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10 Abstract

11 This article examines strategy choices for how people find faults in a simple device by using models of several strategies and new data.
12 Diag, a model solving this task, used a single strategy that predicted the behavior of most participants in a previous study with remark-
13 able accuracy. This article explores additional strategies used in this reasoning task that arise when less directive instructions are pro-
14 vided. Based on our observations, five new strategies for the task were identified and described by being modeled. These different
15 strategies, realized in different models, predict the speed of solution while the participant is learning the task, and were validated by com-
16 paring their predictions to the observations (r2 = 0.27–0.90). The results suggest that participants not only created different strategies for
17 this simple fault-finding task but that some also, with practice, shifted between strategies. This research provides insights into how strate-
18 gies are an important aspect of the variability in learning, illustrates the transfer of learning on a problem-by-problem level, and shows
19 that the noisiness that most learning curves show can arise from differential transfer between problems.
20 ! 2019 Published by Elsevier B.V.
21
22

23 1. Introduction

24 Is it possible to construct a general learning model that
25 can capture individual differences in strategies as these
26 strategies develop? Can we find predictable sources of vari-
27 ability in learning, across time and across learners? Many
28 believe the answers to these questions are yes, but modeling
29 human behavior using different strategies and comparing
30 them with the time course of individual learning behavior
31 remains difficult. There is little research on different strate-
32 gies for a task, because to do so tasks that are complex
33 enough to allow multiple strategies have to be used and
34 individual behavior must be traced and analyzed.

35Siegler (1988b) and Elio and Scharf (1990) have argued
36that we should not average over strategies, and that under-
37standing individual differences is important. Averaging
38over strategies will distort results, and hide important
39and reliable effects. So, in this article, we report how we
40modeled multiple strategies while they were learned, how
41they matched some subjects’ performance fairly well, and
42how they inform us about behavior, transfer, and learning.
43We will also see that there are yet more strategies subjects
44use that we cannot yet derive.
45We examine strategy use by analyzing a diagrammatic
46reasoning task with human data and cognitive models.
47Measurable improvement begins when the same task is per-
48formed a second time with the information learned from
49the first time. This typically leads to greater efficiency. Per-
50formance is improved with practice. For some tasks,
51improvement continues for over 100,000 trials (Seibel,
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52 1963). John and Lallement (1997) and Delaney, Reder,
53 Staszewski, and Ritter (1998) demonstrated that improve-
54 ments could be a result of strategy development and
55 change.
56 Strategy analysis is an important step for modeling a
57 task using a cognitive architecture. Kieras and Meyer
58 (2000) described the cognitive modeling practice as the pro-
59 cess of making an intuitive guess about the strategy and
60 comparing the predicted data with human data. If the pre-
61 dictions and data fit, the model and strategy are validated,
62 if not, the researcher continues working.
63 A model that learns helps describe how humans use
64 knowledge to solve problems and how the repetitive appli-
65 cation of the same knowledge leads to faster performance.
66 A good overview of the categories of human learning is
67 provided by Ashby and Maddox (2005). There are several
68 learning models implemented in cognitive architectures.
69 These models include procedural knowledge compilation
70 (Anderson, 2007; Gonzalez, Lerch, & Lebiere, 2003;
71 Lebiere, Wallach, & West, 2000; Pavlik, 2007) and base
72 level learning (Altmann & Trafton, 2002) in ACT-R, con-
73 nection strengthening in PDP models (e.g., O’Reilly &
74 Munakata, 2000), rule creation from impasses using ana-
75 logical reasoning (VanLehn & Jones, 1993), constraint
76 elaborations (Ohlsson, 2007), and both declarative and
77 procedural learning mechanisms (e.g., Feigenbaum &
78 Simon, 1984; Gobet & Lane, 2007; Könik et al., 2009;
79 Rosenbloom, Laird, & Newell, 1987). These models had
80 their predictions compared to averaged data, but have
81 not had their predictions compared to individual learners.
82 A problem in the study of complex problem solving,
83 especially in a learning context, is the spectrum of individ-
84 ual differences. Understanding individual differences can
85 help understand the acquisition and application of complex
86 skills (Card, Moran, & Newell, 1983; Kieras & Meyer,
87 2000). A way to study individual differences is to take an
88 existing task and model of the task, and allow participants
89 to solve the task in multiple ways. A previously reported
90 study (Ritter & Bibby, 2008) used a model that learned
91 and matched (r2 > 0.9) most participants’ learning across
92 a series of problems with a single strategy. Readers and
93 reviewers have suggested that the good fits may have been
94 due to the task instructions being directive. In this report,
95 we examine further strategies that can arise with less direc-
96 tive task instructions.

97 1.1. Previous models of individual differences

98 Modeling individual differences in problem solving has
99 been done at least in three ways. The first and most
100 straightforward way is to model individual differences in
101 problem solving as differences in global system parameters.
102 Card et al. (1983) proposed a model with three different
103 sets of parameters: Fastman (parameters are set to deliver
104 the fastest performance), Middleman (parameters are set
105 to deliver a nominal performance), and Slowman (parame-
106 ters are set to deliver the slowest performance). Daily,

107Lovett, and Reder (2001) varied working memory capacity
108to model individual differences. Kase, Ritter, Bennett,
109Klein, and Schoelles (2017) modeled individual differences
110in problem solving as changes in a set of parameters. These
111models do not include different strategies or learning over
112time, but represent the behavioral differences across sub-
113jects as different parameters in models.
114The second, and more complex, way is to model individ-
115ual differences in problem solving as differences in knowl-
116edge. This can be done by including either different
117knowledge sets or different representations. Kieras and
118Meyer (2000) proposed a Bracketing Heuristic where three
119strategies in the range of performance (slow, medium, fast)
120are modeled, and the range of human performance is pre-
121dicted as the first step of cognitive task analysis. Best and
122Lovett (2006) developed a methodology for using a norma-
123tive task model as the basis for training methodology and
124thereby gained insights into the differences between task
125performance of a rule-based model and an instance-based
126model. Anzai and Simon (1979) used different knowledge
127to model four different strategies in solving the Tower of
128Hanoi and explained how these changes could occur auto-
129matically. These models did not include learning within or
130between strategies, however.
131The third way to model individual differences in
132problem solving is how they arise through learning. This
133is demonstrated in work by Siegler (1988a, 1988b). He
134used differences in strategies, their error rates, and learn-
135ing, to model how children learned to perform arith-
136metic using up to five different strategies. He modeled
137how children shifted between strategies through learning.
138(He has also argued that modeling individual strategies
139is important to understand sets of data (Siegler,
1401987).) This approach for modeling learning has been
141implemented in cognitive architectures as well. Larkin’s
142Able model (Larkin, 1981; Larkin, McDermott, Simon,
143& Simon, 1980) showed how novices use backward
144chaining of inference rules to solve physics problems,
145and how learning changes this process into forward
146chaining of inference rules. Able only modeled shifting
147between two strategies, but could be seen as having mul-
148tiple strategy variants representing different amounts of
149the knowledge proceduralized.
150Thus, previous work has argued for the need and the
151usefulness of representing strategies, particularly Simon
152and Reed (1976) and Siegler (1987). These models have
153shown that individual differences in problem solving arise
154in multiple tasks, and that modeling individual strategies
155can lead to a better understanding of how the task is per-
156formed and how learning strategies arise (also see
157Delaney et al., 1998; VanLehn, 1991). This work has also
158presented the case that strategies are important for under-
159standing behavior, and that learning is important as a
160mechanism to shift between and to evolve strategies. Con-
161sidering the previous literature, the influence of multiple
162strategies on performance and learning should be explored
163further.
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164 2. The Fault Finding Task: Troubleshooting a faulty circuit

