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ABSTRACT 

Intelligent agents and cognitive models are useful for a number of purposes. 

Unfortunately, limited theory-based tool and language support for the creation of 

intelligent agents has made it difficult for modelers to create, debug, and reuse agent 

software.  This dissertation explores how to make it easier to create intelligent agents, and 

especially cognitive models, by taking advantage of established software engineering 

principles.  The benefits of applying software engineering principles to intelligent agent 

development is demonstrated with the creation of a high-level language and development 

environment that embodies these principles, and with an evaluation of this language and 

environment, in use, by students and cognitive modelers. 
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Chapter 1 
 

Introduction 

This dissertation explains how to make it easier to create intelligent agents, and 

especially cognitive models, by taking advantage of established software engineering 

principles.  The benefits of applying software engineering principles to cognitive 

modeling is demonstrated with the creation of a high-level language and development 

environment that embodies these principles, and with an evaluation of this language and 

environment, in use, by students and cognitive modelers.  

Intelligent Agents and Cognitive Models 

An intelligent agent is defined as a piece of software that perceives its 

environment via sensors and acts on that environment by way of effectors (Russell & 

Norvig, 2003).  As shown in Figure 1-1, the mapping from an agent’s sensor readings to 

its actions produces intelligent behavior.  Due to the complexity of intelligent behavior, 

the implementation of this mapping is both interesting and challenging.  The easier it is to 

define this mapping, the easier it will be to create agents. 
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What constitutes an intelligent mapping varies depending on the type and purpose 

of the agent.  As shown in Figure 1-2, a cognitive model is a special type of intelligent 

agent with a distinctive definition for intelligence:  Cognitive models are agents designed 

to simulate human behavior.  Cognitive models succeed when they precisely exhibit 

human behavior: both the good and bad (Das & Stuerzlinger, 2007; Lindsay & Connelly, 

2002; Ritter, Baxter, Jones, & Young, 2000). 

 

 
Figure 1-1: A simple definition of an intelligent agent. 

 

 
Figure 1-2: The difference between intelligent agents and cognitive models. 
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An actual example can help illustrate the difference between an intelligent agent 

and a cognitive model.  Consider the task of dialing a cell phone.  An intelligent agent 

designed to perform this task might utilize a sophisticated algorithm to help it dial 

numbers in less than one second and with 99% accuracy.  A cognitive model, on the other 

hand, such as the one written by Das and Stuerzlinger (2007), for example, can use 

psychologically plausible algorithms that lead to cell phone dialing in the same time and 

accuracy exhibited by a typical novice user.  Like a human, the cognitive model will 

make errors, and this is desirable so that modelers can understand and predict errors, and 

create better systems. 

Both the agent and the cognitive model are useful, but for different reasons.  The 

impressive accuracy of an intelligent agent can help humans dial phones quickly and 

accurately when driving a car, while the cognitive model can predict commons errors, 

and their reasons, which can lead to better cell phone design for novice users.  Prediction 

and psychological insight are two important outcomes of a cognitive model that separate 

it from other types of intelligent agents. 

The different requirements of cognitive models lead to unique applications.  

Cognitive models can be used for training and simulation in domains where actual human 

participation could be dangerous (Jones et al., 1999).  Computer games equipped with 

opponents that follow predictable scripts can be made more interesting using cognitive 

models of human adversaries (Laird, 2001).  In addition, computer interfaces can be 

tested more efficiently using models of human users (Ivory & Hearst, 2001; St. Amant & 

Ritter, 2004). 
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The many uses for cognitive models lead to a varied set of potential model 

developers and users.  For example, military strategists, pilots, game programmers, 

human factors experts, and psychologists, all stand to benefit from the use of cognitive 

models.  Unfortunately, cognitive modeling is hard (Pew & Mavor, 1998; Ritter et al., 

2003; Salvucci & Lee, 2003; Yost, 1993).  I propose that the lack of good software 

engineering practices in the field of cognitive modeling has made the creation and use of 

cognitive models more difficult than it need be. 

Obstacles Facing Efficient Cognitive Modeling 

Figure 1-1 defines agent behavior as the mapping from sensor readings to actions.  

Given the complexity of human behavior, creating this mapping under the unique 

constraints of a cognitive model is challenging (Gluck & Pew, 2001; Jones, Crossman, 

Lebiere, & Best, 2006; Jones & Wray, 2003).  Figure 1-3 suggests that two important 

reasons for this challenge are: (1) there are multiple competing cognitive architectures, 

(2) cognitive modeling requires a variety of skills.  The literature review in Chapter 2 

supports the existence of these two obstacles. 

 

 
Figure 1-3: Two important obstacles inhibiting the creation of cognitive models. 
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One important obstacle facing cognitive modelers is the use of many different 

cognitive architectures, and their differing theories about how human behavior arises.  

The use of different architectures makes it difficult to compare, reuse, and integrate 

models (Gluck & Pew, 2001; Jones, Crossman, Lebiere, & Best, 2006; Jones & Wray, 

2003).  For example, modelers cannot reuse behavior written for the ACT-R cognitive 

architecture within the Soar architecture. 

A second important obstacle facing modelers is the varied skill set required of 

those who build cognitive models.  Creating cognitive models often requires significant 

training in many areas (Salvucci & Lee, 2003).  In most modeling environments (e.g., 

ACT-R, Soar, EPIC, JACK, and Jess), creating cognitive models requires computer 

programming skills; knowledge of psychology; and expertise in the domain being 

modeled.  Unfortunately, few people possess all of these skills.  Chapter 2 provides a 

detailed and supported discussion of this obstacle. 

Viewing cognitive modeling as a complicated software engineering problem 

seems to be a natural approach.  Creating complex software is not a new problem, and the 

software engineering community has developed strong theories and principles about how 

to solve complex problems with software solutions.  This dissertation illustrates how 

applying these lessons appropriately will help alleviate the obstacles shown in Figure 1-3. 

A Theory for Simplifying Cognitive Modeling 

The aim of the research presented here is to alleviate the obstacles shown in 

Figure 1-3.  This research accomplishes this by applying three broad software 
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engineering principles to the cognitive modeling task.  The focal theory1 offered here 

alleviates these obstacles by implementing a high-level language, a maintenance-oriented 

development environment, and by providing strong support for reuse within and across 

models.  Figure 1-4 depicts this theory and Table 1-1 summarizes this focal theory as a 

set of hypotheses. 

 

                                                 

1 Focal theory is used here as defined in Phillips and Pugh (2005): a precise description of the nature of a 
problem and the focus of the research, along with any related hypotheses. 

 

 
Figure 1-4: An illustration of the focal theory. 

Table 1-1: The hypotheses forming the foundation of the focal theory. 

Hypotheses 
1. Cognitive modeling is difficult because there are multiple cognitive 

architectures in use.  This makes it difficult to compare, reuse, and integrate 
models. 

2. Cognitive modeling is difficult because the modeling task requires modelers to 
acquire a variety of complex skills. 

3. Applying three broad software engineering principles to the cognitive modeling 
task will alleviate the two obstacles listed above.  Specifically, the use of high-
level languages, maintenance-oriented development environments, and integral 
support for reuse, will simplify the cognitive modeling task. 
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The next section further introduces this focal theory.  Chapter 2 and Chapter 3 

provide a more detailed background of the existing research that supports this focal 

theory. 

High-Level Languages and Compilers 

Software engineers have used high-level languages and compilers with great 

success (Auerbach et al., 1991; Beck & Perkins, 1983; Brooks, 1987; Daly, 1977; 

Maxwell, Wassenhove, & Dutta, 1996).  A high-level language and compiler allows the 

programmer to express a model using abstract terminology.  Consider the two methods 

shown in Table 1-2 used to describe the process of fetching a beer from the refrigerator. 

The high-level description in the first column is more concise and easier to 

specify.  However, to carry out these instructions a system must translate them into the 

lower-level counterparts shown in the second column.  A piece of software called a 

compiler often performs this translation 

Table 1-2: Two different ways to describe the process of fetching a beer. 

High-Level Description Low Level Description 
1. Walk to fridge 
2. Open door 
3. Get beer 
4. etc., … 
5.  

1. Take one step forward 
2. Take another step forward 
3. Take another step forward 
4. Raise arm 
5. Grasp door handle 
6. Pull 
7. etc., … 
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Table 1-3 provides a more realistic example that illustrates the use of a high-level 

programming language called Java to describe the process of taking the factorial of an 

integer.  A compiler translates the Java description into a low-level intermediate code.  

Table 1-3 shows the low-level representation that the compiler generates, as well as its 

high-level counter part.  It is clear in this table just how much easier the high-level 

representation is to create, read, and understand than the low-level representation that is 

ultimately executed by the Java virtual machine. 

The focal theory presented here proposes that the same principle will simplify the 

cognitive modeling process by allowing a domain expert to describe the model’s behavior 

more concisely using a high-level modeling language.  If modelers use a high-level 

language appropriately, compilers can make it easier to compare, integrate, and reuse 

models across the low-level representations used by architectures. 

Of course, it is important to consider the tradeoffs when using high-level 

languages.  For example, a compiler can translate a high-level representation to a low-

Table 1-3:  Two different ways to describe the factorial calculation. 

High-Level Description Low-Level Description 
public static int factorial(int d) 
{ 
 if (d == 1) 
  return 1; 
 else 
  return d * factorial(d-1); 
} 

0:   iload_0 
1:   iconst_1 
2:   if_icmpne 7 
5:   iconst_1 
6:   ireturn 
7:   iload_0 
8:   iload_0 
9:   iconst_1 
10:  isub 
11:  invokestatic #25; 
14:  imul 
15:  ireturn  
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level counterpart in many different ways.  The compiler chooses one way, but it may not 

always be what the programmer desired.  As a result, many popular high-level 

representations (e.g., C, C++, and Java) make it possible to override the translation 

provided by the compiler, and mix low-level representations with high-level 

representation when needed.  The same option should exist for high-level modeling 

languages.  The ability to program at different levels of abstraction is important. 

Maintenance-Oriented Development Environments 

For complex systems, the process of software maintenance is the most expensive 

phase of a system’s development life cycle (Boehm, 1987; Brooks, 1995).  Developers 

spend a lot of time performing maintenance (Ko, Myers, Coblenz, & Aung, 2006; Tassey, 

2002).  During maintenance, developers typically perform three types of tasks: fixing 

flaws, implementing incremental updates, and adapting to changes in the system’s 

environment (Brooks, 1995).  Table 1-4 lists examples of these types of tasks. 
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Fortunately, the cost of maintenance has not gone unnoticed by the software 

engineering community, and modern software development tools have incorporated rich 

support for the tasks listed in Table 1-4 (Coblenz, Ko, & Myers, 2006; Cubranic, 

Murphy, Singer, & Booth, 2005; DeLine, Czerwinski, & Robertson, 2005; Ko & Myers, 

2004; Lawrance, Bellamy, Burnett, & Rector, 2008; Lewis, 2003; Reiss, 2006).  

Development tools with this type of support are called maintenance-oriented 

development environments, and at least one has been successful at reducing maintenance 

programming tasks by as much as 35% (Ko, Aung, & Myers, 2005).  Chapter 3 discusses 

these tools in more detail. 

Table 1-4: A description of typical software maintenance tasks. 

Maintenance Types Example Tasks 
Fixing flaws in the system 1. Fix the system so that it does not crash 

when saving a file on the network 
2. Change the address book so that 

names are sorted properly 
3. When editing the employee list, 

disable the delete button if no 
employee is selected 

Performing incremental updates 1. Change the existing employee payroll 
report so that it includes employee 
numbers 

2. Add the ability to print reports in 
landscape orientation 

3. Provide the current date as a default 
when entering a new meeting note in 
the system 

Adapting to changes in the system’s 
environment 

1. Change the report generator to support 
the newly installed printer 

2. Change the interface to take advantage 
of the new operating system widgets 

3. Change the interface to take advantage 
of new wide-screen monitors  

 



11 

Modelers are also likely to spend considerable time maintaining their models and 

should benefit equally from similar tools.  The theory presented here suggests that 

creating cognitive modeling environments that are maintenance-orientated can reduce the 

obstacles shown in Figure 1-3. 

Support for Reuse 

Support for reuse is the final component of the theory illustrated in Figure 1-4.  

The software engineering community has continually reaffirmed the value of software 

reuse (Boehm, 1987; Brooks, 1995; Krueger, 1992).  As illustrated in the following 

example, reuse of software is common in today’s applications.  Consider the typical web-

based application, shown in Figure 1-5, built almost entirely from existing components. 

On the client side of the application, the graphical user interface is provided by an 

existing web browser that offers reusable functionality such as scrolling, HTML 

rendering, printing, and hyperlink navigation.  Reusable software components also 

support the networking infrastructure used by web-based applications.  This software 

 

 
Figure 1-5: An example of software reuse in a modern web-based application. 
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reuse provides developers with reliable and ubiquitous networking for a very low cost.  

Finally, on the server side, application servers and database management systems provide 

security, transaction management, and data management. 

The combination of all of these reusable components provides an infrastructure 

that allows developers to spend more time on the business logic unique to the application, 

and less time developing solutions that already exist. 

The hypotheses shown in Table 1-1 state that cognitive modeling can benefit from 

the similar gains provided by reuse in software engineering.  For example, if a renowned 

vision researcher creates a cognitive model of character recognition, and a famous 

psychologist specializing in motor skills creates a model of manual dexterity, then a 

graduate student in human computer interaction should be able to reuse these models to 

create an agent that uses a keyboard. 

This thesis proposes that this type of reuse would help simplify cognitive 

modeling.  However, as will be shown in the following two chapters, existing modeling 

environments and languages do not support reuse.  Although some counter-examples 

exist (John, Remington, & Steier, 1991; Lewis, Newell, & Polk, 1989), reuse is an 

infrequent occurrence in the modeling community. 

Preview of Contributions and the Structure of this Thesis 

This dissertation demonstrates the benefits of applying software engineering 

principles to cognitive modeling development with the creation of a high-level language 

and development environment, and with evaluations of this language and environment by 
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students and cognitive modelers.  Several contributions arise from this work in areas such 

as modeling languages, maintenance-oriented modeling environments, model reuse, and 

education.  This section only previews these contributions.  Chapter 8 provides a more 

detailed discussion. 

This work’s contributions towards better modeling languages include the only 

high-level modeling language with both explicit support for a popular theory of cognition 

and the ability to translate models into multiple architectures.  This contribution includes 

an empirical validation of the high-level language with positive results. 

This work’s contributions towards maintenance-oriented development 

environments include the only cognitive modeling environment that has support for 

simultaneously creating models at three different levels of abstraction: graphically, 

textually at a high-level, and textually at a low-level.  In addition, this environment brings 

recent research in software engineering to the modeling community to support better code 

navigation.  Results from empirical studies show this environment is both useful and 

usable. 

With respect to model reuse, this dissertation contributes extensions to a popular 

theory of cognition that provide an additional level of granularity.  This added granularity 

allows for better reuse within and across models.  In addition, the high-level language 

presented here is the only library-centric modeling language.  Modelers must create 

libraries, and can search these libraries for relevant components using methods not yet 

applied to modeling environments. 

This dissertation also makes educational contributions.  For example, this work 

presents new graphical environments that are based on examples given in a popular 
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textbook and a popular modeling tutorial.  This allows students to work in graphical 

environments that mirror the examples given in learning materials.  In addition, Faculty 

has exposed 89 undergraduates and 9 graduates to modeling using this work, and more 

will follow in the fall 2008 semester.  Students at Tufts University have also used this 

work to gain a better understanding of high-level behavior representation languages.  

Finally, the three levels of abstraction that this work supports appear to be useful for 

teaching low-level rule-based programming.  Observations of participants have showed 

that editing the high-level graphical representation directly, and then viewing the 

generated low-level productions, is a useful way to learn the low-level representation. 

This dissertation is composed of four sections: the focal theory, the background 

theory, the data theory, and contributions/future work2.  This chapter introduces the focal 

theory (shown in Figure 1-4), which describes the nature of the problem along with any 

related hypotheses. 

Chapter 2 and Chapter 3 give the background theory, which supports the focal 

theory by synthesizing the current methods used by the cognitive modeling community, 

with useful software engineering principles.   

Chapter 4 thru Chapter 7 provides the data theory, which describes the precise 

methods used to realize the focal theory and the results of the evaluations of these 

methods.   

Chapter 8 concludes this dissertation with a description of the contributions that 

this research has made as well as ideas for future work. 

                                                 

2 The use of this structure for a Ph.D. is described and justified by Phillips and Pugh (2005). 



Chapter 2 
 

The Current State of Cognitive Modeling 

To understand the problems facing cognitive modeling, this chapter presents the 

techniques currently used by modelers.  The following reviews behavior representations 

methods, low-level behavior representations, popular cognitive architectures, modeling 

environments, and reuse in cognitive modeling.  

Methods of Behavior Representations 

To produce software that exhibits intelligent behavior, a representation that 

describes the behavior is required.  Modelers typically develop models using 

connectionist representations, symbolic representations, or some combination of the two. 

Connectionist Representations 

Parallel Distributed Processing (PDP) (Rumelhart & McClelland, 1987), also 

known as neural networks, uses computer programs to represent behavior by mimicking 

the parallel processing in the brain.  Modelers often refer to this method of behavior 

representation as a connectionist approach because it uses networks of connected 

neurons. 

The brain is made up of some 10 billion neurons and 60 trillion connections 

between them (Shepherd & Koch, 1990), and these connections form a network that 
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allows the brain to function.  Neural networks work in the brain as follows:  Signals 

propagate from one neuron to the next using electro-chemical reaction.  Each neuron 

connects to other neurons via an axon and the connection takes place at a synapse.  The 

synapse releases a chemical substance that changes the electrical potential of the cell 

body.  When this potential reaches some threshold, a pulse sends electricity down an 

axon and towards other neurons.  This signal changes the electrical potential of other 

neurons, that may or may not reach their potential, leading to a continuation of the 

electrical signal (Negnevitsky, 2004). 

Neural networks in the human brain learn by changing the threshold at which they 

fire, and by forming new connections or even migrating to other parts of the network.  

The flexibility of the network is what makes it possible for the network to change and for 

humans to learn.  Because the changes are linked to feedback about what is “right”, the 

network will change to produce new and more correct outputs (Negnevitsky, 2004). 

Artificial neural networks consist of a set of interconnected simulated neurons.  

Each neuron has several inputs and only one output.  All networks have a set of input 

neurons (the input layer) that can be activated and propagate a signal through a weighted 

link (the simulated axon).  These signals eventually reach a set of internal neurons (the 

middle or hidden layer).  When activated, the internal neurons produce a set of output 

signals that move across connections that lead to the final output of the network (called 

the output layer) (Bigus & Bigus, 2001; Negnevitsky, 2004; Ripley, 1993).  Figure 2-1 

shows a neural network with a single hidden layer. 
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Using known input/output pairs, researchers can train a network with a single 

hidden layer to model a continuous function.  It takes two hidden layers to model a 

discontinuous function (Minsky & Papert, 1987; Negnevitsky, 2004). 

The network calculates the total input activation energy for a neuron using the 

weighted sum of the inputs.  The neuron does not propagate the signal unless the input 

signal exceeds some threshold.  If the threshold is met, the neuron emits “+1”; otherwise 

it emits “-1”.  This type of output (based on some threshold) is called an activation 

function.  Specifically, the activation function described above (+1 or -1 based on a 

threshold) is called the sign function.  There are many other types of activation functions 

including step, sign, linear and sigmoid.  Different activation functions are useful for 

different types of problems (Bigus & Bigus, 2001; Negnevitsky, 2004; Ripley, 1993). 

Researchers use back propagation to train neural networks. Back propagation 

compares the produced output to a desired output, and the error between these outputs 

 

 
Figure 2-1: The architecture of a typical artificial neural network (Negnevitsky, 2004). 



18 

 

propagates through the network (from right to left) so that the weights on the links 

between the neurons change to reduce the error.  This back propagation is continued for 

several iterations until the desired criteria are met (Bigus & Bigus, 2001). 

The formula used to adjust the weights during back propagation results in each 

weight being adjusted using an error gradient; which is calculated using the error signal 

(the difference between actual and desired output) and the derivative of the activation 

function (Bigus & Bigus, 2001). 

A major advantage of using neural networks to represent behavior is that they are 

easy to use.  Neural networks do not require the explicit encoding of domain knowledge.  

Instead, the network learns this knowledge with a matrix of coefficients and a set of 

training data.  Modelers present training data to the network, the network produces a 

result, and the network updates its coefficients based on the correct result according to 

the training data.  In addition, many neural network systems (see, for example, Rumelhart 

& McClelland, 1987) allow networks to be created and trained by simply entering 

information using a graphical user interface; no programming is required. 

However, neural networks also have disadvantages.  The main criticism of neural 

networks is what Minsky called the problem of opacity (1990).  The problem of opacity 

is that a network represents knowledge by way of numerical weights, and this knowledge 

has very little apparent meaning to an observer, when related to the domain in which the 

model operates.  Essentially, neural networks serve as a black box that accepts input and 

produces output, but the relationship between the input and the output is not intuitive.  

This makes it difficult to understand, explain, and trust behavior generated by 

connectionist approaches. 
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Symbolic representations, which the next section covers, are much less opaque.  

Figure 2-2 illustrates his difference by comparing how symbolic and connectionist 

representations might represent the concept of an apple. 

Notice in Figure 2-2 how transparent the symbolic representation is.  This 

transparency can be essential for cognitive models, especially when the purpose of the 

model is to provide insight into human cognition.  It is also important for intelligent 

agents when users require an explanation of the agent’s behavior for the justification of 

the agent’s actions.  Unfortunately, the explicit encoding of domain knowledge that 

provides for this transparency leads to new challenges.  The rest of this chapter 

introduces symbolic representations and the challenges they create, and the rest of this 

dissertation deals with alleviating these challenges. 

Symbolic Representation 

Haugeland (1987) provides an excellent description of the use of symbolic 

manipulation in computational psychology.  Haugeland explains symbolic manipulation 

 

 
Figure 2-2: An illustration of the opacity problem with neural networks (Minsky, 1990). 



20 

 

by introducing the concept of a formal system.  A formal system here consists of a set of 

symbols; a starting point for the arrangement of the symbols; and a set of rules about how 

the symbols can be manipulated.  Games such as chess and checkers are formal systems. 

Table 2-1 shows an example of a formal system in a particular state.  This system 

assigns meanings to symbols such as H and S (e.g., Hungry and Sally).  Relationships can 

also be modeled using symbols.  For example, Sally is hungry might be represented using 

H(S). 

Programs used for symbolic modeling can take the form of production systems 

(Russell & Norvig, 2003).  A production system is a formal system that consists of two 

categories of symbol groupings: facts and rules.  Facts represent declarative memory: 

memory that aids in the recollection of simple facts similar to those shown in Table 2-1.  

Rules, also called productions, represent procedural memory, which is memory that aids 

in the recollection of procedures.  The formal system introduced in Table 2-1 could 

include the following production: IF H(S) and O(A, T) THEN E(S, A) and REMOVE H(S) 

This production declares that if Sally is hungry, and there is an apple on the table, 

then Sally should eat the apple, and as a result, she should no longer be hungry.  Rules 

Table 2-1: An example of a formal system in a particular state. 

Symbol Meaning 

A Apple 

T Table 

S Sally 

H(S) Sally is Hungry 

E(S, A) Sally eats the Apple 

O(A, T) The apple is on top of the table 
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like the one shown above interpret and manipulate symbols, and when meaning is 

assigned to these symbols (e.g., A means apple), mental processes such as memory, 

reasoning, decision making, and problem solving can be modeled (Newell & Simon, 

1972). 

Artificially Intelligent systems (AI systems) can be production systems that 

attempt to model expert reasoning without concern for cognitive plausibility.  These 

models do not attempt to generate predictions about human behavior, but instead model 

perfectly rational thought.  One common type of AI system is the expert system, and 

there are several examples of the successful use of expert systems.   

DENDRAL is an expert system that reasons over mass spectrometer data to 

analyze chemicals.  Its creation was funded by NASA to analyze chemicals found in the 

soil on Mars (Buchanan, Sutherland, & Feigenbaum, 1969).  DENDRAL embodied a set 

of productions based on the experience gained by analytical chemists, and could quickly 

and accurately analyze chemicals using these rules of thumb.  Other successful uses of 

expert systems include MYCIN (Shortliffe, 1976), an expert system used for medical 

diagnosis, and PROSPECTOR (Duda, Gaschnig, & Hart, 1979), an expert system used 

for mineral exploration. 

AI systems do not typically use theories of cognition and are less interesting as 

true models of human behavior.  
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Low-Level Behavior Representation Languages 

Two categories can classify behavior representation languages: low-level 

behavior representation languages and high-level behavior representation languages.  

Many computer programs use a low-level programming language called assembly 

language, which is not that far removed from the language of ones and zeros understood 

by the computer.  High-level languages, on the other hand, contain instructions that map 

more explicitly to a problem domain, and therefore create a level of abstraction from the 

actual implementation of the system.  Chapter 3 covers in detail the advantages high-level 

languages have over low-level languages. 

There are a wide variety of behavior representation languages in use today (some 

connectionist, some symbolic, and some a hybrid of both), some are ideal for the creation 

of intelligent agents, while others are useful for cognitive models.  The following is a 

review of four popular representations (i.e., Jess, Soar, ACT-R, and EPIC) that provides a 

clear picture of the state-of-the-art in low-level behavior representation and illustrates the 

problems noted in the introduction. 

The languages reviewed here are high-level languages with respect to the level of 

abstraction they provide above the machine code.  However, from the perspective of the 

cognitive modeler, these languages are considered low-level behavior representation 

languages because they are programmed using rules rather than higher-level descriptions 

of behavior (Jones, Crossman, Lebiere, & Best, 2006).  The fact that the support for 

behavior provided by these languages is implicit in a set of rules is one reason why they 

are so difficult to use.  
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The Jess Expert System Shell 

Jess is an example of a popular expert system that can be used to create a variety 

of different intelligent agents (Friedman-Hill, 2003).  Jess is an expert system shell 

written in Java.  It is fast, lightweight, and easy to integrate with existing Java 

applications.  Programmers do not typically base expert systems written in Jess on 

psychological theories and therefore are not usually presented as psychologically 

plausible. 

The behavior representation language used by Jess derives from an older rule-

based language called CLIPS (Giarratano & Riley, 1998).  This functional programming 

language consists entirely of function calls specified as parenthesized lists.  Jess includes 

strong support for rules and, as stated earlier, this dissertation considers them a low-level 

behavior representation language.   

Unlike traditional programming languages that solve problems in a 

straightforward and predictable way, rule-based languages, like the one used by Jess, are 

well-suited for problems that consist of complicated control-flows and a tangled web of 

possible decisions.  Control flow in rule-based languages, like Jess, emerges from the 

rules governing a particular problem.  The creation and encoding of these domain specific 

rules requires both computer programming skills and domain expertise.  Unfortunately, 

domain experts typically do not possess strong computer programming skills and 

programmers typically do not possess the required domain expertise. 

Figure 2-3 shows the Jess architecture, which is typical of many rule-based 

systems.  The inference engine operates in cycles in which the pattern matcher finds rules 
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in the rule base that apply to the particular situation, and therefore belong to the agenda.  

A rule moves to the agenda when its antecedent (the if-part of the rule) has support from 

facts in working memory.  If multiple rules in the agenda, a conflict resolution strategy 

selects a single rule for execution.  Finally, the selected rule it is executed leading to 

changes in working memory, and the cycle is repeated (Friedman-Hill, 2003). 

Unfortunately, Jess can be difficult to use, especially for people without 

considerable programming experience.  The lack of organization of the rules is a major 

reason for the difficulty encountered by rule-based programmers.  Clancey (1981) argues 

that the complexity inherent in traditional production systems like Jess is a direct result of 

the fact that problem solving strategy is hidden implicitly within the structure of the rules 

(e.g.,  the order in which they fire). 

 

Figure 2-3: The architecture of the Jess rule-based system (Friedman-Hill, 2003). 
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Clancey (1981) studied the MYCIN expert system from the perspective of a 

teacher and discovered that “there are points of flexibility in the (rule-based) 

representation that can be easily exploited to embed structural and strategic knowledge in 

task rules” (p. 64).  As a result, people other than the original programmers find it hard to 

understand and maintain the rules. 

To simplify the creation and maintenance of production systems, there is a need to 

formalize the structure and strategy used by programmers so that it is explicit in the code.  

Clancey (1981) asserts that “Making explicit this structural, strategic and support 

knowledge enhances the ability to understand and modify the system” (p. 1).  However, 

the tradeoff is that the implicit structure of these rules leads to flexibility and emergent 

behavior. 

A major problem when programming Jess (and other rule-based systems) is the 

effort spent on translating the problem solving strategies used by the domain expert into a 

set of interrelated Jess rules.  An abstract representation, in the form of a high-level 

language, that made it possible to explicitly represent a given problem solving strategy, 

could make Jess, and other rule-based systems, easier to program. 

Cognitive Architectures 

Software systems created to implement unified theories of cognition are referred 

to as cognitive architectures (Newell, 1990), and they provide the infrastructure to create 

models that are based on the supporting theory.  The theory embedded in these 

architectures makes it possible to create models that mirror and predict human behavior.  
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Unlike AI systems (e.g., Jess), cognitive architectures are supposed to provide a 

theoretical base that is used to express the structure and problem solving strategy of the 

agent, rather than making this strategy implicit within a set of rules.  As will be 

demonstrated shortly, popular cognitive architectures do not actually achieve this goal. 

Despite this overarching theory, current cognitive architectures (e.g., Soar, ACT-

R, EPIC) are programmed at the production level and suffer from the same exploitation 

problem (introduced by Clancey) that plagues rule-based programming languages like 

Jess.   In addition, there are a number of cognitive architectures currently in use, and it is 

very difficult to compare, reuse, or integrate models created using different architectures. 

There are several different cognitive architectures available, including Soar, ACT-

R, and EPIC, and the next few sections briefly summarize them.  The review provided 

here is highly representative of the state of cognitive architectures.  More detailed 

reviews of cognitive architectures are also available (Morrison, 2003; Newell, 1990; 

Ritter et al., 2003). 

Soar 

Soar is an instantiation of Allen Newell’s Unified Theory of Cognition (UTC) 

(Newell, 1990), and as such, provides the modeler with the mechanisms and structures 

necessary to use Newell’s theory of cognition to model behavior.  Soar implements this 

theory implicitly using rules rather than explicitly in the constructs proposed by the 

theory. 
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Soar supports the Problem Space Computational Model (PSCM) (Lehman, Laird, 

& Rosenbloom, 1996; Newell, Yost, Laird, Rosenbloom, & Altmann, 1991).  In Soar, 

behavior is defined as movement through a problem space (see Figure 2-4), which is a 

high-level organizational tool purported to be used by the brain to partition knowledge in 

goal-relevant ways. 

 

As shown in Figure 2-4, a problem space is a set of states (i.e., S0, S1) and a set of 

operators (i.e., O0, O1).  A task is formulated when a problem space (P) is adopted, a 

desired goal (D) is set, and the state of the problem space (S0) is initialized.  The task is 

attempted as operators are selected and applied to the current state, transforming the 

problem space into a new state.  Finally, the task terminates when the current state 

matches the goal (Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). 

Soar supports two different types of memory: long-term memory (LTM) and 

working memory (WM).  Applying general knowledge in LTM leads to changes to WM 

 

 
Figure 2-4: Behavior as movement through a problem space (Newell, Yost, Laird, 
Rosenbloom, & Altmann, 1991). 
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that can result in the application of operators that move the goal-context towards the goal.  

This process takes place in regular intervals defined as the decision cycle.  The decision 

cycle simulates rational behavior, which consists of applying general knowledge to all 

know facts in a situation to generate possible responses.  Soar evaluates these possible 

responses and chooses the best response. 

Unfortunately, there is a large gap between the theory defined by the PSCM and 

the language actually used to program Soar.  Despite the high-level approach proposed 

for the architecture, modelers program Soar at the symbolic level as a production system.  

The language used by Soar is an extremely expressive low-level behavior representation 

language that allows for the creation of powerful cognitive models.  However, the 

elements of the PSCM are not obvious when examining Soar productions.  If given the 

code for a Soar model, a novice would not be able to point out the basic PSCM 

components that form the structure of the model.  Greg Yost (1993) described this 

problem succinctly: “Soar productions do not correspond in any obvious way to PSCM 

concepts.  The productions have a uniform structure with no syntactic differentiation with 

respect to problem space concepts” (p. 29). 

Naturally, the problem discussed above makes it more difficult to create models 

in Soar.  For example, a psychologist that is already well versed in PSCM concepts must 

learn how to represent these concepts using Soar productions.  Because these productions 

do not map very clearly to the PSCM, this translation can be difficult, and might require 

skills that psychologists and other domain-experts may not have, or might not care to 

have. 
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ACT-R 

Developed by John Anderson at Carnegie Mellon University, ACT-R is another 

popular cognitive architecture that is based on a theory of cognition initially called: 

Adaptive Control of Thought-Rational (ACT-R) (1993).  ACT-R models rationality using 

a cost-benefit model of decision-making.  ACT-R models choose between strategies by 

maximizing the probability of success and minimizing the costs in computation 

(Morrison, 2003). 

ACT-R supports declarative and procedural knowledge.  ACT-R represents 

declarative knowledge using chunks and procedural knowledge using rules.  ACT-R 

allows for a modular representation of behavior, where each module is responsible for a 

specific function.  These modules communicate using a central production system and by 

placing information in data in buffers.  The ACT-R theory consists of several modules 

that communicate via buffers and a central production system (Anderson et al., 2004).  

Figure 2-5 shows these modules, buffers, and production system.  Interestingly, many of 

the architectural pieces map directly to regions of the brain. 
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ACT-R is a hybrid system in which the symbolic reasoning of a formal system is 

teamed with sub-symbolic connectionist learning to produce behavior.  As described 

earlier, sub-symbolic methods rely on assigning weights to various components (e.g., 

facts or rules) and those components become active only when their weights reach certain 

activation levels.  By adjusting the weights based on feedback, the behavior of the system 

changes, resulting in learning. 

The programming language used by ACT-R is implemented in Lisp (McCarthy, 

1960), which is a functional programming language popular in mathematics and artificial 

intelligence.  Similar to Jess, Lisp code consists of functions written as parenthesized 

lists.  Lisp does not contain a rule-based component.  Instead, ACT-R augments Lisp 

with constructs that add chunks and rules.  ACT-R interprets  code resulting in rule-based 

processing that forms the ACT-R production system. 

 

 
(DLPFC stands for dorsolateral prefrontal cortex; VLPFC stands for ventrolateral 

prefrontal cortex) 

Figure 2-5: The organization of information in ACT–R 5.0 (Anderson et al., 2004). 
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Like Soar, modelers program ACT-R at the rule level.  As a result, some of the 

higher-level cognitive constructs in ACT-R are not as explicit as they could be with a 

high-level language.  This makes it difficult to ascertain the structures and problem 

solving strategies used by an ACT-R model when looking at the ACT-R Lisp code.  This 

can be especially difficult for modelers without extensive programming skills.  However, 

understanding and utilizing the psychological theory supported by ACT-R often requires 

knowledge of psychology, and implementing a model for a specific domain often 

requires a subject matter expert.  The need for programming skills, knowledge of 

psychology, and domain knowledge complicates the model creation process.   

EPIC 

The Executive Process Interactive Control Architecture (EPIC) is another popular 

cognitive architecture (Kieras & Meyer, 1997).  The design of EPIC couples information 

processing, and perceptual and motor activity, with a cognitive theory of procedural skill.  

EPIC provides perceptual processors, such as a visual processor and an auditory 

processor, and motor processors for the hands, eyes, and vocal organs.  In addition, EPIC 

simplifies the interaction between the model and the computer interface by simulating 

screen elements and keys.  

Similar to ACT-R and Soar, EPIC is a production system.  Modelers are required 

to provide a description of the simulated task environment, task-specific sensory 

parameters, and a set of productions (rules).  EPIC represents productions using the 

Parsimonious Production System (PPS) interpreter.  There is no high-level language 
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support for the theory supported by EPIC: modelers are required to program at the rule-

level.  Consequently, EPIC is also difficult to program. 

Summary 

Table 2-2  summarizes the previous review of low-level behavior representation 

languages.  Importantly, not one of the languages shares the same theory of cognition.  

This makes it difficult for modelers to compare, reuse, and integrate models across 

architectures.  In addition, all languages require models to be represented using rules that 

form a low-level representation of the actual theory the architecture supports.  This 

results in languages that are difficult to use, especially for modelers with little or no 

programming experience. 

High-Level Behavior Representation Languages 

The low-level behavior representation languages just reviewed do not provide 

explicit support for the structures and problem solving strategies used by the modeler to 

Table 2-2: A summary of low-level behavior representations. 

