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Production systems are computer programs that
reason using production rules. They have been
used to create expert systems and models of
human behavior.

REASONING AS RULE APPLICATION

A production system is a computer simulation of
one or more tasks. Normally, the tasks have some
form of goal to accomplish (for example, making a
medical diagnosis based on symptom data). From a
given starting position in the task the production
system successively applies rules, each of which
transforms the current task position, until a goal is
reached. With certain sets of further constraints,
production systems can be used to simulate how
people perform tasks (particularly those of a
problem-solving nature, which are well suited to
the framework of production systems). Some
examples of production system frameworks that
have been used to simulate human behavior are
Soar (Laird et al., 1987), ACT-R (Anderson and
Lebiere, 1998), and OPS5 (Forgy, 1981).

A production system consists of three compon-
ents: a long-term memory (in the form of a rule
base), a working memory, and an inference engine.
The rule base contains rules, the conditions of
which must be matched to elements in working
memory. The inference engine determines which
of the rules in the rule base have all their conditions
matched to objects in working memory, and then
decides which rule to apply. The application of a
rule will usually cause elements in working
memory to be added, removed, or altered. Further
rules can then be matched by the inference engine.

What distinguishes a production system from
any other system that simulates problem-solving
behavior (such as a connectionist system) is its use

of rules. A rule is an “if-then’ construct, where the
‘if’ part contains conditions that must be met in
order for the rule to be considered for use. If the
rule gets used (‘fired” or ‘applied’), the actions in
the ‘then’ part are performed. The conditions are
sometimes called the left-hand side (LHS) of the
rule, and the actions the right-hand side (RHS).

Production system behavior can be explained
using an example problem of moving a sphere to
the exit of a room. Figure 1 shows the layout of a
room as a seven-by-eight grid where black squares
represent obstacles. Given this scenario there are a
variety of rules that will help in moving the sphere
to the exit, such as:

IF the exit is above the sphere AND there
isn’t an obstacle directly above the sphere
THEN move the sphere upwards one
space. (1)

There are two conditions in rule 1 that need to be
met before the action part of the rule is applied: the
exit position must be above the sphere, and the
position directly above the sphere must be free to
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Figure 1. Problem scenario where a sphere has to be
guided to the exit of a grid.
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742 Production Systems and Rule-based Inference

move into (i.e. it is not obstructed). If these two
conditions apply to the current situation, then the
sphere will be moved upwards one space.

Rules are often called productions, or production
rules, because they necessarily produce something
when they get used (normally changing some-
thing within working memory).

At any one time, there may be more than one rule
whose conditions are satisfied. The process of col-
lecting all applicable rules into a ‘conflict set’, and
then selecting one of the rules in the conflict set to
be fired, is called the recognize—-act cycle. The pro-
duction system stops either when no more rules are
able to fire (e.g. ACT-R) or when the task is known
to be complete (e.g. Soar).

In addition to being at the core of many expert
systems, production systems are often used to
simulate human behavior (e.g. Kieras and Polson,
1985; Klahr et al., 1987; Newell, 1990; Newell and
Simon, 1972; Young, 1976). By successfully simulat-
ing human behavior on a task, the production
system suggests the processes that may be used
when humans perform the task. Although some
researchers believe that human thinking need
not be rule-based (e.g. Rumelhart et al., 1986;
Brooks, 1991), there are many (such as Langley,
Anderson, and Newell) who believe that it is,
or at least can be, fruitfully viewed that way.
The question revolves around whether or not
human thinking deals with symbols. Rule-based
systems use symbols, whereas others, such as con-
nectionist systems, do not. The ‘symbolic versus
subsymbolic” question is not covered here, but is
still widely debated within the cognitive science
community.

COMPONENTS AND MECHANISMS OF
PRODUCTION SYSTEMS

Two of the three components of a production
system are distinct types of memory: working
memory (facts) and long-term memory (the rule
base). The third component is the inference engine.