165 A task that can be solved with multiple strategies while
166 learning can be used to examine performance and learning
167 in detail. As learning modifies these strategies, we can also
168 see the effects of learning on the strategies over time. Trou-
169 bleshooting tasks have been used to study learning in the
170 past. Lesgold, Lajoie, Bunzon, and Eggan (1992) developed
171 a simple troubleshooting task. White and Frederiksen
172 (1987) used a troubleshooting task to focus on the role of
173 scientific explanation and its use in instructions. We used
174 an electrical troubleshooting task to study problem solving.
175 However, troubleshooting tasks used in earlier studies con-
176 centrated on single strategies to solve the task (e.g.,
177 Besnard, 2000; Besnard & Bastien-Toniazzo, 1999) and
178 did not consider learning and its effect on strategies used.
179 We begin with a short introduction of the Fault Finding
180 Task (Bibby & Payne, 1993). The setup consists of an inter-
181 face (Fig. 1) that controls the circuit that is represented by
182 a diagram shared with participants (Fig. 2). The interface
183 consists of lights (at the top) showing if the components
184 work and switches (at the bottom) showing via arrows
185 the direction in which the circuit is routed. The system con-
186 sists of a power source (PS), two energy boosters (EB1 and
187 EB2), accumulators (MA, SA1, and SA2), laser bank (LB),
188 wiring, switches, and indicator lights. Studies using this
189 experimental setup have examined different tasks, for
190 example, finding the wrong switch position, operating the
191 device (Bibby & Payne, 1993), or the Fault-Finding Task
192 (Ritter & Bibby, 2008). The Fault Finding Task, which
193 we use here, has the goal of identifying the faulty compo-
194 nent that constrains the energy on its way from PS to
195 LB. We often refer to the task by the broken part to be
196 found (e.g., the SA1 task).
197 In the rest of the article, we will describe the model and
198 new human data that appear to have been performed with
199 a variety of strategies. Then, we will explore what the
200 model and data tell us about learning.

2012.1. Review of the single strategy model

202The original Diag model solves the Fault Finding Task.
203It is built on the idea that ‘‘procedural, declarative and epi-
204sodic learning all are taking place within individual
205problem-solving episodes” (Ritter & Bibby, 2008). Diag
206learns at a similar rate to most participants, predicting
207learning rates on a trial-by-trial basis, predicting transfer
208across a series of 20 tasks accurately for 8 out of the 10 par-
209ticipants in the previous study.
210The Diag1 model was implemented in Soar 6, an instan-
211tiation of Newell (1990) Unified Theory of Cognition. Soar
212is a symbolic cognitive architecture, initially developed by
213Laird, Newell, and Rosenbloom (1987). It provides a view
214of what cognition is and how it could be implemented as a
215software architecture. Soar provides the user with the nec-
216essary tools to implement Newell’s UTC. This implementa-
217tion is realized implicitly by using rules. This rule-based
218concept makes finding the theoretical elements of Newell’s
219UTC difficult when examining Soar code. This also leads to
220a low-level of abstraction and not to the explicitness that
221the theory proposes.
222Soar is based on the Problem Space Computational
223Model (PSCM) (Lehman, Laird, & Rosenbloom, 1996;
224Newell, Yost, Laird, Rosenbloom, & Altmann, 1991).
225The PSCM is based on the primitive acts that are per-
226formed while using problem spaces to achieve a goal
227(Laird, 2012). Problem spaces are common collections of
228states, sets of states, goals, and a set of valid operators that
229contain the constraints under which to apply themselves.
230The top-level goal is to transform the initial state into the
231goal state. This goal is reached by applying operators. A
232state consists of a set of literals that describe the knowledge
233of the agent and the present model of the environment. The
234strategy of the Soar agent is defined as the movement
235through a problem space.

Fig. 1. The Fault Finding Task interface (Ritter & Bibby, 2008). Darker lights are off (e.g., EB1), lighter lights are on (e.g., PS). The broken component
represented in this figure is SA1. Dashed lines, numbers, and labels on the left are added here for later reference.

1 The Diag model, described in Ritter and Bibby (Ritter & Bibby, 2008),
is available online at acs.ist.psu.edu/projects/diag.
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236 We define strategies as behaviors that differ in the order
237 and selection of operators when solving a problem. Using
238 this low-level approach, several possible strategies are iden-
239 tified that allow a detailed view of the differences between
240 individual performances. Strategies lead to different perfor-
241 mances that solve the same task (Meyer et al., 1995), and
242 we will be able to examine those differences in detail here.
243 Learning in this model is information or strategies that
244 are acquired and used to change the problem-solving
245 process.
246 On the PSCM level, Diag consists of seven problem
247 spaces that are hierarchically ordered. This is shown in
248 Fig. 3. Within these problem spaces, 20 operators are
249 grouped to perform the problem-solving task. These prob-
250 lem spaces and operators are implemented through 170
251 Soar rules. These rules realize the problem space elements.
252 Rules are a low-level representation and do not provide the
253 explicit representation that the PSCM theory proposes.
254 The model can be described as having three types of
255 memories and learning (Ritter & Bibby, 2008). Declarative
256 memory describes acquired facts, for example, component
257 A is connected to component B. Procedural memory stores
258 action sequences, for example, how to play a game or how
259 to decide which object you should look at next, or how to
260 decide the current state of the object in the Diag interface
261 task. Episodic knowledge is used by humans to remember
262 events, for example, the result of an operation. As the mod-
263 els solve problems, they create knowledge from search in
264 subspaces, using Soar’s chunking mechanism, that helps
265 implement more quickly the declarative memories about
266 how components are connected, how to interpret the infor-
267 mation from looking at the interface, and how to imple-
268 ment operators.
269 When solving the Fault-Finding Task, Diag identifies
270 the faulty component by using the interface combined with

271knowledge about the diagram. The strategy that Diag uses
272to solve the Fault-Finding Task is based on lights, and uses
273the schematic and switch settings to find the fault. It works
274from left to right across the interface starting by checking
275the PS (Fig. 1 Component 1) component’s light. If the light
276is off, PS is the broken part, otherwise Diag checks the EB1
277light (Fig. 1 Component 2). If EB1 is on, the model moves
278to the next light. If EB1 is off, Diag checks the second
279switch (Fig. 1 Component 9) to see if the energy is routed
280through EB1. If the second switch is set to EB1, the broken
281part is identified, otherwise Diag moves down the other
282path defined by the schematic to a different component.
283This pattern of using the diagram information and sche-
284matic information continues until the faulty component is
285found. There are other strategies as well (which we explore
286below), and each strategy has a different order in which
287information is gathered and used (Bibby & Payne, 1996;
288Meyer et al., 1995).
289Diag and Diag-H (our reimplemented model) are both
290divided into several problem spaces to solve the Fault-
291Finding Task. The problem space DIAGNOSE2 represent
292the top level and starts the problem solving. The sub-
293problem space of DIAGNOSE is FIND-FAULT that
294coordinates the search for the faulty component by select-
295ing and testing the next component. FIND-FAULT has
296two sub-problem spaces, SELECT-COMPONENT and
297TEST-COMPONENT. SELECT-COMPONENT selects
298the next component either from the interface or the circuit
299schematic. TEST-COMPONENT then tests the selected
300component with three tests (light lit up or not; the switch
301is pointed to it; the previous component is unbroken).
302The TEST-COMPONENT problem space relies on the

Fig. 2. The Fault Finding Task circuit.