Architecture Theory Language Type 
Jess None Rule-based Symbolic 
Soar PSCM Rule-based Symbolic 

ACT-R ACT-R Rule-based with 
activations 

Hybrid  
(Symbolic and 
Connectionist) 

EPIC EPIC Rule-based Symbolic  
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produce agent behavior.  In all these cases, the structures and strategies are implicit 

within a set of rules. 

The absence of higher-level languages that incorporate cognitive theory as an 

explicit object in the language (instead of using rules) has not gone entirely unnoticed 

(Ritter et al., 2006).  In response, researchers have begun developing higher-level 

languages that simplify the encoding of behavior by creating representations that map 

more directly to a theory of how behavior arises in humans.  In other words, the theory is 

explicit in the language. 

The following is a review of current high-level languages used to develop 

cognitive models.  While this is not a complete review of all high-level modeling 

languages, it is representative of the current state of high-level languages in use. 

RAPs 

A good example of a high-level agent programming language that reduces the role 

of rules is the language used by Reactive Action Packages (RAPs).  RAPs is a plan and 

task representation language that is designed to specify tasks and plans in a way that is 

flexible enough to deal with the uncertainty of an agent’s interaction within a complex 

and unpredictable world (Firby, 1989). 

The RAPs language makes it possible to create a hierarchical set of building 

blocks that combine in different ways to generate a plan for achieving a task.  As the 

environment changes, different methods of achieving a task make the plan dynamic. 
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Each RAP divides into three parts: a task goal, a success clause that determines if 

the goal is satisfied, and one or more methods that accomplish the goal.  Each method 

further divides into two associated sections: the steps involved in the method and the 

context in which those steps apply. 

One key lesson from RAPs is that the high-level language provided by RAPs 

decreases the degree of programming skills needed to create agents.  Importantly, RAPs 

accomplishes this without the use of explicit rules.  In addition, RAPs can be combined 

easily to form more complicated, dynamic behaviors (Firby, 1989). 

RAPs also uses language constructs to accomplish common needs, which can be 

difficult to implement using rules.  For example, consider a looping construct, which is 

not only difficult to implement in rules, but is also difficult to recognize within a rule-

based program:  RAPs makes looping constructs explicit using a simple REPEAT-

WHILE language construct.  According to Firby (1989), "The primary reason for having 

an explicit repeat clause is thus to notify a planner that the RAP is explicitly designed to 

loop” (p. 129).  Firby’s statement may seem like common sense, but explicit looping 

structures like REPEAT-WHILE are not common in rule-based cognitive modeling 

languages. 

JACK 

Created by the Agent Oriented Software Group, JACK implements the Belief-

Desire-Intention (BDI) framework (Norling, 2004).  In the BDI framework, an agent 

defines a set of beliefs, desires, intentions, and plans.  Driven by goals, and what it 
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believes about the world, an agent formulates intentions to execute certain plans.  

Intentions lead to the execution of plans that eventually lead to completing a goal 

(Norling, 2004). 

The programming language used by JACK is a modified version of Java, which is 

a modern object-oriented programming language.  Because JACK is not rule-based, it 

does not suffer from the problems discussed by Clancey (1981).  In other words, JACK 

directly supports a framework (BDI) that makes the problem solving strategy explicit, as 

opposed to hiding this strategy implicitly within a collection of rules.   

In JACK, the BDI level of abstraction was added directly to the Java 

programming language (Howden, Ronnquist, Hodgson, & Lucas, 2001) providing direct 

access to the high-level framework underlying JACK.  BDI concepts such as belief sets 

and plans are explicit in the JACK language, making the code easier to comprehend and 

reducing the problem of hiding structure and strategy within rules. 

Unfortunately, because BDI is derived from a folk-psychological view of 

reasoning, or an ordinary person's idea of cognition that may not be based on sound 

psychological theory (Goldman, 1993), JACK is not well-suited for creating 

psychologically plausible models.  While JACK provides a high-level language that is 

suitable for a wider range of users (not just experienced rule-based programmers), it is 

not an ideal language for creating cognitive models.  A more comprehensive architecture 

that accounts for the low-level details of human cognition may be better suited. 

Efforts are underway to augment JACK to be more psychologically plausible 

(Norling & Ritter, 2001).  COJACK is an agent-based cognitive environment that extends 

JACK with psychologically plausible human variability (Norling & Ritter, 2004; Ritter & 
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Norling, 2006).  COJACK constrains JACK agents using a set of parameters that vary 

agent behavior across all agents, or within an individual agent.  COJACK is a good 

example of how a cognitive overlay provides new levels of abstraction, such as support 

for individual differences.  The ability to overlay different levels of abstraction on top of 

a high-level behavior language is an important lesson from the COJACT work. 

GOMS-Based Languages 

G2A (St. Amant, Freed, & Ritter, 2005) is a high-level representation language 

that allows for the creation of ACT-R models using the Goals, Operators, Methods, and 

Selection Rules (GOMS) description.  GOMS is a high-level behavior representation 

language that can be used to model skilled users performing error-free tasks.  GOMS 

excels at individual, user-paced, passive systems (John, 2003).  One of the strengths of 

GOMS is its simplicity.  The GOMS language is abstract and maps directly to the task.  

However, this simplicity is also a weakness: GOMS is not well suited for modeling 

novice users learning or performing complex, interactive tasks.  This is because GOMS 

does not model the errors that novice users often make, the change in performance that 

occurs because of learning, or the exceptions that can occur during interactive tasks 

(John, 2003). 

The use of GOMS by G2A allows modelers to create behavior using an explicit 

representation of a theory.  G2A translates this representation into the low-level rules 

required by ACT-R.  One naturalistic experiment has shown that G2A has significantly 



37 

 

reduced the amount of effort required to produce ACT-R models (St. Amant, Freed, & 

Ritter, 2005). 

Currently, G2A only supports the creation of ACT-R models.  In addition, the 

high-level language supported by G2A (GOMS) is limited to modeling expert behavior in 

simple tasks.  However, the significant speed up in ACT-R model development afforded 

by G2A, along with its use of a high-level language and compiler, provides important 

lessons for the work presented in this dissertation. 

ACT-Simple is another example of a high-level language designed to simplify 

cognitive modeling (Salvucci & Lee, 2003).  ACT-Simple is similar to G2A in that it 

provides a GOMS-based higher-level language that can be complied into low-level ACT-

R rules.  ACT-Simple has been shown to be useful for quickly building models that 

predict expert performance (Salvucci & Lee, 2003). 

ACT-Simple and G2A are good examples of how combining the simplicity of an 

abstract behavior representation language, with the complexity of a lower-level cognitive 

architecture, can simplify the modeling task.  Figure 2-6 illustrates how the languages 

and compilers used by ACT-Simple and G2A provide a layer of abstraction above ACT-

R that simplifies the programming task. 



38 

 

Unfortunately, both ACT-Simple and G2A suffer from the same problem: the 

higher-level languages they use derive from GOMS, which is limited in the types of tasks 

it can model.  A richer cognitive theory would be useful when modeling certain tasks.   

However, the concept of implementing a high-level language on top of an existing 

architecture is an important step towards simplifying cognitive modeling.  Salvucci and 

Lee provide three significant benefits to this approach: theoretical consistency, 

inheritance of architecture, model refinement, and model integration (2003). 

Theoretical consistency specifies that, regardless of the level used to create the 

model, the underlying theory of cognition (for ACT-Simple this is ACT-R) should be 

consistent. 

Inheritance of architecture specifies that the simplicity of the higher-level 

representation does not necessarily limit its predictive power.  By compiling the simpler 

model into low-level productions for a sophisticated architecture like ACT-R, modelers 

get predictions that go beyond what is in the higher-level representation.  

Model refinement allows the modeler to resort to working in the low-level 

language when the higher-level language is not sophisticated enough to handle issues that 

 

 
Figure 2-6: G2A and ACT-Simple provide a GOMS-level abstraction on top of ACT-R. 
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arise during model creation.  This allows the modeler to create a model using the high-

level representation and then refine it when they need lower-level control.  This is an 

essential component of any high-level representation, and is another example of the need 

to allow programming at multiple levels of abstraction. 

Model integration relates to model reuse, which the end of this chapter covers in 

more detail.  All three of these benefits are important for reducing the degree of 

programming skills required by cognitive modelers, and can help with the integration and 

reuse of models written across theories and architectures. 

TAQL 

One major difficulty with programming Soar is the low-level production language 

it uses.  As mentioned earlier, Soar’s language does not explicitly express the PSCM 

theory.  This problem was addressed by Greg Yost (1993) using the Task Acquisition 

Language (TAQL). 

TAQL is a high-level language designed to map directly to the PSCM and to 

compile into Soar productions.  Yost chose the PSCM for two reasons: It represents the 

underlying theory used by Soar, and it provides a simple and flexible problem solving 

method. 

The evaluations done by Yost on TAQL’s effectiveness were encouraging.  The 

use of TAQL significantly reduced the amount of time developers spent creating Soar 

productions, and this improvement persisted as the problem size and complexity 

increased (Yost, 1993).  
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TAQL maintenance ceased when Soar moved to C and Tcl/Tk.  As a result, 

TAQL only supports Soar 5 (a much older version of Soar).  In addition, the syntax of 

TAQL is complex (Ritter, 1992) and does not include a visual development environment 

to help developers with this complexity.  However, TAQL showed that a high-level 

language, based on the PSCM and used for Soar development, could be effective. 

HTAmap 

HTAmap (Heinath, Dzaack, Wiesner, & Urbas, 2007) is a high-level 

representation based on the Sub Goal Template (SGT) task analysis method  (Ormerod & 

Shepherd, 2004).  Using HTAmap, SGT task descriptions are transformed into an 

intermediate XML-based representation called Cognitive Activity Patterns (CAP).  These 

patterns can be compiled into lower-level ACT-R productions.  Like many of the high-

level languages introduced here, HTAmap is designed to make modeling available to a 

wider range of users.   

COGENT 

COGENT is a graphical environment for creating cognitive models.  The primary 

goal of COGENT is to provide a tool that simplifies the cognitive modeling process 

(Cooper & Fox, 1998). 

With the use of a box-and-arrow notation, COGENT makes it possible for 

developers to model cognitive functioning quickly, and with little or no programming.  
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Using COGENT, a modeler can build a model based on a set of cognitive processes.  

COGENT processes can use either symbolic or connectionist representations.  These 

processes are connected using communication links (see Figure 2-7).  Once a model is 

sketched, it is configured and then executed within the COGENT environment to analyze 

its behavior (Cooper & Fox, 1998; Cooper & Yule, 2007).  The COGENT environment 

provides several different visualizations to support behavior analysis. 

 

Figure 2-7: A box-and-arrow diagram of the Modal Model of memory created using 
COGENT (Cooper & Yule, 2007). 
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COGENT supports several different model components such as rule-based 

processes, memory buffers, connectionist networks, I/O sources and sinks, sockets, and 

inter-module communication links (Cooper & Yule, 2007). 

COGENT is a modeling environment and graphical language, not a cognitive 

architecture.  As a result, COGENT does not enforce a set of architectural constraints 

based on psychological theory.  Instead, COGENT allows modelers to build their own 

theory of cognition within COGENT and create models based on these constraints.  For 

example, in theory COGENT could be use to implement existing architectures such as 

ACT-R and Soar (Cooper & Yule, 2007).   

The COGENT project provides many lessons.  Making cognitive modeling easier 

and more accessible is a goal shared by both COGENT and this dissertation.  COGENT 

approaches this problem using an environment in which users sketch models graphically, 

thus allowing programming at a higher level of abstraction.  In addition, modelers build 

COGENT models from a library of existing components.  This flexibility makes it 

possible for models that utilize different theories of cognition to interact within the same 

environment, and can alleviate the problem of reuse and integration across the many 

different theories currently in use.  Lastly, COGENT provides visualizations to help with 

the analysis of running models.  The benefits achieved by COGENT using graphical 

development environments, component reuse, theory integration, and visualizations are 

valuable. 

Unfortunately, COGENT does not take the idea of a graphical development 

environment far enough.  As will be discussed in Chapter 3, recent research in software 

engineering proposes the use of maintenance-oriented development environments that 
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offer more than just model sketching (Ko, Aung, & Myers, 2005; Ko & Myers, 2004; 

Lewis, 2003; Reiss, 2006; Robillard, Coelho, & Murphy, 2004).  In addition, COGENT 

models can only be graphical.  There is no option to create models using a lower-level 

representation, which as discussed in Chapter 1 and reinforced by Salvucci’s concept of 

model refinement, is important.  Again, we see the lack of support for programming at 

multiple levels of abstraction. 

Lastly, COGENT is a meta-architecture.  It does not provide a cognitive 

architecture for its modelers, nor does it support existing architectures such as Soar and 

ACT-R.  Modelers must implement their own architectural constraints, and cannot easily 

integrate their models with more established, theory-based architectures. 

HLSR 

The High Level Symbolic Representation (HLSR) project aims at creating a 

formal language that encompasses a wide variety of modeling tasks using a variety of 

cognitive architectures.  Importantly, HLSR strives to make it easier to create models by 

providing high-level language support for common modeling problems.  HLSR consists 

of three core elements: relations, transforms, and activation tables (Jones, Crossman, 

Lebiere, & Best, 2006). 

A compiler exists that translates HLSR to an underlying architecture.  Currently, 

HLSR creates Soar and ACT-R productions.  HLSR supports two architectures using 

something called microtheories, which describe how an HLSR architectural construct 

will compile into a specific architecture. 
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The ability of HLSR to use microtheories to remove the architectural 

dependencies from the code that represents the cognitive model is an important 

accomplishment.  This allows modelers to implement a model once, yet executed in 

different architectures.  In addition, the high-level language used by HLSR is rich enough 

to model complex behavior. 

However, the architectural neutrality of HLSR results in the lack of explicit 

support for a popular unified theory of cognition (e.g., PSCM and ACT-R).  Instead, 

microtheories hide this theory.  Because modelers often use one of these theories of 

cognition to understand how to perform a task, they must take an extra step to translate 

their understanding of the task into a description using HLSR.  This gap between the 

modeler’s conceptualization of behavior, and its realization in the high-level language, is 

exactly what a high-level language is supposed to prevent. 

Summary 

Table 2-3 summarizes this review of high-level behavior representations.  Notice 

that only three of these high-level representations explicitly support a theory of cognition, 

and two of these three are based on GOMS, which is limited in scope.  HLSR supports 

programmable theories using “microtheories”, which makes it extremely flexible, but 

removes explicit theory support in the language.   

Table 2-3 also shows that only one representation can compile productions for 

multiple architectures, which is required if modelers want to be able to compare, reuse, 

and integrate behavior across architectures.  It is clear from the review that the cognitive 
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modeling community lacks is a high-level representation language that explicitly supports 

a well-known theory of cognition, allows for the reuse of behavior, compiles into 

productions for multiple well-tested architectures, supports model refinement, and allows 

programming at several different levels of abstraction.   

Cognitive Modeling Environments 

While high-level languages have helped simplify the development of intelligent 

agents and cognitive models, their use alone is not enough.  Model development can be 

further simplified using development environments that simplify the programming task.  

These environments help developers build behavior by transforming the task of rule 

creation into an interactive process using a graphical user interface (GUI).  This reduces 

the modeler’s need for advanced programming skills.  In addition, some of these 

environments help developers maintain their agents using visual debuggers and code 

Table 2-3: A summary of high-level behavior representations. 

Representation Explicit Theory 
Supported 

Architectures Supported 

RAPs Plan based RAPs 
JACK BDI JACK 
G2A GOMS ACT-R 

ACT-Simple GOMS ACT-R 
TAQL PSCM Soar 

HTAmap STG ACT-R 
COGENT None COGENT 

HLSR Programmable Soar and ACT-R  
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navigation techniques.  Software developers call these environments Integrated 

Development Environments (IDE).   

Many of the behavior representation languages discussed above are combined 

with development environments to simplify the development process.  While helpful, 

these environments do not implement recent findings by researchers in the software 

engineering community (Chapter 3 discusses these findings in detail).  The following is a 

review of existing cognitive modeling and intelligent agent environments.  Chapter 3 

discusses the recent software engineering developments that these environments are 

lacking. 

Jess Environments 

There are several development environments available for use with the Jess expert 

system shell.  For example, JessPad (http://www.ida.liu.se/~her/JessTab/) provides 

integration between Jess and a popular ontology editor called Protégé.  This allows Jess 

developers to create knowledge using the graphical interface provided by Protégé. 

Another Jess development environment is the JessDE 

(http://herzberg.ca.sandia.gov/jess/docs/70/eclipse.html).  JessDE is a plug-in for the 

popular Java development environment Eclipse (www.eclipse.org).  JessDE provides 

low-level programming features such as syntax coloring, code assistants that 

automatically find and correct syntax errors, automatic code formatting, graphical code 

navigation, and an integrated debugger. 
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An ACT-R Environment: CogTool 

CogTool (John, Prevas, Salvucci, & Koedinger, 2004) is a graphical environment 

that allows user interface designers to develop a GUI and at the same time, a cognitive 

model that predicts skilled performance of a user utilizing the GUI.  Using CogTool, 

complex interfaces can be mocked-up using storyboards that demonstrate the interface 

and how users can interact with it.  From this storyboard, CogTool generates ACT-

Simple code that a compiler translates into ACT-R productions (Figure 2-8).  The 

resulting ACT-R represents a cognitive model that utilizes the interface.  This allows for 

the rapid creation and evaluation of user interfaces without the need for programming or 

expensive user studies. 

Because CogTool does not require any programming, this system promises to 

bring modeling to a community (UI designers) that has been limited in its ability to test 

interfaces using simulated users.  Unfortunately, because CogTool generates ACT-

Simple, it is subject to the limitations of GOMS discussed earlier.  In addition, CogTool 

focuses primarily on creating and testing user interfaces and does not apply to a wider 

 

 
Figure 2-8: CogTool provides a graphical environment that produces ACT-Simple code 
automatically. 



48 

 

range of model types.  Finally, CogTool only supports programming at the visual level, 

and therefore does not support model refinement. 

Soar Environments 

Soar developers also benefit from development environments.  For example, there 

is ViSoar (Hirst, 1999), which is a Tcl/Tk dialogue-driven interface for generating Soar 

code automatically, debugging Soar code, and reverse engineering existing Soar 

productions.  ViSoar provides a GUI interface for creating Soar productions. 

Visual Soar (Laird, 1999) is a Java based development environment that 

simplifies the creation of Soar productions.  Visual Soar makes it easier to maintain a 

collection of Soar source code files and a hierarchy of Soar operators.  In addition, Visual 

Soar supports a Data Map editor that allows some code generation and helps add much 

needed type checking when working with elements in working memory.  Lastly, Visual 

Soar makes it easier to write Soar productions by providing syntax highlighting and other 

formatting techniques. 

A recent addition to the set of available Soar development environments is Soar 

IDE (Knudsen, Quist, Ray, & Wray, 2007).  Soar IDE is an Eclipse plug-in similar to 

JessDE, that it provides syntax coloring, code assistants that automatically find and 

correct syntax errors, automatic code formatting, graphical code navigation, and an 

integrated debugger. 

Unfortunately, all Soar IDEs are designed for experienced Soar programmers.  

Not one is built to support users with a variety of skills and experience. 
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Summary 

Table 2-4 summarizes the review of cognitive modeling development 

environments. Importantly, this table shows that not one of the environments provides 

good support for programming at multiple levels of abstraction.  In addition, the 

environments discussed above do not implement recent findings by researchers in the 

software engineering community.  Chapter 3 presents the recent software engineering 

work that can greatly improve the effectiveness of many of these environments. 

Table 2-4: A summary of cognitive modeling environments.  

Environment Architecture Support for programming at multiple 
levels of abstraction? 

JessPad Jess No.  Only supports graphical 
programming. 

JessDE Jess No.  Only supports text-based 
programming of the low-level 

productions. 

CogTool ACT-R (via ACT-
Simple) 

No.  Only supports graphical 
programming. 

ViSoar Soar No.  Only supports dialogue-driven 
programming. 

Visual Soar Soar No.  Only supports text-based 
programming of the low-level 

productions. 

Soar IDE Soar No.  Only supports text-based 
programming of the low-level 

productions. 
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Reuse in Cognitive Modeling 

Unfortunately, compared to traditional software development there has been very 

little reuse of models of human behavior (Jones, Crossman, Lebiere, & Best, 2006).  A 

major reason for this is that low-level representation languages are rule-based, yet many 

of these languages do not provide support for the reuse of rules. 

For example, modern programming languages such as Java and C# make it 

possible to package a set of classes into libraries that can be easily included and reused by 

other systems.  In addition, these libraries contain standard interfaces that allow 

development environments to discover the contents of the libraries and how to share 

them. 

Engineers have also applied the concept of self-describing reusable libraries to the 

World Wide Web in the form of web services.  These services are discoverable and self-

describing.  Unfortunately, none of the low-level behavior representation languages 

described here (e.g., Jess, Soar, ACT-R, EPIC) provide support for this type of reuse.   

The nature of rule-based representation languages also makes it difficult to reuse 

the components of a rule.  For example, the two rules shown in Table 2-5 share a similar 

condition: an enemy tank that is nearby and aggressive.  However, what defines a tank as 

nearby and aggressive can consist of a complex set of sensor readings and logical tests.  

In addition, these definitions may change over time as operational procedures evolve or 

sensors become more sophisticated.  Unfortunately, rule-based languages require that the 

modeler repeat the conditions in every rule in which they are used.  As a result, when the 

definition of nearby or aggressive changes, all the rules that rely on these definitions must 
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also change.  The same thing is true for actions contained in the consequent of a rule.  

This makes it difficult to reuse conditions and actions within and across models. 

Reuse in rule-based languages is also difficult because of the dependencies that 

exist between the conditions in the rule’s antecedent and the actions in the rule’s 

consequent.  For example, in the second rule shown in Table 2-5 the attack action relies 

on the condition identifying the enemy tank.  This dependency between conditions and 

actions makes it difficult to reuse the condition or the action within a new context (e.g., 

the attack action must be used in a rule whose antecedent identifies an enemy tank). 

As languages become more high-level, reuse becomes more common (Brooks, 

1987).  For example, because JACK uses object-oriented concepts supported by a robust 

object-oriented language (Java), it is easier to create and share libraries of JACK 

behavior.  In addition, HLSR provides support for the creation of named relations and 

transformations that modelers can reuse within and across models. 

Summary 

This review covers a set of modeling architectures, behavior representations, and 

environments that is representative of the current state of cognitive modeling.  In 

Table 2-5: Problems with reuse in rule-based languages. 

Rules That Share Conditions 

If an enemy tank is nearby and aggressive and this tank is in trouble then retreat. 

If an enemy tank is nearby and aggressive and this tank is healthy then attack the 
enemy tank. 
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addition, it illustrates the current problems with cognitive modeling and several recent 

developments that help simplify modeling.  

One major problem presented here is that low-level symbolic languages are the 

norm in the most popular and powerful architectures (see Table 2-2).  This increases the 

required skill set for modeling and reduces the population of potential modelers (Pew & 

Mavor, 1998; Ritter et al., 2003; Salvucci & Lee, 2003; Yost, 1993).  In addition, the 

architectures all support different underlying theories, which makes it very difficult for 

models written for different architectures to be compared, shared, and reused (Gluck & 

Pew, 2001a; Jones, Crossman, Lebiere, & Best, 2006; Jones & Wray, 2003). 

The good news is that high-level languages are emerging that help support reuse 

and more closely map the theory or framework to the representation (Ritter et al., 2006).  

Some of these languages (e.g., RAPs, and JACK) also support higher-level abstractions 

such as plans, beliefs, desires, and intentions. 

However, only one language reviewed here (HLSR) creates models that run in 

more than one architecture (see Table 2-3).  The cognitive modeling community lacks is 

a high-level representation language that explicitly supports a well-known theory, allows 

for the reuse of behavior, compiles into productions for multiple well-tested architectures, 

supports model refinement, and allows programming at multiple levels of abstraction.  

In addition to high-level languages, development environments are also important 

for supporting a larger audience of modelers.  Once again, there is some good news.  

Development environments for modeling are emerging (e.g., JessDE, Visual Soar, and 

CogTool).  Unfortunately, there is a strong need for environments that strike a better 

balance between the support for experienced modelers (e.g., Visual Soar, Soar IDE) and 



53 

 

environments that support end-user programmers (e.g., COGENT and CogTool) by 

supporting different levels of programming to ease the transition as users gain 

experience.  

There are many lessons here, and their impact on the direction of this dissertation 

will become even more evident in Chapter 3, which reviews important software 

engineering principals.  Research in software engineering is rich in methods for creating 

high-level languages that simplify programming, support reuse, and work with multiple 

platforms.  In addition, there is significant software engineering research that can help 

with creating environments that support both the beginner and experienced programmer.  

The next chapter reviews this research and completes the theoretical foundation for this 

dissertation.



Chapter 3 
 

Important Lessons from Software Engineering 

The focal theory offered in this dissertation suggests that utilizing well-

established software engineering principles can simplify cognitive modeling and 

intelligent agent development.  This chapter reviews important literature about software 

engineering principles such as high-level languages and maintenance-oriented 

development environments.  By combining the lessons from Chapter 2, this chapter 

builds a foundation for the focal theory presented in this dissertation. 

High-Level Languages 

Software developers regularly use high-level languages because they simplify the 

creation of complex systems.  The influence high-level languages have had on 

programming is made clear by Brooks (1987, p. 14): 

Surely the most powerful stroke for software productivity, reliability, and 
simplicity has been the progressive use of high-level languages for 
programming.  Most observers credit that development with at least a 
factor of five in productivity, and with concomitant gains in reliability, 
simplicity, and comprehensibility. 

Empirical evidence of the advantages of high-level languages also exists in the 

literature.  For example, as far back as 1977 a 20% reduction in development time was 

reported by GTE Automatic Electric Laboratories when development was done using a 

high-level language as opposed to assembly language (Daly, 1977).  In addition, a survey 
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of professional programmers showed that developers rated high-level languages as an 

effective method for software development  (Beck & Perkins, 1983).  More recent 

empirical evidence also exists in the literature (see, for example, Maxwell, Wassenhove, 

& Dutta, 1996). 

Unfortunately, as mentioned in Chapter 2, many of the cognitive modeling 

environments in use today rely on low-level rule-based programming languages, and this 

is a major reason for the difficulty encountered by modelers.  The problem with the low-

level production systems is simple: The concepts that are embodied in the low level-

language have little to do with the concepts that are used by the programmer to solve the 

problem.  Modelers need higher-level representations. 

The Conceptual Gap 

A study by Petre and Blackwell (1997) showed that programmers create mental 

images when they design programs, and that these images rarely match the programming 

language being used.  According to Petre and Blackwell (1997), “it appears that the 

experts are not designing ‘close to the code’; they are thinking abstractly and 

strategically, in some cases with a substantial translation to the implementation” (p. 110). 

The conceptual gap between the ideas used to solve the problem, and the ideas 

supported by the language, forces the programmer to keep track of two distinct models: 

the one embodied in the program and the one in their heads.  The research done by Petre 

and Blackwell (1997) reinforces the idea that the model used by programmers is 

primarily visual.  This visual representation is rich enough to allow the programmer to 
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engage in mental simulation: the act of “building and exploring structures ‘in their heads’ 

before making commitments to external representations” (Petre & Blackwell, 1997, p. 

111). 

The use of mental simulation in programming is also evident in work done by 

Salomon (1992).  Salomon provided good advice on the importance of well-designed 

high-level languages in his discussion of the interplay between machine and human 

independence.  Salomon (1992) argues that “when one designs a programming language, 

one should design it not only for execution by machines, but also for execution by 

humans” (p. 49). 

Successful Use of High-Level Languages 

There are many examples of how researchers have successfully applied high-level 

languages to a specific domain.  For example, in the early 1990’s, traditional 

programming environments were geared towards the creation of single applications.  As 

the need to create distributed applications (applications that work together across 

processes or computers) increased, programmers had to step away from the current high-

level language of the time (in this case the C programming language) and program using 

low-level assembly language.  The need for assembly language made distributed 

application development very difficult because of the low-level nature of assembly 

language. 

As distributed systems became more prevalent, researchers began to experiment 

with new languages that directly supported the distributed programming paradigm.  
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Auerbach and colleagues (1991) introduced a solution in which “The complexity (of 

distributed programming) is hidden inside the implementation of a small number of 

higher-level language constructs” (p. 173).  The languages created by Auerbach et al. 

(Hermes and Concert-C) were successful because they simplified the task of distributed 

programming by directly supporting the distributed programming paradigm. 

Modern object-oriented languages provide a more recent example of the 

successful application of high-level representations.  Object-oriented analysis has the 

advantage of simplifying the mapping of the real world domain to the code designed to 

model it (Coad & Yourdon, 1991).  Object-oriented techniques accomplish this by 

making classes of objects, and objects themselves, explicit structures of the 

representation.  Researchers theorize that this direct mapping between the objects in the 

real world, and the objects in the actual representation, simplifies the creation and 

comprehension of software (Coad & Yourdon, 1991). 

Interestingly, the application of object-oriented programming languages has not 

been universally successful.  A study done by Agarwal, et al. suggests that the success of 

the adoption of a high-level language depends on the experiences of the programmers and 

the nature of the domain being modeled (2000).  In other words, the language not only 

must map to the domain, but also to the programmers’ preconceived way of viewing and 

modeling reality.  The successful adaption of object-oriented representations requires a 

good fit between the type of problem and also the modelers themselves (Agarwal, De, 

Sinha, & Tanniru, 2000).  This lesson is very applicable to the development of high-level 

languages for cognitive modelers.  The review given in Chapter 2 provides lessons about 
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the theories cognitive modelers use to represent behavior.  A successful high-level 

language must ground itself on one of these popular cognitive theories. 

Maintenance-Oriented Environments 

Programmers spend considerable time performing software maintenance.  

According to Brooks (1995), the total cost of software maintenance is often at least 40% 

of the total cost of developing it the software.  A recent study done by the National 

Institute of Standards and Technology (Tassey, 2002) showed that U.S. programmers 

spend over 70% of their time testing and debugging.  One reason for this large cost is that 

fixing a bug, which on average takes 17.4 hours to do (Tassey, 2002), results in a 

considerable chance of introducing a new bug (Brooks, 1995).   

According to the National Institute of Standards and Technology, programmers 

blame testing and debugging tools for this problem (Tassey, 2002).  As a result, 

researchers often describe the process of software maintenance as a one-step forward and 

one-step back affair (Brooks, 1995, pp. 122-123).  

Fortunately, the use of high-level languages can help with maintenance (Brooks, 

1995).  For example, a literature review by Hordijk and Wieringa (2005) categorized the 

factors that influence the maintainability of a software system.  Included in these factors 

were code-level properties such as code complexity and duplication.  High-level 

languages help here because they reduce code complexity and duplication. 

In addition to high-level languages, the survey done by Hordijk’s and Wieringa’s 

(2005) also identified development environments as a factor that influences 
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maintainability.  This implies that creating environments that explicitly support software 

maintenance (referred to as maintenance-oriented development environments) can help 

reduce the cost of software development. 

Cause/Effect Chasm, Program Slices, and Editing Above the Code 

Weiser (1982) attempted to understand how programmers encode and process 

information during software maintenance.  Weiser performed an experiment to test his 

hypothesis that programmers use something called program slicing during software 

debugging.  According to Weiser (1982, p. 446), program slicing is the process of 

striping a program of code that has no influence on the particular problem being 

debugged, thus being left with relevant program slices.  Weiser’s study suggested that 

providing support for the slicing process, as part of the development environment, would 

be beneficial to programmers engaged in debugging. 

Additional work on supporting maintenance-oriented tasks was done by 

Boshernitsan (2003).  Boshernitsan proposed the use of a scripting language that modifies 

source code at a level above the syntax, allowing the programmer to alter code at a much 

higher-level.  Boshernitsan proposed graphical user interfaces to simplify the use of such 

a scripting language.  As demonstrated next, editing a program at a level above the syntax 

has been shown to be a useful concept, not just for maintenance but also for teaching 

programming to novices. 

Alice (Conway et al., 2000), an innovative approach to teaching programming 

concepts, is a paragon of the concept of editing above the level of syntax. Students create 
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Alice programs by placing objects in a 3D world, and then visually programming them to 

interact.  The Alice development environment hides the syntax from the programmer, and 

eliminates the possibility of syntax errors.  At the same time, the concepts students use to 

animate their 3D world closely match the concepts of a modern object-oriented 

programming.  This makes it possible for students to learn object-oriented programming 

without the frustration that fragile, text-based environments often cause entry-level 

programmers (Dann, Cooper, & Pausch, 2008). 

One major goal of Alice is to introduce programming to a much wider audience.  

For example, a study by Kelleher, Pausch, and Kiesler (2007) was successful using Alice 

to introduce programming to middle-school girls, which may help bring a traditionally 

under-represented group to computer science.  However, transitioning students from the 

Alice environment to one of the more traditional high-level languages (e.g., C++, Java) 

has been shown to be problematic (Powers, Ecott, & Hirshfield, 2007).   

Powers, Ecott and  Hirshfield (2007), have encountered trouble transitioning 

students from the Alice environment to a more traditional programming language such as 

Java.  They found that students struggled with the shift to advanced object-oriented 

concepts, and had trouble seeing the relationship between Java code and Alice code.  In 

addition, by deemphasizing syntax, Alice may have contributed to students having 

trouble adjusting to the syntax intensive Java programming environment.  

There are two very important lessons that the Alice project contributes.  First, it is 

possible to bring computer programming to a wider audience by creating a visual 

environment that allows programming at a level above syntax.  Second and most 

important, successful environments must provide a bridge between the abstract visual 
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programming they provide and the concepts that the programmers may ultimately need to 

grasp. 

This dissertation proposes that an environment can simplify this transition by 

supporting programming at multiple levels, instead of just at the visual one, thus allowing 

the environment to better accommodate programmers as they gain experience.  

Program Navigation 

Much recent work pertaining to the simplification of the software maintenance 

task has been done (Coblenz, Ko, & Myers, 2006; Ko, Aung, & Myers, 2005; Ko & 

Myers, 2003, 2004; Ko, Myers, Coblenz, & Aung, 2006; Reiss, 2006; Robillard, Coelho, 

& Murphy, 2004).  On particularly rich area is program navigation. 

For example, a study by Ko, Myers, Coblenz, and Aung (2006) found that 

developers spend 35% of their time (much of which could have been avoided given better 

tools) navigating source code to find fragments relevant to a specific task.  This illustrates 

the need to provide better support for the navigation task. 

Importantly, the development environment played a large role in what the 

developer perceived as relevant information.  Interestingly, the use of poor or incomplete 

terms when searching for relevant code fragments caused much of the navigational 

overhead incurred by the developer.  
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Working Sets and JASPER 

Ko, Aung, and Myers (2005) also looked at how Java programmers approached 

the task of software maintenance.  Their study suggested that programmers perform 

maintenance by forming a working set of task relevant code fragments.  This working set 

was typically built by the programmer using the find and replace dialog or visually 

searching the program’s source code.  This type of methodical, structured investigation of 

code, in which developers kept a record (or working set) of their findings, was also 

reported in an earlier study conducted by Robillard, Coelho, and Murphy (2004), and is 

similar to the concept of program slices (Weiser, 1982). 

After the developer formed the working set, they navigated the working set to 

uncover direct and indirect dependencies.  An example of a direct dependency would be 

the link between an element’s use and its declaration.  An example of an indirect 

dependency would be the link between an element’s use and the place where code 

manipulated the element’s value. 

An outcome of their study is a set of design guidelines that they suggest will 

enhance support for finding, navigating, and editing working sets of task relevant code 

fragments.  Table 3-1 lists these findings. 
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The theories resulting from the empirical studies conducted by Coblenz, Ko, 

Aung, and Myers (2006) are embodied in a tool called JASPER.  Based on the guidelines 

given in Table 3-1, JASPER makes it possible for developers to gather artifacts that are 

relevant to the maintenance task into a working set.  Each working set can consist of code 

fragments, uniform resource locators (URL), and free-form notes.  Coblenz et al. are 

currently evaluating of JASPER’s effectiveness in reducing the time required to perform 

software maintenance tasks.   

Despite the demonstrated importance of the maintenance task, not one of the 

cognitive modeling environments reviewed in Chapter 2 support any of the design 

requirements listed in Table 3-1. 

Table 3-1: Design requirements that help support the use of working sets during software
maintenance (Ko, Aung, & Myers, 2005). 
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Group Memory and Information Scent 

Researchers have attempted to address the problem of navigational overhead 

incurred by the developer.  Specifically, researchers are looking at reducing the use of 

poor or incomplete terms when searching for relevant code fragments. 

For example,  DeLine, Czerwinski, and Robertson (2005) created Team Tracks, a 

system that helps new developers comprehend programs by recording and presenting 

code navigation patterns of fellow developers.   Visualizations in Team Tracks are based 

on two ideas.  First, the more often developers view a code fragment, the more important 

that fragment is for new developers.  Second, how often a developer visits two different 

code fragments in sequence, determines the strength of the relationship between these 

two fragments.  The results of two user studies showed that Team Tracks helped 

developers navigate to areas of code that were relevant to their current goals. 