Working memory usually contains facts about
the world that are relevant to the task the produc-
tion system is performing. Working memory is
usually represented by attribute-value pairs. One
element in working memory can have several attri-
bute-value pairs. Using the sphere example, one
element (or fact) in working memory will be the
position of the exit of the grid. This element might
have two attribute—value pairs: the first attribute
will be ‘x-coordinate’, having the value ‘8’, and
the second attribute will be ‘y-coordinate” having
the value ‘6".

Long-term memory usually consists of rules that
govern the behavior of the production system. The
inference engine combines working memory and
long-term memory by finding rules whose condi-
tions are matched by elements in working memory.
When this happens, the rule can fire.

Production systems work in a cycle of produc-
tion firings (the recognize—act cycle). Normally,
only one production is fired on each cycle. The
action of the production often changes what is in
working memory and thus enables another pro-
duction rule to fire. The resulting change may in
turn enable a further production rule to fire. This is
how the production system produces behavior (for
example, maneuvering the sphere to the exit).
When no further production rules can be fired,
the system halts.

Let us work through an example illustrating this
cycle and showing how production application
works. Given the problem scenario in Figure 1, we
noted that rule 1 matched working memory and
could be applied. In that rule, there is a condition
that specifies that the exit should be above the
sphere’s current position. If we did not already
know that this was the case, then we would need
a rule to work out whether or not the exit was
above the sphere. The following rule could accom-
plish this:

IF the y-coordinate of the exit is greater
than the y-coordinate of the sphere THEN
put in working memory that the exit is
above the sphere. (2)

Similarly we could have a rule to determine
whether there was an obstacle directly above the
sphere:

IF there is no obstacle having a y-coordinate
of 1 less than the y-coordinate of the
sphere THEN put in working memory
that there isn’t an obstacle directly above
the sphere. (3)

Now suppose the starting position of the room is as
shown in Figure 1. Certain elements would be in
working memory, for example, the position of the
sphere, the position of the exit, and the positions of
obstacles.

Rules 2 and 3 can now be matched. The
y-coordinate of the exit can be compared with
the y-coordinate of the sphere; and, as it is in fact
greater, rule 2 can fire. This places the element ‘exit
is above the sphere’ in working memory. Rule 3 can
also fire: all the obstacles can be checked as to
whether they are directly above the sphere; as
none are, the element ‘no obstacle directly above
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sphere’ is placed in working memory. Note that
these two rules could have fired at the same time,
but most production systems would fire them in
sequence (i.e. one recognize-act cycle for each). We
will see later, when considering conflict resolution,
how the production system determines which rule
to fire first.

After these two new elements have been placed
in working memory, rule 1 can fire, which moves
the sphere upwards one space. Figure 2 shows how
working memory changes during the three recog-
nize—act cycles.

INFERENCE THROUGH FORWARD
AND BACKWARD CHAINING

The normal way in which a production system
processes rules is by matching elements in working
memory in the ‘if’ part of the rule, and then applying

Sphere Exit
X-axis 1 X-axis 8
Y-axis 1 Y-axis 6
Obstacle 1 Obstacle 2
X-axis 2 X-axis 2 Sphere Exit
Y-axis 2 Y-axis 3 X-axis 1 X-axis 8
Y-axis 1 Y-axis 6
Obstacle N...
X-axis x Obstacle 1 Obstacle 2
Y-axis y X-axis 2 X-axis 2
Y-axis 2 Y-axis 3
Obstacle N...
X-axis x
\ Y-axis y
Rule 2 adds Exit is north of sphere
this

the actions in the ‘then’ part of the rule. This is how
the production system in the example above has
cycled.

The production system can be seen as working
forwards from the starting position (e.g. the prob-
lem position in Figure 1) towards a finishing pos-
ition (the goal), in a series (a chain) of rule
applications. This is called forward chaining or
data-driven reasoning. Forward chaining is used
in the majority of production system domains, in-
cluding cognitive models of problem solving (an
instructive example is the Tower of Hanoi (Anzai
and Simon, 1979)).

