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Abstract

Several studies have suggested recently that a more dynamic
conflict resolution mechanism in the ACT–R cognitive ar-
chitecture (Anderson & Lebiere, 1998) could improve the
decision–making behaviour of cognitive models. This part of
ACT–R theory is revisited and a new solution is proposed. The
new algorithm (OPTIMIST) has been implemented as an over-
lay to the ACT–R architecture, and can be used as an alternative
mechanism. The operation of the new algorithm is tested in a
model of the Yerkes and Dodson experiment on animals’ learn-
ing. When OPTIMIST is used, the resulting model fits the data
better (e.g. R2 increases from .85 to .93 in one example).

Introduction
Conflict resolution is an important part of many intelligent
systems, and from a cognitive science perspective it repre-
sents a model of a decision–making mechanism in the brain.
In this paper, we introduce a new conflict resolution algorithm
that can be used as an alternative to the standard mechanism
in the ACT–R cogntivie architecture (Anderson & Lebiere,
1998). The new algorithm is called OPTIMIST (it stands for
‘Optimism’ plus ‘Optimisation’), and recently it has been in-
troduced as a search method (Belavkin, 2003a).

Although OPTIMIST can, indeed, be used as a general
purpose search strategy, its roots come from ACT–R mod-
els of cognitive development (Jones, Ritter, & Wood, 2000)
and the effect of emotion on learning and decision–making
(Belavkin, 2003b). These works exposed where to improve
the well–established cognitive architecture.

The standard conflict resolution mechanism of ACT–R, its
achievements and problems will be discussed in the first sec-
tion of the paper. Then, the underlying theory of the new
method will be explained, and the new algorithm will be pre-
sented. This section will repeat some results of the previ-
ous paper (Belavkin, 2003a). The third section will demon-
strate how the new algorithm works in a model. Early results
suggest that a model with the OPTIMIST conflict resolution
matches the data better than with the standard implementa-
tion.

The ACT–R Conflict Resolution
The symbolic level of ACT–R is organised as a goal–directed
production system with declarative and procedural types of
knowledge encoded in the form of chunks and production
rules respectively. The chunks representing the current goal,
some facts currently retrieved from the long term memory and
the states of perceptual and action buffers are compared with

the patterns in the left–hand sides of the production rules.
Then, after a set of all the rules that match the current working
memory pattern has been created (the conflict set), a single
rule has to be selected from this set and fired. This last step
is called conflict resolution, and it is very important how this
rule selection occurs because it controls which ‘decisions’ the
model makes and affects the search of the problem space.

In ACT–R, the conflict resolution uses subsymbolic infor-
mation associated with the rules. During the model run the
number of successes and failures of each rule (decision) is
recorded by the architecture. In addition, ACT–R records the
efforts (e.g. time) spent after executing the rule and actually
achieving the goal (or failing). This information is used to
estimate empirically the probability of success Pi and the av-
erage cost Ci of each rule

Pi =
Successesi

Successesi + Failuresi
(1)

Ci =
Effortsi

Successesi + Failuresi
. (2)

Here, Effortsi is the sum of all costs, associated with pre-
vious tests of ith rule: Effortsi =

∑k
j=0 Cij , where k =

Successesi + Failuresi is the number of previous tests of rule
i. For example, if cost is measured in time units, then C ij are
the time intervals ∆t spent while exploring the ith decision
path, and equation (2) calculates the average time. This way,
probabilities and costs of rules are learned by the architecture.