2 We put model operators and problem spaces in all caps to distinguish
them.
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303 CHECK-WORLD problem space that gets information
304 for the tests from the world, that is, the current state of
305 the interface. With practice solving the Fault-Finding
306 Task, knowledge about connections in the system is
307 learned, as well as expectations about whether a light
308 should be on given a configuration of switches.
309 Diag predictions were generated for Ritter and Bibby’s
310 10 participants, who each experienced a unique stimulus
311 set.3 The instructions given to the participants are
312 described below, because they are identical to the study
313 conducted in this article. The number of (Soar) model
314 cycles Diag needed to solve a series of problems was
315 recorded for the sets of problems that the participants
316 saw and solved. The predicted times to solve these sets of
317 problems were regressed against the problem-solving times
318 for each participant individually. The results showed that
319 for all participants the average r2 was 79%. The behavior
320 of two participants did not fit with a reliable correlation
321 the predictions of the Diag model. This could be explained
322 if they used different strategies for doing this task. How-

323ever, two participants were not enough for analyzing differ-
324ent Fault-Finding Task strategies. Therefore, additional
325data were needed. The work presented in this article
326focuses on examining alternative strategies for completing
327the Fault-Finding Task that was not modeled by Ritter
328and Bibby (2008).
329Analyzing strategies that solve the Fault Finding Task
330requires a set of models with different strategy implementa-
331tions. Therefore, a reimplemented Diag model in a high-
332level modeling language has considerable advantages
333because it is more easily modified and also multiple strate-
334gies can be implemented clearly. A high-level behavior rep-
335resentation language, Herbal (Cohen, Ritter, & Haynes,
3362010), was used for the reimplementation. Herbal is a
337high-level language based on the PSCM, allowing for mod-
338els to be created at a level of abstraction above the stan-
339dard production level. Herbal allows the cognitive
340modeler to focus on the architectural aspects of their cog-
341nitive agent while the details of programming are managed
342by the Herbal compiler. This way Herbal represents a step
343towards the development of tools that support modelers of
344intelligent agents and cognitive behavior. Herbal is
345designed to create agents which have the ability to explain
346themselves. This is possible through the formalization of

Fig. 3. Problem space structure of the Diag Model. Operators are typically used from left to right, and when they cannot be implemented directly, by an
associated problem space below them.

3 The stimulus sets can be found in Ritter and Bibby (2008) and the
accompanying web site, acs.ist.psu.edu/projects/diag.
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347 the programming process in Herbal with the help of an
348 explicit ontology of classes that represent concepts of the
349 PSCM. These classes are the basis for the Herbal structure
350 (Cohen, Ritter, & Bhandarkar, 2007).
351 A Herbal implementation of Diag (Diag-H) creates a
352 Soar model, but more importantly facilitates adaptations
353 of the model (e.g., changing the strategies). Diag-H is more
354 flexible, reusable and expandable than raw Soar code. Dif-
355 ferent strategies can be created relatively easily, as we will
356 present in the analysis section. Herbal produces the result-
357 ing models as Soar models, which then are modified
358 through experience using the existing learning mechanisms
359 in the Soar architecture.
360 Table 1 provides an example to illustrate the Herbal
361 XML-based code and the equivalent in Soar code for a
362 condition called CheckWorld-MA-On. This condition tests
363 whether the MA (main accumulator) light is ON or OFF
364 on the interface (Fig. 1 and Fig. 2). This translation is
365 straightforward because Soar has clear support for the con-
366 cept of conditions and both Soar and Herbal implement
367 the PSCM.

368 2.2. Overview of the paper

369 In the remainder of the paper, we will present a study
370 where the instructions allowed the participants to generate
371 a wider range of strategies. We use the mouse movements
372 from the participants’ early trials to infer potential strate-
373 gies. These strategies are then implemented in Soar, and
374 the strategies are run on the series of tasks that the users
375 also saw. The strategies generate a series of predicted task
376 solution times and the times decrease with practice accord-
377 ing to Soar’s learning mechanism. By comparing the strate-
378 gies’ predicted response times to the human data, we will
379 see which strategies are used. These results are then
380 discussed.

381 3. Finding additional strategies

382 To identify additional strategies a new user study with
383 the diagrammatic reasoning task was run with less directive
384 instructions to the participants. The goal was to identify

385new strategies by less directive instructions and through a
386larger number of participants.

3873.1. Participants

388Thirty-seven undergraduate students from the Pennsyl-
389vania State University and the Otto Friedrich University
390in Bamberg (7 female and 30 male; between 18 and
39129 years; 16 Americans and 21 Germans) performed the
392task. The participants were randomly assigned to 11 groups
393of three participants, except group 11, which consisted of
394seven participants. Every group was given a different stim-
395ulus set of Fault-Finding Task problems. Their majors
396were psychology (8), computer science (12), economics
397(5), business informatics (8), and mechanical engineering
398(4). The Americans were paid $7 for participating whereas
399the Germans participated out of interest. All participants
400had a basic understanding of electric circuits that made
401the introduction to the Fault-Finding Task relatively easy,
402but none of them were familiar with the task. Participant
403IDs (used later in this article) were issued according to
404the following examples: G14_10 stands for the 14th Ger-
405man (G) participant who solved stimulus set 10, while
406A1_3 stands for the first American (A) participant who
407solved stimulus set 3.

4083.2. Materials and apparatus

409This user study was based on the original study materi-
410als of Ritter and Bibby (2008). The materials used for this
411study were a general task introduction and the task envi-
412ronment. The introduction consisted of a background story
413to motivate the participants, supported by a picture of the
414control interface (Fig. 1) and a schematic of the underlying
415circuit (Fig. 2). No initial example of the task was provided
416in this study, in contrast to Ritter and Bibby (2008), to
417encourage different strategies. The instructions also con-
418tained a set of frequently asked questions and their
419answers. These questions were collected from pilot partici-
420pants and undergrad students from a human-computer
421interaction class at Penn State.
422The task environment was presented with PDF files on a
423MacBook with a 15.4 in. screen and a resolution of 1920 by
4241200. The task environment consisted of 48 slides (2 intro-
425duction slides, 5 training slides with no task information,
42620 task slides and 20 pause slides between the task slides).4

427The tasks were randomly ordered from a set of 20. Exam-
428ple series are included below in Figs. 6 and 7 and all sets in
429the online materials. Participants used the PAGE-DOWN
430key to switch to the next slide. The participants used a
431mouse to navigate on the task slides and select the faulty
432components. The participants’ performance while solving
433a stimulus set was captured with the RUI mouse and

Table 1
A Translation from a Herbal Condition to Soar (in style of Cohen et al.
(2010)).