Hipikat is another example of leveraging the group history of developers  

performing maintenance (Cubranic, Murphy, Singer, & Booth, 2005).  Hipikat is a 

recommender system that uses the history of a project’s development as a basis for its 

recommendations.  In addition to the source code, Hipikat also includes other forms of 

history such as requirements specifications, email and discussion postings, test plans, and 

bug reports.   Most interesting is the fact that Hipikat uses information about the current 

task as a basis for the kinds of recommendations it makes.  Like Team Tracks, 

researchers have demonstrated Hipikat’s usefulness in two user studies. 

Another way of reducing the navigation overhead is to extend information 

foraging theory (Pirolli & Card, 1999).  Programmer Flow by Information Scent (PFIS) is 
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a model that predicts how programmers navigate while performing software maintenance 

(Lawrance, Bellamy, Burnett, & Rector, 2008).  Based on information foraging theory, 

the theory suggests that programmers use “scent” to determine where to navigate in the 

source code to solve a particular problem. 

Building on the Web User Flow by Information Scent (WUFIS) (Chi, Pirolli, 

Chen, & Pitkow, 2001), PFIS uses the source code’s topology and its scent to predict 

where a programmer will navigate.  According to Lawrance et al., the concept of scent 

relates linguistically to the words used to express a developer’s task.  PFIS relies on the 

topology of the source code in the same way that WUFIS relies on the topology of the 

Web.  Links in the source code are a means by which the programmer can navigate from 

one place in the code to another via a single click.  Links in PFIS are dependent on the 

actions allowed by the programming environment.  For example, a programmer using the 

Eclipse development environment will have more links available to them than if they 

were using a simple text editor such as VIM. 

From user studies, PFIS did a good job of predicting aggregated human 

navigation decisions and had better performance than the individual programmer had.  

Lawrance et al., also suggest that different tasks may rely more or less on information 

scent.  For example, it may be that fixing a bug requires the developer to follow scent 

more than adding a new feature.  

Another way to streamline the software maintenance process is to make it easier 

for programmers to discover the intent of the programmer when creating the code. This 

intent can provide “scent” that helps developers search for relevant code fragments.  

Without access to this intent, it can be difficult for developers to perform software 
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maintenance task (Ko & Myers, 2004; Lewis, 2003).  Using the intent recorded in the 

names of the software components, or in comments created by developers, it would be 

possible to further reduce the overhead of source code navigation (Ko, Myers, Coblenz, 

& Aung, 2006).   

Unfortunately, developers currently spend a lot of time figuring out the rationale 

that other developers implicitly embedded within the source code.  In a study of software 

developers conducted by  LaToza, Venolia, and DeLine (2006), respondents conveyed 

that understanding the rationale behind code was a serious problem faced during 

maintenance.  In addition, they found that developers spend a lot of effort understanding 

why the code is implemented the way it is, how the code works, and what the code is 

trying to accomplish. 

Ko and Myers confirmed this in another study of how programmers debug.  Ko 

and Myers found that 68% of the questions asked by programmers were about “why 

didn’t” something happen or “why did” something happen (2003).  Answers to these 

questions rely, in part, on understanding the rationale behind the design of the program, 

and the easier it is to get at this design rationale, the easier it will be for the programmer 

to find and fix the bug. 

Making design rationale more explicit using documentation would help alleviate 

this problem, but surprisingly, developers do not take the time to consult existing 

documentation to uncover the rationale behind the code they are working on.  The 

reasons given are that the documentation is hard to locate or often out of date.  According 

to LaToza, Venolia, and DeLine (2006, p. 499), “even if developers thought there was a 



67 

 

possibility of a design document containing the information they cared about, it was not 

worth looking for.” 

Ko and Myers developed an Interrogative Debugging environment (a debugger 

that allows developers to debug by asking questions) called Whyline (2004).  Whyline 

allows programmers to ask “why did” and “why didn’t” questions during debugging, 

allowing the programmer to gain a better understanding of the intent and purpose of the 

code being debugged. 

Another project that has contributed to better maintenance-oriented environments, 

and allows the programmer to interrogate the program to infer rationale about its design, 

is the Omniscient Debugger for Java.  Created by Bil Lewis, the Omniscient Debugger 

changes the typical paradigm of a debugger from finding out what is going on at a 

specific point in time, to keeping track of the complete history of a running program.  

Using the Omniscient Debugger, programmers can navigate through time (forward and 

backward) keeping an eye on values of interest (Lewis, 2003). 

Creating facilities to help developers understand the rationale of the design of a 

system, and to maintain executing systems, has not been limited to traditional software 

development.  Researchers have also done work on explanation facilities used for 

explaining the behavior of intelligent agents.  Haynes, Cohen, and Ritter (2008) provide a 

review of these systems, along with a novel approach to supporting explanation in agent 

development environments.  According to Haynes et al. (2008), the guidelines presented 

“support creating more usable and more affordable intelligent agents by encapsulating 

prior knowledge about how to generate explanations in concise representations that can 
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be instantiated or adapted by agent developers” (p. 1).  These explanations can be used to 

help developers find relevant code fragments quickly. 

Not one of the cognitive modeling environments reviewed in Chapter 2 take 

advantage of any of the code navigation techniques reviewed here. 

Cognitive Dimensions 

A discussion of high-level languages and maintenance-oriented environments is 

not complete without a review of notational systems and cognitive dimensions.  A 

notational system consists of a high-level language, a development environment, and a 

medium of interaction (Blackwell & Green, 2003).  

According to Blackwell and Green (2003), the problem with notational systems is 

that “every notation highlights some kinds of information, at the cost of obscuring other 

kinds” (p. 104).  The degree in which this tradeoff exists was evident in the review of 

current modeling languages presented in Chapter 2.  Blackwell and Green introduce 

cognitive dimensions as a way of helping the language designer deal with this tradeoff. 

Designers can also use cognitive dimensions as a questionnaire-based evaluation 

tool.  Kadoda, Stone, and Diaper (1999) were among the first to use cognitive dimensions 

as an evaluation tool.  Using only the dimensions deemed relevant to their system, 

Kadoda et al. presented users with a questionnaire that paraphrased the dimensions in 

terms of the system under consideration.  Blackwell and Green (2000) took this 

evaluation technique a step further by creating a questionnaire that presented all of the 

dimensions, leaving it to the user to decide which ones were relevant.  By using cognitive 
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dimensions to structure feedback questionnaires, designers can get detailed feedback 

using a common vocabulary for evaluating the quality of a notational system.  Designers 

can use this feedback inform design changes and improve the system. 

Examples of cognitive dimensions include Closeness of Mapping, which is a 

dimension that measures how closely the notational system maps to the result it 

represents.  For the reasons already discussed, this dimension measures a critical attribute 

of a well-designed high-level language.  Another relevant cognitive dimension is 

Viscosity, which measures how easily a high-level language and environment allows 

change.  A language or environment that makes it easy for developers to perform 

maintenance tasks would have low Viscosity. 

Table 3-2 gives a summary of some of the more useful dimensions for evaluating 

high-level behavior representations and cognitive modeling environments. 
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Software Reuse 

One way to simplify software maintenance is to support code reuse (Boehm, 

1987).  Reuse of code, even within a single program, can reduce development and 

maintenance costs.  As far back as 1969, the importance of software reuse was presented 

as an invited paper by McIlroy (1968).  In his talk, McIlroy (1968) described a scenario 

of the future of software reuse: “...the purchaser of a component from a family will 

choose one tailored to his exact needs. He will consult a catalogue offering routines in 

Table 3-2: Useful cognitive dimensions for evaluating a high-level behavior 
representation language and modeling environment. 

Cognitive 
Dimension 

Description 

Visibility How easy is it to view the elements in a model, including their 
internal details? 

Viscosity How easy is it to make changes to an existing model? The less the 
viscosity, the easier it is to change the model. 

Diffuseness How many symbols or how much space does the notation require to 
produce a certain result or express a meaning? 

Hard-mental 
operations 

How much hard mental processing lies at the notational level, rather 
than at the semantic level? Are there places where the user needs to 
resort to fingers or pencilled annotation to keep track of what is 
happening? 

Error-proneness How easy is it to make errors using the behavior representation 
language? 

Closeness of 
mapping 

How closely does the behavior representation language match the 
way that the modeler describes the behavior?  

Role-
expressiveness 

How easy is it to discover why a modeler has chosen a particular 
design? Explicit support for design rationale, as discussed earlier, 
improves a systems role-expressiveness. 

Progressive 
evaluation 

How easy is it to evaluate and obtain feedback on an incomplete 
solution? 

Premature 
commitment 

How often is the developer forced to make a commitment in the 
model before there is enough information to make the commitment? 
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varying degrees of precision, robustness, time-space performance, and generality” (p. 

140). 

Progress towards this vision has since been made in software engineering and the 

value of software reuse has continually been reaffirmed (Brooks, 1995; Krueger, 1992).  

Empirical evidence of the advantages of software reuse is also evident in the literature.  

For example, reusable libraries created by Raytheon have resulted in the development of 

new applications using as much as 60% preexisting code (Boehm, 1987).  This resulted in 

cost savings of 10% in the design phase, 50% in the code and test phase, and 60% in the 

maintenance phase (Boehm, 1987).  In addition, Toshiba’s library of reusable 

components for industrial process control has also resulted in significant productivity 

gains (Boehm, 1988b). 

Four Dimensions of Reuse 

A useful framework for considering reuse was developed by Krueger (1992).  

Krueger breaks software reuse into four dimensions: (a) abstraction, (b) selection, 

(c) specialization, and (d) integration. 

According to Krueger (1992), “Abstraction is the essential feature in any reuse 

technique” (p. 133).  Abstraction allows programmers to consider a programming task at 

a more general level, separate from the concrete realities of the modeling language, and is 

a reason why high-level languages provide such great support for reuse.  Although often 

taken for granted, abstraction in high-level languages is one of the most successful 

vehicles of software reuse (Brooks, 1987; Krueger, 1992). 
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Selection, as defined by Krueger, helps programmers locate and select reusable 

components.  Reusable components are not useful when they are difficult to locate, 

select, and compare to other software components.  According to Kruger, good 

maintenance-oriented environments should make it easy for clients to search for reusable 

components based on a number of criteria. 

Krueger (1992) defines specialization as allowing programmers to tailor reusable 

components to their specific needs.  Specialization is essential for reuse because the 

reusability of a component is dependant on its generality.  Without specialization, 

developers would be unable to configure a component for a specific use: transforming the 

component from a general artifact to a more specialized object. 

The fourth and final of Krueger’s dimensions is integration, which designers can 

accomplish with an environment that allows developers to combine reusable components 

into a working program.  The usefulness of reusable components depends on how easy it 

is to integrate these components.  Again, a maintenance-oriented environment can play a 

major role in simplifying the integration piece of reusable software.  All four of 

Krueger’s dimensions are necessary for effective software reuse and high-level behavior 

representation languages and cognitive modeling environments must support them. 

Reuse with Design Patterns 

Design patterns provide another effective way to promote reuse and, in some 

cases even reduce defects (Vokac, 2004).  Design patterns are reusable templates that 

provide solutions to recurring problems.  A design pattern consists of four elements: The 
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pattern name, which makes it possible for developers to identify and communicate about 

a pattern; a problem, which helps developers recognize when a particular pattern is 

useful; a pattern solution, which provides an abstract description of the pattern and how it 

can be used to solve the problem; and the consequences, which discuss the trade-offs 

related to the pattern’s use (Gamma, Helm, Johnson, & Vlissides, 1995). 

An example is useful to illustrate how design patterns can promote reuse.  The 

Strategy design pattern, described in the seminal book on design patterns (Gamma, Helm, 

Johnson, & Vlissides, 1995), is a rather simple design pattern meant to solve the 

following dilemma:  A programmer wishes to create a system that implements many 

different strategies for solving a particular problem, and would like to decouple these 

strategies from the program that solves them.  In other words, the programmer needs to 

be able to create new strategies without breaking the code that uses them to solve the 

problem. 

Figure 3-1 illustrates (using the Universal Modeling Language, a standard 

graphical language for illustrating object-oriented designs) the Strategy pattern, an 

object-oriented pattern that provides a solution to this general problem. 

 

 
Figure 3-1: The strategy design pattern. 



74 

 

In Figure 3-1, the entity that solves the problem (Problem) uses an abstract 

definition of a strategy to find a solution.  This abstract entity can take many forms: 

StrategyA, StrategyB, and StrategyC.  However, the problem itself is not aware of the 

details surrounding these different strategies.  Designers can add, remove, or alter 

concrete strategies without affecting the entity that solves the problem.  This decouples 

the problem from the strategies used to find a solution making it easy to reuse strategies. 

Developers can adopt the general configuration of object-oriented entities shown 

in Figure 3-1 to solve any number of related problems.  Gamma et al. (1995) cataloged 

several object-oriented design patterns like this in a single publication that has since 

served as a cookbook of reusable solutions for object-oriented developers. 

Unfortunately, a similar collection of reusable solutions for cognitive modelers is 

absent and its creation would help promote the reuse of behavior in the cognitive model 

community.  Of course, before modelers can build this collection, there must be support 

for reuse within the behavior representation languages.   

Summary 

This chapter presents a representative subset of the large body of literature 

supporting the use of high-level languages, maintenance-oriented environments, and 

reuse in software development.   

High-level languages have played an important role in improving the 

productivity, reliability, and simplicity of software.  However, the review of popular 
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agent and cognitive architectures in Chapter 2 shows that they are all programmed using 

low-level rule-based languages. 

A conceptual gap between the ideas used to model human behavior, and the ideas 

supported by the language, can force the programmer to keep track of two distinct models 

(Petre & Blackwell, 1997).  Therefore, a successful high-level behavior representation 

language should closely match a widely adopted theory of cognition.  In addition, the 

success of the adoption of a high-level language depends on both the representation and 

the experiences of the programmers (Agarwal, De, Sinha, & Tanniru, 2000).  As a result, 

the paradigm supported by the high-level behavior representation language should be 

familiar to cognitive scientists.  Unfortunately, in the review in Chapter 2 only one of the 

high-level behavior representations reviewed (TAQL) explicitly supported a theory of 

cognition (other than those that support GOMS, which is limited in scope). 

Recent research has aimed at improving development environments by adding 

features that simplify all aspects of development.  The environments reviewed in Chapter 

2 (e.g., JessPad, CogTool, Visual Soar) do provide cognitive modelers with environments 

that help with the creation of model.  However, the fact that developers might be 

spending 35% of their time navigating source code (Ko, Myers, Coblenz, & Aung, 2006), 

underscores the need for maintenance-oriented environments that support code 

navigation.  Researchers are looking at techniques such as working sets, group memory, 

and information scent to improve the modeler’s ability to navigate code quickly to find 

task relevant fragments.  Yet not one of the cognitive modeling environments in Chapter 

2 takes advantage of these techniques. 
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The software engineering literature also clearly documents the benefits of reuse.  

Traditional software development has been able to reuse software by using high-level 

languages, following Krueger’s dimensions of reuse, and taking advantage of libraries of 

design patterns.  Fortunately, many of the high-level behavior representation languages 

reviewed in Chapter 2 help make reuse within a cognitive model possible.  However, 

only one of these languages (HLSR) supports multiple architectures.  The lack of cross-

architecture languages, makes reuse across architectures difficult.  In addition, not one of 

the languages or environments reviewed in Chapter 2 provides special support for design 

patterns. 

This detailed look at the state of cognitive modeling (Chapter 2) and software 

engineering (this chapter) has illuminated two important problems, and uncovered well-

defined and tested solutions to these problems.  Table 3-3 summarizes these problems 

and the solutions, and explicitly outlines the direction taken by this dissertation. 
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The next chapter describes, in detail, how I embedded portions of an existing tool 

with the software engineering theories reviewed here to alleviate the obstacles that are 

facing cognitive modelers.

Table 3-3: A succinct description of the problems facing cognitive modeling and the
software engineering solutions that will make a difference. 

The Problems The Solutions 
1. The cognitive modeling 

community lacks is a high-level 
representation language that 
explicitly supports a well-known 
theory, allows for the reuse of 
behavior, compiles into 
productions for multiple well-
tested architectures, supports 
model refinement, and allows 
programming at several different 
levels of abstraction. 

2. The cognitive modeling 
community lacks a maintenance-
oriented development environment 
that supports both novice and 
experienced programmers using 
recent software engineering 
research (e.g., graphical 
environments and code navigation 
techniques). 

 

1. Close the conceptual gap by designing a 
high-level representation language that 
provides a good fit between the type of 
problem and the modelers themselves.  A 
successful high-level language must 
ground itself on a popular cognitive 
theory, support multiple architectures, 
allow for model refinement, support 
reuse, and support a variety of additional 
high-level behavioral abstractions. 

2. Create a maintenance-oriented 
environment that makes it possible for 
modelers to edit and browse a program 
graphically and at a level above the actual 
text-based code. 

3. Create a maintenance-oriented 
environment that facilitates code 
navigation using some of the design 
guidelines listed in Table 3-1, and by 
taking advantage of working sets, group 
memory, or information foraging theory. 

4. Ensure proper support for reuse by paying 
attention to Krueger’s dimensions of 
reuse and by supporting reusable 
templates that provide solutions to 
recurring problems. 

5. Conduct formative and summative 
evaluations of the resulting notational 
system using validated methods based on 
cognitive dimensions. 

  
 



Chapter 4 
 

Herbal: A Theory-Based System for Simplifying Cognitive Modeling 

The detailed look at the state of cognitive modeling and software engineering 

presented in Chapter 2 and Chapter 3 has illuminated two important problems, and 

uncovered well-defined and tested solutions to these problems (see Table 4-1).  This 

chapter describes how I have implemented these solutions in an existing tool called 

Herbal (version 3.0.0).  Importantly, the formative evaluation described in Chapter 5 has 

also guided this implementation. 

Table 4-1: Summary of the solutions resulting from the literature review. 

 
1. Close the conceptual gap by designing a high-level representation language that 

provides a good fit between the type of problem and the modelers themselves.  
A successful high-level language must ground itself on a popular cognitive 
theory, support multiple architectures, allow for model refinement, support 
reuse, and support a variety of additional high-level behavioral abstractions. 

2. Create a maintenance-oriented environment that makes it possible for modelers 
to edit and browse a program graphically and at a level above the actual text-
based code. 

3. Create a maintenance-oriented environment that facilitates some of the code 
navigation using the design guidelines from (Ko, Aung, & Myers, 2005), and 
by taking advantage of working sets, group memory, or information foraging 
theory. 

4. Ensure proper support for reuse by paying attention to Krueger’s dimensions of 
reuse and by supporting reusable templates that provide solutions to recurring 
problems. 

5. Conduct formative and summative evaluations of the resulting notational 
system using validated methods based on cognitive dimensions. 
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Herbal: A High-Level Behavior Representation Language 

To simplify agent programming and cognitive modeling, I implemented a high-

level behavior representation language, and associated parser and compiler.  The Problem 

Space Computational Model (PSCM) forms the basis for the Herbal high-level language, 

and the Extensible Markup Language (XML) (W3C, 2004a) specifies the syntax of this 

language.  The Herbal system compiles this language into productions that execute within 

two popular agent architectures: Soar (sitemaker.umich.edu/soar) and Jess 

(herzberg.ca.sandia.gov/jess/). 

The Problem Space Computational Model 

The high-level language supported by the Herbal Toolset is based on the PSCM 

(Lehman, Laird, & Rosenbloom, 1996; Newell, 1990; Newell, Yost, Laird, Rosenbloom, 

& Altmann, 1991).  As explained in detail in Chapter 2, the PSCM is a unified theory of 

cognition that defines behavior as movement through a problem space.  The choice to use 

the PSCM will help close the conceptual gap between the language used by modelers to 

describe behavior and the language used by architectures to represent that behavior.  The 

PSCM is a robust, and well-tested cognitive theory that closely maps the modeling 

domain to the people who typically create cognitive models.  

The PSCM also serves as an organizational structure for intelligent agents in 

general.  Explicit support for PSCM constructs allows all modelers to partition behavior 

into a hierarchy of problem spaces, operators, states, and desired goals.  The ability to 
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create componentized programs hierarchically is something that should resonate with all 

software engineers that are used to creating modularized programs.  

XML and XSchema 

The PSCM-based high-level language supported by the Herbal Toolset takes the 

form of an XML application.  Herbal uses XML to provide explicit support for the 

PSCM, and to translate the PSCM into a low-level rule-based representation for 

execution within an agent environment (see Figure 4-1).   

 
Choosing an XML-based language provides many benefits.  For example, XML 

allows for the creation of structured documents that can directly represent the hierarchical 

structure of the PSCM.  In addition, compared to low-level rule based languages, the 

portable text format used by XML is easily readable by both people and computers.  In 

fact, there are a large number of robust XML editors that parse XML and provide a 

graphical environment for quickly and safely editing the XML (e.g., XMLSpy, oXygen, 

XMetaL, XMLBuddy, and XML Notepad).  Research promises to provide even better 

support for XML editing (Chidlovskii, 2003; Quint & Vatton, 2004).  As a result, a wide 

 

 
Figure 4-1:  A High-level XML representation translated into low-level rule-based 
representations. 
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range of existing graphical programming tools can support editing the Herbal high-level 

language.   

Programmers can also transform XML into other formats using the Extensible 

Stylesheet Language (XSL) (Royappa, 1999; W3C, 2004b).  For example, Herbal agent 

code can be easily transformed into HTML documentation, making it easy for developers 

to generate documentation directly from source code.  In addition, Herbal agent code can 

be easily transformed into Scalable Vector Graphics (SVG) (W3C, 2003) which can be 

an effective way for creating visualizations of complex data (Jackson, 2002; Vullo & 

Bogaard, 2004).  Finally, the popularity of XML helps reduce the learning curve that 

might otherwise form a barrier to the adoption of Herbal. 

XSchema (W3C, 2004c) defines the Herbal high-level language specification.  

The use of XSchema for this language was advantageous for many reasons.  XSchema 

provides a clear documentation of the structure and content of XML documents 

(Campbell, Eisenberg, & Melton, 2003).  In addition, XML parsers can use the Herbal 

XSchema to validate the content of an Herbal program.  This eliminates the common 

problem of the specification becoming “out of sync” with the implementation because the 

XSchema serves as both the language specification and the documentation of the 

language specification.  Lastly, most commercial and open source XML editors utilize 

XSchema to provide features such as syntax highlighting and auto completion to help 

programmers quickly create valid XML documents.  Because the Herbal language uses 

XSchema, these features are immediately available to the Herbal programmer. 

Six different types of XML documents make up an Herbal program, each defining 

a set of reusable components including namely types, conditions, actions, operators, 
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problem spaces, and agents.  These documents represent libraries in the Herbal language 

and these libraries give the Herbal high-level language explicit support for Krueger’s first 

dimension of reuse: abstraction (Krueger, 1992). 

XSchema defines the allowed structure and content of each of these library types.  

In many cases, the components in these libraries mirror the elements of the PSCM, and 

should be familiar to most cognitive scientists.  However, there are components in the 

Herbal high-level language (such as types, conditions, and actions) that extend the PSCM 

by providing additional levels of abstraction (further support of Krueger’s first 

dimension).  The choice to add these components specifically addresses the reuse 

problem introduced in Chapter 2, which describes how the nature of rule-based 

representation languages makes it difficult to reuse the conditions and actions in a rule.  

As an example of this new granularity, the left-hand side of Table 4-2 shows an 

operator element, which has a unique name, and child elements of ifType and thenType.  

The ifType element contains references to conditions and the thenType element contains 

references to actions.  These references point to conditions and actions that reside in a 

separate XML document (library), and whose syntax specification is in a separate 

XSchema.  Unlike operators, conditions and actions are not explicitly part of the PSCM, 

but were included in the Herbal high-level language to provide granularity that supports 

reuse at the condition/action level. 
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The right-hand side of Table 4-2 lists a typical section of Herbal source code.  The 

XML shown here declares an instance of an operator called driveRight, and obeys the 

Schema given in the left-hand side of Table 4-2. 

The driveRight operator will be proposed when the condition okRight is true, and 

when the operator is applied an action called moveRight will move the agent to the right.  

The details of the okRight condition and the moveRight action are encapsulated in the 

libraries that contain their instantiations.  

Table 4-2: XSchema describing an operator and an XML instance of an operator. 
XSchema Specification for an Operator Instance of an Operator 
 
<xs:complexType name="operatorType"> 
  <xs:sequence> 
   <xs:element name="if"  
 type="ifType"  
 minOccurs="1"  
 maxOccurs="1"/> 
   <xs:element name="then" 
 type="thenType"  
 minOccurs="1"  
 maxOccurs="1"/> 
  </xs:sequence> 
  <xs:attribute name="name" 
type="xs:ID" use="required"/> 
</xs:complexType> 
 
<xs:complexType name="ifType"> 
  <xs:sequence> 
   <xs:element name="conditionref" 
 type="conditionRefType" 
 minOccurs="0" 
 maxOccurs="unbounded"/> 
  </xs:sequence> 
  </xs:complexType> 
 
<xs:complexType name="thenType"> 
  <xs:sequence> 
   <xs:element name="actionref" 
 type="actionRefType" 
 minOccurs="0" 
 maxOccurs="unbounded"/> 
  </xs:sequence> 
</xs:complexType> 

 
<operator name='driveRight'> 
  <if> 
   <conditionref 
 conditioN='okRight'/> 
  </if> 
  <then> 
   <actionref actioN='moveRight'/> 
  </then> 
</operator> 
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The XSchema and associated XML code shown in Table 4-2 can be edited 

graphically using any of the commercial or open source XML editors.  For example, 

Figure 4-2 shows an XML document, containing instantiations of several operators edited 

in XML Notepad.  XML Notepad is using the XSchema to determine the required syntax 

for the declaration of operators, and can even find problems and help the programmer fix 

them.  In Figure 4-2, XML Notepad is indicating that an operator is missing the required 

name attribute, and can help the programmer add this attribute. 

The Herbal Parser and Compiler 

Herbal can transform code written in the Herbal high-level language into 

executable productions for either the Soar or Jess agent architectures.  The ability to 

compile to multiple architectures is essential for reuse across architectures.  Herbal 

 

 
Figure 4-2:  Herbal programming using XML Notepad. 
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supports the Soar architecture because it is widely used for cognitive modeling, and 

Herbal supports Jess because of its popularity as an intelligent agent architecture.  

Support for two very different types of architectures was intentional because it 

emphasizes the ability for high-level languages to support architectural-neutral reuse.  In 

addition, it allows for architectural comparison. 

The first phase in this transformation (shown in Figure 4-3) consists of parsing the 

XML code and creating a Document Object Model (DOM) of the PSCM.  I used Java to 

create the Herbal parser, and the DOM consists of a hierarchical collection of Java 

objects. 

The parser validates the XML based on the associated XSchema.  In addition, 

custom logic extends the parser for additional validation.  This validation makes it 

possible to check for semantic errors that the XSchema cannot not specify. 

 

 
Figure 4-3:  Parsing and compiling Herbal XML source code. 
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Once in memory, Herbal accesses the DOM for many different purposes 

including the creation of useful visualizations, and the creation of executable productions.  

The Herbal compiler is responsible for the transformation of the in-memory DOM into 

executable code. 

The main challenge in creating a compiler is deciding how to transform the 

PSCM DOM into a semantically equivalent set of productions for a specific architecture.  

The degree of difficulty of this transformation relates to the underlying language support 

for the PSCM.  For example, the Soar architecture is an exemplar of the PSCM, while 

Jess provides no explicit support for the PSCM. 

Table 4-3 provides a few examples that illustrate how the Soar and Jess compilers 

transform the PSCM into appropriate productions.  Consider the Herbal XML code 

shown in Table 4-3. This code defines a condition, called dirty, that tests if a vacuum 

cleaner agent (Cohen, 2005) is on a dirty square.  Table 4-3 also shows the resulting Soar 

and Jess code produced by the Herbal compiler.  This translation is straightforward 

because both Soar and Jess have clear support for the concept of a condition. 

Table 4-3:  A translation from an Herbal condition to Soar and Jess source code. 
Architecture Source Code 
Herbal XML Language <condition name='dirty'> 

  <match type='vacuum.types.spot'> 
      <restrict field='status'> 
         <eq>dirty</eq> 
      </restrict> 
   </match> 
</condition> 
 

Compiled Soar Code (<vacuum-types-spot2> ^status <status2> |dirty| ) 
 

Compiled Jess Code (topspace::vacuum.types.spot (status ?status1&:(eq* ?status1 
"dirty"))) 
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A second example, given in Table 4-4, illustrates how the Soar and Jess compilers 

transform Herbal XML code for an action called clean.  This translation is less 

straightforward because Soar and Jess have different support for the interaction between 

an agent and its environment. 

Soar defines explicit structures to support an agent’s communication with its 

environment.  These structures take the form of an input and output link.  As a result, the 

Herbal compiler adds the clean working memory element directly to the output link 

(labeled <i2> in Table 4-4).  Jess, on the other hand, has no special language constructs 

that deal with agent/environment interaction so the clean command is treated like any 

other fact in working memory. 

The third example, shown in Table 4-5, demonstrates how the Herbal compiler 

transforms an Herbal operator.  Recall that the operator is an important component of the 

PSCM.  Unlike Soar, the Jess language has no concept of operators.  As a result, the 

Herbal compiler must simulate the operator concept in Jess using a basic production. 

Table 4-4:  A translation from an Herbal action to Soar and Jess source code. 
Architecture Source Code 
Herbal XML 
Language 

<action name=clean'> 
   <add type='vacuum.types.action'> 
      <set field='move'><value>clean</value></set> 
   </add> 
</action> 
 

Compiled Soar 
Code 

(<i1> ^output-link <i2>) 
--> 
(<i2> ^|vacuum.types.action| <vacuum-types-action20>) 
(<vacuum-types-action20> ^move |clean| ) 
 

Compiled Jess Code (assert (topspace::vacuum.types.action (move "clean") )) 
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Table 4-5 shows the differences between how the Herbal compiler produces 

operators in Soar and Jess.  For Jess, the compiler translates the Herbal operator directly 

into a simple production.  However, in Soar an operator consists of a proposal rule and an 

application rule (Lehman, Laird, & Rosenbloom, 1996).  The proposal rule fires when the 

operator is appropriate for the current situation.  The application rule contains knowledge 

about how the operator changes working memory.  The distinction between operator 

proposal and operator application allows for interruptability, which is an important part 

Table 4-5:  A translation from an Herbal operator to Soar and Jess source code. 
Architecture Source Code 
Herbal XML 
Language 

<operator name='clean'> 
   <if> 
      <conditionref conditioN=dirty'/> 
   </if> 
   <then> 
      <actionref actioN='suck'/> 
   </then> 
</operator> 
 

Compiled Soar 
Code 

sp {propose*clean 
  (state <local> ^top <top> ^parent <parent> ^name cleanps) 
  (<top> ^io <i1>) 
  (<i1> ^input-link <i2>) 
  (<top> ^|origvac.types.status| <vacuum-types-spot2>) 
  (<vacuum-types-spot2> ^status <status2> |dirty| ) 
--> 
  (<local> ^operator <o> + =) 
  (<o> ^name clean) 
  (<o> ^count <count>) } 
sp {apply*clean 
  (state <local> ^top <top> ^name cleanps ^operator <o>) 
  (<o> ^name clean) 
  (<top> ^io <i1>) 
  (<i1> ^output-link <i2>) 
--> 
  (<i2> ^|vacuum.types.action| <vacuum-types-action20>) 
  (<vacuum-types-action20> ^move |suck| )} 
 

Compiled Jess Code (defrule clean 
  (topspace::vacuum.types.spot  
    (status ?status18&:(eq* ?status18 "dirty"))) 
=> 
  (assert (topspace::vacuum.types.action (move "suck") )) ) 
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of the psychological plausibility of Soar agents and is necessary to support learning in 

Soar. 

The examples given in Table 4-3, Table 4-4, and Table 4-5 illustrate how the 

Herbal high-level language has augmented the PSCM.  In some cases (i.e., the addition of 

conditions and actions as explicit objects), these modifications have added greater 

granularity, which allows for better reuse.  While in other cases (e.g., simulated operators 

in Jess), sacrifices were made in the richness of the problem solving abilities and 

psychological plausibility of the PSCM.  These sacrifices are apparent when supporting 

architectures that do not provide direct support the PSCM.  These trade-offs are common 

throughout the design of the Herbal Toolset. 

There will always be times when the modeler will be unhappy with the sacrifices 

made by the compiler for the sake of architectural neutrality. Model refinement (Salvucci 

& Lee, 2003) allows the modeler to create a model using a high-level representation and 

then refine it when they need lower-level, architecture specific, control.  This is an 

essential component of any high-level representation and the Herbal tool supports this 

using prescripts and postscripts.  Herbal’s prescript and postscript files allow the modeler 

to inject architecture specific code that will be automatically included into the generated 

low-level representation. 

Herbal: A Tool for Supporting Maintenance 

The Herbal Toolset includes an Integrated Development Environment (IDE) that 

provides a graphical environment for creating and maintaining agents.  This environment 
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supports the creation and maintenance of agents by extending the popular Eclipse 

extensible platform (Shavor et al., 2003).  The Herbal IDE provides support for 

developers to modify source code at a level above the syntax, and support for code 

navigation using working sets and information scent. 

The Herbal IDE 

I have implemented the Herbal IDE as an Eclipse plug-in.  Eclipse is a universal 

platform providing an open and extensible IDE.  Basing the Herbal IDE on Eclipse 

provides many advantages.  First, Eclipse provides a robust framework for the creation of 

powerful development tools.  This framework consists of many of the modern IDE 

features expected by developers, including project management, multiple views, and real-

time compilation.  In addition, the popularity of the Eclipse IDE has grown considerably, 

and as a result, the learning curve for using the Herbal IDE is small for users who are 

already familiar with the Eclipse environment.  Finally, Eclipse is free and executes on a 

variety of different platforms, making the Herbal IDE available to a wide range of 

potential users. 

The Herbal IDE supports the creation of Herbal agents either graphically or by 

programming directly in the Herbal high-level language.  Agent programmers can freely 

switch between these two modes at any time. 

Modelers perform graphical editing in Herbal with the Herbal GUI Editor (shown 

in Figure 4-4).  The Herbal graphical editor provides support for modifying source code 

at a level above the syntax (Boshernitsan, 2003). 
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Like the Herbal high-level language, the GUI Editor is library centric.  Using the 

editor, programmers can use wizards to create or modify existing library components 

(i.e., types, conditions, actions, operators, problem spaces, and agents).  Developers can 

also create agents without having to write code in the Herbal high-level language.  Herbal 

creates the Herbal XML code automatically as the developer interacts with the GUI 

Editor. 

In addition to saving time and reducing programming errors, modelers can use the 

GUI Editor as a means for learning the Herbal XML language.  Developers can create a 

PSCM component using the GUI Editor and then inspect the XML code created.  By 

switching between the editor and the generated code, programmers can quickly learn the 

syntax of the Herbal high-level language. 

While the editor simplifies the creation of PSCM components, some developers 

may prefer to work directly with the Herbal high-level language.  This is another example 

 

 
Figure 4-4:  The Herbal GUI Editor. 
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of support for model refinement (Salvucci & Lee, 2003), but at a level of abstraction 

higher than what Salvucci and Lee proposed.  At any time during development, 

programmers can edit the Herbal XML code directly, and the GUI Editor immediately 

displays the changes (see Figure 4-5). 

Typical of most Eclipse plug-ins, Eclipse automatically invokes the compiler as 

the programmer is working.  In other words, with each change made by the agent 

developer, the Herbal IDE compiles the Herbal XML code into both Soar and Jess 

productions.  This feature serves as an excellent mechanism for learning the underlying 

Soar or Jess programming languages.  Herbal programmers can create PSCM constructs 

using either the Herbal GUI Editor or the Herbal high-level language, then inspect the 

generated Soar and Jess code to learn how Herbal implements these constructs in the 

underlying architectures. 

 

 
Figure 4-5:  Developing agents using both the GUI Editor and by editing the Herbal 
XML by hand. 
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Figure 4-6 shows the Herbal IDE displaying multiple views of an Herbal library.  

The top left view shows the Herbal GUI editor.  To the right of the GUI Editor is a 

snapshot of some Herbal high-level XML code.  The bottom two views in Figure 4-6 

show the generated Jess and Soar code.  Finally, along the very bottom of Figure 4-6 is a 

list of current warnings and errors.  In this case, a typo made by the developer has 

generated a warning.  Double-clicking on this warning will open an editor to the 

appropriate location so the warning can be resolved. 

The Model Browser View shown in Figure 4-7 makes it easy to browse the static 

PSCM structure of an Herbal agent and, therefore, may simplify the maintenance of these 

structures. 