When several rules compete in the conflict set, ACT–R cal-
culates their utilities by the following equation

Ui = PiG − Ci + ξ(σ2) . (3)

Here, the G parameter is called the goal value, and it repre-
sents the maximum efforts (e.g. time) expected to spend on
achieving the goal; ξ is a random number taken from a normal
distribution with zero mean and variance σ 2 (the noise vari-
ance). Thus, the rational parts of the rules’ utilities (P iG−Ci)
are corrupted by noise ξ. Finally, the rule is selected accord-
ing to utility maximisation: i = arg max Ui. Below is the
summary of conflict resolution in ACT–R:

1. Set the goal value G and noise variance σ2

2. Calculate Pi, Ci and PiG − Ci of rules

3. Add noise ξ(σ2) to the utilities Ui

4. Fire rule i = arg maxUi
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One can see that mathematically conflict resolution in
ACT–R is an optimisation of some cost function (i.e. time).
However, in addition to that, the utility equation (3) has al-
lowed ACT–R to model successfully some important proper-
ties of human and animal decision–making:

Probability matching The choice in humans and animals
decision–making is proportional to the probability of success.
The use of Pi in the utility has allowed ACT–R to model the
data of many probability matching experiments (e.g. see An-
derson & Lebiere, 1998 for models on Friedman et al., 1964).

Stochasticity The nondeterministic (irrational) property of
choice behaviour is achieved by adding the noise in utility,
and different variance σ2 values were needed to simulate var-
ious experimental data (see Anderson & Lebiere, 1998). For
example, the somewhat irrational behaviour of children could
be simulated by a model of an adult with an increased noise in
conflict resolution (Jones et al., 2000). Moreover, it has been
suggested that risk–taking behaviour characteristic to choice
involving losses and negative emotions (Tversky & Kahne-
man, 1981; Johnson & Tversky, 1983) can be simulated by
higher noise variance values, while low noise variance is bet-
ter for simulating the risk–aversive behaviour associated with
choice involving gains and positive emotions (Belavkin &
Ritter, 2003; Belavkin, 2003b, 2004).

Levels of stimulation The reward (or penalty) values are
known to influence the choice. For example, higher pay–off
leads to preferences towards decisions with higher success
probabilities (Myers, Fort, Katz, & Suydam, 1963). This ef-
fect was modelled by using higher goal values G (Anderson,
1993; Lovett & Anderson, 1995). Also, it was shown that G
can be used to represent different levels of aversive stimula-
tion and even different levels of arousal (Belavkin, 2003b).

Recently, however, several problems in models’ perfor-
mance have been associated with the limitations of the ACT–
R conflict resolution mechanism. In particular, it was noticed
that ACT–R models usually produced more errors in the final
stages of experiments than subjects. This effect was espe-
cially noticeable in models of tasks with incremental learn-
ing, such as the Tower of Nottingham (Jones et al., 2000) or
the Yerkes and Dodson experiment (Belavkin, 2003b). Fig-
ure 1 shows such an example: The model matches the data
well during the first five simulated days,1 but produces more
errors after day 5. Using smaller values of noise variance σ 2

could eliminate the problem, but would lead to a higher dis-
crepancy with the data in the earlier stage of the curve. A
similar lack of convergence was noticed by other researchers
(Taatgen, 2001; Lebiere, 2003).

It has been suggested that noise variance σ2 should not re-
main constant, but should gradually decrease. Taatgen used
an exponential decay of σ2 as a function of time and achieved
better results. However, it was argued that noise variance
should be an inverse function of success rate and should not
necessarily always decrease, but may increase if more fail-
ures occur (Belavkin, 2001). This would not only improve the
models’ match with the data, but also optimise the decision–
making in a way similar to a simulated annealing heuristic.
An alternative method was proposed to control noise vari-
ance by the entropy of success parameter (Belavkin & Rit-

1Days A and B denote the preference series before training.
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Figure 1: A model of the Yerkes and Dodson experiment
compared with the data (from Belavkin, 2003b). Left: Er-
ror curves. Right: Regression plot.

ter, 2003). Indeed, uncertainty of achieving the success, es-
timated by the entropy, reduces as a result of learning, but
may increase locally if more failures occur. The experiments
demonstrated consistently that models with such a control
matched the data better. In this interpretation, noise can be
seen as a compensation for missing information about the
utilities of rules. The idea that noise should be proportional to
the uncertainty (lower expertise) may explain also why chil-
dren were simulated better by a model with higher noise vari-
ance (Jones et al., 2000).