Architecture Source Code

Herbal XML
Language

<condition name=’CheckWorld-MA-On’>
match type=’Input’>

<restrict field=’ma’>
<eq > true</eq>

</restrict>
</match>

</condition>

Compiled Soar Code (<i2> ^|H-Diag.types.Input| <H-Diag-types-
Input2 > )
(<H-Diag-types-Input2> ^ma < ma433 > true)

4 This training environment and the task environment are available
(http://acs.ist.psu.edu/code/diag-H/diag-H-stimuli/), and this data set and
model are available as well (acs.ist.psu.edu/projects/diag).
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434 keystroke logger (Kukreja, Stevenson, & Ritter, 2006). A
435 Java application, DiagData-Analyser, was used to analyze
436 the keystroke and mouse interactions, similar to Mouse-
437 Tracker (Freeman & Ambady, 2010).

438 3.3. Design and procedure

439 Each participant attended one experimental session that
440 lasted approximately 30 min. At the beginning, after con-
441 sent, every participant was asked to read the instruction
442 materials. While studying the instructions, they were

443allowed to ask questions. The participants were told to
444pay special attention to the schematic representation of
445the circuit. After a five minute study period, the partici-
446pants had to draw the schematic from memory. If they
447were unable to reproduce the schematic, an additional
448five-minute study period was given. No participant needed
449more than 10 min to reproduce the schematic accurately,
450and 28 of the participants succeeded in 5 min.
451After reproducing the schematic, the instructions were
452removed and the training phase began. The participants
453were instructed to put their regular mouse hand on the

Fig. 4. Predicted by Diag-H and observed problem-solving times (means and standard error) for trials 1–20 averaged over participants.

Fig. 5. Example trials from every mouse movement group, solving fault SA1 in trial 3 of stimulus 11 (start point is dark grey and leads to endpoint in light
gray; data points are from mouse movement logs).
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454 mouse and their other hand on the PAGE-DOWN key.
455 The participants had five training slides for practicing
456 clicking on the screen and changing the slides.
457 After training, the task environment was loaded and the
458 participants solved 20 problems. Before starting the task,
459 the participants were told that a component could be faulty
460 more than once within the 20 trials. They were also told to
461 move the mouse pointer to the components that they were
462 attending and analyzing (cf. Freeman & Ambady, 2010;
463 Mueller & Lockerd, 2001). After figuring out which com-
464 ponent was faulty, the participant should select it with a
465 mouse click. The first two faults within the 20 problems
466 were either early faults (PS and EB1, or PS and EB2), as
467 in Ritter and Bibby (2008). During the debriefing, the par-
468 ticipants were thanked for their participation.

469 4. Results

470 The user study results are based on the analysis of 35 out
471 of 37 participant data sets. The two participants who were
472 dropped had error rates in finding the fault (clicking on the
473 broken component) of 45% and 55%; we do not know why
474 their error rates were so high. The remaining subjects had
475 an average error rate of 7.2%. The strategy models that
476 we developed do not predict errors.
477 The data show that subjects’ problem-solving times had
478 different patterns across the same problem orders (with
479 similar error rates). The response time for a trial consists
480 of the time to solve the task, the time to move the mouse
481 to the component, and the time to click the mouse button.
482 The dexterity to move the mouse is considered equal across
483 participants due to its common use. The low average error
484 rate indicates that the participants had equal abilities to
485 solve the task, except the different pattern of response times

486to the same stimulus sets suggests that the participants
487developed different strategies.

4884.1. Response time analysis

489First, the 35 participants were analyzed together and
490their response times per trial were compared with the pre-
491dicted response times per trial for the Diag-H model. The
492problem series the model saw corresponded to the series
493the participants saw. Fig. 4 shows that the predicted times
494and the actual response times per trial are highly correlated
495except for trials 1–2 which are always early in the circuit.
496To analyze the Diag-H model response time predictions,
497the predicted number of model cycles was used. We used
498linear regression to globally scale the Diag-H model cycle
499time to participant time. The mean intercept was 7.27 s
500and, therefore, is similar to the mean mouse movement
501time over all trials and participants with a mean mouse
502movement time of 6.25 s. The additional time might repre-
503sent visual encoding time. The best model cycle time was
50457 ms per model cycle, which is within the range predicted
505by Newell (1990) of 30–300 ms. For each of the following
506analyses the predicted times (slope of model cycles * model
507cycles + intercept = 57 ms/mc * model cycles + 7.27 s) are
508compared to the participant times. Diag-H’s predictions
509on each series for each participant’s 20 response times cor-
510related r2 = 0.20. This approach was used to calculate the
511models’ problem-solving times in the remainder of the
512analyses for creating the graphs to show the relative perfor-
513mance for each strategy; the correlations reported use
514model cycles directly.
515The predicted curve does not follow a power law for the
516first two trials because the series of problems start with two
517problems early in the circuit (starting from the power

Fig. 6. Number of model cycles per strategy for stimulus set 5.
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518 supply), what could be called easy problems. This was
519 intentional to support initial learning, which appears to
520 happen. The predicted times are also not smooth because
521 not all possible series of problems were used. The remain-
522 ing tasks are generally but not uniformly distributed across
523 the range of problem difficulty. The first two observed trials

524shown in Fig. 4 differ from the predicted times more than
525the remainder of the trials. This effect of increased response
526time on the first two trials was not seen in the Ritter and
527Bibby (2008) data. This difference might be caused by the
528different instruction sets—the original Diag instructions
529gave a worked example while the new study instructions

Fig. 7. Predicted and observed problem solving times in task presentation order for participants with a correlation of r2 ! 0.5 for a single individual
strategy. The predicted times are from the best fitting strategy. Series of problems are noted in the last part of participant id (e.g., _5), and scales vary based
on observed time.
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530 did not. The current participants performed the first two
531 trials with less initial knowledge, adapting to the task and
532 developing a strategy for the task. We also believe that
533 the experimenter running the Ritter and Bibby (2008) study
534 was directive in how to perform the task. Restricting the
535 linear regression to trials 3–20 increases the correlation
536 between predicted time and measured time, r2 = 0.23. We
537 categorized the first two trials as an orientation phase
538 and therefore as an initial part of the strategy developing
539 process. The purpose of this work is not to show the time

540course of strategy development, but to show that different
541strategies are used. Because we did not model this phase in
542detail only response times of trials 3–20 will be examined
543further. This does suggest that revisions and extensions
544to the model should include more attention to the early
545proceduralization of knowledge, which the model currently
546assumes has been done.
547The time to solve problems of four of the participants
548correlates well (r2 > 0.5) with the initial strategy (Diag-H)
549time predictions. The four participants who used the Diag

Fig 7. (continued)
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550 strategy supported the results of Ritter and Bibby (2008)
551 because this correspondence while both model and partici-
552 pant are learning suggests that some participants use the
553 Diag strategy to solve the Fault Finding Task. This also
554 means that the remaining N = 31 (88%) participants do
555 not fit well to the Diag-H time predictions, and, therefore,
556 might have used different strategies or shifted between
557 strategies. Other interpretations of the findings are dis-
558 cussed below. Thus, this dataset provides an excellent basis
559 for finding new strategies.
560 The lack of use of the Diag strategy can be explained by
561 reference to the example problem given as part of the
562 instructions in the original study. With the help of this
563 example, the participants in the original study might have
564 developed a strategy before performing the task. Impor-
565 tantly, they were given feedback concerning the correctness
566 of their decision. Therefore, the participants could solve the
567 task from the first trial. Because the new study instructions
568 did not have a task example, the participants had to
569 develop their own strategy for the task and were likely
570 uncertain about their solutions because no feedback was
571 given. This may explain the lower error rates in the other
572 studies where feedback was given (Bibby & Payne, 1996;
573 Ritter & Bibby, 2008).