 

Figure 4-6:  The Herbal IDE showing multiple views of an Herbal library.  
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Working Sets and Intent as Information Scent 

Chapter 3 clearly documents the need to support code navigation.  Working sets 

are one method for providing this support.  Studies done by Ko, Aung, and Myers (2005) 

suggest that better support for working sets can help simplify the code navigation task.  

Ko, Aung, and Myers (2005) present a set of design requirements for maintenance-

oriented tools, three of which I have implemented in Herbal.  The following is a list of 

the design requirements that Herbal supports for better code navigation. 

1. Provide a working set interface that supports the quick addition and removal 
of task-relevant code fragments. 

2. Automatically save and recover working sets of task-relevant code fragments, 
ensuring that the tools used to navigate working sets are distinct from the tools 
used to represent working sets. 

3. When programmers add code to a working set interface, automatically add its 
direct and indirect dependencies.  Then, directly or indirectly related code can 
be placed side-by-side avoiding the interactive overhead of opening and 
closing file tabs. 

 

 
Figure 4-7:  Viewing  the static PSCM structure using the Model Browser View. 
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As shown in Figure 4-8, the Herbal IDE makes it possible for developers to build 

a working set of task relevant code fragments.  The key design question when building 

working set interfaces is how to help developers find relevant code fragments.  As 

outlined in Chapter 2, several different approaches have been taken including leveraging 

group memory (Cubranic, Murphy, Singer, & Booth, 2005; DeLine, Czerwinski, & 

Robertson, 2005), information foraging theory (Lawrance, Bellamy, Burnett, & Rector, 

2008), and design rationale (Ko, Myers, Coblenz, & Aung, 2006).  I have chosen to 

utilize the design rationale feature that already exists in Herbal to help modelers find and 

follow scent when building working sets of relevant code fragments. 

In Herbal, developers build working sets manually or by executing a search 

through the libraries using keywords related to the current maintenance task.  Relying on 

a search of component names using keywords can be fragile because it requires the 

modeler to use descriptive names that exactly match the keyword (Ko, Myers, Coblenz, 

& Aung, 2006).  Fortunately, Herbal’s existing support for design rationale, based on the 

work done by Haynes, Cohen, and Ritter (2008), make it possible to also search the 

 

 
Figure 4-8:  Support for working sets in the Herbal IDE. 
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component’s design rational for the specified keyword.  If the modeler previously entered 

design rationale, Herbal will use it to increase the relevance of the search results. 

Herbal also takes into account the topology of the model when searching for 

relevant components based on keywords.  The items returned in the result set either 

contain or reference the keywords themselves or are dependent on items that contain or 

reference the keywords. 

The modeler can save the collection of code fragments as a named working set 

and share them between developers or recall them for future use.  Finally, double-

clicking on items in the working set will open the code fragment in the Herbal GUI editor 

for inspection. 

Interestingly, the working set interface implemented in Herbal supports Kruger’s 

second dimension: selection.  In addition to facilitating code navigation, Herbal’s 

working set interface also helps programmers locate and select reusable components.  

This is especially effective because of the inclusion of intent by the selection algorithm 

used by the working set search. 

Herbal: A Tool for Supporting Reuse 

The design of Herbal includes support for several different forms of reuse 

including the reuse of low-level PSCM components, the creation of libraries, and the 

instantiation of behavior design patterns. 
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Libraries 

The Herbal high-level language is library centric, in that Herbal projects must 

consist of XML documents that define several libraries of reusable components.  There 

are six different types of Herbal libraries: type libraries, condition libraries, action 

libraries, operator libraries, problem space libraries, and agent libraries. 

Figure 4-9 shows the dependencies between these libraries.  The foundation of all 

the Herbal libraries is the type library.  This library contains the set of data types 

available to the agent programmer.  This is a major improvement over the lack of data 

type checking typical in most rule-based languages.  From these types, the programmer 

can define conditions and actions that can add, edit, remove, or test for the existence of 

instances of the defined types.  Modelers build operators from these conditions and 

actions, and problems spaces from a set of operators and conditions.  Finally, the 

developer defines agent behavior using a hierarchy of problem spaces.  This layered 

approach allows developers to choose and reuse behavior at just the level of abstraction. 

 

 
Figure 4-9:  The dependencies between the six different types of libraries in Herbal. 
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Herbal libraries are uniquely qualified using a namespace.  This allows developers 

to create any number of libraries and share them across models.  The Herbal IDE 

supports library sharing graphically using wizards for the importing and exporting of 

libraries across projects.  As shown in Figure 4-10, this feature automatically detects 

library dependencies, thus ensuring that the required library components are included in 

the export. 

The following example illustrates how Herbal supports library reuse.  In this 

example, a modeler creates libraries of basic reusable components for the vacuum cleaner 

agent environment (Cohen, 2005) and prefixes them with the namespace ‘vacuum’.  A 

different modeler then uses these components to build additional higher-level libraries 

and new, more aggressive vacuum cleaner agents.  The modeler prefixes the new libraries 

with the namespace ‘aggressive’ (see Figure 4-11). 

This type of layered reuse is common in traditional software development.  This is 

a great example of support for the Krueger’s fourth dimension – integration – because of 

the way it facilitates the combination of reusable components into a working model. 

 

 
Figure 4-10: Exporting a library and its dependencies. 
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Behavior Design Patterns 

In addition to the PSCM level, Chapter 2 and Chapter 3 illustrated the importance 

of supporting additional high-level behavioral abstractions, like the procedural patterns 

implemented in RAPs (Firby, 1989), the BDI framework supported by JACK (Norling, 

2004), and the activation tables supported in HLSR (Jones, Crossman, Lebiere, & Best, 

2006). 

Structured programming paradigms like looping constructs can be useful in agent 

programming, but can be a challenge to program in a typical rule-based language.  In 

addition, modelers often copy looping constructs throughout an agent program.  High-

level support for these constructs can allow modelers to reuse complex behavior, as 

opposed to duplicating it. 

For example, agents created for graphical agent environments such as the Vacuum 

Cleaner Environment (Cohen, 2005) and the dTank environment (Ritter, Kase, 

 

 
Figure 4-11:  Building custom agents by reusing libraries. 
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Bhandarkar, Lewis, & Cohen, 2007) often implement looping constructs.  For the 

vacuum cleaner agents, behaviors like “while the vacuum is on a clean square search for 

dirt using this pattern of movement” are common, and for the dTank agents, behaviors 

like “while no enemy tank is spotted search for an enemy using this search strategy” are 

common.  

To address this problem and to promote the reuse of high-level meta-behaviors 

such as looping, the Herbal development environment utilizes a Behavior Design Pattern 

Wizard (see Figure 4-12).  This wizard makes it possible for the agent developer to 

generate instantiations of useful meta-behaviors using existing PSCM components.  The 

Wizard automatically creates these PSCM components to produce behavior within a 

problem space.   

The Design Pattern Wizard is also an excellent example of support for Krueger’s 

third dimension of reuse (specialization) (1992).  Using the wizard, modelers can 

transform a general design pattern into a more specialized object tailored to their needs. 

I have also designed Design Pattern Wizard to be extensible.  This gives 

ambitious users the ability to plug-in support for the instantiation of additional patterns of 

high-level behavior (e.g., BDI constructs and HLSR activation tables). 
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Herbal: A Tool for Supporting Programming at Various Levels of 
Abstraction 

The design of Herbal includes support for programming at several different levels 

of abstraction. Figure 4-13 summarizes these levels and Appendix A gives examples of a 

model represented at each of these levels.   

 

 
Figure 4-12:  The Behavior Design Pattern Wizard. 
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The graphical level represents the highest level of abstraction supported by 

Herbal.  The Herbal GUI Editor (Figure 4-4), Model Browser View (Figure 4-7), and 

Behavior Design Pattern Wizard (Figure 4-12) form the core of this level.  Using these 

graphical tools, modelers can interact with the model visually and at a level above the 

syntax (Boshernitsan, 2003; Dann, Cooper, & Pausch, 2008) using two different abstract 

behavior representations (i.e., the PSCM and Looping Control Structures).  The modular 

design of the Design Pattern Wizard allows for the addition of other abstract 

representations in the future, such as the BDI framework (Norling, 2004) and the 

constructs supported by HLSR (Jones, Crossman, Lebiere, & Best, 2006).  

The middle layer represents a level of abstraction that allows programming with 

XML using the PSCM (Friedrich, Cohen, & Ritter, 2007).  The use of XML in this layer 

allows modelers to interact with the model using a variety of specialized XML editors, or 

simply an ordinary text editor.  The use of the PSCM here helps reduce the conceptual 

 

 
 

Figure 4-13: Supporting multiple levels of abstraction in the Herbal Development
Environment. 
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gap between a theoretical representation of the behavior, and the underlying rule-based 

code. 

The bottom layer allows for programming using a low-level representation 

language (Jess or Soar).  This level allows for model refinement (Salvucci & Lee, 2003) 

by fine tuning the resulting low-level code produced automatically by the Herbal 

compiler. 

Modelers are free to interact with the model using all three of these layers.  The 

graphical nature of the first layer is well suited for novice modelers, but is useable by 

modelers with any level of experience.  As modelers gain experience and encounter 

situations that need more control, they can interact with the model at progressively lower 

levels.  This structure provides support for users as they gain experience and transition 

from novice to expert (Powers, Ecott, & Hirshfield, 2007). 

Summary 

The design and implementation described in this chapter is based on theories 

developed by the software engineering community about how to solve complex problems 

with software solutions (Chapter 3).  Theories about high-level languages, reuse, and 

maintenance-oriented environments are central to Herbal’s design.  In addition, Herbal 

leverages theories from cognitive science, such as the PSCM to make it easier to develop 

useful agents and cognitive models (Chapter 2). 

The focal theory introduced in this dissertation proposes that the combination of 

these theories can simplify agent and cognitive model development.  The evolution and 
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ultimate success of this focal theory must be guided and evaluated using both formative 

and summative evaluations.  The design presented in this chapter incorporates the lessons 

learned during the formative evaluation of Herbal (Chapter 5).  In addition, the success of 

this theory has been measured using two different summative evaluations (Chapter 6 and 

Chapter 7).  The next three chapters explain these evaluations in detail



Chapter 5 
 

Evaluating Design: A Formative Evaluation of Herbal 

Producing useful and usable software requires continuous and iterative evaluation 

(Boehm, 1988a; Rosson & Carroll, 2002).  It is helpful to categorize evaluation as either 

formative evaluation or summative evaluation (Scriven, 1967).  Formative evaluation is 

useful during the design of a system.  Designers use feedback from formative evaluations 

to inform future design.  It is common to perform several formative evaluations during 

system development (Boehm, 1988a; Rosson & Carroll, 2002). 

Summative evaluations evaluate the quality of a completed design, and typically 

take place when system development is complete.  The results of a summative evaluation 

provide a measurement of how well the system meets specific design objectives (Rosson 

& Carroll, 2002).  Figure 5-1 illustrates the difference between formative and summative 

evaluation. 
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Following these guidelines, the design and implementation of Herbal underwent 

both formative and summative evaluation during its development.  The formative 

evaluation of Herbal is described in detail in this chapter. 

In the fall of 2006, an empirical formative evaluation of a prototype of Herbal, 

and some of the theories it embeds, was conducted to inform the design of Herbal.  The 

Vacuum Cleaner Environment (discussed next) (Cohen, 2005) was used as a basis for the 

tasks used to evaluate Herbal.  This environment was chosen because it is simple enough 

to introduce to undergraduates, yet complicated enough to allow for the creation of 

interesting agents.  In addition, this environment is colorful and entertaining, thus holding 

the interest of the study participants.  Understanding the formal evaluation of Herbal 

requires a basic understanding of the Vacuum Cleaner Environment.  A description of 

this environment follows.  

 
Figure 5-1: Formative and summative evaluation (Rosson & Carroll, 2002). 
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Overview of the Task 

The Vacuum Cleaner Environment is based on a very simple world that was 

introduced in a widely used Artificial Intelligence text book, Artificial intelligence: A 

modern approach by Stuart Russell and Peter Norvig (2003).  In the Vacuum Cleaner 

World, a vacuum cleaner resides in an environment that contains two squares: A and B.  

Each square can be either clean or dirty.  The vacuum cleaner’s percepts allow it to detect 

what square it is in and the state of the square (i.e., clean or dirty).  In addition, the 

vacuum cleaner can perform four actions: move left, move right, suck, or do nothing.  

This environment is useful because its entire state space, consisting of only eight states, 

can be easily illustrated and explored.  In addition, if a performance measure is used, the 

concept of agent rationality  (Russell & Norvig, 2003) can be introduced. 

There are several implementations of the Vacuum Cleaner World available.  For 

example, the Pyro robotics toolkit (Blank, Kumar, Meeden, & Yanco, 2006) includes an 

implementation in Python.  Another interesting extension of the Vacuum Cleaner World, 

created by Musicant and Exley (2004), allows students to program a physical robot to 

navigate a simplified version of the Vacuum Cleaner World.  Additional 

implementations, in a variety of languages, are included on the official website for 

Artificial Intelligence: A Modern Approach (aima.cs.berkeley.edu).  

While these implementations are useful for introducing basic agent programming 

concepts, they are either too simplistic for more advanced rule-based programming, or 

require the overhead of expensive hardware.  To effectively evaluate Herbal, a custom 

graphical agent environment was created in Java (Cohen, 2005).  This environment adds 



108 

 

complexity to the Vacuum Cleaner World described earlier.  In addition, this 

environment supports rule-based programs written in two widely used agent 

architectures: Jess and Soar.  A screenshot of the Vacuum Cleaner Environment is shown 

in Figure 5-2. 

Method 

This section describes the method used for a formal study conducted in parallel 

with an undergraduate artificial intelligence class.  The ultimate goal of this study was to 

improve the design of Herbal and the Vacuum Cleaner Environment.  Specifically, this 

study was designed to measure four different factors:  

" The students’ impressions of rule-based programming in general, and Jess 
specifically 

" The students’ impressions of graphical development environments in general, 
and Herbal and the Vacuum Cleaner Environment specifically 

 

 
Figure 5-2: The Vacuum Cleaner Environment. 
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" The students’ impressions of higher-level methods for organizing rules in 
general, and the use of the PSCM specifically 

" The students’ impressions of the Herbal high-level language. 

This study took advantage of cognitive dimensions research (Blackwell & Green, 

2003; Blackwell & Green, 2000) to evaluate the Herbal Integrated Development 

Environment  (Cohen, Ritter, & Haynes, 2005).  These dimensions provide a framework 

and a common vocabulary that can be used to judge the design of a notational system like 

Herbal (Blackwell & Green, 2003). 

Table 5-1 shows the eight cognitive dimensions selected as usability evaluation 

criteria.  These dimensions were chosen because they measure the degree in which the 

principles that mediated the design of Herbal were achieved (i.e., embracing high-level 

languages, enabling reuse, and supporting maintenance-oriented development). 
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Participants 

The seven participants recruited for this study were undergraduate students 

majoring in Computer Science (CS) or Computer Information Science (CIS) at Lock 

Haven University and were enrolled in an upper-level Artificial Intelligence course at 

Lock Haven.  Participants were not paid for taking part in this study.  Seven students in 

Table 5-1: The Cognitive dimensions used to evaluate the design of Herbal. 

Cognitive Dimension Description 

Closeness of mapping How closely does the behavior representation language 
match the way that the modeler describes the behavior?  

Error-proneness How easy is it to make errors using the behavior 
representation language? 

Hidden dependencies How easy does the behavior representation language 
make it to create hidden dependencies between model 
entities? 

Premature commitment How often is the developer forced to make a 
commitment in the model before there is enough 
information to make the commitment? 

Provisionality How easy is it to make provisional commitments that 
can be corrected at a later time? Provisionality allows 
modelers to easily examine design options and construct 
what-if scenarios. 

Role-expressiveness How easy is it to discover why a modeler has chosen a 
particular design? Explicit support for design rationale, 
as discussed earlier, improves a systems role-
expressiveness. 

Viscosity How easy is it to make changes to an existing model? 
The less the viscosity, the easier it is to change the 
model. 

Visibility How easy is it to view the elements in a model, 
including their internal details? 
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the class agreed to participate: one CIS student and six CS students.  Each participant was 

assigned a Participant ID and this ID is the only way that participants can be associated 

with the data collected during the study.  The Lock Haven University Institutional 

Review Board (IRB) approved the study prior to its implementation. 

Apparatus 

Participants used Dell Desktop computers running Linux to complete the required 

tasks.  These desktops are all located in the Lock Haven Penguin Lab and are equipped 

with a keyboard, a mouse, a 100MB external hard-drive, and a 17-inch flat screen 

monitor. 

The required software for this experiment was installed on each machine.  The 

software was Eclipse (3.2.1), Java (1.5), Herbal (2.0.2 Pre-release D), Jess (6.1), the Vim 

text editor, and the Vacuum Cleaner Environment (2.0). 

Design 

As part of the course requirements, all students were asked to complete four 

assignments.  The assignments turned in by the students who agreed to participant in this 

study were used for the formative evaluation.  The first assignment asked the participants 

to create a Jess program that simulated customers entering a bank and waiting in a queue 

for service.  This assignment measured the participants’ initial impressions of rule-based 

programming in Jess, and of graphical development environments in general.  
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The second assignment required the participants to create two vacuum cleaner 

models.  The purpose of this assignment was to measure the participants’ impressions of 

rule-based programming in Jess, graphical development environments, and the Vacuum 

Cleaner Environment. 

The third assignment asked the students to use Jess modules to create a vacuum 

cleaner agent that operated in the PSCM.  The purpose of this assignment was to measure 

the participants’ impressions of problem spaces and the PSCM from the perspective of 

organizing and modularizing code. 

The fourth assignment was to repeat assignment number three, but to use an early 

prototype of the Herbal high-level language and development environment (Version 2.0.2 

Pre-Release D) to create the agent.  The purpose of this assignment was to measure the 

participants’ impressions of Herbal. 

Data collection consisted of participant observation and quantitative and 

qualitative survey questions.  Participant observations and open-ended survey questions 

were coded based on the cognitive dimensions in Table 5-1.  Portions of the assignments 

were completed during class time so that participant observation could be conducted.  

Upon completion of each assignment, surveys were administered to the participants.  

Table 5-2 provides a summary of the four tasks performed by the participants. 
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Procedure 

On the first day of class, participants were recruited from the group of students 

enrolled in the course. The study began with each participant reading and signing the 

consent form as well as completing a User Background Survey, which collected basic 

Table 5-2: Summary of the experimental design for the formative evaluation. 

Exp Task Data Collected Purpose 

1 Create a Jess program that 
models customers 
entering a bank and 
waiting in a queue for 
service 

The Jess source code  
 
Completed survey 
 
Participant observations 

To measure student impressions 
of rule-based programming and 
graphical development 
environments  

2 Create a vacuum cleaner 
agent that cleaned a room 
 
Create a second vacuum 
cleaner agent that cleaned 
a room and also kept 
track of how many 
squares it cleaned so that 
it would halt when the 
room was clean 

The Jess source code  
 
Completed survey 
 
Participant observations 

To see if the participants’ 
impressions of rule-based 
programming and graphical 
development environments 
changed after using the Vacuum 
Cleaner Environment 
 
To measure the students’ 
impressions of the Vacuum 
Cleaner Environment 

3 Use Jess modules to 
create a vacuum cleaner 
agent that operated in 
problem spaces 

The Jess source code  
 
Completed survey 
 
Participant observations 

To measure the participants’ 
impressions of problem spaces 
and the Problem Space 
Computational Model 

4 Use the Herbal Graphical 
Development 
Environment to create a 
vacuum cleaner agent that 
operated in problem 
spaces 

The Jess source code  
 
Completed survey 
 
Participant observations 

To measure the participants’ 
impressions of Herbal 
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information about his or her background and expectations prior to participating in the 

study. 

During the semester, participants were assigned each of the four assignments in 

order.  Assignments were completed both during class time, and outside of class.  When 

participants were given class time to work on the assignments, observations about the 

participant’s performance, as well as the interactions between the experimenter and the 

participant, were /noted by the experimenter.  When participants finished each 

assignment, they were asked to complete a different user reaction survey for each 

assignment.  The surveys were designed to measure the four objectives given in the 

Methods section.  The Results section contains details about the content of these surveys. 

The first assignment asked the participants to create a Jess program that simulated 

customers entering a bank and waiting in a queue for service.  The simulation operates by 

generating random numbers that determine how much time will elapse before the next 

customer enters the bank, and how much time it will take for the teller to service the 

current customer.  For example, customers can arrive at the bank in intervals between 1 

and 10 minutes, and tellers can take between 1 and 7 minutes to service a customer.  The 

simulation was run for 1000 simulated minutes, and during this time customers were 

added to a queue when they enter the bank and, as the teller becomes available, 

customers were removed from the queue so they can be serviced by the teller.  The wait 

time for each customer was be calculated as the amount of time the customer spends on 

line, and did not include the time the customer spends with the teller.   

Participants worked alone on this assignment and used the Vim text editor to 

create their programs.  Although hard to control, participants were asked not to use 
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graphical development environments and debuggers.  When the assignment was finished, 

participants were each asked to complete User Reaction Survey #1.  

The second assignment required the participants to create two vacuum cleaner 

agents.  The first agent was a simple agent that cleaned a dirty room.  This agent was run 

with no state, no penalty for movement, no radar sensor, and in an environment two 

squares wide and one square tall.  Participants were asked to record the best possible 

score for a run of 10 steps and the average score of their agent.  The second agent 

operated in the same environment; however, this agent was allowed to maintain state and 

was assigned a penalty for each movement.  Students were asked to minimize the penalty 

by remembering where the vacuum had been so it stopped moving when all squares were 

visited.  Participants worked alone on this assignment and used the Vim text editor to 

create their programs.  Again, graphical development environments and debuggers were 

forbidden.  When the assignment was finished, participants were each asked to complete 

User Reaction Survey #2.  

Problem spaces are simulated in Jess using Jess modules (Friedman-Hill, 2003).  

The third assignment asked the students to use Jess modules to create a vacuum cleaner 

agent that operated in problem spaces.    The problem space hierarchy and the 

relationships between them are shown in Figure 5-3. 
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When the agent in the third assignment started, it entered the FindTopLeft 

problem space which caused it to go immediately to the top left square on the board; 

cleaning dirty squares along the way.  The FindTopLeft problem space used the MoveUp 

and MoveLeft problem spaces to accomplish its goal and the MoveUp and MoveLeft 

problem spaces used the Clean problem space to make sure squares were cleaned a long 

the way.   

After the agent arrived at the top left square, it walked the perimeter of the board, 

cleaning any dirty squares it encountered during its travels.  While the agent walked the 

perimeter, it was asked to assert the following three facts: a fact that represents the height 

of the board, a fact that represents the width of the board, a fact that represents the total 

number of squares on the board.  The MoveUp, MoveLeft, MoveDown, and MoveRight 

problem spaces accomplished this behavior.   

 

 
Figure 5-3: Problem space hierarchy for assignments 4 and 5. 
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After the agent walked the entire perimeter, it entered a problem space called 

Wander that caused the agent to explore the board using the following algorithm. If the 

agent was on a dirty square, it cleaned it.  If there was a dirty square adjacent to the agent, 

it should move to that square.  If there were no dirty squares near the agent, it should 

randomly move to a new square, if the agent had visited every square on the board since 

it began to wander, it should stop moving.  

As in the first two assignments, participants worked alone on assignment three 

and used the Vim text editor to create their programs.  Graphical development 

environments and debuggers were forbidden.  When the assignment was finished, 

participants were each asked to complete User Reaction Survey #3.  

The fourth assignment was to repeat assignment number three, but to use the 

Herbal development environment (Version 2.0.2 Pre-Release D) to create the agent, 

instead of Vim.  Participants worked alone on assignment four.  When the assignment 

was finished, participants were each asked to complete User Reaction Survey #4. 

Results 

Throughout this study, data were collected using surveys and participant 

observation.  Many of the questions in the surveys were designed to measure the 

cognitive dimensions listed in Table 5-1.  Although all of the participants completed each 

of the four required assignments, not all participants choose to complete each survey 

(despite constant reminders).  Table 5-3, Table 5-4, Table 5-5, and Table 5-6 show 

quantitative results for each of the four surveys.  The number of participants that 
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completed each survey is indicated in the caption of each table.  In addition, if a question 

or result mapped to a cognitive dimension, it is indicated in the Table. 

 

Table 5-3:  Quantitative results from User Reaction Survey #1 (N=6). 

Impressions of rule-based programming and graphical development 
environments 

I understand the main constructs in Jess but I find it difficult to implement them 
because the Jess syntax is difficult. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
0 2 1 3 0 

Programming agents would be easier if the behavior of my running agent was 
displayed visually in a graphical environment. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
1 4 1 0 0 

Using print statements to print the progress of my agent in a console window is all 
want in order to help me create and debug my agents. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
0 0 3 3 0 

I would enjoy programming in Jess more if there was a better development 
environment. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
1 2 3 0 0  
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Table 5-4:   Quantitative results from User Reaction Survey #2 (N=7). 

Impressions of rule-based programming, graphical development environments, 
and the Vacuum Cleaner Environment 

I understand the main constructs in Jess but I find it difficult to implement them 
because Jess syntax is difficult. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
0 1 1 5 0 

Programming agents would be easier if the behavior of my running agent was 
displayed visually in a graphical environment. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
2 4 1 0 0 

Using print statements to print the progress of my agent in a console window is all 
want in order to help me create and debug my agents. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
0 0 2 5 0 

The vacuum cleaner graphical agent environment made programming agents 
more fun. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
4 3 0 0 0 

The vacuum cleaner graphical agent environment made it easier to learn how to 
create rule-based agents. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
1 4 2   

The vacuum cleaner graphical agent environment had just the right amount of 
complexity to make it possible to create interesting agents without getting 
distracted by the details of the environment. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
1 6 0 0 0  
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Table 5-5:   Quantitative results from User Reaction Survey #3 (N=6). 

Impressions of problem spaces and the Problem Space Computational Model 
The ability to group a set of operators and behavior into a problem space makes it 
easier to create complicated agents. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
0 4 2 0 0 

A graphical environment that simplified the use of problem spaces, operators, and 
impasses is needed to make them useful in Jess. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
1 1 3 1 0 

Breaking my agent code into problem spaces made it possible to breakup 
complicated agent behavior into smaller, less complicated parts. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
3 2 1   

It would be easier to use problem spaces if there was a graphical debugger that 
showed my agent as it moved from problem space to problem space. 
Strongly Agree Agree Neutral Disagree Strongly 

Disagree 
1 3 2 0 0  
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Table 5-7 shows the qualitative results from Survey #4, and Table 5-8 shows the 

observations made while the participants were working on the assignments.  The 

Table 5-6:  Quantitative results from User Reaction Survey #4 (N=4). 

Impressions of the Herbal Prototype 
If given the choice, I would rather use Herbal that pure Jess in order to complete the agent 
programming assignments given in this course. 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
1 0 0 2 1 

Herbal would be easier to use if there were better 
visualizations of the agent structure. 

Measures Visibility 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
3 1 0 0 0 

It takes less time to create an agent using Herbal that to write code in Jess. 
Strongly Agree Agree Neutral Disagree Strongly Disagree 

1 1 1 1 0 
It takes less time to learn how to use Herbal than to learn how to write Jess Code. 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
0 2 1 1 0 

The Herbal GUI editor makes it easier than Jess 
programming to recognize components of my agent 
(problem spaces, operators, etc.). 

Measures Visibility 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
0 1 2 1 0 

Herbal makes it easier than Jess to reuse conditions and actions in my agent. 
Strongly Agree Agree Neutral  Disagree Strongly Disagree 

1 1 2 0 0 
Herbal’s XML language is easy to read/understand. Measures Closeness of Mapping 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
0 2 2 0 0 

I would rather write code in Herbal using thee XML high-
level language than with the GUI editor. 

Measures Closeness of Mapping and 
Viscosity 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
0 2 0 2 0 

Herbal makes it easier than Jess to change my agent. Measures Viscosity 
Strongly Agree Agree Neutral Disagree Strongly Disagree 

1 0 0 3 0 
Herbal placed very little restrictions on the order in 
which I created my agent. 

Measures Provisionality and 
Premature Commitment 

Strongly Agree Agree Neutral Disagree Strongly Disagree 
0 1 1 2 0  
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responses to the open-ended questions, and the observations made while programming, 

were coded based on the related cognitive dimensions.  This coding is displayed in 

Table 5-7 and Table 5-8. 

 

Table 5-7:  Qualitative results from User Reaction Survey #4. 

Impressions of the Herbal Prototype 
What part of Herbal did you find most useful? 
Response # Responding Cognitive Dimension 
Syntax becomes a non-issue 2 Closeness of mapping 
Wiring aliases 1 N/A 
 
What part of herbal did you find most confusing? 
Response # Responding Cognitive Dimension 
Understanding the order in which to create 
components  

2 Provisionality and 
Premature 
Commitment 

Wiring  aliases  2 N/A 
Getting a high-level picture of the agent 
structure 

1 Visibility 

 
If you were in charge of programming Herbal, what improvements would you 
make? 
Response # Responding Cognitive Dimension 
Visual representation of the model structure 3 Visibility 
Wizard or flow-chart that helps you create 
components 

2 Provisionality and 
Premature 
Commitment  
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Table 5-8: Observation of participants completing assignment 4. 
Observation Cognitive Dimension 

Participants had problems understanding what an alias is in 
Herbal.  They struggled with this term.  Discussions with 
participants revealed that it helped them to think of them as 
input and output variables. 

Closeness of Mapping 

Participants had problems understanding when you would 
want to use a problem space as opposed to just an operator.  
Thinking of the problem space as a behavior seemed to be 
very helpful.  

Closeness of Mapping 

Participants had a hard time understanding the term 
impasse.  It helped to explain the impasse as a set of 
conditions that cause entry into a problem space. 

Closeness of Mapping 

Participants had problems debugging common problems.  
For example, they struggled figuring out why an agent was 
not entering a specific problem space or why an operator 
was not firing. 

Role-expressiveness 
Hidden Dependencies 

Participants were frustrated by the requirement to fully 
specify a component when it was created. 

Provisionality,  
Premature Commitment 
Viscosity 
Hidden Dependencies 

Participants were frustrated when the system forced them to 
delete all references to a component before they could 
delete the component. 

Provisionality,  
Premature Commitment 
Viscosity 

Participants were frustrated by the lack of warnings.  The 
system produced errors for situations that occur during 
development but were easily corrected later in the 
development process.  There errors were highly dependent 
on the order in which the model was created.  The 
participants would prefer these to be reported as warnings. 

Provisionality,  
Premature Commitment 
Viscosity 

In some cases, participants were allowed to make certain 
mistakes that caused the visual editor to stop functioning 
and could only be fixed using the XML code. 

Error-proneness 

Participants continued to express the need for a high-level 
visualization of the model and its structure. 

Visibility 

Participants continually commented that they would have 
rather learned Herbal and then Jess instead of the other way 
around.  They all felt that Herbal is useful in learning how 
to program in pure Jess. 

N/A 
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Discussion 

Responses to the first two surveys (Table 5-3 and Table 5-4) indicate that after the 

first assignment, participants were divided about their comfort level with Jess syntax.  

Two out of six found the syntax challenging, one was neutral, and three did not find the 

syntax difficult at all.  The level of comfort with Jess syntax was not surprising: 

especially because this evaluation was conducted in an upper-level, CS/CIS course using 

students with considerable programming experience. 

The participants comfort level with Jess syntax increased after completing the 

second assignment, with five out of seven disagreeing with the statement that Jess syntax 

is difficult.  Reasons for becoming more comfortable with Jess syntax could be related to 

gaining more experience with the language.  One might expect less comfort with Jess 

given a more diverse set of participants. 

In addition, participants agreed that being able to view a running agent visually in 

a graphical environment would help make agent programming easier.  They also 

expressed the need for more than just console output for debugging their agents.  

Responses to these same questions remained strong after they were introduced to the 

Vacuum Cleaner Environment in the second assignment. 

Survey #2 (Table 5-4) shows participants were positive about the effectiveness of 

the Vacuum Cleaner Environment.  Participants found that the environment made the 

programming assignments easier and more enjoyable.  In addition, participants felt that 

the Vacuum Cleaner Environment was created with just the right amount of complexity.  
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Results from Survey #2 supported the belief that graphical agent environments can make 

agent programming more enjoyable for students. 

Responses from Survey #3 (Table 5-5) validated the use of the PSCM as the 

foundation for the Herbal high-level language.  Participants agreed that the PSCM made 

agent programming easier because it componentized their agents.  In addition, responses 

showed that participants favored the idea of a development environment and debugger 

that supported the PSCM.  Results from Survey #3 illustrate that a higher-level language 

that allows programmers to organize rules into higher-level structures was appreciated, 

and that the PSCM is a good choice for this purpose.  This was a very encouraging result 

because it suggests that the PSCM may be a familiar construct in computer science 

students, not just psychology. 

Results from Survey #4 (Table 5-7), which are directly related to the design of 

Herbal, are mixed.  Most participants felt that they would rather program using pure Jess 

than the Herbal Development Environment.  The also felt strongly that Herbal needed 

better visualizations of the agent’s structure.  In addition, participants were not convinced 

that Herbal made it easier to make changes to agent code.  They also felt that Herbal 

forced them to work in a particular order when developing agents.  This means that 

Herbal poorly supports the Visibility, Viscosity, Provisionality, and Premature 

Commitment dimensions.  In addition, mixed responses from participants about the time 

it takes to learn and use Herbal also indicated a need for design changes. 

However, some responses in Survey #4 were positive.  For example, participants 

found it easier to reuse model components using Herbal than when programming using 
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pure Jess.  In addition, participants found the XML high-level language used by Herbal to 

be easy to read and understand. 

Interestingly, in Survey #4 half of the participants preferred programming by 

editing the Herbal XML high-level language, while the other half preferred the GUI 

editor.  Herbal was designed to support both methods of programming because it was 

believed that preferences, and requirements, for both styles of programming exist 

(Powers, Ecott, & Hirshfield, 2007; Salvucci & Lee, 2003).  These results support this 

design choice. 

Responses to the open-ended questions (Table 5-7) and the participant 

observations (Table 5-8) were used to help discover the reasons behind some of the 

negative responses in Survey #4.  These reasons were used to help improve the design of 

Herbal.  For example, the frustration with the order that Herbal enforced while creating 

agents is evident in both the open-ended questions and the participant observations.  

Participants did not like having to provide a complete specification for a component at 

the time it was created.  They also did not like having to remove references to a 

component before the component could be deleted.  These problems made it difficult to 

create and change an agent.  This feedback suggests the need for design changes for 

better support of the Viscosity, Provisionality, and Premature Commitment cognitive 

dimensions. 

Another problem indicated in both the open-ended questions and participant 

observations was poor support for the Visibility cognitive dimension.  Specifically, 

participants requested better visualizations of the model structure.  The need for this type 

of visualization was also evident during participant observation. 
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Participants also had trouble getting comfortable with some of the terminology 

used by Herbal.  For example, participants struggled with the difference between a 

problem space and an operator.  Discussions with participants suggested that it helped to 

refer to problem spaces as behaviors or goals.  Participants also indicated that they 

preferred to think of aliases as input/output variables and impasses as a set of conditions 

for entry into a new behavior. 

Participant observations and survey responses indicated that participants had 

trouble finding and fixing errors in their agents.  One possible factor was that the console 

method of debugging caused execution to be traced using rules instead of the PSCM 

terminology used when the agent was created.  Participants were trying to see what 

problem space their agent was in, and which operator was recently applied, but the trace 

they were using contained a list of rules.  This mismatch between the behavior 

representation language and the way that trace describes the model’s behavior resulted in 

poor support for the Closeness of Mapping dimension.  A good debugger or tracing tool 

that maps directly to the PSCM rather than the rules would help here. 

Finally, bugs within the GUI editor, that allowed fatal mistakes to be made (e.g., 

the GUI editor stopped functioning) that could only be fixed in the XML code, frustrated 

participants, and this frustration was evident during participant observation and in open-

ended responses.  Experimenter observations indicated that this frustration was a major 

cause for some of the negative responses in Survey #4. 
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Conclusions 

There were several important lessons learned during the formative study 

described here, and many of these lessons resulted in changes in the Herbal design.  For 

example, participants felt strongly that Herbal needed a better visualization of the agent 

structure.  This feedback resulted in the development of the Model Browser View in 

Herbal.  This window shows a hierarchical view of a model’s structure, giving the 

programmer a high-level picture of the model and its components.  This view was 

specifically designed to improve Herbal’s support for Visibility. 