The increase of expertise is not only reflected in the form of
statistical information about the production rules. An ACT–R
model may learn new rules using the production compilation
mechanism. Taatgen proposed that noise should affect these
new rules more than the ‘older’ rules in the system. This
would provide a smooth transition in a model from the use
of old to the more recently learned rules.2 Again, this is not
possible in the current ACT–R implementation, because σ 2 is
a global parameter which does not depend on rules’ creation
times.

Another concern expressed is regarding the goal value pa-
rameter G, which is used as a constant in the current imple-
mentation. In the real–world situations, however, the value of
the goal may change due to various reasons: Environmental
change, re–evaluation of the efforts required, change of mo-
tivation due to boredom or anxiety and so on. Moreover, it
was shown that G controls the problem space search strategy,
and an increase of G from small to high values implements
the best–first search heuristic (transition from breadth–first to
depth–first) which can greatly optimise the search (Belavkin,
2001).

Unfortunately, the current ACT–R theory does not account
for such dynamics. Let us summarise the new properties de-
sirable for the conflict resolution algorithm:

1. Noise variance should be rule specific.

2. Noise variance should be inversely proportional to the rate
of success, and should decrease on average with time.

3. Goal value should be dynamic and increase on average.

In the next section, a new algorithm that implements the
above properties is introduced.

2This effect has been achieved by using the production strength
parameter and strength learning mechanism



The OPTIMIST Conflict Resolution
The OPTIMIST algorithm (Belavkin, 2003a) has been derived
after some revisions of the utility equation (3) as an attempt
to address the issues discussed in the previous section. In the
first part of this section, we present some theoretical back-
ground that helped derive the new algorithm, and in the sec-
ond part, we describe the algorithm and its properties.

Theoretical background
It is well–known that many problems can have several solu-
tions. Moreover, in the real world, applying even the same
solution to one problem several times may produce slightly
different outcomes. For example, using the same strategy to
reach the goal in some task in several experiments may take
slightly different amounts of the time due to slightly different
initial conditions or some other factors in the environment. In
view of this, it is natural to consider the cost C (e.g. time)
needed to achieve the goal as a random variable, and the ex-
pected cost is thus

E{C} =
∑
C

C P (C)
(

or E{t} =
∫ ∞

0

t ϕ(t) dt

)
,

where P (C) is the probability that the goal will be achieved
exactly at cost C, and the summation is made across all pos-
sible values of C (or an integral on t ∈ [0,∞] if C is con-
tinuous, such as time). Note, that in this notation, probabil-
ity distribution P (C) (or probability density ϕ(t)) defines the
probability of success for any finite goal value G (i.e. on time
interval [0, G]), which is similar to ACT–R representation, but
uses fewer variables.

Knowledge of distribution functions Pi(C) for different al-
ternative decisions i ∈ [1, . . . , N ] would allow us to calcu-
late their expected costs Ei{C}, and to choose the best rule.
Indeed, better decisions should have smaller expected costs.
For example, we can use several strategies to assemble a Ru-
bik’s cube puzzle. One such strategy can be a random rotation
of edges of the cube, and it may eventually assemble the puz-
zle, but it will probably take much longer than by using some
more sophisticated rules. Thus, one can choose the rule by
minimising the expected cost: i = arg min Ei{C} (optimi-
sation).

The problem is, of course, that usually there is little infor-
mation about Pi(C), especially when making a decision for
the first time, and in order to estimate the expected cost even
for one decision one would have to apply this decision several
times to get a sample estimate: C̄ = 1

k

∑k
j=1 Cj ≈ E{C},

where k is the number of tests.
It has been suggested that a Poisson distribution can be

used to approximate Pi(C), if the cost is continuous, such
as time (Belavkin, 2003a). For illustration, consider a com-
puter set in an endless loop of solving the same problem over
and over again (see Figure 2), and suppose that it takes the
computer t seconds to reach the answer. Thus, the answer
will appear on the screen at a rate λ = 1/t. Similarly, if the
expected cost of a decision was known, then applying this
decision many times to the same problem should lead to the
success occurring at a rate λ = 1