The opposite of forward chaining is to match the
actions of rules to working memory, and if all can be
matched, to apply the conditional part of the rule.
This method works backwards from the goal to the
starting position (i.e. the initial data) and is there-
fore known as backward chaining, or goal-driven

Rule 3 adds
this

Sphere Exit
X-axis 1 X-axis 8
Y-axis 1 Y-axis 6
Obstac!e 1 Obstat.:Ie 2 Sphere Exit
X-axis 2 X-axis 2 : ;
Voaris 2 Vo 3 X-axis 1 X-axis 8
-axis -axis Y-axis 1 Y-axis 6
Obstac!e N... Obstacle 1 Obstacle 2
X-ax.ls X X-axis 2 X-axis 2
Y-axis y Y-axis 2 Y-axis 3
Exit i h of sph
xit is north of sphere Obstacle N...
No obstacle above sphere .
X-axis x
Y-axis y
Rule 1 Exit is north of sphere
performs this No obstacle above sphere
action

[ Sphere moves upwards ]

Figure 2. How working memory changes as the sphere production system rules fire.
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reasoning. Backward chaining is normally used in
domains where you wish to reason backwards from
the final state of the world, such as discovering
what preconditions led to a patient showing their
current set of symptoms. The ‘actions” of rules in
these cases are often either changes to working
memory or questions (to the user of the system)
which need to be answered in order to add more
facts into working memory. Expert systems often
incorporate backward chaining so that they are able
to explain how they arrived at their decisions.

Rules and knowledge can be represented at mul-
tiple levels. For example, Able (Larkin ef al., 1980)
represents how learning in formal domains such as
physics shifts novices from a backward chaining
approach of trying to find the values of variables
in problem solving, to a forward chaining approach
of experts where unknown variables are simply
and directly derived from known variables. This
model has been implemented in Soar (Ritter et al.,
1998), which is normally seen as a forward chaining
system because it applies its production rules to-
wards a goal. In this case, the domain knowldge
rules are implemented as sets of Soar rules. The
domain knowledge is initially applied in a back-
ward chaining way, searching from the target vari-
ables of the physics problem back towards the
givens. With learning, the direction of processing
on the knowledge level reverses.

CONFLICT RESOLUTION AND
PARALLEL PRODUCTION FIRING

There are occasions when more than one rule can
be fired for a given set of working memory elem-
ents. In our example above, rules 2 and 3 could
both be matched. Figure 3 shows how these two

Sphere Exit
X-axis 1 X-axis 8
Y-axis 1 Y-axis 6
Obstacle 1 Obstacle 2
X-axis 2 X=axis 2
Y-axis 2 Y-axis 3
Obstacle N...
X-axis X
Y-axis y

rules could be matched for the elements in working
memory that we started with in the example. The
general approach in production systems is for the
matching process to occur in parallel but the fining
process to occur in serial. In the matching process,
the inference engine determines which rules have
all their conditions matched by elements in
working memory. The resulting set of all rules
that can be applied is called the conflict set.

When it is possible to fire more than one rule for
a given situation, the production system is said to
be in conflict. Firing all of the rules in the conflict
set in parallel can give rise to inconsistent know-
ledge and results. Production systems generally
resolve this problem by selecting only one of
the rules to fire. The selection is made by the infer-
ence engine, using ‘conflict resolution’. Produc-
tion systems have used a variety of approaches
including;:

Textual order. This is the simplest resolution of con-
flict: simply choose the rule that comes first in the
rule base.

Refractoriness. The same rule cannot be applied to the
same working memory elements more than once.
The inference engine needs to keep track of when
elements in working memory were added or
changed, in order to calculate whether a rule is
being applied on exactly the same elements of
working memory or whether there has been a
change to those elements.

Recency. Apply the rule whose conditions match the
most recently added working memory elements.
This technique encourages adaptivity.

Specificity. Choose the rule that is either the most
specific (i.e. has the largest number of conditions)
or is the least specific (i.e. has the smallest number
of conditions). Which of these is chosen is depend-
ent upon the type of domain that is being

Rule 2.

IF the Y-axis of the exit is greater than the
Y-axis of the sphere

THEN put in working memory that the exit is
above the sphere

Rule 3.

tFthére is no obstacle having a Y-axis of 1 less
than the Y-axis of the sphere

THEN put in working memory that there is not
an obstacle directly above the sphere

Figure 3. How working memory elements can be matched to conditions in rules.
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modeled. For example, in a medical domain we
may wish to be as certain as we can when apply-
ing a rule, and so we may set the most specific rule
to be applied; in a domain involving search, we
may wish to be less specific so that the system is
less likely to arrive at a dead end.