In addition, participants were annoyed by the fact that Herbal forced them to work 

in a particular order when developing agents.  To correct this problem, “soft” warnings 

were implemented in Herbal.  During normal development, an agent is often only 

partially completed.  With the addition of soft warnings, an incomplete agent produces a 

message that is passively displayed in the Eclipse output window.  When a warning is 

displayed, the developer is allowed to continue without interruption.  This makes it 

possible for developers to work in any order by building or editing models that are not yet 

complete.  The warnings remind the programmer which components are not complete, 

but they do not prevent the developer from continuing.  This should lead to better support 

for Viscosity and Premature Commitment. 

The participants’ difficulty debugging models indicated poor support by Herbal 

for Role Expressiveness and Closeness of Mapping.  Participants had problems finding 

and fixing problems in existing agents, which indicates poor understanding of how the 

model works and what the model was doing.  To correct this problem, working sets that 
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leveraged existing design rationale, were added to Herbal.  These working sets should 

make it easier for modelers to find task relevant model components during maintenance.  

In addition, a graphical debugger was built that traces model execution using PSCM 

components rather than rules.  These additions directly targeted better support for Role 

Expressiveness and Closeness to Mapping. 

To correct the participants’ problems with terminology some of the model 

components were renamed.  For example, aliases were renamed to input and output 

variables, and the concept of an impasse is now presented as a set of conditions for entry 

into a problem space.  In addition, the concept of a behavior was introduced to help users 

understand problem spaces, and a Design Pattern Wizard was created to make it easy for 

users to create new model behaviors that are ultimately represented as problem spaces.  

All of these changes were implemented to improve Herbal’s support for Closeness of 

Mapping. 

Finally, several bugs in the GUI Editor were discovered during this study.  These 

bugs frustrated participants and made it difficult for them to complete the tasks.  All the 

bugs identified during the formative evaluation were fixed. 

Results from this study also indicated strengths in the current Herbal design.  

These results helped confirm many of the design decisions that were made early on in 

development process.  For example, the choice to use the PSCM as the basis of the 

Herbal high-level language was confirmed by participants, as they indicated that the 

PSCM made agent programming easier.  In addition, the emphasis on reuse during 

Herbal’s design was successful as participants found it easier to reuse model components 

using Herbal. 
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The decision to use XML for Herbal’s high-level language was also supported by 

this study.  Participants clearly found the XML high-level language used by Herbal to be 

easy to read and understand.  Finally, the design decision to allow users to edit Herbal 

code using both the GUI Editor and by directly editing the XML code was appreciated by 

participants.  Half of the participants preferred programming by editing the Herbal XML 

high-level language, while the other half preferred the GUI editor. 

Table 5-9 summarizes the lessons learned during this study, and the changes that 

were implemented to address these lessons.   

The formative evaluation presented here resulted in the confirmation of many of 

the design decisions made during the implementation of the Herbal prototype.  In 

addition, survey results and participant observations lead to several changes in Herbal.  

Table 5-9: Summary of the design changes resulting from the formative study. 

Formative Result Design Change 

Herbal needed a better visualization of the 
agent structure 

Added a Model Browser View 

Herbal forced them to work in a particular 
order 

Implementation of “soft” warnings 

Difficulty debugging models Implementation of working set feature 
that leverages existing design rationale,  
and a graphical debugger based on the 
PSCM  

Problems with some PSCM terminology Aliases renamed to input/output 
variables, impasses presented as 
conditions for entry, and behavior 
design pattern associates problem spaces 
with agent behaviors 

Participants encountered frustrating bugs in 
the GUI editor 

Bugs fixed 
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Of course, the success of these changes needed to be evaluated.  Two different 

summative evaluations were conducted to measure the overall effectiveness and usability 

of the Herbal system.  These evaluations are described in detail in the next two chapters. 

 



Chapter 6 
 

Evaluating Functionality: Herbal as a Cognitive Modeling Tool 

Two summative evaluations were performed to evaluate both the functionality 

and the usability of Herbal.  The functionality of Herbal as a cognitive modeling tool was 

evaluated by creating a cognitive model (using only Herbal) that was capable of learning 

in a competitive environment. 

The usability of Herbal was evaluated with the design and implementation of a 

summative usability study.  The criteria for success in this evaluation were acceptable 

ratings for a collection of cognitive dimensions.  This chapter describes the evaluation of 

the functionality of Herbal as a cognitive modeling tool.  The next chapter covers the 

usability evaluation. 

Cognitive models of people interacting in competitive environments can be 

useful, especially in games and simulations (Jones et al., 1999; Laird, 2001a, 2001b; 

Ritter et al., 2003).  To be successful in such environments, it is necessary to learn the 

strategy used by the opponent.  In addition, as the opponent adjusts its tactics it is equally 

important to unlearn opponent strategies that are no longer used.   

Learning by reflection (or introspection) is one technique that can be used to learn 

and unlearn an opponent’s changing strategies while at the same time preserving the 

variability in which people learn (e.g., Bass, Baxter, & Ritter, 1995; Cox & Ram, 1999; 

Ritter & Wallach, 1998). 



133 

 

Learning by reflection is a form of metacognition that allows the model to learn 

by reflecting on its performance, and adjusting accordingly.  When reflection reveals 

previous actions that were beneficial, the model should be more likely to repeat those 

same actions in similar situations.  However, when reflection reveals poor performance, 

the actions that lead to that performance are less likely to be repeated.  Thus, learning by 

reflection is a form of reinforcement learning (Russell & Norvig, 2003). 

Reflective learning requires that both the cognitive model and its environment are 

fully observable (Russell & Norvig, 2003).  In other words, the model must be able to 

observe the effects of its actions on the environment and other models. 

Because reflective learning strategies are based on probability, the behaviors they 

generate are not deterministic.  This allows reflective models to exhibit variability in 

learning and thus performance.  When playing a game or participating in a simulation, 

variable behavior is a crucial part of the realism that these systems must portray. 

For all the reasons already discussed, using Soar to create non-deterministic 

models that learn is a challenge.  Therefore, this problem serves as a good test of the 

functionality and usefulness of Herbal.   

Overview of the Task 

Lehman, Laird, and Rosenbloom (1996) in their A Gentle Introduction to Soar use 

baseball repeatedly as an example. This inspired me to implement a simple version of a 

baseball game to study adversarial problem solving and support people learning Soar.  In 
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a broader context, this environment provides an accessible platform for the future study 

of cognitive models interacting with other agents in a social simulation (Sun, 2006). 

Figure 6-1 shows the basic interface and one of the feedback screens.  In this 

game, participants play the role of the pitcher competing against a series of agent-

operated batters.  The goal of this game, as in baseball, is to get batters out. 

The baseball game described here was written in Java and interacts with the Soar 

cognitive architecture using the Soar Markup Language (SML Quick Start Guide, 2005).  

The software and instructions on how to use it are available online 

(acs.ist.psu.edu/herbal). 

There are two ways to get a batter out in this game: The batter can get three 

strikes (a strike results when a batter either swings and misses or does not swing at a 

good pitch), or the batter can hit the ball directly at a fielder who catches the ball. 

 

 
Figure 6-1: The baseball game task. 
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There are also two ways for a batter to get on base in this game:  The batter can 

get four balls (a ball results when the batter does not swing at a bad pitch), or the batter 

can hit the ball in a way that prevents the fielders from catching it. 

The pitcher has a choice of throwing either a fastball or a curveball to the batter.  

Once it threw a pitch, the batter had a choice of either swinging at the pitch or letting it 

go by.  Both the pitcher and batter are always aware of how many balls and how many 

strikes the batter has.  The rules shown in Table 6-1 describe how to determine the 

outcome of each pitch. 

Based on the rules described in Table 6-1, the most certain way to get a batter out 

is to throw a curveball when the pitcher thinks the batter will be swinging and to throw a 

fastball when the pitcher thinks the batter is not going to swing.  Naturally, if the 

participant can learn what strategy the batter is using then they have a better chance of 

getting them out. 

Table 6-1: Determining the outcome of a pitch. 

Pitcher Batter Response Outcome 

Fastball Batter swings Contact is made that may result in either an out 
(50% of the time) or a hit (50% of the time). 

Fastball Batter does not 
swing 

The pitch will result in a strike. 

Curveball Batter swings The pitch will result in a strike. 

Curveball Batter does not 
swing 

The pitch will result in a ball. 
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Method 

The purpose of this study was to measure how quickly participants learned batter 

strategies while performing the baseball task described above and to compare this 

performance to a cognitive model designed to do the same task with similar performance 

and with equal variability. 

Participants 

Participants were recruited from the set of undergraduate students majoring in 

Computer Science (CS) and Computer Information Science (CIS) at Lock Haven 

University.  Ten participants were chosen: nine of the 10 participants were male.  Each 

participant was assigned a Participant ID based on the order in which they requested to 

participate in the study.  This ID is the only way that participants can be associated with 

data collected during the study.  The Lock Haven University Institutional Review Board 

(IRB) approved the study prior to its implementation. 

Apparatus 

A Lenovo T60p laptop computer was used by the participants to perform the 

required task.  This laptop was in a docking station equipped with a keyboard, a mouse, 

speakers, a 250MB external hard-drive, and a 17-inch flat screen monitor. 
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Design 

In this study, participants and several models performed the baseball task 

described above.  As the participants and the model performed the task, each pitch 

thrown, the batter’s reaction, and the outcome of the pitch was recorded in a log file. 

Using the data recorded in the log file, the model’s and the participant’s ability to 

learn a particular strategy was measured quantitatively using a measure of pitching 

efficiency (PE).  The following formula was used to calculate pitching efficiency: 

PE = Ns / Ts 

Where Ns is the number of batters using strategy s that were faced by the 

participant, and Ts is the consecutive out threshold for strategy s.  A decrease in PE 

indicates an increase in the efficiency of the pitcher.  A value of 1.0 for PE indicates the 

most efficient pitching strategy because it means the pitcher retired every batter they 

faced that was using a particular strategy.  For example, if a participant faced 14 

Aggressive batters before they could retire seven in a row, the participant’s pitching 

efficiency would be 14 / 7, or 2. 

Procedure 

The study began with each participant reading and signing the consent form.  

Next, each participant was given instructions explaining the rules of the baseball task as 

described above.  After reading the instructions, the participants were ready to perform 

the baseball task. 
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During the task, each participant faced five different batter strategies, each 

represented by a different model created using Herbal.  Each participant faced the same 

set of strategies and in the same sequence.  As the task progresses, strategy changes took 

place based on the number of consecutive outs that the participant recorded against a 

given strategy.  When a predetermined out threshold was reached, a strategy shift by the 

batter would take place.  The exact sequence of batter strategies and their corresponding 

out thresholds was defined in a configuration file that was used by the baseball 

environment, but the participant did not know what type of strategies to expect, or when 

strategy changes would take place.  The batter strategies, along with their consecutive out 

thresholds, are shown in Table 6-2. 

Table 6-2: Batter strategies in the baseball environment. 

Name Strategy Out Threshold 

Hacker Always swings 4 

Aggressive Swings at the first pitch 
and when there are fewer 
strikes than balls, unless 
there are three balls and 

two strikes 

7 

Random Randomly chooses when 
to swing 

5 

Chicken Never swings 4 

Alternate Swings if the last pitch 
was a fastball and does not 
swing if it is the first pitch 

or the last pitch was a 
curve 

7 
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Participants were given as much time as needed to complete the task and were 

allowed to consult the instruction sheet during play.  All the participants seemed to have 

no problem understanding the game and no questions were asked while performing the 

task. 

Models 

Six cognitive models were written to conduct the study described here.  All six 

models were written using the Herbal high-level language and development environment 

and were completed in just one day.  Because of the use of the Herbal high-level/ 

language and graphical editor, the creation of the models described here required only an 

understanding of the PSCM and some visual modeling techniques.  This serves as an 

example of how Herbal can provide modelers without a strong programming background 

access to the complicated machinery used by architectures that may traditionally be out 

of their reach. 

Batter Models 

Five cognitive models were written to represent the strategies used by the batter 

(Hacker, Aggressive, Random, Chicken, and Alternate).  These models are not capable of 

learning and served only as opponents that exhibit the behavior described in Table 6-2 
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Pitcher Model 

A sixth model was written in Herbal to play the role of the pitcher.  The goal of 

the pitcher model was to exhibit behavior similar to that demonstrated by the participants.  

Unlike the batter strategy models, the pitcher model was able to learn using reflection.  

More specifically, this model operated within two problem spaces: one to deliberate what 

pitch to throw next, and one to reflect on recent performance and modify future 

deliberation. 

The pitcher model started with an equal probability of throwing a curveball or a 

fastball.  Within the explicit reflection problem space, the pitcher model considers the 

following features of the environment: the previous number of balls and strikes on the 

batter, the previous pitch thrown, and the outcome of that pitch.  If the outcome is 

positive (i.e., a strike was called or the batter struck out) the pitcher adjusts a probability 

so that it is more likely to throw the same pitch the next time it encounters this situation.  

If, on the other hand, the outcome was negative (i.e., a ball was called, or contact was 

made by the batter, including contact resulting in an out), and the pitcher had previously 

experienced a positive outcome in this situation (a strike or a strikeout), the probability of 

throwing the same pitch in that situation was decreased. 

Model Parameters 

The pitcher model takes two parameters: the learning rate and the unlearning rate.  

The learning rate specifies how quickly the model will commit to throwing a particular 

pitch in a particular situation; in other words, how quickly the probability increases given 
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a positive outcome.  The unlearning rate specifies how quickly the model will reduce this 

learned commitment.  The best values for these learning rates almost certainly depend on 

the nature of the particular task. 

Considering the relatively simple rules in the baseball task described above, it was 

expected that participants would be able to learn strategies quickly.  In addition, it was 

hypothesized that participants would at first be reluctant to unlearn until they were sure 

that a strategy shift has taken place.  Given persistent negative feedback on a previously 

learned response, participants should eventually accelerate their unlearning rate. 

The fact that four of the five batter strategies are deterministic further justifies 

these parameter values.  When a particular pitch works for a batter in a specific situation, 

it will continue to work until a strategy shift takes place.  After a particular pitch stops 

working for a batter, it can be assumed that a strategy shift has occurred. 

As a result, in an effort to match human behavior the pitcher model described here 

was equipped with a fast learning rate and an initially stubborn, but later accelerating, 

unlearning rate.  Figure 6-2 depicts the learning and unlearning rates used by the model. 



142 

 

Results 

Because a primary goal of this work was to produce a model that not only 

matches the average pitching efficiency, but also matches the variability in pitching 

efficiency, the cognitive models created here are not deterministic.  This made it possible 

to consider each run of the model as being equivalent to a participant run.  To reduce any 

sampling error with this theory, the model was run 100 times. 

Table 6-3 shows the results of the participant study and of the model executions.  

The mean pitching efficiency and the standard deviation of the pitching efficiency are 

listed for all participants and all model runs.  Recall that the smaller the pitching 

efficiency the more efficient the pitcher, and the most efficient strategy has a PE equal to 

1.0.  In addition, Table 6-3 shows the out threshold for each strategy in square brackets. 

 

 
Figure 6-2: Learning and unlearning rates used by the model. 
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Figure 6-3 visualizes the data listed in Table 6-3.  Each bar in Figure 6-3 

represents the mean pitching efficiency.  White bars represent the participant data and 

shaded bars represent the model data.  The error bars in Figure 6-3 signify one standard 

deviation from the mean pitching efficiency. 

Discussion 

Analysis of Figure 6-3 reveals that the model’s behavior matched both the 

participant’s mean performance, and variability in performance, for three of the five 

presented strategies.  However, for two of the strategies the model did not satisfactorily 

reflect the participant’s performance. 

Table 6-3:  Pitching efficiency for the participants and the learning model. 

 Participants 
(N = 10) 

Model 
(N = 100) 

Strategy Mean StdDev Mean StdDev 
Hacker [4] 1.53 0.80 1.69 0.70 

Aggressive [7] 1.81 1.62 1.13 0.20 
Random [5] 5.00 6.24 5.36 4.67 
Chicken [4] 1.03 0.08 1.25 0.33 
Alternate [7] 1.54 0.72 3.53 2.01  
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Hacker and Chicken Strategies 

The model’s performance matched very well for both the Hacker and Chicken 

strategies.  Given the simplicity of the learning strategy used, this is an interesting result.  

Both the participants and the model were able to retire the requisite number of 

consecutive batters quickly and without much variability.  Interestingly, the Hacker 

strategy proved to be more difficult for both the participants and the model.  This may be 

because the very aggressive strategy used by the Hacker makes it more likely for the 

batter to get a hit when the pitcher made a mistake.  On the other hand, the reserved 

approach used by the Chicken strategy only punishes mistakes with a single ball as 

 

 
Figure 6-3:  Comparison of the model and participants for each batting strategy. 
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opposed to a hit.  In this baseball task, an aggressive batter strategy is more dangerous to 

the pitcher than a timid one. 

Random Strategy 

As expected, the variation of the pitching efficiency against the Random strategy 

was quite large for both the participants and the model.  Both the participant and the 

model could not consistently figure out the random strategy, because, well, it was 

random.  The difference between the pitching efficiency for the model, and that of the 

participants, might be related to the number of participants run. Due to the random nature 

of this strategy, additional participants might cause these means to match more closely. 

Aggressive and Alternate Strategies 

Unexpectedly, the model did not do as good of a job matching the Aggressive and 

Alternate strategies.  The order in which these strategies are presented may play an 

important role here.  One possible explanation for these problems is that the unlearning 

rate used by the model is not fast enough.  While good enough to match the transitions 

between some strategies, the unlearning rate may need to be faster in other cases.  To 

understand this theory, the transitions from the Hacker strategy to the Aggressive 

strategy, and from the Chicken strategy to the Alternate strategy, need to be examined 

more closely. 
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Transition from Hacker to Aggressive  

Because the Hacker strategy always swings, the pitcher must learn to throw a 

series of curveballs to get a batter out consistently.  In addition, the inability to quickly 

unlearn the Hacker strategy is not immediately detrimental when an Aggressive batter 

follows the Hacker strategy.  For example, if the pitcher continues to throw a series of 

curveballs to an Aggressive batter, the batter will not get on base until after the sixth 

curveball is thrown.  This gives the pitcher several pitches, and therefore a lot of time to 

unlearn the strategy. 

On the other hand, if the participant or model quickly unlearns the Hacker 

strategy, it will lead to throwing an early fastball, which will result in a 50% chance of 

the batter getting a base hit.  In other words, in this particular case quickly unlearning the 

previous strategy is not beneficial.  This might explain why the model performed better 

against the Aggressive strategy; the model simply does not unlearn as quickly as the 

participants did, and this proved to be more efficient in this particular ordering of 

strategies. 

Transition from Chicken to Alternate  

The opposite can be said about the transition from the Chicken strategy to the 

Alternate strategy.  A series of consecutive fastballs will get a batter out using the 

Chicken strategy because this strategy never swings.  However, if this knowledge goes 

unlearned, the same series of fastballs thrown to an Alternate batter will result in frequent 

hits because the Alternate batter swings immediately after a fastball is thrown.  In this 
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particular case, failure to quickly unlearn the Chicken strategy results in poor 

performance and might explain why the model did not perform as well as the participants 

in this case.  Once again, it appears as if the model did not unlearn the learned strategy 

quickly enough in this particular ordering of strategies. 

Unfortunately, the reflective learning strategy is fundamentally limited in how 

quickly it can unlearn.  This limit may be a major reason for the model’s inability to 

unlearn the Chicken strategy quickly enough.  The learning algorithm used here cannot 

unlearn unless it has already encountered positive feedback.  This causes a problem if the 

model’s initial encounter with a strategy involves a series of negative outcomes, which is 

precisely the case when transitioning from Chicken to Alternate.  Augmenting the 

algorithm to use Soar’s numeric-indifferent preference might eliminate this limitation and 

possibly improve the model’s fit. 

Additional Explanations  

Factors other than unlearning rate may have also had an effect on the model’s 

inability to match the participant’s behavior.  For example, if the pitcher follows the 

simple pattern of throwing a fastball, followed by curve, followed by fastball, they will 

always get the Alternate batter out.  While speculative, it is possible that participants 

were quick to recognize this alternating pattern while the model did not treat alternating 

patterns any differently from other patterns. 
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Conclusions 

A major outcome of this study is a demonstration that cognitive models that 

compete in adversarial environments using introspective learning can be written quickly 

and easily using Herbal.  All the cognitive models used in this study were created in a 

single day using only the Herbal toolset.  This serves as an example of how Soar models 

that learn can be written without directly writing Soar productions, hopefully making 

Soar available to a wider audience of modelers.  In addition, the pitcher model was 

compared to participants’ performance and was shown to match both the participants’ 

mean performance and variability in performance against many of the presented batting 

strategies.   

In addition, for strategies that the model did not satisfactorily master, insight into 

the limitations of the algorithm used, and how people possibly perform this task, was 

gained.  These results motivate future work that will lead to improvements in the learning 

algorithm, and in the Herbal high-level language.  For example, one way to improve the 

learning algorithm is to take advantage of Soar’s numeric-indifferent preference. 

However, Herbal’s usability by a range of modelers with different backgrounds 

was still in question.  The next section describes a summative usability study, conducted 

with first-time Herbal users, designed to measure the general usability of Herbal. 



 

Chapter 7 
 

Evaluating Usability: A Summative Usability Evaluation of Herbal 

As mentioned in Chapter 5, producing useful and usable software requires 

continuous and iterative evaluation.  Chapter 5 described the implementation of a 

formative evaluation to ensure continual improvement, in both the functionality and 

usability, of the Herbal system.  Chapter 6 described the implementation of a summative 

evaluation of the usefulness of Herbal.  This chapter describes the results of a summative 

evaluation that uses a new method for analyzing cognitive dimension data, and provides a 

measurement of the final usability of the Herbal system. 

Overview of the Task 

This main task in this study was to create a working intelligent agent that operates 

a vacuum cleaner in the Vacuum Cleaner Environment (Cohen, 2005).  Chapter 5 

describes the Vacuum Cleaner Environment in detail.   

The study design divides the main task into three subtasks: creating a reusable 

library of agent components; creating a vacuum cleaner agent using this library; and 

finding and fixing a bug in the resulting vacuum cleaner agent.  These three subtasks 

exercise all of the features of the Herbal Development Environment and closely mirror 
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the different phases of agent/model development: creating reusable components, using 

these components to build agents, and debugging the resulting agents. 

The first subtask exercised Herbal’s library creation facilities.  In this subtask, 

participants created a new library and populated it with low-level components needed to 

build vacuum cleaners.  The task instructions encouraged the inclusion of design 

rationale in the library throughout this task.   

The second subtask exercised Herbal’s model creation facilities.  This task 

consisted of building a vacuum cleaner agent out of higher-level model components.  

Participants created these higher-level components by reusing the low-level components 

contained during the first subtask.  The design rationale located in the library was 

available to participants to help them during the task.  In addition, participants were 

encouraged to include further design rationale about the newly created components.   

The third subtask exercised Herbal’s model maintenance facilities.  This task 

consisted of finding and fixing an error in an existing vacuum cleaner model (the 

experimenter injected the same error before the start of the third subtask).  The broken 

model did not clean dirty squares when the vacuum cleaner encountered them.  During 

this task, the participants used Herbal’s debugger and working set feature to fix the 

broken vacuum cleaner.  In addition, the participant was encouraged to view design 

rationale when needed.  
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Method 

This study evaluated the usability of the Herbal Integrated Development 

Environment (Cohen, Ritter, & Haynes, 2005) based on Cognitive Dimensions research 

(Blackwell & Green, 2003; Blackwell & Green, 2000). 

The data generated by a user reaction survey, and by participant observations, 

measured support for the Cognitive Dimensions shown in Table 7-1.  The user reaction 

survey was based on a validated and generalized Cognitive Dimension evaluation done 

by Blackwell and Green (2000).  Their evaluation showed that a generalized Cognitive 

Dimension questionnaire of system users is useful for evaluating usability. 

Table 7-1 shows the nine Cognitive Dimensions that this study used for usability 

evaluation criteria.  These nine dimensions best measure the degree in which Herbal 

achieves the principles that mediated its design (i.e., embracing high-level languages, 

enabling reuse, and supporting maintenance-oriented development). 
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Because of the difficulty involved in observing when a participant is experiencing 

Hard-Mental Operations, only survey questions measured this dimension.  The criteria 

used to categorize dimensions were different depending on the type of data analyzed: 

survey or observation. 

A five-level Likert scale structures the survey questions.  The term Dimension of 

Concern was used to categorize a dimension in which more than 20% of the participants 

Table 7-1:  Cognitive dimensions used as evaluation criteria for the summative usability 
study. 

Cognitive 
Dimension 

Description 

Visibility How easy is it to view the elements in a model, including their 
internal details? 

Viscosity How easy is it to make changes to an existing model? The less the 
viscosity, the easier it is to change the model. 

Diffuseness How many symbols or how much space does the notation require to 
produce a certain result or express a meaning? 

Hard-mental 
operations 

How much hard mental processing lies at the notational level, rather 
than at the semantic level? Are there places where the user needs to 
resort to fingers or pencilled annotation to keep track of what’s 
happening? 

Error-proneness How easy is it to make errors using the behavior representation 
language? 

Closeness of 
mapping 

How closely does the behavior representation language match the 
way that the modeler describes the behavior?  

Role-
expressiveness 

How easy is it to discover why a modeler has chosen a particular 
design? Explicit support for design rationale, as discussed earlier, 
improves a systems role-expressiveness. 

Progressive 
evaluation 

How easy is it to evaluate and obtain feedback on an incomplete 
solution? 

Premature 
commitment 

How often is the developer forced to make a commitment in the 
model before there is enough information to make the commitment?
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responded negatively.  A negative response is an answer in the bottom two levels of the 

Likert scale. 

For participant observations, the difference between the number of participants 

experiencing positive events and the number of participants experiencing negative 

represents a score for each dimension.  In this study, a Dimension of Concern has a 

negative score whose absolute value is larger than 20% of the total participants. 

For example, if a participant experienced six positive events and nine negative 

events related to Viscosity, the score for Viscosity would be negative four.  If there were 

10 participants, Viscosity would be a Dimension of Concern because the score is negative 

and its absolute value is greater than 20% of the number participants (2 in this example). 

For the Herbal system, a reasonable goal is to have fewer than 20% of the 

participants experience problems.  However, in general researchers should select a 

threshold based on the needs of the users, and the importance of the dimensions 

considered in the context of the task.  This is especially true because of the tradeoffs that 

exist between different dimensions.  A very high threshold might lead to frequent 

inability to complete a task, as well as very frustrated users.  A very low threshold may 

be necessary for critical tasks where mistakes can be catastrophic, but this can also lead 

to a less flexible user experience(Blackwell & Green, 2003).  The method presented here 

is a general approach because other researchers can adjust the threshold for a wide variety 

of dimensions, tasks, and systems. 

How well Herbal supports the nine dimensions listed in Table 7-1 determines the 

success of this evaluation.  The final analysis of this study gives special attention to the 

areas of weakness found during the formative evaluation described in Chapter 5.  Recall 
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that the formative evaluation concluded a need for better support for Visibility, Premature 

Commitment, Role Expressiveness, and Closeness of Mapping. 

Participants 

The participants recruited for this study had limited or no experience developing 

cognitive models or intelligent agents.  Participants recruited were from the set of 

undergraduate students majoring in Computer Science (CS), Computer Information 

Science (CIS), Management Information Science (MIS), and Bachelor of Science in 

Psychology (PSYC) at Lock Haven University.  These majors represent likely users of 

the Herbal system.  Participants received $10 for taking part in this study, which required 

approximately an hour. 

Twenty-four students participated: 12 PSYC students and 12 CS/CIS/MIS 

students.  The number of college credits completed by the participants ranged from 42 to 

132.  The average number of hours per week spent using a computer was 4.00 for PSYC 

majors and 10.00 for CS/CIS/MIS majors.  The average number of programming courses 

previously taken was 0.25 for PSYC majors and 4.75 for CS/CIS/MIS majors.  Finally, 

nine of the 14 PSYC majors are female and one of the CS/CIS/MIS students is female. 

A Participant ID identified each participant based on the order in which they 

requested to participate in the study.  This ID is the only way that participants can be 

associated with data collected during the study.  The Lock Haven University Institutional 

Review Board (IRB) approved the study prior to its implementation. 
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Apparatus 

Participants used a Lenovo T60p laptop computer to perform the required 

subtasks.  This laptop was docked in a docking station equipped with a keyboard, a 

mouse, speakers, a 250MB external hard-drive, a 17-inch flat screen monitor, and a 

microphone. 

Camtasia Studio 2.0.2, created by TechSmith, recorded both the screen and audio 

while the participants perform the subtasks.  Additional software that was required for 

this experiment was Eclipse (3.2.1), Java (1.5), Herbal (3.0), and the Vacuum Cleaner 

Environment (2.0). 

Design 

The study design placed participants into groups of three.  Groups contained 

either all PSYC majors or all CS/CIS/MIS majors.  This resulted in eight groups of three 

participants: four groups consisting of PSYC majors and four groups consisting of CS, 

CIS, and MIS majors.  

As described earlier, the main task for this study was to create a working 

intelligent agent that operates a vacuum cleaner in the Vacuum Cleaner Environment.  

This main task consists of three subtasks: creating a reusable library of agent 

components; creating a vacuum cleaner agent using this library; and finding and fixing a 

bug in the resulting vacuum cleaner agent.  

Each group completed the main task by finishing each subtask independently, and 

in turn, as shown in Figure 7-1. 
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Procedure 

The study began with each participant reading and signing the consent form as 

well as completing the User Background Survey (see Appendix B), which collected 

information about his or her background and expectations prior to participating in the 

study. 

Next, each participant watched a 15-minute video before performing his or her 

subtask.  The video provided the participant with a high-level introduction to intelligent 

agents, the Vacuum Cleaner Environment, the Problem Space Computation Model, and 

creating and maintaining libraries and agents in the Herbal Integrated Development 

Environment. 

After the video completed, the experimenter informed the participant what 

subtask he or she will be performing and gave each participant the General Task 

Instructions (see Appendix B).  These instructions ask the participants to think-aloud 

 

 
Figure 7-1:  Different participants work in turn to complete the main task. 
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during the experiment (Ericsson & Simon, 1993; Newell & Simon, 1972), and to ask 

questions if they were confused at any time during the experiment.  After the participant 

read the General Task Instructions, the experiment asked them to practice thinking aloud 

while performing a simple memory recollection exercise that was unrelated to this study. 

Next, the experiment provided each participant with Specific Task Instructions 

(see Appendix B) that provided systematic instructions about how to perform the subtask, 

and the participants began their subtask. 

The experimenter noted observations about the participant’s performance during 

the execution of the task and recorded all observations in a Data Collection Form (see 

Appendix B).  The experimenter focused on recording events related to the Cognitive 

Dimensions of interest.  The same experimenter ran all participants.  

Upon completion of the subtask, the experimenter asked the participants to 

complete a User Reaction Survey (see Appendix B).  The User Reaction Survey 

contained 17 questions that mapped directly to the Cognitive Dimensions shown in 

Table 7-1.  A five-level Likert scale structured 11 of these questions.  The remaining six 

questions were open-ended and sought information explaining responses to the scaled 

questions. 

Models 

As mentioned earlier, the vacuum cleaner agent that participants built in this study 

reused components contained in a library.  The library that participants created and used 

to build the vacuum cleaner agent consisted of four data types, four vacuum cleaner 
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actions, and three environmental conditions.  Table 7-2 summarizes these library 

components. 

The resulting vacuum cleaner agent consisted of higher-level model components, 

such as operators and problems spaces, that participants built on top of the low-level 

components contained in the library.  Specifically, three high-level behaviors: Survive, 

Wander, and Clean were created.  Table 7-3 summarizes these three high-level behaviors. 

Table 7-2: The vacuum cleaner library components created by the participants. 

Component Component 
Type 

Description 

action data type Used by the agent to perform actions like moving or 
cleaning a square 

position data type Specifies the location of the vacuum cleaner agent 

radar data type Contain information about the clean or dirty status of 
the squares around the vacuum cleaner 

spot data type Specifies the clean or dirty status of the square 
currently occupied by the agent 

up action Causes the vacuum to move up one square 

down action Causes the vacuum to move down one square 

left action Causes the vacuum to move left one square 

right action Causes the vacuum to move right one square 

isClean condition True if the current square is clean 

isDirty condition True if the current square is clean 

isAlive condition True if the vacuum cleaner is operational 
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The completed vacuum cleaner model survived by wandering randomly until it 

encountered dirt.  When dirt was encountered the agent cleaned the dirty spot and then 

resumed wandering, looking for more dirt.  

Results 

All participants completed the tasks successfully.  The mean time to complete a 

task was 24.38 minutes with a standard deviation of 9.40 minutes.  Means (with standard 

deviations in parenthesis) for the library creation task, the model creation task, and the 

model maintenance task, took 34.38 (7.76), 23.13 (2.23), and 15.63 (4.63) minutes, 

respectively. 

Table 7-4 lists completion times for all participants by major and by task.  Means 

(with standard deviations in parenthesis) for PSYC majors and CS/CIS/MIS majors, 

across all tasks, were 27.08 (10.27) and 21.67 (7.95) minutes, respectively.  The Soar 

model contained 13 productions and the Jess model contained 16 productions resulting in 

approximate mean times per production of 2 minutes / Soar production and 1.5 minutes / 

Jess production. 

Table 7-3:  The high-level model behaviors created by the participants. 

Behavior Description 
Survive This is the model’s top-level behavior and is composed of the Wander and 

Clean behaviors.  The model survives by wandering the board and cleaning 
dirty squares as they are encountered 

Wander Causes the agent to wander in a random fashion as long as it is on a clean 
square 

Clean Causes the agent to clean the current square  
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Importantly, there was no statistical evidence of a difference between the mean 

task times, across all tasks, of the PSYC and CS/CIS/MIS participant groups: t(22) = -

1.44, p = .163, (t-tests for mean task times in the subgroups are not included due to the 

small number of participants in each subgroup).  

The user reaction survey described earlier, and the coded observations of 

participants performing the subtasks, generated a score for each Cognitive Dimensions 

shown in Table 7-1.  The following sections discuss the survey and observation results. 

Table 7-4: Task performance times in minutes. 

All Tasks 

Library Task 
Mean 40.00 STDEV 4.08  Mean 28.75 STDEV 6.29 

Model Task 
Mean 23.25 STDEV 2.36  Mean 23.00 STDEV 2.45 

Maintenance Task 
Mean 18.00 STDEV 3.56  Mean 13.25 STDEV 4.72 

ID Major Task Time  ID Major Task Time 
8 PSYC Library 45  1 CS Library 30 
10 PSYC Model 25  2 CS Model 20 
11 PSYC Maint. 15  3 CS Maint. 20 
12 PSYC Library 40  4 CIS Library 30 
14 PSYC Model 23  5 CIS Model 25 
15 PSYC Maint. 20  6 CIS Maint. 10 
16 PSYC Library 35  7 CIS Library 35 
17 PSYC Model 20  9 CS Model 25 
18 PSYC Maint. 15  13 CIS Maint. 10 
19 PSYC Library 40  20 CIS Library 20 
21 PSYC Model 25  22 MIS Model 22 
23 PSYC Maint. 22  24 MIS Maint. 13 

Mean 27.08 STDEV 10.27  Mean 21.67 STDEV 7.95 

 



161 

 

Survey Results 

Upon completion of the subtask, the experimenter asked the participants to 

complete a User Reaction Survey based on the questionnaire validated by Blackwell and 

Green (2000).  The User Reaction Survey contained 17 questions that mapped directly to 

the Cognitive Dimensions shown in Table 7-1.  A five-level Likert scale structured 11 of 

these questions.  The remaining six questions were open-ended and sought information 

explaining responses to the scaled questions.  Unfortunately, participants provided very 

little useful information in the open-ended questions, making it difficult to provide 

rationale for the participant’s responses. 

Table 7-5 lists the 11 scaled questions.  When more than 20% of the participants 

responded negatively to any question pertaining to a specific dimension, that dimension 

became a Dimension of a Concern.  A negative response is a response in the bottom two 

levels of the scale.  Table 7-5 uses shading to represent the positive and negative response 

ranges for each question.  Dark shading identifies positive responses and light shading 

identifies negative responses. 
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Table 7-5:  The survey questions used to measure support for various cognitive
dimensions.  Shading indicates the positive (dark shading) and negative (light shading)
response ranges. 