E{C} .
The probability of observing n = 0, 1, 2, . . . number of

successes by the time t in such a process is given by the Pois-

Figure 2: A computer running an algorithm in a loop. The
goal state is observed at a rate λ = 1

E{C} , where E{C} is the
expected cost.

son distribution

P (n | λ) =
(λt)n

n!
e−λt , n = 0, 1, 2, ... . (4)

Here, λ = 1
E{C} is called the mean count rate. Note, that for

λ → 0 (or E{C} → ∞) the probability (4) becomes zero.
Equation (4) describes the conditional probability of n suc-

cess on time interval [0, t] for a known λ. However, in our
case λ in unknown, and the expected cost E{C} = 1/λ is
what we are trying to estimate after observing n = 0, 1, . . .
successes on time interval [0, t]. This can be done using pos-
terior probability density ϕ(λ | n), which can be obtained
using Bayes’ formula

ϕ(λ | n) =
P (n | λ)ϕ(λ)

P (n)
.

One can show that when a priori all the values of λ are
equally probable, and the likelihood probability P (n | λ) is
described by the Poisson distribution (4), then

ϕ(λ | n) = t P (n | λ) .

(Belavkin, 2003b). Now, the posterior mean estimate of λ is:

E{λ} =
∫ ∞

0

λϕ(λ | n) dλ =
n + 1

t

(
E{C} ≈ t

n + 1

)

Here, t and n correspond to the Effortsi and Successesi pa-
rameters in ACT–R equations (1) and (2). Note that the above
estimation can be used even when n = 0 (i.e. when no suc-
cesses occurred). This property is very important, because it
means that we do not have to explore all the solution paths
in full trying to succeed. Indeed, in our probabilistic inter-
pretation of cost C, any decision or strategy may eventually
lead to the desired goal (optimistic approach), although the
chance may be very small. An illustration of this idea can be
the classical example from the probability theory of a monkey
randomly typing on a keyboard. The probability that it will
come up with a literature text, such as ‘War and Peace’, is
in fact non–zero. Therefore, it is desirable for such ‘imprac-
tical’ decision paths to be explored only partially, and after
accepting a failure (n = 0) the system should give up and try
another decision (or strategy).

It has been shown using the maximum entropy principle
that the optimal moment to make new estimation of the ex-
pected cost and its posterior probability density ϕ(E{C} | n)



is at C = E{C} (see Belavkin, 2003b). If after the new
estimation another rule has smaller expected cost, then this
would be also the best moment to give up and try another al-
ternative. The following recursive procedure can be used to
estimate E{C} of one decision

∆t0 = Cmin , ∆tk+1 = C̄k =
∑k

i=0 Ci

n + 1
.

Here, k is the cycle number, and ∆tk is the time (or cost) in-
terval, on which, after the decision has been made, we expect
to achieve success. If success does not occur before the end
of ∆tk, then a failure is accepted. The number of successes
(n) in this case does not change, but the efforts (t) increase
by Ck = ∆tk. Thus, on failures the estimate increases. If the
success occurs before ∆tk, then n increases by one, and ef-
forts increase by Ck < ∆tk. Thus, on successes the estimate
decreases. Figure 3 shows an example of E{C} estimation
over 20 cycles: After increasing above the E{C} level, its
estimate C̄ quickly converges to E{C}.

Figure 3: Estimated cost of one rule (vertical axis) as a func-
tion of test cycles (horizontal axis). Estimated cost C̄ con-
verges to the expected cost E{C} with cycles k → ∞.

Now, if several alternative decisions (rules) are being con-
sidered, the choice can be made by selecting the decision with
the smallest estimate.