Saliency. This allows the person writing the produc-
tion system to set (numerically) how important
each rule is. The rule with the highest saliency is
selected. Conflict resolution is therefore primarily
the responsibility of the production system de-
signer.

Meta-rules. This allows the set of rules that are in
conflict to be pruned or reordered based on a
higher-order rule. For example, if the conflict set
contains two rules, one which mentions high
blood pressure leading to a possible heart con-
dition and the other mentioning high blood
pressure leading to a possible high temperature,
then the production system designer could add
a meta-rule which stated that if these two rules
are in conflict, then choose the former over the
latter.

Although these techniques are usually used inde-
pendently of each other, there are occasions when
more than one needs to be used. For example, it
would be possible, when using refractoriness, to be
unable to select a unique rule (for example, at the
beginning of a production system run). Often, more
than one type of conflict resolution is used, but one
type is given priority.

Soar has taken a different approach. All matched
rules are allowed to fire in parallel, but they are not
allowed to modify working memory directly. They
provide suggestions for changes to working
memory, and a preference calculus is used to re-
solve contradictions and implement the changes.

STRUCTURE OF PRODUCTIONS

Productions can be represented in numerous ways.
They can be represented as plain sentences (like
rules 1-3 above); they can be represented in a struc-
tured editor as objects; or they can be represented
as a list of clauses, which is how Soar and ACT-R
represent them. The code sample below shows how
rule 2 could be represented in ACT-R:

(p check-if-exit-is—above-sphere

=goal>
ISA move-sphere-to-exit
to-move =sphere
exit =exit
=exit>
ISA Exit

Y-coordinate
=sphere>

=exit-y-coordinate

ISA Sphere
Y-coordinate =sphere-y-coordinate
=greater—-than-fact>

ISA Greater-than-fact

big-num =exit-y-coordinate

small-num =sphere-y-coordinate
==>

=new-working-memory-element>
ISA Sphere-location-fact
location exit—-is—above-sphere

Parentheses are used to delineate the rule, which is
introduced by p and then a name. This rule has
four conditions, each consisting of a single working
memory element; these are marked by = and then a
name (in ACT-R - other systems use different con-
ventions). Each condition must be matched to
elements that are present in the working memory
of the system.

Every element in working memory in ACT-R has
an ISA (‘is a’) attribute—value pair, which defines
the working memory element type. All variables in
ACT-R are preceded by =. The first condition of a
rule in ACT-R is always the goal condition. (The
goal is often part of the conditions of rules in goal-
directed production systems.) The goal condition
states that there must be a goal in working memory
of the type move—-sphere—-to-exit. If this
does exist, it is matched; the value of the to—
move attribute is placed in the =sphere vari-
able, and the value of the ex 1t attribute is placed
in the =ex1t variable. Note how these same vari-
ables are then used in the next two conditions,
signifying that what is to—move should be a
memory element of the type Sphere, and where
it is moved to should be a memory element of the
type Exit.

The second condition specifies a match to an
Exit element in working memory, and if this
element exists it must have a Y-coordinate
value (this will be stored in the =exit-y—-co-
ordinate variable). The third condition speci-
fies a match to a Sphere element in working
memory, and if this element exists it must also
have a Y-coordinate value (this will be stored
in the =sphere-y—-coordinate variable).
The fourth condition specifies a match to a
Greater—-than-fact element in working
memory. This denotes knowledge of which
numbers are larger than others. The variables that
were set in the second and third conditions are
used in the fourth condition to see if =exit-y-
coordinate is greater than =sphere-
y—coordinate. If the rule can be fired, then a
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new working memory element is created, which
specifies that the exit is above the sphere.