Visibility      

Q#1 How easy was it to see or find the various parts (e.g., problem spaces, operators, 
conditions) of your agent or library while it was being created, changed, or debugged? 

very easy easy neutral difficult very difficult 

Q#2 If you needed to compare different parts (e.g., problem spaces, operators, conditions) of 
your agent or library, you could easily see these parts at the same time. 

strongly agree agree neutral disagree strongly disagree 
Viscosity    

Q#3 How easy was it to make changes to your agent or library? 
very easy easy neutral difficult very difficult 

Diffuseness    

Q#4 The elements (e.g., problem spaces, operators, and conditions) you used to build your 
agent or library allowed you to say what you wanted to say reasonably briefly. 

strongly agree agree neutral disagree strongly disagree 
Hard-Mental Operations    

Q#5 In general, the task you performed did not seem especially complex or difficult to work 
out in your head. 

strongly agree agree neutral disagree strongly disagree 
Error Proneness    

Q#6 During this task, you often found yourself making small mistakes that irritated you or 
made you feel stupid. 

strongly agree agree neutral disagree strongly disagree 
Closeness of Mapping    

Q#7 
The notation (e.g., problem spaces, operators, and conditions) you used to describe your 
agent or library was closely related to how you might describe the agent or library 
naturally. 

strongly agree agree neutral disagree strongly disagree 
Role Expressiveness    

Q#8 During the task, you often did not know what many of the agent or library pieces meant 
(e.g., problem spaces, operators, conditions) but you put them in anyway. 

strongly agree agree neutral disagree strongly disagree 
Progressive Evaluation    

Q#9 It was easy to stop in the middle of creating the agent or library, and check your work so 
far. 

strongly agree agree neutral disagree strongly disagree 

Q#10 During this task, it was easy to find out how much progress you made, or check what 
stage in your work you were in. 

strongly agree agree neutral disagree strongly disagree 
Premature Commitment    

Q#11 When working on this task, there were times when you felt like you could have changed 
the order you performed the steps without breaking the agent or library. 

strongly agree agree neutral disagree strongly disagree  
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The upcoming sections summarize participant responses based on each 

dimension.  Reponses were analyzed the same way, using six different groupings: (1) all 

participants; (2) participants performing the library creation task; (2) participants 

performing the model creation task; (3) participants performing the model maintenance 

task; (4) participants majoring in PSYC, (5) for participants majoring in CS, CIS, or MIS. 

A single table for each grouping shows the results.  For each question, the tables 

show the number of responses in each of the five Likert levels. The tables use shading to 

distinguish the positive and negative responses ranges.   

Ideally, all responses should be in the heavily shaded area (the positive range).  

When more than 20% of the responses fall inside the negative response range (the lightly 

shaded area), the dimension is marked as a Dimension of Concern, and bold font 

emphasizes the responses that exceed the 20% threshold. 

The following six tables present the data for all six groupings. 
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Table 7-6:  Survey responses for all participants and all tasks (N = 24). 

Visibility 
Q#1 3 13 6 2 0 
Q#2 1 17 1 5 1 

Viscosity 
Q#3 12 10 2 0 0 

Diffuseness 
Q#4 6 15 3 0 0 

Hard-Mental Operations 
Q#5 7 13 0 3 1 

Error Proneness 
Q#6 0 4 6 8 4 

Closeness of Mapping 
Q#7 8 12 2 2 0 

Role Expressiveness 
Q#8 0 4 2 10 8 

Progressive Evaluation 
Q#9 10 13 1 0 0 
Q#10 7 14 3 0 0 

Premature Commitment 
Q#11 3 8 6 7 0 

 
Darkly shaded areas indicate the positive response range.  Bold values indicate negative 
responses that exceed the threshold.  Visibility and Premature Commitment are 
Dimensions of Concern because each had more than 20% of their responses within the 
negative response range. 
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Table 7-7:  Survey responses for participants performing the library creation task (N = 8). 

Visibility 
Q#1 0 3 4 1 0 
Q#2 0 4 1 3 0 

Viscosity 
Q#3 5 1 2 0 0 

Diffuseness 
Q#4 2 6 0 0 0 

Hard-Mental Operations 
Q#5 1 6 0 1 0 

Error Proneness 
Q#6 0 0 4 4 0 

Closeness of Mapping 
Q#7 5 2 1 0 0 

Role Expressiveness 
Q#8 0 1 1 4 2 

Progressive Evaluation 
Q#9 5 3 0 0 0 
Q#10 2 5 1 0 0 

Premature Commitment 
Q#11 2 3 1 2 0 

 
Darkly shaded areas indicate the positive response range.  Bold values indicate negative 
responses that exceed the threshold.  Visibility and Premature Commitment are 
Dimensions of Concern because each had more than 20% of their responses within the 
negative response range. 
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Table 7-8:  Survey responses for participants performing the model creation task (N = 8).  

Visibility 
Q#1 2 5 1 0 0 
Q#2 1 5 0 2 0 

Viscosity 
Q#3 5 3 0 0 0 

Diffuseness 
Q#4 2 6 0 0 0 

Hard-Mental Operations 
Q#5 4 3 0 1 0 

Error Proneness 
Q#6 0 2 1 1 4 

Closeness of Mapping 
Q#7 2 5 0 1 0 

Role Expressiveness 
Q#8 0 2 1 2 3 

Progressive Evaluation 
Q#9 4 4 0 0 0 
Q#4 3 2 0 0 4 

Premature Commitment 
Q#11 1 1 4 2 0 

 
Darkly shaded areas indicate the positive response range.  Bold values indicate negative 
responses that exceed the threshold. Visibility, Error Proneness, Role Expressiveness, and 
Premature Commitment are Dimensions of Concern because each had more than 20% of 
their responses within the negative response range. 
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Table 7-9: Survey responses for participants performing the model maintenance task (N = 
8). 

Visibility 
Q#1 1 5 1 1 0 
Q#2 0 8 0 0 0 

Viscosity 
Q#3 2 6 0 0 0 

Diffuseness 
Q#4 2 3 3 0 0 

Hard-Mental Operations 
Q#5 2 4 0 1 1 

Error Proneness 
Q#6 0 2 2 2 2 

Closeness of Mapping 
Q#7 1 5 1 1 0 

Role Expressiveness 
Q#8 0 1 0 4 3 

Progressive Evaluation 
Q#9 1 6 1 0 0 
Q#10 1 6 1 0 0 

Premature Commitment 
Q#11 0 4 1 3 0 

 
Darkly shaded areas indicate the positive response range.  Bold values indicate negative 
responses that exceed the threshold. Hard Mental Operations, Error Proneness, and 
Premature Commitment are Dimensions of Concern because each had more than 20% of 
their responses within the negative response range. 
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Table 7-10:  Survey responses for participants majoring in PSYC (N = 12). 

Visibility 
Q#1 2 3 5 2 0 
Q#2 1 10 1 0 0 

Viscosity 
Q#3 5 5 2 0 0 

Diffuseness 
Q#4 4 6 2 0 0 

Hard-Mental Operations 
Q#5 3 7 0 2 0 

Error Proneness 
Q#6 0 3 3 4 2 

Closeness of Mapping 
Q#7 4 7 0 1 0 

Role Expressiveness 
Q#8 0 3 1 6 2 

Progressive Evaluation 
Q#9 6 5 1 0 0 
Q#0 6 4 2 0 0 

Premature Commitment 
Q#11 1 4 3 4 0 

 
Darkly shaded areas indicate the positive response range.  Bold values indicate negative 
responses that exceed the threshold. Error Proneness, Role Expressiveness, and 
Premature Commitment are Dimensions of Concern because each had more than 20% of 
their responses within the negative response range.  In total, there were 117 positive 
responses and 15 negative responses. 
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A chi-square test of independence was performed to check for a correlation 

between the number of negative and positive responses and the participants’ major 

(PSYC or CI/CIS/MIS).  Table 7-12 summarizes the results of this analysis.  Importantly, 

there is no statistical evidence that there is a correlation between the number and type of 

Table 7-11:  Survey responses for participants majoring in CS, CIS, or MIS (N = 12). 

Visibility 
Q#1 1 10 1 0 0 
Q#2 0 7 0 5  

Viscosity 
Q#3 7 5 0 0 0 

Diffuseness 
Q#4 2 9 1 0 0 

Hard-Mental Operations 
Q#5 4 6 0 1 1 

Error Proneness 
Q#6 0 1 4 3 4 

Closeness of Mapping 
Q#7 4 5 2 1 0 

Role Expressiveness 
Q#8 0 1 1 4 6 

Progressive Evaluation 
Q#9 4 8 0 0 0 
Q#10 1 10 1 0 0 

Premature Commitment 
Q#11 2 4 3 3 0 

 
Darkly shaded areas indicate the positive response range.  Bold values indicate negative 
responses that exceed the threshold.  Visibility and Premature Commitment are 
Dimensions of Concern because each had more than 20% of their responses within the 
negative response range. In total, there were 119 positive responses and 13 negative 
responses. 
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survey responses, and the participants’ major: !2 = 0.160, DF = 1, p = .689 (Howell, 

1987). 

Summary of Survey Results 

Table 7-13 lists Dimensions of Concern based on the survey results. Dimensions 

of Concern are shown using six different groupings: (1) all participants; (2) participants 

performing the library creation task; (2) participants performing the model creation task; 

(3) participants performing the model maintenance task; (4) participants majoring in 

PSYC, (5) for participants majoring in CS, CIS, or MIS.  For example, survey responses 

from participants majoring in CS, CIS, or MIS indicated that Visibility and Premature 

commitment were Dimensions of Concern. 

Table 7-12: A 2x2 chi-square contingency table used to test for independence between
survey responses and participant major. 

Major # Positive 
Responses 

# Negative 
Responses 

Total 

PSYC 117
118.00
0.008

15 
14.00 
0.071 

132

CS/CIS/MIS 119
118.00
0.008

13 
14.00 
0.071 

132

Total 236 28 264
 
Expected counts are printed below observed counts and chi-square contributions are 
printed below expected counts.  !2 = 0.160, DF = 1, p = .689 
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Observation Results 

Upon completion of the study, the experimenter coded the data collection forms 

and the screen and audio recordings based on the cognitive dimensions shown in Table 7-

1.  These observations compliment the survey results previously presented.  Unlike the 

survey results, information from the context of the observations helps explain the positive 

or negative participant experiences related to a dimension. 

The experimenter identified thirty-seven unique event types during observation, 

and these types were either a negative or a positive contribution to a particular cognitive 

Table 7-13: Dimensions of Concern as measured by survey results. 

Dimension All Library 
Creation 

Model 
Creation 

Model 
Maintenance

PSYC CS/CIS/MIS

Visibility X X X   X 

Viscosity       

Diffuseness       

Hard-mental 
operations 

   X   

Error-
proneness 

  X X X  

Closeness of 
mapping 

      

Role-
expressiveness 

  X  X  

Progressive 
evaluation 

      

Premature 
commitment 

X X X X X X 
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dimension.  A positive contribution to a cognitive dimension means the software helped a 

participant in a fashion consistent with the definition of the dimension.  A negative 

contribution to a dimension means the software was a hindrance to the participant in a 

fashion consistent with the definition of the dimension.  To generate these event types, 

the experimenter relied on the participants’ actions and utterances. 

Table 7-14 lists the 37 event categories along with their associated dimensions.  It 

is important to keep in mind that this table shows types of events not actual instances.  

These event types (or codes) are useful for providing the rationale behind the 

classification of an observation, and for suggesting improvements to future releases of the 

software. 

For example, while editing model components several participants got lost when 

specifying properties in the model properties dialog box.  This was because the dialog 

box does not contain the name of the component the participant was editing.  This 

problem became apparent when the participant moved the dialog box out of the way in 

order to see what component they had selected before the dialog box appeared.  Category 

10 (the participant became confused about what specific component they were working 

on) in Table 7-14 coded this particular observation, and the suggested design change 

would be to add the component name to the dialog box. 

As another example, category 3 (the participant became confused about what 

specific component they were working on) in Table 7-14 coded observations of 

participants having problems interacting with the search feature in the new project dialog 

box.  Several participants entered the project name in the search field, rather than in the 

project name field.  It is likely that the placement of the search field in a location 
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typically occupied by the project name in other dialog boxes caused this error.  The 

recommended design change might be to rearrange the order of the fields in the dialog 

box.  
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Table 7-14: Event codes used during participant observation. 
ID Event Description Dimension +/- 

23 Participant appeared confused by notation used to represent agent Closeness of mapping - 
27 Participant preferred a term not used by high-level language Closeness of mapping - 
14 The design pattern wizard allowed participants to create several 

components using a brief terminology 
Diffuseness + 

18 Participant was thankful for code automatically created by Herbal Diffuseness + 
17 Participant found design rationale to be verbose and/or redundant Diffuseness - 
24 Participant used copy and paste when entering design rationale Diffuseness - 
2 The consistency in the Herbal interface helped reduce errors Error prone + 

15 The design pattern wizard prevented errors creating components Error prone + 
3 The search feature of the new project dialog lead to errors Error prone - 

11 Participant had problems distinguishing types of design rationale Error prone - 
12 Participant confused Eclipse export with Herbal library export  Error prone - 
21 Poor design in the working set dialog lead to errors Error prone - 
25 Trouble locating the Herbal GUI Editor Error prone - 
28 Instructions mislead participant to create action instead of type Error prone - 
31 Participant selected wrong problem space in design pattern wizard Error prone - 
37 Participant entered literal value in local variable edit box Error prone - 
38 Participant confused by wire screen when there is nothing to wire Error prone - 
29 Participant confused by conditions with no restrictions  Error prone - 
6 Lack of required order made it easier to fix mistakes Premature 

commitment 
+ 

8 Participant changed order of steps in task without problems Premature 
commitment 

+ 

19 Participant was confused by order required to run debugger Premature 
commitment 

- 

7 It was easy for participants to check the status of the model, and for 
any errors, by looking at what has been done so far 

Progressive 
evaluation 

+ 

10 The participant became confused about what specific component 
they were working on, or what step they were doing 

Progressive 
evaluation 

- 

13 Participant viewed rationale to learn more about model Role expressiveness + 
16 Participant demonstrated strong understanding of the model  Role expressiveness + 
30 Commented that components are self-explanatory Role expressiveness + 
33 Participant entered quality design rationale Role expressiveness + 
26 Participant demonstrated poor understanding of the model  Role expressiveness - 
5 Participant had trouble understanding component/subcomponent Role expressiveness - 

32 Participant viewed rationale but did not find it helpful Role expressiveness - 
36 Participant misunderstood interface between model/environment Role expressiveness - 
20 Behavior of agent was easy to see using the debugger Visibility + 
1 A portion of the Herbal GUI editor was hidden Visibility - 
4 Easy for participant to make a change to a component Viscosity + 

34 Working sets helped participant find location of a problem Viscosity + 
9 Participant had problems editing an action Viscosity - 

35 Participant had problems editing an operator Viscosity -  
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Of the 37 event types shown in Table 7-14, 12 are related to the Error Prone 

cognitive dimension, eight to Role Expressiveness, four to Viscosity and Diffuseness, 

three to Premature Commitment, and two to Closeness of Mapping, Progressive 

Evaluation, and Visibility.  In addition, 23 of the 37 types represented negative events 

and 14 represented positive events. 

For each dimension, the difference between the number of participants 

experiencing positive events and the number of participants experiencing negative 

represented a score for that dimension.  A Dimension of Concern has a negative score 

whose absolute value is larger than 20% of the total participants. 

Table 7-15 lists the total number of events observed for all subjects and all tasks.  

The table groups these events by their associated dimension and sorts them by total 

number of events.  In addition, the table shows the total number of participants 

experiencing positive and negative events and the final score for each dimension. 

For example, for all participants performing all tasks, there were 69 events 

observed that relate to the Error Prone cognitive dimension.  Of these 69 events, 16 

participants experienced a positive event related to Error Proneness and 21 experienced a 

negative event related to Error Proneness.  This results in a score of minus five, which 

has an absolute value greater than 20% of the total number of participants.  Therefore, 

Error Proneness is as a Dimension of Concern.  Overall, there were 241 event instances. 
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Participants experienced more negative events than positive events for two 

dimensions:  Error Proneness and Closeness of Mapping.  Only Error Proneness 

exceeded the 20% threshold.  As a result, Error Proneness is a Dimension of Concern. 

Table 7-16 and Table 7-17 provide a more detailed look at the dimensions listed 

in Table 7-15.  These data provide rationale for the classification of each dimension, as 

well as suggestions for improvements in future releases.  The first table lists the positive 

events by event type and the second table shows the negative events by event type.  For 

example, of the nine positive Diffuseness events, six were the result of interaction with 

the Design Pattern Wizard (event #14) and three the result the participants’ reaction to the 

automatically generated code (event #18).  In addition, for all participants, event number 

seven was the most observed positive event; 21 participants experienced this event. 

Table 7-15: Number of occurrences by cognitive dimension for all participants and all 
tasks (N = 24). 

Dimension Total 
Events 

# Participants 
Experiencing 

Positive Events 

# Participants 
Experiencing 

Negative Events 

Final 
Score 

Error prone 69 16 21 -5 
Progressive 
evaluation 

53 21 9 12 

Viscosity 47 16 7 9 
Premature 

commitment 
27 10 3 7 

Role expressiveness 21 10 6 4 
Diffuseness 13 7 4 3 
Visibility 8 5 2 3 

Closeness of Mapping 3 0 3 -3 
Total 241     
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Table 7-16:  Coded positive observations for all participants and tasks (N = 24). 
Dimension Total 

Events 
Event Description # Participants 

Experiencing 
Event 

Progressive 
evaluation 

40 7 - It was easy for participants to check the 
status of the model, and for any errors, by 
looking at what has been done so far 

21 

Viscosity 36 4 - Easy for participant to make a change to a 
component 

13 

Error prone 12 2 - The consistency in the Herbal interface 
helped reduce errors 

11 

Premature 
commitment 

12 6 - Lack of required order made it to fix 
mistakes 

8 

Premature 
commitment 

12 8 - Participant changed order of steps in task 
without problems 

9 

Role 
expressiveness 

7 16 - Participant demonstrated strong 
understanding of the model 

7 

Diffuseness 6 14 - The design pattern wizard allowed 
participant to create several components using 
a brief terminology 

6 

Error prone 6 15 - The design pattern wizard prevented 
errors creating components 

6 

Visibility 6 20 - Behavior of agent was easy to see using 
the debugger 

5 

Viscosity 4 34 - Working sets helped participant find 
location of a problem 

4 

Diffuseness 3 18 - Participant was thankful for code 
automatically created by Herbal 

3 

Role 
expressiveness 

3 33 - Participant entered quality design 
rationale 

3 

Role 
expressiveness 

2 13 - Participant viewed rationale to learn more 
about model 

2 

Role 
expressiveness 

1 30 - Commented that components are self-
explanatory 

1 

Total 150    
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Table 7-17:  Coded negative observations for all participants and tasks (N = 24). 
Dimension Total 

Events 
Event Description # Participants 

Exper. Event 
Progressive 
evaluation 

13 10 - The participant became confused about what 
specific component they were working on, or what 
step they were doing 

9 

Error prone 13 11 - Participant had problems distinguishing 
between types of design rationale 

12 

Error prone 9 21 - Poor design in working set dialog lead to 
errors 

6 

Error prone 8 3 -The search feature of the new project dialog 
lead to errors 

8 

Error prone 4 28 - Instructions mislead participant to create 
action instead of type 

4 

Error prone 4 29 - Participant confused by conditions with no 
restrictions 

4 

Error prone 4 31 - Participant selected wrong problem space in 
design pattern wizard 

4 

Viscosity 4 35 - Participant had problems editing an operator 4 
Role 

expressiveness 
3 5 - Participant had trouble understanding 

component/subcomponent 
3 

Viscosity 3 9 - Participant had problems editing an action 3 
Error prone 3 12 - Participant confused Eclipse export with 

Herbal library export 
3 

Premature 
commitment 

3 19 - Participant was confused by order required to 
run debugger 

3 

Role 
expressiveness 

3 26 - Participant demonstrated poor understanding 
of the model 

3 

Error prone 3 37 - Participant entered literal value in local 
variable edit box 

3 

Diffuseness 3 17 - Participant found design rationale to be 
verbose and/or redundant 

3 

Visibility 2 1 – A portion of the Herbal GUI editor was hidden 2 
Error prone 2 25 - Trouble locating the Herbal GUI Editor 2 
Closeness of 

mapping 
2 27 - Participant preferred a term not used by high-

level language 
2 

Closeness of 
mapping 

1 23 - Participant appeared confused by notation 
used to represent agent 

1 

Diffuseness 1 34 - Participant used copy and paste when entering 
design rationale 

1 

Role 
expressiveness 

1 32 - Participant viewed rationale but did not find it 
helpful 

1 

Role 
expressiveness 

1 36 - Participant misunderstood interface between 
model/environment 

1 

Error prone 1 38 - Participant confused by wire screen when 
there is nothing to wire 

1 

Total 91   
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Table 7-18 lists the total number of events observed for subjects performing the 

library creation task.  The table groups these events by their associated dimension and 

sorts them by total number of events.  In addition, the table shows the total number of 

participants experiencing positive and negative events and the final score for each 

dimension.  

Participants experienced more negative events than positive events for four 

dimensions:  Role Expressiveness, Diffuseness, Visibility, and Closeness of Mapping.  

Role Expressiveness and Diffuseness exceeded the 20% threshold.  As a result, Role 

Expressiveness and Diffuseness are Dimensions of Concern. 

Table 7-19 and Table 7-20 provide a more detailed look at the dimensions listed 

in Table 7-18.   

Table 7-18:  Number of occurrences by cognitive dimension for all participants
performing the library creation task (N = 8). 

Dimension Total 
Events 

# Participants 
Experiencing 

Positive Events 

# Participants 
Experiencing 

Negative Events 

Final 
Score 

Error prone 33 8 8 0 
Viscosity 33 8 4 4 

Progressive evaluation 25 8 4 4 
Premature 

commitment 
18 6 0 6 

Role expressiveness 8 2 4 -2 
Diffuseness 2 0 2 -2 
Visibility 1 0 1 -1 

Closeness of Mapping 1 0 1 -1 
Total 121     
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Table 7-19:  Coded positive observations for participants performing the library creation 
task (N = 8). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Viscosity 29 4 - Easy for participant to make a change 

to a component 
8 

Progressive 
evaluation 

19 7 - It was easy for participants to check 
the status of the model, and for any 
errors, by looking at what has been done 
so far 

8 

Error prone 9 2 - The consistency in the Herbal 
interface helped reduce errors 

8 

Premature 
commitment 

9 6 - Lack of required order made it easy to 
fix mistakes 

6 

Premature 
commitment 

9 8 - Participant changed order of steps in 
task without problems 

6 

Role 
expressiveness 

1 33- Participant entered quality design 
rationale 

1 

Role 
expressiveness 

1 30 - Commented that components are 
self-explanatory 

1 

Total 77    
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Table 7-21 lists the total number of events observed for subjects performing the 

model creation task.  The table groups these events by their associated dimension and 

sorts them by total number of events.  In addition, the table shows the total number of 

Table 7-20:  Coded negative observations for participants performing the library creation
task (N = 8). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Error prone 6 11 - Participant had problems 

distinguishing between types of design 
rationale 

6 

Progressive 
evaluation 

6 10 - The participant became confused about 
what specific component they were working on, 
or what step they were doing 

4 

Error prone 5 3 - The search feature of the new project dialog 
lead to errors 

5 

Error prone 4 28 - Instructions mislead participant to create 
action instead of type 

4 

Error prone 3 29 - Participant confused by conditions with no 
restrictions 

3 

Role 
expressiveness 

3 5 - Participant had trouble understanding 
component/subcomponent 

3 

Viscosity 3 9 - Participant had problems editing an action 3 
Role 

expressiveness 
3 26 - Participant demonstrated poor 

understanding of the model 
3 

Error prone 3 37 - Participant entered literal value in local 
variable edit box 

3 

Error prone 2 12 - Participant confused Eclipse export with 
Herbal library export 

2 

Viscosity 1 35 - Participant had problems editing an 
operator 

1 

Diffuseness 1 17 - Participant found design rationale to 
be verbose and/or redundant 

1 

Diffuseness 1 24 - Participant used copy and paste when 
entering design rationale 

1 

Visibility 1 1 - A portion of the Herbal GUI editor was 
hidden 

1 

Closeness of 
mapping 

1 27 - Participant preferred a term not used by 
high-level language 

1 

Error prone 1 38 - Participant confused by wire screen when 
there is nothing to wire 

1 

Total 44    
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participants experiencing positive and negative events and the final score for each 

dimension. 

Participants experienced more negative events than positive events for one 

dimension:  Closeness of Mapping.  None of the dimensions exceeded the 20% threshold 

and therefore no dimensions are Dimensions of Concern. 

Table 7-22 and Table 7-23 provide a more detailed look at the dimensions listed 

in Table 7-21.   

Table 7-21:  Number of occurrences by cognitive dimension for participants performing
the model creation task (N = 8). 

Dimension Total 
Events 

# Participants 
Experiencing 

Positive Events 

# Participants 
Experiencing 

Negative Events 

Final 
Score 

Error prone 25 8 7 1 
Progressive 
evaluation 

20 7 5 2 

Diffuseness 11 7 2 5 
Role expressiveness 10 6 1 5 

Premature 
commitment 

6 4 0 4 

Viscosity 2 2 0 2 
Closeness of Mapping 1 0 1 -1 

Visibility 0 0 0 0 
Total 75     
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Table 7-22:  Coded positive observations for participants performing the model creation 
task (N = 8). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Progressive 
evaluation 

13 7 - It was easy for participants to check 
the status of the model, and for any errors, 
by looking at what has been done so far 

7 

Diffuseness 6 14 - The design pattern wizard allowed 
participant to create several components 
using a brief terminology 

6 

Error prone 6 15 - The design pattern wizard prevented 
errors creating components 

6 

Role 
expressiveness 

5 16 - Participant demonstrated strong 
understanding of the model 

5 

Error prone 3 2 - The consistency in the Herbal 
interface helped reduce errors 

3 

Premature 
commitment 

3 8 - Participant changed order of steps in 
task without problems 

3 

Diffuseness 3 18 - Participant was thankful for code 
automatically created by Herbal 

3 

Premature 
commitment 

3 6 - Lack of required order made it easy to 
fix mistakes 

2 

Viscosity 2 4 - Easy for participant to make a change 
to a component 

2 

Role 
expressiveness 

2 33 - Participant entered quality design 
rationale 

2 

Role 
expressiveness 

2 13 - Participant viewed rationale to learn 
more about model 

2 

Total 48    
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Table 7-24 lists the total number of events observed for subjects performing the 

model maintenance task.  The table groups these events by their associated dimension 

and sorts them by total number of events.  In addition, the table shows the total number of 

participants experiencing positive and negative events and the final score for each 

dimension. 

Table 7-23:  Coded negative observations for participants performing the model creation
task (N = 8). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Error prone 7 11- Participant had problems 

distinguishing between types of design 
rationale 

6 

Progressive 
evaluation 

7 10 -The participant became confused about 
what specific component they were working 
on, or what step they were doing 

5 

Error prone 4 31 - Participant selected wrong problem 
space in design pattern wizard 

4 

Error prone 3 3 - The search feature of the new project 
dialog lead to errors 

3 

Diffuseness 2 17 - Participant found design rationale to 
be verbose and/or redundant 

2 

Error prone 1 12 - Participant confused Eclipse export with 
Herbal library export 

1 

Closeness of 
mapping 

1 27 - Participant preferred a term not used by 
high-level language 

1 

Error prone 1 25 - Trouble locating the Herbal GUI Editor 1 
Role 

expressiveness 
1 32 - Participant viewed rationale but did not 

find it helpful 
1 

Total 27    
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Participants experienced more negative events than positive events for four 

dimensions:  Viscosity, Error Proneness, Premature Commitment, and Closeness of 

Mapping.  Viscosity, Error Proneness, and Premature Commitment exceeded the 20% 

threshold.  As a result, these three dimensions are Dimensions of Concern. 

Table 7-25 and Table 7-26 provide a more detailed look at the dimensions listed 

in Table 7-24.   

Table 7-24: Number of occurrences by cognitive dimension for all participants
performing the model maintenance task (N = 8). 

Dimension Total 
Events 

# Participants 
Experiencing 

Positive Events 

# Participants 
Experiencing 

Negative Events 

Final 
Score 

Viscosity 12 6 3 -3 
Error prone 11 0 6 -6 
Progressive 
evaluation 

8 6 0 6 

Visibility 7 5 1 4 
Role expressiveness 3 2 1 1 

Premature 
commitment 

3 0 3 -3 

Closeness of 
Mapping 

1 0 1 -1 

Diffuseness 0 0 0 0 
Total 45     
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Table 7-25:  Coded positive observations for participants performing the model 
maintenance task (N = 8). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Progressive 
evaluation 

8 7 - It was easy for participants to check 
the status of the model, and for any errors, 
by looking at what has been done so far 

6 

Visibility 6 20 - Behavior of agent was easy to see 
using the debugger 

5 

Viscosity 5 4 - Easy for participant to make a change 
to a component 

4 

Viscosity 4 34 - Working sets helped participant find 
location of a problem 

4 

Role 
expressiveness 

2 16 - Participant demonstrated strong 
understanding of the model 

2 

Total 25    
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Table 7-27 lists the total number of events observed for subjects majoring in 

PSYC.  The table groups these events by their associated dimension and sorts them by 

total number of events.  In addition, the table shows the total number of participants 

experiencing positive and negative events and the final score for each dimension. 

Table 7-26:  Coded negative observations for participants performing the model 
maintenance task (N = 8). 

 
Dimension Total 

Events 
Event Description # Participants 

Experiencing Event 
Error prone 9 21 - Participant had problems 

distinguishing between types of design 
rationale 

6 

Viscosity 3 35 - Participant had problems editing an 
operator 

3 

Premature 
commitment 

3 19 - Participant was confused by order 
required to run debugger 

3 

Error prone 1 25 - Trouble locating the Herbal GUI 
Editor 

1 

Error prone 1 29 - Participant confused by conditions 
with no restrictions 

1 

Visibility 1 1 - A portion of the Herbal GUI editor was 
hidden 

1 

Role 
expressiveness 

1 36 - Participant misunderstood interface 
between model/environment 

1 

Closeness of 
Mapping 

1 23 - Participant appeared confused by 
notation used to represent agent 

1 

Total 20   
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Participants experienced more negative events than positive events for three 

dimensions:  Error Proneness, Role Expressiveness, and Closeness of Mapping.  

However, none of the dimensions exceeded the 20% threshold.  As a result, no 

dimensions are Dimensions of Concern. 

Table 7-28 and Table 7-29 provide a more detailed look at the dimensions listed 

in Table 7-27.   

Table 7-27:  Number of occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12). 

Dimension Total 
Events 

# Participants 
Experiencing 

Positive Events 

# Participants 
Experiencing 

Negative Events 

Final 
Score 

Error prone 32 8 10 -2 
Progressive 
evaluation 

27 12 4 8 

Viscosity 25 10 4 6 
Premature 

commitment 
14 6 0 6 

Role expressiveness 12 3 5 -2 
Diffuseness 6 4 1 3 
Visibility 4 3 1 2 

Closeness of Mapping 1 0 1 -1 
Total 121     
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Table 7-28:  Number of positive occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Progressive 
evaluation 

22 7 - It was easy for participants to check the 
status of the model, and for any errors, by 
looking at what has been done so far 

12 

Viscosity 18 4 - Easy for participant to make a change to a 
component  

7 

Premature 
commitment 

9 6 - Lack of required order made it to fix 
mistakes  

5 

Error prone 6 2 - The consistency in the Herbal interface 
helped reduce errors 

6 

Premature 
commitment 

5 8 - Participant changed order of steps in task 
without problems  

5 

Error prone 3 15 - The design pattern wizard prevented 
errors creating components 

3 

Diffuseness 3 14 - The design pattern wizard allowed 
participant to create several components using 
a brief terminology 

3 

Viscosity 3 34 - Working sets helped participant find 
location of a problem  

3 

Role 
expressiveness 

3 16 - Participant demonstrated strong 
understanding of the model 

3 

Visibility 3 20 - Behavior of agent was easy to see using 
the debugger  

3 

Role 
expressiveness 

2 33 - Participant entered quality design 
rationale 

2 

Diffuseness 2 18 - Participant was thankful for code 
automatically created by Herbal 

2 

Total 79    
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Table 7-30 lists the total number of events observed for subjects majoring in CS, 

CIS, or MIS.  The table groups these events by their associated dimension and sorts them 

Table 7-29:  Number of negative occurrences by cognitive dimension across all tasks for
participants majoring in PSYC (N = 12). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Error prone 6 11 - Participant had problems distinguishing 

between types of design rationale 
6 

Progressive 
evaluation 

5 10 - The participant became confused about 
what specific component they were working on, 
or what step they were doing 

4 

Error prone 4 21 - Poor design in the working set dialog lead to 
errors 

3 

Error prone 3 3 - The search feature of the new project dialog 
lead to errors 

3 

Error prone 3 31 - Participant selected wrong problem space in 
design pattern wizard 

3 

Error prone 3 29 - Participant confused by conditions with no 
restrictions 

3 

Viscosity 3 35 - Participant had problems editing an operator  3 
Role 

expressiveness 
3 26 - Participant demonstrated poor 

understanding of the model  
3 

Role 
expressiveness 

2 5 - Participant had trouble understanding 
component/subcomponent 

2 

Error prone 2 28 - Instructions mislead participant to create 
action instead of type 

2 

Error prone 2 37 - Participant entered literal value in local 
variable edit box 

2 

Closeness of 
Mapping 

1 27 - Participant preferred a term not used by 
high-level language 

1 

Viscosity 1 9 - Participant had problems editing an action  1 
Visibility 1 1 - A portion of the Herbal GUI editor was 

hidden  
1 

Diffuseness 1 17 - Participant found design rationale to be 
verbose and/or redundant 

1 

Role 
expressiveness 

1 32 - Participant viewed rationale but did not find 
it helpful 

1 

Role 
expressiveness 

1 36 - Participant misunderstood interface between 
model/environment 

1 

Total 42    
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by total number of events.  In addition, the table shows the total number of participants 

experiencing positive and negative events and the final score for each dimension. 

Participants experienced more negative events than positive events for two 

dimensions:  Error Proneness and Closeness of Mapping.  Only Error Proneness 

exceeded the 20% threshold.  As a result, Error Proneness is a Dimension of Concern. 

Table 7-31 and Table 7-32 provide a more detailed look at the dimensions listed 

in Table 7-30.   

Table 7-30:  Number of occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12). 

Dimension Total 
Events 

# Participants 
Experiencing 

Positive Events 

# Participants 
Experiencing 

Negative Events 

Final 
Score 

Error prone 37 8 11 -3 
Progressive 
evaluation 

26 9 5 4 

Viscosity 22 6 3 3 
Premature 

commitment 
13 4 3 1 

Role expressiveness 9 7 1 6 
Diffuseness 7 3 3 0 
Visibility 4 2 1 1 

Closeness of Mapping 2 0 2 -2 
Total 120     
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Table 7-31:  Number of positive occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Progressive 
evaluation 

18 7 - It was easy for participants to check the 
status of the model, and for any errors, by 
looking at what has been done so far 

9 

Viscosity 18 4 - Easy for participant to make a change to a 
component  

6 

Premature 
commitment 

7 8 - Participant changed order of steps in task 
without problems  

4 

Error prone 6 2 - The consistency in the Herbal interface 
helped reduce errors 

5 

Role 
expressiveness 

4 16 - Participant demonstrated strong 
understanding of the model 

4 

Error prone 3 15 - The design pattern wizard prevented 
errors creating components 

3 

Diffuseness 3 14 - The design pattern wizard allowed 
participant to create several components using 
a brief terminology 

3 

Premature 
commitment 

3 6 - Lack of required order made it to fix 
mistakes  

3 

Visibility 3 20 - Behavior of agent was easy to see using 
the debugger  

2 

Role 
expressiveness 

2 13 -Participant viewed rationale to learn more 
about model  

2 

Diffuseness 1 18 - Participant was thankful for code 
automatically created by Herbal 

1 

Role 
expressiveness 

1 30 - Commented that components are self- 
explanatory 

1 

Role 
expressiveness 

1 33 - Participant entered quality design 
rationale 

1 

Viscosity 1 34 - Working sets helped participant find 
location of a problem  

1 

Total 71    
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Table 7-32:  Number of negative occurrences by cognitive dimension across all tasks for
participants majoring in CS, CIS, or MIS (N = 12). 