Algorithm Description
The OPTIMIST algorithm uses the same subsymbolic infor-
mation as that of the standard ACT–R implementation — the
number of successes and failures, as well as the overall ef-
forts associated with each rule. However, instead of calculat-
ing probabilities Pi and average costs Ci (equations (1) and
(2)), OPTIMIST estimates the expected costs of achieving the
success by each rule

C̄i =
Effortsi

Successesi + 1
≈ Ei{C} . (5)

Next, the estimates C̄i ≈ Ei{C} of all the rules in the con-
flict set are replaced by random numbers ξ i, which we call
random estimated costs. Ideally, ξi should be drawn from the
posterior densities ϕ(Ei{C}|Successesi). For computational
efficiency, however, ξi are drawn from the following uniform
distributions, which have similar properties

ϕ(ξi) =

{
1
2α if |ξi − C̄i| < α = C̄i

ki

0 otherwise
, (6)

where ki is the number of all times rule i has been used
(Failuresi + Successesi). The following function is used to
generate random estimated costs

ξi =
ki C̄i + rand(2C̄i)

ki + 1
. (7)

Finally, the rule choice is made by minimisation of random
estimated costs:

i = arg min ξi .

Below is the summary of the OPTIMIST algorithm:

1. Calculate the estimates C̄i of rules’ expected costs

2. Replace C̄i by corresponding random ξi

3. Fire rule i = arg min ξi

Note that the algorithm does not use the goal value pa-
rameter G. However, to some extent it is identical to the
expected cost estimation C̄ (or more precisely its minimum
min C̄i). Thus, the goal value in OPTIMIST is dynamically
learned through equation (5). Figure 4 shows the dynamics
of min C̄i for twenty rules in an example conflict set.

Figure 4: Dynamics of the smallest estimated cost for a con-
flict set of 20 rules as a function of test cycles.

Figure 5: Dynamics of choice proportion (vertical axis) for
different rules (horizontal axis) as a function of time. From
left to right: The choice concentrates on more successful
rules.

Also, one can see from (6) that C̄i controls the range of the
uniform distributions: α = C̄i

ki
. Thus, the variance of ξi (i.e.

σ2 = α2

3 for uniform distribution) also increases on failures

and decreases on successes. In addition, the range C̄i

ki
of ran-

domness decreases with ki (i.e. the number of times a rule
is used). Figure 5 shows from left to right the dynamics of
choice proportion between fifty rules (horizontal axis), with
the best rule placed in the middle. One can see that the choice
quickly concentrates on the best rule.

Finally, because both C̄i and ki are rule specific parame-
ters, the randomness is different for all the rules in the system.



In general, the less successful rules in the system (greater
costs C̄i) as well as newer rules (smaller ki) are more ‘noisy’
than rules with small expected costs and rules used more fre-
quently. One can see from above that OPTIMIST possesses all
three desired properties stated in the previous section: Noise
variance is rule specific, dynamic and proportional to the suc-
cess rate; Goal value is also dynamic and increases on aver-
age.

A Model Example and Additional Parameters
The OPTIMIST conflict resolution algorithm was put into
a test in a model of the Yerkes and Dodson experiment
(Belavkin, 2003b). In this classical animal learning task,
mice were trained over several days to escape a discrimina-
tion chamber (a box with two doors) through one particular
door. Ten tests per day were performed with each mouse, and
the number of errors was recorded. Figure 6 shows one ex-
ample of distribution of errors, produced by the model with
the OPTIMIST algorithm and compared with the experimental
data. Horizontal axis represents the day numbers, and vertical
axis shows the number of errors per day.

Model  ( blc = 1.8,  K = 10, G = 30 )  vs  Data  ( set 2, 195 )
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Figure 6: A model with OPTIMIST conflict resolution com-
pared with experimental data (Yerkes & Dodson, 1908). Left:
Error curves. Right: Regression plot.

These first tests demonstrated that the new algorithm
works, and the model produces behaviour comparable to both
the data and a model with the standard conflict resolution
mechanism. Moreover, because noise variance in OPTIMIST
version has decreasing dynamics, the models with the new
algorithm do not suffer from lack of convergence discussed
earlier in the paper (see Figure 1). In fact, the convergence is
sometimes too fast. This artifact may be partly explained by
the fact that the current OPTIMIST implementation uses uni-
form distributions (6), the variance of which decreases faster
than that of ϕ(E{C}). Therefore, a parameter has been intro-
duced to enable OPTIMIST to retain some level of noise. In
the current implementation, this is achieved by limiting the
number k used in the random estimated cost equation (7). By
defining a maximum value of k, we can limit the smallest
range α = C̄

k (and hence the variance) of the uniform distri-
bution (6). Parameter kmax can be used in a way similar to
the utility noise variance in ACT–R.