The number of input or output clauses is not
limited by this syntax. In ACT-R the variables are
bound (i.e. matched) in the order in which they are
written, whereas in Soar they need not be. Rules in
ACT-R and some other systems also have weights
associated with them. These weights are updated
by learning algorithms to represent the rule’s prob-
ability of success, its cost, and other attributes. The
weights may be used in a variety of ways, for
example, to choose the most useful rule. Soar does
not include these attributes.

THE RETE ALGORITHM

Most production systems include hundreds of
rules; some include thousands. One includes nearly
a million rules (Doorenbos, 1994). If each rule is
checked individually to see if it matches, the time
taken to create the conflict set will depend linearly
on the number of clauses in the whole rule set. With
small rule sets, this is not a problem; but as the size
of models in production systems has grown, this
causes a significant bottle-neck, particularly where
the clauses have to be matched against sets of
objects.

The RETE algorithm (Forgy, 1982) was created as
a way to speed up the matching process by taking
advantage of the reuse of clauses and the fact that
working memory elements change slowly. For
example, consider the three rules below, based on
the sphere example:

IF the exit is above the sphere’s current
position AND there isn’t an obstacle
directly above the sphere THEN move
the sphere upwards one space. (4)

IF the exit is above the sphere’s current
position THEN move the sphere upwards
one space. (5)

IF there isn’t an obstacle directly above the
sphere THEN move the sphere upwards
one space. (6)

These rules overlap, both in their conditions and
in their actions. (The example is for illustration
only: it would be unwise to move the sphere
upward by only checking if the exit was above it,
as rule 5 does.)

In essence, the RETE algorithm creates a network
representing the whole rule set. The matching is
then based on changes to working memory. As
elements leave or enter, the state of the network
is updated. Thus the time taken by the matching

process depends linearly on the number of changes
to working memory instead of on the number of
rules.

For example, the RETE network for rules 4-6
would combine the first clauses of rules 4 and 5 as
a top node. If the exit’s position changed, then and
only then would the clause be updated. When the
conflict set is needed, all the clauses that are
matched are already noted in the network. So if
the exit is above the sphere’s current location,
then rule 5 would be waiting in the conflict set.
Whether rule 4 was in the conflict set would
depend on whether the working memory element
matching its second clause had been added. The
addition of the working memory element would
also have satisfied rule 6 at the same time.

The presence of the RETE algorithm is not
always noticed by people who use production
systems, but it has drastically improved their
speed and therefore their usefulness. RETE is
used by both OPS5 and Soar. Further refinements
of match optimization have also been developed.

PRODUCTION SYSTEMS AS
COGNITIVE ARCHITECTURES

A cognitive architecture proposes a theory of the
human information processing apparatus. Some
production systems, such as ACT-R and Soar,
have been used to implement such theories. Their
intention is to model the types of process and struc-
tures that generate human behavior (e.g. what the
constraints on memory are), and use these models
to simulate human behavior. If the same architec-
ture can be used to accurately simulate behavior
across domains, then this provides evidence that
the human brain may resemble the cognitive archi-
tecture. Cognitive architectures have been used to
simulate the behavior of both adults (e.g. Jones et al.,
1999) and children (e.g. Jones et al., 2000).

SUMMARY

Productions systems have been used to organize
and apply knowledge in a variety of domains.
While there remain questions as to whether know-
ledge can be modeled directly as structures in a
production system, they provide a fruitful way to
think about human behavior.
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Many features of spoken language, from the nature
of child-directed speech to audience design effects,
reflect a sensitivity in language production to the
needs and strategies of language comprehension.
These adjustments, sometimes deliberate, some-
times automatic, ensure successful communication.

INTRODUCTION

The primary reason that speakers speak is so that
their listeners can understand them. It is therefore
unsurprising that unlike many cognitive tasks (such
as perceiving, remembering, or decision-making),

the language production performance of an indi-
vidual speaker must take into account the process-
ing capabilities and the knowledge states of another,
namely, that speaker’s intended listener. Research
into this topic of the nature of the production-
comprehension interface generally explores how
production accommodates its processing to the
needs of comprehension.

This article discusses the production-compre-
hension interface by exploring two related issues.
The first concerns how speakers cater specific
details of their utterances to take into account the
knowledge and the comprehension capabilities and