574 5. Implementing and testing new Diag strategies

575 Participants were instructed to ‘‘If possible, move the
576 mouse pointer always to the component you are thinking
577 of at the moment.” A reference point on every spacer slide
578 was used to orientate the mouse movement as a reference
579 point. The participants were told to return the mouse to
580 this point before moving to the next task slide. This
581 increased the value of the mouse movement data because
582 the order in which participants attended the components
583 was captured. Unfortunately, not all participants used
584 the mouse as instructed.
585 The K-means algorithm (MacKay, 2003) was used to
586 analyze the individual mouse movements to find potential
587 clusters of strategy users. This approach does not provide
588 definitive strategies but merely helps the researcher find
589 some if they are there. For every participant several mouse
590 move features were calculated: the mean number of mouse
591 movements, the mean time for mouse movements, and the
592 standard deviation of both. A mouse movement is defined
593 as a new position of the mouse, gathered with a 200 Hz
594 sampling rate. These values served as feature vectors
595 (Table 2) for the K-means clustering algorithm. The K-
596 means algorithm clusters N (the number of all different
597 participants) objects based on the individual feature vec-
598 tors into K (the number of result clusters) clusters with
599 K < N. Considering the observations during the experi-
600 ment, three different types of movement patterns could be
601 identified, therefore clustering was started with three (K)
602 initial clusters. Fig. 5 shows recorded mouse movement
603 routes that support the results from the K-means
604 algorithm.

605Through the algorithm, the participants were assigned
606to the three groups a, b, and c shown in Table 2. The fea-
607tures of these three groups can be described as follows:

608(a) Participants who used the mouse to follow a route
609with a clear movement pattern. Their movement
610routes can be described as their path of attention
611while solving the task. Their number of mouse move-
612ments was medium to low and the average mouse
613movement times were low. These could be used to
614infer new strategies.
615(b) Participants who clicked directly on the faulty part.
616Their movement routes can be described as a straight
617line from the reference point to the component. Their
618number of mouse movements was low and the aver-
619age mouse movement times were medium to high.
620These could not be used to infer new strategies.
621(c) Participants who used the mouse with no clear move-
622ment pattern or did not return the mouse to the ref-
623erence point. Their movement routes do not follow
624an identifiable order. Their number of mouse move-
625ments was high and the average mouse movement
626times were medium. These could not be used to infer
627new strategies.
628

629In the next section the mouse moves in group (a) are
630used to generate hypotheses about the strategies the partic-
631ipants used. Due to learning, all participants changed their
632mouse movement behavior while solving the stimulus set.
633For example, participants from group (b) with practice
634moved even more directly to the answer than in their first
635trials, and some participants from group (a) switched to
636group (b) within their last trials. However, participants
637were assigned to those groups representing their prevailing

Table 2
K-means results used to cluster the mouse movement behavior into three
groups.

Cluster

(a) (b) (c)

Participant Id’s A3_8 A2_9 A1_3
A8_10 A9_7 A5_4
A11_1 A10_6 A6_2
A12_2 A13_3 A7_5
A14_4 G1_7 G20_11
A15_5 G2_8
A16_6 G4_10
G3_9 G6_2
G10_6 G7_3
G11_7 G8_4
G13_9 G9_5
G15_11 G12_8
G21_11 G14_10

G16_11
G17_11
G18_11
G19_11

Total 13 17 5
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638 mouse movement behavior. Further participants or more
639 direct requirements to move the mouse would likely lead
640 to further strategies being discovered.
641 Strategy identification was carried out with all 35 partic-
642 ipants, even if they correlated well with the Diag-H strategy
643 time predictions. We analyzed their mouse movement
644 behavior to get insights into how they solved the task.
645 The participants from mouse movement group (a) were
646 the most useful. Participants from group (b) sometimes
647 started with the behavior of tracing their problem-solving
648 steps, as in group (a), but switched to a direct and uninter-
649 pretable movements. Group (c) could not be used even if
650 participants moved their mouse more during their last tri-
651 als (trial > 15) because their answer times had gotten too
652 fast to distinguish between strategies clearly.
653 The mouse movements of group (a) (noted in Table 2)
654 were examined for strategy patterns. To identify strategies,
655 the mouse movement data were analyzed by hand. The
656 order in which components were attended was noted, for
657 example, ‘‘PS,” ‘‘EB1”, and ‘‘SWITCH1”. These combina-
658 tions were retraced to see if they supported solving the
659 Fault Finding Task. Strategies were identified based on
660 often used interaction patterns in the mouse movement
661 data. Identified patterns that could potently solve the Fault
662 Finding Task were categorized by participants and identi-
663 fied strategy. Patterns that could not be used to solve the
664 Fault Finding Task but showed similarities to already iden-
665 tified strategies were also categorized with that strategy.
666 Thus, subgroups of participants with similar strategy pat-
667 terns and a set of possible strategies were identified. Several
668 strategies correlate well with individual participant’s per-
669 formances. The five new strategies identified that partici-
670 pants used to solve the Fault Finding Task are explained
671 next, then they are tested by comparison to data. The
672 explanation of each strategy is connected to diagrammatic
673 knowledge (Fig. 1), circuit knowledge (Fig. 2), and the
674 DIAG problem space (Fig. 3). All strategies are imple-
675 mented in Herbal and are online available5. It has to be
676 noted that the mouse movement path is used to infer the
677 strategy—the times for each stimulus and the learning
678 across stimuli are driven by the architecture and the strate-
679 gies as hypotheses are tested by comparing their predic-
680 tions to data.

681 5.1. The diagram selection strategy

682 The diagram selection strategy (DiagSelect) was devel-
683 oped based on the mouse movements of participants
684 A13_3, A15_5, G8_4, and G3_9. DiagSelect selects the
685 components by using the circuit knowledge, especially the
686 order of switches, and a check of the interface status. In
687 this strategy, only the components that are on an active
688 path through the device are selected for checking. There-
689 fore, the test component problem space of DiagSelect has

690only the CHECK-LIT test. If the component is lit up, it
691is not faulty. Otherwise, the faulty component is found.
692If a component is not faulty, the circuit knowledge is used
693to find the next switch in the circuit. This procedure of
694component selection and component testing is repeated
695until the faulty component is found. Based on the SA1
696example in Fig. 1, the order of components to check would
697be 8 (as first switch), 1 (to check if it is lit up), 9 (as second
698switch), 3 (to check if it is lit up), 10 (as third switch), and 5
699(light is checked and component is identified as faulty).