Another adjustment to the algorithm concerns different lev-
els of stimulation. In ACT–R, different values of pay–off are
represented by the goal value parameter G. In OPTIMIST, if
the cost is only measured by time, then there is no way of
distinguishing between different levels of a pay–off (i.e. val-
ues of reward or penalty). Indeed, the time spent on choosing
an option with a prize is the same as without. In order to

account for this effect, OPTIMIST uses reinforcement mecha-
nism, which modulates the costs of particular decisions:

• If a rule fired has explicit :failure flag, then penalty
value increases the costs of rules associated with the fail-
ure.

• If a rule fired has :success flag, then the reward reduces
the cost of the outcome.

The values of penalty and reward are defined by the corre-
sponding variables in the system, and in fact they describe
characteristics of the environment and interaction of a cogni-
tive model with the environment, rather than internal state of
the model. Moreover, this implementation allows a modeller
to define several different rewards and penalties in various
places of the simulated environment (unlike global G).

Model  ( blc = 1.8,  K = 100, G = 50 )  vs  Data  ( set 2, 420 )
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Figure 7: The effect of reinforcement: A model and data
for an experiment with higher level of stimulation (Yerkes &
Dodson, 1908).

Figure 7 shows the results of a model of the Yerkes and
Dodson experiment with higher value of stimulation (in the
original experiment it was an electrical stimulus). The model
uses penalty value that modulates the costs of rules that are
choosing the wrong door leading to an error. As a result,
the model learns faster, and it correlates with the data quite
well. Note that the data set the model is compared with is the
same as shown on Figure 1. One can see that the OPTIMIST
model matches the data better than the standard model (R 2

has increased from .85 to .93), which indicates in favour of
the new algorithm.

Discussion and Conclusions
In this paper, we challenged one of the most important mech-
anisms of a well–established cognitive architecture — the
conflict resolution of ACT–R. Many cognitive models rely
on and use the utility equation (3) and its parameters. One
of such models, mentioned in this paper, is the model of the
Yerkes and Dodson experiment. The limitations of the cur-
rent ACT–R implementation, as encountered by this model,
has become the main motivation for the new algorithm. For
example, it has been shown that a model with dynamic con-
trol of noise variance by means of entropy reduction improves
significantly the match between the model and data (Belavkin
& Ritter, 2003). As has been discussed earlier in this paper,
similar concerns have been expressed by other researchers.

The new algorithm uses some elements of statistical
decision–making theory and estimates expected costs of pro-
duction rules using a Poisson distribution. Interestingly, sev-
eral studies on kinetics of choice in animals learning have



suggested earlier that estimation of the Poisson rate λ (or
equivalently E{C} = 1/λ) may explain animals’ choice be-
haviour. In particular, Myerson and Miezin (1980) used a
Poisson distribution to explain the change of response fre-
quency in rats (see also Mark & Gallistel, 1994). Moreover,
an attempt to incorporate this into the ACT–R theory has been
already made in a form of the events discounting mechanism
(Lovett & Anderson, 1996; Lovett, 1998). Unfortunately, this
mechanism suffers from computational overhead and turns
out to be impractical for complex models. The new algo-
rithm, introduced in this paper, directly estimates the rate of
a Poisson process. In addition, the algorithm is computation-
ally efficient and uses the standard subsymbolic information
of ACT–R, so it is relatively easy to implement.

The first implementation of the algorithm as an overlay to
ACT–R has been created (Belavkin, 2003b), and it is available
for download on

http://gold.mdx.ac.uk/˜rvb/software/optimist/

The operation of the algorithm has been demonstrated on
a model. Early results are in favour of the new algorithm and
suggest that it indeed may improve the performance of some
cognitive models. However, more tests in different models
still have to be done. It is, therefore, suggested to use the
new algorithm in addition to the standard to provide valuable
feedback for further development.
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