Dimension Total 
Events 

Event Description # Participants 
Experiencing 

Event 
Progressive 
evaluation 

8 10 - The participant became confused about 
what specific component they were working on, 
or what step they were doing 

5 

Error prone 7 11 - Participant had problems distinguishing 
between types of design rationale 

6 

Error prone 5 3 - The search feature of the new project dialog 
lead to errors 

5 

Error prone 5 21 - Poor design in the working set dialog lead 
to errors 

3 

Premature 
commitment 

3 19 - Participant was confused by order required 
to run debugger  

3 

Error prone 3 12 - Participant confused Eclipse export with 
Herbal library export 

3 

Diffuseness 2 17 - Participant found design rationale to be 
verbose and/or redundant 

2 

Viscosity 2 9 - Participant had problems editing an action  2 
Error prone 2 25 - Trouble locating the Herbal GUI Editor 2 
Error prone 2 28 - Instructions mislead participant to create 

action instead of type 
2 

Error prone 1 31 - Participant selected wrong problem space in 
design pattern wizard 

1 

Error prone 1 37 - Participant entered literal value in local 
variable edit box 

1 

Error prone 1 38 - Participant confused by wire screen when 
there is nothing to wire 

1 

Error prone 1 29 - Participant confused by conditions with no 
restrictions 

1 

Diffuseness 1 24 - Participant used copy and paste when 
entering design rationale 

1 

Viscosity 1 35 - Participant had problems editing an operator  1 
Visibility 1 1 - A portion of the Herbal GUI editor was 

hidden  
1 

Role 
expressiveness 

1 5 - Participant had trouble understanding 
component/subcomponent 

1 

Closeness of 
Mapping 

1 23 - Participant appeared confused by notation 
used to represent agent 

1 

Closeness of 
Mapping 

1 27 - Participant preferred a term not used by 
high-level language 

1 

Total 49    
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A chi-square test of independence was performed to check for a correlation 

between the number of negative and positive observed events and the participants’ major 

(PSYC or CI/CIS/MIS).  Table 7-12 summarizes the results of this analysis.  Importantly, 

there is no statistical evidence that there is a correlation between the number and type of 

observed events during task completion, and the participants’ major: !2 = 0.961, DF = 1, 

p = .327 (Howell, 1987). 

Summary of Observation Results 

Table 7-34 lists Dimensions of Concern based on participant observations. 

Dimensions of Concern are shown using six different groupings: (1) all participants; (2) 

participants performing the library creation task; (2) participants performing the model 

creation task; (3) participants performing the model maintenance task; (4) participants 

majoring in PSYC, (5) for participants majoring in CS, CIS, or MIS.  For example, 

Table 7-33:  A 2x2 chi-square contingency table used to test for independence between
observations and participant major. 

Major # Positive 
Observations 

# Negative 
Observations 

Total 

PSYC 79
75.31
0.181

42 
45.69 
0.298 

121

CS/CIS/MIS 71
74.69
0.182

49 
45.31 
0.300 

120

Total 150 91 241
 
Expected counts are printed below observed counts and chi-square contributions are 
printed below expected counts.   !2 = 0.961, DF = 1, p = .327 
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observations of participants majoring in CS, CIS, or MIS indicated that Error Proneness 

was the only Dimensions of Concern. 

Discussion 

Table 7-35 lists Dimensions of Concern based on both survey results and 

participant observations.  The table indicates concerns based on survey results with the 

letter S, and concerns based on observations with the letter O.  The table indicates 

concerns recorded based on both survey results and observations with the letter B. 

Table 7-34:  Dimensions of Concern as measured by observations. 

Dimension All Library 
Creation 

Model 
Creation 

Model 
Maintenance

PSYC CS/CIS/MIS

Visibility       

Viscosity    X   

Diffuseness  X     

Hard-mental 
operations 

      

Error-
proneness 

X   X  X 

Closeness of 
mapping 

      

Role-
expressiveness 

 X     

Progressive 
evaluation 

      

Premature 
commitment 

   X   
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Table 7-35 shows Dimensions of Concern using six different groupings: (1) all 

participants; (2) participants performing the library creation task; (2) participants 

performing the model creation task; (3) participants performing the model maintenance 

task; (4) participants majoring in PSYC, (5) participants majoring in CS, CIS, or MIS.  

For example, both survey responses and observations of participants performing model 

maintenance indicated that Error Proneness and Premature Commitment were 

Dimensions of Concern. 

Table 7-35 presents 54 possible dimension/condition pairings (nine dimensions * 

six conditions).  Of these 54 pairings, 64.8% (35) show agreement between the survey 

results and the observations.  According to the surveys and observations, the Herbal 

Table 7-35: Summary of Dimensions of Concerns based on survey results (S), participant
observations (O), and both (B). 

Dimension All Library 
Creation 

Model 
Creation 

Model 
Maintenance 

PSYC CS/CIS/
MIS 

Visibility S S S   S 

Viscosity    O   

Diffuseness  O     

Hard-mental 
operations 

   S   

Error-proneness O  S B S O 

Closeness of 
mapping 

      

Role-expressiveness  O S  S  

Progressive 
evaluation 

      

Premature 
commitment 

S S S B S S 
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system appears to be strong with respect to Viscosity, Diffuseness, Progressive 

Evaluation, Closeness of Mapping, and Hard-Mental Operations. 

Observations related to Viscosity show that participants found it easy to make 

changes to components.  In addition, the working set feature made it easy for participants 

to change a collection of related components.  Only during the model maintenance task 

was there an indication (by observation) of difficulty making changes to the model.  

During this task, several participants encountered a problem when editing the operator 

that was causing the vacuum cleaner to malfunction. 

Observations of appreciation for the code automatically created by Herbal 

provided evidence of Positive support for Diffuseness.  Several participants mentioned 

that they were very happy they did not have to generate the Soar code manually.  The 

Design Pattern Wizard also proved to be a compact way of expressing complicated 

behavior.  Problems with Diffuseness took place only during library creation when the 

participant attempted to enter design rationale.  Several participants commented on the 

redundancy of the design rational task, relying on copy/paste to hasten design rationale 

entry.  Perhaps with a more complicated model, entering design rationale would have 

been a more interesting task. 

The system also met the needs of the participants with respect to Progressive 

Evaluation.  Observations confirmed that participants could easily check the progress of 

the model at any point in time, regardless of task.  In addition, the participants were able 

to browse the model for potential errors when needed. 

Closeness of Mapping was another dimension that Herbal supported well.  Survey 

results were positive with respect to the high-level language used to describe agents 
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written in Herbal.  In addition, only three participants experienced negative events with 

respect to Closeness of Mapping.  Two participants thought the term “mode” or “state” 

would be more useful than problem space, and one participant became confused by the 

notation used to represent the agent and its behavior. 

Finally, participants indicated in the surveys that, as a whole, they did not find the 

tasks particularly complex.  This is due in part to the fact that the tasks tested the usability 

of the system, and were not problem solving exercises (aside from the maintenance task).  

A poorly designed interface can make basic tasks complex, and in this respect, Herbal 

scored well.  On the surveys, participants did indicate some complexity in the model 

maintenance task.   This is not surprising because this is the one task where participants 

were asked to solve a problem (i.e., what was wrong with the vacuum cleaner) rather than 

exercise an interface.  

Herbal did appear to lack good support two dimensions: Error Proneness, and 

Premature Commitment.  Table 7-35 lists these two dimensions as Dimensions of 

Concern in nearly every column. 

The classification of Error Proneness as a concern was due to both observations 

and survey results.  Only the library creation tasks did not suffer from problems with 

Error Proneness.  Recordings of the observed events give reasons for the problems 

participants had with Error Proneness.  For example, 13 errors resulted from participants 

having problems distinguishing between the different types of design rational.  Twenty-

one errors resulted from problems with the design and layout of the Working Set, New 

Project, and Design Pattern Wizard dialogs.  Four errors resulted from confusion caused 
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by the use of a condition with no restrictions.  Finally, four errors took place because of a 

problem in the wording of one of the steps in the instructions. 

Survey data in all six conditions classified Premature Commitment as a concern, 

yet participant observations only classified Premature Commitment as a concern during 

the model maintenance task.   Due to a lack of useful responses to the open-ended 

portions of the survey, it is difficult to tell why participants felt restricted to order.  The 

fact that the task instructions consisted of ordered steps most likely played a role. 

Observations told a different story with respect to Premature Commitment.  Eight 

participants were able to fix mistakes more easily because Herbal did not enforce order.  

In addition, nine participants changed the order of the steps in the task, on their own, and 

without problems.   

A task where order did appear to present problems (during observation) was the 

model maintenance task.  Connecting the debugger to the Vacuum Cleaner Environment 

requires a fixed order and three participants were observed having problems with this 

rigid order. 

Because Survey data indicated a problem with Premature Commitment, and 

observations did not, further exploration of this concern is required. 

Table 7-35 shows mixed Results for Role Expressiveness and Visibility.  Three 

conditions classified Role Expressiveness as a concern, and four conditions classified 

Visibility as a concern.  Role Expressiveness was a concern during library creation, 

where three participants demonstrated a poor understanding of the model in general, and 

three participants demonstrated trouble understanding the relationship between 

components and subcomponents.  Surveys indicated a problem with Role Expressiveness 
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during model creation and for PSYC students as a whole.  Visibility was a concern in 

survey data for all conditions except model maintenance and for PSYC students as a 

whole.  However, observations did not indicate Visibility as a concern for any conditions.  

As a result, further exploration of this concern is required. 

Finally, a two-sample t-test did not show a difference between the mean 

performance times of the two groups: t(22) = -1.44, p = .163 (two-tailed).  In addition, 

chi-square tests of independence did not show a relationship between the participants’ 

major and the survey results (!2 = 0.160, DF = 1, p = .689), or the observed events (!2 = 

0.961, DF = 1, p = .327).   These results are encouraging because they support the design 

goal that Herbal is usable by users with varying backgrounds and skill sets. 

Conclusions 

The Herbal system appears to be very strong in five of the nine dimensions: 

Viscosity, Diffuseness, Progressive Evaluation, Closeness of Mapping, and Hard-Mental 

Operations.  This is a very positive result with respect to the overall usability of Herbal. 

The data show mixed results on Role Expressiveness, and Herbal’s support for 

Error Proneness was of concern.  Finally, the observations contradicted the survey results 

for Visibility and Premature Commitment, opening the door for further evaluation of 

these two dimensions. 

The strong ratings in five of the nine dimensions are very encouraging, especially 

the improvement in the problems with Closeness of Mapping reported during the 

formative study (Chapter 5).  In addition, the lack of Visibility concerns during 
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participant observations also shows improvement over the findings during the formative 

study.   The changes recommended by the formative study, such as changes to the 

terminology used by Herbal and its high-level language, and the addition of a model 

browser view,  appear to have improved the usability of the system. 

Another encouraging result came from the statistical analysis of the data based on 

major.  Herbal’s implementation of reuse, visual programming, working sets, graphical 

displays, and a well-designed high-level representation, appears to be helping people use 

the tool independently of their skill set.  

One discouraging result was the apparent poor support for the Premature 

Commitment dimension, despite changes made because of the formative evaluations.  

Unfortunately, most of the data indicating poor support for Premature Commitment is 

from the surveys, and the lack of good open-ended responses makes it difficult to 

determine the reason for this result.  Contradicting the survey results, observations 

showed that eight participants were able to fix mistakes more easily because Herbal did 

not enforce order.  In addition, nine participants changed the order of the steps in the task 

on their own and without problems.  Additional work is required, perhaps with a more 

open-ended task, to evaluate this dimension.   

Finally, Error Proneness was a concern in both observations and survey results.  

Only the library creation task did not suffer from problems with Error Proneness.  

Fortunately, the observations revealed several ways to address this issue.  For example, a 

better explanation of the difference between the three different design rationale types 

would have eliminated 13 errors.  In addition, improvements to the design and layout of 

the Working Set, New Project, and Design Pattern Wizard could eliminate 21 errors.



Chapter 8 
 

Contributions, Lessons, and Future Work 

Cognitive models are useful for a number of purposes. Unfortunately, limited 

theory-based tool and language support for the creation of cognitive models has made it 

difficult for modelers to create, debug, and reuse cognitively plausible software (Pew & 

Mavor, 1998; Ritter et al., 2003; Salvucci & Lee, 2003; Yost, 1993).  In addition, the use 

of multiple cognitive architectures has further complicated cognitive modeling by making 

it difficult to compare, reuse, and integrate models (Gluck & Pew, 2001a; Jones, 

Crossman, Lebiere, & Best, 2006; Jones & Wray, 2003). 

This dissertation demonstrated the benefits of applying software engineering 

principles to cognitive modeling development, with the creation of a high-level language 

and development environment, and with evaluations of this language and environment, in 

use, by students and cognitive modelers.  The upcoming sections detail the specific 

contributions and lessons generated by the work presented in this dissertation, along with 

opportunities that arise from this work. 

Contributions towards Better Modeling Languages 

The high-level language presented here is a significant contribution to better 

modeling languages because it allows modelers to program using a high-level 

representation that is compiled for multiple architectures (presently Soar and Jess).  This 
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allows modelers to create a model using a well-known theory of cognition (PSCM) and 

translate this model into different architectures unifying different theories.  For example, 

a modeler might choose Soar because of its learning mechanism and its emphasis on 

psychological plausibility.  Alternatively, an agent developer might choose Jess because 

of its cross-platform strengths and ease at which it integrates with existing Java 

applications.  With Herbal, modelers can share components across both models despite 

the fact that they execute in different architectures.  

Currently, only one other high-level cognitive modeling language supports 

multiple architectures: HLSR, which was reviewed in Chapter 2 (Jones, Crossman, 

Lebiere, & Best, 2006).  However, the high-Level language and environment presented in 

this dissertation has two distinct advantages over HLSR.   

First, Herbal has explicit support for a well-established theory of cognition.  The 

PSCM forms the basis of the Herbal high-level language, and the components of the 

PSCM are explicit in the code.  This helps close the conceptual gap between a theory 

commonly used by cognitive modelers and the representation used to express behavior.  

The high-level language used by HLSR does not explicitly support a theory of cognition.  

Instead, HSLR hides this theory within programmable microtheories.  Although the 

HLSR language does simplify cognitive modeling, there is still a conceptual gap between 

the theories commonly used to describe behavior and the HLSR representation. 

Second, the Herbal high-level language uses XML to represent models.  XML is a 

free and open standard specification that provides the foundation for nearly all modern 

markup languages and open-document formats.  Models written in the Herbal high-level 

language can immediately benefit from a large set of open-source and commercial tools 
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(e.g., editors, graphics engines, mathematical notations, and databases).  Developers can 

edit their models using existing XML editors, easily translate their code into a variety of 

formats (e.g., HTML, SVG, PDF, or even productions for additional cognitive 

architectures), and create their own Herbal tools using one of the many programming 

languages that support XML. 

Another contribution of this work is confirmation of the usefulness of the PSCM 

as a high-level behavior representation language and hierarchical organization tool.  This 

contribution arises from the evaluations completed in support of this dissertation.  In 

general, results from the formative evaluation described in Chapter 5 illustrate that 

participants appreciated the PSCM for its ability to organize rules into higher-level 

structures, structures often obscured by rule-based languages.  In addition, results from 

the summative evaluation presented in Chapter 7 show that Closeness of Mapping and 

Diffuseness were dimensions of strength for the system presented here.  This is a further 

indication that the PSCM is a good choice for a behavior representation language because 

it closely matches the way that the modeler describes behavior naturally, and provides a 

brief way to produce results or express behavior. 

Table 8-1 summarizes this dissertation’s contributions towards better modeling 

languages. 
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Contributions towards Better Maintenance-Oriented Modeling 
Environments 

Programmers spend considerable time performing software maintenance.  As 

mentioned in Chapter 3, the total cost of software maintenance is often at least 40% of 

the total cost of developing it the software (Brooks, 1995) and U.S. programmers spend 

over 70% of their time testing and debugging (Tassey, 2002).  As a result, strong support 

for usability and maintenance is an important part of simplifying cognitive modeling.  

This dissertation makes four contributions towards better maintenance-oriented modeling 

environments: support for multiple levels of editing source code; support for better code 

navigation; a strong emphasis on usability; and a novel method of analyzing the results of 

a cognitive dimension evaluation. 

The Herbal development environment is currently the only cognitive modeling 

environment that has support for simultaneously creating models at many different levels 

of abstraction (Figure 4-13).  Support for programming at these levels makes Herbal 

useful for both end-user programmers, who can create models visually, and expert 

Table 8-1: Contributions towards better modeling languages. 

Contributions 
1. A high-level modeling language based on the PSCM and represented in XML 

2. The ability to translate models written in this language into two popular, yet 
different, architectures 

3. Empirical validation of the high-level language and the choice of the PSCM for 
this representation 
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programmers, who may prefer to build models using multiple levels.  This also may 

provide better support for users as they transition from novice to expert user. 

This dissertation contributes the only maintenance-oriented cognitive modeling 

environment that supports the creation, maintenance, and persistence, of working sets for 

the development of cognitive models.  Studies have shown both the need, and the benefit 

of the use of working sets for software maintenance (Ko, Aung, & Myers, 2005; Ko, 

Myers, Coblenz, & Aung, 2006).  The Herbal working set feature includes information 

about the intent of the model’s components during a search.  This gives the modeler 

access to additional information “scent” when building working sets.  Modelers can also 

save these working sets and share them with other modelers or recall them for future use. 

In addition, Herbal is the only cognitive modeling environment evaluated by three 

different studies, and is the only research effort that used cognitive dimensions as the 

basis for its evaluation.   A semester long formative usability study has informed Herbal’s 

design.  In addition, this project has subjected Herbal to two different summative 

evaluations, one evaluating the usefulness of the environment and the other evaluating 

the usability of the environment.  The summative usability evaluation showed that Herbal 

was strong in the Viscosity, Hard-mental Operations, Closeness of Mapping, and 

Progressive Evaluation cognitive dimensions.  This same study has also identified 

methods for the improvement of some of these dimensions. 

Finally, the method this project used to analyze data generated by the summative 

evaluation is novel.  Specifically, when negative responses or negative observations 

about a dimension exceeded a threshold, this method classified that dimension as a 

Dimension of Concern.  The concept of a Dimension of Concern, as described above, is 
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new and can be useful to other researchers that are implementing a similar evaluation 

based on cognitive dimensions.  By adjusting the threshold based on the importance of 

the task, and the needs of the users, other researchers should be able to reuse this method 

of analysis, and perhaps the term “Dimension of Concern” will become common 

vocabulary for dimension-based evaluations. 

Table 8-2 summarizes this dissertation’s contributions towards better 

maintenance-oriented environments. 

Contributions towards Better Model Reuse 

The Herbal high-level language and environment has also contributed towards 

better model reuse.  Using Krueger’s dimensions of reuse, Herbal’s language and 

environment facilitate the reuse of behavior across models in several novel ways.   

Herbal’s high-level PSCM-based language, including the addition of conditions 

and actions, is an example of Krueger’s first dimension of reuse: abstraction.  The 

Table 8-2:  Contributions towards better maintenance-oriented environments. 

Contributions 
1. A cognitive modeling environment that has support for simultaneously creating 

models at three different levels of abstraction 

2. A cognitive modeling environment with support for better code navigation 
using working sets that leverage model dependencies and the developer’s intent 

3. A cognitive modeling environment with a strong emphasis on usability  

4. A novel and useful method of analyzing the results of a cognitive-dimension-
based evaluation 
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extension of the PSCM to include conditions and actions as standard objects has added a 

level of granularity that allows for better reuse within and across PSCM models.  

Operators that utilize similar conditions and actions no longer need to duplicate the whole 

operator, previously the smallest unit in the PSCM.  This type of reuse is difficult to 

achieve because of the dependencies between actions and conditions (e.g., modelers often 

design actions to work with specific conditions).  Herbal’s ability to “wire” conditions to 

actions is a new contribution that makes this possible.   

Herbal is also the only high-level cognitive modeling language that is library 

centric.  All of Herbal’s model components must reside within a library, and modelers 

can identify each component using a unique namespace that simplifies the reuse of these 

components.  The required use of libraries, and the ability to assemble components from 

these libraries to create models, is an example of abstraction and integration (Krueger’s 

first and fourth dimensions). 

Another contribution made by this dissertation is the support for the creation and 

reuse of even higher-level behavior patterns created on top of the PSCM.  For example, 

structured programming patterns can be instantiated, thus creating looping structures 

within traditionally unstructured rule-based environments.  Herbal builds these looping 

constructs out of standard PSCM components that are reusable, provides a graphical 

wizard so simplify their creation, and translates these constructs into productions that run 

in two widely used architectures.  The ability for modelers to tailor reusable behavior 

design patterns to their specific needs is an example of specialization (Krueger’s third 

dimension of reuse), and this is a new contribution to reuse in cognitive modeling. 
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Herbal’s working set functionality also contributes to better reuse by supporting 

Krueger’s second dimension: selection.  Modelers can browse libraries looking for 

components related to their needs by using the working set search feature.  Because this 

search feature includes design rationale and component dependencies, modelers can 

discover reusable components quickly and efficiently.  No other cognitive modeling 

environment supports this type of component selection. 

An evaluation using an early version of Herbal has empirically confirmed the 

benefits of reuse in Herbal.  In a study done by Morgan, Haynes, Ritter, and Cohen 

(2005), a Soar model consisting of 29 productions was created using Herbal.  In this 

study, the authors showed a reduction in the time it took to create productions as the 

library of reusable components (e.g., conditions and actions) expanded.  This reduction in 

time was primarily due to the increased reuse provided by Herbal over standard Soar.  In 

addition, the overall average time per production was less than that reported in a similar 

study of graduate students programming in Soar (Yost, 1993). 

Table 8-3 summarizes this dissertation’s contributions towards better model reuse. 
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Contributions towards Education of Modelers 

This dissertation has also made several contributions towards education.  The 

baseball environment created to evaluate the usefulness of the Herbal modeling 

environment extends the baseball examples presented in the Soar tutorial (Laird & 

Congdon, 2005).   Students using the tutorial to learn Soar now have a graphical Soar 

environment to work with that mimics examples given in the tutorial. 

Another outcome of this work is the Vacuum Cleaner Environment (Cohen, 

2005).  The Vacuum Cleaner Environment also extends a popular learning example, in 

this case the vacuum cleaner world presented in a widely used artificial intelligence 

textbook (Russell & Norvig, 2003).  Students learning AI using this textbook can now 

execute textbook examples in a dynamic graphical environment using two very different 

modeling languages. 

Table 8-3:  Contributions towards better model reuse. 

Contributions 
1. The extension of the PSCM to include conditions and actions as standard 

objects has added another level of granularity that allows for better reuse within 
and across PSCM models 

2. Library-centric modeling language 

3. Support for the creation and reuse of even higher-level behavior patterns 
created on top of the PSCM 

4. The ability to browse libraries looking for components related to their needs 
using the search feature of working sets 
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Herbal is used extensively as a teaching tool in classes at Lock Haven University 

and Penn State University.  To date, professors have exposed 89 undergraduates and 9 

graduates to modeling using Herbal.  In addition, in the fall of 2008 another graduate 

class at Penn State will use Herbal. 

Students in a Cognitive and Brain Sciences course at Tufts University have used 

Herbal as a tool for learning Soar and gaining a better understanding of high-level 

behavior representation languages.  Audrey Girouard and Noah W. Smith took a well-

written Soar model and decompiled it into an equally functional Herbal high-level 

representation.  This helped students understand the tradeoffs between high-level and 

low-level representations, and obtain a better understanding of how Soar productions 

represent the PSCM.  

During observations of students using Herbal, I have also discovered some 

unexpected instructional benefits.  Initially designed to reduce the need to program at a 

low-level, the Herbal high-level language and GUI Editor also appear to be valuable for 

teaching low-level rule-based programming.  Working with the Herbal GUI editor and 

the Herbal high-level language editor side-by-side, students have used the tool to learn 

the Herbal language by making changes graphically and then viewing the generated 

Herbal representation.  In addition, by editing the Herbal representation directly, and then 

viewing the generated low-level productions, students have been able to learn native Jess 

and Soar programming. 

Table 8-4 summarizes this dissertation’s contributions towards education. 
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External Users 

Maik Friedrich (2008), a masters student in Germany, used Herbal for the 

modeling portion of his dissertation.  In his dissertation, Friedrich (2008) re-implemented 

a model (Ritter & Bibby, 2008) that was created to solve a diagrammatic reasoning task 

(this older model was written for Soar 6 and was no longer supported).   

The first phase of Friedrich’s work involved creating a library of components 

using Herbal.  This phase took six weeks to complete.  The second phase involved 

creating four different models based on this library.  The most complex model contained 

80 productions.  Each model used a different strategy to solve the diagrammatic 

reasoning task.  This phase took two weeks to complete.  Overall, the modeling effort 

took eight weeks to complete, which was significantly less that the six months required to 

build the original model (based on comments in the original source code).  Part of this 

Table 8-4:  Contributions towards education of modelers. 

Contributions 
1. Students using the Soar tutorial now have a graphical environment to work with 

that mimics the baseball examples given in the tutorial 

2. Eighty-nine undergraduates and nine graduates have been exposed to modeling 
using Herbal, and more will follow in the fall 2008 semester 

3. Herbal has been used at Tufts to learn Soar and to gain a better understanding 
of high-level behavior representation languages 

4. The Herbal GUI Editor is also useful for teaching low-level rule-based 
programming, by editing the Herbal representation directly, and then viewing 
the generated low-level productions 
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improvement can be attributed to the ability to reuse the design work in the original 

model, but some of this improvement is very likely attributable to the use of Herbal.  

In addition, four external sites have downloaded or are using Herbal to conduct 

research (NYU, the Netherlands Government, the Laboratory for Telecommunications 

Sciences at UMD, and Pace University). 

Lessons and Future Work 

In addition to the positive empirical results, the implementation of Herbal 

produced and reinforced some areas of future research.  Five categories classify this 

future work: high-level languages, maintenance-oriented environments, reuse, usability 

and evaluation, and graphical agent environments.  The next few subsections describe 

this future work in detail.  

Future Work in High-level Modeling Languages 

The most pressing area of work is support for more cognitive architectures.  One 

possibility is ACT-R.  ACT-R is a very popular cognitive architecture that supports a 

theory quite different from Soar and Jess.  In addition, the hybrid nature of ACT-R allows 

modelers to more easily explore variability in behavior.  By adding support for more 

cognitive architectures like ACT-R, modelers can further realize a main goal of this 

research: the reusability of behavior across architectures.  
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The development of the Herbal high-level modeling language continually 

reinforced the trade-off between the power of programming close to the architecture and 

the simplicity of programming at a higher-level.  On the one hand, basing the Herbal 

high-level language on the PSCM provided some much needed structure and organization 

to a traditionally rule-based programming environment.  However, the absence of 

underlying architectural support for the PSCM in Jess created a need to limit or simulate 

portions of the PSCM.  Understanding this trade-off, and looking for ways of minimizing 

it, is an excellent task for future research. 

Future Work in Maintenance-Oriented Modeling Environments 

Based on recent research, the Herbal maintenance-oriented development 

environment has been equipped with a working set feature that simplifies the creation of 

a navigable and related set of components.   

As discussed in Chapter 3, researchers have been working on additional 

techniques that can enable environments to generate these working sets automatically.  

For example, a tool might linguistically analyze a description of the modeler’s current 

task, perhaps as described in a bug report, to build working sets automatically.  In 

addition, the use of code navigation history by project team members, and recent 

adaptations of information processing theory (e.g., PFIS), can also provide automatic 

working sets generation (Cubranic, Murphy, Singer, & Booth, 2005; DeLine, Czerwinski, 

& Robertson, 2005).  In the future, researchers could implement these techniques into 

Herbal’s working set feature and confirm its effectiveness. 



215 

 

Future Work in Model Reuse 

One of the exciting contributions made by this dissertation is the ability to build 

complex behavior on top of the Herbal high-level PSCM components using the Behavior 

Design Pattern Wizard.  Modelers can name these behaviors and reuse them in models 

that run on different architectures.   

Currently, Herbal supports procedural looping behaviors.  However, researchers 

could add several other behavior patterns to the wizard.  For example, support for the 

BDI framework would make it easier for BDI researchers to create and possibly reuse 

behavior between Herbal and JACK.  In addition, support for the abstract constructs (e.g., 

activation tables) in HLSR would simplify behavior creation and reuse between Herbal 

and HLSR. 

Future Work in Usability and Evaluation 

Based on the summative usability study discussed in Chapter 6, Herbal could 

better support Error Proneness, and Premature Commitment.  Observations of 

participants have given clues about why Error Proneness was a problem.  For example, 

13 errors resulted from participants having problems distinguishing between the different 

types of design rational.  Twenty-one errors resulted from problems with the design and 

layout of the Working Set, New Project, and Design Pattern Wizard dialogs.  There are 

opportunities for improving Herbal’s support for Error Proneness by addressing these 

issues. 
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The concern with Premature Commitment is a bit more complicated.  Because 

survey data supported the concern for Premature Commitment, but observations 

contradicted this concern, researchers should explore this further.  One task where order 

did present problems was the model maintenance task.  Connecting the debugger to the 

Vacuum Cleaner Environment requires a fixed order, and three participants were 

observed having problems with this rigid order.  Future improvements to the integration 

between the debugger and the graphical environments would certainly help with 

Premature Commitment. 

Another area for potential research would be to address the problems encountered 

with the open-ended questions in the cognitive dimensions survey.  Students seemed to 

be in too much of a hurry to provide meaningful responses to the qualitative questions.  

This made it difficult to understand the reasons behind some of their responses.  Future 

work exists for discovering how to improve a generalized cognitive dimensions survey to 

get useful responses to the open-ended questions.  

Future Work in Graphical Agent Environments 

This research has lead to the creation of two graphical agent environments: the 

baseball environment and the Vacuum Cleaner Environment.  Both of these environments 

present opportunities for future work.  Because the Herbal development environment 

automatically creates both Soar and Jess models, the opportunity exists for comparisons 

of a single Herbal high-level pitcher model running in two very different architectures.  

These types of comparisons have been shown to be important (Gluck & Pew, 2001a; 
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Gluck & Pew, 2001b; Morgan, Ritter, Cohen, Stevenson, & Schenck, 2005; Sun, 

Councill, Fan, Ritter, & Yen, 2004), and Herbal makes this easier to do. 

In addition, future work could make improvements to the pitcher model by 

enhancing the reflective process so that benefit from negative experiences takes place 

without requiring previous positive experiences.  In the absence of positive learned 

events, negative reflection should still lead to a decrease in the probability of repeating 

the action.  

There are also opportunities to explore other parts of the baseball task.  For 

example, researchers can expand the environment and its models to include other batting 

strategies, other batter sequences, batting tournaments, and learning batters. 

Future work also exists in the Vacuum Cleaner Environment project.  In the 

current version, vacuum cleaners never have mishaps.  They always clean when told to, 

and they always move when commanded to.  Of course, real world environments are 

much less predictable.  The addition of random errors committed by the vacuum cleaner 

would allow for more interesting models.  

Conclusion 

This dissertation demonstrated the benefits of applying software engineering 

principles to cognitive model development, with the creation of a high-level language and 

development environment, and with evaluations of this language and environment, in use, 

by students and cognitive modelers. 
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The high-level language was designed to close the conceptual gap (Petre & 

Blackwell, 1997) between the mental model used by cognitive modelers and the low-

level representations used to model behavior.  In addition, this language uses Krueger’s 

four dimensions to support reuse (Krueger, 1992).  Finally, the compiler for this language 

supports multiple architectures, so modelers can compare, reuse, and integrate behavior 

across architectures.   

Motivated by research confirming the importance of the maintenance phase of 

software development (Brooks, 1995; Ko, Myers, Coblenz, & Aung, 2006; Tassey, 

2002), this dissertation leverages design patterns (Gamma, Helm, Johnson, & Vlissides, 

1995), and working sets (Ko, Myers, Coblenz, & Aung, 2006),  to bring modelers the 

type of maintenance support that is has been shown to benefit traditional software 

development.   

This research concluded with two different evaluations to help validate the 

hypothesis that the theory embedded in this system simplifies the modeling task.  In 

addition, these evaluations demonstrated that the system is usable.  While these 

evaluations were positive, they have also suggested future work.  The result of this 

dissertation is research that has made significant contributions to the modeling 

community and has set an important precedent of considering software engineering and 

usability to progress the field of cognitive modeling.
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vac.txt 8/3/2008

1   <?xml version='1.0'?>
2   <models version='1.0'
3   xmlns='http://acs.ist.psu.edu/herbal'
4   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
5   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
6       ../schema/models.xsd'>
7   

8   <model name='Pete'>
9   <problemspaceref problemspace='Survive'>
10   <problemspaceref problemspace='DesignPat.problemspaces.wander'>
11   </problemspaceref>
12   <problemspaceref problemspace='DesignPat.problemspaces.clean'>
13   </problemspaceref>
14   <impasse subspace='DesignPat.problemspaces.wander'>
15   <conditionref condition='vacuum.conditions.isClean'/>
16   </impasse>
17   <impasse subspace='DesignPat.problemspaces.clean'>
18   <conditionref condition='vacuum.conditions.isDirty'/>
19   </impasse>
20   </problemspaceref>
21   </model>
22   

23   </models>
24   

25   

26   <?xml version='1.0'?>
27   <problemspaces version='1.0'
28   xmlns='http://acs.ist.psu.edu/herbal'
29   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
30   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
31       ../schema/problemspaces.xsd'>
32   

33   <problemspace name='Survive'>
34   <init>
35   </init>
36   </problemspace>
37   

38   </problemspaces>
39   

40   <?xml version='1.0'?>
41   <problemspaces version='1.0'
42   xmlns='http://acs.ist.psu.edu/herbal'
43   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
44   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
45       ../schema/problemspaces.xsd'>
46   

47   <problemspace name='wander'>
48   <init>
49   </init>
50   <operatorref actionscope='top' conditionscope='top' 
51               operator='vacuum.operators.moveUp' elaboration='false'/>
52   <operatorref actionscope='top' conditionscope='top' 
53               operator='vacuum.operators.moveDown' elaboration='false'/>
54   <operatorref actionscope='top' conditionscope='top' 
55               operator='vacuum.operators.moveLeft' elaboration='false'/>
56   <operatorref actionscope='top' conditionscope='top' 
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57               operator='vacuum.operators.moveRight' 
elaboration='false'/>

58   </problemspace>
59   

60   <problemspace name='clean'>
61   <init>
62   </init>
63   <operatorref actionscope='top' conditionscope='top' 
64               operator='vacuum.operators.cleanUpSpot' 
65               elaboration='false'/>
66   </problemspace>
67   

68   </problemspaces>
69   

70   <?xml version='1.0'?>
71   <actions version='1.0'
72   xmlns='http://acs.ist.psu.edu/herbal'
73   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
74   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
75       ../schema/actions.xsd'>
76   

77   <action name='up'>
78   <add order='0' type='action'>
79   <set field='move'><value>up</value></set>
80   </add>
81   </action>
82   

83   <action name='right'>
84   <add order='0' type='action'>
85   <set field='move'><value>right</value></set>
86   </add>
87   </action>
88   

89   <action name='suck'>
90   <add order='0' type='action'>
91   <set field='move'><value>suck</value></set>
92   </add>
93   </action>
94   

95   <action name='left'>
96   <add order='0' type='action'>
97   <set field='move'><value>left</value></set>
98   </add>
99   </action>
100   

101   <action name='down'>
102   <add order='0' type='action'>
103   <set field='move'><value>down</value></set>
104   </add>
105   </action>
106   

107   </actions>
108   

109   <?xml version='1.0'?>
110   <conditions version='1.0'
111   xmlns='http://acs.ist.psu.edu/herbal'
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112   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
113   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
114       ../schema/conditions.xsd'>
115   

116   <condition name='isClean'>
117   <match type='spot'>
118   <restrict field='status'><eq>clean</eq></restrict>
119   </match>
120   </condition>
121   

122   <condition name='isAlive'>
123   <match type='position'>
124   <restrict field='y'></restrict>
125   <restrict field='x'></restrict>
126   </match>
127   </condition>
128   

129   <condition name='isDirty'>
130   <match type='spot'>
131   <restrict field='status'><eq>dirty</eq></restrict>
132   </match>
133   </condition>
134   

135   </conditions>
136   

137   <?xml version='1.0'?>
138   <operators version='1.0'
139   xmlns='http://acs.ist.psu.edu/herbal'
140   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
141   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
142       ../schema/operators.xsd'>
143   

144   <operator name='moveDown'>
145   <if>
146   <conditionref condition='isAlive'/>
147   </if>
148   <then>
149   <actionref action='down'>
150   </actionref>
151   </then>
152   </operator>
153   

154   <operator name='moveRight'>
155   <if>
156   <conditionref condition='isAlive'/>
157   </if>
158   <then>
159   <actionref action='right'>
160   </actionref>
161   </then>
162   </operator>
163   

164   <operator name='moveLeft'>
165   <if>
166   <conditionref condition='isAlive'/>
167   </if>
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168   <then>
169   <actionref action='left'>
170   </actionref>
171   </then>
172   </operator>
173   

174   <operator name='cleanUpSpot'>
175   <if>
176   <conditionref condition='isDirty'/>
177   </if>
178   <then>
179   <actionref action='suck'>
180   </actionref>
181   </then>
182   </operator>
183   

184   <operator name='moveUp'>
185   <if>
186   <conditionref condition='isAlive'/>
187   </if>
188   <then>
189   <actionref action='up'>
190   </actionref>
191   </then>
192   </operator>
193   

194   </operators>
195   

196   <?xml version='1.0'?>
197   <types version='1.0'
198   xmlns='http://acs.ist.psu.edu/herbal'
199   xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
200   xsi:schemaLocation='http://acs.ist.psu.edu/herbal 
201       ../schema/types.xsd'>
202   

