calculation, or recalculating 
the same column twice, or skipping over a column 

1554



 

calculation. Specific problem instances related to these 
misreporting errors are discussed in the next section.  

Example Errors 
Tables 4 and 5 listed categories of errors resulting from 
subtractions other than the subtrahend and from additions. 
The retrieval and procedural causes discussed in the 
previous sections are applied to individual example 
problems pulled from these tables.  

In Table 4, the addition-of-93 error and the addition-of-
893 error occurred 17 times across subjects. With a 4-digit 
minuend, the value of the thousands- and hundreds-columns 
must be maintained in working memory waiting processing. 
These values can be forgotten during the processing of the 
tens- and units-column calculations. Figure 3 shows 
example problems associated with the misreporting of the 
hundreds-column resulting in the addition-of-93 error, and 
example problems associated with transposing the 
hundreds- and thousands-column values resulting in the 
addition-of-893 error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Example subtraction by 7 problems associated 
with the addition-of-93 and addition-of-893 errors.  

 
The addition-of-93 error occurred with seven different 

subtraction problems. The top of Figure 3 shows six of the 
seven problems. Four of these problems were missed more 
than once across subjects (labeled with Frequency Missed). 
Interestingly, six of the seven problems appear as part of a 
3-problem sequence in serial subtraction (labeled Sequence, 
denoted with a wide gray line). Four of the seven problems 
required a units-column borrow operation. The subjects’ 
erroneous answers (labeled Error) commonly misreport the 
hundreds-column value by plus one with the increment 
either from 7 to 8, or 8 to 9, nearby in the counting sequence 
to the subtrahend (near error). Surprisingly, nearly all of the 
minuends contained at least two 8s usually accompanied by 
a 9 or 7. This type of error could result from a combination 
of retrieval and procedure causes: high operand activation 
for values near in sequence to the subtrahend with low-order 
borrow-induced forgetting of the higher-order digits. 

The bottom of Figure 3 shows the four problems 
generating the addition-of-893 error. In most of these 
problems the thousands- and hundreds-column values of 8 
and 9 were erroneously transposed. The problems all 
required a units-column borrow operation. The addition-of-
893 error also appeared when the hundreds-column value of 
1 was involved in a borrow. In this case, the hundreds-
column value of the erroneous answer was misreported as 9 
instead of the correctly decremented value of 0 after two 
borrow operations.  

Table 5 contains the subtraction-of-3, subtraction-of-23, 
and the addition-of-87 error categories. These three types of 
errors accounted for 64 errors across subjects’ performance. 
Example problems associated with each of these error types 
are shown in Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Example subtraction-of-13 problems associated 
with the subtraction-of-3, subtraction-of-23, and the 

addition-of-87 errors.  
 

The top of Figure 4 shows five example problems 
associated with the subtraction-of-3 error. This type of error 
had the highest overall frequency (34) of all the subtraction 
errors. Generally described, the subtraction-of-3 error is a 
misreporting of the tens-column value by plus one. The 
majority of the time (73.5%) the error involved a borrow 
from the tens-column. After a correct subtraction of the 
units-column, either the decrement of the tens-column 
borrow is forgotten or, in the case of no borrow, the 1 in the 
tens-column of the subtrahend (13) appears to be ignored. 

Similar to the subtraction-of-3 error, the subtraction-of-23 
error involved the misreporting of the tens-column by minus 
one. Example problems are shown in the middle of Figure 4. 
Surprisingly, 14 of the 15 problems causing this error did 
not require a borrow operation. The units- and tens-column 
calculations should have been accomplished with simple 

Addition-of-93 Error 
Frequency  
Missed:    2    2     2    3 
Problem: 8899 8892 8885 8794 8787 8780 

-    7 -    7 -    7 -    7 -    7 -    7 
8892 8885 8878 8787 8780 8773 

Sequence: 
 
Error: 8992 8985 8978 8887 8880 8873 
 

Addition-of-893 Error 
Frequency  
Missed:     2 
Problem:  8983 8976 8962 8101 

-    7 -    7 -    7 -    7 
8976 8969 8955 8094 

Sequence: 
 
Error:  9876 9869 9855 8994 
 

Subtraction-of-3 Error 
 
Problem: 6090 5921 4972 5050 5258 4595 

-   13 -   13 -   13 -   13 -   13 -   13 
6077 5908 4959 5037 5245 4582 

 
Error: 6087 5918 4969 5047 5255 4592 
 

Subtraction-of-23 Error 
Frequency  
Missed:     2    3 
Problem: 6233 6077 5076 5063 4998 4790 

-   13 -   13 -   13 -   13 -   13 -   13 
6220 6064 5063 5050 4985 4777 

Sequence: 
 
Error: 6210 6054 5053 5040 4975 4767 
 

Addition-of-87 Error 
Frequency  
Missed:      2     2 
Problem: 6207 6194 5895 4894 4881 4868 

-   13 -   13 -   13 -   13 -   13 -   13 
6194 6181 5882 4881 4868 4855 

Sequence: 
 
Error: 6294 6281 5982 4981 4968 4955 
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columnar fact retrievals making for some of the easiest 
subtraction problems in the experimental series. It is 
possible that after the units-column subtraction fact was 
retrieved, that a near error occurred during the fact retrieval 
for the tens-column processing (i.e., –2 instead of –1 of the 
subtrahend), or that the simple subtraction of the 1 is 
performed a second time as if the subject loses his place and 
performs that column’s subtraction again. 

The bottom of Figure 4 shows example addition-of-87 
errors caused by misreporting the hundreds-column value by 
an erroneous increment of one. About half of the 15 
problems associated with this error were difficult in that 
they required a hundreds-column borrow, or a tens-column 
borrow, and sometimes appeared in a sequence. In the case 
of no borrow, the hundreds-column value only needed to be 
carried down to the solution. The previous intermediate 
result from subtracting the 1 in the tens-column of 13 may 
be activated and still in working memory promoting an 
erroneous increment of 1 to the hundreds-column value.  

Conclusion 
Little previous research is available on understanding the 
cognitive processes required to solve complex multi-digit 
subtraction problems (e.g., Geary, Frensch, & Wiley, 1993), 
and no previous research specifically addresses solving 
mental serial subtraction. The following list summarizes the 
most important findings of this serial subtraction error 
analysis. Individually, each of these findings has been 
reported in various simple arithmetic tasks. Here we see that 
combinations of retrieval and procedural failures contribute 
to an incorrect serial subtraction attempt. These findings 
provide useful information to cognitive arithmetic 
researchers. We believe that the present analysis represents 
progress toward a general, predictive theory of serial 
subtraction and its performance errors by noting several of 
the most common types.  

1. Fact retrieval errors: (a) Retrieving a fact near in value 
to the subtrahend. (b) Incorrect retrieval based on a partial 
match to a common value in the minuend. (c) Retrieving an 
activated fact from a previously calculated column.  

2. Errors induced by a borrow: (a) Misreporting of higher-
order minuend values. (b) Forgetting the tens-column digit 
of the subtrahend, after executing a borrow. (c) Errors 
within the borrow operation itself, depending on location of 
the borrow, forgetting the tens-column value while 
executing the unit-columns addition of 10 and fact retrieval, 
and (d) forgetting to decrement the tens-column value in 
completing the borrow. 
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