7005.2. CheckLitSwitch

701The check lights and then switch strategy (CheckLitS-
702witch) was developed based on the sequence patterns of
703participants A1_3, A9_7, and A12_2. CheckLitSwitch
704solves the Fault-Finding Task with a separation between
705attending to the lights and switches. At first, the interface
706knowledge is used to select the right-most component that
707is lit up on the interface. The second step uses circuit
708knowledge to identify the next switch in the circuit. Its
709switch position is checked to determine the following com-
710ponent. The light of the selected component is checked and
711if it is not lit up, the faulty component is found. Based on
712the SA1 example in Fig. 1, the order of components to
713check would be 3 (lit up and most right), 10 (next switch
714in the circuit), and 5 (light is checked and the component
715is identified as faulty).
716When developing the CheckLitSwitch strategy, it was
717necessary to determine if the participants had examined
718the last faulty component before clicking on it. Theoreti-
719cally, they did not have to because the last checked switch
720always points at the faulty component. Practically, the
721observation of participant A12_2 shows that, after check-
722ing the switch, the participant moved the mouse directly
723to the component but did not click right away. An interpre-
724tation for these observations is that the participants did
725check if the component was lit. CheckLitSwitch represents
726this behavior by performing a light test on the component.

7275.3. Diag-H random selection strategy

728The Diag-H random selection strategy (Diag-H-ranSel)
729is an adaptation of the Diag-H strategy and is based on
730sequence patterns of participants A14_4, G15_11, and
731A5_4. The strategy starts similarly to Diag-H by selecting
732a component and checking if it is faulty. The decision to
733check the diagrammatic or interface indicated component
734is made randomly. Based on Fig. 1, an example order could
735be 2 (as the first random component to check), 9 (as indi-
736cator that 2 is not the faulty component), 5 (as the second
737random component to check), 10 and 3 (as indicator that 5
738is the faulty component). Each component is checked one
739by one and no component is selected twice for checking.
740Therefore, one to seven components may need to be
741checked with Diag-H-ranSel. The basic idea is that not
742all participants seem to have a clear understanding, espe-5 http://acs.ist.psu.edu/code/diag-H/.
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743 cially in the first 10 trials, of what an efficient problem-
744 solving strategy is. Therefore, the assumption is that some
745 of the steps are made with less insight.

746 5.4. The upstream state strategy

747 The upstream state strategy (UpState) is based on the
748 mouse movements of participants A19_11, A13_9,
749 A8_10, and of some participants from mouse movement
750 group (c). The strategy always starts with the faulty com-
751 ponent from the previous trial.
752 The first trial (the power supply, PS) is solved in the
753 same way as the Diag-H strategy. Then the faulty compo-
754 nent is remembered and used as the initial position for the
755 following trial. The strategy is divided into two steps. The
756 first step involves identifying the direction to proceed
757 because if the fault from the previous trial was nearer to
758 PS than the current fault, the strategy has to work back-
759 wards. The direction is determined based on the position
760 of the fault from the previous trial and the light that is lit
761 up and farthest right on the interface. This indicates the
762 direction in which to proceed. In the second step, the strat-
763 egy tests the components in the determined direction until
764 the faulty component is identified. Because the initial posi-
765 tion is based on the faulty component from the previous
766 trial, the strategy works best if the previous and current tri-
767 als have the same fault. Based on the SA1 example in
768 Fig. 1, the order of components to check would be 6 (if 6
769 was the previous fault), 3 (as determination for the direc-
770 tion), 10 (as first step backwards from 6), 5 (as next compo-
771 nent to check), and 3 (as indicator that 5 is the faulty
772 component).

773 5.5. The lit indicator strategy

774 The lit indicator strategy (LitIndicator) is also based on
775 the separation of attending to the lights and switches. The
776 strategy was developed based on the mouse movement data
777 of participants A10_6, G16_11, and partially of the partic-
778 ipants from mouse movement group (c). LitIndicator iden-
779 tifies the faulty component in two steps. First, the number
780 of lit up lights is counted. If the number is zero or three, the
781 faulty components can be identified right away as 1 or 7
782 (Fig. 1). If not, the second step is to use the switches (9
783 and 10) as an indicator for the faulty component. Based
784 on the SA1 example in Fig. 1, the order of components
785 to check would be 1 to 7 (for counting two lit up lights),
786 9 (to check the direction), and 10 (to identify 5 as a faulty
787 component).
788 The six different strategies have different learning curves,
789 represented by the model cycles that are needed to solve a
790 specific problem. Fig. 6 shows the distinct learning curves
791 for each strategy for stimulus set 5 (similar curves arise
792 for the other stimulus orders). The learning curves vary
793 because each strategy learns different things from each
794 problem and transfer to new problems varies based on
795 the strategy and what knowledge is used.

7965.6. Comparison of strategies to the participant data

797The developed strategies were compared to the human
798performance data. The implemented models were used to
799solve the 11 stimulus sets. The results were six series of pre-
800dictions (times to solve each of the 20 tasks) for each par-
801ticipant’s stimulus set (one for each strategy: Diag-H,
802Diag-H-ranSel, CheckLitSwitch, UpState, DiagSelect,
803and LitIndicator). The prediction sets were compared indi-
804vidually to the participant data gathered from the addi-
805tional study.
806Table 3 shows the coefficients of determination (r2)
807between the participants’ solution times and each strategy’s
808response times. The correlations per participant and strat-
809egy were filtered to identify the strategy with the highest
810correlation per participant. Using this method, all 35 par-
811ticipants were categorized into six strategy groups. Table 3
812shows how well each strategy’s predictions correlated with
813each participant’s response times over the last 18 trials
814(trial 1 and 2 were removed due to the effects of the orien-
815tation phase). Participants who fit well to a strategy are
816defined by a correlation of r2 ! 0.219 (which is reliable,
817p < .05, N = 18). In Table 3, 18 participants fulfill this
818condition.
819Table 3 suggests that participants developed different
820strategies to solve the task. Some strategies are used more
821often than others, and some participants’ behavior appears
822similar to a wider range of strategies. As shown in Fig. 6,
823the strategies themselves have some similarity, and this will
824vary by the series of problems. This also explains why some
825participants’ data match several strategies with high corre-
826lations at the same time. Some correlations, because they
827are reliable but smaller than found in Ritter and Bibby
828(2008), suggest that the participant may have used parts
829of multiple strategies. This fact could be caused by several
830circumstances, such as the knowledge of the participants,
831experience with similar tasks, or the ability to concentrate
832on the task. As in the Diag study, not every participant
833could be well predicted.