203   <type name='position' isIO='true'>
204   <field name='x' type='number'/>
205   <field name='y' type='number'/>
206   </type>
207   

208   <type name='radar' isIO='true'>
209   <field name='dir' type='string'/>
210   <field name='reading' type='string'/>
211   </type>
212   

213   <type name='action' isIO='true'>
214   <field name='move' type='string'/>
215   </type>
216   

217   <type name='spot' isIO='true'>
218   <field name='status' type='string'/>
219   </type>
220   

221   </types>
222   
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1   ; ----------------------------------------------------
2   ; Created automagically by Herbal 2.0.10
3   ; Date Compiled: Thu Jul 31 12:34:17 EDT 2008
4   ; Compiled By: mcohen
5   ; ----------------------------------------------------
6   

7   (bind ?rnd (new java.util.Random))
8   (deffunction randChoice ($?choices)
9   (bind ?i (call ?rnd nextInt (length$ ?choices)))
10   (return (nth$ (+ ?i 1) ?choices))
11   )
12   ;---------------------------------------------------------------------

----------
13   ;define Survive
14   ;---------------------------------------------------------------------

----------
15   

16   ;define the module...
17   (defmodule Survive)
18   

19   ;define the types...
20   (deftemplate vacuum.types.position
21   (slot x (default 0))
22   (slot y (default 0))
23   )
24   (deftemplate vacuum.types.radar
25   (slot dir (default ""))
26   (slot reading (default ""))
27   )
28   (deftemplate vacuum.types.action
29   (slot move (default ""))
30   )
31   (deftemplate vacuum.types.spot
32   (slot status (default ""))
33   )
34   

35   ;define the impasses...
36   (defrule Pete.models.impasse1
37   ?f <- (Survive::initial-fact)
38   (Survive::vacuum.types.spot (status ?status1&:(eq* ?status1 

"clean")))
39   =>
40   (retract ?f)
41   (assert (Survive::initial-fact))
42   (initProblemspace-wander)
43   )
44   (defrule Pete.models.impasse2
45   ?f <- (Survive::initial-fact)
46   (Survive::vacuum.types.spot (status ?status2&:(eq* ?status2 

"dirty")))
47   =>
48   (retract ?f)
49   (assert (Survive::initial-fact))
50   (initProblemspace-clean)
51   )
52   
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53   ;define the inialize problemspace function...
54   (deffunction initProblemspace-Survive () 
55   (set-current-module Survive)
56   (assert (Survive::initial-fact))
57   (focus Survive)
58   )
59   ;---------------------------------------------------------------------

----------
60   ;end Survive
61   ;---------------------------------------------------------------------

----------
62   ;---------------------------------------------------------------------

----------
63   ;define wander
64   ;---------------------------------------------------------------------

----------
65   

66   ;define the module...
67   (defmodule wander)
68   

69   ;define the types...
70   (deftemplate vacuum.types.position
71   (slot x (default 0))
72   (slot y (default 0))
73   )
74   (defrule removevacuum.types.positions (declare (salience -100)) ?f 

<- (vacuum.types.position) => (retract ?f))
75   (deftemplate vacuum.types.radar
76   (slot dir (default ""))
77   (slot reading (default ""))
78   )
79   (defrule removevacuum.types.radars (declare (salience -100)) ?f <- 

(vacuum.types.radar) => (retract ?f))
80   (deftemplate vacuum.types.action
81   (slot move (default ""))
82   )
83   (defrule removevacuum.types.actions (declare (salience -100)) ?f <- 

(vacuum.types.action) => (retract ?f))
84   (deftemplate vacuum.types.spot
85   (slot status (default ""))
86   )
87   (defrule removevacuum.types.spots (declare (salience -100)) ?f <- 

(vacuum.types.spot) => (retract ?f))
88   

89   ;define the rules...
90   (defrule vacuum.operators.moveUp
91   (Survive::vacuum.types.spot (status ?status3&:(eq* ?status3 

"clean")))
92   (Survive::vacuum.types.position (y ?y4)(x ?x5))
93   =>
94   (assert (Survive::vacuum.types.action (move "up") ))
95   )
96   (defrule vacuum.operators.moveDown
97   (Survive::vacuum.types.spot (status ?status6&:(eq* ?status6 

"clean")))
98   (Survive::vacuum.types.position (y ?y7)(x ?x8))
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99   =>
100   (assert (Survive::vacuum.types.action (move "down") ))
101   )
102   (defrule vacuum.operators.moveLeft
103   (Survive::vacuum.types.spot (status ?status9&:(eq* ?status9 

"clean")))
104   (Survive::vacuum.types.position (y ?y10)(x ?x11))
105   =>
106   (assert (Survive::vacuum.types.action (move "left") ))
107   )
108   (defrule vacuum.operators.moveRight
109   (Survive::vacuum.types.spot (status ?status12&:(eq* ?status12 

"clean")))
110   (Survive::vacuum.types.position (y ?y13)(x ?x14))
111   =>
112   (assert (Survive::vacuum.types.action (move "right") ))
113   )
114   

115   ;define the exit problem space rule...
116   (defrule wander-exit (declare (salience -200)) ?f <- 

(wander::initial-fact) => (retract ?f) (focus Survive))
117   

118   ;define the inialize problemspace function...
119   (deffunction initProblemspace-wander () 
120   (set-current-module wander)
121   (assert (wander::initial-fact))
122   (focus wander)
123   )
124   ;---------------------------------------------------------------------

----------
125   ;end wander
126   ;---------------------------------------------------------------------

----------
127   ;---------------------------------------------------------------------

----------
128   ;define clean
129   ;---------------------------------------------------------------------

----------
130   

131   ;define the module...
132   (defmodule clean)
133   

134   ;define the types...
135   (deftemplate vacuum.types.position
136   (slot x (default 0))
137   (slot y (default 0))
138   )
139   (defrule removevacuum.types.positions (declare (salience -100)) ?f 

<- (vacuum.types.position) => (retract ?f))
140   (deftemplate vacuum.types.radar
141   (slot dir (default ""))
142   (slot reading (default ""))
143   )
144   (defrule removevacuum.types.radars (declare (salience -100)) ?f <- 

(vacuum.types.radar) => (retract ?f))
145   (deftemplate vacuum.types.action
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146   (slot move (default ""))
147   )
148   (defrule removevacuum.types.actions (declare (salience -100)) ?f <- 

(vacuum.types.action) => (retract ?f))
149   (deftemplate vacuum.types.spot
150   (slot status (default ""))
151   )
152   (defrule removevacuum.types.spots (declare (salience -100)) ?f <- 

(vacuum.types.spot) => (retract ?f))
153   

154   ;define the rules...
155   (defrule vacuum.operators.cleanUpSpot
156   (Survive::vacuum.types.spot (status ?status15&:(eq* ?status15 

"dirty")))
157   (Survive::vacuum.types.spot (status ?status16&:(eq* ?status16 

"dirty")))
158   =>
159   (assert (Survive::vacuum.types.action (move "suck") ))
160   )
161   

162   ;define the exit problem space rule...
163   (defrule clean-exit (declare (salience -200)) ?f <- 

(clean::initial-fact) => (retract ?f) (focus Survive))
164   

165   ;define the inialize problemspace function...
166   (deffunction initProblemspace-clean () 
167   (set-current-module clean)
168   (assert (clean::initial-fact))
169   (focus clean)
170   )
171   ;---------------------------------------------------------------------

----------
172   ;end clean
173   ;---------------------------------------------------------------------

----------
174   ;---------------------------------------------------------------------

----------
175   ;initialize the top problem space so we are ready to run
176   ;---------------------------------------------------------------------

----------
177   (initProblemspace-Survive)
178   

179   

180   

181   
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1   # ----------------------------------------------------
2   # Created automagically by Herbal 2.0.10
3   # Date Compiled: Thu Jul 31 12:34:17 EDT 2008
4   # Compiled By: mcohen
5   # ----------------------------------------------------
6   

7   

8   #---------------------------------------------------------------------
----------

9   #elaborations to retract completed output...
10   #---------------------------------------------------------------------

----------
11   sp {apply*global*remove-vacuum-types-position
12   (state <s> ^operator <o> ^io.output-link <out>)
13   (<out> ^|vacuum.types.position| <x>)
14   (<x> ^status complete)
15   -->
16   (<out> ^|vacuum.types.position| <x> -)
17   }
18   

19   sp {apply*global*remove-vacuum-types-radar
20   (state <s> ^operator <o> ^io.output-link <out>)
21   (<out> ^|vacuum.types.radar| <x>)
22   (<x> ^status complete)
23   -->
24   (<out> ^|vacuum.types.radar| <x> -)
25   }
26   

27   sp {apply*global*remove-vacuum-types-action
28   (state <s> ^operator <o> ^io.output-link <out>)
29   (<out> ^|vacuum.types.action| <x>)
30   (<x> ^status complete)
31   -->
32   (<out> ^|vacuum.types.action| <x> -)
33   }
34   

35   sp {apply*global*remove-vacuum-types-spot
36   (state <s> ^operator <o> ^io.output-link <out>)
37   (<out> ^|vacuum.types.spot| <x>)
38   (<x> ^status complete)
39   -->
40   (<out> ^|vacuum.types.spot| <x> -)
41   }
42   

43   #---------------------------------------------------------------------
----------

44   #define Pete-problemspaces-Survive
45   #---------------------------------------------------------------------

----------
46   

47   sp {propose*initialize-Pete-problemspaces-Survive
48   (state <local> ^type state -^name)
49   (<local> ^superstate nil)
50   -->
51   (<local> ^operator <o> +)
52   (<o> ^name initialize-Pete-problemspaces-Survive)
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53   (<o> ^top <local>)
54   (<o> ^parent <local>)
55   }
56   

57   sp {apply*initialize-Pete-problemspaces-Survive
58   (state <local> ^operator <o>)
59   (<o> ^name initialize-Pete-problemspaces-Survive ^top <top> 

^parent <parent>)
60   (<top> ^io <i1>)
61   (<i1> ^output-link <i2>)
62   -->
63   (<local> ^name Pete-problemspaces-Survive)
64   (<local> ^top <local>)
65   (<local> ^parent <local>)
66   (write |<hdb>Pete.models.Pete</hdb>| (crlf))
67   (write |<hdb>Pete.problemspaces.Survive</hdb>| (crlf))
68   }
69   

70   #define the impasses...
71   sp 

{propose*Pete-problemspaces-Survive*impasse*DesignPat-problemspaces-wa
nderps

72   (state <local> ^top <top> ^name Pete-problemspaces-Survive)
73   (<top> ^io <i1>)
74   (<i1> ^input-link <i2>)
75   (<i2> ^|vacuum.types.spot| <vacuum-types-spot1>)
76   (<vacuum-types-spot1> ^status <status1> |clean| )
77   -->
78   (<local> ^operator <o> + =)
79   (<o> ^name impasse*DesignPat-problemspaces-wanderps)
80   (write |<hdb>vacuum.conditions.isClean</hdb>| (crlf))
81   }
82   

83   sp 
{propose*Pete-problemspaces-Survive*impasse*DesignPat-problemspaces-cl
eanps

84   (state <local> ^top <top> ^name Pete-problemspaces-Survive)
85   (<top> ^io <i1>)
86   (<i1> ^input-link <i2>)
87   (<i2> ^|vacuum.types.spot| <vacuum-types-spot2>)
88   (<vacuum-types-spot2> ^status <status2> |dirty| )
89   -->
90   (<local> ^operator <o> + =)
91   (<o> ^name impasse*DesignPat-problemspaces-cleanps)
92   (write |<hdb>vacuum.conditions.isDirty</hdb>| (crlf))
93   }
94   

95   #---------------------------------------------------------------------
----------

96   #define DesignPat-problemspaces-wander
97   #---------------------------------------------------------------------

----------
98   

99   sp {propose*initialize-DesignPat-problemspaces-wander
100   (state <local> ^type state -^name)
101   (<local> ^impasse no-change ^attribute operator)
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102   (<local> ^superstate <parent>)
103   (<parent> ^top <top>)
104   (<parent> ^operator <imp>)
105   (<imp> ^name impasse*DesignPat-problemspaces-wanderps)
106   -->
107   (<local> ^operator <o> +)
108   (<o> ^name initialize-DesignPat-problemspaces-wander)
109   (<o> ^top <top>)
110   (<o> ^parent <parent>)
111   }
112   

113   sp {apply*initialize-DesignPat-problemspaces-wander
114   (state <local> ^operator <o>)
115   (<o> ^name initialize-DesignPat-problemspaces-wander ^top <top> 

^parent <parent>)
116   (<top> ^io <i1>)
117   (<i1> ^output-link <i2>)
118   -->
119   (<local> ^name DesignPat-problemspaces-wander)
120   (<local> ^top <top>)
121   (<local> ^parent <parent>)
122   (write |<hdb>Pete.models.Pete</hdb>| (crlf))
123   (write |<hdb>DesignPat.problemspaces.wander</hdb>| (crlf))
124   }
125   

126   #define the rules...
127   sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveUp
128   (state <local> ^top <top> ^parent <parent> ^name 

DesignPat-problemspaces-wander)
129   (<top> ^io <i1>)
130   (<i1> ^input-link <i2>)
131   (<i2> ^|vacuum.types.position| <vacuum-types-position3>)
132   (<vacuum-types-position3> ^y <y3>)
133   (<vacuum-types-position3> ^x <x4>)
134   -->
135   (write |<hdb>PROPOSAL.vacuum.operators.moveUp</hdb>| (crlf))
136   (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
137   (<local> ^operator <o> + =)
138   (<o> ^name vacuum-operators-moveUp)
139   }
140   sp {apply*DesignPat-problemspaces-wander*moveUp
141   (state <local> ^top <top> ^name DesignPat-problemspaces-wander 

^operator <o>)
142   (<o> ^name vacuum-operators-moveUp)
143   (<top> ^io <i1>)
144   (<i1> ^output-link <i2>)
145   -->
146   (write |<hdb>vacuum.operators.moveUp</hdb>| (crlf))
147   (write |<hdb>vacuum.actions.up</hdb>| (crlf))
148   (<i2> ^|vacuum.types.action| <vacuum-types-action5>)
149   (<vacuum-types-action5> ^move |up| )
150   }
151   sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveDown
152   (state <local> ^top <top> ^parent <parent> ^name 

DesignPat-problemspaces-wander)
153   (<top> ^io <i1>)
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154   (<i1> ^input-link <i2>)
155   (<i2> ^|vacuum.types.position| <vacuum-types-position6>)
156   (<vacuum-types-position6> ^y <y6>)
157   (<vacuum-types-position6> ^x <x7>)
158   -->
159   (write |<hdb>PROPOSAL.vacuum.operators.moveDown</hdb>| (crlf))
160   (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
161   (<local> ^operator <o> + =)
162   (<o> ^name vacuum-operators-moveDown)
163   }
164   sp {apply*DesignPat-problemspaces-wander*moveDown
165   (state <local> ^top <top> ^name DesignPat-problemspaces-wander 

^operator <o>)
166   (<o> ^name vacuum-operators-moveDown)
167   (<top> ^io <i1>)
168   (<i1> ^output-link <i2>)
169   -->
170   (write |<hdb>vacuum.operators.moveDown</hdb>| (crlf))
171   (write |<hdb>vacuum.actions.down</hdb>| (crlf))
172   (<i2> ^|vacuum.types.action| <vacuum-types-action8>)
173   (<vacuum-types-action8> ^move |down| )
174   }
175   sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveLeft
176   (state <local> ^top <top> ^parent <parent> ^name 

DesignPat-problemspaces-wander)
177   (<top> ^io <i1>)
178   (<i1> ^input-link <i2>)
179   (<i2> ^|vacuum.types.position| <vacuum-types-position9>)
180   (<vacuum-types-position9> ^y <y9>)
181   (<vacuum-types-position9> ^x <x10>)
182   -->
183   (write |<hdb>PROPOSAL.vacuum.operators.moveLeft</hdb>| (crlf))
184   (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
185   (<local> ^operator <o> + =)
186   (<o> ^name vacuum-operators-moveLeft)
187   }
188   sp {apply*DesignPat-problemspaces-wander*moveLeft
189   (state <local> ^top <top> ^name DesignPat-problemspaces-wander 

^operator <o>)
190   (<o> ^name vacuum-operators-moveLeft)
191   (<top> ^io <i1>)
192   (<i1> ^output-link <i2>)
193   -->
194   (write |<hdb>vacuum.operators.moveLeft</hdb>| (crlf))
195   (write |<hdb>vacuum.actions.left</hdb>| (crlf))
196   (<i2> ^|vacuum.types.action| <vacuum-types-action11>)
197   (<vacuum-types-action11> ^move |left| )
198   }
199   sp {propose*DesignPat-problemspaces-wander*vacuum-operators-moveRight
200   (state <local> ^top <top> ^parent <parent> ^name 

DesignPat-problemspaces-wander)
201   (<top> ^io <i1>)
202   (<i1> ^input-link <i2>)
203   (<i2> ^|vacuum.types.position| <vacuum-types-position12>)
204   (<vacuum-types-position12> ^y <y12>)
205   (<vacuum-types-position12> ^x <x13>)
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206   -->
207   (write |<hdb>PROPOSAL.vacuum.operators.moveRight</hdb>| (crlf))
208   (write |<hdb>vacuum.conditions.isAlive</hdb>| (crlf))
209   (<local> ^operator <o> + =)
210   (<o> ^name vacuum-operators-moveRight)
211   }
212   sp {apply*DesignPat-problemspaces-wander*moveRight
213   (state <local> ^top <top> ^name DesignPat-problemspaces-wander 

^operator <o>)
214   (<o> ^name vacuum-operators-moveRight)
215   (<top> ^io <i1>)
216   (<i1> ^output-link <i2>)
217   -->
218   (write |<hdb>vacuum.operators.moveRight</hdb>| (crlf))
219   (write |<hdb>vacuum.actions.right</hdb>| (crlf))
220   (<i2> ^|vacuum.types.action| <vacuum-types-action14>)
221   (<vacuum-types-action14> ^move |right| )
222   }
223   #---------------------------------------------------------------------

----------
224   #define DesignPat-problemspaces-clean
225   #---------------------------------------------------------------------

----------
226   

227   sp {propose*initialize-DesignPat-problemspaces-clean
228   (state <local> ^type state -^name)
229   (<local> ^impasse no-change ^attribute operator)
230   (<local> ^superstate <parent>)
231   (<parent> ^top <top>)
232   (<parent> ^operator <imp>)
233   (<imp> ^name impasse*DesignPat-problemspaces-cleanps)
234   -->
235   (<local> ^operator <o> +)
236   (<o> ^name initialize-DesignPat-problemspaces-clean)
237   (<o> ^top <top>)
238   (<o> ^parent <parent>)
239   }
240   

241   sp {apply*initialize-DesignPat-problemspaces-clean
242   (state <local> ^operator <o>)
243   (<o> ^name initialize-DesignPat-problemspaces-clean ^top <top> 

^parent <parent>)
244   (<top> ^io <i1>)
245   (<i1> ^output-link <i2>)
246   -->
247   (<local> ^name DesignPat-problemspaces-clean)
248   (<local> ^top <top>)
249   (<local> ^parent <parent>)
250   (write |<hdb>Pete.models.Pete</hdb>| (crlf))
251   (write |<hdb>DesignPat.problemspaces.clean</hdb>| (crlf))
252   }
253   

254   #define the rules...
255   sp {propose*DesignPat-problemspaces-clean*vacuum-operators-cleanUpSpot
256   (state <local> ^top <top> ^parent <parent> ^name 

DesignPat-problemspaces-clean)
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257   (<top> ^io <i1>)
258   (<i1> ^input-link <i2>)
259   (<i2> ^|vacuum.types.spot| <vacuum-types-spot15>)
260   (<vacuum-types-spot15> ^status <status15> |dirty| )
261   -->
262   (write |<hdb>PROPOSAL.vacuum.operators.cleanUpSpot</hdb>| (crlf))
263   (write |<hdb>vacuum.conditions.isDirty</hdb>| (crlf))
264   (<local> ^operator <o> + =)
265   (<o> ^name vacuum-operators-cleanUpSpot)
266   }
267   sp {apply*DesignPat-problemspaces-clean*cleanUpSpot
268   (state <local> ^top <top> ^name DesignPat-problemspaces-clean 

^operator <o>)
269   (<o> ^name vacuum-operators-cleanUpSpot)
270   (<top> ^io <i1>)
271   (<i1> ^output-link <i2>)
272   -->
273   (write |<hdb>vacuum.operators.cleanUpSpot</hdb>| (crlf))
274   (write |<hdb>vacuum.actions.suck</hdb>| (crlf))
275   (<i2> ^|vacuum.types.action| <vacuum-types-action16>)
276   (<vacuum-types-action16> ^move |suck| )
277   }
278   

279   

280   

281   
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Summative Evaluation Materials 

 



User Background Survey 
Participant ID: __________________________ Date: _______________ 

 

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu) 

 

Major:  Computer Science  /  Computer Information Science  /  BS Psychology 

Age: _______    Gender: M  /  F 

Number of undergraduate credits completed: ______ 

On average, how many hours a day do you use a computer: ______ 

 

1. Please describe what tasks you perform on your computer during a typical week: 

 

 

 

 

 

2. Please list any courses that you have taken that covered computer programming: 

 

 

3. Please list any courses that you have taken that covered cognitive modeling or intelligent 

agent development: 

 

 

4. How stressful do you expect the upcoming task to be? 
1 2 3 4 5 

Not at all  Moderately  Very 

 

5. How well do you think you will be able to cope with the upcoming task? 
1 2 3 4 5 

Not at all  Moderately  Very 

 

6. How demanding do you expect the upcoming task to be? 
1 2 3 4 5 

Not at all  Moderately  Very 
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User Background Survey 
Participant ID: __________________________ Date: _______________ 

 

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu) 

 

7. How well do you think you will perform in the upcoming task? 

 
1 2 3 4 5 

Not at all  Moderately  Very 

 

8. Is there anything else you would like to tell us about your interests or background that 

you think we should know?  If yes, briefly describe: 
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General Task Instructions for the Herbal Study 

In the next 40 minutes or so, you will be performing a task using the Herbal Development 

Environment.  You will be responsible for one of the following three tasks: to create a reusable 

library for creating vacuum cleaner agents; to create a specific vacuum cleaner agent using a 

library; or to debug and fix an existing vacuum cleaner agent. 

 

It is important that you take your time during this task.  The task instructions you will be using 

are, at times, intentionally vague in order to measure how intuitive the interface is.  Please “think 

out loud” (narrate your actions) as you work so I can get a better idea about what you are doing 

and why.  Also, you should feel free at any point during the task to ask questions.  In addition, if I 

see that you are in need of help I will intervene.  Enjoy! 

 

Questions or comments about this study should be directed to Mark Cohen (mcohen@lhup.edu) 
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Library Creation 
Background: You have been asked to create a general library that will make it easier to create 

agents that operate in the Vacuum Cleaner Environment.  The library you create here will be 

reused by other developers so they can quickly develop vacuum cleaner agents. 

Steps 

1. Execute Herbal by double-clicking the icon labeled Herbal. 

2. Using the File->New->Project menu item create a new, empty Herbal project named 

vacuum.  Select the type of project first and then click Next to give your project a name.  

Be sure to use all lower-case letters in the project name. 

3. Using the Herbal menu, open the Herbal GUI Editor and add the following types to the 

library (if you see certain items in the wizard that you are unsure about, feel free to accept 

the default values): 

a. action which contains a single string field called move.  This type will be used 

by the agent to perform actions like moving or cleaning a square.  This type 

should be marked as “used for I/O” and should be placed in the vacuum.types 

library. 

b. position which contains two number fields, named x and y.  This type will be 

used to specify the location of the vacuum cleaner agent.  This type should be 

marked as “used for I/O” and should be placed in the vacuum.types library. 

c. radar which contains two string fields named dir and reading.  This type will 

contain information about the clean or dirty status of the squares around the 

vacuum cleaner.  This type should be marked as “used for I/O” and should be 

placed in the vacuum.types library. 

d. spot which contains a single string field named status.  This type will be used to 

specify the clean or dirty status of the square currently occupied by the agent.  

This type should be marked as “used for I/O” and should be placed in the 

vacuum.types library. 

BREAK 

4. Using the Herbal GUI Editor add the following actions to the library (if you see certain 

items in the wizard that you are unsure about, feel free to accept the default values): 
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a. up which contains a single action clause that adds a new fact of type 

vacuum.types.action and sets the move field to the literal value up.  This action 

should be placed in the vacuum.actions library and can be used to make the 

vacuum cleaner move up one square. 

b. down which contains a single action clause that adds a new fact of type 

vacuum.types.action and sets the move field to the literal value down.  This 

action should be placed in the vacuum.actions library and can be used to make 

the vacuum cleaner move down one square. 

c. left which contains a single action clause that adds a new fact of type 

vacuum.types.action and sets the move field to the literal value left.  This action 

should be placed in the vacuum.actions library and be used to make the vacuum 

cleaner move left one square. 

d. right which contains a single action clause that adds a new fact of type 

vacuum.types.action and sets the move field to the literal value right.  This 

action should be placed in the vacuum.actions library and can be used to make 

the vacuum cleaner move right one square. 

e. suck which contains a single action clause that adds a new fact of type 

vacuum.types.action and sets the move field to the literal value suck.  This action 

should be placed in the vacuum.actions library and can be used to make the 

vacuum cleaner clean the square that the vacuum cleaner is on. 

BREAK 

5. Using the Herbal GUI Editor add the following conditions to the Vacuum namespace.  

You can ignore any fields related to output or input variables (if you see certain items in 

the wizard that you are unsure about, feel free to accept the default values): 

a. clean which tests to see if there is a vacuum.types.spot item with a status value 

restricted to the literal value equal to clean.  This condition should be placed in 

the vacuum.conditions library and will be true if the current square occupied by 

the vacuum cleaner is clean. 

b. dirty which tests to see if there is a vacuum.types.spot item with  a status value 

restricted to the literal value equal to dirty.    This condition should be placed in 

the vacuum.conditions library and will be true if the current square occupied by 

the vacuum cleaner is dirty. 
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c. alive which tests to see if there is a vacuum.types.position item with no 

restrictions on its fields.  This condition should be placed in the 

vacuum.conditions library and will be true as long as the vacuum cleaner is still 

alive and well. 

6. Your boss has decided that it is better to begin the names of condition with the prefix 

“is”.  Using the Herbal GUI Editor rename all of the conditions you just created so they 

contain the prefix “is”.  For example, clean should be renamed to isClean. 

BREAK 

7. Using the Herbal GUI Editor add the following operators to the vacuum.operators library: 

a. moveLeft: if the isAlive condition is true then perform the left action. 

b. moveRight: if the isAlive condition is true then perform the right action. 

c. moveUp: if the isAlive condition is true then perform the up action. 

d. moveDown: if the isAlive condition is true then perform the down action. 

e. cleanUpSpot: if the isDirty condition is true then perform the suck action. 

8. Choose either the conditions, actions, or operators that you created in the previous steps 

and add design rationale to them.  You should only enter information in the “What is this 

element?” field in the design rationale.    When entering information, keep in mind that 

someone else will be using this library, so add information that will helpful to other 

people. 

9. Use the Herbal GUI Editor to browse the elements in your library and ensure that you 

have created them properly. 

10. Using the Herbal menu, export the vacuum.operators library to a file in the 

HerbalEvaluation folder on the desktop called P[your participant id].hlib (for example 

P12.hlib). 
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Model Creation 
Background: In this task you will create a vacuum cleaner agent called Pete that operates in the 

Vacuum Cleaner Environment.  Pete will wander randomly until it finds a dirty square.  When a 

dirty square is encountered Pete will clean it.  Your task will be simplified by reusing a library of 

model elements created previously. 

Steps 

1. Execute Herbal by double-clicking the icon labeled Herbal. 

2. Using the File->New->Project menu item create a new, empty Herbal project named 

Pete. 

3. Using the Herbal menu, open the Herbal GUI Editor. 

4. Using the Herbal menu, import the library named P?.hlib that is located on the desktop. 

5. Using the Herbal GUI Editor, browse all of the library elements that were imported.  

Specifically, examine the actions, conditions, and operators that were imported.  Feel free 

to use the Rationale button to view details about each element. 

6. Perform the next two steps in any order: 

a. Using the Herbal GUI Editor (use the agent tab in the editor) to create a new 

agent in the Pete.models library named Pete. 

b. Using the Herbal GUI Editor (use the problem space tab in the editor) create a 

new problem space named survive.  This problem space will be used as the top 

level problem space for Pete.  All of Pete’s behavior will take place within this 

problem space, or a problem space below it. 

7. Using the Herbal GUI Editor (use the agent tab in the editor), add the survive problem 

space to the agent named Pete. 

BREAK 

8. Using the Behavior Design Pattern Wizard you will create a new behavior called wander.  

The purpose of this behavior is to randomly move left, right, up, and down while the 

vacuum cleaner is on a clean square.  This can be accomplished by using the while loop 

design pattern. 

a. Specifically, use the Herbal->Behavior Design Patterns menu item to create an 

unordered while loop behavior called wander.  Specify that Pete should exhibit 
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this behavior, and be sure to trigger this behavior while Pete is in the survive 

problem space.  The condition that should trigger this behavior should be the 

isClean condition because we want Pete to wander when it is on a clean square.  

Finally, the operators that should be executed while the square is clean are 

moveUp, moveDown, moveLeft, and moveRight.  These operators will happen in 

any order causing Pete to wander randomly! 

9. Using the Behavior Design Pattern Wizard you will create a new behavior called clean.  

The purpose of this behavior is to clean the current square when Pete is on a dirty square.  

This can be accomplished by using the while loop design pattern. 

a. Specifically, use the Herbal->Behavior Design Patterns menu item to create an 

unordered while loop behavior called clean.  Specify that Pete should exhibit this 

behavior, and be sure to trigger this behavior while Pete is in the survive problem 

space.  The condition that should trigger this behavior should be the isDirty 

condition because we want Pete to clean only when it is on a dirty square.  

Finally, the operator that should be executed while the square is dirty is the 

cleanUpSpot operator. 

BREAK 

10. Browse your agent using the Model Browser View located at the bottom of the Herbal 

window.  Make sure that the agent shown in this view matches the agent you intended to 

build.  Check closely for any errors. 

11. Go back to each problem space and agent (use the agent and problem space tabs in the 

Herbal GUI Editor) that you created in the previous steps and add design rationale to 

each of them.  You don’t have to fill in all of the fields.  However, keep in mind that over 

time you may forget what these model components do.  The design rationale you enter 

here will help you recall how your agent works and is also helpful for anyone else who 

tries to understand how agent Pete works. 

BREAK 

12. It is now time to test your agent.  Double-click on the file named vacuum_2.0.jar in the 

My Computer Window currently showing in the task bar at the bottom of the screen.  

This will execute the Vacuum Cleaner Environment.  Using the File->Open Soar Agent 

menu item, brows to the HerbalEvaluation\Workspace\Pete\output\soar directory and 

open the Pete.soar file. 

13. Click on the Run button and watch Pete go to work.  Is Pete executing as you expected? 
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14. Go back to the Herbal window and make sure that the Navigator view is visible on the 

left-hand side of the Herbal window.  Open the Pete project node and then open the 

output\soar folder.  Double click on the Pete.soar file and the contents of the file will be 

displayed.  This is the computer program that was created automatically by Herbal! 
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Model Maintenance 
Background: A vacuum cleaner agent has been created named Pete that operates in the Vacuum 

Cleaner Agent Environment.  Your job is to execute Pete and determine if it is operating 

correctly.  Pete is supposed to wander the environment randomly.  When Pete encounters a dirty 

square it should clean it and the resume wandering.  If you observe a problem with Pete’s 

behavior you will debug the agent to find and correct the problem. 

Steps 

1. Double-click on the file named vacuum_2.0.jar.  This will execute the Vacuum Cleaner 

Environment.  Using the File->Open Soar Agent menu item, browse to the 

HerbalEvaluation\Workspace\BrokenPete\output\soar directory and open the Pete2.soar 

file. 

2. Click on the Run button and watch Pete go to work.  Is it executing as you expected?  Are 

squares getting cleaned? 

3. Stop the vacuum cleaner agent. 

4. You will need to debug the vacuum cleaner agent so you can understand the problem that 

you discovered in step 2.  Execute Herbal by double-clicking the icon labeled Herbal, and 

open the Herbal GUI Editor.  Next, click on the Debug View tab on the bottom of the 

Herbal window.  Expand the Debug View so that it takes up a larger portion of the Herbal 

window. 

5. Go back to the Vacuum Cleaner Environment, reset the board, and run the agent.  

Quickly switch to Herbal and click on the Connect button in the Debug View.  Next, 

select the agent from the drop down list box.  Finally, click on Listen button. 

6. Allow the vacuum cleaner agent to run for a while and wait while Herbal generates a 

trace of the running agent.  After you get at least 15 events, click the Stop button in the 

Vacuum Cleaner Agent Environment and then click on Disconnect in the Herbal Debug 

View. 

7. Examine the trace to see if you can find the problem with the agent. 

8. You will now try and fix the problem.  Using the Working Set View on the left-hand side 

of the Herbal window, create a new working set and then use the Add Elements button to 

search the model for elements that might help you find the problem.  Select search 
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criteria that will give you model elements that are likely to be related to the problem 

(what keywords should you search for?.  Click Finish when you are done searching and 

the elements that were found will be added to your working set. 

9. Double-click on each element in your working set to get a closer look.  Study these 

elements in detail until you find the problem that is causing Pete to malfunction.  Try to 

fix the problem. 

10. If you think you have fixed the problem, go back to the Vacuum Cleaner Environment 

and run the agent again to see you were successful. 
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Visibility and Juxtaposability 

1) How easy was it to see or find the various parts (e.g., problem spaces, operators, 

conditions) of your agent or library while it was being created, changed, or debugged. 

very easy easy neutral difficult very difficult 

 

2) If you needed to compare different parts (e.g., problem spaces, operators, conditions) of 

your agent or library, you could easily see these parts at the same time. 

strongly agree agree neutral disagree strongly disagree 

Viscosity 

3) How easy was it to make changes to your agent or library? 

very easy easy neutral difficult very difficult 

 

4) Were there changes that were especially difficult to make? 

 

 

 

Diffuseness 

5) The elements (e.g., problem spaces, operators, and conditions) you used to build your 

agent or library allowed you to say what you wanted to say reasonably briefly. 

strongly agree agree neutral disagree strongly disagree 
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6) Where there any things (e.g., problem spaces, operators, and conditions) in your agent 

or library that took too much space to describe? 

 

 

 

Hard Mental Operations 

7) In general, the task you performed did not seem especially complex or difficult to work 

out in your head. 

strongly agree agree neutral disagree strongly disagree 

 

8) During this task, what kinds of things required a lot of mental effort? 

 

 

 

Error Proneness 

9) During this task, you often found yourself making small mistakes that irritated you or 

made you feel stupid. 

strongly agree agree neutral disagree strongly disagree 
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10) What mistakes did you encounter during the task that seemed particularly common or 

easy to make? 

 

 

 

Closeness of Mapping 

11) !The notation (e.g., problem spaces, operators, and conditions) you used to describe your 

agent or library was closely related to how you might describe the agent or library 

naturally. 

strongly agree agree neutral disagree strongly disagree 

 

12) ! Which parts of the notation (e.g., problem spaces, operators, conditions) used to 

describe your agent or library seemed to be a particularly strange way to describe 

something? 

 

 

 

Role Expressiveness 

13) During the task, you often did not know what many of the agent or library pieces meant 

(e.g., problem spaces, operators, conditions) but you put them in anyway. 

strongly agree agree neutral disagree strongly disagree 
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14) For which parts (e.g., problem spaces, operators, conditions) of the agent or library did 

you not understand the meaning? 

 

 

 

Progressive Evaluation 

15) It was easy to stop in the middle of creating the agent or library, and check your work 

so far. 

strongly agree agree neutral disagree strongly disagree 

 

16) During this task, it was easy to find out how much progress you made, or check what 

stage in your work you were in. 

strongly agree agree neutral disagree disagree 

 

Premature Commitment 

17) When working on this task, there were times when you felt like you could have changed 

the order you performed the steps without breaking the agent or library. 

strongly agree agree neutral disagree strongly disagree 

Appraisal 

16) How stressful did you find task to be? 
1 2 3 4 5 

Not at all  Moderately  Very 
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17) How well do you think you coped with the upcoming task? 
1 2 3 4 5 

Not at all  Moderately  Very 

 

18) How demanding did you find the task to be? 
1 2 3 4 5 

Not at all  Moderately  Very 

 

19) How well do you think you performed in the task? 
1 2 3 4 5 

Not at all  Moderately  Very 

Wrap Up 

20) After completing this questionnaire, can you think of obvious ways that the design of 

the system could be improved? What are they? 
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Comments made by participant: 

 

 

Errors observed including any assistance offered: 

 

 

Other: 
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