8345.7. Participants who fit well to a strategy

835Fig. 7 shows the observed and predicted behavior for
836each of the participants who corresponded well to a strat-
837egy, showing how the predicted times match the observa-
838tions. The plots show the correspondence over the series
839of trials while the model and the participants solved the
840same set of problems and learned. This supports the con-
841clusion that participants chose different strategies to solve
842the Fault-Finding Task. Fig. 7 also shows that participants
843A15_5, A5_4, and A7_5 took longer to develop predictable
844strategies as their third trial took around five times longer
845than the predicted values. Because the performance of
846A5_4 and A7_5 fits to the predicted behavior for trials 4–
84720, they probably needed longer to develop their strategies.
848This indicates that the participants not only differ in strat-
849egy but also in the number of trials to develop a strategy.

Q5
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850 Only nine participants correspond well enough (correlation
851 of r2 ! 0.5) to a strategy that the individual predictions
852 indicate that they used only a single strategy.
853 The participants’ college majors were examined to see
854 whether they had training in reading diagrams and
855 schematics and whether their major and strategy choice
856 correlated. Therefore, the participants were grouped based
857 on academic major. The participants with a mechanical
858 engineering major chose either DiagSelect or CheckLitS-
859 witch with an equal probability. The other major groups
860 appeared to use the strategies with an equal distribution.

861 6. Summary of comparisons

862 Five strategies for the Fault-Finding Task were devel-
863 oped based on the analysis of participant behavior and

864the mouse movement and response time clusters from
865an additional user study. The strategies were imple-
866mented in Herbal/Soar to create models to predict solv-
867ing and learning the Fault-Finding Task. These models
868consist of reused (from Diag-H) and newly developed
869strategies. Every strategy model was run to predict the
870number of model cycles for the 11 stimulus sets. Human
871performance for these stimuli came from our additional
872study.
873The participants were assigned to strategies based on
874their behavior correspondence to the predicted behavior
875from the strategies. The correspondence between data
876and model predictions showed that participants develop
877different strategies to solve the Fault-Finding Task. It
878was possible to fit 18 participants to individual strategies
879(r2 between 0.26 and 0.98, p < .05).

Table 3
Participants, the strategies, and coefficients of determination per strategy and real data (r2), sorted by best fit to
strategy. Bold values with * are the best fits for each participant. r2(18) > 0.219 are reliable, p < .05. P next to a
subject indicates that the best fit is plotted below in Fig. 7.
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880 The modeled strategies and the human participants
881 learned over the task trials. We inferred 5 strategies from
882 the participants early mouse movements. These were com-
883 pared to the participant’s response times over 18 trials
884 while they both learned, with 18 participants’ behavior well
885 predicted (and no participant matching two strategies). 17
886 participant’s response times were not matched by the orig-
887 inal strategy (Diag) or the ones inferred from this set of
888 participants. There remain further strategies it appears.

889 7. Discussion and conclusions

890 In this article, we have developed a multiple strategies to
891 explain participants’ performance of a fault-finding task
892 that illustrates the transfer of learning on a problem-by-
893 problem level, and shows that the noisiness that most
894 learning curves show can arise from differential transfer
895 across different problems and different strategies. We first
896 summarize these findings and then pull out lessons for
897 understanding strategy use, and for understanding how
898 strategies lead to variability in the learning curve. We finish
899 by noting some limitations and future work.
900 These results and comparisons describe how behavior
901 across individuals differs on a problem-solving task. We
902 found different problem-solving strategies through examin-
903 ing human behavior. We implemented five strategies to
904 solve the Fault-Finding Task, developed from the observed
905 behavior of participants. So, whereas the early mouse move
906 path is used to infer the strategy, the times for each stimu-
907 lus and the learning across stimuli are driven by the archi-
908 tecture. Comparing the predicted and observed response
909 times showed that participants used a wide range of strate-
910 gies. Based on the correlation between human performance
911 and model predictions, 18 participants (Table 3) could be
912 assigned to at least one of the six strategies.
913 Humans evolve their strategies to improve their perfor-
914 mance across similar problems (Siegler & Shrager, 1984).
915 Implementing these strategies in a cognitive architecture
916 can help to understand the development on a trial-by-
917 trial basis. The models show and help understand the
918 step-by-step learning process while solving the Fault-
919 Finding Task. This analysis illustrates how strategies are
920 used and improved during learning.
921 In this article, the Soar learning mechanism has proven
922 itself capable of performing a task using models created
923 with Herbal. The models’ predictions matched the human
924 behavior at a detailed level, including the rate of individual
925 learning over a series of tasks.

926 7.1. Strategies within a task

927 The number of strategies in the relatively simple Fault-
928 Finding Task is more than have typically been reported
929 for a task before. Siegler (1987) found several strategies
930 for arithmetic problems. Our results show that multiple
931 strategies are used in a somewhat more complex task as

932well, a task that takes from 20 to 5 s to complete as learn-
933ing occurs.
934While some of these strategies appear to be similar, per-
935haps even in a trifling way, the results show that these
936strategies have different learning curves (shown in Figs. 6
937and 7). The strategies also have different complexity, where
938some are simpler than others. This variety of strategies
939influences the process of learning while performing a task
940and how we can summarize how the task is performed
941and learned. The impact of the different strategies on indi-
942vidual performance times implies that even studies with
943simple tasks should be analyzed for the strategies that par-
944ticipants could use while solving the task. Thus, averaging
945over strategies seems particularly dangerous as tasks
946become more complex. If the strategies just do the same
947subtasks in a different order, it might be easier to ignore
948the effects of strategy. If the strategies differ in the informa-
949tion they use, or the order of interaction with a task (as in
950this task), then the effect of strategy will be more
951important.

9527.2. Fault-finding strategies

953We identified five new strategies for the Fault-Finding
954Task. These were used to predict human behavior. The
955strategies were developed based on a user study, but data
956analysis indicates that not all strategies used by subjects
957were identified. The multiple strategies were designed to
958model the aspects of learning and problem-solving in
959human behavior. The strategies always identified the faulty
960component with differing efforts, resulting in different num-
961bers of sub-steps per strategy and therefore different learn-
962ing curves.
963The most frequently used strategies were those that par-
964ticipants could easily combine with their physical under-
965standing (e.g., energy always flows from the PS to LB).
966Therefore, four out of the five strategies check the compo-
967nents forward through the circuit or from left to right on
968the interface. This could mean that the ability to develop
969new strategies is restricted by knowledge about the envi-
970ronment. To fully model a task and how it is performed,
971all possible strategies for solving the task have to be consid-
972ered or at least as many strategies as can be identified. This
973is an elementary step for modeling human behavior,
974including learning and the variability in learning. Even
975though not all participants used multiple strategies to solve
976the task, all participants had to use at least one strategy.
977This result suggests that a range of strategies is more often
978used to perform a task, and that they will have to be under-
979stood and the strategies used have to be identified to more
980fully understand human behavior.
981While the strategies arise from the order in which the
982participants examined the interface objects, the strategies’
983fits to the data series are not based on this order alone.
984The time to perform a strategy and the learning of a strat-
985egy within a series of problems did not come from the data
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986 but came from how the architecture implements and learns
987 through repeatedly solving problems. Thus, while the strat-
988 egy fit appears to be somewhat circular, the architecture
989 provides the speed up due to learning and shows how time
990 decreases with practice.

991 7.3. Variability in the learning curve due to strategy use

992 This work provides insights into the variability of learn-
993 ing, the transfer of learning, and the noisiness that most
994 learning curves show. These predictions by the models sug-
995 gest that the variability of learning may arise from several
996 predictable sources. One source of variability is the differ-
997 ences in tasks when the tasks are examined in detail. The
998 tasks in the stimulus sets vary in difficulty. Diag-H can
999 be seen as a detailed implementation of Anderson’s
1000 (Singley & Anderson, 1989) theory of transfer based on
1001 Thorndyke’s identical elements theory (Thorndike &
1002 Woodworth, 1901). Diag-H predicts that the different ver-
1003 sions of a task when grouped on a high level are different in
1004 a sometimes subtle ways when viewed closely (e.g., the
1005 Fault-Finding Task for the MA or SA fault). In this case,
1006 the different faults vary in time to solve, the amount of
1007 learning, and potential for later transfer of learning.
1008 A second source of variability is the differential transfer
1009 from not just the previous trial but from all previous trials.
1010 Diag-H suggests that this can be quite complicated, but can
1011 also be predicted through a detailed analysis.
1012 A third source of variability, noted by other authors
1013 (Anderson, 2007; Siegler, 1988b), is the participants’ differ-
1014 ences in strategy choices—different strategies will give dif-
1015 ferent learning curves over the same series of problems.
1016 The strategies also vary in how much what has been
1017 learned from previous problems helps with the current
1018 problem.
1019 Finally, the results show that different strategies will
1020 have different learning curves and different transfers across
1021 problem sets. For example, strategies starting at PS (Fig. 1)
1022 are influenced by previous problems differently than strate-
1023 gies that start backward through the circuit. If a strategy
1024 works from left to right on the interface, a fault near the
1025 power supply will transfer little to the following trial where
1026 the laser bank is faulty. A strategy that works from right to
1027 left on the interface will transfer a lot from a fault near the
1028 power supply to the following trial where the laser bank is
1029 faulty. This is because it will see and use the whole circuit
1030 or interface to find the first fault and thereby train the com-
1031 plete task.
1032 Keeping this differential transfer in mind, which our
1033 analysis did, provides another way to find out more about
1034 strategies and learning. Thus, some of the noise found in
1035 learning curves might not be unpredictable noise, just noise
1036 caused by our lack of knowledge of participants’ strategy
1037 variants. The use of strategies and the poor fit for many
1038 participants suggests that further strategies are being used
1039 or that the participants have the different speeds for sub-
1040 components of the process (e.g., faster rule applier or

1041slower working memory), which may appear as a different
1042strategy.

10437.4. Comparison of Diag to Diag-H

1044The comparison between the existing and new model
1045brought interesting insights into how the models predict
1046performance, why they predict similar results, and how
1047we can build on Diag-H. These questions are important
1048for further research on these models and especially for
1049the research on strategies.
1050Diag (Ritter & Bibby, 2008) was used as a basis for com-
1051parison. The main difference is the percentage of partici-
1052pants who used the basic Diag strategy. Ritter and Bibby
1053found that 80% of their participants matched the original
1054Diag model, whereas in our study Diag-H matched only
10554 of our 35 participants (11.4%) with a similarly high cor-
1056relation (r2 > 0.50).
1057The reasons why Ritter and Bibby (2008) predictions fit
1058so well to the participant behavior might be explained by a
1059different experimental setting. Their instructions were more
1060directive and supported by an example of how to solve the
1061task. This different set of instructions resulted in data with
1062a clearer strategy development; it also demonstrates how
1063influential seemingly small changes can be to a study
1064design.
1065Despite the different populations and slightly different
1066methods, the following findings are consonant. First, both
1067studies show that participants used the Diag/Diag-H strat-
1068egy and that the use of individual data and a cognitive
1069model that learns helps to examine how cognitive skills
1070speed up. Second, not all participants in the Diag study
1071used the Diag strategy. Two participants in the Diag study
1072did not fit the predictions. In the new study with less direc-
1073tive study materials, participants developed a range of dif-
1074ferent strategies to solve the Fault-Finding Task.
1075The model still has the problem that it does not explain
1076how initial knowledge is acquired and how the participants
1077know the order in which to apply the operators to solve the
1078problem. We also had no measures of how well the subjects
1079understood the task other than the performance data.
1080Further studies with the Fault-Finding Task should
1081measure the initial understanding of the participants. This
1082would enable a more comprehensive analysis depending on
1083the individual participant’s skills of understanding the
1084Fault-Finding Task. It may even be possible to compare
1085the developed strategy to how well the task was under-
1086stood. The modeling and prediction of errors would pro-
1087vide insights into how to import knowledge of new
1088strategies.

10898. Limitations and future work

1090Although the fit of the multiple strategies in Diag-H to
1091the data suggests that much of the variance in performance
1092can be explained for many participants, the model may be
1093improved in several ways. The fit between observed and
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1094 predicted times suggests to us that even for the strategies
1095 with good predictions, there may be noise in the physical
1096 or mental realization of actions. Or there may be other
1097 not yet imagined sources of noise still to be accounted
1098 for. Also, we did not model individual differences in per-
1099 ception, motor control, the source of errors and subjects’
1100 potential for creating new strategies. Nor did we model dif-
1101 ferences in the creation of strategies or the switching
1102 between them, and these, too, could be important. There
1103 are also other behaviors that could influence performance
1104 on this task. The participants might have shifted between
1105 strategies. Finally, the model does not learn much after
1106 20 trials, and while we do not have the data, it is likely that
1107 participants would continue to get faster after 20 trials.
1108 This suggests that further learning mechanisms, some in
1109 Soar already (Laird, 2012), and perhaps some yet to be
1110 added, will be needed to account for this learning
1111 regularity.
1112 Using automatic or semi-automatic model development,
1113 such as genetic algorithms (GAs) (Kase et al., 2017; Lane &
1114 Gobet, 2005) or other types of machine learning (Best,
1115 2013), could help generate cognitive models. These models
1116 and the strategy models in this article have a lot in common
1117 and can be extended. An automatic method for developing,
1118 testing, and comparing strategies to the observed data
1119 could be developed. By analyzing the strategy models, all
1120 of them were shown to include a process for selecting inter-
1121 face components and testing them. By dividing all strate-
1122 gies into subparts, it might be possible to identify only a
1123 few basic operators or triples of operators. An automatic
1124 process could reorganize these subparts to generate every
1125 strategy possible and compare their behavior to participant
1126 data. In this way, the optimal strategy and very likely alter-
1127 native models for the observed data could be identified.
1128 The workload on the analyst of such a project could be
1129 kept low because the basic operators can be modeled in a
1130 high-level language and then stored. A program could
1131 build the model files, Herbal would compile them into
1132 models, and a GA would do the fitting.
1133 It is interesting that only 33% of the participants who
1134 created their own strategies (in comparison to the 80% by
1135 Ritter & Bibby, 2008, who were more directed) could be
1136 covered by the predictions made by the new strategies. This
1137 shows that there is still a lot to learn about how humans
1138 develop and use strategies.
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